Science.gov

Sample records for adhesive luting cement

  1. Monkey pulpal responses to conventional and adhesive luting cements.

    PubMed

    Inokoshi, S; Fujitani, M; Otsuki, M; Sonoda, H; Kitasako, Y; Shimada, Y; Tagami, J

    1998-01-01

    Monkey pulpal responses to metal inlays luted with a combination of an adhesive resin and luting composite and conventional dental cements were histopathologically evaluated. Initial pulpal responses caused by re-exposure of the cut dentin surfaces and luting procedure under hydraulic pressure subsided at 90 days after final cementation. There was no significant difference among pulpal reactions to conventional dental cements and a combination of an adhesive resin and luting composite. The adhesive resin coating of freshly cut dentinal walls/floors immediately after cavity preparation seems to provide protection for the dentin and pulp in indirect restorations requiring temporary sealing. PMID:9610329

  2. Microtensile Bond Strength of Self-Adhesive Luting Cements to Ceramics

    PubMed Central

    Abo, Tomoko; Uno, Shigeru; Yoshiyama, Masahiro; Yamada, Toshimoto; Hanada, Nobuhiro

    2012-01-01

    The purpose of this paper was to compare the bond strengths of the self-adhesive luting cements between ceramics and resin cores and examine their relation to the cement thickness. Three self-adhesive luting cements (Smartcem, Maxcem, and G-CEM) and a resin cement (Panavia F 2.0) for control were used in the paper. The thickness of the cements was controlled in approximately 25, 50, 100, or 200 μm. Each 10 specimens were made according to the manufacturers' instructions and stored in water at 37°C. After 24 hours, microtensile bond strength (μTBS) was measured. There were significant differences in cements. Three self-adhesive cements showed significantly lower μTBSs than control that required both etching and priming before cementation (Tukey, P < 0.05). The cement thickness of 50 or 100 μm tended to induce the highest μTBSs for each self-adhesive luting cements though no difference was found. PMID:22606202

  3. Tensile bond strength of indirect composites luted with three new self-adhesive resin cements to dentin

    PubMed Central

    TÜRKMEN, Cafer; DURKAN, Meral; CİMİLLİ, Hale; ÖKSÜZ, Mustafa

    2011-01-01

    Objective The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM. Material and Methods Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group): direct composite resin restoration (Alert) with etch-and-rinse adhesive system (Bond 1 primer/adhesive), Group 2: indirect composite restoration (Estenia) luted with a resin cement (Cement-It) combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond), Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively) onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student's t-test. The failure modes of all groups were also evaluated. Results The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7) showed better results compared to the other groups (p<0.05). Group 4 showed the weakest bond strength (p>0.05). The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure. Conclusion The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces. PMID:21710095

  4. Adhesion of conventional and simplified resin-based luting cements to superficial and deep dentin.

    PubMed

    Özcan, Mutlu; Mese, Ayse

    2012-08-01

    This study evaluated the bond strengths of conventional (chemically and dual-polymerized) and simplified resin-based luting cements with their corresponding adhesives to superficial dentin (SD) and deep dentin (DD). Recently extracted third molars (N = 70, n = 10 per group) were obtained and prepared for testing procedures. After using their corresponding etchants, primers, and/or adhesive systems, the conventional and simplified cements (Variolink II [group A, conventional], Bifix QM [group B, conventional], Panavia F2.0 [group C, conventional], Multilink Automix [group D, simplified], Superbond C&B [group E, conventional], Clearfil Esthetic Cement [group F, simplified], Ketac-Fil [group G, conventional]) were adhered incrementally onto the dentin surfaces using polyethylene molds (inner diameter 3.5 mm, height 5 mm) and polymerized accordingly. Resin-modified glass-ionomer cement (RMGIC) acted as the control material. Shear bond strengths (1 mm/min) were determined after 500 times of thermocycling. Kruskal-Wallis and Mann-Whitney tests were used to analyze the data (α = 0.05). Bond strength (MPa) results were significantly affected by the cement types and their corresponding adhesive systems (p ≤ 0.05). The shear bond strengths (MPa ± SD) for groups A-G were 14.6 ± 3.8, 18.9 ± 3.9, 5.5 ± 4.5, 3.1 ± 3.6, 1.1 ± 2.5, 15.5 ± 2.6, 7 ± 4.3 and 7.1 ± 5.8, 15.1 ± 7.8, 8.4 ± 7.3, 7.5 ± 7.3, 4.9 ± 5.1, 12.5 ± 2.1, 6 ± 2.6 for SD and DD, respectively. The level of dentin depth did not decrease the bond strength significantly (p > 0.05) for all cements, except for Variolink II (p < 0.05). On the SD, bond strength of resin cements with "etch-and-rinse" adhesive systems (Variolink II, Bifix QM, Super-Bond C&B) showed similar results being higher than those of the simplified ones. Simplified cements and RMGIC as control material showed inferior adhesion to superficial and deep dentin compared to conventional resin cements tested. PMID:21833482

  5. Improving adhesion between luting cement and zirconia-based ceramic with an alternative surface treatment.

    PubMed

    Martins, Aurealice Rosa Maria; Gotti, Valéria Bisinoto; Shimano, Marcos Massao; Borges, Gilberto Antônio; Gonçalves, Luciano de Souza

    2015-01-01

    This study evaluated the influence of an alternative surface treatment on the microshear bond strength (μsbs) of zirconia-based ceramic. Thirty-five zirconia disks were assigned to five groups according to the following treatments: Control (CO), glass and silane were not applied to the zirconia surface; G1, air blasted with 100μm glass beads + glaze + silane; G2, a gel containing 15% (by weight) glass beads applied to the ceramic surface + glaze + silane; G3, a gel containing 25% (by weight) glass beads applied to the ceramic surface + glaze + silane; and G4, a gel containing 50% (by weight) glass beads applied to the ceramic surface + glaze + silane. The specimens were built up using RelyX ARC®, according to the manufacturer's recommendations, and inserted in an elastomeric mold with an inner diameter of 0.8 mm. The μsbs test was performed using a testing machine at a crosshead speed of 0.5 mm/min. ANOVA and Tukey's test (p < 0.05) were applied to the bond strength values (in MPa). CO (15.6 ± 4.1) showed the lowest μsbs value. There were no statistical differences between the G1 (24.9 ± 7.4), G2 (24.9 ± 2.3), G3 (35.0 ± 10.3) and G4 (35.3 ± 6.0) experimental groups. Those groups submitted to surface treatments with higher concentrations of glass showed a lower frequency of adhesive failures. In conclusion, the glass application improved the interaction between the ceramic and the luting cement. PMID:25859635

  6. Bonding Effectiveness of Two Adhesive Luting Cements to Glass Fiber Posts: Pull-Out Evaluation of Three Different Post Surface Conditioning Methods

    PubMed Central

    Calabrese, Marco

    2014-01-01

    The purpose of this study was to evaluate the bond strength at the post/resin-cement interface with 3 different surface treatments of glass fiber posts and with 2 different luting resin cements. Sixty glass fiber posts (RelyX Fiber Post) were randomly divided into 3 groups (n = 20) and were luted with a dual-polymerizing self-adhesive universal resin cement (RelyX Unicem) and with a dual-polymerizing resin cement (RelyX ARC). This was carried out in association with a dual-polymerizing adhesive (Scotchbond Multi-Purpose Plus) in simulated plexiglass root canals after receiving three different pretreatment procedures. A pull-out test was performed on each sample to measure bond strengths. Data were analyzed with two-way ANOVA. Two samples from each group were processed for SEM observations in order to investigate the morphologic aspect of the post/cement interface. Both resin cements demonstrated significant different bond strength values (P < 0.0001). The surface treatment result was also statistically significant (P = 0.0465). SEM examination showed a modification of the post surface after pretreatment with methyl methacrylate. The dual-polymerizing self-adhesive universal resin cement achieved higher MPa bond strength values. The use of methyl methacrylate as a surface treatment of glass fiber posts provided a significant increase in bond strengths between the posts and both luting materials. PMID:24987418

  7. [Haemotoxicity of dental luting cements].

    PubMed

    Anders, A; Welker, D

    1989-06-01

    A glass ionomer luting cement (AquaCem) shows a relatively low haemolytic activity in comparison with two zinc phosphate cements. Especially the initial irritation by this cement is smaller. Although it is possible that AquaCem particularly, in unfavourable cases, may damage the pulpa dentin system; this is due to the slowly decrease of the haemolytic activity with increasing of the probes. We found that Adhesor showed in dependence of the batches a varying quality. PMID:2626769

  8. Luting of ceramic crowns with a self-adhesive cement: Effect of contamination on marginal adaptation and fracture strength

    PubMed Central

    Slavcheva, Slavena; Krejci, Ivo

    2013-01-01

    Objectives: This study evaluated the percentages of continuous margins (%CM) and fracture strength (FS) of crowns made out from blocs of leucite-reinforced ceramic (IPS Empress CAD) and luted with a representative self-adhesive cement (RelyX Unicem) under four contaminating agents: saliva, water, blood, a haemostatic solution containing aluminium chloride (pH= 0.8) and a control group with no contamination. Study Design: %CM at both tooth-cement (TC) and cement-crown (CC) interfaces were determined before and after a fatigue test consisting of 600’000 chewing loads and 1’500 temperature cycles changing from 5º C to 50º C. Load to fracture was recorded on fatigued specimens. Kruskal-Wallis test was used to compare %CM and FS between the five groups with a level of confidence of 95%. Results: At the TC interface, no significant differences in marginal adaptation before loading could be detected between groups. After loading, a significant marginal degradation was observed in the group contaminated with aluminium chloride (52 ± 22 %CM) in respect to the other groups. No significant differences in %CM could be detected between the groups contaminated with saliva, water, blood and the control. At the CC interface, no significant differences in marginal adaptation were observed between the groups. The FS on loaded specimens was around 1637N, with no significant differences between groups as well. Conclusions: An adverse interaction of the highly acidic haemostatic agent with either dentin or the self-adhesive cement could explain the specimens’ marginal degradation. The self-adhesive cement tested in this study was no sensitive to moisture contamination either with saliva, water or blood. Key words:Marginal adaptation, RelyX Unicem, contamination, all-ceramic crowns. PMID:23722123

  9. Effects of dentin moisture on the push-out bond strength of a fiber post luted with different self-adhesive resin cements

    PubMed Central

    Uzunoğlu, Emel; Yılmaz, Zeliha

    2013-01-01

    Objectives This study evaluated the effects of intraradicular moisture on the pushout bond strength of a fibre post luted with several self-adhesive resin cements. Materials and Methods Endodontically treated root canals were treated with one of three luting cements: (1) RelyX U100, (2) Clearfil SA, and (3) G-Cem. Roots were then divided into four subgroups according to the moisture condition tested: (I) dry: excess water removed with paper points followed by dehydration with 95% ethanol, (II) normal moisture: canals blot-dried with paper points until appearing dry, (III) moist: canals dried by low vacuum using a Luer adapter, and (IV) wet: canals remained totally flooded. Two 1-mm-thick slices were obtained from each root sample and bond strength was measured using a push-out test setup. The data were analysed using a two-way analysis of variance and the Bonferroni post hoc test with p = 0.05. Results Statistical analysis demonstrated that moisture levels had a significant effect on the bond strength of luting cements (p < 0.05), with the exception of G-Cem. RelyX U100 displayed the highest bond strength under moist conditions (III). Clearfil SA had the highest bond strength under normal moisture conditions (II). Statistical ranking of bond strength values was as follows: RelyX U100 > Clearfil SA > G-Cem. Conclusions The degree of residual moisture significantly affected the adhesion of luting cements to radicular dentine. PMID:24303359

  10. The effects of tooth preparation cleansing protocols on the bond strength of self-adhesive resin luting cement to contaminated dentin.

    PubMed

    Chaiyabutr, Yada; Kois, John C

    2008-01-01

    This in vitro study evaluated the bond strength of a self-adhesive luting cement after using four different techniques to remove surface contamination on dentin. Extracted human molars were flattened to expose the dentin surface and prepared for full crown preparation. Acrylic temporary crowns were fabricated and placed using temporary cement. The specimens were stored at room temperature with 100% relative humidity for seven days. Following removal of the temporary crowns, the specimens were randomly divided into four groups, and excess provisional cement was removed with (1) a hand instrument (excavator), (2) prophy with a mixture of flour pumice and water (3) aluminous oxide abrasion with a particle size of 27 microm at 40 psi and (4) aluminous oxide abrasion with a particle size of 50 microm at 40 psi. The microstructure morphology of the tooth surface was evaluated and residual materials were detected using SEM and EDS analysis of randomly selected specimens. The ceramics were treated with 9.5% hydrofluoric acid-etch and silanized to the prepared dentin prior to cementing with self-adhesive resin cement (RelyX Unicem, 3M ESPE). The shear bond strength was determined at a crosshead speed of 0.5 mm/minute. The results were analyzed with one-way ANOVA, followed by Tukey's test. Particle abrasion treatment of dentin with an aluminous oxide particle provided the highest values of bond strength, while hand instrument excavation was the lowest (p < 0.05). Aluminous oxide particle size did not significantly influence the bond strength at 40 psi. The use of low pressure and small particle abrasion treated dentin as a mechanical cleansing protocol prior to definitive cementation increased the bond strength of self-adhesive resin-luting cement to dentin following eugenol-containing temporary cement. PMID:18833862

  11. Retention of Root Canal Posts: Effect of Cement Film Thickness, Luting Cement, and Post Pretreatment.

    PubMed

    Sahafi, A; Benetti, A R; Flury, S; Peutzfeldt, A

    2015-01-01

    The aim of this study was to investigate the effect of the cement film thickness of a zinc phosphate or a resin cement on retention of untreated and pretreated root canal posts. Prefabricated zirconia posts (CosmoPost: 1.4 mm) and two types of luting cements (a zinc phosphate cement [DeTrey Zinc] and a self-etch adhesive resin cement [Panavia F2.0]) were used. After removal of the crowns of 360 extracted premolars, canines, or incisors, the root canals were prepared with a parallel-sided drill system to three different final diameters. Half the posts did not receive any pretreatment. The other half received tribochemical silicate coating according to the manufacturer's instructions. Posts were then luted in the prepared root canals (n=30 per group). Following water storage at 37°C for seven days, retention of the posts was determined by the pull-out method. Irrespective of the luting cement, pretreatment with tribochemical silicate coating significantly increased retention of the posts. Increased cement film thickness resulted in decreased retention of untreated posts and of pretreated posts luted with zinc phosphate cement. Increased cement film thickness had no influence on retention of pretreated posts luted with resin cement. Thus, retention of the posts was influenced by the type of luting cement, by the cement film thickness, and by the post pretreatment. PMID:25764045

  12. Does inhibition of proteolytic activity improve adhesive luting?

    PubMed

    Lührs, Anne-Katrin; De Munck, Jan; Geurtsen, Werner; Van Meerbeek, Bart

    2013-04-01

    Endogenous enzymes may be involved in the biodegradation of adhesive restoration-tooth interfaces. Inhibitors of matrix metalloproteinases (MMPs) have been suggested to retard the bond-degradation process. Limited data are available on whether composite cements may also benefit from MMP inhibitors. Therefore, the aim of this study was to determine the effect of two MMP inhibitors--chlorhexidine digluconate (CHX) and galardin--on the microtensile bond strength (μTBS) of two self-adhesive composite cements to dentin. Ceramic specimens were cemented to bur-cut dentin surfaces using the self-adhesive composite cements RelyX Unicem 2 (3M ESPE) or Clearfil SA (Kuraray), or the etch-and-rinse composite cement Nexus 3 (Kerr) that served as the control. The surfaces were left untreated or were pretreated with MMP inhibitors (2% CHX or 0.2 mM galardin). The μTBS was determined 'immediately' and upon ageing (water storage for 6 months). Statistical analysis revealed a significant effect of the factors 'composite cement' and 'storage', as well as all interactions, but no effect of the MMP inhibitors. After 6 months of ageing, the μTBS decreased for all cements, except for the multistep etch-and-rinse luting composite when it was applied without MMP inhibitors. The MMP inhibitors could not prevent the decrease in μTBS upon ageing and therefore do not improve the luting durability of the composite cements tested. PMID:23489902

  13. Practical clinical considerations of luting cements: A review

    PubMed Central

    Lad, Pritam P; Kamath, Maya; Tarale, Kavita; Kusugal, Preethi B

    2014-01-01

    The longevity of fixed partial denture depends on the type of luting cement used with tooth preparation. The clinician’s understating of various cements, their advantages and disadvantages is of utmost importance. In recent years, many luting agents cements have been introduced claiming clinically better performance than existing materials due to improved characteristics. Both conventional and contemporary dental luting cements are discussed here. The various agents discussed are: Zinc phosphate, Zinc polycarboxylate, Zinc oxide-eugenol, Glass-ionomer, Resin modified GIC, Compomers and Resin cement. The purpose of this article is to provide a discussion that provides a clinical perspective of luting cements currently available to help the general practitioner make smarter and appropriate choices. How to cite the article: Lad PP, Kamath M, Tarale K, Kusugal PB. Practical clinical considerations of luting cements: A review. J Int Oral Health 2014;6(1):116-20. PMID:24653615

  14. Practical clinical considerations of luting cements: A review.

    PubMed

    Lad, Pritam P; Kamath, Maya; Tarale, Kavita; Kusugal, Preethi B

    2014-02-01

    The longevity of fixed partial denture depends on the type of luting cement used with tooth preparation. The clinician's understating of various cements, their advantages and disadvantages is of utmost importance. In recent years, many luting agents cements have been introduced claiming clinically better performance than existing materials due to improved characteristics. Both conventional and contemporary dental luting cements are discussed here. The various agents discussed are: Zinc phosphate, Zinc polycarboxylate, Zinc oxide-eugenol, Glass-ionomer, Resin modified GIC, Compomers and Resin cement. The purpose of this article is to provide a discussion that provides a clinical perspective of luting cements currently available to help the general practitioner make smarter and appropriate choices. How to cite the article: Lad PP, Kamath M, Tarale K, Kusugal PB. Practical clinical considerations of luting cements: A review. J Int Oral Health 2014;6(1):116-20. PMID:24653615

  15. Luting of CAD/CAM ceramic inlays: direct composite versus dual-cure luting cement.

    PubMed

    Kameyama, Atsushi; Bonroy, Kim; Elsen, Caroline; Lührs, Anne-Katrin; Suyama, Yuji; Peumans, Marleen; Van Meerbeek, Bart; De Munck, Jan

    2015-01-01

    The aim of this study was to investigate bonding effectiveness in direct restorations. A two-step self-etch adhesive and a light-cure resin composite was compared with luting with a conventional dual-cure resin cement and a two-step etch and rinse adhesive. Class-I box-type cavities were prepared. Identical ceramic inlays were designed and fabricated with a computer-aided design/computer-aided manufacturing (CAD/CAM) device. The inlays were seated with Clearfil SE Bond/Clearfil AP-X (Kuraray Medical) or ExciTE F DSC/Variolink II (Ivoclar Vivadent), each by two operators (five teeth per group). The inlays were stored in water for one week at 37°C, whereafter micro-tensile bond strength testing was conducted. The micro-tensile bond strength of the direct composite was significantly higher than that from conventional luting, and was independent of the operator (P<0.0001). Pre-testing failures were only observed with the conventional method. High-power light-curing of a direct composite may be a viable alternative to luting lithium disilicate glass-ceramic CAD/CAM restorations. PMID:26407114

  16. The properties of polymerizable luting cements.

    PubMed

    Nicholson, J W; McKenzie, M A

    1999-10-01

    The properties of a polyacid-modified composite resin and two resin-modified luting cements have been studied. The polyacid-modified composite resin had the slowest setting reaction and, in this respect, it did not conform to the current international standard for luting cements. The compressive strength of all of the materials was studied after varying periods of storage from 24 h to 1 year. The polyacid-modified composite resin showed a distinct dip in strength at 1 month in all of the storage media, but otherwise it showed no significant variation with either age or storage medium. The resin-modified glass-ionomers showed variation at 24 h with storage medium (deionized water, 0.9% NaCl or 20 mmol dm(-3) lactic acid), but thereafter they showed little variation, until 1 year, when Vitremer luting showed a significant decline in strength in pure water. However, at 24 h and when stored in water, all of the materials had strengths that easily exceeded the minimum requirement of the current standard (70 MPa). They all took up water on storage, with diffusion coefficients ranging from 1.32 to 17. 19x10(-7) cm2 s(-1). These values were found to depend on whether the specimens were stored in pure water or in physiological saline. However, equilibrium water contents varied only slightly between water and saline. The polyacid-modified composite resin, Dyract-Cem, took up the least water, as well as showing the smallest variation in strength with age. By contrast, it was more difficult to mix than the other materials and the high viscosity of the paste led to the formation of voids and other imperfections in the specimens. PMID:10564431

  17. Radiopacity Evaluation of Contemporary Luting Cements by Digitization of Images

    PubMed Central

    Reis, José Maurício dos Santos Nunes; Jorge, Érica Gouveia; Ribeiro, João Gustavo Rabelo; Pinelli, Ligia Antunes Pereira; Abi-Rached, Filipe de Oliveira; Tanomaru-Filho, Mário

    2012-01-01

    Objective. The aim of this study was to evaluate the radiopacity of two conventional cements (Zinc Cement and Ketac Cem Easymix), one resin-modified glass ionomer cement (RelyX Luting 2) and six resin cements (Multilink, Bistite II DC, RelyX ARC, Fill Magic Dual Cement, Enforce and Panavia F) by digitization of images. Methods. Five disc-shaped specimens (10 × 1.0 mm) were made for each material, according to ISO 4049. After setting of the cements, radiographs were made using occlusal films and a graduated aluminum stepwedge varying from 1.0 to 16 mm in thickness. The radiographs were digitized, and the radiopacity of the cements was compared with the aluminum stepwedge using the software VIXWIN-2000. Data (mmAl) were submitted to one-way ANOVA and Tukey's test (α = 0.05). Results. The Zinc Cement was the most radiopaque material tested (P < 0.05). The resin cements presented higher radiopacity (P < 0.05) than the conventional (Ketac Cem Easymix) or resin-modified glass ionomer (RelyX Luting 2) cements, except for the Fill Magic Dual Cement and Enforce. The Multilink presented the highest radiopacity (P < 0.05) among the resin cements. Conclusion. The glass ionomer-based cements (Ketac Cem Easymix and RelyX Luting 2) and the resin cements (Fill Magic Dual Cement and Enforce) showed lower radiopacity values than the minimum recommended by the ISO standard. PMID:23008777

  18. In vitro tensile strength of luting cements on metallic substrate.

    PubMed

    Orsi, Iara A; Varoli, Fernando K; Pieroni, Carlos H P; Ferreira, Marly C C G; Borie, Eduardo

    2014-01-01

    The aim of this study was to determine the tensile strength of crowns cemented on metallic substrate with four different types of luting agents. Twenty human maxillary molars with similar diameters were selected and prepared to receive metallic core castings (Cu-Al). After cementation and preparation the cores were measured and the area of crown's portion was calculated. The teeth were divided into four groups based on the luting agent used to cement the crowns: zinc phosphate cement; glass ionomer cement; resin cement Rely X; and resin cement Panavia F. The teeth with the crowns cemented were subjected to thermocycling and later to the tensile strength test using universal testing machine with a load cell of 200 kgf and a crosshead speed of 0.5 mm/min. The load required to dislodge the crowns was recorded and converted to MPa/mm(2). Data were subjected to Kruskal-Wallis analysis with a significance level of 1%. Panavia F showed significantly higher retention in core casts (3.067 MPa/mm(2)), when compared with the other cements. Rely X showed a mean retention value of 1.877 MPa/mm(2) and the zinc phosphate cement with 1.155 MPa/mm(2). Glass ionomer cement (0.884 MPa/mm(2)) exhibited the lowest tensile strength value. Crowns cemented with Panavia F on cast metallic posts and cores presented higher tensile strength. The glass ionomer cement showed the lowest tensile strength among all the cements studied. PMID:25140718

  19. Cytotoxicity of commonly used luting cements -An in vitro study.

    PubMed

    Trumpaite-Vanagiene, Rita; Bukelskiene, Virginija; Aleksejuniene, Jolanta; Puriene, Alina; Baltriukiene, Daiva; Rutkunas, Vygandas

    2015-01-01

    The study aimed to 1) evaluate the cytotoxicity of luting cements: Hoffmann's Zinc Phosphate (Hoffmann's ZP), GC Fuji Plus Resin Modified Glass Ionomer (Fuji Plus RMGI) and 3M ESPE RelyX Unicem Resin Cement (RelyX Unicem RC) and 2) test if pre-washing reduces the cements' cytotoxicity. In vitro human gingival fibroblast (HGF) culture model was chosen. The cytotoxicity was evaluated by MTT test, the cell viability -by staining the cells with AO/EB dye mixture. The means±SD of Cell Survival Ratio (CSR%) were compared among different cement types under two testing conditions, with or without cement pre-washing. The CSR%s were compared by ANOVA and linear multiple regression (LMR). Hoffmann's ZPC was less cytotoxic, while Fuji Plus RMGIC and RelyX Unicem RC were more cytotoxic (ANOVA, p<0.001). The type of cement and cement pre-washing jointly explained 90% of cell survival (LMR, p<0.001, adjusted squared R=0.889). The commonly used luting cements such as Hoffmann's ZP, Fuji Plus RMGI and RelyX Unicem RC may have a cytotoxic potential. PMID:25904168

  20. The Comparison of Sorption and Solubility Behavior of Four Different Resin Luting Cements in Different Storage Media

    PubMed Central

    Giti, Rashin; Vojdani, Mahroo; Abduo, Jaafar; Bagheri, Rafat

    2016-01-01

    Statement of the Problem Structural integrity and dimensional stability are the key factors that determine the clinical success and durability of luting cements in the oral cavity. Sorption and solubility of self-adhesive resin luting cements in food-simulating solutions has not been studied sufficiently. Purpose This study aimed to compare the sorption and solubility of 2 conventional and 2 self-adhesive resin-based luting cements immersed in four different storage media. Materials and Method A total of 32 disc-shaped specimens were prepared from each of four resin luting cements; seT (SDI), Panavia F (Kuraray), Clearfil SA Cement (Kuraray), and Choice 2 (Bisco). Eight specimens of each material were immersed in all tested solutions including n-heptane 97%, distilled water, apple juice, or Listerine mouth wash. Sorption and solubility were measured by weighing the specimens before and after immersion and desiccation. Data were analyzed by SPSS version 18, using two-way ANOVA and Tukey’s HSD test with p≤ 0.05 set as the level of significance. Results There was a statistically significant interaction between the materials and solutions. The effect of media on the sorption and solubility was material-dependent. While seT showed the highest values of the sorption in almost all solutions, Choice 2 showed the least values of sorption and solubility. Immersion in apple juice caused more sorption than other solutions (p≤ 0.05). Conclusion The sorption and solubility behavior of the studied cements were significantly affected by their composition and the storage media. The more hydrophobic materials with higher filler content like Choice 2 resin cement showed the least sorption and solubility. Due to their lower sorption and solubility, these types of resin-based luting cements are recommended to be used clinically. PMID:27284553

  1. Effect of surface preparation on bond strength of resin luting cements to dentin.

    PubMed

    Peerzada, Farrahnaz; Yiu, Cynthia Kar Yung; Hiraishi, Noriko; Tay, Franklin Russell; King, Nigel Martyn

    2010-01-01

    This study examined the effects of using two different burs for dentin surface preparation on the microtensile bond strength (microTBS) of three resin luting cements. Flat, deep dentin surfaces from 45 extracted human third molars were divided into three groups (n = 15) according to bur type: (i) diamond bur and (ii) tungsten carbide bur. The controls were abraded with #600-grit SiC paper. Both burs operated in a high-speed handpiece under water-cooling. Composite blocks were luted onto the dentin using one of three cements: RelyX ARC (ARC, 3M ESPE), Panavia F2.0 (PF, Kuraray) and RelyX Unicem (UN, 3M ESPE) following the manufacturers' instructions. For ARC, the dentin surface was treated with 32% phosphoric acid. The bonded specimens were stored at 37 degrees C for 24 hours and sectioned into 0.9 x 0.9 mm beams for microTBS testing. The data were analyzed using the two-way ANOVA and Student-Newman-Keuls tests. Representative fractured beams from each group were prepared for fractographic analysis under SEM. Two-way ANOVA revealed that the effects of "dentin surface preparation" and "luting cement" were statistically significant (p < 0.001); however, the interaction of these two factors was not significant (p > 0.05). ARC showed no significant difference in microTBS among the three differently prepared dentin surfaces. The microTBS of PF and UN was significantly lower when bonding to dentin prepared with a diamond bur (p < 0.05), compared to the control. For Panavia F2.0, higher bond strengths were achieved on the dentin surface prepared with a tungsten carbide bur. Proper bur selection is essential to optimizing the dentin adhesion of self-etch resin luting cements. PMID:21180001

  2. Influence of cement type and thickness on polyfiber post adhesion

    PubMed Central

    Uzunoğlu, Emel; Türker, Sevinç Aktemur; Yilmaz, Zeliha

    2014-01-01

    Introduction: To evaluate the effect of two different post space diameters and related resin cement film thicknesses on the bond strength of a polyfiber post. Materials and Methods: A total of 48 premolars were randomly divided into two according to the post space diameter: 1.1 mm and 1.5 mm. Then each group was divided into three sub-groups according to luting cement used: RelyX U100, Panavia F2.0/ED primer, Clearfil SA cement. Spirapost was then luted into the canal using luting cements. Two slices were obtained from each root specimen. Push-out tests were performed. Data was analyzed with Kruskal-Wallis and Connover post-hoc and Mann-Whitney U-test (P < 0.05). Results: Push-out bond strength was found to vary significantly according to type of adhesive system and post space diameter size (P < 0.05). The self-adhesive resin cement RelyX U100 had significantly higher bond strengths compared with the other adhesive system (P < 0.05). The self-etch adhesive system (Panavia F2.0) showed significantly lower bond strengths compared with the other systems (P < 0.05). There was a significant interaction between the luting systems and post space diameter (P < 0.05). Conclusion: The increases in post space diameter significantly reduced the bond strength of Spirapost to root dentine for both groups. PMID:24944450

  3. Effect of eugenol-based root canal sealers on retention of prefabricated metal posts luted with resin cement

    PubMed Central

    Al-Ali, Khalil

    2009-01-01

    Objective This study evaluated the effect of two different eugenol-based root canal sealers on the retention of prefabricated metal posts luted with adhesive resin cement. Materials and methods Thirty prefabricated ParaPosts randomly divided among three groups of 10 each were luted into extracted single-rooted teeth with adhesive resin cement. Two of the groups had been obturated with Gutta–Percha and one of two eugenol-based root canal sealers (Endofil and Tubli-Seal), respectively. The third group was not obturated and served as the control. The forces required for dislodgment of posts from their prepared post spaces were recorded using a universal testing machine. Data were statistically analyzed using one-way ANOVA and Tukey’s multiple range test was used to determine the mean differences. Results Endofil and Tubli-Seal groups demonstrated significantly reduced retention compared to the unobturated (control) group (P < 0.05). Conclusion Eugenol-based sealers significantly reduced the retention of prefabricated posts luted with adhesive resin cement. PMID:23960462

  4. Submargination of a resin luting cement--a clinical case report.

    PubMed

    Chan, D C; Titus, H W

    1996-12-01

    The purpose of this case report was to examine the marginal integrity of an indirect inlay and an onlay luted with resin luting cement over a four year period. A technique to seal the occlusal margins of the inlay restoration was reported. Over time, the occlusal margins of the inlay were noticeably submarginated due to wear degradation of the resin inlay cement. The onlay margins were less affected by wear. Clinical techniques to overcome submargination problems were discussed. PMID:9518821

  5. Retention of radicular posts varying the application technique of the adhesive system and luting agent.

    PubMed

    Fonseca, Tabajara Sabbag; Alfredo, Edson; Vansan, Luiz Pascoal; Silva, Ricardo Gariba; Sousa, Yara T Correa Silva; Saquy, Paulo César; Sousa-Neto, Manoel D

    2006-01-01

    This study evaluated in vitro the retention of intracanal cast posts cemented with dual-cure resin varying the application method of the primer/adhesive solution and luting agent in the prosthetic space prepared to receive the posts. Sixty endodontically treated maxillary canines had their crowns discarded, and their roots were embedded in acrylic resin. The prosthetic spaces were prepared with Largo burs mounted on a low-speed handpiece coupled to a parallelometer in order to maintain length and diameter of intraradicular posts constant and to guarantee that the preparations were parallel after casting. Two groups (n = 30) were randomly formed according to the device used to apply the adhesive system: microbrush or standard bristle brush (control). Each group was divided into 3 subgroups (n = 10) according to the technique used to place the luting agent into the root canal: using only a lentulo spiral before setting the post, applying it onto the post surface, or combining both methods. After 72 hours, the tensile force required to dislodge each post was determined by a universal testing machine (Instron 4444) set at a speed of 1 mm/min. The results indicated that the use of the microbrush yielded higher bond strength values (0.1740 +/- 0.04 kN) than those recorded for the bristle brush tip (0.1369 +/- 0.04 kN, p < 0.001). Bonferroni's test demonstrated a higher retention (p < 0.001) in radicular post cemented with the technique that combined both methods (lentulo + post: 0.1787 +/- 0.03 kN) than that obtained with lentulo (0.1461 +/- 0.065 kN) or post (0.1416 +/- 0.03 kN) alone. The interactions between the adhesive system and luting agent application techniques presented statistical difference (p < 0.001). It was concluded that the best performance in terms of tensile strength among the tested conditions was obtained when the adhesive system was applied with a microbrush and the luting agent was taken into the root canal with lentulo spirals alone (0.1961 +/- 0

  6. Composite resin vs resin cement for luting of indirect restorations: comparison of solubility and shrinkage behavior.

    PubMed

    Bortolotto, Tissiana; Guillarme, Davy; Gutemberg, Daniel; Veuthey, Jean-Luc; Krejci, Ivo

    2013-01-01

    The aim of this study was to evaluate relationship between shrinkage development and early solubility of two commonly used luting materials, a self-adhesive cement (GCem chemical and light cured) and composite resin (Tetric). Linear displacement, shrinkage forces and leaching of UDMA from specimens immersed in 75% ethanol/25% water were measured. The least amount of linear shrinkage (33.0±2.9 µm) and polymerization force (4.1±0.3 kg) was observed in Tetric. UDMA leaching (% µg/mL) was the following: chemically cured GCem (4.2±0.2)>light cured GCem (1.5±0.1)>Tetric (0.1). Shrinkage development in the early stages of polymerization was much slower in the self-cured specimens in respect to light cured ones. With the chemically cured self-adhesive cement, incomplete materials' setting during the initial stages after polymerization favored monomer leaching from the cements' mass. PMID:24088842

  7. En face optical coherence tomography investigation of interface fiber posts/adhesive cement/root canal wall

    NASA Astrophysics Data System (ADS)

    Negruţiu, Meda; Sinescu, Cosmin; Topala, Florin; Rominu, Mihai; Markovic, Dubravka; Pop, Daniela; Hughes, Michael; Bradu, Adrian; Dobre, George; Podoleanu, Adrian G.

    2009-07-01

    This study analyzes the adaptation and gap width between fiber posts, adhesive luting cement and root canal wall using optical coherence tomography. The results prove the importance of assessing the quality of the interface after each process of fiber post luting.

  8. Retention of Implant Supported Metal Crowns Cemented with Different Luting Agents: A Comparative Invitro Study

    PubMed Central

    Singh, Kavipal; Kaur, Simrat; Arora, Aman

    2016-01-01

    Introduction To overcome limitations of screw-retained prostheses, cement-retained prostheses have become the restoration of choice now a days. Selection of the cement hence becomes very critical to maintain retrievability of the prostheses. Aim The purpose of this study was to assess and compare the retention of base metal crowns cemented to implant abutments with five different luting cements. Materials and Methods Ten implant analogs were secured in five epoxy resin casts perpendicular to the plane of cast in right first molar and left first molar region and implant abutments were screwed. Total of 100 metal copings were fabricated and cemented. The cements used were zinc phosphate, resin modified glass ionomer cement, resin cement, non-eugenol acrylic based temporary implant cement & non-eugenol temporary resin cement implant cement. Samples were subjected to a pull-out test using an Instron universal testing machine at a crosshead speed of 0.5mm/min. The load required to de-cement each coping was recorded and mean values for each group calculated and put to statistical analysis. Results The results showed that resin cement has the highest retention value 581.075N followed by zinc phosphate luting cement 529.48N, resin modified glass ionomer cement 338.095 N, non-eugenol acrylic based temporary implant cement 249.045 N and non-eugenol temporary resin implant cement 140.49N. Conclusion Within the limitations of study, it was concluded that non-eugenol acrylic based temporary implant cement and non-eugenol temporary resin implant cement allow for easy retrievability of the prosthesis in case of any failure in future. These are suitable for cement retained implant restorations. The results provide a possible preliminary ranking of luting agents based on their ability to retain an implant-supported prosthesis and facilitate easy retrieval. PMID:27190954

  9. Effect of surface treatment on the initial bond strength of different luting cements to zirconium oxide ceramic.

    PubMed

    Nothdurft, F P; Motter, P J; Pospiech, P R

    2009-06-01

    The objective of this study was to compare the shear bond strength to zirconium oxide ceramic of adhesive-phosphate-monomer-containing (APM) and non-APM-containing (nAPM) luting cements after different surface treatments. nAPM cements: Bifix QM, Dual Cement, Duo Cement Plus, Multilink Automix, ParaCem Universal DC, PermaCem Smartmix, RelyX ARC, Variolink Ultra, and Variolink II; APM cements: Panavia EX, Panavia F2.0, and RelyX UniCem. Groups of ten test specimens were each prepared by layering luting cement, using cylindrical Teflon molds, onto differently treated zirconium dioxide discs. The surface treatments were airborne-particle abrasion with 110 mum alumina particles, silica coating (SC) using 30 mum alumina particles modified by silica (Rocatec System) or SC and silanization. Bifix QM and Multilink Automix were used in combination with an additional bonding/priming agent recommended by the manufacturers. After 48 h of water storage, each specimen was subjected to a shear test. Combinations involving APM-containing cements (14.41-23.88 MPa) generally exhibited higher shear bond strength than those without APM (4.29-17.34 MPa). Exceptions were Bifix QM (14.20-25.11 MPa) and Multilink Automix (19.14-23.09 MPa) in combination with system-specific silane or priming agent, which were on the upper end of shear bond strength values. With the use of the Rocatec system, a partially significant increase in shear bond strength could be achieved in nAPM cement. Modified surface treatment modalities increased the bond strength to zirconium oxide, although the most important factor in achieving a strong bond was the selection of a suitable cement. System-specific priming or bonding agents lead to further improvement. PMID:18758827

  10. Evaluation of the Bond Strength of Resin Cements Used to Lute Ceramics on Laser-Etched Dentin

    PubMed Central

    Duzdar, Lale; Oksuz, Mustafa; Tanboga, Ilknur

    2014-01-01

    Abstract Objective: The purpose of this study was to investigate the shear bond strength (SBS) of two different adhesive resin cements used to lute ceramics on laser-etched dentin. Background data: Erbium, chromium: yttrium, scandium, gallium, garnet (Er,Cr:YSGG) laser irradiation has been claimed to improve the adhesive properties of dentin, but results to date have been controversial, and its compatibility with existing adhesive resin cements has not been conclusively determined. Materials and methods: Two adhesive cements, one “etch-and-rinse” [Variolink II (V)] and one “self-etch” [Clearfil Esthetic Cement (C)] luting cement, were used to lute ceramic blocks (Vita Celay Blanks, Vita) onto dentin surfaces. In total, 80 dentin specimens were distributed randomly into eight experimental groups according to the dentin surface-etching technique used Er,Cr:YSGG laser and Er:YAG laser: (1) 37% orthophosphoric acid+V (control group), (2) Er,Cr:YSGG laser+V, (3) Er,Cr:YSGG laser+acid+V, (4) Er:YAG laser+V, (5) Er:YAG laser+acid+V, (6) C, (7) Er,Cr:YSGG laser+C, and (8) Er:YAG laser+C. Following these applications, the ceramic discs were bonded to prepared surfaces and were shear loaded in a universal testing machine until fracture. SBS was recorded for each group in MPa. Shear test values were evaluated statistically using the Mann–Whitney U test. Results: No statistically significant differences were evident between the control group and the other groups (p>0.05). The Er,Cr:YSGG laser+A+V group demonstrated significantly higher SBS than did the Er,Cr:YSGG laser+V group (p=0.034). The Er,Cr:YSGG laser+C and Er:YAG laser+C groups demonstrated significantly lower SBS than did the C group (p<0.05). Conclusions: Dentin surfaces prepared with lasers may provide comparable ceramic bond strengths, depending upon the adhesive cement used. PMID:24992276

  11. The role of resin cement on bond strength of glass-fiber posts luted into root canals: a systematic review and meta-analysis of in vitro studies.

    PubMed

    Sarkis-Onofre, R; Skupien, J A; Cenci, M S; Moraes, R R; Pereira-Cenci, T

    2014-01-01

    Because there are several ways to cement glass-fiber posts (GFPs) into root canals, there is no consensus on the best strategy to achieve high bond strengths. A systematic review was conducted to determine if there is difference in bond strength to dentin between regular and self-adhesive resin cements and to verify the influence of several variables on the retention of GFPs. This report followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. In vitro studies that investigated the bond strength of GFPs luted with self-adhesive and regular resin cements were selected. Searches were carried out in the PubMed and Scopus databases. No publication year or language limit was used, and the last search was done in October 2012. A global comparison was performed between self-adhesive and regular resin cements. Two subgroup analyses were performed: 1) Self-adhesive × Regular resin cement + Etch-and-rinse adhesive and 2) Self-adhesive × Regular resin cement + Self-etch adhesive. The analyses were carried out using fixed-effect and random-effects models. The results showed heterogeneity in all comparisons, and higher bond strength to dentin was identified for self-adhesive cements. Although the articles included in this meta-analysis showed high heterogeneity and high risk of bias, the in vitro literature seems to suggest that use of self-adhesive resin cement could improve the retention of GFPs into root canals. PMID:23937401

  12. Antimicrobial Effects of Dental Luting Glass Ionomer Cements on Streptococcus mutans

    PubMed Central

    Altenburger, Markus; Spitzmüller, Bettina; Anderson, Annette; Hellwig, Elmar

    2014-01-01

    Objective. To reduce secondary caries, glass ionomer luting cements are often used for cementing of indirect restorations. This is because of their well-known antimicrobial potential through the release of fluoride ions. The aim of this in vitro study was to investigate the antimicrobial effect of five dental luting cements which were based on glass ionomer cement technology. Methods. Five different glass ionomer based luting cements were tested for their antimicrobial effects on Streptococcus mutans in two different experimental setups: (i) determination of colony-forming units (CFUs) in a plate-counting assay; (ii) live/dead staining (LDS) and fluorescence microscopy. All experiments were conducted with or without prior treatment of the materials using sterilized human saliva. Antimicrobial effects were evaluated for adherent and planktonic bacteria. Bovine enamel slabs (BES) were used as negative control. BES covered with 0.2% chlorhexidine (CHX) served as positive control. Results. Each of the tested materials significantly reduced the number of initially adhered CFUs; this reduction was even more pronounced after prior incubation in saliva. Antimicrobial effects on adherent bacteria were confirmed by live-dead staining. Conclusion. All five luting cements showed an antimicrobial potential which was increased by prior incubation with human saliva, suggesting an enhanced effect in vivo. PMID:24795539

  13. Comparative Evaluation of Shear Bond Strength of Luting Cements to Different Core Buildup Materials in Lactic Acid Buffer Solution

    PubMed Central

    Patil, Siddharam M.; Desai, Raviraj G.; Arabbi, Kashinath C.; Prakash, Ved

    2015-01-01

    Aim and Objectives The core buildup material is used to restore badly broken down tooth to provide better retention for fixed restorations. The shear bond strength of a luting agent to core buildup is one of the crucial factors in the success of the cast restoration. The aim of this invitro study was to evaluate and compare the shear bond strength of luting cements with different core buildup materials in lactic acid buffer solution. Materials and Methods Two luting cements {Traditional Glass Ionomer luting cement (GIC) and Resin Modified Glass Ionomer luting cement (RMGIC)} and five core buildup materials {Silver Amalgam, Glass ionomer (GI), Glass Ionomer Silver Reinforced (GI Silver reinforced), Composite Resin and Resin Modified Glass Ionomer(RMGIC)} were selected for this study. Total 100 specimens were prepared with 20 specimens for each core buildup material using a stainless steel split metal die. Out of these 20 specimens, 10 specimens were bonded with each luting cement. All the bonded specimens were stored at 370c in a 0.01M lactic acid buffer solution at a pH of 4 for 7days. Shear bond strength was determined using a Universal Testing Machine at a cross head speed of 0.5mm/min. The peak load at fracture was recorded and shear bond strength was calculated. The data was statistically analysed using Two-way ANOVA followed by HOLM-SIDAK method for pair wise comparison at significance level of p<0.05. Results Two-Way ANOVA showed significant differences in bond strength of the luting cements (p<0.05) and core materials (p<0.05) and the interactions (p<0.05). Pairwise comparison of luting cements by HOLM-SIDAK test, showed that the RMGIC luting cement had higher shear bond strength values than Traditional GIC luting cement for all the core buildup materials. RMGIC core material showed higher bond strength values followed by Composite resin, GI silver reinforced, GI and silver amalgam core materials for both the luting agents. Conclusion Shear bond strength of

  14. Radiopacity of different resin-based and conventional luting cements compared to human and bovine teeth.

    PubMed

    Pekkan, Gürel; Ozcan, Mutlu

    2012-02-01

    This study evaluated the radiopacity of different resin-based luting materials and compared the results to human and bovine dental hard tissues. Disc specimens (N=130, n=10 per group) (diameter: 6 mm, thickness: 1 mm) were prepared from 10 resin-based and 3 conventional luting cements. Human canine dentin (n=10), bovine enamel (n=10), bovine dentin (n=10) and Aluminium (Al) step wedge were used as references. The optical density values of each material were measured from radiographic images using a transmission densitometer. Al step wedge thickness and optical density values were plotted and equivalent Al thickness values were determined for radiopacity measurements of each material. The radiopacity values of conventional cements and two resin luting materials (Rely X Unicem and Variolink II), were significantly higher than that of bovine enamel that could be preferred for restorations cemented on enamel. Since all examined resin-based luting materials showed radiopacity values equivalent to or greater than that of human and bovine dentin, they could be considered suitable for the restorations cemented on dentin. PMID:22277608

  15. Effect of thermal cycling on the bond strength of self-adhesive cements to fiber posts.

    PubMed

    Mazzitelli, Claudia; Monticelli, Francesca; Toledano, Manuel; Ferrari, Marco; Osorio, Raquel

    2012-06-01

    The aim of this study was to assess the push-out bond strengths of self-adhesive resin cements to epoxy resin-based fiber posts after challenging by thermocycling. Thirty-six single-rooted premolars were endodontically treated, and the post-spaces were drilled to receive RelyX Fiber posts #1. Three self-adhesive resin cements (RelyX Unicem, G-Cem, and Breeze) were used for luting fiber posts. The bonded specimens were either stored for 1 month in a moist field (37°C) or submitted to thermocycling (5,000 times) prior to push-out test. The maximum force required to dislodge the post via an apical-coronal direction was recorded (megapascal). The data were statistically analyzed with two-way ANOVA and Tukey tests (p < 0.05). The factors "luting cement" and "thermocycling" significantly influenced bond strengths. The initial push-out values of RelyX Unicem and Breeze were higher than those of G-Cem. After thermocycling, the bond strength of G-Cem increased and no differences were found between groups. RelyX Unicem and Breeze bond strengths were not affected by the thermal challenge. Thermal cycling and cement type differently influence the bond strengths of self-adhesive resin cements. Self-adhesive cements can represent an option for luting fiber posts into root canal. PMID:21670983

  16. Microleakage and marginal gap of adhesive cements for noble alloy full cast crowns.

    PubMed

    Hooshmand, T; Mohajerfar, M; Keshvad, A; Motahhary, P

    2011-01-01

    Very limited comparative information about the microleakage in noble alloy full cast crowns luted with different types of adhesive resin cements is available. The purpose of this study was to evaluate the microleakage and marginal gap of two self-adhesive resin cements with that of other types of adhesive luting cements for noble alloy full cast crowns. Fifty noncarious human premolars and molars were prepared in a standardized manner for full cast crown restorations. Crowns were made from a noble alloy using a standardized technique and randomly cemented with five cementing agents as follows: 1) GC Fuji Plus resin-modified glass ionomer cement, 2) Panavia F 2.0 resin cement, 3) Multilink Sprint self-adhesive resin cement, 4), Rely X Unicem self-adhesive resin cement with pretreatment, and 5) Rely X Unicem with no pretreatment. The specimens were stored in distilled water at 37°C for two weeks and then subjected to thermocycling. They were then placed in a silver nitrate solution, vertically cut in a mesiodistal direction and evaluated for microleakage and marginal gap using a stereomicroscope. Data were analyzed using a nonparametric Kruskal-Wallis test followed by Dunn multiple range test at a p<0.05 level of significance. The Rely X Unicem (with or with no pretreatment) exhibited the smallest degree of microleakage at both tooth-cement and cement-crown interfaces. The greatest amount of microleakage was found for Panavia F 2.0 resin cement followed by GC Fuji Plus at both interfaces. No statistically significant difference in the marginal gap values was found between the cementing agents evaluated (p>0.05). The self-adhesive resin cements provided a much better marginal seal for the noble alloy full cast crowns compared with the resin-modified glass ionomer or dual-cured resin-based cements. PMID:21740242

  17. Solubility and sorption of resin-based luting cements.

    PubMed

    Knobloch, L A; Kerby, R E; McMillen, K; Clelland, N

    2000-01-01

    This study compared the seven-day water sorption, water solubility and lactic acid solubility of three composite cements and three resin-modified glass-ionomer cements. Disc-shaped specimens measuring 15 mm x 0.5 mm were prepared according to each manufacturer's specifications and desiccated to a constant mass. Specimens were then placed in distilled water at 37 degrees C for seven days. Acid solubility was performed in 0.01 M lactic acid. The weight changes of the specimens after immersion in distilled water or 0.01 M lactic acid were measured using an electronic analytical balance. A one-way ANOVA followed by the Ryan-Einot-Gabriel-Welsch (REGW) multiple range test was performed on all data. Significant differences (p < 0.05) were found among several cements tested for each of the properties investigated. Due to their hydrophilic nature, all resin-modified glass-ionomer cements showed significantly higher water sorption compared to composite cements. PMID:11203853

  18. Influence of temporary cement remnant and surface cleaning method on bond strength to dentin of a composite luting system.

    PubMed

    Kanakuri, Katsuhito; Kawamoto, Yoshikazu; Matsumura, Hideo

    2005-03-01

    The aim of the current study was to evaluate the influence of polycarboxylate temporary cement remaining on the dentin surface on the bond strength of a composite luting system. An acrylic resin plate was luted to bovine dentin with a polycarboxylate temporary cement (HY-Bond Temporary Cement Hard, HYB). The temporary cement was not used for the control groups. After removing the temporary cement with an excavator, dentin specimens were divided into five groups; 1) no subsequent treatment, 2) cleaning with a rotational brush (RTB), 3) cleaning with a rotational brush and non-fluoridated flour of pumice, 4) sweeping with an air scaler, and 5) treated with a sonic toothbrush. A silane-treated ceramic disk (IPS Empress) was bonded to each dentin specimen with a composite luting system (Panavia F). Shear testing results showed that the RTB groups exhibited the highest bond strength regardless of the use of temporary cement (P < 0.05). The use of a rotational brush with water coolant is recommended to achieve ideal bond strength between the Panavia F luting system and dentin to which HYB temporary cement was primarily applied. PMID:15881223

  19. Evaluation of push-out bond strength of two fiber-reinforced composite posts systems using two luting cements in vitro

    PubMed Central

    Kadam, Ajay; Pujar, Madhu; Patil, Chetan

    2013-01-01

    Introduction: The concept of using a “post” for the restoration of teeth has been practiced to restore the endodontically treated tooth. Metallic posts have been commonly used, but their delirious effects have led to the development of fiber-reinforced materials that have overcome the limitations of metallic posts. The use of glass and quartz fibers was proposed as an alternative to the dark color of carbon fiber posts as far as esthetics was concerned. “Debonding” is the most common failure in fiber-reinforced composite type of posts. This study was aimed to compare the push-out bond strength of a self-adhesive dual-cured luting agent (RelyX U100) with a total etch resin luting agent (Variolink II) used to cement two different FRC posts. Materials and Methods: Eighty human maxillary anterior single-rooted teeth were decoronated, endodontically treated, post space prepared and divided into four groups (n = 20); Group I: D.T. light post (RTD) and Variolink II (Ivoclare vivadent), Group II: D.T. light post (RTD) and RelyX U100 (3M ESPE), Group III: Glassix post (Nordin) and Variolink II (Ivoclare vivadent) and Group IV: Glassix post (Nordin) and RelyX U100 (3M ESPE). Each root was sectioned to get slices of 2 ± 0.05-mm thickness. Push-out tests were performed using a triaxial loading frame. To express bond strength in megapascals (Mpa), load value recorded in Newton (N) was divided by the area of the bonded interface. After testing the push-out strengths, the samples were analyzed under a stereomicroscope. Results: The mean values of the push-out bond strength show that Group I and Group III had significantly higher values than Group II and Group IV. The most common mode of failure observed was adhesive between dentin and luting material and between post and luting material. Conclusions: The mean push-out bond strengths were higher for Groups I and III where Variolink II resin cement was used for luting the fiber post, which is based on the total etch

  20. A bioactive dental luting cement--its retentive properties and 3-year clinical findings.

    PubMed

    Jefferies, Steven R; Pameijer, Cornelis H; Appleby, David C; Boston, Daniel; Lööf, Jesper

    2013-02-01

    -year recall. After periodic recalls up to 3 years, Ceramir C&B thus far has performed quite favorably as a luting agent for permanent cementation of permanent restorations. In-vitro crown-coping retention studies were also conducted using this cement and various control cementation materials. Mean laboratory retentive forces measured for Ceramir C&B were comparable to other currently available luting agents for both metal and all-ceramic indirect restorative materials. PMID:23577551

  1. Evaluation of Adhesive Bonding of Lithium Disilicate Ceramic Material with Duel Cured Resin Luting Agents

    PubMed Central

    Gundawar, Sham M.; Radke, Usha M.

    2015-01-01

    Purpose: The purpose of this vitro study was to comparatively evaluate the adhesive bonding of dual cured resin luting agents with lithium disilicate ceramic material. Materials and Methods: Porcelain laminate veneers were prepared with lithium disilicate ceramic material i.e. IPS Empress II( E-Max Press). These laminates were bonded with RelyX ARC, Panavia F 2.0, Variolink II, Duolink and Nexus NX3.The porcelain laminates were etched with 9.6% hydrofluoric acid (Pulpdent Corporation) for one minute, washed for 15 sec with three way syringe and dried for 15 sec with air syringe. The silane (Ultradent) was applied with the help of applicator tip in a single coat and kept undisturbed for one minute. The prepared surfaces of the premolars were treated with 37% phosphoric acid (Prime dent) for 15 sec, thoroughly rinsed and dried as per manufactures instructions. The shear bond test was carried out on all samples with the Universal testing machine (Instron U.S.A.) The scanning electron microscopic study was performed at the fractured interface of representative samples from each group of luting agents. Result: In this study, the highest value of shear bond strength was obtained for NEXUS NX3 and the lowest for VARIOLINK II. Conclusion: The difference in bond strength can be interpreted as the difference in fracture resistance of luting agents, to which shearing load was applied during the shear bond strength test. It is inferred from this study that the composition of the luting agent determines the adhesive characteristics in addition to surface treatment and bonding surface area. PMID:25859514

  2. Effect of Luting Cement Space on the Strain Response of Gold Crowns Under Static Compressive Loading.

    PubMed

    Asbia, S; Ibbetson, R; Reuben, B

    2015-03-01

    The aim the work was to investigate the effect of varying degrees of luting cement thickness on the strain of the cemented gold alloy crowns under compression. Five dies with their corresponding crowns were fabricated using a lost wax technique. Three gold crowns for each die were fabricated under the control of specific die spacer layers to provide a space of 40 µm (10 layers of die-spacer thickness) and 80 µm (20 layers of die-spacer thickness). The crowns were subsequently cemented using zinc phosphate cement. The crowns were subjected to gradual static compressive loading between 10N to 250N (Newton) and the strain measured simultaneously. The results were statistically analysed using Independent t-test for the different die-spacer thickness at the 95% confidence interval (p = 0.05). It was found that a significant relationship in the three thicknesses. It was concluded that the absence of die-spacer significantly reduced strain response, whereas a very little change in the strain recorded as the die spacer layers has increased. Clinically, decreasing the number of die-spacer layers is advantageous as it provides a lower strain response under static compressive loading that would improve the longevity of the cemented full crowns inside the patient's mouth. PMID:26415332

  3. In vitro evaluation of the bonding durability of self-adhesive resin cement to titanium using highly accelerated life test.

    PubMed

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Matinlinna, Jukka Pekka; Shinya, Akiyoshi

    2011-01-01

    The purpose of this in vitro study was to evaluate the bonding durability of three self-adhesive resin cements to titanium using the Highly Accelerated Life Test (HALT). The following self-adhesive resin cements were used to bond pairs of titanium blocks together according to manufacturers' instructions: RelyX Unicem, Breeze, and Clearfil SA Luting. After storage in water at 37°C for 24 h, bonded specimens (n=15) immersed in 37°C water were subjected to cyclic shear load testing regimes of 20, 30, or 40 kg using a fatigue testing machine. Cyclic loading continued until failure occurred, and the number of cycles taken to reach failure was recorded. The bonding durability of a self-adhesive resin cement to titanium was largely influenced by the weight of impact load. HALT showed that Clearfil SA Luting, which contained MDP monomer, yielded the highest median bonding lifetime to titanium. PMID:22123007

  4. Comparison of failure mechanisms for cements used in skeletal luting applications.

    PubMed

    Clarkin, O; Boyd, D; Towler, M R

    2009-08-01

    Glass Polyalkenoate Cements (GPCs) based on strontium calcium zinc silicate (Sr-Ca-Zn-SiO(2)) glasses and low molecular weight poly(acrylic acid) (PAA) have been shown to exhibit suitable compressive strength (65 MPa) and flexural strength (14 MPa) for orthopaedic luting applications. In this study, two such GPC formulations, alongside two commercial cements (Simplex P and Hydroset) were examined. Fracture toughness and tensile bond strength to sintered hydroxyapatite and a biomedical titanium alloy were examined. Fracture toughness of the commercial Poly(methyl methacrylate) cement, Simplex P, (3.02 MPa m(1/2)) was superior to that of the novel GPC (0.36 MPa m(1/2)) and the commercial calcium phosphate cement, Hydroset, for which no significant fracture toughness was obtained. However, tensile bond strengths of the novel GPCs (0.38 MPa), after a prolonged period (30 days), were observed to be superior to commercial controls (Simplex P: 0.07 MPa, Hydroset: 0.16 MPa). PMID:19283454

  5. Intra-radicular dentin treatments and retention of fiber posts with self-adhesive resin cements.

    PubMed

    Faria-e-Silva, André Luis; Menezes, Murilo de Sousa; Silva, Fernanda Pereira; Reis, Giselle Rodrigues dos; Moraes, Rafael Ratto de

    2013-01-01

    The aim of this study was to evaluate the effect of treating intraradicular dentin with irrigating solutions on the retention of glass-fiber posts luted with self-adhesive resin cement. Bovine incisors were endodontically treated, and 9-mm-deep postholes were prepared. Before inserting the cement, the root canals were irrigated with various solutions: 11.5% polyacrylic acid for 30 s, 17% EDTA for 60 s, or 5% NaOCl for 60 s, respectively. Irrigation with distilled water was used in the control group. After all specimens had been rinsed with distilled water, the excess moisture was removed and the posts were luted using either BisCem (Bisco) or RelyX Unicem clicker (3M ESPE). Seven days after luting, the specimens were sectioned transversally into 1-mm-thick slices, which were submitted to push-out testing on a mechanical testing machine. Bond strength data (n = 6 per group) were analyzed by two-way ANOVA and Student-Newman-Keuls' test (α = 0.05). For Unicem, EDTA showed lower bond strength than the other solutions, which had similar results. For BisCem, EDTA showed higher bond strength than the other treatments, while application of NaOCl yielded higher bond strength than polyacrylic acid whereas the control group had intermediate results. In conclusion, irrigating root canals before insertion of self-adhesive resin cements, especially EDTA, might interfere with retention of the fiber posts. PMID:23306622

  6. Immediate and delayed photoactivation of self-adhesive resin cements and retention of glass-fiber posts.

    PubMed

    Faria-e-Silva, André Luis; Peixoto, Aline Carvalho; Borges, Marcela Gonçalves; Menezes, Murilo de Sousa; Moraes, Rafael Ratto de

    2014-01-01

    The aim of this study was to evaluate the effect of immediate and delayed photoactivation of self-adhesive resin cements (SARCs) on the retention of glass-fiber posts luted into root canals. Bovine incisors were endodontically treated, and post holes of 9 mm in depth were prepared. Fiber posts were luted using one of two SARCs, BisCem (Bisco Inc., Schaumburg, USA) or RelyX Unicem clicker (3M ESPE, Saint Paul, USA), or a regular (etch-and-rinse) resin cement (AllCem; FGM, Joinvile, Brazil). Photoactivation was performed immediately, or at 5 or 10 min after cementation. Root/post specimens were transversely sectioned 7 days after luting into 1-mm-thick slices, which were submitted to push-out testing in a mechanical testing machine. Bond strength data were analyzed by two-way ANOVA and Student-Newman-Keuls' method (α = 0.05). Immediate photoactivation resulted in the highest bond strength for Unicem. BisCem demonstrated higher bond strength values when photoactivated after a 10-min delay. Immediate photoactivation yielded the lowest bond strengths for AllCem, although no differences in bond strength were observed between photoactivation delayed by 5 and 10 min. In conclusion, the moment of resin cement photoactivation may affect the intraradicular retention of fiber posts, depending upon the resin cement used for luting. PMID:25006624

  7. Effect of Marginal Sealant on Shear Bond Strength of Glass Ionomer Cement: Used as A Luting Agent

    PubMed Central

    Nazirkar, Girish; Singh, Shailendra; Badgujar, Mayura; Gaikwad, Bhushan; Bhanushali, Shilpa; Nalawade, Sumit

    2014-01-01

    Background: Moisture sensitivity and dissolution has been a known drawback of glass ionomer cement (GIC). When used as a luting agent for cementation of casted indirect restoration, the exposed cement at the margins is often a primary factor for marginal leakage and consequent failure of the restoration. The following in vitro study was planned to evaluate the effect of a marginal sealant on GIC used as luting agent. Materials and Methods: Sixty healthy extracted premolars were selected and prepared to receive metal-ceramic prosthesis. The prepared restorations were cemented using GIC and were divided randomly into two groups. The specimens in Group A were directly immersed in artificial saliva solution without any protection at the margins, while the exposed cement for Group B specimens was protected using a marginal sealant before immersing it in the artificial saliva solution. The specimens were tested after 24 h using a crown pull test on the universal testing machine to measure the shear bond strength of the cement. Result: The specimens in Group B showed statistically significant difference from the specimens in Group A with the mean shear bond strength of 6.60 Mpa and 5.32 respectively. Conclusion: Protection of GIC exposed at the margins of indirect cast restorations with a marginal sealant can significantly increase the longevity of the prosthesis by reducing the marginal leakage and perlocation of fluids. How to cite the article: Nazirkar G, Singh S, Badgujar M, Gaikwad B, Bhanushali S, Nalawade S. Effect of marginal sealant on shear bond strength of glass ionomer cement: Used as a luting agent. J Int Oral Health 2014;6(3):65-9 PMID:25083035

  8. Effects of different luting cements and light curing units on the sealing ability and bond strength of fiber posts.

    PubMed

    Beriat, Nilüfer Celebi; Ertan, Ahmet Atila; Yilmaz, Zeliha; Gulay, Gülsah; Sahin, Cem

    2012-01-01

    This study evaluated the sealing ability and push-out bond strength of two luting cements cured with two different types of light curing units (LCU): light-emitting diode (LED) versus quartz tungsten halogen (QTH). Forty teeth were divided into four groups(n=10/group). Quartz fiber posts (D. T. Light-Post) were luted to coronal or apical section of root canals using two types of resin cements (Panavia F or RelyX) cured with either LED LCU (Elipar FreeLight II) or QTH LCU (Optilux 501). Highest push-out bond strength was exhibited by QTH-cured RelyX, which was not significantly different from LED-cured RelyX but was higher than QTH-cured Panavia F. The push-out bond strength of Panavia F did not differ with LCU type (p>0.05), but exhibited lower values than both QTH- and LED-cured RelyX. Fluid filtration test revealed that sealing ability was not influenced by luting cement type, but was significantly influenced by LCU type in favor of QTH light source: QTH-cured specimens displayed better seal than LED-cured ones (p<0.05). PMID:22864210

  9. Influence of chlorhexidine on dentin adhesive interface micromorphology and nanoleakage expression of resin cements.

    PubMed

    Stape, Thiago Henrique Scarabello; Menezes, Murilo De Sousa; Barreto, Bruno De Castro Ferreira; Naves, Lucas Zago; Aguiar, Flávio Henrique Baggio; Quagliatto, Paulo Sérgio; Martins, Luís Roberto Marcondes

    2013-08-01

    This study focused on adhesive interface morphologic characterization and nanoleakage expression of resin cements bonded to human dentin pretreated with 1% chlorhexidine (CHX). Thirty-two non-carious human third molars were ground flat to expose superficial dentin. Resin composite blocks were luted to the exposed dentin using one conventional (RelyX ARC) and one self-adhesive resin cement (RelyX U100), with/without CHX pretreatment. Four groups (n = 8) were obtained: control groups (ARC and U100); experimental groups (ARC/CHX and U100/CHX) were pretreated with 1% CHX prior to the luting process. After storage in water for 24 h, the bonded teeth were sectioned into 0.9 × 0.9 mm(2) sticks producing a minimum of 12 sticks per tooth. Four sticks from each tooth were prepared for hybrid layer evaluation by scanning electron microscope analysis. The remaining sticks were immersed in silver nitrate for 24 h for either nanoleakage evaluation along the bonded interfaces or after rupture. Nanoleakage samples were carbon coated and examined using backscattered electron mode. Well-established hybrid layers were observed in the groups luted with RelyX ARC. Nanoleakage evaluation revealed increase nanoleakage in groups treated with CHX for both resin cements. Group U100/CHX exhibited the most pronouncing nanoleakage expression along with porous zones adjacent to the CHX pretreated dentin. The results suggest a possible incompatibility between CHX and RelyX U100 that raises the concern that the use of CHX with self-adhesive cements may adversely affect resin-dentin bond. PMID:23737406

  10. Effect of surface treatments on the flexural properties and adhesion of glass fiber-reinforced composite post to self-adhesive luting agent and radicular dentin.

    PubMed

    Elnaghy, Amr M; Elsaka, Shaymaa E

    2016-01-01

    This study evaluated the effect of different surface treatments on the flexural properties and adhesion of glass fiber post to self-adhesive luting agent and radicular dentin. Seventy-five single-rooted human teeth were prepared to receive a glass fiber post (Reblida). The posts were divided into five groups according to the surface treatment: Gr C (control; no treatment), Gr S (silanization for 60 s), Gr AP (airborne-particle abrasion), Gr HF (etching with 9 % hydrofluoric acid for 1 min), and Gr M10 (etching with CH2Cl2 for 10 min). Dual-cure self-adhesive luting agent (Rely X Unicem) was applied to each group for testing the adhesion using micropush-out test. Failure types were examined with stereomicroscope and surface morphology of the posts was characterized using a scanning electron microscopy (SEM). Flexural properties of posts were assessed using a three-point bending test. Data were analyzed using ANOVA and Tukey's HSD test. Statistical significance was set at the 0.05 probability level. Groups treated with M10 showed significantly higher bond strength than those obtained with other surface treatments (P < 0.05). In general, improvements in bond strength (MPa) were found in the following order: M10 > C > S > AP > HF. Most failure modes were adhesive type of failures between dentin and luting agent (48.2%). SEM analysis revealed that the fiber post surfaces were modified after surface treatments. The surface treatments did not compromise the flexural properties of fiber posts. Application of M10 to the fiber post surfaces enhanced the adhesion to self-adhesive luting agent and radicular dentin. PMID:25424595

  11. Evaluation of removal forces of implant-supported zirconia copings depending on abutment geometry, luting agent and cleaning method during re-cementation

    PubMed Central

    Rödiger, Matthias; Rinke, Sven; Ehret-Kleinau, Fenja; Pohlmeyer, Franziska; Lange, Katharina; Bürgers, Ralf

    2014-01-01

    PURPOSE To evaluate the effects of different abutment geometries in combination with varying luting agents and the effectiveness of different cleaning methods (prior to re-cementation) regarding the retentiveness of zirconia copings on implants. MATERIALS AND METHODS Implants were embedded in resin blocks. Three groups of titanium abutments (pre-fabricated, height: 7.5 mm, taper: 5.7°; customized-long, height: 6.79 mm, taper: 4.8°; customized-short, height: 4.31 mm, taper: 4.8°) were used for luting of CAD/CAM-fabricated zirconia copings with a semi-permanent (Telio CS) and a provisional cement (TempBond NE). Retention forces were evaluated using a universal testing machine. Furthermore, the influence of cleaning methods (manually, manually in combination with ultrasonic bath or sandblasting) prior to re-cementation with a provisional cement (TempBond NE) was investigated with the pre-fabricated titanium abutments (height: 7.5 mm, taper: 5.7°) and SEM-analysis of inner surfaces of the copings was performed. Significant differences were determined via two-way ANOVA. RESULTS Significant interactions between abutment geometry and luting agent were observed. TempBond NE showed the highest level of retentiveness on customized-long abutments, but was negatively affected by other abutment geometries. In contrast, luting with Telio CS demonstrated consistent results irrespective of the varying abutment geometries. Manual cleaning in combination with an ultrasonic bath was the only cleaning method tested prior to re-cementation that revealed retentiveness levels not inferior to primary cementation. CONCLUSION No superiority for one of the two cements could be demonstrated because their influences on retentive strength are also depending on abutment geometry. Only manual cleaning in combination with an ultrasonic bath offers retentiveness levels after re-cementation comparable to those of primary luting. PMID:25006388

  12. A Confocal Microscopic Evaluation of the Dehydration Effect on Conventional, Resin Reinforced Powder/Liquid and Paste to Paste Glass Ionomer Luting Cements

    PubMed Central

    George, Liza; Kandaswamy, D

    2015-01-01

    Background: The purpose of this study was to evaluate the effect of dehydration of resin-modified glass ionomer powder/liquid system, resin-modified glass ionomer paste/paste luting cements in three different quantities and to compare them with a conventional glass ionomer luting cement using confocal laser scanning microscope. Materials and Methods: A conventional glass ionomer (Group I), a resin modified powder/liquid system (Group II), and a resin-modified paste/paste system (Group III) were selected for the study. In Group III, there were three subgroups based on the quantity of material dispensed. 50 premolar teeth were selected and randomly divided among the groups with 10 samples in each. The teeth were ground flat to expose a flat occlusal dentin. A device was made to standardize the thickness of cement placed on the teeth. The teeth were stored in distilled water for 24 h and then longitudinally sectioned to examine the tooth dentin interface under a confocal microscope. The specimens were allowed to dehydrate under the microscope for different time intervals. The width of the crack after dehydration near the dentinal interface was measured at definite intervals in all the groups and analyzed statistically using Student’s t-test. Results: Conventional glass ionomer cement showed the maximum width of the crack followed by resin modified paste/paste system during the dehydration period. Resin modified powder/liquid system did not show cohesive failure. Conclusions: Conventional glass ionomer luting cement is more susceptible to cohesive failure when subjected to dehydration compared to resin-modified glass ionomer paste/paste luting cement. Among the luting cements, resin-modified glass ionomer powder/liquid system showed the best results when subjected to dehydration. PMID:26464535

  13. Peri-implant Biofilm Formation on Luting Agents Used for Cementing Implant-Supported Fixed Restorations: A Preliminary In Vivo Study.

    PubMed

    Papavasileiou, Dimitrios; Behr, Michael; Gosau, Martin; Gerlach, Till; Buergers, Ralf

    2015-01-01

    This study investigated subgingival peri-implant biofilm formation on four luting agents (Kerr TempBond, Harvard Dental Harvard Cement, 3M ESPE RelyX Unicem, and Kuraray Panavia F 2.0) under realistic in situ conditions. Samples of the luting agents were positioned in the subgingival area of healing abutments, and the biofilm accumulation on the samples at the interface between luting agent and titanium and on the smooth titanium surface was investigated using scanning electron microscopy. In comparison to plane titanium surfaces, interfaces between implant abutment, cement, and suprastructure showed an increased bacterial accumulation and should therefore be regarded as predisposing substrates for peri-implant biofilm formation. PMID:26218019

  14. Simulated Wear of Self-Adhesive Resin Cements.

    PubMed

    Takamizawa, T; Barkmeier, W W; Latta, M A; Berry, T P; Tsujimoto, A; Miyazaki, M

    2016-01-01

    One of the primary areas of concern with luting agents is marginal gap erosion and attrition. The purpose of this laboratory study was to evaluate bulk and marginal slit (gap) generalized wear of self-adhesive resin cements. Three self-adhesive resin cements were used in this study: G-CEM LinkAce (LA), Maxcem Elite (ME), and RelyX Unicem2 Automix (RU). A custom stainless-steel fixture with a cavity 4.5 mm in diameter and 4 mm deep was used for simulated generalized (bulk) wear. For simulated marginal gap wear, a two-piece stainless-steel custom fixture was designed with a slit (gap) 300 μm wide and 3 mm in length. For both wear models, 20 specimens each for each of the three adhesive cements were made for both light-cure and chemical-cure techniques. The cured cements were polished with a series of carbide papers to a 4000-grit surface and subjected to 100,000 cycles using the slit (gap) wear model and 400,000 cycles for generalized (bulk) wear in a Leinfelder-Suzuki (Alabama machine) wear simulator (maximum load of 78.5 N). Flat-ended stainless-steel antagonists were used in a water slurry of poly(methylmethacrylate) beads for simulation of generalized contact-free area wear with both wear models. Before and after the wear challenges, the specimens were profiled with a Proscan 2100 noncontact profilometer, and wear (volume loss [VL] and mean facet depth [FD]) was determined using AnSur 3D software. Two-way analysis of variance (ANOVA) and Tukey post hoc tests were used for data analysis for the two wear models. Scanning electron microscopy (SEM) was used to examine polished surfaces of the resin cements and the worn surfaces after the wear challenges. The two-way ANOVA of VL using the generalized (bulk) wear model showed a significant effect among the three resin cement materials for the factor of resin cement (p<0.001) and the interaction of the cement and cure method (p<0.001), but not for the cure method (p=0.465). The two-way ANOVA for FD also found a

  15. Effect of Self-adhesive Resin Cement and Tribochemical Treatment on Bond Strength to Zirconia

    PubMed Central

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Shinya, Akiyoshi

    2010-01-01

    Aim To evaluate the interactive effects of different self-adhesive resin cements and tribochemical treatment on bond strength to zirconia. Methodology The following self-adhesive resin cements for bonding two zirconia blocks were evaluated: Maxcem (MA), Smartcem (SM), Rely X Unicem Aplicap (UN), Breeze (BR), Biscem (BI), Set (SE), and Clearfil SA luting (CL). The specimens were grouped according to conditioning as follows: Group 1, polishing with 600 grit polishing paper; Group 2, silica coating with 110 µm Al2O3 particles which modified with silica; and, Group 3, tribochemical treatment - silica coating + silanization. Specimens were stored in distilled water at 37°C for 24 hours before testing shear bond strength. Results Silica coating and tribochemical treatment significantly increased the bond strength of the MA, UN, BR, BI, SE and CL to zirconia compared to #600 polishing. For both #600 polished and silica coating treatments, MDP-containing self-adhesive resin cement CL had the highest bond strengths to zirconia. Conclusion Applying silica coating and tribochemical treatment improved the bond strength of self-adhesive resin cement to zirconia, especially for CL. PMID:20690416

  16. Bonding of self-adhesive resin cements to enamel using different surface treatments: bond strength and etching pattern evaluations.

    PubMed

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Shinya, Akiyoshi

    2010-08-01

    This study evaluated the shear bond strengths and etching patterns of seven self-adhesive resin cements to human enamel specimens which were subjected to one of the following surface treatments: (1) Polishing with #600 polishing paper; (2) Phosphoric acid; (3) G-Bond one-step adhesive; or (4) Phosphoric acid and G-Bond. After surface treatment, the human incisor specimens were bonded to a resin composite using a self-adhesive resin cement [Maxcem (MA), RelyX Unicem (UN), Breeze (BR), BisCem (BI), seT (SE), Clearfil SA Luting (CL)] or a conventional resin cement [ResiCem (RE)]. Representative morphology formed with self-adhesive resin cements showed areas of etched enamel intermingled with areas of featureless enamel. In conclusion, etching efficacy influenced the bonding effectiveness of self-adhesive resin cements to unground enamel, and that a combined use of phosphoric acid and G-Bond for pretreatment of human enamel surfaces improved the bond strength of self-adhesive resin cements. PMID:20668359

  17. Effects of coronal substrates and water storage on the microhardness of a resin cement used for luting ceramic crowns

    PubMed Central

    de MENDONÇA, Luana Menezes; PEGORARO, Luiz Fernando; LANZA, Marcos Daniel Septímio; PEGORARO, Thiago Amadei; de CARVALHO, Ricardo Marins

    2014-01-01

    Composite resin and metallic posts are the materials most employed for reconstruction of teeth presenting partial or total destruction of crowns. Resin-based cements have been widely used for cementation of ceramic crowns. The success of cementation depends on the achievement of adequate cement curing. Objectives To evaluate the microhardness of Variolink® II (Ivoclar Vivadent, Schaan, Liechtenstein), used for cementing ceramic crowns onto three different coronal substrate preparations (dentin, metal, and composite resin), after 7 days and 3 months of water storage. The evaluation was performed along the cement line in the cervical, medium and occlusal thirds on the buccal and lingual aspects, and on the occlusal surface. Material and Methods Thirty molars were distributed in three groups (N=10) according to the type of coronal substrate: Group D- the prepared surfaces were kept in dentin; Groups M (metal) and R (resin)- the crowns were sectioned at the level of the cementoenamel junction and restored with metallic cast posts or resin build-up cores, respectively. The crowns were fabricated in ceramic IPS e.max® Press (Ivoclar Vivadent, Schaan, Liechtenstein) and luted with Variolink II. After 7 days of water storage, 5 specimens of each group were sectioned in buccolingual direction for microhardness measurements. The other specimens (N=5) were kept stored in deionized water at 37ºC for three months, followed by sectioning and microhardness measurements. Results Data were first analyzed by three-way ANOVA that did not reveal significant differences between thirds and occlusal surface (p=0.231). Two-way ANOVA showed significant effect of substrates (p<0.001) and the Tukey test revealed that microhardness was significantly lower when crowns were cemented on resin cores and tested after 7 days of water storage (p=0.007). Conclusion The type of material employed for coronal reconstruction of preparations for prosthetic purposes may influence the cement properties

  18. Use of zinc phosphate cement as a luting agent for Denzir trade mark copings: an in vitro study.

    PubMed

    Söderholm, Karl-Johan M; Mondragon, Eduardo; Garcea, Ileana

    2003-02-01

    BACKGROUND: The clinical success rate with zinc phosphate cemented Procera crowns is high. The objective with this study was to determine whether CADCAM processed and zinc phosphate cemented Denzir copings would perform as well as zinc phosphate cemented Procera copings when tested in vitro in tension. METHODS: Twelve Procera copings and twenty-four Denzir copings were made. After the copings had been made, twelve of the Denzir copings were sandblasted on their internal surfaces. All copings were then cemented with zinc phosphate cement to carbon steel dies and transferred to water or artificial saliva. Two weeks after cementation, half of the samples were tested. The remaining samples were tested after one year in the storage medium. All tests were done in tension and evaluated with an ANOVA. RESULTS: Sandblasted and un-sandblasted Denzir copings performed as well as Procera copings. Storage in water or artificial saliva up to one year did not decrease the force needed to dislodge any of the coping groups. Three copings fractured during testing and one coping developed a crack during testing. The three complete fractures occurred in Procera copings, while the partly cracked coping was a Denzir coping. CONCLUSION: No significant differences existed between the different material groups, and the retentive force increased rather than decreased with time. Fewer fractures occurred in Denzir copings, explained by the higher fracture toughness of the Denzir material. Based on good clinical results with zinc phosphate cemented Procera crowns, we foresee that zinc phosphate cement luted Denzir copings are likely to perform well clinically. PMID:12622874

  19. Effect of indirect composite treatment microtensile bond strength of self-adhesive resin cements

    PubMed Central

    Escribano, Nuria; Baracco, Bruno; Romero, Martin; Ceballos, Laura

    2016-01-01

    Background No specific indications about the pre-treatment of indirect composite restorations is provided by the manufacturers of most self-adhesive resin cements. The potential effect of silane treatment to the bond strength of the complete tooth/indirect restoration complex is not available.The aim of this study was to determine the contribution of different surface treatments on microtensile bond strength of composite overlays to dentin using several self-adhesive resin cements and a total-etch one. Material and Methods Composite overlays were fabricated and bonding surfaces were airborne-particle abraded and randomly assigned to two different surface treatments: no treatment or silane application (RelyX Ceramic Primer) followed by an adhesive (Adper Scotchbond 1 XT). Composite overlays were luted to flat dentin surfaces using the following self-adhesive resin cements: RelyX Unicem, G-Cem, Speedcem, Maxcem Elite or Smartcem2, and the total-etch resin cement RelyX ARC. After 24 h, bonded specimens were cut into sticks 1 mm thick and stressed in tension until failure. Two-way ANOVA and SNK tests were applied at α=0.05. Results Bond strength values were significantly influenced by the resin cement used (p<0.001). However, composite surface treatment and the interaction between the resin cement applied and surface treatment did not significantly affect dentin bond strength (p>0.05). All self-adhesive resin cements showed lower bond strength values than the total-etch RelyX ARC. Among self-adhesive resin cements, RelyX Unicem and G-Cem attained statistically higher bond strength values. Smartcem2 and Maxcem Elite exhibited 80-90% of pre-test failures. Conclusions The silane and adhesive application after indirect resin composite sandblasting did not improve the bond strength of dentin-composite overlay complex. Selection of the resin cement seems to be a more relevant factor when bonding indirect composites to dentin than its surface treatment. Key words

  20. Influence of alloy microstructure on the microshear bond strength of basic alloys to a resin luting cement.

    PubMed

    Bauer, José; Costa, José Ferreira; Carvalho, Ceci Nunes; Souza, Douglas Nesadal de; Loguercio, Alessandro Dourado; Grande, Rosa Helena Miranda

    2012-01-01

    The aim of this study was to evaluate the influence of microstructure and composition of basic alloys on their microshear bond strength (µSBS) to resin luting cement. The alloys used were: Supreme Cast-V (SC), Tilite Star (TS), Wiron 99 (W9), VeraBond II (VBII), VeraBond (VB), Remanium (RM) and IPS d.SIGN 30 (IPS). Five wax patterns (13 mm in diameter and 4mm height) were invested, and cast in a centrifugal casting machine for each basic alloy. The specimens were embedded in resin, polished with a SiC paper and sandblasted. After cleaning the metal surfaces, six tygon tubes (0.5 mm height and 0.75 mm in diameter) were placed on each alloy surface, the resin cement (Panavia F) was inserted, and the excess was removed before light-curing. After storage (24 h/37°C), the specimens were subjected to µSBS testing (0.5 mm/min). The data were subjected to a one-way repeated measures analysis of variance and Turkey's test (α=0.05). After polishing, their microstructures were revealed with specific conditioners. The highest µSBS (mean/standard deviation in MPa) were observed in the alloys with dendritic structure, eutectic formation or precipitation: VB (30.6/1.7), TS (29.8/0.9), SC (30.6/1.7), with the exception of IPS (31.1/0.9) which showed high µSBS but no eutectic formation. The W9 (28.1/1.5), VBII (25.9/2.0) and RM (25.9/0.9) showed the lowest µSBS and no eutectic formation. It seems that alloys with eutectic formation provide the highest µSBS values when bonded to a light-cured resin luting cement. PMID:23306223

  1. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel

    PubMed Central

    Sekhri, Sahil; Garg, Sandeep

    2016-01-01

    Introduction In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. Aim The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. Materials and Methods On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Results Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non–significant (p > 0.05). Conclusion Surface treatment of enamel increases the bond strength of self adhesive resin cement. PMID:26894165

  2. Effect of fluoride varnish on the retentive strength of provisional crowns luted with various temporary cements.

    PubMed

    Lewinstein, I; Daniel, Z; Azaz, B; Gedalia, I

    1992-11-01

    The retention of temporary crowns was studied with the use of a fluoride varnish (Duraphat) combined with various temporary cements. The mixture of Duraphat varnish and cement improved retention, with the exception of Opotow cement. Applying Duraphat varnish to the tooth surface before cementation enhanced the retentive strength of Tempbond, weakened the retention of Freegenol, but had no effect on Opotow cement. A "transfer effect" was observed, inasmuch as the Duraphat varnish encouraged adherence of the cement to the tooth structure rather than to the temporary crown. PMID:1432792

  3. The erosion kinetics of conventional and resin-modified glass-ionomer luting cements in acidic buffer solutions.

    PubMed

    Hazar-Yoruc, Binnaz; Bavbek, Andac Barkin; Özcan, Mutlu

    2012-01-01

    This study investigated the erosion kinetics of conventional and resin-modified glass-ionomer luting cements in acidic buffer solutions as a function of time. Disc shaped specimens were prepared from conventional (Ketac-Cem: KTC) and resin-modified glass ionomer cements (Fuji Plus: FP) and immersed in three acidic buffer solutions (0.01 M) namely, acetic acid/sodium acetate (AA(B)), lactic acid/sodium lactate (LA(B)) and citric acid/sodium citrate (CA(B)) with a constant pH of 4.1 and stored for 1, 8, 24, 48, 80, 120 and 168 h. F concentration was determined using ion-specific electrode. Si, Ca and Al concentrations were determined by atomic absorption spectroscopy. Ca, Al, Si and F solubility rates in both FP and KTC were the highest in CA(B) solution. The erosion rates of both FP and KTC in all buffer solutions increased as a function of immersion time. The amount of F eluted from FP was more than that of KTC. The total amount of elements released from FP was less than KTC in all solutions. PMID:23207217

  4. Effects of the addition of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on mechanical properties of luting and lining glass ionomer cement

    NASA Astrophysics Data System (ADS)

    Heravi, Farzin; Bagheri, Hossein; Rangrazi, Abdolrasoul; Mojtaba Zebarjad, Seyed

    2016-07-01

    Recently, the addition of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into glass ionomer cements (GICs) has attracted interest due to its remineralization of teeth and its antibacterial effects. However, it should be investigated to ensure that the incorporation of CPP-ACP does not have significant adverse effects on its mechanical properties. The purpose of this study was to evaluate the effects of the addition of CPP-ACP on the mechanical properties of luting and lining GIC. The first step was to synthesize the CPP-ACP. Then the CPP-ACP at concentrations of 1%, 1.56% and 2% of CPP-ACP was added into a luting and lining GIC. GIC without CPP-ACP was used as a control group. The results revealed that the incorporation of CPP-ACP up to 1.56%(w/w) increased the flexural strength (29%), diametral tensile strength (36%) and microhardness (18%), followed by a reduction in these mechanical properties at 2%(w/w) CPP-ACP. The wear rate was significantly decreased (23%) in 1.56%(w/w) concentration of CPP-ACP and it was increased in 2%(w/w). Accordingly, the addition of 1.56%(w/w) CPP-ACP into luting and lining GIC had no adverse effect on the mechanical properties of luting and lining GIC and could be used in clinical practice.

  5. Effect of smear layer treatment on dentin bond of self-adhesive cements.

    PubMed

    Kambara, Keisuke; Nakajima, Masatoshi; Hosaka, Keiichi; Takahashi, Masahiro; Thanatvarakorn, Ornnicha; Ichinose, Shizuko; Foxton, Richard M; Tagami, Junji

    2012-01-01

    The purpose of this study was to compare the dentin bond strength of three self-adhesive cements with smear layer pretreatments using a calcium-chelating agent (EDTA) and deproteinizing solution (NaOCl) and to evaluate their interfacial characteristics. Smear layer-covered dentin surfaces were pretreated with EDTA for 60 s, NaOCl for 5 and 15 s, or none. Three self-adhesive cements; Clearfil SA luting (Kuraray Medical), Rely X Unicem clicker (3M ESPE) and Breeze (Pentron) were applied to the dentin surfaces. After 24-h water storage, shear bond strengths to dentin were determined. In addition, nanoleakage evaluation at the interface was performed using FE-SEM and EDS. EDTA-pretreatment significantly improved the bond strength of BR (p<0.05) and NaOCl-pretreatment for 15 s significantly improved the bond strength of RX (p<0.05). On the other hand, for SA, both pretreatments significantly decreased bond strength to dentin (p<0.05). Nanoleakage formation was observed in various amounts at the cement-dentin interfaces. PMID:23207204

  6. Bond strength and stability of 3 luting systems on a zirconia-dentin complex.

    PubMed

    Turker, Sebnem Begum; Ozcan, Mutlu; Mandali, Gamze; Damla, Isil; Bugurman, Burcu; Valandro, Luiz Felipe

    2013-01-01

    This study compared the bond strength and stability of 3 different luting systems to a zirconia ceramic crown. Sixty cylinders of zirconia ceramic were cemented to flat dentin surfaces of extracted human teeth, using 3 different luting agents (n = 20): a glass ionomer (GI) cement, a resin-modified glass-ionomer (RMGI) cement, and a resin cement containing 10-methacryloyloxydecyl dihydrogen phosphate (MDP). The specimens from each cement group were then divided into 2 subgroups (n = 10). Three subgroups (1 from each cement) were selected to test shear bond strength (SBS) immediately before an aging process of thermocycling and water storage, the remaining 3 subgroups were tested for SBS after the aging process. The aging process affected the bond strength of the MDP and RMGI cements. The MDP cement demonstrated superior bond strength compared to the GI and RMGI cements; the GI cement consistently had the lowest bond strength. The RMGI cement had higher cohesive failures at cement (70%), while the GI and the MDP cements had higher percentages of adhesive failure at the ceramic-cement interface (70% and 100%, respectively). The MDP cement promoted better adhesion between dentin and the zirconia ceramic. PMID:24192740

  7. Effect of Preparation Taper, Height and Marginal Design Under Varying Occlusal Loading Conditions on Cement Lute Stress: A Three Dimensional Finite Element Analysis.

    PubMed

    Tripathi, Siddhi; Amarnath, Gowdagere Shamanna; Muddugangadhar, Byrasandra Channapa; Sharma, Ashish; Choudhary, Suchismita

    2014-12-01

    To assess the effect of preparation taper, height and margin design under different loading conditions on cement lute stress. A 3-D FE model of an upper second premolar and molar was developed from CT scan of human skull using software programmes (MIMICS, Hypermesh and ANSYS). 10° and 30° taper, 3 and 5 mm preparation height and shoulder and chamfer finish lines were used. Type 1 Glass ionomer cement with 24 μm lute width was taken and the model was loaded under 100 N horizontal point load, vertical point load distributed axial load. The maximum shear stress and Von Mises stress within the cement lute were recorded. The maximum shear stresses ranged from 1.70 to 3.93 MPa (horizontal point loading), 0.66 to 3.04 MPa (vertical point loading), 0.38 to 0.87 MPa (distributed loading). The maximum Von Mises stresses ranged from 3.39 to 10.62 MPa (horizontal point loading), 1.93 to 8.58 MPa (vertical point loading) and 1.49 to 3.57 MPa (distributed loading). The combination of 10° taper and 5 mm height had the lowest stress field while the combination of 30° taper and 5 mm height had the highest stress field. Distributed axial loading shows least stress, better stress homogenization and gives a favorable prognosis for the fixed prostheses. Smaller preparation taper of 10° is biomechanically more acceptable than a 30° taper. It is desirable to decrease taper as height increases. The chamfer margin design is associated with greater local cement stresses toward the margins that could place the cement at greater risk for microfracture and failure. PMID:26199500

  8. Evaluation of the Luting Cement Space for Provisional Restoration by using Various Coats of Die Spacer Materials-An Invitro Study

    PubMed Central

    Siddineni, Krishna Chaitanya; Jyothula, Ravi Rakesh Dev; Gade, Phani Krishna; Bhupathi, Deepthi; Kondaka, Sudheer; Hussain, Zakir; Paluri, Geetha Bhavani

    2014-01-01

    Aim: The present study was to evaluate the space provided for the temporary luting cement, after the application of various coats of die spacers, during the fabrication of provisional crowns and bridges. Materials and Methods: A total of 50 specimens of dental stone with provisional crowns on all these samples were prepared and were divided into five groups based on the application of various coats of different die spacers. Later these specimens were sectioned buccolingually and were observed using a stereomicroscope under 100X magnification. The images thus obtained were evaluated and noted for the amount of space between the inner surface of the provisional crown and the specimens at five different locations using Image Pro 6.0 Express software and the values were subjected to one-way ANOVA test, and unpaired t-test. Results: There was a significant increase of luting space thickness with various die spacer applications than the specimens of control group. Conclusion: Specimens of double coat applications of silver and gold die spacers showed higher luting cement space than the separating media application specimens. PMID:25386515

  9. Push-out bond strength of quartz fibre posts to root canal dentin using total-etch and self-adhesive resin cements

    PubMed Central

    Mohammadi, Narmin; Navimipour, Elmira J.; Shakerifar, Maryam

    2012-01-01

    Objectives: Several adhesive systems are available for cementation of fibre posts into the root canal. The aim of the present study was to investigate the push-out bond strengths of quartz fibre posts to root dentin with the use of different total-etch and self-adhesive resin cements. Study Design: Ninety single-rooted human premolars were endodontically treated and standardized post-spaces were prepared. Fibre posts were cemented with different luting agents: total-etch (Nexus NX3, Duo-Link, and RelyX ARC) and self-adhesive resin cements (Maxcem Elite, BisCem, and RelyX Unicem). Three post/dentin sections (coronal, middle and apical) were obtained from each specimen, and push-out bond strength test was performed in each section at a cross-head speed of 0.5 mm/min. Data was analyzed with two-factor and one-way analysis of variance and a post-hoc Tukey test at a significance level of p < 0.05. Results: Cement type, canal region, and their interaction significantly influenced bond strength. Significantly higher bond strength values were observed in the apical region of self-adhesive cements. Only Duo-Link and RelyX ARC cements resulted in homogeneous bond strengths. Conclusions: Cementation of quartz fibre posts using self-adhesive cements provided higher push-out bond strengths especially in the apical region, while total-etch cements resulted in more uniform bond strengths in different regions of the root canal. Key words: Push-out bond strength; quartz fibre post; total-etch resin cement; self-adhesive resin cement. PMID:22143695

  10. Marginal gap, cement thickness, and microleakage of 2 zirconia crown systems luted with glass ionomer and MDP-based cements.

    PubMed

    Sener, Isil; Turker, Begum; Valandro, Luiz Felipe; Ozcan, Mutlu

    2014-01-01

    This in vitro study evaluated the marginal gap, cement thickness, and microleakage of glass-ionomer cement (GIC) and phosphate monomer-containing resin cement (MDP-RC) under 2 zirconia crown systems (Cercon and DC-Zirkon). Forty human premolars were prepared for all-ceramic zirconia crowns with a 1 mm circumferential finish line and a 1.5 mm occlusal reduction. The crowns (n = 10 per group) from each zirconia system were randomly divided into 2 groups and cemented either with GIC (Vivaglass CEM) or MDP-RC (Panavia F 2.0) cement. The cemented crowns were thermocycled 5000 times (5°-55°C). The crowns were immersed in 0.5% basic fuchsine dye solution for 24 hours and sectioned buccolingually and mesiodistally. Specimens were examined under optical microscope (100X). Data were analyzed using Student t-test and chi-square tests (α = 0.05). Mean marginal gap values for Cercon (85 ± 11.4 μm) were significantly higher than for DC-Zircon (75.3 ± 13.2 μm) (P = 0.018). The mean cement thickness values of GIC (81.7 ± 13.9 μm) and MDP-RC (78.5 ± 12.5 μm) were not significantly different (P = 0.447). Microleakage scores did not demonstrate significant difference between GIC (P = 0.385) and MDP-RC (P = 0.631) under Cercon or DC-Zircon. Considering the cement thickness values and microleakage scores obtained, both zirconia crown systems could be cemented in combination with either GIC or MDP-RC. PMID:24598500

  11. Influence of luting agent translucency on fiber post retention.

    PubMed

    Juloski, Jelena; Goracci, Cecilia; Tsintsadze, Nino; Carrabba, Michele; Vichi, Alessandro; Vulicevic, Zoran R; Ferrari, Marco

    2015-04-01

    The aim was to assess the influence of cement translucency on the retentive strength of luted fiber posts. Twenty extracted human premolars were randomly divided into four equal groups, based on the combinations of materials to be tested. Two post types of the same size, shape, and chemical composition, but different light-transmission properties [Translucent post (TP) and Opaque post (OP)] were selected. The two post types were luted using the etch-and-rinse, light-curing adhesive in combination with two shades of the same resin cement of markedly different light-transmitting ability [Transparent shade (TS) and Opaque shade (OS)]. Early post retention was assessed using the thin-slice push-out test. Post type did not significantly influence post retention; however, cement translucency emerged as a relevant factor in intraradicular cementation, with the TS achieving higher push-out strengths. The between-factor interaction was also statistically significant; specifically, OP-OS yielded significantly lower retentive strengths than all the other groups. Post translucency did not influence post retention, provided that a highly translucent cement was utilized for luting. PMID:25683864

  12. Influence of Immediate Dentin Sealing on the Shear Bond Strength of Pressed Ceramic Luted to Dentin with Self-Etch Resin Cement

    PubMed Central

    Dalby, Robert; Ellakwa, Ayman; Millar, Brian; Martin, F. Elizabeth

    2012-01-01

    Objectives. To examine the effect of immediate dentin sealing (IDS), with dentin bonding agents (DBAs) applied to freshly cut dentin, on the shear bond strength of etched pressed ceramic luted to dentin with RelyX Unicem (RXU) cement. Method. Eighty extracted noncarious third molars were ground flat to expose the occlusal dentin surfaces. The teeth were randomly allocated to five groups (A to E) of sixteen teeth each. Groups A to D were allocated a dentin bonding agent (Optibond FL, One Coat Bond, Single Bond, or Go!) that was applied to the dentin surface to mimic the clinical procedure of IDS. These specimen groups then had etched glass ceramic discs (Authentic) luted to the sealed dentin surface using RXU. Group E (control) had etched glass ceramic discs luted to the dentin surface (without a dentin bonding agent) using RXU following the manufacturer's instructions. All specimens were stored for one week in distilled water at room temperature and then shear stressed at a constant cross-head speed of 1 mm per minute until failure. Statistical analysis was performed by ANOVA followed by post hoc Tukey HSD method (P < 0.05) applied for multiple paired comparisons. Results. The shear bond strength results for group A to E ranged from 6.94 ± 1.53 to 10.03 ± 3.50 MPa. One-way ANOVA demonstrated a difference (P < 0.05) between the groups tested and the Tukey HSD demonstrated a significant (P < 0.05) difference between the shear bond strength (SBS) of Optibond FL (Group A) and Go! (Group D). There was no statistical difference (P > 0.05) in the SBS between the test groups (A–D) or the control (group E). Conclusion. IDS using the dentin bonding agents tested does not statistically (P > 0.05) affect the shear bond strength of etched pressed ceramic luted to dentin with RXU when compared to the control. PMID:22287963

  13. Analysis of marginal adaptation and sealing to enamel and dentin of four self-adhesive resin cements.

    PubMed

    Aschenbrenner, Carina Maria; Lang, Reinhold; Handel, Gerhard; Behr, Michael

    2012-02-01

    This in vitro study compared the marginal adaptation of all-ceramic MOD-inlays luted to human molars with four self-adhesive resin cements. Thirty-two human third molars were randomly assigned to four test groups (n = 8 per group). MOD cavities were prepared with approximal finishing lines in dentin and enamel. All-ceramic Empress 2 inlays were luted with four self-adhesive cements (Clearfil SA, iCEM, Bifix SE, seT). Oral stress was simulated by 90 day storage in water as well as by thermal and mechanical loading (TCML, 1.2 × 10(6) × 50 N, 6,000 × 5°/55°, 1.6 Hz). The marginal fit was evaluated by scanning electron microscopy (SEM) and dye penetration. Data were analyzed with the ANOVA/Tukey's test (α = 0.05). The SEM investigation of the gingival cement margins (cement-tooth interface) showed values of perfect margin [percent] (means ± SD) after simulated aging between 84 ± 9% and 95 ± 5% for enamel and 80 ± 9% and 92 ± 3% for dentin. In enamel, seT showed significantly higher marginal integrity than iCEM after water storage and TCML (post hoc; p = 0.011). Furthermore, the marginal adaptation of iCEM in enamel deteriorated by simulated aging (p = 0.014, ANOVA). Mean values of dye penetration (percentage of dye entry into dentin) at the investigated restorations margins ranged between 3% and 8% for enamel and 12% and 22% for dentin. Clearfil SA, iCEM, and seT showed lower dye penetration in enamel than in dentin (Clearfil SA: p = 0.013, iCEM: p = 0.044, seT: p = 0.003). The results suggest that the four self-adhesive luting agents investigated seem to successfully bond to dentin-restricted as well as to enamel-restricted cavities, predicting good clinical performance. PMID:21327799

  14. Bonding All-Ceramic Restorations with Two Resins Cement Techniques: A Clinical Report of Three-Year Follow-Up

    PubMed Central

    Anchieta, Rodolfo Bruniera; Rocha, Eduardo Passos; de Almeida, Erika Oliveira; Junior, Amilcar Chagas Freitas; Martini, Ana Paula

    2011-01-01

    Ceramics have been widely used for esthetic and functional improvements. The resin cement is the material of choice for bonding ceramics to dental substrate and it can also dictate the final esthetic appearance and strength of the restoration. The correct use of the wide spectrum of resin luting agents available depends on the dental tooth substrate. This article presents three-year clinical results of a 41 years old female patient B.H.C complaining about her unattractive smile. Two all-ceramic crowns and two laminates veneers were placed in the maxillary incisors and cemented with a self-adhesive resin luting cement and conventional resin luting cement, respectively. After a three-year follow-up, the restorations and cement/teeth interface were clinically perfect with no chipping, fractures or discoloration. Proper use of different resin luting cements shows clinical appropriate behavior after a three-year follow-up. Self-adhesive resin luting cement may be used for cementing all-ceramic crowns with high predictability of success, mainly if there is a large dentin surface available for bonding and no enamel at the finish line. Otherwise, conventional resin luting agent should be used for achieving an adequate bonding strength to enamel. PMID:21912505

  15. Conventional dual-cure versus self-adhesive resin cements in dentin bond integrity

    PubMed Central

    da SILVA, Renata Andreza Talaveira; COUTINHO, Margareth; CARDOZO, Pedro Igor; da SILVA, Larissa Alves; ZORZATTO, José Roberto

    2011-01-01

    During post preparation, the root canal is exposed to the oral cavity, and endodontic treatment may fail because of coronal leakage, bacterial infection and sealing inability of the luting cement. Objective this study quantified the interfacial continuity produced with conventional dual-cure and self-adhesive resin cements in the cervical (C), medium (M) and apical (A) thirds of the root. Material and methods Forty single-rooted human teeth were restored using Reforpost # 01 conical glass-fiber posts and different materials (N=10 per group): group AC=Adper™ ScotchBond™ Multi-purpose Plus + AllCem; group ARC=Adper™ ScotchBond™ Multi-purpose Plus + RelyX ARC; group U100=RelyX U100; and group MXC=Maxcem Elite. After being kept in 100% humidity at 37ºC for 72 hours, the samples were sectioned parallel to their longitudinal axis and positive epoxy resin replicas were made. The scanning electron micrographs of each third section of the teeth were combined using Image Analyst software and measured with AutoCAD-2002. We obtained percentage values of the interfacial continuity. Results Interfacial continuity was similar in the apical, medium and cervical thirds of the roots within the groups (Friedman test, p>0.05). Comparison of the different cements in a same root third showed that interfacial continuity was lower in MXC (C=45.5%; M=48.5%; A=47.3%) than in AC (C=85.9%, M=81.8% and A=76.0%), ARC (C=83.8%, M=82.4% and A=75.0%) and U100 (C=84.1%, M=82.4% and A=77.3%) (Kruskal-Wallis test, p<0.05). Conclusions Allcem, Rely X ARC and U100 provide the best cementation; cementation was similar among root portions; in practical terms, U100 is the best resin because it combines good cementation and easy application and none of the cements provides complete interfacial continuity. PMID:21710099

  16. [Adhesive strengths of cast crowns with various types of cements].

    PubMed

    Utz, K H; Grüner, M; Büscher, M

    1990-12-01

    In an in vitro study the adhesive strength of sand-blasted castings (gold alloy) was tested on human teeth prepared and finished in different ways. For cementation we used two glass ionomer and one phosphate cement. On the surfaces treated with carbide finishing instruments the force required for separating the crown from the tooth was about 1.9 N/mm2 for Ketac-cem, about 2 N/mm2 for Fuji Ionomer, and about 1.8 N/mm2 for Harvard (a zinc oxide phosphate cement). Compared with this, the values obtained for dentin surfaces pretreated with fine diamonds (red ring) were 1.5 N/mm2 for Ketac-cem, 1.6 N/mm2 for Fuji Ionomer, and 1.9 N/mm2 for Harvard. The measured differences between the various types of cement were statistically not significant. PMID:2135267

  17. Retention of overdenture posts cemented with self-adhesive resin cements.

    PubMed

    Elsayed, Mohamed Ezzat; El-Mowafy, Omar; Fenton, Aaron

    2009-01-01

    This study investigated the effects of two self-adhesive resin cements on the retention of overdenture anchor posts after 30 days of aging in water. Forty caries-free human canines were randomly assigned to four test groups. Uni-Anchor posts were cemented to specimens in groups A and B with Breeze and Maxcem self-adhesive resin cements, respectively. In groups C and D, Fuji glass-ionomer cement and Fleck's zinc phosphate cement were used, respectively. Specimens were stored in distilled water at 37 degrees C for 30 days. Each specimen was loaded in tension in an Instron universal testing machine. The maximum force required to dislodge each post was recorded. Means and standard deviations (SDs) were calculated and data were statistically analyzed with analysis of variance (ANOVA). Means and SDs were 706.5 +/- 204.6 N for Breeze, 585.1 +/- 213.5 N for Maxcem, 449.2 +/- 181.1 N for Fuji, and 330.4 +/- 120.6 N for Fleck's. ANOVA revealed significant differences among the means (P < .0003). Adhesive failure was observed with all groups except group A, in which eight specimens underwent a cohesive fracture of the dentin. Breeze cement (group A) resulted in the highest retention force and most frequent cohesive failure and thus would be expected to clinically perform in a superior manner. PMID:19548412

  18. Statistical failure analysis of adhesive resin cement bonded dental ceramics

    PubMed Central

    Wang, Yaou; Katsube, Noriko; Seghi, Robert R; Rokhlin, Stanislav I.

    2007-01-01

    The goal of this work is to quantitatively examine the effect of adhesive resin cement on the probability of crack initiation from the internal surface of ceramic dental restorations. The possible crack bridging mechanism and residual stress effect of the resin cement on the ceramic surface are examined. Based on the fracture-mechanics-based failure probability model, we predict the failure probability of glass-ceramic disks bonded to simulated dentin subjected to indentation loads. The theoretical predictions match experimental data suggesting that both resin bridging and shrinkage plays an important role and need to be considered for accurate prognostics to occur. PMID:18670583

  19. Effects of mechanical properties of adhesive resin cements on stress distribution in fiber-reinforced composite adhesive fixed partial dentures.

    PubMed

    Yokoyama, Daiichiro; Shinya, Akikazu; Gomi, Harunori; Vallittu, Pekka K; Shinya, Akiyoshi

    2012-01-01

    Using finite element analysis (FEA), this study investigated the effects of the mechanical properties of adhesive resin cements on stress distributions in fiber-reinforced resin composite (FRC) adhesive fixed partial dentures (AFPDs). Two adhesive resin cements were compared: Super-Bond C&B and Panavia Fluoro Cement. The AFPD consisted of a pontic to replace a maxillary right lateral incisor and retainers on a maxillary central incisor and canine. FRC framework was made of isotropic, continuous, unidirectional E-glass fibers. Maximum principal stresses were calculated using finite element method (FEM). Test results revealed that differences in the mechanical properties of adhesive resin cements led to different stress distributions at the cement interfaces between AFPD and abutment teeth. Clinical implication of these findings suggested that the safety and longevity of an AFPD depended on choosing an adhesive resin cement with the appropriate mechanical properties. PMID:22447051

  20. Comparative Evaluation of Enhancing Retention of Dislodged Crowns Using Preparation Modifications and Luting Cements: An In-Vitro Study

    PubMed Central

    Amarnath, G S; Pandey, Apurva; Prasad, Hari Ananth; Hilal, Mohammed

    2015-01-01

    Background: Complete cast crowns are good alternatives and have best longevity for the restoration of damaged posterior teeth. Occasionally, a crown with clinically acceptable margins, preparation design, and occlusion becomes loose. Providers often debate whether such a crown can be successfully recemented with any degree of confidence that it will not be dislodged under normal masticatory function. It has been documented that resistance form increases by placing grooves opposing each other in a crown and tooth; cements also have a role to play in retention of crowns. To determine whether the addition of horizontal groove in the internal surface of the crown and/or tooth preparation will increase retention of the crowns, without remaking them and achieving better retention with cements. Materials and Methods: A total of 80 extracted human mandibular molars were taken and standard preparation was done. After the crowns were ready, the groove was made in the internal surface of the crown and on the tooth, which were cemented with glass ionomer cement and resin cement. The tensile force needed to dislodge the crowns and teeth after cementation was found out. Result: The mean tensile force needed to dislodge the crown and tooth combination was highest for the group in which crown had a groove without any groove on the tooth and cemented using resin cement (252.60N). Conclusion: It can be concluded from the study that it is best to recement a crown and tooth combination using resin cement where the crown has a groove, and the tooth has no groove. PMID:26464539

  1. Vertical misfit of laser-sintered and vacuum-cast implant-supported crown copings luted with definitive and temporary luting agents

    PubMed Central

    Sánchez-Turrión, Andrés; López-Lozano, José F.; Albaladejo, Alberto; Torres-Lagares, Daniel; Montero, Javier; Suárez-García, Maria J.

    2012-01-01

    Objectives. This study aimed to evaluate the vertical discrepancy of implant-supported crown structures constructed with vacuum-casting and Direct Metal Laser Sintering (DMLS) technologies, and luted with different cement types. Study Design. Crown copings were fabricated using: (1) direct metal laser sintered Co-Cr (LS); (2) vacuum-cast Co-Cr (CC); and (3) vacuum-cast Ti (CT). Frameworks were luted onto machined implant abutments under constant seating pressure. Each alloy group was randomly divided into 5 subgroups (n = 10 each) according to the cement system utilized: Subgroup 1 (KC) used resin-modified glass-ionomer Ketac Cem Plus; Subgroup 2 (PF) used Panavia F 2.0 dual-cure resin cement; Subgroup 3 (RXU) used RelyX Unicem 2 Automix self-adhesive dual-cure resin cement; Subgroup 4 (PIC) used acrylic/urethane-based temporary Premier Implant Cement; and Subgroup 5 (DT) used acrylic/urethane-based temporary DentoTemp cement. Vertical misfit was measured by scanning electron microscopy (SEM). Two-way ANOVA and Student-Newman-Keuls tests were run to investigate the effect of alloy/fabrication technique, and cement type on vertical misfit. The statistical significance was set at α = 0.05. Results. The alloy/manufacturing technique and the luting cement affected the vertical discrepancy (p < 0.001). For each cement type, LS samples exhibited the best fit (p < 0.01) whereas CC and CT frames were statistically similar. Within each alloy group, PF and RXU provided comparably greater discrepancies than KC, PIC, and DT, which showed no differences. Conclusions. Laser sintering may be an alternative to vacuum-casting of base metals to obtain passive-fitting implant-supported crown copings. The best marginal adaptation corresponded to laser sintered structures luted with glass-ionomer KC, or temporary PIC or DT cements. The highest discrepancies were recorded for Co-Cr and Ti cast frameworks bonded with PF or RXU resinous agents. All groups were within the clinically

  2. Extraoral Cementation Technique to Minimize Cement-Associated Peri-implant Marginal Bone Loss: Can a Thin Layer of Zinc Oxide Cement Provide Sufficient Retention?

    PubMed

    Frisch, Eberhard; Ratka-Krüger, Petra; Weigl, Paul; Woelber, Johan

    2016-01-01

    This report describes the use of laboratory-fabricated crown intaglio replicas for extraorally prepared cementation of fixed restorations to implants. This technique minimizes excess cement and may therefore reduce the risk of cement-related marginal peri-implant bone loss. It is unclear whether the remaining thin layer of luting agent provides sufficient retention if low-adhesive zinc oxide (ZnO) cement is used. In 85 consecutive patients, 113 single crowns were cemented to implants using extraoral cementation technique (ECT) and ZnO cement. All patients were followed for 6 months and investigated for decementation. Seven events of decementation (incidence: 6.19%) were found in 7 patients (8.24%). ECT may represent a viable cementation technique for implant-supported single crowns, even using low-adhesion cements. PMID:27479343

  3. A Review of Luting Agents

    PubMed Central

    Pameijer, Cornelis H.

    2012-01-01

    Due to the availability of a large number of luting agents (dental cements) proper selection can be a daunting task and is usually based on a practitioner's reliance on experience and preference and less on in depth knowledge of materials that are used for the restoration and luting agent properties. This review aims at presenting an overview of current cements and discusses physical properties, biocompatibility and other properties that make a particular cement the preferred choice depending on the clinical indication. Tables are provided that outline the different properties of the generic classification of cements. It should be noted that no recommendations are made to use a particular commercial cement for a hypothetical clinical situation. The choice is solely the responsibility of the practitioner. The appendix is intended as a guide for the practitioner towards a recommended choice under commonly encountered clinical scenarios. Again, no commercial brands are recommended although the author recognizes that some have better properties than others. Please note that this flowchart strictly presents the author's opinion and is based on research, clinical experience and the literature. PMID:22505909

  4. The effect of a diode laser and traditional irrigants on the bond strength of self-adhesive cement

    PubMed Central

    Yildirim, Cihan; Ozcan, Erhan; Polat, Serdar

    2013-01-01

    PURPOSE The purpose of this study was to compare the effect of a diode laser and traditional irrigants on the bond strength of self-adhesive cement. MATERIALS AND METHODS Fifty-five incisors extracted due to periodontal problems were used. All teeth were instrumented using a set of rotary root canal instruments. The post spaces were enlarged for a No.14 (diameter, 1.4 mm) Snowlight (Abrasive technology, OH, USA) glass fiber reinforced composite post with matching drill. The teeth were randomly divided into 5 experimental groups of 11 teeth each. The post spaces were treated with the followings: Group 1: 5 mL 0.9% physiological saline; Group 2: 5 mL 5.25% sodium hypochlorite; Group 3: 5 mL 17% ethylene diamine tetra acetic acid (EDTA), Group 4: 37% orthophosphoric acid and Group 5: Photodynamic diode laser irradiation for 1 minute after application of light-active dye solution. Snowlight posts were luted with self-adhesive resin cement. Each root was sectioned perpendicular to its long axis to create 1 mm thick specimens. The push-out bond strength test method was used to measure bond strength. One tooth from each group was processed for scanning electron microscopic analysis. RESULTS Bond strength values were as follow: Group 1 = 4.15 MPa; Group 2 = 3.00 MPa; Group 3 = 4.45 MPa; Group 4 = 6.96 MPa; and Group 5 = 8.93 MPa. These values were analysed using one-way ANOVA and Tukey honestly significant difference test (P<.05). Significantly higher bond strength values were obtained with the diode laser and orthophosphoric acid (P<.05). There were no differences found between the other groups (P>.05). CONCLUSION Orthophosphoric acid and EDTA were more effective methods for removing the smear layer than the diode laser. However, the diode laser and orthophosphoric acid were more effective at the cement dentin interface than the EDTA, Therefore, modifying the smear layer may be more effective when a self-adhesive system is used. PMID:24353886

  5. Effect of dimension of luting space and luting composite on marginal adaptation of a class II ceramic inlay.

    PubMed

    Schmalz, G; Federlin, M; Reich, E

    1995-04-01

    This study evaluated the in vitro marginal quality at the interproximal cervical margin of class II Cerec restorations. Marginal quality was evaluated separately by (1) SEM analysis before and after simultaneous thermocycling and mechanical loading for the integrity of the restoration surface and (2) dye penetration after thermocycling and mechanical loading to evaluate the strength of the bond within the depth of the cavity. The results reveal that marginal integrity is influenced by the width of the luting space and the luting composite. With a luting space of 100 microns, marginal quality with as little as 3% to 14% loss of adhesion can be obtained. Luting spaces greater than 100 microns can partially be compensated by the luting composite. For Cerec inlays, highly filled luting composites with a high viscosity are recommended. PMID:7783020

  6. Bond strength of self-adhesive resin cements to tooth structure

    PubMed Central

    Hattar, Susan; Hatamleh, Muhanad M.; Sawair, Faleh; Al-Rabab’ah, Mohammad

    2015-01-01

    Objectives The aim of this study was to evaluate the strength of the bond between newly introduced self-adhesive resin cements and tooth structures (i.e., enamel and dentin). Methods Three self-adhesive cements (SmartCem2, RelyX Unicem, seT SDI) were tested. Cylindrical-shaped cement specimens (diameter, 3 mm; height, 3 mm) were bonded to enamel and dentin. Test specimens were incubated at 37 °C for 24 h. The shear bond strength (SBS) was tested in a Zwick Roll testing machine. Results were analyzed by one-way ANOVA and t-test. Statistically significant differences were defined at the α = 0.05 level. Bond failures were categorized as adhesive, cohesive, or mixed. Results The SBS values ranged from 3.76 to 6.81 MPa for cements bonded to enamel and from 4.48 to 5.94 MPa for cements bonded to dentin (p > 0.05 between surfaces). There were no statistically significant differences between the SBS values to enamel versus dentin for any given cement type. All cements exhibited adhesive failure at the resin/tooth interface. Conclusions Regardless of their clinical simplicity, the self-adhesive resin cements examined in this study exhibit limited bond performance to tooth structures; therefore, these cements must be used with caution. PMID:26082572

  7. The Influence of Casing-Sand Adhesion on Cementing Bond Strength

    PubMed Central

    Zhao, Xiaofeng; Guan, Zhichuan; Xu, Minglei; Shi, Yucai; Liao, Hualin; Sun, Jia

    2015-01-01

    In the petroleum industry, one of the most serious problems encountered during cementing is the failure at the bonding interface. Many measures including casing-sand adhesion have been developed to improve cementing bond strength. However, due to the lack of detailed study of the technique, many questions remain. The primary goal of this study is to investigate the influence of casing-sand adhesion on cementing bond strength, and to optimize parameters. An orthogonal experiment and a supplementary experiment were conducted. The results indicated that casing-sand adhesion can improve the cementing bond strength. The priority orders of key factors are: sand grain size, sand coverage, adhesive curing temperature and adhesive curing time. The optimal parameters recommended for application are: 1.6mm~1.9mm sand grain size, 60%~70% sand coverage, 30°C curing temperature and 60 hours curing time. PMID:26115343

  8. Influence of Different Types of Resin Luting Agents on Color Stability of Ceramic Laminate Veneers Subjected to Accelerated Artificial Aging.

    PubMed

    Silami, Francisca Daniele Jardilino; Tonani, Rafaella; Alandia-Román, Carla Cecilia; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2016-01-01

    The aim of this study was to evaluate the influence of accelerated aging (AAA) on the color stability of resin cements for bonding ceramic laminate veneers of different thicknesses. The occlusal surfaces of 80 healthy human molars were flattened. Ceramic laminate veneers (IPS e-max Ceram) of two thicknesses (0.5 and 1.0 mm) were bonded with three types of luting agents: light-cured, conventional dual and self-adhesive dual cement. Teeth without restorations and cement samples (0.5 mm) were used as control. After initial color evaluations, the samples were subjected to AAA for 580 h. After this, new color readouts were made, and the color stability (ΔE) and luminosity (ΔL) data were analyzed. The greatest color changes (p<0.05) occurred when 0.5 mm veneers were fixed with light-cured cement and the lowest when 1.0 mm veneers were fixed with conventional dual cement. There was no influence of the restoration thickness when the self-adhesive dual cement was used. When veneers were compared with the control groups, it was verified that the cement samples presented the greatest alterations (p<0.05) in comparison with both substrates and restored teeth. Therefore, it was concluded that the thickness of the restoration influences color and luminosity changes for conventional dual and light-cured cements. The changes in self-adhesive cement do not depend on restoration thickness. PMID:27007354

  9. Bond strength of self-adhesive resin cements to composite submitted to different surface pretreatments

    PubMed Central

    dos Santos, Victor Hugo; Griza, Sandro; de Moraes, Rafael Ratto

    2014-01-01

    Objectives Extensively destroyed teeth are commonly restored with composite resin before cavity preparation for indirect restorations. The longevity of the restoration can be related to the proper bonding of the resin cement to the composite. This study aimed to evaluate the microshear bond strength of two self-adhesive resin cements to composite resin. Materials and Methods Composite discs were subject to one of six different surface pretreatments: none (control), 35% phosphoric acid etching for 30 seconds (PA), application of silane (silane), PA + silane, PA + adhesive, or PA + silane + adhesive (n = 6). A silicone mold containing a cylindrical orifice (1 mm2 diameter) was placed over the composite resin. RelyX Unicem (3M ESPE) or BisCem (Bisco Inc.) self-adhesive resin cement was inserted into the orifices and light-cured. Self-adhesive cement cylinders were submitted to shear loading. Data were analyzed by two-way ANOVA and Tukey's test (p < 0.05). Results Independent of the cement used, the PA + Silane + Adhesive group showed higher microshear bond strength than those of the PA and PA + Silane groups. There was no difference among the other treatments. Unicem presented higher bond strength than BisCem for all experimental conditions. Conclusions Pretreatments of the composite resin surface might have an effect on the bond strength of self-adhesive resin cements to this substrate. PMID:24516824

  10. Analytical method to estimate resin cement diffusion into dentin

    NASA Astrophysics Data System (ADS)

    de Oliveira Ferraz, Larissa Cristina; Ubaldini, Adriana Lemos Mori; de Oliveira, Bruna Medeiros Bertol; Neto, Antonio Medina; Sato, Fracielle; Baesso, Mauro Luciano; Pascotto, Renata Corrêa

    2016-05-01

    This study analyzed the diffusion of two resin luting agents (resin cements) into dentin, with the aim of presenting an analytical method for estimating the thickness of the diffusion zone. Class V cavities were prepared in the buccal and lingual surfaces of molars (n=9). Indirect composite inlays were luted into the cavities with either a self-adhesive or a self-etch resin cement. The teeth were sectioned bucco-lingually and the cement-dentin interface was analyzed by using micro-Raman spectroscopy (MRS) and scanning electron microscopy. Evolution of peak intensities of the Raman bands, collected from the functional groups corresponding to the resin monomer (C–O–C, 1113 cm-1) present in the cements, and the mineral content (P–O, 961 cm-1) in dentin were sigmoid shaped functions. A Boltzmann function (BF) was then fitted to the peaks encountered at 1113 cm-1 to estimate the resin cement diffusion into dentin. The BF identified a resin cement-dentin diffusion zone of 1.8±0.4 μm for the self-adhesive cement and 2.5±0.3 μm for the self-etch cement. This analysis allowed the authors to estimate the diffusion of the resin cements into the dentin. Fitting the MRS data to the BF contributed to and is relevant for future studies of the adhesive interface.

  11. Adhesion of polycarboxylate-based dental cements to enamel: an in vivo study.

    PubMed

    Jemt, T; Stålblad, P A; Oilo, G

    1986-06-01

    The bond strength of two polycarboxylate and two glass ionomer cements to enamel in vivo has been measured by a tensile test method. The four cements were used to cement small stainless steel cylinders onto the facial surfaces of 11 and 21. The cylinders were removed by a tensile force applied by a handpiece containing a semi-conductor sensory unit. The results showed that all cements gave two sets of bond strength values, either a good bond corresponding to a cohesive failure, or a weak bond corresponding to an adhesive failure. The mean bond strength values were lower than those recorded in vitro, and differences among the cements were limited. PMID:3519712

  12. Mechanical Properties and Sliding-impact Wear Resistance of Self-adhesive Resin Cements.

    PubMed

    Furuichi, T; Takamizawa, T; Tsujimoto, A; Miyazaki, M; Barkmeier, W W; Latta, M A

    2016-01-01

    The present study determined the mechanical properties and impact-sliding wear characteristics of self-adhesive resin cements. Five self-adhesive resin cements were used: G-CEM LinkAce, BeautiCem SA, Maxcem Elite, Clearfil SA Automix, and RelyX Unicem 2. Clearfil Esthetic Cement was employed as a control material. Six specimens for each resin cement were used to determine flexural strength, elastic modulus, and resilience according to ISO specification #4049. Ten specimens for each resin cement were used to determine the wear characteristics using an impact-sliding wear testing apparatus. Wear was generated using a stainless-steel ball bearing mounted inside a collet assembly. The maximum facet depth and volume loss were determined using a noncontact profilometer in combination with confocal laser scanning microscopy. Data were evaluated using analysis of variance followed by the Tukey honestly significantly different test (α=0.05). The flexural strength of the resin cements ranged from 68.4 to 144.2 MPa; the elastic modulus ranged from 4.4 to 10.6 GPa; and the resilience ranged from 4.5 to 12.0 MJ/m(3). The results for the maximum facet depth ranged from 25.2 to 235.9 μm, and volume loss ranged from 0.0107 to 0.5258 mm(3). The flexural properties and wear resistance were found to vary depending upon the self-adhesive resin cement tested. The self-adhesive cements tended to have lower mechanical properties than the conventional resin cement. All self-adhesive resin cements, apart from G-CEM LinkAce, demonstrated significantly poorer wear resistance than did the conventional resin cement. PMID:26918929

  13. Influence of different luting protocols on shear bond strength of computer aided design/computer aided manufacturing resin nanoceramic material to dentin

    PubMed Central

    Poggio, Claudio; Pigozzo, Marco; Ceci, Matteo; Scribante, Andrea; Beltrami, Riccardo; Chiesa, Marco

    2016-01-01

    Background: The purpose of this study was to evaluate the influence of three different luting protocols on shear bond strength of computer aided design/computer aided manufacturing (CAD/CAM) resin nanoceramic (RNC) material to dentin. Materials and Methods: In this in vitro study, 30 disks were milled from RNC blocks (Lava Ultimate/3M ESPE) with CAD/CAM technology. The disks were subsequently cemented to the exposed dentin of 30 recently extracted bovine permanent mandibular incisors. The specimens were randomly assigned into 3 groups of 10 teeth each. In Group 1, disks were cemented using a total-etch protocol (Scotchbond™ Universal Etchant phosphoric acid + Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 2, disks were cemented using a self-etch protocol (Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 3, disks were cemented using a self-adhesive protocol (RelyX™ Unicem 2 Automix self-adhesive resin cement). All cemented specimens were placed in a universal testing machine (Instron Universal Testing Machine 3343) and submitted to a shear bond strength test to check the strength of adhesion between the two substrates, dentin, and RNC disks. Specimens were stressed at a crosshead speed of 1 mm/min. Data were analyzed with analysis of variance and post-hoc Tukey's test at a level of significance of 0.05. Results: Post-hoc Tukey testing showed that the highest shear strength values (P < 0.001) were reported in Group 2. The lowest data (P < 0.001) were recorded in Group 3. Conclusion: Within the limitations of this in vitro study, conventional resin cements (coupled with etch and rinse or self-etch adhesives) showed better shear strength values compared to self-adhesive resin cements. Furthermore, conventional resin cements used together with a self-etch adhesive reported the highest values of adhesion. PMID:27076822

  14. Influence of Temporary Cements on the Bond Strength of Self-Adhesive Cement to the Metal Coronal Substrate.

    PubMed

    Peixoto, Raniel Fernandes; De Aguiar, Caio Rocha; Jacob, Eduardo Santana; Macedo, Ana Paula; De Mattos, Maria da Gloria Chiarello; Antunes, Rossana Pereira de Almeida

    2015-01-01

    This research evaluated the influence of temporary cements (eugenol-containing [EC] or eugenol-free [EF]) on the tensile strength of Ni-Cr copings fixed with self-adhesive resin cement to the metal coronal substrate. Thirty-six temporary crowns were divided into 4 groups (n=9) according to the temporary cements: Provy, Dentsply (eugenol-containing), Temp Cem, Vigodent (eugenol-containing), RelyX Temp NE, 3M ESPE (eugenol-free) and Temp Bond NE, Kerr Corp (eugenol-free). After 24 h of temporary cementation, tensile strength tests were performed in a universal testing machine at a crosshead speed of 0.5 mm/min and 1 kN (100 kgf) load cell. Afterwards, the cast metal cores were cleaned by scraping with curettes and air jet. Thirty-six Ni-Cr copings were cemented to the cast metal cores with self-adhesive resin cement (RelyX U200, 3M ESPE). Tensile strength tests were performed again. In the temporary cementation, Temp Bond NE (12.91 ± 2.54) and Temp Cem (12.22 ± 2.96) presented the highest values of tensile strength and were statistically similar to each other (p>0.05). Statistically significant difference (p<0.05) was observed only between Provy (164.44 ± 31.23) and Temp Bond NE (88.48 ± 21.83) after cementation of Ni-Cr copings with self-adhesive resin cement. In addition, Temp Cem (120.68 ± 48.27) and RelyX Temp NE (103.04 ± 26.09) showed intermediate tensile strength values. In conclusion, the Provy eugenol-containing temporary cement was associated with the highest bond strength among the resin cements when Ni-Cr copings were cemented to cast metal cores. However, the eugenol cannot be considered a determining factor in increased bond strength, since the other tested cements (1 eugenol-containing and 2 eugenol-free) were similar. PMID:26963209

  15. Effect of eugenol-based endodontic cement on the adhesion of intraradicular posts.

    PubMed

    Alfredo, Edson; de Souza, Emanuel Soares; Marchesan, Melissa Andréia; Paulino, Silvana Maria; Gariba-Silva, Ricardo; Sousa-Neto, Manoel Damião

    2006-01-01

    The present study evaluated, in vitro, the influence of an eugenol-based endodontic sealer (EndoFill) on the adhesion of intra-radicular posts cemented with a resin-based cement (Enforce) ou a zinc phosphate cement. Twenty-four single-rooted maxillary canines were divided into 2 groups (n=12) and obturated with either gutta-percha points plus EndoFill or gutta-percha points alone (no cement). In each group, half of intracanal posts (n=6) were cemented with Enforce resin-based cement and half with zinc phosphate cement. Specimens were submitted to pull-out test in an Instron machine and tensile force was applied at a crosshead speed of 0.5 mm/min until post dislodgement. The maximum forces required for post removal was recorded (N) and means were submitted to statistical analysis by Kruskal-Wallis test (p<0.01). Posts cemented with zinc phosphate cement were significantly more retentive (353.4 N) than those cemented with Enforce (134.9 N) (p<0.01). Regarding the influence of the eugenol-based cement (EndoFill) on post retention, there was statistically significant difference (p<0.01) only between the groups cemented with Enforce, i.e., in the canals filled with EndoFill + guta-percha there was lower bond strength than in the canals filled with gutta-percha points alone (101.5 and 168.2 N, respectively). In conclusion, the zinc-phosphate-based cement showed greater post retention than the resin-based cement. The findings of this study suggest that the eugenol-containing sealer interfered with the adhesive properties of the resin-based cement. PMID:16924340

  16. Effect of Adhesive Cementation Strategies on the Bonding of Y-TZP to Human Dentin.

    PubMed

    Alves, Mll; Campos, F; Bergoli, C D; Bottino, M A; Özcan, M; Souza, Roa

    2016-01-01

    This study evaluated the effects of different adhesive strategies on the adhesion of zirconia to dentin using conventional and self-adhesive cements and their corresponding adhesive resins. The occlusal parts of human molars (N=80) were sectioned, exposing the dentin. The teeth and zirconia cylinders (N=80) (diameter=3.4 mm; height=4 mm) were randomly divided into eight groups according to the factors "surface conditioning" and "cement type" (n=10 per group). One conventional cement (CC: RelyX ARC, 3M ESPE) and one self-adhesive cement (SA: RelyX U200, 3M ESPE) and their corresponding adhesive resin (for CC, Adper Single Bond Plus; for SA, Scotchbond Universal Adhesive-SU) were applied on dentin. Zirconia specimens were conditioned either using chairside (CJ: CoJet, 30 μm, 2.5 bar, four seconds), laboratory silica coating (RC: Rocatec, 110 μm, 2.5 bar, four seconds), or universal primer (Single Bond Universal-UP). Nonconditioned groups for both cements acted as the control (C). Specimens were stored in water (37°C, 30 days) and subjected to shear bond strength (SBS) testing (1 mm/min). Data (MPa) were analyzed using two-way analysis of variance and a Tukey test (α=0.05). While surface conditioning significantly affected the SBS values (p=0.0001) (Ccement type did not (p=0.148) (CC=SA). The interaction terms were significant (p=0.014). Failure types were predominantly adhesive. Air-abrasion and the use of the universal primer improved the bond strength of zirconia to dentin compared to the control group, regardless of the type of resin cement used. PMID:26509232

  17. Antibacterial effect and shear bond strength of an orthodontic adhesive cement containing Galla chinensis extract

    PubMed Central

    WANG, LU-FEI; LUO, FENG; XUE, CHAO-RAN; DENG, MENG; CHEN, CHEN; WU, HAO

    2016-01-01

    Galla chinensis extract (GCE), a naturally-derived agent, has a significant inhibitory effect on cariogenic bacteria. The present study aims to evaluate the antibacterial effect and shear bond strength of an orthodontic adhesive cement containing GCE. A resin-modified glass ionomer cement incorporated GCE at five mass fractions (0, 0.1, 0.2, 0.4, and 0.8%) to prepare GCE-containing cement for analysis. For the agar diffusion test, cement specimens were placed on agar disk inoculated with Streptococcus mutans (strain ATCC 25175). Following 48 h incubation, the inhibition halo diameter was measured. To assess bacteria colonization susceptibility, S. mutans adhesion to cement specimens was detected by scanning electron microscopy (SEM) following 48 h incubation. To evaluate bond strength, a total of 50 metal brackets were bonded on premolar surfaces by using cement (10 teeth/group). Following immersion in an artificial saliva for 3 days, shear bond strength (SBS) was measured. The results demonstrated that GCE-containing samples exhibited a larger bacterial inhibition halo than control, and the inhibition zone increased as the GCE mass fraction increased. SEM analysis demonstrated that S. mutans presented a weaker adherent capacity to all GCE-containing cements compared with control, but the difference between each GCE-containing group was not significant. SBS values of each GCE-containing group exhibited no difference compared with the control. In conclusion, GCE-containing adhesive cement exhibits a promising inhibitory effect on S. mutans growth and adhesion. Without compromising bond strength, adding GCE in adhesive cement may be an attractive option for preventing white spot lesions during orthodontic treatment. PMID:27073642

  18. Effects of Internal Bleaching on the Adhesion of Glass-Fiber Posts

    PubMed Central

    de Oliveira Moreira, Paulo E.; Pamplona, Lucianne S.; Nascimento, Gláucia C. R.; Esteves, Renata A.; Pessoa, Oscar F.; Silva, Cecy M.

    2015-01-01

    Objective: We evaluated the effects of internal bleaching on the adhesion of glass-fiber posts (GFPs) luted with different resin cements. Methods: Forty extracted human single-root teeth were endodontically treated and divided into four groups (n=10): G1- conventional resin cement (CRC); G2- self-adhesive resin cement (SARC); G3- bleaching + CRC; and G4- bleaching + SARC. Specimens were sectioned transversally into three slices to perform the push-out test at the coronal, middle and apical regions of the root canals. Data were analyzed using analysis of variance and Tukey's test (p<0.05). Results: The push-out bond strength of GFPs luted with SARC after bleaching (G4) was significantly lower than that of the other groups (p<0.001). We found no statistically significant differences in push-out bond strength among the other groups. Significance: Internal bleaching reduced the adhesion of GFPs luted with SARC. The adhesion of GFPs luted with CRC was not decreased after bleaching. PMID:26962369

  19. Retentiveness of various luting agents used with implant-supported prostheses: a preliminary in vitro study.

    PubMed

    Garg, Pooja; Gupta, Gaurav; Prithviraj, D R; Pujari, Malesh

    2013-01-01

    The aim of this preliminary in vitro study was to compare the retentiveness of a luting agent designed for use with dental implants to luting agents designed for use with tooth-retained restorations. The following luting agents were tested: (1) implant cement, (2) resin-bonded zinc oxide-eugenol cement, (3) zinc phosphate cement, (4) zinc polycarboxylate cement, and (5) glass-ionomer cement. After cementation, each sample was subjected to a pull-out test using a universal testing machine, and the loads required to remove the crowns were recorded. The mean values and standard deviations of cement failure loads were analyzed using analysis of variance and the Bonferroni test. The mean cement failure loads (N) were 333.86 ± 18.91 for implant cement, 394.62 ± 9.76 for resin-bonded zinc oxide-eugenol cement, 629.30 ± 20.65 for zinc phosphate cement, 810.08 ± 11.52 for zinc polycarboxylate cement, and 750.17 ± 13.78 for glass-ionomer cement. The retention provided by polycarboxylate cement was significantly greater than that of all other luting agents; the implant cement showed the lowest retention values. These preliminary in vitro observations need to be confirmed under conditions that more closely approximate the clinical environment. PMID:23342339

  20. Effects of curing mode of resin cements on the bond strength of a titanium post: An intraradicular study

    PubMed Central

    Reza, Fazal; Lim, Siau Peng

    2012-01-01

    Aim: To compare push-out bond strength between self-cured and dual-cured resin cement using a titanium post. Background: Dual-cured resin cements have been found to be less polymerized in the absence of light; thus the bond strength of cements would be compromised due to the absence of light with a metallic post. Materials and Methods: Ten extracted teeth were prepared for cement titanium PARAPOST, of five specimens each, with Panavia F [dual-cured (PF)] and Rely×Luting 2 [self-cured resin-modified glass ionomer luting cement (RL)]; the push-out bond strength (PBS) at three different levels of the sectioned roots was measured. The failure modes were observed and the significance of the differences in bond strength of the two types of cement at each level and at different levels of the same type was analyzed with non-parametric tests. Results: The push-out bond strength of the RL group was greater at all the three levels; with significant differences at the coronal and middle levels (P<0.05). No significant differences in PBS at different levels of the same group were observed. Cement material around the post was obvious in the PF group. The failure mode was mostly adhesive between the post and resin cement in the RL group. Conclusion: Bond strength was greater with self-cured, resin-modified glass ionomer luting cement, using titanium post. PMID:22557808

  1. A clinically focused discussion of luting materials.

    PubMed

    Hill, E E; Lott, J

    2011-06-01

    A luting agent's primary function is to fill the minute void between an indirect restoration (definitive or provisional) and tooth (or implant abutment) and mechanically lock the restoration in place to prevent dislodgement during function. The purpose of this paper is to provide a clinically focused discussion on the broad spectrum of luting materials currently available to help the general practitioner make appropriate choices. Resins are typically formulated for a specific function or restoration and offer strength, aesthetics, flexible working times, and very low solubility yet are technique sensitive, expensive and often hard to clean-up. Glass-ionomers offer good strength and optical properties plus the potential for fluoride release/recharge but may have short working times, are sensitive to moisture or dehydration early on, and take time to fully set. Resin-modified glass-ionomers are hybrid, dual-phase materials which are manipulated like glass-ionomer but set quicker and are stronger. Zinc phosphate cement, used successfully for over a century to lute well-fitting metal and metal-ceramic definitive restorations, is a very inexpensive, rigid material which displays very high early compressive strength yet acidity and solubility can be problems. Polycarboxylate cement (a hybrid of zinc phosphate) has lower compressive strength but high tensile strength and may be less injurious to the pulp. Zinc oxide eugenol and zinc oxide non-eugenol cements typically have good sealing abilities but their relatively low compressive and tensile strengths, inherent brittleness, and high solubility limit usage to provisional restorations or implant supported crowns. Claims for multi-purpose or universal use by manufacturers can be somewhat confusing and overwhelming. Even so, the busy general practitioner must have sufficient knowledge to help choose an appropriate luting agent for each unique clinical situation. PMID:21564117

  2. Comparison of the effect of shear bond strength with silane and other three chemical presurface treatments of a glass fiber-reinforced post on adhesion with a resin-based luting agent: An in vitro study

    PubMed Central

    Belwalkar, Vaibhavi Ramkrishna; Gade, Jaykumar; Mankar, Nikhil Purushottam

    2016-01-01

    Background: Loss of retention has been cited to be the most common cause of the failure of postretained restoration with irreversible consequences when materials with different compositions are in intimate contact at the post/adhesive interface. With this background, a study was conducted to improve the adhesion at the resin phase of fiber posts using silane and other chemical pretreatments. Materials and Methods: Hundred glass fiber-reinforced posts were tested with 4 different protocols (n = 25) using silane as a control (Group A) and other three experimental groups, namely, Group B-20% potassium permanganate, Group C-4% hydrofluoric acid, and Group D-10% hydrogen peroxide were pretreated on the postsurface followed by silanization. These specimens were bonded with dual-polymerizing resin-based luting agent, which were then loaded at the crosshead speed of 1 mm/min to record the shear bond strength at the post/adhesive interface. The data were analyzed using one-way ANOVA test for multiple group comparisons and the post hoc Bonferroni test for pairwise comparisons (P < 0.05). Results: Group B showed more influence on the shear bond strength when compared to other protocols, respectively (P < 0.001). Conclusion: Alone silanization as a surface treatment did not improve the bond strength. Combination of chemical presurface treatments followed by silanization significantly enhanced the bond strength at the post/adhesive interface. PMID:27307666

  3. The Effect of Glass Ionomer and Adhesive Cements on Substance P Expression in Human Dental Pulp

    PubMed Central

    Ariza-Garcia, German; Camelo, Patricia; Mejia, Monica; Ojeda, Karyn; Azuero-Holguin, Maria M.; Abad-Coronel, Dunia; Munoz, Hugo R.

    2013-01-01

    Objectives: The purpose of this study was to quantify the effect of glass ionomer and adhesive cements on SP expression in healthy human dental pulp. Study Design: Forty pulp samples were obtained from healthy premolars where extraction was indicated for orthodontic reasons. In thirty of these premolars a Class V cavity preparation was performed and teeth were equally divided in three groups: Experimental Group I: Glass Ionomer cement was placed in the cavity. Experimental Group II: Adhesive Cement was placed in the cavity. Positive control group: Class V cavities only. The remaining ten healthy premolars where extracted without treatment and served as a negative control group. All pulp samples were processed and SP was measured by radioimmunoassay. Results: Greater SP expression was found in the adhesive cement group, followed by the glass ionomer and the positive control groups. The lower SP values were for the negative control group. ANOVA showed statistically significant differences between groups (p<0.0001). Tukey HSD post hoc tests showed statistically significant differences in SP expression between negative control group and the 3 other groups (p<0.01). Differences between the cavity-only group and the two experimental groups were also statistically significant (p<0.05 and p<0.01 respectively). There is also a statistically significant difference between the two experimental groups (p<0.01). Conclusions: These findings suggest that adhesive cements provoke a greater SP expression when compared with glass ionomer. Key words:Glass Ionomer, adhesive cement, Substance P, human dental pulp. PMID:23722145

  4. Effect of the crown design and interface lute parameters on the stress-state of a machined crown-tooth system: a finite element analysis.

    PubMed

    Shahrbaf, Shirin; vanNoort, Richard; Mirzakouchaki, Behnam; Ghassemieh, Elaheh; Martin, Nicolas

    2013-08-01

    The effect of preparation design and the physical properties of the interface lute on the restored machined ceramic crown-tooth complex are poorly understood. The aim of this work was to determine, by means of three-dimensional finite element analysis (3D FEA) the effect of the tooth preparation design and the elastic modulus of the cement on the stress state of the cemented machined ceramic crown-tooth complex. The three-dimensional structure of human premolar teeth, restored with adhesively cemented machined ceramic crowns, was digitized with a micro-CT scanner. An accurate, high resolution, digital replica model of a restored tooth was created. Two preparation designs, with different occlusal morphologies, were modeled with cements of 3 different elastic moduli. Interactive medical image processing software (mimics and professional CAD modeling software) was used to create sophisticated digital models that included the supporting structures; periodontal ligament and alveolar bone. The generated models were imported into an FEA software program (hypermesh version 10.0, Altair Engineering Inc.) with all degrees of freedom constrained at the outer surface of the supporting cortical bone of the crown-tooth complex. Five different elastic moduli values were given to the adhesive cement interface 1.8GPa, 4GPa, 8GPa, 18.3GPa and 40GPa; the four lower values are representative of currently used cementing lutes and 40GPa is set as an extreme high value. The stress distribution under simulated applied loads was determined. The preparation design demonstrated an effect on the stress state of the restored tooth system. The cement elastic modulus affected the stress state in the cement and dentin structures but not in the crown, the pulp, the periodontal ligament or the cancellous and cortical bone. The results of this study suggest that both the choice of the preparation design and the cement elastic modulus can affect the stress state within the restored crown

  5. Adhesive Cementation of Indirect Composite Inlays and Onlays: A Literature Review.

    PubMed

    D'Arcangelo, Camillo; Vanini, Lorenzo; Casinelli, Matteo; Frascaria, Massimo; De Angelis, Francesco; Vadini, Mirco; D'Amario, Maurizio

    2015-09-01

    The authors conducted a literature review focused on materials and techniques used in adhesive cementation for indirect composite resin restorations. It was based on English language sources and involved a search of online databases in Medline, EMBASE, Cochrane Library, Web of Science, Google Scholar, and Scopus using related topic keywords in different combinations; it was supplemented by a traditional search of peer-reviewed journals and cross-referenced with the articles accessed. The purpose of most research on adhesive systems has been to learn more about increased bond strength and simplified application methods. Adherent surface treatments before cementation are necessary to obtain high survival and success rates of indirect composite resin. Each step of the clinical and laboratory procedures can have an impact on longevity and the esthetic results of indirect restorations. Cementation seems to be the most critical step, and its long-term success relies on adherence to the clinical protocols. The authors concluded that in terms of survival rate and esthetic long-term outcomes, indirect composite resin techniques have proven to be clinically acceptable. However, the correct management of adhesive cementation protocols requires knowledge of adhesive principles and adherence to the clinical protocol in order to obtain durable bonding between tooth structure and restorative materials. PMID:26355440

  6. Correlation between clinical performance and degree of conversion of resin cements: a literature review

    PubMed Central

    DE SOUZA, Grace; BRAGA, Roberto Ruggiero; CESAR, Paulo Francisco; LOPES, Guilherme Carpena

    2015-01-01

    Resin-based cements have been frequently employed in clinical practice to lute indirect restorations. However, there are numerous factors that may compromise the clinical performance of those cements. The aim of this literature review is to present and discuss some of the clinical factors that may affect the performance of current resin-based luting systems. Resin cements may have three different curing mechanisms: chemical curing, photo curing or a combination of both. Chemically cured systems are recommended to be used under opaque or thick restorations, due to the reduced access of the light. Photo-cured cements are mainly indicated for translucent veneers, due to the possibility of light transmission through the restoration. Dual-cured are more versatile systems and, theoretically, can be used in either situation, since the presence of both curing mechanisms might guarantee a high degree of conversion (DC) under every condition. However, it has been demonstrated that clinical procedures and characteristics of the materials may have many different implications in the DC of currently available resin cements, affecting their mechanical properties, bond strength to the substrate and the esthetic results of the restoration. Factors such as curing mechanism, choice of adhesive system, indirect restorative material and light-curing device may affect the degree of conversion of the cement and, therefore, have an effect on the clinical performance of resin-based cements. Specific measures are to be taken to ensure a higher DC of the luting system to be used. PMID:26398507

  7. Resin luting materials: Tissue response in dog's teeth.

    PubMed

    Bezzon, Osvaldo L; Rivera, Daniella S H; Silva, Raquel A B; Oliveira, Daniela S B; Silva-Herzog, Daniel; Nelson-Filho, Paulo; Lucisano, Marília P; Silva, Léa A B

    2015-12-01

    The aim of this study was to evaluate radiographically and histologically the pulpal and periapical response to self-adhesive (Rely X™ Unicem) and self-etching and self-curing (Multilink(®)) resin-based luting materials in deep cavities in dogs' teeth. Deep class V cavities (0.5-mm-thick dentin) were prepared in 60 canine premolars and the following materials were applied on cavity floor: Groups I/V-RelyX™ Unicem; Groups II/VI-Multilink(®); Groups III/VII-zinc phosphate cement (control) and; Groups IV/VIII-gutta-percha (control). Cavities were restored with silver amalgam. Animals were euthanized after 10 days (groups I-IV) and 90 days (groups V-VIII). Tooth/bone blocks were radiographed and processed for histopathological evaluation of pulp and periapical tissue response to the materials. All materials presented similar histopathological features and radiographic findings at both periods. The pulp tissue was intact. The apical and periapical regions and periodontal ligament thickness were normal. No inflammatory cells, resorption of mineralized tissue (dentin, cementum, and alveolar bone) or bacteria were observed. The lamina dura was intact and no areas of periapical bone rarefaction or internal/external root resorption were observed radiographically. It can be concluded that Rely X™ Unicem and Multilink(®) caused no adverse tissue reactions and may be indicated for cementation of indirect restorations in deep dentin cavities without pulp exposure. PMID:26497153

  8. Effect of long-term simulated pulpal pressure on the bond strength and nanoleakage of resin-luting agents with different bonding strategies.

    PubMed

    de Alexandre, R S; Santana, V B; Kasaz, A C; Arrais, C A G; Rodrigues, J A; Reis, A F

    2014-01-01

    This study evaluated the effects of simulated hydrostatic pulpal pressure (SPP) on the microtensile bond strength (μTBS) to dentin and nanoleakage patterns produced by self-adhesive luting agents after 12 months. Three self-adhesive luting agents (RelyX Unicem [UN], RelyX U100 [UC], and Clearfil SA Luting [SA]) and three conventional luting agents (Rely X ARC [RX], Panavia F [PF], and a two-step self-etching adhesive system [Clearfil SE Bond] associated with Panavia F [PS]) were evaluated. One hundred twenty-three human molars were abraded to expose occlusal surfaces. Resin cements were used to lute cylindrical composite blocks to the teeth either subjected or not to SPP. Sixty specimens were subjected to 15 cm H2O of SPP for 24 hours before and 24 hours or 12 months after cementation procedures. Afterward, restored teeth were serially sectioned into beams with a cross-sectional area of 1 mm(2) at the bonded interface and were tested in tension (cross-head speed of 1 mm/min). Failure mode was determined using scanning electron microscopy (SEM). Data were statistically analyzed by three-way analysis of variance and post hoc Tukey test (p=0.05). Two additional teeth in each group were serially sectioned into 0.9-mm-thick slabs, which were submitted to a nanoleakage protocol with AgNO3 and analyzed with scanning and transmission electron microscopes. The μTBS values of the etch-and-rinse group (RX) were negatively influenced by SPP and long-term water storage with SPP. After 12 months, UC and SA presented premature failures in all specimens when submitted to SPP. SPP increased silver deposition in most groups in both evaluation times. The hydrostatic pulpal pressure effect was material dependent. The storage time without SPP did not affect bond strength. However, long-term SPP influenced the performance of the etch-and-rinse and self-adhesive cements regarding μTBS and nanoleakage pattern, except to UN. PMID:24502755

  9. Evaluation of the mechanical properties of dental adhesives and glass-ionomer cements.

    PubMed

    Magni, Elisa; Ferrari, Marco; Hickel, Reinhard; Ilie, Nicoleta

    2010-02-01

    Adhesives and lining/base materials should relieve the stresses concentrated at the tooth/restoration interface. The study aimed at comparing the mechanical properties of eight adhesives and six glass-ionomer cements (GICs). The adhesives were applied on dentin disks, whereas 2 mm x 3 mm x 2 mm GICs specimens were prepared in a teflon mold. Vicker's hardness (VH), elastic modulus (E), creep (Cr) and elastic work (We/Wtot) were measured with a micro hardness indenter. One-way ANOVA and Tukey's test were used to compare the mechanical properties within each materials' type and among the materials' classes. Enamel and dentin were used as references. Significant differences were detected within each materials' type and among the materials' classes and enamel and dentin. GICs were superior to adhesives in VH and E and showed a VH similar to dentin. GICs presented mechanical properties more similar to enamel and dentin than adhesives. PMID:19241096

  10. LUTE telescope structural design

    NASA Technical Reports Server (NTRS)

    Ruthven, Gregory

    1993-01-01

    The major objective of the Lunar Ultraviolet Transit Experiment (LUTE) Telescope Structural Design Study was to investigate the feasibility of designing an ultralightweight 1-m aperture system within optical performance requirements and mass budget constraints. This study uses the results from our previous studies on LUTE as a basis for further developing the LUTE structural architecture. After summarizing our results in Section 2, Section 3 begins with the overall logic we used to determine which telescope 'structural form' should be adopted for further analysis and weight estimates. Specific telescope component analysis showing calculated fundamental frequencies and how they compare with our derived requirements are included. 'First-order' component stress analyses to ensure telescope optical and structural component (i.e. mirrors & main bulkhead) weights are realistic are presented. Layouts of both the primary and tertiary mirrors showing dimensions that are consistent with both our weight and frequency calculations also form part of Section 3. Section 4 presents our calculated values for the predicted thermally induced primary-to-secondary mirror despace motion due to the large temperature range over which LUTE must operate. Two different telescope design approaches (one which utilizes fused quartz metering rods and one which assumes the entire telescope is fabricated from beryllium) are considered in this analysis. We bound the secondary mirror focus mechanism range (in despace) based on these two telescope configurations. In Section 5 we show our overall design of the UVTA (Ultraviolet Telescope Assembly) via an 'exploded view' of the sub-system. The 'exploded view' is annotated to help aid in the understanding of each sub-assembly. We also include a two view layout of the UVTA from which telescope and telescope component dimensions can be measured. We conclude our study with a set of recommendations not only with respect to the LUTE structural architecture

  11. INFLUENCE OF LUTING AGENTS ON TIME REQUIRED FOR CAST POST REMOVAL BY ULTRASOUND: AN IN VITRO STUDY

    PubMed Central

    Soares, Janir Alves; Brito, Manoel; Fonseca, Dimitri Ribas; Melo, Anielo Faleiro; Santos, Suelleng Maria Cunha; Sotomayor, Nadia Del Carmen Soto; Braga, Neilor Mateus Antunes; Silva, André Luis Faria e

    2009-01-01

    Objective: This in vitro study evaluated the influence of luting agents on ultrasonic vibration time for intraradicular cast post removal. Material and Methods: After endodontic treatment, 30 roots of extracted human canines were embedded in resin cylinders. The post-holes were prepared at 10 mm depth and their impressions were taken using autopolymerizing acrylic resin. After casting procedures using a nickel-chromium alloy, the posts were randomly distributed into 3 groups (n=10) according to the luting material: G1- zinc phosphate (SS White) (control group), G2 - glass ionomer cement (Vidrion C; SS White), and G3- resin cement (C&B; Bisco). In G3, the adhesive procedure was performed before post cementation. After 24 h, the cement line was removed at the post/tooth interface using a fine diamond bur, and the ST-09 tip of an Enac ultrasound unit was applied at maximum power on all surfaces surrounding the posts. The application time was recorded with a chronometer until the post was completely dislodged and data were analyzed by ANOVA and Tukey's test (p<0.05). Results: The roots were removed from the acrylic resin and inspected to detect cracks and/or fractures. The means for G1, G2, and G3 were 168.5, 59.5, and 285 s, respectively, with statistically significant differences among them. Two G3 posts resisted removal, one of which developed a vertical fracture line. Conclusions: Therefore, the cement type had a direct influence on the time required for ultrasonic post removal. Compared to the zinc phosphate and glass ionomer cements, the resin cement required a longer ultrasonic vibration time. PMID:19466241

  12. Bond strength of three luting agents to zirconia ceramic - Influence of surface treatment and thermocycling

    PubMed Central

    ATTIA, Ahmed

    2011-01-01

    Objective This in vitro study aimed to evaluate the influence of different surface treatments, 3 luting agents and thermocycling on microtensile bond strength (µTBS) to zirconia ceramic. Material and Methods A total of 18 blocks (5x5x4 mm) were fabricated from zirconia ceramic (ICE Zirkonia) and duplicated into composite blocks (Alphadent). Ceramic blocks were divided into 3 groups (n=6) according to the following surface treatments: airborne-particle abrasion (AA), silica-coating, (SC) (CoJet) and silica coating followed by silane application (SCSI) (ESPE Sil). Each group was divided into 3 subgroups (n=2) according to the 3 luting agents used. Resin-modified glass-ionomer cement (RMGIC, Ketac Cem Plus), self-adhesive resin cement (UN, RelyX Unicem) and adhesive resin cement (ML, MultiLink Automix) were used for bonding composite and zirconia blocks. Each bonding assembly was cut into microbars (10 mm long and 1±0.1 mm2). Seven specimens of each subgroup were stored in water bath at 37ºC for 1 week. The o ther 7 specimens were stored in water bath at 37ºC for 30 days then thermocycled (TC) for 7,500 cycles. µTBS values were recorded for each specimen using a universal testing machine. Statistical analyses were performed using a 3-way ANOVA model followed by serial 1-way ANOVAs. Comparison of means was performed with Tukey's HSD test at (α=0.05). Results µTBS ranged from 16.8 to 31.8 MPa after 1 week and from 7.3 to 16.4 MPa after 30 days of storage in water and thermocycling. Artificial aging significantly decreased µTBS (p<0.05). Considering surface treatment, SCSI significantly increased µTBS (p<0.05) compared to SC and AA. Resin cements (UN and ML) demonstrated significantly higher µTBS (p<0.05) compared to RMGIC cement. Conclusions Silica coating followed by silane application together with adhesive resin cements significantly increased µTBS, while thermocycling significantly decreased µTBS. PMID:21710091

  13. In-vitro evaluation of an experimental method for bonding of orthodontic brackets with self-adhesive resin cements

    PubMed Central

    Ramazanzadeh, Barat Ali; Merati, Mohsen; Shafaee, Hooman; Dogon, Leon; Sohrabi, Keyvan

    2013-01-01

    Background Self-adhesive resin cements do not require the surface treatment of teeth and are said to release fluoride, which makes them suitable candidates for bonding of orthodontic brackets. The objectives of this study was to investigate the shear bond strength (SBS) of self-adhesive resin cements on etched on non-etched surfaces in vitro and to assess their fluoride release features. Materials and Methods Four fluoride-releasing dual-cure self-adhesive resin cements were investigated. For SBS experiment, 135 freshly extracted human maxillary premolars were used and divided into nine groups of 15 teeth. In the control group, brackets were cemented by Transbond XT (3M Unitek, USA), in four groups self-adhesive resin cements were used without acid-etching and in four groups self-adhesive cements were applied on acid-etched surfaces and the brackets were then deboned in shear with a testing machine. Adhesive remnant index (ARI) scores were also calculated. For fluoride release investigation, 6 discs were prepared for each self-adhesive cement. Transbond XT and Fuji Ortho LC (GC, Japan) served as negative and positive control groups, respectively. The fluoride release of each disc into 5 ml of deionized water was measured at days 1, 2, 3, 7, 14, 28, and 56 using a fluoride ion-selective electrode connected to an ion analyzer. To prevent cumulative measurements, the storage solutions were changed daily. Results The SBS of brackets cemented with Transbond XT were significantly higher compared to self-adhesives applied on non-etched surfaces (P<0.001). However, when the self-adhesive resin cements were used with enamel etching, no significant differences was found in the SBS compared to Transbond XT, except for Breeze. The comparisons of the ARI scores indicated that bracket failure modes were significantly different between the etched and non-etched groups. All self-adhesive cements released clinically sufficient amounts of fluoride for an extended period of time

  14. Adhesion of 10-MDP containing resin cements to dentin with and without the etch-and-rinse technique

    PubMed Central

    Sen, Deniz; Tuncelli, Betul; Özcan, Mutlu

    2013-01-01

    PURPOSE This study evaluated the adhesion of 10-MDP containing self-etch and self-adhesive resin cements to dentin with and without the use of etch-and-rinse technique. MATERIALS AND METHODS Human third molars (N=180) were randomly divided into 6 groups (n=30 per group). Conventional (Panavia F2.0, Kuraray-PAN) and self-adhesive resin cements (Clearfil SA, Kuraray-CSA) were bonded to dentin surfaces either after application of 3-step etch-and-rinse (35% H3PO4 + ED Primer) or two-step self-etch adhesive resin (Clearfil SE Bond). Specimens were subjected to shear bond strength test using the universal testing machine (0.5 mm/min). The failure types were analyzed using a stereomicroscope and quality of hybrid layer was observed under a scanning electron microscope. The data (MPa) were analyzed using two-way ANOVA and Tukey's tests (α=.05). RESULTS Overall, PAN adhesive cement showed significantly higher mean bond strength (12.5 ± 2.3 - 14.1 ± 2.4 MPa) than CSA cement (9.3 ± 1.4 - 13.9 ± 1.9 MPa) (P<.001). Adhesive failures were more frequent in CSA cement groups when used in conjunction with two-step self-adhesive (68%) or no adhesive at all (66%). Hybrid layer quality was inferior in CSA compared to PAN cement in all conditions. CONCLUSION In clinical situations where bonding to dentin substrate is crucial, both conventional and self-adhesive resin cements based on 10-MDP can benefit from etch-and-rinse technique to achieve better quality of adhesion in the early clinical period. PMID:24049562

  15. The effect of different adhesive system applications on push-out bond strengths of glass fiber posts

    PubMed Central

    Deniz Arısu, Hacer; Üçtaşlı, Mine Betül; Okay, Tufan Can

    2013-01-01

    PURPOSE Over the past years, the adhesion of fiber posts luted with simplified adhesive systems has been a matter of great interest. The aim of this study was to assess the post retentive potential of a self-adhesive resin cement using different adhesive systems to compare the push-out bond strengths of fiber posts. MATERIALS AND METHODS The post spaces of 56 mandibular premolar roots were prepared and divided into 4 experimental groups and further divided into 2 subgroups according to testing time (n=7). The fiber posts (Rely X Fiber Post) were luted with a self-adhesive resin cement (RelyX Unicem) and one of the following adhesive systems: no adhesive, a total-etch adhesive resin (Single Bond), a two-step self-etch adhesive resin (Clearfil SE Bond) and a one-step self-etch adhesive resin (Clearfil S3 Bond). Each root was cut horizontally, and 1.5 mm thick six root segments were prepared. Push-out tests were performed after one week or three months (0.5 mm/min). Statistical analysis were performed with three-way ANOVA (α=.05). RESULTS Cervical root segments showed higher bond strength values than middle segments. Adhesive application increased the bond strength. For one week group, the total-etch adhesive resin Single Bond showed higher bond strength than the self-adhesive resin cement RelyX Unicem applied without adhesive resin at middle region. For 3 months group, the two-step self-etch adhesive resin Clearfil SE Bond showed the highest bond strength for both regions. Regarding the time considered, Clearfil SE Bond 3 months group showed higher bond strength values than one week group. CONCLUSION Using the adhesive resins in combination with the self-adhesive resin cement improves the bond strengths. The bond strength values of two-step self-etch adhesive resin Clearfil SE Bond improved as time passes. PMID:24049572

  16. Cytotoxicity evaluation of luting resin cements on bovine dental pulp-derived cells (bDPCs) by real-time cell analysis.

    PubMed

    Arslan Malkoç, Meral; Demir, Necla; Şengün, Abdulkadir; Bozkurt, Şerife Buket; Hakki, Sema Sezen

    2015-01-01

    To evaluate the cytotoxicity of resin cements on dental pulp-derived cells (bDPCs), Bifix QM (BQM), Choice 2(C2), RelyX U200(RU200), Maxcem Elite(ME), and Multilink Automix(MA) were tested. The materials were incubated in DMEM for 72 h. A real-time cell analyzer was used to evaluate cell survival. The statistical analyses used were one-way ANOVA and Tukey-Kramer tests. BQM, RU200, and ME demonstrated a significant decrease in the bDPCs' index at 24 and 72 h (p≤0.001). These materials were found to be the most toxic resin cements, as compared to the control and other tested materials (C2 and MA). However, C2 and MA showed a better survival rate, compared to BQM, RU200, and ME, and had lower cell index than the control group. The cytotoxic effects of resin cements on pulpa should be evaluated during the selection of proper cements. PMID:25736260

  17. Influence of marginal fit and cement types on microleakage of all-ceramic crown systems.

    PubMed

    Yüksel, Ece; Zaimoğlu, Ali

    2011-01-01

    The purpose of this study was to evaluate the effects of both marginal fit and cementing with different luting agents on the microleakage of all-ceramic crown systems. Thirty-six extracted upper central incisors were prepared for full-coverage crowns and were divided into three groups. Group 1: CAD/CAM-fabricated ZrO2, Group 2: Heat-pressed lithium-disilicate, and Group 3: Cast Cr-Co copings as the control group. Copings were made following standard techniques, and groups were assigned cementation with either self-adhesive resin cement (A) or glass-ionomer luting cement (B). The specimens were subjected to thermocycling, immersed in basic fuchsin solution, sectioned mesiodistally and buccolingually. The surface of each section was digitally photographed under a stereomicroscope. Microleakage was scored using a five-point scale, and the marginal gap was measured using image analysis software. Data were statistically analyzed using 2-way ANOVA, Kruskal-Wallis, and Mann-Whitney U tests (α: 0.05). The marginal discrepancy of each group was 82.7 ± 7 µm, 92.6 ± 4 µm and 96.5 ± 7 µm respectively. Group 1 showed significantly smaller gaps than Group 3 (P = 0.042). Self-adhesive resin cement (A) showed a lower level of microleakage than glass-ionomer luting cement (B) in all groups (P = 0.029). Microleakage scores of '0' were 83% for 1A, 50% for 1B, 50% for 2A, 16% for 2B, 33% for 3A and none for 3B. Marginal discrepancy and cement type both had significant effects on microleakage. Lower levels of microleakage were recorded with self-adhesive resin cement, while CAD/CAM-fabricated ZrO2 copings showed smaller marginal discrepancy and less microleakage in comparison to cast Cr-Co. PMID:21670858

  18. Influence of endodontic sealer composition and time of fiber post cementation on sealer adhesiveness to bovine root dentin.

    PubMed

    Rosa, Ricardo Abreu da; Barreto, Mirela Sangoi; Moraes, Rafael do Amaral; Broch, Juliana; Bier, Carlos Alexandre Souza; Só, Marcus Vinícius Reis; Kaizer, Osvaldo Bazzan; Valandro, Luiz Felipe

    2013-01-01

    This study aimed to assess the influence of the type of endodontic sealer (salicylate resin-based sealer vs. two endodontic sealers) and the time of fiber post cementation after root filling on the post adhesion to bovine root dentin. Sixty bovine roots were assigned to six groups (n=10), considering an experimental design with two factors (factorial 3x2): endodontic sealer factor in three levels [epoxy resin-based sealer (AH Plus), eugenol-based sealer (Endofill), and salicylate resin-based sealer plus mineral trioxide aggregate - MTA (MTA Fillapex)] and time for post cementation factor in two levels (immediate post cementation or 15 days after root canal filling). After post cementation, 2-mm-thick slices were produced and submitted to push-out test. The failure modes were analyzed under a 40× stereomicroscope and scored as: adhesive at cement/dentin interface; adhesive at cement/post interface; cement cohesive; post cohesive; dentin cohesive; or mixed. Data were analyzed using two-way ANOVA and Tukey's post-hoc tests (α=0.05). When the fiber posts were cemented immediately after the root canal filling, the bond strengths were similar, independent of the endodontic sealer type. However, after 15 days, the epoxy resin-based sealer presented higher bond strength than the other sealers (p<0.05). Comparison between each sealer in different experimental times did not reveal any differences. The main failure type was adhesive at dentin/cement interface (89.4%). The time elapsed between the root canal filling and post cementation has no influence on post/root dentin adhesion. On the contrary, the type of endodontic sealer can influence the adhesion between fiber posts and root dentin. PMID:23969913

  19. [Comparative in vitro evaluation of modern glass ionomer cements for adhesion strength and fluoride release].

    PubMed

    Zhitkov, M Yu; Rusanov, F S; Poyurovskaya, I Ya

    2016-01-01

    The study proved similar adhesion strength and fluoride release level in aqueous extracts of glass ionomer cements Cemion (VladMiVa, Russia), Glassin Rest (Omega-Dent, Russia), Cemfil 10 (StomaDent, Russia) and Fuji VIII (GC Corporation, Japan). Despite of close concentrations of fluoride in glasses, the rate of fluoride release in water from calcium and calcium-barium glasses is much higher than that of strontium glasses. PMID:27239999

  20. Spectrophotometric Study of the Effect of Luting Agents on the Resultant Shade of Ceramic Veneers: An Invitro Study

    PubMed Central

    Kale, Yogesh; Pustake, Swati; Bijjaragi, Shobha; Pustake, Bhushan

    2015-01-01

    Introduction Dentistry has found practically the best available aesthetic answer, is ceramic restoration. There are various factors that contribute to the success of ceramic veneers, like colour of underlying tooth, thickness if ceramics and the type of underlying luting cement. Shade selection and matching remains still challenge, however the shade of luting agent used for cementation of veneers produces a change in resultant shade of veneers. Aim To compare and analyze the spectrophotometric effect of opaque and transparent luting agent on resultant shade of ceramic veneers made of 2L1.5 shade (Vitapan 3D-Masters) and B2 shade (Vitapan Classic). Materials and Methods Out of 15 ceramic veneers of 2L1.5 shade (VITAPAN 3D- Master), seven teeth cemented with opaque cement and eight teeth with transparent cement shade of dual cure resin cement (Variolink IITM). Out of 10 ceramic veneers of B2 shade (VITAPAN Classic), five teeth were cemented with opaque cement and other five teeth with transparent cement shade of dual cure resin cement (Variolink IITM). Spectrophotometric (Macbeth U.S.A.) analysis of all ceramic veneer crowns done with optiview software and readings were recorded in Commission Internationale de I’ Eclairge {CIELAB} system and dE value was calculated. Statistical Analysis Statistical analysis was done by using Paired t-test. Results Spectrophotometric analysis of all the veneers cemented with opaque luting agent were lighter in shade due to significant change in dL value. Veneers cemented with transparent luting agent were darker in shade due to significant change in the dL value. Conclusion Opaque luting agent gives lighter shade and transparent luting agent gives darker shade to ceramic veneers fabricated with 2L1.5 and B2 shades. PMID:26501014

  1. Effect of Carbodiimide on Bonding Durability of Adhesive-cemented Fiber Posts in Root Canals.

    PubMed

    Shafiei, F; Yousefipour, B; Mohammadi-Bassir, M

    2016-01-01

    This study was undertaken to investigate whether using a protein cross-linker, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), improves bonding stability of fiber posts to root dentin using three resin cements. Sixty human maxillary central incisor roots were randomly divided into six groups after endodontic treatment, according to the cements used with and without EDC pretreatment. In the etch-and-rinse group, 0.3 M EDC aqueous solution was applied on acid-etched root dentin prior to Excite DSC/Variolink II for post cementation. In the self-etch and self-adhesive groups, EDC was used on EDTA-conditioned root space prior to application of ED Primer II/Panavia F2.0 and Clearfil SA, respectively. After microslicing the root dentin, a push-out bond strength (BS) test was performed immediately or after one-year of water storage for each group. Data were analyzed using three-way analysis of variance and Tukey tests (α=0.05). A significant effect of cement type, time, EDC, and Time × Cement and Time × EDC interactions were observed (p≤0.001). EDC pretreatment did not affect immediate bonding of the three cements (p>0.05). Aging significantly reduced the BS in all the groups (p≤0.001), but EDC groups exhibited a higher BS compared with the respective control groups (p<0.001). Despite the significant effect of aging on decreasing the BS of fiber post to radicular dentin, EDC could diminish this effect for the three tested cements. PMID:26794191

  2. Guitars and Lutes

    NASA Astrophysics Data System (ADS)

    Rossing, Thomas D.; Caldersmith, Graham

    Lute-type instruments have a long history. Various types of necked chordophones were in use in ancient Egyptian, Hittite, Greek, Roman, Turkish, Chinese, and other cultures. In the ninth century, Moors brought the oud (or ud) to Spain. In the fifteenth century, the vihuela became popular in Spain and Portugal. About the same time guitars with four double-strings became popular, and Italy became the center of the guitar world.

  3. Changes on degree of conversion of dual-cure luting light-cured with blue LED

    NASA Astrophysics Data System (ADS)

    Bandéca, M. C.; El-Mowafy, O.; Saade, E. G.; Rastelli, A. N. S.; Bagnato, V. S.; Porto-Neto, S. T.

    2009-05-01

    The indirect adhesive procedures constitute recently a substantial portion of contemporary esthetic restorative treatments. The resin cements have been used to bond tooth substrate and restorative materials. Due to recently introduction of the self-bonding resin luting cement based on a new monomer, filler and initiation technology has become important to study the degree of conversion of these new materials. In the present work the polymerization reaction and the filler content of dual-cured dental resin cements were studied by means of infra-red spectroscopy (FT-IR) and thermogravimetry (TG). Twenty specimens were made in a metallic mold (8 mm diameter × 1 mm thick) from each of 2 cements, Panavia® F2.0 (Kuraray) and RelyX™ Unicem Applicap (3M/ESPE). Each specimen was cured with blue LED with power density of 500 mW/cm2 for 30 s. Immediately after curing, 24 and 48 h, and 7 days DC was determined. For each time interval 5 specimens were pulverized, pressed with KBr and analyzed with FT-IR. The TG measurements were performed in Netzsch TG 209 under oxygen atmosphere and heating rate of 10°C/min from 25 to 700°C. A two-way ANOVA showed DC (%) mean values statistically significance differences between two cements ( p < 0.05). The Tukey’s test showed no significant difference only for the 24 and 48 h after light irradiation for both resin cements ( p > 0.05). The Relx-Y™ Unicem mean values were significantly higher than Panavia® F 2.0. The degree of conversion means values increasing with the storage time and the filler content showed similar for both resin cements.

  4. Bonding between oxide ceramics and adhesive cement systems: a systematic review.

    PubMed

    Papia, Evaggelia; Larsson, Christel; du Toit, Madeleine; Vult von Steyern, Per

    2014-02-01

    The following aims were set for this systematic literature review: (a) to make an inventory of existing methods to achieve bondable surfaces on oxide ceramics and (b) to evaluate which methods might provide sufficient bond strength. Current literature of in vitro studies regarding bond strength achieved using different surface treatments on oxide ceramics in combination with adhesive cement systems was selected from PubMed and systematically analyzed and completed with reference tracking. The total number of publications included for aim a was 127 studies, 23 of which were used for aim b. The surface treatments are divided into seven main groups: as-produced, grinding/polishing, airborne particle abrasion, surface coating, laser treatment, acid treatment, and primer treatment. There are large variations, making comparison of the studies difficult. An as-produced surface of oxide ceramic needs to be surface treated to achieve durable bond strength. Abrasive surface treatment and/or silica-coating treatment with the use of primer treatment can provide sufficient bond strength for bonding oxide ceramics. This conclusion, however, needs to be confirmed by clinical studies. There is no universal surface treatment. Consideration should be given to the specific materials to be cemented and to the adhesive cement system to be used. PMID:24123837

  5. Effect of Luting Agents on Retention of Dental Implant-Supported Prostheses.

    PubMed

    Pan, Yu-Hwa; Lin, Tai-Min; Liu, Perng-Ru; Ramp, Lance C

    2015-10-01

    To evaluate the retentive strength of 7 different luting agents in cement-retained implant abutment/analog assemblies. Fifty-six externally hexed dental implant abutment/analog assemblies and cast superstructures were divided randomly into 7 groups for cementation with each of the 7 luting agents. Five definitive cements tested were zinc phosphate cement, All-Bond 2, Maxcem, RelyX Luting cement, HY-Bond, and two provisional cements, ImProv and Premier. Cast superstructures were cemented onto the implant abutments and exposed to 1000 thermal cycles (0°C-55°C) and 100 000 cycles on a chewing simulator (75 N load). A universal testing machine was used to measure cement failure load of the assembled specimens. Cement failure load was evaluated with 1-way ANOVA and Duncan's multiple range analysis. Significant differences in cement failure loads were measured (P < .0001). Post hoc testing with Duncan's multiple range indicated 4 separate groupings. Maxcem and All-Bond 2 were comparable, having the greatest load failure. RelyX and zinc phosphate cement were analogous, and higher than HY-Bond. Improv and Premier constituted a pair, which demonstrated the lowest retentive values. Within the limitations of this in vitro study, Maxcem and All-Bond 2 are good candidates for cement-retained implant prostheses while concerning retention. PMID:24666355

  6. Dual and self-curing potential of self-adhesive resin cements as thin films.

    PubMed

    Moraes, R R; Boscato, N; Jardim, P S; Schneider, L F J

    2011-01-01

    In this study, the dual- and self-curing potential of self-adhesive resin cements (SARCs) as thin, clinically-relevant cement films was investigated. The SARCs tested were: BisCem (BSC; Bisco), Maxcem Elite (MXE; Kerr), RelyX Unicem clicker (UNI; 3M ESPE), seT capsule (SET; SDI), and SmartCem 2 (SC2; Dentsply Caulk). The conventional cement RelyX ARC (3M ESPE) was tested as a reference. The degree of conversion (DC) as a function of time was evaluated by real-time Fourier transform infrared spectroscopy with an attenuated total reflectance (ATR) device. The cements were either photoactivated for 40 seconds (dual-cure mode) or not photoactivated (self-cure mode). The cement film thickness was 50 ± 10 μm. The DC (%) was evaluated 1, 5, 10, 15, 20, 25, and 30 minutes after placing the cement on the ATR cell. Data for DC as a function of time were analyzed by two-way repeated measures analysis of variance (ANOVA). DC values at 30 minutes for the self- and dual-cure modes were submitted to one-way ANOVA. Post hoc comparisons were performed using the Student-Newman-Keuls test (p<0.05). The rate and the extent of conversion were lower for the SARCs compared with the conventional cement. Means ± standard deviations (SD) for the dual-cure mode at 30 minutes were: 75 ± 5 (ARC)a, 73 ± 8 (SET)a, 61 ± 4 (MXE)b, 51 ± 9 (BSC)c, 51 ± 4 (UNI)c, and 48 ± 3 (SC2)c, while in the self-cure mode means and SD were 62 ± 6 (ARC)a, 54 ± 3 (MXE)b, 40 ± 6 (SC2)c, 35 ± 2 (UNI)c, 35 ± 3 (SET)c, and 11 ± 3 (BSC)d. The DC for the dual-cure mode was generally higher than the self-cure, irrespective of the time. Discrepancies in DC between the dual- and self-cure modes from 11% to 79% were observed. In conclusion, SARCs may present slower rate of polymerization and lower final DC than conventional resin cements, in either the dual- or self-cure mode. PMID:21864125

  7. Effect of Self-etching Adhesives on the Bond Strength of Glass-Ionomer Cements

    PubMed Central

    Jaberi Ansari, Zahra; Panahandeh, Narges; Tabatabaei Shafiei, Zahra Sadat; Akbarzadeh Baghban, Alireza

    2014-01-01

    Objective: Statement of Problem: Adequate bond strength between glass ionomer cements and composite resin is necessary for the success of the sandwich technique. Purpose of Study: This study assessed the micro-shear bond strength of composite resin to glass-ionomer cements (GIC) using self-etch adhesives with different pH values. Materials and Methods: One hundred specimens (6×4×2 mm) were made using Fuji II and Fuji II LC GICs and treated with different adhesives as follows: Group 1:Fuji II+ Adper Prompt L-Pop, Group-2: Fuji II+SE bond, Group-3: Fuji II + AdheSE, Group-4:Fuji II+ Protect bond, Group-5: Fuji II + Single bond, Group-6:Fuji II LC+ Adper Prompt LPop, Group-7: Fuji II LC+SE bond, Group-8:Fuji II LC+ AdheSE, Group-9: Fuji II LC+ Protect bond, and Group-10: Fuji II LC+ Single bond. Each group consisted of 10 specimens. A cylinder of Z100 composite resin was placed on each sample and light cured. After 24 hours of water storage (37°C), the specimens were subjected to micro-shear bond strength tests (0.5 mm/min). Data were analyzed using two-way ANOVA and Tukey’s test. Results: The mean micro-shear bond strength of groups 1–10 was 11.66±1.79, 16.50±1.85, 18.47±1.77, 13.95±1.77, 15.27±1.49, 15.14±0.90, 20.03±1.19, 17.48±3.00, 16.24±1.98 and 16.03±1.49 MPa, respectively. There were significant differences between groups 1 and 7 (P<0.05). No significant difference was observed between other groups (P>0.05). Fuji II LC showed higher bond strength than Fuji II (P<0.05). Conclusion: Type of self-etch adhesive had no significant effect on micro-shear bond strength of glass-ionomer to composite resin. Resin modified glass ionomer cement (RMGIC) exhibited higher bond strength than the conventional GIC. PMID:25628698

  8. Microencapsulation of 2-octylcyanoacrylate tissue adhesive for self-healing acrylic bone cement.

    PubMed

    Brochu, Alice B W; Chyan, William J; Reichert, William M

    2012-10-01

    Here, we report the first phase of developing self-healing acrylic bone cement: the preparation and characterization of polyurethane (PUR) microcapsules containing a medical cyanoacrylate tissue adhesive. Capsules were prepared by interfacial polymerization of a toluene-2,4-diisocyanate-based polyurethane prepolymer with 1,4-butanediol to encapsulate 2-octylcyanoacrylate (OCA). Various capsule characteristics, including: resultant morphology, average size and size distribution, shell thickness, content and reactivity of encapsulated agent, and shelf life are investigated and their reliance on solvent type and amount, surfactant type and amount, temperature, pH, agitation rate, reaction time, and mode of addition of the oil phase to the aqueous phase are presented. Capsules had average diameters ranging from 74 to 222 μm and average shell thicknesses ranging from 1.5 to 6 μm. The capsule content was determined via thermogravimetric analysis and subsequent analysis of the capsules following up to 8 weeks storage revealed minimal loss of core contents. Mechanical testing of OCA-containing capsules showed individual capsules withstood compressive forces up to a few tenths of Newtons, and the contents released from crushed capsules generated tensile adhesive forces of a few Newtons. Capsules were successfully mixed into the poly(methyl methacrylate) bone cement, surviving the mixing process, exposure to methyl methacrylate monomer, and the resulting exothermic matrix curing. PMID:22807313

  9. Microencapsulation of 2-octylcyanoacrylate tissue adhesive for self-healing acrylic bone cement

    PubMed Central

    Brochu, Alice B. W.; Chyan, William J.; Reichert, William M.

    2014-01-01

    Here, we report the first phase of developing self-healing acrylic bone cement: the preparation and characterization of polyurethane (PUR) microcapsules containing a medical cyanoacrylate tissue adhesive. Capsules were prepared by interfacial polymerization of a toluene-2,4-diisocyanate-based polyurethane prepolymer with 1,4-butanediol to encapsulate 2-octylcyanoacrylate (OCA). Various capsule characteristics, including: resultant morphology, average size and size distribution, shell thickness, content and reactivity of encapsulated agent, and shelf life are investigated and their reliance on solvent type and amount, surfactant type and amount, temperature, pH, agitation rate, reaction time, and mode of addition of the oil phase to the aqueous phase are presented. Capsules had average diameters ranging from 74 to 222 μm and average shell thicknesses ranging from 1.5 to 6 μm. The capsule content was determined via thermogravimetric analysis and subsequent analysis of the capsules following up to 8 weeks storage revealed minimal loss of core contents. Mechanical testing of OCA-containing capsules showed individual capsules withstood compressive forces up to a few tenths of Newtons, and the contents released from crushed capsules generated tensile adhesive forces of a few Newtons. Capsules were successfully mixed into the poly(- methyl methacrylate) bone cement, surviving the mixing process, exposure to methyl methacrylate monomer, and the resulting exothermic matrix curing. PMID:22807313

  10. Experimental and computational models to investigate the effect of adhesion on the mechanical properties of bone-cement composites.

    PubMed

    Helgason, B; Stirnimann, P; Widmer, R; Ferguson, S J

    2011-10-01

    A generic finite element approach was developed to study the effect of adhesion on the mechanical response of bone cement composites and validated against literature data. The results showed that a zero friction bone-cement (PMMA) interface conditions captured the results of the experimental testing better than assuming a fully bonded interface. An experimental model for studying the effect of interface adhesion in a bone-cement like composite was also developed in the present study. The results using this model indicate that the difference in Young's modulus and ultimate strength between a fully bonded interface and unbonded interface is approximately 30% for bone volume fraction similar to what can be found in osteoporotic vertebrae. Apart from concluding that bone to cement adhesion is a major contributor to the mechanical response of bone-cement composites, our studies based on the generic FE approach also indicate that the mechanical properties of the cement is the most important contributor to the resulting mechanical properties of the composite at bone volume fraction relevant in terms of vertebroplasty treatment. PMID:21714083

  11. Resistance to bond degradation between dual-cure resin cements and pre-treated sintered CAD-CAM dental ceramics

    PubMed Central

    Osorio, Raquel; Monticelli, Francesca; Osorio, Estrella; Toledano, Manuel

    2012-01-01

    Objective: To evaluate the bond stability of resin cements when luted to glass-reinforced alumina and zirconia CAD/CAM dental ceramics. Study design: Eighteen glass-infiltrated alumina and eighteen densely sintered zirconia blocks were randomly conditioned as follows: Group 1: No treatment; Group 2: Sandblasting (125 µm Al2O3-particles); and Group 3: Silica-coating (50 µm silica-modified Al2O3-particles). Composite samples were randomly bonded to the pre-treated ceramic surfaces using different resin cements: Subgroup 1: Clearfil Esthetic Cement (CEC); Subgroup 2: RelyX Unicem (RXU); and Subgroup 3: Calibra (CAL). After 24 h, bonded specimens were cut into 1 ± 0.1 mm2 sticks. One-half of the beams were tested for microtensile bond strength (MTBS). The remaining one-half was immersed in 10 % NaOCl aqueous solution (NaOClaq) for 5 h before testing. The fracture pattern and morphology of the debonded surfaces were assessed with a field emission gun scanning electron microscope (FEG-SEM). A multiple ANOVA was conducted to analyze the contributions of ceramic composition, surface treatment, resin cement type, and chemical challenging to MTBS. The Tukey test was run for multiple comparisons (p < 0.05). Results: After 24 h, CEC luted to pre-treated zirconia achieved the highest MTBS. Using RXU, alumina and zirconia registered comparable MTBS. CAL failed prematurely, except when luted to sandblasted zirconia. After NaOClaq storage, CEC significantly lowered MTBS when luted to zirconia or alumina. RXU decreased MTBS only when bonded to silica-coated alumina. CAL recorded 100 % of pre-testing failures. Micromorphological alterations were evident after NaOClaq immersion. Conclusions: Resin-ceramic interfacial longevity depended on cement selection rather than on surface pre-treatments. The MDP-containing and the self-adhesive resin cements were both suitable for luting CAD/CAM ceramics. Despite both cements being prone to degradation, RXU luted to zirconia or untreated or

  12. Evaluation of the bond strength between aged composite cores and luting agent

    PubMed Central

    2015-01-01

    PURPOSE The aim of this study was to evaluate effect of different surface treatment methods on the bond strength between aged composite-resin core and luting agent. MATERIALS AND METHODS Seventy-five resin composites and also seventy-five zirconia ceramic discs were prepared. 60 composite samples were exposed to thermal aging (10,000 cycles, 5 to 55℃) and different surface treatment. All specimens were separated into 5 groups (n=15): 1) Intact specimens 2) Thermal aging-air polishing 3) Thermal aging- Er:YAG laser irradiation 4) Thermal aging- acid etching 5) Thermal-aging. All specimens were bonded to the zirconia discs with resin cement and fixed to universal testing machine and bond strength testing loaded to failure with a crosshead speed of 0.5 mm/min. The fractured surface was classified as adhesive failure, cohesive failure and adhesive-cohesive failure. The bond strength data was statistically compared by the Kruskal-Wallis method complemented by the Bonferroni correction Mann-Whitney U test. The probability level for statistical significance was set at α=.05. RESULTS Thermal aging and different surface treatment methods have significant effect on the bond strength between composite-resin cores and luting-agent (P<.05). The mean baseline bond strength values ranged between 7.07 ± 2.11 and 26.05 ± 6.53 N. The highest bond strength of 26.05 ± 6.53 N was obtained with Group 3. Group 5 showed the lowest value of bond strength. CONCLUSION Appropriate surface treatment method should be applied to aged composite resin cores or aged-composites restorations should be replaced for the optimal bond strength and the clinical success. PMID:25932308

  13. Effect of etch-and-rinse and self-etching adhesive systems on hardness uniformity of resin cements after glass fiber post cementation

    PubMed Central

    Grande da Cruz, Fernanda Zander; Grande, Christiana Zander; Roderjan, Douglas Augusto; Galvão Arrais, César Augusto; Bührer Samra, Adriana Postiglione; Calixto, Abraham Lincoln

    2012-01-01

    Objective To evaluate the effects of etch-and-rinse and self-etching adhesive systems on Vickers hardness (VHN) uniformity of dual-cured resin cements after fiber post cementation. Methods: Fifty glass fiber posts were cemented into bovine roots using the following cementing systems: Prime&Bond 2.1 Dual Cure and Enforce with light-activation (PBDC-LCEN); Prime&Bond 2.1 and Enforce with light-activation (PB-CLEN); Prime&Bond 2.1 Dual Cure and Enforce without light exposure (PBDC-SCEN); ED Primer and Panavia 21 (ED-SCPN); and Clearfil SE Bond and Panavia 21 (CF-SCPN). The roots were stored in distilled water for 72 h and transversely sectioned into thirds (coronal, medium, and apical). The VHN values of the resin cement layers were measured close to the post and to the dentin wall on the transversely sectioned flat surfaces. The results were analyzed by three-way repeated measures analysis of variance (ANOVA) and Tukey’s post-hoc test (pre-set alpha of 5%). Results: Most resin cements presented higher VHN values near the post than near the dentin wall. The ED-SCPN group showed the highest VHN values regardless of the root third, while the self-cured group PBDC-SCEN exhibited the lowest values. The resin cements from the light-activated groups PBDC-LCEN and PB-LCEN showed lower VHN values at the apical third than at the coronal third. The VHN values were not influenced by the root third in self-cured groups PBDC-SCEN, ED-SCPN, and ED-SCPN. Conclusion: Depending on the product, bonding agents might promote changes in hardness uniformity of resin cements after post cementation. PMID:22904652

  14. Comparison of the flexural strength of two dual cure adhesive resin cements under oral simulated conditions: an in-vitro study.

    PubMed

    Awasthi, P; Nair, A; Regish, K M; Viswambaran, M; Kumar, M

    2013-06-01

    The purpose of this in vitro study was to evaluate the flexural strength of the newly developed self-adhesive dual cure resin cement and compare it with conventional resin cement under oral simulated conditions. A conventional resin cement (Calibra) and self adhesive resin cement (RelyX U100) were selected and 40 specimens of each cement were fabricated for the study. Half of these specimens were polymerized directly whereas the other half were polymerized through 2 mm of porcelain disc. Specimens were tested after 24hrs and after 30 days immersion in artificial saliva. A three point bending test was performed using universal testing machine at a crosshead speed of 1mm/min. Overall RelyX U100 showed higher mean flexural strength compared to Calibra (141.55 MPa, 119.46MPa, respectively). When the specimens of both the cements were light cured through 2 mm porcelain disc, their flexural strength decreased significantly. The mean flexural strength of both self adhesive and conventional dual cure adhesive resin cements was increased significantly after storage in artificial saliva for 30 days at 37 degreeC. Among the two dual cure resin cements, the self adhesive dual cure cement (RelyX U100) showed increased overall mean flexural strength as compared to conventional resin cement (Calibra) under all the curing and storage protocols. PMID:23888528

  15. Effect of dimethyl sulfoxide on bond durability of fiber posts cemented with etch-and-rinse adhesives

    PubMed Central

    Shafiei, Fereshteh; Sarafraz, Zahra

    2016-01-01

    PURPOSE This study was undertaken to investigate whether use of an adhesive penetration enhancer, dimethyl sulfoxide (DMSO), improves bond stability of fiber posts to root dentin using two two-step etch-and-rinse resin cements. MATERIALS AND METHODS Forty human maxillary central incisor roots were randomly divided into 4 groups after endodontic treatment and post space preparation, based on the fiber post/cement used with and without DMSO pretreatment. Acid-etched root dentin was treated with 5% DMSO aqueous solution for 60 seconds or with distilled water (control) prior to the application of Excite DSC/Variolink II or One-Step Plus/Duo-link for post cementation. After micro-slicing the bonded root dentin, push-out bond strength (P-OBS) test was performed immediately or after 1-year of water storage in each group. Data were analyzed using three-way ANOVA and Student's t-test (α=.05). RESULTS A significant effect of time, DMSO treatment, and treatment × time interaction were observed (P<.001). DMSO did not affect immediate bonding of the two cements. Aging significantly reduced P-OBS in control groups (P<.001), while in DMSO-treated groups, no difference in P-OBS was observed after aging (P>.05). CONCLUSION DMSO-wet bonding might be a beneficial method in preserving the stability of resin-dentin bond strength over time when fiber post is cemented with the tested etch-and-rinse adhesive cements. PMID:27555893

  16. In-depth polymerization of a self-adhesive dual-cured resin cement.

    PubMed

    Puppin-Rontani, R M; Dinelli, R G; de Paula, A B; Fucio, S B P; Ambrosano, G M B; Pascon, F M

    2012-01-01

    The aim of this study was to assess Knoop hardness at different depths of a dual-cured self-adhesive resin cement through different thicknesses of Empress Esthetic® ceramic.Flattened bovine dentin was embedded in resin. The cement was inserted into a rubber mold (0.8 x 5 mm) that was placed between two polyvinyl chloride plastic films and placed over the flat dentin and light cured by Elipar Trilight-QTH (800 mW/cm2) or Ultra-Lumelight-emitting diode (LED 5; 1585 mW/cm2) over ceramic disks 1.4 or 2 mm thick. The specimens(n=6) were stored for 24 hours before Knoop hardness (KHN) was measured. The data were submitted to analysis of variance in a factorial split-plot design and Tukey's test (a=0.05).There was significant interaction among the study factors. In the groups cured by the QTHunit, an increase in ceramic thickness resulted in reduced cement hardness values at all depths, with the highest values always being found in the center (1.4 mm, 58.1; 2 mm, 50.1)and the lowest values at the bottom (1.4 mm,23.8; 2 mm, 20.2). When using the LED unit, the hardness values diminished with increased ceramic thickness only on the top (1.4 mm,51.5; 2 mm, 42.3). In the group with the 1.4-mm-thick disk, the LED curing unit resulted in similar values on the top (51.5) and center(51.9) and lower values on the bottom (24.2).However, when the cement was light cured through the 2-mm disk, the highest hardness value was obtained in the center (51.8), followed by the top (42.3) and bottom (19.9),results similar to those obtained with the QTH curing unit (center > top > bottom). The hardness values of the studied cement at different depths were dependent on the ceramic thickness but not on the light curing units used. PMID:22166106

  17. Cusp Fracture Resistance of Maxillary Premolars Restored with the Bonded Amalgam Technique Using Various Luting Agents

    PubMed Central

    Marchan, Shivaughn M.; Coldero, Larry; White, Daniel; Smith, William A. J.; Rafeek, Reisha N.

    2009-01-01

    Objective. This in vitro study uses measurements of fracture resistance to compare maxillary premolars restored with the bonded amalgam technique using a new resin luting cement, glass ionomer, and resin-modified glass ionomer as the bonding agents. Materials. Eighty-five sound maxillary premolars were selected and randomly assigned to one of five test groups of 17 teeth each. One group of intact teeth served as the control. The remaining groups were prepared to a standard cavity form relative to the dimensions of the overall tooth and restored with amalgam alone or a bonded amalgam using one of three luting agents: RelyX Arc (a new resin luting cement), RelyX luting (a resin-modified glass ionomer), or Ketac-Cem μ (a glass ionomer) as the bonding agents. Each tooth was then subjected to compressive testing until catastrophic failure occurred. The mean loads at failure of each group were statistically compared using ANOVA with a post hoc Bonferroni test. Results. It was found that regardless of the luting cement used for the amalgam bonding technique, there was little effect on the fracture resistance of teeth. Conclusion. Cusp fracture resistance of premolars prepared with conservative MOD cavity preparations is not improved by using an amalgam-bonding technique compared to similar cavities restored with amalgam alone. PMID:20339450

  18. Nanoleakage for Self-Adhesive Resin Cements used in Bonding CAD/CAD Ceramic Material to Dentin

    PubMed Central

    El-Badrawy, Wafa; Hafez, Randa Mohamed; El Naga, Abeer Ibrahim Abo; Ahmed, Doaa Ragai

    2011-01-01

    Objectives: To determine nanoleakage of CAD/CAM ceramic blocks bonded to dentin with self-adhesive resin cement. Methods: Eighteen sound extracted human molars were sterilized and sectioned into 3 mm-thick dentin sections. Trilux Cerec Vitablocks (Vita) were also sectioned into 3 mm sections, surface-treated using 5% hydrofluoric acid-etchant, and then coated with silane primer (Vita). Trilux and dentin sections were cemented together by means of three resin cements: Rely-X Unicem (3M/ESPE), BisCem (Bisco), and Calibra (Dentsply), according to manufacturers’ recommendations. Calibra was used in conjunction with Prime/Bond-NT adhesive (Dentsply), while the other two are self-adhesive. The bonded specimens were stored for 24h in distilled water at 37°C. Specimens were vertically sectioned into 1 mm-thick slabs, yielding up to six per specimen. Two central slabs were randomly chosen from each specimen making up the cement groups (n=12). Each group was subdivided into two subgroups (n=6), a control and a thermocycled subgroup (5–55°C) for 500 cycles. Slabs were coated with nail polish up to 1 mm from the interface, immersed in a 50% silver nitrate solution for 24h, and tested for nanoleakage using Quanta Environmental SEM and EDAX. Data were statistically analyzed using two-way ANOVA and Tukey’s post-hoc tests. Results: Rely-X Unicem and Calibra groups demonstrated no significant difference in the percentage of silver penetration, while the BisCem group revealed a significantly higher percentage (P≤.05). Thermocycling (500 cycles) did not have a statistically significant effect on the percentage of silver penetration (P>.05). Conclusions: One self-adhesive-resin cement demonstrated a similar sealing ability when compared with a standard resin cement. Thermo-cycling did not significantly increase dye penetration under the test conditions. PMID:21769269

  19. [Adhesion of sealer cements to dentin with and without smear layer].

    PubMed

    Gettleman, B H; Messer, H H; ElDeeb, M E

    1991-01-01

    The influence of a smear layer on the adhesion of sealer cements to dentin was assessed in recently extracted human anterior teeth. A total of 120 samples was tested, 40 per sealer; 20 each with and without the smear layer. The teeth were split longitudinally, and the internal surfaces were ground flat. One-half of each tooth was left with the smear layer intact, while the other half had the smear removed by washing for 3 min with 17% EDTA followed by 5.25% NaOCI. Evidence of the ability to remove the smear layer was verified by scanning electron microscopy. Using a specially designed jig, the sealer was placed into a 4-mm wide x 4 mm deep well which was then set onto the tooth. PMID:1659858

  20. Evaluation of tensile retention of Y-TZP crowns cemented on resin composite cores: effect of the cement and Y-TZP surface conditioning.

    PubMed

    Rippe, M P; Amaral, R; Oliveira, F S; Cesar, P F; Scotti, R; Valandro, L F; Bottino, M A

    2015-01-01

    This study evaluated the effect of the cement type (adhesive resin, self-adhesive, glass ionomer, and zinc phosphate) on the retention of crowns made of yttria-stabilized polycrystalline tetragonal zirconia (Y-TZP). Therefore, 108 freshly extracted molars were embedded in acrylic resin, perpendicular to their long axis, and prepared for full crowns: the crown preparations were removed and reconstructed using composite resin plus fiber posts with dimensions identical to the prepared dentin. The preparations were impressed using addition silicone, and Y-TZP copings were produced, which presented a special setup for the tensile testing. Cementation was performed with two adhesive resin cements (Multilink Automix, Ivoclar-Vivadent; RelyX ARC, 3M ESPE, St Paul, MN, USA), one self-adhesive resin cement (RelyX U100, 3M ESPE), one glass ionomer based cement (RelyX Luting, 3M ESPE), and one zinc phosphate cement (Cimento de Zinco, SS White, Rio de Janeiro, Brazil). For the resin cement groups, the inner surfaces of the crowns were subjected to three surface treatments: cleaning with isopropyl alcohol, tribochemical silica coating, or application of a thin low-fusing glass porcelain layer plus silanization. After 24 hours, all groups were subjected to thermocycling (6000 cycles) and included in a special device for tensile testing in a universal testing machine to test the retention of the infrastructure. After testing, the failure modes of all samples were analyzed under a stereomicroscope. The Kruskal-Wallis test showed that the surface treatment and cement type (α=0.05) affected the tensile retention results. The Multilink cement presented the highest tensile retention values, but that result was not statistically different from RelyX ARC. The surface treatment was statistically relevant only for the Multilink cement. The cement choice was shown to be more important than the crown surface treatment for cementation of a Y-TZP crown to a composite resin substrate. PMID

  1. Evaluation of Adhesion and Morphology of Human Osteoblasts to White MTA and Portland Cement

    PubMed Central

    Bidar, Maryam; Tavakkol Afshari, Jalil; Shahrami, Fatemeh

    2007-01-01

    INTRODUCTION: Osteoblasts and periodontal ligament cells are major cells for wound healing after root end resection. The interaction of osteoblasts with filling materials could play a critical role in healing of surgical lesion. Adhesion and spreading of cells on material surface are the initial phase for cellular function. The purpose of the present study was the evaluation of morphology and attachment of human osteoblasts in present of white MTA, Portland cement (PC) and IRM as root end filling and perforation repair materials. MATERIALS AND METHODS: The human osteoblasts (MG-63 cell line) were prepared from Iranian Pasteur Institute; Cellular Bank, were grown in RPMI 1640 medium. The testing materials were mixed according to the manufacture's instruction, inserted in to the wells of 24-well flat-bottomed plate, and condensed to disk of 1mm thickness and 1×1mm diameter. Cells were added to the materials after two weeks. During 1,3,7 days intervals, the disk of materials along with cells were grown on their surface, examined by a scanning electron microscope (SEM). We used of IRM as negative group. RESULTS: Results showed that after 7 days many of osteoblasts were attached on the surface of white MTA and PC and appeared partially round or flat. The cells appeared round with no attachment and spreading in conjunction with IRM. CONCLUSION: The results indicate that human osteoblasts have a favorable response to white MTA and Portland cement compared with IRM. PMID:24298287

  2. Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

    NASA Astrophysics Data System (ADS)

    Queiroz, José Renato Cavalcanti; Nogueira Junior, Lafayette; Massi, Marcos; Silva, Alecssandro de Moura; Bottino, Marco Antonio; Sobrinho, Argemiro Soares da Silva; Özcan, Mutlu

    2013-10-01

    This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0-14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia.

  3. Effect of dentin pretreatment and curing mode on the microtensile bond strength of self-adhesive resin cements

    PubMed Central

    Youm, Seung-Hyun; Jung, Kyoung-Hwa; Son, Sung-Ae; Kwon, Yong-Hoon

    2015-01-01

    PURPOSE The aim was to evaluate the effect of curing mode and different dentin surface pretreatment on microtensile bond strength (µTBS) of self-adhesive resin cements. MATERIALS AND METHODS Thirty-six extracted human permanent molars were sectioned horizontally exposing flat dentin surface. The teeth were divided into 12 groups (3 teeth/group) according to the dentin surface pretreatment methods (control, 18% EDTA, 10% Polyacrylic acid) and curing mode (self-curing vs. light-curing) of cement. After pretreatment, composite resin blocks were cemented with the following: (a) G-CEM LinkAce; (b) RelyX U200, followed by either self-curing or light-curing. After storage, the teeth were sectioned and µTBS test was performed using a microtensile testing machine. The data was statistically analyzed using one-way ANOVA, Student T-test and Scheffe's post-hoc test at P<.05 level. RESULTS For G-CEM LinkAce cement groups, polyacrylic acid pretreatment showed the highest µTBS in the self-cured group. In the light-cured group, no significant improvements were observed according to the dentin surface pretreatment. There were no significant differences between curing modes. Both dentin surface pretreatment methods helped to increase the µTBS of RelyX U200 resin cement significantly and degree of pretreatment effect was similar. No significant differences were found regarding curing modes except control groups. In the comparisons of two self-adhesive resin cements, all groups within the same pretreatment and curing mode were significantly different excluding self-cured control groups. CONCLUSION Selecting RelyX U200 used in this study and application of dentin surface pretreatment with EDTA and polyacrylic acid might be recommended to enhance the bond strength of cement to dentin. PMID:26330979

  4. Cementation of Glass-Ceramic Posterior Restorations: A Systematic Review

    PubMed Central

    van den Breemer, Carline R. G.; Gresnigt, Marco M. M.; Cune, Marco S.

    2015-01-01

    Aim. The aim of this comprehensive review is to systematically organize the current knowledge regarding the cementation of glass-ceramic materials and restorations, with an additional focus on the benefits of Immediate Dentin Sealing (IDS). Materials and Methods. An extensive literature search concerning the cementation of single-unit glass-ceramic posterior restorations was conducted in the databases of MEDLINE (Pubmed), CENTRAL (Cochrane Central Register of Controlled Trials), and EMBASE. To be considered for inclusion, in vitro and in vivo studies should compare different cementation regimes involving a “glass-ceramic/cement/human tooth” complex. Results and Conclusions. 88 studies were included in total. The in vitro data were organized according to the following topics: (micro)shear and (micro)tensile bond strength, fracture strength, and marginal gap and integrity. For in vivo studies survival and quality of survival were considered. In vitro studies showed that adhesive systems (3-step, etch-and-rinse) result in the best (micro)shear bond strength values compared to self-adhesive and self-etch systems when luting glass-ceramic substrates to human dentin. The highest fracture strength is obtained with adhesive cements in particular. No marked clinical preference for one specific procedure could be demonstrated on the basis of the reviewed literature. The possible merits of IDS are most convincingly illustrated by the favorable microtensile bond strengths. No clinical studies regarding IDS were found. PMID:26557651

  5. Effect of atmospheric plasma versus conventional surface treatments on the adhesion capability between self-adhesive resin cement and titanium surface

    PubMed Central

    Kilicarslan, Mehmet Ali; Deniz, Sule Tugba; Mumcu, Emre; Ozkan, Pelin

    2015-01-01

    PURPOSE The aim of this study was to evaluate the effects of atmospheric plasma (APL) versus conventional surface treatments on the adhesion of self-adhesive resin cement to Ti-6Al-4V alloy. MATERIALS AND METHODS Sixty plates of machined titanium (Ti) discs were divided into five groups (n=12): 1) Untreated (CNT); 2) Sandblasted (SAB); 3) Tribochemically treated (ROC); 4) Tungsten CarbideBur (TCB); 5) APL treated (APL). SEM analysis and surface roughness (Ra) measurements were performed. Self-adhesive resin cement was bonded to the Ti surfaces and shear bond strength (SBS) tests, Ra and failure mode examinations were carried out. Data were analyzed by one-way analysis of variance and chi-squared test. RESULTS The lowest SBS value was obtained with CNT and was significantly different from all other groups except for APL. The ROC showed the highest SBS and Ra values of all the groups. CONCLUSION It was concluded that the effect of APL on SBS and Ra was not sufficient and it may not be a potential for promoting adhesion to titanium. PMID:26140177

  6. Glass-ionomer Cements in Restorative Dentistry: A Critical Appraisal.

    PubMed

    Almuhaiza, Mohammed

    2016-01-01

    Glass-ionomer cements (GICs) are mainstream restorative materials that are bioactive and have a wide range of uses, such as lining, bonding, sealing, luting or restoring a tooth. Although the major characteristics of GICs for the wider applications in dentistry are adhesion to tooth structure, fluoride releasing capacity and tooth-colored restorations, the sensitivity to moisture, inherent opacity, long-term wear and strength are not as adequate as desired. They have undergone remarkable changes in their composition, such as the addition of metallic ions or resin components to their composition, which contributed to improve their physical properties and diversified their use as a restorative material of great clinical applicability. The light-cured polymer reinforced materials appear to have substantial benefits, while retaining the advantages of fluoride release and adhesion. Further research should be directed towards improving the properties, such as strength and esthetics without altering its inherent qualities, such as adhesion and fluoride releasing capabilities. PMID:27340169

  7. Adhesive strength of total knee endoprostheses to bone cement - analysis of metallic and ceramic femoral components under worst-case conditions.

    PubMed

    Bergschmidt, Philipp; Dammer, Rebecca; Zietz, Carmen; Finze, Susanne; Mittelmeier, Wolfram; Bader, Rainer

    2016-06-01

    Evaluation of the adhesive strength of femoral components to the bone cement is a relevant parameter for predicting implant safety. In the present experimental study, three types of cemented femoral components (metallic, ceramic and silica/silane-layered ceramic) of the bicondylar Multigen Plus knee system, implanted on composite femora were analysed. A pull-off test with the femoral components was performed after different load and several cementing conditions (four groups and n=3 components of each metallic, ceramic and silica/silane-layered ceramic in each group). Pull-off forces were comparable for the metallic and the silica/silane-layered ceramic femoral components (mean 4769 N and 4298 N) under standard test condition, whereas uncoated ceramic femoral components showed reduced pull-off forces (mean 2322 N). Loading under worst-case conditions led to decreased adhesive strength by loosening of the interface implant and bone cement using uncoated metallic and ceramic femoral components, respectively. Silica/silane-coated ceramic components were stably fixed even under worst-case conditions. Loading under high flexion angles can induce interfacial tensile stress, which could promote early implant loosening. In conclusion, a silica/silane-coating layer on the femoral component increased their adhesive strength to bone cement. Thicker cement mantles (>2 mm) reduce adhesive strength of the femoral component and can increase the risk of cement break-off. PMID:25781660

  8. Retention strength of tin plated gold inlays bonded with two resin cements.

    PubMed

    Eakle, W S; Giblin, J M

    2000-01-01

    Research has shown bonding of restorations to tooth structure to enhance retention of the restoration to increase the fracture resistance of the tooth, and to reduce microleakage. Resin cements have superior physical properties to traditional cements such as zinc phosphate. The purpose of this study was to compare the retention of gold inlays luted with two resin cements to that of those luted with zinc phosphate cement. PMID:11199614

  9. Adhesion of Streptococcus Mutans to Glass Ionomer, BisCem Cement and Enamel: An in Vitro Study

    PubMed Central

    Jalalian, Ezzatollah; Ahmadpour, Sogol

    2015-01-01

    Objectives: Considering the adhesion of some microorganisms such as Streptococcus mutans (S. mutans) to restorative materials and the unrecognized consequences of this phenomenon, and due to the controversies in this regard, it is important to discover the materials to which the lowest adhesion of S. mutans occurs. The objective of this study was to assess the level of adhesion of S. mutans to glass ionomer (GI), BisCem Cement and enamel. Materials and Methods: In this in vitro experimental study, 12 specimens including five GI blocks (GC America Inc., Alsip, IL, USA), five BisCem blocks (Bisco Inc., Schaumburg, IL, USA) and two enamel blocks were exposed to a bacterial suspension (1×106 mg/mL). After incubation for one hour at 37°C, the swab samples were taken and cultured in blood agar. The S. mutans colonies were counted by unaided vision after 48 hours of incubation. The results were analyzed using ANOVA followed by the Tukey’s test. Results: The number of colonies attributed to enamel, GI, and BisCem blocks was 24±2, 24.2±2.7 and 14.8±1.7 colonies/mm2, respectively. There was no difference between enamel and GI in terms of adhesion of S. mutans (P=0.08 and P>0.001, respectively); however, the difference between these two and BisCem was statistically significant (P= 0.00075 and P<0.001, respectively). Conclusion: Within the limitations of this study, BisCem cement is superior to GI for the cementation of indirect restorations. PMID:27148379

  10. One step deposition of highly adhesive diamond films on cemented carbide substrates via diamond/β-SiC composite interlayers

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhuang, Hao; Jiang, Xin

    2015-12-01

    Deposition of adherent diamond films on cobalt-cemented tungsten carbide substrates has been realized by application of diamond/beta-silicon carbide composite interlayers. Diamond top layers and the interlayers were deposited in one single process by hot filament chemical vapor deposition technique. Two different kinds of interlayers have been employed, namely, gradient interlayer and interlayer with constant composition. The distribution of diamond and beta-silicon carbide phases was precisely controlled by manipulating the gas phase composition. X-ray diffraction and Raman spectroscopy were employed to determine the existence of diamond, beta-silicon carbide and cobalt silicides (Co2Si, CoSi) phases, as well as the quality of diamond crystal and the residual stress in the films. Rockwell-C indentation tests were carried out to evaluate the film adhesion. It is revealed that the adhesion of the diamond film is drastically improved by employing the interlayer. This is mainly influenced by the residual stress in the diamond top layer, which is induced by the different thermal expansion coefficient of the film and the substrate. It is even possible to further suppress the stress by manipulating the distribution of diamond and beta-silicon carbide in the interlayer. The most adhesive diamond film on cemented carbide is thus obtained by employing a gradient composite interlayer.

  11. Analysis of Self-Adhesive Resin Cement Microshear Bond Strength on Leucite-Reinforced Glass-Ceramic with/without Pure Silane Primer or Universal Adhesive Surface Treatment

    PubMed Central

    Lee, Yoon; Kim, Jae-Hoon; Woo, Jung-Soo; Yi, Young-Ah; Hwang, Ji-Yun; Seo, Deog-Gyu

    2015-01-01

    Objective. To evaluate the microshear bond strength (μSBS) of self-adhesive resin (SA) cement on leucite-reinforced glass-ceramic using silane or universal adhesive. Materials and Methods. Ceramic blocks were etched with 9.5% hydrofluoric acid and divided into three groups (n = 16): (1) negative control (NC) without treatment; (2) Single Bond Universal (SBU); (3) RelyX Ceramic Primer as positive control (PC). RelyX Unicem resin cement was light-cured, and μSBS was evaluated with/without thermocycling. The μSBS was analyzed using one-way analysis of variance. The fractured surfaces were examined using stereomicroscopy and scanning electron microscopy (SEM). Results. Without thermocycling, μSBS was highest for PC (30.50 MPa ± 3.40), followed by SBU (27.33 MPa ± 2.81) and NC (20.18 MPa ± 2.01) (P < 0.05). Thermocycling significantly reduced μSBS in SBU (22.49 MPa ± 4.11) (P < 0.05), but not in NC (20.68 MPa ± 4.60) and PC (28.77 MPa ± 3.52) (P > 0.05). PC and NC predominantly fractured by cohesive failure within the ceramic and mixed failure, respectively. Conclusion. SBU treatment improves μSBS between SA cement and glass ceramics, but to a lower value than PC, and the improvement is eradicated by thermocycling. NC exhibited the lowest μSBS, which remained unchanged after thermocycling. PMID:26557660

  12. Evaluation of fit of cement-retained implant-supported 3-unit structures fabricated with direct metal laser sintering and vacuum casting techniques.

    PubMed

    Oyagüe, Raquel Castillo; Sánchez-Turrión, Andrés; López-Lozano, José Francisco; Montero, Javier; Albaladejo, Alberto; Suárez-García, María Jesús

    2012-07-01

    This study evaluated the vertical discrepancy of implant-fixed 3-unit structures. Frameworks were constructed with laser-sintered Co-Cr, and vacuum-cast Co-Cr, Ni-Cr-Ti, and Pd-Au. Samples of each alloy group were randomly luted in standard fashion using resin-modified glass-ionomer, self-adhesive, and acrylic/urethane-based cements (n = 12 each). Discrepancies were SEM analyzed. Three-way ANOVA and Student-Newman-Keuls tests were run (P < 0.05). Laser-sintered structures achieved the best fit per cement tested. Within each alloy group, resin-modified glass-ionomer and acrylic/urethane-based cements produced comparably lower discrepancies than the self-adhesive agent. The abutment position did not yield significant differences. All misfit values could be considered clinically acceptable. PMID:22075754

  13. Lunar Ultraviolet Telescope Experiment (LUTE), phase A

    NASA Technical Reports Server (NTRS)

    Mcbrayer, Robert O.

    1994-01-01

    The Lunar Ultraviolet Telescope Experiment (LUTE) is a 1-meter telescope for imaging from the lunar surface the ultraviolet spectrum between 1,000 and 3,500 angstroms. There have been several endorsements of the scientific value of a LUTE. In addition to the scientific value of LUTE, its educational value and the information it can provide on the design of operating hardware for long-term exposure in the lunar environment are important considerations. This report provides the results of the LUTE phase A activity begun at the George C. Marshall Space Flight Center in early 1992. It describes the objective of LUTE (science, engineering, and education), a feasible reference design concept that has evolved, and the subsystem trades that were accomplished during the phase A.

  14. Direct Tensile Strength and Characteristics of Dentin Restored with All-Ceramic, Resin-Composite, and Cast Metal Prostheses Cemented with Resin Adhesives

    PubMed Central

    Piemjai, Morakot; Nakabayashi, Nobuo

    2015-01-01

    A dentin-cement-prosthesis complex restored with either all-porcelain, cured resin-composite, or cast base metal alloy and cemented with either of the different resin cements was trimmed into a mini-dumbbell shape for tensile testing. The fractured surfaces and characterization of the dentin-cement interface of bonded specimens were investigated using a Scanning Electron Microscope. A significantly higher tensile strength of all-porcelain (12.5 ± 2.2 MPa) than that of cast metal (9.2 ± 3.5 MPa) restorations was revealed with cohesive failure in the cement and failure at the prosthesis-cement interface in Super-Bond C&B group. No significant difference in tensile strength was found among the types of restorations using the other three cements with adhesive failure on the dentin side and cohesive failure in the cured resin. SEM micrographs demonstrated the consistent hybridized dentin in Super-Bond C&B specimens that could resist degradation when immersed in hydrochloric acid followed by NaOCl solutions whereas a detached and degraded interfacial layer was found for the other cements. The results suggest that when complete hybridization of resin into dentin occurs tensile strength at the dentin-cement is higher than at the cement-prosthesis interfaces. The impermeable hybridized dentin can protect the underlying dentin and pulp from acid demineralization, even if detachment of the prosthesis has occurred. PMID:26539520

  15. Direct Tensile Strength and Characteristics of Dentin Restored with All-Ceramic, Resin-Composite, and Cast Metal Prostheses Cemented with Resin Adhesives.

    PubMed

    Piemjai, Morakot; Nakabayashi, Nobuo

    2015-01-01

    A dentin-cement-prosthesis complex restored with either all-porcelain, cured resin-composite, or cast base metal alloy and cemented with either of the different resin cements was trimmed into a mini-dumbbell shape for tensile testing. The fractured surfaces and characterization of the dentin-cement interface of bonded specimens were investigated using a Scanning Electron Microscope. A significantly higher tensile strength of all-porcelain (12.5 ± 2.2 MPa) than that of cast metal (9.2 ± 3.5 MPa) restorations was revealed with cohesive failure in the cement and failure at the prosthesis-cement interface in Super-Bond C&B group. No significant difference in tensile strength was found among the types of restorations using the other three cements with adhesive failure on the dentin side and cohesive failure in the cured resin. SEM micrographs demonstrated the consistent hybridized dentin in Super-Bond C&B specimens that could resist degradation when immersed in hydrochloric acid followed by NaOCl solutions whereas a detached and degraded interfacial layer was found for the other cements. The results suggest that when complete hybridization of resin into dentin occurs tensile strength at the dentin-cement is higher than at the cement-prosthesis interfaces. The impermeable hybridized dentin can protect the underlying dentin and pulp from acid demineralization, even if detachment of the prosthesis has occurred. PMID:26539520

  16. Influence of preheating the bonding agent of a conventional three-step adhesive system and the light activated resin cement on dentin bond strength

    PubMed Central

    Holanda, Daniel Brandão Vilela; França, Fabiana Mantovani Gomes; do Amaral, Flávia Lucisano Botelho; Flório, Flávia Martão; Basting, Roberta Tarkany

    2013-01-01

    Aims: to evaluate the influence of preheating the bonding agent (Scotchbond Multipurpose Adhesive/3M ESPE) and the light-activated resin cement (RelyX Venner/3M ESPE) on dentin microtensile bond strength. Materials and Methods: The exposed flat dentin surface of 40 human third molars were randomly distributed into four groups for cementation (SR Adoro/Ivoclar Vivadent) (n = 10): G1-bond and resin cement, both at room temperature (22°C), G2-bond preheated to 58°C and cement at room temperature (22°C), G3-bond at room temperature (22°C) and the cement preheated to 58°C, G4-bond preheated to 58°C and cement preheated to 58°C. Sticks of dentin/block set measuring approximately 1 mm2 were obtained and used for the microtensile bond strength test. All sticks had their failure mode classified. Statistical analysis used: Factorial analysis of variance was applied, 2 × 2 (bond × cement) (P < 0.05). Results: Preheating the bonding agent (P = 0.8411) or the cement (P = 0.7155), yielded no significant difference. The interaction bond × cement was not significant (P = 0.9389). Conclusions: Preheating the bond and/or the light-activated resin cement did not influence dentin bond strength or fracture failure mode. PMID:24347889

  17. Effect of pretreatment methods and chamber pressure on morphology, quality and adhesion of HFCVD diamond coating on cemented carbide inserts

    NASA Astrophysics Data System (ADS)

    Sarangi, S. K.; Chattopadhyay, A.; Chattopadhyay, A. K.

    2008-04-01

    In the present investigation, diamond coating was deposited on cemented carbide substrate by hot filament chemical vapour deposition. The effect of substrate pretreatment methods and chamber pressure on morphology, quality, and adhesion of the diamond film were studied. The carbide inserts were pretreated with acid, Murakami's solution, and Murakami's solution followed by acid, respectively. The chamber pressure was set at 6.6, 13.2, 26.4, 39.6 and 66 mbar. Deposition carried out at pressure of 26.4 and 39.6 mbar on inserts pretreated with acid exhibited uniform crystal habit and provided coating-substrate adhesion adequate for machining application. Good coating morphology was obtained when deposition was done at 6.6 mbar on carbide inserts treated with Murakami's solution. Pretreatment with Murakami's solution followed by acid and deposition at 6.6 mbar also resulted in good morphology of diamond film. Indentation (Rockwell C scale) was done on diamond-coated inserts to assess coating-substrate adhesion under three loads of 294, 588 and 980 N. The diameter of the indentation crack at the coating-substrate interface was observed under SEM. The results suggested that diamond coating deposited at medium pressure of 26.4 mbar on carbide substrate treated with acid not only exhibited best morphology but also highest coating-substrate adhesion and improved machining performance.

  18. In vitro comparative bond strength of contemporary self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion.

    PubMed

    Blatz, Markus B; Phark, Jin-Ho; Ozer, Fusun; Mante, Francis K; Saleh, Najeed; Bergler, Michael; Sadan, Avishai

    2010-04-01

    This study compared shear bond strengths of six self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion. One hundred twenty zirconia samples were air-abraded (group SB; n = 60) or left untreated (group NO). Composite cylinders were bonded to the zirconia samples with either BisCem (BC), Maxcem (MC), G-Cem (GC), RelyX Unicem Clicker (RUC), RelyX Unicem Applicator (RUA), or Clearfil SA Cement (CSA). Shear bond strength was tested after thermocycling, and data were analyzed with analysis of variance and Holm-Sidak pairwise comparisons. Without abrasion, RUA (8.0 MPa), GC (7.9 MPa), and CSA (7.6 MPa) revealed significantly higher bond strengths than the other cements. Air-particle abrasion increased bond strengths for all test cements (p < 0.001). GC (22.4 MPa) and CSA (18.4 MPa) revealed the highest bond strengths in group SB. Bond strengths of self-adhesive resin cements to zirconia were increased by air-particle abrasion. Cements containing adhesive monomers (MDP/4-META) were superior to other compositions. PMID:19415350

  19. Tensile bond strength of gold and porcelain inlays to extracted teeth using three cements.

    PubMed

    Michelini, F S; Belser, U C; Scherrer, S S; De Rijk, W G

    1995-01-01

    This in vitro study compared the tensile bond strength of gold and porcelain inlays to extracted molars in standardized cavities. Three cements were used: zinc phosphate, glass-ionomer, and a resin composite cement. The gold inlays were cemented using zinc phosphate or glass-ionomer cement, and the porcelain inlays were luted using resin composite or glass-ionomer cement. Surface treatments included, for gold inlays, either no treatment (zinc phosphate cement) or airborne particle abraded and tinplated (glass-ionomer cement); and for porcelain inlays, either no treatment (glass-ionomer cement) or etched and silane-treated (resin composite cement). Statistical analysis was performed using the Weibull distribution. Results showed no significant differences between gold inlays cemented using zinc phosphate or glass-ionomer cements and porcelain inlays luted using glass-ionomer cements. The bonded porcelain inlays (resin composite cement) showed tensile bond strengths two to three times higher than those obtained for cemented gold inlays. PMID:7575974

  20. Adhesion enhancement of steel fibers to acrylic bone cement through a silane coupling agent.

    PubMed

    Kotha, S P; Lieberman, M; Vickers, A; Schmid, S R; Mason, J J

    2006-01-01

    The use of a silane coupling agent (methacryloxypropyl-trichlorosilane) to improve the mechanical properties of steel fiber-reinforced acrylic bone cements was assessed. Changes to the tensile and fracture properties of bone cements reinforced with silane-coated or uncoated 316L stainless steel fibers of different aspect ratios were studied. Contact-angle measurements indicated that the coupling agent coats the metal surface through room temperature treatments in a short time (within 2 h). Push-out tests indicated that the interfacial shear strength of silane-coated 316L stainless steel rods is 141% higher than the uncoated rods. The elastic moduli, ultimate stresses, and fracture toughness of the silane-coated, steel fiber-reinforced bone cements are significantly higher than the bone cements reinforced with uncoated steel fibers. There were no differences in the tensile mechanical properties of the silane-coated or uncoated, steel fiber-reinforced cements after aging in a physiological saline solution, indicating that the bonding effectiveness is decreased by the intrusion of water at the metal-polymer interface. Because of possible biocompatibility issues with leaching of the silane coupling agent and no long-term mechanical benefit in simulated aging experiments, the use of these agents is not recommended for in vivo use. PMID:16224777

  1. Antibacterial activity of resin adhesives, glass ionomer and resin-modified glass ionomer cements and a compomer in contact with dentin caries samples.

    PubMed

    Herrera, M; Castillo, A; Bravo, M; Liébana, J; Carrión, P

    2000-01-01

    A total of 103 clinical samples of carious dentin were used to study the antibacterial action of different dental resin adhesive materials (Gluma 2000, Syntac, Prisma Universal Bond 3, Scotchbond Multi-Purpose and Prime&Bond 2.0) glass ionomer cements (Ketac-Cem, Ketac-Bond, Ketac-Silver, Ketac-Fil) resin-modified glass ionomer cements (Fuji II LC, Vitremer and Vitrebond) and a compomer (Dyract). The agar plate diffusion method was used for the microbial cultures and a chlorhexidine control. The growth of the caries-producing microorganisms was effectively inhibited by the Vitremer and Vitrebond cements, and to a lesser extent by the Scotchbond Multi-Purpose adhesive system. Overall, there were statistically significant differences in the antibacterial activity of the products tested. PMID:11203829

  2. Indirect composite restorations luted with two different procedures: A ten years follow up clinical trial

    PubMed Central

    Preti, Alessandro; Vano, Michele; Derchi, Giacomo; Mangani, Francesco; Cerutti, Antonio

    2015-01-01

    Objectives: The aim of this clinical trial was to evaluate posterior indirect composite resin restoration ten years after placement luted with two different procedures. Study Design: In 23 patients 22 inlays/onlays (Group A) were luted using a dual-cured resin composite cement and 26 inlays/onlays (Group B) were luted using a light cured resin composite for a total of 48 Class I and Class II indirect composite resin inlays and onlays. The restorations were evaluated at 2 time points: 1) one week after placement (baseline evaluation) and 2) ten years after placement using the modified USPHS criteria. The Mann-Whitney and the Wilcoxon tests were used to examine the difference between the results of the baseline and 10 years evaluation for each criteria. Results: Numerical but not statistically significant differences were noted on any of the recorded clinical parameters (p>0.05) between the inlay/onlays of Group A and Group B. 91% and 94 % of Group A and B respectively were rated as clinically acceptable in all the evaluated criteria ten years after clinical function. Conclusions: Within the limits of the study the results showed after ten years of function a comparable clinical performance of indirect composite resin inlays/onlays placed with a light cure or dual cure luting procedures. Key words:Light curing composite, dual curing composite, indirect composite restoration, inlays/onlays, clinical trial. PMID:25810842

  3. Evaluation of metal bond strength to dentin and enamel using different adhesives and surface treatments.

    PubMed

    Dundar, Mine; Gungor, Mehmet Ali; Cal, Ebru; Darcan, Alev; Erdem, Adalet

    2007-01-01

    Because adherence of base metal alloys is important for the long-term clinical success of adhesive fixed partial dentures, it has been necessary to improve adhesion to metal substrate by using different surface treatments. This study used different surface conditioning methods and two different luting resins to evaluate the shear bond strength of base metal alloys to dentin and enamel. Sixty noncarious freshly extracted human teeth were mounted in a plastic holder filled with autopolymerized acrylic resin. After the roots were removed and 30 flat enamel and 30 flat dentin surfaces were exposed, the specimens were divided randomly into two main luting cement groups. Sixty nickel chromium (NiCr) metal specimens were fabricated and subjected to three different surface conditioning procedures: sandblasting with 50 microm aluminum oxide, tribochemical silica coating, and a combination of the two. Scanning electron mircoscopy (SEM) evaluations revealed mainly cohesive failures. Self-cure adhesive resulted in higher bond strengths to dental substrates. Higher bond strengths were achieved through a combination of sandblasting and tribochemical silica coating; however, further clinical research is required. A surface treatment that combines sandblasting with tribochemical silica coating can achieve a more effective bond for adhesive restorations with metal substrates. PMID:17511361

  4. Adhesion

    MedlinePlus

    ... adhesions Ovarian cyst References Munireddy S, Kavalukas SL, Barbul A. Intra-abdominal healing: gastrointestinal tract and adhesions. Surg Clin N Am Kulaylat MN, Dayton, MT. Surgical complications. In: Townsend CM Jr, Beauchamp RD, Evers BM, Mattox KL, ...

  5. Microleakage of Two Self-Adhesive Cements in the Enamel and Dentin After 24 Hours and Two Months

    PubMed Central

    Jaberi Ansari, Zahra; Kalantar Motamedi, Mojdeh

    2014-01-01

    Objective: Microleakage is a main cause of restorative treatment failure. In this study, we compared occlusal and cervical microleakage of two self-adhesive cements after 24 hours and two months. Materials and Methods: In this in-vitro experimental study, class II inlay cavities were prepared on 60 sound human third molars. Composite inlays were fabricated with Z100 composite resin. The teeth were randomly assigned to six groups. RelyX-Arc (control), RelyX-Unicem and Maxcem were used for the first three groups and specimens were stored in distilled water at 37°C for 24 hours. The same cements were used for the remaining three groups, but the specimens were stored for 2 months. The teeth were subjected to 500 thermal cycles (5°C and 55°C) and immersed in 0.5% basic fuchsin for 24 hours and then sectioned mesiodistally and dye penetration was evaluated in a class II cavity with occlusal and cervical margins using X20 magnification stereomicroscope. Data were analyzed using Kruskal Wallis and Mann-Whitney U tests. Results: After 24 hours, cements had significant differences only in cervical margin microleakage (P=0.0001) and microleakage of RelyX-Unicem and Maxcem was significantly more than that of RelyX-Arc (both P=0.0001). Cervical microleakage in RelyX-Unicem and Maxcem was greater than occlusal (P=0.0001 and P=0.001, respectively). Microleakage was not significantly different between the occlusal and cervical margins after 2 months. Conclusion: Cervical microleakage was greater than occlusal in RelyX-Unicem and Maxcem after 24h. The greatest microleakage was reported for the cervical margin of RelyX-Unicem after 24 hours. PMID:25584053

  6. Cementing porcelain-fused-to-metal crowns.

    PubMed

    Vadachkoria, D

    2009-12-01

    The clinical success of fixed prosthodontic restorations can be complex and involve multifaceted procedures. Preparation design, oral hygiene/micro flora, mechanical forces, and restorative materials are only a few of the factors which contribute to overall success. One key factor to success is choosing the proper cement. Popular use of cements for PFM crowns has shifted from zinc phosphate and glass ionomer cements to resin-reinforced glass ionomer, or RRGI, cements. This change has been rapid and profound. Dental cements have always been less than ideal materials, but this is shift to the relatively new RRGI category justified. Resin-reinforced glass ionomer (RRGI) cements appear to be better than zinc phosphate and glass ionomer cements when placing porcelain-to-metal crowns. RRGI cements, such as RelyX Luting, Fuji Plus and Vitremer Luting Cement, satisfy more of the ideal characteristics of PFM cementation than any other previous cement. Expansion of all three cements has not caused any apparent problems with the cements when used with PFM or metal crowns, but these cements, however, should be avoided when cementing all-ceramic crowns. PMID:20090144

  7. Effect of Cementation Technique of Individually Formed Fiber-Reinforced Composite Post on Bond Strength and Microleakage

    PubMed Central

    Makarewicz, Dominika; Le Bell-Rönnlöf, Anna-Maria B; Lassila, Lippo V.J.; Vallittu, Pekka K.

    2013-01-01

    Objectives: The aim of this study was to evaluate the effect of two different cementation techniques of individually formed E-glass fiber-reinforced composite (FRC) post on bond strength and microleakage. Methods: The crowns of extracted third molars were removed and post preparation was carried out with parapost drills (diameter 1.5 mm). After application of bonding agents individually formed FRC posts (everStick POST, diameter 1.5 mm) were cemented into the post spaces with either ParaCem®Universal or self-adhesive RelyX™Unicem, using two different cementation techniques: 1) an “indirect (traditional) technique” where the post was prepolymerized prior application of luting cement and insertion into the post space or 2) a “direct technique” where the uncured post was inserted to the post space with luting cement and light-polymerized in situ at the same time. After water storage of 48 hours, the roots (n = 10/group) were cut into discs of thickness of 2 mm. A push-out force was applied until specimen fracture or loosening of the post. A microleakage test was carried out on roots which were not subjected to the loading test (n= 32) to evaluate the sealing capacity of the post-canal interface. The microleakage was measured using dye penetration depth under a stereomicroscope. Results: Higher bond strength values (p<0.05) and less microleakage (p<0.05) were obtained with the “direct technique” compared to the “indirect technique”. None of the FRC posts revealed any dye penetration between the post and the cement. Conclusions: The “direct technique” seems to be beneficial when cementing individually formed FRC posts. PMID:23986792

  8. Adhesion/cementation to zirconia and other non-silicate ceramics: Where are we now?

    PubMed Central

    Thompson, Jeffrey Y; Stoner, Brian R.; Piascik, Jeffrey R.; Smith, Robert

    2010-01-01

    Non-silicate ceramics, especially zirconia, have become a topic of great interest in the field of prosthetic and implant dentistry. A clinical problem with use of zirconia-based components is the difficulty in achieving suitable adhesion with intended synthetic substrates or natural tissues. Traditional adhesive techniques used with silica-based ceramics do not work effectively with zirconia. Currently, several technologies are being utilized clinically to address this problem, and other approaches are under investigation. Most focus on surface modification of the inert surfaces of high strength ceramics. The ability to chemically functionalize the surface of zirconia appears to be critical in achieving adhesive bonding. This review will focus on currently available approaches as well as new advanced technologies to address this problem. PMID:21094526

  9. Heat treatment of pre-hydrolyzed silane increases adhesion of phosphate monomer-based resin cement to glass ceramic.

    PubMed

    de Carvalho, Rodrigo Furtado; Cotes, Caroline; Kimpara, Estevão Tomomitsu; Leite, Fabíola Pessoa Pereira; Özcan, Mutlu

    2015-01-01

    This study evaluated the influence of different forms of heat treatment on a pre-hydrolyzed silane to improve the adhesion of phosphate monomer-based (MDP) resin cement to glass ceramic. Resin and feldspathic ceramic blocks (n=48, n=6 for bond test, n=2 for microscopy) were randomly divided into 6 groups and subject to surface treatments: G1: Hydrofluoric acid (HF) 9.6% for 20 s + Silane + MDP resin cement (Panavia F); G2: HF 9.6% for 20 s + Silane + Heat Treatment (oven) + Panavia F; G3: Silane + Heat Treatment (oven) + Panavia F; G4: HF 9.6% for 20 s + Silane + Heat Treatment (hot air) + Panavia F; G5: Silane + Heat Treatment (hot air) + Panavia F; G6: Silane + Panavia F. Microtensile bond strength (MTBS) test was performed using a universal testing machine (1 mm/min). After debonding, the substrate and adherent surfaces were analyzed using stereomicroscope and scanning electron microscope (SEM) to categorize the failure types. Data were analyzed statistically using two-way test ANOVA and Tukey's test (=0.05). Heat treatment of the silane containing MDP, with prior etching with HF (G2: 13.15 ± 0.89a; G4: 12.58 ± 1.03a) presented significantly higher bond strength values than the control group (G1: 9.16 ± 0.64b). The groups without prior etching (G3: 10.47 ± 0.70b; G5: 9.47 ± 0.32b) showed statistically similar bond strength values between them and the control group (G1). The silane application without prior etching and heat treatment resulted in the lowest mean bond strength (G6: 8.05 ± 0.37c). SEM analysis showed predominantly adhesive failures and EDS analysis showed common elements of spectra (Si, Na, Al, K, O, C) characterizing the microstructure of the glass-ceramic studied. Heat treatment of the pre-hydrolyzed silane containing MDP in an oven at 100 °C for 2 min or with hot air application at 50 ± 5 ºC for 1 min, was effective in increasing the bond strength values between the ceramic and resin cement containing MDP. PMID:25672383

  10. [Cervical discrepancies and closeness of marginal fit of full cast crowns in correlation with the luting agent used].

    PubMed

    Utz, K H; Grüner, M; Vothknecht, R

    1989-11-01

    In an in-vitro study 75 extracted teeth were prepared with a chamfer and a 12 degree convergence angle. After corrective impression taking and preparation of the dies accurately fitting caps were made of "Stabilor G" alloy. The marginal defects were measured at 4 points on each tooth under the light-microscope before and after cementing with three different luting agents. Before cementation the mean values and standard deviation of the cervical discrepancies were 105 +/- 43 microns. The crowns fixed by means of zinc oxyphosphate cement (Harvard) exhibited marginal defects of 142 +/- 33 microns, those fixed with Fuji-Ionomer type I glass polyalkenoate cement had 159 +/- 20 microns, and the crowns cemented with Ketac-Cem had 127 +/- 6 microns. After exposing the specimens to thermal cycling, additional data on the sealing capacity of these cements could be obtained which showed zinc oxyphosphate cement to have the most favorable properties. PMID:2639008

  11. Biocompatibility of a flowable composite bonded with a self-etching adhesive compared with a glass lonomer cement and a high copper amalgam.

    PubMed

    Shimada, Yasushi; Seki, Yuichi; Sasafuchi, Yasutaka; Arakawa, Makoto; Burrow, Michael F; Otsuki, Masayuki; Tagami, Junji

    2004-01-01

    This study evaluated the pulpal response and in-vivo microleakage of a flowable composite bonded with a self-etching adhesive and compared the results with a glass ionomer cement and amalgam. Cervical cavities were prepared in monkey teeth. The teeth were randomly divided into three groups. A self-etching primer system (Imperva FluoroBond, Shofu) was applied to the teeth in one of the experimental groups, and the cavities were filled with a flowable composite (SI-BF-2001-LF, Shofu). In the other groups, a glass ionomer cement (Fuji II, GC) or amalgam (Dispersalloy, Johnson & Johnson) filled the cavity. The teeth were then extracted after 3, 30 and 90 days, fixed in 10% buffered formalin solution and prepared according to routine histological techniques. Five micrometer sections were stained with hematoxylin and eosin or Brown and Brenn gram stain for bacterial observation. No serious inflammatory reaction of the pulp, such as necrosis or abscess formation, was observed in any of the experimental groups. Slight inflammatory cell infiltration was the main initial reaction, while deposition of reparative dentin was the major long-term reaction in all groups. No bacterial penetration along the cavity walls was detected in the flowable composite or glass ionomer cement except for one case at 30 days in the glass ionomer cement. The flowable composite bonded with self-etching adhesive showed an acceptable biological com- patibility to monkey pulp. The in vivo sealing ability of the flowable composite in combination with the self-etching adhesive was considered comparable to glass ionomer cement. Amalgam restorations without adhesive liners showed slight bacterial penetration along the cavity wall. PMID:14753328

  12. [Cementable and adhesive pulpal pins as alternatives to self-threading screws].

    PubMed

    Dau, B; Albers, H K

    1989-11-01

    Self-threading retentive pins are to be disputed in case of the possible dentinal damage in form of cracks and craze patterns. For a short time two new pin systems are offered on the german market. The essential retention shall be attained by cementing or otherwise by gluing in the pin channel. It is obvious that the promised elimination of cracking and crazing stands in opposition to a significantly reduced retention in the dentin, compared to self-threading systems. A general dispensation of self-threading pins is therefore not to be recommended. PMID:2639541

  13. A Luting Technique for Passive Fit of Implant-Supported Fixed Dentures.

    PubMed

    Menini, Maria; Dellepiane, Elena; Pera, Paolo; Bevilacqua, Marco; Pesce, Paolo; Pera, Francesco; Tealdo, Tiziano

    2016-01-01

    Several factors contribute to distortion of implant prostheses during fabrication and could prevent passive, accurate adaptation between implants and implant frameworks. The misfit between implants and restorative components may be significant and possibly lead to biologic or mechanical complications. The aim of this article is to describe a laboratory luting technique used to lute implant cylinders to metal frameworks in implant prostheses. This technique provides accurate, passive fits. According to this technique, titanium implant cylinders provided with corresponding external castable cylinders are used. Implant cylinders are screwed into the analogs in the master cast while the castable cylinders on top are splinted together using castable resin to realize a castable resin pattern. After casting, the framework is adjusted and cemented to the titanium cylinders on the master cast. Due to its ease and quickness of use and clinical efficiencies, this technique is deemed particularly useful in immediate loading rehabilitations. PMID:25898912

  14. Effect of physicochemical properties of a cement based on silicocarnotite/calcium silicate on in vitro cell adhesion and in vivo cement degradation.

    PubMed

    Aparicio, Julia Lucas; Rueda, Carmen; Manchón, Ángel; Ewald, Andrea; Gbureck, Uwe; Alkhraisat, Mohammad Hamdan; Jerez, Luis Blanco; Cabarcos, Enrique López

    2016-01-01

    A silicon calcium phosphate cement (Si-CPC) was developed to produce a composite of calcium phosphate and calcium silicate. The silicon cements prepared with low silicon (Si) content were composed of crystalline phases of brushite and silicocarnotite. However, the cements prepared with high Si content were mainly composed of amorphous phases of silicocarnotite, hydroxyapatite and calcium silicate. The cement porosity was about 40% with a shift of the average pore diameter to the nanometric range with increasing Si content. Interestingly, this new cement system provides a matrix with a high specific surface area of up to 29 m(2) g(-1). The cytocompatibility of the new Si-doped cements was tested with a human osteoblast-like cell line (MG-63) showing an enhancement of cell proliferation (up to threefold) when compared with unsubstituted material. Cements with a high silica content also improved the cell attachment. The in vivo results indicated that Si-CPCs induce the formation of new bone tissue, and modify cement resorption. We conclude that this cement provides an optimal environment to enhance osteoblast growth and proliferation that could be of interest in bone engineering. PMID:27481549

  15. Evaluation of pH, ultimate tensile strength, and micro-shear bond strength of two self-adhesive resin cements.

    PubMed

    Costa, Luciana Artioli; Carneiro, Karina Kato; Tanaka, Auro; Lima, Darlon Martins; Bauer, José

    2014-01-01

    The aim of this study was to evaluate the pH, ultimate tensile strength (UTS), and micro-shear bond strength (µSBS) of two self-adhesive resin cements to enamel and dentin. Sound bovine incisors (n = 10) and two self-adhesive resin cements (i.e., RelyX U-100 and seT PP) were used. The pH of the resin cements was measured using a pH-indicator paper (n = 3). Specimens for UTS were obtained from an hourglass-shaped mold. For µSBS, cylinders with internal diameter of 0.75 mm and height of 0.5 mm were bonded to the flat enamel and dentin surfaces. Bonded cylinders were tested in the shear mode using a loop wire. The fracture mode was also evaluated. The cement seT PP showed a low pH; U-100 showed significantly higher UTS (49.9 ± 2.0) than seT PP (40.0 ± 2.1) (p < 0.05) and high µSBS to enamel (10.7 ± 3.7). The lowest µSBS was found for seT PP to dentin (0.7 ± 0.6); seT PP to enamel (4.8 ± 1.7), and for U-100 to dentin (7.2 ± 1.9), showing an intermediate µSBS value (p < 0.05). Adhesive failure was the most frequently observed failure mode. The resin cement that presented the lowest pH and UTS also presented the lowest micro-shear bond strength to enamel and dentin. PMID:25337932

  16. The effect of dentin desensitizers and Nd:YAG laser pre-treatment on microtensile bond strength of self-adhesive resin cement to dentin

    PubMed Central

    Tuncer, Duygu; Yuzugullu, Bulem; Celik, Cigdem

    2014-01-01

    PURPOSE The purpose of this study is to evaluate if pre-treatment with desensitizers have a negative effect on microtensile bond strength before cementing a restoration using recently introduced self-adhesive resin cement to dentin. MATERIALS AND METHODS Thirty-five human molars' occlusal surfaces were ground to expose dentin; and were randomly grouped as (n=5); 1) Gluma-(Glutaraldehyde/HEMA) 2) Aqua-Prep F-(Fluoride), 3) Bisblock-(Oxalate), 4) Cervitec Plus-(Clorhexidine), 5) Smart protect-(Triclosan), 6) Nd:YAG laser, 7) No treatment (control). After applying the selected agent, RelyX U200 self-adhesive resin cement was used to bond composite resin blocks to dentin. All groups were subjected to thermocycling for 1000 cycles between 5-55℃. Each bonded specimen was sectioned to microbars (6 mm × 1 mm × 1 mm) (n=20). Specimens were submitted to microtensile bond strength test at a crosshead speed of 0.5 mm/min. Kolmogorov-Smirnov, Levene's test, Kruskal-Wallis One-way Analysis of Variance, and Conover's nonparametric statistical analysis were used (P<.05). RESULTS Gluma, Smart Protect and Nd:YAG laser treatments showed comparable microtensile bond strengths compared with the control group (P>.05). The microtensile bond strengths of Aqua-Prep F, and Cervitec Plus were similar to each other but significantly lower than the control group (P<.05). Bisblock showed the lowest microtensile bond strength among all groups (P<.001). Most groups showed adhesive failure. CONCLUSION Within the limitation of this study, it is not recommended to use Aqua-prep F, Cervitec Plus and Bisblock on dentin when used with a self-adhesive resin cement due to the decrease they cause in bond strength. Beside, pre-treatment of dentin with Gluma, Smart protect, and Nd:YAG laser do not have a negative effect. PMID:24843392

  17. Shear Bond Strength of MDP-Containing Self-Adhesive Resin Cement and Y-TZP Ceramics: Effect of Phosphate Monomer-Containing Primers

    PubMed Central

    Ahn, Jin-Soo; Yi, Young-Ah; Lee, Yoon; Seo, Deog-Gyu

    2015-01-01

    Purpose. This study was conducted to evaluate the effects of different phosphate monomer-containing primers on the shear bond strength between yttria-tetragonal zirconia polycrystal (Y-TZP) ceramics and MDP-containing self-adhesive resin cement. Materials and Methods. Y-TZP ceramic surfaces were ground flat with #600-grit SiC paper and divided into six groups (n = 10). They were treated as follows: untreated (control), Metal/Zirconia Primer, Z-PRIME Plus, air abrasion, Metal/Zirconia Primer with air abrasion, and Z-PRIME Plus with air abrasion. MDP-containing self-adhesive resin cement was applied to the surface-treated Y-TZP specimens. After thermocycling, a shear bond strength test was performed. The surfaces of the Y-TZP specimens were analyzed under a scanning electron microscope. The bond strength values were statistically analyzed using one-way analysis of variance and the Student–Newman–Keuls multiple comparison test (P < 0.05). Results. The Z-PRIME Plus treatment combined with air abrasion produced the highest bond strength, followed by Z-PRIME Plus application, Metal/Zirconia Primer combined with air abrasion, air abrasion alone, and, lastly, Metal/Zirconia Primer application. The control group yielded the lowest results (P < 0.05). Conclusion. The application of MDP-containing primer resulted in increased bond strength between Y-TZP ceramics and MDP-containing self-adhesive resin cements. PMID:26539485

  18. Effect of different provisional cement remnant cleaning procedures including Er:YAG laser on shear bond strength of ceramics

    PubMed Central

    Zortuk, Mustafa; Gumus, Hasan Onder; Kilinc, Halil Ibrahim

    2012-01-01

    PURPOSE The purpose of this study was to evaluate the effect of provisional cement removal by different dentin cleaning protocols (dental explorer, pumice, cleaning bur, Er:YAG laser) on the shear bond strength between ceramic and dentin. MATERIALS AND METHODS In total, 36 caries-free unrestored human third molars were selected as tooth specimens. Provisional restorations were fabricated and cemented with eugenol-free provisional cement. Then, disc-shaped ceramic specimens were fabricated and randomly assigned to four groups of dentin cleaning protocols (n = 9). Group 1 (control): Provisional cements were mechanically removed with a dental explorer. Group 2: The dentin surfaces were treated with a cleaning brush with pumice Group 3: The dentin surfaces were treated with a cleaning bur. Group 4: The provisional cements were removed by an Er:YAG laser. Self-adhesive luting cement was used to bond ceramic discs to dentin surfaces. Shear bond strength (SBS) was measured using a universal testing machine at a 0.05 mm/min crosshead speed. The data were analyzed using a Kolmogorov Smirnov, One-way ANOVA and Tukey HSD tests to perform multiple comparisons (α=0.05). RESULTS The dentin cleaning methods did not significantly affect the SBS of ceramic discs to dentin as follows: dental explorer, pumice, cleaning bur, and Er:YAG laser. CONCLUSION The use of different cleaning protocols did not affect the SBS between dentin and ceramic surfaces. PMID:23236570

  19. Haemostatic agents on the shear bond strength of self-adhesive resin

    PubMed Central

    Anil, Akansha; Sekhar, Anand; Ginjupalli, Kishor

    2015-01-01

    Background Dentin surface contaminated with haemostatic agents can interfere with the bonding of self-adhesive resin cement. Therefore the purpose of this study was to evaluate the effect of various haemostatic agents such as Aluminium chloride, Ferric sulphate and Tannic acid on the shear bond strength of self-adhesive resin luting agent. Material and Methods The buccal surfaces of extracted premolars were flattened to expose the dentine. The teeth were then randomly divided into four groups. In Group I Aluminium Chloride was applied on the flattened dentinal surface, in Group II Ferric Sulphate was applied to exposed dentin surface, in Group III tannic acid was applied on to the dentinal surface, and the control group, i.e. Group IV was rinsed with saline. After the surface treatment, all the teeth were air dried. Then a predetermined dimension of RelyX™ U200 self-adhesive resin cement was bonded to the pretreated dentin surfaces. The samples were then stored under 370C in distilled water for 24 hours under 100 % humidity. Following this each sample was tested for shear bond strength with an Instron testing machine at a crosshead speed of 1mm/min. Results There was significant difference in the shear bond strength of control and tannic acid contaminated group (p<0.05), whereas there was no significant differences between the shear bond strength between control and aluminium chloride and ferric sulphate groups (p>0.05). Conclusions The usage of haemostatic agent can negatively affect the bond strength of self-adhesive resin cement (Rely X) on to the dentin surface. As per the study Tannic acid significantly weakened the bond between the self-adhesive resin and dentin. Key words:Aluminium chloride, Ferric sulphate, haemostatic agent, self-adhesive resin cement, shear bond strength, Tannic acid. PMID:26330930

  20. Relined fiberglass post: an ex vivo study of the resin cement thickness and dentin-resin interface.

    PubMed

    Souza, Niélli Caetano de; Marcondes, Maurem Leitão; Breda, Ricardo Vaz; Weber, João Batista Blessmann; Mota, Eduardo Gonçalves; Spohr, Ana Maria

    2016-01-01

    The aim of this study was to evaluate the thickness of resin cements in the root thirds when using conventional fiberglass posts (CP) and relined fiberglass posts (RP) in weakened roots and to evaluate the morphological characteristics of the dentin-resin interface. Forty human maxillary anterior teeth had the crown sectioned below the cemento-enamel junction. The canals were endodontically treated and weakened with diamond burs. Teeth were divided into four groups (n = 10): Group 1 - CP + RelyX ARC; Group 2 - CP + RelyX U200; Group 3 - RP + RelyX ARC; and Group 4 - RP + RelyX U200. Prior to luting, 0.1% Fluorescein and 0.1% Rhodamine B dyes were added to an adhesive and resin cement, respectively. Slices were obtained from the apical, middle, and cervical thirds of the root. Confocal laser scanning microscopy images were recorded in four areas (buccal, lingual, mesial, distal) of each third. In each area, four equidistant measures of the resin cement were made and the mean value was calculated. The interface morphology was observed. The data were submitted to three-way ANOVA and Tukey's test (α = 0.05). The interaction between fiberglass posts, resin cement, and root thirds was significant (p < 0.0001). The resin cement thicknesses were significantly lower for RP in comparison with CP, except in the apical third. There was no significant difference between the resin cements for RP. There was formation of resin cement tags and adhesive tags along the root for RP. RP favored the formation of thin and uniform resin cement films and resin tags in weakened roots. PMID:27556553

  1. EFFECT OF EUGENOL-BASED ENDODONTIC SEALER ON THE ADHESION OF INTRARADICULAR POSTS CEMENTED AFTER DIFFERENT PERIODS

    PubMed Central

    Dias, Larissa Lustosa Lima; Giovani, Alessandro Rogério; Sousa, Yara Teresinha Corrêa Silva; Vansan, Luiz Pascoal; Alfredo, Edson; Sousa-Neto, Manoel Damião; Paulino, Silvana Maria

    2009-01-01

    Objective: This study evaluated in vitro the influence of an eugenol-based sealer (EndoFill) on the retention of stainless steel prefabricated posts cemented with zinc phosphate and resin-based (Panavia F) cements after different periods of root canal obturation, using the pull-out test. Material and methods: Sixty upper canines were decoronated and the roots were embedded in resin blocks. The specimens were distributed into 3 groups, according to the period elapsed between canal obturation and post cementation: Group I - immediately; Group II - 72 h and Group III - 4 months. The groups were subdivided according to the type of cement used for post cementation: A - zinc phosphate and B - Panavia F. Following the experimental periods, specimens were subjected to pull- out test in an Instron machine with application of tensile force at a crosshead speed of 0.5 mm/min until post dislodgement. The maximum forces required for post removal were recorded (kN) and means were subjected to statistical analysis by 2-way ANOVA and Tukey-Kramer test (α=0.001) Results: There were statistically significant differences (p<0.01) between the posts cemented with zinc phosphate cement (0.2112 kN) and Panavia F (0.0501 kN). However, no statistically significant differences (p>0.05) were found between the three post cementation periods, regardless of the cement. Conclusions: It was concluded that the eugenol-based sealer influenced the tensile strength of the posts cemented with the resin cement, but had no influence on the time waited between root canal obturation and post space preparation/post cementation. PMID:20027430

  2. Cementation: methods and materials. Part two.

    PubMed

    Larson, Thomas D

    2013-01-01

    This is a review of the literature of the last 21 years about cementing or luting indirect restorations to tooth structure. Recommendations are made as to the surface preparation of precious metals, non-precious metals, indirect composite materials, and all available porcelain materials including feldspathic, luecite reinforced, lithium di-silicate, slip cast aluminum oxide, densely sintered aluminum oxide, and zirconia prior to luting. Using data from a variety of sources, product categories of materials and various bonding materials and procedures are ranked according to their bond strength and durability. PMID:24579257

  3. A Comparative Evaluation of the Effect of Resin based Sealers on Retention of Crown Cemented with Three Types of Cement – An In Vitro Study

    PubMed Central

    Sharma, Sumeet; Patel, J.R.; Sethuraman, Rajesh; Singh, Sarbjeet; Wazir, Nikhil Dev; Singh, Harvinder

    2014-01-01

    Aim: In an effort to control postoperative sensitivity, dentin sealers are being applied following crown preparations, with little knowledge of how crown retention might be affected. A previous study demonstrated no adverse effect when using a gluteraldehyde-based sealer, and existing studies have shown conflicting results for resin-based products. This study determined the retention of the casting cemented with three types of cement, with and without use of resin sealers and it determined the mode of failure. Materials and Methods: Extracted human molars (n=60) were prepared with a flat occlusal, 20-degree taper, and 4-mm axial length. The axial surface area of each preparation was determined and specimens were distributed equally among groups (n=10). A single-bottle adhesive system (one step single bottle adhesive system) was used to seal dentin, following tooth preparation. Sealers were not used on the control specimens. The test castings were prepared by using Ni-Cr alloy for each specimen and they were cemented with a seating force of 20 Kg by using either Zinc Phosphate (Harvard Cement), Glass Ionomer (GC luting and lining cement,GC America Inc.) and modified-resin cement (RelyXTMLuting2). Specimens were thermocycled for one month and were then removed along the path of insertion by using a Universal Testing Machine at 0.5 mm/min. A single-factor ANOVA was used with a p value of .05. The nature of failure was recorded and the data was analyzed by using Chi-square test. Results: Mean dislodgement stress for Zinc phosphate (Group A) was 24.55±1.0 KgF and that for zinc phosphate with sealer (Group D) was 14.65±0.8 KgF. For glass ionomer (Group B) without sealer, the mean value was 32.0±1.0 KgF and mean value for glass ionomer with sealer (Group E) was 37.90±1.0 KgF. The mean value for modified resin cement (Group C) was 44.3±1.0KgF and that for modified resins with sealer (Group F) was 57.2±1.2 KgF. The tooth failed before casting dislodgement in 8 to 10

  4. Effect of different surface treatments on shear bond strength of zirconia to three resin cements

    NASA Astrophysics Data System (ADS)

    Dadjoo, Nisa

    strengths for all three cements were observed with Scotchbond Universal surface treatment (p=0.0041). Calibra in combination with aluminum oxide air abrasion resulted in statistically lowest bond strength at 12.0 +/- 3.9 MPa. The predominant mode of failure was cohesive with cement remaining principally on the zirconium oxide samples in 57.5% of the specimens, followed by cement found on both the zirconium oxide samples and composite rods (mixed) in 32.5% of the samples. Only 10% of the specimens were found with cement on the composite rods (adhesive failure). Conclusions: Within the limitations of this in vitro study, the MDP-containing resin cement, Panavia SA, yielded the strongest bond to Y-TZP ceramic when compared to adhesive (RelyX Ultimate) or esthetic (Calibra) resin cements. Air abrasion particle + Scotchbond Universal surface treatment demonstrated the highest bond strength regardless of the cement. Significance: The variation of surface conditioning methods yielded different results in accordance with the cement types. Overall, Scotchbond Universal adhesive + air abrasion yielded the highest bond strengths among all three surface treatments. The phosphate monomer-containing luting system, Panavia SA, is acceptable for bonding to zirconia ceramics.

  5. In Vitro Fit and Cementation Resistance of Provisional Crowns for Single Implant-Supported Restorations.

    PubMed

    Moris, Izabela Cristina Maurício; Oliveira, Juliana Elias de; Faria, Adriana Cláudia Lapria; Ribeiro, Ricardo Faria; Rodrigues, Renata Cristina Silveira

    2015-10-01

    This study aimed to verify marginal fit and the effect of cement film thickness standardization on retention of provisional crowns made with prefabricated acrylic cylinders on abutments, using two temporary luting agents subjected or not to mechanical cycling. Provisional crowns were made from bis-acryl (Luxatemp Fluorescence) or methyl methacrylate (Duralay) resins on acrylic cylinders and marginal fit and cement film thickness were evaluated. For retention evaluation, crowns were cemented with two temporary luting agents: non-eugenol zinc oxide (Tempbond NE) or calcium hydroxide-based (Hydcal) cements and subjected to tensile strength in a universal testing machine. After cleaning, debonded crowns were cemented again, subjected to mechanical cycling and retention was reassessed. The results of marginal fit and cement film thickness were analyzed by Student's t-test while retention of cements before and after mechanical cycling was analyzed using a mixed linear model. Methyl methacrylate crowns presented greater marginal misfit (p=0.001) and occlusal cement film thickness (p=0.003) than the bis-acryl ones. No difference was observed at axial cement film thickness (p=0.606). Resins (p=0.281) did not affect crown retention, but luting agents (p=0.029) and mechanical cycling (p=0.027) showed significant effects. The only significant interaction was mechanical cycling*luting agents, which means that luting agents were differently affected by mechanical cycling (p=0.002). In conclusion, the results showed that bis-acryl resin associated to calcium-hydroxide luting agent provided the best retention and lower cement thickness. PMID:26647930

  6. Comparing the effect of a resin based sealer on crown retention for three types of cements: an in vitro study.

    PubMed

    Patel, Pankaj; Thummar, Mansukh; Shah, Dipti; Pitti, Varun

    2013-09-01

    To determine the effect of resin based sealer on retention of casting cemented with three different luting agents. 55 extracted molar teeth were prepared with a flat occlusal surface, 20° taper and 4 mm axial height. The axial surface of each specimen was determined. The specimen were then distributed into five groups based on decreasing surface area, so each cementation group contained 11 specimens with similar mean axial surface area. A two-step, single bottle universal adhesive system (One-Step-Resinomer, Bisco) was used to seal dentin after the tooth preparation. Sealer was not used on the control specimens except for the modified-resin cement (Resinomer, Bisco) specimens that required use of adhesive with cementation. Using ceramometal (Wirobond(®), BEGO), a casting was produced for each specimen and cemented with either zinc phosphate (Harvard), glass ionomer (Vivaglass) or modified resin cement (Resinomer) with single bottle adhesive. All the castings were cemented with a force of 20 kg. Castings were thermal cycled at 5 and 55 °C for 2,500 cycles and were then removed along the path of insertion using a universal testing machine at 0.5 mm/min. A single-factor ANOVA was used with a = 0.05. The nature of failure was also recorded. The mean stress removal for non sealed zinc phosphate, sealed zinc phosphate, non sealed glass ionomer, sealed glass ionomer and modified resin cement was found to be 3.56, 1.92, 2.40, 4.26, 6.95 MPa respectively. Zinc phosphate cement remained principally on the castings when the tooth surface was treated with the sealer and was found on both the tooth and the casting when the sealer was not used. Fracture of root before dislodgement was seen in 9 of 11 specimens with modified resin cement. Resin sealer decreases the retention of the castings when used with zinc phosphate and increases it when used with glass ionomer cement. The highest mean dislodgement force was measured with modified resin cement. PMID:24431752

  7. Diametral tensile strength and film thickness of an experimental dental luting agent derived from castor oil

    PubMed Central

    CARMELLO, Juliana Cabrini; FAIS, Laiza Maria Grassi; RIBEIRO, Lígia Nunes de Moraes; CLARO NETO, Salvador; GUAGLIANONI, Dalton Geraldo; PINELLI, Lígia Antunes Pereira

    2012-01-01

    The need to develop new dental luting agents in order to improve the success of treatments has greatly motivated research. Objective The aim of this study was to evaluate the diametral tensile strength (DTS) and film thickness (FT) of an experimental dental luting agent derived from castor oil (COP) with or without addition of different quantities of filler (calcium carbonate - CaCO3). Material and Methods Eighty specimens were manufactured (DTS N=40; FT N=40) and divided into 4 groups: Pure COP; COP 10%; COP 50% and zinc phosphate (control). The cements were mixed according to the manufacturers' recommendations and submitted to the tests. The DTS test was performed in the MTS 810 testing machine (10 KN, 0.5 mm/min). For FT test, the cements were sandwiched between two glass plates (2 cm2) and a load of 15 kg was applied vertically on the top of the specimen for 10 min. The data were analyzed by means of one-way ANOVA and Tukey's test (α=0.05). Results The values of DTS (MPa) were: Pure COP- 10.94±1.30; COP 10%- 30.06±0.64; COP 50%- 29.87±0.27; zinc phosphate- 4.88±0.96. The values of FT (µm) were: Pure COP- 31.09±3.16; COP 10%- 17.05±4.83; COP 50%- 13.03±4.83; Zinc Phosphate- 20.00±0.12. One-way ANOVA showed statistically significant differences among the groups (DTS - p=1.01E-40; FT - p=2.4E-10). Conclusion The experimental dental luting agent with 50% of filler showed the best diametral tensile strength and film thickness. PMID:22437672

  8. Bonding effectiveness of self-adhesive and conventional-type adhesive resin cements to CAD/CAM resin blocks. Part 2: Effect of ultrasonic and acid cleaning.

    PubMed

    Kawaguchi, Asuka; Matsumoto, Mariko; Higashi, Mami; Miura, Jiro; Minamino, Takuya; Kabetani, Tomoshige; Takeshige, Fumio; Mine, Atsushi; Yatani, Hirofumi

    2016-01-01

    The present study assessed the effect of ultrasonic and acid cleaning on resin cement bonding to CAD/CAM resin blocks. One of two resin cements, PANAVIA V5 (PV5) or PANAVIA SA CEMENT HANDMIX (PSA), were bonded to one of 24 CAD/CAM blocks (KATANA AVENCIA BLOCK). Each cement group was divided into four subgroups: no cleaning (Ctl), ultrasonic cleaning (Uc), acid cleaning (Ac) and Uc+Ac. Micro-tensile bond strengths (µTBSs) were measured immediately and 1, 3, and 6 months after water storage. Block surfaces after each treatment were analyzed by scanning electron microscopy. Analysis of variance revealed a statistically significant effect for the parameters 'surface treatment' (p<0.001, F=40), 'resin cement' (p<0.001, F=696) and 'water aging' (p<0.001, F=71). The PV5 group exhibited higher µTBS values than the PSA group. Although cleaning after sandblasting was effective in removing residual alumina particles, it did not affect the long-term bonding durability with non-contaminated CAD/CAM resin blocks. PMID:26830822

  9. Early resin luting material damage around a circular fiber post in a root canal treated premolar by using micro-computerized tomographic and finite element sub-modeling analyses.

    PubMed

    Chang, Yen-Hsiang; Lee, Hao; Lin, Chun-Li

    2015-11-01

    This study utilizes micro-computerized tomographic (micro-CT) and finite element (FE) sub-modeling analyses to investigate the micro-mechanical behavior associated with voids/bubbles stress behavior at the luting material layer to understand the early damage in a root canal treated premolar. 3-dimensional finite element (FE) models of a macro-root canal treated premolar and two sub-models at the luting material layer to provide the void/bubble distribution and dimensions were constructed from micro-CT images and simulated to receive axial and lateral forces. The boundary conditions for the sub-models were determined from the macro-premolar model results and applied in sub-modeling analysis. The first principal stresses for the dentin, luting material layer and post in macro-premolar model and for luting material void/bubble in sub-models were recorded. The simulated results revealed that the macro-premolar model dramatically underestimated the luting material stress because the voids/bubbles at the adhesive layer cannot be captured due to coarse mesh and high stress gradient and the variations between sub- and macro-models ranging from 2.65 to 4.5 folds under lateral load at the mapping location. Stress concentrations were found at the edge of the voids/bubbles and values over 20 MPa in sub-modeling analysis immediately caused the luting material failure/micro-crack. This study establishes that micro-CT and FE sub-modeling techniques can be used to simulate the stress pattern at the micro-scale luting material layer in a root canal treated premolar, suggesting that attention must be paid to resin luting material initial failure/debonding when large voids/bubbles are generated during luting procedures. PMID:26253208

  10. Bonding effectiveness of self-adhesive and conventional-type adhesive resin cements to CAD/CAM resin blocks. Part 1: Effects of sandblasting and silanization.

    PubMed

    Higashi, Mami; Matsumoto, Mariko; Kawaguchi, Asuka; Miura, Jiro; Minamino, Takuya; Kabetani, Tomoshige; Takeshige, Fumio; Mine, Atsushi; Yatani, Hirofumi

    2016-01-01

    The present study assessed the effect of sandblasting and silanization on resin cement bond strengths to CAD/CAM resin blocks. Twenty four blocks (KATANA AVENCIA BLOCK) were divided into two resin cement groups (PANAVIA V5 [PV5] and PANAVIA SA CEMENT HANDMIX [PSA]), and further divided into four subgroups representing different surface treatment methods: no treatment (Ctl), silanization (Si), sandblasting (Sb), and Sb+Si. After resin application, microtensile bond strengths (μTBSs) were measured immediately, 1, 3 and 6 months after water storage. In addition, surfaces resulting from each of the treatment methods were analyzed by scanning electron microscopy (SEM). Three-way analysis of variance revealed a statistically significant effect for the parameters 'surface treatment' (p<0.001, F=370), 'resin cement' (p<0.001, F=103, PSA

  11. Film Thickness and Flow Properties of Resin-Based Cements at Different Temperatures

    PubMed Central

    Bagheri, R

    2013-01-01

    Statement of Problem: For a luting agent to allow complete seating of prosthetic restorations, it must obtain an appropriate flow rate maintaining a minimum film thickness. The performance of recently introduced luting agents in this regard has not been evaluated. Purpose: To measure and compare the film thickness and flow properties of seven resin-containing luting cements at different temperatures (37°C, 25°C and10°C). Material and Methods: Specimens were prepared from five resin luting cements; seT (SDI), Panavia F (Kuraray), Varioloink II (Ivoclar), Maxcem (Kerr), Nexus2 (Kerr) and two resin-modified glass-ionomer luting cements (RM-GICs); GC Fuji Plus (GC Corporation), and RelyX Luting 2 (3 M/ESPE). The film thickness and flow rate of each cement (n=15) was determined using the test described in ISO at three different temperatures. Results: There was a linear correlation between film thickness and flow rate for most of the materials. Cooling increased fluidity of almost all materials while the effect of temperature on film thickness was material dependent. At 37°C, all products revealed a film thickness of less than 25µm except for GC Fuji Plus. At 25°C, all cements produced a film thickness of less than 27 µm except for seT. At 10°C, apart from seT and Rely X Luting 2, the remaining cements showed a film thickness smaller than 20 µm. Conclusion: Cooling increased fluidity of almost all materials, however. the film thickness did not exceed 35 µm in either condition, in spite of the lowest film thickness being demonstrated at the lowest temperature. PMID:24724120

  12. Pull-out bond strength of a self-adhesive resin cement to NaOCl-treated root dentin: effect of antioxidizing agents

    PubMed Central

    Kachuei, Marzieh

    2014-01-01

    Objectives This study evaluated the effect of three antioxidizing agents on pull-out bond strengths of dentin treated with sodium hypochlorite. Materials and Methods Root canals of 75 single-rooted human teeth were prepared. Fifteen teeth were irrigated with normal saline for a negative control group, and the remaining 60 teeth (groups 2 - 5) with 2.5% NaOCl. The teeth in group 2 served as a positive control. Prior to post cementation, the root canals in groups 3 - 5 were irrigated with three antioxidizing agents including 10% rosmarinic acid (RA, Baridge essence), 10% hesperidin (HPN, Sigma), and 10% sodium ascorbate hydrogel (SA, AppliChem). Seventy-five spreaders (#55, taper .02, Produits Dentaires S.A) were coated with silica and silanized with the Rocatec system and ceramic bond. All the prepared spreaders were cemented with a self-adhesive resin cement (Bifix SE, Voco Gmbh) in the prepared canals. After storage in distilled water (24 h/37℃), the spreaders were pulled out in a universal testing machine at a crosshead speed of 1.0 mm/min. Pull-out strength values were analyzed by one-way ANOVA and Tukey's HSD test (α = 0.05). Results There were significant differences between study groups (p = 0.016). The highest pull-out strength was related to the SA group. The lowest strength was obtained in the positive control group. Conclusions Irrigation with NaOCl during canal preparation decreased bond strength of resin cement to root dentin. Amongst the antioxidants tested, SA had superior results in reversing the diminishing effect of NaOCl irrigation on the bond strength to root dentin. PMID:24790921

  13. Assessment of the Shear Bond Strength between Nanofilled Composite Bonded to Glass-ionomer Cement Using Self-etch Adhesive with Different pHs and Total-Etch Adhesive

    PubMed Central

    Sharafeddin, Farahnaz; Choobineh, Mohammad Mehdi

    2016-01-01

    Statement of the Problem In the sandwich technique, the undesirable bond between the composite resin and glass-ionomer cement (GIc) is one of the most important factors which lead to the failure of restoration. Total-etch and self-etch adhesives may improve the bond strength based on their pH. Purpose The purpose of this study was to evaluate the shear bond strength between the nanofilled composite resin and GIc using different adhesives. Materials and Method In this experimental study, 40 specimens (6×6mm) in 4 groups (n=10) were prepared in acrylic mold. Each specimen contained conventional GI ChemFil Superior with a height of 3mm, bonded to Z350 composite resin with a height measured 3mm. In order to bond the composite to the GI, the following adhesives were used, respectively: A: mild Clearfil SE Bond self-etch (pH=2), B: intermediate OptiBond self-etch (pH=1.4), C: strong Adper Prompt L-Pop (pH=1), and D: Adper Single Bond 2 total-etch (pH=7.2). The shear bond strength was measured by using universal testing machine with a crosshead speed of 1mm/min. One-way ANOVA and Tukey’s test were used to analyze the data (p< 0.05). Results The shear bond strength in group A was significantly higher than group B (p= 0.002), C (p< 0.001), and D (p< 0.001). Moreover, the shear bond strength of groups A and B (self-etch) was significantly different from group D (total-etch) (p< 0.001); and C (self-etch) with D (p= 0.024). Conclusion The results of this study showed that applying the mild self-etch adhesive between the composite and the GIc results in stronger shear bond strength compared to intermediate and strong self-etch adhesives. Moreover, the self-etch adhesive increased the shear bond strength between composite resin and GIc more significantly than total-etch adhesive. PMID:26966701

  14. Comparative evaluation of fracture resistance of various post systems using different luting agents under tangential loading

    PubMed Central

    Aggarwal, Rajnish; Gupta, Swati; Tandan, Amrit; Gupta, Narendra Kumar; Dwivedi, Ravi; Aggarwal, Renu

    2013-01-01

    Objective The purpose of this in vitro study was to evaluate the fracture resistance of various post system using different luting agents under tangential loading after wet thermocycling. Material & methods Seventy freshly extracted maxillary central incisors were endodontically treated and post-spaces were prepared to receive different post system. They were assigned to 7 groups. Composite resin was used as core material in all the groups. Three type of post system: prefabricated post system (ParaPost® XP™), fibre post (ParaPost® fiber Lux™), cast nickel–chromium alloy post and two type of luting cements dual cure resin cement (ParaCem®, Whaledent) and glass ionomer cement (Fuji I, GC) were used. The specimens were thermocycled and subjected to tangential loading at a crosshead speed of 1.5 mm/min. The failure loads were recorded and data were statistically analyzed with one-way ANOVA (p < 0.05) and Student's t tests (p < 0.001). Results Significant differences of fracture resistance were detected among groups (p < 0.001). The greatest number of repairable fracture mode was recorded in fibre posts and resin cement system. Conclusions Within the limitations of this in vitro study, it can be stated that fibre posts can be recommended as a better alternative to the cast post and cores and prefabricated metallic posts in the anterior region and resin cement might give additional fracture resistance when used for post and crown cementation. PMID:25737886

  15. LUTE primary mirror materials and design study report

    NASA Technical Reports Server (NTRS)

    Ruthven, Greg

    1993-01-01

    The major objective of the Lunar Ultraviolet Telescope Experiment (LUTE) Primary Mirror Materials and Design Study is to investigate the feasibility of the LUTE telescope primary mirror. A systematic approach to accomplish this key goal was taken by first understanding the optical, thermal, and structural requirements and then deriving the critical primary mirror-level requirements for ground testing, launch, and lunar operations. After summarizing the results in those requirements which drove the selection of material and the design for the primary mirror are discussed. Most important of these are the optical design which was assumed to be the MSFC baseline (i.e. 3 mirror optical system), telescope wavefront error (WFE) allocations, the telescope weight budget, and the LUTE operational temperature ranges. Mechanical load levels, reflectance and microroughness issues, and options for the LUTE metering structure were discussed and an outline for the LUTE telescope sub-system design specification was initiated. The primary mirror analysis and results are presented. The six material substrate candidates are discussed and four distinct mirror geometries which are considered are shown. With these materials and configurations together with varying the location of the mirror support points, a total of 42 possible primary mirror designs resulted. The polishability of each substrate candidate was investigated and a usage history of 0.5 meter and larger precision cryogenic mirrors (the operational low end LUTE temperature of 60 K is the reason we feel a survey of cryogenic mirrors is appropriate) that were flown or tested are presented.

  16. Qualitative evaluation of the adesive interface between lithium disilicate, luting composite and natural tooth.

    PubMed

    Mobilio, Nicola; Fasiol, Alberto; Catapano, Santo

    2016-01-01

    Aim of this work was to qualitatively evaluate the interface between tooth, luting composite and lithium disilicate surface using a scanning electron microscope (SEM). An extracted restoration-free human molar was stored in physiological solution until it was embedded in an autopolimerysing acrylic resin. A standard preparation for overlay was completed and after preparation an anatomic overlay was waxed on the tooth and then hot pressed using lithium disilicate ceramic. After cementation the sample was dissected and the section was analysed using an Automatic Micromet (Remet s.a.s) and the section was analyzed using a scanning electron microscope (SEM). SEM evaluation of the tooth showed the three layers seamlessly; by increasing the enlargement the interface did not change. PMID:27486504

  17. Qualitative evaluation of the adesive interface between lithium disilicate, luting composite and natural tooth

    PubMed Central

    Mobilio, Nicola; Fasiol, Alberto; Catapano, Santo

    2016-01-01

    Summary Aim of this work was to qualitatively evaluate the interface between tooth, luting composite and lithium disilicate surface using a scanning electron microscope (SEM). An extracted restoration-free human molar was stored in physiological solution until it was embedded in an autopolimerysing acrylic resin. A standard preparation for overlay was completed and after preparation an anatomic overlay was waxed on the tooth and then hot pressed using lithium disilicate ceramic. After cementation the sample was dissected and the section was analysed using an Automatic Micromet (Remet s.a.s) and the section was analyzed using a scanning electron microscope (SEM). SEM evaluation of the tooth showed the three layers seamlessly; by increasing the enlargement the interface did not change. PMID:27486504

  18. Fracture Resistance of Teeth Restored with Various Post Designs and Cemented with Different Cements: An In-vitro Study

    PubMed Central

    Gaikwad, Ajay; Pal, Kapil Singh; Ranganath, L M; Jain, Jayesh Kumar; Patil, Prashanth; Babar, Geetika

    2015-01-01

    Background: Studies have been carried out on endodontically treated teeth restored with and without ferrule, and influence of the cementing medium, to evaluate their effect on fracture resistance. This study was conducted on 28 freshly extracted maxillary central incisors. Specimens were restored with two types of post designs, and cemented with two different luting agents, and tested for fracture resistance. Materials and Methods: A total of 28 freshly extracted maxillary central incisors were used. Specimens were restored with two types of post designs and cemented with two different luting agents and tested using Instron universal testing machine. The statistical analysis was performed using the Kruskal–Wallis test (H) and Tukey honest significant test. Results: Ferrule helped in increasing the fracture resistance of endodontically treated teeth. Resin cement showed better results than zinc phosphate cement. The combination of the post with ferrule and resin cement showed the greatest resistance. The combination of the post without ferrule and zinc phosphate cement showed the least resistance. Resin cement increased the resistance of even without ferrule. Conclusion: There was a positive effect of a ferrule in increasing the fracture resistance. Resin cement showed better resistance than zinc phosphate cement. PMID:26225102

  19. Effect of sandblasting, silica coating, and laser treatment on the microtensile bond strength of a dental zirconia ceramic to resin cements.

    PubMed

    Mahmoodi, Nasrin; Hooshmand, Tabassom; Heidari, Solmaz; Khoshro, Kimia

    2016-02-01

    The purpose of this in vitro study was to evaluate the effect of laser irradiation as well as other surface treatment methods on the microtensile bond strength of a dental zirconia ceramic to the two types of resin cements. Zirconia ceramic blocks (ICE Zirkon) were sintered according to the manufacturer's instructions and duplicated in resin composites. The ceramic specimens were divided into four groups according to the following surface treatments: no surface treatment (control), sandblasting with alumina, silica coating plus silanization, and Nd:YAG laser irradiation. The specimens were divided equally and then bonded with Panavia F2.0 (self-etching resin cement) and Clearfil SA Luting (self-adhesive resin cement) to the composite blocks. The bonded ceramic-composite blocks were stored in distilled water at 37 °C for 72 h, cut to prepare bar-shaped specimens with a bonding area of approximately 1 mm(2), and thermocycled for 3000 cycles between 5 and 55 °C, and the microtensile bond strengths were measured using a universal testing machine. The data were analyzed by ANOVA and Tukey post hoc test. The results showed that the self-adhesive resin cement used in this study did not improve the microtensile bond strength when the zirconia surface was sandblasted by alumina. The use of the Nd:YAG laser did not enhance the bond strength between the zirconia and both types of resin cements. In addition, silica coating of the zirconia surfaces plus silane application significantly improved the bond strength regardless of the type of resin cement utilized. PMID:26690357

  20. Retention of gold alloy crowns cemented with traditional and resin cements.

    PubMed

    Pinzón, Lilliam M; Frey, Gary N; Winkler, Mark M; Tate, William H; Burgess, John O; Powers, John M

    2009-01-01

    The aim of this study was to measure in vitro retention of cast gold crowns cemented with traditional and resin cements. Forty-eight human molars were prepared on a lathe to produce complete crown preparations with a consistent taper and split into six groups, eight crowns in each group. Crowns were cast in a high-gold alloy and then cemented. After 24 hours, the retention force (N) was recorded and mean values were analyzed by one-way analysis of variance and the Fisher post-hoc least significant difference (PLSD) multiple comparisons test (a = .05). Failure sites were examined under 3100 magnification and recorded. Mean values (SD) for each group in increasing order of retention force were: Harvard Cement: 43 N (27), TempoCem: 59 N (16), PermaCem Dual: 130 N (42), RelyX Luting Cement: 279 N (26), Contax and PermaCem Dual: 286 N (38), and TempoCem with Contax and PermaCem Dual: 340 N (14). The Fisher PLSD interval (P = .05) for comparing cements was 29 N. Zinc-phosphate cement and provisional resin cements had the lowest retention forces. Resin cement with a bonding agent and the hybrid-ionomer cement had similar retention forces. Resin cement with a bonding agent applied after use of a provisional resin cement had a significantly higher retention force than the other cements tested. PMID:19639070

  1. Strengthening of Porcelain Provided by Resin Cements and Flowable Composites.

    PubMed

    Spazzin, A O; Guarda, G B; Oliveira-Ogliari, A; Leal, F B; Correr-Sobrinho, L; Moraes, R R

    2016-01-01

    This study evaluated the effect of mechanical properties of resin-based luting agents on the strength of resin-coated porcelain. The luting agents tested were two flowable resin composites (Filtek Z350 Flow and Tetric-N Flow), a light-cured resin cement (Variolink Veneer [VV]), and a dual-cured resin cement (Variolink II) in either light-cured (base paste) or dual-cured (base + catalyst pastes [VD]) mode. Flexural strength (σf) and modulus of elasticity (Ef) of the luting agents were measured in three-point bending mode (n=5). Porcelain discs (Vita VM7) were tested either untreated (control) or acid etched, silanized, and coated with the luting agents. Biaxial flexural strength (σbf) of the porcelain discs was tested using a ball-on-ring setup (n=30). The σbf of the resin-coated specimens was calculated at z-axial positions for multilayer specimens in the ball-on-ring test: position z = 0 (ceramic surface at the bonded interface) and position z = -t2 (luting agent surface above ring). The σf and Ef data were subjected to analysis of variance and the Student-Newman-Keuls test (α=0.05). A Weibull analysis was performed for σbf data. Weibull modulus (m) and characteristic strength (σ0) were calculated. Linear regression analyses investigated the relationship between mechanical properties of the luting agents and the strengthening of porcelain. VD had higher and VV had lower mechanical strength than the other materials. At z = 0, all resin-coated groups had higher σbf than the control group. No significant differences between the luting agents were observed for σbf and σ0. At z = -t2, VD had the highest σbf and σ0, whereas VV had the poorest results. No significant differences in m were observed across groups. A linear increase in flexural strength of the porcelain was associated with increased σf and Ef of the luting agents at position z = -t2. In conclusion, resin coating and use of luting agents with better physical properties generally improved the

  2. Surface roughness and bond strength between Y-TZP and self-adhesive resin cement after air particle abrasion protocols.

    PubMed

    Sousa, Rafael Santiago de; Campos, Fernanda; Sarmento, Hugo Ramalho; Alves, Maria Luiza Lima; Dal Piva, Amanda Maria de Oliveira; Gondim, Laísa Daniel; Souza, Rodrigo Othávio Assunção

    2016-01-01

    The aim of this study was to evaluate the influence of different air particle abrasion (APA) protocols-with variations in particle types, duration of application, and the distance between the device tip and the ceramic-on the surface roughness (SR) of zirconia-based ceramic (yttria-stabilized tetragonal zirconia polycrystal [Y-TZP]) and the shear bond strength (SBS) between Y-TZP and resin cement. In total, 135 sintered Y-TZP blocks were polished and divided into 9 groups according to 3 factors: particle (alumina vs alumina coated with silica), duration (5 vs 10 seconds), and distance (contact vs 10 mm away). All 3 factors significantly influenced the SR values between the experimental groups and the control group. For SBS, only the particle type was a statistically significant factor. Results showed that air particle abrasion with silica-coated alumina resulted in higher SBS, even though the SR values associated with those groups were not the highest. PMID:27599282

  3. Lunar-Ultraviolet Telescope Experiment (LUTE) integrated program plan

    NASA Technical Reports Server (NTRS)

    Smith, Janice F. (Compiler); Forrest, Larry

    1993-01-01

    A detailed Lunar Ultraviolet Telescope Experiment (LUTE) program plan representing major decisions and tasks leading to those decisions for program execution are presented. The purpose of this task was to develop an integrated plan of project activities for the LUTE project, and to display the plan as an integrated network that shows the project activities, all critical interfaces, and schedules. The integrated network will provide the project manager with a frame work for strategic planning and risk management throughout the life of the project.

  4. Shear bond strength evaluation of resin composite bonded to three different liners: TheraCal LC, Biodentine, and resin-modified glass ionomer cement using universal adhesive: An in vitro study

    PubMed Central

    Deepa, Velagala L; Dhamaraju, Bhargavi; Bollu, Indira Priyadharsini; Balaji, Tandri S

    2016-01-01

    Aims: To compare and evaluate the bonding ability of resin composite (RC) to three different liners: TheraCal LC™ (TLC), a novel resin-modified (RM) calcium silicate cement, Biodentine™ (BD), and resin-modified glass ionomer cement (RMGIC) using an universal silane-containing adhesive and characterizing their failure modes. Materials and Methods: Thirty extracted intact human molars with occlusal cavity (6-mm diameter and 2-mm height) were mounted in acrylic blocks and divided into three groups of 10 samples each based on the liner used as Group A (TLC), Group B (BD), and Group C (RMGIC). Composite post of 3 mm diameter and 3 mm height was then bonded to each sample using universal adhesive. Shear bond strength (SBS) analysis was performed at a cross-head speed of 1 mm/min. Statistical Analysis Used: Statistical analysis was performed with one-way analysis of variance (ANOVA) and post hoc test using Statistical Package for the Social Sciences (SPSS) version 20. Results: No significant difference was observed between group A and group C (P = 0.573) while group B showed the least bond strength values with a highly significant difference (P = 0.000). The modes of failure were predominantly cohesive in Groups A and B (TLC and BD) while RMGIC showed mixed and adhesive failures. Conclusions: Hence, this present study concludes that the bond strength of composite resin to TLC and RMGIC was similar and significantly higher than that of BD following application of universal adhesive. PMID:27099425

  5. Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type

    PubMed Central

    2015-01-01

    PURPOSE The objective of this study was to evaluate the influence of various cement types on the stress distribution in monolithic zirconia crowns under maximum bite force using the finite element analysis. MATERIALS AND METHODS The models of the prepared #46 crown (deep chamfer margin) were scanned and solid models composed of the monolithic zirconia crown, cement layer, and prepared tooth were produced using the computer-aided design technology and were subsequently translated into 3-dimensional finite element models. Four models were prepared according to different cement types (zinc phosphate, polycarboxylate, glass ionomer, and resin). A load of 700 N was applied vertically on the crowns (8 loading points). Maximum principal stress was determined. RESULTS Zinc phosphate cement had a greater stress concentration in the cement layer, while polycarboxylate cement had a greater stress concentration on the distal surface of the monolithic zirconia crown and abutment tooth. Resin cement and glass ionomer cement showed similar patterns, but resin cement showed a lower stress distribution on the lingual and mesial surface of the cement layer. CONCLUSION The test results indicate that the use of different luting agents that have various elastic moduli has an impact on the stress distribution of the monolithic zirconia crowns, cement layers, and abutment tooth. Resin cement is recommended for the luting agent of the monolithic zirconia crowns. PMID:26816578

  6. Do resin cements influence the cuspal deflection of teeth restored with composite resin inlays?

    PubMed

    da Rosa, Helen C V; Marcondes, Maurem L; de Souza, Niélli C; Weber, João B B; Spohr, Ana M

    2015-04-01

    The aim of this study was to evaluate the influence of different resin cements on the cuspal deflection of endodontically treated teeth restored with composite resin inlays. Sixty upper premolars were randomly divided into five groups (n=12): 1 - sound teeth; 2 - cavity; 3 - Rely X ARC; 4 - RelyX Unicem; 5 - SeT. The teeth from groups 2, 3, 4 and 5 received a MOD preparation and endodontic treatment. Impressions were made with vinyl polysiloxane and poured using type IV die stone in groups 3, 4 and 5. Inlays with composite resin were built over each cast and luted with the resin cements. A 200 N load was applied on the occlusal surface, and cuspal deflection was measured using a micrometer. After 24 h, cuspal deflection was measured again using a 300 N load. The Student t-test showed that there was no statistically significant difference between the 200 N and 300 N occlusal loads only for the sound teeth group (p = 0.389) and the RelyX ARC group (p = 0.188). ANOVA and Tukey'test showed that the sound teeth had the lowest mean cuspal deflection, differing statistically from the other groups (p<0.05). The highest cuspal deflections were obtained in the SeT group and the cavity group, with no statistical difference between them. Intermediate values were obtained in RelyX ARC group and RelyX Unicem group, which differed statistically. The self-adhesive resin cements RelyX Unicem and SeT showed less capacity to maintain the stiffness of the tooth/restoration complex than the conventional resin cement RelyX ARC. PMID:25950160

  7. Cytotoxicity evaluation of five different dual-cured resin cements used for fiber posts cementation

    PubMed Central

    Dioguardi, M; Perrone, D; Troiano, G; Laino, L; Ardito, F; Lauritano, F; Cicciù, M; Muzio, L Lo

    2015-01-01

    Custom-cast posts and cores are usually used to treat endodontically treated teeth. However, several researches have underlined how these devices may be a much higher elastic modulus than the supporting dentine and the difference in the modulus could lead to stress concentrating in the cement lute, leading to failure. The role of the cement seems to play a fundamental role in order to transfer the strength during the chewing phases. Aim of this research is to record the rate of cytotoxicity of five different dual-cured resin cements used for fiber posts cementation. We tested the cytotoxicity of this five materials on MG63 osteoblast-like cells through two different methods: MTT ([3-4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide succinate) assay which tests for mitochondrial enzyme activity6 and xCELLigence® system. PMID:26309592

  8. Cytotoxicity evaluation of five different dual-cured resin cements used for fiber posts cementation.

    PubMed

    Dioguardi, M; Perrone, D; Troiano, G; Laino, L; Ardito, F; Lauritano, F; Cicciù, M; Muzio, L Lo

    2015-01-01

    Custom-cast posts and cores are usually used to treat endodontically treated teeth. However, several researches have underlined how these devices may be a much higher elastic modulus than the supporting dentine and the difference in the modulus could lead to stress concentrating in the cement lute, leading to failure. The role of the cement seems to play a fundamental role in order to transfer the strength during the chewing phases. Aim of this research is to record the rate of cytotoxicity of five different dual-cured resin cements used for fiber posts cementation. We tested the cytotoxicity of this five materials on MG63 osteoblast-like cells through two different methods: MTT ([3-4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide succinate) assay which tests for mitochondrial enzyme activity(6) and xCELLigence® system. PMID:26309592

  9. Push-out bond strength of fiber posts to root dentin using glass ionomer and resin modified glass ionomer cements

    PubMed Central

    PEREIRA, Jefferson Ricardo; da ROSA, Ricardo Abreu; SÓ, Marcus Vinícius Reis; AFONSO, Daniele; KUGA, Milton Carlos; HONÓRIO, Heitor Marques; do VALLE, Accácio Lins; VIDOTTI, Hugo Alberto

    2014-01-01

    Objective The purpose of this study was to assess the push-out bond strength of glass fiber posts to root dentin after cementation with glass ionomer (GICs) and resin-modified glass ionomer cements (RMGICs). Material and Methods Fifty human maxillary canines were transversally sectioned at 15 mm from the apex. Canals were prepared with a step back technique until the application of a #55 K-file and filled. Post spaces were prepared and specimens were divided into five groups according to the cement used for post cementation: Luting & Lining Cement; Fuji II LC Improved; RelyX Luting; Ketac Cem; and Ionoseal. After cementation of the glass fiber posts, all roots were stored at 100% humidity until testing. For push-out test, 1-mm thick slices were produced. The push-out test was performed in a universal testing machine at a crosshead speed of 0.5 mm/minute and the values (MPa) were analyzed by Kolmogorov-Smirnov and Levene's tests and by two-way ANOVA and Tukey's post hoc test at a significance level of 5%. Results Fiber posts cemented using Luting & Lining Cement, Fuji II LC Improved, and Ketac Cem presented the highest bond strength to root dentin, followed by RelyX Luting. Ionoseal presented the lowest bond strength values (P>0.05). The post level did not influence the bond strength of fiber posts to root dentin (P=0.148). The major cause of failure was cohesive at the cement for all GICs and RMGICs. Conclusions Except for Ionoseal, all cements provided satisfactory bond strength values. PMID:25004052

  10. Influence of glazed zirconia on dual-cure luting agent bond strength.

    PubMed

    Valentino, T A; Borges, G A; Borges, L H; Platt, J A; Correr-Sobrinho, L

    2012-01-01

    The current study evaluated the influence of a novel surface treatment that uses a low-fusing porcelain glaze for promoting a bond between zirconia-based ceramic and a dual-cure resin luting agent. Bond strengths were compared with those from airborne particle abrasion, hydrofluoric acid etching, and silanization-treated surfaces. Twenty-four yttrium-stabilized tetragonal zirconia (Cercon Smart Ceramics, Degudent, Hanau, Germany) discs were fabricated and received eight surface treatments: group 1: 110 μm aluminum oxide air-borne particle abrasion; group 2: 110 μm aluminum oxide airborne particle abrasion and silane; group 3: 50 μm aluminum oxide airborne particle abrasion; group 4: 50 pm aluminum oxide airborne particle abrasion and silane; group 5: glaze and hydrofluoric acid;group 6: glaze, hydrofluoric acid, and silane;group 7: glaze and 50 pm aluminum oxide airborne particle abrasion; and group 8: glaze,50 pm aluminum oxide airborne particle abrasion and silane. After treatment, Enforce resin cement (Dentsply, Caulk, Milford, DE, USA) was used to fill an iris cut from microbore Tygontubing that was put on the ceramic surface to create 30 cylinders of resin cement in each treatment group (n=30). Micro shear bond test-ing was performed at a cross head speed of 0.5mm/min. One-way analysis of variance, and multiple comparisons were made using Tukey's test (p<0.5). The bond strength was affected only by surface treatments other than silanization. The groups that utilized the low-fusing porcelain glaze with airborne particle abrasion or hydrofluoric acid showed bond strength values statistically superior to groups that utilized conventional airborne particle abrasion treatments with 50 or 110 pm aluminum oxide (p<0.001). The treatment that utilized low-fusing porcelain glaze and hydrofluoric acid showed bond strength values statistically superior to remaining groups (p<0.001). Treatment of zirconia ceramic surfaces with a glaze of low-fusing porcelain

  11. Effect of eugenol-containing temporary cements on bond strength of composite to dentin.

    PubMed

    Ganss, C; Jung, M

    1998-01-01

    The effect of temporary materials on shear bond strength of composite to dentin was investigated. Sixty previously impacted (caries-free) human third molars were embedded and sectioned horizontally at the pulp chamber and at the half of the crown. The samples were covered with ZOE, Temp Bond (eugenol-containing), Fermit, (temporary resin material, used without cementing) and Provicol, (eugenol-free, calcium hydroxide-containing). All specimens were stored in saline for 10 days. After mechanical cleaning the dentin was pretreated with a dentin bonding agent (Syntac), and the composite columns were applied. Debonding was performed using a Zwick Universal Testing Machine (cross-head speed 1.5 mm/min). The mode of failure was noted using a light microscope, and the thickness of the dentin at the composite/dentin interface was measured. The median shear bond strength values for the treated and control samples were: ZOE 7.46 MPa, Temp Bond 10.22 MPa, Fermit 6.49 MPa, Provicol 8.43 MPa, and control 10.06 MPa. No two groups were significantly different at the 0.05 level (one-way ANOVA and Scheffé test). In all groups the predominant mode of failure was adhesive and there was a slight tendency towards lower shear bond strength values at lower values for the thickness of the dentin. Under the conditions described the use of eugenol-containing temporary cements had no adverse effect on shear bond strength of a dual-curing composite luting cement to dentin. PMID:9573789

  12. Influence of Resin Cements on the Tension Force of Cast Frameworks Made by the Technique of Framework Cemented on Prepared Abutments.

    PubMed

    Perroni, Ana Paula; Gomes, Érica Alves; Bielemann, Amália Machado; Baseggio, Bruna; Federizzi, Leonardo; Spazzin, Aloísio Oro; dos Santos, Mateus Bertolini Fernandes

    2015-01-01

    This study evaluated the tension force of cast frameworks made by the technique of framework cemented on prepared abutments using two different resin cements. Forty multi-unit abutment analogs were individually fixed with chemically cured acrylic resin inside PVC cylinders using a parallelometer. Brass cylindrical abutments were tightened to the multi-unit abutments to be used as spacers and then castable UCLA abutments were positioned above. These abutments were cast with Ni-Cr and then divided into 4 groups (n=10): cemented with RelyX U100(r); cemented with RelyX U100(r) and simulation of acrylic resin polymerization process; cemented with Multilink(r); and cemented with Multilink(r) and simulation of acrylic resin polymerization process. Abutments were cemented according to manufacturers' instructions. In a universal testing machine, tensile strength was applied in the direction of the long axis of the abutments at 1 mm/min crosshead speed until displacement of the luted abutments was obtained. The values of maximum tensile force (N) required for the displacement of the luted abutments were tabulated and analyzed statistically by one-way ANOVA with a 95% confidence level. No statistically significant difference was found among the groups (p>0.05). There was an increase in mean tension force when the specimens were subjected to the simulation of acrylic resin polymerization process, but the results did not differ statistically. Both resin cements presented positive results as regards the retention of luted abutments on their respective multi-unit abutments. Both materials may be indicated for the technique of framework cemented on prepared abutments when professionals pursuit better adaptation of implant-supported frameworks. PMID:26312978

  13. Reconsidering glass-ionomer cements for direct restorations.

    PubMed

    Pitel, Mark L

    2014-01-01

    Glass-ionomer cements (GICs) have been used in dentistry for a number of applications, primarily as a base or liner under other direct filling materials or indirect restorative materials, for crown buildup/foundation restorations, or as luting cements for indirect restorations. However, GICs have many unique attributes that make them useful for either a full-contour restoration or sandwich/hybrid restorations where they are synergistic with composite resins. This article, which includes two brief case reports, discusses the potential advantages of GIC for some direct applications where composite resin or other materials may not be the most ideal choice. PMID:24571524

  14. 3D FEA of cemented glass fiber and cast posts with various dental cements in a maxillary central incisor.

    PubMed

    Madfa, Ahmed A; Al-Hamzi, Mohsen A; Al-Sanabani, Fadhel A; Al-Qudaimi, Nasr H; Yue, Xiao-Guang

    2015-01-01

    This study aimed to analyse and compare the stability of two dental posts cemented with four different luting agents by examining their shear stress transfer through the FEM. Eight three-dimensional finite element models of a maxillary central incisor restored with glass fiber and Ni-Cr alloy cast dental posts. Each dental post was luted with zinc phosphate, Panavia resin, super bond C&B resin and glass ionomer materials. Finite element models were constructed and oblique loading of 100 N was applied. The distribution of shear stress was investigated at posts and cement/dentine interfaces using ABAQUS/CAE software. The peak shear stress for glass fiber post models minimized approximately three to four times of those for Ni-Cr alloy cast post models. There was negligible difference in peak of shear stress when various cements were compared, irrespective of post materials. The shear stress had same trend for all cement materials. This study found that the glass fiber dental post reduced the shear stress concentration at interfacial of post and cement/dentine compared to Ni-Cr alloy cast dental post. PMID:26543733

  15. Hydroxyapatite Formation on a Novel Dental Cement in Human Saliva

    PubMed Central

    Engstrand, Johanna; Unosson, Erik; Engqvist, Håkan

    2012-01-01

    Dental materials have to meet high standards regarding mechanical strength and handling properties. There is however only a limited amount of research that has been devoted to natural formation of hydroxyapatite (HA) in contact with the materials. The objective of the current investigation was to study the surface reactions occurring in human salvia on a novel dental cement. Ceramir Crown & Bridge, a bioceramic luting agent intended for permanent cementation of conventional oral prosthetics, was evaluated by immersing discs made from the cement in human saliva and phosphate buffered saline (PBS) for seven days, after which they were dried and analyzed. The analytical methods used in order to verify HA formation on the surface were grazing incidence X-ray diffraction (GI-XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). All results showed that HA was formed on the surfaces of samples stored in saliva as well as on samples stored in PBS. The possibility of a dental luting cement to promote natural formation of HA at the tooth interface increases the stability and durability of the system and could help prevent secondary caries. PMID:23056955

  16. Waiting Time for Coronal Preparation and the Influence of Different Cements on Tensile Strength of Metal Posts

    PubMed Central

    Oliveira, Ilione Kruschewsky Costa Sousa; Arsati, Ynara Bosco de Oliveira Lima; Basting, Roberta Tarkany; França, Fabiana Mantovani Gomes

    2012-01-01

    This study aimed to assess the effect of post-cementation waiting time for core preparation of cemented cast posts and cores had on retention in the root canal, using two different luting materials. Sixty extracted human canines were sectioned 16 mm from the root apex. After cast nickel-chromium metal posts and cores were fabricated and luted with zinc phosphate (ZP) cement or resin cement (RC), the specimens were divided into 3 groups (n = 10) according to the waiting time for core preparation: no preparation (control), 15 minutes, or 1 week after the core cementation. At the appropriate time, the specimens were subjected to a tensile load test (0.5 mm/min) until failure. Two-way ANOVA (time versus cement) and the Tukey tests (P < 0.05) showed significantly higher (P < 0.05) tensile strength values for the ZP cement groups than for the RC groups. Core preparation and post-cementation waiting time for core recontouring did not influence the retention strength. ZP was the best material for intraradicular metal post cementation. PMID:22291705

  17. A new atraumatic method of removing fractured palatal root using endodontic H-files luted with resin modified glass ionomercement: A pilot study

    PubMed Central

    Kannan, V. Sadesh; Narayanan, G. R. Sathya; Ahamed, A. Saneem; Velavan, K.; Elavarasi, E.; Danavel, C.

    2014-01-01

    Purpose: The purpose of this study is to evaluate the efficacy of using endodontic H-files luted with Resin modified glass ionomer cement (RMGIC) in removing fractured palatal root. Materials and Methods: This study consists of 30 patients, of which 16 were males and 14 were females with a mean age of 36 years. In which, 19 were maxillary first molar and 11 were maxillary second molar. In that, 18 were fractured at the level of apical 1/3rd and 12 were at the level of apical 2/3rd. All cases were first tried with endodontic H-files, within few attempts, it was wedged tightly in the remaining pulp chamber with one or two clockwise direction and using sudden jerk with a downward pull the remnant part was removed. The cases, which fail to deliver after several attempts were taken up for study. After sufficient isolation with a rubber dam and the socket was dried using sterile gauze, under good lighting and vision again the same file was introduced, which was now luted with RMGIC, after 5 min of setting time, the same attempt using sudden jerk with a downward pull was given. Results: In those 30 cases, 20 cases were removed in the first few attempts using endodontic H-files. The 10 cases (7 cases were apical 2/3rd and 3 cases were of apical 1/3rd), which fails to come out were tried using endodontic H-files luted with RMGIC, in which 9 cases were successfully removed (90%) and 1 case of apical 1/3rd was again failed to come out. Conclusion: Even though, the number of cases were too small to come to a definitive conclusion, the encouraging result (90%) and technically easy, this is a novel method of removing fractured palatal root atraumatically and devoid of any complication. PMID:25210360

  18. [Antimicrobial activity of orthodontic band cements].

    PubMed

    Pavic, J; Arriagada, M; Elgueta, J; García, C

    1990-01-01

    The prevalence of enamel decalcification and caries beneath orthodontic bands, has indicated the need for a new enamel binding adhesive orthodontic cement. The purpose of this study was to evaluate the antimicrobial activity, in vitro, on Streptococcus mutans and Lactobacillus, acidophillus, of three materials used to cements the orthodontic bands. The cements studied were: Zinc phosphate cement, Glass-ionomer cement, and Policarboxylate cement. Thirty petri plates were seeded with S. mutans, and thirty with L. acidophillus; on each plate three pellet were placed, one of each cement studied. Petri plates were incubated under microaerophilic conditions at 37 C, and checked at 72 hrs. for Streptococcus, mutans, and four days for Lactobacillus acidophillus to evaluate the inhibition zone. The results were tabulated for each material. It was demonstrated that exists important variations in the antimicrobial properties of the materials studied, as in the microbial sensitivity to these cements. PMID:2135908

  19. An alternative method for cementing laminate restorations with a micropulse toothbrush.

    PubMed

    Kursoglu, Pinar; Motro, Pelin F Karagoz

    2014-12-01

    Because porcelain laminate veneers are fragile and thin, seating should be handled carefully, but complete seating is essential for a successful restoration. When a high-viscosity luting resin is chosen, high pressure will be needed to seat the veneer, which makes it possible to fracture the material with finger pressure. This technical report describes a straightforward and safe cementation technique for porcelain laminate veneers as well as for complete crown, inlay, and onlay restorations. PMID:25043287

  20. Physical properties of fixed prosthodontic, resin composite luting agents.

    PubMed

    White, S N; Yu, Z

    1993-01-01

    This study determined and compared physical properties of six fixed prosthodontic resin composite luting agents and one control. Inorganic filler content, compressive strength, diametral tensile strength, film thickness, and Knoop hardness were determined. The amounts of filler and the physical properties varied widely among materials. One material, which contained a minimal amount of filler, underwent so much plastic deformation that its strengths could not be measured. All other materials demonstrated high strengths. The materials with the least filler demonstrated the least resistance to indentation. The material with the lowest film thickness had not set at the time of measurement, 10 minutes after mixing. Most materials had unacceptable film thicknesses. Only one material demonstrated acceptable physical properties throughout the study. PMID:8240650

  1. Bone cement

    PubMed Central

    Vaishya, Raju; Chauhan, Mayank; Vaish, Abhishek

    2013-01-01

    The knowledge about the bone cement is of paramount importance to all Orthopaedic surgeons. Although the bone cement had been the gold standard in the field of joint replacement surgery, its use has somewhat decreased because of the advent of press-fit implants which encourages bone in growth. The shortcomings, side effects and toxicity of the bone cement are being addressed recently. More research is needed and continues in the field of nanoparticle additives, enhanced bone–cement interface etc. PMID:26403875

  2. Galileo's Lute and the Law of Falling Bodies

    NASA Astrophysics Data System (ADS)

    Thompson, Mark

    2008-05-01

    Galileo's Lute and the Law of Falling Bodies is an excerpt from Galileo 1610. Galileo 1610 is a dramatic, musical and intellectual odyssey back to the life and times of Galileo Galilei, the famous 17th century Italian scientist and philosopher. It commemorates the 400th anniversary of Galileo's discoveries with his telescope in 1610. Dressed in authentic Renaissance attire as Galileo, the author-- a cantorial soloist and amateur astronomer-- tells the fascinating story of "The Father of Modern Science,” drawing from the actual correspondence and writings of Galileo, as well as those of his many biographers. Through his dialogue with the audience on a wide range of discoveries and opinions, "Galileo” shares his wisdom and his life experiences with pathos, wit and humor, lacing his narration with entertaining lute songs from the late Renaissance period, some of which were actually composed by Galileo's father, Vincenzo. Bridging the past to the present, the author breathes life into "Galileo” as he once again frolics and struggles among us. In bringing forth some of life's great issues, we learn something about our own inquisitive nature, as well as that of science and music. The author has appeared as Galileo for over a decade on radio, at community theatres and libraries, public schools, colleges and universities throughout the country. He has performed for civic organizations, astronomy association conventions, marketing and outreach programs as well as private events and parties. Galileo 1610 is suitable for a variety of educational and entertainment programs, for both children and adults. All presentations are tailored to fit the interest, experience and size of the audience.

  3. In Vitro Evaluation of Planktonic Growth on Experimental Cement-Retained Titanium Surfaces

    PubMed Central

    Balci, Nur; Cakan, Umut; Aksu, Burak; Akgul, Oncu; Ulger, Nurver

    2016-01-01

    Background The purpose of this study was to compare the effects of selected cements, or their combination with titanium, on the growth of two periodontopathic bacteria: Prevotella intermedia (Pi) and Fusobacterium nucleatum (Fn). Material/Methods This study was comprised of several experimental groups: 1) Dental luting cements (glass ionomer cement, methacrylate-based resin cement, zinc-oxide eugenol cement, eugenol-free zinc oxide cement; 2) titanium discs; and 3) titanium combination cement discs. The disks were submerged in bacterial suspensions of either Fn or Pi. Planktonic bacterial growth within the test media was measured by determining the optical density of the cultures (OD600). Mean and standard deviations were calculated for planktonic growth from three separate experiments. Results Intergroup comparison of all experimental groups revealed increased growth of Pi associated with cement-titanium specimens in comparison with cement specimens. Regarding the comparison of all groups for Fn, there was an increased amount of bacterial growth in cement-titanium specimens although the increase was not statistically significant. Conclusions The combination of cement with titanium may exacerbate the bacterial growth capacity of Pi and Fn in contrast to their sole effect. PMID:27058704

  4. Effect of cement types on the tensile strength of metallic crowns submitted to thermocycling.

    PubMed

    Consani, Simonides; Santos, Julie Guzela dos; Correr Sobrinho, Lourenço; Sinhoreti, Mário Alexandre Coelho; Sousa-Neto, Manoel Damião

    2003-01-01

    The relationship between metallic cast crowns and tensile strength according to cement types submitted to thermocycling was studied. Seventy-two metallic crowns were cast with Verabond II Ni-Cr alloy and cemented in standardized preparations with 10 masculine tapering. Three types of finishing line (45-degree chamfered, 20-degree bevel shoulder and right shoulder) were made with diamond burs on bovine teeth. Twenty-four metallic crowns in each group were randomly subdivided into three subgroups of 8 samples each according to the cement used: SS White zinc phosphate cement, Vitremer resin-modified glass ionomer cement, and Rely X resin cement and were submitted to thermocycling. Retention was evaluated according to tensile load required to displace the metallic cast crowns from tooth preparations with an Instron testing machine. ANOVA and Tukey's test showed a statistically significant difference among luting materials, with greater results for Rely X resin cement (24.9 kgf) followed by SS White zinc phosphate cement (13.3 kgf) and Vitremer resin-modified glass ionomer cement (10.1 kgf). The finishing line types did not influence the tensile resistance of the crowns fixed with the three cements. Increased tensile resistance of metallic crowns fixed on bovine teeth was obtained with resin cement, independent of the finishing line types. PMID:15057396

  5. In Vitro Evaluation of Planktonic Growth on Experimental Cement-Retained Titanium Surfaces.

    PubMed

    Balci, Nur; Cakan, Umut; Aksu, Burak; Akgul, Oncu; Ulger, Nurver

    2016-01-01

    BACKGROUND The purpose of this study was to compare the effects of selected cements, or their combination with titanium, on the growth of two periodontopathic bacteria: Prevotella intermedia (Pi) and Fusobacterium nucleatum (Fn). MATERIAL AND METHODS This study was comprised of several experimental groups: 1) Dental luting cements (glass ionomer cement, methacrylate-based resin cement, zinc-oxide eugenol cement, eugenol-free zinc oxide cement; 2) titanium discs; and 3) titanium combination cement discs. The disks were submerged in bacterial suspensions of either Fn or Pi. Planktonic bacterial growth within the test media was measured by determining the optical density of the cultures (OD600). Mean and standard deviations were calculated for planktonic growth from three separate experiments. RESULTS Intergroup comparison of all experimental groups revealed increased growth of Pi associated with cement-titanium specimens in comparison with cement specimens. Regarding the comparison of all groups for Fn, there was an increased amount of bacterial growth in cement-titanium specimens although the increase was not statistically significant. CONCLUSIONS The combination of cement with titanium may exacerbate the bacterial growth capacity of Pi and Fn in contrast to their sole effect. PMID:27058704

  6. Cement disease.

    PubMed

    Jones, L C; Hungerford, D S

    1987-12-01

    Does "cement disease" exist? The bony environment surrounding a loosened cemented prosthesis is an abnormal pathologic condition which, if left unattended, will progress to a total failure of the joint including an inhibition of function and immobilizing pain. That biomaterial properties of the cement used for fixation also contribute to the pathologic state separates this disease from other modes of loosening. This leads inevitably to the conclusion that "cement disease" does exist. Methyl methacrylate has revolutionized the treatment of severe joint dysfunction. There can be no doubt that improving surgical technique, cement handling, and the cement itself will continue to improve the results and reduce the incidence of failure due to loosening. Cement is undoubtedly satisfactory for elderly patients with low activity levels and relatively short life expectancies. However, because of the inherent biologic and biomechanical properties of methyl methacrylate, it is unlikely that it can be rendered satisfactory in the long run for the young, the active, or the overweight patient, for whom alternatives are currently being sought. In such cases, the elimination of "cement disease" can only occur with the elimination of cement. Alternatives include the search for other grouting materials and the development of prostheses with satisfactory surfaces for either press-fit or biologic ingrowth. PMID:3315375

  7. Effect of composite surface treatment and aging on the bond strength between a core build-up composite and a luting agent

    PubMed Central

    COTES, Caroline; CARDOSO, Mayra; de MELO, Renata Marques; VALANDRO, Luiz Felipe; BOTTINO, Marco Antonio

    2015-01-01

    Objective The purpose of this study was to assess the influence of conditioning methods and thermocycling on the bond strength between composite core and resin cement. Material and Methods Eighty blocks (8×8×4 mm) were prepared with core build-up composite. The cementation surface was roughened with 120-grit carbide paper and the blocks were thermocycled (5,000 cycles, between 5°C and 55°C, with a 30 s dwell time in each bath). A layer of temporary luting agent was applied. After 24 h, the layer was removed, and the blocks were divided into five groups, according to surface treatment: (NT) No treatment (control); (SP) Grinding with 120-grit carbide paper; (AC) Etching with 37% phosphoric acid; (SC) Sandblasting with 30 mm SiO2 particles, silane application; (AO) Sandblasting with 50 mm Al2O3 particles, silane application. Two composite blocks were cemented to each other (n=8) and sectioned into sticks. Half of the specimens from each block were immediately tested for microtensile bond strength (µTBS), while the other half was subjected to storage for 6 months, thermocycling (12,000 cycles, between 5°C and 55°C, with a dwell time of 30 s in each bath) and µTBS test in a mechanical testing machine. Bond strength data were analyzed by repeated measures two-way ANOVA and Tukey test (α=0.05). Results The µTBS was significantly affected by surface treatment (p=0.007) and thermocycling (p=0.000). Before aging, the SP group presented higher bond strength when compared to NT and AC groups, whereas all the other groups were statistically similar. After aging, all the groups were statistically similar. SP submitted to thermocycling showed lower bond strength than SP without thermocycling. Conclusion Core composites should be roughened with a diamond bur before the luting process. Thermocycling tends to reduce the bond strength between composite and resin cement. PMID:25760269

  8. Contact area and static pressure profile at the plate-bone interface in the nonluted and luted bone plate.

    PubMed

    Staller, G S; Richardson, D W; Nunamaker, D M; Provost, M

    1995-01-01

    Contact area and pressure between 6-hole broad dynamic compression plates and 20 pairs of equine third metatarsal bones were measured using nonluted and luted plating techniques. Pressure-sensitive film (pressure ranges 10 to 50 MPa and 50 to 130 MPa) was used as the static pressure transducer. Nonluted and one of two luting techniques were tested on each pair of bones; each luting technique was tested on 20 bones. Quantitative determinations of contact area and pressure were made using computerized image processing techniques. Mean (+/- SD) total contact area for nonluted plates was 18.49% +/- 3.5% of the potential plate-bone contact area. Luting increased (P < .05) total contact area to 25.56% +/- 4.0% and 31.29% +/- 6.6% for the respective luting techniques. The effects of luting on contact area were dependent on the contact pressure. At contact pressure ranges 10 to 20 and 21 to 35 MPa, luting increased contact area. In contact pressure ranges 36 to 45 and 50 to 65 MPa, plate-bone contact was inherently greatest and plate luting had no significant effect on contact area. In contact pressure ranges 66 to 99 and 100 to 126 MPa, luting decreased contact area. Contact area was increased at lower contact pressures at the expense of higher pressure contact. Contact in the middle third of the plate was 20% to 40% of the contact at either end of the plate. Plate luting increased contact area best where plate-bone contour was most similar. PMID:7571381

  9. Measurement of transient and residual stresses during polymerization of bone cement for cemented hip implants.

    PubMed

    Nuño, N; Madrala, A; Plamondon, D

    2008-08-28

    The initial fixation of a cemented hip implant relies on the strength of the interface between the stem, bone cement and adjacent bone. Bone cement is used as grouting material to fix the prosthesis to the bone. The curing process of bone cement is an exothermic reaction where bone cement undergoes volumetric changes that will generate transient stresses resulting in residual stresses once polymerization is completed. However, the precise magnitude of these stresses is still not well documented in the literature. The objective of this study is to develop an experiment for the direct measurement of the transient and residual radial stresses at the stem-cement interface generated during cement polymerization. The idealized femoral-cemented implant consists of a stem placed inside a hollow cylindrical bone filled with bone cement. A sub-miniature load cell is inserted inside the stem to make a direct measurement of the radial compressive forces at the stem-cement interface, which are then converted to radial stresses. A thermocouple measures the temperature evolution during the polymerization process. The results show the evolution of stress generation corresponding to volumetric changes in the cement. The effect of initial temperature of the stem and bone as well as the cement-bone interface condition (adhesion or no adhesion) on residual radial stresses is investigated. A maximum peak temperature of 70 degrees C corresponds to a peak in transient stress during cement curing. Maximum radial residual stresses of 0.6 MPa in compression are measured for the preheated stem. PMID:18692188

  10. Cytotoxicity of temporary cements on bovine dental pulp-derived cells (bDPCs) using realtime cell analysis

    PubMed Central

    Demİr, Necla; Şengün, Abdulkadir; Bozkurt, Şerife Buket; Hakki, Sema Sezgin

    2015-01-01

    PURPOSE To evaluate the cytotoxicity of temporary luting cements on bovine dental pulp-derived cells (bDPCs). MATERIALS AND METHODS Four different temporary cements were tested: Rely X Temp E (3M ESPE), Ultratemp (Ultradent), GC Fuji Temp (GC), and Rely X Temp NE (3M ESPE). The materials were prepared as discs and incubated in Dulbecco's modified eagle's culture medium (DMEM) for 72 hours according to ISO 10993-5. A real-time cell analyzer was used to determine cell vitality. After seeding 200 µL of the cell suspensions into the wells of a 96-well plate, the bDPCs were cured with bioactive components released by the test materials and observed every 15 minutes for 98 hours. One-way ANOVA and Tukey-Kramer tests were used to analyze the results of the proliferation experiments. RESULTS All tested temporary cements showed significant decreases in the bDPCs index. Rely X Temp E, GC Fuji Temp, and Rely X Temp NE were severely toxic at both time points (24 and 72 hours) (P<.001). When the cells were exposed to media by Ultratemp, the cell viability was similar to that of the control at 24 hours (P>.05); however, the cell viability was significantly reduced at 72 hours (P<.001). Light and scanning electron microscopy examination confirmed these results. CONCLUSION The cytotoxic effects of temporary cements on pulpal tissue should be evaluated when choosing cement for luting provisional restorations. PMID:25722833

  11. Long-term monitoring of microleakage of dental cements by radiochemical diffusion

    SciTech Connect

    Powis, D.R.; Prosser, H.J.; Wilson, A.D.

    1988-06-01

    Radioactive /sup 14/C sucrose was found to be an ideal marker for microleakage because it did not penetrate tooth tissue, dental cement, or mounting resin. The main finding is that the adhesive cements--the glass-ionomer and polycarboxylate--are significantly more effective at preventing microleakage than are the traditional phosphate cements--silicate and zinc phosphate. The differences can be as high as two orders of magnitude. The adhesive cements provide almost perfect and reliable seals. By contrast, the nonadhesive cements are erratic sealants with most of the restorations leaking.

  12. RETENTIVENESS OF VARIOUS LUTING AGENTS USED WITH IMPLANT SUPPORTED- PROSTHESIS: AN INVITRO STUDY.

    PubMed

    Garg, Pooja; Pujari, Malesh L; D R, Prithviraj; Khare, Sumit

    2014-03-01

    Abstract ABSTRACT:Purpose: Desired retrievability of cemented implant-supported fixed prosthesis makes the retentive strength of cementing agents an important consideration. The aim of the study was to evaluate the retentiveness of purposely-designed implant cement and to compare its retentiveness with dental cements that are commonly used with implant systems.Materials and method: Ten implant analogs were embedded in auto-polymerizing acrylic resin blocks and titanium abutments were attached to them. 50 standardized copings were waxed directly on the abutment and casted. The cements used were: 1. resin-bonded zinc oxide eugenol cement (Kalzinol, DPI), 2. purposely-designed implant cement (Premier implant cement), 3. zinc phosphate cement (DeTrey Zinc, Dentsply), 4. zinc polycarboxylate cement (Poly-F, Dentsply) and 5. glass ionomer cement (GC Gold Label, GC corporation, Japan). After cementation, each sample was subjected to a pull-out test using universal testing machine and loads required to remove the crowns were recorded. The mean values and standard deviations of cement failure loads were analyzed using ANOVA and Bonferroni test.Results: The mean values (±SD) of loads at failure (n = 10) for various cements were as follows (N): resin-bonded zinc oxide eugenol cement 394.62 (±9.76), Premier implant cement 333.86 (±18.91), zinc phosphate cement 629.30 (±20.65), zinc polycarboxylate cement 810.08 (±11.52) and glass ionomer cement 750.17 (±13.78).Conclusions: The results do not suggest that one cement type is better than another, but they do provide a ranking order of the cements in their ability to retain the prosthesis and to facilitate its easy retrievability. PMID:24588463

  13. Effect of tightening torque on the marginal adaptation of cement-retained implant-supported fixed dental prostheses

    PubMed Central

    Ghanbarzadeh, Jalil; Dashti, Hossin; Karamad, Reza; Alikhasi, Marzieh; Nakhaei, Mohammadreza

    2015-01-01

    Background: The final position of the abutment changes with the amount of tightening torque. This could eventually lead to loss of passivity and marginal misfit of prostheses. The aim of this study was to evaluate the effect of three different tightening torques on the marginal adaptation of 3-unit cement-retained implant-supported fixed dental prostheses (FDPs). Materials and Methods: Two implants (Straumann) were inserted in an acrylic block so that one of the implants was placed vertically and the other at a 15° vertical angle. A straight abutment and a 15° angulated abutment were connected to the vertically and obliquely installed implants, respectively, so that the two abutments were parallel. Then, 10 cement-retained FDPs were waxed and cast. Abutments were tightened with 10, 20, and 35 Ncm torques, respectively. Following each tightening torque, FDPs were luted on respective abutments with temporary cement. The marginal adaptation of the retainers was evaluated using stereomicroscope. FDPs were then removed from the abutments and were sectioned at the connector sites. The retainers were luted again on their respective abutments. Luting procedures and marginal adaptation measurement were repeated. Data were analyzed by ANOVA and least significant difference tests (α = 0.05). After cutting the FDP connectors, the independent samples t-test was used to compare misfit values (α = 0.05). Results: Following 10, 20, and 35 Ncm tightening torques, the marginal discrepancy of the retainers of FDPs significantly increased (P < 0.05). There was no significant difference between the marginal discrepancies of these two retainers (P > 0.05). The marginal gap values of angulated abutment retainers (ANRs) were significantly higher than those of the straight abutment after cutting the connectors (P = 0.026). Conclusion: Within the limitations of this study, the marginal misfit of cement-retained FDPs increased continuously when the tightening torque increased. After

  14. Lunar cement

    NASA Technical Reports Server (NTRS)

    Agosto, William N.

    1992-01-01

    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  15. Effect of Provisional Cements on Shear Bond Strength of Porcelain Laminate Veneers

    PubMed Central

    Altintas, Subutay Han; Tak, Onjen; Secilmis, Asli; Usumez, Aslihan

    2011-01-01

    Objectives: The purpose of this study was to evaluate the effect of three provisional cements and two cleaning techniques on the final bond strength of porcelain laminate veneers. Methods: The occlusal third of the crowns of forty molar teeth were sectioned and embedded in autopolymerizing acrylic resin. Dentin surfaces were polished and specimens were randomly divided into four groups (n=10). Provisional restorations were fabricated and two provisional restorations were cemented onto each tooth. Restorations were fixed with one of three different provisional cements: eugenol-free provisional cement (Cavex), calcium hydroxide (Dycal), and light-cured provisional cement (Tempond Clear). Provisional restorations were removed with either a dental explorer and air-water spray, or a cleaning bur (Opticlean). In the control group, provisional restorations were not used on the surfaces of specimens. IPS Empress 2 ceramic discs were luted with a dual-cured resin cement (Panavia F). Shear bond strength was measured using a universal testing machine. Data were statistically analyzed by ANOVA, Tukey’s HSD and Dunnett tests. Surfaces were examined by scanning electronic microscopy. Results: Significant differences were found between the control group and both the light-cured provisional cement groups and the eugenol-free provisional cement-cleaning bur group (P<.05). Groups that had received light-cured provisional cement showed the lowest bond strength values. Conclusions: Selection of the provisional cement is an important factor in the ultimate bond strength of the final restoration. Calcium hydroxide provisional cement and cleaning with a dental explorer are advisable. PMID:21912495

  16. Retentiveness of various luting agents used with implant-supported prosthesis: an in vitro study.

    PubMed

    Garg, Pooja; Pujari, Malesh; Prithviraj, D R; Khare, Sumit

    2014-12-01

    Desired retrievability of cemented implant-supported fixed prosthesis makes the retentive strength of cementing agents an important consideration. The aim of the study was to evaluate the retentiveness of purposely designed implant cement and compare its retentiveness with dental cements that are commonly used with implant systems. Ten implant analogs were embedded in auto-polymerizing acrylic resin blocks and titanium abutments were attached to them. Fifty standardized copings were waxed directly on the abutment and casted. The cements used were: (1) resin-bonded zinc oxide eugenol cement, (2) purposely designed implant cement, (3) zinc phosphate cement, (4) zinc polycarboxylate cement, and (5) glass ionomer cement. After cementation, each sample was subjected to a pull-out test using universal testing machine and loads required to remove the crowns were recorded. The mean values and standard deviations of cement failure loads were analyzed using ANOVA and Bonferroni test. The mean values (± SD) of loads at failure (n = 10) for various cements were as follows (N): resin-bonded zinc oxide eugenol cement 394.62 (± 9.76), Premier implant cement 333.86 (± 18.91), zinc phosphate cement 629.30 (± 20.65), zinc polycarboxylate cement 810.08 (± 11.52), and glass ionomer cement 750.17 (± 13.78). The results do not suggest that one cement type is better than another, but they do provide a ranking order of the cements regarding their ability to retain the prosthesis and facilitate easy retrievability. PMID:25506659

  17. Sculpting with Cement.

    ERIC Educational Resources Information Center

    Olson, Lynn

    1983-01-01

    Cement offers many creative possibilities for school art programs. Instructions are given for sculpting with fiber-cement and sand-cement, as well as for finishing processes and the addition of color. Safety is stressed. (IS)

  18. Evaluation of the shear bond strength of resin cement to Y-TZP ceramic after different surface treatments.

    PubMed

    Shin, Yoo-Jin; Shin, Yooseok; Yi, Young-Ah; Kim, Jaehoon; Lee, In-Bog; Cho, Byeong-Hoon; Son, Ho-Hyun; Seo, Deog-Gyu

    2014-01-01

    The purpose of this study was to evaluate the effect of various surface treatments on the shear bond strength of Y-TZP (Yttria-Tetragonal Zirconia Polycrystal) ceramics with zirconia primer and two different resin cements both containing 10-methacryloyloxydecyl dihydrogen phosphate (MDP). Zirconia blocks (LAVA, 3M ESPE, St. Paul, MN) were polished and assigned to five groups according to the surface treatment: (1) no further treatment (control); (2) airborne abrasion with Al2 O3 particles; (3) Z-PRIME Plus (Bisco, Schaumburg, IL) applied on polished zirconia; (4) Z-PRIME Plus applied on zirconia after airborne abrasion; and (5) tribochemical silica-coating performed with the CoJet system (3M ESPE) followed by application of ESPE®-Sil (3M ESPE). Each group was further divided into one of two resin cements: Panavia F2.0 (Kuraray, Kurashiki, Okayama, Japan) and Clearfil SA Luting (Kuraray). Resin cement placed inside a gel-cap was polymerized on the zirconia surface. Shear bond strength was tested with a universal testing machine at 0.5 mm/min. One-way analysis of variance and paired t-test were done. (p < 0.05), and scanning electron microscope (SEM) images were taken. Zirconia primer applied after airborne abrasion significantly increased the shear bond strength resulting in the highest value for both resin cements. Control groups for both cements showed the weakest value for shear bond strength. No significant differences were found between the shear bond strengths of the individual resin cements applied to zirconia surfaces treated the same way. In conclusion, the combined surface treatment of airborne abrasion followed by a zirconia primer is recommended for zirconia bonding with Panavia F2.0 and Clearfil SA Luting cements. PMID:24676632

  19. Abdominal Adhesions

    MedlinePlus

    ... Abdominal Adhesions 1 Ward BC, Panitch A. Abdominal adhesions: current and novel therapies. Journal of Surgical Research. 2011;165(1):91– ... are abdominal adhesions and intestinal obstructions ... generally do not require treatment. Surgery is the only way to treat abdominal ...

  20. Marine Bioinspired Underwater Contact Adhesion.

    PubMed

    Clancy, Sean K; Sodano, Antonio; Cunningham, Dylan J; Huang, Sharon S; Zalicki, Piotr J; Shin, Seunghan; Ahn, B Kollbe

    2016-05-01

    Marine mussels and barnacles are sessile biofouling organisms that adhere to a number of surfaces in wet environments and maintain remarkably strong bonds. Previous synthetic approaches to mimic biological wet adhesive properties have focused mainly on the catechol moiety, present in mussel foot proteins (mfps), and especially rich in the interfacial mfps, for example, mfp-3 and -5, found at the interface between the mussel plaque and substrate. Barnacles, however, do not use Dopa for their wet adhesion, but are instead rich in noncatecholic aromatic residues. Due to this anomaly, we were intrigued to study the initial contact adhesion properties of copolymerized acrylate films containing the key functionalities of barnacle cement proteins and interfacial mfps, for example, aromatic (catecholic or noncatecholic), cationic, anionic, and nonpolar residues. The initial wet contact adhesion of the copolymers was measured using a probe tack testing apparatus with a flat-punch contact geometry. The wet contact adhesion of an optimized, bioinspired copolymer film was ∼15.0 N/cm(2) in deionized water and ∼9.0 N/cm(2) in artificial seawater, up to 150 times greater than commercial pressure-sensitive adhesive (PSA) tapes (∼0.1 N/cm(2)). Furthermore, maximum wet contact adhesion was obtained at ∼pH 7, suggesting viability for biomedical applications. PMID:27046671

  1. Gas chromatography/mass spectrometry characterization of historical varnishes of ancient Italian lutes and violin.

    PubMed

    Echard, J P; Benoit, C; Peris-Vicente, J; Malecki, V; Gimeno-Adelantado, J V; Vaiedelich, S

    2007-02-12

    The organic constituents of historical vanishes from two ancient Italian lutes and a Stradivari violin, kept in the Musée de la musique in Paris, have been characterized using gas chromatography-mass spectrometry. Results have been compared with the chromatograms and mass spectra of recent as well as old naturally aged reference materials. The three historical varnishes analyzed have been shown to be oil varnishes, probably mixtures of linseed oil with resins. Identification of diterpenoids and triterpenoids compounds, and of the resins that may have been ingredients of the varnishes, are discussed in this paper. PMID:17386601

  2. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-07-30

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, a comparison study of the three cement systems examined the effect that cement drillout has on the three cement systems. Testing to determine the effect of pressure cycling on the shear bond properties of the cement systems was also conducted. This report discusses testing that was performed to analyze the alkali-silica reactivity of ULHS in cement slurries.

  3. Effect of cements on fracture resistance of monolithic zirconia crowns

    PubMed Central

    Nakamura, Keisuke; Mouhat, Mathieu; Nergård, John Magnus; Lægreid, Solveig Jenssen; Kanno, Taro; Milleding, Percy; Örtengren, Ulf

    2016-01-01

    Abstract Objectives The present study investigated the effect of cements on fracture resistance of monolithic zirconia crowns in relation to their compressive strength. Materials and methods Four different cements were tested: zinc phosphate cement (ZPC), glass-ionomer cement (GIC), self-adhesive resin-based cement (SRC) and resin-based cement (RC). RC was used in both dual cure mode (RC-D) and chemical cure mode (RC-C). First, the compressive strength of each cement was tested according to a standard (ISO 9917-1:2004). Second, load-to-failure test was performed to analyze the crown fracture resistance. CAD/CAM-produced monolithic zirconia crowns with a minimal thickness of 0.5 mm were prepared and cemented to dies with each cement. The crown–die samples were loaded until fracture. Results The compressive strength of SRC, RC-D and RC-C was significantly higher than those of ZPC and GIC (p < 0.05). However, there was no significant difference in the fracture load of the crown between the groups. Conclusion The values achieved in the load-to-failure test suggest that monolithic zirconia crowns with a minimal thickness of 0.5 mm may have good resistance against fracture regardless of types of cements. PMID:27335900

  4. Abdominal Adhesions

    MedlinePlus

    ... Adhesions 1 Ward BC, Panitch A. Abdominal adhesions: current and novel therapies. Journal of Surgical Research. 2011;165(1):91–111. Seek Help for ... and how to participate, visit the NIH Clinical Research Trials and You website ... Foundation for Functional Gastrointestinal Disorders 700 West Virginia ...

  5. Orthodontic Cements and Demineralization: An In Vitro Comparative Scanning Electron Microscope Study

    PubMed Central

    Prabhavathi, V; Jacob, Josy; Kiran, M Shashi; Ramakrishnan, Murugesan; Sethi, Esha; Krishnan, C S

    2015-01-01

    Background: Comparison of the demineralization potential of four luting cements, i.e. zinc phosphate, conventional glass ionomer cement (GIC), resin-modified GIC and acid modified composite resin. Materials and Methods: This study was conducted on 75 extracted premolar teeth, which were grouped into five, each group containing 15 teeth. Groups were non-banded control, teeth cemented with the above-mentioned cements. These were incubated at 37°C for 30 days in sealable plastic containers, after which the teeth were debanded, cleaned and placed in acid gelatin solution at 37°C for 4 weeks to simulate the cariogenic solution. Then, the teeth were sectioned and examined under scanning electron microscope. The depth of the carious lesions was measured using image analysis with Digimizer software. Results: The depth of the carious lesions was maximum with non-banded group, followed by zinc phosphate, acid modified composite resin, resin-modified GIC and conventional GIC. Conclusions: Among the four orthodontic banding cements compared, the enamel demineralization potential is least with conventional GIC, followed by resin-modified GIC, acid modified composite resin and zinc phosphate. PMID:25859103

  6. Preliminary evaluation of adhesion strength measurement devices for ceramic/titanium matrix composite bonds

    NASA Technical Reports Server (NTRS)

    Pohlchuck, Bobby; Zeller, Mary V.

    1992-01-01

    The adhesive bond between ceramic cement and a titanium matrix composite substrate to be used in the National Aerospace Plane program is evaluated. Two commercially available adhesion testers, the Sebastian Adherence Tester and the CSEM REVETEST Scratch Tester, are evaluated to determine their suitability for quantitatively measuring adhesion strength. Various thicknesses of cements are applied to several substrates, and bond strengths are determined with both testers. The Sabastian Adherence Tester has provided limited data due to an interference from the sample mounting procedure, and has been shown to be incapable of distinguishing adhesion strength from tensile and shear properties of the cement itself. The data from the scratch tester has been found to be difficult to interpret due to the porosity and hardness of the cement. Recommendations are proposed for a more reliable adhesion test method.

  7. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-10-31

    The objective of this project is to develop an improved ultra- lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries.

  8. The Influence of Implant Abutment Surface Roughness and the Type of Cement on Retention of Implant Supported Crowns

    PubMed Central

    Reddy, M. Sushender; Reddy, C. Rajaneesh; Pithani, Padmaja; R, Santosh Kumar; Kulkarni, Ganesh

    2015-01-01

    Objectives: To provide relative data on the retentive characters of the commonly used cements on different implant abutment surfaces. Materials and Methods: A total of 20 implant abutments were divided into 2 groups. Ten implants were unaltered and ten were air borne particle abraded with 50μ aluminium oxide. Three luting agents (Tempbond, IRM and ImProv) were used to secure the crowns to abutments. All the crowns were removed from the abutment with an Instron machine at 0.5mm per minute and tensile bond strengths were recorded. Statistical analysis was performed using Anova, Paired t-test and Post-Hoc tests. Results: IRM showed the highest mean tensile strength among the three cements when used with treated and untreated implant abutment surfaces. Change in the abutment surface roughness had no effect on the mean tensile bond strength of TempBond and IRM cements, whereas ImProv cement showed reduced tensile strength with sandblasted surface. Conclusion: When increased retention is required IRM cement with either sandblasted or milled surface could be used and when retrievability is required cements of choice could be either TempBond or ImProv. PMID:25954694

  9. Clinical applications of glass-ionomer cements.

    PubMed

    McLean, J W

    1992-01-01

    The use of glass-ionomer cements in clinical dentistry is now well established. They have a number of unique properties, including adhesion to moist tooth structure, biological compatibility, and anticariogenic properties due to their fluoride release. Their use in treating early carious or erosion lesions has been widely investigated. Established techniques include fissure filling and sealing, restoration of class 5 erosion lesions without cavity preparation, and the internal occlusal fossa or tunnel restoration. The "sandwich" technique using glass-ionomer cements as "dentin substitutes" has enabled composite restorations to be used with greater safety where pulpal damage may occur. The future probably lies in using a laminate technique where materials that attach to dentin and form a biological seal can be covered by tougher and harder enamel veneers, thus mimicking the structure of the tooth. The deficiencies of glass-ionomer cements are well known, including lack of toughness, early water sensitivity, low abrasion resistance, and porosity leading to poor surface polish. Solving these problems is formidable, since inherently the strength of these cements is related to their water content. The clinician should be aware of these deficiencies and stay within the parameters of the techniques outlined in this paper. In particular, clinical success depends upon early protection of the cement from hydration or dehydration, and the current use of light-cured bonding agents has largely solved this problem. PMID:1470548

  10. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2001-04-15

    The objective of this project is to develop an improved ultra-lightweight cement using ultralight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Problems and Task 3: Test Ultra-Lightweight Cements. Results reported this quarter include a review and summary of Halliburton Energy Services (HES) and BJ Services historical performance data for lightweight cement applications. These data are analyzed and compared to ULHS cement and foamed cement performances. Similar data is expected from Schlumberger, and an analysis of this data will be completed in the following phases of the project. Quality control testing of materials used to formulate ULHS cements in the laboratory was completed to establish baseline material performance standards. A testing protocol was developed employing standard procedures as well as procedures tailored to evaluate ULHS and foamed cement. This protocol is presented and discussed. Results of further testing of ULHS cements are presented along with an analysis to establish cement performance design criteria to be used during the remainder of the project. Finally, a list of relevant literature on lightweight cement performance is compiled for review during the next quarter.

  11. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2001-07-18

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Issues, Task 2: Review Russian Ultra-Lightweight Cement Literature, Task 3: Test Ultra-Lightweight Cements, and Task 8: Develop Field ULHS Cement Blending and Mixing Techniques. Results reported this quarter include: preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; summary of pertinent information from Russian ultra-lightweight cement literature review; laboratory tests comparing ULHS slurries to foamed slurries and sodium silicate slurries for two different applications; and initial laboratory studies with ULHS in preparation for a field job.

  12. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-04-29

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, and shear bond. Testing to determine the effect of temperature cycling on the shear bond properties of the cement systems was also conducted. In addition, the stress-strain behavior of the cement types was studied. This report discusses a software program that is being developed to help design ULHS cements and foamed cements.

  13. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-10-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, a comparison study of the three cement systems examined the effect that cement drillout has on the three cement systems. Testing to determine the effect of pressure cycling on the shear bond properties of the cement systems was also conducted. This report discusses testing that will be performed for analyzing the alkali-silica reactivity of ULHS in cement slurries, as well as the results of Field Tests 1 and 2.

  14. Effects of nanocrystalline calcium deficient hydroxyapatite incorporation in glass ionomer cements.

    PubMed

    Goenka, Sumit; Balu, Rajkamal; Sampath Kumar, T S

    2012-03-01

    Glass ionomer cements (GICs) are clinically attractive filling materials often employed in the field of dentistry as restorative and luting materials. The present work aims to formulate bioactive nanocrystalline calcium deficient hydroxyapatite (nCDHA)-GIC composite cements with improved mechanical and resorption properties of the set cement than GICs. The nCDHA was synthesized via an accelerated microwave process and characterized by X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) methods. The synthesized nCDHA was mixed with GIC in different compositions (5, 10 and 15 wt%) maintaining the powder to liquid ratio. Cylinders of dimensions 8 mm height and 4 mm diameter were formed using a Teflon mold following a conventional cement forming technique. The XRD and FT-IR of the cylinders showed increased intensity and characteristic bands of CDHA with increase in nCDHA content. The surface cracks and the elemental composition of the set cements were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). Decreased surface hardness was observed for composite cements with increase in nCDHA addition. The cement cylinders were tested for ionic release in Millipore water (pH=7) via inductive coupled plasma (ICP) spectroscopy and in demineralization solution of pH=5 to find out the weight loss in an acidic environment at 37 °C performed periodically for 5 weeks. The ionic release percentage, weight loss and compressive strength were observed to increase with an increase in nCDHA addition. PMID:22340686

  15. Priming the tooth surface with chlorhexidine and antibacterial activity of resin cement

    PubMed Central

    Saini, Monika; Singh, Yashpal; Garg, Rishabh; Pandey, Anita

    2013-01-01

    AIM: To evaluate the effect of priming the tooth surface with 2% chlorhexidine gluconate on antibacterial activity of resin cement. METHODS: Ten patients in whom a single missing tooth was present on both the right and left side in the upper or lower arch were selected. Two fixed partial dentures (FPDs) in each patient on the right and left side were planned. Each FPD was assigned either to the control or test group. In the control group, FPD was luted with resin cement and in the test group, the tooth surface was primed with 2% chlorhexidine gluconate before luting with resin cement. Bacteriological samples were collected at base line level, as the patient came to the outpatient department before the start of any treatment, 5 wk prior to cementation of FPD and at 13 wk (8 wk after final cementation). Microbiological processing of all samples was done and the results were statistically analyzed. RESULTS: In the test group, a predominance of aerobic/facultative gram positive cocci rod was seen which indicates a healthy periodontal site, whereas in the control group, a predominance of anaerobic gram negative rods was present which indicates an unhealthy periodontal condition. This is evident by the fact that the anaerobic bacteria percentage in the control sample is 57% and 15% in the test sample after 13 wk, whereas the aerobic/facultative bacteria percentage is 43% in the control sample and 85% in the test sample after 13 wk. The percentage of gram negative bacteria in the control sample is 61% and in the test sample is 20% after 13 wk, whereas the percentage of gram positive bacteria in the control sample is 39% and in the test sample is 80% after 13 wk. The shift from anaerobic gram negative bacteria to aerobic gram positive bacteria is clearly seen from the control to test sample after 13 wk. CONCLUSION: The present study demonstrated that priming the tooth surface with 2% chlorhexidine gluconate may enhance antibacterial activity of the resin cement. PMID

  16. Polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, D. J.; Bell, V. L.; Saintclair, T. L. (Inventor)

    1974-01-01

    A process of preparing aromatic polyamide-acids for use as adhesives is described. An equimolar quantity of an aromatic dianhydride is added to a stirred solution of an aromatic diamine in a water or alcohol-miscible ether solvent to obtain a viscous polymer solution. The polymeric-acid intermediate polymer does not become insoluble but directly forms a smooth viscous polymer solution. These polyamic-acid polymers are converted, by heating in the range of 200-300 C and with pressure, to form polyimides with excellent adhesive properties.

  17. Adhesive materials and processing selection for environmentally conscious manufacturing

    SciTech Connect

    Tira, J.S.

    1995-06-01

    Manufacturers that use certain adhesives and related manufacturing processes must consider the impact they have on worker health, safety, and the environment. Product manufacturers must find alternate replacements for solvent-based adhesives and solvent cements. In addition, processes that use ozone-depleting solvents for hand-wipe cleaning operations as well as vapor degreasing must find suitable alternates in order to be environmentally compliant. Likewise, manufacturers that use etching solutions that contain chrome must find a replacement. This paper identifies some of the specific problems associated with using certain adhesives and manufacturing processes. Environmentally acceptable alternative adhesives and processes are presented.

  18. Abyssal seep site cementation

    SciTech Connect

    Neumann, A.C.; Paull, C.K.; Commeau, R.; Commeau, J.

    1988-01-01

    The deepest submarine cements known so far occur along the 3,300-m deep base of the Florida escarpment and are associated with methane-bearing brine seeps, which emanate there. These deep Holocene carbonates, which occur as surficial and buried crusts, burrow fillings, and friable horizons, were sampled via ALVIN. The carbonates form irregular halos extending up to 20 m from seeps colonized by chemosynthetic fauna. Mussels, gastropods, and clams, the carbonate components of the community, produce a shell hash that is locally cemented by coarsely crystalline low-Mg calcite. Halos of palisade calcite are reminiscent of ancient examples of marine cements. Also present are carbonate hemipelagics cemented by micrite into crusts and burrow fillings. The degree of cementation varies from pervasive to light. Slabs of cemented crust up to 30 cm thick contrast with typical shallow crusts and exhibit irregular tops and smooth bottoms indicating different chemical gradients and pathways.

  19. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-01-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. DOE joined the Materials Management Service (MMS)-sponsored joint industry project ''Long-Term Integrity of Deepwater Cement under Stress/Compaction Conditions.'' Results of the project contained in two progress reports are also presented in this report.

  20. Cements from nanocrystalline hydroxyapatite.

    PubMed

    Barralet, J E; Lilley, K J; Grover, L M; Farrar, D F; Ansell, C; Gbureck, U

    2004-04-01

    Calcium phosphate cements are used as bone substitute materials because they may be moulded to fill a void or defect in bone and are osteoconductive. Although apatite cements are stronger than brushite cements, they are potentially less resorbable in vivo. Brushite cements are three-component systems whereby phosphate ions and water react with a soluble calcium phosphate to form brushite (CaHPO4 x 2H2O). Previously reported brushite cement formulations set following the mixture of a calcium phosphate, such as beta-tricalcium phosphate (beta-TCP), with an acidic component such as H3PO4 or monocalcium phosphate monohydrate (MCPM). Due to its low solubility, hydroxyapatite (HA) is yet to be reported as a reactive component in calcium phosphate cement systems. Here we report a new cement system setting to form a matrix consisting predominantly of brushite following the mixture of phosphoric acid with nanocrystalline HA. As a result of the relative ease with which ionic substitutions may be made in apatite this route may offer a novel way to control cement composition or setting characteristics. Since kinetic solubility is dependent on particle size and precipitation temperature is known to affect precipitated HA crystal size, the phase composition and mechanical properties of cements made from HA precipitated at temperatures between 4 and 60 degrees C were investigated. PMID:15332608

  1. Evaluation of the marginal seal of CEREC 3D restorations using two different luting agents.

    PubMed

    Jahangiri, Leila; Agosta, Claudine; Estafan, Denise

    2007-01-01

    This in vitro study used two resin cements to evaluate the microleakage of CEREC 3D restorations. An mesio-occluso-distal-lingual (MODL) onlay preparation was placed on an ivorine premolar tooth. Sixty elastomeric impressions of this preparation were used to fabricate resin dies. Imaging propellant was applied to the resin dies. Optical impressions were taken with the CEREC 3 and the CEREC 3D software and used to design and mill 60 onlays. The reliability coefficient was alpha = 0.76 with an examiner agreement rate of 96.4%. Restorations cemented with posterior composite demonstrated a mean microleakage value of 1.46 mm (SD+/- 1.64); by contrast, those restored with dual-cure cement reported a mean microleakage value of 0.21 mm (SD+/-0.57). The difference in microleakage was very highly significant (alpha = 0.001). Posterior composite CEREC 3D restorations cemented with the dual-cure cement showed significantly less microleakage compared to those cemented with posterior composite. PMID:17333982

  2. An in vitro Comparative Evaluation of Micro Tensile Bond Strength of Two metal bonding Resin Cements bonded to Cobalt Chromium alloy

    PubMed Central

    Musani, Smita; Musani, Iqbal; Dugal, Ramandeep; Habbu, Nitin; Madanshetty, Pallavi; Virani, Danish

    2013-01-01

    Background: The purpose of this study was to evaluate and compare the micro tensile bond strength of two metal bonding resin cements to sandblasted cobalt chromium alloy. Materials & Methods: Eight, Cobalt chromium alloy blocks of dimensions 10x5x5 mm were cast, finished and polished. One of the faces of each alloy block measuring 5x5mm was sandblasted with 50 μm grit alumina particles. The alloy blocks were then cleaned in an ultrasonic cleaner for 1 min and then air dried with an air stream. The Sandblasted surfaces of the two alloy blocks were bonded together with 2 different metal bonding resin systems (Panavia F Kuraray and DTK Kleber – Bredent). The samples were divided into 2 groups (n=4). Group 1- Two Co-Cr blocks were luted with Panavia cement. Group 2- Two Co-Cr blocks were luted with DTK Kleber-Bredent cement. The bonded samples were cut with a diamond saw to prepare Microtensile bars of approximately 1mm x 1mm x 6mm. Thirty bars from each group were randomly separated into 2 subgroups (n=15) and left for 3hrs (baseline) as per manufacturer's instructions while the other group was aged for 24hrs in 370C water, prior to loading to failure under tension at a cross head speed of 1mm/min. Failure modes were determined by means of stereomicroscopy (sm). Statistical analysis was performed through one way – ANOVA. Results: Significant variation in micro-tensile bond strength was observed between the two metal bonding resin systems. Conclusion: DTK showed higher mean bond strength values than Panavia F cement both at baseline and after aging. How to cite this article: Musani S, Musani I, Dugal R, Habbu N, Madanshetty P, Virani D. An in vitro Comparative Evaluation of Micro Tensile Bond Strength of Two metal bonding Resin Cements bonded to Cobalt Chromium alloy. J Int Oral Health 2013;5(5):73-8. PMID:24324308

  3. A new adhesive technique for internal fixation in midfacial surgery

    PubMed Central

    Endres, Kira; Marx, Rudolf; Tinschert, Joachim; Wirtz, Dieter Christian; Stoll, Christian; Riediger, Dieter; Smeets, Ralf

    2008-01-01

    Background The current surgical therapy of midfacial fractures involves internal fixation in which bone fragments are fixed in their anatomical positions with osteosynthesis plates and corresponding screws until bone healing is complete. This often causes new fractures to fragile bones while drilling pilot holes or trying to insert screws. The adhesive fixation of osteosynthesis plates using PMMA bone cement could offer a viable alternative for fixing the plates without screws. In order to achieve the adhesive bonding of bone cement to cortical bone in the viscerocranium, an amphiphilic bone bonding agent was created, analogous to the dentin bonding agents currently on the market. Methods The adhesive bonding strengths were measured using tension tests. For this, metal plates with 2.0 mm diameter screw holes were cemented with PMMA bone cement to cortical bovine bone samples from the femur diaphysis. The bone was conditioned with an amphiphilic bone bonding agent prior to cementing. The samples were stored for 1 to 42 days at 37 degrees C, either moist or completely submerged in an isotonic NaCl-solution, and then subjected to the tension tests. Results Without the bone bonding agent, the bonding strength was close to zero (0.2 MPa). Primary stability with bone bonding agent is considered to be at ca. 8 MPa. Moist storage over 42 days resulted in decreased adhesion forces of ca. 6 MPa. Wet storage resulted in relatively constant bonding strengths of ca. 8 MPa. Conclusion A new amphiphilic bone bonding agent was developed, which builds an optimizied interlayer between the hydrophilic bone surface and the hydrophobic PMMA bone cement and thus leads to adhesive bonding between them. Our in vitro investigations demonstrated the adhesive bonding of PMMA bone cement to cortical bone, which was also stable against hydrolysis. The newly developed adhesive fixing technique could be applied clinically when the fixation of osteosynthesis plates with screws is impossible. With

  4. Porous Surface Modified Bioactive Bone Cement for Enhanced Bone Bonding

    PubMed Central

    Huang, Li; Dong, Jingjing; Guo, Dagang; Mao, Mengmeng; Kong, Liang; Li, Yang; Wu, Zixiang; Lei, Wei

    2012-01-01

    Background Polymethylmethacrylate bone cement cannot provide an adhesive chemical bonding to form a stable cement-bone interface. Bioactive bone cements show bone bonding ability, but their clinical application is limited because bone resorption is observed after implantation. Porous polymethylmethacrylate can be achieved with the addition of carboxymethylcellulose, alginate and gelatin microparticles to promote bone ingrowth, but the mechanical properties are too low to be used in orthopedic applications. Bone ingrowth into cement could decrease the possibility of bone resorption and promote the formation of a stable interface. However, scarce literature is reported on bioactive bone cements that allow bone ingrowth. In this paper, we reported a porous surface modified bioactive bone cement with desired mechanical properties, which could allow for bone ingrowth. Materials and Methods The porous surface modified bioactive bone cement was evaluated to determine its handling characteristics, mechanical properties and behavior in a simulated body fluid. The in vitro cellular responses of the samples were also investigated in terms of cell attachment, proliferation, and osteoblastic differentiation. Furthermore, bone ingrowth was examined in a rabbit femoral condyle defect model by using micro-CT imaging and histological analysis. The strength of the implant–bone interface was also investigated by push-out tests. Results The modified bone cement with a low content of bioactive fillers resulted in proper handling characteristics and adequate mechanical properties, but slightly affected its bioactivity. Moreover, the degree of attachment, proliferation and osteogenic differentiation of preosteoblast cells was also increased. The results of the push-out test revealed that higher interfacial bonding strength was achieved with the modified bone cement because of the formation of the apatite layer and the osseointegration after implantation in the bony defect. Conclusions

  5. Evaluation of the flexural strength of dual-cure composite resin cements.

    PubMed

    Duymus, Zeynep Yesil; Yanikoğlu, Nuran Dinckal; Alkurt, Murat

    2013-07-01

    The aim of this study was to evaluate of flexural strength of some adhesive resin cements. Three dual-cure composite resin cements (Nexus 3; Variolink II, Panavia F) were prepared. The manufacturer's mixing directions for the cements were followed. Adhesive resin cement was mixed, placed in the rectangular portion of the mold. Fifteen specimens were prepared for each cements. The cements were light-activated with light lamp for 40 s on both and top and bottom surfaces. The each cement specimens were divided into three groups according to time of storage and stored in distilled water for 24 h, 15, and 30 days. Total 45 specimens were stored at 37°C (98.6 0F) in distilled water for 24 h, 15, and 30 days prior to tests. The flexural strength was tested wıth a universal testing machine at a crosshead speed of 0.5 mm/min (0.02 in.) The maximum load was recorded as MPa. The results were analyzed by Analysis of Variance and Duncan test. The Panavia F resin cements content Bisphenol A was showed the highest flexural strength (80.80 MPa) (11.71 ksi) for 24 h. The lowest flexural strength was observed in Nexus 3 (51.00 MPa) (7.39 ksi). It was found significant interaction of material and time (p < 0.05). The types of cement and time of storage was statistically significant on the flexural strengths (p < 0.001). PMID:23359518

  6. Interfacial fracture toughness between bovine cortical bone and cements.

    PubMed

    Lucksanasombool, P; Higgs, W A J; Higgs, R J E D; Swain, M V

    2003-03-01

    To evaluate the bonding strength of the interfaces within the cemented arthroplasty system, various mechanical tests have been used. Conventional push-out and pull-out tests cannot reveal the actual bonding property of the interface because of the significant influence of surface roughness on the measured adhesion and the failure to account for the mismatch of elastic modulus across the interface. An alternative fracture mechanics approach, which considers the mix of opening and shear modes of the crack tip loading associated with the testing system and the elastic mismatch of materials across the interface, was used to evaluate the bonding ability of various cements. The four-point bend interfacial delamination test by Charalambides et al. (J. Appl. Mech. 56 (1989) 77; Mech. Mater. 8 (1990) 269) was used to quantify the bonding ability of cements. This method is arguably more suitable since the applied loading mode is comparable to the nature of loading within the prosthetic system, which is primarily bending. The bovine bone specimens were polished to mirror finish to eliminate bonding by mechanical interlocking. The results revealed minimal bonding for the conventional bone cement (PMMA) whereas substantial bonding was evident for the glass-ionomer cements tested. However, only the conventional glass-ionomer cements showed evidence of bonding on testing, while the resin-modified glass-ionomer cement (poly-HEMA) did not. The latter appeared to debond before testing because of excessive expansion stresses associated with swelling in water. PMID:12527256

  7. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2004-01-30

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries.

  8. Bonding of Resin Cement to Zirconia with High Pressure Primer Coating

    PubMed Central

    Wang, Ying-jie; Jiao, Kai; Liu, Yan; Zhou, Wei; Shen, Li-juan; Fang, Ming; Li, Meng; Zhang, Xiang; Tay, Franklin R.; Chen, Ji-hua

    2014-01-01

    Objectives To investigate the effect of air-drying pressure during ceramic primer coating on zirconia/resin bonding and the surface characteristics of the primed zirconia. Methods Two ceramic primers (Clearfil Ceramic Primer, CCP, Kuraray Medical Inc. and Z-Prime Plus, ZPP, Bisco Inc.) were applied on the surface of air-abraded zirconia (Katana zirconia, Noritake) and dried at 4 different air pressures (0.1–0.4 MPa). The primed zirconia ceramic specimens were bonded with a resin-based luting agent (SA Luting Cement, Kuraray). Micro-shear bond strengths of the bonded specimens were tested after 3 days of water storage or 5,000× thermocycling (n = 12). Failure modes of the fractured specimens were examined with scanning electron miscopy. The effects of air pressure on the thickness of the primer layers and the surface roughness (Sa) of primed zirconia were evaluated using spectroscopic ellipsometry (n = 6), optical profilometry and environmental scanning electron microscopy (ESEM) (n = 6), respectively. Results Clearfil Ceramic Primer air-dried at 0.3 and 0.4 MPa, yielding significantly higher µSBS than gentle air-drying subgroups (p<0.05). Compared to vigorous drying conditions, Z-Prime Plus air-dried at 0.2 MPa exhibited significantly higher µSBS (p<0.05). Increasing air-drying pressure reduced the film thickness for both primers. Profilometry measurements and ESEM showed rougher surfaces in the high pressure subgroups of CCP and intermediate pressure subgroup of ZPP. Conclusion Air-drying pressure influences resin/zirconia bond strength and durability significantly. Higher air-drying pressure (0.3-0.4 MPa) for CCP and intermediate pressure (0.2 MPa) for ZPP are recommended to produce strong, durable bonds between resin cement and zirconia ceramics. PMID:24992678

  9. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-01-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems: foamed and sodium silicate slurries. Comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, water permeability, and shear bond. Testing was also done to determine the effect that temperature cycling has on the shear bond properties of the cement systems. In addition, analysis was carried out to examine alkali silica reactivity of slurries containing ULHS. Data is also presented from a study investigating the effects of mixing and pump circulation on breakage of ULHS. Information is also presented about the field application of ULHS in cementing a 7-in. intermediate casing in south Texas.

  10. Effect of Desensitising Laser Treatment on the Bond Strength of Full Metal Crowns: An In Vitro Comparative Study

    PubMed Central

    Kumar, Sanajay; Rupesh, P L; Daokar, Sadashiv G; (Yadao), Anita Kalekar; Ghunawat, Dhananjay B; (Sayed), Sadaf Siddiqui

    2015-01-01

    Background: Dentinal hypersensitivity is a very common complaint of patients undergoing crown and bridge restorations on vital teeth. Of the many desensitizing agents used to counter this issue, desensitizing laser treatment is emerging as one of the most successful treatment modality. However, the dentinal changes brought about by the desensitizing laser application could affect the bond strength of luting cements. Materials and Methods: Freshly extracted 48 maxillary first premolars, which were intact and morphologically similar were selected for the study. The specimens were divided into two groups, an untreated the control group and a desensitizing laser-treated group, which were exposed to Erbium, Chromium: Yttrium, Selenium, Galium, Garnet laser at 0.5 W potency for 15 s. Each of the above two groups were again randomly divided into two subgroups, on to which full veneer metal crowns, which were custom fabricated were luted using glass-ionomer and resin luting cements, respectively. Tensile bond strength of the luting cements was evaluated with the help of a Universal Testing Machine. Statistical analysis of the values were done using descriptive, independent samples’ test, and two-way ANOVA test. Results: The tensile bond strength of crowns luted on desensitizing laser treated specimens using self-adhesive resin cement showed a marginal increase in bond strength though it was not statistically significant. Conclusion: The self-adhesive resin cements could be recommended as the luting agent of choice for desensitizing laser treated abutment teeth, as it showed better bond strength. PMID:26229368

  11. In-vitro study of resin-modified glass ionomer cements for cementation of orthodontic bands. Isolation, surplus removal and humidity as factors influencing the bond strength between enamel, cement and metal.

    PubMed

    Liebmann, S M; Jost-Brinkmann, P G

    1999-01-01

    The aim of this in vitro study was to investigate different light-cured and chemically cured resin-modified glass ionomer cements used for the cementation of orthodontic bands and to analyze various factors influencing the adhesive strength between enamel, cement and stainless steel. Four resin-modified glass ionomers (Fuji Ortho LC/GC, Fuji Duet/GC, Unitek Multi-Cure Glass Ionomer Orthodontic Band Cement/3M Unitek, Vitremer/3M) and 1 compomer (Band-Lok/Reliance) were examined. Flattened and polished bovine teeth embedded in polyurethane resin were used as enamel specimens. Before cementation, 50% of the specimens were moistened with the aerosol of an inhalation device, while the rest were dried with compressed air. Stainless steel cylinders (CrNi 18 10) were perpendicularly bonded onto the polished enamel using a custom-made cementation device and immediately topped with a pressure of 0.25 MPa. The cement was isolated with either Ketac Glaze/ESPE, Fuji Coat/GC, Cacao Butter/GC, Dryfoil/Jalenko or Final Varnish/VOCO, or was left uncoated. Eight minutes after the beginning of mixing, either the surplus cement was removed with a scalpel or surplus removal was simulated with ultrasound. After 24 hours storage in a water bath at 37 degrees C and 1,000 thermocycles the shear bond strength was determined. Significant differences with respect to the shear bond strength were found among the following cements, ranking from highest to lowest: Fuji Duet, Unitek cement > Fuji Ortho LC > Vitremer > Band-Lok. The application of a barrier coating significantly increased the shear bond strength of all cements except Fuji Ortho LC. The light-cured resin Ketac Glaze proved to be the most effective barrier coating. A dry enamel surface increased the bond strength of all investigated cements except Unitek cement. The use of ultrasound led to no significant reduction in shear bond strength in comparison with surplus removal with a scalpel. PMID:10546417

  12. Factors affecting on bond strength of glass fiber post cemented with different resin cements to root canal

    NASA Astrophysics Data System (ADS)

    Clavijo, V. R. G.; Bandéca, M. C.; Calixto, L. R.; Nadalin, M. R.; Saade, E. G.; Oliveira-Junior, O. B.; Andrade, M. F.

    2009-09-01

    Luting materials provides the retention of endodontic post. However, the failures of endodontic posts predominantly occurred are the losses of retention. Thus, the alternating use to remove the smear layer, open the dentine tubules, and/or etch the inter-tubular dentine can be provided by EDTA. This study was performed to evaluate effect of EDTA on bond strength of glass fiber post cemented with different resin cements to root canal. Fifty bovine incisors were selected and the crowns were removed to obtain a remaining 14-mm-height root. The roots were randomly distributed into five groups: GI: RelyX™ ARC/LED; GII: RelyX™ U100/LED; GIII EDTA/RelyX™ U100/LED; GIV: Multilink™; and GV: EDTA/Multlink™. After endodontic treatment, the post space was prepared with the drills designated for the quartz-coated-carbon-fiber post Aestheti-Post®. Before application of resin cements, root canals were irrigated with 17% EDTA (GIII and GV) during 1 min, rinsed with distilled water and dried using paper points. The light-cured materials were light-activated with UltraLume LED 5 (Ultradent, South Jordan, Utah) with power density of 1315 mW/cm2. Specimens were perpendicularly sectioned into approximately 1 mm thick sections and the stubs were performed on Universal Testing Machine. The analysis of variance (ANOVA) and Tukey’s post-hoc tests showed significant statistical different between RelyX™ ARC (GI) and RelyX™ U100 independent of the pre-treatment (GII to GIII) ( P < 0.05). The Multlink™ showed between RelyX™ ARC and RelyX™ U100 (GI to GIII; GII to GV) ( P < 0.05). The ANOVA showed significant statistical similar ( P > 0.05) to all resin cements between the Cervical to Apical regions (GI to GV). The use of 17% EDTA showed no difference significant between the resin cements evaluated (GII to GIII; GIV to GV). Within the limitations of the current study, it can be concluded that the use of EDTA did not provide efficiency on bond strength. The RelyX™ ARC

  13. The selection criteria of temporary or permanent luting agents in implant-supported prostheses: in vitro study

    PubMed Central

    Gonzalez-Gonzalez, Ignacio; Brizuela-Velasco, Aritza; Ellacuria-Echebarria, Joseba

    2016-01-01

    PURPOSE The use of temporary or permanent cements in fixed implant-supported prostheses is under discussion. The objective was to compare the retentiveness of one temporary and two permanent cements after cyclic compressive loading. MATERIALS AND METHODS The working model was five solid abutments screwed to five implant analogs. Thirty Cr-Ni alloy copings were randomized and cemented to the abutments with one temporary (resin urethane-based) or two permanent (resin-modified glass ionomer, resin-composite) cements. The retention strength was measured twice: once after the copings were cemented and again after a compressive cyclic loading of 100 N at 0.72 Hz (100,000 cycles). RESULTS Before loading, the retention strength of resin composite was 75% higher than the resin-modified glass ionomer and 2.5 times higher than resin urethanebased cement. After loading, the retentiveness of the three cements decreased in a non-uniform manner. The greatest percentage of retention loss was shown by the temporary cement and the lowest by the permanent resin composite. However, the two permanent cements consistently show high retention values. CONCLUSION The higher the initial retention of each cement, the lower the percentage of retention loss after compressive cyclic loading. After loading, the resin urethane-based cement was the most favourable cement for retrieving the crowns and resin composite was the most favourable cement to keep them in place. PMID:27141259

  14. Bi-axial flexural strength of dual-polymerizing agents cemented to human dentin after photo-activation with different light-curing systems

    PubMed Central

    Taher, Nadia Malek A.

    2010-01-01

    Objectives This study aimed to assess the bi-axial flexural strength of two dual-polymerizing resin luting agents cemented to human dentin when photo-activated with different light-curing units. Materials and methods Two dual-cured resin cements: choice (CH) and Variolink II (VL) were tested. Hybrid composite resin (Z-250) discs (12 × 1.5 mm) were fabricated. Three types of light-curing units were used halogen-curing unit (QTH), light-emitting diode (LED) and plasma arc (PAC). Sixty dentin discs of 0.5 mm thickness were prepared from extracted human teeth. A circular mold (2.5 mm in height and 12 mm diameter) was utilized to create supporting structure for dentin, resin cement complex. The resin luting cement (0.5 mm) was placed on the previously prepared dentin discs and covered with the prefabricated composite discs. Photo-activation of cements was performed for 40 s with QTH and LED units and for 3 s with PAC. The specimens were divided into 12 groups (20 specimens for each light source). Six groups were kept in distilled water for 24 h and the rest were stored for 6 weeks. Bi-axial flexural strength was determined using Instron machine. The data was analyzed using two-way ANOVA and Tukey test for comparison. Results The findings indicated that the bi-axial flexural strength values for both cements CH and VL were higher for 24 h over 6 weeks but not statistically significant when cured with QTH. Meanwhile, when LED light was used for photo-activation the cements, the flexural strength values reported were statistically higher of 24 h over 6 weeks storage at P = 0.4E−6 However, PAC light did not record any statistically significant difference between two duration for the CH cement although when used for polymerization of VL the reported value for 6 weeks were statistically significantly higher value than 24 h duration at P = 0.002. Conclusion When high immediate flexural strength is preferred in clinical situation photo-activation the

  15. The Retentive Strength of Cemented Zirconium Oxide Crowns after Dentin Pretreatment with Desensitizing Paste Containing 8% Arginine and Calcium Carbonate.

    PubMed

    Pilo, Raphael; Harel, Noga; Nissan, Joseph; Levartovsky, Shifra

    2016-01-01

    The effect of dentin pretreatment with Desensitizing Paste containing 8% arginine and calcium carbonate on the retention of zirconium oxide (Y-TZP) crowns was tested. Forty molar teeth were mounted and prepared using a standardized protocol. Y-TZP crowns were produced using computer-aided design and computer-aided manufacturing (CAD-CAM) technology. The 40 prepared teeth were either pretreated with Desensitizing Paste or not pretreated. After two weeks, each group was subdivided into two groups, cemented with either Resin Modified Glass Ionomer Cement (RMGIC) or Self Adhesive Resin Cement (SARC)). Prior to cementation, the surface areas of the prepared teeth were measured. After aging, the cemented crown-tooth assemblies were tested for retentive strength using a universal testing machine. The debonded surfaces of the teeth and crowns were examined microscopically at 10× magnification. Pretreating the dentin surfaces with Desensitizing Paste prior to cementation did not affect the retention of the Y-TZP crowns. The retentive values for RMGIC (3.04 ± 0.77 MPa) were significantly higher than those for SARC (2.28 ± 0.58 MPa). The predominant failure modes for the RMGIC and SARC were adhesive cement-dentin and adhesive cement-crown, respectively. An 8.0% arginine and calcium carbonate in-office desensitizing paste can be safely used to reduce post-cementation sensitivity without reducing the retentive strength of Y-TZP crowns. PMID:27023532

  16. The Retentive Strength of Cemented Zirconium Oxide Crowns after Dentin Pretreatment with Desensitizing Paste Containing 8% Arginine and Calcium Carbonate

    PubMed Central

    Pilo, Raphael; Harel, Noga; Nissan, Joseph; Levartovsky, Shifra

    2016-01-01

    The effect of dentin pretreatment with Desensitizing Paste containing 8% arginine and calcium carbonate on the retention of zirconium oxide (Y-TZP) crowns was tested. Forty molar teeth were mounted and prepared using a standardized protocol. Y-TZP crowns were produced using computer-aided design and computer-aided manufacturing (CAD-CAM) technology. The 40 prepared teeth were either pretreated with Desensitizing Paste or not pretreated. After two weeks, each group was subdivided into two groups, cemented with either Resin Modified Glass Ionomer Cement (RMGIC) or Self Adhesive Resin Cement (SARC)). Prior to cementation, the surface areas of the prepared teeth were measured. After aging, the cemented crown-tooth assemblies were tested for retentive strength using a universal testing machine. The debonded surfaces of the teeth and crowns were examined microscopically at 10× magnification. Pretreating the dentin surfaces with Desensitizing Paste prior to cementation did not affect the retention of the Y-TZP crowns. The retentive values for RMGIC (3.04 ± 0.77 MPa) were significantly higher than those for SARC (2.28 ± 0.58 MPa). The predominant failure modes for the RMGIC and SARC were adhesive cement-dentin and adhesive cement-crown, respectively. An 8.0% arginine and calcium carbonate in-office desensitizing paste can be safely used to reduce post-cementation sensitivity without reducing the retentive strength of Y-TZP crowns. PMID:27023532

  17. Cement-cement interface strength: influence of time to apposition.

    PubMed

    Park, S H; Silva, M; Park, J S; Ebramzadeh, E; Schmalzried, T P

    2001-01-01

    Cement-cement interfaces were created under simulated operating-room conditions. In order to analyze the effect of time to apposition on interface strength, two cement surfaces were brought together 1, 2, 4, and 6 min after 1 min of mixing and 45 s of waiting. Cement-cement interface strength was evaluated with the use of a three-point bending to failure test. Scanning electron microscopy (SEM) images of the failed interface were obtained. The mean interface strength decreased when the cement-cement interface was time delayed. Compared to bulk cement, interface strength in time-delayed groups decreased 8% after 1-min delay (p=.037), 18% after 2-min delay (p=.0004), 20% after 4-min delay (p=.0005), and 42% after 6-min delay (p<.0001). No statistically significant differences in interface strength were found between the 2- and 4-min delayed groups (p=.73). SEM images revealed that after 6-min delay, up to 50% of the cement surface can remain unbonded, explaining the decrease in strength of the cement-cement interface as a function of time to apposition. This laboratory study indicates that time to apposition plays a critical role in cement-cement interface strength. If any cementing technique involves the joining of two cement surfaces, it is recommended that the two cement surfaces be mated together within 5 min and 45 s after the start of mixing (1 min mixing; 45 s waiting; 4 min delay), in order to obtain a strong cement-cement interface bond. Delay beyond this can result in substantial reduction in the strength of the cement-cement interface bond. PMID:11745529

  18. Effect of type of luting agents on stress distribution in the bone surrounding implants supporting a three-unit fixed dental prosthesis: 3D finite element analysis

    PubMed Central

    Ghasemi, Ehsan; Abedian, Alireza; Iranmanesh, Pedram; Khazaei, Saber

    2015-01-01

    Background: Osseointegration of dental implants is influenced by many biomechanical factors that may be related to stress distribution. The aim of this study was to evaluate the effect of type of luting agent on stress distribution in the bone surrounding implants, which support a three-unit fixed dental prosthesis (FDP) using finite element (FE) analysis. Materials and Methods: A 3D FE model of a three-unit FDP was designed replacing the maxillary first molar with maxillary second premolar and second molar as the abutments using CATIA V5R18 software and analyzed with ABAQUS/CAE 6.6 version. The model was consisted of 465108 nodes and 86296 elements and the luting agent thickness was considered 25 μm. Three load conditions were applied on eight points in each functional cusp in horizontal (57.0 N), vertical (200.0 N) and oblique (400.0 N, θ = 120°) directions. Five different luting agents were evaluated. All materials were assumed to be linear elastic, homogeneous, time independent and isotropic. Results: For all luting agent types, the stress distribution pattern in the cortical bone, connectors, implant and abutment regions was almost uniform among the three loads. Furthermore, the maximum von Mises stress of the cortical bone was at the palatal side of second premolar. Likewise, the maximum von Mises stress in the connector region was in the top and bottom of this part. Conclusion: Luting agents transfer the load to cortical bone and different types of luting agents do not affect the pattern of load transfer. PMID:25709676

  19. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-07-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. Laboratory testing during the eleventh quarter focused on evaluation of the alkali-silica reaction of eight different cement compositions, four of which contain ULHS. This report provides a progress summary of ASR testing. The original laboratory procedure for measuring set cement expansion resulted in unacceptable erosion of the test specimens. In subsequent tests, a different expansion procedure was implemented and an alternate curing method for cements formulated with TXI Lightweight cement was employed to prevent sample failure caused by thermal shock. The results obtained with the modified procedure showed improvement over data obtained with the original procedure, but data for some compositions were still questionable. Additional modification of test procedures for compositions containing TXI Lightweight cement were implemented and testing is ongoing.

  20. Timing of syntaxial cement

    SciTech Connect

    Perkins, R.D.

    1985-02-01

    Echinodermal fragments are commonly overgrown in ancient limestones, with large single crystals growing in optical continuity over their skeletal hosts (i.e., syntaxial overgrowths). Such syntaxial cements are usually considered to have precipitated from meteoric pore waters associated with a later stage of subaerial exposure. Although several examples have been reported from ancient carbonates where petrographic relationships may indicate an early submarine formation of syntaxial cement, no occurrences have been noted in Holocene submarine-cemented rocks. Syntaxial cements of submarine origin have been found in Bermuda beachrock where isopachous high-magnesian calcite cements merge with large optically continuous crystals growing on echinodermal debris. Examination of other Holocene sediments cemented by magnesian calcite indicates that echinodermal fragments are not always overgrown syntaxially, but may be rimmed by microcrystalline calcite. The reason for this difference is not clear, although it may be a function of the spacing of nucleation sites and rates of crystal growth. A review of syntaxial cements from several localities in ancient carbonate sequences reveals that many are best interpreted as having formed in the submarine setting, whereas it is more clear that others formed from meteoric precipitation. These occurrences suggest that care should be exercised in inferring meteoric diagenesis from syntaxial overgrowths and that the possibility of submarine formation should be considered.

  1. Deproteinized dentin: a favorable substrate to self-bonding resin cements?

    PubMed

    Barbosa De Souza, Fábio; Sinclér Delfino, Carina; Lacalle Turbino, Míriam; Braz, Rodivan

    2011-08-01

    The adhesive performance on deproteinized dentin of different self-adhesive resin cements was evaluated through microtensile bond strength (μTBS) analysis and scanning electron microscopy (SEM). Occlusal dentin of human molars were distributed into different groups, according to the categories: adhesive cementation with two-step bonding systems-control Groups (Adper Single Bond 2 + RelyX ARC/3M ESPE; One Step Plus + Duolink/Bisco; Excite + Variolink I/Ivoclar Vivadent) and self-adhesive cementation-experimental groups (Rely X Unicem/3M ESPE; Biscem/Bisco; MultiLink Sprint/Ivoclar Vivadent). Each group was subdivided according to the dentin approach to: α, maintenance of collagen fibers and β, deproteinization. The mean values were obtained, and submitted to ANOVA and Tukey test. Statistical differences were obtained to the RelyX Unicem groups (α = 13.59 MPa; β = 30.19 MPa). All the BIS Group specimens failed before the mechanical tests. Dentinal deproteinization provided an improved bond performance for the self-adhesive cement Rely X Unicem, and had no negative effect on the other cementing systems studied. PMID:21648064

  2. Stage cementing apparatus

    SciTech Connect

    Blamford, D.M.; Easter, J.H.

    1988-06-21

    A stage cementing apparatus for selectively passing cement from the interior passage of a casing to the annulus between the exterior of the casing and borehole, the casing having an upper portion and a lower portion, is described comprising: a barrel secured to the upper portion of the casing; a mandrel secured to the lower portion of the casing, and a stage cementing tool having a generally cylindrical configuration adapted for attachment to the lower end of the barrel about a portion of the mandrel.

  3. Cement and concrete

    NASA Technical Reports Server (NTRS)

    Corley, Gene; Haskin, Larry A.

    1992-01-01

    To produce lunar cement, high-temperature processing will be required. It may be possible to make calcium-rich silicate and aluminate for cement by solar heating of lunar pyroxene and feldspar, or chemical treatment may be required to enrich the calcium and aluminum in lunar soil. The effects of magnesium and ferrous iron present in the starting materials and products would need to be evaluated. So would the problems of grinding to produce cement, mixing, forming in vacuo and low gravity, and minimizing water loss.

  4. Comparative study of the radiopacity of resin cements used in aesthetic dentistry

    PubMed Central

    Monterde-Hernández, Manuel; Cabanillas-Casabella, Cristina; Pallares-Sabater, Antonio

    2016-01-01

    PURPOSE The aim of this study was to compare the radiopacity of 6 modern resin cements with that of human enamel and dentine using the Digora digital radiography system, to verify whether they meet the requirements of ANSI/ADA specification no. 27/1993 and the ISO 4049/2000 standard and assess whether their radiopacity is influenced by the thickness of the cement employed. MATERIALS AND METHODS Three 3-thickness samples (0.5, 1 and 1.5 mm) were fabricated for each material. The individual cement samples were radiographed on the CCD sensor next to the aluminium wedge and the tooth samples. Five radiographs were made of each sample and therefore five readings of radiographic density were taken for each thickness of the materials. The radiopacity was measured in pixels using Digora 2.6 software. The calibration curve obtained from the mean values of each step of the wedge made it possible to obtain the equivalent in mm of aluminium for each mm of the luting material. RESULTS With the exception of Variolink Veneer Medium Value 0, all the cements studied were more radiopaque than enamel and dentin (P<.05) and complied with the ISO and ANSI/ADA requirements (P<.001). The radiopacity of all the cements examined depended on their thickness: the thicker the material, the greater its radiopacity. CONCLUSION All materials except Variolink Veneer Medium Value 0 yielded radiopacity values that complied with the recommendations of the ISO and ANSI/ADA. Variolink Veneer Medium Value 0 showed less radiopacity than enamel and dentin. PMID:27350854

  5. Thermodynamics and cement science

    SciTech Connect

    Damidot, D.; Lothenbach, B.; Herfort, D.; Glasser, F.P.

    2011-07-15

    Thermodynamics applied to cement science has proved to be very valuable. One of the most striking findings has been the extent to which the hydrate phases, with one conspicuous exception, achieve equilibrium. The important exception is the persistence of amorphous C-S-H which is metastable with respect to crystalline calcium silicate hydrates. Nevertheless C-S-H can be included in the scope of calculations. As a consequence, from comparison of calculation and experiment, it appears that kinetics is not necessarily an insuperable barrier to engineering the phase composition of a hydrated Portland cement. Also the sensitivity of the mineralogy of the AFm and AFt phase compositions to the presence of calcite and to temperature has been reported. This knowledge gives a powerful incentive to develop links between the mineralogy and engineering properties of hydrated cement paste and, of course, anticipates improvements in its performance leading to decreasing the environmental impacts of cement production.

  6. [Allergy towards bone cement].

    PubMed

    Thomas, P; Schuh, A; Summer, B; Mazoochian, F; Thomsen, M

    2006-09-01

    Bone cements based on polymethylmethacrylate are typically used for fixation of artificial joints. Intolerance reactions to endoprostheses not explained by infection or mechanical failure may lead to allergological diagnostics, which mostly focuses on metal allergy. However, also bone cement components may provoke hypersensitivity reactions leading to eczema, implant loosening, or fistula formation. Elicitors of such reactions encompass acrylates and additives such as benzoyl peroxide, N,N-dimethyl-p-toluidine, hydroquinone, or antibiotics (particularly gentamicin). Upon repeated contact with bone cement components, e.g., acrylate monomers, also in medical personnel occasionally hand eczema or even asthma may develop. Therefore, in the case of suspected hypersensitivity reactions to arthroplasty, the allergological diagnostics should include bone cement components. PMID:16865384

  7. Environmentally compatible spray cement

    SciTech Connect

    Loeschnig, P.

    1995-12-31

    Within the framework of a European research project, Heidelberger Zement developed a quickly setting and hardening binder for shotcrete, called Chronolith S, which avoids the application of setting accelerators. Density and strength of the shotcrete produced with this spray cement correspond to those of an unaccelerated shotcrete. An increased hazard for the heading team and for the environment, which may occur when applying setting accelerators, can be excluded here. Owing to the special setting properties of a spray cement, the process engineering for its manufacturing is of great importance. The treatment of a spray cement as a dry concrete with kiln-dried aggregates is possible without any problems. The use of a naturally damp pre-batched mixture is possible with Chronolith S but requires special process engineering; spray cement and damp aggregate are mixed with one another immediately before entering the spraying machinery.

  8. Shear bond strength of computer-aided design and computer-aided manufacturing feldspathic and nano resin ceramics blocks cemented with three different generations of resin cement

    PubMed Central

    Ab-Ghani, Zuryati; Jaafar, Wahyuni; Foo, Siew Fon; Ariffin, Zaihan; Mohamad, Dasmawati

    2015-01-01

    Aim: To evaluate the shear bond strength between the dentin substrate and computer-aided design and computer-aided manufacturing feldspathic ceramic and nano resin ceramics blocks cemented with resin cement. Materials and Methods: Sixty cuboidal blocks (5 mm × 5 mm × 5 mm) were fabricated in equal numbers from feldspathic ceramic CEREC® Blocs PC and nano resin ceramic Lava™ Ultimate, and randomly divided into six groups (n = 10). Each block was cemented to the dentin of 60 extracted human premolar using Variolink® II/Syntac Classic (multi-steps etch-and-rinse adhesive bonding), NX3 Nexus® (two-steps etch-and-rinse adhesive bonding) and RelyX™ U200 self-adhesive cement. All specimens were thermocycled, and shear bond strength testing was done using the universal testing machine at a crosshead speed of 1.0 mm/min. Data were analyzed using one-way ANOVA. Results: Combination of CEREC® Blocs PC and Variolink® II showed the highest mean shear bond strength (8.71 Mpa), while the lowest of 2.06 Mpa were observed in Lava™ Ultimate and RelyX™ U200. There was no significant difference in the mean shear bond strength between different blocks. Conclusion: Variolink® II cement using multi-steps etch-and-rinse adhesive bonding provided a higher shear bond strength than the self-adhesive cement RelyX U200. The shear bond strength was not affected by the type of blocks used. PMID:26430296

  9. Effect of filler size on wear resistance of resin cement.

    PubMed

    Shinkai, K; Suzuki, S; Katoh, Y

    2001-11-01

    The purpose of this study was to evaluate the effect of filler size on the wear of resin cements. Materials tested included four experimental dual-cure resin cements (Kuraray) consisting of different-sized filler particles. A rectangular box cavity was prepared on the flattened occlusal surface of extracted human molars. Ceramic inlays for the cavities were fabricated using the Cerec 2 system. The Cerec inlays were cemented with the respective cements and adhesive systems according to the manufacturer's directions. The restored surface was finished by wet-grinding with an 800-grit silicon carbide paper. Six specimens were prepared for each resin cement. Half of the specimens were subjected to a three-body wear test for 200,000 cycles, and the others were subjected to a toothbrush abrasion test for 30,000 cycles. The worn surface of each restoration was scanned by a profilometer (Surfcom 475 A) at eight different points for each restoration. The wear value was determined by measuring the vertical gap depth on the profilometric tracings. The data were statistically analyzed by one-way analysis of variance (ANOVA) and Scheffe's test. The results showed that, with increase of filler size, the wear value decreased in the toothbrush test and increased in the three-body wear test. The cement with 0.04-microm filler exhibited the lowest wear value among the materials in the three-body wear test, and the same wear value as the cement with 0.97-microm filler in the toothbrush test. Based upon the results of this study, it is concluded that the wear of resin cements was affected by the filler size as well as the mode of wear test. PMID:14530920

  10. [Retention of crowns as affected by film thickness of zinc phosphate cement and taper angle of crowns (author's transl)].

    PubMed

    Otani, H; Goto, T

    1979-10-01

    Dependence of the retention of crowns at their axial wall on the film thickness of zinc phosphate cement and the taper angle was investigated. Stainless steel dies, composed of a preparation and an occlusally perforated crown the taper angle of which was 2.9, 5.7, 8.5 and 11.3 degrees respectively (Fig. 1, (a) and (b)), were cemented within three min. after the start of mix with a Shofu Micro Cement having a powder-liquid ratio of 1.5 g/0.5 cc. The thickness of the cement layer at the axial wall was regulated to a given value between 9 and 55 mu through the use of a discrepancy measurer. A Shimazu Autograph tensile test machine was employed to measure 48-hr retention (kg/cm2). The retention of the crowns was strongly dependent on the cement film thickness and the taper angle when the film thickness was below a critical value (15 mu in this experiment), but not when the film thickness was above this value (Fig. 3). This may be explained by the term of mechanical interlocking of either of the unreacted powder grains and the matrix phase in the luting cement, as schematically drawn in Fig. 6. The same findings were more evidently appeared on the semilogarythmic diagram in Fig. 4. In this diagram, the critical value was shown as intersection of two straight lines which could be drawn through all the measurements for four taper angles, using the least squares. PMID:295065

  11. Heavyweight cement concrete with high stability of strength parameters

    NASA Astrophysics Data System (ADS)

    Kudyakov, Konstantin; Nevsky, Andrey; Danke, Ilia; Kudyakov, Aleksandr; Kudyakov, Vitaly

    2016-01-01

    The present paper establishes regularities of basalt fibers distribution in movable cement concrete mixes under different conditions of their preparation and their selective introduction into mixer during the mixing process. The optimum content of basalt fibers was defined as 0.5% of the cement weight, which provides a uniform distribution of fibers in the concrete volume. It allows increasing compressive strength up to 51.2% and increasing tensile strength up to 28.8%. Micro-structural analysis identified new formations on the surface of basalt fibers, which indicates the good adhesion of hardened cement paste to the fibers. Stability of concrete strength parameters has significantly increased with introduction of basalt fibers into concrete mix.

  12. Comparison of The Effect of Implant Abutment Surface Modifications on Retention of Implant-Supported Restoration with A Polymer Based Cement

    PubMed Central

    Sahu, Nabaprakash; Lakshmi, Namratha; Azhagarasan, N.S.; Agnihotri, Yoshaskam; Rajan, Manoj; Hariharan, Ramasubramanian

    2014-01-01

    Background: In cement-retained implant-supported restoration it is important to gain adequate retention of definitive restoration as well as retrievability of prosthesis. The surface of the abutment, alloy of the restoration and the type of cement used influences the retention of the restoration. There is a need to analyze the influence of surface modifications of abutments on the retentive capabilities of provisional implant cements. Purpose of study: To compare the effect of implant abutment surface modifications on retention of implant-supported restoration cemented with polymer based cement. Materials and method: Thirty solid titanium implant abutments (ADIN), 8mm height, were divided into 3 groups. Ten abutments with retentive grooves (Group I) as supplied by the manufacturer, Ten abutments milled to 20 taper circumferentially (Group II), and Ten abutments milled and air-abraded with 110 μm aluminum oxide (Group III) were used in this study. Ni-Cr coping were casted for each abutment and polymer based cement was used to secure them to the respective abutments. Using a universal testing machine at a crosshead speed of 0.5 cm/minute, tensile bond strength was recorded (N). Results: Mean tensile bond strength of Group I, II and III were found to be 408.3, 159.9 and 743.8 Newton respectively. The values were statistically different from each other (p<0.001). Conclusion: Abutments with milled and sandblasted surface provide the highest retention followed by abutments with retentive grooves and then by abutments with milled surface when cast copings were cemented to implant abutments with polymer based cement. Clinical implications: Retention of restoration depends on the surface of the abutment as well as the luting agents used. Incorporation of retentive grooves or particle abrasion can enhance retention especially in situation of short clinical crown. PMID:24596785

  13. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2001-10-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

  14. System for radioactive waste cementation

    SciTech Connect

    Dmitriev, S.A.; Barinov, A.S.; Varlakov, A.P.; Volkov, A.S.; Karlin, S.V.

    1995-12-31

    NPP, research reactors and radiochemical enterprises produce a great amount of liquid radioactive waste (LRW). One of the methods of LRW solidification is cementation. The recent investigations demonstrated possible inclusion of sufficient amount of waste in the cement matrix (up to 20--30 mass% on dry residue). In this case the cementation process becomes competitive with bituminization process, where the matrix can include 40--50 mass% and the solidified product volume is equal to the volume, obtained by cementation. Additionally, the cement matrix in contrast with the bituminous one is unburnable. Many countries are investigating the cementation process. The main idea governing technological process is the waste and cement mixing method and type of mixer. In world practice some principal types of cementation systems are used. The paper describes the SIA Radon industrial plant in Moscow.

  15. Recycled rubber in cement composites

    SciTech Connect

    Raghavan, D.; Tratt, K.; Wool, R.P.

    1994-12-31

    Disposal of 200 million waste tires in the US each year has become a major problem. An environmentally sound innovative technology of recycling rubber in cement matrix was examined. Using silane coupling agent the rubber was bonded to the hydrating cement making a lighter composite, which absorbed more energy than ordinary Portland cement. The bonding information was obtained by peel strength analysis. SEM was used to understand the mode of fracture in pure cement paste, cement bonded rubber composite and rubber filled cement paste. It was found that cracks propagate through the rubber particle in rubber bonded cement composite while in unbonded rubber cement mix, the cracks propagate around the interface. The density and shrinkage measurements are also discussed.

  16. Surface pretreatments for medical application of adhesion

    PubMed Central

    Erli, Hans J; Marx, Rudolf; Paar, Othmar; Niethard, Fritz U; Weber, Michael; Wirtz, Dieter C

    2003-01-01

    Medical implants and prostheses (artificial hips, tendono- and ligament plasties) usually are multi-component systems that may be machined from one of three material classes: metals, plastics and ceramics. Typically, the body-sided bonding element is bone. The purpose of this contribution is to describe developments carried out to optimize the techniques , connecting prosthesis to bone, to be joined by an adhesive bone cement at their interface. Although bonding of organic polymers to inorganic or organic surfaces and to bone has a long history, there remains a serious obstacle in realizing long-term high-bonding strengths in the in vivo body environment of ever present high humidity. Therefore, different pretreatments, individually adapted to the actual combination of materials, are needed to assure long term adhesive strength and stability against hydrolysis. This pretreatment for metal alloys may be silica layering; for PE-plastics, a specific plasma activation; and for bone, amphiphilic layering systems such that the hydrophilic properties of bone become better adapted to the hydrophobic properties of the bone cement. Amphiphilic layering systems are related to those developed in dentistry for dentine bonding. Specific pretreatment can significantly increase bond strengths, particularly after long term immersion in water under conditions similar to those in the human body. The bond strength between bone and plastic for example can be increased by a factor approaching 50 (pealing work increasing from 30 N/m to 1500 N/m). This review article summarizes the multi-disciplined subject of adhesion and adhesives, considering the technology involved in the formation and mechanical performance of adhesives joints inside the human body. PMID:14561228

  17. Small-particle-size cement

    SciTech Connect

    Ewert, D.P.; Almond, S.W.; Blerhaus, W.M. II )

    1991-05-01

    Successful remedial cementing has historically been difficult in wells with large-interval, multizone, gravel-packed completions. The reason is the inability of conventional oilfield cements to penetrate gravel packs adequately. Small-particle-size cement (SPSC) was developed to penetrate gravel packs and to provide the zonal isolation required. This paper details the laboratory work, job design, and field implementation of this new cement.

  18. Thermal Characterization of Adhesive

    NASA Technical Reports Server (NTRS)

    Spomer, Ken A.

    1999-01-01

    The current Space Shuttle Reusable Solid Rocket Motor (RSRM) nozzle adhesive bond system is being replaced due to obsolescence. Down-selection and performance testing of the structural adhesives resulted in the selection of two candidate replacement adhesives, Resin Technology Group's Tiga 321 and 3M's EC2615XLW. This paper describes rocket motor testing of these two adhesives. Four forty-pound charge motors were fabricated in configurations that would allow side by side comparison testing of the candidate replacement adhesives and the current RSRM adhesives. The motors provided an environment where the thermal performance of adhesives in flame surface bondlines was compared. Results of the FPC testing show that: 1) The phenolic char depths on radial bond lines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used; 2) The adhesive char depth of the candidate replacement adhesives is less than the char depth of the current adhesives; 3) The heat-affected depth of the candidate replacement adhesives is less than the heat-affected depth of the current adhesives; and 4) The ablation rates for both replacement adhesives are slower than that of the current adhesives.

  19. Reducing cement's CO2 footprint

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  20. Cement Mason's Curriculum. Instructional Units.

    ERIC Educational Resources Information Center

    Hendirx, Laborn J.; Patton, Bob

    To assist cement mason instructors in providing comprehensive instruction to their students, this curriculum guide treats both the skills and information necessary for cement masons in commercial and industrial construction. Ten sections are included, as follow: related information, covering orientation, safety, the history of cement, and applying…

  1. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  2. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  3. A castor oil-containing dental luting agent: effects of cyclic loading and storage time on flexural strength

    PubMed Central

    DERCELI, Juliana dos Reis; FAIS, Laiza Maria Grassi; PINELLI, Lígia Antunes Pereira

    2014-01-01

    Favorable results in the use of castor oil polyurethane (COP) as pulp capping, membrane material, sealer, mouthwash and in bone repair, associated with the fact that Ricinus communis is not derived from petroleum and it is abundant in Brazil, encourage researches in the development of luting agents. Objectives This study compared the flexural strength (FS) of a castor oil-containing dental luting agent with a weight percentage of 10% (wt%) of calcium carbonate (COP10) with RelyX ARC (RX) after mechanical cycling (MC) and distilled water storage. Material and Methods Sixty-four specimens (25x2x2 mm) were fabricated and divided into two groups, COP10 and RX (control). Each group was divided into 4 subgroups (n=8) according to the storage time, 24 hours (24 h) or 60 days (60 d), and the performance (MC+FS) or not (only FS) of the mechanical cycling test. The FS (10 kN; 0.5 mm/min) and MC tests (10,000 cycles, 5 Hz, 0.5 mm/min) were carried out using an MTS-810 machine. The data were analyzed using ANOVA (α=0.05). Results The obtained FS (MPa) values were: COP10 24h- 19.04±2.41; COP10 60d- 17.92±3.54; RX 24h- 75.19±3.43; RX 60d- 88.77±6.89. All the RX specimens submitted to MC fractured, while the values for COP10 after MC were as follows: COP10 24h- 17.90±1.87 and COP10 60d- 18.60±1.60. Conclusions A castor oil-containing dental luting agent with a weight percentage of 10% (wt%) of calcium carbonate is resistant to mechanical cycling without decreases in flexural strength. However, mean COP10 showed only about 25% of the RelyX ARC mean flexural strength. PMID:25591018

  4. Cementing a wellbore using cementing material encapsulated in a shell

    DOEpatents

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Spadaccini, Christopher M.; Cowan, Kenneth Michael

    2016-08-16

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  5. Retention of posts cemented with various dentinal bonding cements.

    PubMed

    Mendoza, D B; Eakle, W S

    1994-12-01

    This investigation evaluated the retention of preformed posts with four different cements: C & B Metabond, Panavia, All-Bond 2, and Ketac-Cem. Sixty intact maxillary canines were selected for the study. The clinical crowns were removed and endodontic therapy done on each root, which was then prepared to receive prefabricated posts. The 60 samples were divided into four groups of 15, and the posts in each group were cemented with one of the four cements. The roots were mounted in acrylic resin blocks and the posts were separated from the canals with an Instron testing machine. Analysis of the forces needed to dislodge the posts with analysis of variance and Student-Newman-Keuls test disclosed that C & B Metabond cement was the most retentive (p < 0.05). No difference in retention was recorded between Ketac-Cem and Panavia cements. All-Bond 2 cement was the least retentive of cements. PMID:7853255

  6. Do blood contamination and haemostatic agents affect microtensile bond strength of dual cured resin cement to dentin?

    PubMed Central

    KİLİC, Kerem; ARSLAN, Soley; DEMETOGLU, Goknil Alkan; ZARARSIZ, Gokmen; KESİM, Bulent

    2013-01-01

    Objective: The purpose of this study was to evaluate the effects of blood contamination and haemostatic agents such as Ankaferd Blood Stopper (ABS) and hydrogen peroxide (H2O2) on the microtensile bond strength between dual cured resin cement-dentin interface. Material and Methods: Twelve pressed lithium disilicate glass ceramics were luted to flat occlusal dentin surfaces with Panavia F under the following conditions: Control Group: no contamination, Group Blood: blood contamination, Group ABS: ABS contamination Group H2O2: H2O2 contamination. The specimens were sectioned to the beams and microtensile testing was carried out. Failure modes were classified under stereomicroscope. Two specimens were randomly selected from each group, and SEM analyses were performed. Results: There were significant differences in microtensile bond strengths (µTBS) between the control and blood-contaminated groups (p<0.05), whereas there were no significant differences found between the control and the other groups (p>0.05). Conclusions: Contamination by blood of dentin surface prior to bonding reduced the bond strength between resin cement and the dentin. Ankaferd Blood Stoper and H2O2 could be used safely as blood stopping agents during cementation of all-ceramics to dentin to prevent bond failure due to blood contamination. PMID:23559118

  7. Understanding Marine Mussel Adhesion

    SciTech Connect

    H. G. Silverman; F. F. Roberto

    2007-12-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are waterimpervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion.

  8. Understanding marine mussel adhesion.

    PubMed

    Silverman, Heather G; Roberto, Francisco F

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  9. Understanding Marine Mussel Adhesion

    PubMed Central

    Roberto, Francisco F.

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  10. Cement compositions for cementing wells allowing pressure gas channeling in the cemented annulus to be controlled

    SciTech Connect

    Porcevaux, P. A.; Piot, B. M.; Vercaemer, C. J.

    1985-08-27

    The invention relates to cement compositions for cementing wells, which allow pressure gas-channeling to be effectively controlled up to more than about 485 F. The cement composition contains a styrene-butadiene latex and a stabilizer. The film of latex interrupts gas-channeling after an extremely brief path.

  11. Microleakage under orthodontic brackets bonded with different adhesive systems

    PubMed Central

    Alkis, Huseyin; Turkkahraman, Hakan; Adanir, Necdet

    2015-01-01

    Objective: This in vitro study aimed to compare the microleakage of orthodontic brackets between enamel-adhesive and adhesive-bracket interfaces at the occlusal and gingival margins bonded with different adhesive systems. Materials and Methods: A total of 144 human maxillary premolar teeth extracted for orthodontic reasons was randomly divided into four groups. Each group was then further divided into three sub-groups. Three total-etching bonding systems (Transbond XT, Greengloo and Kurasper F), three one-step self-etching bonding systems (Transbond Plus SEP, Bond Force and Clearfil S3), three two-step self-etching bonding systems (Clearfil SE Bond, Clearfil Protectbond and Clearfil Liner Bond), and three self-adhesive resin cements (Maxcem Elite, Relyx U 100 and Clearfil SA Cement) were used to bond the brackets to the teeth. After bonding, all teeth were sealed with nail varnish and stained with 0.5% basic fuchsine for 24 h. All samples were sectioned and examined under a stereomicroscope to score for microleakage at the adhesive–enamel and adhesive–bracket interfaces from both occlusal and gingival margins. Statistical Analysis Used: Statistical analyses were performed with Kruskal–Wallis and Wilcoxon signed-rank tests. Results: The results indicate no statistically significant differences between the microleakage scores of the adhesives; microleakage was detected in all groups. Comparison of the average values of the microleakage scores in the enamel–adhesive and adhesive–bracket interfaces indicated statistically significant differences (P < 0.05). The amount of the microleakage was higher at the enamel–adhesive interface than at the bracket-adhesive interface. Conclusions: All of the brackets exhibited some amount of microleakage. This result means that microleakage does not depend on the type of adhesive used. PMID:25713494

  12. Rubber cement poisoning

    MedlinePlus

    ... common household glue. It is often used for arts and crafts projects. Breathing in large amounts of rubber cement fumes or swallowing any amount can be extremely dangerous, especially for a small child. This article is for information only. Do NOT ...

  13. Fluoride penetration from three orthodontic adhesives: an experimental study

    PubMed Central

    Szepietowska, Magdalena

    2013-01-01

    Objective To examine the prophylactic potential of 3 orthodontic bonding adhesives: Fuji Ortho SC, Illuminate, and Resilience. Methods Thirty-six Wistar Wag rats were randomly divided into 4 groups consisting of 9 rats each. One of the groups received no treatment and was used as a control. In the other groups, individual bands coated with one of the 3 adhesives were cemented to the lower incisors. Enamel samples were obtained after 6 and 12 weeks and analyzed using scanning electron microscopy in combination with energy dispersive spectrometry. Results Six weeks after band cementation, no fluoride was found in the enamel of the lower incisors. After 12 weeks, there was no fluoride in the enamel of teeth coated with the Resilience composite. However, in the case of the Illuminate composite and the resin-modified glass ionomer Fuji Ortho SC cement, the depth of fluoride penetration reached 2 µm and 4.8 - 5.7 µm, respectively. Conclusions Fluoride ions from orthodontic adhesives can be incorporated into the surface layer of the enamel. Orthodontists may apply orthodontic adhesives, such as the Fuji Ortho SC, to reduce the occurrence of caries during orthodontic treatment with fixed appliances. PMID:23502591

  14. Push-Out Bond Strength Evaluation of Glass Fiber Posts With Different Resin Cements and Application Techniques.

    PubMed

    Durski, M T; Metz, M J; Thompson, J Y; Mascarenhas, A K; Crim, G A; Vieira, S; Mazur, R F

    2016-01-01

    The purpose of this study was to evaluate the push-out strength of two different adhesive cements (total etch and self-adhesive) for glass fiber post (GFP) cementation using two different techniques (microbrush and elongation tip) of cement application. In addition, this study evaluated the effect of total-etch conditioning before the use of a self-adhesive cement. Sixty premolar specimens with a single root canal were selected, endodontically treated, and shaped for GFP cementation. The specimens were randomly placed into one of six groups according to the cement and technique used: RelyX ARC (ARC): ARC + microbrush, ARC + elongation tip; RelyX Unicem (RU): RU + microbrush, RU + elongation tip; or RelyX Unicem + 37% phosphoric acid (RUE): RUE + microbrush, RUE + elongation tip. Each specimen root was cut perpendicular to the vertical axis yielding six 1.0-mm-thick sections. Push-out strength test was performed, followed by statistical analysis using three-way analysis of variance and the Games-Howell test (p<0.05). Statistically significant differences between the groups were found (p< 0.05). The cervical third of the roots had the highest mean push-out strength values, while the apical third had the lowest mean values regardless of the technique used. The elongation technique produced higher mean push-out strength values compared to the microbrush technique. The self-etch adhesive cement had the highest mean push-out strength value in all thirds. The addition of a conditioning step before the self-etch adhesive cementation appears to be effective in enhancing push-out strength with GFPs. PMID:26332737

  15. Evaluation of the resin cement thicknesses and push-out bond strengths of circular and oval fiber posts in oval-shapes canals

    PubMed Central

    Er, Özgür; Kılıç, Kerem; Kılınç, Halil İbrahim; Sağsen, Burak

    2015-01-01

    PURPOSE The aim of this study was to evaluate whether the push-out bond strength varies between oval and circular fiber posts, and to examine the effect on the resin cement thicknesses around the posts. MATERIALS AND METHODS Eighteen mandibular premolar roots were separated into two groups for oval and circular fiber posts systems. Post spaces were prepared and fiber posts were luted to the post spaces. Roots were cut horizontally to produce 1-mm-thick specimens. Resin cement thicknesses were determined with a metallographic optical microscope and push-out tests were done. RESULTS No significant differences were observed in terms of push-out bond strength between the oval and circular fiber posts (P>.05) The resin cement thicknesses of the oval posts were greater than those of the circular posts group in the coronal, middle and apical specimens (P<.05). CONCLUSION In the light of these results, it can be stated that resin cement thickness does not affect the push-out bond strength. PMID:25722832

  16. Micromechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response

    PubMed Central

    Janssen, Dennis; Mann, Kenneth A.; Verdonschot, Nico

    2008-01-01

    In order to gain insight into the micro-mechanical behavior of the cement-bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement-bone interface were analyzed using a finite element approach. Finite element models of a cement-bone interface specimen were created from micro-computed tomography data of a physical specimen that was sectioned from an in vitro cemented total hip arthroplasty. In five models the friction coefficient was varied (μ= 0.0; 0.3; 0.7; 1.0 and 3.0), while in one model an ideally bonded interface was assumed. In two models cement interface gaps and an optimal cement penetration were simulated. Finally, the effect of bone cement stiffness variations was simulated (2.0 and 2.5 GPa, relative to the default 3.0 GPa). All models were loaded for a cycle of fully reversible tension-compression. From the simulated stress-displacement curves the interface deformation, stiffness and hysteresis were calculated. The results indicate that in the current model the mechanical properties of the cement-bone interface were caused by frictional phenomena at the shape-closed interlock rather than by adhesive properties of the cement. Our findings furthermore show that in our model maximizing cement penetration improved the micromechanical response of the cement-bone interface stiffness, while interface gaps had a detrimental effect. Relative to the frictional and morphological variations, variations in the cement stiffness had only a modest effect on the micromechanical behavior of the cement-bone interface. The current study provides information that may help to better understand the load transfer mechanisms taking place at the cement-bone interface. PMID:18848699

  17. Biochemical analyses of the cement float of the goose barnacle Dosima fascicularis--a preliminary study.

    PubMed

    Zheden, Vanessa; Klepal, Waltraud; von Byern, Janek; Bogner, Fabian Robert; Thiel, Karsten; Kowalik, Thomas; Grunwald, Ingo

    2014-09-01

    The goose barnacle Dosima fascicularis produces an excessive amount of adhesive (cement), which has a double function, being used for attachment to various substrata and also as a float (buoy). This paper focuses on the chemical composition of the cement, which has a water content of 92%. Scanning electron microscopy with EDX was used to measure the organic elements C, O and N in the foam-like cement. Vibrational spectroscopy (FTIR, Raman) provided further information about the overall secondary structure, which tended towards a β-sheet. Disulphide bonds could not be detected by Raman spectroscopy. The cystine, methionine, histidine and tryptophan contents were each below 1% in the cement. Analyses of the cement revealed a protein content of 84% and a total carbohydrate content of 1.5% in the dry cement. The amino acid composition, 1D/2D-PAGE and MS/MS sequence analysis revealed a de novo set of peptides/proteins with low homologies with other proteins such as the barnacle cement proteins, largely with an acidic pI between 3.5 and 6.0. The biochemical composition of the cement of D. fascicularis is similar to that of other barnacles, but it shows interesting variations. PMID:25237772

  18. Physical evaluation of a new pulp capping material developed from portland cement

    PubMed Central

    Negm, Ahmed; Hassanien, Ehab; Abu-Seida, Ashraf

    2016-01-01

    Background This study examined the effects of addition of 10% and 25% by weight calcium hydroxide on the physicochemical properties of Portland cement associated with 20% bismuth oxide in order to develop a new pulp capping material. Material and Methods The solubility, pH value, setting time, compressive strength, and push out bond strength of modified Portland were evaluated and compared to those of mineral trioxide aggregate (MTA) and Portland cement containing 20% bismuth oxide. Results The statistical analysis was performed with ANOVA and Duncan’s post-hoc test. The results show that the strength properties and push out bond strength of Portland cement were adversely affected by addition of calcium hydroxide especially with a ratio of 25 wt%, however, the setting time and pH were not affected. MTA showed a statistically significant lower setting time than other cements (P≤0.001). Portland cement with bismuth oxide and Port Cal I showed a statistically significant higher Push out Bond strength than MTA and Port Cal II (P=0.001). Conclusions Taking the setting time, push out bond strength and pH value into account, addition of 10 wt% calcium hydroxide to Portland cement associated with 20% bismuth oxide produces a new pulp capping material with acceptable physical and adhesive properties. Further studies are recommended to test this cement biologically as a new pulp capping material. Key words:Calcium hydroxide, MTA, Portland cement, setting time, solubility, strength. PMID:27398178

  19. Mechanical and In Vitro Biocompatibility of Brushite Cement Modified by Polyethylene Glycol.

    PubMed

    Roy, Mangal; Devoe, Ken; Bandyopadhyay, Amit; Bose, Susmita

    2012-12-01

    Brushite (dicalcium phosphate dihydrate, DCPD) cement, owing to its high solubility in physiological condition and ability to guide new bone formation, is widely used to treat bone defects. In the present study, we have evaluated the effects of poly ethylene glycol (PEG) addition on the setting time, compressive strength and in vitro biocompatibility of brushite cement. The brushite cements were prepared by mixing β-tricalcium phosphate [β-TCP, Ca(3)(PO(4))(2)] and monocalcium phosphate monohydrate [MCPM, Ca(H(2)PO(4))(2). H(2)O]. PEG was introduced at 2.0 and 5.0 wt% with the liquid. Introduction of PEG resulted in marginal increase in both initial and final setting time; however, significantly affected the compressive strength. Effects of PEG incorporation on in vitro biocompatibility of brushite cements were studied by using human fetal osteoblast cells (hFOB) cells. Field emission scanning electron microscope (FESEM) images and immunohistochemical analysis indicated that pure and PEG incorporated brushite cement facilitates cell adhesion, proliferation and differentiation. Fewer cells expressed vinculin protein with increased PEG content in the cement. Cell proliferation was found to decrease with increased PEG concentration while the cell differentiation increased with PEG content. Our results provide a better understanding of in vitro biocompatibility of PEG added brushite cements that can be used to customize the cement compositions based on application need. PMID:23139441

  20. Mechanical and In Vitro Biocompatibility of Brushite Cement Modified by Polyethylene Glycol

    PubMed Central

    Roy, Mangal; DeVoe, Ken; Bandyopadhyay, Amit; Bose, Susmita

    2012-01-01

    Brushite (dicalcium phosphate dihydrate, DCPD) cement, owing to its high solubility in physiological condition and ability to guide new bone formation, is widely used to treat bone defects. In the present study, we have evaluated the effects of poly ethylene glycol (PEG) addition on the setting time, compressive strength and in vitro biocompatibility of brushite cement. The brushite cements were prepared by mixing β-tricalcium phosphate [β-TCP, Ca3(PO4)2] and monocalcium phosphate monohydrate [MCPM, Ca(H2PO4)2. H2O]. PEG was introduced at 2.0 and 5.0 wt% with the liquid. Introduction of PEG resulted in marginal increase in both initial and final setting time; however, significantly affected the compressive strength. Effects of PEG incorporation on in vitro biocompatibility of brushite cements were studied by using human fetal osteoblast cells (hFOB) cells. Field emission scanning electron microscope (FESEM) images and immunohistochemical analysis indicated that pure and PEG incorporated brushite cement facilitates cell adhesion, proliferation and differentiation. Fewer cells expressed vinculin protein with increased PEG content in the cement. Cell proliferation was found to decrease with increased PEG concentration while the cell differentiation increased with PEG content. Our results provide a better understanding of in vitro biocompatibility of PEG added brushite cements that can be used to customize the cement compositions based on application need. PMID:23139441

  1. The effect of amine-free initiator system and the polymerization type on color stability of resin cements.

    PubMed

    Ural, Çağrı; Duran, İbrahim; Tatar, Numan; Öztürk, Özgür; Kaya, İsmail; Kavut, İdris

    2016-01-01

    We investigated the short-term (4 weeks) color stability of light-cure and dual-cure resin cements. Sixty disk-shaped test specimens of adhesive resin cement (10 × 1 mm) were prepared. One feldspathic porcelain test specimen (12 × 14 × 0.8 mm) was prepared from a prefabricated ceramic block. The feldspathic sample was placed on the resin cement disk and all the measurements were performed without cementation. Specific color coordinate differences (ΔL, Δa, and Δb), and the total color differences (ΔE) were calculated after immersion in distilled water for different periods. Data were compared using one-way analysis of variance (ANOVA) (α = 0.05). The test results revealed that different chemical structures and curing modes affected the ΔE values (P < 0.05). The highest ΔE values were obtained for RelyX Unicem dual-cure cement (2.14 ± 0.40), and the lowest for NX3 light-cure cement (0.78 ± 0.34). Third generation adhesive resin cement free of tertiary amines and benzoyl peroxide showed relatively slight color change in both test groups (light-cure and dual-cure resin cement). (J Oral Sci 58, 157-161, 2016). PMID:27349535

  2. Surface treatment of gold alloys for resin adhesion.

    PubMed

    Eder, A; Wickens, J

    1996-01-01

    This in vitro study compared three methods of surface treating gold alloys to improve resin adhesion. The tensile bond strengths and modes of failure between specimen pairs cemented with a chemically adhesive resin were recorded. Heat-treated gold alloy specimens were significantly more resistant to bond failure under tensile loading than were either alumina-blasted or tin-plated gold specimens. There was no statistically significant difference in bond failure between alumina-blasted and tin-plated gold specimens. The surface treatment altered the mode of failure from adhesive and/or adhesive-cohesive for alumina-blasted and tinplated gold specimens to cohesive (within the resin) for heat-treated gold specimens. Three case reports are presented to illustrate clinical applications of heat-treated gold alloys. PMID:9063210

  3. Mineral resource of the month: hydraulic cement

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2012-01-01

    Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.

  4. Effect of glycine pretreatment on the shear bond strength of a CAD/CAM resin nano ceramic material to dentin

    PubMed Central

    Ceci, Matteo; Pigozzo, Marco; Scribante, Andrea; Beltrami, Riccardo; Colombo, Marco; Chiesa, Marco

    2016-01-01

    Background The purpose of this study was to evaluate the effect of glycine pretreatment on the shear bond strength between dentin and a CAD/CAM resin nano ceramic material (LavaTM Ultimate Restorative), bonded together with adhesive cements using three different luting protocols (total-etch; self-etch; self-adhesive). Material and Methods Thirty cylinders were milled from resin nano ceramic blocks with CAD/CAM technology. The cylinders were subsequently cemented to the exposed dentin of 30 bovine permanent mandibular incisors. The specimens were assigned into six groups of five teeth each according to luting procedure and dentin pretreatment. In the first two groups (A1, A2) 10 cylinders were cemented using a total-etch protocol; in groups B1 and B2, 10 cylinders were cemented using a self-etch protocol; in groups C1 and C2, 10 cylinders were cemented using a self-adhesive protocol; in groups A1, B1 and C1 the dentinal surface was also treated with glycine powder. All cemented specimens were submitted to a shear bond strength test. Statistical analysis was performed with Stata 9.0 software. Results ANOVA showed the presence of significant differences among the various groups (P <0.0001). Conclusions Glycine did not change the different bond strength demonstrated by the various luting protocols tested. Conventional resin composite cements used together with a self-etch adhesive reported the highest values. However the use of glycine seems to increase the bond strength of self-adhesive resin cements. Key words:Adhesive cements, CAD/CAM, glycine, luting system, resin nano ceramic, shear bond strength. PMID:27034754

  5. PH dependent adhesive peptides

    DOEpatents

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  6. US cement industry

    SciTech Connect

    Nisbet, M.A.

    1997-12-31

    This paper describes the cement and concrete industry, and provides data on energy use and carbon dioxide emissions. The potential impact of an energy tax on the industry is briefly assessed. Opportunities identified for reducing carbon dioxide emissions include improved energy efficiency, alternative fuels, and alternative materials. The key factor in determining CO{sub 2} emissions is the level of domestic production. The projected improvement in energy efficiency and the relatively slow growth in domestic shipments indicate that CO{sub 2} emissions in 2000 should be about 5% above the 1990 target. However, due to the cyclical nature of cement demand, emissions will probably be above target levels during peak demand and below target levels during demand troughs. 7 figs., 2 tabs.

  7. Well cementing in permafrost

    SciTech Connect

    Wilson, W.N.

    1980-01-01

    A process for cementing a string of pipe in the permafrost region of a borehole of a well wherein aqueous drilling fluid actually used in drilling the wellbore in the permafrost region of a wellbore is employed. The drilling fluid contains or is adjusted to contain from about 2 to about 16 volume percent solids. Mixing with the drilling fluid (1) an additive selected from the group consisting of ligno-sulfonate, lignite, tannin, and mixtures thereof, (2) sufficient base to raise the pH of the drilling fluid into the range of from about 9 to about 12, and (3) cementitious material which will harden in from about 30 to about 40 hours at 40/sup 0/F. The resulting mixture is pumped into the permafrost region of a wellbore to be cemented and allowed to harden in the wellbore. There is also provided a process for treating an aqueous drilling fluid after it has been used in drilling the wellbore in permafrost, and a cementitious composition for cementing in a permafrost region of a wellbore.

  8. Tympanoplasty with ionomeric cement.

    PubMed

    Kjeldsen, A D; Grøntved, A M

    2000-01-01

    Patients with isolated erosion of the long incus process suffer from severe hearing loss caused by lack of continuity of the ossicular chain. This study is a retrospective evaluation of the hearing results using two different surgical procedures. Since January 1993, 12 consecutive patients with isolated erosion of the long incus process have been treated with a new surgical technique in which the ossicular chain was rebuilt with ionomeric cement. The results in hearing performance (mean pure-tone average (PTA) 0.5, 1 and 2 kHz) were evaluated pre- and post-surgery, and compared to those in a group of 20 historical controls who underwent surgery in 1991 and 1992 using incus autograft interposition. Among the 12 index patients, 7 (58%) achieved improvement in PTA of > 10 dB, in 3 there was no difference and in 2 a slight decline. Among the 20 controls, 14 (70%) achieved improvement in PTA of > 10 dB, in 4 there was a slight improvement and in 2 a decline. The difference was not statistically significant. Hearing improvement using ionomeric cement in type II tympanoplasty was satisfactory. Reconstruction of the ossicular chain with ionomeric cement is recommended, as the procedure is easy to perform, presents less risk of damage to the stapes and cochlea, requires less extensive surgery and does not exclude other surgical methods in cases of reoperation. PMID:10909000

  9. Evaluation Of The Shear Bond Strength Between Dentin And Dental Luting Cement Following Dentin Surface Treatment By 980 Nm Diode Laser And Desensitizing Agent

    NASA Astrophysics Data System (ADS)

    Ibrahim, T.; Gheith, M.

    2011-09-01

    Dentin hypersensitivity is described clinically as an exaggerated response to non-noxious sensory stimuli. Current treatment is concentrating on two approaches; to occlude the dentinal tubules or to block neural transmission. This is achieved through using dentin desensitizers and low power lasers. Forty eight freshly extracted human molar teeth were used in this study and divided equally into three groups. Group 1) control group, group 2) laser treated dentin surface group, and group 3) desensitizing agent dentin surface group. Scanning electron microscopic analysis of laser treated group showed melted globules, no carbonization, recrystalization and crystal growth of the apatite in some areas. In diode laser dentin surface treated group showed the highest shear bond strength mean value.

  10. Cementing oil and gas wells

    SciTech Connect

    Bloys, J.B.; Wilson, W.N.; Bradshaw, R.D.

    1991-08-13

    This patent describes a method for cementing a wellbore penetrating an earth formation to which a conduit extends, the wellbore having a space occupied by a fluid composition to be converted to cement for cementing the space to form a seal between spaced apart points in the formation. It comprises providing means for adding cementitious material and a dispersant to the fluid, circulating the fluid and adding the cementitious material and the dispersant to a quantity of the fluid in predetermined proportions to form a settable cement composition comprising a major portion of the drilling fluid in the well as it was drilled; and water; a lesser proportion of dry cementitious material; a minor amount of a dispersant that does not effect a satisfactory set cement within an acceptable time interval; and a compatible accelerator selected from the class consisting of acetic acid; the first four carbon esters thereof; and acedamide and filling the wellbore with the cement composition.

  11. Alkali burns from wet cement.

    PubMed Central

    Peters, W. J.

    1984-01-01

    When water is added to the dry materials of Portland cement calcium hydroxide is formed; the wet cement is caustic (with a pH as high as 12.9) and can produce third-degree alkali burns after 2 hours of contact. Unlike professional cement workers, amateurs are usually not aware of any danger and may stand or kneel in the cement for long periods. As illustrated in a case report, general physicians may recognize neither the seriousness of the injury in its early stages nor the significance of a history of prolonged contact with wet cement. All people working with cement should be warned about its dangers and advised to immediately wash and dry the skin if contact does occur. Images Fig. 1 PMID:6561052

  12. Mineral of the month: cement

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2006-01-01

    Hydraulic cement is a virtually ubiquitous construction material that, when mixed with water, serves as the binder in concrete and most mortars. Only about 13 percent of concrete by weight is cement (the rest being water and aggregates), but the cement contributes all of the concrete’s compressional strength. The term “hydraulic” refers to the cement’s ability to set and harden underwater through the hydration of the cement’s components.

  13. Cement penetration after patella venting.

    PubMed

    Jones, Christopher W; Lam, Li-On; Butler, Adam; Wood, David J; Walsh, William R

    2009-01-01

    There is a high rate of patellofemoral complications following total knee arthroplasty. Optimization of the cement-bone interface by venting and suction of the tibial plateau has been shown to improve cement penetration. Our study was designed to investigate if venting the patella prior to cementing improved cement penetration. Ten paired cadaver patellae were allocated prior to resurfacing to be vented or non-vented. Bone mineral density (BMD) was measured by DEXA scanning. In vented specimens, a 1.6 mm Kirschner wire was used to breach the anterior cortex at the center. Specimens were resurfaced with standard Profix instrumentation and Versabond bone cement (Smith and Nephew PLC, UK). Cement penetration was assessed from Faxitron and sectioned images by a digital image software package (ImageJ V1.38, NIH, USA). Wilcoxon rank sum test was used to assess the difference in cement penetration between groups. The relationship between BMD and cement penetration was analyzed by Pearson correlation coefficient. There was a strong negative correlation between peak BMD and cement penetration when analyzed independent of experimental grouping (r(2)=-0.812, p=0.004). Wilcoxon rank sum testing demonstrated no significant difference (rank sum statistic W=27, p=0.579) in cement penetration between vented (10.53%+/-4.66; mean+/-std dev) and non-vented patellae (11.51%+/-6.23; mean+/-std dev). Venting the patella using a Kirschner wire does not have a significant effect on the amount of cement penetration achieved in vitro using Profix instrumentation and Versabond cement. PMID:19010682

  14. Caustic reaction caused by cement.

    PubMed

    Rados, Jaka; Lipozencić, Jasna; Milavec-Puretić, Visnja

    2005-01-01

    A case is reported of a patient who developed full thickness chemical burns of the skin after a prolonged contact while working with wet cement. The history, course of disease, and therapy are described. Cement is an alkaline substance (pH >12) leading to colliquative necrosis. Tissue damage is due to the exothermic reaction of calcium oxide and water forming calcium hydroxide. Patch test was performed to test sensitization to chromium, chromate and cobalt, the usual cement ingredients. In our opinion, such lesions may not be rare because cement is widely used in construction, but are rarely described or under-recognized. PMID:16324425

  15. [Allergy to bone cement components].

    PubMed

    Thomas, P; Schuh, A; Eben, R; Thomsen, M

    2008-02-01

    Intolerance reactions to endoprostheses may lead to allergological diagnostics, which focus mainly on metal allergy. However, bone cement may also contain potential allergens, e.g. acrylates and additives such as benzoyl peroxide (BPO), N,N-dimethyl-p-toluidine, hydroquinone, and antibiotics (particularly gentamicin). In the Munich implant allergy clinic, we found that 28 of 113 patients (24.8%) with cemented prostheses had contact allergies to bone cement components, mostly to gentamicin (16.8%) and BPO (8.0%). The clinical significance of test results cannot always be shown, but we still recommend including bone cement components in the allergological diagnostics of suspected hypersensitivity reactions to arthroplasty. PMID:18227996

  16. Speciality cements with advanced properties

    SciTech Connect

    Scheetz, B.E. ); Landers, A.G. ); Odler, I. ); Jennings, H. )

    1991-01-01

    The subject matter, specialty cements with advanced properties, highlight some of the recent progress in the non-standard cementitious systems. The topic was intended to be broad enough to include MDF and DSP cement, as well as phosphate-based and other binders. The response to this broad request resulted in a wide variational sampling of potential binder systems, which included calcium phosphates, magnesium phosphates, silica systems derived from sodium fluosilicates, stratlingite glasses, alkali-activated blended cements, and aluminophosphates. Presentations also addressed in depth, the underlying processing and fundamental insight into macro defect cements and DSP.

  17. Effects of different surface treatments on bond strength between resin cements and zirconia ceramics.

    PubMed

    Erdem, A; Akar, G C; Erdem, A; Kose, T

    2014-01-01

    This study compares the bond strength of resin cement and yttrium-stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramic with different surface conditioning methods. Two hundred presintered Y-TZP ceramic specimens were prepared, sintered (4 × 4 × 4 mm), and randomly assigned to four equal groups as control (C, no conditioning); airborne particle abraded (APA, air abrasion with 11 μm Al2O3); tribochemical silica coating/silane coupling system (TSC, Rocatec, air abrasion with 110 μm Al2O3, 30 μm silica-coated Al2O3 and silane); and laser (L, Er:YAG laser irradiation treated at a power setting of 200 mJ). After specimen preparation, composite resin cylinders were prepared and cemented with resin cements (Clearfil Esthetic, Panavia F 2.0, Rely X-U100, Super Bond C&B, and Multilink Automix) on the ceramic surfaces and kept in an incubator at 37°C for 60 days. All specimens were tested for shear bond strength with a universal testing machine, and fractured surfaces were evaluated by environmental scanning electron microscopy. Statistical analysis was performed using Kruskal-Wallis and Mann-Whitney U-tests (α=0.05). The bond strengths for C and L groups were not significantly different according to adhesive resin cement. APA and TSC resulted in increased bond strength for Panavia F 2.0 and Rely X-U100 resin cements. Additionally, TSC presented higher bond strength with Multilink Automix. Adhesive fracture between the ceramic and resin cement was the most common failure. Complete cohesive fracture at the ceramic or composite cylinders was not observed. Regardless of the adhesive resin cement used, laser treatment did not improve resin bond strength. PMID:24299447

  18. Various Effects of Sandblasting of Dental Restorative Materials

    PubMed Central

    Nishigawa, Goro; Maruo, Yukinori; Irie, Masao; Maeda, Naoto; Yoshihara, Kumiko; Nagaoka, Noriyuki; Matsumoto, Takuya; Minagi, Shogo

    2016-01-01

    Background Sandblasting particles which remain on the surfaces of dental restorations are removed prior to cementation. It is probable that adhesive strength between luting material and sandblasting particle remnants might exceed that with restorative material. If that being the case, blasting particles adhere to sandblasted material surface could be instrumental to increasing adhesive strength like underlying bonding mechanism between luting material and silanized particles of tribochemical silica coating-treated surface. We hypothesize that ultrasonic cleaning of bonding surfaces, which were pretreated with sandblasting, may affect adhesive strength of a resin luting material to dental restorative materials. Methods We therefore observed adhesive strength of resin luting material to aluminum oxide was greater than those to zirconia ceramic and cobalt-chromium alloy beforehand. To measure the shear bond strengths of resin luting material to zirconia ceramic and cobalt-chromium alloy, forty specimens of each restorative material were prepared. Bonding surfaces were polished with silicon abrasive paper and then treated with sandblasting. For each restorative material, 40 sandblasted specimens were equally divided into two groups: ultrasonic cleaning (USC) group and non-ultrasonic cleaning (NUSC) group. After resin luting material was polymerized on bonding surface, shear test was performed to evaluate effect of ultrasonic cleaning of bonding surfaces pretreated with sandblasting on bond strength. Results For both zirconia ceramic and cobalt-chromium alloy, NUSC group showed significantly higher shear bond strength than USC group. Conclusions Ultrasonic cleaning of dental restorations after sandblasting should be avoided to retain improved bonding between these materials. PMID:26764913

  19. Mechanical properties of the cement of the stalked barnacle Dosima fascicularis (Cirripedia, Crustacea)

    PubMed Central

    Zheden, Vanessa; Klepal, Waltraud; Gorb, Stanislav N.; Kovalev, Alexander

    2015-01-01

    The stalked barnacle Dosima fascicularis secretes foam-like cement, the amount of which usually exceeds that produced by other barnacles. When Dosima settles on small objects, this adhesive is additionally used as a float which gives buoyancy to the animal. The dual use of the cement by D. fascicularis requires mechanical properties different from those of other barnacle species. In the float, two regions with different morphological structure and mechanical properties can be distinguished. The outer compact zone with small gas-filled bubbles (cells) is harder than the interior one and forms a protective rind presumably against mechanical damage. The inner region with large, gas-filled cells is soft. This study demonstrates that D. fascicularis cement is soft and visco-elastic. We show that the values of the elastic modulus, hardness and tensile stress are considerably lower than in the rigid cement of other barnacles. PMID:25657833

  20. Mechanical properties of the cement of the stalked barnacle Dosima fascicularis (Cirripedia, Crustacea).

    PubMed

    Zheden, Vanessa; Klepal, Waltraud; Gorb, Stanislav N; Kovalev, Alexander

    2015-02-01

    The stalked barnacle Dosima fascicularis secretes foam-like cement, the amount of which usually exceeds that produced by other barnacles. When Dosima settles on small objects, this adhesive is additionally used as a float which gives buoyancy to the animal. The dual use of the cement by D. fascicularis requires mechanical properties different from those of other barnacle species. In the float, two regions with different morphological structure and mechanical properties can be distinguished. The outer compact zone with small gas-filled bubbles (cells) is harder than the interior one and forms a protective rind presumably against mechanical damage. The inner region with large, gas-filled cells is soft. This study demonstrates that D. fascicularis cement is soft and visco-elastic. We show that the values of the elastic modulus, hardness and tensile stress are considerably lower than in the rigid cement of other barnacles. PMID:25657833

  1. Thermal Shock-resistant Cement

    SciTech Connect

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved

  2. Retentive strength of different intracanal posts in restorations of anterior primary teeth: an in vitro study

    PubMed Central

    Memarpour, Mahtab; Abbaszadeh, Maryam

    2013-01-01

    Objectives To determine the retentive strength and failure mode of undercut composite post, glass fiber post and polyethylene fiber post luted with flowable composite resin and resin-cement. Materials and Methods Coronal parts of 120 primary canine teeth were sectioned and specimens were treated endodontically. The teeth were randomly divided into 6 groups (n = 20). Prepared root canals received intracanal retainers with a short composite post, undercut composite post, glass fiber post luted with flowable resin or resin-cement, and polyethylene fiber post luted with flowable resin or resin-cement. After crown reconstruction, samples were tested for retentive strength and failure mode. Statistical analysis was done with one-way ANOVA and Tukey tests (p < 0.05). Results There were statistically significant differences between groups (p = 0.001). Mean bond strength in the undercut group was significantly greater than in the short composite post (p = 0.030), and the glass fiber post (p = 0.001) and the polyethylene fiber post group luted with resin-cement (p = 0.008). However, the differences between the undercut group and the groups with flowable composite as the luting agent were not significant (p = 0.068, p = 0.557). Adhesive failure was more frequent in the fiber post groups. Conclusions Although the composite post with undercutting showed the greatest resistance to dislodgement, fiber posts cemented with flowable composite resin provided acceptable results in terms of retentive strength and fracture mode. PMID:24303356

  3. Cytotoxicity and biocompatibility of Zirconia (Y-TZP) posts with various dental cements

    PubMed Central

    Shin, Hyeongsoon; Ko, Hyunjung

    2016-01-01

    Objectives Endodontically treated teeth with insufficient tooth structure are often restored with esthetic restorations. This study evaluated the cytotoxicity and biological effects of yttria partially stabilized zirconia (Y-TZP) blocks in combination with several dental cements. Materials and Methods Pairs of zirconia cylinders with medium alone or cemented with three types of dental cement including RelyX U200 (3M ESPE), FujiCEM 2 (GC), and Panavia F 2.0 (Kuraray) were incubated in medium for 14 days. The cytotoxicity of each supernatant was determined using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays on L929 fibroblasts and MC3T3-E1 osteoblasts. The levels of interleukin-6 (IL-6) mRNA were evaluated by reverse transcription polymerase chain reaction (RT-PCR), and IL-6 protein was evaluated by enzyme-linked immunosorbent assays (ELISA). The data were analyzed using one-way ANOVA and Tukey post-hoc tests. A p < 0.05 was considered statistically significant. Results The MTT assays showed that MC3T3-E1 osteoblasts were more susceptible to dental cements than L929 fibroblasts. The resin based dental cements increased IL-6 expression in L929 cells, but reduced IL-6 expression in MC3T3-E1 cells. Conclusions Zirconia alone or blocks cemented with dental cement showed acceptable biocompatibilities. The results showed resin-modified glass-ionomer based cement less produced inflammatory cytokines than other self-adhesive resin-based cements. Furthermore, osteoblasts were more susceptible than fibroblasts to the biological effects of dental cement. PMID:27508157

  4. (α'(H))-Dicalcium silicate bone cement doped with tricalcium phosphate: characterization, bioactivity and biocompatibility.

    PubMed

    de Aza, Piedad N; Zuleta, Fausto; Velasquez, Pablo; Vicente-Salar, Nestor; Reig, Juan A

    2014-02-01

    The influence of phosphorus doping on the properties of (α'(H))-dicalcium silicate (C(2)S) bone cement was analyzed, in addition to bioactivity and biocompatibility. All the cements were composed of a solid solution of TCP in C(2)S ([Formula: see text]-C(2)S(ss)) as the only phase present. The compressive strength ranged from 3.8-16.3 MPa. Final setting times ranged from 10 to 50 min and were lower for cements with lower L/P content. Calcium silicate hydrate was the principal phase formed during the hydration process of the cements. The cement exhibited a moderate degradation and could induce carbonated hydroxyapatite formation on its surface and into the pores. The cell attachment test showed that the (α'(H))-C(2)SiO(4) solid solution supported human adipose stem cells adhesion and spreading, and the cells established close contacts with the cement after 24 h of culture. The novel (α'(H))-C(2)S(ss) cements might be suitable for potential applications in the biomedical field, preferentially as materials for bone/dental repair. PMID:24218299

  5. Comparison of Apical Microleakage of Dual-Curing Resin Cements with Fluid-Filtration and Dye Extraction Techniques

    PubMed Central

    Kaya, Sadullah; Özer, Senem Yiğit; Adigüzel, Özkan; Oruçoğlu, Hasan; Değer, Yalçın; Tümen, Emin Caner; Uysal, İbrahim

    2015-01-01

    Background Endodontically treated teeth with excessive loss of tooth structure are frequently restored using fiber posts. In this in vitro study, the apical leakage of self- and dual-activated curing modes for dual-curing resins cementing a translucent fiber post was evaluated using computerized fluid filtration meter and dye extraction method. Material/Methods One hundred and four extracted human maxillary incisors with single root and canal were used. Experimental samples embedded in a closed system were divided into 4 groups (n=20) according to 2 dual-curing luting systems, with 2 different curing modes (either with self- or light-activation): (1) Panavia F 2.0 with self-cure, (2) Panavia F 2.0 with light-activation, (3) Clearfill SA with self-cure, and (4) Clearfill SA with light activation. Twenty-four teeth served as negative and positive controls. Translucent fiber posts were luted in the roots except in the control groups. Results Statistical analysis indicated no significant difference in leakage among groups (p>0.05) with 4.12×10−4 (Panavia self-cure), 4.55×10−4 (Clearfill SA self-cure), 5.17×10−4 (Panavia dual-cure), and 5.59×10−4 (Clearfill SA dual-cure) in fluid-filtration method. Absorbance values for dye-extraction method were 266 nanometer (nm) (Panavia self-cure), 268 nm (Clearfill SA self-cure), 270 nm (Panavia dual-cure), and 271 nm (Clearfill SA dual-cure), in which difference among the groups were not statistically significant (p>0.05). When comparing the leakage, assessment methods results showed no statistically significant difference between the tested evaluation techniques (p>0.05). Conclusions Light- and self-activation curing modes of Panavia F 2.0 and Clearfill SA perform similar to each other in a closed system. PMID:25824712

  6. Reversible Thermoset Adhesives

    NASA Technical Reports Server (NTRS)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  7. Adhesion at metal interfaces

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Ferrante, John; Smith, John R.

    1991-01-01

    A basic adhesion process is defined, the theory of the properties influencing metallic adhesion is outlined, and theoretical approaches to the interface problem are presented, with emphasis on first-principle calculations as well as jellium-model calculations. The computation of the energies of adhesion as a function of the interfacial separation is performed; fully three-dimensional calculations are presented, and universality in the shapes of the binding energy curves is considered. An embedded-atom method and equivalent-crystal theory are covered in the framework of issues involved in practical adhesion.

  8. Advanced cement solidification system

    SciTech Connect

    Nakashima, T.; Kuribayashi, H.; Todo, F.

    1993-12-31

    In order to easily and economically store and transport radioactive waste generated at nuclear power stations, it is essential to reduce the waste volume to the maximum extent. It is also necessary to transform the waste into a stable form for final disposal which will maintain its chemical and physical stability over a long period of time. For this purpose, the Advanced Cement Solidification Process (AC-process) was developed. The AC-process, which utilizes portland cement, can be applied to several kinds of waste such as boric acid waste, laboratory drain waste, incineration ash and spent ion exchange resin. In this paper, the key point of the AC-process, the pretreatment concept for each waste, is described. The AC-process has been adopted for two Japanese PWR stations: the Genkai Nuclear Power Station (Kyushu Electric Power Co.) and the Ikata Nuclear Power Station (Shikoku Electric Power Co.). Construction work has almost finished and commissioning tests are under way at both power stations.

  9. Influence of the Cement Film Thickness on the Push-Out Bond Strength of Glass Fiber Posts Cemented in Human Root Canals

    PubMed Central

    Prado, Natália Araújo Silva; Ferreira, Reinaldo de Souza; Maurício, Marcos Henrique de Pinho; Paciornik, Sidnei; de Miranda, Mauro Sayão

    2016-01-01

    The present study evaluated the influence of the cement film thickness on the push-out bond strength of glass fiber posts in the cervical, medium, and apical thirds of root canal spaces. Thirty roots were randomly divided into three groups, according to the fiber post system's drills: (G1) #2; (G2) #3; (G3) #4. The posts were cemented using a self-adhesive cement, and a small amount of powdered Rhodamine B was used as a stain. Images of both sides of each slice were obtained before and after the push-out test. To determine the cement thickness, a macro routine was developed using the software KS 400. The data were analyzed statistically using Kruskal-Wallis and Dunn's test. G2 (14.62 ± 5.15 MPa) showed statistically higher bond strength values than G1 (10.04 ± 5.13 MPa) and G3 (7.68 ± 6.14 MPa). All groups presented higher bond strength values in the apical third. The bur diameter significantly influenced the results of the shear bond strength for the push-out test. The slight increase in the cement thickness allowed an increase in the values of shear bond strength when compared to very thin or very thick cement films. PMID:27143971

  10. Fracture resistance of a selection of full-contour all-ceramic crowns: an in vitro study.

    PubMed

    Zesewitz, Tim F; Knauber, Andreas W; Northdurft, Frank P

    2014-01-01

    This study aimed to evaluate the fracture resistance of monolithic single crowns made from zirconia (ZI), lithium disilicate (LS2), or feldspar ceramic (FC). Five groups of crowns representing a maxillary first molar were made with the appropriate dimensions according to the manufacturer's instructions. The ZI and LS2 crowns were luted adhesively or cemented conventionally on a metal abutment tooth analog. The feldspar ceramic crowns were luted adhesively. All specimens underwent axial loading until fracture. The crowns in the ZI groups possessed the highest fracture resistance independent of the mode of fixation. PMID:24905268

  11. The Use of Micro and Nano Particulate Fillers to Modify the Mechanical and Material Properties of Acrylic Bone Cement

    NASA Astrophysics Data System (ADS)

    Slane, Joshua A.

    Acrylic bone cement (polymethyl methacrylate) is widely used in total joint replacements to provide long-term fixation of implants. In essence, bone cement acts as a grout by filling in the voids left between the implant and the patient's bone, forming a mechanical interlock. While bone cement is considered the `gold standard' for implant fixation, issues such as mechanical failure of the cement mantle (aseptic loosening) and the development of prosthetic joint infection (PJI) still plague joint replacement procedures and often necessitate revision arthroplasty. In an effort to address these failures, various modifications are commonly made to bone cement such as mechanical reinforcement with particles/fibers and the addition of antibiotics to mitigate PJI. Despite these attempts, issues such as poor particle interfacial adhesion, inadequate drug release, and the development of multidrug resistant bacteria limit the effectiveness of bone cement modifications. Therefore, the overall goal of this work was to use micro and nanoparticles to enhance the properties of acrylic bone cement, with particular emphasis placed on improving the mechanical properties, cumulative antibiotic release, and antimicrobial properties. An acrylic bone cement (Palacos R) was modified with three types of particles in various loading ratios: mesoporous silica nanoparticles (for mechanical reinforcement), xylitol microparticles (for increased antibiotic release), and silver nanoparticles (as an antimicrobial agent). These particles were used as sole modifications, not in tandem with one another. The resulting cement composites were characterized using a variety of mechanical (macro to nano, fatigue, fracture, and dynamic), imaging, chemical, thermal, biological, and antimicrobial testing techniques. The primary outcomes of this dissertation demonstrate that: (1) mesoporous silica, as used in this work, is a poor reinforcement phase for acrylic bone cement, (2) xylitol can significantly

  12. Chemical adhesion rather than mechanical retention enhances resin bond durability of a dental glass-ceramic with leucite crystallites.

    PubMed

    Meng, X F; Yoshida, K; Gu, N

    2010-08-01

    This study aims to evaluate the effect of chemical adhesion by a silane coupler and mechanical retention by hydrofluoric acid (HFA) etching on the bond durability of resin to a dental glass ceramic with leucite crystallites. Half of the ceramic plates were etched with 4.8% HFA (HFA group) for 60 s, and the other half were not treated (NoHFA group). The scale of their surface roughness and rough area was measured by a 3D laser scanning microscope. These plates then received one of the following two bond procedures to form four bond test groups: HFA/cement, NoHFA/cement, HFA/silane/cement and NoHFA/silane/cement. The associated micro-shear bond strength and bond failure modes were tested after 0 and 30 000 thermal water bath cycles. Four different silane/cement systems (Monobond S/Variolink II, GC Ceramic Primer/Linkmax HV, Clearfil Ceramic Primer/Clearfil Esthetic Cement and Porcelain Liner M/SuperBond C&B) were used. The data for each silane/cement system were analyzed by three-way ANOVA. HFA treatment significantly increased the surface R(a) and R(y) values and the rough area of the ceramic plates compared with NoHFA treatment. After 30 000 thermal water bath cycles, the bond strength of all the test groups except the HFA/Linkmax HV group was significantly reduced, while the HFA/Linkmax HV group showed only adhesive interface failure. The other HFA/cement groups and all NoHFA/cement groups lost bond strength completely, and all NoHFA/silane/cement groups with chemical adhesion had significantly higher bond strength and more ceramic cohesive failures than the respective HFA/cement groups with mechanical retention. The result of the HFA/silane/cement groups with both chemical adhesion and mechanical retention revealed that HFA treatment could enhance the bond durability of resin/silanized glass ceramics, which might result from the increase of the chemical adhesion area on the ceramic rough surface and subsequently reduced degradation speed of the silane coupler

  13. The influence of polymerization shrinkage of resin cements on bonding to metal.

    PubMed

    Verzijden, C W; Feilzer, A J; Creugers, N H; Davidson, C L

    1992-02-01

    During the setting of a resin composite cement (RCC) used as an adhesive between a resin-bonded bridge and tooth structure, the adhesion may be disrupted by the development of shrinkage stress. The aim of this study was to investigate the influence of the shrinkage stress of three different RCCs on their adhesive and cohesive qualities when bonded to metal surfaces in a rigid set-up. Two opposing parallel NiCr discs (Wiron 77) were mounted in a tensilometer at a mutual distance of 200 microns and cemented with Panavia Ex, Clearfil F2, or Microfill Pontic C. The alloy surfaces were treated by either electrolytic etching, sand-blasting, silane-coating, or tin-plating. During setting, the discs were kept at their original mutual distance to simulate the extreme clinical situation of "complete" rigidity, where the casting and the tooth cannot move toward each other. The developing shrinkage stress was recorded continuously. During setting, the adhesive strength of the RCCs to silane-coated surfaces was always higher than their early cohesive strength. Electrolytically-etched surfaces as well as sand-blasted surfaces showed, in almost all cases, adhesive failure. The tin-plated samples showed mainly adhesive failure at the metal/resin interface. The highest bond strength values were found for silane-coated surfaces in combination with Clearfil F2. PMID:1556300

  14. Evaluation of polymerization shrinkage of resin cements through in vitro and in situ experiments

    NASA Astrophysics Data System (ADS)

    Franco, A. P. G. O.; Karam, L. Z.; Pulido, C. A.; Gomes, O. M. M.; Kalinowski, H. J.

    2014-08-01

    The aim of this study was to evaluate the behavior of two types of resin cements , conventional dual and dual self adhesive, through in vitro and in situ experiments. For the in vitro assay were selected two resin cements that were handled and dispensed over a mylar strip supported by a glass plate. The Bragg grating sensors were positioned and another portion of cement. was placed, covered by another mylar strip. For the in situ experiment 16 single-rooted teeth were selected who were divided into 2 groups: group 1 - conventional dual resin cement Relyx ARC and group 2 - dual self adhesive resin cement Relyx U200 ( 3M/ESPE ). The teeth were treated and prepared to receive the intracanal posts. Two Bragg grating sensors were recorded and introduced into the root canal at different apical and coronal positions. The results showed that the in vitro experiment presented similar values of polymerization shrinkage that the in situ experiment made in cervical position; whereas Relyx ARC resulted lower values compared to Relyx U200; and cervical position showed higher shrinkage than the apical.

  15. 21 CFR 888.4200 - Cement dispenser.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cement dispenser. 888.4200 Section 888.4200 Food... DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4200 Cement dispenser. (a) Identification. A cement dispenser is a nonpowered syringe-like device intended for use in placing bone cement (§ 888.3027)...

  16. 21 CFR 888.4200 - Cement dispenser.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cement dispenser. 888.4200 Section 888.4200 Food... DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4200 Cement dispenser. (a) Identification. A cement dispenser is a nonpowered syringe-like device intended for use in placing bone cement (§ 888.3027)...

  17. 21 CFR 888.4200 - Cement dispenser.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cement dispenser. 888.4200 Section 888.4200 Food... DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4200 Cement dispenser. (a) Identification. A cement dispenser is a nonpowered syringe-like device intended for use in placing bone cement (§ 888.3027)...

  18. 21 CFR 888.4200 - Cement dispenser.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cement dispenser. 888.4200 Section 888.4200 Food... DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4200 Cement dispenser. (a) Identification. A cement dispenser is a nonpowered syringe-like device intended for use in placing bone cement (§ 888.3027)...

  19. 21 CFR 888.4200 - Cement dispenser.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement dispenser. 888.4200 Section 888.4200 Food... DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4200 Cement dispenser. (a) Identification. A cement dispenser is a nonpowered syringe-like device intended for use in placing bone cement (§ 888.3027)...

  20. Postoperative Peritoneal Adhesions

    PubMed Central

    Ryan, Graeme B.; Grobéty, Jocelyne; Majno, Guido

    1971-01-01

    This paper describes an experimental model of peritoneal adhesions, in the rat, based on two relatively minor accidents that may occur during abdominal surgery in man: drying of the serosa, and bleeding. Drying alone had little effect; drying plus bleeding consistently produced adhesions to the dried area. Fresh blood alone produced adhesions between the three membranous structures [omentum and pelvic fat bodies (PFBs)]. The formation of persistent adhesions required whole blood. Preformed clots above a critical size induced adhesions even without previous serosal injury; they were usually captured by the omentum and PFBs. If all three membranous structures were excised, the clots caused visceral adhesions. The protective role of the omentum, its structure, and the mechanism of omental adhesions, are discussed. These findings are relevant to the pathogenesis of post-operative adhesions in man. ImagesFig 3Fig 4Fig 5Fig 6Fig 7Fig 12Fig 13Fig 1Fig 2Fig 14Fig 15Fig 8Fig 9Fig 10Fig 11 PMID:5315369

  1. Shear lag sutures: Improved suture repair through the use of adhesives.

    PubMed

    Linderman, Stephen W; Kormpakis, Ioannis; Gelberman, Richard H; Birman, Victor; Wegst, Ulrike G K; Genin, Guy M; Thomopoulos, Stavros

    2015-09-01

    Suture materials and surgical knot tying techniques have improved dramatically since their first use over five millennia ago. However, the approach remains limited by the ability of the suture to transfer load to tissue at suture anchor points. Here, we predict that adhesive-coated sutures can improve mechanical load transfer beyond the range of performance of existing suture methods, thereby strengthening repairs and decreasing the risk of failure. The mechanical properties of suitable adhesives were identified using a shear lag model. Examination of the design space for an optimal adhesive demonstrated requirements for strong adhesion and low stiffness to maximize the strength of the adhesive-coated suture repair construct. To experimentally assess the model, we evaluated single strands of sutures coated with highly flexible cyanoacrylates (Loctite 4903 and 4902), cyanoacrylate (Loctite QuickTite Instant Adhesive Gel), rubber cement, rubber/gasket adhesive (1300 Scotch-Weld Neoprene High Performance Rubber & Gasket Adhesive), an albumin-glutaraldehyde adhesive (BioGlue), or poly(dopamine). As a clinically relevant proof-of-concept, cyanoacrylate-coated sutures were then used to perform a clinically relevant flexor digitorum tendon repair in cadaver tissue. The repair performed with adhesive-coated suture had significantly higher strength compared to the standard repair without adhesive. Notably, cyanoacrylate provides strong adhesion with high stiffness and brittle behavior, and is therefore not an ideal adhesive for enhancing suture repair. Nevertheless, the improvement in repair properties in a clinically relevant setting, even using a non-ideal adhesive, demonstrates the potential for the proposed approach to improve outcomes for treatments requiring suture fixation. Further study is necessary to develop a strongly adherent, compliant adhesive within the optimal design space described by the model. PMID:26022966

  2. Effects of resin luting agents and 1% NaOCl on the marginal fit of indirect composite restorations in primary teeth

    PubMed Central

    BORGES, Ana Flávia Sanches; SIMONATO, Luciana Estevam; PASCON, Fernanda Miori; KANTOWITZ, Kamila Rosamiglia; RONTANI, Regina Maria Puppin

    2011-01-01

    Objective The purpose of this study was to provide information regarding the marginal adaptation of composite resin onlays in primary teeth previously treated with 1% sodium hypochlorite (NaOCl) (pulp irrigant) using two different resin luting agents. Material and Methods Forty extracted sound primary molars had their crowns prepared in a standardized machine and were randomly divided into 4 groups (n=10): G1 (1% NaOCl irrigation+EnForce); G2 (EnForce); G3 (1% NaOCl irrigation+Rely X); G4 (Rely X). The onlays were made with Z250 composite resin on plaster models. After luting, the tooth/restoration set was stored in 100% relative humidity at 37ºC for 24 h and finished with Soflex discs. Caries Detector solution was applied at the tooth/restoration interface for 5 s. The specimens were washed and four digital photos of each tooth were then taken. The extents of the gaps were measured with Image Tool 3.0 software. The percentage data were submitted to a Kruskal-Wallis test (α=0.05). The Relative Risk test analyzed the chance of a gap presence correlated to each group. Results There were no statistically significant differences (p>0.05) among the groups. The relative risk test revealed that some groups were more apt to have a presence of gaps than others. Conclusion Neither the 1% NaOCl treatment nor the resin luting agents caused any alterations in the dental substrate that could have influenced the marginal adaptation of composite onlays in primary teeth. PMID:21986649

  3. INFLUENCE OF DIFFERENT ADHESIVE SYSTEMS ON THE PULL-OUT BOND STRENGTH OF GLASS FIBER POSTS

    PubMed Central

    da Silva, Luciana Mendonça; de Andrade, Andréa Mello; Machuca, Melissa Fernanda Garcia; da Silva, Paulo Maurício Batista; da Silva, Ricardo Virgolino C.; Veronezi, Maria Cecília

    2008-01-01

    This in vitro study evaluated the tensile bond strength of glass fiber posts (Reforpost – Angelus-Brazil) cemented to root dentin with a resin cement (RelyX ARC – 3M/ESPE) associated with two different adhesive systems (Adper Single Bond - 3M/ESPE and Adper Scotchbond Multi Purpose (MP) Plus – 3M/ESPE), using the pull-out test. Twenty single-rooted human teeth with standardized root canals were randomly assigned to 2 groups (n=10): G1- etching with 37% phosphoric acid gel (3M/ESPE) + Adper Single Bond + #1 post (Reforpost – Angelus) + four #1 accessory posts (Reforpin – Angelus) + resin cement; G2- etching with 37% phosphoric acid gel + Adper Scotchbond MP Plus + #1 post + four #1 accessory posts + resin cement. The specimens were stored in distilled water at 37°C for 7 days and submitted to the pull-out test in a universal testing machine (EMIC) at a crosshead speed of 0.5 mm/min. The mean values of bond strength (kgf) and standard deviation were: G1- 29.163 ± 7.123; G2- 37.752 ±13.054. Statistical analysis (Student's t-test; α=0.05 showed no statistically significant difference (p<0.05) between the groups. Adhesive bonding failures between resin cement and root canal dentin surface were observed in both groups, with non-polymerized resin cement in the apical portion of the post space when Single Bond was used (G1). The type of adhesive system employed on the fiber post cementation did not influence the pull-out bond strength. PMID:19089224

  4. Graphite-reinforced bone cement

    NASA Technical Reports Server (NTRS)

    Knoell, A. C.

    1976-01-01

    Chopped graphite fibers added to surgical bone cement form bonding agent with mechanical properties closely matched to those of bone. Curing reaction produces less heat, resulting in reduced traumatization of body tissues. Stiffness is increased without affecting flexural strength.

  5. The dermal toxicity of cement.

    PubMed

    Winder, Chris; Carmody, Martin

    2002-08-01

    Cement and concrete are products used widely in the construction sector, with a traditional perception that any hazards that they have are limited to dermatitis in a small number of workers. In some cases, employers and builders do not think that concrete is a chemical. However, contact dermatitis is one of the most frequently reported health problems among construction workers. A review of the available literature suggests that cement has constituents that produce both irritant contact dermatitis and corrosive effects (from alkaline ingredients such as lime) and sensitization, leading to allergic contact dermatitis (from ingredients such as chromium). These findings indicate that cement and concrete should be treated as hazardous materials, and that workers handling such products should reduce exposure wherever possible. Initiatives to reduce the chromium content of cement have been shown to be successful in reducing the incidence of allergic dermatitis, although the irritant form remains. PMID:15068132

  6. Process for cementing geothermal wells

    SciTech Connect

    Eilers, L. H.

    1985-12-03

    A pumpable slurry of coal-filled furfuryl alcohol, furfural, and/or a low molecular weight monoor copolymer thereof containing, preferably, a catalytic amount of a soluble acid catalyst is used to cement a casing in a geothermal well.

  7. Magnesium substitution in brushite cements.

    PubMed

    Alkhraisat, Mohammad Hamdan; Cabrejos-Azama, Jatsue; Rodríguez, Carmen Rueda; Jerez, Luis Blanco; Cabarcos, Enrique López

    2013-01-01

    The use of magnesium-doped ceramics has been described to modify brushite cements and improve their biological behavior. However, few studies have analyzed the efficiency of this approach to induce magnesium substitution in brushite crystals. Mg-doped ceramics composed of Mg-substituted β-TCP, stanfieldite and/or farringtonite were reacted with primary monocalcium phosphate (MCP) in the presence of water. The cement setting reaction has resulted in the formation of brushite and newberyite within the cement matrix. Interestingly, the combination of SAED and EDX analyses of single crystal has indicated the occurrence of magnesium substitution within brushite crystals. Moreover, the effect of magnesium ions on the structure, and mechanical and setting properties of the new cements was characterized as well as the release of Ca(2+) and Mg(2+) ions. Further research would enhance the efficiency of the system to incorporate larger amounts of magnesium ions within brushite crystals. PMID:25428098

  8. Cytotoxicity of denture adhesives.

    PubMed

    de Gomes, Pedro Sousa; Figueiral, Maria Helena; Fernandes, Maria Helena R; Scully, Crispian

    2011-12-01

    Ten commercially available denture adhesives, nine soluble formulations (six creams, three powders) and one insoluble product (pad), were analyzed regarding the cytotoxicity profile in direct and indirect assays using L929 fibroblast cells. In the direct assay, fibroblasts were seeded over the surface of a thick adhesive gel (5%, creams; 2.5%, powders and pad). In the indirect assay, cells were cultured in the presence of adhesive extracts prepared in static and dynamic conditions (0.5-2%, creams; 0.25-1%, powders and pad). Cell toxicity was assessed for cell viability/proliferation (MTT assay) and cell morphology (observation of the F-actin cytoskeleton organization by confocal laser scanning microscopy). Direct contact of the L929 fibroblasts with the thick adhesive gels caused no, or only a slight, decrease in cell viability/proliferation. The adhesive extracts (especially those prepared in dynamic conditions) caused significantly higher growth inhibition of fibroblasts and, in addition, caused dose- and time-dependent effects, throughout the 6-72 h exposure time. Also, dose-dependent effects on cell morphology, with evident disruption of the F-actin cytoskeleton organization, were seen in the presence of most adhesives. In conclusion, the adhesives possessed different degrees of cytotoxicity, but similar dose- and time-dependent biological profiles. PMID:20844908

  9. Solubility of cobalt in cement.

    PubMed

    Fregert, S; Gruvberger, B

    1978-02-01

    Unlike chromate, cobalt occurring as cobalt oxides in cement is not water-soluble in a detectable amount. Cobalt oxides are to some extent soluble in the presence of amino acids with which cobalt forms complexes. Such complexes can elicit patch test reactions. It is postulated that cobalt is more readily dissolved by forming complexes in eczematous skin than in normal skin. This may explain why cobalt sensitization in cement eczemas is secondary to chromate sensitivity. PMID:657784

  10. Biological responses of brushite-forming Zn- and ZnSr- substituted beta-tricalcium phosphate bone cements.

    PubMed

    Pina, S; Vieira, S I; Rego, P; Torres, P M C; da Cruz e Silva, O A B; da Cruz e Silva, E F; Ferreira, J M F

    2010-01-01

    The core aim of this study was to investigate zinc (Zn)- and zinc and strontium (ZnSr)-containing brushite-forming beta-tricalcium phosphate (TCP) cements for their effects on proliferation and differentiation of osteoblastic-like cells (MC3T3-E1 cell line) as well as for their in vivo behaviour in trabecular bone cylindrical defects in a pilot study. In vitro proliferation and maturation responses of MC3T3-E1 osteoblastic-like cells to bone cements were studied at the cellular and molecular levels. The Zn- and Sr-containing brushite cements were found to stimulate pre-osteoblastic proliferation and osteoblastic maturation. Indeed, MC3T3-E1 cells exposed to the powdered cements had increased proliferative rates and higher adhesiveness capacity, in comparison to control cells. Furthermore, they exhibited higher alkaline phosphatase (ALP) activity and increased Type-I collagen secretion and fibre deposition into the extracellular matrix. Proliferative and collagen deposition properties were more evident for cells grown in cements doped with Sr. The in vivo osteoconductive propertiesof the ZnCPC and ZnSrCPC cements were also pursued. Histological and histomorphometric analyses were performed at 1 and 2 months after implantation, using carbonated apatite cement (Norian SRS) as control. There was no evidence of cement-induced adverse foreign body reactions, and furthermore ZnCPC and ZnSrCPC cements revealed better in vivo performance in comparison to the control apatite cement. Additionally, the presence of both zinc and strontium resulted in the highest rate of new bone formation. These novel results indicate that the investigated ZnCPC and ZnSrCPC cements are both biocompatible and osteoconductive, being good candidate materials to use as bone substitutes. PMID:20821372

  11. Focal adhesions in osteoneogenesis

    PubMed Central

    Biggs, M.J.P; Dalby, M.J

    2010-01-01

    As materials technology and the field of tissue engineering advances, the role of cellular adhesive mechanisms, in particular the interactions with implantable devices, becomes more relevant in both research and clinical practice. A key tenet of medical device technology is to use the exquisite ability of biological systems to respond to the material surface or chemical stimuli in order to help develop next-generation biomaterials. The focus of this review is on recent studies and developments concerning focal adhesion formation in osteoneogenesis, with an emphasis on the influence of synthetic constructs on integrin mediated cellular adhesion and function. PMID:21287830

  12. Cell adhesion force microscopy

    PubMed Central

    Sagvolden, G.; Giaever, I.; Pettersen, E. O.; Feder, J.

    1999-01-01

    The adhesion forces of cervical carcinoma cells in tissue culture were measured by using the manipulation force microscope, a novel atomic force microscope. The forces were studied as a function of time and temperature for cells cultured on hydrophilic and hydrophobic polystyrene substrates with preadsorbed proteins. The cells attached faster and stronger at 37°C than at 23°C and better on hydrophilic than on hydrophobic substrates, even though proteins adsorb much better to the hydrophobic substrates. Because cell adhesion serves to control several stages in the cell cycle, we anticipate that the manipulation force microscope can help clarify some cell-adhesion related issues. PMID:9892657

  13. Adhesive Contact Sweeper

    NASA Technical Reports Server (NTRS)

    Patterson, Jonathan D.

    1993-01-01

    Adhesive contact sweeper removes hair and particles vacuum cleaner leaves behind, without stirring up dust. Also cleans loose rugs. Sweeper holds commercially available spools of inverted adhesive tape. Suitable for use in environments in which air kept free of dust; optics laboratories, computer rooms, and areas inhabited by people allergic to dust. For carpets, best used in tandem with vacuum cleaner; first pass with vacuum cleaner removes coarse particles, and second pass with sweeper extracts fine particles. This practice extends useful life of adhesive spools.

  14. Mechanical and cytotoxicity testing of acrylic bone cement embedded with microencapsulated 2-octyl cyanoacrylate

    PubMed Central

    Brochu, Alice B. W.; Evans, Gregory A.; Reichert, William M.

    2014-01-01

    The water-reactive tissue adhesive 2-octyl cyanoacrylate (OCA) was microencapsulated in polyurethane shells and incorporated into Palacos R bone cement. The tensile and compressive properties of the composite material were investigated in accordance with commercial standards, and fracture toughness of the capsule-embedded bone cement was measured using the tapered double-cantilever beam geometry. Viability and proliferation of MG63 human osteosarcoma cells after culture with extracts from Palacos R bone cement, capsule-embedded Palacos R bone cement, and OCA were also analyzed. Incorporating up to 5 wt % capsules had little effect on the compressive and tensile properties of the composite, but greater than 5 wt % capsules reduced these values below commercial standards. Fracture toughness was increased by 13% through the incorporation of 3 wt % capsules and eventually decreased below the toughness of the capsule-free controls at capsule contents of 15 wt % and higher. The effect on cell proliferation and viability in response to extracts prepared from capsule-embedded and commercial bone cements were not significantly different from each other, whereas extracts from OCA were moderately toxic to cells. Overall, the addition of lower wt % of OCA-containing microcapsules to commercial bone cement was found to moderately increase static mechanical properties without increasing the toxicity of the material. PMID:23913367

  15. Adhesives deliver low-shrink low-stress bonds and fast UV cure

    NASA Astrophysics Data System (ADS)

    Rhodes, Kyle T.

    2001-03-01

    Lower stress, higher quality assemblies as well as quantum increases in productivity are now possible with `new generation', light curing adhesives. This new technology makes obsolete the industry-accepted assumption that low strain requires slow curing UV adhesives, epoxies and cements. Curing in only seconds and without the need for secondary thermal cure, these new light curing adhesives produce laminates which are essentially strain-free, and edge bonds with shrinkage as low as 0.2%. This paper will compare and contrast these new adhesives with existing bonding technologies in typical applications. Included are comparison between epoxies, UV curing mercaptoesters, and the new light curing Aerobic Acrylates, as well as the incorporation of adhesives into optical component design.

  16. Adhesives deliver low-shrink low-stress bonds and fast UV cure

    NASA Astrophysics Data System (ADS)

    Rhodes, Kyle T.

    2001-06-01

    Lower stress, higher quality assemblies as well as quantum increases in productivity are now possible with `new generation', light curing adhesives. This new technology makes obsolete the industry-accepted assumption that low strain requires slow curing UV adhesives, epoxies and cements. Curing in only seconds and without the need for secondary thermal cure, these new light curing adhesives produce laminates which are essentially strain-free, and edge bonds with shrinkage as low as 0.2%. This paper will compare and contrast these new adhesives with existing bonding technologies in typical applications. Included are comparisons between epoxies, UV curing mercaptoesters, and the new light curing Aerobic Acrylates, as well as the incorporation of adhesives into optical component design.

  17. Cemented femoral fixation: the North Atlantic divide.

    PubMed

    Murray, David W

    2011-09-01

    In the United Kingdom, more cemented than cementless stems are implanted, whereas in North America, few cemented stems are implanted. This is primarily because cemented stems have not performed well in North America, whereas they have in the United Kingdom, as different designs have been used. The majority of cemented stems used in the United Kingdom are polished, collarless, and tapered. These are forgiving, as they subside within the cement mantle and compress the cement and stabilize the interface. They perform well in both young and active patients and elderly patients. They also do well in osteoporotic bone, with deformity, or with suboptimal cementing techniques. As the position of the stem can be varied, it is simple to achieve appropriate leg length, offset, and version. Cement can be used to deliver antibiotics locally. If revision is necessary, it is relatively straightforward. Cement has numerous advantages that outweigh the main disadvantage of an extended operating time. PMID:21902131

  18. Manufacture and properties of fluoride cement

    NASA Astrophysics Data System (ADS)

    Malata-Chirwa, Charles David

    This research work aimed at characterising composition, hydration and physical properties of fluoride cement, by studying samples of the cement obtained from Malawi, and comparing them to ordinary Portland cement. By confirming the suitable characteristics of fluoride cement through this work, the results of the research work provide a good basis for the wider adoption of fluoride cement as an alternative to ordinary Portland cement, especially in developing economies. Numerous accounts have been cited regarding the production and use of fluoride cement. Since there have not been conclusive agreement as to its properties, this study was limited to the theories of successful incorporation of fluoride compounds in the manufacture of fluoride cement. Hence, the properties and characteristics reported in this study relate to the cement currently manufactured in Malawi, and, on a comparative basis only, to that manufactured in other parts of the world. Samples of the fluoride cement used in the study were obtained by synthetic manufacture of the cement using common raw materials for the manufacture of fluoride cement that is limestone, silica sand, and fluorspar. These samples were subjected to several comparative tests used to characterise cements including examination under x-ray diffractometer, scanning electron microscopy and tests for setting time and compressive strength. Under similar laboratory conditions, it was possible to prove that fluoride cement hardens more rapidly than ordinary Portland cement. Also observed during the experimental work is that fluoride cement develops higher compressive strengths than ordinary Portland cement. The hardening and setting times are significantly different between the two cements. Also the nature of the hydration products, that is the microstructural development is significantly different in the two cements. The differences brought about between the two cements are because of the presence of fluorine during the clinkering

  19. Optical adhesive property study

    SciTech Connect

    Sundvold, P.D.

    1996-01-01

    Tests were performed to characterize the mechanical and thermal properties of selected optical adhesives to identify the most likely candidate which could survive the operating environment of the Direct Optical Initiation (DOI) program. The DOI system consists of a high power laser and an optical module used to split the beam into a number of channels to initiate the system. The DOI requirements are for a high shock environment which current military optical systems do not operate. Five candidate adhesives were selected and evaluated using standardized test methods to determine the adhesives` physical properties. EC2216, manufactured by 3M, was selected as the baseline candidate adhesive based on the test results of the physical properties.

  20. Adhesives for Aerospace

    NASA Technical Reports Server (NTRS)

    Meade, L. E.

    1985-01-01

    The industry is hereby challenged to integrate adhesive technology with the total structure requirements in light of today's drive into automation/mechanization. The state of the art of adhesive technology is fairly well meeting the needs of the structural designers, the processing engineer, and the inspector, each on an individual basis. The total integration of these needs into the factory of the future is the next collective hurdle to be achieved. Improved processing parameters to fit the needs of automation/mechanization will necessitate some changes in the adhesive forms, formulations, and chemistries. Adhesives have, for the most part, kept up with the needs of the aerospace industry, normally leading the rest of the industry in developments. The wants of the aerospace industry still present a challenge to encompass all elements, achieving a totally integrated joined and sealed structural system. Better toughness with hot-wet strength improvements is desired. Lower cure temperatures, longer out times, and improved corrosion inhibition are desired.

  1. Adhesion of Lunar Dust

    NASA Astrophysics Data System (ADS)

    Walton, Otis R.

    2007-04-01

    This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.

  2. Adhesion of Lunar Dust

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.

    2007-01-01

    This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.

  3. Leucocyte cellular adhesion molecules.

    PubMed

    Yong, K; Khwaja, A

    1990-12-01

    Leucocytes express adhesion promoting receptors which mediate cell-cell and cell-matrix interactions. These adhesive interactions are crucial to the regulation of haemopoiesis and thymocyte maturation, the direction and control of leucocyte traffic and migration through tissues, and in the development of immune and non-immune inflammatory responses. Several families of adhesion receptors have been identified (Table). The leucocyte integrin family comprises 3 alpha beta heterodimeric membrane glycoproteins which share a common beta subunit, designated CD18. The alpha subunits of each of the 3 members, lymphocyte function associated antigen-1 (LFA-1), macrophage antigen-1 (Mac-1) and p150,95 are designated CD11a, b and c respectively. These adhesion molecules play a critical part in the immune and inflammatory responses of leucocytes. The leucocyte integrin family is, in turn, part of the integrin superfamily, members of which are evolutionally, structurally and functionally related. Another Integrin subfamily found on leucocytes is the VLA group, so-called because the 'very late activation antigens' VLA-1 and VLA-2 were originally found to appear late in T-cell activation. Members of this family function mainly as extracellular matrix adhesion receptors and are found both on haemopoietic and non-haemopoietic cells. They play a part in diverse cellular functions including tissue organisation, lymphocyte recirculation and T-cell immune responses. A third integrin subfamily, the cytoadhesins, are receptors on platelets and endothelial cells which bind extracellular matrix proteins. A second family of adhesion receptors is the immunoglobulin superfamily, members of which include CD2, LFA-3 and ICAM-1, which participate in T-cell adhesive interactions, and the antigen-specific receptors of T and B cells, CD4, CD8 and the MHC Class I and II molecules. A recently recognised family of adhesion receptors is the selectins, characterised by a common lectin domain. Leucocyte

  4. High temperature adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, Terry L.

    1991-01-01

    The aerospace and electronics industries have an ever increasing need for higher performance materials. In recent years, linear aromatic polyimides have been proven to be a superior class of materials for various applications in these industries. The use of this class of polymers as adhesives is continuing to increase. Several NASA Langley developed polyimides show considerable promise as adhesives because of their high glass transition temperatures, thermal stability, resistance to solvents/water, and their potential for cost effective manufacture.

  5. The effect of cement creep and cement fatigue damage on the micromechanics of the cement-bone interface.

    PubMed

    Waanders, Daan; Janssen, Dennis; Mann, Kenneth A; Verdonschot, Nico

    2010-11-16

    The cement-bone interface provides fixation for the cement mantle within the bone. The cement-bone interface is affected by fatigue loading in terms of fatigue damage or microcracks and creep, both mostly in the cement. This study investigates how fatigue damage and cement creep separately affect the mechanical response of the cement-bone interface at various load levels in terms of plastic displacement and crack formation. Two FEA models were created, which were based on micro-computed tomography data of two physical cement-bone interface specimens. These models were subjected to tensile fatigue loads with four different magnitudes. Three deformation modes of the cement were considered: 'only creep', 'only damage' or 'creep and damage'. The interfacial plastic deformation, the crack reduction as a result of creep and the interfacial stresses in the bone were monitored. The results demonstrate that, although some models failed early, the majority of plastic displacement was caused by fatigue damage, rather than cement creep. However, cement creep does decrease the crack formation in the cement up to 20%. Finally, while cement creep hardly influences the stress levels in the bone, fatigue damage of the cement considerably increases the stress levels in the bone. We conclude that at low load levels the plastic displacement is mainly caused by creep. At moderate to high load levels, however, the plastic displacement is dominated by fatigue damage and is hardly affected by creep, although creep reduced the number of cracks in moderate to high load region. PMID:20692663

  6. Biomimetic Calcium-Silicate Cements Support Differentiation Of Human Orofacial Mesenchymal Stem Cells

    PubMed Central

    Gandolfi, Maria Giovanna; Shah, Sara N.; Feng, Ruoxue; Prati, Carlo; Akintoye, Sunday O.

    2011-01-01

    Introduction Human orofacial bone mesenchymal stem cells (OFMSCs) from maxilla and mandible have robust osteogenic regenerative properties based on our previous reports that demonstrate phenotypic and functional differences between jaw and axial bone mesenchymal stem cells in same individuals. Furthermore, a combination of OFMSCs with bioactive calcium-releasing cements can potentially improve OFMSC multi-lineage differentiation capacity, but biocompatibility of calcium silicate cements with OFMSCs is still unclear. We tested the hypothesis that material extracts of calcium-releasing calcium-silicate cements support biomimetic microenvironment for survival and differentiation of human OFMSCs. Methods Two experimental calcium-silicate cements 1) calcium-silicate mineral powder (wTC) containing di- and tricalcium-silicate, calcium sulphate, and calcium chloride and 2) wTC doped with alpha-tricalcium phosphate (wTC-αTCP) were designed and prepared. Cement setting times were assessed by Gilmore needles, ability to release calcium and hydroxyl ions was assessed by potentiometric methods and OFMSC attachment to calcium-silicate discs was assessed. Calcium-silicate material extracts were tested for ability to support OFMSCs survival and in vitro/in vivo differentiation. Results Fewer OFMSCs attached to calcium-silicate discs relative to tissue culture plastic (p=0.001). Extracts of calcium-silicate cements sustained OFMSC survival, maintained steady state levels of vascular cell adhesion molecule-1, alkaline phosphatase and bone sialoprotein while upregulating their respective gene transcripts. Adipogenic and in vivo bone regenerative capacities of OFMSCs were also unaffected by calcium-silicate extracts. Conclusions Ion-releasing calcium-silicate cements support a biomimetic microenvironment conducive to survival and differentiation of OFMSCs. Combination of OFMSCs and calcium-silicate cement can potentially promote tissue regeneration in periapical bone defects. PMID

  7. DESENSITIZING BIOACTIVE AGENTS IMPROVES BOND STRENGTH OF INDIRECT RESIN-CEMENTED RESTORATIONS: PRELIMINARY RESULTS

    PubMed Central

    Pires-De-Souza, Fernanda de Carvalho Panzeri; de Marco, Fabíola Fiorezi; Casemiro, Luciana Assirati; Panzeri, Heitor

    2007-01-01

    Objective: The aim of this study was to assess the bond strength of indirect composite restorations cemented with a resin-based cement associated with etch-and-rinse and self-etching primer adhesive systems to dentin treated or not with a bioactive material. Materials and Method: Twenty bovine incisor crowns had the buccal enamel removed and the dentin ground flat. The teeth were assigned to 4 groups (n=5): Group I: acid etching + Prime & Bond NT (Dentsply); Group II: application of a bioactive glass (Biosilicato®)+ acid etching + Prime & Bond NT; Group III: One-up Bond F (J Morita); Group IV: Biosilicato® + One-up Bond F. Indirect composite resin (Artglass, Kulzer) cylinders (6x10mm) were fabricated and cemented to the teeth with a dualcure resin-based cement (Enforce, Dentsply). After cementation, the specimens were stored in artificial saliva at 37oC for 30 days and thereafter tested in tensile strength in a universal testing machine (EMIC) with 50 kgf load cell at a crosshead speed of 1 mm/min. Failure modes were assessed under scanning electron microscopy. Data were analyzed statistically by ANOVA and Tukey's test (95% level of confidence). Results: Groups I, II and III had statistically similar results (p>0.05). Group IV had statistically significant higher bond strength means (p<0.05) than the other groups. The analysis of the debonded surfaces showed a predominance of adhesive failure mode for Group III and mixed failure mode for the other groups. Conclusion: The use of desensitizing agent did not affect negatively the bonding of the indirect composite restorations to dentin, independently of the tested adhesive systems. PMID:19089114

  8. Various cements and their effects on bond strength of zirconia ceramic to enamel and dentin.

    PubMed

    Prylinska-Czyzewska, Agata; Piotrowski, Pawel; Prylinski, Mariusz; Dorocka-Bobkowska, Barbara

    2015-01-01

    Zirconia ceramic disks (Cercon) were fabricated using a computer-aided design/ computer-assisted manufacture system and fitted to hard tooth tissues from freshly extracted bovine mandibular incisors using seven cements (zinc phosphate, zinc polycarboxylate, Eco-Link, Panavia F 2.0, Clearfil SA Cement, MaxCem Elite, and GC Fuji Plus) with various physicochemical and bonding properties. Bond strengths were determined using a universal testing machine (Hounsfield H5KS) with a 5,000-N head and a cutting knife speed of 0.5 mm per minute. The study showed that the strongest bond between zirconia ceramic and hard tooth tissues was obtained with Panavia F 2.0 adhesive cement based on 10 methacryloyloxydecyl dihydrogen phosphate monomer. PMID:25965643

  9. Cement applicator use for hip resurfacing arthroplasty.

    PubMed

    Jaeger, Sebastian; Rieger, Johannes S; Obermeyer, Beate; Klotz, Matthias C; Kretzer, J Philippe; Bitsch, Rudi G

    2015-05-01

    We compared the manufacturer recommended cementing technique for a femoral hip resurfacing implant (BHR, S&N) to a newly designed cement applicator on 20 porous carbon foam specimens. Substantial design changes and improvements of the cement applicator were necessary: The diameter and number of the cement escaping holes at the top of the applicator were optimized for medium viscosity cement. It was necessary to add four separate air inlet holes with large diameters. The inner shape of the applicator had to be adapted to the BHR design with a circular extending chamfer in the proximal region, a parallel inner wall and a second chamfer distally. The interface temperatures showed no risk for heat necrosis using both techniques. The cement penetration depth was more uniform and significantly reduced for the applicator cementing technique (4.34 ± 1.42 mm, 6.42 ± 0.43 mm, p = 0.001). The cement-applicator showed no cement defects compared to a large defect length (0.0 ± 0.0 mm, 10.36 ± 1.10 mm, p < 0.001) with the manufacturer recommended cementing technique. The cement applicator technique appears to be effective for a homogenous cement distribution without cement defects and safe with a lower risk of polar over-penetration. PMID:25772262

  10. Degradable borate glass polyalkenoate cements.

    PubMed

    Shen, L; Coughlan, A; Towler, M; Hall, M

    2014-04-01

    Glass polyalkenoate cements (GPCs) containing aluminum-free borate glasses having the general composition Ag2O-Na2O-CaO-SrO-ZnO-TiO2-B2O3 were evaluated in this work. An initial screening study of sixteen compositions was used to identify regions of glass formation and cement compositions with promising rheological properties. The results of the screening study were used to develop four model borate glass compositions for further study. A second round of rheological experiments was used to identify a preferred GPC formulation for each model glass composition. The model borate glasses containing higher levels of TiO2 (7.5 mol %) tended to have longer working times and shorter setting times. Dissolution behavior of the four model GPC formulations was evaluated by measuring ion release profiles as a function of time. All four GPC formulations showed evidence of incongruent dissolution behavior when considering the relative release profiles of sodium and boron, although the exact dissolution profile of the glass was presumably obscured by the polymeric cement matrix. Compression testing was undertaken to evaluate cement strength over time during immersion in water. The cements containing the borate glass with 7.5 mol % TiO2 had the highest initial compressive strength, ranging between 20 and 30 MPa. No beneficial aging effect was observed-instead, the strength of all four model GPC formulations was found to degrade with time. PMID:24435528

  11. Bond strength of resin cement to zirconia ceramic with different surface treatments.

    PubMed

    Usumez, Aslıhan; Hamdemirci, Nermin; Koroglu, Bilge Yuksel; Simsek, Irfan; Parlar, Ozge; Sari, Tugrul

    2013-01-01

    Zirconia-based ceramics offer strong restorations in dentistry, but the adhesive bond strength of resin cements to such ceramics is not optimal. This study evaluated the influence of surface treatments on the bond strength of resin cement to yttrium-stabilized tetragonal zirconia (Y-TZP) ceramic. Seventy-five plates of Y-TZP ceramic were randomly assigned to five groups (n = 15) according to the surface treatments [airborne particle abrasion, neodymium-doped yttrium aluminum garnet (Nd:YAG) laser irradiation (Fidelis Plus 3, Fotona; 2 W, 200 mJ, 10 Hz, with two different pulse durations 180 or 320 μs), glaze applied, and then 9.5 % hydrofluoric acid gel conditioned, control]. One specimen from each group was randomly selected, and specimens were evaluated with x-ray diffraction and SEM analysis. The resin cement (Clearfil Esthetic Cement, Kuraray) was adhered onto the zirconia surfaces with its corresponding adhesive components. Shear bond strength of each sample was measured using a universal testing machine at a crosshead speed of 1 mm/min. Bond strengths were analyzed through one-way ANOVA/Tukey tests. Surface treatments significantly modified the topography of the Y-TZP ceramic. The Nd:YAG laser-irradiated specimens resulted in both increased surface roughness and bond strength of the resin cement. The highest surface roughness and bond strength values were achieved with short pulse duration. Nd:YAG laser irradiation increased both surface roughness of Y-TZP surfaces and bond strength of resin cement to the zirconia surface. PMID:22718473

  12. Bond strength of selected composite resin-cements to zirconium-oxide ceramic

    PubMed Central

    Fons-Font, Antonio; Amigó-Borrás, Vicente; Granell-Ruiz, María; Busquets-Mataix, David; Panadero, Rubén A.; Solá-Ruiz, Maria F.

    2013-01-01

    Objectives: The aim of this study was to evaluate bond strengths of zirconium-oxide (zirconia) ceramic and a selection of different composite resin cements. Study Design: 130 Lava TM cylinders were fabricated. The cylinders were sandblasted with 80 µm aluminium oxide or silica coated with CoJet Sand. Silane, and bonding agent and/or Clearfil Ceramic Primer were applied. One hundred thirty composite cement cylinders, comprising two dual-polymerizing (Variolink II and Panavia F) and two autopolymerizing (Rely X and Multilink) resins were bonded to the ceramic samples. A shear test was conducted, followed by an optical microscopy study to identify the location and type of failure, an electron microscopy study (SEM and TEM) and statistical analysis using the Kruskal-Wallis test for more than two independent samples and Mann-Whitney for two independent samples. Given the large number of combinations, Bonferroni correction was applied (α=0.001). Results: Dual-polymerizing cements provided better adhesion values (11.7 MPa) than the autopolymerizing (7.47 MPa) (p-value M-W<0.001). The worst techniques were Lava TM + sandblasting + Silane + Rely X; Lava TM + sandblasting + Silane + Multilink and Lava TM + CoJet + silane + Multilink. Adhesive failure (separation of cement and ceramic) was produced at a lesser force than cohesive failure (fracture of cement) (p-value M-W<0.001). Electron microscopy confirmed that the surface treatments modified the zirconium-oxide ceramic, creating a more rough and retentive surface, thus providing an improved micromechanical interlocking between the cement and the ceramic. Key words:Shear bond strength, silica coating, surface treatment, zirconia ceramics, phosphate monomer. PMID:22926485

  13. A modified PMMA cement (Sub-cement) for accelerated fatigue testing of cemented implant constructs using cadaveric bone.

    PubMed

    Race, Amos; Miller, Mark A; Mann, Kenneth A

    2008-10-20

    Pre-clinical screening of cemented implant systems could be improved by modeling the longer-term response of the implant/cement/bone construct to cyclic loading. We formulated bone cement with degraded fatigue fracture properties (Sub-cement) such that long-term fatigue could be simulated in short-term cadaver tests. Sub-cement was made by adding a chain-transfer agent to standard polymethylmethacrylate (PMMA) cement. This reduced the molecular weight of the inter-bead matrix without changing reaction-rate or handling characteristics. Static mechanical properties were approximately equivalent to normal cement. Over a physiologically reasonable range of stress-intensity factor, fatigue crack propagation rates for Sub-cement were higher by a factor of 25+/-19. When tested in a simplified 2 1/2-D physical model of a stem-cement-bone system, crack growth from the stem was accelerated by a factor of 100. Sub-cement accelerated both crack initiation and growth rate. Sub-cement is now being evaluated in full stem/cement/femur models. PMID:18774136

  14. Flexibilized copolyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St.clair, Terry L.

    1988-01-01

    Two copolyimides, LARC-STPI and STPI-LARC-2, with flexible backbones were processed and characterized as adhesives. The processability and adhesive properties were compared to those of a commercially available form of LARC-TPI. Lap shear specimens were fabricated using adhesive tape prepared from each of the three polymers. Lap shear tests were performed at room temperature, 177 C, and 204 C before and after exposure to water-boil and to thermal aging at 204 C for up to 1000 hours. The three adhesive systems possess exceptional lap shear strengths at room temperature and elevated temperatures both before and after thermal exposure. LARC-STPI, because of its high glass transition temperature provided high lap shear strengths up to 260 C. After water-boil, LARC-TPI exhibited the highest lap shear strengths at room temperature and 177 C, whereas the LARC-STPI retained a higher percentage of its original strength when tested at 204 C. These flexible thermoplastic copolyimides show considerable potential as adhesives based on this study and because of the ease of preparation with low cost, commercially available materials.

  15. Platelet Adhesion under Flow

    PubMed Central

    Ruggeri, Zaverio M.

    2011-01-01

    Platelet adhesive mechanisms play a well-defined role in hemostasis and thrombosis, but evidence continues to emerge for a relevant contribution to other pathophysiological processes including inflammation, immune-mediated responses to microbial and viral pathogens, and cancer metastasis. Hemostasis and thrombosis are related aspects of the response to vascular injury, but the former protects from bleeding after trauma while the latter is a disease mechanism. In either situation, adhesive interactions mediated by specific membrane receptors support the initial attachment of single platelets to cellular and extracellular matrix constituents of the vessel wall and tissues. In the subsequent steps of thrombus growth and stabilization, adhesive interactions mediate platelet to platelet cohesion (aggregation) and anchoring to the fibrin clot. A key functional aspect of platelets is their ability to circulate in a quiescent state surveying the integrity of the inner vascular surface, coupled to a prompt reaction wherever alterations are detected. In many respects, therefore, platelet adhesion to vascular wall structures, to one another or to other blood cells are facets of the same fundamental biological process. The adaptation of platelet adhesive functions to the effects of blood flow is the main focus of this review. PMID:19191170

  16. Epithelial Cell Adhesion Molecule

    PubMed Central

    Trzpis, Monika; McLaughlin, Pamela M.J.; de Leij, Lou M.F.H.; Harmsen, Martin C.

    2007-01-01

    The epithelial cell adhesion molecule (EpCAM, CD326) is a glycoprotein of ∼40 kd that was originally identified as a marker for carcinoma, attributable to its high expression on rapidly proliferating tumors of epithelial origin. Normal epithelia express EpCAM at a variable but generally lower level than carcinoma cells. In early studies, EpCAM was proposed to be a cell-cell adhesion molecule. However, recent insights revealed a more versatile role for EpCAM that is not limited only to cell adhesion but includes diverse processes such as signaling, cell migration, proliferation, and differentiation. Cell surface expression of EpCAM may actually prevent cell-cell adhesion. Here, we provide a comprehensive review of the current knowledge on EpCAM biology in relation to other cell adhesion molecules. We discuss the implications of the newly identified functions of EpCAM in view of its prognostic relevance in carcinoma, inflammatory pathophysiology, and tissue development and regeneration as well as its role in normal epithelial homeostasis. PMID:17600130

  17. Cementing oil and gas wells

    SciTech Connect

    Bloys, J.B.; Wilson, W.N.; Bradshaw, R.D.

    1991-12-31

    This patent describes a cement composition for cementing in a well penetrating subterranean formations and having an aqueous drilling fluid containing at least one cement retarder. It comprises a major proportion of the drilling fluid from the well as it was drilled the fluid having a density in the range of about 9.0 - 18.0 ppg; water; a lesser proportion of dry cementitious material; about 0.5 to about 10.0 ppb of a dispersant selected from the group consisting of sulfonated styrene maleic anhydride, sulfonated styrene imide, and sulfonate styrene itaconic acid; and a compatible accelerator selected from the group consisting of acetic acid; the first 4 carbon esters thereof; acetamide; monoethanolamine; and diethanolamine.

  18. High temperature well bore cement slurry

    SciTech Connect

    Nahm, J.J.W.; Vinegar, H.J.; Karanikas, J.M.; Wyant, R.E.

    1993-07-13

    A low density well bore cement slurry composition is described suitable for cementing well bores with high reservoir temperatures comprising: (a) a high alumina cement in an amount of about 40 pounds per barrel of slurry or greater: (b) graphite in an amount greater than about one quarter, by volume, of the solids in the cement slurry; and (c) and a carrier fluid comprising drilling mud.

  19. ADVANCED CEMENTS FOR GEOTHERMAL WELLS

    SciTech Connect

    SUGAMA,T.

    2007-01-01

    Using the conventional well cements consisting of the calcium silicate hydrates (CaO-SiO{sub 2}-H{sub 2}O system) and calcium aluminum silicate hydrates (CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O system) for the integrity of geothermal wells, the serious concern confronting the cementing industries was their poor performance in mechanically supporting the metallic well casing pipes and in mitigating the pipe's corrosion in very harsh geothermal reservoirs. These difficulties are particularly acute in two geological regions: One is the deep hot downhole area ({approx} 1700 m depth at temperatures of {approx} 320 C) that contains hyper saline water with high concentrations of CO{sub 2} (> 40,000 ppm) in conjunction with {approx} 100 ppm H{sub 2}S at a mild acid of pH {approx} 5.0; the other is the upper well region between the well's surface and {approx} 1000 m depth at temperatures up to 200 C. The specific environment of the latter region is characterized by highly concentrated H{sub 2}SO{sub 4} (pH < 1.5) brine containing at least 5000 ppm CO{sub 2}. When these conventional cements are emplaced in these harsh environments, their major shortcoming is their susceptibility to reactions with hot CO{sub 2} and H{sub 2}SO4, thereby causing their deterioration brought about by CO{sub 2}-catalyzed carbonation and acid-initiated erosion. Such degradation not only reduced rapidly the strength of cements, lowering the mechanical support of casing pipes, but also increased the extent of permeability of the brine through the cement layer, promoting the rate of the pipe's corrosion. Severely carbonated and acid eroded cements often impaired the integrity of a well in less than one year; in the worst cases, casings have collapsed within three months, leading to the need for costly and time-consuming repairs or redrilling operations. These were the reasons why the geothermal well drilling and cementing industries were concerned about using conventional well cements, and further

  20. Skin ulceration due to cement.

    PubMed

    Robinson, S M; Tachakra, S S

    1992-09-01

    Despite legislation that requires manufacturers to inform the public about the dangers of contact with cement, severe ulceration from cement contact still occurs. We present a retrospective study of seven patients presenting to this department over a 2-year period. All were male and employed in the building trade, their injuries being sustained whilst at work. The injuries were to the lower limb, often multiple and required a median of seven visits before healing was complete. One required hospital admission and skin grafting. PMID:1449582

  1. 21 CFR 872.3275 - Dental cement.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Dental cement. 872.3275 Section 872.3275 Food and... DENTAL DEVICES Prosthetic Devices § 872.3275 Dental cement. (a) Zinc oxide-eugenol—(1) Identification... filling or as a base cement to affix a temporary tooth filling, to affix dental devices such as crowns...

  2. 21 CFR 872.3275 - Dental cement.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Dental cement. 872.3275 Section 872.3275 Food and... DENTAL DEVICES Prosthetic Devices § 872.3275 Dental cement. (a) Zinc oxide-eugenol—(1) Identification... filling or as a base cement to affix a temporary tooth filling, to affix dental devices such as crowns...

  3. Protein mediated membrane adhesion

    NASA Astrophysics Data System (ADS)

    Carlson, Andreas; Mahadevan, L.

    2015-05-01

    Adhesion in the context of mechanical attachment, signaling, and movement in cellular dynamics is mediated by the kinetic interactions between membrane-embedded proteins in an aqueous environment. Here, we present a minimal theoretical framework for the dynamics of membrane adhesion that accounts for the kinetics of protein binding, the elastic deformation of the membrane, and the hydrodynamics of squeeze flow in the membrane gap. We analyze the resulting equations using scaling estimates to characterize the spatiotemporal features of the adhesive patterning and corroborate them using numerical simulations. In addition to characterizing aspects of cellular dynamics, our results might also be applicable to a range of phenomena in physical chemistry and materials science where flow, deformation, and kinetics are coupled to each other in slender geometries.

  4. Adhesive particle shielding

    DOEpatents

    Klebanoff, Leonard Elliott; Rader, Daniel John; Walton, Christopher; Folta, James

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  5. Effect of antioxidants on push-out bond strength of hydrogen peroxide treated glass fiber posts bonded with two types of resin cement

    PubMed Central

    Khoroushi, Maryam; Mazaheri, Hamid; Tarighi, Pardis; Samimi, Pouran

    2014-01-01

    Objectives Hydrogen peroxide (H2O2) surface treatment of fiber posts has been reported to increase bond strength of fiber posts to resin cements. However, residual oxygen radicals might jeopardize the bonding procedure. This study examined the effect of three antioxidant agents on the bond strength of fiber posts to conventional and self-adhesive resin cements. Materials and Methods Post spaces were prepared in forty human maxillary second premolars. Posts were divided into five groups of 8 each: G1 (control), no pre-treatment; G2, 10% H2O2 pre-treatment; G3, G4 and G5. After H2O2 application, Hesperidin (HES), Sodium Ascorbate (SA) or Rosmarinic acid (RA) was applied on each group respectively. In each group four posts were cemented with Duo-Link conventional resin cement and the others with self-adhesive BisCem cement. Push-out test was performed and data were analyzed using 2-way ANOVA and tukey's post-hoc test (α = 0.05). Results There was a statistically significant interaction between the cement type and post surface treatment on push-out bond strength of fiber posts (p < 0.001, F = 16). Also it was shown that different posts' surface treatments significantly affect the push-out bond strength of fiber posts (p = 0.001). H2O2 treated posts (G2) and control posts (G1) cemented with Duo-link showed the highest (15.96 ± 5.07MPa) and lowest bond strengths (6.79 ± 3.94) respectively. Conclusions It was concluded that H2O2 surface treatment might enhance the bond strength of fiber posts cemented with conventional resin cements. The effect of antioxidants as post's surface treatment agents depends on the characteristics of resin cements used for bonding procedure. PMID:25383350

  6. Natural Underwater Adhesives

    PubMed Central

    Stewart, Russell J.; Ransom, Todd C.; Hlady, Vladimir

    2011-01-01

    The general topic of this review is protein-based underwater adhesives produced by aquatic organisms. The focus is on mechanisms of interfacial adhesion to native surfaces and controlled underwater solidification of natural water-borne adhesives. Four genera that exemplify the broad range of function, general mechanistic features, and unique adaptations are discussed in detail: blue mussels, acorn barnacles, sandcastle worms, and freshwater caddisfly larva. Aquatic surfaces in nature are charged and in equilibrium with their environment, populated by an electrical double layer of ions as well as adsorbed natural polyelectrolytes and microbial biofilms. Surface adsorption of underwater bioadhesives likely occurs by exchange of surface bound ligands by amino acid sidechains, driven primarily by relative affinities and effective concentrations of polymeric functional groups. Most aquatic organisms exploit modified amino acid sidechains, in particular phosphorylated serines and hydroxylated tyrosines (dopa), with high-surface affinity that form coordinative surface complexes. After delivery to the surfaces as a fluid, permanent natural adhesives solidify to bear sustained loads. Mussel plaques are assembled in a manner superficially reminiscent of in vitro layer-by-layer strategies, with sequentially delivered layers associated through Fe(dopa)3 coordination bonds. The adhesives of sandcastle worms, caddisfly larva, and barnacles may be delivered in a form somewhat similar to in vitro complex coacervation. Marine adhesives are secreted, or excreted, into seawater that has a significantly higher pH and ionic strength than the internal environment. Empirical evidence suggests these environment triggers could provide minimalistic, fail-safe timing mechanisms to prevent premature solidification (insolubilization) of the glue within the secretory system, yet allow rapid solidification after secretion. Underwater bioadhesives are further strengthened by secondary covalent

  7. Elastomer toughened polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L. (Inventor)

    1983-01-01

    A rubber-toughened addition-type polyimide composition is disclosed which has excellent high temperature bonding characteristics in the fully cured state, and improved peel strength and adhesive fracture resistance physical property characteristics. The process for making the improved adhesive involves preparing the rubber containing amic acid prepolymer by chemically reacting an amine-terminated elastomer and an aromatic diamine with an aromatic dianhydride with which a reactive chain stopper anhydride was mixed, and utilizing solvent or mixture of solvents for the reaction.

  8. Metallic Adhesion and Bonding

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. H.

    1984-01-01

    Although metallic adhesion has played a central part in much tribological speculation, few quantitative theoretical calculations are available. This is in part because of the difficulties involved in such calculations and in part because the theoretical physics community is not particularly involved with tribology. The calculations currently involved in metallic adhesion are summarized and shown that these can be generalized into a scaled universal relationship. Relationships exist to other types of covalent bonding, such as cohesive, chemisorptive, and molecular bonding. A simple relationship between surface energy and cohesive energy is offered.

  9. Timer cover adhesive optimization

    SciTech Connect

    Carleton, J.J. II.

    1992-03-17

    The implementation of PROCODE as the data acquisition system for processing timers has required some modifications to the method of identifying timer assemblies. PROCODE requires machine-readable labelling of the assemblies. This report describes a series of experiments to find an adhesive that would keep labels attached to timers regardless of the condition of their surface when the label was applied and regardless of the heat, vibration, and shock they endured afterwards. The effect of the variation of these experimental factors on the performance of the adhesive was determined by using a Taguchi experimental design.

  10. Minimal intervention dentistry II: part 7. Minimal intervention in cariology: the role of glass-ionomer cements in the preservation of tooth structures against caries.

    PubMed

    Ngo, H; Opsahl-Vital, S

    2014-05-01

    Glass-ionomer cements (GICs) are essential materials in clinical practice because of their versatility, self-adhesion to enamel and dentine, and good biocompatibility. In addition, being chemically cured, with no shrinkage stress, makes them well suited for minimally invasive restorative techniques. This article looks at some of the clinical situations where the chemical adhesion and high biocompatibility of GIC are important for clinical success: excavation of deep carious lesions, fissure sealing and protection of root surfaces against caries. PMID:24852986

  11. Switchable bio-inspired adhesives

    NASA Astrophysics Data System (ADS)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  12. A medicated polycarboxylate cement to prevent complications in composite resin therapy

    SciTech Connect

    Okamoto, Y.; Shintani, H.; Yamaki, M. )

    1990-01-01

    Preparative treatment is the preferred method to protect the dentin and pulp from complications in composite resin therapy. This study investigated the in vivo effects of the polycarboxylate cement containing zinc fluoride and tannic acid in composite resin restorations. Scanning electron micrographs established that the composite resin failed to contact the axial wall. The gaps varied from 10 to 60 microns. However, this polycarboxylate cement was shown to provide excellent adaptation to dentin when used as a base and its chemical adhesion allowed it to make close contact with the unetched dentin. The newly developed electron probe x-ray microanalyzer revealed that the in vivo penetration of fluoride and zinc occurred through the dentinal tubules. When this polycarboxylate cement was used, the orifices of dentinal tubules were partially occluded, possibly with the smear layer fixed by tannic acid. In addition, by releasing the components, this polycarboxylate cement adds acid resistance to dentin and increases the resistance of dentin collagen to proteolytic enzymes. As such this polycarboxylate cement offers advantages as a base to composite resin therapy.

  13. Sealing properties of Ketac-Endo glass ionomer cement and AH26 root canal sealers.

    PubMed

    De Gee, A J; Wu, M K; Wesselink, P R

    1994-09-01

    Sealing capacity, setting shrinkage and setting time of a recently introduced glass ionomer cement Ketac-Endo were compared with that of a conventional sealer AH26. Sixty half-cylinders, 8 mm long, 4 mm in diameter, made from fresh bovine root dentine, had their smear layer removed before being cemented together while separated by 1-mm spacers. This resulted in a group of 15 cylinders cemented with Ketac-Endo and a similar group with AH26. After coating the lateral surface with nail varnish, one end of each cylinder was connected with a tube filled with water under 120 kPa (1.2 atm) pressure. At the other end the fluid leaking through the cemented interface of the cylinders was measured by displacement of an air bubble in an attached standard glass capillary. In this particular set-up where the sealers were used in bulk between two opposing dentine surfaces, Ketac-Endo leaked significantly more than AH26. After shear loading the cemented specimens, it was found that the area of adhesive failure was 88% for Ketac-Endo, and 15% for AH26. The leakage pathways were most probably at the dentine-sealer interface for Ketac-Endo and through cohesive fractures in the sealer for AH26. PMID:7814135

  14. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    PubMed

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  15. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives

    PubMed Central

    2015-01-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm2 provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  16. Patch testing with cement containing iron sulfate.

    PubMed

    Bruze, M; Fregert, S; Gruvberger, B

    1990-01-01

    Addition of iron sulfate to cement means transformation of water-soluble hexavalent chromium into nonwater-soluble trivalent chromium. This has been the basis for preventive measures concerning sensitization to hexavalent chromium (chromate) in cement. For some years, iron sulfate has been added to cement manufactured in the Scandinavian countries. In the present in vivo study, cements with and without iron sulfate were compared concerning their capacity to elicit allergic patch-test reactions in eight chromate-hypersensitive individuals. No patch-test reactions were obtained from a water extract of cement with iron sulfate when appropriately buffered. PMID:2137395

  17. Process for cementing geothermal wells

    DOEpatents

    Eilers, Louis H.

    1985-01-01

    A pumpable slurry of coal-filled furfuryl alcohol, furfural, and/or a low molecular weight mono- or copolymer thereof containing, preferably, a catalytic amount of a soluble acid catalyst is used to cement a casing in a geothermal well.

  18. Wood Composite Adhesives

    NASA Astrophysics Data System (ADS)

    Gomez-Bueso, Jose; Haupt, Robert

    The global environment, in which phenolic resins are being used for wood composite manufacture, has changed significantly during the last decade. This chapter reviews trends that are driving the use and consumption of phenolic resins around the world. The review begins with recent data on volume usage and regional trends, followed by an analysis of factors affecting global markets. In a section on environmental factors, the impact of recent formaldehyde emission regulations is discussed. The section on economics introduces wood composite production as it relates to the available adhesive systems, with special emphasis on the technical requirement to improve phenolic reactivity. Advances in composite process technology are introduced, especially in regard to the increased demands the improvements place upon adhesive system performance. The specific requirements for the various wood composite families are considered in the context of adhesive performance needs. The results of research into current chemistries are discussed, with a review of recent findings regarding the mechanisms of phenolic condensation and acceleration. Also, the work regarding alternate natural materials, such as carbohydrates, lignins, tannins, and proteinaceous materials, is presented. Finally, new developments in alternative adhesive technologies are reported.

  19. Adept Adhesion Reduction Solution

    MedlinePlus

    ... icodextrin. The fluid is used during or after laparoscopic gynecological surgery to separate and protect tissues and decrease the number of new adhesions after surgery. Adept® is supplied sterile, in a single-use bag. How does it work? During surgery, ...

  20. Adhesion molecules and receptors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adhesion molecules are necessary for leukocyte trafficking and differentiation. They serve to initiate cell-cell interactions under conditions of shear, and they sustain the cell-cell and cell-matrix interactions needed for cellular locomotion. They also can serve directly as signaling molecules act...

  1. Rapid adhesive bonding concepts

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Hodges, W. T.

    1984-01-01

    Adhesive bonding in the aerospace industry typically utilizes autoclaves or presses which have considerable thermal mass. As a consequence, the rates of heatup and cooldown of the bonded parts are limited and the total time and cost of the bonding process is often relatively high. Many of the adhesives themselves do not inherently require long processing times. Bonding could be performed rapidly if the heat was concentrated in the bond lines or at least in the adherends. Rapid adhesive bonding concepts were developed to utilize induction heating techniques to provide heat directly to the bond line and/or adherends without heating the entire structure, supports, and fixtures of a bonding assembly. Bonding times for specimens are cut by a factor of 10 to 100 compared to standard press bonding. The development of rapid adhesive bonding for lap shear specimens (per ASTM D1003 and D3163), for aerospace panel bonding, and for field repair needs of metallic and advanced fiber reinforced polymeric matrix composite structures are reviewed.

  2. Resistance heating releases structural adhesive

    NASA Technical Reports Server (NTRS)

    Glemser, N. N.

    1967-01-01

    Composite adhesive package bonds components together for testing and enables separation when testing is completed. The composite of adhesives, insulation and a heating element separate easily when an electrical current is applied.

  3. Adhesion testing of aircraft tires

    NASA Technical Reports Server (NTRS)

    Bobo, S. N.

    1983-01-01

    Adhesion testing appeared to offer a less burdensome alternative to replace some of the dynamometer tests. Accordingly, test results and data were requested from retreaders who had used adhesion testing.

  4. 3-D foam adhesive deposition

    NASA Technical Reports Server (NTRS)

    Lemons, C. R.; Salmassy, O. K.

    1976-01-01

    Bonding method, which reduces amount and weight of adhesive, is applicable to foam-filled honeycomb constructions. Novel features of process include temperature-viscosity control and removal of excess adhesive by transfer to cellophane film.

  5. Bond strength of resin cement to CO2 and Er:YAG laser-treated zirconia ceramic

    PubMed Central

    Kasraei, Shahin; Heidari, Bijan; Vafaee, Fariborz

    2014-01-01

    Objectives It is difficult to achieve adhesion between resin cement and zirconia ceramics using routine surface preparation methods. The aim of this study was to evaluate the effects of CO2 and Er:YAG laser treatment on the bond strength of resin cement to zirconia ceramics. Materials and Methods In this in-vitro study 45 zirconia disks (6 mm in diameter and 2 mm in thickness) were assigned to 3 groups (n = 15). In control group (CNT) no laser treatment was used. In groups COL and EYL, CO2 and Er:YAG lasers were used for pretreatment of zirconia surface, respectively. Composite resin disks were cemented on zirconia disk using dual-curing resin cement. Shear bond strength tests were performed at a crosshead speed of 0.5 mm/min after 24 hr distilled water storage. Data were analyzed by one-way ANOVA and post hoc Tukey's HSD tests. Results The means and standard deviations of shear bond strength values in the EYL, COL and CNT groups were 8.65 ± 1.75, 12.12 ± 3.02, and 5.97 ± 1.14 MPa, respectively. Data showed that application of CO2 and Er:YAG lasers resulted in a significant higher shear bond strength of resin cement to zirconia ceramics (p < 0.0001). The highest bond strength was recorded in the COL group (p < 0.0001). In the CNT group all the failures were adhesive. However, in the laser groups, 80% of the failures were of the adhesive type. Conclusions Pretreatment of zirconia ceramic via CO2 and Er:YAG laser improves the bond strength of resin cement to zirconia ceramic, with higher bond strength values in the CO2 laser treated samples. PMID:25383349

  6. Mesoscale texture of cement hydrates.

    PubMed

    Ioannidou, Katerina; Krakowiak, Konrad J; Bauchy, Mathieu; Hoover, Christian G; Masoero, Enrico; Yip, Sidney; Ulm, Franz-Josef; Levitz, Pierre; Pellenq, Roland J-M; Del Gado, Emanuela

    2016-02-23

    Strength and other mechanical properties of cement and concrete rely upon the formation of calcium-silicate-hydrates (C-S-H) during cement hydration. Controlling structure and properties of the C-S-H phase is a challenge, due to the complexity of this hydration product and of the mechanisms that drive its precipitation from the ionic solution upon dissolution of cement grains in water. Departing from traditional models mostly focused on length scales above the micrometer, recent research addressed the molecular structure of C-S-H. However, small-angle neutron scattering, electron-microscopy imaging, and nanoindentation experiments suggest that its mesoscale organization, extending over hundreds of nanometers, may be more important. Here we unveil the C-S-H mesoscale texture, a crucial step to connect the fundamental scales to the macroscale of engineering properties. We use simulations that combine information of the nanoscale building units of C-S-H and their effective interactions, obtained from atomistic simulations and experiments, into a statistical physics framework for aggregating nanoparticles. We compute small-angle scattering intensities, pore size distributions, specific surface area, local densities, indentation modulus, and hardness of the material, providing quantitative understanding of different experimental investigations. Our results provide insight into how the heterogeneities developed during the early stages of hydration persist in the structure of C-S-H and impact the mechanical performance of the hardened cement paste. Unraveling such links in cement hydrates can be groundbreaking and controlling them can be the key to smarter mix designs of cementitious materials. PMID:26858450

  7. Mesoscale texture of cement hydrates

    PubMed Central

    Ioannidou, Katerina; Krakowiak, Konrad J.; Bauchy, Mathieu; Hoover, Christian G.; Masoero, Enrico; Yip, Sidney; Ulm, Franz-Josef; Levitz, Pierre; Pellenq, Roland J.-M.; Del Gado, Emanuela

    2016-01-01

    Strength and other mechanical properties of cement and concrete rely upon the formation of calcium–silicate–hydrates (C–S–H) during cement hydration. Controlling structure and properties of the C–S–H phase is a challenge, due to the complexity of this hydration product and of the mechanisms that drive its precipitation from the ionic solution upon dissolution of cement grains in water. Departing from traditional models mostly focused on length scales above the micrometer, recent research addressed the molecular structure of C–S–H. However, small-angle neutron scattering, electron-microscopy imaging, and nanoindentation experiments suggest that its mesoscale organization, extending over hundreds of nanometers, may be more important. Here we unveil the C–S–H mesoscale texture, a crucial step to connect the fundamental scales to the macroscale of engineering properties. We use simulations that combine information of the nanoscale building units of C–S–H and their effective interactions, obtained from atomistic simulations and experiments, into a statistical physics framework for aggregating nanoparticles. We compute small-angle scattering intensities, pore size distributions, specific surface area, local densities, indentation modulus, and hardness of the material, providing quantitative understanding of different experimental investigations. Our results provide insight into how the heterogeneities developed during the early stages of hydration persist in the structure of C–S–H and impact the mechanical performance of the hardened cement paste. Unraveling such links in cement hydrates can be groundbreaking and controlling them can be the key to smarter mix designs of cementitious materials. PMID:26858450

  8. Lightweight Cement Slurries based on vermiculite

    NASA Astrophysics Data System (ADS)

    Minaev, K.; Gorbenko, V.; Ulyanova, O.

    2014-08-01

    The main purpose of the research is to study the lightweight cement slurry based on vermiculite and its parameters in accordance with GOST 1581-96 requirements as well as improvement of its formulation by polymer additives. Analysis of vermiculite-containing mixture providing the lowest density while maintaining other required parameters was conducted. As a cement base, cement PTscT-I-G-CC-1, cement PTscT - 100 and vermiculite M200 and M150 were used. Vermiculite content varied from 10 to 15 %; and water-to-cement-ratio ranged from 0.65 to 0.8. To sum up, despite the fact that lightweight cement slurry based on vermiculite satisfies GOST 1581-96 requirements under laboratory conditions, field studies are necessary in order to make a conclusion about applicability of this slurry for well cementing.

  9. Coating Reduces Ice Adhesion

    NASA Technical Reports Server (NTRS)

    Smith, Trent; Prince, Michael; DwWeese, Charles; Curtis, Leslie

    2008-01-01

    The Shuttle Ice Liberation Coating (SILC) has been developed to reduce the adhesion of ice to surfaces on the space shuttle. SILC, when coated on a surface (foam, metal, epoxy primer, polymer surfaces), will reduce the adhesion of ice by as much as 90 percent as compared to the corresponding uncoated surface. This innovation is a durable coating that can withstand several cycles of ice growth and removal without loss of anti-adhesion properties. SILC is made of a binder composed of varying weight percents of siloxane(s), ethyl alcohol, ethyl sulfate, isopropyl alcohol, and of fine-particle polytetrafluoroethylene (PTFE). The combination of these components produces a coating with significantly improved weathering characteristics over the siloxane system alone. In some cases, the coating will delay ice formation and can reduce the amount of ice formed. SILC is not an ice prevention coating, but the very high water contact angle (greater than 140 ) causes water to readily run off the surface. This coating was designed for use at temperatures near -170 F (-112 C). Ice adhesion tests performed at temperatures from -170 to 20 F (-112 to -7 C) show that SILC is a very effective ice release coating. SILC can be left as applied (opaque) or buffed off until the surface appears clear. Energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) data show that the coating is still present after buffing to transparency. This means SILC can be used to prevent ice adhesion even when coating windows or other objects, or items that require transmission of optical light. Car windshields are kept cleaner and SILC effectively mitigates rain and snow under driving conditions.

  10. Seismic Response of Carbonate Cemented Sandstones

    NASA Astrophysics Data System (ADS)

    Dutta, T.; Mukerji, T.; Mavko, G.

    2007-12-01

    This study focuses on how carbonate cementation precipitated at the key sequence stratigraphic surfaces impact the seismic impedance. Our goals are two-fold: (1) to identify the sedimentological variations within carbonate- cemented sandstones and (2) to quantify their effects on P-impedance. To accomplish this goal, we identify the relationship between carbonate cementation and key stratigraphic surfaces, such as, the incision surfaces and the flooding surfaces. Next, we use effective medium models to quantify the impact of sediment parameters on P- impedance. We find that the carbonate cemented sandstones are extremely heterogeneous in nature, even within a depth interval of 60 meter in our study area offshore Equatorial Guinea, West Africa. Their grain-size, sorting, mineralogy, clay-content, amount of cement and degree of leaching vary considerably. We identify two distinct clusters of data in the P-impedance vs. porosity plane. The carbonate cemented sandstones from the base of incision are usually associated with lower shaliness, lower porosity and higher P-impedance. On the contrary, data from the top of flooding surfaces exhibit higher shaliness, higher porosity and lower P-impedance. The contact cement model fails to predict the trend shown by the later cluster of data. The predictions using the constant cement model with 1% constant carbonate cement, and the modified stiffsand model with 15% critical porosity agree reasonably well with the data. Furthermore, we find that the modified differential effective media model with 40% percolation porosity, and Berryman's self consistent model with 20% percolation porosity fit P- impedance vs. porosity trend of the carbonated cemented sandstones. In conclusion, the carbonate cements are different than the siliciclastic cements in terms of sedimentological parameters, and the commonly used rock physics model for quartz cemented sandstones are not always suitable to predict P-impedance vs. porosity trends for the

  11. The effect of cement creep and cement fatigue damage on the micromechanics of the cement-bone interface

    PubMed Central

    Waanders, Daan; Janssen, Dennis; Mann, Kenneth A.; Verdonschot, Nico

    2010-01-01

    The cement-bone interface provides fixation for the cement mantle within the bone. The cement-bone interface is affected by fatigue loading in terms of fatigue damage, or micro cracks, and creep, both mostly in the cement. This study investigates how fatigue damage and cement creep separately affect the mechanical response of the cement-bone interface at various load levels in terms of plastic displacement and crack formation. Two FEA models were created, which were based on micro-computed tomography data of two physical cement-bone interface specimens. These models were subjected to tensile fatigue loads with four different magnitudes. Three deformation modes of the cement were considered; ‘only creep’, ‘only damage’ or ‘creep and damage’. The interfacial plastic deformation, the crack reduction as a result of creep and the interfacial stresses in the bone were monitored. The results demonstrate that, although some models failed early, the majority of plastic displacement was caused by fatigue damage, rather than cement creep. However, cement creep does decrease the crack formation in the cement up to 20%. Finally, while cement creep hardly influences the stress levels in the bone, fatigue damage of the cement considerably increases the stress levels in the bone. We conclude that at low load levels the plastic displacement is mainly caused by creep. At moderate to high load levels, however, the plastic displacement is dominated by fatigue damage and is hardly affected by creep, although creep reduced the number of cracks in moderate to high load region. PMID:20692663

  12. Thermoplastic polymeric adhesive for structural bonding applications for orthopaedic devices

    SciTech Connect

    Devanathan, D.; King, R.; Swarts, D.; Lin, S.; Ramani, K.; Tagle, J.

    1994-12-31

    The orthopaedics industry has witnessed tremendous growth in recent years primarily due to the introduction of high performance, porous coated implants. These devices have eliminated the need for the use of bone cement for in vivo implant fixation, replacing it with the ingrowth of bone into the porous surfaces. The metallurgical bonding processes used for attaching the porous to the implant body introduce some undesirable effect i.e., the reduction of the fatigue strength of the implant due to the ``notches`` created and also due to the high temperature exposure during the sintering operations. This paper describes the development of a thermoplastic polymeric adhesive based structural bonding technique. The high performance polymeric adhesive is fully characterized with respect to its intended application. The design of the porous layer is optimized to achieve a reliable bond to the implant. A thermal heating/cooling process was developed to control the final polymer morphology. Static and fatigue tests were conducted to fully characterize the adhesive bond strength. A ring shear test method was developed to determine the shear strength of the bond interface. Besides the characterization of the adhesive bond, the joints will be analyzed using finite element models. The correlation between the analytical models and the

  13. Research of magnesium phosphosilicate cement

    NASA Astrophysics Data System (ADS)

    Ding, Zhu

    Magnesium phosphosilicate cement (MPSC) is a novel phosphate bonded cement, which consists mainly of magnesia, phosphate and silicate minerals. The traditional magnesium phosphate cements (MPCs) usually composed by ammonium phosphate, and gaseous ammonia will emit during mixing and in service. There is no noxious ammonia released from MPSC, furthermore, it can recycle a large volume of the non-hazardous waste. The goal of this research is to investigate the composition, reaction products, reaction mechanism, microstructure, properties, durability and applications of the MPSC. MPSC sets rapidly and has high early strength. It reacts better with solid industrial waste when compared to Portland cement. Many solid industrial wastes, such as fly ash, steel slag, coal gangue, red coal gangue, red mud, barium-bearing slag, copper slag, silica fume, and ground granulated blast furnace slag, have been used as the main component (40% by weight) in MPSC. The research has found that these aluminosilicate (or ironsilicate, or calciumsilicate) minerals with an amorphous or glass structure can enhance the performance of MPSC. The disorganized internal structure of amorphous materials may make it possess higher reactivity compared to the crystalline phases. Chemical reaction between phosphate and these minerals may form an amorphous gel, which is favorable to the cementing. Borax, boric acid and sodium tripolyphosphate have been used as retardants in the MPSC system. It is found that boric acid has a higher retarding effect on the setting of cement, than borax does. However, sodium polyphosphate accelerates the reaction of MPSC. The hydration of MPSC is exothermic reaction. The heat evolution may prompt hydrates formation, and shorten the setting process. Modern materials characterization techniques, XRD, DSC, TG-DTA FTIR, XPS, MAS-NMR, SEM, TEM, MIP, etc. were used to analyze the phase composition, micro morphology, and microstructure of hardened MPSC. The main hydration product

  14. Focal Adhesion Kinase-Dependent Regulation of Adhesive Force Involves Vinculin Recruitment to Focal Adhesions

    PubMed Central

    Hanks, Steven K.; García, Andrés J.

    2016-01-01

    Background information Focal adhesion kinase (FAK), an essential non-receptor tyrosine kinase, plays pivotal roles in migratory responses, adhesive signaling, and mechanotransduction. FAK-dependent regulation of cell migration involves focal adhesion turnover dynamics as well as actin cytoskeleton polymerization and lamellipodia protrusion. Whereas roles for FAK in migratory and mechanosensing responses have been established, the contributions of FAK to the generation of adhesive forces are not well understood. Results Using FAK-null cells expressing wild-type and mutant FAK under an inducible tetracycline promoter, we analyzed the role of FAK in the generation of steady-state adhesive forces using micropatterned substrates and a hydrodynamic adhesion assay. FAK expression reduced steady-state strength by 30% compared to FAK-null cells. FAK expression reduced vinculin localization to focal adhesions by 35% independently from changes in integrin binding and localization of talin and paxillin. RNAi knockdown of vinculin abrogated the FAK-dependent differences in adhesive force. FAK-dependent changes in vinculin localization and adhesive force were confirmed in human primary fibroblasts with FAK knocked down by RNAi. The autophosphorylation Y397 and kinase domain Y576/Y577 sites were differentially required for FAK-mediated adhesive responses. Conclusions We demonstrate that FAK reduces steady-state adhesion strength by modulating vinculin recruitment to focal adhesions. These findings provide insights into the role of FAK in mechanical interactions between a cell and the extracellular matrix. PMID:19883375

  15. Adhesion behaviors on superhydrophobic surfaces.

    PubMed

    Zhu, Huan; Guo, Zhiguang; Liu, Weimin

    2014-04-18

    The adhesion behaviors of superhydrophobic surfaces have become an emerging topic to researchers in various fields as a vital step in the interactions between materials and organisms/materials. Controlling the chemical compositions and topological structures via various methods or technologies is essential to fabricate and modulate different adhesion properties, such as low-adhesion, high-adhesion and anisotropic adhesion on superhydrophobic surfaces. We summarize the recent developments in both natural superhydrophobic surfaces and artificial superhydrophobic surfaces with various adhesions and also pay attention to superhydrophobic surfaces switching between low- and high-adhesion. The methods to regulate or translate the adhesion of superhydrophobic surfaces can be considered from two perspectives. One is to control the chemical composition and change the surface geometric structure on the surfaces, respectively or simultaneously. The other is to provide external stimulations to induce transitions, which is the most common method for obtaining switchable adhesions. Additionally, adhesion behaviors on solid-solid interfaces, such as the behaviors of cells, bacteria, biomolecules and icing on superhydrophobic surfaces are also noticeable and controversial. This review is aimed at giving a brief and crucial overview of adhesion behaviors on superhydrophobic surfaces. PMID:24575424

  16. Clinical Recommendation: Labial Adhesions.

    PubMed

    Bacon, Janice L; Romano, Mary E; Quint, Elisabeth H

    2015-10-01

    Labial adhesions, also known as labial agglutination, are a common finding in prepubertal adolescents. They are defined as fusion of the labia minora in the midline or are termed vulvar adhesions when they occur below the labia minora (inner labia). Patients are often asymptomatic but might present with genitourinary complaints. The decision for treatment is based on symptoms. The mainstay of treatment in asymptomatic patients is conservative, with careful attention to vulvar hygiene and reassurance to parents. In symptomatic patients, topical treatment with estrogen and/or steroid cream is often curative. Less often, corrective surgery is necessary. Recurrence is common until a patient goes through puberty. These recommendations are intended for pediatric and gynecologic health care providers who care for pediatric and adolescent girls to facilitate diagnosis and treatment. PMID:26162697

  17. Environmentally compliant adhesive joining technology

    SciTech Connect

    Tira, J.S.

    1996-08-01

    Adhesive joining offers one method of assembling products. Advantages of adhesive joining/assembly include distribution of applied forces, lighter weight, appealing appearance, etc. Selecting environmentally safe adhesive materials and accompanying processes is paramount in today`s business climate if a company wants to be environmentally conscious and stay in business. Four areas of adhesive joining (adhesive formulation and selection, surface preparation, adhesive bonding process, waste and pollution generation/cleanup/management) all need to be carefully evaluated before adhesive joining is selected for commercial as well as military products. Designing for six sigma quality must also be addressed in today`s global economy. This requires material suppliers and product manufacturers to work even closer together.

  18. Lunar cement and lunar concrete

    NASA Technical Reports Server (NTRS)

    Lin, T. D.

    1991-01-01

    Results of a study to investigate methods of producing cements from lunar materials are presented. A chemical process and a differential volatilization process to enrich lime content in selected lunar materials were identified. One new cement made from lime and anorthite developed compressive strengths of 39 Mpa (5500 psi) for 1 inch paste cubes. The second, a hypothetical composition based on differential volatilization of basalt, formed a mineral glass which was activated with an alkaline additive. The 1 inch paste cubes, cured at 100C and 100 percent humidity, developed compressive strengths in excess of 49 Mpa (7100 psi). Also discussed are tests made with Apollo 16 lunar soil and an ongoing investigation of a proposed dry mix/steam injection procedure for casting concrete on the Moon.

  19. About Calcium Phosphate Cements (CPC)

    NASA Astrophysics Data System (ADS)

    Piñera, Silvia; Piña, Cristina

    2006-09-01

    Calcium phosphate cements (CPC) are used in orthopaedic surgery as bone substitution and fixation of metallic implants, showing advantages with respect to other materials like polymeric cements or ceramic blocks also used for bone repair. For example, they are easy to shape and fill bone defects, react at low temperature and their setting product is hydroxyapatite, mineral from it's composed the inorganic part of the bone, resulting a bioabsorbable material that can be replaced by new bone. Nevertheless there are still some complications like their low absorption rate, inyectability, setting times and their low strength that limits their use to only non load bearing applications. In this work we present a brief resume of some investigations that has been proposed to solve some of these problems, like the addition of phosphates solutions or seeds to increase the reaction rate, or fibers and hard particles to produce a composite material.

  20. Ceramic microstructure and adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1984-01-01

    When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  1. Development of phosphorylated adhesives

    NASA Technical Reports Server (NTRS)

    Bilow, N.; Giants, T. W.; Jenkins, R. K.; Campbell, P. L.

    1983-01-01

    The synthesis of epoxy prepolymers containing phosphorus was carried out in such a manner as to provide adhesives containing at least 5 percent of this element. The purpose of this was to impart fire retardant properties to the adhesive. The two epoxy derivatives, bis(4-glycidyl-oxyphenyl)phenylphosphine oxide and bis(4-glycidyl-2-methoxyphenyl)phenylphosphonate, and a curing agent, bis(3-aminophenyl)methylphosphine oxide, were used in conjunction with one another and along with conventional epoxy resins and curing agents to bond Tedlar and Polyphenylethersulfone films to Kerimid-glass syntactic foam-filled honeycomb structures. Elevated temperatures are required to cure the epoxy resins with the phosphorus-contaning diamine; however, when Tedlar is being bonded, lower curing temperatures must be used to avoid shrinkage and the concomitant formation of surface defects. Thus, the phosphorus-containing aromatic amine curing agent cannot be used alone, although it is possible to use it in conjunction with an aliphatic amine which would allow lower cure temperatures to be used. The experimental epoxy resins have not provided adhesive bonds quite as strong as those provided by Epon 828 when compared in peel tests, but the differences are not very significant. It should be noted, if optimum properties are to be realized. In any case the fire retardant characteristics of the neat resin systems obtained are quite pronounced, since in most cases the self-extinguishing properties are evident almost instantly when specimens are removed from a flame.

  2. Adhesion scratch testing - A round-robin experiment

    NASA Technical Reports Server (NTRS)

    Perry, A. J.; Valli, J.; Steinmann, P. A.

    1988-01-01

    Six sets of samples, TiN coated by chemical or physical vapor deposition methods (CVD or PVD) onto cemented carbide or high-speed steel (HSS), and TiC coated by CVD onto cemented carbide have been scratch tested using three types of commercially available scratch adhesion tester. With exception of one cemented carbide set, the reproducibility of the critical loads for any given set with a given stylus is excellent, about + or - 5 percent, and is about + or - 20 percent for different styli. Any differences in critical loads recorded for any given sample set can be attributed to the condition of the stylus (clean, new, etc.), the instrument used, the stylus itself (friction coefficient, etc.), and the sample set itself. One CVD set showed remarkably large differences in critical loads for different styli, which is thought to be related to a mechanical interaction between stylus and coating which is enhanced by a plastic deformability in the film related to the coating microstructure. The critical load for TiN on HSS increases with coating thickness, and differences in frictional conditions led to a systematic variation in the critical loads depending on the stylus used.

  3. The Visible Cement Data Set

    PubMed Central

    Bentz, Dale P.; Mizell, Symoane; Satterfield, Steve; Devaney, Judith; George, William; Ketcham, Peter; Graham, James; Porterfield, James; Quenard, Daniel; Vallee, Franck; Sallee, Hebert; Boller, Elodie; Baruchel, Jose

    2002-01-01

    With advances in x-ray microtomography, it is now possible to obtain three-dimensional representations of a material’s microstructure with a voxel size of less than one micrometer. The Visible Cement Data Set represents a collection of 3-D data sets obtained using the European Synchrotron Radiation Facility in Grenoble, France in September 2000. Most of the images obtained are for hydrating portland cement pastes, with a few data sets representing hydrating Plaster of Paris and a common building brick. All of these data sets are being made available on the Visible Cement Data Set website at http://visiblecement.nist.gov. The website includes the raw 3-D datafiles, a description of the material imaged for each data set, example two-dimensional images and visualizations for each data set, and a collection of C language computer programs that will be of use in processing and analyzing the 3-D microstructural images. This paper provides the details of the experiments performed at the ESRF, the analysis procedures utilized in obtaining the data set files, and a few representative example images for each of the three materials investigated. PMID:27446723

  4. Natural cement as the precursor of Portland cement: Methodology for its identification

    SciTech Connect

    Varas, M.J. . E-mail: mjvaras@geo.ucm.es; Alvarez de Buergo, M.; Fort, R.

    2005-11-15

    When cements appeared in the 19th century, they took the place of traditional binding materials (lime, gypsum, and hydraulic lime) which had been used until that time. Early cements can be divided into two groups, natural and artificial (Portland) cements. Natural cements were introduced first, but their widespread usage was short-lived as they were quickly replaced by artificial cements (Portland), still the most important and predominant today. The main differences between natural and artificial cements arise during the manufacturing process. The final properties of the cements are greatly influenced by differences in the raw materials and burning temperatures employed. The aim of this paper is to assess the efficiency of traditional analytical techniques (petrographic microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR)) used to differentiate natural and artificial cements.

  5. Cementing steamflood and fireflood wells - slurry design

    SciTech Connect

    Nelson, E.B.; Eilers, L.H.

    1983-01-01

    Steamflood and fireflood wells present special challenges when designing a cement slurry. In most cases, the cement slurry is subjected to relatively low temperature during the cement job and early curing. However, after the cement sets, it must be able to withstand the thermal shock associated with the initiation of steamflooding or fireflooding. In addition, the cement must be able to preserve adequate compressive strength and low permeability despite the potentially disruptive crystalline changes that occur at high temperatures. Another complicating factor is the weak or incompetent formations often encountered with thermal recovery wells. This work discusses the chemical and phase equilibria relationships which prevail when cements are exposed to the high temperatures associated with fireflood and steamflood wells.

  6. The cement solidification systems at LANL

    SciTech Connect

    Veazey, G.W.

    1990-01-01

    There are two major cement solidification systems at Los Alamos National Laboratory. Both are focused primarily around treating waste from the evaporator at TA-55, the Plutonium Processing Facility. The evaporator receives the liquid waste stream from TA-55's nitric acid-based, aqueous-processing operations and concentrates the majority of the radionuclides in the evaporator bottoms solution. This is sent to the TA-55 cementation system. The evaporator distillate is sent to the TA-50 facility, where the radionuclides are precipitated and then cemented. Both systems treat TRU-level waste, and so are operated according to the criteria for WIPP-destined waste, but they differ in both cement type and mixing method. The TA-55 systems uses Envirostone, a gypsum-based cement and in-drum prop mixing; the TA-50 systems uses Portland cement and drum tumbling for mixing.

  7. Sustainable cement production-present and future

    SciTech Connect

    Schneider, M.; Romer, M.; Tschudin, M.; Bolio, H.

    2011-07-15

    Cement will remain the key material to satisfy global housing and modern infrastructure needs. As a consequence, the cement industry worldwide is facing growing challenges in conserving material and energy resources, as well as reducing its CO{sub 2} emissions. According to the International Energy Agency, the main levers for cement producers are the increase in energy efficiency and the use of alternative materials, be it as fuel or raw materials. Accordingly, the use of alternative fuels has already increased significantly in recent years, but potential for further increases still exists. In cement, the reduction of the clinker factor remains a key priority: tremendous progress has already been made. Nevertheless, appropriate materials are limited in their regional availability. New materials might be able to play a role as cement constituents in the future. It remains to be seen to what extent they could substitute Portland cement clinker to a significant degree.

  8. Water dynamics in glass ionomer cements

    NASA Astrophysics Data System (ADS)

    Berg, M. C.; Jacobsen, J.; Momsen, N. C. R.; Benetti, A. R.; Telling, M. T. F.; Seydel, T.; Bordallo, H. N.

    2016-07-01

    Glass ionomer cements (GIC) are an alternative for preventive dentistry. However, these dental cements are complex systems where important motions related to the different states of the hydrogen atoms evolve in a confined porous structure. In this paper, we studied the water dynamics of two different liquids used to prepare either conventional or resin-modified glass ionomer cement. By combining thermal analysis with neutron scattering data we were able to relate the water structure in the liquids to the materials properties.

  9. HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE

    SciTech Connect

    Mehta, P.K.; Persoff, P.; Fox, J.P.

    1980-06-01

    Low cost material is needed for grouting abandoned retorts. Experimental work has shown that a hydraulic cement can be produced from Lurgi spent shale by mixing it in a 1:1 weight ratio with limestone and heating one hour at 1000°C. With 5% added gypsum, strengths up to 25.8 MPa are obtained. This cement could make an economical addition up to about 10% to spent shale grout mixes, or be used in ordinary cement applications.

  10. Cobalt and nickel content of Asian cements.

    PubMed

    Goh, C L; Kwok, S F; Gan, S L

    1986-09-01

    The total cobalt and nickel concentration of 11 brands of Asian cement ranged from 8.1 to 14.2 micrograms/g and 14.9 to 28.5 micrograms/g, respectively. These metals exist mainly as insoluble salts; the water-soluble concentration of cobalt and nickel in the cements ranged from 0.39 to 0.65 micrograms/g and from 0-1.2 micrograms/g, respectively. 1.5% (4/272) of construction workers in a prefabrication construction factory had cobalt sensitivity. All had allergic contact dermatitis from chromate in cement. No worker had isolated cobalt sensitivity and cement dermatitis. It appeared that sensitization to cobalt in cement occurs only secondarily to an existing cement dermatitis. 1.8% (5/272) workers had nickel sensitivity: 2 with allergic contact dermatitis to nickel in their watches, 2 were asymptomatic and 1 had allergic contact dermatitis to chromate and cobalt in cement. The low prevalence of cobalt and nickel sensitivity from cement was probably related to the low concentration of soluble cobalt and nickel salts in the cement. However, these insoluble salts can form soluble complexes with body fluids on eczematous skin and sensitize the skin. PMID:2946537

  11. Try-in Pastes Versus Resin Cements: A Color Comparison.

    PubMed

    Vaz, Edenize Cristina; Vaz, Maysa Magalhães; Rodrigues Gonçalves de Oliveira, Maria Beatriz; Takano, Alfa Emília; de Carvalho Cardoso, Paula; de Torres, Érica Miranda; Gonzaga Lopes, Lawrence

    2016-05-01

    This study aimed to compare the color of ceramic veneer restorations using different shades of try-in pastes and resin cement. Researchers found no differences between try-in pastes and resin cements after cementation. PMID:27213935

  12. Effect of flexural strength of orthodontic resin cement on bond strength of metal brackets to enamel surfaces.

    PubMed

    Li, Jun

    2011-04-01

    Three types of experimental resin cements with different curing systems, dual, light, and chemical, were designed. The relationship between the flexural strengths of the three experimental and five commercial (Beauty Ortho Bond, Transbond™ XT, Light Cure Bond, Kurasper® F, and Super Bond) orthodontic resin cements on the tensile bond strength (TBS) and shear bond strength (SBS) of metal brackets to enamel was determined. Seven specimen bars of each resin were prepared for measuring the flexural strengths of the resins. Bonded specimens of each resin were prepared, seven for measuring TBS and seven SBS for after bonding of a metal bracket to a maxillary central human labial anterior tooth using experimental and commercial resin cements. The results were analysed by one-way analysis of variance and Scheffé's multiple comparison tests. The level of statistical significance was set at 0.05. Increases in the flexural strength of the resin cements were related to increases in the TBS and SBS of the metal bracket. While the light-curing cements exhibited a strong linear correlation between flexural strengths and TBS or SBS, the dual- and chemical-curing cements exhibited a different flexural strength effect on both TBS and SBS. This was a result of the adhesive layer under the metal bracket, which could be chemically cured, in contrast to the light-curing cement. To control setting time and to obtain higher initial TBS and SBS by polymerizing the resin cement under the bracket, a dual-curing system, that combines both light- and chemical-curing systems, is essential. PMID:20937669

  13. Effect of CO2 and Nd:YAG Lasers on Shear Bond Strength of Resin Cement to Zirconia Ceramic

    PubMed Central

    Kasraei, Shahin; Yarmohamadi, Ebrahim; Shabani, Amanj

    2015-01-01

    Objectives: Because of poor bond between resin cement and zirconia ceramics, laser surface treatments have been suggested to improve adhesion. The present study evaluated the effect of CO2 and Nd:YAG lasers on the shear bond strength (SBS) of resin cement to zirconia ceramic. Materials and Methods: Ninety zirconia disks (6×2 mm) were randomly divided into six groups of 15. In the control group, no surface treatment was used. In the test groups, laser surface treatment was accomplished using CO2 and Nd:YAG lasers, respectively (groups two and three). Composite resin disks (3×2 mm) were fabricated and cemented to zirconia disks with self-etch resin cement and stored in distilled water for 24 hours. In the test groups four-six, the samples were prepared as in groups one-three and then thermocycled and stored in distilled water for six months. The SBS tests were performed (strain rate of 0.5 mm/min). The fracture modes were observed via stereomicroscopy. Data were analyzed with one and two-way ANOVA, independent t and Tukey’s tests. Results: The SBS values of Nd:YAG group (18.95±3.46MPa) was significantly higher than that of the CO2 group (14.00±1.96MPa), but lower than that of controls (23.35±3.12MPa). After thermocycling and six months of water storage, the SBS of the untreated group (1.80±1.23 MPa) was significantly lower than that of the laser groups. In groups stored for 24 hours, 60% of the failures were adhesive; however, after thermocycling and six months of water storage, 100% of failures were adhesive. Conclusion: Bonding durability of resin cement to zirconia improved with CO2 and Nd:YAG laser surface treatment of zirconia ceramic. PMID:27148380

  14. Polyurethane adhesive ingestion.

    PubMed

    Fitzgerald, Kevin T; Bronstein, Alvin C

    2013-02-01

    Polyurethane adhesives are found in a large number of household products in the United States and are used for a variety of purposes. Several brands of these expanding wood glues (those containing diphenylmethane diisocyanate [MDI]) have the potential to form gastrointestinal (GI) foreign bodies if ingested. The ingested adhesive forms an expanding ball of glue in the esophagus and gastric lumen. This expansion is caused by a polymerization reaction using the heat, water, and gastric acids of the stomach. A firm mass is created that can be 4-8 times its original volume. As little as 2 oz of glue have been reported to develop gastric foreign bodies. The obstructive mass is reported to form within minutes of ingestion of the adhesive. The foreign body can lead to esophageal impaction and obstruction, airway obstruction, gastric outflow obstruction, mucosal hemorrhage, ulceration, laceration, perforation of the esophageal and gastric linings, and death. Clinical signs following ingestion include anorexia, lethargy, vomiting, tachypnea, and abdominal distention and pain, and typically develop within 12 hours. Clinical signs may depend upon the size of the mass. If left untreated, perforation and rupture of the esophagus or stomach can occur. The glue mass does not stick to the GI mucosa and is not always detectable on abdominal palpation. Radiographs are recommended to confirm the presence of the "glue-ball" foreign body, and radiographic evidence of the obstruction may be seen as early as 4-6 hours following ingestion. Emesis is contraindicated owing to the risk of aspiration of the glue into the respiratory tree or the subsequent lodging of the expanding glue mass in the esophagus. Likewise, efforts to dilute the glue and prevent the formation of the foreign body through administration of liquids, activated charcoal, or bulk-forming products to push the foreign body through the GI tract have proven ineffective. Even endoscopy performed to remove the foreign body has

  15. Effect of resin cement, aging process and root level on the bond strength of the resin-fiber posts

    NASA Astrophysics Data System (ADS)

    Almuhim, Khalid Salman

    Background. Little is known about the long-term clinical bonding effectiveness of the Fiber-reinforced composite (FRC) posts cemented with self-etch adhesive systems. Bond stability and longevity of the cemented post are adversely affected by physical and chemical factors over time, such as expansion and contraction stresses caused by thermal changes and occlusal load. This clinical condition can be simulated in vitro by thermocyclic loading; and bonding effectiveness can be evaluated by applying the micropush out test. Therefore, more in vitro studies are needed to evaluate the bond strength of the fiber posts cemented with different resin cement systems after simulating the artificial aging induced by thermocycling. The aim of this study was to compare the microtensile bond strength of two different resin cement systems (total etch, and self-etch resin cement system) used for cementation of fiber reinforced composite posts in three different aging periods using thermocycling. Methods. Following IRB approval, sixty freshly extracted bicuspid single rooted natural teeth were endodontically treated, and the post-spaces were prepared to receive a fiber-post cemented with either a total etch resin cement (Rely-X Ultimate) or with a self-etch resin cement (Rely-X Unicem). No thermocycling, 20,000 and 40,000 cycles was used to age the specimens. Teeth were randomly allocated into six different groups: G1 - Control: Rely-X Ultimate cement with no thermocycling. G2: Rely-X Ultimate cement with 20,000 thermocycling. G3: Rely-X Ultimate cement with 40,000 thermocycling. G4: Rely-X Unicem cement. G5: Rely-X Unicem cement. G6: Rely-X Unicem cement. Microtensile bond strength determined using a micropush out test on a universal testing machine (MTS). Additionally, the failure mode of each specimen was observed under a stereomicroscope (Olympus) at 40x magnification. Finally, one representative sample was randomly selected from each of the five failure modes for scanning

  16. Tensile strength and fracture of cemented granular aggregates.

    PubMed

    Affes, R; Delenne, J-Y; Monerie, Y; Radjaï, F; Topin, V

    2012-11-01

    Cemented granular aggregates include a broad class of geomaterials such as sedimentary rocks and some biomaterials such as the wheat endosperm. We present a 3D lattice element method for the simulation of such materials, modeled as a jammed assembly of particles bound together by a matrix partially filling the interstitial space. From extensive simulation data, we analyze the mechanical properties of aggregates subjected to tensile loading as a function of matrix volume fraction and particle-matrix adhesion. We observe a linear elastic behavior followed by a brutal failure along a fracture surface. The effective stiffness before failure increases almost linearly with the matrix volume fraction. We show that the tensile strength of the aggregates increases with both the increasing tensile strength at the particle-matrix interface and decreasing stress concentration as a function of matrix volume fraction. The proportion of broken bonds in the particle phase reveals a range of values of the particle-matrix adhesion and matrix volume fraction for which the cracks bypass the particles and hence no particle damage occurs. This limit is shown to depend on the relative toughness of the particle-matrix interface with respect to the particles. PMID:23160765

  17. JKR adhesion in cylindrical contacts

    NASA Astrophysics Data System (ADS)

    Sundaram, Narayan; Farris, T. N.; Chandrasekar, S.

    2012-01-01

    Planar JKR adhesive solutions use the half-plane assumption and do not permit calculation of indenter approach or visualization of adhesive force-displacement curves unless the contact is periodic. By considering a conforming cylindrical contact and using an arc crack analogy, we obtain closed-form indenter approach and load-contact size relations for a planar adhesive problem. The contact pressure distribution is also obtained in closed-form. The solutions reduce to known cases in both the adhesion-free and small-contact solution ( Barquins, 1988) limits. The cylindrical system shows two distinct regimes of adhesive behavior; in particular, contact sizes exceeding the critical (maximum) size seen in adhesionless contacts are possible. The effects of contact confinement on adhesive behavior are investigated. Some special cases are considered, including contact with an initial neat-fit and the detachment of a rubbery cylinder from a rigid cradle. A comparison of the cylindrical solution with the half-plane adhesive solution is carried out, and it indicates that the latter typically underestimates the adherence force. The cylindrical adhesive system is novel in that it possesses stable contact states that may not be attained even on applying an infinite load in the absence of adhesion.

  18. Experimental and Numerical Analysis of the Shear Behaviour of Cemented Concrete-Rock Joints

    NASA Astrophysics Data System (ADS)

    Tian, H. M.; Chen, W. Z.; Yang, D. S.; Yang, J. P.

    2015-01-01

    The shear behaviour of cemented concrete-rock joints is a key factor affecting the shear resistance of dam foundations, arch bridge foundations, rock socketed piles and rock bolts in rock engineering. This paper presents an experimental and numerical investigation of the shear behaviour of cemented concrete-rock joints by direct shear tests. In this study we focused on the bond strength of cemented concrete-rock joints, so limestone with smooth surfaces was used for samples preparation to reduce the roughness effect. The experimental results show that the shear strength of joints with good adhesion is strongly dependent on the bond strength of the cohesive interfaces when the applied normal stress is less than 6 MPa. In addition, the sudden and gradual bond failure processes of the cohesive interfaces were observed with an increase of the normal stress. A simple, yet realistic, model of cemented concrete-rock joint is proposed to simulate the observed behaviour, including elastic behaviour of the bond before peak shear stress and post-peak behaviour due to bond failure and friction increase. Finally, the parameters analysis and calibration of the proposed model are presented.

  19. Damage and reliability of Y-TZP after cementation surface treatment.

    PubMed

    Guess, P C; Zhang, Y; Kim, J-W; Rekow, E D; Thompson, V P

    2010-06-01

    Zirconia-based restorations are widely used in prosthetic dentistry, but their susceptibility to post-sintering cementation surface treatments remains controversial. We hypothesized that grinding (600-grit) and alumina abrasion (50 microm, 5 sec, 0.5 MPa) affect the damage modes and reliability of zirconia core material. Monolithic CAD/CAM-machined and sintered Y-TZP plates (0.5 mm thickness) were adhesively cemented to dentin-like composite substrates. Uni-axial mouth-motion cyclic contact was applied through a tungsten carbide spherical indenter (r = 3.18 mm). Results showed that zirconia core ceramic is vulnerable to lower surface radial fracture after grinding or alumina abrasion, while the as-received control chiefly fractured from load-application surface cone fracture. Significantly lower reliability of ground and alumina-abraded compared with the as-received zirconia core ceramic can be attributed to damage induced on the cementation surface. Clinical relevance concerning surface treatment protocols for zirconia framework materials prior to cementation is addressed. PMID:20354231

  20. Damage and Reliability of Y-TZP after Cementation Surface Treatment

    PubMed Central

    Guess, P.C.; Zhang, Y.; Kim, J.-W.; Rekow, E.D.; Thompson, V.P.

    2010-01-01

    Zirconia-based restorations are widely used in prosthetic dentistry, but their susceptibility to post-sintering cementation surface treatments remains controversial. We hypothesized that grinding (600-grit) and alumina abrasion (50 µm, 5 sec, 0.5 MPa) affect the damage modes and reliability of zirconia core material. Monolithic CAD/CAM-machined and sintered Y-TZP plates (0.5 mm thickness) were adhesively cemented to dentin-like composite substrates. Uni-axial mouth-motion cyclic contact was applied through a tungsten carbide spherical indenter (r = 3.18 mm). Results showed that zirconia core ceramic is vulnerable to lower surface radial fracture after grinding or alumina abrasion, while the as-received control chiefly fractured from load-application surface cone fracture. Significantly lower reliability of ground and alumina-abraded compared with the as-received zirconia core ceramic can be attributed to damage induced on the cementation surface. Clinical relevance concerning surface treatment protocols for zirconia framework materials prior to cementation is addressed. PMID:20354231

  1. Effect of additive particles on mechanical, thermal, and cell functioning properties of poly(methyl methacrylate) cement

    PubMed Central

    Khandaker, Morshed; Vaughan, Melville B; Morris, Tracy L; White, Jeremiah J; Meng, Zhaotong

    2014-01-01

    The most common bone cement material used clinically today for orthopedic surgery is poly(methyl methacrylate) (PMMA). Conventional PMMA bone cement has several mechanical, thermal, and biological disadvantages. To overcome these problems, researchers have investigated combinations of PMMA bone cement and several bioactive particles (micrometers to nanometers in size), such as magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica. A study comparing the effect of these individual additives on the mechanical, thermal, and cell functional properties of PMMA would be important to enable selection of suitable additives and design improved PMMA cement for orthopedic applications. Therefore, the goal of this study was to determine the effect of inclusion of magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica additives in PMMA on the mechanical, thermal, and cell functional performance of PMMA. American Society for Testing and Materials standard three-point bend flexural and fracture tests were conducted to determine the flexural strength, flexural modulus, and fracture toughness of the different PMMA samples. A custom-made temperature measurement system was used to determine maximum curing temperature and the time needed for each PMMA sample to reach its maximum curing temperature. Osteoblast adhesion and proliferation experiments were performed to determine cell viability using the different PMMA cements. We found that flexural strength and fracture toughness were significantly greater for PMMA specimens that incorporated silica than for the other specimens. All additives prolonged the time taken to reach maximum curing temperature and significantly improved cell adhesion of the PMMA samples. The results of this study could be useful for improving the union of implant-PMMA or bone-PMMA interfaces by incorporating nanoparticles into PMMA cement for orthopedic and orthodontic applications. PMID:24920906

  2. Effect of additive particles on mechanical, thermal, and cell functioning properties of poly(methyl methacrylate) cement.

    PubMed

    Khandaker, Morshed; Vaughan, Melville B; Morris, Tracy L; White, Jeremiah J; Meng, Zhaotong

    2014-01-01

    The most common bone cement material used clinically today for orthopedic surgery is poly(methyl methacrylate) (PMMA). Conventional PMMA bone cement has several mechanical, thermal, and biological disadvantages. To overcome these problems, researchers have investigated combinations of PMMA bone cement and several bioactive particles (micrometers to nanometers in size), such as magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica. A study comparing the effect of these individual additives on the mechanical, thermal, and cell functional properties of PMMA would be important to enable selection of suitable additives and design improved PMMA cement for orthopedic applications. Therefore, the goal of this study was to determine the effect of inclusion of magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica additives in PMMA on the mechanical, thermal, and cell functional performance of PMMA. American Society for Testing and Materials standard three-point bend flexural and fracture tests were conducted to determine the flexural strength, flexural modulus, and fracture toughness of the different PMMA samples. A custom-made temperature measurement system was used to determine maximum curing temperature and the time needed for each PMMA sample to reach its maximum curing temperature. Osteoblast adhesion and proliferation experiments were performed to determine cell viability using the different PMMA cements. We found that flexural strength and fracture toughness were significantly greater for PMMA specimens that incorporated silica than for the other specimens. All additives prolonged the time taken to reach maximum curing temperature and significantly improved cell adhesion of the PMMA samples. The results of this study could be useful for improving the union of implant-PMMA or bone-PMMA interfaces by incorporating nanoparticles into PMMA cement for orthopedic and orthodontic applications. PMID:24920906

  3. Liquid antibiotics in bone cement

    PubMed Central

    Chang, Y. H.; Tai, C. L.; Hsu, H. Y.; Hsieh, P. H.; Lee, M. S.; Ueng, S. W. N.

    2014-01-01

    Objectives The objective of this study was to compare the elution characteristics, antimicrobial activity and mechanical properties of antibiotic-loaded bone cement (ALBC) loaded with powdered antibiotic, powdered antibiotic with inert filler (xylitol), or liquid antibiotic, particularly focusing on vancomycin and amphotericin B. Methods Cement specimens loaded with 2 g of vancomycin or amphotericin B powder (powder group), 2 g of antibiotic powder and 2 g of xylitol (xylitol group) or 12 ml of antibiotic solution containing 2 g of antibiotic (liquid group) were tested. Results Vancomycin elution was enhanced by 234% in the liquid group and by 12% in the xylitol group compared with the powder group. Amphotericin B elution was enhanced by 265% in the liquid group and by 65% in the xylitol group compared with the powder group. Based on the disk-diffusion assay, the eluate samples of vancomycin-loaded ALBC of the liquid group exhibited a significantly larger inhibitory zone than samples of the powder or the xylitol group. Regarding the ALBCs loaded with amphotericin B, only the eluate samples of the liquid group exhibited a clear inhibitory zone, which was not observed in either the xylitol or the powder groups. The ultimate compressive strength was significantly reduced in specimens containing liquid antibiotics. Conclusions Adding vancomycin or amphotericin B antibiotic powder in distilled water before mixing with bone cement can significantly improve the efficiency of antibiotic release than can loading ALBC with the same dose of antibiotic powder. This simple and effective method for preparation of ALBCs can significantly improve the efficiency of antibiotic release in ALBCs. Cite this article: Bone Joint Res 2014;3:246–51. PMID:25104836

  4. Stickiness--some fundamentals of adhesion.

    PubMed

    Gay, Cyprien

    2002-12-01

    We review some adhesion mechanisms that have been understood in the field of synthetic adhesives, and more precisely for adhesives that adhere instantaneously (a property named tackiness) and whose adhesive strength usually depends on the applied pressure (pressure-sensitive adhesives). The discussion includes effects of surface roughness, elasticity, cavitation, viscous and elastic fingering, substrate flexibility. PMID:21680396

  5. Antireflection coating for high index cemented doublets.

    PubMed

    Willey, R R

    1990-11-01

    Uncoated surfaces of high index glasses when cemented to form lens doublets have inferior antireflection properties to doublets of low index glass. This can be overcome by the application of a single layer coating of aluminum oxide prior to cementing. PMID:20577426

  6. TECHNOLOGICAL CHANGES IN THE CEMENT MANUFACTURING INDUSTRY.

    ERIC Educational Resources Information Center

    WESSON, CARL E.

    THE PURPOSE OF THIS STUDY IS TO PRESENT A PRELIMINARY PICTURE OF OCCUPATIONAL CHANGES BROUGHT ABOUT IN THE MANUFACTURE OF CEMENT AS A RESULT OF INTRODUCING AUTOMATED EQUIPMENT. ONE AUTOMATED AND SEVERAL CONVENTIONAL TYPE CEMENT PLANTS WERE STUDIED. ANALYSIS OF DATA OBTAINED THROUGH RESEARCH AND DATA COLLECTED DURING THE STUDY REVEALED THAT…

  7. Basic Chemistry for the Cement Industry.

    ERIC Educational Resources Information Center

    Turner, Mason

    This combined student workbook and instructor's guide contains nine units for inplant classes on basic chemistry for employees in the cement industry. The nine units cover the following topics: chemical basics; measurement; history of cement; atoms; bonding and chemical formulas; solids, liquids, and gases; chemistry of Portland cement…

  8. Tires fuel oil field cement manufacturing

    SciTech Connect

    Caveny, B.; Ashford, D.; Garcia, J.G.; Hammack, R.

    1998-08-31

    In a new process, waste automobile tires added to the fuel mix of gas, coal, and coke help fire kilns to produce API-quality oil field cement. Capital Cement uses this process in its cement-manufacturing plant in San Antonio, in which it also produces construction cement. The tires provide a lower-cost fuel and boost the temperature at a critical stage in the kiln burn process. Also, steel-belted tires add iron content to the mix. According to lab results, tire-burned cement slurries will perform the same as conventionally burned cement slurries. Actual field applications have proven that cement produced by burning tires performs no different than conventionally produced slurries. Capital`s plant uses both dry and wet processes, with separate kilns running both processes at the same time. Cement clinker is partially fired by waste tires in both kiln processes. The tires represent 12% of the fuel consumed by the plant, a number that is expected to increase. Capital burns about 200 tires/hr, or about 1.6 million tires/year.

  9. A note on cement in asteroids

    NASA Astrophysics Data System (ADS)

    Bilalbegović, G.

    2016-09-01

    Cement mineral tobermorite was formed in hydrothermal experiments on alternation of calcium-aluminum-rich inclusions (CAIs) in carbonaceous chondrite meteorites. Unidentified bands at 14 μm were measured for CAIs and the matrix of the Allende meteorite sample, as well as for Hektor and Agamemnon asteroids. The presence of cement nanoparticles may explain the feature at 14 μm.

  10. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.

    PubMed

    Li, Yasong; Gates, Byron D; Menon, Carlo

    2015-08-01

    The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate. PMID:26167951

  11. Effect of adhesive thickness on adhesively bonded T-joint

    NASA Astrophysics Data System (ADS)

    Abdullah, A. R.; Afendi, Mohd; Majid, M. S. Abdul

    2013-12-01

    The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding.

  12. Current Status of Geothermal Well Cement Development

    SciTech Connect

    Kukacka, L. E.

    1981-01-01

    The results of a study made in 1976 indicated that the cements used for well completion deteriorate in the geothermal environments and that the life expectancy of a well, and therefore the economics of geothermal processes, could be improved significantly if better materials were developed. On the basis of this assessment, Brookhaven National Laboratory (BNL) helped the Department of Energy, Division of Geothermal Energy to organize a program to develop materials that meet the estimated design criteria for geothermal well cements. The BNL work involves research on polymer cements and full management of an integrated program involving contract research and industrial participation. The program consists of the following phases: (1) problem definition, (2) cement research and development, (3) property verification, (4) downhole testing, and (5) cementing of demonstration wells.

  13. MDF cements: Chemistry, processing and microstructure

    SciTech Connect

    McHugh, A.J.; Tan, L.S.; Lewis, J.

    1995-12-31

    Macro-Defect-Free (MDF) cements are low water content, polymer-cement composites which can exhibit flexural strengths over 30 times in excess of normally cast cement. The microstructure of hardened MDF, responsible for the vastly improved properties, is the direct outcome of mechano-chemically induced reactions which take place during shear mixing of the damp powder. Mixing torque curves exhibit a characteristic shape which reflects the temperature and shear-rate-dependent kinetics of the polymer-cement crosslinking reactions. These kinetics are parametrically related to the viscoelastic and Theological properties of the paste which also enhance its overall processability. The evolution of overall composite structure and the microstructure of the cement-polymer interphase region are quantified using scanning and transmission electron microscopy in conjunction with energy dispersion spectrometry. Mechanical flexural strength of the hardened composites are also determined.

  14. Cement analysis using d + D neutrons

    NASA Astrophysics Data System (ADS)

    Womble, Phillip C.; Paschal, Jon; Moore, Ryan

    2005-12-01

    In the cement industry, the primary concern is quality control. The earlier the cement industry can institute quality control upon their product, the more significant their savings in labor, energy and material. We are developing a prototype cement analyzer using pulsed neutrons from a d-D electronic neutron generator with the goal of ensuring quality control of cement in an on-line manner. By utilizing a low intensity d-D neutron source and a specially-designed moderator assembly, we are able to produce one of the safest neutron-based systems in the market. Also, this design includes some exciting new methods of data acquisition which may substantially reduce the final installation costs. In our proof-of-principle measurements, we were able to measure the primary components of cement (Al, Si, Ca and Fe) to limits required for the raw materials, the derived mixes and the clinkers utilizing this neutron generator.

  15. Cements with low Clinker Content

    NASA Astrophysics Data System (ADS)

    García-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A.

    2015-11-01

    Hybrid alkaline cements are multi-component systems containing a high percentage of mineral additions (fly ash, blast furnace slag), low proportions (<30%) of Portland clinker and scarce amounts of alkaline activators. The substantially lower amount of clinker needed to manufacture these binders in comparison to ordinary Portland cement is both economically and ecologically beneficial. Their enormous versatility in terms of the raw materials used has made them the object of considerable interest. The present study explored the mechanical strength of binary blends mixes; B1= 20% clinker (CK) + 80% fly ash (FA) and B2=20% clinker + 80% blast furnace slag (BFS), both hydrated in the presence and absence of an alkaline activator specifically designed for this purpose. The use of the activator enhanced the development of early age strength considerably. All the hydrated matrices were characterised with XRD, SEM/EDX and (29Si and 27Al) NMR. The use of the alkaline activator generated reaction products consisting primarily of a mix of gels ((N,C)-A-S-H and C-A-S-H) whose respective proportions were found to depend upon system composition and initial reactivity.

  16. Pack cementation coatings for alloys

    SciTech Connect

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A.

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  17. Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries

    PubMed Central

    Cheng, Lei; Zhang, Ke; Weir, Michael D; Melo, Mary Anne S; Zhou, Xuedong; Xu, Hockin HK

    2015-01-01

    Dental caries is the most widespread disease and an economic burden. Nanotechnology is promising to inhibit caries by controlling biofilm acids and enhancing remineralization. Nanoparticles of silver were incorporated into composites/adhesives, along with quaternary ammonium methacrylates (QAMs), to combat biofilms. Nanoparticles of amorphous calcium phosphate (NACP) released calcium/phosphate ions, remineralized tooth-lesions and neutralized acids. By combining NAg/QAM/NACP, a new class of composites and adhesives with antibacterial and remineralization double benefits was developed. Various other nanoparticles including metal and oxide nanoparticles such as ZnO and TiO2, as well as polyethylenimine nanoparticles and their antibacterial capabilities in dental resins were also reviewed. These nanoparticles are promising for incorporation into dental composites/cements/sealants/bases/liners/adhesives. Therefore, nanotechnology has potential to significantly improve restorative and preventive dentistry. PMID:25723095

  18. Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries.

    PubMed

    Cheng, Lei; Zhang, Ke; Weir, Michael D; Melo, Mary Anne S; Zhou, Xuedong; Xu, Hockin H K

    2015-03-01

    Dental caries is the most widespread disease and an economic burden. Nanotechnology is promising to inhibit caries by controlling biofilm acids and enhancing remineralization. Nanoparticles of silver were incorporated into composites/adhesives, along with quaternary ammonium methacrylates (QAMs), to combat biofilms. Nanoparticles of amorphous calcium phosphate (NACP) released calcium/phosphate ions, remineralized tooth-lesions and neutralized acids. By combining nanoparticles of silver/QAM/NACP, a new class of composites and adhesives with antibacterial and remineralization double benefits was developed. Various other nanoparticles including metal and oxide nanoparticles such as ZnO and TiO2, as well as polyethylenimine nanoparticles and their antibacterial capabilities in dental resins were also reviewed. These nanoparticles are promising for incorporation into dental composites/cements/sealants/bases/liners/adhesives. Therefore, nanotechnology has potential to significantly improve restorative and preventive dentistry. PMID:25723095

  19. Platelet adhesiveness in diabetes mellitus

    PubMed Central

    Shaw, S.; Pegrum, G. D.; Wolff, Sylvia; Ashton, W. L.

    1967-01-01

    Platelet adhesiveness has been assessed on whole blood from a series of 34 diabetics and 50 control subjects using adenosine diphosphate (A.D.P.) and by adherence to glass microspherules (ballotini). Using both techniques it was possible to demonstrate a significant increase in platelet adhesiveness in the diabetic patients. PMID:5614070

  20. Measuring Adhesion And Friction Forces

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1991-01-01

    Cavendish balance adapted to new purpose. Apparatus developed which measures forces of adhesion and friction between specimens of solid materials in vacuum at temperatures from ambient to 900 degrees C. Intended primarily for use in studying adhesion properties of ceramics and metals, including silicon carbide, aluminum oxide, and iron-base amorphous alloys.

  1. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that...

  2. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that...

  3. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that...

  4. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that...

  5. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that...

  6. Novel protein-repellent and biofilm-repellent orthodontic cement containing 2-methacryloyloxyethyl phosphorylcholine.

    PubMed

    Zhang, Ning; Zhang, Ke; Melo, Mary Anne S; Chen, Chen; Fouad, Ashraf F; Bai, Yuxing; Xu, Hockin H K

    2016-07-01

    The objectives of this study were to develop the first protein-repellent resin-modified glass ionomer cement (RMGI) by incorporating 2-methacryloyloxyethyl phosphorylcholine (MPC) for orthodontic applications, and to investigate the MPC effects on protein adsorption, biofilm growth, and enamel bond strength. MPC was incorporated into RMGI at 0% (control), 1.5%, 3%, and 5% by mass. Specimens were stored in water at 37°C for 1 and 30 days. Enamel shear bond strength (SBS) was measured, and the adhesive remnant index (ARI) scores were assessed. Protein adsorption onto the specimens was determined by a micro bicinchoninic acid method. A dental plaque microcosm biofilm model with human saliva as inoculum was used. The results showed that adding 3% of MPC into RMGI did not significantly reduce the SBS (p > 0.1). There was no significant loss in SBS for RMGI containing 3% MPC after water-aging for 30 days, as compared to 1 day (p > 0.1). RMGI with 3% MPC had protein adsorption that was 1/10 that of control. RMGI with 3% MPC greatly reduced the bacterial adhesion, and lactic acid production and colony-forming units of biofilms, while substantially increasing the medium solution pH containing biofilms. The protein-repellent and biofilm-repellent effects were not decreased after water-aging for 30 days. In conclusion, the MPC-containing RMGI is promising to reduce biofilms and white spot lesions without compromising orthodontic bracket-enamel bond strength. The novel protein-repellent method may have applicability to other orthodontic cements, dental composites, adhesives, sealants, and cements to repel proteins and biofilms. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 949-959, 2016. PMID:25970092

  7. Biological adhesives and fastening devices

    NASA Astrophysics Data System (ADS)

    Wolpert, H. D.

    2012-04-01

    Sea creatures are a leading source to some of the more interesting discoveries in adhesives. Because sea water naturally breaks down even the strongest conventional adhesive, an alternative is important that could be used in repairing or fabricating anything that might have regular contact with moisture such as: Repairing broken and shattered bones, developing a surgical adhesive, use in the dental work, repairing and building ships, and manufacturing plywood. Some of nature's prototypes include the common mussel, limpet, some bacteria and abalone. As we learn more about these adhesives we are also developing non adhesive fasteners, such as mimicked after studying the octopus, burdock burrs (i.e. Velcro®) and the gecko.

  8. Hyaluronan-mediated cellular adhesion

    NASA Astrophysics Data System (ADS)

    Curtis, Jennifer

    2005-03-01

    Many cells surround themselves with a cushioning halo of polysaccharides that is further strengthened and organized by proteins. In fibroblasts and chrondrocytes, the primary component of this pericellular matrix is hyaluronan, a large linear polyanion. Hyaluronan production is linked to a variety of disease, developmental, and physiological processes. Cells manipulate the concentration of hyaluronan and hyaluronan receptors for numerous activities including modulation of cell adhesion, cell motility, and differentiation. Recent investigations by identify hyaluronan's role in mediating early-stage cell adhesion. An open question is how the cell removes the 0.5-10 micron thick pericellular matrix to allow for further mature adhesion events requiring nanometer scale separations. In this investigation, holographic optical tweezers are used to study the adhesion and viscoelastic properties of chondrocytes' pericellular matrix. Ultimately, we aim to shed further light on the spatial and temporal details of the dramatic transition from micron to nanometer gaps between the cell and its adhesive substrate.

  9. Corrugated pipe adhesive applicator apparatus

    DOEpatents

    Shirey, Ray A.

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe within an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough.

  10. Corrugated pipe adhesive applicator apparatus

    DOEpatents

    Shirey, R.A.

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe with an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough. 4 figs.

  11. Adhesion testing device

    NASA Technical Reports Server (NTRS)

    LaPeyronnie, Glenn M. (Inventor); Huff, Charles M. (Inventor)

    2010-01-01

    The present invention provides a testing apparatus and method for testing the adhesion of a coating to a surface. The invention also includes an improved testing button or dolly for use with the testing apparatus and a self aligning button hook or dolly interface on the testing apparatus. According to preferred forms, the apparatus and method of the present invention are simple, portable, battery operated rugged, and inexpensive to manufacture and use, are readily adaptable to a wide variety of uses, and provide effective and accurate testing results. The device includes a linear actuator driven by an electric motor coupled to the actuator through a gearbox and a rotatable shaft. The electronics for the device are contained in the head section of the device. At the contact end of the device, is positioned a self aligning button hook, attached below the load cell located on the actuator shaft.

  12. Epidural lysis of adhesions.

    PubMed

    Lee, Frank; Jamison, David E; Hurley, Robert W; Cohen, Steven P

    2014-01-01

    As our population ages and the rate of spine surgery continues to rise, the use epidural lysis of adhesions (LOA) has emerged as a popular treatment to treat spinal stenosis and failed back surgery syndrome. There is moderate evidence that percutaneous LOA is more effective than conventional ESI for both failed back surgery syndrome, spinal stenosis, and lumbar radiculopathy. For cervical HNP, cervical stenosis and mechanical pain not associated with nerve root involvement, the evidence is anecdotal. The benefits of LOA stem from a combination of factors to include the high volumes administered and the use of hypertonic saline. Hyaluronidase has been shown in most, but not all studies to improve treatment outcomes. Although infrequent, complications are more likely to occur after epidural LOA than after conventional epidural steroid injections. PMID:24478895

  13. Epidural Lysis of Adhesions

    PubMed Central

    Lee, Frank; Jamison, David E.; Hurley, Robert W.

    2014-01-01

    As our population ages and the rate of spine surgery continues to rise, the use epidural lysis of adhesions (LOA) has emerged as a popular treatment to treat spinal stenosis and failed back surgery syndrome. There is moderate evidence that percutaneous LOA is more effective than conventional ESI for both failed back surgery syndrome, spinal stenosis, and lumbar radiculopathy. For cervical HNP, cervical stenosis and mechanical pain not associated with nerve root involvement, the evidence is anecdotal. The benefits of LOA stem from a combination of factors to include the high volumes administered and the use of hypertonic saline. Hyaluronidase has been shown in most, but not all studies to improve treatment outcomes. Although infrequent, complications are more likely to occur after epidural LOA than after conventional epidural steroid injections. PMID:24478895

  14. [Retention of adhesive bridges].

    PubMed

    Raes, F; De Boever, J

    1994-04-01

    Since the development of adhesive bridges in the early seventies, the retention and therefore the durability of these bridges has been tremendously improved. Conditioning of the non-precious metal by silanisa