Kweon, Hyojin; Yiacoumi, Sotira Z.; Tsouris, Costas
2015-06-19
In this study, the influence of electrostatic charge on the adhesive force between spherical particles and planar surfaces in atmospheric systems was studied using atomic force microscopy. Electrical bias was applied to modify the surface charge, and it was found that application of a stronger positive bias to a particle induces a stronger total adhesive force. The sensitivity of the system to changes in the bias depended on the surface charge density. For larger-size particles, the contribution of the electrostatic force decreased, and the capillary force became the major contributor to the total adhesive force. The influence of water adsorptionmore » on the total adhesive force and, specifically, on the contribution of the electrostatic force depended on the hydrophobicity of interacting surfaces. For a hydrophilic surface, water adsorption either attenuated the surface charge or screened the effect of surface potential. An excessive amount of adsorbed water provided a path to surface charge leakage, which might cancel out the electrostatic force, leading to a reduction in the adhesive force. Theoretically calculated forces were comparable with measured adhesive forces except for mica which has a highly localized surface potential. The results of this study provide information on the behavior of charged colloidal particles in atmospheric systems.« less
Ruffatto, Donald; Parness, Aaron; Spenko, Matthew
2014-01-01
This paper describes a novel, controllable adhesive that combines the benefits of electrostatic adhesives with gecko-like directional dry adhesives. When working in combination, the two technologies create a positive feedback cycle whose adhesion, depending on the surface type, is often greater than the sum of its parts. The directional dry adhesive brings the electrostatic adhesive closer to the surface, increasing its effect. Similarly, the electrostatic adhesion helps engage more of the directional dry adhesive fibrillar structures, particularly on rough surfaces. This paper presents the new hybrid adhesive's manufacturing process and compares its performance to three other adhesive technologies manufactured using a similar process: reinforced PDMS, electrostatic and directional dry adhesion. Tests were performed on a set of ceramic tiles with varying roughness to quantify its effect on shear adhesive force. The relative effectiveness of the hybrid adhesive increases as the surface roughness is increased. Experimental data are also presented for different substrate materials to demonstrate the enhanced performance achieved with the hybrid adhesive. Results show that the hybrid adhesive provides up to 5.1× greater adhesion than the electrostatic adhesive or directional dry adhesive technologies alone. PMID:24451392
Optimization and experimental validation of electrostatic adhesive geometry
NASA Astrophysics Data System (ADS)
Ruffatto, D.; Shah, J.; Spenko, M.
This paper introduces a method to optimize the electrode geometry of electrostatic adhesives for robotic gripping, attachment, and manipulation applications. Electrostatic adhesion is achieved by applying a high voltage potential, on the order of kV, to a set of electrodes, which generates an electric field. The electric field polarizes the substrate material and creates an adhesion force. Previous attempts at creating electro-static adhesives have shown them to be effective, but researchers have made no effort to optimize the electrode configuration and geometry. We have shown that by optimizing the geometry of the electrode configuration, the electric field strength, and therefore the adhesion force, is enhanced. To accomplish this, Comsol Multiphysics was utilized to evaluate the average electric field generated by a given electrode geometry. Several electrode patterns were evaluated, including parallel conductors, concentric circles, Hilbert curves (a fractal geometry) and spirals. The arrangement of the electrodes in concentric circles with varying electrode widths proved to be the most effective. The most effective sizing was to use the smallest gap spacing allowable coupled with a variable electrode width. These results were experimentally validated on several different surfaces including drywall, wood, tile, glass, and steel. A new manufacturing process allowing for the fabrication of thin, conformal electro-static adhesive pads was utilized. By combining the optimized electrode geometry with the new fabrication process we are able to demonstrate a marked improvement of up to 500% in shear pressure when compared to previously published values.
Electrostatic adhesion for added functionality of composite structures
NASA Astrophysics Data System (ADS)
Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.
2016-02-01
Electrostatic adhesion can be used as a means of reversible attachment. The incorporation of electrostatic adhesion into fibre reinforced polymer (FRP) composite structures could provide significant value added functionality. Imparting large potential differences (˜2 kV) across electrodes generates an attractive force, thus providing a means of attachment. This could be used as a reversible latching mechanism or as a means of controllable internal connectivity. Varying the connectivity for discrete elements of a substructure of a given design allows for control of internal load paths and moment of area of the cross section. This could facilitate variable stiffness (both in bending and torsion). Using a combination of existing fabrication techniques, functional electrodes have been integrated within a FRP. Copper polyimide thin film laminate material has been both co-cured with carbon fibre reinforced epoxy and bonded to PVC closed cell foam core material to provide a range of structural configurations with integrated electrodes. The ability of such integrated devices to confer variations in global bending stiffness of basic beam structures is investigated. Through the application of 4 kV across integrated electrostatic adhesive devices, a 112% increase in flexural stiffness has been demonstrated for a composite sandwich structure.
Morphing hybrid honeycomb (MOHYCOMB) with in situ Poisson’s ratio modulation
NASA Astrophysics Data System (ADS)
Heath, Callum J. C.; Neville, Robin M.; Scarpa, Fabrizio; Bond, Ian P.; Potter, Kevin D.
2016-08-01
Electrostatic adhesion can be used as a means of reversible attachment. Through application of high voltage (~2 kV) across closely spaced parallel plate electrodes, significant shear stresses (11 kPa) can be generated. The highest levels of electrostatic holding force can be achieved through close contact of connection surfaces; this is facilitated by flexible electrodes which can conform to reduce air gaps. Cellular structures are comprised of thin walled elements, making them ideal host structures for electrostatic adhesive elements. The reversible adhesion provides control of the internal connectivity of the cellular structure, and determines the effective cell geometry. This would offer variable stiffness and control of the effective Poisson’s ratio of the global cellular array. Using copper-polyimide thin film laminates and PVDF thin film dielectrics, double lap shear electrostatic adhesive elements have been introduced to a cellular geometry. By activating different groups of reversible adhesive interfaces, the cellular array can assume four different cell configurations. A maximum stiffness modulation of 450% between the ‘All off’ and ‘All on’ cell morphologies has been demonstrated. This structure is also capable of in situ effective Poisson’s ratio variations, with the ability to switch between values of -0.45 and 0.54. Such a structure offers the potential for tuneable vibration absorption (due to its variable stiffness properties), or as a smart honeycomb with controllable curvature and is termed morphing hybrid honeycomb.
Tran, Phat L.; Gamboa, Jessica R.; McCracken, Katherine E.; Riley, Mark R.
2014-01-01
Assuring cell adhesion to an underlying biomaterial surface is vital in implant device design and tissue engineering, particularly under circumstances where cells are subjected to potential detachment from overriding fluid flow. Cell-substrate adhesion is a highly regulated process involving the interplay of mechanical properties, surface topographic features, electrostatic charge, and biochemical mechanisms. At the nanoscale level the physical properties of the underlying substrate are of particular importance in cell adhesion. Conventionally, natural, pro-adhesive, and often thrombogenic, protein biomaterials are frequently utilized to facilitate adhesion. In the present study nanofabrication techniques are utilized to enhance the biological functionality of a synthetic polymer surface, polymethymethacrylate, with respect to cell adhesion. Specifically we examine the effect on cell adhesion of combining: 1. optimized surface texturing, 2. electrostatic charge and 3. cell adhesive ligands, uniquely assembled on the substrata surface, as an ensemble of nanoparticles trapped in nanowells. Our results reveal that the ensemble strategy leads to enhanced, more than simply additive, endothelial cell adhesion under both static and flow conditions. This strategy may be of particular utility for enhancing flow-resistant endothelialization of blood-contacting surfaces of cardiovascular devices subjected to flow-mediated shear. PMID:23225491
Complex coacervates as a foundation for synthetic underwater adhesives
Stewart, Russell J.; Wang, Ching Shuen; Shao, Hui
2011-01-01
Complex coacervation was proposed to play a role in the formation of the underwater bioadhesive of the Sandcastle worm (Phragmatopoma californica) based on the polyacidic and polybasic nature of the glue proteins and the balance of opposite charges at physiological pH. Morphological studies of the secretory system suggested the natural process does not involve complex coacervation as commonly defined. The distinction may not be important because electrostatic interactions likely play an important role in formation of the sandcastle glue. Complex coacervation has also been invoked in the formation of adhesive underwater silk fibers of caddisfly larvae and the adhesive plaques of mussels. A process similar to complex coacervation, that is, condensation and dehydration of biopolyelectrolytes through electrostatic associations, seems plausible for the caddisfly silk. This much is clear, the sandcastle glue complex coacervation model provided a valuable blueprint for the synthesis of a biomimetic, waterborne, underwater adhesive with demonstrated potential for repair of wet tissue. PMID:21081223
Electrostatic forces for personnel restraints
NASA Technical Reports Server (NTRS)
Ashby, N.; Ciciora, J.; Gardner, R.; Porter, K.
1977-01-01
The feasibility of utilizing electrostatic forces for personnel retention devices on exterior spacecraft surfaces was analyzed. The investigation covered: (1) determination of the state of the art; (2) analysis of potential adhesion surfaces; (3) safety considerations for personnel; (4) electromagnetic force field determination and its effect on spacecraft instrumentation; and (5) proposed advances to current technology based on documentation review, analyses, and experimental test data.
NASA Technical Reports Server (NTRS)
Marshall, J.; Weislogel, M.; Jacobson, T.
1999-01-01
The bulk behavior of dispersed, fluidized, or undispersed stationary granular systems cannot be fully understood in terms of adhesive/cohesive properties without understanding the role of electrostatic forces acting at the level of the grains themselves. When grains adhere to a surface, or come in contact with one another in a stationary bulk mass, it is difficult to measure the forces acting on the grains, and the forces themselves that induced the cohesion and adhesion are changed. Even if a single gain were to be scrutinized in the laboratory, it might be difficult, perhaps impossible, to define the distribution and character of surface charging and the three- dimensional relationship that charges (electrons, holes) have to one another. The hypothesis that we propose to test in microgravity (for dielectric materials) is that adhesion and cohesion of granular matter are mediated primarily by dipole forces that do not require the presence of a net charge; in fact, nominally electrically neutral materials should express adhesive and cohesive behavior when the neutrality results from a balance of positive and negative charge carriers. Moreover, the use of net charge alone as a measure of the electrical nature of grain-to-grain relationships within a granular mass may be misleading. We believe that the dipole forces arise from the presence of randomly-distributed positive and negative fixed charge carriers on grains that give rise to a resultant dipole moment. These dipole forces have long-range attraction. Random charges are created whenever there is triboelectrical activity of a granular mass, that is, whenever the grains experience contact/separation sequences or friction. Electrostatic forces are generally under-estimated for their role in causing agglomeration of dispersed grains in particulate clouds, or their role in affecting the internal frictional relationships in packed granular masses. We believe that electrostatic, in particular dipole-mediated processes, are pervasive and probably affect, at some level, everything from astrophysical-scale granular systems such as interstellar nebulae, protoplanetary dust and debris disks, planetary-scale systems such as debris palls from meteorite impact, volcanic eruptions, and aeolian dust storms, all the way to industrial-scale systems in mining, powder and grain processing, pharmaceuticals, and smoke-stack technologies. NASA must concern itself with the electrostatic behavior of dust and sand on Mars because of its potentially critical importance to human exploration. The motion and adhesion of martian surface materials will affect the design and performance of spacesuits, habitats, processing plants, solar panels, and any externally exposed equipment such as surface rovers or communication and weather stations. Additionally, the adhesion of dust and sand could greatly enhance contact with the potentially toxic components of the martian soil.
Scanning Surface Potential Microscopy of Spore Adhesion on Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ida; Chung, Eunhyea; Kweon, Hyojin
2012-01-01
The adhesion of spores of Bacillus anthracis - the cause of anthrax and a likely biological threat - to solid surfaces is an important consideration in cleanup after an accidental or deliberate release. However, because of safety concerns, directly studying B. anthracis spores with advanced instrumentation is problematic. As a first step, we are examining the electrostatic potential of Bacillus thuringiensis (Bt), which is a closely related species that is often used as a simulant to study B. anthracis. Scanning surface potential microscopy (SSPM), also known as Kelvin probe force microscopy (KPFM), was used to investigate the influence of relativemore » humidity (RH) on the surface electrostatic potential of Bt that had adhered to silica, mica, or gold substrates. AFM/SSPM side-by-side images were obtained separately in air, at various values of RH, after an aqueous droplet with spores was applied on each surface and allowed to dry before measurements. In the SSPM images, a negative potential on the surface of the spores was observed compared with that of the substrates. The surface potential decreased as the humidity increased. Spores were unable to adhere to a surface with an extremely negative potential, such as mica.« less
Carbon Nanotube Purification and Functionalization
NASA Technical Reports Server (NTRS)
Lebron, Marisabel; Mintz, Eric; Smalley, Richard E.; Meador, Michael A.
2003-01-01
Carbon nanotubes have the potential to significantly enhance the mechanical, thermal, and electrical properties of polymers. However, dispersion of carbon nanotubes in a polymer matrix is hindered by the electrostatic forces that cause them to agglomerate. Chemical modification of the nanotubes is necessary to minimize these electrostatic forces and promote adhesion between the nanotubes and the polymer matrix. In a collaborative research program between Clark Atlanta University, Rice University, and NASA Glenn Research Center several approaches are being explored to chemically modify carbon nanotubes. The results of this research will be presented.
The role of electrostatics in protein-protein interactions of a monoclonal antibody.
Roberts, D; Keeling, R; Tracka, M; van der Walle, C F; Uddin, S; Warwicker, J; Curtis, R
2014-07-07
Understanding how protein-protein interactions depend on the choice of buffer, salt, ionic strength, and pH is needed to have better control over protein solution behavior. Here, we have characterized the pH and ionic strength dependence of protein-protein interactions in terms of an interaction parameter kD obtained from dynamic light scattering and the osmotic second virial coefficient B22 measured by static light scattering. A simplified protein-protein interaction model based on a Baxter adhesive potential and an electric double layer force is used to separate out the contributions of longer-ranged electrostatic interactions from short-ranged attractive forces. The ionic strength dependence of protein-protein interactions for solutions at pH 6.5 and below can be accurately captured using a Deryaguin-Landau-Verwey-Overbeek (DLVO) potential to describe the double layer forces. In solutions at pH 9, attractive electrostatics occur over the ionic strength range of 5-275 mM. At intermediate pH values (7.25 to 8.5), there is a crossover effect characterized by a nonmonotonic ionic strength dependence of protein-protein interactions, which can be rationalized by the competing effects of long-ranged repulsive double layer forces at low ionic strength and a shorter ranged electrostatic attraction, which dominates above a critical ionic strength. The change of interactions from repulsive to attractive indicates a concomitant change in the angular dependence of protein-protein interaction from isotropic to anisotropic. In the second part of the paper, we show how the Baxter adhesive potential can be used to predict values of kD from fitting to B22 measurements, thus providing a molecular basis for the linear correlation between the two protein-protein interaction parameters.
Influence of surface potential on the adhesive force of radioactive gold surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kweon, Hyojin; Yiacoumi, Sotira; Lee, Ida
2013-08-23
Radioactive particles may acquire surface potential through self-charging, and thus can behave differently from natural aerosols in atmospheric systems with respect to aggregation, deposition, resuspension, and transport to areas surrounding a radioactive source. Here, this work focuses on the adhesive force between radioactive particles and metallic surfaces, which relates to the deposition and resuspension of particles on surrounding surfaces. Scanning surface potential microscopy was employed to measure the surface potential of radioactive gold foil. Atomic force microscopy was used to investigate the adhesive force for gold that acquired surface charge either by irradiation or by application of an equivalent electricalmore » bias. Overall, the adhesive force increases with increasing surface potential or relative humidity. However, a behavior that does not follow the general trend was observed for the irradiated gold at a high decay rate. A comparison between experimental measurements and calculated values revealed that the surface potential promotes adhesion. The contribution of the electrostatic force at high levels of relative humidity was lower than the one found using theoretical calculations due to the effects caused by enhanced adsorption rate of water molecules under a high surface charge density. Lastly, the results of this study can be used to provide a better understanding of the behavior of radioactive particles in atmospheric systems.« less
NASA Astrophysics Data System (ADS)
Tsukanov, Alexey A.; Psakhie, Sergey G.
2016-08-01
Quasi-two-dimensional and hybrid nanomaterials based on layered double hydroxides (LDH), cationic clays, layered oxyhydroxides and hydroxides of metals possess large specific surface area and strong electrostatic properties with permanent or pH-dependent electric charge. Such nanomaterials may impact cellular electrostatics, changing the ion balance, pH and membrane potential. Selective ion adsorption/exchange may alter the transmembrane electrochemical gradient, disrupting potential-dependent cellular processes. Cellular proteins as a rule have charged residues which can be effectively adsorbed on the surface of layered hydroxide based nanomaterials. The aim of this study is to attempt to shed some light on the possibility and mechanisms of protein "adhesion" an LDH nanosheet and to propose a new direction in anticancer medicine, based on physical impact and strong electrostatics. An unbiased molecular dynamics simulation was performed and the combined process free energy estimation (COPFEE) approach was used.
Variable stiffness sandwich panels using electrostatic interlocking core
NASA Astrophysics Data System (ADS)
Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.
2016-04-01
Structural topology has a large impact on the flexural stiffness of a beam structure. Reversible attachment between discrete substructures allows for control of shear stress transfer between structural elements, thus stiffness modulation. Electrostatic adhesion has shown promise for providing a reversible latching mechanism for controllable internal connectivity. Building on previous research, a thin film copper polyimide laminate has been used to incorporate high voltage electrodes to Fibre Reinforced Polymer (FRP) sandwich structures. The level of electrostatic holding force across the electrode interface is key to the achievable level of stiffness modulation. The use of non-flat interlocking core structures can allow for a significant increase in electrode contact area for a given core geometry, thus a greater electrostatic holding force. Interlocking core geometries based on cosine waves can be Computer Numerical Control (CNC) machined from Rohacell IGF 110 Foam core. These Interlocking Core structures could allow for enhanced variable stiffness functionality compared to basic planar electrodes. This novel concept could open up potential new applications for electrostatically induced variable stiffness structures.
Epithelial Microvilli Establish an Electrostatic Barrier to Microbial Adhesion
Bennett, Kaila M.; Walker, Sharon L.
2014-01-01
Microvilli are membrane extensions on the apical surface of polarized epithelia, such as intestinal enterocytes and tubule and duct epithelia. One notable exception in mucosal epithelia is M cells, which are specialized for capturing luminal microbial particles; M cells display a unique apical membrane lacking microvilli. Based on studies of M cell uptake under different ionic conditions, we hypothesized that microvilli may augment the mucosal barrier by providing an increased surface charge density from the increased membrane surface and associated glycoproteins. Thus, electrostatic charges may repel microbes from epithelial cells bearing microvilli, while M cells are more susceptible to microbial adhesion. To test the role of microvilli in bacterial adhesion and uptake, we developed polarized intestinal epithelial cells with reduced microvilli (“microvillus-minus,” or MVM) but retaining normal tight junctions. When tested for interactions with microbial particles in suspension, MVM cells showed greatly enhanced adhesion and uptake of particles compared to microvillus-positive cells. This preference showed a linear relationship to bacterial surface charge, suggesting that microvilli resist binding of microbes by using electrostatic repulsion. Moreover, this predicts that pathogen modification of electrostatic forces may contribute directly to virulence. Accordingly, the effacement effector protein Tir from enterohemorrhagic Escherichia coli O157:H7 expressed in epithelial cells induced a loss of microvilli with consequent enhanced microbial binding. These results provide a new context for microvillus function in the host-pathogen relationship, based on electrostatic interactions. PMID:24778113
Adhesion of perfume-filled microcapsules to model fabric surfaces.
He, Yanping; Bowen, James; Andrews, James W; Liu, Min; Smets, Johan; Zhang, Zhibing
2014-01-01
The retention and adhesion of melamine formaldehyde (MF) microcapsules on a model fabric surface in aqueous solution were investigated using a customised flow chamber technique and atomic force microscopy (AFM). A cellulose film was employed as a model fabric surface. Modification of the cellulose with chitosan was found to increase the retention and adhesion of microcapsules on the model fabric surface. The AFM force-displacement data reveal that bridging forces resulting from the extension of cellulose chains dominate the adhesion between the microcapsule and the unmodified cellulose film, whereas electrostatic attraction helps the microcapsules adhere to the chitosan-modified cellulose film. The correlation between results obtained using these two complementary techniques suggests that the flow chamber device can be potentially used for rapid screening of the effect of chemical modification on the adhesion of microparticles to surfaces, reducing the time required to achieve an optimal formulation.
Biobriefcase electrostatic aerosol collector
Bell, Perry M [Tracy, CA; Christian, Allen T [Madison, WI; Bailey, Christopher G [Pleasanton, CA; Willis, Ladona [Manteca, CA; Masquelier, Donald A [Tracy, CA; Nasarabadi, Shanavaz L [Livermore, CA
2009-03-17
A system for sampling air and collecting particles entrained in the air comprising a receiving surface, a liquid input that directs liquid to the receiving surface and produces a liquid surface, an air input that directs the air so that the air with particles entrained in the air impact the liquid surface, and an electrostatic contact connected to the liquid that imparts an electric charge to the liquid. The particles potentially including bioagents become captured in the liquid by the air with particles entrained in the air impacting the liquid surface. Collection efficiency is improved by the electrostatic contact electrically charging the liquid. The effects of impaction and adhesion due to electrically charging the liquid allows a unique combination in a particle capture medium that has a low fluid consumption rate while maintaining high efficiency.
The dependency of adhesion and friction on electrostatic attraction
NASA Astrophysics Data System (ADS)
Persson, B. N. J.
2018-04-01
I develop a general mean-field theory for the influence of electrostatic attraction between two solids on the contact mechanics. I assume elastic solids with random surface roughness. I consider two cases, namely, with and without an electrically insulating layer between the conducting solids. The former case is important for, e.g., the finger-touch screen interaction. I study how the electrostatic attraction influences the adhesion and friction. For the case of an insulating layer, I find that when the applied nominal contact pressure is relatively small, as the applied voltage increases, there is a sharp increase in the contact area, and hence in the friction, at a critical voltage.
Adhesion of liposomes: a quartz crystal microbalance study
NASA Astrophysics Data System (ADS)
Lüthgens, Eike; Herrig, Alexander; Kastl, Katja; Steinem, Claudia; Reiss, Björn; Wegener, Joachim; Pignataro, Bruno; Janshoff, Andreas
2003-11-01
Three different systems are presented, exploring the adhesion of liposomes mediated by electrostatic and lipid-protein interactions as well as molecular recognition of ligand receptor pairs. Liposomes are frequently used to gain insight into the complicated processes involving adhesion and subsequent events such as fusion and fission mainly triggered by specific proteins. We combined liposome technology with the quartz crystal microbalance (QCM) technique as a powerful tool to study the hidden interface between the membrane and functionalized surface. Electrostatic attraction and molecular recognition were employed to bind liposomes to the functionalized quartz crystal. The QCM was used to distinguish between adsorption of vesicles and rupture due to strong adhesive forces. Intact vesicles display viscoelastic behaviour, while planar lipid bilayers as a result of vesicle rupture can be modelled by a thin rigid film. Furthermore, the adhesion of cells was modelled successfully by receptor bearing liposomes. Scanning force microscopy was used to confirm the results obtained by QCM measurements.
Electrostatic dust transport and Apollo 17 LEAM experiment. [Lunar Ejecta And Meteorite
NASA Technical Reports Server (NTRS)
Rhee, J. W.; Berg, O. E.; Wolf, H.
1977-01-01
The Lunar Ejecta and Meteorite (LEAM) experiment has been in operation since December 1973 when it was deployed in the Taurus-Littrow region of the moon by the Apollo 17 crew. A specialized analysis based on more than twenty-two lunations of the impact data shows that all of the events recorded by the sensors during the terminator passages are essentially lunar surface microparticles carrying a high electrostatic charge. Charged lunar fines held in place by adhesive forces can be ejected into space if the electrostatic stress exceeds the adhesive strength. A simple laboratory test demonstrated that this soil transport can indeed take place at the lunar terminator and in the vicinity of it.
Characteristics of the wood adhesion bonding mechanism using hydroxymethyl resorcinol
Douglas J. Gardner; Charles E. Frazier; Alfred W. Christiansen
2006-01-01
A recent collaborative effort among the U.S. Forest Products Laboratory, Virginia Tech, and the University of Maine has explored the possible bonding mechanisms contributing to durable wood adhesive bonding using hydroxymethyl resorcinol (HMR) surface treatment. Current adhesive bonding mechanisms include: mechanical interlocking, electronic or electrostatic theory,...
Structural insight into the role of Streptococcus parasanguinis Fap1 within oral biofilm formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garnett, James A.; Simpson, Peter J.; Taylor, Jonathan
2012-01-06
Highlights: Black-Right-Pointing-Pointer Crystal structure of Streptococcus parasanguinis Fap1-NR{sub {alpha}} at pH 5.0. Black-Right-Pointing-Pointer pH-dependent conformational changes mediated through electrostatic potential of Fap1-NR{sub {alpha}}. Black-Right-Pointing-Pointer Fap1 facilitates pH-dependent biofilms. Black-Right-Pointing-Pointer We model inter-Fap1 biofilm interactions. -- Abstract: The fimbriae-associated protein 1 (Fap1) is a major adhesin of Streptococcus parasanguinis, a primary colonizer of the oral cavity that plays an important role in the formation of dental plaque. Fap1 is an extracellular adhesive surface fibre belonging to the serine-rich repeat protein (SRRP) family, which plays a central role in the pathogenesis of streptococci and staphylococci. The N-terminal adhesive region of Fap1 (Fap1-NR)more » is composed of two domains (Fap1-NR{sub {alpha}} and Fap1-NR{sub {beta}}) and is projected away from the bacterial surface via the extensive serine-rich repeat region, for adhesion to the salivary pellicle. The adhesive properties of Fap1 are modulated through a pH switch in which a reduction in pH results in a rearrangement between the Fap1-NR{sub {alpha}} and Fap1-NR{sub {beta}} domains, which assists in the survival of S. parasanguinis in acidic environments. We have solved the structure of Fap1-NR{sub {alpha}} at pH 5.0 at 3.0 A resolution and reveal how subtle rearrangements of the 3-helix bundle combined with a change in electrostatic potential mediates 'opening' and activation of the adhesive region. Further, we show that pH-dependent changes are critical for biofilm formation and present an atomic model for the inter-Fap1-NR interactions which have been assigned an important role in the biofilm formation.« less
NASA Astrophysics Data System (ADS)
Wang, YUAN; Hejuan, LIANG; Ping, HUANG; Xiaoqiang, AN; Jian, JIANG; Lili, CUI
2018-05-01
In the present study, the electret 5-fluorouracil patch was developed, the effective surface potential, piezoelectric coefficient d 33, open-circuit thermally stimulated discharge (TSD) current spectra and shear adhesion of the patch were measured. The drug release profile of the patch was determined by using high performance liquid chromatography method. A stable potential difference which was positively dependent on the surface potential of the electret was generated on two sides of the patch. The measurements of d 33 coefficient, TSD current spectra and adhesion performance showed that the electrostatic field of the electret could cause polarization and cohesive strength decreasing of the matrix molecules, change the distribution and interaction of the drug molecules in patch, therefore to increase the release of drug from the transdermal patch.
Electrostatic Enhancement of Coagulation in Protoplanetary Nebulae
NASA Technical Reports Server (NTRS)
Marshall, J.; Cuzzi, J.
2001-01-01
Microgravity experiments suggest that electrostatic forces (overwhelmed by normal Earth gravity) could greatly enhance cohesive strength of preplanetary aggregates. Cohesive forces may be 103 times larger than those for van der Waals adhesion. Additional information is contained in the original extended abstract.
Use of thermal cycling to reduce adhesion of OTS coated coated MEMS cantilevers
NASA Astrophysics Data System (ADS)
Ali, Shaikh M.; Phinney, Leslie M.
2003-01-01
°Microelectromechanical systems (MEMS) have enormous potential to contribute in diverse fields such as automotive, health care, aerospace, consumer products, and biotechnology, but successful commercial applications of MEMS are still small in number. Reliability of MEMS is a major impediment to the commercialization of laboratory prototypes. Due to the multitude of MEMS applications and the numerous processing and packaging steps, MEMS are exposed to a variety of environmental conditions, making the prediction of operational reliability difficult. In this paper, we investigate the effects of operating temperature on the in-use adhesive failure of electrostatically actuated MEMS microcantilevers coated with octadecyltrichlorosilane (OTS) films. The cantilevers are subjected to repeated temperature cycles and electrostatically actuated at temperatures between 25°C and 300°C in ambient air. The experimental results indicate that temperature cycling of the OTS coated cantilevers in air reduces the sticking probability of the microcantilevers. The sticking probability of OTS coated cantilevers was highest during heating, which decreased during cooling, and was lowest during reheating. Modifications to the OTS release method to increase its yield are also discussed.
NASA Astrophysics Data System (ADS)
Surblys, Donatas; Leroy, Frédéric; Yamaguchi, Yasutaka; Müller-Plathe, Florian
2018-04-01
We investigated the solid-liquid work of adhesion of water on a model silica surface by molecular dynamics simulations, where a methodology previously developed to determine the work of adhesion through thermodynamic integration was extended to a system with long-range electrostatic interactions between solid and liquid. In agreement with previous studies, the work of adhesion increased when the magnitude of the surface polarity was increased. On the other hand, we found that when comparing two systems with and without solid-liquid electrostatic interactions, which were set to have approximately the same total solid-liquid interfacial energy, former had a significantly smaller work of adhesion and a broader distribution in the interfacial energies, which has not been previously reported in detail. This was explained by the entropy contribution to the adhesion free energy; i.e., the former with a broader energy distribution had a larger interfacial entropy than the latter. While the entropy contribution to the work of adhesion has already been known, as a work of adhesion itself is free energy, these results indicate that, contrary to common belief, wetting behavior such as the contact angle is not only governed by the interfacial energy but also significantly affected by the interfacial entropy. Finally, a new interpretation of interfacial entropy in the context of solid-liquid energy variance was offered, from which a fast way to qualitatively estimate the work of adhesion was also presented.
Tough Adhesives for Diverse Wet Surfaces
Li, J.; Celiz, A. D.; Yang, J.; Yang, Q.; Wamala, I.; Whyte, W.; Seo, B. R.; Vasilyev, N. V.; Vlassak, J. J.; Suo, Z.; Mooney, D. J.
2018-01-01
Adhesion to wet and dynamic surfaces, including biological tissues, is important in many fields, but has proven extremely challenging. Existing adhesives are either cytotoxic, adhere weakly to tissues, or cannot be utilized in wet environments. We report a bio-inspired design for adhesives consisting of two layers: an adhesive surface and a dissipative matrix. The former adheres to the substrate by electrostatic interactions, covalent bonds, and physical interpenetration. The latter amplifies energy dissipation through hysteresis. The two layers synergistically lead to higher adhesion energy on wet surfaces than existing adhesives. Adhesion occurs within minutes, independent of blood exposure, and compatible with in vivo dynamic movements. This family of adhesives may be useful in many areas of application, including tissue adhesives, wound dressings and tissue repair. PMID:28751604
NASA Astrophysics Data System (ADS)
Wertheimer, Michael R.; St-Georges-Robillard, Amélie; Lerouge, Sophie; Mwale, Fackson; Elkin, Bentsian; Oehr, Christian; Wirges, Werner; Gerhard, Reimund
2012-11-01
In recent communications from these laboratories, we observed that amine-rich thin organic layers are very efficient surfaces for the adhesion of mammalian cells. We prepare such deposits by plasma polymerization at low pressure, atmospheric pressure, or by vacuum-ultraviolet photo-polymerization. More recently, we have also investigated a commercially available material, Parylene diX AM. In this article we first briefly introduce literature relating to electrostatic interactions between cells, proteins, and charged surfaces. We then present certain selected cell-response results that pertain to applications in orthopedic and cardiovascular medicine: we discuss the influence of surface properties on the observed behaviors of two particular cell lines, human U937 monocytes, and Chinese hamster ovary cells. Particular emphasis is placed on possible electrostatic attractive forces due to positively charged R-NH3+ groups and negatively charged proteins and cells, respectively. Experiments carried out with electrets, polymers with high positive or negative surface potentials are added for comparison.
Sun, Zhelin; Wang, Deli; Xiang, Jie
2014-11-25
Spontaneous attractions between free-standing nanostructures have often caused adhesion or stiction that affects a wide range of nanoscale devices, particularly nano/microelectromechanical systems. Previous understandings of the attraction mechanisms have included capillary force, van der Waals/Casimir forces, and surface polar charges. However, none of these mechanisms universally applies to simple semiconductor structures such as silicon nanowire arrays that often exhibit bunching or adhesions. Here we propose a simple capacitive force model to quantitatively study the universal spontaneous attraction that often causes stiction among semiconductor or metallic nanostructures such as vertical nanowire arrays with inevitably nonuniform size variations due to fabrication. When nanostructures are uniform in size, they share the same substrate potential. The presence of slight size differences will break the symmetry in the capacitive network formed between the nanowires, substrate, and their environment, giving rise to electrostatic attraction forces due to the relative potential difference between neighboring wires. Our model is experimentally verified using arrays of vertical silicon nanowire pairs with varied spacing, diameter, and size differences. Threshold nanowire spacing, diameter, or size difference between the nearest neighbors has been identified beyond which the nanowires start to exhibit spontaneous attraction that leads to bridging when electrostatic forces overcome elastic restoration forces. This work illustrates a universal understanding of spontaneous attraction that will impact the design, fabrication, and reliable operation of nanoscale devices and systems.
Wu, Fan; Xu, Tingting; Zhao, Guangyao; Meng, Shuangshuang; Wan, Mimi; Chi, Bo; Mao, Chun; Shen, Jian
2017-05-30
Silicone catheter has been widely used in peritoneal dialysis. The research missions of improving blood compatibility and the ability of resisting bacterial adhesion of silicone catheter have been implemented for the biomedical requirements. However, most of modification methods of surface modification were only able to develop the blood-contacting biomaterials with good hemocompatibility. It is difficult for the biomaterials to resist bacterial adhesion. Here, agarose was selected to resist bacterial adhesion, and heparin was chosen to improve hemocompatibility of materials. Both of them were loaded into mesoporous silica nanoparticles (MSNs), which were successfully modified on the silicone film surface via electrostatic interaction. Structures of the mesoporous coatings were characterized in detail by dynamic light scattering, transmission electron microscopy, Brunauer-Emmett-Teller surface area, thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscope, and water contact angle. Platelet adhesion and aggregation, whole blood contact test, hemolysis and related morphology test of red blood cells, in vitro clotting time tests, and bacterial adhesion assay were performed to evaluate the anticoagulant effect and the ability of resisting bacterial adhesion of the modified silicone films. Results indicated that silicone films modified by MSNs had a good anticoagulant effect and could resist bacterial adhesion. The modified silicone films have potential as blood-contacting biomaterials that were attributed to their biomedical properties.
Plasma forces on microparticles on a surface: an experimental investigation
NASA Astrophysics Data System (ADS)
Heijmans, L. C. J.; Neelis, T. W. C.; van Leuken, D. P. J.; Bouchut, A.; Nijdam, S.
2017-07-01
A plasma causes a force on particles on a surface. We quantitatively measure this force by means of two different setups, which use different methods to balance the forces on these particles: one using vibrations, the other a centrifuge. From this, we deduce both the adhesion that sticks the particles to the surface, and how the application of a plasma affects the adhesion of the particles. We show that the plasma alters the force balance on 100 μ {{m}} diameter particles with a force in the order of micronewtons. We can conclude, from both additional experiments and comparison to theory, that the main plasma effect is not an electrostatic force on a charged particle; its magnitude is orders of magnitude larger than what would be expected from electrostatic theory. The plasma likely has an effect on the particle adhesion, possibly caused by evaporation of water.
NASA Technical Reports Server (NTRS)
Hecht, M. H.; Meloy, T. P.; Anderson, M. S.; Buehler, M. G.; Frant, M. A.; Grannan, S. M.; Fuerstenau, S. D.; Keller, H. U.; Markiewicz, W. J.; Marshall, J.
1999-01-01
The Mars Environmental Compatibility Assessment (MECA) will evaluate the Martian environment for soil and dust-related hazards to human exploration as part of the Mars Surveyor Program 2001 Lander. The integrated MECA payload contains a wet-chemistry laboratory, a microscopy station, an electrometer to characterize the electrostatic environment, and arrays of material patches to study abrasion and adhesion. Heritage will be all-important for low cost micro-missions, and adaptations of instruments developed for the Pathfinder, '98 and '01 Landers should be strong contenders for '03 flights. This talk has three objectives: (1) Familiarize the audience with MECA instrument capabilities; (2) present concepts for stand-alone and/or mobile versions of MECA instruments; and (3) broaden the context of the MECA instruments from human exploration to a comprehensive scientific survey of Mars. Due to time limitations, emphasis will be on the chemistry and microscopy experiments. Ion-selective electrodes and related sensors in MECA's wet-chemistry laboratory will evaluate total dissolved solids, redox potential, pH, and the concentration of many soluble ions and gases in wet Martian soil. These electrodes can detect potentially dangerous heavy-metal ions, emitted pathogenic gases, and the soil's corrosive potential, and experiments will include cyclic voltammetry and anodic stripping. For experiments beyond 2001, enhancements could allow multiple use of the cells (for mobile experiments) and reagent addition (for quantitative mineralogical and exobiological analysis). MECA's microscopy station combines optical and atomic-force microscopy (AFM) in an actively focused, controlled illumination environment to image particles from millimeters to nanometers in size. Careful selection of substrates allows controlled experiments in adhesion, abrasion, hardness, aggregation, magnetic and other properties. Special tools allow primitive manipulation (brushing and scraping) of samples. Soil particle properties including size, shape, color, hardness, adhesive potential (electrostatic and magnetic), will be determined using an array of sample receptacles and collection substrates. The simple, rugged atomic-force microscope will image in the submicron size range and has the capability of performing a particle-by-particle analysis of the dust and soil. Future implementations might enhance the optical microscopy with spectroscopy, or incorporate advanced AFM techniques for thermogravimetric and chemical analysis.
Hong, Zhi-Neng; Jiang, Jun; Li, Jiu-Yu; Xu, Ren-Kou
2018-05-01
Adhesion of bacteria onto minerals is a ubiquitous process that plays a central role in many biogeochemical, microbiology and environmental processes in soil and sediment. Although bacterial adhesion onto soil minerals such as phyllosilicates and Fe-oxides have been investigated extensively, little is known about the mechanisms for bacterial attachment onto Al-oxides. Here, we explored the adhesion of Bacillus subtilis onto gibbsite (γ-AlOOH) under various ionic strengths (1, 10, 50, and 100 mM NaCl) and pHs (pH 4, 7, and 9) by in-situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. The time evolution of the peak intensities of the attached bacteria suggested that the adhesion underwent an initial rapid reaction followed by a slow pseudo-first-order kinetic stage. Spectral comparison between the attached and free cells, together with the interaction energy calculated with the Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory and the micro-morphology of bacteria-gibbsite complexes, indicated that both electrostatic and chemical (bacterial groups such as phosphate and carboxyl covalently bind to gibbsite) interactions participated in the adhesion processes. Both solution ionic strength (IS) and pH impacted the spectra of attached bacteria, but the peak intensity of different bands changed differently with these two factors, showing a preferential adhesion of surface groups (phosphate, carboxyl, and amide groups) on gibbsite at different conditions. The diverse responses to IS and pH alteration of the forces (chemical bonds, electrostatic attractions, and the hydrophobic interactions) that essentially govern the adhesion might be responsible for the preferential adhesion. These results may help to better understand how bacteria adhere onto soil oxides at molecular scales. Copyright © 2018 Elsevier B.V. All rights reserved.
High-performance mussel-inspired adhesives of reduced complexity.
Ahn, B Kollbe; Das, Saurabh; Linstadt, Roscoe; Kaufman, Yair; Martinez-Rodriguez, Nadine R; Mirshafian, Razieh; Kesselman, Ellina; Talmon, Yeshayahu; Lipshutz, Bruce H; Israelachvili, Jacob N; Waite, J Herbert
2015-10-19
Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced the complexity of a wet adhesive primer to synthetic low-molecular-weight catecholic zwitterionic surfactants that show very strong adhesion (∼50 mJ m(-2)) and retain the ability to coacervate. This catecholic zwitterion adheres to diverse surfaces and self-assembles into a molecularly smooth, thin (<4 nm) and strong glue layer. The catecholic zwitterion holds particular promise as an adhesive for nanofabrication. This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule.
The role of Proteus mirabilis cell wall features in biofilm formation.
Czerwonka, Grzegorz; Guzy, Anna; Kałuża, Klaudia; Grosicka, Michalina; Dańczuk, Magdalena; Lechowicz, Łukasz; Gmiter, Dawid; Kowalczyk, Paweł; Kaca, Wiesław
2016-11-01
Biofilms formed by Proteus mirabilis strains are a serious medical problem, especially in the case of urinary tract infections. Early stages of biofilm formation, such as reversible and irreversible adhesion, are essential for bacteria to form biofilm and avoid eradication by antibiotic therapy. Adhesion to solid surfaces is a complex process where numerous factors play a role, where hydrophobic and electrostatic interactions with solid surface seem to be substantial. Cell surface hydrophobicity and electrokinetic potential of bacterial cells depend on their surface composition and structure, where lipopolysaccharide, in Gram-negative bacteria, is prevailing. Our studies focused on clinical and laboratory P. mirabilis strains, where laboratory strains have determined LPS structures. Adherence and biofilm formation tests revealed significant differences between strains adhered in early stages of biofilm formation. Amounts of formed biofilm were expressed by the absorption of crystal violet. Higher biofilm amounts were formed by the strains with more negative values of zeta potential. In contrast, high cell surface hydrophobicity correlated with low biofilm amount.
Kaji, Hirokazu; Sekine, Soichiro; Hashimoto, Masahiko; Kawashima, Takeaki; Nishizawa, Matsuhiko
2007-01-01
We report a method for producing patterned cell adhesion inside silicone tubing. A platinum needle microelectrode was inserted through the wall of the tubing and an oxidizing agent electrochemically generated at the inserted electrode. This agent caused local detachment of the anti-biofouling heparin layer from the inner surface of the tubing. The cell-adhesive protein fibronectin selectively adsorbed onto the newly exposed surface, making it possible to initiate a localized cell culture. The electrode could be readily set in place without breaking the tubular structure and, importantly, almost no culture solution leaked from the electrode insertion site after the electrode was removed. Ionic adsorption of poly-L-lysine at the tubular region retaining a heparin coating was used to switch the heparin surface from cell-repellent to cell-adhesive, thereby facilitating the adhesion of a second cell type. The combination of the electrode-based technique with electrostatic deposition enabled the formation of patterned co-cultures within the semi-closed tubular structure. The controlled co-cultures inside the elastic tubing should be of value for cell-cell interaction studies following application of chemical or mechanical stimuli and for tissue engineering-based bioreactors.
Tong, Meiping; Camesano, Terri A; Johnson, William P
2005-05-15
The transport of bacterial strain DA001 was examined in packed quartz sand under a variety of environmentally relevant ionic strength and flow conditions. Under all conditions, the retained bacterial concentrations decreased with distance from the column inlet at a rate that was faster than loglinear, indicating that the deposition rate coefficient decreased with increasing transport distance. The hyperexponential retained profile contrasted againstthe nonmonotonic retained profiles that had been previously observed for this same bacterial strain in glass bead porous media, demonstrating that the form of deviation from log-linear behavior is highly sensitive to system conditions. The deposition rate constants in quartz sand were orders of magnitude below those expected from filtration theory, even in the absence of electrostatic energy barriers. The degree of hyperexponential deviation of the retained profiles from loglinear behavior did not decrease with increasing ionic strength in quartz sand. These observations demonstrate thatthe observed low adhesion and deviation from log-linear behavior was not driven by electrostatic repulsion. Measurements of the interaction forces between DA001 cells and the silicon nitride tip of an atomic force microscope (AFM) showed that the bacterium possesses surface polymers with an average equilibrium length of 59.8 nm. AFM adhesion force measurements revealed low adhesion affinities between silicon nitride and DA001 polymers with approximately 95% of adhesion forces having magnitudes < 0.8 nN. Steric repulsion due to surface polymers was apparently responsible for the low adhesion to silicon nitride, indicating that steric interactions from extracellular polymers controlled DA001 adhesion deficiency and deviation from log-linear behavior on quartz sand.
Kakegawa, Takahiro; Mochizuki, Naoto; Sadr, Nasser; Suzuki, Hiroaki
2013-01-01
In this study, we describe the development of oligopeptide-modified cell culture surfaces from which adherent cells can be rapidly detached by application of an electrical stimulus. An oligopeptide, CGGGKEKEKEK, was designed with a terminal cysteine residue to mediate binding to a gold surface via a gold–thiolate bond. The peptide forms a self-assembled monolayer through the electrostatic force between the sequence of alternating charged glutamic acid (E) and lysine (K) residues. The dense and electrically neutral oligopeptide zwitterionic layer of the modified surface was resistant to nonspecific adsorption of proteins and adhesion of cells, while the surface was altered to cell adhesive by the addition of a second oligopeptide (CGGGKEKEKEKGRGDSP) containing the RGD cell adhesion motif. Application of a negative electrical potential to this gold surface cleaved the gold–thiolate bond, leading to desorption of the oligopeptide layer, and rapid (within 2 min) detachment of virtually all cells. This approach was applicable not only to detachment of cell sheets but also for transfer of cell micropatterns to a hydrogel. This electrochemical approach of cell detachment may be a useful tool for tissue-engineering applications. PMID:22853640
Integral glass encapsulation for solar arrays
NASA Technical Reports Server (NTRS)
Young, P. R.
1977-01-01
Electrostatic bonding has been used to join silicon solar cells to borosilicate glass without the aid of any organic binders or adhesives. The results of this investigation have been to demonstrate, without question, the feasibility of this process as an encapsulation technique. The potential of ESB for terrestrial solar arrays was clearly shown. The process is fast, reproducible, and produces a permanent bond between glass and silicon that is stronger than the silicon itself. Since this process is a glass sealing technique requiring no organics it makes moisture tight sealing of solar cells possible.
Shin, Dong-Youn; Yoo, Sung-Soo; Song, Hee-eun; Tak, Hyowon; Byun, Doyoung
2015-01-01
As a novel route to construct fine and abnormally high-aspect-ratio electrodes with excellent adhesion and reduced contact resistivity on a textured surface, an electrostatic-force-assisted dispensing printing technique is reported and compared with conventional dispensing and electrohydrodynamic jet printing techniques. The electrostatic force applied between a silver paste and the textured surface of a crystalline silicon solar cell wafer significantly improves the physical adhesion of the electrodes, whereas those fabricated using a conventional dispensing printing technique peel off with a silver paste containing 2 wt% of a fluorosurfactant. Moreover, the contact resistivity and dimensionless deviation of total resistance are significantly reduced from 2.19 ± 1.53 mΩ·cm2 to 0.98 ± 0.92 mΩ·cm2 and from 0.10 to 0.03, respectively. By utilizing electrodes with an abnormally high-aspect-ratio of 0.79 (the measured thickness and width are 30.4 μm and 38.3 μm, respectively), the cell efficiency is 17.2% on a polycrystalline silicon solar cell with an emitter sheet resistance of 60 Ω/sq. This cell efficiency is considerably higher than previously reported values obtained using a conventional electrohydrodynamic jet printing technique, by +0.48–3.5%p. PMID:26576857
NASA Technical Reports Server (NTRS)
Berkebile, Stephen; Gaier, James R.
2012-01-01
During the Apollo missions, the adhesion of dust to critical spacecraft systems was a greater problem than anticipated and resulted in functional degradation of thermal control surfaces, spacesuit seals, and other spacecraft components. Notably, Earth-based simulation efforts did not predict the magnitude and effects of dust adhesion in the lunar environment. Forty years later, we understand that the ultrahigh vacuum (UHV) environment, coupled with micrometeorite impacts and constant ion and photon bombardment from the sun result in atomically clean and high surface energy dust particles and spacecraft surfaces. However, both the dominant mechanism of adhesion in airless environments and the conditions for high fidelity simulation tests have still to be determined. The experiments presented in here aim to aid in the development of dust mitigation techniques for airless bodies (e.g., lunar surface, asteroids, moons of outer planets). The approach taken consists of (a) quantifying the adhesion between common polymer and metallic spacecraft materials and a synthetic noritic volcanic glass, as a function of surface cleanliness and of triboelectric charge transfer in a UHV environment, and (b) determining parameters for high fidelity tests through investigation of adhesion dependence on vacuum environment and sample treatment. Adhesion force has been measured between pins of spacecraft materials and a plate of synthetic volcanic glass by determining the pull-off force with a torsion balance. Although no significant adhesion is generally observed directly as a result of high surface energies, the adhesion due to induced electrostatic charge is observed to increase with spacecraft material cleanliness, in some cases by over a factor of 10. Furthermore, electrostatically-induced adhesion is found to decrease rapidly above pressures of 10-6 torr. It is concluded that high-fidelity tests should be conducted in high to ultrahigh vacuum and include an ionized surface cleaning process.
High-performance mussel-inspired adhesives of reduced complexity
Ahn, B. Kollbe; Das, Saurabh; Linstadt, Roscoe; Kaufman, Yair; Martinez-Rodriguez, Nadine R.; Mirshafian, Razieh; Kesselman, Ellina; Talmon, Yeshayahu; Lipshutz, Bruce H.; Israelachvili, Jacob N.; Waite, J. Herbert
2015-01-01
Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced the complexity of a wet adhesive primer to synthetic low-molecular-weight catecholic zwitterionic surfactants that show very strong adhesion (∼50 mJ m−2) and retain the ability to coacervate. This catecholic zwitterion adheres to diverse surfaces and self-assembles into a molecularly smooth, thin (<4 nm) and strong glue layer. The catecholic zwitterion holds particular promise as an adhesive for nanofabrication. This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule. PMID:26478273
Functional wettability in carbonate reservoirs
Brady, Patrick V.; Thyne, Geoffrey
2016-10-11
Oil adsorbs to carbonate reservoirs indirectly through a relatively thick separating water layer, and directly to the surface through a relatively thin intervening water layer. Whereas directly sorbed oil desorbs slowly and incompletely in response to changes in reservoir conditions, indirectly sorbed oil can be rapidly desorbed by changing the chemistry of the separating water layer. The additional recovery might be as much as 30% original oil in place (OOIP) above the ~30% OOIP recovered from carbonates through reservoir depressurization (primary production) and viscous displacement (waterflooding). Electrostatic adhesive forces are the dominant control over carbonate reservoir wettability. A surface complexationmore » model that quantifies electrostatic adhesion accurately predicts oil recovery trends for carbonates. Furthermore, the approach should therefore be useful for estimating initial wettability and designing fluids that improve oil recovery.« less
Liquid additives for particulate emissions control
Durham, Michael Dean; Schlager, Richard John; Ebner, Timothy George; Stewart, Robin Michele; Hyatt, David E.; Bustard, Cynthia Jean; Sjostrom, Sharon
1999-01-01
The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.
Enhanced initial protein adsorption on engineered nanostructured cubic zirconia.
Sabirianov, R F; Rubinstein, A; Namavar, F
2011-04-14
Motivated by experimentally-observed biocompatibility enhancement of nanoengineered cubic zirconia (ZrO(2)) coatings to mesenchymal stromal cells, we have carried out computational analysis of the initial immobilization of one known structural fragment of the adhesive protein (fibronectin) on the corresponding surface. We constructed an atomistic model of the ZrO(2) nano-hillock of 3-fold symmetry based on Atom Force Microscopy and Transmission Electron Microscopy images. First principle quantum mechanical calculations show a substantial variation of electrostatic potential at the hillock due to the presence of surface features such as edges and vertexes. Using an implemented Monte Carlo simulated annealing method, we found the orientation of the immobilized protein on the ZrO(2) surface and the contribution of the amino acid residues from the protein sequence to the adsorption energy. Accounting for the variation of the dielectric permittivity at the protein-implant interface, we used a model distance-dependent dielectric function to describe the inter-atom electrostatic interactions in the adsorption potential. We found that the initial immobilization of the rigid protein fragment on the nanostructured pyramidal ZrO(2) surface is achieved with a magnitude of adsorption energy larger than that of the protein on the smooth (atomically flat) surface. The strong attractive electrostatic interactions are a major contributing factor in the enhanced adsorption at the nanostructured surface. In the case of adsorption on the flat, uncharged surface this factor is negligible. We show that the best electrostatic and steric fit of the protein to the inorganic surface corresponds to a minimum of the adsorption energy determined by the non-covalent interactions.
Compact discs as versatile cost-effective substrates for releasable nanopatterned aluminium films
NASA Astrophysics Data System (ADS)
Barrios, Carlos Angulo; Canalejas-Tejero, Víctor
2015-02-01
We demonstrate that standard polycarbonate compact disk surfaces can provide unique adhesion to Al films that is both strong enough to permit Al film nanopatterning and weak enough to allow easy nanopatterned Al film detachment using Scotch tape. Transferred Al nanohole arrays on Scotch tape exhibit excellent optical and plasmonic performance.We demonstrate that standard polycarbonate compact disk surfaces can provide unique adhesion to Al films that is both strong enough to permit Al film nanopatterning and weak enough to allow easy nanopatterned Al film detachment using Scotch tape. Transferred Al nanohole arrays on Scotch tape exhibit excellent optical and plasmonic performance. Electronic supplementary information (ESI) available: 1. Optical simulations (Fig. SI.1); 2. Optical coupling via an Al NHA on the Scotch tape (Fig. SI.2); 3. Electrostatics-based opto-mechanical cantilever (Fig. SI.3). Video 1. Transfer of the Al film nanostructured with a nanohole array from a polycarbonate CD surface onto a Scotch tape; Video 2. Opto-mechanical electrostatics-based sensor: electrical attraction. Video 3. Opto-mechanical electrostatics-based sensor: electrical repulsion. See DOI: 10.1039/c4nr06271j
Adhesion of Biodegradative Anaerobic Bacteria to Solid Surfaces
van Schie, Paula M.; Fletcher, Madilyn
1999-01-01
In order to exploit the ability of anaerobic bacteria to degrade certain contaminants for bioremediation of polluted subsurface environments, we need to understand the mechanisms by which such bacteria partition between aqueous and solid phases, as well as the environmental conditions that influence partitioning. We studied four strictly anaerobic bacteria, Desulfomonile tiedjei, Syntrophomonas wolfei, Syntrophobacter wolinii, and Desulfovibrio sp. strain G11, which theoretically together can constitute a tetrachloroethylene- and trichloroethylene-dechlorinating consortium. Adhesion of these organisms was evaluated by microscopic determination of the numbers of cells that attached to glass coverslips exposed to cell suspensions under anaerobic conditions. We studied the effects of the growth phase of the organisms on adhesion, as well as the influence of electrostatic and hydrophobic properties of the substratum. Results indicate that S. wolfei adheres in considerably higher numbers to glass surfaces than the other three organisms. Starvation greatly decreases adhesion of S. wolfei and Desulfovibrio sp. strain G11 but seems to have less of an effect on the adhesion of the other bacteria. The presence of Fe3+ on the substratum, which would be electropositive, significantly increased the adhesion of S. wolfei, whereas the presence of silicon hydrophobic groups decreased the numbers of attached cells of all species. Measurements of transport of cells through hydrophobic-interaction and electrostatic-interaction columns indicated that all four species had negatively charged cell surfaces and that D. tiedjei and Desulfovibrio sp. strain G11 possessed some hydrophobic cell surface properties. These findings are an early step toward understanding the dynamic attachment of anaerobic bacteria in anoxic environments. PMID:10543826
Bakhti, Mostafa; Snaidero, Nicolas; Schneider, David; Aggarwal, Shweta; Möbius, Wiebke; Janshoff, Andreas; Eckhardt, Matthias; Nave, Klaus-Armin; Simons, Mikael
2013-02-19
During the development of the central nervous system (CNS), oligodendrocytes wrap their plasma membrane around axons to form a multilayered stack of tightly attached membranes. Although intracellular myelin compaction and the role of myelin basic protein has been investigated, the forces that mediate the close interaction of myelin membranes at their external surfaces are poorly understood. Such extensive bilayer-bilayer interactions are usually prevented by repulsive forces generated by the glycocalyx, a dense and confluent layer of large and negatively charged oligosaccharides. Here we investigate the molecular mechanisms underlying myelin adhesion and compaction in the CNS. We revisit the role of the proteolipid protein and analyze the contribution of oligosaccharides using cellular assays, biophysical tools, and transgenic mice. We observe that differentiation of oligodendrocytes is accompanied by a striking down-regulation of components of their glycocalyx. Both in vitro and in vivo experiments indicate that the adhesive properties of the proteolipid protein, along with the reduction of sialic acid residues from the cell surface, orchestrate myelin membrane adhesion and compaction in the CNS. We suggest that loss of electrostatic cell-surface repulsion uncovers weak and unspecific attractive forces in the bilayer that bring the extracellular surfaces of a membrane into close contact over long distances.
A nontransferring dry adhesive with hierarchical polymer nanohairs.
Jeong, Hoon Eui; Lee, Jin-Kwan; Kim, Hong Nam; Moon, Sang Heup; Suh, Kahp Y
2009-04-07
We present a simple yet robust method for fabricating angled, hierarchically patterned high-aspect-ratio polymer nanohairs to generate directionally sensitive dry adhesives. The slanted polymeric nanostructures were molded from an etched polySi substrate containing slanted nanoholes. An angled etching technique was developed to fabricate slanted nanoholes with flat tips by inserting an etch-stop layer of silicon dioxide. This unique etching method was equipped with a Faraday cage system to control the ion-incident angles in the conventional plasma etching system. The polymeric nanohairs were fabricated with tailored leaning angles, sizes, tip shapes, and hierarchical structures. As a result of controlled leaning angle and bulged flat top of the nanohairs, the replicated, slanted nanohairs showed excellent directional adhesion, exhibiting strong shear attachment (approximately 26 N/cm(2) in maximum) in the angled direction and easy detachment (approximately 2.2 N/cm(2)) in the opposite direction, with a hysteresis value of approximately 10. In addition to single scale nanohairs, monolithic, micro-nanoscale combined hierarchical hairs were also fabricated by using a 2-step UV-assisted molding technique. These hierarchical nanoscale patterns maintained their adhesive force even on a rough surface (roughness <20 microm) because of an increase in the contact area by the enhanced height of hierarchy, whereas simple nanohairs lost their adhesion strength. To demonstrate the potential applications of the adhesive patch, the dry adhesive was used to transport a large-area glass (47.5 x 37.5 cm(2), second-generation TFT-LCD glass), which could replace the current electrostatic transport/holding system with further optimization.
A nontransferring dry adhesive with hierarchical polymer nanohairs
Jeong, Hoon Eui; Lee, Jin-Kwan; Kim, Hong Nam; Moon, Sang Heup; Suh, Kahp Y.
2009-01-01
We present a simple yet robust method for fabricating angled, hierarchically patterned high-aspect-ratio polymer nanohairs to generate directionally sensitive dry adhesives. The slanted polymeric nanostructures were molded from an etched polySi substrate containing slanted nanoholes. An angled etching technique was developed to fabricate slanted nanoholes with flat tips by inserting an etch-stop layer of silicon dioxide. This unique etching method was equipped with a Faraday cage system to control the ion-incident angles in the conventional plasma etching system. The polymeric nanohairs were fabricated with tailored leaning angles, sizes, tip shapes, and hierarchical structures. As a result of controlled leaning angle and bulged flat top of the nanohairs, the replicated, slanted nanohairs showed excellent directional adhesion, exhibiting strong shear attachment (≈26 N/cm2 in maximum) in the angled direction and easy detachment (≈2.2 N/cm2) in the opposite direction, with a hysteresis value of ≈10. In addition to single scale nanohairs, monolithic, micro-nanoscale combined hierarchical hairs were also fabricated by using a 2-step UV-assisted molding technique. These hierarchical nanoscale patterns maintained their adhesive force even on a rough surface (roughness <20 μm) because of an increase in the contact area by the enhanced height of hierarchy, whereas simple nanohairs lost their adhesion strength. To demonstrate the potential applications of the adhesive patch, the dry adhesive was used to transport a large-area glass (47.5 × 37.5 cm2, second-generation TFT-LCD glass), which could replace the current electrostatic transport/holding system with further optimization. PMID:19304801
Method for removing undesired particles from gas streams
Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Hyatt, D.E.; Bustard, C.J.; Sjostrom, S.
1998-11-10
The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 11 figs.
Liquid additives for particulate emissions control
Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Hyatt, D.E.; Bustard, C.J.; Sjostrom, S.
1999-01-05
The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 11 figs.
Method and apparatus for decreased undesired particle emissions in gas streams
Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Bustard, C.J.
1999-04-13
The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 5 figs.
Method and apparatus for decreased undesired particle emissions in gas streams
Durham, Michael Dean; Schlager, Richard John; Ebner, Timothy George; Stewart, Robin Michele; Bustard, Cynthia Jean
1999-01-01
The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.
Method for removing undesired particles from gas streams
Durham, Michael Dean; Schlager, Richard John; Ebner, Timothy George; Stewart, Robin Michele; Hyatt, David E.; Bustard, Cynthia Jean; Sjostrom, Sharon
1998-01-01
The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.
Borisenko, Konstantin B; Reavy, Helen J; Zhao, Qi; Abel, Eric W
2008-09-15
Protein-repellent diamond coatings have great potential value for surface coatings on implants and surgical instruments. The design of these coatings relies on a fundamental understanding of the intermolecular interactions involved in the adhesion of proteins to surfaces. To get insight into these interactions, adhesion energies of glycine to pure and Si and N-doped (111) diamond surfaces represented as clusters were calculated in the gas phase, using density functional theory (DFT) at the B3LYP/6-31G* level. The computed adhesion energies indicated that adhesion of glycine to diamond surface may be modified by introducing additional elements into the surface. The adhesion was also found to induce considerable change in the conformation of glycine when compared with the lowest-energy conformer of the free molecule. In the Si and N-substituted diamond clusters, notable changes in the structures involving the substituents atoms when compared with smaller parent molecules, such as 1-methyl-1-silaadamantane and 1-azaadamantane, were detected. Adhesion free energy differences were estimated for a series of representative peptides (hydrophobic Phe-Gly-Phe, amphiphilic Arg-Gly-Phe, and hydrophilic Arg-Gly-Arg) to a (111) diamond surface substituted with different amounts of N, Si, or F, using molecular dynamics simulations in an explicit water environment employing a Dreiding force field. The calculations were in agreement with the DFT results in that adsorption of the studied peptides to diamond surface is influenced by introducing additional elements to the surface. It has been shown that, in general, substitution will enhance electrostatic interactions between a surface and surrounding water, leading to a weaker adhesion of the studied peptides.
Gokcekaya, Ozkan; Webster, Thomas J; Ueda, Kyosuke; Narushima, Takayuki; Ergun, Celaletdin
2017-08-01
Bacterial infection of implanted materials is a significant complication that might require additional surgical operations for implant retrieval. As an antibacterial biomaterial, Ag-containing hydroxyapatite (HA) may be a solution to reduce the incidences of implant associated infections. In this study, pure, 0.2mol% and 0.3mol% Ag incorporated HA powders were synthesized via a precipitation method. Colloidal precursor dispersions prepared from these powders were used to deposit porous coatings onto titanium and stainless steel substrates via electrostatic spraying. The porous coating layers obtained with various deposition times and heat treatment conditions were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Scratch tests were conducted to assess the adhesion strength of the coating. Antibacterial activity of Ag-incorporated HA was tested towards Escherichia coli (E. coli) at various incubation times. Osteoblast adhesion on Ag-incorporated HA was evaluated to assess biocompatibility. Improvement in adhesion strength of the coating layer was observed after the heat treatment process due to mutual ionic diffusion at the interface. The Ag-incorporated HA killed all viable E. coli after 24h of incubation, whereas no antibacterial activity was detected with pure HA. In addition, in vitro cell culture tests demonstrated osteoblast adhesion similar to pure HA, which indicated good cytocompatibility. In summary, results of this study provided significant promise for the future study of Ag-incorporated HA for numerous medical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Understanding and exploiting nanoscale surface heterogeneity for particle and cell manipulation
NASA Astrophysics Data System (ADS)
Kalasin, Surachate
This thesis explores the impact of surface heterogeneities on colloidal interactions and translates concepts to biointerfacial systems, for instance, microfluidic and biomedical devices. The thesis advances a model system, originally put forth by Kozlova: Tunable electrostatic surface heterogeneity is produced by adsorbing small amounts of cationic polyelectrolyte on a silica flat. The resulting positive electrostatic patches possess a density that is tuned from a saturated carpet down to average spacings on the order of a few hundred nanometers. At these length-scales, multiple adhesive elements (from tens to thousands) are present in the area of contact between a particle and a surface, a distinguishing feature of the thesis. Much of the literature addressing surface "heterogeneity" engineers surfaces with micron-scale features, almost always larger than the contact area between a particle and a second surface. With a nanoscale heterogeneity model, this thesis reports and quantitatively explains particle interaction behavior not typical of homogeneous interfaces. This includes (1) an adhesion threshold, a minimum average surface density of cationic patches needed for particle capture, (previously observed by Kozlova); (2) a crossover, from salt-destabilized to salt-stabilized interactions between heterogeneous surfaces with net-negative charge; (3) a shift of the adhesion threshold with shear, reducing adhesion; (4) a crossover from shear-enhanced to shear-hindered particle adhesion; (5) a range of surface compositions and processing parameters that sustain particle rolling; and (6) conditions where particles arrest immediately on contact. Through variations in ionic strength and particle size, the particle-surface contact area is systematically varied relative to the heterogeneity lengthscale. This provides a semi-quantitative explanation for the shifting of the adhesion threshold, in terms of the statistical probability of a particle being able to find a surface region sufficiently attractive for capture. Though neglecting hydrodynamics, the resulting (kappa-1a)1/2 power law scaling for the density of patches at the adhesion threshold roughly captures the general shape of the data. The study also reveals that at high ionic strength, particle-surface interactions are most influenced by the patchy surface heterogeneity; however, at low ionic strengths, the system becomes most sensitive to the average system properties. Thus for heterogeneous interfaces, the extent to which heterogeneity is influential depends on other factors (particle size, ionic strength). While this comprises a crossover from heterogeneity-dominated to mean field behavior, it is worth noting that even in the mean field regime, the spacing between patches always exceeds the Debye length, making the regions of different surface charge always distinct. Comparison with the simulations of Duffadar and Davis reveals that the criterion for particle capture is a nearly constant number of cationic patches per unit area of contact between a particle and a heterogeneous collector. The heterogeneous surface model displays a shear crossover seen with bacteria and other complex systems: At low shear, particle capture is enhanced, while at higher shears it is reduced. This behavior, sometimes rationalized in terms of the complex energy landscapes of biological bonds, is clearly explained in the heterogeneity model. For weakly adhesive systems engaging only a few adhesive elements or receptors, shear compromises the ability of a few bonds to capture particles. For more strongly adhesive systems, shear increases particle transport. The convolution of this competition leads to the non-monotonic effect of shear seen in biology. The complex variety of particle behaviors combined with the large number of independently variable parameters, each with different scaling of interfacial forces, necessitates a state-space approach to mapping regimes interactions and motion signatures. Following the approach taken by biophysicists for describing the interactions of leukocytes with the endothelial vasculature near an injury, the state spaces in this thesis map regimes of free particle motion, immediate firm arrest, and persistent rolling against macroscopic average patch density, Debye length, particle size, and shear rate. Surprisingly, the electrostatic heterogeneity state space resembles that for selectin-mediated leukocyte motion, and reasons are put forth. This finding is important because it demonstrates how synthetic nanoscale constructs can be exploited to achieve the selective cell capture mechanism previously attributed only to specialized cell adhesion molecules. This thesis initiates studies that extend these fundamental principles, developed for a tunable and well-characterized synthetic model to biological systems. For instance, it is demonstrated that general behaviors seen with the electrostatic model are observed when fibrinogen proteins are substituted for the electrostatic patches. This shows that the nature of the attractions is immaterial to adhesion, and that the effect of added salt primarily alters the range of the electrostatic repulsion and, correspondingly, the contact area. Also, studies with Staphylococcus aureus run parallel to those employing 1 mum silica spheres, further translating the concepts. Inaugural studies with mammalian cells, in the future work section, indicate that application of the surface heterogeneity approach to cell manipulation holds much future promise.
Janissen, Richard; Murillo, Duber M.; Niza, Barbara; Sahoo, Prasana K.; Nobrega, Marcelo M.; Cesar, Carlos L.; Temperini, Marcia L. A.; Carvalho, Hernandes F.; de Souza, Alessandra A.; Cotta, Monica A.
2015-01-01
Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation. PMID:25891045
Janissen, Richard; Murillo, Duber M; Niza, Barbara; Sahoo, Prasana K; Nobrega, Marcelo M; Cesar, Carlos L; Temperini, Marcia L A; Carvalho, Hernandes F; de Souza, Alessandra A; Cotta, Monica A
2015-04-20
Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation.
NASA Astrophysics Data System (ADS)
Hoang, Bao; Wong, Frankie; Redick, Tod; Masui, Hirokazu; Endo, Taishi; Toyoda, Kazuhiro; Cho, Mengu
2011-10-01
A series of electrostatic discharge (ESD) tests was performed on solar array test coupons consisting of Advanced Triple Junction InGaP2/InGaAs/Ge solar cells. The motivation for these tests was to evaluate the effects of ESD on solar array design without room temperature vulcanized (RTV) adhesive grout between the string-to-string parallel gaps. To investigate the threshold of permanently sustained secondary arcs, various combinations of gap width, load voltage and string current were tested in a vacuum chamber equipped with an electron beam gun. This ESD test program included the ESD test circuit with simulated panel coverglass flashover. Although ESD events did not result in permanent sustained arcs, the insulation resistance between strings was found to decrease as the number of secondary arcs accumulated in the gap.
[Application of electrostatic spinning technology in nano-structured polymer scaffold].
Chen, Denglong; Li, Min; Fang, Qian
2007-04-01
To review the latest development in the research on the application of the electrostatic spinning technology in preparation of the nanometer high polymer scaffold. The related articles published at home and abroad during the recent years were extensively reviewed and comprehensively analyzed. Micro/nano-structure and space topology on the surfaces of the scaffold materials, especially the weaving structure, were considered to have an important effect on the cell adhesion, proliferation, directional growth, and biological activation. The electrospun scaffold was reported to have a resemblance to the structure of the extracellular matrix and could be used as a promising scaffold for the tissue engineering application. The electrospun scaffolds were applied to the cartilage, bone, blood vessel, heart, and nerve tissue engineering fields. The nano-structured polymer scaffold can support the cell adhesion, proliferation, location, and differentiation, and this kind of scaffold has a considerable value in the tissue engineering field.
NASA Technical Reports Server (NTRS)
Marshall, J.; Weislogel, M.; Jacobson, T.
1999-01-01
The bulk behavior of dispersed, fluidized, or undispersed stationary granular systems cannot be fully understood in terms of adhesive/cohesive properties without understanding the role of electrostatic forces acting at the level of the grains themselves. When grains adhere to a surface, or come in contact with one another in a stationary bulk mass, it is difficult to measure the forces acting on the grains, and the forces themselves that induced the cohesion and adhesion are changed. Even if a single grain were to be scrutinized in the laboratory, it might be difficult, perhaps impossible, to define the distribution and character of surface charging and the three-dimensional relationship that charges (electrons, holes) have to one another. The hypothesis that we propose to test in microgravity (for dielectric materials) is that adhesion and cohesion of granular matter are mediated primarily by dipole forces that do not require the presence of a net charge; in fact, nominally electrically neutral materials should express adhesive and cohesive behavior when the neutrality results from a balance of positive and negative charge carriers. Moreover, the use of net charge alone as a measure of the electrical nature of grain-to-grain relationships within a granular mass may be misleading. We believe that the dipole forces arise from the presence of randomly-distributed positive and negative fixed charge carriers on grains that give rise to a resultant dipole moment. These dipole forces have long-range attraction. Random charges are created whenever there is triboelectrical activity of a granular mass, that is, whenever the grains experience contact/separation sequences or friction.
Development of Electrostatically Clean Solar Array Panels
NASA Technical Reports Server (NTRS)
Stern, Theodore G.
2000-01-01
Certain missions require Electrostatically Clean Solar Array (ECSA) panels to establish a favorable environment for the operation of sensitive scientific instruments. The objective of this program was to demonstrate the feasibility of an ECSA panel that minimizes panel surface potential below 100mV in LEO and GEO charged particle environments, prevents exposure of solar cell voltage and panel insulating surfaces to the ambient environment, and provides an equipotential, grounded structure surrounding the entire panel. An ECSA panel design was developed that uses a Front Side Aperture-Shield (FSA) that covers all inter-cell areas with a single graphite composite laminate, composite edge clips for connecting the FSA to the panel substrate, and built-in tabs that interconnect the FSA to conductive coated coverglasses using a conductive adhesive. Analysis indicated the ability of the design to meet the ECSA requirements. Qualification coupons and a 0.5m x 0.5m prototype panel were fabricated and tested for photovoltaic performance and electrical grounding before and after exposure to acoustic and thermal cycling environments. The results show the feasibility of achieving electrostatic cleanliness with a small penalty in mass, photovoltaic performance and cost, with a design is structurally robust and compatible with a wide range of current solar panel technologies.
A model study of factors involved in adhesion of Pseudomonas fluorescens to meat.
Piette, J P; Idziak, E S
1992-01-01
A study was undertaken to investigate the factors involved in the adhesion of Pseudomonas fluorescens to model meat surfaces (tendon slices). Adhesion was fast (less than 2.5 min) and was not suppressed by killing the cells with UV, gamma rays, or heat, indicating that physiological activity was not required. In various salt solutions (NaCl, KCl, CaCl2, MgCl2), adhesion increased with increasing ionic strength up to 10 to 100 mM, suggesting that, at low ionic strengths, electrostatic interactions were involved in the adhesion process. At higher ionic strengths (greater than 10 to 100 mM) or in the presence of Al3+ ions, adhesion was sharply reduced. Selectively blocking of carboxyl or amino groups at the cell surface by chemical means did not affect adhesion. These groups are therefore not directly involved in an adhesive bond with tendon. Given a sufficient cell concentration (10(10) CFU.ml-1) in the adhesion medium, the surface of tendon was almost entirely covered with adherent bacteria. This suggests that if the adhesion is specific, the attachment sites on the tendon surface must be located within collagen or proteoglycan molecules. Images PMID:1444387
Wadley, Lyn; Hodgskiss, Tamaryn; Grant, Michael
2009-01-01
Compound adhesives made from red ochre mixed with plant gum were used in the Middle Stone Age (MSA), South Africa. Replications reported here suggest that early artisans did not merely color their glues red; they deliberately effected physical transformations involving chemical changes from acidic to less acidic pH, dehydration of the adhesive near wood fires, and changes to mechanical workability and electrostatic forces. Some of the steps required for making compound adhesive seem impossible without multitasking and abstract thought. This ability suggests overlap between the cognitive abilities of modern people and people in the MSA. Our multidisciplinary analysis provides a new way to recognize complex cognition in the MSA without necessarily invoking the concept of symbolism. PMID:19433786
Müller, Christine; Lüders, Anne; Hoth-Hannig, Wiebke; Hannig, Matthias; Ziegler, Christiane
2010-03-16
The adsorption of bovine serum albumin (BSA) on surfaces of dental enamel and of dental materials was investigated by scanning force spectroscopy. This method provides adhesion forces which can be measured as a function of contact time between protein and surface, pH, wettability, and isoelectric point of the surface. Whereas the chosen ceramic and composite materials resemble very well the adhesion on natural enamel, a much stronger adhesion was found for the more hydrophobic surfaces, that is, gold, titanium, poly(methyl methacrylate) (PMMA), and poly(tetrafluoroethylene) (PTFE). On hydrophilic surfaces, adhesion is mainly influenced by the electrostatic forces between protein and surface. However, the conformational change of BSA at pH values above pH 8 has to be taken into account. On the very hydrophobic PTFE surface, the special interface structure between PTFE and water plays an important role which governs BSA adhesion.
The MSP 2001 Mars Environmental Compatibility Assessment (MECA)
NASA Technical Reports Server (NTRS)
Hecht, M. H.; Meloy, T. P.; Anderson, M. S.; Buehler, M. G.; Frant, M. A.; Grannan, S. M.; Fuerstenau, D.; Keller, H. U.; Markiewicz, W. J.; Marshall, J.
1999-01-01
The Mars Environmental Compatibility Assessment (MECA) will evaluate the Martian environment for soil and dust-related hazards to human exploration as part of the Mars Surveyor Program 2001 Lander. Sponsored by the Human Exploration and Development of Space (HEDS) enterprise, MECA's goal is to evaluate potential geochemical and environmental hazards that may confront future Martian explorers, and to guide HEDS scientists in the development of high fidelity Mars soil simulants. The integrated MECA payload contains a wet-chemistry laboratory, a microscopy station, an electrometer to characterize the electrostatics of the soil and its environment, and arrays of material patches to study the abrasive and adhesive properties of soil grains. The instrument will acquire soil samples with a robotic arm equipped with a camera. MECA will examine surface and subsurface soil and dust in order to characterize particle size, shape, hardness, and also physical characteristics that may provide clues to mineralogy. MECA will characterize soil/water mixtures with respect to pH, redox potential, total dissolved ions, and trace toxins. MECA will determine the nature of electrostatic charging associated with excavation of soil, and the influence of ionizing radiation on material properties. It will also observe natural dust accumulation on engineering materials. To accomplish these objectives, MECA is allocated a mass of 10 kg within an enclosure of 35 x 25 x 15 cm. The Wet Chemistry Laboratory (WCL) consists of four identical cells that will accept samples from surface and subsurface regions accessible to the Lander's robotic arm, mix them with water, and perform extensive analysis of the solution. Ion-selective electrodes and related sensors will evaluate total dissolved solids, redox potential, pH, and the concentration of many soluble ions and gases in wet Martian soil. These electrodes can detect potentially dangerous heavy-metal ions, emitted pathogenic gases, and the soil's corrosive potential. Experiments will include cyclic voltammetry and anodic stripping voltammetry. Complementary to the Viking experiments, the chemical laboratory will characterize the water-soil solution rather than emitted gases. Nonetheless, through analysis of dissolved gases it will be able to replicate many of the Viking observations related to oxidants. MECA's microscopy station combines optical and atomic-force microscopy (AFM) in an actively focused, controlled illumination environment to image particles from millimeters to nanometers in size. Careful selection of substrates allows controlled experiments in adhesion, abrasion, hardness, aggregation, magnetic and other properties. Special tools allow primitive manipulation (brushing and scraping) of samples. Soil particle properties including size, shape, color, hardness, adhesive potential (electrostatic and magnetic), will be determined using an array of sample receptacles and collection substrates. The simple, rugged atomic-force microscope will image in the submicron size range and has the capability of performing a particle-by-particle analysis of the dust and soil. On Earth, the earliest forms of life are preserved as microfossils. The atomic-force microscope will have the required resolution to image down to the scale of terrestrial microfossils and beyond. Mounted on the end of the robot arm, MECA's electrometer actually consists of four types of sensors: an electric field meter, several triboelectricity monitors, an ion gauge, and a thermometer. Tempered only by ultraviolet-light-induced ions and a low-voltage breakdown threshold, the dry, cold, dusty martian environment presents an imposing electrostatic hazard to both robots and humans. The field meter will measure the ambient field on nearby objects while the triboelectric sensors, using identical circuitry, will measure the charge accumulated on test substances as they are dragged through the soil by the arm. The ion chamber, open to the environment, will sense both charged dust and free ions in the air. Over and above the potential threat to electronics, the electrostatic environment holds one of the keys to transport of dust and, consequently, Martian meteorology. Viewed with the robot arm camera, the abrasion and adhesion plates are strategically placed to allow direct observation of the interaction between materials and soils on a macroscopic scale. Materials of graded hardness are placed directly under the robot arm scoop to sense wear and soil hardness. A second array, placed on the lander deck, is deployed after the dust plume of landing has settled. It can be manipulated in a primitive fashion by the arm, first having dirt deposited on it from the scoop and subsequently shaken clean. A third array will passively collect dust from the atmosphere. In addition to objectives related to human exploration, the MECA data set will be rich in information relevant to basic geology, paleoclimate, and exobiology issues. To understand both contemporaneous and ancient processes on Mars, the mineralogy, petrology, and reactivity of Martian surface materials should be constrained. The MECA experiment will shed light on these quantities through its combination of chemistry and microscopy. MECA will be capable of measuring the composition of ancient surface water environments, observing microscopic evidence of geological (and biological?) processes, inferring soil and dust transport, comminution and weathering mechanisms, and characterizing soil horizons that might be encountered during excavation.
Modifying murine von Willebrand factor A1 domain for in vivo assessment of human platelet therapies.
Chen, Jianchun; Tan, Kui; Zhou, Hairu; Lo, Hsuan-Fu; Tronik-Le Roux, Diana; Liddington, Robert C; Diacovo, Thomas G
2008-01-01
The A1 domain of von Willebrand factor (VWF-A1) plays a crucial role in hemostasis and thrombosis by initiating platelet adhesion at sites of arterial injury through interactions with the platelet receptor glycoprotein Ib alpha (GPIbalpha). Here we report that murine VWF-A1 supports limited binding of human platelets. However, atomic models of GPIbalpha-VWF-A1 complexes identified an electrostatic 'hot-spot' that, when mutated in murine VWF-A1, switches its binding specificity from mouse to human GPIbalpha. Furthermore, mice expressing this mutant VWF-A1 display a bleeding phenotype that can be corrected by infusion of human platelets. Mechanistically, human platelets correct the phenotype by forming occlusive thrombi, an event that can be abrogated by blockade of GPIbalpha or by the preadministration of inhibitors of platelet activation or adhesion (clopidogrel (Plavix) and abciximab (ReoPro), respectively). Thus, by modifying a protein interface, we have generated a potential biological platform for preclinical screening of antithrombotics that specifically target human platelets.
Cardoso Dos Santos, Marcelina; Vézy, Cyrille; Jaffiol, Rodolphe
2016-06-01
We recently proposed a straightforward fluorescence microscopy technique to study adhesion of Giant Unilamellar Vesicles. This technique is based on dual observations which combine epi-fluorescence microscopy and total internal reflection fluorescence (TIRF) microscopy: TIRF images are normalized by epi-fluorescence ones. By this way, it is possible to map the membrane/substrate separation distance with a nanometric resolution, typically ~20 nm, with a maximal working range of 300-400 nm. The purpose of this paper is to demonstrate that this technique is useful to quantify vesicle adhesion from ultra-weak to strong membrane-surface interactions. Thus, we have examined unspecific and specific adhesion conditions. Concerning unspecific adhesion, we have controlled the strength of electrostatic forces between negatively charged vesicles and various functionalized surfaces which exhibit a positive or a negative effective charge. Specific adhesion was highlighted with lock-and-key forces mediated by the well defined biotin/streptavidin recognition. Copyright © 2016 Elsevier B.V. All rights reserved.
Surface Tension Mediated Under-Water Adhesion of Rigid Spheres on Soft, Charged Surfaces
NASA Astrophysics Data System (ADS)
Sinha, Shayandev; Das, Siddhartha
2015-11-01
Understanding the phenomenon of surface-tension-mediated under-water adhesion is necessary for studying a plethora of physiological and technical phenomena, such as the uptake of bacteria or nanoparticle by cells, attachment of virus on bacterial surfaces, biofouling on large ocean vessels and marine devices, etc. This adhesion phenomenon becomes highly non-trivial in case the soft surface where the adhesion occurs is also charged. Here we propose a theory for analyzing such an under-water adhesion of a rigid sphere on a soft, charged surface, represented by a grafted polyelectrolyte layer (PEL). We develop a model based on the minimization of free energy that, in addition to considering the elastic and the surface-tension-mediated adhesion energies, also accounts for the PEL electric double layer (EDL) induced electrostatic energies. We show that in the presence of surface charges, adhesion gets enhanced. This can be explained by the fact that the increase in the elastic energy is better balanced by the lowering of the EDL energy associated with the adhesion process. The entire behaviour is further dictated by the surface tension components that govern the adhesion energy.
Adhesion Between Volcanic Glass and Spacecraft Materials in an Airless Body Environment
NASA Technical Reports Server (NTRS)
Berkebile, Stephen; Street, Kenneth W., Jr.; Gaier, James R.
2012-01-01
The successful exploration of airless bodies, such as the Earth s moon, many smaller moons of the outer planets (including those of Mars) and asteroids, will depend on the development and implementation of effective dust mitigation strategies. The ultrahigh vacuum environment (UHV) on the surfaces of these bodies, coupled with constant ion and photon bombardment from the Sun and micrometeorite impacts (space weathering), makes dust adhesion to critical spacecraft systems a severe problem. As a result, the performance of thermal control surfaces, photovoltaics and mechanical systems can be seriously degraded even to the point of failure. The severe dust adhesion experienced in these environments is thought to be primarily due to two physical mechanisms, electrostatic attraction and high surface energies, but the dominant of these has yet to be determined. The experiments presented here aim to address which of these two mechanisms is dominant by quantifying the adhesion between common spacecraft materials (polycarbonate, FEP and PTFE Teflon, (DuPont) Ti-6-4) and a synthetic noritic volcanic glass, as a function of surface cleanliness and triboelectric charge transfer in a UHV environment. Adhesion force has been measured between pins of spacecraft materials and a plate of synthetic volcanic glass by determining the pull-off force with a torsion balance. Although no significant adhesion is observed directly as a result of high surface energies, the adhesion due to induced electrostatic charge is observed to increase with spacecraft material cleanliness, in some cases by over a factor of 10, although the increase is dependent on the particular material pair. The knowledge gained by these studies is envisioned to aid the development of new dust mitigation strategies and improve existing strategies by helping to identify and characterize mechanisms of glass to spacecraft adhesion for norite volcanic glass particles. Furthermore, the experience of the Apollo missions revealed that dust mitigation strategies must be subjected to high fidelity tests. To facilitate the effectiveness of ground-based testing of mitigation strategies, the issue of a pressure limit for high fidelity tests will be addressed.
Impact of pH on the structure and function of neural cadherin.
Jungles, Jared M; Dukes, Matthew P; Vunnam, Nagamani; Pedigo, Susan
2014-12-02
Neural (N-) cadherin is a transmembrane protein within adherens junctions that mediates cell-cell adhesion. It has 5 modular extracellular domains (EC1-EC5) that bind 3 calcium ions between each of the modules. Calcium binding is required for dimerization. N-Cadherin is involved in diverse processes including tissue morphogenesis, excitatory synapse formation and dynamics, and metastasis of cancer. During neurotransmission and tumorigenesis, fluctuations in extracellular pH occur, causing tissue acidosis with associated physiological consequences. Studies reported here aim to determine the effect of pH on the dimerization properties of a truncated construct of N-cadherin containing EC1-EC2. Since N-cadherin is an anionic protein, we hypothesized that acidification of solution would cause an increase in stability of the apo protein, a decrease in the calcium-binding affinity, and a concomitant decrease in the formation of adhesive dimer. The stability of the apo monomer was increased and the calcium-binding affinity was decreased at reduced pH, consistent with our hypothesis. Surprisingly, analytical SEC studies showed an increase in calcium-induced dimerization as solution pH decreased from 7.4 to 5.0. Salt-dependent dimerization studies indicated that electrostatic repulsion attenuates dimerization affinity. These results point to a possible electrostatic mechanism for moderating dimerization affinity of the Type I cadherin family. Extrapolating these results to cell adhesion in vivo leads to the assertion that decreased pH promotes adhesion by N-cadherin, thereby stabilizing synaptic junctions.
Dika, Christelle; Duval, Jérôme F L; Francius, Gregory; Perrin, Aline; Gantzer, Christophe
2015-05-15
MS2, Phi X 174 and PRD1 bacteriophages are commonly used as surrogates to evaluate pathogenic virus behavior in natural aquatic media. The interfacial properties of these model soft bioparticles are herein discussed in connection with their propensities to adhere onto abiotic surfaces that differ in terms of surface charges and hydrophobicities. The phages considered in this work exhibit distinct multilayered surface structures and their electrostatic charges are evaluated from the dependence of their electrophoretic mobilities on electrolyte concentration at neutral pH on the basis of electrokinetic theory for soft (bio)particles. The charges of the viruses probed by electrokinetics vary according to the sequence Phi X 174⩽PRD1≪MS2, where '<' stands for 'less charged than'. The hydrophobic/hydrophilic balances of the phages are further derived from their adhesions onto model hydrophobic and hydrophilic self-assembled mono-layers. The corresponding results lead to the following hydrophobicity sequence Phi X 174≪MS2
Sub-discretized surface model with application to contact mechanics in multi-body simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, S; Williams, J
2008-02-28
The mechanics of contact between rough and imperfectly spherical adhesive powder grains are often complicated by a variety of factors, including several which vary over sub-grain length scales. These include several traction factors that vary spatially over the surface of the individual grains, including high energy electron and acceptor sites (electrostatic), hydrophobic and hydrophilic sites (electrostatic and capillary), surface energy (general adhesion), geometry (van der Waals and mechanical), and elasto-plastic deformation (mechanical). For mechanical deformation and reaction, coupled motions, such as twisting with bending and sliding, as well as surface roughness add an asymmetry to the contact force which invalidatesmore » assumptions for popular models of contact, such as the Hertzian and its derivatives, for the non-adhesive case, and the JKR and DMT models for adhesive contacts. Though several contact laws have been offered to ameliorate these drawbacks, they are often constrained to particular loading paths (most often normal loading) and are relatively complicated for computational implementation. This paper offers a simple and general computational method for augmenting contact law predictions in multi-body simulations through characterization of the contact surfaces using a hierarchically-defined surface sub-discretization. For the case of adhesive contact between powder grains in low stress regimes, this technique can allow a variety of existing contact laws to be resolved across scales, allowing for moments and torques about the contact area as well as normal and tangential tractions to be resolved. This is especially useful for multi-body simulation applications where the modeler desires statistical distributions and calibration for parameters in contact laws commonly used for resolving near-surface contact mechanics. The approach is verified against analytical results for the case of rough, elastic spheres.« less
ERIC Educational Resources Information Center
Short, Harold; Lundsgaard, Morten F. V.; Krajcik, Joseph S.
2008-01-01
Understanding how geckos--small lizards belonging to the family "Gekkonindae"--can "defy gravity" and walk across a ceiling provides a fascinating frame through which students can not only learn valuable content about electrostatic forces, but also engage in authentic scientific practice and explore new technologies based on gecko adhesion. In…
Combining LaRC-TPI powder with carbon fiber by electrostatic fluidized bed coating
NASA Technical Reports Server (NTRS)
Varughese, Babu; Muzzy, John; Baucom, Robert M.
1989-01-01
Thermoplastic polyimide prepreg tow is produced rapidly and efficiently by applying the LaRC-TPI matrix as an electrostatically charged and fluidized powder to electrically grounded and spread carbon fiber tow. The powder is melted after coating to insure adhesion to the fibers and to reduce tow friction. Excellent wetout in towpreg samples is obtained resulting in very flexible prepregs. Processing conditions of this towpreg produced with LaRC-TPI powders from Rogers Corp. and Mitsui Toatsu Chemicals are described. Mechanical properties of the towpreg and unidirectional laminates are presented in detail.
Levine, Zachary A; Rapp, Michael V; Wei, Wei; Mullen, Ryan Gotchy; Wu, Chun; Zerze, Gül H; Mittal, Jeetain; Waite, J Herbert; Israelachvili, Jacob N; Shea, Joan-Emma
2016-04-19
Translating sticky biological molecules-such as mussel foot proteins (MFPs)-into synthetic, cost-effective underwater adhesives with adjustable nano- and macroscale characteristics requires an intimate understanding of the glue's molecular interactions. To help facilitate the next generation of aqueous adhesives, we performed a combination of surface forces apparatus (SFA) measurements and replica-exchange molecular dynamics (REMD) simulations on a synthetic, easy to prepare, Dopa-containing peptide (MFP-3s peptide), which adheres to organic surfaces just as effectively as its wild-type protein analog. Experiments and simulations both show significant differences in peptide adsorption on CH3-terminated (hydrophobic) and OH-terminated (hydrophilic) self-assembled monolayers (SAMs), where adsorption is strongest on hydrophobic SAMs because of orientationally specific interactions with Dopa. Additional umbrella-sampling simulations yield free-energy profiles that quantitatively agree with SFA measurements and are used to extract the adhesive properties of individual amino acids within the context of MFP-3s peptide adhesion, revealing a delicate balance between van der Waals, hydrophobic, and electrostatic forces.
The Relocation of Particulate Contamination During Space Flight
NASA Technical Reports Server (NTRS)
Barengoltz, J.; Edgars, D.
1975-01-01
A computer simulation program to model the redistribution of particulate contaminants on a spacecraft after launch is developed. The component models for particulate adhesion, meteoroid impact, and electrostatic forces are described and intermediate results are presented. The results of a sample calculation show that the recontamination process is important.
PCE: web tools to compute protein continuum electrostatics
Miteva, Maria A.; Tufféry, Pierre; Villoutreix, Bruno O.
2005-01-01
PCE (protein continuum electrostatics) is an online service for protein electrostatic computations presently based on the MEAD (macroscopic electrostatics with atomic detail) package initially developed by D. Bashford [(2004) Front Biosci., 9, 1082–1099]. This computer method uses a macroscopic electrostatic model for the calculation of protein electrostatic properties, such as pKa values of titratable groups and electrostatic potentials. The MEAD package generates electrostatic energies via finite difference solution to the Poisson–Boltzmann equation. Users submit a PDB file and PCE returns potentials and pKa values as well as color (static or animated) figures displaying electrostatic potentials mapped on the molecular surface. This service is intended to facilitate electrostatics analyses of proteins and thereby broaden the accessibility to continuum electrostatics to the biological community. PCE can be accessed at . PMID:15980492
Choi, Won Jin; Jung, Jongjin; Lee, Sujin; Chung, Yoon Jang; Yang, Cheol-Soo; Lee, Young Kuk; Lee, You-Seop; Park, Joung Kyu; Ko, Hyuk Wan; Lee, Jeong-O
2015-01-01
We demonstrate that ZnO films grown by atomic layer deposition (ALD) can be employed as a substrate to explore the effects of electrical conductivity on cell adhesion, proliferation, and morphogenesis. ZnO substrates with precisely tunable electrical conductivity were fabricated on glass substrates using ALD deposition. The electrical conductivity of the film increased linearly with increasing duration of the ZnO deposition cycle (thickness), whereas other physical characteristics, such as surface energy and roughness, tended to saturate at a certain value. Differences in conductivity dramatically affected the behavior of SF295 glioblastoma cells grown on ZnO films, with high conductivity (thick) ZnO films causing growth arrest and producing SF295 cell morphologies distinct from those cultured on insulating substrates. Based on simple electrostatic calculations, we propose that cells grown on highly conductive substrates may strongly adhere to the substrate without focal-adhesion complex formation, owing to the enhanced electrostatic interaction between cells and the substrate. Thus, the inactivation of focal adhesions leads to cell proliferation arrest. Taken together, the work presented here confirms that substrates with high conductivity disturb the cell-substrate interaction, producing cascading effects on cellular morphogenesis and disrupting proliferation, and suggests that ALD-grown ZnO offers a single-variable method for uniquely tailoring conductivity. PMID:25897486
The MSP 2001 Mars Environmental Compatibility Assessment (MECA)
NASA Technical Reports Server (NTRS)
Hecht, M. H.; Meloy, T. P.; Anderson, M. S.; Buehler, M. G.; Frant, M. A.; Grannan, S. M.; Fuerstenau, S. D.; Keller, H. U.; Markiewicz, W. J.; Marshall, J.
1999-01-01
A chemical analysis of soil-water mixtures and the first microscopic images of martian soil will be among the results to be returned by the Mars Environmental Compatibility Assessment (MECA) payload on the Mars Surveyor Program 2001 Lander. Sponsored by the Human Exploration and Development of Space (HEDS) enterprise, MECA's primary goal is to evaluate potential geochemical and environmental hazards that may confront future martian explorers, and to guide HEDS scientists in the development of high fidelity Mars soil simulants. As a survey of soil properties, the MECA data set will also be rich in information relevant to basic geology, paleoclimate, and exobiology. The integrated MECA payload contains a wet-chemistry laboratory, a microscopy station, an electrometer to characterize the electrostatics of the soil and its environment, and arrays of material patches to study the abrasive and adhesive properties of soil grains. MECA is allocated a mass of 10 kg and a peak power usage of 15 W within an enclosure of 35 x 25 x 15 cm. The Wet Chemistry Laboratory (WCL) consists of four identical cells that will accept samples from surface and subsurface regions accessible to the Lander's robotic arm, mix them with water, and perform extensive analysis of the solution. Ion-selective electrodes and related sensors will evaluate total dissolved solids, redox potential, pH, and the concentration of many soluble ions and gases. Cyclic voltammetry will address oxidants, and anodic stripping voltammetry will probe potentially hazardous trace metals. MECA's microscopy station combines optical and atomic-force microscopy (AFM) in a controlled illumination environment to image dust and soil particles from millimeters to nanometers in size. Careful selection of substrates and an abrasion tool allows experimental study of size distribution, adhesion, abrasion, hardness, color, shape, aggregation, magnetic and other properties. Mounted on the end of the robot arm, MECA's electrometer consists of four types of sensors: an electric field meter, several triboelectricity monitors, an ion gauge, and a thermometer. Tempered only by ultra-violet- light-induced ions and a low-voltage break-down threshold, the dry, cold, dusty martian environment presents an imposing electrostatic hazard to both robots and humans. In addition, the electrostatic environment is key to transport of dust and, consequently, martian meteorology. MECA will also observe natural dust accumulation on engineering materials. Viewed with the robot arm camera, the abrasion and adhesion plates are strategically placed to allow direct observation of the inter-action between materials and soils on a macroscopic scale. Materials of graded hardness are placed directly under the robot arm scoop to sense wear and soil hardness. A second array, placed on the lander deck, is deployed after the dust plume of landing has settled. It can be manipulated in a primitive fashion by the arm, first having dirt deposited on it from the scoop and subsequently shaken clean. Dust accumulation as a function of conductivity, magnetic field strength, and other parameters will be explored. The MECA instruments described above will assess potential hazards that the Martian soil might present to human explorers and their equipment. In addition, MECA will provide information on the composition of ancient surface water environments, observing microscopic evidence of geological (and biological?) processes, inferring soil and dust transport, comminution and weathering mechanisms, and characterizing soil horizons that might be encountered during excavation. Additional information is contained in the original extended abstract.
Integral glass encapsulation for solar arrays
NASA Technical Reports Server (NTRS)
Landis, G. A.
1981-01-01
Electrostatic bonding technology, an encapsulation technique for terrestrial solar array was developed. The process produces full integral, hermetic bonds with no adhesives or pottants. Panels of six solar cells on a simple glass superstrate were produced. Electrostatic bonding for making the cell front contact was also developed. A metal mesh is trapped into contact with the cell front during the bonding process. Six cell panels using the bonded mesh as the only cell front contact were produced. The possibility of using lower cost glass, with a higher thermal expansion mismatch to silicon, by making lower temperature bonds is developed. However, this requires a planar surface cell.
Hazardous particle binder, coagulant and re-aerosolization inhibitor
Krauter, Paula [Livermore, CA; Zalk, David [San Jose, CA; Hoffman, D Mark [Livermore, CA
2011-04-12
A copolymer and water/ethanol solvent solution capable of binding with airborne contaminants or potential airborne contaminants, such as biological weapon agents or toxic particulates, coagulating as the solvent evaporates, and adhering the contaminants to a surface so as to inhibit the re-suspension of such contaminants. The solution uses a water or ethanol/water mixture for the solvent, and a copolymer having one of several functional group sets so as to have physical and chemical characteristics of high adhesion, low viscosity, low surface tension, negative electrostatic charge, substantially neutral pH, and a low pKa. Use of the copolymer solution prevents re-aerosolization and transport of unwanted, reactive species thus increasing health and safety for personnel charged with decontamination of contaminated buildings and areas.
Hazardous particle binder, coagulant and re-aerosolization inhibitor
Krauter, Paula; Zalk, David; Hoffman, D. Mark
2012-07-10
A copolymer and water/ethanol solvent solution capable of binding with airborne contaminants or potential airborne contaminants, such as biological weapon agents or toxic particulates, coagulating as the solvent evaporates, and adhering the contaminants to a surface so as to inhibit the re-suspension of such contaminants. The solution uses a water or ethanol/water mixture for the solvent, and a copolymer having one of several functional group sets so as to have physical and chemical characteristics of high adhesion, low viscosity, low surface tension, negative electrostatic charge, substantially neutral pH, and a low pKa. Use of the copolymer solution prevents re-aerosolization and transport of unwanted, reactive species thus increasing health and safety for personnel charged with decontamination of contaminated buildings and areas.
Electrostatics in protein–protein docking
Heifetz, Alexander; Katchalski-Katzir, Ephraim; Eisenstein, Miriam
2002-01-01
A novel geometric-electrostatic docking algorithm is presented, which tests and quantifies the electrostatic complementarity of the molecular surfaces together with the shape complementarity. We represent each molecule to be docked as a grid of complex numbers, storing information regarding the shape of the molecule in the real part and information regarding the electrostatic character of the molecule in the imaginary part. The electrostatic descriptors are derived from the electrostatic potential of the molecule. Thus, the electrostatic character of the molecule is represented as patches of positive, neutral, or negative values. The potential for each molecule is calculated only once and stored as potential spheres adequate for exhaustive rotation/translation scans. The geometric-electrostatic docking algorithm is applied to 17 systems, starting form the structures of the unbound molecules. The results—in terms of the complementarity scores of the nearly correct solutions, their ranking in the lists of sorted solutions, and their statistical uniqueness—are compared with those of geometric docking, showing that the inclusion of electrostatic complementarity in docking is very important, in particular in docking of unbound structures. Based on our results, we formulate several "good electrostatic docking rules": The geometric-electrostatic docking procedure is more successful than geometric docking when the potential patches are large and when the potential extends away from the molecular surface and protrudes into the solvent. In contrast, geometric docking is recommended when the electrostatic potential around the molecules to be docked appears homogenous, that is, with a similar sign all around the molecule. PMID:11847280
The Exploration Portable Electrostatic Detector (xPED)
NASA Technical Reports Server (NTRS)
Jackson, Telana L.; Farrell, William M.
2012-01-01
Astronauts and rovers, while exploring dynamic environments, can experience charge buildup through Tribo-charging (contact electrification). Charge levels can become substantially high. especially in areas where photoelectric and plasma currents are reduced (e.g. lunar polar crater). Tribo-charging in areas that have little to no charge dissipative path can be severe, leaving an astronaut or roving object to remain charged for extended periods of time. Charge buildup on space suits and/or rovers is expected to present significant hazards to missions, such as electrostatic discharge and arcing, dust adhesion to space suits/equipment, and destruction of equipment. The avoidance of hazards associated with charge buildup is critical for future NASA missions to near earth objects, the Moon and Mars. The Exploration Portable Electrostatic Device (xPED) will allow astronauts to determine their charge state, and also characterize the electrical environment from their excursions. xPED would benefit manned, as well as robotic missions.
Interaction forces between DPPC bilayers on glass
Orozco-Alcaraz, Raquel; Kuhl, Tonya L.
2013-01-01
The Surface Force Apparatus (SFA) was utilized to obtain force-distance profiles between silica supported membranes formed by Langmuir-Blodgett deposition of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). In the absence of a membrane, a long range electrostatic and short range steric repulsion is measured due to deprotonation of silica in water and roughness of the silica film. The electrostatic repulsion is partially screened by the lipid membrane and a van der Waals adhesion comparable to that measured with well packed DPPC membranes on mica is measured. This finding suggest that electrostatic interactions due to the underlying negatively charged silica are likely present in other systems of glass supported membranes. In contrast, the charge of an underlying mica substrate is almost completely screened when a lipid membrane is deposited on the mica. The difference in the two systems is attributed to stronger physisorption of zwitterionic lipids to molecularly smooth mica compared to rougher silica. PMID:23199333
Deppdb--DNA electrostatic potential properties database: electrostatic properties of genome DNA.
Osypov, Alexander A; Krutinin, Gleb G; Kamzolova, Svetlana G
2010-06-01
The electrostatic properties of genome DNA influence its interactions with different proteins, in particular, the regulation of transcription by RNA-polymerases. DEPPDB--DNA Electrostatic Potential Properties Database--was developed to hold and provide all available information on the electrostatic properties of genome DNA combined with its sequence and annotation of biological and structural properties of genome elements and whole genomes. Genomes in DEPPDB are organized on a taxonomical basis. Currently, the database contains all the completely sequenced bacterial and viral genomes according to NCBI RefSeq. General properties of the genome DNA electrostatic potential profile and principles of its formation are revealed. This potential correlates with the GC content but does not correspond to it exactly and strongly depends on both the sequence arrangement and its context (flanking regions). Analysis of the promoter regions for bacterial and viral RNA polymerases revealed a correspondence between the scale of these proteins' physical properties and electrostatic profile patterns. We also discovered a direct correlation between the potential value and the binding frequency of RNA polymerase to DNA, supporting the idea of the role of electrostatics in these interactions. This matches a pronounced tendency of the promoter regions to possess higher values of the electrostatic potential.
Sculpting and fusing biomimetic vesicle networks using optical tweezers.
Bolognesi, Guido; Friddin, Mark S; Salehi-Reyhani, Ali; Barlow, Nathan E; Brooks, Nicholas J; Ces, Oscar; Elani, Yuval
2018-05-14
Constructing higher-order vesicle assemblies has discipline-spanning potential from responsive soft-matter materials to artificial cell networks in synthetic biology. This potential is ultimately derived from the ability to compartmentalise and order chemical species in space. To unlock such applications, spatial organisation of vesicles in relation to one another must be controlled, and techniques to deliver cargo to compartments developed. Herein, we use optical tweezers to assemble, reconfigure and dismantle networks of cell-sized vesicles that, in different experimental scenarios, we engineer to exhibit several interesting properties. Vesicles are connected through double-bilayer junctions formed via electrostatically controlled adhesion. Chemically distinct vesicles are linked across length scales, from several nanometres to hundreds of micrometres, by axon-like tethers. In the former regime, patterning membranes with proteins and nanoparticles facilitates material exchange between compartments and enables laser-triggered vesicle merging. This allows us to mix and dilute content, and to initiate protein expression by delivering biomolecular reaction components.
Adsorption of intrinsically disordered barnacle adhesive proteins on silica surface
NASA Astrophysics Data System (ADS)
Wang, Xiaoqiang; Wang, Chao; Xu, Baomei; Wei, Junting; Xiao, Yang; Huang, Fang
2018-01-01
The adsorption of recombinant barnacle proteins Bacp19k and Mrcp19k on hydrophilic silica surface was characterized by spectroscopic ellipsometry in artificial seawater (pH = 8.2). They are homologous adhesive proteins destined for underwater adhesion but bear opposite net charges in seawater. As assessed with their primary and secondary structures, both proteins are intrinsically disordered and thus distinct from globular proteins that have dominated research in the field. Different from Mrcp19k, higher initial rate and adsorbed amount were obtained via curve fitting for Bacp19k in kinetic studies, due to favorable charge interactions with silica surface. The good fitting with the same dynamic model also indicates the formation of monolayer coverage in both cases. The two adsorption isotherms of Bacp19k and Mrcp19k are different in the initial change and maximum adsorption level, indicating different protein-surface affinities and charge interactions. Each isotherm fits the Langmuir model well, which is commonly used to describe monolayer adsorption, thus consistent with the predication from kinetic fitting. To further examine the effect of electrostatic interaction on the adsorption, the isotherm of the 1:1 mixture of Bacp19k and Mrcp19k was also constructed, which showed a higher correlation fit for Jovanovic than for Langmuir model. The presence of electrostatic attraction between Bacp19k and Mrcp19k deviated from one of the required conditions for Langmuir behavior, which may also result in the highest coadsorption level but slowest initial change among the three isotherms. The surface state of the adhesive proteins and the change with adsorption time were also examined by atomic force microscopy. The results thus obtained are in good agreement with the corresponding ellipsometric measurement.
Gossla, Elke; Tonndorf, Robert; Bernhardt, Anne; Kirsten, Martin; Hund, Rolf-Dieter; Aibibu, Dilibar; Cherif, Chokri; Gelinsky, Michael
2016-10-15
Electrostatic flocking - a common textile technology which has been applied in industry for decades - is based on the deposition of short polymer fibres in a parallel aligned fashion on flat or curved substrates, covered with a layer of a suitable adhesive. Due to their highly anisotropic properties the resulting velvet-like structures can be utilised as scaffolds for tissue engineering applications in which the space between the fibres can be defined as pores. In the present study we have developed a fully resorbable compression elastic flock scaffold from a single material system based on chitosan. The fibres and the resulting scaffolds were analysed concerning their structural and mechanical properties and the biocompatibility was tested in vitro. The tensile strength and Young's modulus of the chitosan fibres were analysed as a function of the applied sterilisation technique (ethanol, supercritical carbon dioxide, γ-irradiation and autoclaving). All sterilisation methods decreased the Young's modulus (from 14GPa to 6-12GPa). The tensile strength was decreased after all treatments - except after the autoclaving of chitosan fibres submerged in water. Compressive strength of the highly porous flock scaffolds was 18±6kPa with a elastic modulus in the range of 50-100kPa. The flocked scaffolds did not show any cytotoxic effect during indirect or direct culture of human mesenchymal stem cells or the sarcoma osteogenic cell line Saos-2. Furthermore cell adhesion and proliferation of both cell types could be observed. This is the first demonstration of a fully biodegradable scaffold manufactured by electrostatic flocking. Most tissues possess anisotropic fibrous structures. In contrast, most of the commonly used scaffolds have an isotropic morphology. By utilising the textile technology of electrostatic flocking, highly porous and clearly anisotropic scaffolds can be manufactured. Flocking leads to parallel aligned short fibres, glued on the surface of a substrate. Such structures are characterised by a high and adjustable porosity, accompanied by distinct stiffness in fibre direction. The present article describes for the first time a fully biodegradable flock scaffold, solely made of chitosan. Utilisation of only one material for manufacturing of flock substrate, adhesive and fibres allow a uniform degradation of the whole construct. Such a new type of scaffold can be of great interest for a variety of biomedical applications. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Youssefian, Sina; Liu, Pingsheng; Askarinejad, Sina; Shalchy, Faezeh; Song, Jie; Rahbar, Nima
2015-07-16
Synthetic orthopaedic materials consisting of a single bioinert polymeric material do not meet the complex biological and physical requirements of scaffold-guided bone tissue repair and regeneration. Of particular interest is the design of biocompatible hydrogel-hydroxyapatite composite bone substitutes with outstanding interfacial adhesion that would warranty the ability for the composite to withstand functional loadings without exhibiting brittle fractures during the dynamic guided tissue regeneration. For this purpose, the hydroxylated side chain of chemically cross-linked poly (2-hydroxyethyl methacrylate) (pHEMA) is substitute with a carboxylated side chain to make poly (glycerol methacrylate) (pGLYMA). Here, we carry out atomistic simulations and atomic force microscopy to predict and experimentally determine the interfacial adhesion energies of pHEMA and pGLYMA with the surface of single-crystalline hydroxyapatite (HA) whiskers. Both experimental and numerical results showed that pGLYMA has stronger adhesion forces with HA and may be used for preparing a high-affinity polymer-HA composite. The high adhesive interactions between pGLYMA and HA were found to be due to strong electrostatic energies.
Levine, Zachary A.; Rapp, Michael V.; Wei, Wei; Mullen, Ryan Gotchy; Wu, Chun; Zerze, Gül H.; Mittal, Jeetain; Waite, J. Herbert; Israelachvili, Jacob N.; Shea, Joan-Emma
2016-01-01
Translating sticky biological molecules—such as mussel foot proteins (MFPs)—into synthetic, cost-effective underwater adhesives with adjustable nano- and macroscale characteristics requires an intimate understanding of the glue’s molecular interactions. To help facilitate the next generation of aqueous adhesives, we performed a combination of surface forces apparatus (SFA) measurements and replica-exchange molecular dynamics (REMD) simulations on a synthetic, easy to prepare, Dopa-containing peptide (MFP-3s peptide), which adheres to organic surfaces just as effectively as its wild-type protein analog. Experiments and simulations both show significant differences in peptide adsorption on CH3-terminated (hydrophobic) and OH-terminated (hydrophilic) self-assembled monolayers (SAMs), where adsorption is strongest on hydrophobic SAMs because of orientationally specific interactions with Dopa. Additional umbrella-sampling simulations yield free-energy profiles that quantitatively agree with SFA measurements and are used to extract the adhesive properties of individual amino acids within the context of MFP-3s peptide adhesion, revealing a delicate balance between van der Waals, hydrophobic, and electrostatic forces. PMID:27036002
Engineering nanoscale surface features to sustain microparticle rolling in flow.
Kalasin, Surachate; Santore, Maria M
2015-05-26
Nanoscopic features of channel walls are often engineered to facilitate microfluidic transport, for instance when surface charge enables electro-osmosis or when grooves drive mixing. The dynamic or rolling adhesion of flowing microparticles on a channel wall holds potential to accomplish particle sorting or to selectively transfer reactive species or signals between the wall and flowing particles. Inspired by cell rolling under the direction of adhesion molecules called selectins, we present an engineered platform in which the rolling of flowing microparticles is sustained through the incorporation of entirely synthetic, discrete, nanoscale, attractive features into the nonadhesive (electrostatically repulsive) surface of a flow channel. Focusing on one example or type of nanoscale feature and probing the impact of broad systematic variations in surface feature loading and processing parameters, this study demonstrates how relatively flat, weakly adhesive nanoscale features, positioned with average spacings on the order of tens of nanometers, can produce sustained microparticle rolling. We further demonstrate how the rolling velocity and travel distance depend on flow and surface design. We identify classes of related surfaces that fail to support rolling and present a state space that identifies combinations of surface and processing variables corresponding to transitions between rolling, free particle motion, and arrest. Finally we identify combinations of parameters (surface length scales, particle size, flow rates) where particles can be manipulated with size-selectivity.
Science, Technology and Requirements - Forum
2012-10-18
Visable Absorbing and Electrostatically Adhesive Taggants •2008 Removal of CBRN Materials from Soil & Water using Nanosize Hydroxyapaptite •2009...Ribbon Composite for Optically Transparent Armor Windows •2010 UV Retroreflector Covert Taggants •2013 Proposed Warfighter Bandaging System Company... Bandaging System - Proposed Properties: •Bioactive fiber tissue scaffolding (bonds to both hard and soft tissue) •Hemostatic and Bioresorbable
Reducing adhesion and agglomeration within a cloud of combustible particles
NASA Technical Reports Server (NTRS)
Ross, Howard D.
1988-01-01
The study of combustible particle clouds inside flame tubes is of fundamental scientific interest as well as a practical concern. Only the suspended concentration is important to the combustion process, so that assurances must be provided that a minimum of particles adheres to the tube wall. This paper demonstrates experimentally the ability to minimize adhesion and agglomeration of acoustically-mixed lycopodium particles within a 5-cm diameter lexan flame tube. The area density of particles (ADP) adhering to the wall of bare lexan tubes was measured at greater than 100 particles/sq mm. The nature of adhesion was found to be clearly electrostatic, with the ADP level aggravated by increased mixing time, vigor, and the concentration of particles. Increases in the conductivity of the air and the tube wall did not affect ADP levels substantially. However, the observed adhesion was reduced to less than 10 p/sq mm when the air was ionized by use of an alpha emitter mounted on the inner walls of the flame tube.
NASA Astrophysics Data System (ADS)
Rixman, Monica A.; Ortiz, Christine
2002-03-01
A critical determinant of the biocompatibility of implanted blood-contacting devices is the initial noncovalent adsorption of blood plasma proteins onto the biomaterial surface. Using high-resolution force spectroscopy, we have measured the complex intermolecular interaction forces between individual end-grafted PEO chains and a probe tip covalently bound with human serum albumin, the most abundant blood plasma protein in the human body. On approach, a long-range, nonlinear repulsive force is observed. Upon retraction, however, adhesion between the HSA probe tip and PEO chain occurs, which in many cases is strong enough to allow long-range adhesion and stretching of the individual PEO chains. The known PEO strain-induced conformational transition from the helical (ttg) to the planar (ttt) conformation is clearly observed and seen to shift to lower force values. Statistical analysis of adhesion data, comparison to a variety of control experiments, and theoretical modeling enable us to interpret these experimental results in terms of electrostatic interactions, hydrogen bonding, and steric forces.
Testing of solar cell covers and encapsulants conducted in a simulated space environment
NASA Technical Reports Server (NTRS)
Russell, D. A.
1981-01-01
The materials included in the evaluation were 0211 micro-sheet, FEP-A used as a cover and as an adhesive, DC 93-500 adhesive, PFA "hard coat" used as a cover, GE 615/UV-24 used as a cover, GR 650 used as a cover, and electrostatically bonded 7070 glass. The test environments were 1 MeV electron irradiation interspersed with thermal cycling, 0.5 MeV proton irradiation interspersed with thermal cycling and UV exposure interspersed with thermal cycling. Summary data is given describing the response of the test materials both visually and electrically to the three different environments.
Single-Molecule Studies of Hyaluronic Acid Conformation
NASA Astrophysics Data System (ADS)
Innes-Gold, Sarah; Berezney, John; Saleh, Omar
Hyaluronic acid (HA) is a charged linear polysaccharide abundant in extracellular spaces. Its solution conformation and mechanical properties help define the environment outside of cells, play key roles in cell motility and adhesion processes, and are of interest for the development of HA biomaterials. Intra-chain hydrogen bonds and electrostatic repulsion contribute to HAs physical structure, but the nature of this structure, as well as its dependence on solution electrostatics, are not well-understood. To address this problem, we have investigated HA conformation and mechanical properties under a range of solution conditions systematically designed to affect charge screening or hydrogen bonding. We used magnetic tweezers to apply biological-scale stretching forces to individual HA chains under varying solution conditions.
The Electrostatic Environments of Mars and the Moon
NASA Technical Reports Server (NTRS)
Calle, Carlos I.
2011-01-01
The electrical activity present in the environment near the surfaces of Mars and the moon has very different origins and presents a challenge to manned and robotic planetary exploration missions. Mars is covered with a layer of dust that has been redistributed throughout the entire planet by global dust storms. Dust, levitated by these storms as well as by the frequent dust devils, is expected to be electrostatically charged due to the multiple grain collisions in the dust-laden atmosphere. Dust covering the surface of the moon is expected to be electrostatically charged due to the solar wind, cosmic rays, and the solar radiation itself through the photoelectric effect. Electrostatically charged dust has a large tendency to adhere to surfaces. NASA's Mars exploration rovers have shown that atmospheric dust falling on solar panels can decrease their efficiency to the point of rendering the rover unusable. And as the Apollo missions to the moon showed, lunar dust adhesion can hinder manned and unmanned lunar exploration activities. Taking advantage of the electrical activity on both planetary system bodies, dust removal technologies are now being developed that use electrostatic and dielectrophoretic forces to produce controlled dust motion. This paper presents a short review of the theoretical and semiempirical models that have been developed for the lunar and Martian electrical environments.
NASA Astrophysics Data System (ADS)
Huang, Yujian; Wang, Yongzhong; Tan, Li; Sun, Leming; Petrosino, Jennifer; Cui, Mei-Zhen; Hao, Feng; Zhang, Mingjun
2016-06-01
Over 130 y have passed since Charles Darwin first discovered that the adventitious roots of English ivy (Hedera helix) exude a yellowish mucilage that promotes the capacity of this plant to climb vertical surfaces. Unfortunately, little progress has been made in elucidating the adhesion mechanisms underlying this high-strength adhesive. In the previous studies, spherical nanoparticles were observed in the viscous exudate. Here we show that these nanoparticles are predominantly composed of arabinogalactan proteins (AGPs), a superfamily of hydroxyproline-rich glycoproteins present in the extracellular spaces of plant cells. The spheroidal shape of the AGP-rich ivy nanoparticles results in a low viscosity of the ivy adhesive, and thus a favorable wetting behavior on the surface of substrates. Meanwhile, calcium-driven electrostatic interactions among carboxyl groups of the AGPs and the pectic acids give rise to the cross-linking of the exuded adhesive substances, favor subsequent curing (hardening) via formation of an adhesive film, and eventually promote the generation of mechanical interlocking between the adventitious roots of English ivy and the surface of substrates. Inspired by these molecular events, a reconstructed ivy-mimetic adhesive composite was developed by integrating purified AGP-rich ivy nanoparticles with pectic polysaccharides and calcium ions. Information gained from the subsequent tensile tests, in turn, substantiated the proposed adhesion mechanisms underlying the ivy-derived adhesive. Given that AGPs and pectic polysaccharides are also observed in bioadhesives exuded by other climbing plants, the adhesion mechanisms revealed by English ivy may forward the progress toward understanding the general principles underlying diverse botanic adhesives.
Huang, Yujian; Wang, Yongzhong; Tan, Li; Sun, Leming; Petrosino, Jennifer; Cui, Mei-Zhen; Hao, Feng; Zhang, Mingjun
2016-01-01
Over 130 y have passed since Charles Darwin first discovered that the adventitious roots of English ivy (Hedera helix) exude a yellowish mucilage that promotes the capacity of this plant to climb vertical surfaces. Unfortunately, little progress has been made in elucidating the adhesion mechanisms underlying this high-strength adhesive. In the previous studies, spherical nanoparticles were observed in the viscous exudate. Here we show that these nanoparticles are predominantly composed of arabinogalactan proteins (AGPs), a superfamily of hydroxyproline-rich glycoproteins present in the extracellular spaces of plant cells. The spheroidal shape of the AGP-rich ivy nanoparticles results in a low viscosity of the ivy adhesive, and thus a favorable wetting behavior on the surface of substrates. Meanwhile, calcium-driven electrostatic interactions among carboxyl groups of the AGPs and the pectic acids give rise to the cross-linking of the exuded adhesive substances, favor subsequent curing (hardening) via formation of an adhesive film, and eventually promote the generation of mechanical interlocking between the adventitious roots of English ivy and the surface of substrates. Inspired by these molecular events, a reconstructed ivy-mimetic adhesive composite was developed by integrating purified AGP-rich ivy nanoparticles with pectic polysaccharides and calcium ions. Information gained from the subsequent tensile tests, in turn, substantiated the proposed adhesion mechanisms underlying the ivy-derived adhesive. Given that AGPs and pectic polysaccharides are also observed in bioadhesives exuded by other climbing plants, the adhesion mechanisms revealed by English ivy may forward the progress toward understanding the general principles underlying diverse botanic adhesives. PMID:27217558
Liang, Chao; Li, Yunqiu; Liu, Zhiming; Wu, Wenjian; Hu, Biru
2015-01-01
The barnacle is well known for its tenacious and permanent attachment to a wide variety of underwater substrates, which is accomplished by synthesizing, secreting and curing a mixture of adhesive proteins termed “barnacle cement”. In order to evaluate interfacial adhesion abilities of barnacle cement proteins, the cp19k homologous gene in Balanus albicostatus (Balcp19k) was cloned and expressed in Escherichia coli. Here, we report an intriguing discovery of a gel-like super adhesive aggregation produced by Trx-Balcp19k, a recombinant Balcp19k fusion protein. The Trx-Balcp19k consists of an 18 kDa fragment at the N-terminus, which is encoded by pET-32a(+) plasmid and mainly comprised of a thioredoxin (Trx) tag, and Balcp19k at the C-terminus. The sticky aggregation was designated as “Trx-Balcp19k gel”, and the bulk adhesion strength, biochemical composition, as well as formation conditions were all carefully investigated. The Trx-Balcp19k gel exhibited strong adhesion strength of 2.10 ± 0.67 MPa, which was approximately fifty folds higher than that of the disaggregated Trx-Balcp19k (40 ± 8 kPa) and rivaled those of commercial polyvinyl acetate (PVA) craft glue (Mont Marte, Australia) and UHU glue (UHU GmbH & Co. KG, Germany). Lipids were absent from the Trx-Balcp19k gel and only a trace amount of carbohydrates was detected. We postulate that the electrostatic interactions play a key role in the formation of Trx-Balcp19k gel, by mediating self-aggregation of Trx-Balcp19k based on its asymmetric distribution pattern of charged amino acids. Taken together, we believe that our discovery not only presents a promising biological adhesive with potential applications in both biomedical and technical fields, but also provides valuable paradigms for molecular design of bio-inspired peptide- or protein-based materials. PMID:26317205
Recent Progress in Bionic Condensate Microdrop Self-Propelling Surfaces.
Gong, Xiaojing; Gao, Xuefeng; Jiang, Lei
2017-12-01
Bionic condensate microdrop self-propelling (CMDSP) surfaces are attracting increased attention as novel, low-adhesivity superhydrophobic surfaces due to their value in fundamental research and technological innovation, e.g., for enhancing heat transfer, energy-effective antifreezing, and electrostatic energy harvesting. Here, the focus is on recent progress in bionic CMDSP surfaces. Metal-based CMDSP surfaces, which are the most promising in their respective fields, are highlighted for use in future applications. The selected topics are divided into four sections: biological prototypes, mechanism and construction rules, fabrication, and applications of metal-based CMDSP surfaces. Finally, the challenges and future development trends in bionic CMDSP surfaces are envisioned, especially the utilization of potential bionic inspiration in the design of more advanced CMDSP surfaces. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Smith, A.M.; Robinson, T. M.; Salt, M. D.; Hamilton, K. S.; Silvia, B. E.; Blasiak, R.
2009-01-01
The cross-linking interactions that provide cohesive strength to molluscan adhesive gels were investigated. Metal-based interactions have been shown to play an important role in the glue of the slug Arion subfuscus (Draparnaud), but other types of interactions may also contribute to the glue's strength and their role has not been investigated. This study shows that treatments that normally disrupt hydrophobic or electrostatic interactions have little to no effect on the slug glue. High salt concentrations and non-ionic detergent do not affect the solubility of the proteins in the glue or the ability of the glue proteins to stiffen gels. In contrast, metal chelation markedly disrupts the gel. Experiments with gel filtration chromatography identify a 40 kDa protein that is a central component of the cross-links in the glue. This 40 kDa protein forms robust macromolecular aggregations that are stable even in the presence of high concentrations of salt, non-ionic detergent, urea or metal chelators. Metal chelation during glue secretion, however, may block some of these cross-links. Such robust, non-specific interactions in an aqueous environment are highly unusual for hydrogels and reflect an intriguing cross-linking mechanism. PMID:18952190
Smith, A M; Robinson, T M; Salt, M D; Hamilton, K S; Silvia, B E; Blasiak, R
2009-02-01
The cross-linking interactions that provide cohesive strength to molluscan adhesive gels were investigated. Metal-based interactions have been shown to play an important role in the glue of the slug Arion subfuscus (Draparnaud), but other types of interactions may also contribute to the glue's strength and their role has not been investigated. This study shows that treatments that normally disrupt hydrophobic or electrostatic interactions have little to no effect on the slug glue. High salt concentrations and non-ionic detergent do not affect the solubility of the proteins in the glue or the ability of the glue proteins to stiffen gels. In contrast, metal chelation markedly disrupts the gel. Experiments with gel filtration chromatography identify a 40 kDa protein that is a central component of the cross-links in the glue. This 40 kDa protein forms robust macromolecular aggregations that are stable even in the presence of high concentrations of salt, non-ionic detergent, urea or metal chelators. Metal chelation during glue secretion, however, may block some of these cross-links. Such robust, non-specific interactions in an aqueous environment are highly unusual for hydrogels and reflect an intriguing cross-linking mechanism.
Mallon, Dermot H; Bradley, J Andrew; Winn, Peter J; Taylor, Craig J; Kosmoliaptsis, Vasilis
2015-02-01
We have previously shown that qualitative assessment of surface electrostatic potential of HLA class I molecules helps explain serological patterns of alloantibody binding. We have now used a novel computational approach to quantitate differences in surface electrostatic potential of HLA B-cell epitopes and applied this to explain HLA Bw4 and Bw6 antigenicity. Protein structure models of HLA class I alleles expressing either the Bw4 or Bw6 epitope (defined by sequence motifs at positions 77 to 83) were generated using comparative structure prediction. The electrostatic potential in 3-dimensional space encompassing the Bw4/Bw6 epitope was computed by solving the Poisson-Boltzmann equation and quantitatively compared in a pairwise, all-versus-all fashion to produce distance matrices that cluster epitopes with similar electrostatics properties. Quantitative comparison of surface electrostatic potential at the carboxyl terminal of the α1-helix of HLA class I alleles, corresponding to amino acid sequence motif 77 to 83, produced clustering of HLA molecules in 3 principal groups according to Bw4 or Bw6 epitope expression. Remarkably, quantitative differences in electrostatic potential reflected known patterns of serological reactivity better than Bw4/Bw6 amino acid sequence motifs. Quantitative assessment of epitope electrostatic potential allowed the impact of known amino acid substitutions (HLA-B*07:02 R79G, R82L, G83R) that are critical for antibody binding to be predicted. We describe a novel approach for quantitating differences in HLA B-cell epitope electrostatic potential. Proof of principle is provided that this approach enables better assessment of HLA epitope antigenicity than amino acid sequence data alone, and it may allow prediction of HLA immunogenicity.
Townsend, Leigh; Williams, Richard L.; Anuforom, Olachi; Berwick, Matthew R.; Halstead, Fenella; Hughes, Erik; Stamboulis, Artemis; Oppenheim, Beryl; Gough, Julie; Grover, Liam; Scott, Robert A. H.; Webber, Mark; Peacock, Anna F. A.; Belli, Antonio; Logan, Ann
2017-01-01
The interface between implanted devices and their host tissue is complex and is often optimized for maximal integration and cell adhesion. However, this also gives a surface suitable for bacterial colonization. We have developed a novel method of modifying the surface at the material–tissue interface with an antimicrobial peptide (AMP) coating to allow cell attachment while inhibiting bacterial colonization. The technology reported here is a dual AMP coating. The dual coating consists of AMPs covalently bonded to the hydroxyapatite surface, followed by deposition of electrostatically bound AMPs. The dual approach gives an efficacious coating which is stable for over 12 months and can prevent colonization of the surface by both Gram-positive and Gram-negative bacteria. PMID:28077764
Sundew adhesive: a naturally occurring hydrogel
Huang, Yujian; Wang, Yongzhong; Sun, Leming; Agrawal, Richa; Zhang, Mingjun
2015-01-01
Bioadhesives have drawn increasing interest in recent years, owing to their eco-friendly, biocompatible and biodegradable nature. As a typical bioadhesive, sticky exudate observed on the stalked glands of sundew plants aids in the capture of insects and this viscoelastic adhesive has triggered extensive interests in revealing the implied adhesion mechanisms. Despite the significant progress that has been made, the structural traits of the sundew adhesive, especially the morphological characteristics in nanoscale, which may give rise to the viscous and elastic properties of this mucilage, remain unclear. Here, we show that the sundew adhesive is a naturally occurring hydrogel, consisting of nano-network architectures assembled with polysaccharides. The assembly process of the polysaccharides in this hydrogel is proposed to be driven by electrostatic interactions mediated with divalent cations. Negatively charged nanoparticles, with an average diameter of 231.9 ± 14.8 nm, are also obtained from this hydrogel and these nanoparticles are presumed to exert vital roles in the assembly of the nano-networks. Further characterization via atomic force microscopy indicates that the stretching deformation of the sundew adhesive is associated with the flexibility of its fibrous architectures. It is also observed that the adhesion strength of the sundew adhesive is susceptible to low temperatures. Both elasticity and adhesion strength of the sundew adhesive reduce in response to lowering the ambient temperature. The feasibility of applying sundew adhesive for tissue engineering is subsequently explored in this study. Results show that the fibrous scaffolds obtained from sundew adhesive are capable of increasing the adhesion of multiple types of cells, including fibroblast cells and smooth muscle cells, a property that results from the enhanced adsorption of serum proteins. In addition, in light of the weak cytotoxic activity exhibited by these scaffolds towards a variety of mammal cells, evidence is sufficient to propose that sundew adhesive is a promising nanomaterial worth further exploitation in the field of tissue engineering. PMID:25948615
NASA Astrophysics Data System (ADS)
Sokoloff, J. B.
2014-09-01
One role of a lubricant is to prevent wear of two surfaces in contact, which is likely to be the result of adhesive forces that cause a pair of asperities belonging to two surfaces in contact to stick together. Such adhesive sticking of asperities can occur both for sliding surfaces and for surfaces which are pressed together and then pulled apart. The latter situation, for example, is important for contact lenses, as prevention of sticking reduces possible damage to the cornea as the lenses are inserted and removed from the eye. Contact lenses are made from both neutral and polyelectrolyte hydrogels. It is demonstrated here that sticking of neutral hydrogels can be prevented by repulsive forces between asperities in contact, resulting from polymers attached to the gel surface but not linked with each other. For polyelectrolyte hydrogels, it is shown that osmotic pressure due to counterions, held at the interface between asperities in contact by the electrostatic attraction between the ions and the fixed charges in the gel, can provide a sufficiently strong repulsive force to prevent adhesive sticking of small-length-scale asperities.
Surface charges promote nonspecific nanoparticle adhesion to stiffer membranes
NASA Astrophysics Data System (ADS)
Sinha, Shayandev; Jing, Haoyuan; Sachar, Harnoor Singh; Das, Siddhartha
2018-04-01
This letter establishes the manner in which the electric double layer induced by the surface charges of the plasma membrane (PM) enhances the nonspecific adhesion (NSA) of a metal nanoparticle (NP) to stiffer PMs (i.e., PMs with larger bending moduli). The NSA is characterized by the physical attachment of the NP to the membrane and occurs when the decrease in the surface energy (or any other mechanism) associated with the attachment process provides the energy for bending the membrane. Such an attachment does not involve receptor-ligand interactions that characterize the specific membrane-NP adhesion. Here, we demonstrate that a significant decrease in the electrostatic energy caused by the NP-attachment-induced destruction of the charged-membrane-electrolyte interface is responsible for providing the additional energy needed for bending the membrane during the NP adhesion to stiffer membranes. A smaller salt concentration and a larger membrane charge density augment this effect, which can help to design drug delivery to cells with stiffer membranes due to pathological conditions, fabricate NPs with biomimetic cholesterol-rich lipid bilayer encapsulation, etc.
Innovative Electrostatic Adhesion Technologies
NASA Technical Reports Server (NTRS)
Bryan, Tom; Macleod, Todd; Gagliano, Larry; Williams, Scott; McCoy, Brian
2015-01-01
Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA gripper pad surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and development has demonstrated that EA can function effectively in space, even in the presence of strong ultraviolet radiation, atomic oxygen, and free electrons. We created a test setup in an existing vacuum chamber to simulate low-Earth-orbit conditions. An EA mechanism was fabricated and installed in the chamber, instrumented, operated in a vacuum, and subjected to ultraviolet photons and free electrons generated by an in-chamber multipactor electron emitter. Extensions to EA that can add value include proximity and contact sensing and transverse motion or rotation, both of which could enhance docking or assembly applications. Possible next steps include development of targeted applications for ground investigation or on-orbit subsystem performance demonstrations using low cost access to space such as CubeSats.
Innovative Electrostatic Adhesion Technologies
NASA Astrophysics Data System (ADS)
Gagliano, L.; Bryan, T.; Williams, S.; McCoy, B.; MacLeod, T.
Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and development has demonstrated that EA can function effectively in space, even in the presence of strong ultraviolet radiation, atomic oxygen, and free electrons. We created a test setup in an existing vacuum chamber to simulate low-Earth-orbit conditions. An EA mechanism was fabricated and installed in the chamber, instrumented, operated in a vacuum, and subjected to ultraviolet photons and free electrons generated by an in-chamber multipactor electron emitter. Extensions to EA that can add value include proximity and contact sensing and transverse motion or rotation, both of which could enhance docking or assembly applications. Possible next steps include development of targeted applications for ground investigation or on-orbit subsystem performance demonstrations using low cost access to space such as CubeSats.
Electrostatic potential map modelling with COSY Infinity
NASA Astrophysics Data System (ADS)
Maloney, J. A.; Baartman, R.; Planche, T.; Saminathan, S.
2016-06-01
COSY Infinity (Makino and Berz, 2005) is a differential-algebra based simulation code which allows accurate calculation of transfer maps to arbitrary order. COSY's existing internal procedures were modified to allow electrostatic elements to be specified using an array of field potential data from the midplane. Additionally, a new procedure was created allowing electrostatic elements and their fringe fields to be specified by an analytic function. This allows greater flexibility in accurately modelling electrostatic elements and their fringe fields. Applied examples of these new procedures are presented including the modelling of a shunted electrostatic multipole designed with OPERA, a spherical electrostatic bender, and the effects of different shaped apertures in an electrostatic beam line.
Gomes, Diego E B; Lins, Roberto D; Pascutti, Pedro G; Lei, Chenghong; Soares, Thereza A
2010-01-14
The enzyme organophosphorous hydrolase (OPH) catalyzes the hydrolysis of a wide variety of organophosphorous compounds with high catalytic efficiency and broad substrate specificity. The immobilization of OPH in functionalized mesoporous silica (FMS) surfaces increases significantly its catalytic specific activity, as compared to the enzyme in solution, with important applications for the detection and decontamination of insecticides and chemical warfare agents. Experimental measurements of immobilization efficiency as a function of the charge and coverage percentage of different functional groups have been interpreted as electrostatic forces being the predominant interactions underlying the adsorption of OPH onto FMS surfaces. Explicit solvent molecular dynamics simulations have been performed for OPH in bulk solution and adsorbed onto two distinct interaction potential models of the FMS functional groups to investigate the relative contributions of nonbonded interactions to the conformational dynamics and adsorption of the protein. Our results support the conclusion that electrostatic interactions are responsible for the binding of OPH to the FMS surface. However, these results also show that van der Waals forces are detrimental for interfacial adhesion. In addition, it is found that OPH adsorption onto the FMS models favors a protein conformation whose active site is fully accessible to the substrate, in contrast to the unconfined protein.
Electrostatic complementarity at protein/protein interfaces.
McCoy, A J; Chandana Epa, V; Colman, P M
1997-05-02
Calculation of the electrostatic potential of protein-protein complexes has led to the general assertion that protein-protein interfaces display "charge complementarity" and "electrostatic complementarity". In this study, quantitative measures for these two terms are developed and used to investigate protein-protein interfaces in a rigorous manner. Charge complementarity (CC) was defined using the correlation of charges on nearest neighbour atoms at the interface. All 12 protein-protein interfaces studied had insignificantly small CC values. Therefore, the term charge complementarity is not appropriate for the description of protein-protein interfaces when used in the sense measured by CC. Electrostatic complementarity (EC) was defined using the correlation of surface electrostatic potential at protein-protein interfaces. All twelve protein-protein interfaces studied had significant EC values, and thus the assertion that protein-protein association involves surfaces with complementary electrostatic potential was substantially confirmed. The term electrostatic complementarity can therefore be used to describe protein-protein interfaces when used in the sense measured by EC. Taken together, the results for CC and EC demonstrate the relevance of the long-range effects of charges, as described by the electrostatic potential at the binding interface. The EC value did not partition the complexes by type such as antigen-antibody and proteinase-inhibitor, as measures of the geometrical complementarity at protein-protein interfaces have done. The EC value was also not directly related to the number of salt bridges in the interface, and neutralisation of these salt bridges showed that other charges also contributed significantly to electrostatic complementarity and electrostatic interactions between the proteins. Electrostatic complementarity as defined by EC was extended to investigate the electrostatic similarity at the surface of influenza virus neuraminidase where the epitopes of two monoclonal antibodies, NC10 and NC41, overlap. Although NC10 and NC41 both have quite high values of EC for their interaction with neuraminidase, the similarity in electrostatic potential generated by the two on the overlapping region of the epitopes is insignificant. Thus, it is possible for two antibodies to recognise the electrostatic surface of a protein in dissimilar ways.
Theoretical predictions of anti-corrosive properties of THAM and its derivatives.
Malinowski, Szymon; Jaroszyńska-Wolińska, Justyna; Herbert, Tony
2017-12-04
We present quantum chemical theoretical estimations of the anti-corrosive properties of THAM (tris(hydroxymethyl)aminomethane) and three derivatives that differ in the number of benzene rings: THAM-1 (2-amino-3-hydroxy-2-(hydroxymethyl) propylobenzoate), THAM-2 (2-amino-2-(hydroxymetyl)prapan-1,3-diyldibenzoate) and THAM-3 (2-amino-propan-1,2,3-triyltribenzoate). Fourteen exchange-correlation functionals based on the density functional theory (DFT) were chosen for quantum chemical study of THAM derivatives. The objective was to examine the effect of benzene rings on potential anti-corrosive properties of THAM compounds. The results indicate that the addition of benzene rings in THAM derivatives is likely to significantly enhance electrostatic bonding of a THAM-based coating to a presented metal surface and, thus, its adhesion and long-term effect in corrosion inhibition. Whereas it is clear that all three derivatives appear to be superior in their bonding characteristics to pure THAM, the potential order of merit between the three is less clear, although THAM-3 presents as possibly superior.
ERIC Educational Resources Information Center
Schonborn, Konrad; Host, Gunnar; Palmerius, Karljohan
2010-01-01
To help in interpreting the polarity of a molecule, charge separation can be visualized by mapping the electrostatic potential at the van der Waals surface using a color gradient or by indicating positive and negative regions of the electrostatic potential using different colored isosurfaces. Although these visualizations capture the molecular…
Osypov, Alexander A; Krutinin, Gleb G; Krutinina, Eugenia A; Kamzolova, Svetlana G
2012-04-01
Electrostatic properties of genome DNA are important to its interactions with different proteins, in particular, related to transcription. DEPPDB - DNA Electrostatic Potential (and other Physical) Properties Database - provides information on the electrostatic and other physical properties of genome DNA combined with its sequence and annotation of biological and structural properties of genomes and their elements. Genomes are organized on taxonomical basis, supporting comparative and evolutionary studies. Currently, DEPPDB contains all completely sequenced bacterial, viral, mitochondrial, and plastids genomes according to the NCBI RefSeq, and some model eukaryotic genomes. Data for promoters, regulation sites, binding proteins, etc., are incorporated from established DBs and literature. The database is complemented by analytical tools. User sequences calculations are available. Case studies discovered electrostatics complementing DNA bending in E.coli plasmid BNT2 promoter functioning, possibly affecting host-environment metabolic switch. Transcription factors binding sites gravitate to high potential regions, confirming the electrostatics universal importance in protein-DNA interactions beyond the classical promoter-RNA polymerase recognition and regulation. Other genome elements, such as terminators, also show electrostatic peculiarities. Most intriguing are gene starts, exhibiting taxonomic correlations. The necessity of the genome electrostatic properties studies is discussed.
Implications of Adhesion Studies for Dust Mitigation on Thermal Control Surfaces
NASA Technical Reports Server (NTRS)
Gaier, James R.; Berkebile, Stephen P.
2012-01-01
Experiments measuring the adhesion forces under ultrahigh vacuum conditions (10 (exp -10) torr) between a synthetic volcanic glass and commonly used space exploration materials have recently been described. The glass has a chemistry and surface structure typical of the lunar regolith. It was found that Van der Waals forces between the glass and common spacecraft materials was negligible. Charge transfer between the materials was induced by mechanically striking the spacecraft material pin against the glass plate. No measurable adhesion occurred when striking the highly conducting materials, however, on striking insulating dielectric materials the adhesion increased dramatically. This indicates that electrostatic forces dominate over Van der Waals forces under these conditions. The presence of small amounts of surface contaminants was found to lower adhesive forces by at least two orders of magnitude, and perhaps more. Both particle and space exploration material surfaces will be cleaned by the interaction with the solar wind and other energetic processes and stay clean because of the extremely high vacuum (10 (exp -12) torr) so the atomically clean adhesion values are probably the relevant ones for the lunar surface environment. These results are used to interpret the results of dust mitigation technology experiments utilizing textured surfaces, work function matching surfaces and brushing. They have also been used to reinterpret the results of the Apollo 14 Thermal Degradation Samples experiment.
Długosz, Maciej; Trylska, Joanna
2008-01-01
We present a method for describing and comparing global electrostatic properties of biomolecules based on the spherical harmonic decomposition of electrostatic potential data. Unlike other approaches our method does not require any prior three dimensional structural alignment. The electrostatic potential, given as a volumetric data set from a numerical solution of the Poisson or Poisson–Boltzmann equation, is represented with descriptors that are rotation invariant. The method can be applied to large and structurally diverse sets of biomolecules enabling to cluster them according to their electrostatic features. PMID:18624502
Townsend, Leigh; Williams, Richard L; Anuforom, Olachi; Berwick, Matthew R; Halstead, Fenella; Hughes, Erik; Stamboulis, Artemis; Oppenheim, Beryl; Gough, Julie; Grover, Liam; Scott, Robert A H; Webber, Mark; Peacock, Anna F A; Belli, Antonio; Logan, Ann; de Cogan, Felicity
2017-01-01
The interface between implanted devices and their host tissue is complex and is often optimized for maximal integration and cell adhesion. However, this also gives a surface suitable for bacterial colonization. We have developed a novel method of modifying the surface at the material-tissue interface with an antimicrobial peptide (AMP) coating to allow cell attachment while inhibiting bacterial colonization. The technology reported here is a dual AMP coating. The dual coating consists of AMPs covalently bonded to the hydroxyapatite surface, followed by deposition of electrostatically bound AMPs. The dual approach gives an efficacious coating which is stable for over 12 months and can prevent colonization of the surface by both Gram-positive and Gram-negative bacteria. © 2017 The Author(s).
The electrostatic interaction is a critical component of intermolecular interactions in biological processes. Rapid methods for the computation and characterization of the molecular electrostatic potential (MEP) that segment the molecular charge distribution and replace this cont...
Zhitnikova, M Y; Shestopalova, A V
2017-11-01
The structural adjustments of the sugar-phosphate DNA backbone (switching of the γ angle (O5'-C5'-C4'-C3') from canonical to alternative conformations and/or C2'-endo → C3'-endo transition of deoxyribose) lead to the sequence-specific changes in accessible surface area of both polar and non-polar atoms of the grooves and the polar/hydrophobic profile of the latter ones. The distribution of the minor groove electrostatic potential is likely to be changing as a result of such conformational rearrangements in sugar-phosphate DNA backbone. Our analysis of the crystal structures of the short free DNA fragments and calculation of their electrostatic potentials allowed us to determine: (1) the number of classical and alternative γ angle conformations in the free B-DNA; (2) changes in the minor groove electrostatic potential, depending on the conformation of the sugar-phosphate DNA backbone; (3) the effect of the DNA sequence on the minor groove electrostatic potential. We have demonstrated that the structural adjustments of the DNA double helix (the conformations of the sugar-phosphate backbone and the minor groove dimensions) induce changes in the distribution of the minor groove electrostatic potential and are sequence-specific. Therefore, these features of the minor groove sizes and distribution of minor groove electrostatic potential can be used as a signal for recognition of the target DNA sequence by protein in the implementation of the indirect readout mechanism.
NASA Astrophysics Data System (ADS)
Ghosh, Uddipta; Chakraborty, Suman
2016-06-01
In this study, we attempt to bring out a generalized formulation for electro-osmotic flows over inhomogeneously charged surfaces in presence of non-electrostatic ion-ion interactions. To this end, we start with modified electro-chemical potential of the individual species and subsequently use it to derive modified Nernst-Planck equation accounting for the ionic fluxes generated because of the presence of non-electrostatic potential. We establish what we refer to as the Poisson-Helmholtz-Nernst-Planck equations, coupled with the Navier-Stokes equations, to describe the complete transport process. Our analysis shows that the presence of non-electrostatic interactions between the ions results in an excess body force on the fluid, and modifies the osmotic pressure as well, which has hitherto remained unexplored. We further apply our analysis to a simple geometry, in an effort to work out the Smoluchowski slip velocity for thin electrical double layer limits. To this end, we employ singular perturbation and develop a general framework for the asymptotic analysis. Our calculations reveal that the final expression for slip velocity remains the same as that without accounting for non-electrostatic interactions. However, the presence of non-electrostatic interactions along with ion specificity can significantly change the quantitative behavior of Smoluchowski slip velocity. We subsequently demonstrate that the presence of non-electrostatic interactions may significantly alter the effective interfacial potential, also termed as the "Zeta potential." Our analysis can potentially act as a guide towards the prediction and possibly quantitative determination of the implications associated with the existence of non-electrostatic potential, in an electrokinetic transport process.
2016-04-01
2 Fig. 2 Electrostatic potential map of AMDNNM: a) without and b) with molecule overlay...3 Fig. 3 Electrostatic potential map of BAFDAONAB: a) without and b) with molecule...overlay ....................................................................................4 Fig. 4 Electrostatic potential map of BNFDAONAB: a) without
NASA Astrophysics Data System (ADS)
Zhang, Youfeng; Oh, Yunje; Stauffer, Douglas; Polycarpou, Andreas A.
2018-04-01
We present a highly sensitive force-displacement transducer capable of performing ultra-shallow nanoindentation and adhesion measurements. The transducer utilizes electrostatic actuation and capacitive sensing combined with microelectromechanical fabrication technologies. Air indentation experiments report a root-mean-square (RMS) force resolution of 1.8 nN and an RMS displacement resolution of 0.019 nm. Nanoindentation experiments on a standard fused quartz sample report a practical RMS force resolution of 5 nN and an RMS displacement resolution of 0.05 nm at sub-10 nm indentation depths, indicating that the system has a very low system noise for indentation experiments. The high sensitivity and low noise enables the transducer to obtain high-resolution nanoindentation data at sub-5 nm contact depths. The sensitive force transducer is used to successfully perform nanoindentation measurements on a 14 nm thin film. Adhesion measurements were also performed, clearly capturing the pull-on and pull-off forces during approach and separation of two contacting surfaces.
Adhesion of CdTe quantum dots on model membranes and internalization into RBL-2H3 cells.
Zhang, Mengmeng; Wei, Xiaoran; Ding, Lei; Hu, Jingtian; Jiang, Wei
2017-06-01
Quantum dots (QDs) have attracted broad attention due to their special optical properties and promising prospect in medical and biological applications. However, the process of QDs on cell membrane is worth further investigations because such process may lead to harmful effects on organisms and also important for QD application. In this study, adhesion of amino- and carboxyl-coated CdTe QDs (A-QDs and C-QDs) on cell membrane and the subsequent internalization are studied using a series of endocytosis-free model membranes, including giant and small unilamellar vesicles, supported lipid bilayers and giant plasma membrane vesicles (GPMVs). The adhered QD amounts on model membranes are quantified by a quartz crystal microbalance. The CdTe QD adhesion on model membranes is governed by electrostatic forces. Positively charged A-QDs adhere on GPMV surface and passively penetrate the plasma membrane via endocytosis-free mechanism, but negatively charged C-QDs cannot. Rat basophilic leukemia (RBL-2H3) cells are exposed to CdTe QDs to monitor the QD internalization process. Both A- and C-QDs are internalized by RBL-2H3 cells mainly via endocytosis. CdTe QDs do not accumulate on the plasma membrane of living cells due to the fast endocytosis and the weakened electrostatic attraction in biological medium, resulting in low chance of passive penetration. The suspended cells after trypsin digestion take more QDs than the adherent cells. A-QDs cause lower cell viability than C-QDs, probably because the approach of positively charged QDs to cells is favored and the smaller aggregates of A-QDs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Abu-Lail, Laila I; Liu, Yatao; Atabek, Arzu; Camesano, Terri A
2007-12-01
Atomic force microscopy (AFM) was used to characterize interactions between natural organic matter (NOM), and glass or bacteria. Poly(methacrylic acid) (PMA), soil humic Acid (SHA), and Suwannee River humic Acid (SRHA), were adsorbed to silica AFM probes. Adhesion forces (Fadh) for the interaction of organic-probes and glass slides correlated with organic molecular weight (MW), but not with radius of the organic aggregate (R), charge density (Q), or zeta potential (zeta). Two Pseudomonas aeruginosa strains with different lipopolysaccharides (LPS) were chosen: PAO1 (A+B+), whose LPS have common antigen (A-band) + O-antigen (B-band); and mutant AK1401 (A+B-). Fadh between bacteria and organics correlated with organic MW, R, and Q, but not zeta. PAO1 had lower Fadh with silica than NOM, which was attributed to negative charges from the B-band polymers causing electrostatic repulsion. AK1401 adhered stronger to silica than to the organics, perhaps because the absence of the B-band exposed underlying positively charged proteins. DLVO calculations could not explain the differences in the two bacteria or predict qualitative or quantitative trends in interaction forces in these systems. Molecular-level information from AFM studies can bring us closer to understanding the complex nature of bacterial-NOM interactions.
2016-04-01
dioxabicyclo(3:3:0)octan-2-one molecule .............................................1 Fig. 2 Electrostatic potential map of 5,7-dinitro-5,7-diaza-1,3...the impact sensitivities, the electrostatic maps on the 0.001 isosurfaces were generated with the scalar range of the electrostatic surface potential... Electrostatic potential map of 5,7-dinitro-5,7-diaza-1,3-dioxabicyclo(3:3:0)octan-2- one, a) with and b-c) without molecule overlay. Image c) shows the opposite
Pelletier, C; Bouley, C; Cayuela, C; Bouttier, S; Bourlioux, P; Bellon-Fontaine, M N
1997-01-01
Hydrophilic and electrostatic cell surface properties of eight Lactobacillus strains were characterized by using the microbial adhesion to solvents method and microelectrophoresis, respectively. All strains appeared relatively hydrophilic. The strong microbial adhesion to chloroform, an acidic solvent, in comparison with microbial adhesion to hexadecane, an apolar n-alkane, demonstrated the particularity of lactobacilli to have an important electron donor and basic character and consequently their potential ability to generate Lewis acid-base interactions with a support. Regardless of their electrophoretic mobility (EM), strains were in general slightly negatively charged at alkaline pH. A pH-dependent behavior concerning cell surface charges was observed. The EM decreased progressively with more acidic pHs for the L. casei subsp. casei and L. paracasei subsp. paracasei strains until the isoelectric point (IEP), i.e., the pH value for which the EM is zero. On the other hand, the EM for the L. rhamnosus strains was stable from pH 8 to pH 3 to 4, at which point there was a shift near the IEP. Both L. casei subsp. casei and L. paracasei subsp. paracasei strains were characterized by an IEP of around 4, whereas L. rhamnosus strains possessed a markedly lower IEP of 2. The present study showed that the cell surface physicochemical properties of lactobacilli seem to be, at least in part and under certain experimental conditions, particular to the bacterial species. Such differences detected between species are likely to be accompanied by some particular changes in cell wall chemical composition. PMID:9143109
Electrostatic potential of B-DNA: effect of interionic correlations.
Gavryushov, S; Zielenkiewicz, P
1998-01-01
Modified Poisson-Boltzmann (MPB) equations have been numerically solved to study ionic distributions and mean electrostatic potentials around a macromolecule of arbitrarily complex shape and charge distribution. Results for DNA are compared with those obtained by classical Poisson-Boltzmann (PB) calculations. The comparisons were made for 1:1 and 2:1 electrolytes at ionic strengths up to 1 M. It is found that ion-image charge interactions and interionic correlations, which are neglected by the PB equation, have relatively weak effects on the electrostatic potential at charged groups of the DNA. The PB equation predicts errors in the long-range electrostatic part of the free energy that are only approximately 1.5 kJ/mol per nucleotide even in the case of an asymmetrical electrolyte. In contrast, the spatial correlations between ions drastically affect the electrostatic potential at significant separations from the macromolecule leading to a clearly predicted effect of charge overneutralization. PMID:9826596
The Poisson-Helmholtz-Boltzmann model.
Bohinc, K; Shrestha, A; May, S
2011-10-01
We present a mean-field model of a one-component electrolyte solution where the mobile ions interact not only via Coulomb interactions but also through a repulsive non-electrostatic Yukawa potential. Our choice of the Yukawa potential represents a simple model for solvent-mediated interactions between ions. We employ a local formulation of the mean-field free energy through the use of two auxiliary potentials, an electrostatic and a non-electrostatic potential. Functional minimization of the mean-field free energy leads to two coupled local differential equations, the Poisson-Boltzmann equation and the Helmholtz-Boltzmann equation. Their boundary conditions account for the sources of both the electrostatic and non-electrostatic interactions on the surface of all macroions that reside in the solution. We analyze a specific example, two like-charged planar surfaces with their mobile counterions forming the electrolyte solution. For this system we calculate the pressure between the two surfaces, and we analyze its dependence on the strength of the Yukawa potential and on the non-electrostatic interactions of the mobile ions with the planar macroion surfaces. In addition, we demonstrate that our mean-field model is consistent with the contact theorem, and we outline its generalization to arbitrary interaction potentials through the use of a Laplace transformation. © EDP Sciences / Società Italiana di Fisica / Springer-Verlag 2011
Ionic strength independence of charge distributions in solvation of biomolecules
NASA Astrophysics Data System (ADS)
Virtanen, J. J.; Sosnick, T. R.; Freed, K. F.
2014-12-01
Electrostatic forces enormously impact the structure, interactions, and function of biomolecules. We perform all-atom molecular dynamics simulations for 5 proteins and 5 RNAs to determine the dependence on ionic strength of the ion and water charge distributions surrounding the biomolecules, as well as the contributions of ions to the electrostatic free energy of interaction between the biomolecule and the surrounding salt solution (for a total of 40 different biomolecule/solvent combinations). Although water provides the dominant contribution to the charge density distribution and to the electrostatic potential even in 1M NaCl solutions, the contributions of water molecules and of ions to the total electrostatic interaction free energy with the solvated biomolecule are comparable. The electrostatic biomolecule/solvent interaction energies and the total charge distribution exhibit a remarkable insensitivity to salt concentrations over a huge range of salt concentrations (20 mM to 1M NaCl). The electrostatic potentials near the biomolecule's surface obtained from the MD simulations differ markedly, as expected, from the potentials predicted by continuum dielectric models, even though the total electrostatic interaction free energies are within 11% of each other.
We be jammin’: an update on pectin biosynthesis, trafficking and dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Charles T.
2015-11-20
Pectins are complex polysaccharides that contain acidic sugars and are major determinants of the cohesion, adhesion, extensibility, porosity and electrostatic potential of plant cell walls. Recent evidence has solidified their positions as key regulators of cellular growth and tissue morphogenesis, although important details of how they achieve this regulation are still missing. Pectins are also hypothesized to function as ligands for wall integrity sensors that enable plant cells to respond to intrinsic defects in wall biomechanics and to wall degradation by attacking pathogens. This update highlights recent advances in our understanding of the biosynthesis of pectins, how they are deliveredmore » to the cell surface and become incorporated into the cell wall matrix and how pectins are modified over time in the apoplast. It also poses unanswered questions for further research into this enigmatic but essential class of carbohydrate polymers.« less
Probing lipid membrane electrostatics
NASA Astrophysics Data System (ADS)
Yang, Yi
The electrostatic properties of lipid bilayer membranes play a significant role in many biological processes. Atomic force microscopy (AFM) is highly sensitive to membrane surface potential in electrolyte solutions. With fully characterized probe tips, AFM can perform quantitative electrostatic analysis of lipid membranes. Electrostatic interactions between Silicon nitride probes and supported zwitterionic dioleoylphosphatidylcholine (DOPC) bilayer with a variable fraction of anionic dioleoylphosphatidylserine (DOPS) were measured by AFM. Classical Gouy-Chapman theory was used to model the membrane electrostatics. The nonlinear Poisson-Boltzmann equation was numerically solved with finite element method to provide the potential distribution around the AFM tips. Theoretical tip-sample electrostatic interactions were calculated with the surface integral of both Maxwell and osmotic stress tensors on tip surface. The measured forces were interpreted with theoretical forces and the resulting surface charge densities of the membrane surfaces were in quantitative agreement with the Gouy-Chapman-Stern model of membrane charge regulation. It was demonstrated that the AFM can quantitatively detect membrane surface potential at a separation of several screening lengths, and that the AFM probe only perturbs the membrane surface potential by <2%. One important application of this technique is to estimate the dipole density of lipid membrane. Electrostatic analysis of DOPC lipid bilayers with the AFM reveals a repulsive force between the negatively charged probe tips and the zwitterionic lipid bilayers. This unexpected interaction has been analyzed quantitatively to reveal that the repulsion is due to a weak external field created by the internai membrane dipole moment. The analysis yields a dipole moment of 1.5 Debye per lipid with a dipole potential of +275 mV for supported DOPC membranes. This new ability to quantitatively measure the membrane dipole density in a noninvasive manner will be useful in identifying the biological effects of the dipole potential. Finally, heterogeneous model membranes were studied with fluid electric force microscopy (FEFM). Electrostatic mapping was demonstrated with 50 nm resolution. The capabilities of quantitative electrostatic measurement and lateral charge density mapping make AFM a unique and powerful probe of membrane electrostatics.
Physical and reliability issues in MEMS microrelays with gold contacts
NASA Astrophysics Data System (ADS)
Lafontan, Xavier; Pressecq, Francis; Perez, Guy; Dufaza, Christian; Karam, Jean Michel
2001-10-01
This paper presents the work we have done on micro-relays with gold micro-contacts in MUMPs. Firstly, the theoretical physical principles of MEMS micro-relay are described. This study is divided in two parts: the micro-contact and the micro-actuator. The micro-contact part deals with resistance of constriction, contact area, adhesion, arcing and wear. Whereas the micro-actuator part describes general principles, contact force, restoring force and actuator reliability. Then, in a second part, an innovative electrostatic relay design in MUMPs is presented. The concept, the implementation and the final realization are discussed. Then, in the third part, characterization results are reported. This part particularly focuses on the micro-contact study. Conduction mode, contact area, mechanical and thermal deformation, and adhesion energies are presented.
Numerical Investigation of Two-Phase Flows With Charged Droplets in Electrostatic Field
NASA Technical Reports Server (NTRS)
Kim, Sang-Wook
1996-01-01
A numerical method to solve two-phase turbulent flows with charged droplets in an electrostatic field is presented. The ensemble-averaged Navier-Stokes equations and the electrostatic potential equation are solved using a finite volume method. The transitional turbulence field is described using multiple-time-scale turbulence equations. The equations of motion of droplets are solved using a Lagrangian particle tracking scheme, and the inter-phase momentum exchange is described by the Particle-In-Cell scheme. The electrostatic force caused by an applied electrical potential is calculated using the electrostatic field obtained by solving a Laplacian equation and the force exerted by charged droplets is calculated using the Coulombic force equation. The method is applied to solve electro-hydrodynamic sprays. The calculated droplet velocity distributions for droplet dispersions occurring in a stagnant surrounding are in good agreement with the measured data. For droplet dispersions occurring in a two-phase flow, the droplet trajectories are influenced by aerodynamic forces, the Coulombic force, and the applied electrostatic potential field.
AESOP: A Python Library for Investigating Electrostatics in Protein Interactions.
Harrison, Reed E S; Mohan, Rohith R; Gorham, Ronald D; Kieslich, Chris A; Morikis, Dimitrios
2017-05-09
Electric fields often play a role in guiding the association of protein complexes. Such interactions can be further engineered to accelerate complex association, resulting in protein systems with increased productivity. This is especially true for enzymes where reaction rates are typically diffusion limited. To facilitate quantitative comparisons of electrostatics in protein families and to describe electrostatic contributions of individual amino acids, we previously developed a computational framework called AESOP. We now implement this computational tool in Python with increased usability and the capability of performing calculations in parallel. AESOP utilizes PDB2PQR and Adaptive Poisson-Boltzmann Solver to generate grid-based electrostatic potential files for protein structures provided by the end user. There are methods within AESOP for quantitatively comparing sets of grid-based electrostatic potentials in terms of similarity or generating ensembles of electrostatic potential files for a library of mutants to quantify the effects of perturbations in protein structure and protein-protein association. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
PBEQ-Solver for online visualization of electrostatic potential of biomolecules.
Jo, Sunhwan; Vargyas, Miklos; Vasko-Szedlar, Judit; Roux, Benoît; Im, Wonpil
2008-07-01
PBEQ-Solver provides a web-based graphical user interface to read biomolecular structures, solve the Poisson-Boltzmann (PB) equations and interactively visualize the electrostatic potential. PBEQ-Solver calculates (i) electrostatic potential and solvation free energy, (ii) protein-protein (DNA or RNA) electrostatic interaction energy and (iii) pKa of a selected titratable residue. All the calculations can be performed in both aqueous solvent and membrane environments (with a cylindrical pore in the case of membrane). PBEQ-Solver uses the PBEQ module in the biomolecular simulation program CHARMM to solve the finite-difference PB equation of molecules specified by users. Users can interactively inspect the calculated electrostatic potential on the solvent-accessible surface as well as iso-electrostatic potential contours using a novel online visualization tool based on MarvinSpace molecular visualization software, a Java applet integrated within CHARMM-GUI (http://www.charmm-gui.org). To reduce the computational time on the server, and to increase the efficiency in visualization, all the PB calculations are performed with coarse grid spacing (1.5 A before and 1 A after focusing). PBEQ-Solver suggests various physical parameters for PB calculations and users can modify them if necessary. PBEQ-Solver is available at http://www.charmm-gui.org/input/pbeqsolver.
Hydration effects on the electrostatic potential around tuftsin.
Valdeavella, C V; Blatt, H D; Yang, L; Pettitt, B M
1999-08-01
The electrostatic potential and component dielectric constants from molecular dynamics (MD) trajectories of tuftsin, a tetrapeptide with the amino acid sequence Thr-Lys-Pro-Arg in water and in saline solution are presented. The results obtained from the analysis of the MD trajectories for the total electrostatic potential at points on a grid using the Ewald technique are compared with the solution to the Poisson-Boltzmann (PB) equation. The latter was solved using several sets of dielectric constant parameters. The effects of structural averaging on the PB results were also considered. Solute conformational mobility in simulations gives rise to an electrostatic potential map around the solute dominated by the solute monopole (or lowest order multipole). The detailed spatial variation of the electrostatic potential on the molecular surface brought about by the compounded effects of the distribution of water and ions close to the peptide, solvent mobility, and solute conformational mobility are not qualitatively reproducible from a reparametrization of the input solute and solvent dielectric constants to the PB equation for a single structure or for structurally averaged PB calculations. Nevertheless, by fitting the PB to the MD electrostatic potential surfaces with the dielectric constants as fitting parameters, we found that the values that give the best fit are the values calculated from the MD trajectories. Implications of using such field calculations on the design of tuftsin peptide analogues are discussed.
A Paramagnetic Molecular Voltmeter
Surek, Jack T.; Thomas, David D.
2008-01-01
We have developed a general electron paramagnetic resonance (EPR) method to measure electrostatic potential at spin labels on proteins to millivolt accuracy. Electrostatic potential is fundamental to energy-transducing proteins like myosin, because molecular energy storage and retrieval is primarily electrostatic. Quantitative analysis of protein electrostatics demands a site-specific spectroscopic method sensitive to millivolt changes. Previous electrostatic potential studies on macromolecules fell short in sensitivity, accuracy and/or specificity. Our approach uses fast-relaxing charged and neutral paramagnetic relaxation agents (PRAs) to increase nitroxide spin label relaxation rate solely through collisional spin exchange. These PRAs were calibrated in experiments on small nitroxides of known structure and charge to account for differences in their relaxation efficiency. Nitroxide longitudinal (R1) and transverse (R2) relaxation rates were separated by applying lineshape analysis to progressive saturation spectra. The ratio of measured R1 increases for each pair of charged and neutral PRAs measures the shift in local PRA concentration due to electrostatic potential. Voltage at the spin label is then calculated using the Boltzmann equation. Measured voltages for two small charged nitroxides agree with Debye-Hückel calculations. Voltage for spin-labeled myosin fragment S1 also agrees with calculation based on the pK shift of the reacted cysteine. PMID:17964835
Free energy landscapes of encounter complexes in protein-protein association.
Camacho, C J; Weng, Z; Vajda, S; DeLisi, C
1999-03-01
We report the computer generation of a high-density map of the thermodynamic properties of the diffusion-accessible encounter conformations of four receptor-ligand protein pairs, and use it to study the electrostatic and desolvation components of the free energy of association. Encounter complex conformations are generated by sampling the translational/rotational space of the ligand around the receptor, both at 5-A and zero surface-to-surface separations. We find that partial desolvation is always an important effect, and it becomes dominant for complexes in which one of the reactants is neutral or weakly charged. The interaction provides a slowly varying attractive force over a small but significant region of the molecular surface. In complexes with no strong charge complementarity this region surrounds the binding site, and the orientation of the ligand in the encounter conformation with the lowest desolvation free energy is similar to the one observed in the fully formed complex. Complexes with strong opposite charges exhibit two types of behavior. In the first group, represented by barnase/barstar, electrostatics exerts strong orientational steering toward the binding site, and desolvation provides some added adhesion within the local region of low electrostatic energy. In the second group, represented by the complex of kallikrein and pancreatic trypsin inhibitor, the overall stability results from the rather nonspecific electrostatic attraction, whereas the affinity toward the binding region is determined by desolvation interactions.
NASA Technical Reports Server (NTRS)
Reiff, P. H.; Collin, H. L.; Craven, J. D.; Burch, J. L.; Winningham, J. D.
1988-01-01
The auroral electrostatic potential differences were determined from the particle distribution functions obtained nearly simultaneously above and below the auroral acceleration region by DE-1 at altitudes 9000-15,000 km and DE-2 at 400-800 km. Three independent techniques were used: (1) the peak energies of precipitating electrons observed by DE-2, (2) the widening of loss cones for upward traveling electrons observed by DE-1, and (3) the energies of upgoing ions observed by DE-1. The assumed parallel electrostatic potential difference calculated by the three methods was nearly the same. The results confirmed the hypothesis that parallel electrostatic fields of 1-10 kV potential drop at 1-2 earth radii altitude are an important source for auroral particle acceleration.
Barthes, Julien; Mutschler, Angela; Dollinger, Camille; Gaudinat, Guillaume; Lavalle, Philippe; Le Houerou, Vincent; Brian McGuinness, Garrett; Engin Vrana, Nihal
2017-12-15
For in-dwelling implants, controlling the biological interface is a crucial parameter to promote tissue integration and prevent implant failure. For this purpose, one possibility is to facilitate the establishment of the interface with cell-laden hydrogels fixed to the implant. However, for proper functioning, the stability of the hydrogel on the implant should be ensured. Modification of implant surfaces with an adhesive represents a promising strategy to promote the adhesion of a cell-laden hydrogel on an implant. Herein, we developed a peptidic adhesive based on mussel foot protein (L-DOPA-L-lysine) 2 -L-DOPA that can be applied directly on the surface of an implant. At physiological pH, unoxidized (L-DOPA-L-lysine) 2 -L-DOPA was supposed to strongly adhere to metallic surfaces but it only formed a very thin coating (less than 1 nm). Once oxidized at physiological pH, (L-DOPA-L-lysine) 2 -L-DOPA forms an adhesive coating about 20 nm thick. In oxidized conditions, L-lysine can adhere to metallic substrates via electrostatic interaction. Oxidized L-DOPA allows the formation of a coating through self-polymerization and can react with amines so that this adhesive can be used to fix extra-cellular matrix based materials on implant surfaces through the reaction of quinones with amino groups. Hence, a stable interface between a soft gelatin hydrogel and metallic surfaces was achieved and the strength of adhesion was investigated. We have shown that the adhesive is non-cytotoxic to encapsulated cells and enabled the adhesion of gelatin soft hydrogels for 21 days on metallic substrates in liquid conditions. The adhesion properties of this anchoring peptide was quantified by a 180° peeling test with a more than 60% increase in peel strength in the presence of the adhesive. We demonstrated that by using a biomimetic adhesive, for the application of cell-laden hydrogels to metallic implant surfaces, the hydrogel/implant interface can be ensured without relying on the properties of the deposited biomaterials.
Energy dissipation in polymer-polymer adhesion contacts
NASA Astrophysics Data System (ADS)
Garif, Yev Skip
This study focuses on self-adhesion in elastomers as a way of approaching a broader polymer adhesion problem. The model systems studied are cross-linked acrylic pressure-sensitive adhesives (PSA-LNs) synthesized to attain four surface types: neutral, acidic, basic, and polar. As the study progressed, it distinguished itself as the first of its kind to consistently report the effect of temperature on measurable intrinsic parameters of polymer adhesion. The main goal of the study was to understand why the magnitude of the practical adhesion energies of the four PSA-LN systems tested varies disproportionately greater than their respective surface energies. To achieve this goal, continuous sweeps of adhesion energy as a function of rate of interfacial separation were performed using three different adhesion-probing techniques--- peel, micro-scratch, and normal contact. The answer was found in the sub-micron-per-second limit of separation rates. In approaching this limit, the power law behavior of adhesion gradually transitioned into a linear region of markedly weaker sensitivity to rate. Referred to as the "intrinsic window", this linear region was characterized by three parameters: (1) the intrinsic adhesion energy at zero rate of separation; (2) the intrinsic rate sensitivity equal to the proportionality constant of the linear fit; and (3) the critical separation rate in the middle of the transition to the power law. All three were found to be thermally activated. Activation energies suggested that interfacial processes are attributed mainly to dispersive and electrostatic molecular interactions such as hydrogen bonding or van der Waals attraction. Comparative analysis of the intrinsic window of the four PSA-LNs tested showed that an increase in the intrinsic adhesion energy associated with higher surface energy is inherently coupled with an increase in the intrinsic rate sensitivity and reduction in the critical separation rate. When combined, the three parameters reshape the intrinsic window such that the entire power-law portion of the adhesion response is shifted to a level that appears disproportionately high based on the false assumption that there is only one intrinsic parameter contributing to the shift. Thus, the goal of explaining this disproportionality was achieved.
Controlled clustering of carboxylated SPIONs through polyethylenimine
NASA Astrophysics Data System (ADS)
Nesztor, Dániel; Bali, Krisztina; Tóth, Ildikó Y.; Szekeres, Márta; Tombácz, Etelka
2015-04-01
Clusters of magnetite nanoparticles (MNPs) were synthesized using poly(acrylic acid-co-maleic acid) coated MNPs (PAM@MNP) and branched polyethylenimine (PEI). Materials were characterized by potentiometric titration, zeta potential and dynamic light scattering (DLS) measurements. PEI and PAM@MNP are oppositely charged as characterized by zeta potential measurements (+8, -34 mV respectively) and titration (10.30 mmol -NH3+/g PEI; 0.175 mmol -COO-/g PAM@MNP) at pH 6.5±0.2; therefore magnetic clusters are formed by electrostatic adhesion. Two different preparation methods and the effect of PEI and electrolyte (NaCl) concentration on the cluster formation was studied. Choosing an optimal concentration of PEI (charge ratio of PEI to PAM@MNP: 0.17) and electrolyte (10 mM), a concentrated (10 g MNP/L) product containing PEI-PAM@MNP nanoclusters with size of 165±10 nm was prepared. Its specific absorption rate (SAR) measured in AC magnetic field (110 kHz, 25 mT) is 12 W/g Fe. The clustered product is expected to have enhanced contrast efficiency in MRI.
Therapeutic Ultrasound Bypasses Canonical Syndecan-4 Signaling to Activate Rac1*S⃞
Mahoney, Claire M.; Morgan, Mark R.; Harrison, Andrew; Humphries, Martin J.; Bass, Mark D.
2009-01-01
The application of pulsed, low intensity ultrasound is emerging as a potent therapy for the treatment of complex bone fractures and tissue damage. Ultrasonic stimuli accelerate fracture healing by up to 40% and enhance tendon and ligament healing by promoting cell proliferation, migration, and matrix synthesis through an unresolved mechanism. Ultrasound treatment also induces closure of nonunion fractures, at a success rate (85% of cases) similar to that of surgical intervention (68-96%) while avoiding the complications associated with surgery. The regulation of cell adhesion necessary for wound healing depends on cooperative engagement of the extracellular matrix receptors, integrin and syndecan, as exemplified by the wound healing defects observed in syndecan- and integrin-knock-out mice. This report distinguishes the influence of ultrasound on signals downstream of the prototypic fibronectin receptors, α5β1 integrin and syndecan-4, which cooperate to regulate Rac1 and RhoA. Ultrasonic stimulation fails to activate integrins or induce cell spreading on poor, electrostatic ligands. By contrast, ultrasound treatment overcomes the necessity of engagement or expression of syndecan-4 during the process of focal adhesion formation, which normally requires simultaneous engagement of both receptors. Ultrasound exerts an influence downstream of syndecan-4 and PKCα to specifically activate Rac1, itself a critical regulator of tissue repair, and to a lesser extent RhoA. The ability of ultrasound to bypass syndecan-4 signaling, which is known to facilitate efficient tissue repair, explains the reduction in healing times observed in ultrasound-treated patients. By substituting for one of the key axes of adhesion-dependent signaling, ultrasound therapy has considerable potential as a clinical technique. PMID:19147498
Effects of amine fluoride on biofilm growth and salivary pellicles.
van der Mei, H C; Engels, E; de Vries, J; Busscher, H J
2008-01-01
The amine fluoride (AmF) N'-octadecyl-trimethylene-diamine-N,N,N'-tris(2-ethanol)-dihydro-fluoride is a cationic antimicrobial which can have beneficial effects on plaque formation. Here, we determine changes in pellicle and bacterial cell surface properties of the strains Actinomyces naeslundii HM1, Streptococcus mutans NS, S.mutans ATCC 700610, S. sobrinus HG1025 and S. oralis HM1 upon adsorption of this AmF and accompanying effects on bacterial adhesion and biofilm growth. In vitro pellicles had a zeta potential of -12 mV that became less negative upon adsorption of AmF. The chemical functionalities in which carbon and oxygen were involved changed after AmF adsorption and AmF-treated pellicles had a greater surface roughness than untreated pellicles. Water contact angles in vitro decreased from 56 to 45 degrees upon AmF treatment, which corresponded with water contact angles (44 degrees ) measured intraorally on the front incisors of volunteers immediately after using an AmF-containing toothpaste. All bacterial strains were negatively charged and their isoelectric points (IEP) increased upon AmF adsorption. Minimal inhibitory concentrations were smallest for strains exhibiting the largest increase in IEP. Adhesion to salivary pellicles and biofilm growth of the mutans streptococcal strains were significantly reduced after AmF treatment, but not of A. naeslundii or S. oralis. However, regardless of the strain involved, biofilm viability decreased significantly after AmF treatment. The electrostatic interaction between cationic AmF and negatively charged bacterial cell surfaces is pivotal in establishing reduced biofilm formation by AmF through a combination of effects on initial adhesion and killing. The major effect of AmF treatment, however, was a reduction brought about in biofilm viability.
Guo, Shanshan; Jańczewski, Dominik; Zhu, Xiaoying; Quintana, Robert; He, Tao; Neoh, Koon Gee
2015-08-15
Electrostatic interactions play an important role in adhesion phenomena particularly for biomacromolecules and microorganisms. Zero charge valence of zwitterions has been claimed as the key to their antifouling properties. However, due to the differences in the relative strength of their acid and base components, zwitterionic materials may not be charge neutral in aqueous environments. Thus, their charge on surfaces should be further adjusted for a specific pH environment, e.g. physiological pH typical in biomedical applications. Surface zeta potential for thin polymeric films composed of polysulfobetaine methacrylate (pSBMA) brushes is controlled through copolymerizing zwitterionic SBMA and cationic methacryloyloxyethyltrimethyl ammonium chloride (METAC) via surface-initiated atom transfer polymerization. Surface properties including zeta potential, roughness, free energy and thickness are measured and the antifouling performance of these surfaces is assessed. The zeta potential of pSBMA brushes is -40 mV across a broad pH range. By adding 2% METAC, the zeta potential of pSBMA can be tuned to zero at physiological pH while minimally affecting other physicochemical properties including dry brush thickness, surface free energy and surface roughness. Surfaces with zero and negative zeta potential best resist fouling by bovine serum albumin, Escherichia coli and Staphylococcus aureus. Surfaces with zero zeta potential also reduce fouling by lysozyme more effectively than surfaces with negative and positive zeta potential. Copyright © 2015 Elsevier Inc. All rights reserved.
The Calculation of the Electrostatic Potential of Infinite Charge Distributions
ERIC Educational Resources Information Center
Redzic, Dragan V.
2012-01-01
We discuss some interesting aspects in the calculation of the electrostatic potential of charge distributions extending to infinity. The presentation is suitable for the advanced undergraduate level. (Contains 3 footnotes.)
NASA Astrophysics Data System (ADS)
Sainz-García, Elisa; Alba-Elías, Fernando; Múgica-Vidal, Rodolfo; Pantoja-Ruiz, Mariola
2016-05-01
Thermoplastic elastomers (TPE) are used in the automotive sealing industry with the objective of producing anti-friction and hydrophobic components. At present, the anti-friction property is achieved by the electrostatic flocking, which sometimes produces an irregular coating. Therefore, this paper's objective is the promotion of adhesion of an anti-friction (based on the silane aminopropyltriethoxysilane-APTES-) and hydrophobic (based on the fluorinated precursor 1-perfluorohexene-PFH-) coating by the adhesion promoter, APTES. Different mixtures of APTES and PFH have been applied to a TPE substrate by an Atmospheric Pressure Plasma Jet (APPJ) system with Dielectric Barrier Discharge (DBD) in order to determine the optimal mixture of precursors. The main difficulty in this work lies in the hydrophilic character of APTES and the low adhesion of the fluorinated coatings. The sample coated with a mixture of 50% APTES and 50% PFH (A50P50) was found to be the best one to satisfy both properties at the same time, despite not having the highest dynamic water contact angle (WCA) or the lowest friction coefficient.
Vesicle Adhesion and Fusion Studied by Small-Angle X-Ray Scattering.
Komorowski, Karlo; Salditt, Annalena; Xu, Yihui; Yavuz, Halenur; Brennich, Martha; Jahn, Reinhard; Salditt, Tim
2018-04-24
We have studied the adhesion state (also denoted by docking state) of lipid vesicles as induced by the divalent ions Ca 2+ or Mg 2+ at well-controlled ion concentration, lipid composition, and charge density. The bilayer structure and the interbilayer distance in the docking state were analyzed by small-angle x-ray scattering. A strong adhesion state was observed for DOPC:DOPS vesicles, indicating like-charge attraction resulting from ion correlations. The observed interbilayer separations of ∼1.6 nm agree quantitatively with the predictions of electrostatics in the strong coupling regime. Although this phenomenon was observed when mixing anionic and zwitterionic (or neutral) lipids, pure anionic membranes (DOPS) with highest charge density σ resulted in a direct phase transition to a multilamellar state, which must be accompanied by rupture and fusion of vesicles. To extend the structural assay toward protein-controlled docking and fusion, we have characterized reconstituted N-ethylmaleimide-sensitive factor attachment protein receptors in controlled proteoliposome suspensions by small-angle x-ray scattering. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Synergistic interactions of lipids and myelin basic protein
NASA Astrophysics Data System (ADS)
Hu, Yufang; Doudevski, Ivo; Wood, Denise; Moscarello, Mario; Husted, Cynthia; Genain, Claude; Zasadzinski, Joseph A.; Israelachvili, Jacob
2004-09-01
This report describes force measurements and atomic force microscope imaging of lipid-protein interactions that determine the structure of a model membrane system that closely mimics the myelin sheath. Our results suggest that noncovalent, mainly electrostatic and hydrophobic, interactions are responsible for the multilamellar structure and stability of myelin. We find that myelin basic protein acts as a lipid coupler between two apposed bilayers and as a lipid "hole-filler," effectively preventing defect holes from developing. From our protein-mediated-adhesion and force-distance measurements, we develop a simple quantitative model that gives a reasonably accurate picture of the molecular mechanism and adhesion of bilayer-bridging proteins by means of noncovalent interactions. The results and model indicate that optimum myelin adhesion and stability depend on the difference between, rather than the product of, the opposite charges on the lipid bilayers and myelin basic protein, as well as on the repulsive forces associated with membrane fluidity, and that small changes in any of these parameters away from the synergistically optimum values can lead to large changes in the adhesion or even its total elimination. Our results also show that the often-asked question of which membrane species, the lipids or the proteins, are the "important ones" may be misplaced. Both components work synergistically to provide the adhesion and overall structure. A better appreciation of the mechanism of this synergy may allow for a better understanding of stacked and especially myelin membrane structures and may lead to better treatments for demyelinating diseases such as multiple sclerosis. lipid-protein interactions | myelin membrane structure | membrane adhesion | membrane regeneration/healing | demyelinating diseases
The adhesion performance of epoxy coating on AA6063 treated in Ti/Zr/V based solution
NASA Astrophysics Data System (ADS)
Zhu, Wen; Li, Wenfang; Mu, Songlin; Yang, Yunyu; Zuo, Xi
2016-10-01
An environment-friendly titanium/zirconium/vanadium-based (Ti/Zr/V) conversion coating was prepared on aluminum alloy 6063 (AA6063). The epoxy powder coatings were applied on the AA6063 samples with/without Ti/Zr/V conversion coatings via electrostatic spraying. The morphology and composition of the conversion coating were studied by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The surface free energy components of AA6063 samples were measured by a static contact angle measuring device with Owens method. The adhesion properties of the epoxy coating on AA6063 treated with different conversion times were evaluated using a pull-off tester. The Ti/Zr/V conversion coating was mainly composed of metal oxide (TiO2, ZrO2, V2O5, Al2O3, etc.), metal fluoride (ZrF4, AlF3, etc.) and metal organic complex. The formation time of this conversion coating was reduced to 50 s. After such surface treatment, the samples' surface roughness was increased and the contact angle with water was decreased. Both the surface free energy and the work of adhesion were increased. The adhesion strength between the epoxy coating and AA6063 was enhanced significantly.
Effect of Base Sequence "Defects" on the Electrostatic Potential of Dissolved DNA
NASA Astrophysics Data System (ADS)
Adams, Scott V.; Wagner, Katrina; Kephart, Thomas S.; Edwards, Glenn
1997-11-01
An analytical model of the electrostatic potential surrounding dissolved DNA has been developed. The model consists of an all-atom, mathematically helical structure for DNA, in which the atoms are arranged in infinite lines of discrete point charges on concentric cylindrical surfaces. The surrounding solvent and counterions are treated with the Debye-Huckel approximation (Wagner et al., Biophysical Journal 73, 21-30, 1997). Variation in the electrostatic potential due to structural differences between A, B, and Z conformations and homopolymer base sequence is apparent. The most recent modification to the model exploits the principle of superposition to calculate the potential of DNA with a base sequence containing `defects.' That is, the base sequence is no longer uniform along the polymer. Differences between the potential of homopolymer DNA and the potential of DNA containing base `defects' are immediately obvious. These results may aid in understanding the role of electrostatics in base-sequence specificity exhibited by DNA-binding proteins.
Including diverging electrostatic potential in 3D-RISM theory: The charged wall case.
Vyalov, Ivan; Rocchia, Walter
2018-03-21
Although three-dimensional site-site molecular integral equations of liquids are a powerful tool of the modern theoretical chemistry, their applications to the problem of characterizing the electrical double layer originating at the solid-liquid interface with a macroscopic substrate are severely limited by the fact that an infinitely extended charged plane generates a divergent electrostatic potential. Such potentials cannot be treated within the standard 3D-Reference Interaction Site Model equation solution framework since it leads to functions that are not Fourier transformable. In this paper, we apply a renormalization procedure to overcome this obstacle. We then check the validity and numerical accuracy of the proposed computational scheme on the prototypical gold (111) surface in contact with water/alkali chloride solution. We observe that despite the proposed method requires, to achieve converged charge densities, a higher spatial resolution than that suited to the estimation of biomolecular solvation with either 3D-RISM or continuum electrostatics approaches, it still is computationally efficient. Introducing the electrostatic potential of an infinite wall, which is periodic in 2 dimensions, we avoid edge effects, permit a robust integration of Poisson's equation, and obtain the 3D electrostatic potential profile for the first time in such calculations. We show that the potential within the electrical double layer presents oscillations which are not grasped by the Debye-Hückel and Gouy-Chapman theories. This electrostatic potential deviates from its average of up to 1-2 V at small distances from the substrate along the lateral directions. Applications of this theoretical development are relevant, for example, for liquid scanning tunneling microscopy imaging.
Including diverging electrostatic potential in 3D-RISM theory: The charged wall case
NASA Astrophysics Data System (ADS)
Vyalov, Ivan; Rocchia, Walter
2018-03-01
Although three-dimensional site-site molecular integral equations of liquids are a powerful tool of the modern theoretical chemistry, their applications to the problem of characterizing the electrical double layer originating at the solid-liquid interface with a macroscopic substrate are severely limited by the fact that an infinitely extended charged plane generates a divergent electrostatic potential. Such potentials cannot be treated within the standard 3D-Reference Interaction Site Model equation solution framework since it leads to functions that are not Fourier transformable. In this paper, we apply a renormalization procedure to overcome this obstacle. We then check the validity and numerical accuracy of the proposed computational scheme on the prototypical gold (111) surface in contact with water/alkali chloride solution. We observe that despite the proposed method requires, to achieve converged charge densities, a higher spatial resolution than that suited to the estimation of biomolecular solvation with either 3D-RISM or continuum electrostatics approaches, it still is computationally efficient. Introducing the electrostatic potential of an infinite wall, which is periodic in 2 dimensions, we avoid edge effects, permit a robust integration of Poisson's equation, and obtain the 3D electrostatic potential profile for the first time in such calculations. We show that the potential within the electrical double layer presents oscillations which are not grasped by the Debye-Hückel and Gouy-Chapman theories. This electrostatic potential deviates from its average of up to 1-2 V at small distances from the substrate along the lateral directions. Applications of this theoretical development are relevant, for example, for liquid scanning tunneling microscopy imaging.
Abioye, Amos Olusegun; Kola-Mustapha, Adeola
2016-01-01
The effect of electrostatic interaction between ibuprofen sodium (IbS) and cationic diethylaminoethyl dextran (Ddex), on the tableting properties and ibuprofen release from the conjugate tablet was investigated. Ibuprofen exhibits poor flow, compaction (tableting) and dissolution behavior due to its hydrophobic structure, high cohesive, adhesive and viscoelastic properties therefore it was granulated with cationic Ddex to improve its compression and dissolution characteristics. Electrostatic interaction and hydrogen bonding between IbS and Ddex was confirmed with FT-IR and DSC results showed a stepwise endothermic solid-solid structural transformation from racemic to anhydrous forms between 120 and 175 °C which melted into liquid form at 208.15 °C. The broad and diffused DSC peaks of the conjugate granules as well as the disappearance of ibuprofen melting peak provided evidence for their highly amorphous state. It was evident that Ddex improved the flowability and densification of the granules and increased the mechanical and tensile strengths of the resulting tablets as the tensile strength increased from 0.67 ± 0.0172 to 1.90 ± 0.0038 MPa with increasing Ddex concentration. Both tapping and compression processes showed that the most prominent mechanism of densification were particle slippage, rearrangement and plastic deformation while fragmentation was minimized. Ddex retarded the extent of dissolution in general, indicating potentials for controlled release formulations. Multiple release mechanisms including diffusion; anomalous transport and super case II transport were noted. It was concluded that interaction between ibuprofen sodium and Ddex produced a novel formulation with improved flowability, tableting and dissolution characteristics with potential controlled drug release characteristics dictated by Ddex concentration.
Anandakrishnan, Ramu; Scogland, Tom R. W.; Fenley, Andrew T.; Gordon, John C.; Feng, Wu-chun; Onufriev, Alexey V.
2010-01-01
Tools that compute and visualize biomolecular electrostatic surface potential have been used extensively for studying biomolecular function. However, determining the surface potential for large biomolecules on a typical desktop computer can take days or longer using currently available tools and methods. Two commonly used techniques to speed up these types of electrostatic computations are approximations based on multi-scale coarse-graining and parallelization across multiple processors. This paper demonstrates that for the computation of electrostatic surface potential, these two techniques can be combined to deliver significantly greater speed-up than either one separately, something that is in general not always possible. Specifically, the electrostatic potential computation, using an analytical linearized Poisson Boltzmann (ALPB) method, is approximated using the hierarchical charge partitioning (HCP) multiscale method, and parallelized on an ATI Radeon 4870 graphical processing unit (GPU). The implementation delivers a combined 934-fold speed-up for a 476,040 atom viral capsid, compared to an equivalent non-parallel implementation on an Intel E6550 CPU without the approximation. This speed-up is significantly greater than the 42-fold speed-up for the HCP approximation alone or the 182-fold speed-up for the GPU alone. PMID:20452792
webPIPSA: a web server for the comparison of protein interaction properties
Richter, Stefan; Wenzel, Anne; Stein, Matthias; Gabdoulline, Razif R.; Wade, Rebecca C.
2008-01-01
Protein molecular interaction fields are key determinants of protein functionality. PIPSA (Protein Interaction Property Similarity Analysis) is a procedure to compare and analyze protein molecular interaction fields, such as the electrostatic potential. PIPSA may assist in protein functional assignment, classification of proteins, the comparison of binding properties and the estimation of enzyme kinetic parameters. webPIPSA is a web server that enables the use of PIPSA to compare and analyze protein electrostatic potentials. While PIPSA can be run with downloadable software (see http://projects.eml.org/mcm/software/pipsa), webPIPSA extends and simplifies a PIPSA run. This allows non-expert users to perform PIPSA for their protein datasets. With input protein coordinates, the superposition of protein structures, as well as the computation and analysis of electrostatic potentials, is automated. The results are provided as electrostatic similarity matrices from an all-pairwise comparison of the proteins which can be subjected to clustering and visualized as epograms (tree-like diagrams showing electrostatic potential differences) or heat maps. webPIPSA is freely available at: http://pipsa.eml.org. PMID:18420653
FINITE EXPANSION METHOD FOR THE CALCULATION AND INTERPRETATION OF MOLECULAR ELECTROSTATIC POTENTIALS
Because it is useful to have the molecular electrostatic potential as an element in a complex scheme to assess the toxicity of large molecules, efficient and reliable methods are needed for the calculation and characterization of these potentials. A multicenter multipole expansio...
Pethica, Brian A
2007-12-21
As indicated by Gibbs and made explicit by Guggenheim, the electrical potential difference between two regions of different chemical composition cannot be measured. The Gibbs-Guggenheim Principle restricts the use of classical electrostatics in electrochemical theories as thermodynamically unsound with some few approximate exceptions, notably for dilute electrolyte solutions and concomitant low potentials where the linear limit for the exponential of the relevant Boltzmann distribution applies. The Principle invalidates the widespread use of forms of the Poisson-Boltzmann equation which do not include the non-electrostatic components of the chemical potentials of the ions. From a thermodynamic analysis of the parallel plate electrical condenser, employing only measurable electrical quantities and taking into account the chemical potentials of the components of the dielectric and their adsorption at the surfaces of the condenser plates, an experimental procedure to provide exceptions to the Principle has been proposed. This procedure is now reconsidered and rejected. No other related experimental procedures circumvent the Principle. Widely-used theoretical descriptions of electrolyte solutions, charged surfaces and colloid dispersions which neglect the Principle are briefly discussed. MD methods avoid the limitations of the Poisson-Bolzmann equation. Theoretical models which include the non-electrostatic components of the inter-ion and ion-surface interactions in solutions and colloid systems assume the additivity of dispersion and electrostatic forces. An experimental procedure to test this assumption is identified from the thermodynamics of condensers at microscopic plate separations. The available experimental data from Kelvin probe studies are preliminary, but tend against additivity. A corollary to the Gibbs-Guggenheim Principle is enunciated, and the Principle is restated that for any charged species, neither the difference in electrostatic potential nor the sum of the differences in the non-electrostatic components of the thermodynamic potential difference between regions of different chemical compositions can be measured.
NASA Astrophysics Data System (ADS)
Bergamini, A.; Christen, R.; Motavalli, M.
2007-04-01
The adaptive modification of the mechanical properties of structures has been described as a key to a number of new or enhanced technologies, ranging from prosthetics to aerospace applications. Previous work reported the electrostatic tuning of the bending stiffness of simple sandwich structures by modifying the shear stress transfer parameters at the interface between faces and the compliant core of the sandwich. For this purpose, the choice of a sandwich structure presented considerable experimental advantages, such as the ability to obtain a large increase in stiffness by activating just two interfaces between the faces and the core of the beam. The hypothesis the development of structures with tunable bending stiffness is based on, is that by applying a normal stress at the interface between two layers of a multi-layer structure it is possible to transfer shear stresses from one layer to the other by means of adhesion or friction forces. The normal stresses needed to generate adhesion or friction can be generated by an electrostatic field across a dielectric layer interposed between the layers of a structure. The shear stress in the cross section of the structure (e.g. a beam) subjected to bending forces is transferred in full, if sufficiently large normal stresses and an adequate friction coefficient at the interface are given. Considering beams with a homogeneous cross-section, in which all layers are made of the same material and have the same width, eliminates the need to consider parameters such as the shear modulus of the material and the shear stiffness of the core, thus making the modelling work easier and the results more readily understood. The goal of the present work is to describe a numerical model of a homogeneous multi-layer beam. The model is validated against analytical solutions for the extreme cases of interaction at the interface (no friction and a high level of friction allowing for full shear stress transfer). The obtained model is used to better understand the processes taking place at the interfaces between layers, demonstrate the existence of discrete stiffness states and to find guidance for the selection of suitable dielectric layers for the generation of the electrostatic normal stresses needed for the shear stress transfer at the interface.
Chialvo, Ariel A.; Vlcek, Lukas
2014-11-01
We present a detailed derivation of the complete set of expressions required for the implementation of an Ewald summation approach to handle the long-range electrostatic interactions of polar and ionic model systems involving Gaussian charges and induced dipole moments with a particular application to the isobaricisothermal molecular dynamics simulation of our Gaussian Charge Polarizable (GCP) water model and its extension to aqueous electrolytes solutions. The set comprises the individual components of the potential energy, electrostatic potential, electrostatic field and gradient, the electrostatic force and the corresponding virial. Moreover, we show how the derived expressions converge to known point-based electrostatic counterpartsmore » when the parameters, defining the Gaussian charge and induced-dipole distributions, are extrapolated to their limiting point values. Finally, we illustrate the Ewald implementation against the current reaction field approach by isothermal-isobaric molecular dynamics of ambient GCP water for which we compared the outcomes of the thermodynamic, microstructural, and polarization behavior.« less
You, Changfu; Li, Yuan
2013-03-19
Semidry flue gas desulfurization (FGD) experiments were conducted using rapidly hydrated sorbents with four different adhesive carrier particles: circulation ash from a circulating fluidized bed boiler (CFBB circulation ash), fly ash from the first electrical field of the electrostatic precipitator of a circulating fluidized bed boiler (CFBB ESP ash), fly ash from a chain boiler (chain boiler ash), and river sand smaller than 1 mm. The influences of various adhesive carrier particles and operating conditions on the desulfurization characteristics of the sorbents were investigated, including sprayed water, reaction temperature, and the ratio of calcium to sulfur (Ca/S). The experimental results indicated that the rapidly hydrated sorbents had better desulfurization characteristics by using adhesive carrier particles which possessed better pore, adhesion, and fluidization characteristics. The desulfurization efficiency of the system increased as the reaction temperature decreased, it improved from 35% to 90% as the mass flow rate of the sprayed water increased from 0 to 10 kg/h, and it increased from 65.6% to 82.7% as Ca/S increased from 1.0 to 2.0. Based on these findings, a new semidry circulating fluidized bed (CFB)-FGD system using rapidly hydrated sorbent was developed. Using the rapidly hydrated sorbent, this system uses a cyclone separator instead of an ESP or a bag filter to recycle the sorbent particles, thereby decreasing the system flow resistance, saving investment and operating costs of the solids collection equipment.
Dust on Mars: An Aeolian Threat to Human Exploration?
NASA Technical Reports Server (NTRS)
Marshall, J.
1999-01-01
The NASA HEDS Program is duly concerned for human explorers regarding the potential hazard posed by the ubiquitous dust mantle on Mars. To evaluate properties of dust that could be hazardous to humans, the NMS 2001 Lander payload will include the Mars Environmental Compatibility Assessment (MECA) experiment. This includes optical and atomic-force microscopy to evaluate soil grains for shape and size, wet chemistry to evaluate toxic substances, electrometry to evaluate triboelectric charging, and test-material palets to evaluate electrostatic and magnetic adhesion, and the hardness/abrasiveness of soil grains; these experimental subcomponents are delivered samples by the camera-equipped robotic arm of the lander which will acquire material from depths of 0.5 to 1.0 m in the soil. Data returned by MECA will be of value to both the hEDS and planetary/astrobiology communities. Dust poses a threat to human exploration because the martian system does not hydrologically or chemically remove fine particles that are being continuously generated by thermal, aeolian, and colluvial weathering, and by volcanism and impact over billions of years. The dust is extremely fine-grained, in copious quantities, ubiquitous in distribution, continually mobile, and a source of poorly-grounded static charges -- a suite of characteristics posing a particulate and electrical threat to explorers and their equipment. Dust is mobilized on global and regional scales, but probably also unpredictably and violently at local scales by dust devils. The latter might be expected in great abundance owing to near surface atmospheric instability (dust devils were detected by Pathfinder during its brief lifetime). Preliminary laboratory experiments suggest that space-suit materials subjected to windblown dust may acquire a uniform, highly adhesive dust layer that is also highly cohesive laterally owing to electrostatic forces. This layer will obscure visibility through the helmet visor, penetrate joints and fabrics, change the thermal properties of the suit, and possibly affect electronic/electrical suit functions. It is paramount that future missions address the issue of interparticle forces, and in particular, the role played by ionizing radiation in affecting these forces on Mars.
Dust on Mars: An Aeolian Threat to Human Exploration?
NASA Technical Reports Server (NTRS)
Marshall, J.
1999-01-01
The NASA HEDS Program is duly concerned for human explorers regarding the potential hazard posed by the ubiquitous dust mantle on Mars. To evaluate properties of dust that could be hazardous to humans, the MPS 2001 Lander payload will include the Mars Environmental Compatibility Assessment (MECA) experiment. This includes optical and atomic-force microscopy to evaluate soil grains for shape and size, wet chemistry to evaluate toxic substances, electrometry to evaluate triboelectric charging, and test-material palets to evaluate electrostatic and magnetic adhesion, and the hardness/abrasiveness of soil grains; these experimental subcomponents are delivered samples by the camera-equipped robotic arm of the lander which will acquire material from depths of 0.5 to 1.0 m in the soil. Data returned by MECA will be of value to both the BEDS and planetary/astrobiology communities. Dust poses a threat to human exploration because the martian system does not hydrologically or chemically remove fine particles that are being continuously generated by thermal, aeolian, and colluvial weathering, and by volcanism and impact over billions of years. The dust is extremely fine-grained, in copious quantities, ubiquitous in distribution, continually mobile, and a source of poorly-grounded static charges -- a suite of characteristics posing a particulate and electrical threat to explorers and their equipment. Dust is mobilized on global and regional scales, but probably also unpredictably and violently at local scales by dust devils. The latter might be expected in great abundance owing to near surface atmospheric instability (dust devils were detected by Pathfinder during its brief lifetime). Preliminary laboratory experiments suggest that space-suit materials subjected to windblown dust may acquire a uniform, highly adhesive dust layer that is also highly cohesive laterally owing to electrostatic forces. This layer will obscure visibility through the helmet visor, penetrate joints and fabrics, change the thermal properties of the suit, and possibly affect electronic/electrical suit functions. It is paramount that future missions address the issue of interparticle forces, and in particular, the role played by ionizing radiation in affecting these forces on Mars.
Rocchia, W; Neshich, G
2007-10-05
STING and Java Protein Dossier provide a collection of physical-chemical parameters, describing protein structure, stability, function, and interaction, considered one of the most comprehensive among the available protein databases of similar type. Particular attention in STING is paid to the electrostatic potential. It makes use of DelPhi, a well-known tool that calculates this physical-chemical quantity for biomolecules by solving the Poisson Boltzmann equation. In this paper, we describe a modification to the DelPhi program aimed at integrating it within the STING environment. We also outline how the "amino acid electrostatic potential" and the "surface amino acid electrostatic potential" are calculated (over all Protein Data Bank (PDB) content) and how the corresponding values are made searchable in STING_DB. In addition, we show that the STING and Java Protein Dossier are also capable of providing these particular parameter values for the analysis of protein structures modeled in computers or being experimentally solved, but not yet deposited in the PDB. Furthermore, we compare the calculated electrostatic potential values obtained by using the earlier version of DelPhi and those by STING, for the biologically relevant case of lysozyme-antibody interaction. Finally, we describe the STING capacity to make queries (at both residue and atomic levels) across the whole PDB, by looking at a specific case where the electrostatic potential parameter plays a crucial role in terms of a particular protein function, such as ligand binding. BlueStar STING is available at http://www.cbi.cnptia.embrapa.br.
Limiting assumptions in molecular modeling: electrostatics.
Marshall, Garland R
2013-02-01
Molecular mechanics attempts to represent intermolecular interactions in terms of classical physics. Initial efforts assumed a point charge located at the atom center and coulombic interactions. It is been recognized over multiple decades that simply representing electrostatics with a charge on each atom failed to reproduce the electrostatic potential surrounding a molecule as estimated by quantum mechanics. Molecular orbitals are not spherically symmetrical, an implicit assumption of monopole electrostatics. This perspective reviews recent evidence that requires use of multipole electrostatics and polarizability in molecular modeling.
2017-01-01
The high charge density of nucleic acids and resulting ion atmosphere profoundly influence the conformational landscape of RNA and DNA and their association with small molecules and proteins. Electrostatic theories have been applied to quantitatively model the electrostatic potential surrounding nucleic acids and the effects of the surrounding ion atmosphere, but experimental measures of the potential and tests of these models have often been complicated by conformational changes and multisite binding equilibria, among other factors. We sought a simple system to further test the basic predictions from electrostatics theory and to measure the energetic consequences of the nucleic acid electrostatic field. We turned to a DNA system developed by Bevilacqua and co-workers that involves a proton as a ligand whose binding is accompanied by formation of an internal AH+·C wobble pair [Siegfried, N. A., et al. Biochemistry, 2010, 49, 3225]. Consistent with predictions from polyelectrolyte models, we observed logarithmic dependences of proton affinity versus salt concentration of −0.96 ± 0.03 and −0.52 ± 0.01 with monovalent and divalent cations, respectively, and these results help clarify prior results that appeared to conflict with these fundamental models. Strikingly, quantitation of the ion atmosphere content indicates that divalent cations are preferentially lost over monovalent cations upon A·C protonation, providing experimental indication of the preferential localization of more highly charged cations to the inner shell of the ion atmosphere. The internal AH+·C wobble system further allowed us to parse energetic contributions and extract estimates for the electrostatic potential at the position of protonation. The results give a potential near the DNA surface at 20 mM Mg2+ that is much less substantial than at 20 mM K+ (−120 mV vs −210 mV). These values and difference are similar to predictions from theory, and the potential is substantially reduced at higher salt, also as predicted; however, even at 1 M K+ the potential remains substantial, counter to common assumptions. The A·C protonation module allows extraction of new properties of the ion atmosphere and provides an electrostatic meter that will allow local electrostatic potential and energetics to be measured within nucleic acids and their complexes with proteins. PMID:28489947
AN ELECTROSTATIC PRECIPITATOR BACKUP FOR SAMPLING SYSTEMS
The report describes a program carried out to design and evaluate the performance of an electrostatic collector to be used as an alternative to filters as a fine particle collector. Potential advantages of an electrostatic precipitator are low pressure drop and high capacity. Pot...
Lindström, Fredrick; Williamson, Philip T F; Gröbner, Gerhard
2005-05-11
Exploiting naturally abundant (14)N and (31)P nuclei by high-resolution MAS NMR (magic angle spinning nuclear magnetic resonance) provides a molecular view of the electrostatic potential present at the surface of biological model membranes, the electrostatic charge distribution across the membrane interface, and changes that occur upon peptide association. The spectral resolution in (31)P and (14)N MAS NMR spectra is sufficient to probe directly the negatively charged phosphate and positively charged choline segment of the electrostatic P(-)-O-CH(2)-CH(2)-N(+)(CH(3))(3) headgroup dipole of zwitterionic DMPC (dimyristoylphosphatidylcholine) in mixed-lipid systems. The isotropic shifts report on the size of the potential existing at the phosphate and ammonium group within the lipid headgroup while the chemical shielding anisotropy ((31)P) and anisotropic quadrupolar interaction ((14)N) characterize changes in headgroup orientation in response to surface potential. The (31)P/(14)N isotropic chemical shifts for DMPC show opposing systematic changes in response to changing membrane potential, reflecting the size of the electrostatic potential at opposing ends of the P(-)-N(+) dipole. The orientational response of the DMPC lipid headgroup to electrostatic surface variations is visible in the anisotropic features of (14)N and (31)P NMR spectra. These features are analyzed in terms of a modified "molecular voltmeter" model, with changes in dynamic averaging reflecting the tilt of the C(beta)-N(+)(CH)(3) choline and PO(4)(-) segment. These properties have been exploited to characterize the changes in surface potential upon the binding of nociceptin to negatively charged membranes, a process assumed to proceed its agonistic binding to its opoid G-protein coupled receptor.
Preliminary Results from Ultrahigh Vacuum and Cryogenic Dust Adhesion Experiments
NASA Astrophysics Data System (ADS)
Perko, H. A.; Green, J. R.; Nelson, J. D.
2000-10-01
Dust adhesion is a major factor affecting the design and performance of spacecraft for planetary surface and comet exploration. Dust adhesion is caused by a combination of electrostatic and van der Waals forces. A theoretical model has been constructed that indicates the magnitude of these forces is a function of pressure, temperature, and ambient gas composition1. A laboratory investigation is in progress to verify the theoretical model over a broad range of planetary environments from Earth-like to comet-like conditions. The experiments being conducted consist of depositing dust onto various spacecraft materials under different environmental conditions and attempting to mechanically shake the dust off to obtain a measure of adhesion. More specifically, the materials being used include pairs of aluminum, glass, stainless steel, and black painted specimens. One of the specimens from each pair is mounted to an electrometer and is used to witness accumulated dust mass and charge. The other specimen from each pair is affixed to a vibrating cantilever beam used to induce dust separation. Dust is sifted onto the specimens in the vacuum and cryogenic chamber. Dust adhesion force is determined from the amplitude and frequency of beam vibrations and the mass and size of dust particles. In order to enable comparison with the theoretical model, which assumes ideal spheres resting on a surface, the predominant dust material being used consists of 50 to 70 μ m glass spheres. This size glass sphere exerts an adhesive force that is capable of being measured by the experimental apparatus. The intent of this research is to increase our fundamental understanding of the effects of environmental conditions on dust adhesion and improve our ability to develop suitable dust mitigation techniques for the exploration of comet, asteroid and planetary surfaces. 1 Perko, H.A. (1998) ``Surface Cleanliness Based Dust Adhesion Model" Proceedings of the International Conference on Construction, Operations and Sciences in Space, American Society of Civil Engineers, Albuquerque, NM.
Adhesive interactions of biologically inspired soft condensed matter
NASA Astrophysics Data System (ADS)
Anderson, Travers Heath
Improving our fundamental understanding of the surface interactions between complex materials is needed to improve existing materials and products as well as develop new ones. The object of this research was to apply the measurements of fundamental surface interactions to real world problems facing chemical engineers and materials scientists. I focus on three systems of biologically inspired soft condensed matter, with an emphasis on the adhesive interactions between them. The formation of phospholipid bilayers of the neutral lipid, dimyristoyl-phosphatidylcholine (DMPC) on silica surfaces from vesicles in aqueous solutions was investigated. The process involves five stages: vesicle adhesion to the substrate surfaces, steric interactions with neighboring vesicles, rupture, spreading via hydrophobic fusion of bilayer edges, and ejection of excess lipid, trapped water and ions into the solution. The forces between DMPC bilayers and silica were measured in the Surface Forces Apparatus (SFA) in phosphate buffered saline. The adhesion energy was found to be much stronger than the expected adhesion predicted by van der Waals interactions, likely due to an attractive electrostatic interaction. The effects of non-adsorbing cationic polyelectrolytes on the interactions between supported cationic surfactant bilayers were studied using the SFA. Addition of polyelectrolyte has a number of effects on the interactions including the induction of a depletion-attraction and screening of the double-layer repulsion. Calculations are made that allow for the conversion of the adhesion energy measured in the SFA to the overall interaction energy between vesicles in solution, which determines the stability behavior of vesicle dispersions. Mussels use a variety of dihydroxyphenyl-alanine (DOPA) rich proteins specifically tailored to adhering to wet surfaces. The SFA was used to study the role of DOPA on the adhesive properties of these proteins to TiO 2 and mica using both real mussel foot proteins (mfp) and a synthetic polypeptide analogue of mfp-3. Adhesion increased with DOPA concentration, although oxidation of DOPA reduces the adhesive capabilities of the proteins. Comparison of the two shows that DOPA is responsible for at least 80% of the adhesion energy of mfp-3 and can be attributed to DOPA groups favorably oriented within or at the interface of these films.
Sudhagar, P; Asokan, K; Jung, June Hyuk; Lee, Yong-Gun; Park, Suil; Kang, Yong Soo
2011-12-01
A compact TiO2 layer (~1.1 μm) prepared by electrostatic spray deposition (ESD) and swift heavy ion beam (SHI) irradiation using oxygen ions onto a fluorinated tin oxide (FTO) conducting substrate showed enhancement of photovoltaic performance in dye-sensitized solar cells (DSSCs). The short circuit current density (Jsc = 12.2 mA cm(-2)) of DSSCs was found to increase significantly when an ESD technique was applied for fabrication of the TiO2 blocking layer, compared to a conventional spin-coated layer (Jsc = 8.9 mA cm(-2)). When SHI irradiation of oxygen ions of fluence 1 × 10(13) ions/cm(2) was carried out on the ESD TiO2, it was found that the energy conversion efficiency improved mainly due to the increase in open circuit voltage of DSSCs. This increased energy conversion efficiency seems to be associated with improved electronic energy transfer by increasing the densification of the blocking layer and improving the adhesion between the blocking layer and the FTO substrate. The adhesion results from instantaneous local melting of the TiO2 particles. An increase in the electron transport from the blocking layer may also retard the electron recombination process due to the oxidized species present in the electrolyte. These findings from novel treatments using ESD and SHI irradiation techniques may provide a new tool to improve the photovoltaic performance of DSSCs.
2011-01-01
A compact TiO2 layer (~1.1 μm) prepared by electrostatic spray deposition (ESD) and swift heavy ion beam (SHI) irradiation using oxygen ions onto a fluorinated tin oxide (FTO) conducting substrate showed enhancement of photovoltaic performance in dye-sensitized solar cells (DSSCs). The short circuit current density (Jsc = 12.2 mA cm-2) of DSSCs was found to increase significantly when an ESD technique was applied for fabrication of the TiO2 blocking layer, compared to a conventional spin-coated layer (Jsc = 8.9 mA cm-2). When SHI irradiation of oxygen ions of fluence 1 × 1013 ions/cm2 was carried out on the ESD TiO2, it was found that the energy conversion efficiency improved mainly due to the increase in open circuit voltage of DSSCs. This increased energy conversion efficiency seems to be associated with improved electronic energy transfer by increasing the densification of the blocking layer and improving the adhesion between the blocking layer and the FTO substrate. The adhesion results from instantaneous local melting of the TiO2 particles. An increase in the electron transport from the blocking layer may also retard the electron recombination process due to the oxidized species present in the electrolyte. These findings from novel treatments using ESD and SHI irradiation techniques may provide a new tool to improve the photovoltaic performance of DSSCs. PMID:27502653
Krivosheeva, Olga; Dedinaite, Andra; Claesson, Per M
2013-10-15
Mussel adhesive proteins are of great interest in many applications due to their ability to bind strongly to many types of surfaces under water. Effective use such proteins, for instance the Mytilus edulis foot protein - Mefp-1, for surface modification requires achievement of a large adsorbed amount and formation of a layer that is resistant towards desorption under changing conditions. In this work we compare the adsorbed amount and layer properties obtained by using a sample containing small Mefp-1 aggregates with that obtained by using a non-aggregated sample. We find that the use of the sample containing small aggregates leads to higher adsorbed amount, larger layer thickness and similar water content compared to what can be achieved with a non-aggregated sample. The layer formed by the aggregated Mefp-1 was, after removal of the protein from bulk solution, exposed to aqueous solutions with high ionic strength (up to 1M NaCl) and to solutions with low pH in order to reduce the electrostatic surface affinity. It was found that the preadsorbed Mefp-1 layer under all conditions explored was significantly more resistant towards desorption than a layer built by a synthetic cationic polyelectrolyte with similar charge density. These results suggest that the non-electrostatic surface affinity for Mefp-1 is larger than for the cationic polyelectrolyte. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Liao, Wei-Ju; Tsao, Ku-Chi; Yang, Ruey-Bing
2016-03-01
SCUBE1 (S1), a secreted and membrane-bound glycoprotein, has a modular protein structure composed of an N-terminal signal peptide sequence followed by nine epidermal growth factor (EGF)-like repeats, a spacer region and three cysteine-rich (CR) motifs with multiple potential N-linked glycosylation sites, and one CUB domain at the C-terminus. Soluble S1 is a biomarker of platelet activation but an active participant of thrombosis via its adhesive EGF-like repeats, whereas its membrane-associated form acts as a bone morphogenetic protein (BMP) co-receptor in promoting BMP signal activity. However, the mechanism responsible for the membrane tethering and the biological importance of N-glycosylation of S1 remain largely unknown. In the present study, molecular mapping analysis identified a polycationic segment (amino acids 501-550) in the spacer region required for its membrane tethering via electrostatic interactions possibly with the anionic heparan sulfate proteoglycans. Furthermore, deglycosylation by peptide N-glycosidase F treatment revealed that N-glycans within the CR motif are essential for membrane recruitment through lectin-mediated surface retention. Injection of mRNA encoding zebrafish wild-type but not N-glycan-deficient scube1 restores the expression of haematopoietic and erythroid markers (scl and gata1) in scube1-knockdown embryos. We describe novel mechanisms in targeting S1 to the plasma membrane and demonstrate that N-glycans are required for S1 functions during primitive haematopoiesis in zebrafish. © 2016 Authors; published by Portland Press Limited.
Electrostatic orientation of the electron-transfer complex between plastocyanin and cytochrome c.
Roberts, V A; Freeman, H C; Olson, A J; Tainer, J A; Getzoff, E D
1991-07-15
To understand the specificity and efficiency of protein-protein interactions promoting electron transfer, we evaluated the role of electrostatic forces in precollision orientation by the development of two new methods, computer graphics alignment of protein electrostatic fields and a systematic orientational search of intermolecular electrostatic energies for two proteins at present separation distances. We applied these methods to the plastocyanin/cytochrome c interaction, which is faster than random collision, but too slow for study by molecular dynamics techniques. Significant electrostatic potentials were concentrated on one-fourth (969 A2) of the plastocyanin surface, with the greatest negative potential centered on the Tyr-83 hydroxyl within the acidic patch, and on one-eighth (632 A2) of the cytochrome c surface, with the greatest positive potential centered near the exposed heme edge. Coherent electrostatic fields occurred only over these regions, suggesting that local, rather than global, charge complementarity controls productive recognition. The three energetically favored families of pre-collision orientations all directed the positive region surrounding the heme edge of cytochrome c toward the acidic patch of plastocyanin but differed in heme plane orientation. Analysis of electrostatic fields, electrostatic energies of precollision orientations with 12 and 6 A separation distances, and surface topographies suggested that the favored orientations should converge to productive complexes promoting a single electron-transfer pathway from the cytochrome c heme edge to Tyr-83 of plastocyanin. Direct interactions of the exposed Cu ligand in plastocyanin with the cytochrome c heme edge are not unfavorable sterically or electrostatically but should occur no faster than randomly, indicating that this is not the primary pathway for electron transfer.
Using Programmable Calculators to Solve Electrostatics Problems.
ERIC Educational Resources Information Center
Yerian, Stephen C.; Denker, Dennis A.
1985-01-01
Provides a simple routine which allows first-year physics students to use programmable calculators to solve otherwise complex electrostatic problems. These problems involve finding electrostatic potential and electric field on the axis of a uniformly charged ring. Modest programing skills are required of students. (DH)
A Nonlinear Elasticity Model of Macromolecular Conformational Change Induced by Electrostatic Forces
Zhou, Y. C.; Holst, Michael; McCammon, J. Andrew
2008-01-01
In this paper we propose a nonlinear elasticity model of macromolecular conformational change (deformation) induced by electrostatic forces generated by an implicit solvation model. The Poisson-Boltzmann equation for the electrostatic potential is analyzed in a domain varying with the elastic deformation of molecules, and a new continuous model of the electrostatic forces is developed to ensure solvability of the nonlinear elasticity equations. We derive the estimates of electrostatic forces corresponding to four types of perturbations to an electrostatic potential field, and establish the existance of an equilibrium configuration using a fixed-point argument, under the assumption that the change in the ionic strength and charges due to the additional molecules causing the deformation are sufficiently small. The results are valid for elastic models with arbitrarily complex dielectric interfaces and cavities, and can be generalized to large elastic deformation caused by high ionic strength, large charges, and strong external fields by using continuation methods. PMID:19461946
Geometric and electrostatic modeling using molecular rigidity functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Xia, Kelin; Wei, Guowei
Geometric and electrostatic modeling is an essential component in computational biophysics and molecular biology. Commonly used geometric representations admit geometric singularities such as cusps, tips and self-intersecting facets that lead to computational instabilities in the molecular modeling. Our present work explores the use of flexibility and rigidity index (FRI), which has a proved superiority in protein B-factor prediction, for biomolecular geometric representation and associated electrostatic analysis. FRI rigidity surfaces are free of geometric singularities. We propose a rigidity based Poisson–Boltzmann equation for biomolecular electrostatic analysis. These approaches to surface and electrostatic modeling are validated by a set of 21 proteins.more » Our results are compared with those of established methods. Finally, being smooth and analytically differentiable, FRI rigidity functions offer excellent curvature analysis, which characterizes concave and convex regions on protein surfaces. Polarized curvatures constructed by using the product of minimum curvature and electrostatic potential is shown to predict potential protein–ligand binding sites.« less
Geometric and electrostatic modeling using molecular rigidity functions
Mu, Lin; Xia, Kelin; Wei, Guowei
2017-03-01
Geometric and electrostatic modeling is an essential component in computational biophysics and molecular biology. Commonly used geometric representations admit geometric singularities such as cusps, tips and self-intersecting facets that lead to computational instabilities in the molecular modeling. Our present work explores the use of flexibility and rigidity index (FRI), which has a proved superiority in protein B-factor prediction, for biomolecular geometric representation and associated electrostatic analysis. FRI rigidity surfaces are free of geometric singularities. We propose a rigidity based Poisson–Boltzmann equation for biomolecular electrostatic analysis. These approaches to surface and electrostatic modeling are validated by a set of 21 proteins.more » Our results are compared with those of established methods. Finally, being smooth and analytically differentiable, FRI rigidity functions offer excellent curvature analysis, which characterizes concave and convex regions on protein surfaces. Polarized curvatures constructed by using the product of minimum curvature and electrostatic potential is shown to predict potential protein–ligand binding sites.« less
Temperature Controlled Electrostatic Disorder and Polymorphism in Ultrathin Films of α-Sexithiophene
NASA Astrophysics Data System (ADS)
Hoffman, Benjamin; Jafari, Sara; McAfee, Terry; Apperson, Aubrey; O'Connor, Brendan; Dougherty, Daniel
Competing phases in well-ordered alpha-sexithiophene (α-6T) are shown to contribute to electrostatic disorder observed by differences in surface potential between mono- and bi-layer crystallites. Ultrathin films are of key importance to devices in which charge transport occurs in the first several monolayers nearest to a dielectric interface (e.g. thin film transistors) and complex structures in this regime impact the general electrostatic landscape. This study is comprised of 1.5 ML sample crystals grown via organic molecular beam deposition onto a temperature controlled hexamethyldisilazane (HMDS) passivated SiO2 substrate to produce well-ordered layer-by-layer type growth. Sample topography and surface potential were characterized simultaneously using Kelvin Probe Force Microscopy to then isolate contact potential differences by first and second layer α-6T regions. Films grown on 70° C, 120° C substrates are observed to have a bilayer with lower, higher potential than the monolayer, respectively. Resulting interlayer potential differences are a clear source of electrostatic disorder and are explained as subtle shifts in tilt-angles between layers relative to the substrate. These empirical results continue our understanding of how co-existing orientations contribute to the complex electrostatics influencing charge transport. NSF CAREER award DMR-1056861.
Anandakrishnan, Ramu; Scogland, Tom R W; Fenley, Andrew T; Gordon, John C; Feng, Wu-chun; Onufriev, Alexey V
2010-06-01
Tools that compute and visualize biomolecular electrostatic surface potential have been used extensively for studying biomolecular function. However, determining the surface potential for large biomolecules on a typical desktop computer can take days or longer using currently available tools and methods. Two commonly used techniques to speed-up these types of electrostatic computations are approximations based on multi-scale coarse-graining and parallelization across multiple processors. This paper demonstrates that for the computation of electrostatic surface potential, these two techniques can be combined to deliver significantly greater speed-up than either one separately, something that is in general not always possible. Specifically, the electrostatic potential computation, using an analytical linearized Poisson-Boltzmann (ALPB) method, is approximated using the hierarchical charge partitioning (HCP) multi-scale method, and parallelized on an ATI Radeon 4870 graphical processing unit (GPU). The implementation delivers a combined 934-fold speed-up for a 476,040 atom viral capsid, compared to an equivalent non-parallel implementation on an Intel E6550 CPU without the approximation. This speed-up is significantly greater than the 42-fold speed-up for the HCP approximation alone or the 182-fold speed-up for the GPU alone. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Stigmatellin Probes the Electrostatic Potential in the QB Site of the Photosynthetic Reaction Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerencsér, László; Boros, Bogáta; Derrien, Valerie
2015-01-01
The electrostatic potential in the secondary quinone (QB) binding site of the reaction center (RC) of the photosynthetic bacterium Rhodobacter sphaeroides determines the rate and free energy change (driving force) of electron transfer to QB. It is controlled by the ionization states of residues in a strongly interacting cluster around the QB site. Reduction of the QB induces change of the ionization states of residues and binding of protons from the bulk. Stigmatellin, an inhibitor of the mitochondrial and photosynthetic respiratory chain, has been proven to be a unique voltage probe of the QB binding pocket. It binds to themore » QB site with high affinity, and the pK value of its phenolic group monitors the local electrostatic potential with high sensitivity. Investigations with different types of detergent as a model system of isolated RC revealed that the pK of stigmatellin was controlled overwhelmingly by electrostatic and slightly by hydrophobic interactions. Measurements showed a high pK value (>11) of stigmatellin in the QB pocket of the dark-state wild-type RC, indicating substantial negative potential. When the local electrostatics of the QB site was modulated by a single mutation, L213Asp/Ala, or double mutations, L213Asp-L212Glu/Ala-Ala (AA), the pK of stigmatellin dropped to 7.5 and 7.4, respectively, which corresponds to a >210 mV increase in the electrostatic potential relative to the wild-type RC. This significant pK drop (DpK > 3.5) decreased dramatically to (DpK > 0.75) in the RC of the compensatory mutant (AAþM44Asn/AAþM44Asp). Our results indicate that the L213Asp is the most important actor in the control of the electrostatic potential in the QB site of the dark-state wild-type RC, in good accordance with conclusions of former studies using theoretical calculations or light-induced charge recombination assay.« less
NASA Astrophysics Data System (ADS)
Morita, Hiroshi; Hatanaka, Ayumu; Yokosuka, Toshiyuki; Seki, Yoshitaka; Tsumuraya, Yoshiaki; Doi, Motomichi
The measurement system of the surface electrostatic potential on a solid insulation board in vacuum has been developed. We used this system to measure the electrostatic potential distribution of the surface of a borosilicate glass plate applied a high voltage. A local increase in the electric field was observed. It is considered that this phenomenon is caused by a positive electrostatic charge generated by a secondary emission of field emission electrons from an electrode. On the other hand, a local increase in the electric field was not observed on a glass plate coated with silica particles and a glass plate roughened by sandblast. We reasoned that this could be because the electrons were trapped by the roughness of the surface. It is considered that these phenomena make many types of equipment using the vacuum insulation more reliable.
Electrostatic Similarity Analysis of Human β-Defensin Binding in the Melanocortin System
Nix, Matthew A.; Kaelin, Christopher B.; Palomino, Rafael; Miller, Jillian L.; Barsh, Gregory S.; Millhauser, Glenn L.
2015-01-01
Summary The β-defensins are a class of small cationic proteins that serve as components of numerous systems in vertebrate biology, including the immune and melanocortin systems. Human β-defensin 3 (HBD3), which is produced in the skin, has been found to bind to melanocortin receptors 1 and 4 through complementary electrostatics, a unique mechanism of ligand-receptor interaction. This finding indicates that electrostatics alone, and not specific amino acid contact points, could be sufficient for function in this ligand-receptor system, and further suggests that other small peptide ligands could interact with these receptors in a similar fashion. Here, we conducted molecular-similarity analyses and functional studies of additional members of the human β-defensin family, examining their potential as ligands of melanocortin-1 receptor, through selection based on their electrostatic similarity to HBD3. Using Poisson-Boltzmann electrostatic calculations and molecular-similarity analysis, we identified members of the human β-defensin family that are both similar and dissimilar to HBD3 in terms of electrostatic potential. Synthesis and functional testing of a subset of these β-defensins showed that peptides with an HBD3-like electrostatic character bound to melanocortin receptors with high affinity, whereas those that were anticorrelated to HBD3 showed no binding affinity. These findings expand on the central role of electrostatics in the control of this ligand-receptor system and further demonstrate the utility of employing molecular-similarity analysis. Additionally, we identified several new potential ligands of melanocortin-1 receptor, which may have implications for our understanding of the role defensins play in melanocortin physiology. PMID:26536271
Conservation and Role of Electrostatics in Thymidylate Synthase.
Garg, Divita; Skouloubris, Stephane; Briffotaux, Julien; Myllykallio, Hannu; Wade, Rebecca C
2015-11-27
Conservation of function across families of orthologous enzymes is generally accompanied by conservation of their active site electrostatic potentials. To study the electrostatic conservation in the highly conserved essential enzyme, thymidylate synthase (TS), we conducted a systematic species-based comparison of the electrostatic potential in the vicinity of its active site. Whereas the electrostatics of the active site of TS are generally well conserved, the TSs from minimal organisms do not conform to the overall trend. Since the genomes of minimal organisms have a high thymidine content compared to other organisms, the observation of non-conserved electrostatics was surprising. Analysis of the symbiotic relationship between minimal organisms and their hosts, and the genetic completeness of the thymidine synthesis pathway suggested that TS from the minimal organism Wigglesworthia glossinidia (W.g.b.) must be active. Four residues in the vicinity of the active site of Escherichia coli TS were mutated individually and simultaneously to mimic the electrostatics of W.g.b TS. The measured activities of the E. coli TS mutants imply that conservation of electrostatics in the region of the active site is important for the activity of TS, and suggest that the W.g.b. TS has the minimal activity necessary to support replication of its reduced genome.
Adhesion between a rutile surface and a polyimide: a coarse grained molecular dynamics study
NASA Astrophysics Data System (ADS)
Kumar, Arun; Sudarkodi, V.; Parandekar, Priya V.; Sinha, Nishant K.; Prakash, Om; Nair, Nisanth N.; Basu, Sumit
2018-04-01
Titanium, due to its high strength to weight ratio and polyimides, due to their excellent thermal stability are being increasingly used in aerospace applications. We investigate the bonding between a (110) rutile substrate and a popular commercial polyimide, PMR-15, starting from the known atomic structure of the rutile substrate and the architecture of the polymer. First, the long PMR-15 molecule is divided into four fragments and an all-atom non-bonded forcefield governing the interaction between PMR-15 and a rutile substrate is developed. To this end, parameters of Buckingham potential for interaction between each atom in the fragments and the rutile surface are fitted, so as to ensure that the sum of non-bonded and electrostatic interaction energy between the substrate and a large number of configurations of each fragment, calculated by the quantum mechanical route and obtained from the fitted potential, is closely matched. Further, two coarse grained models of PMR-15 are developed—one for interaction between two coarse grained PMR-15 molecules and another for that between a coarse grained PMR-15 and the rutile substrate. Molecular dynamics simulations with the coarse grained models yields a traction separation law—a very useful tool for conducting continuum level finite element simulations of rutile-PMR-15 joints—governing the normal separation of a PMR-15 block from a flat rutile substrate. Moreover, detailed information about the affinity of various fragments to the substrate are also obtained. In fact, though the separation energy between rutile and PMR-15 turns out to be rather low, our analysis—with merely the molecular architecture of the polyimide as the starting point—provides a scheme for in-silico prediction of adhesion energies for new polyimide formulations.
Neves-Petersen, Maria Teresa; Petersen, Steffen B
2003-01-01
The molecular understanding of the initial interaction between a protein and, e.g., its substrate, a surface or an inhibitor is essentially an understanding of the role of electrostatics in intermolecular interactions. When studying biomolecules it is becoming increasingly evident that electrostatic interactions play a role in folding, conformational stability, enzyme activity and binding energies as well as in protein-protein interactions. In this chapter we present the key basic equations of electrostatics necessary to derive the equations used to model electrostatic interactions in biomolecules. We will also address how to solve such equations. This chapter is divided into two major sections. In the first part we will review the basic Maxwell equations of electrostatics equations called the Laws of Electrostatics that combined will result in the Poisson equation. This equation is the starting point of the Poisson-Boltzmann (PB) equation used to model electrostatic interactions in biomolecules. Concepts as electric field lines, equipotential surfaces, electrostatic energy and when can electrostatics be applied to study interactions between charges will be addressed. In the second part we will arrive at the electrostatic equations for dielectric media such as a protein. We will address the theory of dielectrics and arrive at the Poisson equation for dielectric media and at the PB equation, the main equation used to model electrostatic interactions in biomolecules (e.g., proteins, DNA). It will be shown how to compute forces and potentials in a dielectric medium. In order to solve the PB equation we will present the continuum electrostatic models, namely the Tanford-Kirkwood and the modified Tandord-Kirkwood methods. Priority will be given to finding the protonation state of proteins prior to solving the PB equation. We also present some methods that can be used to map and study the electrostatic potential distribution on the molecular surface of proteins. The combination of graphical visualisation of the electrostatic fields combined with knowledge about the location of key residues on the protein surface allows us to envision atomic models for enzyme function. Finally, we exemplify the use of some of these methods on the enzymes of the lipase family.
Influence of adhesive rough surface contact on microswitches
NASA Astrophysics Data System (ADS)
Wu, Ling; Rochus, V.; Noels, L.; Golinval, J. C.
2009-12-01
Stiction is a major failure mode in microelectromechanical systems (MEMS). Undesirable stiction, which results from contact between surfaces, threatens the reliability of MEMS severely as it breaks the actuation function of MEMS switches, for example. Although it may be possible to avoid stiction by increasing restoring forces using high spring constants, it follows that the actuation voltage has also to be increased significantly, which reduces the efficiency. In our research, an electrostatic-structural analysis is performed to estimate the proper design range of the equivalent spring constant, which is the main factor of restoring force in MEMS switches. The upper limit of equivalent spring constant is evaluated based on the initial gap width, the dielectric thickness, and the expected actuation voltage. The lower limit is assessed on the value of adhesive forces between the two contacting rough surfaces. The MEMS devices studied here are assumed to work in a dry environment. In these operating conditions only the van der Waals forces have to be considered for adhesion. A statistical model is used to simulate the rough surface, and the Maugis's model is combined with Kim's expansion to calculate adhesive forces. In the resulting model, the critical value of the spring stiffness depends on the material and surface properties, such as the elastic modulus, surface energy, and surface roughness. The aim of this research is to propose simple rules for design purposes.
Wu, Ming; He, Jia; Ren, Xiao; Cai, Wen-Sheng; Fang, Yong-Chun; Feng, Xi-Zeng
2014-04-01
The effect of physicochemical surface properties and chemical structure on the attachment and viability of bacteria and mammalian cells has been extensively studied for the development of biologically relevant applications. In this study, we report a new approach that uses chlorogenic acid (CA) to modify the surface wettability, anti-bacterial activity and cell adhesion properties of polydimethylsiloxane (PDMS). The chemical structure of the surface was obtained by X-ray photoelectron spectroscopy (XPS), the roughness was measured by atomic force microscopy (AFM), and the water contact angle was evaluated for PDMS substrates both before and after CA modification. Molecular modelling showed that the modification was predominately driven by van der Waals and electrostatic interactions. The exposed quinic-acid moiety improved the hydrophilicity of CA-modified PDMS substrates. The adhesion and viability of E. coli and HeLa cells were investigated using fluorescence and phase contrast microscopy. Few viable bacterial cells were found on CA-coated PDMS surfaces compared with unmodified PDMS surfaces. Moreover, HeLa cells exhibited enhanced adhesion and increased spreading on the modified PDMS surface. Thus, CA-coated PDMS surfaces reduced the ratio of viable bacterial cells and increased the adhesion of HeLa cells. These results contribute to the purposeful design of anti-bacterial surfaces for medical device use. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
2000-01-01
John Marshall, an investigator at Ames Research Center and a principal investigator in the microgravity fluid physics program, is studying the adhesion and cohesion of particles in order to shed light on how granular systems behave. These systems include everything from giant dust clouds that form planets to tiny compressed pellets, such as the ones you swallow as tablets. This knowledge should help us control the grains, dust, and powders that we encounter or use on a daily basis. Marshall investigated electrostatic charge in microgravity on the first and second U.S. Microgravity Laboratory shuttle missions to see how grains aggregate, or stick together. With gravity's effects eliminated on orbit, Marshall found that the grains of sand that behaved ever so freely on Earth now behaved like flour. They would just glom together in clumps and were quite difficult to disperse. That led to an understanding of the prevalence of the electrostatic forces. The granules wanted to aggregate as little chains, like little hairs, and stack end to end. Some of the chains had 20 or 30 grains. This phenomenon indicated that another force, what Marshall believes to be an electrostatic dipole, was at work.(The diagram on the right emphasizes the aggregating particles in the photo on the left, taken during the USML-2 mission in 1995.)
2000-05-15
John Marshall, an investigator at Ames Research Center and a principal investigator in the microgravity fluid physics program, is studying the adhesion and cohesion of particles in order to shed light on how granular systems behave. These systems include everything from giant dust clouds that form planets to tiny compressed pellets, such as the ones you swallow as tablets. This knowledge should help us control the grains, dust, and powders that we encounter or use on a daily basis. Marshall investigated electrostatic charge in microgravity on the first and second U.S. Microgravity Laboratory shuttle missions to see how grains aggregate, or stick together. With gravity's effects eliminated on orbit, Marshall found that the grains of sand that behaved ever so freely on Earth now behaved like flour. They would just glom together in clumps and were quite difficult to disperse. That led to an understanding of the prevalence of the electrostatic forces. The granules wanted to aggregate as little chains, like little hairs, and stack end to end. Some of the chains had 20 or 30 grains. This phenomenon indicated that another force, what Marshall believes to be an electrostatic dipole, was at work.(The diagram on the right emphasizes the aggregating particles in the photo on the left, taken during the USML-2 mission in 1995.)
Andriessen, Rob; Snetselaar, Janneke; Suer, Remco A.; Osinga, Anne J.; Deschietere, Johan; Lyimo, Issa N.; Mnyone, Ladslaus L.; Brooke, Basil D.; Ranson, Hilary; Knols, Bart G. J.; Farenhorst, Marit
2015-01-01
Insecticide resistance poses a significant and increasing threat to the control of malaria and other mosquito-borne diseases. We present a novel method of insecticide application based on netting treated with an electrostatic coating that binds insecticidal particles through polarity. Electrostatic netting can hold small amounts of insecticides effectively and results in enhanced bioavailability upon contact by the insect. Six pyrethroid-resistant Anopheles mosquito strains from across Africa were exposed to similar concentrations of deltamethrin on electrostatic netting or a standard long-lasting deltamethrin-coated bednet (PermaNet 2.0). Standard WHO exposure bioassays showed that electrostatic netting induced significantly higher mortality rates than the PermaNet, thereby effectively breaking mosquito resistance. Electrostatic netting also induced high mortality in resistant mosquito strains when a 15-fold lower dose of deltamethrin was applied and when the exposure time was reduced to only 5 s. Because different types of particles adhere to electrostatic netting, it is also possible to apply nonpyrethroid insecticides. Three insecticide classes were effective against strains of Aedes and Culex mosquitoes, demonstrating that electrostatic netting can be used to deploy a wide range of active insecticides against all major groups of disease-transmitting mosquitoes. Promising applications include the use of electrostatic coating on walls or eave curtains and in trapping/contamination devices. We conclude that application of electrostatically adhered particles boosts the efficacy of WHO-recommended insecticides even against resistant mosquitoes. This innovative technique has potential to support the use of unconventional insecticide classes or combinations thereof, potentially offering a significant step forward in managing insecticide resistance in vector-control operations. PMID:26324912
Electric potential and electric field imaging
NASA Astrophysics Data System (ADS)
Generazio, E. R.
2017-02-01
The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field made be used for "illuminating" volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e-Sensor enhancements (ephemeral e-Sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.
A FRET sensor enables quantitative measurements of membrane charges in live cells.
Ma, Yuanqing; Yamamoto, Yui; Nicovich, Philip R; Goyette, Jesse; Rossy, Jérémie; Gooding, J Justin; Gaus, Katharina
2017-04-01
Membrane charge has a critical role in protein trafficking and signaling. However, quantification of the effective electrostatic potential of cellular membranes has remained challenging. We developed a fluorescence membrane charge sensor (MCS) that reports changes in the membrane charge of live cells via Förster resonance energy transfer (FRET). MCS is permanently attached to the inner leaflet of the plasma membrane and shows a linear, reversible and fast response to changes of the electrostatic potential. The sensor can monitor a wide range of cellular treatments that alter the electrostatic potential, such as incorporation and redistribution of charged lipids and alterations in cytosolic ion concentration. Applying the sensor to T cell biology, we used it to identify charged membrane domains in the immunological synapse. Further, we found that electrostatic interactions prevented spontaneous phosphorylation of the T cell receptor and contributed to the formation of signaling clusters in T cells.
A Mussel-Derived One-Component Adhesive Coacervate
Wei, Wei; Tan, Yerpeng; Rodriguez, N. Martinez; Yu, Jing; Israelachvili, Jacob N.; Waite, J. Herbert
2013-01-01
Marine organisms process and deliver many of their underwater coatings and adhesives as complex fluids. In marine mussels, one such fluid, secreted during the formation of adhesive plaques, consists of a concentrated colloidal suspension of a mussel foot protein (mfp) known as Mfp-3S. Results of this study suggest that Mfp-3S becomes a complex fluid by a liquid-liquid phase separation from equilibrium solution at a pH and ionic strength reminiscent of conditions created by the mussel foot during plaque formation. The pH dependence of phase separation and its sensitivity indicate that inter/intra-molecular electrostatic interactions are partially responsible for driving the phase separation. Hydrophobic interactions between the nonpolar Mfp-3S proteins provide another important driving force for coacervation. As complex coacervation typically results from charge-charge interactions between polyanions and polycations, Mfp-3S is thus unique in being the only known protein that coacervates with itself. The Mfp-3S coacervate was shown to have an effective interfacial energy of ≤ 1 mJ/m2 which explains its tendency to spread over or engulf most surfaces. Of particular interest to biomedical applications is the extremely high adsorption capacity of coacervated Mfp-3S on hydroxyapatite. PMID:24060881
NASA Technical Reports Server (NTRS)
Sokalski, W. A.; Shibata, M.; Ornstein, R. L.; Rein, R.
1992-01-01
The quality of several atomic charge models based on different definitions has been analyzed using cumulative atomic multipole moments (CAMM). This formalism can generate higher atomic moments starting from any atomic charges, while preserving the corresponding molecular moments. The atomic charge contribution to the higher molecular moments, as well as to the electrostatic potentials, has been examined for CO and HCN molecules at several different levels of theory. The results clearly show that the electrostatic potential obtained from CAMM expansion is convergent up to R-5 term for all atomic charge models used. This illustrates that higher atomic moments can be used to supplement any atomic charge model to obtain more accurate description of electrostatic properties.
Confusing Aspects in the Calculation of the Electrostatic Potential of an Infinite Line of Charge
ERIC Educational Resources Information Center
Jimenez, J. L.; Campos, I.; Roa-Neri, J. A. E.
2012-01-01
In this work we discuss the trick of eliminating infinite potential of reference arguing that it corresponds to a constant of integration, in the problem of determining the electrostatic potential of an infinite line of charge with uniform density, and show how the problem must be tackled properly. The usual procedure is confusing for most…
Bernoulli potential in type-I and weak type-II superconductors: II. Surface dipole
NASA Astrophysics Data System (ADS)
Lipavský, P.; Morawetz, K.; Koláček, J.; Mareš, J. J.; Brandt, E. H.; Schreiber, M.
2004-09-01
The Budd-Vannimenus theorem is modified to apply to superconductors in the Meissner state. The obtained identity links the surface value of the electrostatic potential to the density of free energy at the surface which allows one to evaluate the electrostatic potential observed via the capacitive pickup without the explicit solution of the charge profile.
On the theory of electric double layer with explicit account of a polarizable co-solvent.
Budkov, Yu A; Kolesnikov, A L; Kiselev, M G
2016-05-14
We present a continuation of our theoretical research into the influence of co-solvent polarizability on a differential capacitance of the electric double layer. We formulate a modified Poisson-Boltzmann theory, using the formalism of density functional approach on the level of local density approximation taking into account the electrostatic interactions of ions and co-solvent molecules as well as their excluded volume. We derive the modified Poisson-Boltzmann equation, considering the three-component symmetric lattice gas model as a reference system and minimizing the grand thermodynamic potential with respect to the electrostatic potential. We apply present modified Poisson-Boltzmann equation to the electric double layer theory, showing that accounting for the excluded volume of co-solvent molecules and ions slightly changes the main result of our previous simplified theory. Namely, in the case of small co-solvent polarizability with its increase under the enough small surface potentials of electrode, the differential capacitance undergoes the significant growth. Oppositely, when the surface potential exceeds some threshold value (which is slightly smaller than the saturation potential), the increase in the co-solvent polarizability results in a differential capacitance decrease. However, when the co-solvent polarizability exceeds some threshold value, its increase generates a considerable enhancement of the differential capacitance in a wide range of surface potentials. We demonstrate that two qualitatively different behaviors of the differential capacitance are related to the depletion and adsorption of co-solvent molecules at the charged electrode. We show that an additive of the strongly polarizable co-solvent to an electrolyte solution can shift significantly the saturation potential in two qualitatively different manners. Namely, a small additive of strongly polarizable co-solvent results in a shift of saturation potential to higher surface potentials. On the contrary, a sufficiently large additive of co-solvent shifts the saturation potential to lower surface potentials. We obtain that an increase in the co-solvent polarizability makes the electrostatic potential profile longer-ranged. However, increase in the co-solvent concentration in the bulk leads to non-monotonic behavior of the electrostatic potential profile. An increase in the co-solvent concentration in the bulk at its sufficiently small values makes the electrostatic potential profile longer-ranged. Oppositely, when the co-solvent concentration in the bulk exceeds some threshold value, its further increase leads to decrease in electrostatic potential at all distances from the electrode.
Tunneling Nanoelectromechanical Switches Based on Compressible Molecular Thin Films.
Niroui, Farnaz; Wang, Annie I; Sletten, Ellen M; Song, Yi; Kong, Jing; Yablonovitch, Eli; Swager, Timothy M; Lang, Jeffrey H; Bulović, Vladimir
2015-08-25
Abrupt switching behavior and near-zero leakage current of nanoelectromechanical (NEM) switches are advantageous properties through which NEMs can outperform conventional semiconductor electrical switches. To date, however, typical NEMs structures require high actuation voltages and can prematurely fail through permanent adhesion (defined as stiction) of device components. To overcome these challenges, in the present work we propose a NEM switch, termed a "squitch," which is designed to electromechanically modulate the tunneling current through a nanometer-scale gap defined by an organic molecular film sandwiched between two electrodes. When voltage is applied across the electrodes, the generated electrostatic force compresses the sandwiched molecular layer, thereby reducing the tunneling gap and causing an exponential increase in the current through the device. The presence of the molecular layer avoids direct contact of the electrodes during the switching process. Furthermore, as the layer is compressed, the increasing surface adhesion forces are balanced by the elastic restoring force of the deformed molecules which can promote zero net stiction and recoverable switching. Through numerical analysis, we demonstrate the potential of optimizing squitch design to enable large on-off ratios beyond 6 orders of magnitude with operation in the sub-1 V regime and with nanoseconds switching times. Our preliminary experimental results based on metal-molecule-graphene devices suggest the feasibility of the proposed tunneling switching mechanism. With optimization of device design and material engineering, squitches can give rise to a broad range of low-power electronic applications.
Most current electrostatic surface complexation models describing ionic binding at the particle/water interface rely on the use of Poisson - Boltzmann (PB) theory for relating diffuse layer charge densities to diffuse layer electrostatic potentials. PB theory is known to contain ...
2016-02-01
Figures Fig. 1 Optimized structure of a) 1 and b) 2 ......................................................2 Fig. 2 Electrostatic potential map of 1...3 Electrostatic potential map of 2, without a) and with b) molecule overlay...previous report.7 For the estimation of the impact sensitivities, the electrostatic maps on the 0.001 isosurfaces were generated with the scalar range
Surface electrostatics of lipid bilayers by EPR of a pH-sensitive spin-labeled lipid.
Voinov, Maxim A; Rivera-Rivera, Izarys; Smirnov, Alex I
2013-01-08
Many biophysical processes such as insertion of proteins into membranes and membrane fusion are governed by bilayer electrostatic potential. At the time of this writing, the arsenal of biophysical methods for such measurements is limited to a few techniques. Here we describe a, to our knowledge, new spin-probe electron paramagnetic resonance (EPR) approach for assessing the electrostatic surface potential of lipid bilayers that is based on a recently synthesized EPR probe (IMTSL-PTE) containing a reversibly ionizable nitroxide tag attached to the lipids' polar headgroup. EPR spectra of the probe directly report on its ionization state and, therefore, on electrostatic potential through changes in nitroxide magnetic parameters and the degree of rotational averaging. Further, the lipid nature of the probe provides its full integration into lipid bilayers. Tethering the nitroxide moiety directly to the lipid polar headgroup defines the location of the measured potential with respect to the lipid bilayer interface. Electrostatic surface potentials measured by EPR of IMTSL-PTE show a remarkable (within ±2%) agreement with the Gouy-Chapman theory for anionic DMPG bilayers in fluid (48°C) phase at low electrolyte concentration (50 mM) and in gel (17°C) phase at 150-mM electrolyte concentration. This agreement begins to diminish for DMPG vesicles in gel phase (17°C) upon varying electrolyte concentration and fluid phase bilayers formed from DMPG/DMPC and POPG/POPC mixtures. Possible reasons for such deviations, as well as the proper choice of an electrostatically neutral reference interface, have been discussed. Described EPR method is expected to be fully applicable to more-complex models of cellular membranes. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Surface Electrostatics of Lipid Bilayers by EPR of a pH-Sensitive Spin-Labeled Lipid
Voinov, Maxim A.; Rivera-Rivera, Izarys; Smirnov, Alex I.
2013-01-01
Many biophysical processes such as insertion of proteins into membranes and membrane fusion are governed by bilayer electrostatic potential. At the time of this writing, the arsenal of biophysical methods for such measurements is limited to a few techniques. Here we describe a, to our knowledge, new spin-probe electron paramagnetic resonance (EPR) approach for assessing the electrostatic surface potential of lipid bilayers that is based on a recently synthesized EPR probe (IMTSL-PTE) containing a reversibly ionizable nitroxide tag attached to the lipids’ polar headgroup. EPR spectra of the probe directly report on its ionization state and, therefore, on electrostatic potential through changes in nitroxide magnetic parameters and the degree of rotational averaging. Further, the lipid nature of the probe provides its full integration into lipid bilayers. Tethering the nitroxide moiety directly to the lipid polar headgroup defines the location of the measured potential with respect to the lipid bilayer interface. Electrostatic surface potentials measured by EPR of IMTSL-PTE show a remarkable (within ±2%) agreement with the Gouy-Chapman theory for anionic DMPG bilayers in fluid (48°C) phase at low electrolyte concentration (50 mM) and in gel (17°C) phase at 150-mM electrolyte concentration. This agreement begins to diminish for DMPG vesicles in gel phase (17°C) upon varying electrolyte concentration and fluid phase bilayers formed from DMPG/DMPC and POPG/POPC mixtures. Possible reasons for such deviations, as well as the proper choice of an electrostatically neutral reference interface, have been discussed. Described EPR method is expected to be fully applicable to more-complex models of cellular membranes. PMID:23332063
On-Orbit 3-Dimensional Electrostatic Detumble for Generic Spacecraft Geometries
NASA Astrophysics Data System (ADS)
Bennett, Trevor J.
In recent years, there is a growing interest in active debris removal and on-orbit servicing of Earth orbiting assets. The growing need for such approaches is often exemplified by the Iridium-Kosmos collision in 2009 that generated thousands of debris fragments. There exists a variety of active debris removal and on-orbit servicing technologies in development. Conventional docking mechanisms and mechanical capture by actuated manipulators, exemplified by NASA's Restore-L mission, require slow target tumble rates or more aggressive circumnavigation rate matching. The tumble rate limitations can be overcome with flexible capture systems such nets, harpoons, or tethers yet these systems require complex deployment, towing, and/or interfacing strategies to avoid servicer and target damage. Alternatively, touchless methods overcome the tumble rate limitations by provide detumble control prior to a mechanical interface. This thesis explores electrostatic detumble technology to touchlessly reduce large target rotation rates of Geostationary satellites and debris. The technical challenges preceding flight implementation largely reside in the long-duration formation flying guidance, navigation, and control of a servicer spacecraft equipped with electrostatic charge transfer capability. Leveraging prior research into the electrostatic charging of spacecraft, electrostatic detumble control formulations are developed for both axisymmetric and generic target geometries. A novel relative position vector and associated relative orbit control approach is created to manage the long-duration proximity operations. Through detailed numerical simulations, the proposed detumble and relative motion control formulations demonstrate detumble of several thousand kilogram spacecraft tumbling at several degrees per second in only several days. The availability, either through modeling or sensing, of the relative attitude, relative position, and electrostatic potential are among key concerns with implementation of electrostatic detumble control on-orbit. Leveraging an extended Kalman filter scheme, the relative position information is readily obtained. In order to touchlessly acquire the target electrostatic potential, a nested two-time scale Kalman filter is employed to provide real-time estimates of both relative position and electrostatic potential while on-orbit. The culmination of the presented control formulations for generic spacecraft geometries, the proximity and formation flying control capability, and the availability of necessary state information provide significant contributions towards the viability of electrostatic detumble mission concepts.
Sum rules for the uniform-background model of an atomic-sharp metal corner
NASA Astrophysics Data System (ADS)
Streitenberger, P.
1994-04-01
Analytical results are derived for the electrostatic potential of an atomic-sharp 90° metal corner in the uniform-background model. The electrostatic potential at a free jellium edge and the jellium corner, respectively, is determined exactly in terms of the energy per electron of the uniform electron gas integrated over the background density. The surface energy, the edge formation energy and the derivative of the corner formation energy with respect to the background density are given as integrals over the electrostatic potential. The present approach represents a novel approach to such sum rules, inclusive of the Budd-Vannimenus sum rules for a free jellium surface, based on general properties of linear response functions.
Oliva, Romina; Calamita, Giuseppe; Thornton, Janet M.; Pellegrini-Calace, Marialuisa
2010-01-01
Aquaporins are homotetrameric channel proteins, which allow the diffusion of water and small solutes across biological membranes. According to their transport function, aquaporins can be divided into “orthodox aquaporins”, which allow the flux of water molecules only, and “aquaglyceroporins”, which facilitate the diffusion of glycerol and other small solutes in addition to water. The contribution of individual residues in the pore to the selectivity of orthodox aquaporins and aquaglyceroporins is not yet fully understood. To gain insights into aquaporin selectivity, we focused on the sequence variation and electrostatics of their channels. The continuum Poisson-Boltzmann electrostatic potential along the channel was calculated and compared for ten three-dimensional-structures which are representatives of different aquaporin subfamilies, and a panel of functionally characterized mutants, for which high-accuracy three-dimensional-models could be derived. Interestingly, specific electrostatic profiles associated with the main selectivity to water or glycerol could be identified. In particular: (i) orthodox aquaporins showed a distinctive electrostatic potential maximum at the periplasmic side of the channel around the aromatic/Arg (ar/R) constriction site; (ii) aquaporin-0 (AQP0), a mammalian aquaporin with considerably low water permeability, had an additional deep minimum at the cytoplasmic side; (iii) aquaglyceroporins showed a rather flat potential all along the channel; and (iv) the bifunctional protozoan PfAQP had an unusual all negative profile. Evaluation of electrostatics of the mutants, along with a thorough sequence analysis of the aquaporin pore-lining residues, illuminated the contribution of specific residues to the electrostatics of the channels and possibly to their selectivity. PMID:20147624
Photopolymerization Of Levitated Droplets
NASA Technical Reports Server (NTRS)
Rembaum, Alan; Rhim, Won-Kyu; Hyson, Michael T.; Chang, Manchium
1989-01-01
Experimental containerless process combines two established techniques to make variety of polymeric microspheres. In single step, electrostatically-levitated monomer droplets polymerized by ultraviolet light. Faster than multiple-step emulsion polymerization process used to make microspheres. Droplets suspended in cylindrical quadrupole electrostatic levitator. Alternating electrostatic field produces dynamic potential along axis. Process enables tailoring of microspheres for medical, scientific, and industrial applications.
Fowler, Nicholas J.; Blanford, Christopher F.
2017-01-01
Abstract Blue copper proteins, such as azurin, show dramatic changes in Cu2+/Cu+ reduction potential upon mutation over the full physiological range. Hence, they have important functions in electron transfer and oxidation chemistry and have applications in industrial biotechnology. The details of what determines these reduction potential changes upon mutation are still unclear. Moreover, it has been difficult to model and predict the reduction potential of azurin mutants and currently no unique procedure or workflow pattern exists. Furthermore, high‐level computational methods can be accurate but are too time consuming for practical use. In this work, a novel approach for calculating reduction potentials of azurin mutants is shown, based on a combination of continuum electrostatics, density functional theory and empirical hydrophobicity factors. Our method accurately reproduces experimental reduction potential changes of 30 mutants with respect to wildtype within experimental error and highlights the factors contributing to the reduction potential change. Finally, reduction potentials are predicted for a series of 124 new mutants that have not yet been investigated experimentally. Several mutants are identified that are located well over 10 Å from the copper center that change the reduction potential by more than 85 mV. The work shows that secondary coordination sphere mutations mostly lead to long‐range electrostatic changes and hence can be modeled accurately with continuum electrostatics. PMID:28815759
Textbook Treatments of Electrostatic Potential Maps in General and Organic Chemistry
ERIC Educational Resources Information Center
Hinze, Scott R.; Williamson, Vickie M.; Deslongchamps, Ghislain; Shultz, Mary Jane; Williamson, Kenneth C.; Rapp, David N.
2013-01-01
Electrostatic potential maps (EPMs) allow for representation of key molecular-level information in a relatively simple and inexpensive format. As these visualizations become more prevalent in instruction, it is important to determine how students are exposed to them and supported in their use. A systematic review of current general and organic…
ERIC Educational Resources Information Center
Lindsey, Beth A.
2014-01-01
This paper describes an investigation into student reasoning about potential energy in the context of introductory electrostatics. Similar incorrect reasoning patterns emerged both in written questions administered after relevant instruction and in one-on-one interviews. These reasoning patterns are also prevalent in responses to questions posed…
Electrostatic Estimation of Intercalant Jump-Diffusion Barriers Using Finite-Size Ion Models.
Zimmermann, Nils E R; Hannah, Daniel C; Rong, Ziqin; Liu, Miao; Ceder, Gerbrand; Haranczyk, Maciej; Persson, Kristin A
2018-02-01
We report on a scheme for estimating intercalant jump-diffusion barriers that are typically obtained from demanding density functional theory-nudged elastic band calculations. The key idea is to relax a chain of states in the field of the electrostatic potential that is averaged over a spherical volume using different finite-size ion models. For magnesium migrating in typical intercalation materials such as transition-metal oxides, we find that the optimal model is a relatively large shell. This data-driven result parallels typical assumptions made in models based on Onsager's reaction field theory to quantitatively estimate electrostatic solvent effects. Because of its efficiency, our potential of electrostatics-finite ion size (PfEFIS) barrier estimation scheme will enable rapid identification of materials with good ionic mobility.
Samandoulgou, Idrissa; Fliss, Ismaïl; Jean, Julie
2015-09-01
Although the spread of human norovirus reportedly depends on its ability to bind to food materials, the mechanism of the phenomenon remains unknown. Since protein size and electrical charge are reportedly important parameters in their adsorption, the current work is focused on determining human noroviruses isoelectric point (IEP), electrical charge and aggregate size at different pH, ionic strength (IS), and temperature. Using the baculovirus expression vector system, we produced and purified virus-like particles (VLPs) of GI.1 and GII.4 noroviruses and feline calicivirus, determined their IEP, and examined their size and electrical charge using a Zetasizer Nano ZS apparatus. Shape and size were also visualized using transmission electron microscopy. IEPs were found close to pH 4. Net charge increased as the pH deviated from the IEP. VLPs were negatively charged at all IS tested and showed a gradual decrease in charge with increasing IS. At low temperature, VLPs were 20-45 nm in diameter at pH far from their IEP and under almost all IS conditions, while aggregates appeared at or near the IEP. At increased temperatures, aggregates appeared at or near the IEP and at high IS. Aggregation at the IEP was also confirmed by microscopy. This suggests that electrostatic interactions would be the predominant factor in VLPs adhesion at pH far from 4 and at low ionic strength. In contrast, non-electrostatic interactions would prevail at around pH 4 and would be reinforced by aggregates, since size generally favors multiple bonding with sorbents.
Yadav, Ashok Kumar; Tyagi, Ashish; Kaushik, Jai Kumar; Saklani, Asha Chandola; Grover, Sunita; Batish, Virender Kumar
2013-12-14
Human feacal isolates were ascertain as genus Lactobacillus using specific primer LbLMA1/R16-1 and further identified as Lactobacillus plantarum with species specific primers Lpl-3/Lpl-2. 25 L. plantarum strains were further assessed for hydrophobicity following the microbial adhesion to hydrocarbons (MATH) method and colonization potentials based on their adherence to immobilized human collagen type-1. Surface proteins were isolated from selected L. plantarum 91(Lp91) strain. The purified collagen binding protein (Cbp) protein was assessed for its anti-adhesion activity against enteric Escherichia coli 0157:H7 pathogen on immobilized collagen. Four L. plantarum strains displayed high degree of hydrophobicity and significant adhesion to collagen. A 72 kDa protein was purified which reduced 59.71% adhesion of E. coli 0157:H7 on immobilized collagen as compared to control well during adhesion assay. Cbp protein is the major influencing factor in inhibition of E. coli 0157:H7 adhesion with extracellular matrix (ECM) components. Hydrophobicity and adhesion potential are closely linked attributes precipitating in better colonization potential of the lactobacillus strains. Cbp is substantiated as a crucial surface protein contributing in adhesion of lactobacillus strains. The study can very well be the platform for commercialization of indigenous probiotic strain once their functional attributes are clinically explored. Copyright © 2013 Elsevier GmbH. All rights reserved.
Kieslich, Chris A; Morikis, Dimitrios
2012-01-01
The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of -1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic "hot-spots". Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic "hot-spots" at the two functional sites of C3d, while the surface of CR2 lacks electrostatic "hot-spots" despite its excessively positive nature. We propose that the electrostatic "hot-spots" of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2), which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3d, after the divergence of jawless fish.
Kieslich, Chris A.; Morikis, Dimitrios
2012-01-01
The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of −1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic “hot-spots”. Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic “hot-spots” at the two functional sites of C3d, while the surface of CR2 lacks electrostatic “hot-spots” despite its excessively positive nature. We propose that the electrostatic “hot-spots” of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2), which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3d, after the divergence of jawless fish. PMID:23300422
[Bacteriophage λ: electrostatic properties of the genome and its elements].
Krutinina, G G; Krutinin, E A; Kamzolova, S G; Osypov, A A
2015-01-01
Bacteriophage λ is a classical model object in molecular biology, but little is still known on the physical properties of its DNA and regulatory elements. A study was made of the electrostatic properties of phage λ DNA and regulatory elements. A global electrostatic potential distribution along the phage genome was found to be nonuniform with main regulatory elements being located in a limited region with a high potential. The RNA polymerase binding frequency on the linearized phage chromosome directly correlates with its local potential. Strong promoters of the phage and its host Escherichia coli have distinct electrostatic upstream elements, which differ in nucleotide sequence. Attachment and recombination sites of phage λ and its host have a higher potential, which possibly facilitates their recognition by integrase. Phage λ and host Rho-independent terminators have a symmetrical M-shaped potential profile, which only slightly depends on the annotated terminator palindrome length, and occur in a region with a substantially higher potential, which may cause polymerase retention, facilitating the formation of a terminator hairpin in RNA. It was concluded that virtually all elements of phage λ genome have potential distribution specifics, which are related to their structural properties and may play a role in their biological function. The global potential distribution along the phage genome reflects the architecture of the regulation of its transcription and integration in the host genome.
Electrostatic potential profiles of molecular conductors
NASA Astrophysics Data System (ADS)
Liang, G. C.; Ghosh, A. W.; Paulsson, M.; Datta, S.
2004-03-01
The electrostatic potential across a short ballistic molecular conductor depends sensitively on the geometry of its environment, and can affect its conduction significantly by influencing its energy levels and wave functions. We illustrate some of the issues involved by evaluating the potential profiles for a conducting gold wire and an aromatic phenyl dithiol molecule in various geometries. The potential profile is obtained by solving Poisson’s equation with boundary conditions set by the contact electrochemical potentials and coupling the result self-consistently with a nonequilibrium Green’s function formulation of transport. The overall shape of the potential profile (ramp versus flat) depends on the feasibility of transverse screening of electric fields. Accordingly, the screening is better for a thick wire, a multiwalled nanotube, or a close-packed self-assembled monolayer, in comparison to a thin wire, a single-walled nanotube, or an isolated molecular conductor. The electrostatic potential further governs the alignment or misalignment of intramolecular levels, which can strongly influence the molecular current voltage (I V) characteristic. An external gate voltage can modify the overall potential profile, changing the I V characteristic from a resonant conducting to a saturating one. The degree of saturation and gate modulation depends on the availability of metal-induced-gap states and on the electrostatic gate control parameter set by the ratio of the gate oxide thickness to the channel length.
2012-01-01
Background The Poisson-Boltzmann (PB) equation and its linear approximation have been widely used to describe biomolecular electrostatics. Generalized Born (GB) models offer a convenient computational approximation for the more fundamental approach based on the Poisson-Boltzmann equation, and allows estimation of pairwise contributions to electrostatic effects in the molecular context. Results We have implemented in a single program most common analyses of the electrostatic properties of proteins. The program first computes generalized Born radii, via a surface integral and then it uses generalized Born radii (using a finite radius test particle) to perform electrostic analyses. In particular the ouput of the program entails, depending on user's requirement: 1) the generalized Born radius of each atom; 2) the electrostatic solvation free energy; 3) the electrostatic forces on each atom (currently in a dvelopmental stage); 4) the pH-dependent properties (total charge and pH-dependent free energy of folding in the pH range -2 to 18; 5) the pKa of all ionizable groups; 6) the electrostatic potential at the surface of the molecule; 7) the electrostatic potential in a volume surrounding the molecule; Conclusions Although at the expense of limited flexibility the program provides most common analyses with requirement of a single input file in PQR format. The results obtained are comparable to those obtained using state-of-the-art Poisson-Boltzmann solvers. A Linux executable with example input and output files is provided as supplementary material. PMID:22536964
Electric Potential and Electric Field Imaging with Applications
NASA Technical Reports Server (NTRS)
Generazio, Ed
2016-01-01
The technology and techniques for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for (illuminating) volumes to be inspected with EFI. The baseline sensor technology, electric field sensor (e-sensor), and its construction, optional electric field generation (quasistatic generator), and current e-sensor enhancements (ephemeral e-sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution, creating a new field of study that embraces areas of interest including electrostatic discharge mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, inspection of containers, inspection for hidden objects, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.
Warwicker, J
1989-03-20
A method of calculating the electrostatic potential energy between two molecules, using finite difference potential, is presented. A reduced charge set is used so that the interaction energy can be calculated as the two static molecules explore their full six-dimensional configurational space. The energies are contoured over surfaces fixed to each molecule with an interactive computer graphics program. For two crystal structures (trypsin-trypsin inhibitor and anti-lysozyme Fab-lysozyme), it is found that the complex corresponds to highly favourable interacting regions in the contour plots. These matches arise from a small number of protruding basic residues interacting with enhanced negative potential in each case. The redox pair cytochrome c peroxidase-cytochrome c exhibits an extensive favourably interacting surface within which a possible electron transfer complex may be defined by an increased electrostatic complementarity, but a decreased electrostatic energy. A possible substrate transfer configuration for the glycolytic enzyme pair glyceraldehyde phosphate dehydrogenase-phosphoglycerate kinase is presented.
Potential Polymeric Sphere Construction Materials for a Spacecraft Electrostatic Shield
NASA Technical Reports Server (NTRS)
Smith, Joseph G., Jr.; Smith, Trent; Williams, Martha; Youngquist, Robert; Mendell, Wendell
2006-01-01
An electrostatic shielding concept for spacecraft radiation protection under NASA s Exploration Systems Research and Technology Program was evaluated for its effectiveness and feasibility. The proposed shield design is reminiscent of a classic quadrupole with positively and negatively charged spheres surrounding the spacecraft. The project addressed materials, shield configuration, power supply, and compared its effectiveness to that of a passive shield. The report herein concerns the identification of commercially available materials that could be used in sphere fabrication. It was found that several materials were needed to potentially construct the spheres for an electrostatic shield operating at 300 MV.
Electrostatic particle trap for ion beam sputter deposition
Vernon, Stephen P.; Burkhart, Scott C.
2002-01-01
A method and apparatus for the interception and trapping of or reflection of charged particulate matter generated in ion beam sputter deposition. The apparatus involves an electrostatic particle trap which generates electrostatic fields in the vicinity of the substrate on which target material is being deposited. The electrostatic particle trap consists of an array of electrode surfaces, each maintained at an electrostatic potential, and with their surfaces parallel or perpendicular to the surface of the substrate. The method involves interception and trapping of or reflection of charged particles achieved by generating electrostatic fields in the vicinity of the substrate, and configuring the fields to force the charged particulate material away from the substrate. The electrostatic charged particle trap enables prevention of charged particles from being deposited on the substrate thereby enabling the deposition of extremely low defect density films, such as required for reflective masks of an extreme ultraviolet lithography (EUVL) system.
High temperature, high intensity solar array. [for Venus Radar Mapper mission
NASA Technical Reports Server (NTRS)
Smith, B. S.; Brooks, G. R.; Pinkerton, R.
1985-01-01
The solar array for the Venus Radar Mapper mission will operate in the high temperature, high intensity conditions of a low Venus orbit environment. To fulfill the performance requirements in this environment at minimum cost and mass while maximizing power density and packing factor on the panel surface, several features were introduced into the design. These features included the use of optical surface reflectors (OSR's) to reduce the operating temperature; new adhesives for conductive bonding of OSR's to avoid electrostatic discharges; custom-designed large area cells and novel shunt diode circuit and panel power harness configurations.
Electrostatics of a Family of Conducting Toroids
ERIC Educational Resources Information Center
Lekner, John
2009-01-01
An exact solution is found for the electrostatic potential of a family of conducting charged toroids. The toroids are characterized by two lengths "a" and "b", with "a" greater than or equal to "2b". They are closed, with no hole in the "doughnut". The results are obtained by considering the potential of two equal charges, displaced from the…
ERIC Educational Resources Information Center
Williamson, Vickie M.; Hegarty, Mary; Deslongchamps, Ghislain; Williamson, Kenneth C., III
2013-01-01
This pilot study examined students' use of ball-and-stick images versus electrostatic potential maps when asked questions about electron density, positive charge, proton attack, and hydroxide attack with six different molecules (two alcohols, two carboxylic acids, and two hydroxycarboxylic acids). Students' viewing of these dual images…
Zhang, Kun; Chen, Jun-ying; Qin, Wei; Li, Jing-an; Guan, Fang-xia; Huang, Nan
2016-04-01
The modification of cardiovascular stent surface for a better micro-environment has gradually changed to multi-molecule, multi-functional designation. In this study, heparin (Hep) and type IV collagen (IVCol) were used as the functional molecule to construct a bifunctional micro-environment of anticoagulation and promoting endothelialization on titanium (Ti). The surface characterization results (AFM, Alcian Blue 8GX Staining and fluorescence staining of IVCol) indicated that the bio-layer of Hep and IVCol were successfully fabricated on the Ti surface through electrostatic self-assembly. The APTT and platelet adhesion test demonstrated that the bionic layer possessed better blood compatibility compared with Ti surface. The adhesion, proliferation, migration and apoptosis tests of endothelial cells proved that the Hep/IVCol layer was able to enhance the endothelialization of the Ti surface. The in vivo animal implantation results manifested that the bionic surface could encourage new endothelialization. This work provides an important reference for the construction of multifunction micro-environment on the cardiovascular scaffold surface.
NASA Astrophysics Data System (ADS)
Khasanshin, Rashid; Novikov, Lev
Action of charged particles on low-conductive dielectrics causes formation of areas with a high charge density inside; their fields may give rise to development of electrostatic discharge between the charged area and the surface of the dielectric. Discharge channels are growing due to breakdown of dielectric and formation of a conducting phase. Generation of the channels is a complex stochastic process accompanied by such physical and chemical processes as ionization, gas formation, heating, and so on, which cause formation of conducting phase in a glass. That is why no quantitative theory describing formation of conductive channels has been formulated yet. The study of electrostatic discharges in dielectrics under radiation is essential both from a scientific point of view and for the solution of applied problems. In particular, interaction of a spacecraft with ambient plasma causes accumulation of electric charges on its surface producing, as a consequence, electric potential between the spacecraft surface and the plasma. For example, potentials on the surface of satellites operating on a geostationary orbit reach up to 20 kV. Elec-trostatic discharges caused by such potentials can produce not only the considerable electromag-netic interference, but also lead to the destruction of hardware components and structural ele-ments. Electrostatic charging due to electrons from the Earth’s radiation belts causes degradation of solar arrays as a result of surface and internal electrostatic discharges. In the work, surface of K-208 spacecraft solar array protective coatings irradiated by 20 and 40 keV electrons and protons has studied using by AFM methods. Traces of electrostatic dis-charges at different radiation flux densities were analyzed.
LEO high voltage solar array arcing response model, continuation 5
NASA Technical Reports Server (NTRS)
Metz, Roger N.
1989-01-01
The modeling of the Debye Approximation electron sheaths in the edge and strip geometries was completed. Electrostatic potentials in these sheaths were compared to NASCAP/LEO solutions for similar geometries. Velocity fields, charge densities and particle fluxes to the biased surfaces were calculated for all cases. The major conclusion to be drawn from the comparisons of our Debye Approximation calculations with NASCAP-LEO output is that, where comparable biased structures can be defined and sufficient resolution obtained, these results are in general agreement. Numerical models for the Child-Langmuir, high-voltage electron sheaths in the edge and strip geometries were constructed. Electrostatic potentials were calculated for several cases in each of both geometries. Velocity fields and particle fluxes were calculated. The self-consistent solution process was carried through one cycle and output electrostatic potentials compared to NASCAP-type input potentials.
Electrostatic Field Invisibility Cloak
NASA Astrophysics Data System (ADS)
Lan, Chuwen; Yang, Yuping; Geng, Zhaoxin; Li, Bo; Zhou, Ji
2015-11-01
The invisibility cloak has been drawing much attention due to its new concept for manipulating many physical fields, from oscillating wave fields (electromagnetic, acoustic and elastic) to static magnetic fields, dc electric fields, and diffusive fields. Here, an electrostatic field invisibility cloak has been theoretically investigated and experimentally demonstrated to perfectly hide two dimensional objects without disturbing their external electrostatic fields. The desired cloaking effect has been achieved via both cancelling technology and transformation optics (TO). This study demonstrates a novel way for manipulating electrostatic fields, which shows promise for a wide range of potential applications.
First-principles simulations of electrostatic interactions between dust grains
NASA Astrophysics Data System (ADS)
Itou, H.; Amano, T.; Hoshino, M.
2014-12-01
We investigated the electrostatic interaction between two identical dust grains of an infinite mass immersed in homogeneous plasma by employing first-principles N-body simulations combined with the Ewald method. We specifically tested the possibility of an attractive force due to overlapping Debye spheres (ODSs), as was suggested by Resendes et al. [Phys. Lett. A 239, 181-186 (1998)]. Our simulation results demonstrate that the electrostatic interaction is repulsive and even stronger than the standard Yukawa potential. We showed that the measured electric field acting on the grain is highly consistent with a model electrostatic potential around a single isolated grain that takes into account a correction due to the orbital motion limited theory. Our result is qualitatively consistent with the counterargument suggested by Markes and Williams [Phys. Lett. A 278, 152-158 (2000)], indicating the absence of the ODS attractive force.
NASA Astrophysics Data System (ADS)
Scaduto, David A.; Lubinsky, Anthony R.; Rowlands, John A.; Kenmotsu, Hidenori; Nishimoto, Norihito; Nishino, Takeshi; Tanioka, Kenkichi; Zhao, Wei
2014-03-01
We have previously proposed SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout), a novel detector concept with potentially superior spatial resolution and low-dose performance compared with existing flat-panel imagers. The detector comprises a scintillator that is optically coupled to an amorphous selenium photoconductor operated with avalanche gain, known as high-gain avalanche rushing photoconductor (HARP). High resolution electron beam readout is achieved using a field emitter array (FEA). This combination of avalanche gain, allowing for very low-dose imaging, and electron emitter readout, providing high spatial resolution, offers potentially superior image quality compared with existing flat-panel imagers, with specific applications to fluoroscopy and breast imaging. Through the present collaboration, a prototype HARP sensor with integrated electrostatic focusing and nano- Spindt FEA readout technology has been fabricated. The integrated electron-optic focusing approach is more suitable for fabricating large-area detectors. We investigate the dependence of spatial resolution on sensor structure and operating conditions, and compare the performance of electrostatic focusing with previous technologies. Our results show a clear dependence of spatial resolution on electrostatic focusing potential, with performance approaching that of the previous design with external mesh-electrode. Further, temporal performance (lag) of the detector is evaluated and the results show that the integrated electrostatic focusing design exhibits comparable or better performance compared with the mesh-electrode design. This study represents the first technical evaluation and characterization of the SAPHIRE concept with integrated electrostatic focusing.
Electrostatic steering and ionic tethering in enzyme-ligand binding: insights from simulations.
Wade, R C; Gabdoulline, R R; Lüdemann, S K; Lounnas, V
1998-05-26
To bind at an enzyme's active site, a ligand must diffuse or be transported to the enzyme's surface, and, if the binding site is buried, the ligand must diffuse through the protein to reach it. Although the driving force for ligand binding is often ascribed to the hydrophobic effect, electrostatic interactions also influence the binding process of both charged and nonpolar ligands. First, electrostatic steering of charged substrates into enzyme active sites is discussed. This is of particular relevance for diffusion-influenced enzymes. By comparing the results of Brownian dynamics simulations and electrostatic potential similarity analysis for triose-phosphate isomerases, superoxide dismutases, and beta-lactamases from different species, we identify the conserved features responsible for the electrostatic substrate-steering fields. The conserved potentials are localized at the active sites and are the primary determinants of the bimolecular association rates. Then we focus on a more subtle effect, which we will refer to as "ionic tethering." We explore, by means of molecular and Brownian dynamics simulations and electrostatic continuum calculations, how salt links can act as tethers between structural elements of an enzyme that undergo conformational change upon substrate binding, and thereby regulate or modulate substrate binding. This is illustrated for the lipase and cytochrome P450 enzymes. Ionic tethering can provide a control mechanism for substrate binding that is sensitive to the electrostatic properties of the enzyme's surroundings even when the substrate is nonpolar.
Effect of Membrane Tension on the Electric Field and Dipole Potential of Lipid Bilayer Membrane
Warshaviak, Dora Toledo; Muellner, Michael J.; Chachisvilis, Mirianas
2011-01-01
The dipole potential of lipid bilayer membrane controls the difference in permeability of the membrane to oppositely charged ions. We have combined molecular dynamics (MD) simulations and experimental studies to determine changes in electric field and electrostatic potential of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid bilayer in response to applied membrane tension. MD simulations based on CHARMM36 force field showed that electrostatic potential of DOPC bilayer decreases by ~45 mV in the physiologically relevant range of membrane tension values (0 to 15 dyn/cm). The electrostatic field exhibits a peak (~0.8×109 V/m) near the water/lipid interface which shifts by 0.9 Å towards the bilayer center at 15 dyn/cm. Maximum membrane tension of 15 dyn/cm caused 6.4% increase in area per lipid, 4.7% decrease in bilayer thickness and 1.4% increase in the volume of the bilayer. Dipole-potential sensitive fluorescent probes were used to detect membrane tension induced changes in DOPC vesicles exposed to osmotic stress. Experiments confirmed that dipole potential of DOPC bilayer decreases at higher membrane tensions. These results are suggestive of a potentially new mechanosensing mechanism by which mechanically induced structural changes in the lipid bilayer membrane could modulate the function of membrane proteins by altering electrostatic interactions and energetics of protein conformational states. PMID:21722624
NASA Astrophysics Data System (ADS)
Sawada, Asuka; Hatano, Hironori; Akimitsu, Moe; Cao, Qinghong; Yamasaki, Kotaro; Tanabe, Hiroshi; Ono, Yasushi; TS-Group Team
2017-10-01
We have been investigating 2D potential profile of global merging tokamaks to solve high-power heating of magnetic reconnection in TS-3 and TS-3U (ST, FRC:R =0.2m, 1985-, 2017-) and TS-4 (ST, FRC:R =0.5m, 2000-), UTST (ST:R =0.45m, 2008-) and MAST (ST:R = 0.9m, 2000-) devices. These experiments made clear that the electrostatic potential well is formed not only in the downstream area of magnetic reconnection but also in the whole common (reconnected) flux area of two merging flux tubes: tokamak plasmas. This fact suggests that the ion acceleration/heating occurs in much wider region than the reconnection downstream. We studied how the potential structure depends on key reconnection parameters:guide toroidal field and plasma collisionality. We found the polarity of the guide toroidal field determines those of potential hills and wells, indicating their formation is affected by the Hall effect. The peak value of the electrostatic potential well decreased with gas pressure increasing, suggesting plasma collisionality suppresses the Hall effect. The relationship between the electrostatic potential structure and anomalous ion heating is being studied as a possible cause for the high-power heating of fast magnetic reconnection. This work was supported by JSPS KAKENHI Grant Numbers 15H05750, 15K14279 and 17H04863.
Voinov, Maxim A.; Smirnov, Alex I.
2016-01-01
Electrostatic interactions are known to play one of the major roles in the myriad of biochemical and biophysical processes. In this Chapter we describe biophysical methods to probe local electrostatic potentials of proteins and lipid bilayer systems that is based on an observation of reversible protonation of nitroxides by EPR. Two types of the electrostatic probes are discussed. The first one includes methanethiosulfonate derivatives of protonatable nitroxides that could be used for highly specific covalent modification of the cysteine’s sulfhydryl groups. Such spin labels are very similar in magnetic parameters and chemical properties to conventional MTSL making them suitable for studying local electrostatic properties of protein-lipid interfaces. The second type of EPR probes is designed as spin-labeled phospholipids having a protonatable nitroxide tethered to the polar head group. The probes of both types report on their ionization state through changes in magnetic parameters and a degree of rotational averaging, thus, allowing one to determine the electrostatic contribution to the interfacial pKa of the nitroxide, and, therefore, determining the local electrostatic potential. Due to their small molecular volume these probes cause a minimal perturbation to the protein or lipid system while covalent attachment secure the position of the reporter nitroxides. Experimental procedures to characterize and calibrate these probes by EPR and also the methods to analyze the EPR spectra by least-squares simulations are also outlined. The ionizable nitroxide labels and the nitroxide-labeled phospholipids described so far cover an exceptionally wide pH range from ca. 2.5 to 7.0 pH units making them suitable to study a broad range of biophysical phenomena especially at the negatively charged lipid bilayer surfaces. The rationale for selecting proper electrostatically neutral interface for calibrating such probes and example of studying surface potential of lipid bilayer is also described. PMID:26477252
Fowler, Nicholas J; Blanford, Christopher F; Warwicker, Jim; de Visser, Sam P
2017-11-02
Blue copper proteins, such as azurin, show dramatic changes in Cu 2+ /Cu + reduction potential upon mutation over the full physiological range. Hence, they have important functions in electron transfer and oxidation chemistry and have applications in industrial biotechnology. The details of what determines these reduction potential changes upon mutation are still unclear. Moreover, it has been difficult to model and predict the reduction potential of azurin mutants and currently no unique procedure or workflow pattern exists. Furthermore, high-level computational methods can be accurate but are too time consuming for practical use. In this work, a novel approach for calculating reduction potentials of azurin mutants is shown, based on a combination of continuum electrostatics, density functional theory and empirical hydrophobicity factors. Our method accurately reproduces experimental reduction potential changes of 30 mutants with respect to wildtype within experimental error and highlights the factors contributing to the reduction potential change. Finally, reduction potentials are predicted for a series of 124 new mutants that have not yet been investigated experimentally. Several mutants are identified that are located well over 10 Å from the copper center that change the reduction potential by more than 85 mV. The work shows that secondary coordination sphere mutations mostly lead to long-range electrostatic changes and hence can be modeled accurately with continuum electrostatics. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
NASA Astrophysics Data System (ADS)
Oh, Y. J.; Jo, W.; Yang, Y.; Park, S.
2007-04-01
The authors report growth media dependence of electrostatic force characteristics in Escherichia coli O157:H7 biofilm through local measurement by electrostatic force microscopy (EFM). The difference values of electrostatic interaction between the bacterial surface and the abiotic surface show an exponential decay behavior during biofilm development. In the EFM data, the biofilm in the low nutrient media shows a faster decay than the biofilm in the rich media. The surface potential in the bacterial cells was changed from 957to149mV. Local characterization of extracellular materials extracted from the bacteria reveals the progress of the biofilm formation and functional complexities.
Beaussart, Audrey; Beloin, Christophe; Ghigo, Jean-Marc; Chapot-Chartier, Marie-Pierre; Kulakauskas, Saulius; Duval, Jérôme F L
2018-06-27
The safe use and design of nanoparticles (NPs) ask for a comprehensive interpretation of their potentially adverse effects on (micro)organisms. In this respect, the prior assessment of the interactions experienced by NPs in the vicinity of - and in contact with - complex biological surfaces is mandatory. It requires the development of suitable techniques for deciphering the processes that govern nano-bio interactions when a single organism is exposed to an extremely low dose of NPs. Here, we used atomic force spectroscopy (AFM)-based force measurements to investigate at the nanoscale the interactions between carboxylate-terminated polyamidoamine (PAMAM) nanodendrimers (radius ca. 4.5 nm) and two bacteria with very distinct surface properties, Escherichia coli and Lactococcus lactis. The zwitterionic nanodendrimers exhibit a negative peripheral surface charge and/or a positive intraparticulate core depending on the solution pH and salt concentration. Following an original strategy according to which a single dendrimer NP is grafted at the very apex of the AFM tip, the density and localization of NP binding sites are probed at the surface of E. coli and L. lactis mutants expressing different cell surface structures (presence/absence of the O-antigen of the lipopolysaccharides (LPS) or of a polysaccharide pellicle). In line with electrokinetic analysis, AFM force measurements evidence that adhesion of NPs onto pellicle-decorated L. lactis is governed by their underlying electrostatic interactions as controlled by the pH-dependent charge of the peripheral and internal NP components, and the negatively-charged cell surface. In contrast, the presence of the O-antigen on E. coli systematically suppresses the adhesion of nanodendrimers onto cells, may the apparent NP surface charge be determined by the peripheral carboxylate groups or by the internal amine functions. Altogether, this work highlights the differentiated roles played by surface polysaccharides in mediating NP attachment to Gram-positive and Gram-negative bacteria. It further demonstrates that the assessment of NP bioadhesion features requires a critical analysis of the electrostatic contributions stemming from the various structures composing the stratified cell envelope, and those originating from the bulk and surface NP components. The joint use of electrokinetics and AFM provides a valuable option for rapidly addressing the binding propensity of NPs to microorganisms, as urgently needed in NP risk assessments.
NASA Astrophysics Data System (ADS)
Prathap Reddy, K.
2016-11-01
An ‘electrostatic bathtub potential’ is defined and analytical expressions for the time period and amplitude of charged particles in this potential are obtained and compared with simulations. These kinds of potentials are encountered in linear electrostatic ion traps, where the potential along the axis appears like a bathtub. Ion traps are used in basic physics research and mass spectrometry to store ions; these stored ions make oscillatory motion within the confined volume of the trap. Usually these traps are designed and studied using ion optical software, but in this work the bathtub potential is reproduced by making two simple modifications to the harmonic oscillator potential. The addition of a linear ‘k 1|x|’ potential makes the simple harmonic potential curve steeper with a sharper turn at the origin, while the introduction of a finite-length zero potential region at the centre reproduces the flat region of the bathtub curve. This whole exercise of modelling a practical experimental situation in terms of a well-known simple physics problem may generate interest among readers.
2014-01-01
Background Brownian dynamics (BD) simulations can be used to study very large molecular systems, such as models of the intracellular environment, using atomic-detail structures. Such simulations require strategies to contain the computational costs, especially for the computation of interaction forces and energies. A common approach is to compute interaction forces between macromolecules by precomputing their interaction potentials on three-dimensional discretized grids. For long-range interactions, such as electrostatics, grid-based methods are subject to finite size errors. We describe here the implementation of a Debye-Hückel correction to the grid-based electrostatic potential used in the SDA BD simulation software that was applied to simulate solutions of bovine serum albumin and of hen egg white lysozyme. Results We found that the inclusion of the long-range electrostatic correction increased the accuracy of both the protein-protein interaction profiles and the protein diffusion coefficients at low ionic strength. Conclusions An advantage of this method is the low additional computational cost required to treat long-range electrostatic interactions in large biomacromolecular systems. Moreover, the implementation described here for BD simulations of protein solutions can also be applied in implicit solvent molecular dynamics simulations that make use of gridded interaction potentials. PMID:25045516
NASA Astrophysics Data System (ADS)
Koller, Thomas; Ramos, Javier; Garrido, Nuno M.; Fröba, Andreas P.; Economou, Ioannis G.
2012-06-01
Three united-atom (UA) force fields are presented for the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate, abbreviated as [EMIM]+[B(CN)4]-. The atomistic charges were calculated based on the restrained electrostatic potential (RESP) of the isolated ions (abbreviated as force field 1, FF-1) and the ensemble averaged RESP (EA-RESP) method from the most stable ion pair configurations obtained by MP2/6-31G*+ calculations (abbreviated as FF-2 and FF-3). Non-electrostatic parameters for both ions were taken from the literature and Lennard-Jones parameters for the [B(CN)4]- anion were fitted in two different ways to reproduce the experimental liquid density. Molecular dynamics (MD) simulations were performed over a wide temperature range to identify the effect of the electrostatic and non-electrostatic potential on the liquid density and on transport properties such as self-diffusion coefficient and viscosity. Predicted liquid densities for the three parameter sets deviate less than 0.5% from experimental data. The molecular mobility with FF-2 and FF-3 using reduced charge sets is appreciably faster than that obtained with FF-1. FF-3 presents a refined non-electrostatic potential that leads to a notable improvement in both transport properties when compared to experimental data.
Bisphosphonates enhance bacterial adhesion and biofilm formation on bone hydroxyapatite.
Kos, Marcin; Junka, Adam; Smutnicka, Danuta; Szymczyk, Patrycja; Gluza, Karolina; Bartoszewicz, Marzenna
2015-07-01
Because of the suspicion that bisphosphonates enhance bacterial colonization, this study evaluated adhesion and biofilm formation by Streptococcus mutans 25175, Staphylococcus aureus 6538, and Pseudomonas aeruginosa 14454 reference strains on hydroxyapatite coated with clodronate, pamidronate, or zoledronate. Bacterial strains were cultured on bisphosphonate-coated and noncoated hydroxyapatite discs. After incubation, nonadhered bacteria were removed by centrifugation. Biofilm formation was confirmed by scanning electron microscopy. Bacterial colonization was estimated using quantitative cultures compared by means with Kruskal-Wallis and post-hoc Student-Newman-Keuls tests. Modeling of the interactions between bisphosphonates and hydroxyapatite was performed using the Density Functional Theory method. Bacterial colonization of the hydroxyapatite discs was significantly higher for all tested strains in the presence of bisphosphonates vs. Adherence in the presence of pamidronate was higher than with other bisphosphonates. Density Functional Theory analysis showed that the protonated amine group of pamidronate, which are not present in clodronate or zoledronate, forms two additional hydrogen bonds with hydroxyapatite. Moreover, the reactive cationic amino group of pamidronate may attract bacteria by direct electrostatic interaction. Increased bacterial adhesion and biofilm formation can promote osteomyelitis, cause failure of dental implants or bisphosphonate-coated joint prostheses, and complicate bone surgery in patients on bisphosphonates. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Lindfors, Hanna E; Drijfhout, Jan Wouter; Ubbink, Marcellus
2012-06-01
The interaction between the tyrosine kinases Src and focal adhesion kinase (FAK) is a key step in signaling processes from focal adhesions. The phosphorylated tyrosine residue 397 in FAK is able to bind the Src SH2 domain. To establish the extent of the FAK binding motif, the binding affinity of the SH2 domain for phosphorylated and unphosphorylated FAK-derived peptides of increasing length was determined and compared with that of the internal Src SH2 binding site. It is shown that the FAK peptides have higher affinity than the internal binding site and that seven negative residues adjacent to the core SH2 binding motif increase the binding constant 30-fold. A rigid spin-label incorporated in the FAK peptides was used to establish on the basis of paramagnetic relaxation enhancement whether the peptide-protein complex is well defined. A large spread of the paramagnetic effects on the surface of the SH2 domain suggests that the peptide-protein complex exhibits dynamics, despite the high affinity of the peptide. The strong electrostatic interaction between the positive side of the SH2 domain and the negative peptide results in a high affinity but may also favor a dynamic interaction. Copyright © 2012 Wiley Periodicals, Inc.
Somodi, P K; Twitchett-Harrison, A C; Midgley, P A; Kardynał, B E; Barnes, C H W; Dunin-Borkowski, R E
2013-11-01
Two-dimensional finite element simulations of electrostatic dopant potentials in parallel-sided semiconductor specimens that contain p-n junctions are used to assess the effect of the electrical state of the surface of a thin specimen on projected potentials measured using off-axis electron holography in the transmission electron microscope. For a specimen that is constrained to have an equipotential surface, the simulations show that the step in the projected potential across a p-n junction is always lower than would be predicted from the properties of the bulk device, but is relatively insensitive to the value of the surface state energy, especially for thicker specimens and higher dopant concentrations. The depletion width measured from the projected potential, however, has a complicated dependence on specimen thickness. The results of the simulations are of broader interest for understanding the influence of surfaces and interfaces on electrostatic potentials in nanoscale semiconductor devices. © 2013 Elsevier B.V. All rights reserved.
Li, Junhui; Zhang, Yue; Song, Yanzhai; Zhang, Hui; Fan, Jiangbo; Li, Qun; Zhang, Dongfen; Xue, Yongbiao
2017-01-01
Self-incompatibility (SI) is a self/non-self discrimination system found widely in angiosperms and, in many species, is controlled by a single polymorphic S-locus. In the Solanaceae, Rosaceae and Plantaginaceae, the S-locus encodes a single S-RNase and a cluster of S-locus F-box (SLF) proteins to control the pistil and pollen expression of SI, respectively. Previous studies have shown that their cytosolic interactions determine their recognition specificity, but the physical force between their interactions remains unclear. In this study, we show that the electrostatic potentials of SLF contribute to the pollen S specificity through a physical mechanism of 'like charges repel and unlike charges attract' between SLFs and S-RNases in Petunia hybrida. Strikingly, the alteration of a single C-terminal amino acid of SLF reversed its surface electrostatic potentials and subsequently the pollen S specificity. Collectively, our results reveal that the electrostatic potentials act as a major physical force between cytosolic SLFs and S-RNases, providing a mechanistic insight into the self/non-self discrimination between cytosolic proteins in angiosperms. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
A miniature mimic of host defense peptides with systemic antibacterial efficacy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarig, Hadar; Livne, Liran; Held-Kuznetsov, Victoria
Oligomers of acylated lysines (OAKs) are synthetic mimics of host defense peptides (HDPs) with promising antimicrobial properties. Here we challenged the OAK concept for its ability to generate both systemically efficient and economically viable lead compounds for fighting multidrug-resistant bacteria. We describe the design and characterization of a miniature OAK composed of only 3 lysyls and 2 acyls (designated C{sub 12({omega}7)}K-{beta}{sub 12}) that preferentially targets gram-positive species by a bacteriostatic mode of action. To gain insight into the mechanism of action, we examined the interaction of OAK with various potential targets, including phospholipid bilayers, using surface plasmon resonance, and Langmuirmore » monolayers, using insertion assays, epifluorescence microscopy, and grazing incidence X-ray diffraction, in a complementary manner. Collectively, the data support the notion that C{sub 12({omega}7)}K-{beta}{sub 12} damages the plasma-membrane architecture similarly to HDPs, that is, following a near-classic 2-step interaction including high-affinity electrostatic adhesion and a subsequent shallow insertion that was limited to the phospholipid head group region. Notably, preliminary acute toxicity and efficacy studies performed with mouse models of infection have consolidated the potential of OAK for treating bacterial infections, including systemic treatments of methicillin-resistant Staphylococcus aureus. Such simple yet robust chemicals might be useful for various antibacterial applications while circumventing potential adverse effects associated with cytolytic compounds.« less
Sonia, T A; Sharma, Chandra P
2013-04-01
In this investigation, novel cationic thiomer, Thiolated polydimethylaminoethylmethacrylate (PDCys) is synthesised and the feasibility of PDCys sub-microparticles as oral insulin delivery carriers is evaluated in vitro. The presence of both positive charge and thiol group in the same matrix plays a vital role in improving the paracellular permeability. Thiol groups interacts with cysteine rich subdomains via disulfide bond formation and positive charge interacts with sialic residues of mucus glycoproteins via electrostatic interaction, thereby increasing the mucoadhesivity. Cytotoxic evaluation by MTT assay shows that PDCys is nontoxic. Force and Work of adhesion of PDCys was found found to be higher than that of parent polymer. ELISA and Circular dichroism spectra confirms that PDCys retains the biological activity and conformation of insulin. Moreover, PDCys is capable of opening the tight junctions by actin and occludin filament dislocation. Furthermore, permeation of FD4 on Caco-2 cells is improved by 3.9 fold compared to the parent polymer. Preliminary studies suggest that thiolated particles can serve as potential vehicles for oral insulin delivery.
2016-09-01
2 Fig. 2 Electrostatic potential map of 1, without a) and with b) molecule overlay...3 Fig. 3 Electrostatic potential map of 2, without a) and with b) molecule overlay...3 Fig. 4 Electrostatic potential map of 3, without a) and
Electrostatic forces in planetary rings
NASA Technical Reports Server (NTRS)
Goertz, C. K.; Shan, Linhua; Havnes, O.
1988-01-01
The average charge on a particle in a particle-plasma cloud, the plasma potential inside the cloud, and the Coulomb force acting on the particle are calculated. The net repulsive electrostatic force on a particle depends on the plasma density, temperature, density of particles, particle size, and the gradient of the particle density. In a uniformly dense ring the electrostatic repulsion is zero. It is also shown that the electrostatic force acts like a pressure force, that even a collisionless ring can be stable against gravitational collapse, and that a finite ring thickness does not necessarily imply a finite velocity dispersion. A simple criterion for the importance of electrostatic forces in planetary rings is derived which involves the calculation of the vertical ring thickness which would result if only electrostatic repulsion were responsible for the finite ring thickness. Electrostatic forces are entirely negligible in the main rings of Saturn and the E and G rings. They may also be negligible in the F ring. However, the Uranian rings and Jupiter's ring seem to be very much influenced by electrostatic repulsion. In fact, electrostatic forces could support a Jovian ring which is an order of magnitude more dense than observed.
NASA Astrophysics Data System (ADS)
Jiang, Fan; Chen, Jingwen; Bi, Han; Li, Luying; Jing, Wenkui; Zhang, Jun; Dai, Jiangnan; Che, Renchao; Chen, Changqing; Gao, Yihua
2018-01-01
Non-polar a-plane n-ZnO/p-AlGaN and n-ZnO/i-ZnO/p-AlGaN heterojunction film light-emitting diodes (LEDs) are fabricated with good crystalline quality. The optical measurements show obvious performance enhancement with i-ZnO layer insertion. Off-axis electron holography reveals a potential drop of ˜1.5 V across the heterojunctions with typical p-n junction characteristics. It is found that the electrostatic potentials are inclined and the corresponding electrostatic fields are opposite to each other in n-ZnO and p-AlGaN regions. The electrostatic fields are mainly attributed to strain induced piezoelectric polarizations. After an insertion of an i-ZnO layer into the p-n heterojunction, comparatively flat electrostatic potential generates in the intrinsic ZnO region and contributes to faster movements of the injected electrons and holes, making the i-ZnO layer more conductive to the radiative recombination with enhanced exciton recombination possibilities and at last the LED performance enhancement.
A retrospective of the career of Ray Herb
NASA Astrophysics Data System (ADS)
Norton, G. A.; Ferry, J. A.; Daniel, R. E.; Klody, G. M.
1999-04-01
Ray Herb's career in the development of electrostatic accelerators spans 65 years. He began in 1933 by pressurizing a Van de Graaff generator, for the first time. Over the next six years, the group at the University of Wisconsin, under his direction, developed the fundamentals of equipotential rings, potential grading, corona triode control, and other basic mechanisms for the practical use of electrostatic accelerators while making fundamental contributions to experimental nuclear physics. This group held the world's record in sustaining potential difference of 4.5 MV. During World War II, he worked on radar at the Radiation Laboratory. After the war, Herb resumed his career with further fundamental contributions including metal/ceramic bonding, ultrahigh vacuum pumping, negative ion source development and metal charge carriers. The company, National Electrostatics, under his direction manufactured the accelerator which still holds the world's record for the highest sustained potential difference of 32±1.5 MV. Throughout his career he led teams which made the electrostatic accelerator a valuable tool for applications in a wide variety of scientific fields, well beyond nuclear physics.
DLVO and XDLVO calculations for bacteriophage MS2 adhesion to iron oxide particles.
Park, Jeong-Ann; Kim, Song-Bae
2015-10-01
In this study, batch experiments were performed to examine the adhesion of bacteriophage MS2 to three iron oxide particles (IOP1, IOP2 and IOP3) with different particle properties. The characteristics of MS2 and iron oxides were analyzed using various techniques to construct the classical DLVO and XDLVO potential energy profiles between MS2 and iron oxides. X-ray diffractometry peaks indicated that IOP1 was mainly composed of maghemite (γ-Fe2O3), but also contained some goethite (α-FeOOH). IOP2 was composed of hematite (α-Fe2O3) and IOP3 was composed of iron (Fe), magnetite (Fe3O4) and iron oxide (FeO). Transmission electron microscope images showed that the primary particle size of IOP1 (γ-Fe2O3) was 12.3±4.1nm. IOP2 and IOP3 had primary particle sizes of 167±35nm and 484±192nm, respectively. A surface angle analyzer demonstrated that water contact angles of IOP1, IOP2, IOP3 and MS2 were 44.83, 64.00, 34.33 and 33.00°, respectively. A vibrating sample magnetometer showed that the magnetic saturations of IOP1, IOP2 and IOP3 were 176.87, 17.02 and 946.85kA/m, respectively. Surface potentials measured in artificial ground water (AGW; 0.075mM CaCl2, 0.082mM MgCl2, 0.051mM KCl, and 1.5mM NaHCO3; pH7.6) indicated that iron oxides and MS2 were negatively charged in AGW (IOP1=-0.0185V; IOP2=-0.0194V; IOP3=-0.0301V; MS2=-0.0245V). Batch experiments demonstrated that MS2 adhesion to iron oxides was favorable in the order of IOP1>IOP2>IOP3. This tendency was well predicted by the classical DLVO model. In the DLVO calculations, both the sphere-plate and sphere-sphere geometries predicted the same trend of MS2 adhesion to iron oxides. Additionally, noticeable differences were not found between the DLVO and XDLVO interaction energy profiles, indicating that hydrophobic interactions did not play a major role; electrostatic interactions, however, did influence MS2 adhesion to iron oxides. Furthermore, the aggregation of iron oxides was investigated with a modified XDLVO model. This model included magnetic interactions between the particles in order to predict the aggregation of iron oxides. Even though iron oxide particle aggregation could occur under experimental conditions, the DLVO model results using primary particle size were more suitable for the interactions between MS2 and the iron oxides because of fast sorption of MS2 onto the surfaces of iron oxides. Copyright © 2015 Elsevier B.V. All rights reserved.
Ferroelectric hydration shells around proteins: electrostatics of the protein-water interface.
LeBard, David N; Matyushov, Dmitry V
2010-07-22
Numerical simulations of hydrated proteins show that protein hydration shells are polarized into a ferroelectric layer with large values of the average dipole moment magnitude and the dipole moment variance. The emergence of the new polarized mesophase dramatically alters the statistics of electrostatic fluctuations at the protein-water interface. The linear response relation between the average electrostatic potential and its variance breaks down, with the breadth of the electrostatic fluctuations far exceeding the expectations of the linear response theories. The dynamics of these non-Gaussian electrostatic fluctuations are dominated by a slow (approximately = 1 ns) component that freezes in at the temperature of the dynamical transition of proteins. The ferroelectric shell propagates 3-5 water diameters into the bulk.
Electrostatics in the environment: How they may affect health and productivity
NASA Astrophysics Data System (ADS)
Jamieson, K. S.; Simon, H. M. Ap; Bell, J. N. B.
2008-12-01
Lifestyles and the built environment have changed considerably during the past century and have greatly influenced the electric field, small air ion and charged submicron aerosol regimes to which individuals are often exposed. In particular the use of electrical items, synthetic materials/finishes and low humidity levels that can lead to the generation of high electrostatic charges, along with inadequate grounding protocols and building techniques which create 'Faraday cage'-like conditions, have all greatly altered the electromagnetic nature of the microclimates many people occupy for prolonged periods of time. It is suggested that the type, polarity and strengths of electric fields individuals are exposed to may affect their likelihood of succumbing to ill-health through influencing biological functioning, oxygen-uptake and retention rates of inhaled submicron contaminants to a far greater degree than previously realised. These factors can also influence the degree of local surface contamination and adhesion that occurs. It is further suggested that both health and work productivity can be affected by such factors, and that improved 'best practice' electro-hygiene/productivity protocols should be adopted wherever practical.
Three-Dimensional Tracking of Interfacial Hopping Diffusion
NASA Astrophysics Data System (ADS)
Wang, Dapeng; Wu, Haichao; Schwartz, Daniel K.
2017-12-01
Theoretical predictions have suggested that molecular motion at interfaces—which influences processes including heterogeneous catalysis, (bio)chemical sensing, lubrication and adhesion, and nanomaterial self-assembly—may be dominated by hypothetical "hops" through the adjacent liquid phase, where a diffusing molecule readsorbs after a given hop according to a probabilistic "sticking coefficient." Here, we use three-dimensional (3D) single-molecule tracking to explicitly visualize this process for human serum albumin at solid-liquid interfaces that exert varying electrostatic interactions on the biomacromolecule. Following desorption from the interface, a molecule experiences multiple unproductive surface encounters before readsorption. An average of approximately seven surface collisions is required for the repulsive surfaces, decreasing to approximately two and a half for surfaces that are more attractive. The hops themselves are also influenced by long-range interactions, with increased electrostatic repulsion causing hops of longer duration and distance. These findings explicitly demonstrate that interfacial diffusion is dominated by biased 3D Brownian motion involving bulk-surface coupling and that it can be controlled by influencing short- and long-range adsorbate-surface interactions.
Voinov, Maxim A; Smirnov, Alex I
2015-01-01
Electrostatic interactions are known to play a major role in the myriad of biochemical and biophysical processes. Here, we describe biophysical methods to probe local electrostatic potentials of proteins and lipid bilayer systems that are based on an observation of reversible protonation of nitroxides by electron paramagnetic resonance (EPR). Two types of probes are described: (1) methanethiosulfonate derivatives of protonatable nitroxides for highly specific covalent modification of the cysteine's sulfhydryl groups and (2) spin-labeled phospholipids with a protonatable nitroxide tethered to the polar head group. The probes of both types report on their ionization state through changes in magnetic parameters and degree of rotational averaging, thus, allowing the electrostatic contribution to the interfacial pKa of the nitroxide, and, therefore, the local electrostatic potential to be determined. Due to their small molecular volume, these probes cause a minimal perturbation to the protein or lipid system. Covalent attachment secures the position of the reporter nitroxides. Experimental procedures to characterize and calibrate these probes by EPR, and also the methods to analyze the EPR spectra by simulations are outlined. The ionizable nitroxide labels and the nitroxide-labeled phospholipids described so far cover an exceptionally wide range of ca. 2.5-7.0 pH units, making them suitable to study a broad range of biophysical phenomena, especially at the negatively charged lipid bilayer surfaces. The rationale for selecting proper electrostatically neutral interface for probe calibration, and examples of lipid bilayer surface potential studies, are also described. © 2015 Elsevier Inc. All rights reserved.
Electrostatic steering and ionic tethering in enzyme–ligand binding: Insights from simulations
Wade, Rebecca C.; Gabdoulline, Razif R.; Lüdemann, Susanna K.; Lounnas, Valère
1998-01-01
To bind at an enzyme’s active site, a ligand must diffuse or be transported to the enzyme’s surface, and, if the binding site is buried, the ligand must diffuse through the protein to reach it. Although the driving force for ligand binding is often ascribed to the hydrophobic effect, electrostatic interactions also influence the binding process of both charged and nonpolar ligands. First, electrostatic steering of charged substrates into enzyme active sites is discussed. This is of particular relevance for diffusion-influenced enzymes. By comparing the results of Brownian dynamics simulations and electrostatic potential similarity analysis for triose-phosphate isomerases, superoxide dismutases, and β-lactamases from different species, we identify the conserved features responsible for the electrostatic substrate-steering fields. The conserved potentials are localized at the active sites and are the primary determinants of the bimolecular association rates. Then we focus on a more subtle effect, which we will refer to as “ionic tethering.” We explore, by means of molecular and Brownian dynamics simulations and electrostatic continuum calculations, how salt links can act as tethers between structural elements of an enzyme that undergo conformational change upon substrate binding, and thereby regulate or modulate substrate binding. This is illustrated for the lipase and cytochrome P450 enzymes. Ionic tethering can provide a control mechanism for substrate binding that is sensitive to the electrostatic properties of the enzyme’s surroundings even when the substrate is nonpolar. PMID:9600896
Berente, Imre; Czinki, Eszter; Náray-Szabó, Gábor
2007-09-01
We report an approach for the determination of atomic monopoles of macromolecular systems using connectivity and geometry parameters alone. The method is appropriate also for the calculation of charge distributions based on the quantum mechanically determined wave function and does not suffer from the mathematical instability of other electrostatic potential fit methods. Copyright 2007 Wiley Periodicals, Inc.
A small-gap electrostatic micro-actuator for large deflections
Conrad, Holger; Schenk, Harald; Kaiser, Bert; Langa, Sergiu; Gaudet, Matthieu; Schimmanz, Klaus; Stolz, Michael; Lenz, Miriam
2015-01-01
Common quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements. Here we report on an electrostatic actuator class, fabricated in a CMOS-compatible process, which allows high deflections with small electrode separation. The concept presented makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections. Electrostatic actuations that are larger than the electrode separation were measured. An analytical theory is compared with measurement and simulation results and enables closer understanding of these actuators. The scaling behaviour discussed indicates significant future improvement on actuator deflection. The presented driving concept enables the investigation and development of novel micro systems with a high potential for improved device and system performance. PMID:26655557
Electrostatics at the nanoscale.
Walker, David A; Kowalczyk, Bartlomiej; de la Cruz, Monica Olvera; Grzybowski, Bartosz A
2011-04-01
Electrostatic forces are amongst the most versatile interactions to mediate the assembly of nanostructured materials. Depending on experimental conditions, these forces can be long- or short-ranged, can be either attractive or repulsive, and their directionality can be controlled by the shapes of the charged nano-objects. This Review is intended to serve as a primer for experimentalists curious about the fundamentals of nanoscale electrostatics and for theorists wishing to learn about recent experimental advances in the field. Accordingly, the first portion introduces the theoretical models of electrostatic double layers and derives electrostatic interaction potentials applicable to particles of different sizes and/or shapes and under different experimental conditions. This discussion is followed by the review of the key experimental systems in which electrostatic interactions are operative. Examples include electroactive and "switchable" nanoparticles, mixtures of charged nanoparticles, nanoparticle chains, sheets, coatings, crystals, and crystals-within-crystals. Applications of these and other structures in chemical sensing and amplification are also illustrated.
2017-05-17
490F Type IV inorganic pretreatments resulted in little to no loss of adhesive bond strength during H/W conditioning and their potential use as bonding...sustainable TT-C-490F pretreatments resulted in little to no loss of adhesive bond strength during H/W conditioning and their potential use as...pretreatment was applied. Environmentally sustainable TT-C-490F Type IV inorganic pretreatments resulted in little to no loss of adhesive bond strength during
Direct Analysis of Large Living Organism by Megavolt Electrostatic Ionization Mass Spectrometry
NASA Astrophysics Data System (ADS)
Ng, Kwan-Ming; Tang, Ho-Wai; Man, Sin-Heng; Mak, Pui-Yuk; Choi, Yi-Ching; Wong, Melody Yee-Man
2014-09-01
A new ambient ionization method allowing the direct chemical analysis of living human body by mass spectrometry (MS) was developed. This MS method, namely Megavolt Electrostatic Ionization Mass Spectrometry, is based on electrostatic charging of a living individual to megavolt (MV) potential, illicit drugs, and explosives on skin/glove, flammable solvent on cloth/tissue paper, and volatile food substances in breath were readily ionized and detected by a mass spectrometer.
Direct analysis of large living organism by megavolt electrostatic ionization mass spectrometry.
Ng, Kwan-Ming; Tang, Ho-Wai; Man, Sin-Heng; Mak, Pui-Yuk; Choi, Yi-Ching; Wong, Melody Yee-Man
2014-09-01
A new ambient ionization method allowing the direct chemical analysis of living human body by mass spectrometry (MS) was developed. This MS method, namely Megavolt Electrostatic Ionization Mass Spectrometry, is based on electrostatic charging of a living individual to megavolt (MV) potential, illicit drugs, and explosives on skin/glove, flammable solvent on cloth/tissue paper, and volatile food substances in breath were readily ionized and detected by a mass spectrometer.
Ganguly, Debabani; Zhang, Weihong; Chen, Jianhan
2013-01-01
Achieving facile specific recognition is essential for intrinsically disordered proteins (IDPs) that are involved in cellular signaling and regulation. Consideration of the physical time scales of protein folding and diffusion-limited protein-protein encounter has suggested that the frequent requirement of protein folding for specific IDP recognition could lead to kinetic bottlenecks. How IDPs overcome such potential kinetic bottlenecks to viably function in signaling and regulation in general is poorly understood. Our recent computational and experimental study of cell-cycle regulator p27 (Ganguly et al., J. Mol. Biol. (2012)) demonstrated that long-range electrostatic forces exerted on enriched charges of IDPs could accelerate protein-protein encounter via “electrostatic steering” and at the same time promote “folding-competent” encounter topologies to enhance the efficiency of IDP folding upon encounter. Here, we further investigated the coupled binding and folding mechanisms and the roles of electrostatic forces in the formation of three IDP complexes with more complex folded topologies. The surface electrostatic potentials of these complexes lack prominent features like those observed for the p27/Cdk2/cyclin A complex to directly suggest the ability of electrostatic forces to facilitate folding upon encounter. Nonetheless, similar electrostatically accelerated encounter and folding mechanisms were consistently predicted for all three complexes using topology-based coarse-grained simulations. Together with our previous analysis of charge distributions in known IDP complexes, our results support a prevalent role of electrostatic interactions in promoting efficient coupled binding and folding for facile specific recognition. These results also suggest that there is likely a co-evolution of IDP folded topology, charge characteristics, and coupled binding and folding mechanisms, driven at least partially by the need to achieve fast association kinetics for cellular signaling and regulation. PMID:24278008
Searching the Force Field Electrostatic Multipole Parameter Space.
Jakobsen, Sofie; Jensen, Frank
2016-04-12
We show by tensor decomposition analyses that the molecular electrostatic potential for amino acid peptide models has an effective rank less than twice the number of atoms. This rank indicates the number of parameters that can be derived from the electrostatic potential in a statistically significant way. Using this as a guideline, we investigate different strategies for deriving a reduced set of atomic charges, dipoles, and quadrupoles capable of reproducing the reference electrostatic potential with a low error. A full combinatorial search of selected parameter subspaces for N-methylacetamide and a cysteine peptide model indicates that there are many different parameter sets capable of providing errors close to that of the global minimum. Among the different reduced multipole parameter sets that have low errors, there is consensus that atoms involved in π-bonding require higher order multipole moments. The possible correlation between multipole parameters is investigated by exhaustive searches of combinations of up to four parameters distributed in all possible ways on all possible atomic sites. These analyses show that there is no advantage in considering combinations of multipoles compared to a simple approach where the importance of each multipole moment is evaluated sequentially. When combined with possible weighting factors related to the computational efficiency of each type of multipole moment, this may provide a systematic strategy for determining a computational efficient representation of the electrostatic component in force field calculations.
Discriminatory bio-adhesion over nano-patterned polymer brushes
NASA Astrophysics Data System (ADS)
Gon, Saugata
Surfaces functionalized with bio-molecular targeting agents are conventionally used for highly-specific protein and cell adhesion. This thesis explores an alternative approach: Small non-biological adhesive elements are placed on a surface randomly, with the rest of the surface rendered repulsive towards biomolecules and cells. While the adhesive elements themselves, for instance in solution, typically exhibit no selectivity for various compounds within an analyte suspension, selective adhesion of targeted objects or molecules results from their placement on the repulsive surface. The mechanism of selectivity relies on recognition of length scales of the surface distribution of adhesive elements relative to species in the analyte solution, along with the competition between attractions and repulsions between various species in the suspension and different parts of the collecting surface. The resulting binding selectivity can be exquisitely sharp; however, complex mixtures generally require the use of multiple surfaces to isolate the various species: Different components will be adhered, sharply, with changes in collector composition. The key feature of these surface designs is their lack of reliance on biomolecular fragments for specificity, focusing entirely on physicochemical principles at the lengthscales from 1 - 100 nm. This, along with a lack of formal patterning, provides the advantages of simplicity and cost effectiveness. This PhD thesis demonstrates these principles using a system in which cationic poly-L-lysine (PLL) patches (10 nm) are deposited randomly on a silica substrate and the remaining surface is passivated with a bio-compatible PEG brush. TIRF microscopy revealed that the patches were randomly arranged, not clustered. By precisely controlling the number of patches per unit area, the interfaces provide sharp selectivity for adhesion of proteins and bacterial cells. For instance, it was found that a critical density of patches (on the order of 1000/mum 2) was required for fibrinogen adsorption while a greater density comprised the adhesion threshold for albumin. Surface compositions between these two thresholds discriminated binding of the two proteins. The binding behavior of the two proteins from a mixture was well anticipated by the single- protein binding behaviors of the individual proteins. The mechanism for protein capture was shown to be multivalent: protein adhesion always occurred for averages spacings of the adhesive patches smaller than the dimensions of the protein of interest. For some backfill brush architectures, the spacing between the patches at the threshold for protein capture clearly corresponded to the major dimension of the target protein. For more dense PEG brush backfills however, larger adhesion thresholds were observed, corresponding to greater numbers of patches involved with the adhesion of each protein molecule. . The thesis demonstrates the tuning of the position of the adhesion thresholds, using fibrinogen as a model protein, using variations in brush properties and ionic strength. The directions of the trends indicate that the brushes do indeed exert steric repulsions toward the proteins while the attractions are electrostatic in nature. The surfaces also demonstrated sharp adhesion thresholds for S. Aureus bacteria, at smaller concentrations of adhesive surfaces elements than those needed for the protein capture. The results suggest that bacteria may be captured while proteins are rejected from these surfaces, and there may be potential to discriminate different bacterial types. Such discrimination from protein-containing bacterial suspensions was investigated briefly in this thesis using S. Aureus and fibrinogen as a model mixture. However, due to binding of fibrinogen to the bacterial surface, the separation did not succeed. It is still expected, however, that these surfaces could be used to selectively capture bacteria in the presence of non-interacting proteins. The interaction of these brushes with two different cationic species PLL and lysozyme were studied. The thesis documents rapid and complete brush displacement by PLL, highlighting a major limitation of using such brushes in some applications. Also unanticipated, lysozyme, a small cationic protein, was found to adhere to the brushes in increasing amounts with the PEG content of the brush. This finding contradicts current understanding of protein-brush interactions that suggests increases in interfacial PEG content increase biocompatibility.
NASA Astrophysics Data System (ADS)
Moisan, M.; Levif, P.; Séguin, J.; Barbeau, J.
2014-07-01
The use of plasma for sterilization or disinfection offers a promising alternative to conventional steam or chemical approaches. Plasma can operate at temperatures less damaging to some heat-sensitive medical devices and, in contrast to chemicals, can be non-toxic and non-polluting for the operator and the environment, respectively. Direct exposure to the gaseous discharge (comprising an electric field and ions/electrons) or exposure to its afterglow (no E-field) can both be envisaged a priori, since these two methods can achieve sterility. However, important issues must be considered besides the sterility goal. Direct exposure to the discharge, although yielding a faster inactivation of microorganisms, is shown to be potentially more aggressive to materials and sometimes subjected to the shadowing effect that precludes the sterilization of complex-form items. These two drawbacks can be successfully minimized with an adequate flowing-afterglow exposure. Most importantly, the current paper shows that direct exposure to the discharge can lead to the dislodgment and release of viable microorganisms from their substratum. Such a phenomenon could be responsible for the recontamination of sterilized devices as well as possible contamination of the ambient surroundings, additionally yielding an erroneous over-appreciation of the inactivation efficiency. The operation of the N2-O2 flowing afterglow system being developed in our group is such that there are no ions and electrons left in the process chamber (late-afterglow regime) in full contrast with their presence in the discharge. The dislodgment and release of spores could be attributed, based on the literature, to their electrostatic charging by electrons, leading to an (outward) electrostatic stress that exceeds the adhesion of the spores on their substrate.
Yigit, Cemil; Heyda, Jan; Dzubiella, Joachim
2015-08-14
We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions.
Kurnikov, Igor V; Ratner, Mark A; Pacheco, A Andrew
2005-02-15
We report results of continuum electrostatics calculations of the cofactor redox potentials, and of the titratable group pK(a) values, in hydroxylamine oxidoreductase (HAO). A picture of a sophisticated multicomponent control of electron flow in the protein emerged from the studies. First, we found that neighboring heme cofactors strongly interact electrostatically, with energies of 50-100 mV. Thus, cofactor redox potentials depend on the oxidation state of other cofactors, and cofactor redox potentials in the active (partially oxidized) enzyme differ substantially from the values obtained in electrochemical redox titration experiments. We found that, together, solvent-exposed heme 1 (having a large negative redox potential) and heme 2 (having a large positive redox potential) form a lock for electrons generated during the oxidation reaction The attachment of HAO's physiological electron transfer partner cytochrome c(554) results in a positive shift in the redox potential of heme 1, and "opens the electron gate". Electrons generated as a result of hydroxylamine oxidation travel to heme 3 and heme 8, which have redox potentials close to 0 mV versus NHE (this result is in partial disagreement with an existing experimental redox potential assignment). The closeness of hemes 3 and 8 from different enzyme subunits allows redistribution of the four electrons generated as a result of hydroxylamine oxidation, among the three enzyme subunits. For the multielectron oxidation process to be maximally efficient, the redox potentials of the electron-accepting cofactors should be roughly equal, and electrostatic interactions between extra electrons on these cofactors should be minimal. The redox potential assignments presented in the paper satisfy this general rule.
NASA Astrophysics Data System (ADS)
Sebald, Thomas
2008-10-01
Electrostatic protection is an issue for all masks, whether during mask production, shipping, storage, handling or inspection and exposure. Up to now, only manual electrostatic field measurements, or expensive and elaborate analyses with Canary reticles have given hints about the risks of pattern damage by ESD events. A new test device is being introduced, which consists of electrostatic field sensors, integrated INSIDE a closed fused quartz housing which has the outside dimensions of a 6 inch mask. This device can be handled and used like a normal 6 inch reticle. It can be handled and processed while recording the electrostatic charges on the chrome patterns created by friction or field induction just as a reticle would "see" during normal processing.
Esrafili, Mehdi D; Behzadi, Hadi
2013-06-01
A density functional theory study was carried out to predict the electrostatic potentials as well as average local ionization energies on both the outer and the inner surfaces of carbon, boron-nitride (BN), boron-phosphide (BP) and silicon-carbide (SiC) single-walled nanotubes. For each nanotube, the effect of tube radius on the surface potentials and calculated average local ionization energies was investigated. It is found that SiC and BN nanotubes have much stronger and more variable surface potentials than do carbon and BP nanotubes. For the SiC, BN and BP nanotubes, there are characteristic patterns of positive and negative sites on the outer lateral surfaces. On the other hand, a general feature of all of the systems studied is that stronger potentials are associated with regions of higher curvature. According to the evaluated surface electrostatic potentials, it is concluded that, for the narrowest tubes, the water solubility of BN tubes is slightly greater than that of SiC followed by carbon and BP nanotubes.
Electrostatics, structure prediction, and the energy landscapes for protein folding and binding.
Tsai, Min-Yeh; Zheng, Weihua; Balamurugan, D; Schafer, Nicholas P; Kim, Bobby L; Cheung, Margaret S; Wolynes, Peter G
2016-01-01
While being long in range and therefore weakly specific, electrostatic interactions are able to modulate the stability and folding landscapes of some proteins. The relevance of electrostatic forces for steering the docking of proteins to each other is widely acknowledged, however, the role of electrostatics in establishing specifically funneled landscapes and their relevance for protein structure prediction are still not clear. By introducing Debye-Hückel potentials that mimic long-range electrostatic forces into the Associative memory, Water mediated, Structure, and Energy Model (AWSEM), a transferable protein model capable of predicting tertiary structures, we assess the effects of electrostatics on the landscapes of thirteen monomeric proteins and four dimers. For the monomers, we find that adding electrostatic interactions does not improve structure prediction. Simulations of ribosomal protein S6 show, however, that folding stability depends monotonically on electrostatic strength. The trend in predicted melting temperatures of the S6 variants agrees with experimental observations. Electrostatic effects can play a range of roles in binding. The binding of the protein complex KIX-pKID is largely assisted by electrostatic interactions, which provide direct charge-charge stabilization of the native state and contribute to the funneling of the binding landscape. In contrast, for several other proteins, including the DNA-binding protein FIS, electrostatics causes frustration in the DNA-binding region, which favors its binding with DNA but not with its protein partner. This study highlights the importance of long-range electrostatics in functional responses to problems where proteins interact with their charged partners, such as DNA, RNA, as well as membranes. © 2015 The Protein Society.
Li, Chuan; Petukh, Marharyta; Li, Lin; Alexov, Emil
2013-08-15
Due to the enormous importance of electrostatics in molecular biology, calculating the electrostatic potential and corresponding energies has become a standard computational approach for the study of biomolecules and nano-objects immersed in water and salt phase or other media. However, the electrostatics of large macromolecules and macromolecular complexes, including nano-objects, may not be obtainable via explicit methods and even the standard continuum electrostatics methods may not be applicable due to high computational time and memory requirements. Here, we report further development of the parallelization scheme reported in our previous work (Li, et al., J. Comput. Chem. 2012, 33, 1960) to include parallelization of the molecular surface and energy calculations components of the algorithm. The parallelization scheme utilizes different approaches such as space domain parallelization, algorithmic parallelization, multithreading, and task scheduling, depending on the quantity being calculated. This allows for efficient use of the computing resources of the corresponding computer cluster. The parallelization scheme is implemented in the popular software DelPhi and results in speedup of several folds. As a demonstration of the efficiency and capability of this methodology, the electrostatic potential, and electric field distributions are calculated for the bovine mitochondrial supercomplex illustrating their complex topology, which cannot be obtained by modeling the supercomplex components alone. Copyright © 2013 Wiley Periodicals, Inc.
PHEPS: web-based pH-dependent Protein Electrostatics Server
Kantardjiev, Alexander A.; Atanasov, Boris P.
2006-01-01
PHEPS (pH-dependent Protein Electrostatics Server) is a web service for fast prediction and experiment planning support, as well as for correlation and analysis of experimentally obtained results, reflecting charge-dependent phenomena in globular proteins. Its implementation is based on long-term experience (PHEI package) and the need to explain measured physicochemical characteristics at the level of protein atomic structure. The approach is semi-empirical and based on a mean field scheme for description and evaluation of global and local pH-dependent electrostatic properties: protein proton binding; ionic sites proton population; free energy electrostatic term; ionic groups proton affinities (pKa,i) and their Coulomb interaction with whole charge multipole; electrostatic potential of whole molecule at fixed pH and pH-dependent local electrostatic potentials at user-defined set of points. The speed of calculation is based on fast determination of distance-dependent pair charge-charge interactions as empirical three exponential function that covers charge–charge, charge–dipole and dipole–dipole contributions. After atomic coordinates input, all standard parameters are used as defaults to facilitate non-experienced users. Special attention was given to interactive addition of non-polypeptide charges, extra ionizable groups with intrinsic pKas or fixed ions. The output information is given as plain-text, readable by ‘RasMol’, ‘Origin’ and the like. The PHEPS server is accessible at . PMID:16845042
Bernardino, Kalil; de Moura, André F
2015-10-13
A series of atomistic molecular dynamics simulations were performed in the present investigation to assess the spontaneous formation of surfactant monolayers of sodium octanoate at the water-vacuum interface. The surfactant surface coverage increased until a saturation threshold was achieved, after which any further surfactant addition led to the formation of micellar aggregates within the solution. The saturated films were not densely packed, as might be expected for short-chained surfactants, and all films regardless of the surface coverage presented surfactant molecules with the same ordering pattern, namely, with the ionic heads toward the aqueous solution and the tails lying nearly parallel to the interface. The major contributions to the electrostatic surface potential came from the charged heads and the counterion distribution, which nearly canceled out each other. The balance between the oppositely charged ions rendered the electrostatic contributions from water meaningful, amounting to ca. 10% of the contributions arising from the ionic species. And even the aliphatic tails, whose atoms bear relatively small partial atomic charges as compared to the polar molecules and molecular fragments, contributed with ca. 20% of the total electrostatic surface potential of the systems under investigation. Although the aliphatic tails were not so orderly arranged as in a compact film, the C-H bonds assumed a preferential orientation, leading to an increased contribution to the electrostatic properties of the interface. The most prominent feature arising from the partitioning of the electrostatic potential into individual contributions was the long-range ordering of the water molecules. This ordering of the water molecules produced a repulsive dipole-dipole interaction between the two interfaces, which increased with the surface coverage. Only for a water layer wider than 10 nm was true bulk behavior observed, and the repulsive dipole-dipole interaction faded away.
Impact of Electrostatics on Processing and Product Performance of Pharmaceutical Solids.
Desai, Parind Mahendrakumar; Tan, Bernice Mei Jin; Liew, Celine Valeria; Chan, Lai Wah; Heng, Paul Wan Sia
2015-01-01
Manufacturing of pharmaceutical solids involves different unit operations and processing steps such as powder blending, fluidization, sieving, powder coating, pneumatic conveying and spray drying. During these operations, particles come in contact with other particles, different metallic, glass or polymer surfaces and can become electrically charged. Electrostatic charging often gives a negative connotation as it creates sticking, jamming, segregation or other issues during tablet manufacturing, capsule filling, film packaging and other pharmaceutical operations. A thorough and fundamental appreciation of the current knowledge of mechanisms and the potential outcomes is essential in order to minimize potential risks resulting from this phenomenon. The intent of this review is to discuss the electrostatic properties of pharmaceutical powders, equipment surfaces and devices affecting pharmaceutical processing and product performance. Furthermore, the underlying mechanisms responsible for the electrostatic charging are described and factors affecting electrostatic charging have been reviewed in detail. Feasibility of different methods used in the laboratory and pharmaceutical industry to measure charge propensity and decay has been summarized. Different computational and experimental methods studied have proven that the particle charging is a very complex phenomenon and control of particle charging is extremely important to achieve reliable manufacturing and reproducible product performance.
NASA Astrophysics Data System (ADS)
Hodgson, Lorna; Thompson, Andrew
2012-03-01
This paper presents the results of a non-HMDS (non-silane) adhesion promoter that was used to reduce the zeta potential for very thin (proprietary) polymer on silicon. By reducing the zeta potential, as measured by the minimum sample required to fully coat a wafer, the amount of polymer required to coat silicon substrates was significantly reduced in the manufacture of X-ray windows used for high transmission of low-energy X-rays. Moreover, this approach used aqueous based adhesion promoter described as a cationic surface active agent that has been shown to improve adhesion of photoresists (positive, negative, epoxy [SU8], e-beam and dry film). As well as reducing the amount of polymer required to coat substrates, this aqueous adhesion promoter is nonhazardous, and contains non-volatile solvents.
Lu, Yonghua; Muñoz, M; Steplecaru, C S; Hao, Cheng; Bai, Ming; Garcia, N; Schindler, K; Esquinazi, P
2006-08-18
We present measurements of the electric potential fluctuations on the surface of highly oriented pyrolytic graphite using electrostatic force and atomic force microscopy. Micrometric domainlike potential distributions are observed even when the sample is grounded. Such potential distributions are unexpected given the good metallic conductivity of graphite because the surface should be an equipotential. Our results indicate the coexistence of regions with "metalliclike" and "insulatinglike" behaviors showing large potential fluctuations of the order of 0.25 V. In lower quality graphite, this effect is not observed. Experiments are performed in Ar and air atmospheres.
NASA Technical Reports Server (NTRS)
Blatz, P. S.
1978-01-01
Adhesive based polyimide solutions which are more easily processed than conventional aromatic polyimide systems and show potential for use for extended times at 589K are discussed. The adhesive system is based on a solution containing diglyme as the solvent and 2,2 bis(3',4'-dicarboxyphenyl)hexafluoropropane, paraphenylenediamine, and oxydianiline. The replacement of N-methylpyrrolidone with diglyme as the solvent was found to improve the adhesive strengths of lap shear samples and simplify the processing conditions for bonding both titanium and graphite fiber/polyimide matrix resin composites. Information was obtained on the effects of various environments including high humidity, immersion in jet fuel and methylethylketone on aluminum filled adhesive bonds. The adhesive was also evaluated in wide area bonds and flatwise tensile specimens using titanium honeycomb and composite face sheets. It was indicated that the developed adhesive system has the potential for use in applications requiring long term exposure to at least 589K (600 F).
Wood adhesive properties of cottonseed protein with denaturant additives
USDA-ARS?s Scientific Manuscript database
Most commercial wood adhesive use either formaldehyde-based resins or polyurethanes, both of which include potentially toxic chemicals in their formulations. As a result, proteins are being considered as greener and more sustainable wood adhesives. While most of the protein adhesive studies focus ...
Kirton, Christopher M; Laukkanen, Marja-Leena; Nieminen, Antti; Merinen, Marika; Stolen, Craig M; Armour, Kathryn; Smith, David J; Salmi, Marko; Jalkanen, Sirpa; Clark, Michael R
2005-11-01
Human vascular adhesion protein-1 (VAP-1) is a homodimeric 170-kDa sialoglycoprotein that is expressed on the surface of endothelial cells and functions as a semicarbazide-sensitive amine oxidase and as an adhesion molecule. Blockade of VAP-1 has been shown to reduce leukocyte adhesion and transmigration in in vivo and in vitro models, suggesting that VAP-1 is a potential target for anti-inflammatory therapy. In this study we have constructed mouse-human chimeric antibodies by genetic engineering in order to circumvent the potential problems involved in using murine antibodies in man. Our chimeric anti-VAP-1 antibodies, which were designed to lack Fc-dependent effector functions, bound specifically to cell surface-expressed recombinant human VAP-1 and recognized VAP-1 in different cell types in tonsil. Furthermore, the chimeric antibodies prevented leukocyte adhesion and transmigration in vitro and in vivo. Hence, these chimeric antibodies have the potential to be used as a new anti-inflammatory therapy.
Gay-Berne and electrostatic multipole based coarse-grain potential in implicit solvent
NASA Astrophysics Data System (ADS)
Wu, Johnny; Zhen, Xia; Shen, Hujun; Li, Guohui; Ren, Pengyu
2011-10-01
A general, transferable coarse-grain (CG) framework based on the Gay-Berne potential and electrostatic point multipole expansion is presented for polypeptide simulations. The solvent effect is described by the Generalized Kirkwood theory. The CG model is calibrated using the results of all-atom simulations of model compounds in solution. Instead of matching the overall effective forces produced by atomic models, the fundamental intermolecular forces such as electrostatic, repulsion-dispersion, and solvation are represented explicitly at a CG level. We demonstrate that the CG alanine dipeptide model is able to reproduce quantitatively the conformational energy of all-atom force fields in both gas and solution phases, including the electrostatic and solvation components. Replica exchange molecular dynamics and microsecond dynamic simulations of polyalanine of 5 and 12 residues reveal that the CG polyalanines fold into "alpha helix" and "beta sheet" structures. The 5-residue polyalanine displays a substantial increase in the "beta strand" fraction relative to the 12-residue polyalanine. The detailed conformational distribution is compared with those reported from recent all-atom simulations and experiments. The results suggest that the new coarse-graining approach presented in this study has the potential to offer both accuracy and efficiency for biomolecular modeling.
Efficient minimization of multipole electrostatic potentials in torsion space
Bodmer, Nicholas K.
2018-01-01
The development of models of macromolecular electrostatics capable of delivering improved fidelity to quantum mechanical calculations is an active field of research in computational chemistry. Most molecular force field development takes place in the context of models with full Cartesian coordinate degrees of freedom. Nevertheless, a number of macromolecular modeling programs use a reduced set of conformational variables limited to rotatable bonds. Efficient algorithms for minimizing the energies of macromolecular systems with torsional degrees of freedom have been developed with the assumption that all atom-atom interaction potentials are isotropic. We describe novel modifications to address the anisotropy of higher order multipole terms while retaining the efficiency of these approaches. In addition, we present a treatment for obtaining derivatives of atom-centered tensors with respect to torsional degrees of freedom. We apply these results to enable minimization of the Amoeba multipole electrostatics potential in a system with torsional degrees of freedom, and validate the correctness of the gradients by comparison to finite difference approximations. In the interest of enabling a complete model of electrostatics with implicit treatment of solvent-mediated effects, we also derive expressions for the derivative of solvent accessible surface area with respect to torsional degrees of freedom. PMID:29641557
Molecular electrostatics for probing lone pair-π interactions.
Mohan, Neetha; Suresh, Cherumuttathu H; Kumar, Anmol; Gadre, Shridhar R
2013-11-14
An electrostatics-based approach has been proposed for probing the weak interactions between lone pair containing molecules and π deficient molecular systems. For electron-rich molecules, the negative minima in molecular electrostatic potential (MESP) topography give the location of electron localization and the MESP value at the minimum (Vmin) quantifies the electron-rich character of that region. Interactive behavior of a lone pair bearing molecule with electron deficient π-systems, such as hexafluorobenzene, 1,3,5-trinitrobenzene, 2,4,6-trifluoro-1,3,5-triazine and 1,2,4,5-tetracyanobenzene explored within DFT brings out good correlation of the lone pair-π interaction energy (E(int)) with the Vmin value of the electron-rich system. Such interaction is found to be portrayed well with the Electrostatic Potential for Intermolecular Complexation (EPIC) model. On the basis of the precise location of MESP minimum, a prediction for the orientation of a lone pair bearing molecule with an electron deficient π-system is possible in the majority of the cases studied.
Zhang, Kam Y. J.
2013-01-01
One of the underlying principles in drug discovery is that a biologically active compound is complimentary in shape and molecular recognition features to its receptor. This principle infers that molecules binding to the same receptor may share some common features. Here, we have investigated whether the electrostatic similarity can be used for the discovery of small molecule protein-protein interaction inhibitors (SMPPIIs). We have developed a method that can be used to evaluate the similarity of electrostatic potentials between small molecules and known protein ligands. This method was implemented in a software called EleKit. Analyses of all available (at the time of research) SMPPII structures indicate that SMPPIIs bear some similarities of electrostatic potential with the ligand proteins of the same receptor. This is especially true for the more polar SMPPIIs. Retrospective analysis of several successful SMPPIIs has shown the applicability of EleKit in the design of new SMPPIIs. PMID:24130741
Computer simulation of the active site of human serum cholinesterase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kefang Jiao; Song Li; Zhengzheng Lu
1996-12-31
The first 3D-structure of acetylchelinesterase from Torpedo California electric organ (T.AChE) was published by JL. Sussman in 1991. We have simulated 3D-structure of human serum cholinesterase (H.BuChE) and the active site of H.BuChE. It is discovered by experiment that the residue of H.BuChE is still active site after a part of H.BuChE is cut. For example, the part of 21KD + 20KD is active site of H.BuChE. The 20KD as it is. Studies on these peptides by Hemelogy indicate that two active peptides have same negative electrostatic potential maps diagram. These negative electrostatic areas attached by acetyl choline with positivemore » electrostatic potency. We predict that 147...236 peptide of AChE could be active site because it was as 20KD as with negative electrostatic potential maps. We look forward to proving from other ones.« less
The Mars Environmental Compatibility Assessment (MECA)
NASA Technical Reports Server (NTRS)
Meloy, Thomas P.; Marshall, John; Hecht, Michael
1999-01-01
The Mars Environmental Compatibility Assessment (MECA) will evaluate the Martian environment for soil and dust-related hazards to human exploration as part of the Mars Surveyor Program 2001 Lander. Sponsored by the Human Exploration and Development of Space (HEDS) enterprise, MECA's goal is to evaluate potential geochemical and environmental hazards that may confront future martian explorers, and to guide HEDS scientists in the development of high fidelity Mars soil simulants. In addition to objectives related to human exploration, the MECA data set will be rich in information relevant to basic geology, paleoclimate, and exobiology issues. The integrated MECA payload contains a wet-chemistry laboratory, a microscopy station, an electrometer to characterize the electrostatics of the soil and its environment, and arrays of material patches to study the abrasive and adhesive properties of soil grains. MECA is allocated a mass of 10 kg and a peak power usage of 15 W within an enclosure of 35 x 25 x 15 cm (figures I and 2). The Wet Chemistry Laboratory (WCL) consists of four identical cells that will accept samples from surface and subsurface regions accessible to the Lander's robotic arm, mix them with water, and perform extensive analysis of the solution. Using an array of ion-specific electrodes (ISEs), cyclic voltammetry, and electrochemical techniques, the chemistry cells will wet soil samples for measurement of basic soil properties of pH, redox potential, and conductivity. Total dissolved material, as well as targeted ions will be detected to the ppm level, including important exobiological ions such as Na, K+, Ca++, Mg++, NH4+, Cl, S04-, HC03, as well as more toxic ions such as Cu++, Pb++, Cd++, Hg++, and C104-. MECA's microscopy station combines optical and atomic-force microscopy (AFM) to image dust and soil particles from millimeters to nanometers in size. Illumination by red, green, and blue LEDs is augmented by an ultraviolet LED intended to excite fluorescence in the sample. Substrates were chosen to allow experimental study of size distribution, adhesion, abrasion, hardness, color, shape, aggregation, magnetic and other properties. To aid in the detection of potentially dangerous quartz dust, an abrasion tool measures sample hardness relative to quartz and a hard glass (Zerodur).
Electrostatic ion thruster optics calculations
NASA Technical Reports Server (NTRS)
Whealton, John H.; Kirkman, David A.; Raridon, R. J.
1992-01-01
Calculations have been performed which encompass both a self-consistent ion source extraction plasma sheath and the primary ion optics including sheath and electrode-induced aberrations. Particular attention is given to the effects of beam space charge, accelerator geometry, and properties of the downstream plasma sheath on the position of the electrostatic potential saddle point near the extractor electrode. The electron blocking potential blocking is described as a function of electrode thickness and secondary plasma processes.
Automatic search for maximum similarity between molecular electrostatic potential distributions
NASA Astrophysics Data System (ADS)
Manaut, Francesc; Sanz, Ferran; José, Jaume; Milesi, Massimo
1991-08-01
A new computer program has been developed to automatically obtain the relative position of two molecules in which the similarity between molecular electrostatic-potential distributions is greatest. These distributions are considered in a volume around the molecules, and the similarity is measured by the Spearman rank coefficient. The program has been tested using several pairs of molecules: water vs. water; phenylethylamine and phenylpropylamine vs. benzylamine; and methotrexate vs. dihydrofolic acid.
NASA Astrophysics Data System (ADS)
Yanagisawa, Susumu
2017-11-01
Ionization potential and electron affinity of organic semicondutors are important quantities, which are relevant to charge injection barriers. The electrostatic and dynamical contributions to the polarization energies for the injected charges in pentacene polymorphs were investigated. While the dynamical polarization induced narrowing of the energy gap, the electrostatic effect shifted up or down the frontier energy levels, which is sensitive to the molecular orientation at the surface.
NASA Technical Reports Server (NTRS)
Sokalski, W. A.; Lai, J.; Luo, N.; Sun, S.; Shibata, M.; Ornstein, R.; Rein, R.
1991-01-01
The origin of torsional potentials in H3CSSCH3, H3CSSH, and HOOH and the anisotropy of the local charge distribution has been analyzed in terms of atomic multipoles calculated from the ab initio LCAO-MO-SCF wave function in the 6-31G* basis set. The results indicate that for longer -S-S-bonds the major contribution to these torsional barriers are electrostatic interactions of the atomic multipoles located on two atoms forming the rotated bond. This finding demonstrates the important role of electrostatic 1-2 interatomic interactions, usually neglected in conformational studies. It also opens the possibility to derive directly from accurate ab initio wave functions a simple nonempirical torsional potential involving atomic multipoles of two bonded atoms defining the torsional angle. For shorter -O-O- bonds, use of more precise models and inclusion of 1-3 interactions seems to be necessary.
The electrostatics of solvent and membrane interfaces and the role of electronic polarizability
NASA Astrophysics Data System (ADS)
Vorobyov, Igor; Allen, Toby W.
2010-05-01
The electrostatics of solvent and lipid bilayer interfaces are investigated with the aim of understanding the interaction of ions and charged peptides with biological membranes. We overcome the lacking dielectric response of hydrocarbon by carrying out atomistic molecular dynamics simulations using a polarizable model. For air-solvent or solvent-solvent interfaces, the effect of polarizability itself is small, yet changes in the fixed atomic charge distribution are responsible for substantial changes in the potential. However, when electrostatics is probed by finite solutes, a cancellation of dominant quadrupolar terms from the macroscopic and microscopic (solute-solvent) interfaces eliminates this dependence and leads to small net contributions to partitioning thermodynamics. In contrast, the membrane dipole potential exhibits considerable dependence on lipid electronic polarizability, due to its dominant dipolar contribution. We report the dipole potential for a polarizable lipid hydrocarbon membrane model of 480-610 mV, in better accord with experimental measurements.
NASA Astrophysics Data System (ADS)
Honma, H.; Mitsuya, H.; Hashiguchi, G.; Fujita, H.; Toshiyoshi, H.
2018-06-01
We introduce symmetric comb-electrode structures for the electrostatic vibrational MEMS energy harvester to lower the electrostatic constraint force attributed to the built-in electret potential, thereby allowing the harvester device to operate in a small acceleration range of 0.05 g or lower (1 g = 9.8 m s‑2). Given the same device structure, two different potentials for the electret are tested to experimentally confirm that the output induction current is enhanced 4.2 times by increasing the electret potential from ‑60 V to ‑250 V. At the same time, the harvester effectiveness has been improved to as high as 93%. The device is used to swiftly charge a 470 µF storage capacitor to 3.3 V in 120 s from small sinusoidal vibrations of 0.6 g at 124 Hz.
Li, Bo; Cheng, Xiaoliang; Zhang, Zhengfang
2013-01-01
In an implicit-solvent description of molecular solvation, the electrostatic free energy is given through the electrostatic potential. This potential solves a boundary-value problem of the Poisson–Boltzmann equation in which the dielectric coefficient changes across the solute-solvent interface—the dielectric boundary. The dielectric boundary force acting on such a boundary is the negative first variation of the electrostatic free energy with respect to the location change of the boundary. In this work, the concept of shape derivative is used to define such variations and formulas of the dielectric boundary force are derived. It is shown that such a force is always in the direction toward the charged solute molecules. PMID:24058212
NASA Astrophysics Data System (ADS)
Yang, S. J.; Hu, L.; Wang, L.; Wei, B.
2018-06-01
The liquid structures of undercooled Zr90Nb10, Zr70Nb30 and Zr50Nb50 alloys were studied by molecular dynamics simulation combined with electrostatic levitation experiments. The densities of three alloys were measured by electrostatic levitation to modify the Zr-Nb potential functions by adjusting parameters in potential functions. In simulation, the atomic packing in Zr-Nb alloys was more ordered at lower temperatures. The Voronoi tessellation analyses indicated Nb-centered clusters were easier to form than Zr-centered clusters although the Nb content was less than 50%. The partial pair distribution functions showed that the interactions among Zr atoms are quite different to that among Nb atoms.
3D RISM theory with fast reciprocal-space electrostatics.
Heil, Jochen; Kast, Stefan M
2015-03-21
The calculation of electrostatic solute-solvent interactions in 3D RISM ("three-dimensional reference interaction site model") integral equation theory is recast in a form that allows for a computational treatment analogous to the "particle-mesh Ewald" formalism as used for molecular simulations. In addition, relations that connect 3D RISM correlation functions and interaction potentials with thermodynamic quantities such as the chemical potential and average solute-solvent interaction energy are reformulated in a way that calculations of expensive real-space electrostatic terms on the 3D grid are completely avoided. These methodical enhancements allow for both, a significant speedup particularly for large solute systems and a smoother convergence of predicted thermodynamic quantities with respect to box size, as illustrated for several benchmark systems.
Hydraulically amplified self-healing electrostatic actuators with muscle-like performance
NASA Astrophysics Data System (ADS)
Acome, E.; Mitchell, S. K.; Morrissey, T. G.; Emmett, M. B.; Benjamin, C.; King, M.; Radakovitz, M.; Keplinger, C.
2018-01-01
Existing soft actuators have persistent challenges that restrain the potential of soft robotics, highlighting a need for soft transducers that are powerful, high-speed, efficient, and robust. We describe a class of soft actuators, termed hydraulically amplified self-healing electrostatic (HASEL) actuators, which harness a mechanism that couples electrostatic and hydraulic forces to achieve a variety of actuation modes. We introduce prototypical designs of HASEL actuators and demonstrate their robust, muscle-like performance as well as their ability to repeatedly self-heal after dielectric breakdown—all using widely available materials and common fabrication techniques. A soft gripper handling delicate objects and a self-sensing artificial muscle powering a robotic arm illustrate the wide potential of HASEL actuators for next-generation soft robotic devices.
NASA Technical Reports Server (NTRS)
Murty, A. N.
1976-01-01
A straightforward self-consistent method was developed to estimate solid state electrostatic potentials, fields and field gradients in ionic solids. The method is a direct practical application of basic electrostatics to solid state and also helps in the understanding of the principles of crystal structure. The necessary mathematical equations, derived from first principles, were presented and the systematic computational procedure developed to arrive at the solid state electrostatic field gradients values was given.
Electrochemically Preadsorbed Collagen Promotes Adult Human Mesenchymal Stem Cell Adhesion
Benavidez, Tomás E.; Wechsler, Marissa E.; Farrer, Madeleine M.; Bizios, Rena
2016-01-01
The present article reports on the effect of electric potential on the adsorption of collagen type I (the most abundant component of the organic phase of bone) onto optically transparent carbon electrodes (OTCE) and its mediation on subsequent adhesion of adult, human, mesenchymal stem cells (hMSCs). For this purpose, adsorption of collagen type I was investigated as a function of the protein concentration (0.01, 0.1, and 0.25 mg/mL) and applied potential (open circuit potential [OCP; control], +400, +800, and +1500 mV). The resulting substrate surfaces were characterized using spectroscopic ellipsometry, atomic force microscopy, and cyclic voltammetry. Adsorption of collagen type I onto OTCE was affected by the potential applied to the sorbent surface and the concentration of protein. The higher the applied potential and protein concentration, the higher the adsorbed amount (Γcollagen). It was also observed that the application of potential values higher than +800 mV resulted in the oxidation of the adsorbed protein. Subsequent adhesion of hMSCs on the OTCEs (precoated with the collagen type I films) under standard cell culture conditions for 2 h was affected by the extent of collagen preadsorbed onto the OTCE substrates. Specifically, enhanced hMSCs adhesion was observed when the Γcollagen was the highest. When the collagen type I was oxidized (under applied potential equal to +1500 mV), however, hMSCs adhesion was decreased. These results provide the first correlation between the effects of electric potential on protein adsorption and subsequent modulation of anchorage-dependent cell adhesion. PMID:26549607
Imaging latex–carbon nanotube composites by subsurface electrostatic force microscopy
Patel, Sajan; Petty, Clayton W.; Krafcik, Karen Lee; ...
2016-09-08
Electrostatic modes of atomic force microscopy have shown to be non-destructive and relatively simple methods for imaging conductors embedded in insulating polymers. Here we use electrostatic force microscopy to image the dispersion of carbon nanotubes in a latex-based conductive composite, which brings forth features not observed in previously studied systems employing linear polymer films. A fixed-potential model of the probe-nanotube electrostatics is presented which in principle gives access to the conductive nanoparticle's depth and radius, and the polymer film dielectric constant. Comparing this model to the data results in nanotube depths that appear to be slightly above the film–air interface.more » Furthermore, this result suggests that water-mediated charge build-up at the film–air interface may be the source of electrostatic phase contrast in ambient conditions.« less
Yoo, Hee Young; Huang, Jun; Li, Lin; Foo, Mathias; Zeng, Hongbo; Hwang, Dong Soo
2016-03-14
Recent works on mussel adhesion have identified a load bearing matrix protein (PTMP1) containing von Willebrand factor (vWF) with collagen binding capability that contributes to the mussel holdfast by manipulating mussel collagens. Using a surface forces apparatus, we investigate for the first time, the nanomechanical properties of vWF-collagen interaction using homologous proteins of mussel byssus, PTMP1 and preCollagens (preCols), as collagen. Mimicking conditions similar to mussel byssus secretion (pH < 5.0) and seawater condition (pH 8.0), PTMP1 and preCol interact weakly in the "positioning" phase based on vWF-collagen binding and strengthen in "locked" phase due to the combined effects of electrostatic attraction, metal binding, and mechanical shearing. The progressive enhancement of binding between PTMP1 with porcine collagen under the aforementioned conditions is also observed. The binding mechanisms of PTMP1-preCols provide insights into the molecular interaction of the mammalian collagen system and the development of an artificial extracellular matrix based on collagens.
Electrostatic effects on hyaluronic acid configuration
NASA Astrophysics Data System (ADS)
Berezney, John; Saleh, Omar
2015-03-01
In systems of polyelectrolytes, such as solutions of charged biopolymers, the electrostatic repulsion between charged monomers plays a dominant role in determining the molecular conformation. Altering the ionic strength of the solvent thus affects the structure of such a polymer. Capturing this electrostatically-driven structural dependence is important for understanding many biological systems. Here, we use single molecule manipulation experiments to collect force-extension behavior on hyaluronic acid (HA), a polyanion which is a major component of the extracellular matrix in all vertebrates. By measuring HA elasticity in a variety of salt conditions, we are able to directly assess the contribution of electrostatics to the chain's self-avoidance and local stiffness. Similar to recent results from our group on single-stranded nucleic acids, our data indicate that HA behaves as a swollen chain of electrostatic blobs, with blob size proportional to the solution Debye length. Our data indicate that the chain structure within the blob is not worm-like, likely due to long-range electrostatic interactions. We discuss potential models of this effect.
NASA Astrophysics Data System (ADS)
Leś, Andrzej; Adamowicz, Ludwik
1991-06-01
The molecular electrostatic potential and molecular electric field have been estimated by means of the expectation values of the respective one-electron operators. We used the molecular density matrix that includes the electron correlation effects up to the second-order of the many body perturbation theory. The results show that around the 2(1H)-pyrimidone molecule one may distinguish the electrophilic and nucleophilic regions, the latter characterized by two potential minima of -2.9 V. In the tautomeric form, 2-hydroxypyrimidine, a third potential minimum of -2.1 V appears close to the N1 nitrogen atom. For both molecules strong orientational forces acting on polar solvents are predicted in the vicinity of oxygen (O7) and nitrogen (N3) atoms. The electron correlation effects do not significantly alter the SCF values of the electrostatic potential and electric field at the distances within the van der Waals envelope of the pyrimidine bases. At larger distances, however, the correlation correction is significant, particularly in the direction facing the proton transfer path.
Marquardt, Oliver; Krause, Thilo; Kaganer, Vladimir; Martín-Sánchez, Javier; Hanke, Michael; Brandt, Oliver
2017-05-26
We present a systematic theoretical study of the influence of elastic strain relaxation on the built-in electrostatic potentials and the electronic properties of axial [Formula: see text] nanowire (NW) heterostructures. Our simulations reveal that for a sufficiently large ratio between the thickness of the [Formula: see text] disk and the diameter of the NW, the elastic relaxation leads to a significant reduction of the built-in electrostatic potential in comparison to a planar system of similar layer thickness and In content. In this case, the ground state transition energies approach constant values with increasing thickness of the disk and only depend on the In content, a behavior usually associated to that of a quantum well free of built-in electrostatic potentials. We show that the structures under consideration are by no means field-free, and the built-in potentials continue to play an important role even for ultrathin NWs. In particular, strain and the resulting polarization potentials induce complex confinement features of electrons and holes, which depend on the In content, shape, and dimensions of the heterostructure.
Electrostatic field of the large fragment of Escherichia coli DNA polymerase I.
Warwicker, J; Ollis, D; Richards, F M; Steitz, T A
1985-12-05
The electrostatic field of the large fragment of Escherichia coli DNA polymerase I (Klenow fragment) has been calculated by the finite difference procedure on a 2 A grid. The potential field is substantially negative at physiological pH (reflecting the net negative charge at this pH). The largest regions of positive potential are in the deep crevice of the C-terminal domain, which is the proposed binding site for the DNA substrate. Within the crevice, the electrostatic potential has a partly helical form. If the DNA is positioned to fulfil stereochemical requirements, then the positive potential generally follows the major groove and (to a lesser extent) the negative potential is in the minor groove. Such an arrangement could stabilize DNA configurations related by screw symmetry. The histidine residues of the Klenow fragment give the positive field of the groove a sensitivity to relatively small pH changes around neutrality. We suggest that the histidine residues could change their ionization states in response to DNA binding, and that this effect could contribute to the protein-DNA binding energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sackett, S.J.
JASON solves general electrostatics problems having either slab or cylindrical symmetry. More specifically, it solves the self-adjoint elliptic equation, div . (KgradV) - ..gamma..V + rho = 0 in an aritrary two-dimensional domain. For electrostatics, V is the electrostatic potential, K is the dielectric tensor, and rho is the free-charge density. The parameter ..gamma.. is identically zero for electrostatics but may have a positive nonzero value in other cases (e.g., capillary surface problems with gravity loading). The system of algebraic equations used in JASON is generated by the finite element method. Four-node quadrilateral elements are used for most of themore » mesh. Triangular elements, however, are occasionally used on boundaries to avoid severe mesh distortions. 15 figures. (RWR)« less
Hallez, Yannick; Meireles, Martine
2016-10-11
Electrostatic interactions play a key role in hollow shell suspensions as they determine their structure, stability, thermodynamics, and rheology and also the loading capacity of small charged species for nanoreservoir applications. In this work, fast, reliable modeling strategies aimed at predicting the electrostatics of hollow shells for one, two, and many colloids are proposed and validated. The electrostatic potential inside and outside a hollow shell with a finite thickness and a specific permittivity is determined analytically in the Debye-Hückel (DH) limit. An expression for the interaction potential between two such hollow shells is then derived and validated numerically. It follows a classical Yukawa form with an effective charge depending on the shell geometry, permittivity, and inner and outer surface charge densities. The predictions of the Ornstein-Zernike (OZ) equation with this pair potential to determine equations of state are then evaluated by comparison to results obtained with a Brownian dynamics algorithm coupled to the resolution of the linearized Poisson-Boltzmann and Laplace equations (PB-BD simulations). The OZ equation based on the DLVO-like potential performs very well in the dilute regime as expected, but also quite well, and more surprisingly, in the concentrated regime in which full spheres exhibit significant many-body effects. These effects are shown to vanish for shells with small thickness and high permittivity. For highly charged hollow shells, we propose and validate a charge renormalization procedure. Finally, using PB-BD simulations, we show that the cell model predicts the ion distribution inside and outside hollow shells accurately in both electrostatically dilute and concentrated suspensions. We then determine the shell loading capacity as a function of salt concentration, volume fraction, and surface charge density for nanoreservoir applications such as drug delivery, sensing, or smart coatings.
A Triboelectric Sensor Array for Electrostatic Studies on the Lunar Surface
NASA Technical Reports Server (NTRS)
Johansen, Michael R.; Mackey, Paul J.; Calle, C. I.
2015-01-01
The moons electrostatic environment requires careful consideration in the development of future lunar landers. Electrostatically charged dust was well documented during the Apollo missions to cause thermal control, mechanical, and visibility issues. The fine dust particles that make up the surface are electrostatically charged as a result of numerous charging mechanisms. The relatively dry conditions on the moon creates a prime tribocharging environment during surface operations. The photoelectric effect is dominant for lunar day static charging, while plasma electrons are the main contributor for lunar night electrostatic effects. Electrostatic charging is also dependent on solar intensity, Earth-moon relative positions, and cosmic ray flux. This leads to a very complex and dynamic electrostatic environment that must be studied for the success of long term lunar missions.In order to better understand the electrostatic environment of planetary bodies, Kennedy Space Center, in previous collaboration with the Jet Propulsion Laboratory, has developed an electrostatic sensor suite. One of the instruments included in this package is the triboelectric sensor array. It is comprised of strategically selected materials that span the triboelectric series and that also have previous spaceflight history. In this presentation, we discuss detailed testing with the triboelectric sensor array performed at Kennedy Space Center. We will discuss potential benefits and use cases of this low mass, low cost sensor package, both for science and for mission success.
Renz, Bernhard W; Leitner, Kurt; Odermatt, Erich; Worthley, Daniel L; Angele, Martin K; Jauch, Karl-Walter; Lang, Reinhold A
2014-03-01
Intra-abdominal adhesions following surgery are a major source of morbidity and mortality including abdominal pain and small bowel obstruction. This study evaluated the safety of PVA gel (polyvinyl alcohol and carboxymethylated cellulose gel) on intestinal anastomoses and its potential effectiveness in preventing adhesions in a clinically relevant large animal model. Experiments were performed in a pig model with median laparotomy and intestinal anastomosis following small bowel resection. The primary endpoint was the safety of PVA on small intestinal anastomoses. We also measured the incidence of postoperative adhesions in PVA vs. control groups: group A (eight pigs): stapled anastomosis with PVA gel compared to group B (eight pigs), which had no PVA gel; group C (eight pigs): hand-sewn anastomosis with PVA gel compared to group B (eight pigs), which had no anti-adhesive barrier. Animals were sacrificed 14 days after surgery and analyzed. All anastomoses had a patent lumen without any stenosis. No anastomoses leaked at an intraluminal pressure of 40 cmH2O. Thus, anastomoses healed very well in both groups, regardless of whether PVA was administered. PVA-treated animals, however, had significantly fewer adhesions in the area of stapled anastomoses. The hand-sewn PVA group also had weaker adhesions and trended towards fewer adhesions to adjacent organs. These results suggest that PVA gel does not jeopardize the integrity of intestinal anastomoses. However, larger trials are needed to investigate the potential of PVA gel to prevent adhesions in gastrointestinal surgery.
NASA Astrophysics Data System (ADS)
Sachdeva, Ritika; Soni, Abhinav; Singh, V. P.; Saini, G. S. S.
2018-05-01
Etoricoxib is one of the selective cyclooxygenase inhibitor drug which plays a significant role in the pharmacological management of arthritis and pain. The theoretical investigation of its reactivity is done using Density Functional Theory calculations. Molecular Electrostatic Potential Surface of etoricoxib and its Mulliken atomic charge distribution are used for the prediction of its electrophilic and nucleophilic sites. The detailed analysis of its frontier molecular orbitals is also done.
Quasi-exospheric heat flux of solar-wind electrons
NASA Technical Reports Server (NTRS)
Eviatar, A.; Schultz, M.
1975-01-01
Density, bulk-velocity, and heat-flow moments are calculated for truncated Maxwellian distributions representing the cool and hot populations of solar-wind electrons, as realized at the base of a hypothetical exosphere. The electrostatic potential is thus calculated by requiring charge quasi-neutrality and the absence of electrical current. Plasma-kinetic coupling of the cool-electron and proton bulk velocities leads to an increase in the electrostatic potential and a decrease in the heat-flow moment.
NASA Astrophysics Data System (ADS)
Kjellander, Roland
2006-04-01
It is shown that the nature of the non-electrostatic part of the pair interaction potential in classical Coulomb fluids can have a profound influence on the screening behaviour. Two cases are compared: (i) when the non-electrostatic part equals an arbitrary finite-ranged interaction and (ii) when a dispersion r-6 interaction potential is included. A formal analysis is done in exact statistical mechanics, including an investigation of the bridge function. It is found that the Coulombic r-1 and the dispersion r-6 potentials are coupled in a very intricate manner as regards the screening behaviour. The classical one-component plasma (OCP) is a particularly clear example due to its simplicity and is investigated in detail. When the dispersion r-6 potential is turned on, the screened electrostatic potential from a particle goes from a monotonic exponential decay, exp(-κr)/r, to a power-law decay, r-8, for large r. The pair distribution function acquire, at the same time, an r-10 decay for large r instead of the exponential one. There still remains exponentially decaying contributions to both functions, but these contributions turn oscillatory when the r-6 interaction is switched on. When the Coulomb interaction is turned off but the dispersion r-6 pair potential is kept, the decay of the pair distribution function for large r goes over from the r-10 to an r-6 behaviour, which is the normal one for fluids of electroneutral particles with dispersion interactions. Differences and similarities compared to binary electrolytes are pointed out.
NASA Astrophysics Data System (ADS)
Smith, L. W.; Al-Taie, H.; Lesage, A. A. J.; Thomas, K. J.; Sfigakis, F.; See, P.; Griffiths, J. P.; Farrer, I.; Jones, G. A. C.; Ritchie, D. A.; Kelly, M. J.; Smith, C. G.
2016-04-01
We study 95 split gates of different size on a single chip using a multiplexing technique. Each split gate defines a one-dimensional channel on a modulation-doped GaAs /AlGaAs heterostructure, through which the conductance is quantized. The yield of devices showing good quantization decreases rapidly as the length of the split gates increases. However, for the subset of devices showing good quantization, there is no correlation between the electrostatic length of the one-dimensional channel (estimated using a saddle-point model) and the gate length. The variation in electrostatic length and the one-dimensional subband spacing for devices of the same gate length exceeds the variation in the average values between devices of different lengths. There is a clear correlation between the curvature of the potential barrier in the transport direction and the strength of the "0.7 anomaly": the conductance value of the 0.7 anomaly reduces as the barrier curvature becomes shallower. These results highlight the key role of the electrostatic environment in one-dimensional systems. Even in devices with clean conductance plateaus, random fluctuations in the background potential are crucial in determining the potential landscape in the active device area such that nominally identical gate structures have different characteristics.
Coarse-grained electrostatic interactions of coronene: Towards the crystalline phase
NASA Astrophysics Data System (ADS)
Heinemann, Thomas; Palczynski, Karol; Dzubiella, Joachim; Klapp, Sabine H. L.
2015-11-01
In this article, we present and compare two different, coarse-grained approaches to model electrostatic interactions of disc-shaped aromatic molecules, specifically coronene. Our study builds on our previous work [T. Heinemann et al., J. Chem. Phys. 141, 214110 (2014)], where we proposed, based on a systematic coarse-graining procedure starting from the atomistic level, an anisotropic effective (Gay-Berne-like) potential capable of describing van der Waals contributions to the interaction energy. To take into account electrostatics, we introduce, first, a linear quadrupole moment along the symmetry axis of the coronene disc. The second approach takes into account the fact that the partial charges within the molecules are distributed in a ring-like fashion. We then reparametrize the effective Gay-Berne-like potential such that it matches, at short distances, the ring-ring potential. To investigate the validity of these two approaches, we perform many-particle molecular dynamics simulations, focusing on the crystalline phase (karpatite) where electrostatic interaction effects are expected to be particularly relevant for the formation of tilted stacked columns. Specifically, we investigate various structural parameters as well as the melting transition. We find that the second approach yields consistent results with those from experiments despite the fact that the underlying potential decays with the wrong distance dependence at large molecule separations. Our strategy can be transferred to a broader class of molecules, such as benzene or hexabenzocoronene.
Coarse-grained electrostatic interactions of coronene: Towards the crystalline phase.
Heinemann, Thomas; Palczynski, Karol; Dzubiella, Joachim; Klapp, Sabine H L
2015-11-07
In this article, we present and compare two different, coarse-grained approaches to model electrostatic interactions of disc-shaped aromatic molecules, specifically coronene. Our study builds on our previous work [T. Heinemann et al., J. Chem. Phys. 141, 214110 (2014)], where we proposed, based on a systematic coarse-graining procedure starting from the atomistic level, an anisotropic effective (Gay-Berne-like) potential capable of describing van der Waals contributions to the interaction energy. To take into account electrostatics, we introduce, first, a linear quadrupole moment along the symmetry axis of the coronene disc. The second approach takes into account the fact that the partial charges within the molecules are distributed in a ring-like fashion. We then reparametrize the effective Gay-Berne-like potential such that it matches, at short distances, the ring-ring potential. To investigate the validity of these two approaches, we perform many-particle molecular dynamics simulations, focusing on the crystalline phase (karpatite) where electrostatic interaction effects are expected to be particularly relevant for the formation of tilted stacked columns. Specifically, we investigate various structural parameters as well as the melting transition. We find that the second approach yields consistent results with those from experiments despite the fact that the underlying potential decays with the wrong distance dependence at large molecule separations. Our strategy can be transferred to a broader class of molecules, such as benzene or hexabenzocoronene.
Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices
Zhang, Wen-Ming; Meng, Guang; Chen, Di
2007-01-01
Electrostatic micro-electro-mechanical system (MEMS) is a special branch with a wide range of applications in sensing and actuating devices in MEMS. This paper provides a survey and analysis of the electrostatic force of importance in MEMS, its physical model, scaling effect, stability, nonlinearity and reliability in detail. It is necessary to understand the effects of electrostatic forces in MEMS and then many phenomena of practical importance, such as pull-in instability and the effects of effective stiffness, dielectric charging, stress gradient, temperature on the pull-in voltage, nonlinear dynamic effects and reliability due to electrostatic forces occurred in MEMS can be explained scientifically, and consequently the great potential of MEMS technology could be explored effectively and utilized optimally. A simplified parallel-plate capacitor model is proposed to investigate the resonance response, inherent nonlinearity, stiffness softened effect and coupled nonlinear effect of the typical electrostatically actuated MEMS devices. Many failure modes and mechanisms and various methods and techniques, including materials selection, reasonable design and extending the controllable travel range used to analyze and reduce the failures are discussed in the electrostatically actuated MEMS devices. Numerical simulations and discussions indicate that the effects of instability, nonlinear characteristics and reliability subjected to electrostatic forces cannot be ignored and are in need of further investigation.
Tao, Aoxiang; Heeney, Dustin D.; McIndoo, Eric R.; French, John M.
2017-01-01
Clostridium sordellii is a lethal pathogen for both animals and humans. Severe capillary leakage, toxic shock syndrome, and an extreme leukemoid reaction (LR), are hallmark features of C. sordellii infections and contribute to its high mortality rate. Here we report the discovery of a previously unknown and uncharacterized metalloproteinase of C. sordellii (referred as Mcs1) that cleaves human vascular cell adhesion molecule (VCAM)-1 in vitro, an adhesion molecule critical to hematopoietic precursor retention and leukocyte diapedesis. We successfully identified the open reading frame encoding Mcs1 within the ATCC 9714 genome and developed an Δmcs1 mutant strain using the ClosTron mutagenesis technology. No VCAM-1 proteolysis was observed from exotoxins collected from mutant strain cultures. Using advanced protein structural modeling and molecular dynamics simulation techniques, the 3D molecular structure and conformational features of Mcs1 were also characterized. Our data demonstrates that Mcs1 proteolytic activity is controlled by the electrostatic interactions between Glu113 and Arg227 residues and the gating motions within its cleft region. This pilot interdisciplinary investigation provided crucial experimental evidence of the existence of Mcs1 in C. sordellii and molecular insights into its 3D structure and proteolytic activity. These findings have the potential to help advance new therapeutics and diagnostics against deadly C. sordellii infections. Follow-up in vitro and in vivo work is under way to further characterize Mcs1 enzymatic kinetics and its role in C. sordellii pathogenesis. PMID:28515901
NASA Astrophysics Data System (ADS)
Bahlakeh, Ghasem; Ramezanzadeh, Bahram; Saeb, Mohammad Reza; Terryn, Herman; Ghaffari, Mehdi
2017-10-01
The effect of cerium oxide treatment on the corrosion protection properties and interfacial interaction of steel/epoxy was studied by electrochemical impedance spectroscopy, (EIS) classical molecular dynamics (MD) and first principle quantum mechanics (QM) simulation methods X-ray photoelectron spectroscopy (XPS) was used to verify the chemical composition of the Ce film deposited on the steel. To probe the role of the curing agent in epoxy adsorption, computations were compared for an epoxy, aminoamide and aminoamide modified epoxy. Moreover, to study the influence of water on interfacial interactions the MD simulations were executed for poly (aminoamide)-cured epoxy resin in contact with the different crystallographic cerium dioxide (ceria, CeO2) surfaces including (100), (110), and (111) in the presence of water molecules. It was found that aminoamide-cured epoxy material was strongly adhered to all types of CeO2 substrates, so that binding to ceria surfaces followed the decreasing order CeO2 (111) > CeO2 (100) > CeO2 (110) in both dry and wet environments. Calculation of interaction energies noticed an enhanced adhesion to metal surface due to aminoamide curing of epoxy resin; where facets (100) and (111) revealed electrostatic and Lewis acid-base interactions, while an additional hydrogen bonding interaction was identified for CeO2 (110). Overall, MD simulations suggested decrement of adhesion to CeO2 in wet environment compared to dry conditions. Additionally, contact angle, pull-off test, cathodic delamination and salt spray analyses were used to confirm the simulation results. The experimental results in line with modeling results revealed that Ce layer deposited on steel enhanced substrate surface free energy, work of adhesion, and interfacial adhesion strength of the epoxy coating. Furthermore, decrement of adhesion of epoxy to CeO2 in presence of water was affirmed by experimental results. EIS results revealed remarkable enhancement of the corrosion resistance of epoxy coating applied on the steel specimens treated by cerium oxide.
NASA Astrophysics Data System (ADS)
Donovan, K. J.; Elliott, J. E.; Jeong, I. S.; Scott, K.; Wilson, E. G.
2000-11-01
The tunneling rate of photocreated charge carriers between layers in Langmuir-Blodgett multilayer structures is measured indirectly using the novel technique of bimolecular recombination quenching. The tunneling rate is demonstrated to be dependent upon the applied electrostatic potential difference between the layers. This dependence is explored in light of the Marcus theory of charge transfer. That theory was developed to describe redox reactions where the driving force is supplied by a chemical potential difference between two chemically different parts of a more complex system. In the current work the electrostatic potential replaces the chemical potential as the driving potential. The field dependence of the exciton dissociation probability is also determined.
NASA Astrophysics Data System (ADS)
Barakat, T.
2011-12-01
Higher order multipole potentials and electrostatic screening effects are introduced to incorporate the dangling bonds on the surface of a metallic nanopaticle and to modify the coulomb like potential energy terms, respectively. The total interaction energy function for any metallic nanoparticle is represented in terms of two- and three-body potentials. The two-body part is described by dipole-dipole interaction potential, and in the three-body part, triple-dipole (DDD) and dipole-dipole-quadrupole (DDQ) terms are included. The size-dependent cohesive energy and bulk modulus are observed to decrease with decreasing sizes, a result which is in good agreement with the experimental values of Mo and W nanoparticles.
Lim, Tong Seng; Vedula, Sri Ram Krishna; Hui, Shi; Kausalya, P Jaya; Hunziker, Walter; Lim, Chwee Teck
2008-08-15
Claudins belong to a large family of transmembrane proteins that localize at tight junctions (TJs) where they play a central role in regulating paracellular transport of solutes and nutrients across epithelial monolayers. Their ability to regulate the paracellular pathway is highly influenced by changes in extracellular pH. However, the effect of changes in pH on the strength and kinetics of claudin mediated adhesion is poorly understood. Using atomic force microscopy, we characterized the kinetic properties of homophilic trans-interactions between full length recombinant GST tagged Claudin-2 (Cldn2) under different pH conditions. In measurements covering three orders of magnitude change in force loading rate of 10(2)-10(4) pN/s, the Cldn2/Cldn2 force spectrum (i.e., unbinding force versus loading rate) revealed a fast and a slow loading regime that characterized a steep inner activation barrier and a wide outer activation barrier throughout pH range of 4.5-8. Comparing to the neutral condition (pH 6.9), differences in the inner energy barriers for the dissociation of Cldn2/Cldn2 mediated interactions at acidic and alkaline environments were found to be <0.65 k(B)T, which is much lower than the outer dissociation energy barrier (>1.37 k(B)T). The relatively stable interaction of Cldn2/Cldn2 in neutral environment suggests that electrostatic interactions may contribute to the overall adhesion strength of Cldn2 interactions. Our results provide an insight into the changes in the inter-molecular forces and adhesion kinetics of Cldn2 mediated interactions in acidic, neutral and alkaline environments.
NASA Astrophysics Data System (ADS)
Smith, L. W.; Al-Taie, H.; Lesage, A. A. J.; Thomas, K. J.; Sfigakis, F.; See, P.; Griffiths, J. P.; Farrer, I.; Jones, G. A. C.; Ritchie, D. A.; Kelly, M. J.; Smith, C. G.
We use a multiplexing scheme to measure the conductance properties of 95 split gates of 7 different gate dimensions fabricated on a GaAs/AlGaAs chip, in a single cool down. The number of devices for which conductance is accurately quantized reduces as the gate length increases. However, even the devices for which conductance is accurately quantized in units of 2e2 / h show no correlation between the length of electrostatic potential barrier in the channel and the gate length, using a saddle point model to estimate the barrier length. Further, the strength of coupling between the gates and the 1D channel does not increase with gate length beyond 0.7 μm. The background electrostatic profile appears as significant as the gate dimension in determining device behavior. We find a clear correlation between the curvature of the electrostatic barrier along the channel and the strength of the ``0.7 anomaly'' which identifies the electrostatic length of the channel as the principal factor governing the conductance of the 0.7 anomaly. Present address: Wisconsin Institute for Quantum Information, University of Wisconsin-Madison, Madison, WI.
Quantum oscillation and the Aharonov-Bohm effect in a multiply connected normal-conductor loop
NASA Astrophysics Data System (ADS)
Takai, Daisuke; Ohta, Kuniichi
1994-12-01
The magnetostatic and electrostatic Aharonov-Bohm (AB) effects in multiply connected normal-conductor rings are studied. A previously developed model of a single mesoscopic ring is generalized to include an arbitrary number of rings, and the oscillatory behavior of the total transmission coefficients for the serially connected N (N is equal to integer) rings are derived as a function of the magnetic flux threading each ring and as a function of the electrostatic potential applied to the rings. It is shown that quantum oscillation of multiple rings exhibits greater variety of behavior than in periodic superlattices. We investigate the influence of the scattering at a junction and the number of atoms in the ring in both magnetostatic and electrostatic oscillation of multiring systems. For the electrostatic AB effects, when scattering occurs at the junctions between the connecting wire and the ring, the conductance in the AB oscillation is modified to an N-1 peaked shape. It is shown that this oscillatory behavior is greatly influenced by the number of atoms in the ring and is controlled by the electrostatic potential or magnetic flux that is applied to the ring. We discuss the behavior of the quantum oscillations upon varying the number of connected rings and the number of minibands.
Electrostatics of Pharmaceutical Aerosols for Pulmonary Delivery.
Lip Kwok, Philip Chi
2015-01-01
This paper provides a review on key research findings in the rapidly developing area of pharmaceutical aerosol electrostatics. Solids and liquids can become charged without electric fields, the former by contact or friction and the latter by flowing or spraying. Therefore, charged particles and droplets carrying net charges are produced from pharmaceutical inhalers (e.g. dry powder inhalers, metered dose inhalers, and nebulisers) due to the mechanical processes involved in aerosolisation. The charging depends on many physicochemical factors, such as formulation composition, solid state properties, inhaler material and design, and relative humidity. In silico, in vitro, and limited in vivo studies have shown that electrostatic charges may potentially influence particle deposition in the airways. However, the evidence is not yet conclusive. Furthermore, there are currently no regulatory requirements on the characterisation and control of the electrostatic properties of inhaled formulations. Besides the need for further investigations on the relationship between physicochemical factors and charging characteristics of the aerosols, controlled and detailed in vivo studies are also required to confirm whether charges can affect particle deposition in the airways. Since pharmaceutical aerosol electrostatics is a relatively new research area, much remains to be explored. Thus there is certainly potential for development. New findings in the future may contribute to the advancement of pharmaceutical aerosol formulations and respiratory drug delivery.
The electrostatic characteristics of G·U wobble base pairs
Xu, Darui; Landon, Theresa; Greenbaum, Nancy L.; Fenley, Marcia O.
2007-01-01
G·U wobble base pairs are the most common and highly conserved non-Watson–Crick base pairs in RNA. Previous surface maps imply uniformly negative electrostatic potential at the major groove of G·U wobble base pairs embedded in RNA helices, suitable for entrapment of cationic ligands. In this work, we have used a Poisson–Boltzmann approach to gain a more detailed and accurate characterization of the electrostatic profile. We found that the major groove edge of an isolated G·U wobble displays distinctly enhanced negativity compared with standard GC or AU base pairs; however, in the context of different helical motifs, the electrostatic pattern varies. G·U wobbles with distinct widening have similar major groove electrostatic potentials to their canonical counterparts, whereas those with minimal widening exhibit significantly enhanced electronegativity, ranging from 0.8 to 2.5 kT/e, depending upon structural features. We propose that the negativity at the major groove of G·U wobble base pairs is determined by the combined effect of the base atoms and the sugar-phosphate backbone, which is impacted by stacking pattern and groove width as a result of base sequence. These findings are significant in that they provide predictive power with respect to which G·U sites in RNA are most likely to bind cationic ligands. PMID:17526525
Völler, Jan-Stefan; Biava, Hernan; Hildebrandt, Peter; Budisa, Nediljko
2017-11-01
To find experimental validation for electrostatic interactions essential for catalytic reactions represents a challenge due to practical limitations in assessing electric fields within protein structures. This review examines the applications of non-canonical amino acids (ncAAs) as genetically encoded probes for studying the role of electrostatic interactions in enzyme catalysis. ncAAs constitute sensitive spectroscopic probes to detect local electric fields by exploiting the vibrational Stark effect (VSE) and thus have the potential to map the protein electrostatics. Mapping the electrostatics in proteins will improve our understanding of natural catalytic processes and, in beyond, will be helpful for biocatalyst engineering. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Frau, J.; Price, S. L.
1996-04-01
Electrostatic and structural properties of a set of β-lactam, γ-lactam and nonlactam compounds have been analyzed and compared with those of a model of the natural substrate d-alanyl- d-alanine for the carboxy- and transpeptidase enzymes. This first comparison of the electrostatic properties has been based on a distributed multipole analysis of high-quality ab initio wave functions of the substrate and potential antibiotics. The electrostatic similarity of the substrate and active compounds is apparent, and contrasts with the electrostatic properties of the noninhibitors. This has been quantified to give a reasonable correlation with the MIC (Minimum Concentration for Inhibition) and with kinetic data (k2/K) in accordance with the model for interaction of the lactam compounds with dd-peptidase. These correlations provide a better prediction of antibacterial activity than purely structural criteria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mereghetti, Paolo; Martinez, M.; Wade, Rebecca C.
Brownian dynamics (BD) simulations can be used to study very large molecular systems, such as models of the intracellular environment, using atomic-detail structures. Such simulations require strategies to contain the computational costs, especially for the computation of interaction forces and energies. A common approach is to compute interaction forces between macromolecules by precomputing their interaction potentials on three-dimensional discretized grids. For long-range interactions, such as electrostatics, grid-based methods are subject to finite size errors. We describe here the implementation of a Debye-Hückel correction to the grid-based electrostatic potential used in the SDA BD simulation software that was applied to simulatemore » solutions of bovine serum albumin and of hen egg white lysozyme.« less
Sickle red cell-endothelium interactions.
Kaul, Dhananjay K; Finnegan, Eileen; Barabino, Gilda A
2009-01-01
Periodic recurrence of painful vaso-occlusive crisis is the defining feature of sickle cell disease. Among multiple pathologies associated with this disease, sickle red cell-endothelium interaction has been implicated as a potential initiating mechanism in vaso-occlusive events. This review focuses on various interrelated mechanisms involved in human sickle red cell adhesion. We discuss in vitro and microcirculatory findings on sickle red cell adhesion, its potential role in vaso-occlusion, and the current understanding of receptor-ligand interactions involved in this pathological phenomenon. In addition, we discuss the contribution of other cellular interactions (leukocytes recruitment and leukocyte-red cell interaction) to vaso-occlusion, as observed in transgenic sickle mouse models. Emphasis is given to recently discovered adhesion molecules that play a predominant role in mediating human sickle red cell adhesion. Finally, we analyze various therapeutic approaches for inhibiting sickle red cell adhesion by targeting adhesion molecules and also consider therapeutic strategies that target stimuli involved in endothelial activation and initiation of adhesion.
Wang, Bao-Guo; Ren, Fu-de; Shi, Wen-Jing
2015-11-01
Changes in N-NO2 bond strength, ring strain energy and electrostatic potential upon formation of intermolecular H-bonds between HF and the nitro group in nitrogen heterocyclic rings C n H2n N-NO2 (n = 2-5), RDX and HMX were investigated using DFT-B3LYP and MP2(full) methods with the 6-311++G(2df,2p) and aug-cc-pVTZ basis sets. Analysis of electron density shifts was also carried out. The results indicate that H-bonding energy correlates well with the increment of ring strain energy. Upon complex formation, the strength of the N-NO2 trigger-bond is enhanced, suggesting reduced sensitivity, while judged by the increased ring strain energy, sensitivity is increased. However, some features of the molecular surface electrostatic potential, such as a local maximum above the N-NO2 bond and ring, σ + (2) and electrostatic balance parameter ν, remain essentially unchanged upon complex formation, and only a small change in the impact sensitivity h 50 is suggested. It is not sufficient to determine sensitivity solely on the basis of trigger bond or ring strain; as a global feature of a molecule, the molecular surface electrostatic potential is available to help judge the change of sensitivity in H-bonded complexes. Graphical Abstract The strengthened N-NO2 bond suggests reduced sensitivity, while it is reverse by theincreased ring strain energy upon the complex formation. However, the molecular surfaceelectrostatic potential (V S) shows the little change of h 50. The V S should be taken into accountin the analysis of explosive sensitivity in the H-bonded complex.
NASA Astrophysics Data System (ADS)
Panda, Maheswar
2018-05-01
In this manuscript, the dielectric behavior of a variety of ferroelectric polymer dielectrics (FPD), which may bethe materials for future electrostatic energy storage application shave been discussed. The variety of polymer dielectrics, comprising of ferroelectric polymer[polyvinylidene fluoride (PVDF)]/non-polarpolymer [low density polyethylene (LDPE)] and different sizes of metal particles (Ni, quasicrystal of Al-Cu-Fe) as filler, were prepared through different process conditions (cold press/hot press) and are investigated experimentally. Very high values of effective dielectric constants (ɛeff) with low loss tangent (Tan δ) were observed forall the prepared FPD at their respective percolation thresholds (fc). The enhancement of ɛeff and Tan δ at the insulator to metal transition (IMT) is explained through the boundary layer capacitor effect and the percolation theory respectively. The non-universal fc/critical exponents across the IMT have been explained through percolation theory andis attributed to the fillerparticle size& shape, interaction between the components, method of their preparation, adhesiveness, connectivity and homogeneity, etc. of the samples. Recent results on developed FPD with high ɛeff and low Tan δ prepared through cold press have proven themselves to be the better candidates for low frequency and static dielectric applications.
Electrostatic dry powder prepregging of carbon fiber
NASA Technical Reports Server (NTRS)
Throne, James L.; Sohn, Min-Seok
1990-01-01
Ultrafine, 5-10 micron polymer-matrix resin powders are directly applied to carbon fiber tows by passing then in an air or nitrogen stream through an electrostatic potential; the particles thus charged will strongly adhere to grounded carbon fibers, and can be subsequently fused to the fiber in a continuously-fed radiant oven. This electrostatic technique derived significant end-use mechanical property advantages from the obviation of solvents, binders, and other adulterants. Additional matrix resins used to produce prepregs to date have been PMR-15, Torlon 40000, and LaRC TPI.
Analysis of the instability underlying electrostatic suppression of the Leidenfrost state
NASA Astrophysics Data System (ADS)
Shahriari, Arjang; Das, Soumik; Bahadur, Vaibhav; Bonnecaze, Roger T.
2017-03-01
A liquid droplet on a hot solid can generate enough vapor to prevent its contact on the surface and reduce the rate of heat transfer, the so-called Leidenfrost effect. We show theoretically and experimentally that for a sufficiently high electrostatic potential on the droplet, the formation of the vapor layer is suppressed. The interplay of the destabilizing electrostatic force and stabilizing capillary force and evaporation determines the minimum or threshold voltage to suppress the Leidenfrost effect. Linear stability theory accurately predicts threshold voltages for different size droplets and varying temperatures.
Effect of surface tension on the behavior of adhesive contact based on Lennard-Jones potential law
NASA Astrophysics Data System (ADS)
Zhu, Xinyao; Xu, Wei
2018-02-01
The present study explores the effect of surface tension on adhesive contact behavior where the adhesion is interpreted by long-range intermolecular forces. The adhesive contact is analyzed using the equivalent system of a rigid sphere and an elastic half space covered by a membrane with surface tension. The long-range intermolecular forces are modeled with the Lennard‒Jones (L‒J) potential law. The current adhesive contact issue can be represented by a nonlinear integral equation, which can be solved by Newton‒Raphson method. In contrast to previous studies which consider intermolecular forces as short-range, the present study reveals more details of the features of adhesive contact with surface tension, in terms of jump instabilities, pull-off forces, pressure distribution within the contact area, etc. The transition of the pull-off force is not only consistent with previous studies, but also presents some new interesting characteristics in the current situation.
Polymer Coatings Reduce Electro-osmosis
NASA Technical Reports Server (NTRS)
Herren, Blair J.; Snyder, Robert; Shafer, Steven G.; Harris, J. Milton; Van Alstine, James M.
1989-01-01
Poly(ethylene glycol) film controls electrostatic potential. Electro-osmosis in quartz or glass chambers reduced or reversed by coating inside surface of chambers with monomacromolecular layers of poly(ethylene glycol). Stable over long times. Electrostatic potential across surface of untreated glass or plastic chamber used in electro-phoresis is negative and attracts cations in aqueous electrolyte. Cations solvated, entrains flow of electrolyte migrating toward cathode. Electro-osmotic flow interferes with desired electrophoresis of particles suspended in electrolyte. Polymer coats nontoxic, transparent, and neutral, advantageous for use in electrophoresis.
Dipole-like electrostatic asymmetry of gold nanorods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ji -Young; Han, Myung -Geun; Lien, Miao -Bin
The symmetry of metallic nanocolloids, typically envisaged as simple geometrical shapes, is rarely questioned. However, the symmetry considerations are so essential for understanding their electronic structure, optical properties, and biological effects that it is important to reexamine these foundational assumptions for nanocolloids. Gold nanorods (AuNRs) are generally presumed to have nearly perfect geometry of a cylinder and therefore are centrosymmetric. We show that AuNRs, in fact, have a built-in electrostatic potential gradient on their surface and behave as noncentrosymmetric particles. The electrostatic potential gradient of 0.11 to 0.07 V/nm along the long axes of nanorods is observed by off-axis electronmore » holography. Kelvin probe microscopy, secondary electron imaging, energy-filtered transmission electron microscopy, and plasmon mapping reveal that the axial asymmetry is associated with a consistently unequal number of cetyltrimethylammonium bromide moieties capping the two ends of the AuNRs. Electrostatic field maps simulated for the AuNR surface reproduce the holography images. The dipole-like surface potential gradient explains previously puzzling discrepancies in nonlinear optical effects originating from the noncentrosymmetric nature of AuNRs. Furthermore, similar considerations of symmetry breaking are applicable to other nanoscale structures for which the property-governing symmetry of the organic shell may differ from the apparent symmetry of inorganic core observed in standard electron microscopy images.« less
Global Distributions of Ionospheric Electrostatic Potentials for Various Interplanetary Conditions
NASA Astrophysics Data System (ADS)
Kartalev, M.; Papitashvili, V.; Keremidarska, V.; Grigorov, K.; Romanov, D.
2001-12-01
We report on a study of the global ionospheric electrostatic potential distributions obtained from combining two algorithms used for the mapping of high-latitude and middle-latitude ionospheric electrodynamics; that is, the LiMIE (http://www.sprl.umich.edu/mist/) and IMEH (http://geospace.nat.bg) models, respectively. In this combination, the latter model utilizes the LiMIE high-latitude field-aligned current distributions for various IMF conditions and different seasons (summer, winter, equinox). The IMEH model is a mathematical tool, allowing us to study conjugacy (or non-conjugacy) of the ionospheric electric fields on a global scale, from the northern and southern polar regions to the middle- and low-latitudes. The proposed numerical scheme permits testing of different mechanisms of the interhemispheric coupling and mapping to the ionosphere through the appropriate current systems. The scheme is convenient for determining self-consistently the separatrices in both the northern and southern hemispheres. In this study we focus on the global ionospheric electrostatic field distributions neglecting other possible electric field sources. Considering some implications of the proposed technique for the space weather specification and forecasting, we developed a Web-based interface providing global distributions of the ionospheric electrostatic potentials in near-real time from the ACE upstream solar wind observations at L1.
Dipole-like electrostatic asymmetry of gold nanorods
Kim, Ji -Young; Han, Myung -Geun; Lien, Miao -Bin; ...
2018-02-09
The symmetry of metallic nanocolloids, typically envisaged as simple geometrical shapes, is rarely questioned. However, the symmetry considerations are so essential for understanding their electronic structure, optical properties, and biological effects that it is important to reexamine these foundational assumptions for nanocolloids. Gold nanorods (AuNRs) are generally presumed to have nearly perfect geometry of a cylinder and therefore are centrosymmetric. We show that AuNRs, in fact, have a built-in electrostatic potential gradient on their surface and behave as noncentrosymmetric particles. The electrostatic potential gradient of 0.11 to 0.07 V/nm along the long axes of nanorods is observed by off-axis electronmore » holography. Kelvin probe microscopy, secondary electron imaging, energy-filtered transmission electron microscopy, and plasmon mapping reveal that the axial asymmetry is associated with a consistently unequal number of cetyltrimethylammonium bromide moieties capping the two ends of the AuNRs. Electrostatic field maps simulated for the AuNR surface reproduce the holography images. The dipole-like surface potential gradient explains previously puzzling discrepancies in nonlinear optical effects originating from the noncentrosymmetric nature of AuNRs. Furthermore, similar considerations of symmetry breaking are applicable to other nanoscale structures for which the property-governing symmetry of the organic shell may differ from the apparent symmetry of inorganic core observed in standard electron microscopy images.« less
Gay-Berne and electrostatic multipole based coarse-grain potential in implicit solvent
Wu, Johnny; Zhen, Xia; Shen, Hujun; Li, Guohui; Ren, Pengyu
2011-01-01
A general, transferable coarse-grain (CG) framework based on the Gay-Berne potential and electrostatic point multipole expansion is presented for polypeptide simulations. The solvent effect is described by the Generalized Kirkwood theory. The CG model is calibrated using the results of all-atom simulations of model compounds in solution. Instead of matching the overall effective forces produced by atomic models, the fundamental intermolecular forces such as electrostatic, repulsion-dispersion, and solvation are represented explicitly at a CG level. We demonstrate that the CG alanine dipeptide model is able to reproduce quantitatively the conformational energy of all-atom force fields in both gas and solution phases, including the electrostatic and solvation components. Replica exchange molecular dynamics and microsecond dynamic simulations of polyalanine of 5 and 12 residues reveal that the CG polyalanines fold into “alpha helix” and “beta sheet” structures. The 5-residue polyalanine displays a substantial increase in the “beta strand” fraction relative to the 12-residue polyalanine. The detailed conformational distribution is compared with those reported from recent all-atom simulations and experiments. The results suggest that the new coarse-graining approach presented in this study has the potential to offer both accuracy and efficiency for biomolecular modeling. PMID:22029338
NASA Astrophysics Data System (ADS)
Chau, P.-L.; Dean, P. M.
1994-10-01
Electrostatic interactions have always been considered an important factor governing ligand-receptor interactions. Previous work in this field has established the existence of electrostatic complementarity between the ligand and its receptor site. However, this property has not been treated rigorously, and the description remains largely qualitative. In this work, 34 data sets of high quality were chosen from the Brookhaven Protein Databank. The electrostatic complementarity has been calculated between the surface potentials; complementarity is absent between adjacent or neighbouring atoms of the ligand and the receptor. There is little difference between complementarities on the total ligand surface and the interfacial region. Altering the homogeneous dielectric to distance-dependent dielectrics reduces the complementarity slightly, but does not affect the pattern of complementarity.
Chau, P L; Dean, P M
1994-10-01
Electrostatic interactions have always been considered an important factor governing ligand-receptor interactions. Previous work in this field has established the existence of electrostatic complementarity between the ligand and its receptor site. However, this property has not been treated rigorously, and the description remains largely qualitative. In this work, 34 data sets of high quality were chosen from the Brookhaven Protein Databank. The electrostatic complementary has been calculated between the surface potentials; complementarity is absent between adjacent or neighbouring atoms of the ligand and the receptor. There is little difference between complementarities on the total ligand surface and the interfacial region. Altering the homogeneous dielectric to distance-dependent dielectrics reduces the complementarity slightly, but does not affect the pattern of complementarity.
Liao, T T; Zhang, T F; Li, S S; Deng, Q Y; Wu, B J; Zhang, Y Z; Zhou, Y J; Guo, Y B; Leng, Y X; Huang, N
2016-12-01
Diamond-like carbon (DLC) films are potential candidates for artificial joint surface modification in biomedical applications, and the influence of the structural features of DLC surfaces on cell functions has attracted attention in recent decades. Here, the biocompatibility of DLC films with different structures was investigated using macrophages, osteoblasts and fibroblasts. The results showed that DLC films with a low ratio of sp(2)/sp(3), which tend to have a structure similar to that of diamond, led to less inflammatory, excellent osteogenic and fibroblastic reactions, with higher cell viability, better morphology, lower release of TNF-α (tumor necrosis factor-α) and IL-6 (interleukin-6), and higher release of IL-10 (interleukin-10). The results also demonstrated that the high-density diamond structure (low ratio of sp(2)/sp(3)) of DLC films is beneficial for cell adhesion and growth because of better protein adsorption without electrostatic repulsion. These findings provide valuable insights into the mechanisms underlying inhibition of an inflammatory response and the promotion of osteoblastogenesis and fibrous propagation, and effectively build a system for evaluating the biocompatibility of DLC films. Copyright © 2016 Elsevier B.V. All rights reserved.
2015-01-01
In neural interface platforms, cultures are often carried out on a flat, open, rigid, and opaque substrate, posing challenges to reflecting the native microenvironment of the brain and precise engagement with neurons. Here we present a neuron cell culturing platform that consists of arrays of ordered microtubes (2.7–4.4 μm in diameter), formed by strain-induced self-rolled-up nanomembrane (s-RUM) technology using ultrathin (<40 nm) silicon nitride (SiNx) film on transparent substrates. These microtubes demonstrated robust physical confinement and unprecedented guidance effect toward outgrowth of primary cortical neurons, with a coaxially confined configuration resembling that of myelin sheaths. The dynamic neural growth inside the microtube, evaluated with continuous live-cell imaging, showed a marked increase (20×) of the growth rate inside the microtube compared to regions outside the microtubes. We attribute the dramatic accelerating effect and precise guiding of the microtube array to three-dimensional (3D) adhesion and electrostatic interaction with the SiNx microtubes, respectively. This work has clear implications toward building intelligent synthetic neural circuits by arranging the size, site, and patterns of the microtube array, for potential treatment of neurological disorders. PMID:25329686
Lee, Hochan; Lee, Gayeon; Jeon, Jonggu; Cho, Minhaeng
2012-01-12
IR probes have been extensively used to monitor local electrostatic and solvation dynamics. Particularly, their vibrational frequencies are highly sensitive to local solvent electric field around an IR probe. Here, we show that the experimentally measured vibrational frequency shifts can be inversely used to determine local electric potential distribution and solute-solvent electrostatic interaction energy. In addition, the upper limits of their fluctuation amplitudes are estimated by using the vibrational bandwidths. Applying this method to fully deuterated N-methylacetamide (NMA) in D(2)O and examining the solvatochromic effects on the amide I' and II' mode frequencies, we found that the solvent electric potential difference between O(═C) and D(-N) atoms of the peptide bond is about 5.4 V, and thus, the approximate solvent electric field produced by surrounding water molecules on the NMA is 172 MV/cm on average if the molecular geometry is taken into account. The solute-solvent electrostatic interaction energy is estimated to be -137 kJ/mol, by considering electric dipole-electric field interaction. Furthermore, their root-mean-square fluctuation amplitudes are as large as 1.6 V, 52 MV/cm, and 41 kJ/mol, respectively. We found that the water electric potential on a peptide bond is spatially nonhomogeneous and that the fluctuation in the electrostatic peptide-water interaction energy is about 10 times larger than the thermal energy at room temperature. This indicates that the peptide-solvent interactions are indeed important for the activation of chemical reactions in aqueous solution.
Interactions of molecules and the properties of crystals
NASA Astrophysics Data System (ADS)
McConnell, Thomas Daniel Leigh
In this thesis the basic theory of the lattice dynamics of molecular crystals is considered, with particular reference to the specific case of linear molecules. The objective is to carry out a critical investigation of a number of empirical potentials as models for real systems. Suitable coordinates are introduced, in particular vibrational coordinates which are used to describe the translational and rotational modes of the free molecule. The Taylor expansion of the intermolecular potential is introduced and its terms considered, in particular the (first-order) equilibrium conditions for such a system and the (second-order) lattice vibrations. The elastic properties are also considered, in particular with reference to the specific case of rhombohedral crystals. The compressibility and a number of conditions for elastic stability are introduced. The total intermolecular interaction potential is divided into three components using perturbation methods, the electrostatic energy, the repulsion energy and the dispersion energy. A number of models are introduced for these various components. The induction energy is neglected. The electrostatic interaction is represented by atomic multipole and molecular multipole models. The repulsion and dispersion energies are modelled together in a central interaction potential, either the Lennard-Jones atom-atom potential or the anisotropic Berne-Pechukas molecule-molecule potential. In each case, the Taylor expansion coefficients, used to calculate the various molecular properties, are determined. An algorithm is described which provides a relatively simple method for calculating cartesian tensors, which are found in the Taylor expansion coefficients of the multipolar potentials. This proves to be particularly useful from a computational viewpoint, both in terms of programming and calculating efficiency. The model system carbonyl sulphide is introduced and its lattice properties are described. Suitable parameters for potentials used to model the system are discussed and the simplifications to the Taylor expansion coefficients due to crystal symmetry are detailed. Four potential parameters are chosen to be fitted to four lattice properties, representing zero, first and second order Taylor expansion coefficients. The supplementary tests of a given fitted potential are detailed. A number of forms for the electrostatic interaction of carbonyl sulphide are considered, each combined with a standard atom-atom potential. The success of the molecular octupole model is considered and the inability of more complex electrostatic potentials to improve on this simple model is noted. The anisotropic Berne-Pechukas potential, which provides an increased estimate of the compressibility is considered as being an improvement on the various atom-atom potentials. The effect of varying the exponents in the atom-atom (or molecule-molecule) potential, representing a systematic variation of the repulsion and dispersion energy models, is examined and a potential which is able to reproduce all of the given lattice properties for carbonyl sulphide is obtained. The molecular crystal of cyanogen iodide is investigated. Superficially it is similar to the crystal of carbonyl sulphide and the potentials used with success for the latter are applied to cyanogen iodide to determine whether they are equally as effective models for this molecule. These potentials are found to be far less successful, in all cases yielding a number of unrealistic results. Reasons for the failure of the model are considered, in particular the 3 differences between the electrostatic properties of the two molecules are discussed. It is concluded that some of the simplifications which proved satisfactory for carbonyl sulphide are invalid for simple extension to the case of cyanogen iodide. A first estimate of the differences in the electrostatic properties is attempted, calculating the induction energies of the two molecules. The assumption that the induction energy may be neglected is justified for the case of carbonyl sulphide but found to be far less satisfactory for cyanogen iodide. Finally details of ab initio calculations are outlined. The amount of experimental data available for the electrostatic properties of the two molecules under consideration is relatively small and the experimental data which is available is supplemented by values obtained from these calculations.
USDA-ARS?s Scientific Manuscript database
The aerial electrostatic spraying system patented by the USDA-ARS is a unique aerial application system which inductively charges spray droplets for the purpose of increasing deposition and efficacy. While this system has many potential benefits, no published data exits which describe how changes i...
USDA-ARS?s Scientific Manuscript database
The aerial electrostatic spraying system patented by the USDA ARS is a unique aerial application system which inductively charges spray particles for the purpose of increasing deposition and efficacy. While this system has many potential benefits, very little is known about how changes in airspeed o...
Potential for Biobased Adhesives in Wood Bonding
Charles R. Frihart
2016-01-01
There has been a resurgence of interest and research on using bio-based materials as wood adhesives; however, they have achieved only limited market acceptance. To better understand this low level of replacement, it is important to understand why adhesives work or fail in moisture durability tests. A holistic model for wood adhesives has been developed that clarifies...
Evaluation of adhesive penetration of wood fibre by nanoindentation and microscopy
Christopher G. Hunt; Joseph E. Jakes; Warren Grigsby
2010-01-01
Adhesives used in wood products sometimes infiltrate, or diffuse into the solid material of, wood cell walls, potentially modifying their properties. These changes in cell wall properties are likely to impact the performance of adhesive bonds. While adhesive infiltration has been observed by multiple methods, the effect on cell wall properties is not well understood....
Charge regulation at semiconductor-electrolyte interfaces.
Fleharty, Mark E; van Swol, Frank; Petsev, Dimiter N
2015-07-01
The interface between a semiconductor material and an electrolyte solution has interesting and complex electrostatic properties. Its behavior will depend on the density of mobile charge carriers that are present in both phases as well as on the surface chemistry at the interface through local charge regulation. The latter is driven by chemical equilibria involving the immobile surface groups and the potential determining ions in the electrolyte solution. All these lead to an electrostatic potential distribution that propagate such that the electrolyte and the semiconductor are dependent on each other. Hence, any variation in the charge density in one phase will lead to a response in the other. This has significant implications on the physical properties of single semiconductor-electrolyte interfaces and on the electrostatic interactions between semiconductor particles suspended in electrolyte solutions. The present paper expands on our previous publication (Fleharty et al., 2014) and offers new results on the electrostatics of single semiconductor interfaces as well as on the interaction of charged semiconductor colloids suspended in electrolyte solution. Copyright © 2014 Elsevier Inc. All rights reserved.
Abi-Ghanem, Josephine; Rabin, Clémence; Porrini, Massimiliano; Dausse, Eric; Toulmé, Jean-Jacques; Gabelica, Valérie
2017-10-06
In the RNA realm, non-Watson-Crick base pairs are abundant and can affect both the RNA 3D structure and its function. Here, we investigated the formation of RNA kissing complexes in which the loop-loop interaction is modulated by non-Watson-Crick pairs. Mass spectrometry, surface plasmon resonance, and UV-melting experiments show that the G⋅U wobble base pair favors kissing complex formation only when placed at specific positions. We tried to rationalize this effect by molecular modeling, including molecular mechanics Poisson-Boltzmann surface area (MMPBSA) thermodynamics calculations and PBSA calculations of the electrostatic potential surfaces. Modeling reveals that the G⋅U stabilization is due to a specific electrostatic environment defined by the base pairs of the entire loop-loop region. The loop is not symmetric, and therefore the identity and position of each base pair matters. Predicting and visualizing the electrostatic environment created by a given sequence can help to design specific kissing complexes with high affinity, for potential therapeutic, nanotechnology or analytical applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Newton, Haley S.; Niles, Scott D.; Ploessl, James; Richenbacher, Wayne
2007-01-01
Abstract: The development of electrostatic potentials generated during cardiopulmonary bypass (CPB) procedures using polyvinylchloride (PVC) tubing in conjunction with roller pumps has been previously documented. The resulting damage from the electrostatic discharge (ESD) has been reported to affect gas transfer devices, but details of potential damage to electronic components commonly used during extracorporeal circulation have not been similarly described. The purpose of this study was to measure the ability of a triboelectric potential to be generated from a primed, circulating, adult CPB pump before the initiation of CPB. Two identical adult CPB circuits were assembled: one incorporating a roller pump and the second incorporating a centrifugal pump mechanism. Primed pumps were circulated (1–6 LPM), and evidence of generated triboelectric potentials was evaluated using a digital multimeter (Fluke 8062 A). The ESD generated from an adult CPB circuit using a roller head configuration elicited a charge in excess of 600 DC V. An identical circuit constructed with a centrifugal pump mechanism did not produce any measurable charge. Sensitive electrical components in the CPB hardware platform may be damaged by ESD potential spikes of this magnitude. Preventative measures, such as circuit charge dissipation, may reduce the potential for such damage when using PVC tubing. PMID:17486872
Adhesion signals of phospholipid vesicles at an electrified interface.
DeNardis, Nadica Ivošević; Žutić, Vera; Svetličić, Vesna; Frkanec, Ruža
2012-09-01
General adhesion behavior of phospholipid vesicles was examined in a wide range of potentials at the mercury electrode by recording time-resolved adhesion signals. It was demonstrated that adhesion-based detection is sensitive to polar headgroups in phospholipid vesicles. We identified a narrow potential window around the point of zero charge of the electrode where the interaction of polar headgroups of phosphatidylcholine vesicles with the substrate is manifested in the form of bidirectional signals. The bidirectional signal is composed of the charge flow due to the nonspecific interaction of vesicle adhesion and spreading and of the charge flow due to a specific interaction of the negatively charged electrode and the most exposed positively charged choline headgroups. These signals are expected to appear only when the electrode surface charge density is less than the surface charge density of the choline groups at the contact interface. In comparison, for the negatively charged phosphatidylserine vesicles, we identified the potential window at the mercury electrode where charge compensation takes place, and bidirectional signals were not detected.
Active space debris charging for contactless electrostatic disposal maneuvers
NASA Astrophysics Data System (ADS)
Schaub, Hanspeter; Sternovsky, Zoltán
2014-01-01
The remote charging of a passive object using an electron beam enables touchless re-orbiting of large space debris from geosynchronous orbit (GEO) using electrostatic forces. The advantage of this method is that it can operate with a separation distance of multiple craft radii, thus reducing the risk of collision. The charging of the tug-debris system to high potentials is achieved by active charge transfer using a directed electron beam. Optimal potential distributions using isolated- and coupled-sphere models are discussed. A simple charging model takes into account the primary electron beam current, ultra-violet radiation induced photoelectron emission, collection of plasma particles, secondary electron emission and the recapture of emitted particles. The results show that through active charging in a GEO space environment high potentials can be both achieved and maintained with about a 75% transfer efficiency. Further, the maximum electrostatic tractor force is shown to be insensitive to beam current levels. This latter later result is important when considering debris with unknown properties.
Simulations of Coulomb systems with slab geometry using an efficient 3D Ewald summation method
NASA Astrophysics Data System (ADS)
dos Santos, Alexandre P.; Girotto, Matheus; Levin, Yan
2016-04-01
We present a new approach to efficiently simulate electrolytes confined between infinite charged walls using a 3d Ewald summation method. The optimal performance is achieved by separating the electrostatic potential produced by the charged walls from the electrostatic potential of electrolyte. The electric field produced by the 3d periodic images of the walls is constant inside the simulation cell, with the field produced by the transverse images of the charged plates canceling out. The non-neutral confined electrolyte in an external potential can be simulated using 3d Ewald summation with a suitable renormalization of the electrostatic energy, to remove a divergence, and a correction that accounts for the conditional convergence of the resulting lattice sum. The new algorithm is at least an order of magnitude more rapid than the usual simulation methods for the slab geometry and can be further sped up by adopting a particle-particle particle-mesh approach.
Sarkar, Subhra; Witham, Shawn; Zhang, Jie; Zhenirovskyy, Maxim; Rocchia, Walter; Alexov, Emil
2011-01-01
Here we report a web server, the DelPhi web server, which utilizes DelPhi program to calculate electrostatic energies and the corresponding electrostatic potential and ionic distributions, and dielectric map. The server provides extra services to fix structural defects, as missing atoms in the structural file and allows for generation of missing hydrogen atoms. The hydrogen placement and the corresponding DelPhi calculations can be done with user selected force field parameters being either Charmm22, Amber98 or OPLS. Upon completion of the calculations, the user is given option to download fixed and protonated structural file, together with the parameter and Delphi output files for further analysis. Utilizing Jmol viewer, the user can see the corresponding structural file, to manipulate it and to change the presentation. In addition, if the potential map is requested to be calculated, the potential can be mapped onto the molecule surface. The DelPhi web server is available from http://compbio.clemson.edu/delphi_webserver. PMID:24683424
A review of high-temperature adhesives
NASA Technical Reports Server (NTRS)
St.clair, A. K.; St.clair, T. L.
1981-01-01
The development of high temperature adhesives and polyphenylquinoxalines (PPQ) is reported. Thermoplastic polyimides and linear PPQ adhesive are shown to have potential for bonding both metals and composite structures. A nadic terminated addition polyimide adhesive, LARC-13, and an acetylene terminated phenylquinoxaline (ATPQ) were developed. Both of the addition type adhesives are shown to be more readily processable than linear materials but less thermooxidatively stable and more brittle. It is found that the addition type adhesives are able to perform, at elevated temperatures up to 595 C where linear systems fail thermoplastically.
NASA Astrophysics Data System (ADS)
Liwo, Adam; Tempczyk, Anna; Grzonka, Zbigniew
1989-09-01
Continuing our theoretical studies of the oxytocin and vasopressin analogues, we have analysed the molecular electrostatic potential (MEP) and the norm of the molecular electrostatic field (MEF) of [1- β-mercaptopropionic acid]-arginine-vasopressin ([Mpa1]-AVP), [1-( β-mercapto- β,β-cyclopentamethylene)propionic acid]-arginine-vasopressin ([Cpp']-AVP), and [1-thiosalicylic acid]-arginine-vasopressin ([Ths']-AVP) whose low-energy conformations were calculated in our previous work. These compounds are known from experiment to exhibit different biological activity. The scalar fields mentioned determine the energy of interaction with either charged (MEP) or polar (MEF) species, the energy being in the second case either optimal or Boltzmann-averaged over all the possible orientations of the dipole moment versus the electrostatic field. The electrostatic interactions slowly vanish with distance and can therefore be considered to be the factor determining the molecular shape at greater distances, which can help in both predicting the interactions with the receptor at the stage of remote recognition and in finding the preferred directions of solvation by a polar solvent. In the analysis of the fields three techniques have been used: (i) the construction of maps in certain planes; (ii) the construction of maps on spheres centered in the charge center of the molecule under study and of poles chosen according to the main axes of the quadrupole moment; and (iii) the construction of surfaces corresponding to a given value of potential. The results obtained show that the shapes of both MEP and MEF are similar in the case of [Mpa1]-AVP and [Cpp1-AVP (biologically active), while some differences emerge when comparing these compounds with [Ths1]-AVP (inactive). It has also been found that both MEP and MEF depend even more strongly on conformation.
NASA Astrophysics Data System (ADS)
Sagui, Celeste
2006-03-01
An accurate and numerically efficient treatment of electrostatics is essential for biomolecular simulations, as this stabilizes much of the delicate 3-d structure associated with biomolecules. Currently, force fields such as AMBER and CHARMM assign ``partial charges'' to every atom in a simulation in order to model the interatomic electrostatic forces, so that the calculation of the electrostatics rapidly becomes the computational bottleneck in large-scale simulations. There are two main issues associated with the current treatment of classical electrostatics: (i) how does one eliminate the artifacts associated with the point-charges (e.g., the underdetermined nature of the current RESP fitting procedure for large, flexible molecules) used in the force fields in a physically meaningful way? (ii) how does one efficiently simulate the very costly long-range electrostatic interactions? Recently, we have dealt with both of these challenges as follows. In order to improve the description of the molecular electrostatic potentials (MEPs), a new distributed multipole analysis based on localized functions -- Wannier, Boys, and Edminston-Ruedenberg -- was introduced, which allows for a first principles calculation of the partial charges and multipoles. Through a suitable generalization of the particle mesh Ewald (PME) and multigrid method, one can treat electrostatic multipoles all the way to hexadecapoles all without prohibitive extra costs. The importance of these methods for large-scale simulations will be discussed, and examplified by simulations from polarizable DNA models.
Flexible Electrostatic Technology for Capture and Handling Project
NASA Technical Reports Server (NTRS)
Keys, Andrew; Bryan, Tom; Horwitz, Chris; Rakoczy, John; Waggoner, Jason
2015-01-01
To NASA unfunded & planned missions: This new capability to sense proximity, flexibly align to, and attractively grip and capture practically any object in space without any pre-designed physical features or added sensors or actuators will enable or enhance many of MSFC's strategic emphasis areas in space transportation, and space systems such as: 1. A Flexible Electrostatic gripper can enable the capture, gripping and releasing of an extraterrestrial sample of different minerals or a sample canister (metallic or composite) without requiring a handle or grapple fixture.(B) 2. Flexible self-aligning in-space capture/soft docking or berthing of ISS resupply vehicles, pressurized modules, or nodes for in-space assembly and shielding, radiator, and solar Array deployment for space habitats (C) 3. The flexible electrostatic gripper when combined with a simple steerable extendible boom can grip, position, and release objects of various shapes and materials with low mass and power without any prior handles or physical accommodations or surface contamination for ISS experiment experiments and in-situ repair.(F)(G) 4. The Dexterous Docking concept previously proposed to allow simple commercial resupply ships to station-keep and capture either ISS or an Exploration vehicle for supply or fluid transfer lacked a self-sensing, compliant, soft capture gripper like FETCH that could retract and attach to a CBM. (I) 5. To enable a soft capture and de-orbit of a piece of orbital debris will require self-aligning gripping and holding an object wherever possible (thermal coverings or shields of various materials, radiators, solar arrays, antenna dishes) with little or no residual power while adding either drag or active low level thrust.(K) 6. With the scalability of the FETCH technology, small satellites can be captured and handled or can incorporate FETCH gripper to dock to and handle other small vehicles and larger objects for de-orbiting or mitigating Orbital debris (L) 7. Many of previous MSFC and NASA proposals or concepts can now be realized or simplified by the development of the this initial and future FETCH grippers including commercial resupply, Exploration vehicle assembly, Satellite servicing, and orbital debris removal since a major part of these missions is to align to and capture some handle. Completed Project (2013 - 2014) Flexible Electrostatic Technology for Capture & Handling Project Center Innovation Fund: MSFC CIF Program | Space Technology Mission Directorate (STMD) For more information visit techport.nasa.gov Some NASA technology projects are smaller (for example SBIR/STTR, NIAC and Center Innovation Fund), and will have less content than other, larger projects. Newly created projects may not sensors or injection of permanent adhesives. With gripping forces estimated between 0.5 and 2.5 pounds per square inch or 70-300 lb./sq. ft. of surface contact, the FETCH can turn-on and turn-off rapidly and repeatedly to enable sample handling, soft docking, in-space assembly, and precision relocation for accurate anchor adhesion.
NASA Astrophysics Data System (ADS)
Marquardt, Oliver; Krause, Thilo; Kaganer, Vladimir; Martín-Sánchez, Javier; Hanke, Michael; Brandt, Oliver
2017-05-01
We present a systematic theoretical study of the influence of elastic strain relaxation on the built-in electrostatic potentials and the electronic properties of axial {{In}}x{{Ga}}1-x{{N}}/{GaN} nanowire (NW) heterostructures. Our simulations reveal that for a sufficiently large ratio between the thickness of the {{In}}x{{Ga}}1-x{{N}} disk and the diameter of the NW, the elastic relaxation leads to a significant reduction of the built-in electrostatic potential in comparison to a planar system of similar layer thickness and In content. In this case, the ground state transition energies approach constant values with increasing thickness of the disk and only depend on the In content, a behavior usually associated to that of a quantum well free of built-in electrostatic potentials. We show that the structures under consideration are by no means field-free, and the built-in potentials continue to play an important role even for ultrathin NWs. In particular, strain and the resulting polarization potentials induce complex confinement features of electrons and holes, which depend on the In content, shape, and dimensions of the heterostructure.
Probing size-dependent electrokinetics of hematite aggregates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kedra-Królik, Karolina; Rosso, Kevin M.; Zarzycki, Piotr
Aqueous particle suspensions of many kinds are stabilized by the electrostatic potential developed at their surfaces from reaction with water and ions. An important and less well understood aspect of this stabilization is the dependence of the electrostatic surface potential on particle size. Surface electrostatics are typically probed by measuring particle electrophoretic mobilities and quantified in the electrokinetic potential (f), using commercially available Zeta Potential Analyzers (ZPA). Even though ZPAs provide frequency-spectra (histograms) of electrophoretic mobility and hydrodynamic diameter, typically only the maximal-intensity values are reported, despite the information in the remainder of the spectra. Here we propose a mappingmore » procedure that inter-correlates these histograms to extract additional insight, in this case to probe particle size-dependent electrokinetics. Our method is illustrated for a suspension of prototypical iron (III) oxide (hematite, a-Fe2O3). We found that the electrophoretic mobility and f-potential are a linear function of the aggregate size. By analyzing the distribution of surface site types as a function of aggregate size we show that site coordination increases with increasing aggregate diameter. This observation explains why the acidity of the iron oxide particles decreases with increasing particle size.« less
Multilevel Summation of Electrostatic Potentials Using Graphics Processing Units*
Hardy, David J.; Stone, John E.; Schulten, Klaus
2009-01-01
Physical and engineering practicalities involved in microprocessor design have resulted in flat performance growth for traditional single-core microprocessors. The urgent need for continuing increases in the performance of scientific applications requires the use of many-core processors and accelerators such as graphics processing units (GPUs). This paper discusses GPU acceleration of the multilevel summation method for computing electrostatic potentials and forces for a system of charged atoms, which is a problem of paramount importance in biomolecular modeling applications. We present and test a new GPU algorithm for the long-range part of the potentials that computes a cutoff pair potential between lattice points, essentially convolving a fixed 3-D lattice of “weights” over all sub-cubes of a much larger lattice. The implementation exploits the different memory subsystems provided on the GPU to stream optimally sized data sets through the multiprocessors. We demonstrate for the full multilevel summation calculation speedups of up to 26 using a single GPU and 46 using multiple GPUs, enabling the computation of a high-resolution map of the electrostatic potential for a system of 1.5 million atoms in under 12 seconds. PMID:20161132
NASA Technical Reports Server (NTRS)
Ellison, Donald C.; Jones, Frank C.
1988-01-01
The electron heating required if protons scatter elastically in a parallel, collisionless shock is calculated. Near-elastic proton scattering off large amplitude background magnetic field fluctuations might be expected if the waves responsible for the shock dissipation are generated by the fire hose instability. The effects of an electrostatic potential jump in the shock layer are included by assuming that the energy lost by protons in traversing the potential jump is converted into electron thermal pressure. It is found that the electron temperature increase is a strong function of the potential jump. Comparison is made to the parallel shock plasma simulation of Quest (1987).
Correcting PSP electron measurements for the effects of spacecraft electrostatic and magnetic fields
NASA Astrophysics Data System (ADS)
McGinnis, D.; Halekas, J. S.; Larson, D. E.; Whittlesey, P. L.; Kasper, J. C.
2017-12-01
The near-Sun environment which the Parker Solar Probe will investigate presents a unique challenge for the measurement of thermal and suprathermal electrons. Over one orbital period, the ionizing photon flux and charged particle densities vary to such an extent that the spacecraft could charge to electrostatic potentials ranging from a few volts to tens of volts or more, and it may even develop negative electrostatic potentials near closest approach. In addition, significant permanent magnetic fields from spacecraft components will perturb thermal electron trajectories. Given these effects, electron distribution function (EDF) measurements made by the SWEAP/SPAN electron sensors will be significantly affected. It is thus important to try to understand the extent and nature of such effects, and to remediate them as much as possible. To this end, we have incorporated magnetic fields and a model electrostatic potential field into particle tracing simulations to predict particle trajectories through the near spacecraft environment. These simulations allow us to estimate how the solid angle elements measured by SPAN deflect and stretch in the presence of these fields and therefore how and to what extent EDF measurements will be distorted. In this work, we demonstrate how this technique can be used to produce a `dewarping' correction factor. Further, we show that this factor can correct synthetic datasets simulating the warped EDFs that the SPAN instruments are likely to measure over a wide range of spacecraft potentials and plasma Debye lengths.
Electrostatic and hydrodynamics effects in a sedimented magnetorheological suspension.
Domínguez-García, P; Pastor, J M; Melle, Sonia; Rubio, Miguel A
2009-08-01
We present experimental results on the equilibrium microstructure of a sedimented magnetorheological suspension, namely, an aqueous suspension of micron-sized superparamagnetic particles. We develop a study of the electrical interactions on the suspension by processing video-microscopy images of the sedimented particles. We calculate the pair distribution function, g(r), which yields the electrostatic pair potential u(r), showing an anomalous attractive interaction for distances on the order of twice the particle diameter, with characteristic parameters whose values show a dependence with the two-dimensional concentration of particles. The repulsive body of the potential is adjusted to a DLVO expression in order to calculate the Debye screening length and the effective surface charge density. Influence of confinement and variations on the Boltzmann sedimentation profile because of the electrostatic interactions appear to be essential for the interpretation of experimental results.
Tokita, Yohei; Yamamoto, Masahiro; Satoh, Kazuko; Nishiyama, Mitsue; Iizuka, Seiichi; Imamura, Sachiko; Kase, Yoshio
2011-01-01
This study focused on the localization of transient receptor potential vanilloid type 1 (TRPV1) in the intestines in postoperative adhesion model rats and investigated the underlying mechanism for the anti-adhesion action of daikenchuto (DKT), especially in relation to TRPV1. Postoperative intestinal adhesion was induced by sprinkling talc in the small intestine. The expression of TRPV1 mRNA was examined by in situ hybridization and real-time RT-PCR. The effects of DKT and its major ingredient, hydroxy sanshool, with or without ruthenium red, a TRP-channel antagonist, on talc-induced intestinal adhesions were evaluated. The level of TRPV1 mRNA was higher in the adhesion regions of talc-treated rats than in normal small intestine of sham-operated rats. Localization of TRPV1 mRNA expression was identified in the submucosal plexus of both sham-operated and talc-treated rats; and in talc-treated rats, it was observed also in the myenteric plexus and regions of adhesion. Capsaicin, DKT, and hydroxy sanshool significantly prevented formation of intestinal adhesions. The effects of DKT and hydroxy sanshool were abrogated by subcutaneous injection of ruthenium red. These results suggest that pharmacological modulation of TRPV1 might be a possible therapeutic option in postoperative intestinal adhesion, which might be relevant to the prevention of postoperative adhesive obstruction by DKT.
APBSmem: A Graphical Interface for Electrostatic Calculations at the Membrane
Callenberg, Keith M.; Choudhary, Om P.; de Forest, Gabriel L.; Gohara, David W.; Baker, Nathan A.; Grabe, Michael
2010-01-01
Electrostatic forces are one of the primary determinants of molecular interactions. They help guide the folding of proteins, increase the binding of one protein to another and facilitate protein-DNA and protein-ligand binding. A popular method for computing the electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation, and there are several easy-to-use software packages available that solve the PB equation for soluble proteins. Here we present a freely available program, called APBSmem, for carrying out these calculations in the presence of a membrane. The Adaptive Poisson-Boltzmann Solver (APBS) is used as a back-end for solving the PB equation, and a Java-based graphical user interface (GUI) coordinates a set of routines that introduce the influence of the membrane, determine its placement relative to the protein, and set the membrane potential. The software Jmol is embedded in the GUI to visualize the protein inserted in the membrane before the calculation and the electrostatic potential after completing the computation. We expect that the ease with which the GUI allows one to carry out these calculations will make this software a useful resource for experimenters and computational researchers alike. Three examples of membrane protein electrostatic calculations are carried out to illustrate how to use APBSmem and to highlight the different quantities of interest that can be calculated. PMID:20949122
APBSmem: a graphical interface for electrostatic calculations at the membrane.
Callenberg, Keith M; Choudhary, Om P; de Forest, Gabriel L; Gohara, David W; Baker, Nathan A; Grabe, Michael
2010-09-29
Electrostatic forces are one of the primary determinants of molecular interactions. They help guide the folding of proteins, increase the binding of one protein to another and facilitate protein-DNA and protein-ligand binding. A popular method for computing the electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation, and there are several easy-to-use software packages available that solve the PB equation for soluble proteins. Here we present a freely available program, called APBSmem, for carrying out these calculations in the presence of a membrane. The Adaptive Poisson-Boltzmann Solver (APBS) is used as a back-end for solving the PB equation, and a Java-based graphical user interface (GUI) coordinates a set of routines that introduce the influence of the membrane, determine its placement relative to the protein, and set the membrane potential. The software Jmol is embedded in the GUI to visualize the protein inserted in the membrane before the calculation and the electrostatic potential after completing the computation. We expect that the ease with which the GUI allows one to carry out these calculations will make this software a useful resource for experimenters and computational researchers alike. Three examples of membrane protein electrostatic calculations are carried out to illustrate how to use APBSmem and to highlight the different quantities of interest that can be calculated.
Role of non-native electrostatic interactions in the coupled folding and binding of PUMA with Mcl-1
Chu, Wen-Ting; Clarke, Jane; Shammas, Sarah L.; Wang, Jin
2017-01-01
PUMA, which belongs to the BH3-only protein family, is an intrinsically disordered protein (IDP). It binds to its cellular partner Mcl-1 through its BH3 motif, which folds upon binding into an α helix. We have applied a structure-based coarse-grained model, with an explicit Debye—Hückel charge model, to probe the importance of electrostatic interactions both in the early and the later stages of this model coupled folding and binding process. This model was carefully calibrated with the experimental data on helical content and affinity, and shown to be consistent with previously published experimental data on binding rate changes with respect to ionic strength. We find that intramolecular electrostatic interactions influence the unbound states of PUMA only marginally. Our results further suggest that intermolecular electrostatic interactions, and in particular non-native electrostatic interactions, are involved in formation of the initial encounter complex. We are able to reveal the binding mechanism in more detail than is possible using experimental data alone however, and in particular we uncover the role of non-native electrostatic interactions. We highlight the potential importance of such electrostatic interactions for describing the binding reactions of IDPs. Such approaches could be used to provide predictions for the results of mutational studies. PMID:28369057
1990-01-01
Voltage-sensing dyes were used to examine the electrical behavior of the T-system under passive recording conditions similar to those commonly used to detect charge movement. These conditions are designed to eliminate all ionic currents and render the T-system potential linear with respect to the command potential applied at the surface membrane. However, we found an unexpected nonlinearity in the relationship between the dye signal from the T-system and the applied clamp potential. An additional voltage- and time-dependent optical signal appears over the same depolarizing range of potentials where change movement and mechanical activation occur. This nonlinearity is not associated with unblocked ionic currents and cannot be attributed to lack of voltage clamp control of the T-system, which appears to be good under these conditions. We propose that a local electrostatic potential change occurs in the T-system upon depolarization. An electrostatic potential would not be expected to extend beyond molecular distances of the membrane and therefore would be sensed by a charged dye in the membrane but not by the voltage clamp, which responds solely to the potential of the bulk solution. Results obtained with different dyes suggest that the location of the phenomena giving rise to the extra absorbance change is either intramembrane or at the inner surface of the T-system membrane. PMID:2299329
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Sajan; Petty, Clayton W.; Krafcik, Karen Lee
Electrostatic modes of atomic force microscopy have shown to be non-destructive and relatively simple methods for imaging conductors embedded in insulating polymers. Here we use electrostatic force microscopy to image the dispersion of carbon nanotubes in a latex-based conductive composite, which brings forth features not observed in previously studied systems employing linear polymer films. A fixed-potential model of the probe-nanotube electrostatics is presented which in principle gives access to the conductive nanoparticle's depth and radius, and the polymer film dielectric constant. Comparing this model to the data results in nanotube depths that appear to be slightly above the film–air interface.more » Furthermore, this result suggests that water-mediated charge build-up at the film–air interface may be the source of electrostatic phase contrast in ambient conditions.« less
Evaluation of high temperature structural adhesives for extended service
NASA Technical Reports Server (NTRS)
Hendricks, C. L.; Hill, S. G.
1984-01-01
High temperature stable adhesive systems were evaluated for potential Supersonic Cruise Research (SCR) vehicle applications. The program was divided into two major phases: Phase I 'Adhesive Screening' evaluated eleven selected polyimide (PI) and polyphenylquinoxaline (PPQ) adhesive resins using eight different titanium (6Al-4V) adherend surface preparations; Phase II 'Adhesive Optimization and Characterization' extensively evaluated two adhesive systems, selected from Phase I studies, for chemical characterization and environmental durability. The adhesive systems which exhibited superior thermal and environmental bond properties were LARC-TPI polyimide and polyphenylquinoxaline both developed at NASA Langley. The latter adhesive system did develop bond failures at extended thermal aging due primarily to incompatibility between the surface preparation and the polymer. However, this study did demonstrate that suitable adhesive systems are available for extended supersonic cruise vehicle design applications.
σ-holes and π-holes: Similarities and differences.
Politzer, Peter; Murray, Jane S
2018-04-05
σ-Holes and π-holes are regions of molecules with electronic densities lower than their surroundings. There are often positive electrostatic potentials associated with them. Through these potentials, the molecule can interact attractively with negative sites, such as lone pairs, π electrons, and anions. Such noncovalent interactions, "σ-hole bonding" and "π-hole bonding," are increasingly recognized as being important in a number of different areas. In this article, we discuss and compare the natures and characteristics of σ-holes and π-holes, and factors that influence the strengths and locations of the resulting electrostatic potentials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Observation of Oscillatory Radial Electric Field Relaxation in a Helical Plasma.
Alonso, J A; Sánchez, E; Calvo, I; Velasco, J L; McCarthy, K J; Chmyga, A; Eliseev, L G; Estrada, T; Kleiber, R; Krupnik, L I; Melnikov, A V; Monreal, P; Parra, F I; Perfilov, S; Zhezhera, A I
2017-05-05
Measurements of the relaxation of a zonal electrostatic potential perturbation in a nonaxisymmetric magnetically confined plasma are presented. A sudden perturbation of the plasma equilibrium is induced by the injection of a cryogenic hydrogen pellet in the TJ-II stellarator, which is observed to be followed by a damped oscillation in the electrostatic potential. The waveform of the relaxation is consistent with theoretical calculations of zonal potential relaxation in a nonaxisymmetric magnetic geometry. The turbulent transport properties of a magnetic confinement configuration are expected to depend on the features of the collisionless damping of zonal flows, of which the present Letter is the first direct observation.
Electrostatic formation of liquid marbles and agglomerates
NASA Astrophysics Data System (ADS)
Liyanaarachchi, K. R.; Ireland, P. M.; Webber, G. B.; Galvin, K. P.
2013-07-01
We report observations of a sudden, explosive release of electrostatically charged 100 μm glass beads from a particle bed. These cross an air gap of several millimeters, are engulfed by an approaching pendant water drop, and form a metastable spherical agglomerate on the bed surface. The stability transition of the particle bed is explained by promotion of internal friction by in-plane electrostatic stresses. The novel agglomerates formed this way resemble the "liquid marbles" formed by coating a drop with hydrophobic particles. Complex multi-layered agglomerates may also be produced by this method, with potential industrial, pharmaceutical, environmental, and biological applications.
The development of aerospace polyimide adhesives
NASA Technical Reports Server (NTRS)
St.clair, A. K.; St.clair, T. L.
1983-01-01
Few materials are available which can be used as aerospace adhesives at temperatures in the range of 300 C. The Materials Division at NASA-Langley Research Center developed several high temperature polyimide adhesives to fulfill the stringent needs of current aerospace programs. These adhesives are the result of a decade of basic research studies on the structure property relationships of both linear and addition aromatic polyimides. The development of both in house and commercially available polyimides is reviewed with regards to their potential for use as aerospace adhesives.
Electrostatic contribution to the persistence length of a semiflexible dipolar chain.
Podgornik, Rudi
2004-09-01
We investigate the electrostatic contribution to the persistence length of a semiflexible polymer chain whose segments interact via a screened Debye-Hückel dipolar interaction potential. We derive the expressions for the renormalized persistence length on the level of a 1/D-expansion method already successfully used in other contexts of polyelectrolye physics. We investigate different limiting forms of the renormalized persistence length of the dipolar chain and show that, in, general, it depends less strongly on the screening length than in the context of a monopolar chain. We show that for a dipolar chain the electrostatic persistence length in the same regime of the parameter phase space as the original Odijk-Skolnick-Fixman (OSF) form for a monopolar chain depends logarithmically on the screening length rather than quadratically. This can be understood solely on the basis of a swifter decay of the dipolar interactions with separation compared to the monopolar electrostatic interactions. We comment also on the general contribution of higher multipoles to the electrostatic renormalization of the bending rigidity.
NASA Astrophysics Data System (ADS)
Yunxiao, CAO; Zhiqiang, WANG; Jinjun, WANG; Guofeng, LI
2018-05-01
Electrostatic separation has been extensively used in mineral processing, and has the potential to separate gangue minerals from raw talcum ore. As for electrostatic separation, the particle charging status is one of important influence factors. To describe the talcum particle charging status in a parallel plate electrostatic separator accurately, this paper proposes a modern images processing method. Based on the actual trajectories obtained from sequence images of particle movement and the analysis of physical forces applied on a charged particle, a numerical model is built, which could calculate the charge-to-mass ratios represented as the charging status of particle and simulate the particle trajectories. The simulated trajectories agree well with the experimental results obtained by images processing. In addition, chemical composition analysis is employed to reveal the relationship between ferrum gangue mineral content and charge-to-mass ratios. Research results show that the proposed method is effective for describing the particle charging status in electrostatic separation.
NASA Technical Reports Server (NTRS)
1971-01-01
An investigation into the electrostatic phenomena associated with the manufacturing and handling of explosives is discussed. The testing includes measurement of the severity of the primary charge generation mechanism, triboelectric effects between dissimilar surfaces; refinement of equivalent circuits of the XM15/XM165 and E8 fuse trains; evaluation of the electrostatic spark discharge characteristics predicted by an equivalent circuit analysis; and determination of the spark ignition sensitivity of materials, components, junctions, and subassemblies which compose the XM15/XM165 and E8 units. Special studies were also performed. These special tests included ignition sensitivity of the complete XM15 fuse train when subjected to discharges through its entire length, measurement of electrostatic potentials which occur during the E8 foaming operation during fabrication, and investigation of the inadvertent functioning of an XM15 cluster during manufacturing. The test results are discussed and related to the effectiveness of suggested modification to reduce the electrostatic ignition sensitivity.
Gold nanoparticles for cancer detection and treatment: The role of adhesion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oni, Y.; Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544; Hao, K.
2014-02-28
This paper presents the results of an experimental study of the effects of adhesion between gold nanoparticles and surfaces that are relevant to the potential applications in cancer detection and treatment. Adhesion is measured using a dip coating/atomic force microscopy (DC/AFM) technique. The adhesion forces are obtained for dip-coated gold nanoparticles that interact with peptide or antibody-based molecular recognition units (MRUs) that attach specifically to breast cancer cells. They include MRUs that attach specifically to receptors on breast cancer cells. Adhesion forces between anti-cancer drugs such as paclitaxel, and the constituents of MRU-conjugated Au nanoparticle clusters, are measured using forcemore » microscopy techniques. The implications of the results are then discussed for the design of robust gold nanoparticle clusters and for potential applications in localized drug delivery and hyperthermia.« less
Transition metal partially supported graphene: Magnetism and oscillatory electrostatic potentials
Liu, Xiaojie; Wang, Cai-Zhuang
2017-08-07
Using first-principles calculations here, we show that Mn and Cr layers under graphene exhibit almost zero magnetic moment due to anti-ferromagnetic order, while ferromagnetic coupling in Fe, Co, and Ni leads to large magnetic moment. The transition metal partially supported graphene, with a mixture of supported and pristine areas, exhibits an oscillatory electrostatic potential, thus alternating the electric field across the supported and pristine areas. Such an effect can be utilized to control mass transport and nanostructure self-organization on graphene at the atomic level.
Transition metal partially supported graphene: Magnetism and oscillatory electrostatic potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaojie; Wang, Cai-Zhuang
Using first-principles calculations here, we show that Mn and Cr layers under graphene exhibit almost zero magnetic moment due to anti-ferromagnetic order, while ferromagnetic coupling in Fe, Co, and Ni leads to large magnetic moment. The transition metal partially supported graphene, with a mixture of supported and pristine areas, exhibits an oscillatory electrostatic potential, thus alternating the electric field across the supported and pristine areas. Such an effect can be utilized to control mass transport and nanostructure self-organization on graphene at the atomic level.
Urea modified cottonseed protein adhesive for wood composite products
USDA-ARS?s Scientific Manuscript database
Cottonseed protein has the potential to be used as renewable and environmentally friendly adhesives in wood products industry. However, the industry application was limited by its low mechanical properties, low water resistance and viscosity. In this work, urea modified cottonseed protein adhesive w...
Investigation of the phenomenon of electrostatic compromise of a plastic fiber heat exchanger.
Elgas, R J
1999-03-01
The use of a new generation of blood oxygenator design using plastic fibers for the heat exchange material is growing. The benefits of a plastic heat exchange material are improved biocompatibility and performance over some of the traditional metals used. During the initial period of clinical use of one of these new oxygenators, there were reports of four blood-to-water leaks. No patient complications were associated with these leaks, but the product was withdrawn from the market. After a thorough evaluation, the cause of the leaks was found to be an electrostatic discharge that occurred within the heat exchanger during priming of the extracorporeal circuit. It was found that an electrostatic potential between the blood path and the water path of the heat exchanger is generated as the prime solution is recirculated by a roller pump with polyvinyl chloride (PVC) pumphead tubing. The magnitude of the potential generated was found to vary with the make and model of the roller pump. If this voltage exceeds the dielectric strength of the fiber, a discharge through the wall of a single heat exchange fiber will occur and produce a hole. Several solutions to this problem of roller pumps generating an electrostatic charge when used with PVC pumphead tubing were identified. Centrifugal blood pumps and roller pumps using silicone rubber pumphead tubing were found to generate no significant electrostatic potential between the blood path and the water path. Another solution, a charge equalization line (CEL), was designed to provide a conductive path for the charge to equilibrate across the fiber wall. The CEL can be either external or internal to the oxygenator. Each of these solutions was validated and the product has been reintroduced for clinical use.
Evaluation of molecular dynamics simulation methods for ionic liquid electric double layers.
Haskins, Justin B; Lawson, John W
2016-05-14
We investigate how systematically increasing the accuracy of various molecular dynamics modeling techniques influences the structure and capacitance of ionic liquid electric double layers (EDLs). The techniques probed concern long-range electrostatic interactions, electrode charging (constant charge versus constant potential conditions), and electrolyte polarizability. Our simulations are performed on a quasi-two-dimensional, or slab-like, model capacitor, which is composed of a polarizable ionic liquid electrolyte, [EMIM][BF4], interfaced between two graphite electrodes. To ensure an accurate representation of EDL differential capacitance, we derive new fluctuation formulas that resolve the differential capacitance as a function of electrode charge or electrode potential. The magnitude of differential capacitance shows sensitivity to different long-range electrostatic summation techniques, while the shape of differential capacitance is affected by charging technique and the polarizability of the electrolyte. For long-range summation techniques, errors in magnitude can be mitigated by employing two-dimensional or corrected three dimensional electrostatic summations, which led to electric fields that conform to those of a classical electrostatic parallel plate capacitor. With respect to charging, the changes in shape are a result of ions in the Stern layer (i.e., ions at the electrode surface) having a higher electrostatic affinity to constant potential electrodes than to constant charge electrodes. For electrolyte polarizability, shape changes originate from induced dipoles that soften the interaction of Stern layer ions with the electrode. The softening is traced to ion correlations vertical to the electrode surface that induce dipoles that oppose double layer formation. In general, our analysis indicates an accuracy dependent differential capacitance profile that transitions from the characteristic camel shape with coarser representations to a more diffuse profile with finer representations.
Sugimoto, Yu; Kitazumi, Yuki; Shirai, Osamu; Nishikawa, Koji; Higuchi, Yoshiki; Yamamoto, Masahiro; Kano, Kenji
2017-05-01
Electrostatic interactions between proteins are key factors that govern the association and reaction rate. We spectroscopically determine the second-order reaction rate constant (k) of electron transfer from [NiFe] hydrogenase (H 2 ase) to cytochrome (cyt) c 3 at various ionic strengths (I). The k value decreases with I. To analyze the results, we develop a semi-analytical formula for I dependence of k based on the assumptions that molecules are spherical and the reaction proceeds via a transition state. Fitting of the formula to the experimental data reveals that the interaction occurs in limited regions with opposite charges and with radii much smaller than those estimated from crystal structures. This suggests that local charges in H 2 ase and cyt c 3 play important roles in the reaction. Although the crystallographic data indicate a positive electrostatic potential over almost the entire surface of the proteins, there exists a small region with negative potential on H 2 ase at which the electron transfer from H 2 ase to cyt c 3 may occur. This local negative potential region is identical to the hypothetical interaction sphere predicted by the analysis. Furthermore, I dependence of k is predicted by the Adaptive Poisson-Boltzmann Solver considering all charges of the amino acids in the proteins and the configuration of H 2 ase/cyt c 3 complex. The calculation reproduces the experimental results except at extremely low I. These results indicate that the stabilization derived from the local electrostatic interaction in the H 2 ase/cyt c 3 complex overcomes the destabilization derived from the electrostatic repulsion of the overall positive charge of both proteins. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clausen, Henrik F.; Chen, Yu-Sheng; Jayatilaka, Dylan
2012-02-07
The crystal structure of the {beta}-polymorph of hydroquinone ({beta}-HQ), the apohost of a large family of clathrates, is reported with a specific focus on intermolecular interactions and the electrostatic nature of its cavity. Hirshfeld surface analysis reveals subtle close contacts between two interconnecting HQ networks, and the local packing and related close contacts were examined by breakdown of the fingerprint plot. An experimental multipole model containing anisotropic thermal parameters for hydrogen atoms has been successfully refined against 15(2) K single microcrystal synchrotron X-ray diffraction data. The experimental electron density model has been compared with a theoretical electron density calculated withmore » the molecule embedded in its own crystal field. Hirshfeld charges, interaction energies and the electrostatic potential calculated for both models are qualitatively in good agreement, but small differences in the electrostatic potential persist due to charge transfer from all hydrogen atoms to the oxygen atoms in the theoretical model. The electrostatic potential in the center of the cavity is positive, very shallow and highly symmetric, suggesting that the inclusion of polar molecules in the void will involve a balance between opposing effects. The electric field is by symmetry zero in the center of the cavity, increasing to a value of 0.0185 e/{angstrom}{sup 2} (0.27 V/{angstrom}) 1 {angstrom} along the 3-fold axis and 0.0105 e/{angstrom}{sup 2} (0.15 V/{angstrom}) 1 {angstrom} along the perpendicular direction. While these values are substantial in a macroscopic context, they are quite small for a molecular cavity and are not expected to strongly polarize a guest molecule.« less
Electrostatic acceleration of helicon plasma using a cusped magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harada, S.; Mitsubishi Heavy Industry ltd., 16-5 Konan 2-chome, Minato-ku, Tokyo 108-8215; Baba, T.
2014-11-10
The electrostatic acceleration of helicon plasma is investigated using an electrostatic potential exerted between the ring anode at the helicon source exit and an off-axis hollow cathode in the downstream region. In the downstream region, the magnetic field for the helicon source, which is generated by a solenoid coil, is modified using permanent magnets and a yoke, forming an almost magnetic field-free region surrounded by an annular cusp field. Using a retarding potential analyzer, two primary ion energy peaks, where the lower peak corresponds to the space potential and the higher one to the ion beam, are detected in themore » field-free region. Using argon as the working gas with a helicon power of 1.5 kW and a mass flow rate of 0.21 mg/s, the ion beam energy is on the order of the applied acceleration voltage. In particular, with an acceleration voltage lower than 150 V, the ion beam energy even exceeds the applied acceleration voltage by an amount on the order of the electron thermal energy at the exit of the helicon plasma source. The ion beam energy profile strongly depends on the helicon power and the applied acceleration voltage. Since by this method the whole working gas from the helicon plasma source can, in principle, be accelerated, this device can be applied as a noble electrostatic thruster for space propulsion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hao; Yang, Weitao, E-mail: weitao.yang@duke.edu; Department of Physics, Duke University, Durham, North Carolina 27708
We developed a new method to calculate the atomic polarizabilities by fitting to the electrostatic potentials (ESPs) obtained from quantum mechanical (QM) calculations within the linear response theory. This parallels the conventional approach of fitting atomic charges based on electrostatic potentials from the electron density. Our ESP fitting is combined with the induced dipole model under the perturbation of uniform external electric fields of all orientations. QM calculations for the linear response to the external electric fields are used as input, fully consistent with the induced dipole model, which itself is a linear response model. The orientation of the uniformmore » external electric fields is integrated in all directions. The integration of orientation and QM linear response calculations together makes the fitting results independent of the orientations and magnitudes of the uniform external electric fields applied. Another advantage of our method is that QM calculation is only needed once, in contrast to the conventional approach, where many QM calculations are needed for many different applied electric fields. The molecular polarizabilities obtained from our method show comparable accuracy with those from fitting directly to the experimental or theoretical molecular polarizabilities. Since ESP is directly fitted, atomic polarizabilities obtained from our method are expected to reproduce the electrostatic interactions better. Our method was used to calculate both transferable atomic polarizabilities for polarizable molecular mechanics’ force fields and nontransferable molecule-specific atomic polarizabilities.« less
Electrostatic acceleration of helicon plasma using a cusped magnetic field
NASA Astrophysics Data System (ADS)
Harada, S.; Baba, T.; Uchigashima, A.; Yokota, S.; Iwakawa, A.; Sasoh, A.; Yamazaki, T.; Shimizu, H.
2014-11-01
The electrostatic acceleration of helicon plasma is investigated using an electrostatic potential exerted between the ring anode at the helicon source exit and an off-axis hollow cathode in the downstream region. In the downstream region, the magnetic field for the helicon source, which is generated by a solenoid coil, is modified using permanent magnets and a yoke, forming an almost magnetic field-free region surrounded by an annular cusp field. Using a retarding potential analyzer, two primary ion energy peaks, where the lower peak corresponds to the space potential and the higher one to the ion beam, are detected in the field-free region. Using argon as the working gas with a helicon power of 1.5 kW and a mass flow rate of 0.21 mg/s, the ion beam energy is on the order of the applied acceleration voltage. In particular, with an acceleration voltage lower than 150 V, the ion beam energy even exceeds the applied acceleration voltage by an amount on the order of the electron thermal energy at the exit of the helicon plasma source. The ion beam energy profile strongly depends on the helicon power and the applied acceleration voltage. Since by this method the whole working gas from the helicon plasma source can, in principle, be accelerated, this device can be applied as a noble electrostatic thruster for space propulsion.
Awonuga, Awoniyi O.; Fletcher, Nicole M.; Saed, Ghassan M.; Diamond, Michael P.
2011-01-01
In this review, we discuss the pathophysiology of adhesion development, the impact of physiological changes associated with pregnancy on markers of adhesion development, and the clinical implications of adhesion development following cesarean delivery (CD). Although peritoneal adhesions develop after the overwhelming majority of intra-abdominal and pelvic surgery, there is evidence in the literature that suggests that patients having CD may develop adhesions less frequently. However, adhesions continue to be a concern after CD, and are likely significant, albeit on average less than after gynecological operations, but with potential to cause significant delay in the delivery of the baby with serious, lifelong consequences. Appreciation of the pathophysiology of adhesion development described herein should allow a more informed approach to the rapidly evolving field of intra-abdominal adhesions and should serve as a reference for an evidence-based approach to consideration for the prevention and treatment of adhesions. PMID:21775773
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dongsheng; Chun, Jaehun; Xiao, Dongdong
2017-07-05
Oriented attachment of nanocrystalline subunits is recognized as a common crystallization pathway that is closely related to formation of nanoparticle superlattices, mesocrystals, and other kinetically stabilized structures. Approaching particles have been observed to rotate to achieve co-alignment while separated by nanometer-scale solvent layers. Little is known about the forces that drive co-alignment, particularly in this “solvent-separated” regime. To obtain a mechanistic understanding of this process, we used atomic force microscopy-based dynamic force spectroscopy with tips fabricated from oriented mica to measure the adhesion forces between mica (001) surfaces in electrolyte solutions as a function of orientation, temperature, electrolyte type, andmore » electrolyte concentration. The results reveal a ~60° periodicity as well as a complex dependence on electrolyte concentration and temperature. A continuum model that considers the competition between electrostatic repulsion and van der Waals attraction, augmented by microscopic details that include surface separation, water structure, ion hydration, and charge regulation at the interface, qualitatively reproduces the observed trends and implies that dispersion forces are responsible for establishing co-alignment in the solvent-separated state.« less
Li, Dongsheng; Chun, Jaehun; Xiao, Dongdong; ...
2017-07-05
Here, oriented attachment of nanocrystalline subunits is recognized as a common crystallization pathway that is closely related to formation of nanoparticle superlattices, mesocrystals, and other kinetically stabilized structures. Approaching particles have been observed to rotate to achieve co-alignment while separated by nanometer-scale solvent layers. Little is known about the forces that drive co-alignment, particularly in this “solvent-separated” regime. To obtain a mechanistic understanding of this process, we used atomic force microscopy-based dynamic force spectroscopy with tips fabricated from oriented mica to measure the adhesion forces between mica (001) surfaces in electrolyte solutions as a function of orientation, temperature, electrolyte type,more » and electrolyte concentration. The results reveal a ~60° periodicity as well as a complex dependence on electrolyte concentration and temperature. A continuum model that considers the competition between electrostatic repulsion and van der Waals attraction, augmented by microscopic details that include surface separation, water structure, ion hydration, and charge regulation at the interface, qualitatively reproduces the observed trends and implies that dispersion forces are responsible for establishing co-alignment in the solvent-separated state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dongsheng; Chun, Jaehun; Xiao, Dongdong
Oriented attachment of nanocrystalline subunits is recognized as a common crystallization pathway that is closely related to formation of nanoparticle superlattices, mesocrystals, and other kinetically stabilized structures. Approaching particles have been observed to rotate to achieve co-alignment while separated by nanometer-scale solvent layers. Little is known about the forces that drive co-alignment, particularly in this “solvent-separated” regime. To obtain a mechanistic understanding of this process, we used atomic force microscopy-based dynamic force spectroscopy with tips fabricated from oriented mica to measure the adhesion forces between mica (001) surfaces in electrolyte solutions as a function of orientation, temperature, electrolyte type, andmore » electrolyte concentration. The results reveal a ~60° periodicity as well as a complex dependence on electrolyte concentration and temperature. A continuum model that considers the competition between electrostatic repulsion and van der Waals attraction, augmented by microscopic details that include surface separation, water structure, ion hydration, and charge regulation at the interface, qualitatively reproduces the observed trends and implies that dispersion forces are responsible for establishing co-alignment in the solvent-separated state.« less
Anderson, Janet S.; LeMaster, David M.; Hernández, Griselda
2006-01-01
Hydrogen exchange measurements on Zn(II)-, Ga(III)-, and Ge(IV)-substituted Pyrococcus furiosus rubredoxin demonstrate that the log ratio of the base-catalyzed rate constants (Δ log kex) varies inversely with the distance out to at least 12 Å from the metal. This pattern is consistent with the variation of the amide nitrogen pK values with the metal charge-dependent changes in the electrostatic potential. Fifteen monitored amides lie within this range, providing an opportunity to assess the strength of electrostatic interactions simultaneously at numerous positions within the structure. Poisson-Boltzmann calculations predict an optimal effective internal dielectric constant of 6. The largest deviations between the experimentally estimated and the predicted ΔpK values appear to result from the conformationally mobile charged side chains of Lys-7 and Glu-48 and from differential shielding of the peptide units arising from their orientation relative to the metal site. PMID:17012322
Electrostatic twisted modes in multi-component dusty plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayub, M. K.; National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000; Pohang University of Sciences and Technology, Pohang, Gyeongbuk 790-784
Various electrostatic twisted modes are re-investigated with finite orbital angular momentum in an unmagnetized collisionless multi-component dusty plasma, consisting of positive/negative charged dust particles, ions, and electrons. For this purpose, hydrodynamical equations are employed to obtain paraxial equations in terms of density perturbations, while assuming the Gaussian and Laguerre-Gaussian (LG) beam solutions. Specifically, approximated solutions for potential problem are studied by using the paraxial approximation and expressed the electric field components in terms of LG functions. The energy fluxes associated with these modes are computed and corresponding expressions for orbital angular momenta are derived. Numerical analyses reveal that radial/angular modemore » numbers as well as dust number density and dust charging states strongly modify the LG potential profiles attributed to different electrostatic modes. Our results are important for understanding particle transport and energy transfer due to wave excitations in multi-component dusty plasmas.« less
Smith, Nicholas; Witham, Shawn; Sarkar, Subhra; Zhang, Jie; Li, Lin; Li, Chuan; Alexov, Emil
2012-06-15
A new edition of the DelPhi web server, DelPhi web server v2, is released to include atomic presentation of geometrical figures. These geometrical objects can be used to model nano-size objects together with real biological macromolecules. The position and size of the object can be manipulated by the user in real time until desired results are achieved. The server fixes structural defects, adds hydrogen atoms and calculates electrostatic energies and the corresponding electrostatic potential and ionic distributions. The web server follows a client-server architecture built on PHP and HTML and utilizes DelPhi software. The computation is carried out on supercomputer cluster and results are given back to the user via http protocol, including the ability to visualize the structure and corresponding electrostatic potential via Jmol implementation. The DelPhi web server is available from http://compbio.clemson.edu/delphi_webserver.
Narrow infrasound pulses from lightning; are they of electrostatic or thermal origin?
NASA Astrophysics Data System (ADS)
CHUM, Jaroslav; Diendorfer, Gerhard; Šindelářová, Tereza; Baše, Jiří; Hruška, František
2014-05-01
Narrow (~1-2 s) infrasound pulses that followed, with ~11 to ~50 s delays, rapid changes of electrostatic field were observed by a microbarometer array in the Czech Republic during thunderstorm activity. The angles of arrival (azimuth and elevation) were analyzed for selected distinct events. Comparisons of distances and azimuths of infrasound sources from the center of microbarometer array with lightning locations determined by EUCLID lightning detection network show that most of the selected events are most likely associated with intra-cloud (IC) discharges. Preceding rapid changes of electrostatic field, potential association of infrasound pulses with IC discharges, and high elevation angles of arrival for near infrasound sources indicate that an electrostatic mechanism is probably responsible for their generation. It is discussed that distinguishing of the relative role of thermal and electrostatic mechanism is difficult, and that none of published models of electrostatic production of infrasound thunder can explain the presented observations precisely. A modification of the current models, based on consideration of at least two charged layers is suggested. Further theoretical and experimental investigations are however needed to get a better description of the generation mechanism of those infrasound pulses.
NASA Astrophysics Data System (ADS)
Deng, Mingge; Li, Zhen; Borodin, Oleg; Karniadakis, George Em
2016-10-01
We develop a "charged" dissipative particle dynamics (cDPD) model for simulating mesoscopic electrokinetic phenomena governed by the stochastic Poisson-Nernst-Planck and the Navier-Stokes equations. Specifically, the transport equations of ionic species are incorporated into the DPD framework by introducing extra degrees of freedom and corresponding evolution equations associated with each DPD particle. Diffusion of ionic species driven by the ionic concentration gradient, electrostatic potential gradient, and thermal fluctuations is captured accurately via pairwise fluxes between DPD particles. The electrostatic potential is obtained by solving the Poisson equation on the moving DPD particles iteratively at each time step. For charged surfaces in bounded systems, an effective boundary treatment methodology is developed for imposing both the correct hydrodynamic and electrokinetics boundary conditions in cDPD simulations. To validate the proposed cDPD model and the corresponding boundary conditions, we first study the electrostatic structure in the vicinity of a charged solid surface, i.e., we perform cDPD simulations of the electrostatic double layer and show that our results are in good agreement with the well-known mean-field theoretical solutions. We also simulate the electrostatic structure and capacity densities between charged parallel plates in salt solutions with different salt concentrations. Moreover, we employ the proposed methodology to study the electro-osmotic and electro-osmotic/pressure-driven flows in a micro-channel. In the latter case, we simulate the dilute poly-electrolyte solution drifting by electro-osmotic flow in a micro-channel, hence demonstrating the flexibility and capability of this method in studying complex fluids with electrostatic interactions at the micro- and nano-scales.
NASA Technical Reports Server (NTRS)
Bouquet, F. L.; Hribar, V. F.; Metzler, E. C.; Russell, D. A.
1984-01-01
Selective results are presented of laboratory radiation tests of metallic foil tapes, thermal blankets, and thermooptical coatings undertaken as part of the development and qualification of materials for the Galileo spacecraft. Of the two metallic foil tapes used for electrical continuity, the adhesive used on the aluminum embossed foil was superior to the copper embossed foil when exposed to simulated Jovian electrons. Proton-irradiation tests performed on a number of thermal blanket samples showed that black polyester on Kapton proved to be a lower weight loss (i.e., outgassing) material than Fluorglas. In addition, preliminary results concerning the response of thermooptical coatings to simulated Jovian electrons show that the ITO-coated polyester over a Kapton surface gave the lowest absorptance.
Method for using magnetic particles in droplet microfluidics
NASA Technical Reports Server (NTRS)
Shah, Gaurav Jitendra (Inventor); Kim, Chang-Jin (Inventor)
2012-01-01
Methods of utilizing magnetic particles or beads (MBs) in droplet-based (or digital) microfluidics are disclosed. The methods may be used in enrichment or separation processes. A first method employs the droplet meniscus to assist in the magnetic collection and positioning of MBs during droplet microfluidic operations. The sweeping movement of the meniscus lifts the MBs off the solid surface and frees them from various surface forces acting on the MBs. A second method uses chemical additives to reduce the adhesion of MBs to surfaces. Both methods allow the MBs on a solid surface to be effectively moved by magnetic force. Droplets may be driven by various methods or techniques including, for example, electrowetting, electrostatic, electromechanical, electrophoretic, dielectrophoretic, electroosmotic, thermocapillary, surface acoustic, and pressure.
Electrostatics of a Point Charge between Intersecting Planes: Exact Solutions and Method of Images
ERIC Educational Resources Information Center
Mei, W. N.; Holloway, A.
2005-01-01
In this work, the authors present a commonly used example in electrostatics that could be solved exactly in a conventional manner, yet expressed in a compact form, and simultaneously work out special cases using the method of images. Then, by plotting the potentials and electric fields obtained from these two methods, the authors demonstrate that…
NASA Astrophysics Data System (ADS)
Witham, Shawn; Boylen, Brett; Owesen, Barr; Rocchia, Walter; Alexov, Emil
2011-03-01
Electrostatic forces and energies are two of the major components that contribute to the stability, function and interaction of biological macromolecules. The calculations of the electrostatic potential distribution in such systems, which are comprised of irregularly shaped objects immersed in a water phase, is not a trivial task. In addition, an accurate model requires any missing hydrogen atoms of the corresponding structural files (Protein Data Bank, or, PDB files) to be generated in silico and, if necessary, missing atoms or residues to be predicted as well. Here we report a comprehensive suite, an academic DelPhi webserver, which allows the users to upload their structural file, calculate the components of the electrostatic energy, generate the corresponding potential (and/or concentration/dielectric constant) distribution map, and choose the appropriate force field. The webserver utilizes modern technology to take user input and construct an algorithm that suits the users specific needs. The webserver uses Clemson University's Palmetto Supercomputer Cluster to handle the DelPhi calculations, which can range anywhere from small and short computation times, to extensive and computationally demanding runtimes. The work was supported by a grant from NIGMS, NIH, grant number 1R01GM093937-01.
Self-consistent electrostatic potential due to trapped plasma in the magnetosphere
NASA Technical Reports Server (NTRS)
Miller, Ronald H.; Khazanov, George V.
1993-01-01
A steady state solution for the self-consistent electrostatic potential due to a plasma confined in a magnetic flux tube is considered. A steady state distribution function is constructed for the trapped particles from the constants of the motion, in the absence of waves and collisions. Using Liouville's theorem, the particle density along the geomagnetic field is determined and found to depend on the local magnetic field, self-consistent electric potential, and the equatorial plasma distribution function. A hot anisotropic magnetospheric plasma in steady state is modeled by a bi-Maxwellian at the equator. The self-consistent electric potential along the magnetic field is calculated assuming quasineutrality, and the potential drop is found to be approximately equal to the average kinetic energy of the equatorially trapped plasma. The potential is compared with that obtained by Alfven and Faelthammar (1963).
FY04 LDRD Final Report: Interaction of Viruses with Membranes and Soil Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaldach, C M
2005-02-08
The influence of ionic strength on the electrostatic interaction of viruses with environmentally relevant surfaces was determined for three viruses, MS2, Q{beta} and Norwalk. The environmental surface is modeled as charged Gouy-Chapman plane with and without a finite atomistic region (patch) of opposite charge. The virus is modeled as a particle comprised of ionizable amino acid residues in a shell surrounding a spherical RNA core of negative charge, these charges being compensated for by a Coulomb screening due to intercalated ions. Surface potential calculations for each of the viruses show excellent agreement with electrophoretic mobility and zeta potential measurements asmore » a function of pH. The results indicate that the electrostatic interaction between the virus and the planar surface, mitigated by the ionic strength of the solute, is dependent upon the spatial distribution of the amino acid residues in the different viruses. Specifically, the order of interaction energies with the patch (MS2 greatest at 5 mM; Norwalk greatest at 20 mM) is dependent upon the ionic strength of the fluid as a direct result of the viral coat amino acid distributions. We have developed an atomistic-scale method of calculation of the binding energy of viruses to surfaces including electrostatic, van der Waals, electron-overlap repulsion, surface charge polarization (images), and hydrophobic effects. The surface is treated as a Gouy-Chapman plane allowing inclusion of pH and ionic strength effects on the electrostatic potential at each amino acid charge. Van der Waals parameters are obtained from the DREIDING force field and from Hamaker constant measurements. We applied this method to the calculation of the Cowpea Mosaic Virus (CPMV), a negatively charged virus at a pH of 7.0, and find that the viral-gold surface interaction is very long range for both signs of surface potential, a result due to the electrostatic forces. For a negative (Au) surface potential of -0.05 volts, a nearly 4 eV barrier must be overcome to reach 1 nm from the surface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, J.S.; Grice, M.E.; Politzer, P.
1990-01-01
The electrostatic potential V(r) that the nuclei and electrons of a molecule create in the surrounding space is well established as a guide in the study of molecular reactivity, and particularly, of biological recognition processes. Its rigorous computation is, however, very demanding of computer time for large molecules, such as those of interest in recognition interactions. The authors have accordingly investigated the use of an approximate finite multicenter multipole expansion technique to determine its applicability for producing reliable electrostatic potentials of dibenzo-p-dioxins and related molecules, with significantly reduced amounts of computer time, at distances of interest in recognition studies. Amore » comparative analysis of the potentials of three dibenzo-q-dioxins and a substituted naphthalene molecule computed using both the multipole expansion technique and GAUSSIAN 82 at the STO-5G level has been carried out. Overall they found that regions of negative and positive V(r) at 1.75 A above the molecular plane are very well reproduced by the multipole expansion technique, with up to a twenty-fold improvement in computer time.« less
Natural and bio-inspired underwater adhesives: Current progress and new perspectives
NASA Astrophysics Data System (ADS)
Cui, Mengkui; Ren, Susu; Wei, Shicao; Sun, Chengjun; Zhong, Chao
2017-11-01
Many marine organisms harness diverse protein molecules as underwater adhesives to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Natural underwater adhesion phenomena thus provide inspiration for engineering adhesive materials that can perform in water or high-moisture settings for biomedical and industrial applications. Here we review examples of biological adhesives to show the molecular features of natural adhesives and discuss how such knowledge serves as a heuristic guideline for the rational design of biologically inspired underwater adhesives. In view of future bio-inspired research, we propose several potential opportunities, either in improving upon current L-3, 4-dihydroxyphenylalanine-based and coacervates-enabled adhesives with new features or engineering conceptually new types of adhesives that recapitulate important characteristics of biological adhesives. We underline the importance of viewing natural adhesives as dynamic materials, which owe their outstanding performance to the cellular coordination of protein expression, delivery, deposition, assembly, and curing of corresponding components with spatiotemporal control. We envision that the emerging synthetic biology techniques will provide great opportunities for advancing both fundamental and application aspects of underwater adhesives.
Félix, Juliana S; Isella, Francesca; Bosetti, Osvaldo; Nerín, Cristina
2012-07-01
Adhesives used in food packaging to glue different materials can provide several substances as potential migrants, and the identification of potential migrants and migration tests are required to assess safety in the use of adhesives. Solid-phase microextraction in headspace mode and gas chromatography coupled to mass spectrometry (HS-SPME-GC-MS) and ChemSpider and SciFinder databases were used as powerful tools to identify the potential migrants in the polyurethane (PU) adhesives and also in the individual plastic films (polyethylene terephthalate, polyamide, polypropylene, polyethylene, and polyethylene/ethyl vinyl alcohol). Migration tests were carried out by using Tenax(®) and isooctane as food simulants, and the migrants were analyzed by gas chromatography coupled to mass spectrometry. More than 63 volatile and semivolatile compounds considered as potential migrants were detected either in the adhesives or in the films. Migration tests showed two non-intentionally added substances (NIAS) coming from PU adhesives that migrated through the laminates into Tenax(®) and into isooctane. Identification of these NIAS was achieved through their mass spectra, and 1,6-dioxacyclododecane-7,12-dione and 1,4,7-trioxacyclotridecane-8,13-dione were confirmed. Caprolactam migrated into isooctane, and its origin was the external plastic film in the multilayer, demonstrating real diffusion through the multilayer structure. Comparison of the migration values between the simulants and conditions will be shown and discussed.
Smart Actuators and Adhesives for Reconfigurable Matter.
Ko, Hyunhyub; Javey, Ali
2017-04-18
Biological systems found in nature provide excellent stimuli-responsive functions. The camouflage adaptation of cephalopods (octopus, cuttlefish), rapid stiffness change of sea cucumbers, opening of pine cones in response to humidity, and rapid closure of Venus flytraps upon insect touch are some examples of nature's smart systems. Although current technologies are still premature to mimic these sophisticated structures and functions in smart biological systems, recent work on stimuli-responsive programmable matter has shown great progress. Stimuli-responsive materials based on hydrogels, responsive nanocomposites, hybrid structures, shape memory polymers, and liquid crystal elastomers have demonstrated excellent responsivities to various stimuli such as temperature, light, pH, and electric field. However, the technologies in these stimuli-responsive materials are still not sophisticated enough to demonstrate the ultimate attributes of an ideal programmable matter: fast and reversible reconfiguration of programmable matter into complex and robust shapes. Recently, reconfigurable (or programmable) matter that reversibly changes its structure/shape or physical/chemical properties in response to external stimuli has attracted great interest for applications in sensors, actuators, robotics, and smart systems. In particular, key attributes of programmable matter including fast and reversible reconfiguration into complex and robust 2D and 3D shapes have been demonstrated by various approaches. In this Account, we review focused areas of smart materials with special emphasis on the material and device structure designs to enhance the response time, reversibility, multistimuli responsiveness, and smart adhesion for efficient shape transformation and functional actuations. First, the capability of fast reconfiguration of 2D and 3D structures in a reversible way is a critical requirement for programmable matter. For the fast and reversible reconfiguration, various approaches based on enhanced solvent diffusion rate through the porous or structured hydrogel materials, electrostatic repulsion between cofacial electrolyte nanosheets, and photothermal actuation are discussed. Second, the ability to reconfigure programmable matters into a variety of complex structures is beneficial for the use of reconfigurable matter in diverse applications. For the reconfiguration of planar 2D structures into complex 3D structures, asymmetric and multidirectional stress should be applied. In this regard, local hinges with stimuli-responsive stiffness, multilayer laminations with different responsiveness in individual layers, and origami and kirigami assembly approaches are reviewed. Third, multistimuli responsiveness will be required for the efficient reconfiguration of complex programmable matter in response to user-defined stimulus under different chemical and physical environments. In addition, with multistimuli responsiveness, the reconfigured shape can be temporarily affixed by one signal and disassembled by another signal at a user-defined location and time. Photoactuation depending on the chirality of carbon nanotubes and composite gels with different responsiveness will be discussed. Finally, the development of smart adhesives with on-demand adhesion strength is critically required to maintain the robust reconfigurable shapes and for the switching on/off of the binding between components or with target objects. Among various connectors and adhesives, thermoresponsive nanowire connectors, octopus-inspired smart adhesives, and elastomeric tiles with soft joints are described due to their potential applications in joints of deformable 3D structures and smart gripping systems.
Design and Fabrication of Tunable Nanoparticles for Biomedical Applications
NASA Astrophysics Data System (ADS)
Sun, Leming
In this dissertation, we first reviewed the naturally occurring nanoparticles and their limitations (Chapter 1). We then discussed the need and the parameters to design and fabricate bio-inspired tunable nanoparticles for wound healing, Alzheimer's disease (AD) diagnosis and progression monitoring. Tunable nanoparticles enhanced adhesive was inspired from the self-assembly processes, nanocomposite and chemical structures. Fluorescent peptide nanoparticles were inspired from the biological peptide self-assembly and naturally occurring fluorescent proteins. Then we reported the development of an in situ synthesis approach for fabricating tunable nanoparticle enhanced adhesives inspired from the strong adhesive produced by English ivy in Chapter 2. Special attention was given to tunable features of the adhesive produced by the biological process. Parameters that may be used to tune properties of the adhesive were proposed. To illustrate and validate the proposed approach, an experimental platform was presented for fabricating tunable chitosan adhesive enhanced by Au nanoparticles synthesized in situ. This study contributes to a bio-inspired approach for in situ synthesis of tunable nanocomposite adhesives by mimicking the natural biological processes of ivy adhesive synthesis. Using a bio-inspired approach, we synthesized adhesive hydrogels comprised of sodium alginate, gum arabic, and calcium ions to mimic the properties of the natural sundew-derived adhesive hydrogels in Chapter 3. We then characterized and showed that these sundew-inspired hydrogels promote wound healing through their superior adhesive strength, nanostructure, and resistance to shearing; when compared to other hydrogels in vitro. In vivo, sundew-inspired hydrogels promoted a "suturing" effect to wound sites; which was demonstrated by enhanced wound closure following topical application of the hydrogels. In combination with mouse adipose derived stem cells (ADSCs), and compared to other therapeutic biomaterials, the sundew-inspired hydrogels demonstrated superior wound healing capabilities. Collectively, our studies show that sundew-inspired hydrogels contain ideal properties that promote wound healing and suggest that sundew-inspired-ADSCs combination therapy is an efficacious approach for treating wounds without eliciting noticeable toxicity or inflammation. While tremendous efforts have been spent in investigating scalable approaches for fabricating nanoparticles, less progress has been made in scalable synthesizing cyclic peptide nanoparticles and nanotubes, despite their great potential for broader biomedical applications. In Chapter 4, tunable synthesis of self-assembled cyclic peptide nanotubes and nanoparticles using three different methods, phase equilibrium, pH-driven, and pH-sensitive methods were proposed and investigated. The goal is for scalable nano-manufacturing of cyclic peptide nanoparticles and nanotubes with different sizes in large quality by controlling multiple process parameters. The dimensions of self-assembled nanostructures were found to be strongly influenced by the cyclic peptides concentration, side chains modification, pH value, reaction time, stirring intensity, and sonication time. This study proposed an overall strategy to integrate all the parameters to achieve optimal synthesis outputs. AD is associated with the accumulation of insoluble forms of amyloid-beta (Abeta) in plaques in extracellular spaces, as well as in the walls of blood vessels, and aggregation of microtubule protein tau in neurofibrillary tangles in neurons. In Chapter 5, we designed and synthesized a series of fluorescent cyclic peptide nanoparticles that can be used to detect Abeta aggregates in both the cerebrospinal fluid (CSF) and serum, which were obtained from healthy people and AD patients in different disease stages. Our experimental studies indicate that the fluorescence intensities and wavelengths generated from the interactions between the negatively charged fluorescent cyclic peptide nanoparticles and Abeta aggregates in both the CSF and serum changed with disease status, as compared to healthy individuals. The morphological and cytotoxicity studies demonstrated a potential inhibitory effect of the negatively charged nanoparticles on amyloid fibril growth. The underlying mechanisms leading to these changes are interpreted based on the aromatic, hydrophobic, and electrostatic interactions between c-PNPs and Abeta peptides. There is a critical need to diagnose and monitor the progression of AD using blood-based biomarkers. At present, it is believed that no single biomarker can be utilized to reliably detect AD. Combined biomarkers using multimodal techniques are highly sought after for AD diagnosis and progression monitoring. For this purpose, we developed a fluorescent peptide nanoparticles arrayed microfluidic chip that is capable of detecting multiple blood-based AD biomarkers simultaneously in Chapter 6. The concentration, aggregation stages, and Young's modulus of biomarkers could be analyzed by monitoring the changes of multimodal fluorescence intensity, nano-morphological, and nano-mechanical properties of the f-PNPs array. In this study, Abeta polypeptides and tau proteins were used to verify the proposed idea. To conclude, we demonstrate that how to design and fabrication of tunable nanoparticles for biomedical applications. Inspired from English ivy and sundew nanoadhesive, tunable nanoparticles enhanced adhesive hydrogels were prepared and validated for wound healing applications. Moreover, fluorescent peptide nanoparticles were designed, synthesized, characterized, and validated for AD diagnosis and progression monitoring. (Abstract shortened by ProQuest.).
NASA Technical Reports Server (NTRS)
Generazio, Ed
2017-01-01
The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for illuminating volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Initial results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of structures, tether integrity, organic molecular memory, atmospheric science, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.
Controlling the size of alginate gel beads by use of a high electrostatic potential.
Klokk, T I; Melvik, J E
2002-01-01
The effect of several parameters on the size of alginate beads produced by use of an electrostatic potential bead generator was examined. Parameters studied included needle diameter, electrostatic potential, alginate solution flow rate, gelling ion concentration and alginate concentration and viscosity, as well as alginate composition. Bead size was found to decrease with increasing electrostatic potential, but only down to a certain level. Minimum bead size was reached at between 2-4 kV/cm for the needles tested. The smallest alginate beads produced (using a needle with inner diameter 0.18 mm) had a mean diameter of approximately 300 microm. Bead size was also found to be dependent upon the flow rate of the fed alginate solution. Increasing the gelling ion concentration resulted in a moderate decrease in bead size. The concentration and viscosity of the alginate solution also had an effect on bead size as demonstrated by an increased bead diameter when the concentration or viscosity was increased. This effect was primarily an effect of the viscosity properties of the solution, which led to changes in the rate of droplet formation in the bead generator. Lowering the flow rate of the alginate solution could partly compensate for the increase in bead size with increased viscosity. For a constant droplet size, alginates with a low G block content (F(GG) approximately 0.20) resulted in approximately 30% smaller beads than alginates with a high G block content (F(GG) approximately 0.60). This is explained as a result of differences in the shrinking properties of the beads.
NASA Astrophysics Data System (ADS)
Rehn, Daniel A.; Li, Yao; Pop, Eric; Reed, Evan J.
2018-01-01
Structural phase-change materials are of great importance for applications in information storage devices. Thermally driven structural phase transitions are employed in phase-change memory to achieve lower programming voltages and potentially lower energy consumption than mainstream nonvolatile memory technologies. However, the waste heat generated by such thermal mechanisms is often not optimized, and could present a limiting factor to widespread use. The potential for electrostatically driven structural phase transitions has recently been predicted and subsequently reported in some two-dimensional materials, providing an athermal mechanism to dynamically control properties of these materials in a nonvolatile fashion while achieving potentially lower energy consumption. In this work, we employ DFT-based calculations to make theoretical comparisons of the energy required to drive electrostatically-induced and thermally-induced phase transitions. Determining theoretical limits in monolayer MoTe2 and thin films of Ge2Sb2Te5, we find that the energy consumption per unit volume of the electrostatically driven phase transition in monolayer MoTe2 at room temperature is 9% of the adiabatic lower limit of the thermally driven phase transition in Ge2Sb2Te5. Furthermore, experimentally reported phase change energy consumption of Ge2Sb2Te5 is 100-10,000 times larger than the adiabatic lower limit due to waste heat flow out of the material, leaving the possibility for energy consumption in monolayer MoTe2-based devices to be orders of magnitude smaller than Ge2Sb2Te5-based devices.
The role of zeta potential in the adhesion of E. coli to suspended intertidal sediments.
Wyness, Adam J; Paterson, David M; Defew, Emma C; Stutter, Marc I; Avery, Lisa M
2018-05-29
The extent of pathogen transport to and within aquatic systems depends heavily on whether the bacterial cells are freely suspended or in association with suspended particles. The surface charge of both bacterial cells and suspended particles affects cell-particle adhesion and subsequent transport and exposure pathways through settling and resuspension cycles. This study investigated the adhesion of Faecal Indicator Organisms (FIOs) to natural suspended intertidal sediments over the salinity gradient encountered at the transition zone from freshwater to marine environments. Phenotypic characteristics of three E. coli strains, and the zeta potential (surface charge) of the E. coli strains and 3 physically different types of intertidal sediments was measured over a salinity gradient from 0 to 5 Practical Salinity Units (PSU). A batch adhesion microcosm experiment was constructed with each combination of E. coli strain, intertidal sediment and 0, 2, 3.5 and 5 PSU. The zeta potential profile of one E. coli strain had a low negative charge and did not change in response to an increase in salinity, and the remaining E. coli strains and the sediments exhibited a more negative charge that decreased with an increase in salinity. Strain type was the most important factor in explaining cell-particle adhesion, however adhesion was also dependant on sediment type and salinity (2, 3.5 PSU > 0, 5 PSU). Contrary to traditional colloidal (Derjaguin, Landau, Vervey, and Overbeek (DLVO)) theory, zeta potential of strain or sediment did not correlate with cell-particle adhesion. E. coli strain characteristics were the defining factor in cell-particle adhesion, implying that diverse strain-specific transport and exposure pathways may exist. Further research applying these findings on a catchment scale is necessary to elucidate these pathways in order to improve accuracy of FIO fate and transport models. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Ke; Yu, Yang-Xin; Gao, Guang-Hua
2008-05-14
A density functional theory (DFT) in the framework of cell model is proposed to calculate the structural and thermodynamic properties of aqueous DNA-electrolyte solution with finite DNA concentrations. The hard-sphere contribution to the excess Helmholtz energy functional is derived from the modified fundamental measure theory, and the electrostatic interaction is evaluated through a quadratic functional Taylor expansion around a uniform fluid. The electroneutrality in the cell leads to a variational equation with a constraint. Since the reference fluid is selected to be a bulk phase, the Lagrange multiplier proves to be the potential drop across the cell boundary (Donnan potential). The ion profiles and electrostatic potential profiles in the cell are calculated from the present DFT-cell model. Our DFT-cell model gives better prediction of ion profiles than the Poisson-Boltzmann (PB)- or modified PB-cell models when compared to the molecular simulation data. The effects of polyelectrolyte concentration, ion size, and added-salt concentration on the electrostatic potential difference between the DNA surface and the cell boundary are investigated. The expression of osmotic coefficient is derived from the general formula of grand potential. The osmotic coefficients predicted by the DFT are lower than the PB results and are closer to the simulation results and experimental data.
Fabrication of biomimetic dry-adhesion structures through nanosphere lithography
NASA Astrophysics Data System (ADS)
Kuo, P. C.; Chang, N. W.; Suen, Y.; Yang, S. Y.
2018-03-01
Components with surface nanostructures suitable for biomimetic dry adhesion have a great potential in applications such as gecko tape, climbing robots, and skin patches. In this study, a nanosphere lithography technique with self-assembly nanospheres was developed to achieve effective and efficient fabrication of dry-adhesion structures. Self-assembled monolayer nanospheres with high regularity were obtained through tilted dip-coating. Reactive-ion etching of the self-assembled nanospheres was used to fabricate nanostructures of different shapes and aspect ratios by varying the etching time. Thereafter, nickel molds with inverse nanostructures were replicated using the electroforming process. Polydimethylsiloxane (PDMS) nanostructures were fabricated through a gas-assisted hot-embossing method. The pulling test was performed to measure the shear adhesion on the glass substrate of a sample, and the static contact angle was measured to verify the hydrophobic property of the structure. The enhancement of the structure indicates that the adhesion force increased from 1.2 to 4.05 N/cm2 and the contact angle increased from 118.6° to 135.2°. This columnar structure can effectively enhance the adhesion ability of PDMS, demonstrating the potential of using nanosphere lithography for the fabrication of adhesive structures.
The search for the hydrophobic force law
Hammer, Malte U.; Anderson, Travers H.; Chaimovich, Aviel; Scott Shell, M.
2010-01-01
After nearly 30 years of research on the hydrophobic interaction, the search for the hydrophobic force law is still continuing. Indeed, there are more questions than answers, and the experimental data are often quite different for nominally similar conditions, as well as, apparently, for nano-, micro-, and macroscopic surfaces. This has led to the conclusion that the experimentally observed force–distance relationships are either a combination of different ‘fundamental’ interactions, or that the hydrophobic force-law, if there is one, is complex – depending on numerous parameters. The only unexpectedly strong attractive force measured in all experiments so far has a range of D ≈ 100–200 Å, increasing roughly exponentially down to ~ 10–20 Å and then more steeply down to adhesive contact at D = 0 or, for power-law potentials, effectively at D ≈ 2 Å. The measured forces in this regime (100–200 Å) and especially the adhesive forces are much stronger, and have a different distance-dependence from the continuum VDW force (Lifshitz theory) for non-conducting dielectric media. We suggest a three-regime force-law for the forces observed between hydrophobic surfaces: In the first, from 100–200 Å to thousands of ångstroms, the dominating force is created by complementary electrostatic domains or patches on the apposing surfaces and/or bridging vapour cavities; a ‘pure’ but still not well-understood ‘long-range hydrophobic force’ dominates the second regime from ~ 150 to ~ 15 Å, possibly due to an enhanced Hamaker constant associated with the ‘proton-hopping’ polarizability of water; while below ~ 10–15 Å to contact there is another ‘pure short-range hydrophobic force’ related to water structuring effects associated with surface-induced changes in the orientation and/or density of water molecules and H-bonds at the water–hydrophobic interface. We present recent SFA and other experimental results, as well as a simplified model for water based on a spherically-symmetric potential that is able to capture some basic features of hydrophobic association. Such a model may be useful for theoretical studies of the HI over the broad range of scales observed in SFA experiments. PMID:21043428
The search for the hydrophobic force law.
Hammer, Malte U; Anderson, Travers H; Chaimovich, Aviel; Shell, M Scott; Israelachvili, Jacob
2010-01-01
After nearly 30 years of research on the hydrophobic interaction, the search for the hydrophobic force law is still continuing. Indeed, there are more questions than answers, and the experimental data are often quite different for nominally similar conditions, as well as, apparently, for nano-, micro-, and macroscopic surfaces. This has led to the conclusion that the experimentally observed force-distance relationships are either a combination of different 'fundamental' interactions, or that the hydrophobic force-law, if there is one, is complex--depending on numerous parameters. The only unexpectedly strong attractive force measured in all experiments so far has a range of D approximately 100-200 angstroms, increasing roughly exponentially down to approximately 10-20 angstroms and then more steeply down to adhesive contact at D = 0 or, for power-law potentials, effectively at D approximately 2 angstroms. The measured forces in this regime (100-200 angstroms) and especially the adhesive forces are much stronger, and have a different distance-dependence from the continuum VDW force (Lifshitz theory) for non-conducting dielectric media. We suggest a three-regime force-law for the forces observed between hydrophobic surfaces: In the first, from 100-200 angstroms to thousands of angstroms, the dominating force is created by complementary electrostatic domains or patches on the apposing surfaces and/or bridging vapour cavities; a 'pure' but still not well-understood 'long-range hydrophobic force' dominates the second regime from approximately 150 to approximately 15 angstroms, possibly due to an enhanced Hamaker constant associated with the 'proton-hopping' polarizability of water; while below approximately 10-15 anstroms to contact there is another 'pure short-range hydrophobic force' related to water structuring effects associated with surface-induced changes in the orientation and/or density of water molecules and H-bonds at the water-hydrophobic interface. We present recent SFA and other experimental results, as well as a simplified model for water based on a spherically-symmetric potential that is able to capture some basic features of hydrophobic association. Such a model may be useful for theoretical studies of the HI over the broad range of scales observed in SFA experiments.
Alidoosti, Elaheh; Zhao, Hui
2018-05-15
At concentrated electrolytes, the ion-ion electrostatic correlation effect is considered an important factor in electrokinetics. In this paper, we compute, in theory and simulation, the dipole moment for a spherical particle (charged, dielectric) under the action of an alternating electric field using the modified continuum Poisson-Nernst-Planck (PNP) model by Bazant et al. [ Double Layer in Ionic Liquids: Overscreening Versus Crowding . Phys. Rev. Lett. 2011 , 106 , 046102 ] We investigate the dependency of the dipole moment in terms of frequency and its variation with such quantities like ζ-potential, electrostatic correlation length, and double-layer thickness. With thin electric double layers, we develop simple models through performing an asymptotic analysis of the modified PNP model. We also present numerical results for an arbitrary Debye screening length and electrostatic correlation length. From the results, we find a complicated impact of electrostatic correlations on the dipole moment. For instance, with increasing the electrostatic correlation length, the dipole moment decreases and reaches a minimum and then it goes up. This is because of initially decreasing of surface conduction and finally increasing due to the impact of ion-ion electrostatic correlations on ion's convection and migration. Also, we show that in contrast to the standard PNP model, the modified PNP model can qualitatively explain the data from the experimental results in multivalent electrolytes.
On the orientation of the backbone dipoles in native folds
Ripoll, Daniel R.; Vila, Jorge A.; Scheraga, Harold A.
2005-01-01
The role of electrostatic interactions in determining the native fold of proteins has been investigated by analyzing the alignment of peptide bond dipole moments with the local electrostatic field generated by the rest of the molecule with and without solvent effects. This alignment was calculated for a set of 112 native proteins by using charges from a gas phase potential. Most of the peptide dipoles in this set of proteins are on average aligned with the electrostatic field. The dipole moments associated with α-helical conformations show the best alignment with the electrostatic field, followed by residues in β-strand conformations. The dipole moments associated with other secondary structure elements are on average better aligned than in randomly generated conformations. The alignment of a dipole with the local electrostatic field depends on both the topology of the native fold and the charge distribution assumed for all of the residues. The influences of (i) solvent effects, (ii) different sets of charges, and (iii) the charge distribution assumed for the whole molecule were examined with a subset of 22 proteins each of which contains <30 ionizable groups. The results show that alternative charge distribution models lead to significant differences among the associated electrostatic fields, whereas the electrostatic field is less sensitive to the particular set of the adopted charges themselves (empirical conformational energy program for peptides or parameters for solvation energy). PMID:15894608
Varadwaj, Arpita; Varadwaj, Pradeep R; Yamashita, Koichi
2018-03-15
Coulomb's law states that like charges repel, and unlike charges attract. However, it has recently been theoretically revealed that two similarly charged conducting spheres will almost always attract each other when both are in close proximity. Using multiscale first principles calculations, we illustrate practical examples of several intermolecular complexes that are formed by the consequences of attraction between positive atomic sites of similar or dissimilar electrostatic surface potential on interacting molecules. The results of the quantum theory of atoms in molecules and symmetry adapted perturbation theory support the attraction between the positive sites, characterizing the F•••X (X = F, Cl, Br) intermolecular interactions in a series of 20 binary complexes as closed-shell type, although the molecular electrostatic surface potential approach does not (a failure!). Dispersion that has an r -6 dependence, where r is the equilibrium distance of separation, is found to be the sole driving force pushing the two positive sites to attract. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Zhang, Jie; Li, Tiezhu; Wang, Tuoyi; Guan, Tianzhu; Yu, Hansong; Li, Zhuolin; Wang, Yongzhi; Wang, Yongjun; Zhang, Tiehua
2018-02-01
The binding of bisphenol A (BPA) and its halogenated derivatives (halogenated BPAs) to mouse peroxisome proliferator-activated receptor α ligand binding domain (mPPARα-LBD) was examined by a combination of in vitro investigation and in silico simulation. Fluorescence polarization (FP) assay showed that halogenated BPAs could bind to mPPARα-LBD* as the affinity ligands. The calculated electrostatic potential (ESP) illustrated the different charge distributions of halogenated BPAs with altered halogenation patterns. As electron-attracting substituents, halogens decrease the positive electrostatic potential and thereby have a significant influence on the electrostatic interactions of halogenated BPAs with mPPARα-LBD*. The docking results elucidated that hydrophobic and hydrogen-bonding interactions may also contribute to stabilize the binding of the halogenated BPAs to their receptor molecule. Comparison of the calculated binding energies with the experimentally determined affinities yielded a good correlation (R 2 =0.6659) that could provide a rational basis for designing environmentally benign chemicals with reduced toxicities. This work can potentially be used for preliminary screening of halogenated BPAs. Copyright © 2017 Elsevier B.V. All rights reserved.
Flexible Electrostatic Technologies for Capture and Handling, Phase 1
NASA Technical Reports Server (NTRS)
Bryan, Thomas
2015-01-01
Fundamental to many of NASA's in-space transportation missions is the capture and handling of various objects and vehicles in various orbits for servicing, debris disposal, sample retrieval, and assembly without the benefit of sufficient grapple fixtures and docking ports. To perform similar material handling tasks on Earth, pincher grippers, suction grippers, or magnetic chucks are used, but are unable to reliably grip aluminum and composite spacecraft, insulation, radiators, solar arrays, or extra-terrestrial objects in the vacuum of outer space without dedicated handles in the right places. The electronic Flexible Electrostatic Technologies for space Capture and Handling (FETCH) will enable reliable and compliant gripping (soft dock) of practically any object in various orbits or surfaces without dedicated mechanical features, very low impact capture, and built-in proximity sensing without any conventional actuators. Originally developed to handle semiconductor and glass wafers during vacuum chamber processing without contamination, the normal rigid wafer handling chucks are replaced with thin metal foil segments laminated in flexible insulation driven by commercial off-the-shelf solid state, high-voltage power supplies. Preliminary testing in NASA Marshall Space Flight Center's (MSFC's) Flat Floor Robotics Lab demonstrated compliant alignment and gripping with a full-sized, 150-lb microsat mockup and translation before a clean release with a flip of a switch. The flexible electrostatic gripper pads can be adapted to various space applications with different sizes, shapes, and foil electrode layouts even with openings through the gripper pads for addition of guidance sensors or injection of permanent adhesives. With gripping forces estimated between 0.5 and 2.5 lb/in2 or 70-300 lb/ft2 of surface contact, the FETCH can turn on and off rapidly and repeatedly to enable sample handling, soft docking, in-space assembly, precision relocation, and surface translation for accurate anchoring.
Waldstein, Sebastian M; Ritter, Markus; Simader, Christian; Mayr-Sponer, Ulrike; Kundi, Michael; Schmidt-Erfurth, Ursula
2014-08-01
To investigate the influence of vitreomacular adhesion on the efficacy of pro re nata (PRN) ranibizumab monotherapy and verteporfin photodynamic therapy (PDT) combination therapy for neovascular age-related macular degeneration. Post hoc analysis of prospective randomized 12-month multicenter clinical trial data. Total of 255 treatment-naïve patients with subfoveal choroidal neovascularization. Assessment of the vitreomacular interface on monthly optical coherence tomography with division of patients into the following categories according to continuous 1-year grading: posterior vitreous detachment (n=154), dynamic release of vitreomacular adhesion (n=32), stable vitreomacular adhesion (n=51). Mean best-corrected visual acuity (BCVA) letter and central retinal thickness changes at month 12 in the vitreomacular interface groups. Mean BCVA changes at month 12 were +3.5 (posterior vitreous detachment), +4.3 (release of vitreomacular adhesion), and +6.3 (vitreomacular adhesion) in patients receiving monotherapy (P=.767), and +0.1 (posterior vitreous detachment), +6.6 (release of vitreomacular adhesion), and +9.2 (vitreomacular adhesion) in patients receiving combination therapy (P=.009). Mean central retinal thickness changes were -113 μm (posterior vitreous detachment), -89 μm (release of vitreomacular adhesion), and -122 μm (vitreomacular adhesion) in monotherapy (P=.725) and -121 μm (posterior vitreous detachment), -113 μm (release of vitreomacular adhesion), and -113 μm (vitreomacular adhesion) in combination therapy (P=.924). Mean ranibizumab retreatments during 12 months were 4.9 (posterior vitreous detachment), 6.6 (release of vitreomacular adhesion), and 5.3 (vitreomacular adhesion) in monotherapy (P=.018) and 4.7 (posterior vitreous detachment), 5.2 (release of vitreomacular adhesion), and 5.8 (vitreomacular adhesion) in combination therapy (P=.942). This study adds evidence that the vitreomacular interface status impacts functional outcomes and retreatment requirements. Patients with posterior vitreous detachment achieve acceptable results with fewer injections in PRN monotherapy, but lose potential vision gain with PDT. Patients with other vitreomacular interface configurations may potentially achieve optimized vision outcomes by combination of antiangiogenic treatment and vaso-occlusive PDT. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mathias, Gerald; Egwolf, Bernhard; Nonella, Marco; Tavan, Paul
2003-06-01
We present a combination of the structure adapted multipole method with a reaction field (RF) correction for the efficient evaluation of electrostatic interactions in molecular dynamics simulations under periodic boundary conditions. The algorithm switches from an explicit electrostatics evaluation to a continuum description at the maximal distance that is consistent with the minimum image convention, and, thus, avoids the use of a periodic electrostatic potential. A physically motivated switching function enables charge clusters interacting with a given charge to smoothly move into the solvent continuum by passing through the spherical dielectric boundary surrounding this charge. This transition is complete as soon as the cluster has reached the so-called truncation radius Rc. The algorithm is used to examine the dependence of thermodynamic properties and correlation functions on Rc in the three point transferable intermolecular potential water model. Our test simulations on pure liquid water used either the RF correction or a straight cutoff and values of Rc ranging from 14 Å to 40 Å. In the RF setting, the thermodynamic properties and the correlation functions show convergence for Rc increasing towards 40 Å. In the straight cutoff case no such convergence is found. Here, in particular, the dipole-dipole correlation functions become completely artificial. The RF description of the long-range electrostatics is verified by comparison with the results of a particle-mesh Ewald simulation at identical conditions.
Animation of Heliopause Electrostatic Rapid Transport System (HERTS)
2016-04-20
Animation of Heliopause Electrostatic Rapid Transport System (HERTS) concept. NASA engineers are conducting tests to develop models for the Heliopause Electrostatic Rapid Transport System. HERTS builds upon the electric sail invention of Dr. Pekka Janhunen of the Finnish Meteorological Institute. An electric sail could potentially send scientific payloads to the edge of our solar system, the heliopause, in less than 10 years. The research is led by Bruce M. Wiegmann, an engineer in the Advanced Concepts Office at NASA's Marshall Space Flight Center. The HERTS E-Sail development and testing is funded by NASA’s Space Technology Mission Directorate through the NASA Innovative Advanced Concepts Program.
Recycle polymer characterization and adhesion modeling
NASA Astrophysics Data System (ADS)
Holbery, James David
Contaminants from paper product producers that adversely affect fiber yield have been collected from mills located in three North American geographic regions. Samples have been fractionated using a modified solvent extraction process and subsequently quantitatively characterized and it was found that agglomerates were comprised of the following: approximately 30% extractable polymeric material, 25--35% fiber, 12--15% inorganic material, 15% non-extractable high molecular-weight polyethylene or cross-linked polymers, and 2--4% starch residue. Three representative polymers, paraffin, low-molecular weight polyethylene, and a commercial hot-melt adhesive were selected for further analysis to model the attractive and repulsive behavior using Scanning Probe Microscopy in an aqueous cell. Scanning force probes were characterized using an original technique utilizing a nano-indentation apparatus that is non-destructive and is accurate to within 10% for probes with force constants as low as 1 N/m. Surface force measurements were performed between a Poly (Styrene/30% Butyl Methacrylate) sphere and substrates produced from paraffin, polyethylene, and a commercial hot-melt adhesive in solutions ranging in NaF ionic concentrations from 0.001M to 1M. Reasonable theoretical agreement with experimental data has been shown between a combined model applying van der Waals force contributions using the Derjaguin approximation and electrostatic contributions as predicted by a Debye-Huckel linearization of the Poisson-Boltzmann equation utilizing Hamaker constants derived from critical surface energies determined from Zisman and Lifshitz-van der Waals energy approaches. This model has been applied to measured data and indicates the strength of adhesion for the hot-melt to be 0.14 nN while that of paraffin is 1.9 nN and polyethylene 2.8 nN. Paraffin and polyethylene are 13.5 and 20 times greater in attraction than the hot-melt adhesive. Hot-melt adhesive repulsion is predicted to be 220 pN while for paraffin it is 9.1 nN and polyethylene 12.2 nN, a factor of 41 and 55 greater for paraffin and polyethylene, respectively. Decay lengths for repulsion is fit to be 2.3 nm for hotmelt indicating, approximately one-third that of paraffin and polyethylene. Johnson-Kendall-Roberts contact mechanic theory for viscoelastic materials has been applied with reasonable accuracy, particularly in experiments performed in solutions, to model the approach snap-in magnitude and detachment forces between sphere and substrate. Two representative commercial agglomeration formulations have been analyzed to determine the impact on adhesion and detachment forces although at room temperature, no measurable effect was identified.
Free energy calculations of glycosaminoglycan-protein interactions.
Gandhi, Neha S; Mancera, Ricardo L
2009-10-01
Glycosaminoglycans (GAGs) are complex highly charged linear polysaccharides that have a variety of roles in biological processes. We report the first use of molecular dynamics (MD) free energy calculations using the MM/PBSA method to investigate the binding of GAGs to protein molecules, namely the platelet endothelial cell adhesion molecule 1 (PECAM-1) and annexin A2. Calculations of the free energy of the binding of heparin fragments of different sizes reveal the existence of a region of low GAG-binding affinity in domains 5-6 of PECAM-1 and a region of high affinity in domains 2-3, consistent with experimental data and ligand-protein docking studies. A conformational hinge movement between domains 2 and 3 was observed, which allows the binding of heparin fragments of increasing size (pentasaccharides to octasaccharides) with an increasingly higher binding affinity. Similar simulations of the binding of a heparin fragment to annexin A2 reveal the optimization of electrostatic and hydrogen bonding interactions with the protein and protein-bound calcium ions. In general, these free energy calculations reveal that the binding of heparin to protein surfaces is dominated by strong electrostatic interactions for longer fragments, with equally important contributions from van der Waals interactions and vibrational entropy changes, against a large unfavorable desolvation penalty due to the high charge density of these molecules.
Application Potential of Energy Systems at Navy Sites. Volume I. Methodology and Results.
1980-01-01
see Table 5-4). Flue gas desulfurization (FGD), electrostatic precipitators (ESP), and staged combustion (SC) were selected to control SOX...energy sources are required to meet proposed Federal Stationary Source Standards. Flue gas desulfurization (FGD), electrostatic precipitators (ESP...pollution control equipment follows: * FGD -- Flue gas from the furnace is passed counter-currently through a limestone (CaCO3) slurry which reacts with
A new quasi-thermal trap model for solar flare hard X-ray bursts - An electrostatic trap model
NASA Technical Reports Server (NTRS)
Spicer, D. S.; Emslie, A. G.
1988-01-01
A new quasi-thermal trap model of solar flare hard X-ray bursts is presented. The new model utilizes the trapping ability of a magnetic mirror and a magnetic field-aligned electrostatic potential produced by differences in anisotropies of the electron and ion distribution function. It is demonstrated that this potential can, together with the magnetic mirror itself, effectively confine electrons in a trap, thereby enhancing their bremsstrahlung yield per electron. This analysis makes even more untenable models involving precipitation of the bremsstrahlung-producing electrons onto a cold target.
Nonlocal Poisson-Fermi model for ionic solvent.
Xie, Dexuan; Liu, Jinn-Liang; Eisenberg, Bob
2016-07-01
We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.
Electrostatic Return of Contaminants
NASA Technical Reports Server (NTRS)
Rantanen, R.; Gordon, T.
2003-01-01
A Model has been developed capable of calculating the electrostatic return of spacecraft-emitted molecules that are ionized and attracted back to the spacecraft by the spacecraft electric potential on its surfaces. The return of ionized contaminant molecules to charged spacecraft surfaces is very important to all altitudes. It is especially important at geosynchronous and interplanetary environments, since it may be the only mechanism by which contaminants can degrade a surface. This model is applicable to all altitudes and spacecraft geometries. In addition to results of the model will be completed to cover a wide range of potential space systems.
A Novel Assay for Easy and Rapid Quantification of Helicobacter pylori Adhesion.
Skindersoe, Mette E; Rasmussen, Lone; Andersen, Leif P; Krogfelt, Karen A
2015-06-01
Reducing adhesion of Helicobacter pylori to gastric epithelial cells could be a new way to counteract infections with this organism. We here present a novel method for quantification of Helicobacter pylori adhesion to cells. Helicobacter pylori is allowed to adhere to AGS or MKN45g cells in a 96-well microtiter plate. Then wells are added saponin, which lyses the cells without affecting the bacteria. After addition of alamarBlue(®) (resazurin) and 1- to 2-hour incubation, fluorescence measurements can be used to quantify the number of adherent bacteria. By use of the method, we demonstrate that adhesion of both a sabA and babA deletion mutant of H. pylori is significantly reduced compared to the wild type. The method offers a number of applications and may be used to compare the adherence potential of different strains of H. pylori to either cells or different materials or to screen for potential anti-adhesive compounds. The results presented here suggest that this easy and reproducible assay is well suited for quantitative investigation of H. pylori adhesion. © 2015 John Wiley & Sons Ltd.
Lee, Sang-Bae; González-Cabezas, Carlos; Kim, Kwang-Mahn; Kim, Kyoung-Nam; Kuroda, Kenichi
2015-08-10
This study reports a synthetic polymer functionalized with catechol groups as dental adhesives. We hypothesize that a catechol-functionalized polymer functions as a dental adhesive for wet dentin surfaces, potentially eliminating the complications associated with saliva contamination. We prepared a random copolymer containing catechol and methoxyethyl groups in the side chains. The mechanical and adhesive properties of the polymer to dentin surface in the presence of water and salivary components were determined. It was found that the new polymer combined with an Fe(3+) additive improved bond strength of a commercial dental adhesive to artificial saliva contaminated dentin surface as compared to a control sample without the polymer. Histological analysis of the bonding structures showed no leakage pattern, probably due to the formation of Fe-catechol complexes, which reinforce the bonding structures. Cytotoxicity test showed that the polymers did not inhibit human gingival fibroblast cells proliferation. Results from this study suggest a potential to reduce failure of dental restorations due to saliva contamination using catechol-functionalized polymers as dental adhesives.
Gross, G; Snel, J; Boekhorst, J; Smits, M A; Kleerebezem, M
2010-03-01
Recently, we have identified the mannose-specific adhesin encoding gene (msa) of Lactobacillus plantarum. In the current study, structure and function of this potentially probiotic effector gene were further investigated, exploring genetic diversity of msa in L. plantarum in relation to mannose adhesion capacity. The results demonstrate that there is considerable variation in quantitative in vitro mannose adhesion capacity, which is paralleled by msa gene sequence variation. The msa genes of different L. plantarum strains encode proteins with variable domain composition. Construction of L. plantarum 299v mutant strains revealed that the msa gene product is the key-protein for mannose adhesion, also in a strain with high mannose adhering capacity. However, no straightforward correlation between adhesion capacity and domain composition of Msa in L. plantarum could be identified. Nevertheless, differences in Msa sequences in combination with variable genetic background of specific bacterial strains appears to determine mannose adhesion capacity and potentially affects probiotic properties. These findings exemplify the strain-specificity of probiotic characteristics and illustrate the need for careful and molecular selection of new candidate probiotics.
2015-01-01
This study reports a synthetic polymer functionalized with catechol groups as dental adhesives. We hypothesize that a catechol-functionalized polymer functions as a dental adhesive for wet dentin surfaces, potentially eliminating the complications associated with saliva contamination. We prepared a random copolymer containing catechol and methoxyethyl groups in the side chains. The mechanical and adhesive properties of the polymer to dentin surface in the presence of water and salivary components were determined. It was found that the new polymer combined with an Fe3+ additive improved bond strength of a commercial dental adhesive to artificial saliva contaminated dentin surface as compared to a control sample without the polymer. Histological analysis of the bonding structures showed no leakage pattern, probably due to the formation of Fe–catechol complexes, which reinforce the bonding structures. Cytotoxicity test showed that the polymers did not inhibit human gingival fibroblast cells proliferation. Results from this study suggest a potential to reduce failure of dental restorations due to saliva contamination using catechol-functionalized polymers as dental adhesives. PMID:26176305
Double layer adhesive silicone dressing as a potential dermal drug delivery film in scar treatment.
Mojsiewicz-Pieńkowska, Krystyna; Jamrógiewicz, Marzena; Żebrowska, Maria; Mikolaszek, Barbara; Sznitowska, Małgorzata
2015-03-15
The present studies focused on the evaluation of design of an adhesive silicone film intended for scar treatment. Developed silicone double layer film was examined in terms of its future relevance to therapy and applicability on the human skin considering properties which included in vitro permeability of water vapor and oxygen. In order to adapt the patches for medical use in the future there were tested such properties as in vitro adhesion and occlusion related to in vivo hydration. From the silicone rubbers double layer silicone film was prepared: a non-adhesive elastomer as a drug carrier (the matrix for active substances - enoxaparin sodium - low molecular weight heparin) and an adhesive elastomer, applied on the surface of the matrix. The novel adhesive silicone film was found to possess optimal properties in comparison to commercially available silicone dressing: adhesion in vivo, adhesion in vitro - 11.79N, occlusion F=85% and water vapor permeability in vitro - WVP=105g/m(2)/24h, hydration of stratum corneum in vivoH=61-89 (RSD=1.6-0.9%), oxygen permeation in vitro - 119-391 cm(3)/m(2)/24 (RSD=0.17%). In vitro release studies indicated sufficient LMWH release rate from silicone matrix. Developed novel adhesive silicone films were considered an effective treatment of scars and keloids and a potential drug carrier able to improve the effectiveness of therapy. Copyright © 2015 Elsevier B.V. All rights reserved.
Boundary asymptotics for a non-neutral electrochemistry model with small Debye length
NASA Astrophysics Data System (ADS)
Lee, Chiun-Chang; Ryham, Rolf J.
2018-04-01
This article addresses the boundary asymptotics of the electrostatic potential in non-neutral electrochemistry models with small Debye length in bounded domains. Under standard physical assumptions motivated by non-electroneutral phenomena in oxidation-reduction reactions, we show that the electrostatic potential asymptotically blows up at boundary points with respect to the bulk reference potential as the scaled Debye length tends to zero. The analysis gives a lower bound for the blow-up rate with respect to the model parameters. Moreover, the maximum potential difference over any compact subset of the physical domain vanishes exponentially in the zero-Debye-length limit. The results mathematically confirm the physical description that electrolyte solutions are electrically neutral in the bulk and are strongly electrically non-neutral near charged surfaces.
Bardhan, Jaydeep P; Knepley, Matthew G
2011-09-28
We analyze the mathematically rigorous BIBEE (boundary-integral based electrostatics estimation) approximation of the mixed-dielectric continuum model of molecular electrostatics, using the analytically solvable case of a spherical solute containing an arbitrary charge distribution. Our analysis, which builds on Kirkwood's solution using spherical harmonics, clarifies important aspects of the approximation and its relationship to generalized Born models. First, our results suggest a new perspective for analyzing fast electrostatic models: the separation of variables between material properties (the dielectric constants) and geometry (the solute dielectric boundary and charge distribution). Second, we find that the eigenfunctions of the reaction-potential operator are exactly preserved in the BIBEE model for the sphere, which supports the use of this approximation for analyzing charge-charge interactions in molecular binding. Third, a comparison of BIBEE to the recent GBε theory suggests a modified BIBEE model capable of predicting electrostatic solvation free energies to within 4% of a full numerical Poisson calculation. This modified model leads to a projection-framework understanding of BIBEE and suggests opportunities for future improvements. © 2011 American Institute of Physics
The impact of electrostatic correlations on Dielectrophoresis of Non-conducting Particles
NASA Astrophysics Data System (ADS)
Alidoosti, Elaheh; Zhao, Hui
2017-11-01
The dipole moment of a charged, dielectric, spherical particle under the influence of a uniform alternating electric field is computed theoretically and numerically by solving the modified continuum Poisson-Nernst-Planck (PNP) equations accounting for ion-ion electrostatic correlations that is important at concentrated electrolytes (Phys. Rev. Lett. 106, 2011). The dependence on the frequency, zeta potential, electrostatic correlation lengths, and double layer thickness is thoroughly investigated. In the limit of thin double layers, we carry out asymptotic analysis to develop simple models which are in good agreement with the modified PNP model. Our results suggest that the electrostatic correlations have a complicated impact on the dipole moment. As the electrostatic correlations length increases, the dipole moment decreases, initially, reach a minimum, and then increases since the surface conduction first decreases and then increases due to the ion-ion correlations. The modified PNP model can improve the theoretical predictions particularly at low frequencies where the simple model can't qualitatively predict the dipole moment. This work was supported, in part, by NIH R15GM116039.
NASA Astrophysics Data System (ADS)
Jastrzębska, A. M.; Karcz, J.; Letmanowski, R.; Zabost, D.; Ciecierska, E.; Zdunek, J.; Karwowska, E.; Siekierski, M.; Olszyna, A.; Kunicki, A.
2016-01-01
The aim of this study was to describe the influence of the modification of electrostatic properties of RGO/Al2O3 core-shell nanocomposite flakes. The amount of crystalline form of aluminum oxide was very small. It existed mostly in amorphous phase in the form of covalently bonded to GO surface. The morphological, structural and physicochemical investigations results showed that spherical Al2O3 nanoparticles (ca. 41 nm) in gamma phase completely covered the surface of curly-shaped RGO flakes and acted as a spreader between individual flakes. The high BET specific surface area of the analyzed composite (119.71 m2/g) together with very low open porosity (0.479 cm3/g) indicated that RGO/Al2O3 nanocomposite flakes showed low tendency to agglomeration. The zeta potential curves obtained for RGO/Al2O3 core-shell nanocomposite flakes were differing from curves obtained for GO and Al2O3 suspensions in distilled water and neutral environment. The specific electrostatic properties of the core-shell system of RGO/Al2O3 flakes had an influence on its surface charge (zeta potential) which was measured by applying an external electric field. The FTIR and Raman investigations results also confirmed that the Cdbnd O species were not taking part in the surface amphoteric reactions resulting in the formation of electrostatic surface charge.
Thermal Characterization of Epoxy Adhesive by Hotfire Testing
NASA Technical Reports Server (NTRS)
Spomer, Ken A.; Haddock, M. Reed; McCool, Alex (Technical Monitor)
2001-01-01
This paper describes subscale solid-rocket motor hot-fire testing of epoxy adhesives in flame surface bondlines to evaluate heat-affected depth, char depth and ablation rate. Hot-fire testing is part of an adhesive down-selection program on the Space Shuttle Solid Rocket Motor Nozzle to provide additional confidence in the down-selected adhesives. The current nozzle structural adhesive bond system is being replaced due to obsolescence. Prior to hot-fire testing, adhesives were tested for chemical, physical and mechanical properties, which resulted in the selection of two potential replacement adhesives, Resin Technology Group's TIGA 321 and 3M's EC2615XLW. Hot-fire testing consisted of four forty-pound charge (FPC) motors fabricated in configurations that would allow side-by-side comparison testing of the candidate replacement adhesives with the current RSRM adhesives. Results of the FPC motor testing show that: 1) the phenolic char depths on radial bondlines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used, 2) the replacement candidate adhesive char depths are equivalent to the char depths of the current adhesives, 3) the heat-affected depths of the candidate and current adhesives are equivalent, and 4) the ablation rates for both replacement adhesives were equivalent to the current adhesives.
A Charge-Exchange Neutral Particle Analyzer for an Inertial Electrostatic Confinement Fusion Device
NASA Astrophysics Data System (ADS)
Becerra, Gabriel; Kulcinski, Gerald; Santarius, John; Emmert, Gilbert
2013-10-01
An electrostatic energy analyzer for outgoing charge-exchange neutral particles has been designed and constructed for application on HELIOS, an inertial electrostatic confinement (IEC) fusion device designed for advanced fuel studies. Ions are extracted from an external helicon plasma source and subsequently accelerated radially into an electrostatic potential well set up by a semi-transparent cathode grid inside the HELIOS spherical chamber. Analysis of fast neutrals produced by charge exchange between energetic ions and background gas yields information on primary ion energy spectra, as well as a quantitative measure of charge exchange as an energy loss mechanism in IEC devices. Preliminary data with helium is used to benchmark the two-charge-state helium formalism of VICTER, a numerical code on spherically convergent ion flow, as it relates to IEC operation with helium-3 fuel. Research supported by the Greatbatch Foundation.
Mechanical behavior simulation of MEMS-based cantilever beam using COMSOL multiphysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acheli, A., E-mail: aacheli@cdta.dz; Serhane, R.
This paper presents the studies of mechanical behavior of MEMS cantilever beam made of poly-silicon material, using the coupling of three application modes (plane strain, electrostatics and the moving mesh) of COMSOL Multi-physics software. The cantilevers playing a key role in Micro Electro-Mechanical Systems (MEMS) devices (switches, resonators, etc) working under potential shock. This is why they require actuation under predetermined conditions, such as electrostatic force or inertial force. In this paper, we present mechanical behavior of a cantilever actuated by an electrostatic force. In addition to the simplification of calculations, the weight of the cantilever was not taken intomore » account. Different parameters like beam displacement, electrostatics force and stress over the beam have been calculated by finite element method after having defining the geometry, the material of the cantilever model (fixed at one of ends but is free to move otherwise) and his operational space.« less
Xu, Jingyang; Zhang, Ziyuan; Zheng, Xiaochun; Bond, John W
2017-05-01
Visualization of latent fingerprints on metallic surfaces by the method of applying electrostatic charging and adsorption is considered as a promising chemical-free method, which has the merit of nondestruction, and is considered to be effective for some difficult situations such as aged fingerprint deposits or those exposed to environmental extremes. In fact, a portable electrostatic generator can be easily accessible in a local forensic technology laboratory, which is already widely used in the visualization of footwear impressions. In this study, a modified version of this electrostatic apparatus is proposed for latent fingerprint development and has shown great potential in visualizing fingerprints on metallic surfaces such as cartridge cases. Results indicate that this experimental arrangement can successfully develop aged latent fingerprints on metal surfaces, and we demonstrate its effectiveness compared with existing conventional fingerprint recovery methods. © 2016 American Academy of Forensic Sciences.
Mineral-Enhanced Polyacrylic Acid Hydrogel as an Oyster-Inspired Organic-Inorganic Hybrid Adhesive.
Li, Ang; Jia, Yunfei; Sun, Shengtong; Xu, Yisheng; Minsky, Burcu Baykal; Stuart, M A Cohen; Cölfen, Helmut; von Klitzing, Regine; Guo, Xuhong
2018-03-28
Underwater adhesion is crucial to many marine life forms living a sedentary lifestyle. Amongst them, mussel adhesion has been mostly studied, which inspires numerous investigations of 3,4-dihydroxyphenylalanine (DOPA)-based organic adhesives. In contrast, reef-building oysters represent another important "inorganic" strategy of marine molluscs for adhesion by generating biomineralized organic-inorganic adhesives, which is still rarely studied and no synthetic analogues have ever been reported so far. Here, a novel type of oyster-inspired organic-inorganic adhesive based on a biomineralized polyelectrolyte hydrogel is reported, which consists of polyacrylic acid physically cross-linked by very small amorphous calcium carbonate nanoparticles (<3 nm). The mineral-enhanced polyelectrolyte hydrogel adhesive is shown to be injectable, reusable, and optically clear upon curing in air. Moreover, comparable adhesion performance to DOPA-based adhesives is found for the hydrogel adhesive in both dry and wet conditions, which can even be further enhanced by introducing a small amount of second large cross-linker such as negatively charged nanoparticles. The present mineral hydrogel represents a new type of bio-inspired organic-inorganic adhesive that may find a variety of potential applications in adhesive chemistry.
2013-04-26
versions of the self-etch adhesives on the market are one-step systems where the acidified primer and adhesive monomer are mixed together and placed in a...Figure 3 - Adhesive Classification B. Effects of Simplification at the Microscopic level Using restorative systems with simplified...bonding failures when self-cured “build-up” composites were bonded with simplified adhesive systems (Swift, 1999). They were alerted to potential
Adhesion properties of potentially probiotic Lactobacillus kefiri to gastrointestinal mucus.
Carasi, Paula; Ambrosis, Nicolás M; De Antoni, Graciela L; Bressollier, Philippe; Urdaci, María C; Serradell, María de los Angeles
2014-02-01
We investigated the mucus-binding properties of aggregating and non-aggregating potentially probiotic strains of kefir-isolated Lactobacillus kefiri, using different substrates. All the strains were able to adhere to commercial gastric mucin (MUCIN) and extracted mucus from small intestine (SIM) and colon (CM). The extraction of surface proteins from bacteria using LiCl or NaOH significantly reduced the adhesion of three selected strains (CIDCA 8348, CIDCA 83115 and JCM 5818); although a significant proportion (up to 50%) of S-layer proteins were not completely eliminated after treatments. The surface (S-layer) protein extracts from all the strains of Lb. kefiri were capable of binding to MUCIN, SIM or CM, and no differences were observed among them. The addition of their own surface protein extract increased adhesion of CIDCA 8348 and 83115 to MUCIN and SIM, meanwhile no changes in adhesion were observed for JCM 5818. None of the seven sugars tested had the ability to inhibit the adhesion of whole bacteria to the three mucus extracts. Noteworthy, the degree of bacterial adhesion reached in the presence of their own surface protein (S-layer) extract decreased to basal levels in the presence of some sugars, suggesting an interaction between the added sugar and the surface proteins. In conclusion, the ability of these food-isolated bacteria to adhere to gastrointestinal mucus becomes an essential issue regarding the biotechnological potentiality of Lb. kefiri for the food industry.
Infrasound pulses from lightning and electrostatic field changes: Observation and discussion
NASA Astrophysics Data System (ADS)
Chum, J.; Diendorfer, G.; Å indelářová, T.; Baše, J.; Hruška, F.
2013-10-01
Narrow (~1-2 s) infrasound pulses that followed, with ~11 to ~50 s delays, rapid changes of electrostatic field were observed by a microbarometer array in the Czech Republic during thunderstorm activity. A positive pressure fluctuation (compression phase) always preceded decompression; the compression was usually higher than the decompression. The angles of arrival (azimuth and elevation) were analyzed for selected distinct events. Comparisons of distances and azimuths of infrasound sources from the center of microbarometer array with lightning locations determined by the European Cooperation for Lighting Detection lightning detection network show that most of the selected events can be very likely associated with intracloud (IC) discharges. The preceding rapid changes of electrostatic field, their potential association with IC discharges, and high-elevation angles of arrival for near infrasound sources indicate that an electrostatic mechanism is probably responsible for their generation. It is discussed that distinguishing the relative role of thermal and electrostatic mechanism is difficult and that none of the published models of electrostatic production of infrasound thunder can explain the presented observations precisely. A modification of the current models, based on consideration of at least two charged layers, is suggested. Further theoretical and experimental investigations are however needed to get a better description of the generation mechanism.
Quantum mechanical fragment methods based on partitioning atoms or partitioning coordinates.
Wang, Bo; Yang, Ke R; Xu, Xuefei; Isegawa, Miho; Leverentz, Hannah R; Truhlar, Donald G
2014-09-16
Conspectus The development of more efficient and more accurate ways to represent reactive potential energy surfaces is a requirement for extending the simulation of large systems to more complex systems, longer-time dynamical processes, and more complete statistical mechanical sampling. One way to treat large systems is by direct dynamics fragment methods. Another way is by fitting system-specific analytic potential energy functions with methods adapted to large systems. Here we consider both approaches. First we consider three fragment methods that allow a given monomer to appear in more than one fragment. The first two approaches are the electrostatically embedded many-body (EE-MB) expansion and the electrostatically embedded many-body expansion of the correlation energy (EE-MB-CE), which we have shown to yield quite accurate results even when one restricts the calculations to include only electrostatically embedded dimers. The third fragment method is the electrostatically embedded molecular tailoring approach (EE-MTA), which is more flexible than EE-MB and EE-MB-CE. We show that electrostatic embedding greatly improves the accuracy of these approaches compared with the original unembedded approaches. Quantum mechanical fragment methods share with combined quantum mechanical/molecular mechanical (QM/MM) methods the need to treat a quantum mechanical fragment in the presence of the rest of the system, which is especially challenging for those parts of the rest of the system that are close to the boundary of the quantum mechanical fragment. This is a delicate matter even for fragments that are not covalently bonded to the rest of the system, but it becomes even more difficult when the boundary of the quantum mechanical fragment cuts a bond. We have developed a suite of methods for more realistically treating interactions across such boundaries. These methods include redistributing and balancing the external partial atomic charges and the use of tuned fluorine atoms for capping dangling bonds, and we have shown that they can greatly improve the accuracy. Finally we present a new approach that goes beyond QM/MM by combining the convenience of molecular mechanics with the accuracy of fitting a potential function to electronic structure calculations on a specific system. To make the latter practical for systems with a large number of degrees of freedom, we developed a method to interpolate between local internal-coordinate fits to the potential energy. A key issue for the application to large systems is that rather than assigning the atoms or monomers to fragments, we assign the internal coordinates to reaction, secondary, and tertiary sets. Thus, we make a partition in coordinate space rather than atom space. Fits to the local dependence of the potential energy on tertiary coordinates are arrayed along a preselected reaction coordinate at a sequence of geometries called anchor points; the potential energy function is called an anchor points reactive potential. Electrostatically embedded fragment methods and the anchor points reactive potential, because they are based on treating an entire system by quantum mechanical electronic structure methods but are affordable for large and complex systems, have the potential to open new areas for accurate simulations where combined QM/MM methods are inadequate.
Functionally Graded Adhesives for Composite Joints
NASA Technical Reports Server (NTRS)
Stapleton, Scott E.; Waas, Anthony M.; Arnold, Steven M.
2012-01-01
Adhesives with functionally graded material properties are being considered for use in adhesively bonded joints to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. An enhanced joint finite element, which uses an analytical formulation to obtain exact shape functions, is used to model the joint. Furthermore, proof of concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint.
Xu Zhou, Ke; Li, Nan; Christie, Graham
2017-01-01
Abstract The adhesion of spores of 3 Bacillus species with distinctive morphologies to stainless steel and borosilicate glass was studied using the fluid dynamic gauging technique. Marked differences were observed between different species of spores, and also between spores of the same species prepared under different sporulation conditions. Spores of the food‐borne pathogen B. cereus were demonstrated to be capable of withstanding shear stresses greater than 1500 Pa when adhered to stainless steel, in contrast to spores of Bacillus subtilis and Bacillus megaterium, which detached in response to lower shear stress. An extended DLVO model was shown to be capable of predicting the relative differences in spore adhesion between spores of different species and different culture conditions, but did not predict absolute values of force of adhesion well. Applying the model to germinating spores showed a significant reduction in adhesion force shortly after triggering germination, indicating a potential strategy to achieve enhanced removal of spores from surfaces in response to shear stress, such as during cleaning‐in‐place procedures. Practical Application Spore‐forming bacteria are a concern to the food industry because they have the potential to cause food‐borne illness and product spoilage, while being strongly adhesive to processing surfaces and resistant to cleaning‐in‐place procedures. This work is of significance to the food processors and manufacturers because it offers insight to the properties of spore adhesion and identifies a potential strategy to facilitate the removal of spores during cleaning procedures. PMID:29125641
Wang, Wei; Huang, Xiao-Jun; Cao, Jian-Da; Lan, Ping; Wu, Wen
2014-01-01
A novel method for the immobilization of sodium alginate sulfates (SAS) on polysulfone (PSu) ultrafiltration membranes to achieve selective adsorption of low-density lipoprotein (LDL) was developed, which involved the photoinduced graft polymerization of acrylamide on the membrane and the Hofmann rearrangement reaction of grafted acrylamide followed by chemical binding of SAS with glutaraldehyde. The surface modification processes were confirmed by attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy characterization. Zeta potential and water contact angle measurements were performed to investigate the surface charge and wettability of the membranes. An enzyme-linked immunosorbent assay was used to measure the binding of LDL on plain and modified PSu membranes. It was found that the PSu membrane immobilized with sodium alginate sulfates (PSu-SAS) greatly enhanced the selective adsorption of LDL from protein solutions and the absorbed LDL could be easily eluted with sodium chloride solution, indicating a specific and reversible binding of LDL to SAS, mainly driven by electrostatic forces. Furthermore, the PSu-SAS membrane showed good blood compatibility as examined by platelet adhesion. The results suggest that the PSu-SAS membranes are promising for application in simultaneous hemodialysis and LDL apheresis therapy. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Bozek, Katarzyna; Nakayama, Emi E; Kono, Ken; Shioda, Tatsuo
2012-01-01
Human immunodeficiency virus type 2 (HIV-2) and simian immunodeficiency virus isolated from a macaque monkey (SIVmac) are assumed to have originated from simian immunodeficiency virus isolated from sooty mangabey (SIVsm). Despite their close similarity in genome structure, HIV-2 and SIVmac show different sensitivities to TRIM5α, a host restriction factor against retroviruses. The replication of HIV-2 strains is potently restricted by rhesus (Rh) monkey TRIM5α, while that of SIVmac strain 239 (SIVmac239) is not. Viral capsid protein is the determinant of this differential sensitivity to TRIM5α, as the HIV-2 mutant carrying SIVmac239 capsid protein evaded Rh TRIM5α-mediated restriction. However, the molecular determinants of this restriction mechanism are unknown. Electrostatic potential on the protein-binding site is one of the properties regulating protein-protein interactions. In this study, we investigated the electrostatic potential on the interaction surface of capsid protein of HIV-2 strain GH123 and SIVmac239. Although HIV-2 GH123 and SIVmac239 capsid proteins share more than 87% amino acid identity, we observed a large difference between the two molecules with the HIV-2 GH123 molecule having predominantly positive and SIVmac239 predominantly negative electrostatic potential on the surface of the loop between α-helices 4 and 5 (L4/5). As L4/5 is one of the major determinants of Rh TRIM5α sensitivity of these viruses, the present results suggest that the binding site of the Rh TRIM5α may show complementarity to the HIV-2 GH123 capsid surface charge distribution.
Dietrich, Arne; Bouzidi, Maria; Hartwig, Thomas; Schütz, Alexander; Jonas, Sven
2012-06-01
Rapamycin, an immunosuppressive in transplant surgery, has an additional antiproliferative effect. The aim of this study was to investigate the potential protective effects of rapamycin on postoperative adhesion development. Ten rats per group underwent midline incision laparotomy and adhesion induction including bowel sutures. Therapy groups received daily intraperitoneal rapamycin injections (1.5 mg/kg body weight) for 3 weeks postoperatively. Controls were rats without any postoperative treatment, rats receiving the rapamycin solvent or a hyaluronic acid-carboxymethylcellulose membrane (Seprafilm(™)). Postoperative rapamycin application led to enhanced adhesion development and there was a higher rate of wound infections. In addition, Seprafilm(™) did not reduce adhesions, in subgroups there were even more. Rapamycin is not recommendable for perioperative immunosuppression, it enhances adhesion development and leads to a higher rate of wound infections. Surprisingly, the established Seprafilm(™) membrane led to more adhesions in our experimental setting.
Eichhorn, Tanja; Rauscher, Sabine; Hammer, Caroline; Gröger, Marion; Fischer, Michael B; Weber, Viktoria
2016-10-01
Endothelial activation with excessive recruitment and adhesion of immune cells plays a central role in the progression of sepsis. We established a microfluidic system to study the activation of human umbilical vein endothelial cells by conditioned medium containing plasma from lipopolysaccharide-stimulated whole blood or from septic blood and to investigate the effect of adsorption of inflammatory mediators on endothelial activation. Treatment of stimulated whole blood with polystyrene-divinylbenzene-based cytokine adsorbents (average pore sizes 15 or 30 nm) prior to passage over the endothelial layer resulted in significantly reduced endothelial cytokine and chemokine release, plasminogen activator inhibitor-1 secretion, adhesion molecule expression, and in diminished monocyte adhesion. Plasma samples from sepsis patients differed substantially in their potential to induce endothelial activation and monocyte adhesion despite their almost identical interleukin-6 and tumor necrosis factor-alpha levels. Pre-incubation of the plasma samples with a polystyrene-divinylbenzene-based adsorbent (30 nm average pore size) reduced endothelial intercellular adhesion molecule-1 expression to baseline levels, resulting in significantly diminished monocyte adhesion. Our data support the potential of porous polystyrene-divinylbenzene-based adsorbents to reduce endothelial activation under septic conditions by depletion of a broad range of inflammatory mediators.
Nanopatterning of steel by one-step anodization for anti-adhesion of bacteria.
Chen, Shiqiang; Li, Yuan; Cheng, Y Frank
2017-07-13
Surface nanopatterning of metals has been an effective technique for improved performance and functionalization. However, it is of great challenge to fabricate nanostructure on carbon steels despite their extensive use and urgent needs to maintain the performance reliability and durability. Here, we report a one-step anodization technique to nanopattern a carbon steel in 50 wt.% NaOH solution for highly effective anti-adhesion by sulphate reducing bacteria (SRB), i.e., Desulfovibrio desulfuricans subsp. desulfuricans (Beijerinck) Kluyver and van Niel. We characterize the morphology, structure, composition, and surface roughness of the nanostructured film formed on the steel as a function of anodizing potential. We quantify the surface hydrophobicity by contact angle measurements, and the SRB adhesion by fluorescent analysis. The optimal anodization potential of 2.0 V is determined for the best performance of anti-adhesion of SRB to the steel, resulting in a 23.5 times of reduction of SRB adhesion compared to bare steel. We discuss the mechanisms for the film formation on the steel during anodization, and the high-performance anti-adhesion of bacteria to nanopatterned steels. Our technique is simple, cost-effective and environment-friendly, providing a promising alternative for industry-scale surface nanopatterning of carbon steels for effective controlling of bacterial adhesion.
Improved metal-adhesive polymers from copper(I)-catalyzed azide-alkyne cycloaddition.
Accurso, Adrian A; Delaney, Mac; O'Brien, Jeff; Kim, Hyonny; Iovine, Peter M; Díaz Díaz, David; Finn, M G
2014-08-18
Electrically conductive adhesive polymers offer many potential advantages relative to Sn-Pb solders, including reduced toxicity, low cost, low processing temperatures, and the ability to make application-specific formulations. Polymers generated from the copper(I)-catalyzed cycloaddition (CuAAC) reaction between multivalent azides and alkynes have previously been identified as strong metal-binding adhesives. Herein we demonstrate that the performance of these materials can be remarkably improved by the incorporation of a flexibility-inducing difunctionalized component and a tertiary amine additive in optimized concentrations. The best formulations were identified by means of rapid adhesion testing of a library of potential candidates by using a custom-built instrument and validated in an American Society for Testing and Materials (ASTM)-standard lap-shear test. Characteristic phase transitions were identified by differential scanning calorimetry (DSC) for adhesives with and without the additives as a function of curing temperature. The incorporation of flexible components was found to more than double the strength of the adhesive. Moreover, the adhesive was made electrically conductive by the inclusion of 20 wt% silver-coated copper flakes and further improved in this regard by the incorporation of multiwalled carbon nanotubes in the formulation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electric Field Imaging Project
NASA Technical Reports Server (NTRS)
Wilcutt, Terrence; Hughitt, Brian; Burke, Eric; Generazio, Edward
2016-01-01
NDE historically has focused technology development in propagating wave phenomena with little attention to the field of electrostatics and emanating electric fields. This work is intended to bring electrostatic imaging to the forefront of new inspection technologies, and new technologies in general. The specific goals are to specify the electric potential and electric field including the electric field spatial components emanating from, to, and throughout volumes containing objects or in free space.
Kamerlin, Shina C L; Haranczyk, Maciej; Warshel, Arieh
2009-02-05
Hybrid quantum mechanical/molecular mechanical (QM/MM) approaches have been used to provide a general scheme for chemical reactions in proteins. However, such approaches still present a major challenge to computational chemists, not only because of the need for very large computer time in order to evaluate the QM energy but also because of the need for proper computational sampling. This review focuses on the sampling issue in QM/MM evaluations of electrostatic energies in proteins. We chose this example since electrostatic energies play a major role in controlling the function of proteins and are key to the structure-function correlation of biological molecules. Thus, the correct treatment of electrostatics is essential for the accurate simulation of biological systems. Although we will be presenting different types of QM/MM calculations of electrostatic energies (and related properties) here, our focus will be on pKa calculations. This reflects the fact that pKa's of ionizable groups in proteins provide one of the most direct benchmarks for the accuracy of electrostatic models of macromolecules. While pKa calculations by semimacroscopic models have given reasonable results in many cases, existing attempts to perform pKa calculations using QM/MM-FEP have led to discrepancies between calculated and experimental values. In this work, we accelerate our QM/MM calculations using an updated mean charge distribution and a classical reference potential. We examine both a surface residue (Asp3) of the bovine pancreatic trypsin inhibitor and a residue buried in a hydrophobic pocket (Lys102) of the T4-lysozyme mutant. We demonstrate that, by using this approach, we are able to reproduce the relevant side chain pKa's with an accuracy of 3 kcal/mol. This is well within the 7 kcal/mol energy difference observed in studies of enzymatic catalysis, and is thus sufficient accuracy to determine the main contributions to the catalytic energies of enzymes. We also provide an overall perspective of the potential of QM/MM calculations in general evaluations of electrostatic free energies, pointing out that our approach should provide a very powerful and accurate tool to predict the electrostatics of not only solution but also enzymatic reactions, as well as the solvation free energies of even larger systems, such as nucleic acid bases incorporated into DNA.
Investigation of dust transport on the lunar surface in laboratory plasmas
NASA Astrophysics Data System (ADS)
Wang, X.; Horanyi, M.; Robertson, S. H.
2009-12-01
There has been much evidence indicating dust levitation and transport on or near the lunar surface. Dust mobilization is likely to be caused by electrostatic forces acting on small lunar dust particles that are charged by UV radiation and solar wind plasma. To learn about the basic physical process, we investigated the dynamics of dust grains on a conducting surface in laboratory plasmas. The first experiment was conducted with a dust pile (JSC-Mars-1) sitting on a negatively biased surface in plasma. The dust pile spread and formed a diffusing dust ring. Dust hopping was confirmed by noticing grains on protruding surfaces. The electrostatic potential distributions measured above the dust pile show an outward pointing electrostatic force and a non-monotonic sheath above the dust pile, indicating a localized upward electrostatic force responsible for lifting dust off the surface. The second experiment was conducted with a dust pile sitting on an electrically floating conducting surface in plasma with an electron beam. Potential measurements show a horizontal electric field at the dust/surface boundary and an enhanced vertical electric field in the sheath above the dust pile when the electron beam current is set to be comparable to the Bohm ion current. Secondary electrons emitted from the surfaces play an important role in this case.
NASA Astrophysics Data System (ADS)
Xu, Jun; Klimchitskaya, G. L.; Mostepanenko, V. M.; Mohideen, U.
2018-03-01
It is well known that residual electrostatic forces create significant difficulties in precise measurements of the Casimir force and the wide use of Casimir-operated microdevices. We experimentally demonstrate that, with the help of Ar-ion cleaning of the surfaces, it is possible to make electrostatic effects negligibly small compared to the Casimir interaction. Our experimental setup consists of a dynamic atomic force microscope supplemented with an Ar-ion gun and argon reservoir. The residual potential difference between the Au-coated surfaces of a sphere and those of a plate was measured both before and after in situ Ar-ion cleaning. It is shown that this cleaning decreases the magnitude of the residual potential by up to an order of magnitude and makes it almost independent of the separation. The gradient of the Casimir force was measured using ordinary samples subjected to Ar-ion cleaning. The obtained results are shown to be in good agreement both with previous precision measurements using specially selected samples and with theoretical predictions of the Lifshitz theory. The conclusion is made that the suggested method of in situ Ar-ion cleaning is effective in reducing the electrostatic effects and therefore is a great resource for experiments on measuring the Casimir interaction and for Casimir-operated microdevices.
Echinoderm adhesive secretions: from experimental characterization to biotechnological applications.
Flammang, P; Santos, R; Haesaerts, D
2005-01-01
Adhesion is a way of life in echinoderms. Indeed, all the species belonging to this phylum use adhesive secretions extensively for various vital functions. According to the species or to the developmental stage considered, different adhesive systems may be recognized. (1) The tube feet or podia are organs involved in attachment to the substratum, locomotion, feeding or burrowing. Their temporary adhesion relies on a duo-gland adhesive system resorting to both adhesive and de-adhesive secretions. (2) The larval adhesive organs allow temporary attachment of larvae during settlement and strong fixation during metamorphosis. (3) The Cuvierian tubules are sticky defence organs occurring in some holothuroid species. Their efficacy is based on the instantaneous release of a quick-setting adhesive. All these systems rely on different types of adhesion and therefore differ in the way they operate, in their structure and in the composition of their adhesive. In addition to fundamental interests in echinoderm bioadhesives, a substantial impetus behind understanding these adhesives are the potential technological applications that can be derived from their knowledge. These applications cover two broad fields of applied research: design of water-resistant adhesives and development of new antifouling strategies. In this context, echinoderm adhesives could offer novel features or performance characteristics for biotechnological applications. For example, the rapidly attaching adhesive of Cuvierian tubules, the releasable adhesive of tube feet or the powerful adhesive of asteroid larvae could each be useful to address particular bioadhesion problems.
Lilliu, S; Maragliano, C; Hampton, M; Elliott, M; Stefancich, M; Chiesa, M; Dahlem, M S; Macdonald, J E
2013-11-27
We report a simple technique for mapping Electrostatic Force Microscopy (EFM) bias sweep data into 2D images. The method allows simultaneous probing, in the same scanning area, of the contact potential difference and the second derivative of the capacitance between tip and sample, along with the height information. The only required equipment consists of a microscope with lift-mode EFM capable of phase shift detection. We designate this approach as Scanning Probe Potential Electrostatic Force Microscopy (SPP-EFM). An open-source MATLAB Graphical User Interface (GUI) for images acquisition, processing and analysis has been developed. The technique is tested with Indium Tin Oxide (ITO) and with poly(3-hexylthiophene) (P3HT) nanowires for organic transistor applications.
Precise energy eigenvalues of hydrogen-like ion moving in quantum plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, S.; Saha, Jayanta K.; Mukherjee, T. K.
2015-06-15
The analytic form of the electrostatic potential felt by a slowly moving test charge in quantum plasma is developed. It has been shown that the electrostatic potential is composed of two parts: the Debye-Huckel screening term and the near-field wake potential. The latter depends on the velocity of the test charge as well as on the number density of the plasma electrons. Rayleigh-Ritz variational calculation has been done to estimate precise energy eigenvalues of hydrogen-like carbon ion under such plasma environment. A detailed analysis shows that the energy levels gradually move to the continuum with increasing plasma electron density whilemore » the level crossing phenomenon has been observed with the variation of ion velocity.« less
Effects of turbulence on a kinetic auroral arc model
NASA Technical Reports Server (NTRS)
Cornwall, J. M.; Chiu, Y. T.
1981-01-01
A plasma kinetic model of an inverted-V auroral arc structure which includes the effects of electrostatic turbulence is proposed. In the absence of turbulence, a parallel potential drop is supported by magnetic mirror forces and charge quasi neutrality, with energetic auroral ions penetrating to low altitudes; relative to the electrons, the ions' pitch angle distribution is skewed toward smaller pitch angles. The electrons energized by the potential drop form a current which excites electrostatic turbulence. In equilibrium the plasma is marginally stable. The conventional anomalous resistivity contribution to the potential drop is very small. Anomalous resistivity processes are far too dissipative to be powered by auroral particles. It is concluded that under certain circumstances equilibrium may be impossible and relaxation oscillations set in.
Self focusing in a spatially modulated electrostatic field particle accelerator
NASA Astrophysics Data System (ADS)
Russman, F.; Marini, S.; Peter, E.; de Oliveira, G. I.; Rizzato, F. B.
2018-02-01
In the present analysis, we study the action of a three-dimensional (3D) modulated electrostatic wave over a charged particle. Meanwhile, the particle's velocity is smaller than the phase-velocity of the carrier, and the particle could be reflected by the potential or could pass through the potential with no significant change in the longitudinal velocity—and its dynamics could be described by a ponderomotive approximation. Otherwise, the particle is trapped by the potential and it is accelerated towards the speed of light, independently of the initial particle's phase—in this case, the ponderomotive approximation is no longer valid. During the acceleration process, numerical simulations show the particle is focused, simultaneously. These results suggest the accelerator proposed here is promising.
Analytic model of a laser-accelerated composite plasma target and its stability
NASA Astrophysics Data System (ADS)
Khudik, Vladimir; Shvets, Gennady
2013-10-01
A self-consistent analytical model of monoenergetic acceleration of a one and two-species ultrathin target irradiated by a circularly polarized laser pulse is developed. In the accelerated reference frame, the bulk plasma in the target is neutral and its parameters are assumed to be stationary. It is found that the structure of the target depends strongly on the temperatures of electrons and ions, which are both strongly influenced by the laser pulse pedestal. When the electron temperature is large, the hot electrons bounce back and forth inside the potential well formed by ponderomotive and electrostatic potentials while the heavy and light ions are forced-balanced by the electrostatic and non-inertial fields forming two separated layers. In the opposite limiting case when the ion temperature is large, the hot ions are trapped in the potential well formed by the ion-sheath's electric and non-inertial potentials while the cold electrons are forced-balanced by the electrostatic and ponderomotive fields. Using PIC simulations we have determined which scenario is realized in practice depending on the initial target structure and laser intensity. Target stability with respect to Rayleigh-Taylor instability will also be discussed. This work is supported by the US DOE grants DE-FG02-04ER41321 and DE-FG02-07ER54945.
2005-06-24
for an adhesion-active surface. 2.8.2 Dupre’s equation Let adhesive interaction between two bodies take place. Dupre’s equation defines the...connection between work of external forces on system of two bodies with adhesive interaction contact, the potential energies these bodies and the energy...Lagrangian of system of two bodies with adhesion interaction is equal half of work of external forces enclosed to this system” With the help of
NASA Technical Reports Server (NTRS)
Connell, John W.
2004-01-01
PETI-5 (1250 and 2500 g/mole) were prepared and characterized. Neat resin, adhesive and composite properties were determined and compared with those of PETI-5 (5000 g/mole). Relative to PETI-5 (5000 g/mole), PETI-5 (2500 g/mole) exhibited improved processability and equivalency in the adhesive and composite properties measured thus far. This resin, in both adhesive film and prepreg form, has the potential to offer significant improvements in the processing of complex structural composite parts.
Role of electrostatic interactions during protein ultrafiltration.
Rohani, Mahsa M; Zydney, Andrew L
2010-10-15
A number of studies over the last decade have clearly demonstrated the importance of electrostatic interactions on the transport of charged proteins through semipermeable ultrafiltration membranes. This paper provides a review of recent developments in this field with a focus on the role of both protein and membrane charge on the rate of protein transport. Experimental results are analyzed using available theoretical models developed from the solution of the Poisson-Boltzmann equation for the partitioning of a charged particle into a charged pore. The potential of exploiting these electrostatic interactions for selective protein separations and for the development of ultrafiltration membranes with enhanced performance characteristics is also examined. Copyright © 2010 Elsevier B.V. All rights reserved.
Inertial-Electrostatic Confinement (IEC) Fusion for Space Propulsion
NASA Technical Reports Server (NTRS)
Nadler, Jon
1999-01-01
An Inertial-Electrostatic Confinement (IEC) device was assembled at the Marshall Space Flight Center (MSFC) Propulsion Research Center (PRC) to study the possibility of using EEC technology for deep space propulsion and power. Inertial-Electrostatic Confinement is capable of containing a nuclear fusion plasma in a series of virtual potential wells. These wells would substantially increase plasma confinement, possibly leading towards a high-gain, breakthrough fusion device. A one-foot in diameter IEC vessel was borrowed from the Fusion Studies Laboratory at the University of Illinois@Urbana-Champaign for the summer. This device was used in initial parameterization studies in order to design a larger, actively cooled device for permanent use at the PRC.
Inertial-Electrostatic Confinement (IEC) Fusion For Space Propulsion
NASA Technical Reports Server (NTRS)
Nadler, Jon
1999-01-01
An Inertial-Electrostatic Confinement (IEC) device was assembled at the Marshall Space Flight Center (MSFC) Propulsion Research Center (PRC) to study the possibility of using IEC technology for deep space propulsion and power. Inertial-Electrostatic Confinement is capable of containing a nuclear fusion plasma in a series of virtual potential wells. These wells would substantially increase plasma confinement, possibly leading towards a high-gain, breakthrough fusion device. A one-foot in diameter IEC vessel was borrowed from the Fusion Studies Laboratory at the University of Illinois @ Urbana-Champaign for the summer. This device was used in initial parameterization studies in order to design a larger, actively cooled device for permanent use at the PRC.
In-vitro transdentinal diffusion of monomers from adhesives.
Putzeys, Eveline; Duca, Radu Corneliu; Coppens, Lieve; Vanoirbeek, Jeroen; Godderis, Lode; Van Meerbeek, Bart; Van Landuyt, Kirsten L
2018-06-01
Biocompatibility of adhesives is important since adhesives may be applied on dentin near the pulp. Accurate knowledge of the quantity of monomers reaching the pulp is important to determine potential side effects. The aim of this study was to assess the transdentinal diffusion of residual monomers from dental adhesive systems using an in-vitro pulp chamber model. Dentin disks with a thickness of 300 µm were produced from human third molars. These disks were fixed between two open-ended glass tubes, representing an in-vitro pulp chamber. The etch-and-rinse adhesive OptiBond FL and the self-etch adhesive Clearfil SE Bond were applied to the dentin side of the disks, while on in the pulpal side, the glass tube was filled with 600 µL water. The transdentinal diffusion of different monomers was quantified using ultra-performance liquid chromatography-tandem mass spectrometry. The monomers HEMA, CQ, BisGMA, GPDM, 10-MDP and UDMA eluted from the dental materials and were able to diffuse through the dentin disks to a certain extent. Compounds with a lower molecular weight (uncured group: HEMA 7850 nmol and CQ 78.2 nmol) were more likely to elute and diffuse compared to monomers with a higher molecular weight (uncured group: BisGMA 0.42 nmol). When the adhesives were left uncured, diffusion was up to 10 times higher compared to the cured conditions. This in-vitro research resulted in the quantification of various monomers able to diffuse through dentin and therefore contributes to a more detailed understanding about the potential exposure of the dental pulp to monomers from dental adhesives. Biocompatibility of adhesives is important since adhesives may be applied on dentin near the pulp, where tubular density and diameter are greatest. Copyright © 2018. Published by Elsevier Ltd.
Preparation and evaluation of polysaccharide sulfates for inhibiting Helicobacter pylori adhesion.
Song, Weijuan; Wang, Yalong; Zhang, Liyan; Fu, Shengnan; Zeng, Ying; Hu, Haiyan
2014-03-15
In treatments of Helicobacter pylori infections, recrudescences were common because of an unfavorable bacterial eradication rate due to the ever increasing resistance to antibiotics. In this study, we chose pectin, guar gum and chitosan to synthesize their sulfates to inhibit adhesions of H. pylori and thus enhance the eradication rate. The introduction of sulfates was characterized using FT-IR and elemental analysis. Data from zeta-potential, hydrodynamic diameter, hydrolysis and rheological property demonstrated the sulfates were physicochemically stable. Inhibition assay of hemagglutination and adhesion indicated sulfates prevented H. pylori from adhering to erythrocytes and AGS cells. In binding assay, affinities of sulfates to H. pylori suggested sulfates could compete with target cells for bacteria and moderated the bacterial adhesion to hosts. A higher content of galactoses and 2,3-O-linked sulfates benefited this action. Thus polysaccharide sulfates can serve as potential adjuvants to raise the bacterial eradication rate by inhibiting adhesions of H. pylori. Copyright © 2013 Elsevier Ltd. All rights reserved.
Baltoumas, Fotis A; Theodoropoulou, Margarita C; Hamodrakas, Stavros J
2013-06-01
G-protein coupled receptors (GPCRs) are one of the largest families of membrane receptors in eukaryotes. Heterotrimeric G-proteins, composed of α, β and γ subunits, are important molecular switches in the mediation of GPCR signaling. Receptor stimulation after the binding of a suitable ligand leads to G-protein heterotrimer activation and dissociation into the Gα subunit and Gβγ heterodimer. These subunits then interact with a large number of effectors, leading to several cell responses. We studied the interactions between Gα subunits and their binding partners, using information from structural, mutagenesis and Bioinformatics studies, and conducted a series of comparisons of sequence, structure, electrostatic properties and intermolecular energies among different Gα families and subfamilies. We identified a number of Gα surfaces that may, in several occasions, participate in interactions with receptors as well as effectors. The study of Gα interacting surfaces in terms of sequence, structure and electrostatic potential reveals features that may account for the Gα subunit's behavior towards its interacting partners. The electrostatic properties of the Gα subunits, which in some cases differ greatly not only between families but also between subfamilies, as well as the G-protein interacting surfaces of effectors and regulators of G-protein signaling (RGS) suggest that electrostatic complementarity may be an important factor in G-protein interactions. Energy calculations also support this notion. This information may be useful in future studies of G-protein interactions with GPCRs and effectors. Copyright © 2013 Elsevier Inc. All rights reserved.
Kleinberger, Rachelle M; Burke, Nicholas A D; Zhou, Christal; Stöver, Harald D H
2016-01-01
A series of polycations prepared by RAFT copolymerization of N-(3-aminopropyl)methacrylamide hydrochloride (APM) and N-(2-hydroxypropyl)methacrylamide, with molecular weights of 15 and 40 kDa, and APM content of 10-75 mol%, were tested as building blocks for electrostatically assembled hydrogels such as those used for cell encapsulation. Complexation and distribution of these copolymers within anionic calcium alginate gels, as well as cytotoxicity, cell attachment, and cell proliferation on surfaces grafted with the copolymers were found to depend on composition and molecular weight. Copolymers with lower cationic charge density and lower molecular weight showed less cytotoxicity and cell adhesion, and were more mobile within alginate gels. These findings aid in designing improved polyelectrolyte complexes for use as biomaterials.
Electrostatic interactions among hydrophobic ions in lipid bilayer membranes.
Andersen, O S; Feldberg, S; Nakadomari, H; Levy, S; McLaughlin, S
1978-01-01
We have shown that the absorption of tetraphenylborate into black lipid membranes formed from either bacterial phosphatidylethanolamine or glycerolmonooleate produces concentration-dependent changes in the electrostatic potential between the membrane interior and the bulk aqueous phases. These potential changes were studied by a variety of techniques: voltage clamp, charge pulse, and "probe" measurements on black lipid membranes; electrophroetic mobility measurements on phospholipid vesicles; and surface potential measurements on phospholipid monolayers. The magnitude of the potential changes indicates that tetraphenylborate absorbs into a region of the membrane with a low dielectric constant, where it produces substantial boundary potentials, as first suggested by Markin et al. (1971). Many features of our data can be explained by a simple three-capacitor model, which we develop in a self-consistent manner. Some discrepancies between our data and the simple model suggest that discrete charge phenomena may be important within these thin membranes. PMID:620077
Randall, David; Joosten, Frank; ten Broek, Richard; Gillott, Richard; Bardhan, Karna Dev; Strik, Chema; Prins, Wiesje; van Goor, Harry; Fenner, John
2017-07-14
A non-invasive diagnostic technique for abdominal adhesions is not currently available. Capture of abdominal motion due to respiration in cine-MRI has shown promise, but is difficult to interpret. This article explores the value of a complimentary diagnostic aid to facilitate the non-invasive detection of abdominal adhesions using cine-MRI. An image processing technique was developed to quantify the amount of sliding that occurs between the organs of the abdomen and the abdominal wall in sagittal cine-MRI slices. The technique produces a 'sheargram' which depicts the amount of sliding which has occurred over 1-3 respiratory cycles. A retrospective cohort of 52 patients, scanned for suspected adhesions, made 281 cine-MRI sagittal slices available for processing. The resulting sheargrams were reported by two operators and compared to expert clinical judgement of the cine-MRI scans. The sheargram matched clinical judgement in 84% of all sagittal slices and 93-96% of positive adhesions were identified on the sheargram. The sheargram displayed a slight skew towards sensitivity over specificity, with a high positive adhesion detection rate but at the expense of false positives. Good correlation between sheargram and absence/presence of inferred adhesions indicates quantification of sliding motion has potential to aid adhesion detection in cine-MRI. Advances in Knowledge: This is the first attempt to clinically evaluate a novel image processing technique quantifying the sliding motion of the abdominal contents against the abdominal wall. The results of this pilot study reveal its potential as a diagnostic aid for detection of abdominal adhesions.
Diller, David J
2017-01-10
Here we present a new method for point charge calculation which we call Q ET (charges by electron transfer). The intent of this work is to develop a method that can be useful for studying charge transfer in large biological systems. It is based on the intuitive framework of the Q EQ method with the key difference being that the Q ET method tracks all pairwise electron transfers by augmenting the Q EQ pseudoenergy function with a distance dependent cost function for each electron transfer. This approach solves the key limitation of the Q EQ method which is its handling of formally charged groups. First, we parametrize the Q ET method by fitting to electrostatic potentials calculated using ab initio quantum mechanics on over 11,000 small molecules. On an external test set of over 2500 small molecules the Q ET method achieves a mean absolute error of 1.37 kcal/mol/electron when compared to the ab initio electrostatic potentials. Second, we examine the conformational dependence of the charges on over 2700 tripeptides. With the tripeptide data set, we show that the conformational effects account for approximately 0.4 kcal/mol/electron on the electrostatic potentials. Third, we test the Q ET method for its ability to reproduce the effects of polarization and electron transfer on 1000 water clusters. For the water clusters, we show that the Q ET method captures about 50% of the polarization and electron transfer effects. Finally, we examine the effects of electron transfer and polarizability on the electrostatic interaction between p38 and 94 small molecule ligands. When used in conjunction with the Generalized-Born continuum solvent model, polarization and electron transfer with the Q ET model lead to an average change of 17 kcal/mol on the calculated electrostatic component of ΔG.
Adhesion Potential of Intestinal Microbes Predicted by Physico-Chemical Characterization Methods
Niederberger, Tobias; Fischer, Peter; Rühs, Patrick Alberto
2015-01-01
Bacterial adhesion to epithelial surfaces affects retention time in the human gastro-intestinal tract and therefore significantly contributes to interactions between bacteria and their hosts. Bacterial adhesion among other factors is strongly influenced by physico-chemical factors. The accurate quantification of these physico-chemical factors in adhesion is however limited by the available measuring techniques. We evaluated surface charge, interfacial rheology and tensiometry (interfacial tension) as novel approaches to quantify these interactions and evaluated their biological significance via an adhesion assay using intestinal epithelial surface molecules (IESM) for a set of model organisms present in the human gastrointestinal tract. Strain pairs of Lactobacillus plantarum WCFS1 with its sortase knockout mutant Lb. plantarum NZ7114 and Lb. rhamnosus GG with Lb. rhamnosus DSM 20021T were used with Enterococcus faecalis JH2-2 as control organism. Intra-species comparison revealed significantly higher abilities for Lb. plantarum WCSF1 and Lb. rhamnosus GG vs. Lb. plantarum NZ7114 and Lb. rhamnosus DSM 20021T to dynamically increase interfacial elasticity (10−2 vs. 10−3 Pa*m) and reduce interfacial tension (32 vs. 38 mN/m). This further correlated for Lb. plantarum WCSF1 and Lb. rhamnosus GG vs. Lb. plantarum NZ7114 and Lb. rhamnosus DSM 20021T with the decrease of relative hydrophobicity (80–85% vs. 57–63%), Zeta potential (-2.9 to -4.5 mV vs. -8.0 to -13.8 mV) and higher relative adhesion capacity to IESM (3.0–5.0 vs 1.5–2.2). Highest adhesion to the IESM collagen I and fibronectin was found for Lb. plantarum WCFS1 (5.0) and E. faecalis JH2-2 (4.2) whereas Lb. rhamnosus GG showed highest adhesion to type II mucus (3.8). Significantly reduced adhesion (2 fold) to the tested IESM was observed for Lb. plantarum NZ7114 and Lb. rhamnosus DSM 20021T corresponding with lower relative hydrophobicity, Zeta potential and abilities to modify interfacial elasticity and tension. Conclusively, the use of Zeta potential, interfacial elasticity and interfacial tension are proposed as suitable novel descriptive and predictive parameters to study the interactions of intestinal microbes with their hosts. PMID:26295945
NASA Astrophysics Data System (ADS)
Song, Yuxin; Wang, Cong; Dong, Xinran; Yin, Kai; Zhang, Fan; Xie, Zheng; Chu, Dongkai; Duan, Ji'an
2018-06-01
In this study, a facile and detailed strategy to fabricate superhydrophobic aluminum surfaces with controllable adhesion by femtosecond laser ablation is presented. The influences of key femtosecond laser processing parameters including the scanning speed, laser power and interval on the wetting properties of the laser-ablated surfaces are investigated. It is demonstrated that the adhesion between water and superhydrophobic surface can be effectively tuned from extremely low adhesion to high adhesion by adjusting laser processing parameters. At the same time, the mechanism is discussed for the changes of the wetting behaviors of the laser-ablated surfaces. These superhydrophobic surfaces with tunable adhesion have many potential applications, such as self-cleaning surface, oil-water separation, anti-icing surface and liquid transportation.
Celebioglu, Hasan Ufuk; Olesen, Sita Vaag; Prehn, Kennie; Lahtinen, Sampo J; Brix, Susanne; Abou Hachem, Maher; Svensson, Birte
2017-06-23
Adhesion to intestinal mucosa is a crucial property for probiotic bacteria. Adhesion is thought to increase host-bacterial interactions, thus potentially enabling health benefits to the host. Molecular events connected with adhesion and surface proteome changes were investigated for the probiotic Lactobacillus acidophilus NCFM cultured with established or emerging prebiotic carbohydrates as carbon source and in the presence of mucin, the glycoprotein of the epithelial mucus layer. Variation in adhesion to HT29-cells and mucin was associated with carbon source and mucin-induced subproteome abundancy differences. Specifically, while growth on fructooligosaccharides (FOS) only stimulated adhesion to intestinal HT-29 cells, cellobiose and polydextrose in addition increased adhesion to mucin. Adhesion to HT-29 cells increased by about 2-fold for bacteria grown on mucin-supplemented glucose. Comparative 2DE-MS surface proteome analysis showed different proteins in energy metabolism appearing on the surface, suggesting they exert moonlighting functions. Mucin-supplemented bacteria had relative abundance of pyruvate kinase and fructose-bisphosphate aldolase increased by about 2-fold while six spots with 3.2-2.1 fold reduced relative abundance comprised elongation factor G, phosphoglycerate kinase, BipAEFTU family GTP-binding protein, ribonucleoside triphosphate reductase, adenylosuccinate synthetase, 30S ribosomal protein S1, and manganese-dependent inorganic pyrophosphatase. Surface proteome of cellobiose- compared to glucose-grown L. acidophilus NCFM had phosphate starvation inducible protein stress-related, thermostable pullulanase, and elongation factor G increasing 4.4-2.4 fold, while GAPDH, elongation factor Ts, and pyruvate kinase were reduced by 2.0-1.5 fold in relative abundance. Addition of recombinant L. acidophilus NCFM elongation factor G and pyruvate kinase to a coated mucin layer significantly suppressed subsequent adhesion of the bacterium. Human diet is important for intestinal health and food components, especially non-digestible carbohydrates can beneficially modify the microbiota. In the present study, effects of emerging and established prebiotic carbohydrates on the probiotic potential of Lactobacillus acidophilus NCFM were investigated by testing adhesion to a mucin layer and intestinal cells, and comparing this with changes in abundancy of surface proteins thought to be important for host interactions. Increased adhesion was observed following culturing of the bacterium with fructooligosaccharides, cellobiose or polydextrose, as well as mucin-supplemented glucose as carbon source. Enhanced adhesion ability can prolong bacterial residence in GIT yielding positive health effects. Higher relative abundance of certain surface proteins under various conditions (i.e. grown on cellobiose or mucin-supplemented glucose) suggested involvement of these proteins in adhesion, as confirmed by competition in case of two recombinantly produced moonlighting proteins. Combination of Lactobacillus acidophilus NCFM with different carbohydrates revealed potential bacterial determinants of synbiotic interactions, including stimulation of adhesion. Copyright © 2017 Elsevier B.V. All rights reserved.
Prevention of adhesion bands by ibuprofen-loaded PLGA nanofibers.
Jamshidi-Adegani, Fatemeh; Seyedjafari, Ehsan; Gheibi, Nematollah; Soleimani, Masoud; Sahmani, Mehdi
2016-07-08
In this study, prevention of the adhesion bands and inflammatory features has been investigated using poly (lactic-co-glycolic acid)-ibuprofen (PLGA-IB) nanofibrous meshes in a mice model. To find the optimized membrane for prevention of postoperative adhesion bands, we have compared PLGA-IB group with PLGA, IB, and control groups in a mice adhesion model. Two scoring adhesion systems were used to represent the outcome. According to the results obtained in this study, the PLGA-IB nanofiber membrane showed a greater reduction in adhesion band than other groups. In conclusion, among FDA-approved polymers and drugs, PLGA-IB meshes could be applicable as a potential candidate for prevention of postoperative abdominal inflammation and adhesion bands formation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:990-997, 2016. © 2016 American Institute of Chemical Engineers.
Back, Ja Hoon; Cho, Wan Jin; Kim, Jun Ho; Park, Il Kyu; Kwon, Sung Won
2016-04-01
Postsurgical adhesion formation is a concern in every field of surgery. We evaluated the efficacy of hyaluronic acid/sodium alginate-based microparticle anti-adhesive agents (MP) for the prevention of postsurgical adhesion formation in a standardized rabbit model. To evaluate the anti-adhesion effect, a uterus-abdominal wall abrasion model was created in rabbits. On the surface of the injured uterus, an anti-adhesive agent, Interceed(®) or MP, was applied (positive control and study groups, respectively; n = 10 each). In another group of 10 animals, neither agent was applied (negative control group). The adhesion levels were graded 3 weeks after surgery. Acute and chronic toxicity was also evaluated. The grade of adhesion was significantly lower in the MP group than in the negative control and positive control groups. No evidence of acute or chronic toxicity induced by this material was found in blood and tissue analysis. MP shows potential as an effective novel type of resorbable biomaterial to reduce postoperative adhesion. The easy placement and handling of this material make the MP powder attractive as a tissue adhesion barrier.
Real-Space Multiple-Scattering Theory and Its Applications at Exascale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisenbach, Markus; Wang, Yang
In recent decades, the ab initio methods based on density functional theory (DFT) (Hohenberg and Kohn 1964, Kohn and Sham 1965) have become a widely used tool in computational materials science, which allows theoretical prediction of physical properties of materials from the first principles and theoretical interpretation of new physical phenomena found in experiments. In the framework of DFT, the original problem that requires solving a quantum mechanical equation for a many-electron system is reduced to a one-electron problem that involves an electron moving in an effective field, while the effective field potential is made up of an electrostatic potential,more » also known as Hartree potential, arising from the electronic and ion charge distribution in space and an exchange–correlation potential, which is a function of the electron density and encapsulates the exchange and correlation effects of the many-electron system. Even though the exact functional form of the exchange-correlation potential is formally unknown, a local density approximation (LDA) or a generalized gradient approximation (GGA) is usually applied so that the calculation of the exchange–correlation potential, as well as the exchange–correlation energy, becomes tractable while a required accuracy is retained. Based on DFT, ab initio electronic structure calculations for a material generally involve a self-consistent process that iterates between two computational tasks: (1) solving an one-electron Schrödinger equation, also known as Kohn–Sham equation, to obtain the electron density and, if needed, the magnetic moment density, and (2) solving the Poisson equation to obtain the electrostatic potential corresponding to the electron density and constructing the effective potential by adding the exchange–correlation potential to the electrostatic potential. This self-consistent process proceeds until a convergence criteria is reached.« less
Oscillatory electrostatic potential on graphene induced by group IV element decoration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Chunyan; Yu, Liwei; Liu, Xiaojie
The structures and electronic properties of partial C, Si and Ge decorated graphene were investigated by first-principles calculations. The calculations show that the interaction between graphene and the decoration patches is weak and the semiconductor patches act as agents for weak electron doping without much disturbing graphene electronic π-bands. Redistribution of electrons due to the partial decoration causes the electrostatic potential lower in the decorated graphene areas, thus induced an electric field across the boundary between the decorated and non-decorated domains. Such an alternating electric field can change normal stochastic adatom diffusion to biased diffusion, leading to selective mass transport.
NASA Astrophysics Data System (ADS)
Wang, Xiaowei; Wang, Rui; Wang, Shengnan; Zhang, Dongdong; Jiang, Xingbin; Cheng, Zhihai; Qiu, Xiaohui
2018-01-01
The electron transport characteristics of graphene can be finely tuned using local electrostatic fields. Here, we use a scanning probe technique to construct a statically charged electret gate that enables in-situ fabrication of graphene devices with precisely designed potential landscapes, including p-type and n-type unipolar graphene transistors and p-n junctions. Electron dynamic simulation suggests that electron beam collimation and focusing in graphene can be achieved via periodic charge lines and concentric charge circles. This approach to spatially manipulating carrier density distribution may offer an efficient way to investigate the novel electronic properties of graphene and other low-dimensional materials.
Fluctuation spectra in the NASA Lewis bumpy-torus plasma
NASA Technical Reports Server (NTRS)
Singh, C. M.; Krawczonek, W. M.; Roth, J. R.; Hong, J. Y.; Powers, E. J.
1978-01-01
The electrostatic potential fluctuation spectrum in the NASA Lewis bumpy-torus plasma was studied with capacitive probes in the low pressure (high impedance) mode and in the high pressure (low impedance) mode. Under different operating conditions, the plasma exhibited electrostatic potential fluctuations (1) at a set of discrete frequencies, (2) at a continuum of frequencies, and (3) as incoherent high-frequency turbulence. The frequencies and azimuthal wave numbers were determined from digitally implemented autopower and cross-power spectra. The azimuthal dispersion characteristics of the unstable waves were examined by varying the electrode voltage, the polarity of the voltage, and the neutral background density at a constant magnetic field strength.
Oscillatory electrostatic potential on graphene induced by group IV element decoration
Du, Chunyan; Yu, Liwei; Liu, Xiaojie; ...
2017-10-13
The structures and electronic properties of partial C, Si and Ge decorated graphene were investigated by first-principles calculations. The calculations show that the interaction between graphene and the decoration patches is weak and the semiconductor patches act as agents for weak electron doping without much disturbing graphene electronic π-bands. Redistribution of electrons due to the partial decoration causes the electrostatic potential lower in the decorated graphene areas, thus induced an electric field across the boundary between the decorated and non-decorated domains. Such an alternating electric field can change normal stochastic adatom diffusion to biased diffusion, leading to selective mass transport.
Transport in a magnetic field modulated graphene superlattice.
Li, Yu-Xian
2010-01-13
Using the transfer matrix method, we study the transport properties through a magnetic field modulated graphene superlattice. It is found that the electrostatic barrier, the magnetic vector potential, and the number of wells in a superlattice modify the transmission remarkably. The angular dependent transmission is blocked by the magnetic vector potential because of the appearance of the evanescent states at certain incident angles, and the region of Klein tunneling shifts to the left. The angularly averaged conductivities exhibit oscillatory behavior. The magnitude and period of oscillation depend sensitively on the height of the electrostatic barrier, the number of wells, and the strength of the modulated magnetic field.