Science.gov

Sample records for adhesive shear strength

  1. Shear Strength of Conductive Adhesive Joints on Rigid and Flexible Substrates Depending on Adhesive Quantity

    NASA Astrophysics Data System (ADS)

    Hirman, Martin; Steiner, Frantisek

    2016-05-01

    This article deals with the impact of electrically conductive adhesive quantity on the shear strength of joints glued by adhesives "EPO-TEKⓇ H20S" and "MG8331S" on three types of substrates (FR-4, MELINEXⓇST504, DuPont™ PyraluxⓇAC). These joints were made by gluing chip resistors 1206, 0805 and 0603, with two curing profiles for each adhesive. Different thicknesses of stencil and reductions in the size of the hole in stencils were used for this experiment. These differences have an effect on the quantity of conductive adhesives which must be used on the samples. Samples were measured after the curing process by using a shear strength test applied by the device LabTest 3.030. This article presents the effects of different curing profiles, various types of substrates, and different quantities of adhesives on the mechanical strength of the joint.

  2. Effect of Molecular Flexibility upon Ice Adhesion Shear Strength

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G.; Wohl, Christopher J.; Kreeger, Richard E.; Palacios, Jose; Knuth, Taylor; Hadley, Kevin

    2016-01-01

    Ice formation on aircraft surfaces effects aircraft performance by increasing weight and drag leading to loss of lift. Current active alleviation strategies involve pneumatic boots, heated surfaces, and usage of glycol based de-icing fluids. Mitigation or reduction of in-flight icing by means of a passive approach may enable retention of aircraft capabilities, i.e., no reduction in lift, while reducing the aircraft weight and mechanical complexity. Under a NASA Aeronautics Research Institute Seedling activity, the effect of end group functionality and chain length upon ice adhesion shear strength (IASS) was evaluated with the results indicating that chemical functionality and chain length (i.e. molecular flexibility) affected IASS. Based on experimental and modeling results, diamine monomers incorporating molecular flexibility as either a side chain or in between diamine functionalities were prepared, incorporated into epoxy resins that were subsequently used to fabricate coatings on aluminum substrates, and tested in a simulated icing environment. The IASS was found to be lower when molecular flexibility was incorporated in the polymer chain as opposed to a side chain.

  3. Shear bond strength of a new polycarbonate bracket--an in vitro study with 14 adhesives.

    PubMed

    Akin-Nergiz, N; Nergiz, I; Behlfelt, K; Platzer, U

    1996-06-01

    Shear bond strength and failure location were used to evaluate the effectiveness of plastic bracket primers for bonding diacrylate adhesives on a new fibre-reinforced polycarbonate bracket. Maxillary incisor polycarbonate and mesh-based brackets as control were bonded to human incisors with 14 different adhesives (four filled diacrylate two-paste, six diacrylate one-step and four power-liquid acrylic adhesives), and after thermo-cycling for 2000 cycles between 5 degrees and 55 degrees C, tested in shear. A non-parametric test (Mann-Whitney U test) was used to compare the shear bond strength of the polycarbonate brackets with the mesh based brackets and a One-way test (according to Scheffe) to compare the shear bond strength of different adhesives. The following conclusions can be made: 1. Seven of the 14 adhesives used in this study with both types of brackets demonstrated adequate shear bond strength values for the clinical application. The exceptions were: Achieve Mix, No-Mix:30 Silkon, Lee Insta-Bond, Ortho-Loc and Bond-Eze, all with too low a shear bond strength for one or both types of brackets, and finally Quasar, which used with the plastic brackets sometimes caused enamel fractures, due to high bond strength. 2. The adhesives with their own plastic primer demonstrated higher blood strength values than those without plastic primer, and two-paste adhesives used with plastic primer displayed a higher bond strength than the other adhesives. 3. Generally, the shear bond strength values of the one-step adhesives were lower compared with the two-paste adhesives. 4. The liquid-powder adhesives demonstrated very different values for bond strength.

  4. Shear bond strength of one-step self-etch adhesives: pH influence

    PubMed Central

    Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Chiesa, Marco

    2015-01-01

    Background: The aim of this study was to compare the shear bond strength of four one-step self-etch adhesives with different pH values to enamel and dentin. Materials and Methods: In this in vitro study, 200 bovine permanent mandibular incisors were used. Four one-step self-etch adhesives with different pH values were tested both on enamel and on dentin: Adper™ Easy Bond Self-Etch Adhesive (pH = 0.8-1), Futurabond NR (pH=2), G-aenial Bond (pH = 1.5), Clearfil S3 Bond (pH = 2.7). After adhesive systems application, a nanohybrid composite resin was inserted into the bonded surface. The specimens were placed in a universal testing machine. The shear bond strength was performed at a cross-head speed of 1 mm/min until the sample rupture. The shear bond strength values (MPa) of the different groups were compared with analysis of variance after that Kolmogorov and Smirnov tests were applied to assess normality of distributions. P < 0.05 was considered as significant. Results: In enamel shear bond strength, the highest shear bond strength values were reported with Futurabond NR (P < 0.01); however, no significant differences were found with Clearfil S3 Bond. The others adhesive systems showed lower shear bond strength values with significant differences between them (P < 0.05). When comparing the dentin shear bond strength, the lowest shear bond strength values were reported with Clearfil S3 Bond (P < 0.05), while there were no significant differences among the other three products (P > 0.05). Conclusion: The pH values of adhesive systems did not influence significantly their shear bond strength to enamel or dentin. PMID:26005459

  5. Lap shear strength and healing capability of self-healing adhesive containing epoxy/mercaptan microcapsules

    NASA Astrophysics Data System (ADS)

    Ghazali, Habibah; Ye, Lin; Zhang, Ming-Qiu

    2016-03-01

    The aim of this work is to develop a self-healing polymeric adhesive formulation with epoxy/mercaptan microcapsules. Epoxy/mercaptan microcapsules were dispersed into a commercialize two-part epoxy adhesive for developing self-healing epoxy adhesive. The influence of different content of microcapsules on the shear strength and healing capability of epoxy adhesive were investigated using single-lap-joints with average thickness of adhesive layer of about 180 µm. This self-healing adhesive was used in bonding of 5000 series aluminum alloys adherents after mechanical and alkaline cleaning surface treatment. The adhesion strength was measured and presented as function of microcapsules loading. The results indicated that the virgin lap shear strength was increased by about 26% with addition of 3 wt% of self-healing microcapsules. 12% to 28% recovery of the shear strength is achieved after self-healing depending on the microcapsules content. Scanning electron microscopy was used to study fracture surface of the joints. The self-healing adhesives exhibit recovery of both cohesion and adhesion properties with room temperature healing.

  6. Shear bond strength of new self-adhesive flowable composite resins.

    PubMed

    Wajdowicz, Michael N; Vandewalle, Kraig S; Means, Mark T

    2012-01-01

    Recently, new self-adhesive flowable composite resin systems have been introduced to the market. These new composite resin systems reportedly bond to dentin and enamel without the application of an adhesive bonding agent. The purpose of this study was to evaluate the shear bond strength to enamel of two new self-adhesive flowable composites with and without the use of an etch-and-rinse bonding agent. The new self-adhesive flowable composites had significantly lower bond strengths to enamel compared to a traditional adhesively bonded flowable composite. Both self-adhesive flowable composites had a significant increase in bond strength to enamel with the use of a phosphoric acid-etch and adhesive bonding agent.

  7. Casein Phosphopeptide-Amorphous Calcium Phosphate and Shear Bond Strength of Adhesives to Primary Teeth Enamel

    PubMed Central

    Farokh Gisovar, Elham; Hedayati, Nassim; Shadman, Niloofar; Shafiee, Leila

    2015-01-01

    Background: CPP-ACP (Phosphopeptide-Amorphous Calcium Phosphate) has an important role in caries prevention in pediatric patients. This study was done, because of the great use of CPP-ACP and the need for restoration for teeth treated with CPP-ACP as well as the importance of shear bond strength of adhesives in the success of restorations. Objectives: This study aimed to evaluate the effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on shear bond strength of dental adhesives to enamel of primary teeth molars. Materials and Methods: This in vitro study was conducted on 180 extracted primary molars. They were randomly divided into 6 groups and each group was divided into 2 subgroups (treated with CPP-ACP and untreated). In subgroups with CPP-ACP, enamel was treated with CPP-ACP paste 1 h/d for 5 days. Types of adhesives that were evaluated in this study were Tetric N-Bond, AdheSE, AdheSE One F, single Bond 2, SE Bond, and Adper Prompt L-Pop. Shear bond strength was tested with a universal testing machine and mode of failure was evaluated under stereomicroscope. Data were analyzed by T test, 2-way analysis of variance (ANOVA), Tukey and Fisher exact test using SPSS18. P < 0.05 was considered as significance level. Results: Shear bond strengths of different adhesive systems to enamel of primary teeth treated and untreated with CPP-ACP showed no significant difference (P > 0.05). Mode of failure in all groups regardless of CPP-ACP administration was mainly adhesive type. Our results indicated that CPP-ACP did not affect shear bond strength of studied adhesives to primary teeth enamel. Conclusions: To have a successful and durable composite restoration, having a high strength bonding is essential. Considering the wide use of CPP-ACP in preventing tooth decay and the role of adhesive shear bond strength (SBS) in success of composite restoration, we conducted the present study to evaluate the effect of CPP-ACP on the SBS of adhesives to primary teeth

  8. Haemostatic agents on the shear bond strength of self-adhesive resin

    PubMed Central

    Anil, Akansha; Sekhar, Anand; Ginjupalli, Kishor

    2015-01-01

    Background Dentin surface contaminated with haemostatic agents can interfere with the bonding of self-adhesive resin cement. Therefore the purpose of this study was to evaluate the effect of various haemostatic agents such as Aluminium chloride, Ferric sulphate and Tannic acid on the shear bond strength of self-adhesive resin luting agent. Material and Methods The buccal surfaces of extracted premolars were flattened to expose the dentine. The teeth were then randomly divided into four groups. In Group I Aluminium Chloride was applied on the flattened dentinal surface, in Group II Ferric Sulphate was applied to exposed dentin surface, in Group III tannic acid was applied on to the dentinal surface, and the control group, i.e. Group IV was rinsed with saline. After the surface treatment, all the teeth were air dried. Then a predetermined dimension of RelyX™ U200 self-adhesive resin cement was bonded to the pretreated dentin surfaces. The samples were then stored under 370C in distilled water for 24 hours under 100 % humidity. Following this each sample was tested for shear bond strength with an Instron testing machine at a crosshead speed of 1mm/min. Results There was significant difference in the shear bond strength of control and tannic acid contaminated group (p<0.05), whereas there was no significant differences between the shear bond strength between control and aluminium chloride and ferric sulphate groups (p>0.05). Conclusions The usage of haemostatic agent can negatively affect the bond strength of self-adhesive resin cement (Rely X) on to the dentin surface. As per the study Tannic acid significantly weakened the bond between the self-adhesive resin and dentin. Key words:Aluminium chloride, Ferric sulphate, haemostatic agent, self-adhesive resin cement, shear bond strength, Tannic acid. PMID:26330930

  9. Comparison of shear bond strength of two self-etch primer/adhesive systems.

    PubMed

    Bishara, Samir E; Ajlouni, Raed; Laffoon, John F; Warren, John J

    2006-01-01

    Orthodontic brackets adhesive systems use three different agents, an enamel conditioner, a primer solution, and an adhesive resin. A unique characteristic of some new bonding systems is that they combine the conditioning, priming, and adhesive agents into a single application. The purpose of this study was to assess and compare the effects of using one-step and two-step self-etch primer/adhesive systems on the shear bond strength of orthodontic brackets. The brackets were bonded to extracted human molars according to one of two protocols. Group I (control): a two-step self-etch acidic primer/adhesive system was used, Transbond Plus was applied to the enamel surface as suggested by the manufacturer. The brackets were bonded with Transbond XT and light cured for 20 seconds. Group II: a one-step self-etch, self-adhesive resin cement system, Maxcem, was applied directly to the bracket. The self-etch primer/adhesive is made of two components that mix automatically during application. The brackets were then light cured for 20 seconds. The mean shear bond strength of the two-step acid-etch primer/adhesive was 5.9 +/- 2.7 Mpa and the mean for the one-step system was 3.1 +/- 1.7 MPa. The in vitro findings of this study indicated that the shear bond strengths (t = 3.79) of the two adhesive systems were significantly different (P = .001). One-step adhesive systems could potentially be advantageous for orthodontic purposes if their bond strength can be improved.

  10. Effect of MTAD on the shear bond strength of self-etch adhesives to dentin

    PubMed Central

    Mortazavi, Vajihesadat; Khademi, Abbasali; Khosravi, Kazem; Fathi, Mohammadhossein; Ebrahimi–Chaharom, Mohammadesmaeil; Shahnaseri, Shirin; Khalighinejad, Navid; Badrian, Hamid

    2012-01-01

    Background: As the use of different irrigants to eliminate residual debris and smear layer in the field of endodontic is unavoidable, by considering the effect of irrigants on the bond strength of resin composite restorations, this study was designed to evaluate the effect of a mixture of a tetracycline isomer, an acid, and a detergent (MTAD) on the shear bond strength of two self-etch adhesives, Clearfil SE Bond and Adper Prompt L- Pop to dentin. Materials and Methods: The crowns of 80 extracted premolars were transversally sectioned to expose dentin. Flat dentin surfaces were wet abraded with 320-grit abrasive paper and randomly assigned to eight groups according to two self-etch adhesive and four dentin surface treatments: direct application over smear layer (no treatment), etching with 35% phosphoric acid for 15s, 1 min 5.25% NaOCl/1 min MTAD and 20min 1.3% NaOCl/5min MTAD. Shear bond strength was tested 24 h after storage in distilled water at 37°C in incubator. Data were analyzed using one-way ANOVA followed by duncan post-hoc (α=0.05). Results: Phosphoric acid etching prior to SE Bond application significantly decreased the shear bond strength to dentin (P<0.05). Application of MTAD clinical protocol (20min 1.3% NaOCl/5min MTAD) did not significantly decrease the shear bond strength of self-etch adhesives to dentin (P=0.745) Conclusions: Based on the results of present investigation, it seems that the use of clinical protocol of 1.3% NaOCl as a root canal irrigant and a 5-min application of MTAD as a final rinse to remove the smear layer has no adverse effect on the shear bond strength of self-etch adhesives to dentin. PMID:22363359

  11. Comparison of the shear bond strength of 2 self-etch primer/adhesive systems.

    PubMed

    Bishara, Samir E; Oonsombat, Charuphan; Ajlouni, Raed; Laffoon, John F

    2004-03-01

    Conventional adhesive systems use 3 different agents-an enamel conditioner, a primer solution, and an adhesive resin for bonding orthodontic brackets to enamel. A unique characteristic of some new bonding systems in operative dentistry is that they combine the conditioning and priming agents into a single application. Combining conditioning and priming saves time and should be more cost-effective to the clinician and indirectly to the patient. The purpose of this study was to assess and compare the effects of mix and no-mix self-etch primers/bonding systems on the shear bond strengths of orthodontic brackets. The brackets were bonded to extracted human molars according to the following protocols. In group I, a self-etch acidic primer/adhesive system, Transbond Plus (3M Unitek, Monrovia, Calif), was applied on the enamel surface as suggested by the manufacturer; it has 2 components that must be mixed before use. The brackets were then bonded with Transbond XT and light-cured for 20 seconds. In group II, a no-mix self-etch bracket adhesive system, Ideal 1 (GAG International, Islandia, NY), was applied to the teeth as suggested by the manufacturer. The self-etch primer has 1 component that does not need to be mixed before use. The brackets were then bonded with the adhesive and light-cured for 20 seconds. The in vitro findings indicated that the shear bond strength comparisons (t = 0.681) of the 2 adhesive systems were not significantly different (P =.501). The mean shear bond strength of the 2-component acid etch primer was 5.9 +/- 2.7 MPa, and the mean for the 1-component system was 6.6 +/- 3.2 MPa. The clinician should consider the bond strength and the ease of application of the various components of the bracket bonding systems available on the market.

  12. Shear Bond Strengths and Morphological Evaluation of Filled and Unfilled Adhesive Interfaces to Enamel and Dentine

    PubMed Central

    Mortazavi, Vajihesadat; Fathi, Mohammadhosein; Ataei, Ebrahim; Khodaeian, Niloufar; Askari, Navid

    2012-01-01

    In this laboratory study shear bond strengths of three filled and one unfilled adhesive systems to enamel and dentine were compared. Forty-eight extracted intact noncarious human mandibular molars were randomly assigned to two groups of 24 one for bonding to enamel and the other for bonding to dentine. Buccal and lingual surfaces of each tooth were randomly assigned for application of each one of filled (Prime & Bond NT (PBNT), Optibond Solo Plus (OBSP), and Clearfil SE Bond (CSEB)) and unfilled (Single Bond (SB)) adhesive systems (n = 12). A universal resin composite was placed into the translucent plastic cylinders (3 mm in diameter and 2 mm in length) and seated against the enamel and dentine surfaces and polymerized for 40 seconds. Shear bond strength was determined using a universal testing machine, and the results were statistically analyzed using two-way ANOVA, one-way ANOVA, t-test, and Tukey HSD post hoc test with a 5% level of significance.There were no statistically significant differences in bond strength between the adhesive systems in enamel, but CSEB and SB exhibited significantly higher and lower bond strength to dentine, respectively, than the other tested adhesive systems while there were no statistically significant differences between PBNT and OBSP. PMID:23209471

  13. Effect of collagen removal on shear bond strength of two single-bottle adhesive systems.

    PubMed

    Saboia, V P; Rodrigues, A L; Pimenta, L A

    2000-01-01

    This study evaluated the effect of collagen removal on the shear bond strength for two single-bottle adhesive systems. The ultrastructure of the dentin after treatments and the dentin-resin interface were examined under SEM. The buccal and lingual surfaces of 80 extracted human third molars were ground to expose dentin. Teeth were randomly assigned to four groups and received the following treatments: Group 1(P&B 2.1), Prime & Bond 2.1 adhesive was applied according to the manufacturer's directions and Restorative Z100 composite resin was bonded to the dentin surface; Group 2 (P&B 2.1/NaOCl), the same procedures were followed as for Group 1 except that the surfaces were treated with 10% sodium hypochlorite (NaOCl) for one minute after acid conditioning; Group 3 (SB), Single Bond (3M) was applied according to the manufacturer's recommendations; Group 4 (SB/NaOCl), the same procedure was followed for Group 2, using Single Bond. The specimens were stored in humidity at 37 degrees C for 24 hours and tested in a shear mode at a crosshead speed of 0.5 mm/minute. The Kruskal-Wallis test and Multiple Comparisons were used for statistical analysis of the data. A one-minute exposure of dentin to 10% NaOCl following acid conditioning resulted in a significant increase of the dentin shear bond strength for Prime & Bond 2.1. The same treatment for Single Bond resulted in a significant reduction in bond strength. Groups 1 and 3 were not statistically different from each other. The presence of a collagen layer resulted in the formation of a hybrid layer and similar values of adhesion for both adhesive systems. The results may suggest that collagen removal improves the bond strength for this acetone-based adhesive system but several such systems would need to be investigated.

  14. In vitro analysis of shear bond strength and adhesive remnant index of different metal brackets

    PubMed Central

    Henkin, Fernanda de Souza; de Macêdo, Érika de Oliveira Dias; Santos, Karoline da Silva; Schwarzbach, Marília; Samuel, Susana Maria Werner; Mundstock, Karina Santos

    2016-01-01

    ABSTRACT Introduction: There is a great variety of orthodontic brackets in the Brazilian market, and constantly evaluating them is critical for professionals to know their properties, so as to be able to choose which product best suits their clinical practice. Objectives: To evaluate the bond strength and the adhesive remnant index (ARI) of different brands of metal brackets. Material and Methods: A total of 105 bovine incisors were used, and brackets of different brands were bonded to teeth. Seven different bracket brands were tested (MorelliTM, American OrthodonticsTM, TP OrthodonticsTM, Abzil-3MTM, OrthometricTM, TecnidentTM and UNIDENTM). Twenty-four hours after bonding, shear bond strength test was performed; and after debonding, the ARI was determined by using an optical microscope at a 10-fold increase. Results: Mean shear bond strength values ranged from 3.845 ± 3.997 (MorelliTM) to 9.871 ± 5.106 MPa (TecnidentTM). The majority of the ARI index scores was 0 and 1. Conclusion: Among the evaluated brackets, the one with the lowest mean shear bond strength values was MorelliTM. General evaluation of groups indicated that a greater number of bond failure occurred at the enamel/adhesive interface. PMID:28125142

  15. Shear bond strength of orthodontic color-change adhesives with different light-curing times

    PubMed Central

    Bayani, Shahin; Ghassemi, Amirreza; Manafi, Safa; Delavarian, Mohadeseh

    2015-01-01

    Background: The purpose of this study was to evaluate the effect of light-curing time on the shear bond strength (SBS) of two orthodontic color-change adhesives (CCAs). Materials and Methods: A total of 72 extracted premolars were randomly assigned into 6 groups of 12 teeth each. Subsequent to primer application, a metal bracket was bonded to the buccal surface using an orthodontic adhesive. Two CCAs (Greengloo and Transbond Plus) were tested and one conventional light-cured adhesive (Resilience) served as control. For each adhesive, the specimens were light-cured for two different times of 20 and 40 s. All the specimens underwent mechanical testing using a universal testing machine to measure the SBS. Adhesive remnant index (ARI) was used to assess the remnant adhesive material on the tooth surface. All statistical analyses were performed using SPSS software. The significance level for all statistical tests was set at P ≤ 0.05. Results: The SBSs of the tested groups were in the range of 14.05-31.25 MPa. Greengloo adhesive showed the highest SBS values when light-cured for 40 s, and Transbond Plus adhesive showed the lowest values when light-cured for 20 s. ARI scores of Transbond Plus adhesive were significantly higher than those of controls, while other differences in ARI values were not significant. Conclusion: Within the limitations of his study, decreasing the light-curing time from 40 to 20 s decreased the SBS of the tested adhesives; however, this decline in SBS was statistically significant only in Transbond Plus adhesive PMID:26005468

  16. Antibacterial effect and shear bond strength of an orthodontic adhesive cement containing Galla chinensis extract

    PubMed Central

    WANG, LU-FEI; LUO, FENG; XUE, CHAO-RAN; DENG, MENG; CHEN, CHEN; WU, HAO

    2016-01-01

    Galla chinensis extract (GCE), a naturally-derived agent, has a significant inhibitory effect on cariogenic bacteria. The present study aims to evaluate the antibacterial effect and shear bond strength of an orthodontic adhesive cement containing GCE. A resin-modified glass ionomer cement incorporated GCE at five mass fractions (0, 0.1, 0.2, 0.4, and 0.8%) to prepare GCE-containing cement for analysis. For the agar diffusion test, cement specimens were placed on agar disk inoculated with Streptococcus mutans (strain ATCC 25175). Following 48 h incubation, the inhibition halo diameter was measured. To assess bacteria colonization susceptibility, S. mutans adhesion to cement specimens was detected by scanning electron microscopy (SEM) following 48 h incubation. To evaluate bond strength, a total of 50 metal brackets were bonded on premolar surfaces by using cement (10 teeth/group). Following immersion in an artificial saliva for 3 days, shear bond strength (SBS) was measured. The results demonstrated that GCE-containing samples exhibited a larger bacterial inhibition halo than control, and the inhibition zone increased as the GCE mass fraction increased. SEM analysis demonstrated that S. mutans presented a weaker adherent capacity to all GCE-containing cements compared with control, but the difference between each GCE-containing group was not significant. SBS values of each GCE-containing group exhibited no difference compared with the control. In conclusion, GCE-containing adhesive cement exhibits a promising inhibitory effect on S. mutans growth and adhesion. Without compromising bond strength, adding GCE in adhesive cement may be an attractive option for preventing white spot lesions during orthodontic treatment. PMID:27073642

  17. Effect of adhesive thickness and surface treatment on shear strength on single lap joint Al/CFRP using adhesive of epoxy/Al fine powder

    NASA Astrophysics Data System (ADS)

    Diharjo, Kuncoro; Anwar, Miftahul; Tarigan, Roy Aries P.; Rivai, Ahmad

    2016-02-01

    The objective of this study is to investigate the effect of adhesive thickness and surface treatment on the shear strength and failure type characteristic of single lap joint (SLJ) CFRP/Al using adhesive epoxy/Al-fine-powder. The CFRP was produced by using hand layup method for 30% of woven roving carbon fiber (w/w) and the resin used was bisphenolic. The adhesive was prepared using 12.5% of aluminum fine powder (w/w) in the epoxy adhesive. The powder was mixed by using a mixing machine at 60 rpm for 6 minutes, and then it was used to join the Al plate-2024 and CFRP. The start time to pressure for the joint process was 20 minutes after the application of adhesive on the both of adherends. The variables in this research are adhesive thickness (i.e. 0.2 mm, 0.4 mm, 0.6 mm, 0.8 mm and 1 mm) and surface treatment of adherends (i.e. acetone, chromate sulphuric acid, caustic etch and tucker's reagent). Before shear testing, all specimens were post-cured at 100 °C for 15 minutes. The result shows that the SLJ has the highest shear strength for 0.4 mm of adhesive thickness. When the adhesive thickness is more than 0.4 mm (0.6-1 mm), the shear strength decreases significantly. It might be caused by the property change of adhesive from ductile to brittle. The acetone surface treatment produces the best bonding between the adhesive and adherends (CFRP and Al-plate 2024), and the highest shear strength is 9.31 MPa. The surface treatment give the humidification effect of adherend surfaces by adhesive. The failure characteristic shows that the mixed failure of light-fiber-tear-failure and cohesive-failure are occurred on the high shear strength of SLJ, and the low shear strength commonly has the adhesive-failure type.

  18. A comparison of shear bond strength of orthodontic brackets bonded with four different orthodontic adhesives

    PubMed Central

    Sharma, Sudhir; Tandon, Pradeep; Nagar, Amit; Singh, Gyan P; Singh, Alka; Chugh, Vinay K

    2014-01-01

    Objectives: The objective of this study is to compare the shear bond strength (SBS) of stainless steel (SS) orthodontic brackets bonded with four different orthodontic adhesives. Materials and Methods: Eighty newly extracted premolars were bonded to 0.022 SS brackets (Ormco, Scafati, Italy) and equally divided into four groups based on adhesive used: (1) Rely-a-Bond (self-cure adhesive, Reliance Orthodontic Product, Inc., Illinois, USA), (2) Transbond XT (light-cure adhesive, 3M Unitek, CA, USA), (3) Transbond Plus (sixth generation self-etch primer, 3M Unitek, CA, USA) with Transbond XT (4) Xeno V (seventh generation self-etch primer, Dentsply, Konstanz, Germany) with Xeno Ortho (light-cure adhesive, Dentsply, Konstanz, Germany) adhesive. Brackets were debonded with a universal testing machine (Model No. 3382 Instron Corp., Canton, Mass, USA). The adhesive remnant index (ARI) was recordedIn addition, the conditioned enamel surfaces were observed under a scanning electron microscope (SEM). Results: Transbond XT (15.49 MPa) attained the highest bond strength. Self-etching adhesives (Xeno V, 13.51 MPa; Transbond Plus, 11.57 MPa) showed clinically acceptable SBS values and almost clean enamel surface after debonding. The analysis of variance (F = 11.85, P < 0.0001) and Chi-square (χ2 = 18.16, P < 0.05) tests revealed significant differences among groups. The ARI score of 3 (i.e., All adhesives left on the tooth) to be the most prevalent in Transbond XT (40%), followed by Rely-a-Bond (30%), Transbond Plus with Transbond XT (15%), and Xeno V with Xeno Ortho (10%). Under SEM, enamel surfaces after debonding of the brackets appeared porous when an acid-etching process was performed on the surfaces of Rely-a-Bond and Transbond XT, whereas with self-etching primers enamel presented smooth and almost clean surfaces (Transbond Plus and Xeno V group). Conclusion: All adhesives yielded SBS values higher than the recommended bond strength (5.9-7–8 MPa), Seventh generation

  19. Influence of Adhesives and Methods of Enamel Pretreatment on the Shear Bond Strength of Orthodontic Brackets

    PubMed Central

    Jurišić, Sanja; Jurišić, Gordan

    2015-01-01

    Aim The objective of present study was to examine influence of adhesives and methods of enamel pretreatment on the shear bond strength (SBS) of orthodontic brackets. The adhesives used were resin-reinforced glass ionomer cements-GIC (Fuji Ortho LC) and composite resin (Transbond XT). Material and Methods The experimental sample consisted of 80 extracted human first premolars. The sample was divided into four equal groups, and the metal brackets were bonded with different enamel pretreatments by using two adhesives: group A-10% polyacrylic acid; Fuji Ortho LC, group B–37% phosphoric acid; Fuji Ortho LC, group C–self etching primer; Transbond XT, group D–37% phosphoric acid, primer; Transbond XT. SBS of brackets was measured. After debonding of brackets, the adhesive remnant index (ARI) was evaluated. Results After the statistical analysis of the collected data was performed (ANOVA; Sheffe post-hoc test), the results showed that significantly lower SBS of the group B was found in relation to the groups C (p=0.031) and D (p=0.026). The results of ARI were similar in all testing groups and it was not possible to determine any statistically significant difference of the ARI (Chi- square test) between all four experimental groups. Conclusion The conclusion is that the use of composite resins material with appropriate enamel pretreatment according to manufacturer’s recommendation is the “gold standard” for brackets bonding for fixed orthodontic appliances. PMID:27688410

  20. A study on the compatibility between one-bottle dentin adhesives and composite resins using micro-shear bond strength

    PubMed Central

    2015-01-01

    Objectives This study was performed to determine whether the combined use of one-bottle self-etch adhesives and composite resins from same manufacturers have better bond strengths than combinations of adhesive and resins from different manufacturers. Materials and Methods 25 experimental micro-shear bond test groups were made from combinations of five dentin adhesives and five composite resins with extracted human molars stored in saline for 24 hr. Testing was performed using the wire-loop method and a universal testing machine. Bond strength data was statistically analyzed using two way analysis of variance (ANOVA) and Tukey's post hoc test. Results Two way ANOVA revealed significant differences for the factors of dentin adhesives and composite resins, and significant interaction effect (p < 0.001). All combinations with Xeno V (Dentsply De Trey) and Clearfil S3 Bond (Kuraray Dental) adhesives showed no significant differences in micro-shear bond strength, but other adhesives showed significant differences depending on the composite resin (p < 0.05). Contrary to the other adhesives, Xeno V and BondForce (Tokuyama Dental) had higher bond strengths with the same manufacturer's composite resin than other manufacturer's composite resin. Conclusions Not all combinations of adhesive and composite resin by same manufacturers failed to show significantly higher bond strengths than mixed manufacturer combinations. PMID:25671210

  1. Shear bond strength of brackets bonded to amalgam with different intermediate resins and adhesives.

    PubMed

    Germec, Derya; Cakan, Umut; Ozdemir, Fulya Isik; Arun, Tulin; Cakan, Murat

    2009-04-01

    The aims of this study were to compare, in vitro, the shear bond strength (SBS) of stainless steel orthodontic brackets bonded to silver amalgam with the use of three different intermediate resins and two different adhesives, and to evaluate bond failure mode. Forty-five amalgam specimens were divided into three equal groups. In groups 1 and 2, the brackets were bonded with Unite (3M Unitek) using Reliance Metal Primer (RMP; Reliance Orthodontic Products) and Power Bond OLC (PB OLC; Ortho Organizers Inc.) as intermediate resins, respectively. In group 3, Resinomer and One-Step Plus (OS+; Bisco Inc.) were used. Thirty bovine teeth served as the controls to test bracket bonding to acid-etched enamel with Unite and Resinomer-OS+. After thermocycling from 10 to 50 degrees C 1000 times, all samples were tested for SBS. Bond failure sites were classified using a modified adhesive remnant index (ARI) system. Data were analyzed with one-way analysis of variance, post hoc Tukey multiple comparison and chi-square tests. The results showed that the mean SBS to amalgam surfaces were significantly lower than those to etched bovine enamel (P<0.001). There were no statistically significant differences in mean SBS between the amalgam bonding groups (P>0.05). For the ARI, significant differences were found between the amalgam- and enamel-bonding groups (P<0.001). The mean SBS of stainless steel orthodontic brackets bonded to amalgam surfaces with RMP, PB OLC, OS+ intermediate resins and Unite and Resinomer adhesives was significantly lower than to etched bovine enamel. Bond failure occurred at the amalgam-adhesive interface regardless of the adhesive system and without damage to the amalgam restoration.

  2. Shear bond strengths of self-adhesive luting resins fixing dentine to different restorative materials.

    PubMed

    Zhang, Congxiao; Degrange, Michel

    2010-01-01

    The purpose of this study was to assess the bond strengths of three self-adhesive resin cements (Rely X Unicem, Maxcem and Multilink Sprint) fixing dentine to four different restorative substrates (Ni-Cr alloy, E-Max glass-ceramic, Y-TZP Zirconia and Adoro micro-filled composite) and to compare their performances with those of two conventional dual-cured luting cements (Variolink II + Total-etch Excite DSC and Multilink Automix + Self-etching Primer A + B). Cylindric specimens (5 x 5 mm) were prepared with the four restorative materials for bonding to human dentine. Three surface treatments were performed depending on the restorative material: (i) Al2O3 50 microm sandblasting (Ni-Cr, Adoro), (ii) #800 SiC polishing (Zirconia, E-Max), (iii) hydrofluoric acid (HF)-etching (E-Max). Twenty-five groups (n = 10) were designed according to luting cements, restorative materials and surface pre-treatments. In some experimental groups, Variolink II and Multilink Automix were coupled with, respectively, a silane primer (Monobond S) and an alloy/zirconia primer (Multilink A/Z primer). Specimens were stored in distilled water at 37 degrees C for 24 h and then loaded in shear until failure. Variolink II and Multilink Automix showed the highest bond strengths, regardless of the restorative substrate, when used with dentine bonding systems and primers, while the weakest bonds were with Maxcem. The bond strength recorded with the two other self-adhesive cements depended on the nature of the restorative substrate. Increasing retention at the interfaces (i.e., HF ceramic etching) and using specific primers significantly improves the bond strength of luted restorative materials to dentine.

  3. The effect of cavity disinfectants on the micro-shear bond strength of dentin adhesives

    PubMed Central

    Elkassas, Dina Wafik; Fawzi, Elham Mostafa; El Zohairy, Ahmed

    2014-01-01

    Objectives: This study was carried out to examine the effect of application of four different disinfecting agents on the micro-shear bond strength (μ-SBS) of an etch-and-rinse and self-etch adhesive systems. Materials and Methods: One hundred flat dentin surfaces of human molars were produced by wet grinding the buccal surfaces. Specimens were randomly assigned to five groups according to the disinfectant used: Group I: Control (no disinfectant); Group II: 5.25% sodium hypochlorite based; Group III: 2% chlorhexidine based (Consepsis), Group IV: 0.1% benzalkoniumchloride based (Tubulicid red) and Group V: 3% doxycycline based (Biopure, MTAD). Specimens were bonded using either Adper Single Bond 2 or Clearfil S3 Bond, which were employed according to the manufacturer's instructions. Resin composite microcylinders were bonded using Tygon® tubes for μ-SBS testing. The modes of failure were noted after visual examination using a binocular stereomicroscope at ×25 magnification. Failures were classified as adhesive, or mixed. μ-SBS results were analyzed using two-way ANOVA followed by Tukey's post-hoc test. Results: Dentin disinfectants tested significantly negated the bonding of Adper Single bond 2 and the groups were ranked; Group I > Group V = Group IV > Group II = Group III, meanwhile they enhanced significantly the μ-SBS values upon using Clearfil S3 Bond and were ranked; Group II > Group III = Group IV = Group V > Group I. Most failures were adhesive with the Adper single bond adhesive system. Mixed modes of failure were evident with Clearfil S3 bond. Conclusions: The disinfectants tested should not be used with Adper Single Bond 2 when applied before the etching step, However they could be used safely prior to bonding with Clearfil S3 Bond. PMID:24966768

  4. Shear bond strength of self-adhesive resins compared to resin cements with etch and rinse adhesives to enamel and dentin in vitro.

    PubMed

    Lührs, A-K; Guhr, S; Günay, H; Geurtsen, W

    2010-04-01

    Self-adhesive resin cements should ease the placement of dental restorations. The purpose of this study was to evaluate their shear bond strength to enamel and dentin. Sixty molars were randomly assigned to 12 test groups (each n = 10), and the approximal surfaces were ground flat to get an enamel and dentin surface with a diameter of at least 4 mm. Ceramic specimens were bonded to the surfaces with either Variolink/Syntac Classic (VSC), Panavia F2.0 (PAF), RelyX Unicem (RLX), Maxcem Elite (MCE), iCem (IC), or an experimental self-adhesive resin cement (EXP). The shear bond strength (crosshead speed: 1 mm/min) was measured after 24-h storage in NaCl (37 degrees C). The fracture modes were determined with a stereomicroscope (magnification, 8-50-fold). VSC had the highest shear bond strength within the enamel groups (42.9 +/- 9 MPa) and IC the lowest (10.5 +/- 4.2 MPa, p < 0.001). The highest dentin shear bond strength was determined for VSC (39.2 +/- 8.9 MPa, p < 0.001) and the lowest for EXP (7.8 +/- 3.9 MPa, p < 0.001). Self-adhesive resin cements fractured mainly between resin and enamel or dentin. The shear bond strength of self-adhesive resin cements was inferior compared to conventional composite resin cements.

  5. Shear Bond Strength of Orthodontic Brackets Fixed with Remineralizing Adhesive Systems after Simulating One Year of Orthodontic Treatment.

    PubMed

    Bezerra, Gisele Lima; Torres, Carlos Rocha Gomes; Tonetto, Mateus Rodrigues; Borges, Alvaro Henrique; Kuga, Milton Carlos; Bandeca, Matheus Coelho; Firoozmand, Leily Macedo

    2015-01-01

    The objective of this study is to assess, in vitro, the shear bond strength of orthodontic brackets fixed with remineralizing adhesive systems submitted to thermomechanical cycling, simulating one year of orthodontic treatment. Sixty-four bovine incisor teeth were randomly divided into 4 experimental groups (n = 16): XT: Transbond XT, QC: Quick Cure, OL: Ortholite Color, and SEP: Transbond Plus Self-Etching Primer. The samples were submitted to thermomechanical cycling simulating one year of orthodontic treatment. Shear bond strength tests were carried out using a universal testing machine with a load cell of 50 KgF at 0.5 mm/minute. The samples were examined with a stereomicroscope and a scanning electron microscope (SEM) in order to analyze enamel surface and Adhesive Remnant Index (ARI). Kruskal-Wallis and Mann-Whitney (with Bonferroni correction) tests showed a significant difference between the studied groups (p < 0.05). Groups XT, QC, and SEP presented the highest values of adhesive resistance and no statistical differences were found between them. The highest frequency of failures between enamel and adhesive was observed in groups XT, QC, and OL. Quick Cure (QC) remineralizing adhesive system presented average adhesive resistance values similar to conventional (XT) and self-etching (SEP) adhesives, while remineralizing system (OL) provided the lowest values of adhesive resistance.

  6. Shear Bond Strength of Orthodontic Brackets Fixed with Remineralizing Adhesive Systems after Simulating One Year of Orthodontic Treatment

    PubMed Central

    Bezerra, Gisele Lima; Torres, Carlos Rocha Gomes; Tonetto, Mateus Rodrigues; Borges, Alvaro Henrique; Kuga, Milton Carlos; Bandeca, Matheus Coelho; Firoozmand, Leily Macedo

    2015-01-01

    The objective of this study is to assess, in vitro, the shear bond strength of orthodontic brackets fixed with remineralizing adhesive systems submitted to thermomechanical cycling, simulating one year of orthodontic treatment. Sixty-four bovine incisor teeth were randomly divided into 4 experimental groups (n = 16): XT: Transbond XT, QC: Quick Cure, OL: Ortholite Color, and SEP: Transbond Plus Self-Etching Primer. The samples were submitted to thermomechanical cycling simulating one year of orthodontic treatment. Shear bond strength tests were carried out using a universal testing machine with a load cell of 50 KgF at 0.5 mm/minute. The samples were examined with a stereomicroscope and a scanning electron microscope (SEM) in order to analyze enamel surface and Adhesive Remnant Index (ARI). Kruskal-Wallis and Mann-Whitney (with Bonferroni correction) tests showed a significant difference between the studied groups (p < 0.05). Groups XT, QC, and SEP presented the highest values of adhesive resistance and no statistical differences were found between them. The highest frequency of failures between enamel and adhesive was observed in groups XT, QC, and OL. Quick Cure (QC) remineralizing adhesive system presented average adhesive resistance values similar to conventional (XT) and self-etching (SEP) adhesives, while remineralizing system (OL) provided the lowest values of adhesive resistance. PMID:26380371

  7. Effects of long-term repeated topical fluoride applications and adhesion promoter on shear bond strengths of orthodontic brackets

    PubMed Central

    Endo, Toshiya; Ishida, Rieko; Komatsuzaki, Akira; Sanpei, Shinya; Tanaka, Satoshi; Sekimoto, Tsuneo

    2014-01-01

    Objective: The purpose of this study was to assess the effects of long-term repeated topical application of fluoride before bonding and an adhesion promoter on the bond strength of orthodontic brackets. Materials and Methods: A total of 76 bovine incisors were collected and divided equally into four groups. In group 1, the brackets were bonded without topical fluoride application or adhesion promoter. In group 2, before bonding, the adhesion promoter was applied to nonfluoridated enamel. In group 3, the brackets were bonded without the application of the adhesion promoter to enamel, which had undergone long-term repeated topical fluoride treatments. Teeth in group 4 received the long-term repeated topical applications of fluoride, and the brackets were bonded using the adhesion promoter. All the brackets were bonded using BeautyOrtho Bond self-etching adhesive. The shear bond strength was measured and the bond failure modes were evaluated with the use of the adhesive remnant index (ARI) after debonding. Results: The mean shear bond strength was significantly lower in group 3 than in groups 1, 2, and 4, and there were no significant differences between the groups except for group 3. There were significant differences in the distribution of ARI scores between groups 2 and 3, and between groups 3 and 4. Conclusions: The adhesion promoter can recover the bond strength reduced by the long-term repeated topical applications of fluoride to the prefluoridation level and had a significantly great amount of adhesives left on either fluoridated or nonfluoridated enamel. PMID:25512720

  8. Shear Bond Strengths of Methacrylate- and Silorane-based Composite Resins to Feldspathic Porcelain using Different Adhesive Systems

    PubMed Central

    Mohammadi, Narmin; Shakur Shahabi, Maryam; Kimyai, Soodabeh; Pournagi Azar, Fatemeh; Ebrahimi Chaharom, Mohammad Esmaeel

    2015-01-01

    Background and aims. Use of porcelain as inlays, laminates and metal-ceramic and all-ceramic crowns is common in modern dentistry. The high cost of ceramic restorations, time limitations and difficulty of removing these restorations result in delays in replacing fractured restorations; therefore, their repair is indicated. The aim of the present study was to compare the shear bond strengths of two types of composite resins (methacrylate-based and silorane-based) to porcelain, using three adhesive types. Materials and methods. A total of 156 samples of feldspathic porcelain surfaces were prepared with air-abrasion and randomly divided into 6 groups (n=26). In groups 1-3, Z250 composite resin was used to repair porcelain samples with Ad-per Single Bond 2 (ASB), Clearfil SE Bond (CSB) and Silorane Adhesive (SA) as the bonding systems, afterapplication of silane, respectively. In groups 4-6, the same adhesives were used in the same manner with Filtek Silorane composite resin. Finally, the shear bond strengths of the samples were measured. Two-way ANOVA and post hoc Tukey tests were used to compare bond strengths between the groups with different adhesives at P<0.05. Results. There were significant differences in the mean bond strength values in terms of the adhesive type (P<0.001). In addition, the interactive effect of the adhesive type and composite resin type had no significant effect on bond strength (P=0.602). Conclusion. The results of the present study showed the highest repair bond strength values to porcelain with both composite resin types with the application of SA and ASB. PMID:26697151

  9. Evaluation of self-etching adhesive and Er:YAG laser conditioning on the shear bond strength of orthodontic brackets.

    PubMed

    Contreras-Bulnes, Rosalía; Scougall-Vilchis, Rogelio J; Rodríguez-Vilchis, Laura E; Centeno-Pedraza, Claudia; Olea-Mejía, Oscar F; Alcántara-Galena, María del Carmen Z

    2013-01-01

    The purpose of this study was to evaluate the shear bond strength, the adhesive remnant index scores, and etch surface of teeth prepared for orthodontic bracket bonding with self-etching primer and Er:YAG laser conditioning. One hundred and twenty bovine incisors were randomly divided into four groups. In Group I (Control), the teeth were conditioned with 35% phosphoric acid for 15 seconds. In Group II the teeth were conditioned with Transbond Plus SEP (5 sec); III and IV were irradiated with the Er:YAG 150 mJ (11.0 J/cm²), 150 mJ (19.1 J/cm²), respectively, at 7-12 Hz with water spray. After surface preparation, upper central incisor stainless steel brackets were bonded with Transbond Plus Color Change Adhesive. The teeth were stored in water at 37°C for 24 hours and shear bond strengths were measured, and adhesive remnant index (ARI) was determined. The conditioned surface was observed under a scanning electron microscope. One-way ANOVA and chi-square test were used. Group I showed the significantly highest values of bond strength with a mean value of 8.2 megapascals (MPa). The lesser amount of adhesive remnant was found in Group III. The results of this study suggest that Er:YAG laser irradiation could not be an option for enamel conditioning.

  10. The Influence of No-Primer Adhesives and Anchor Pylons Bracket Bases on Shear Bond Strength of Orthodontic Brackets

    PubMed Central

    Sfondrini, Maria Francesca; Fraticelli, Danilo; Daina, Paola; Tamagnone, Alessandra; Gandini, Paola

    2013-01-01

    Objective. The aim of this study was to compare the shear bond strength (SBS) and adhesive remnant index (ARI) scores of no-primer adhesives tested with two different bracket bases. Materials and Methods. 120 bovine permanent mandibular incisors were divided into 6 groups of 20 specimens. Two brackets (ODP) with different bracket bases (anchor pylons and 80-gauge mesh) were bonded to the teeth using a conventional adhesive (Transbond XT) and two different no-primer adhesive (Ortho Cem; Heliosit) systems. Groups were tested using an instron universal testing machine. SBS values were recorded. ARI scores were measured. SEM microphotographs were taken to evaluate the pattern of bracket bases. Statistical analysis was performed. ANOVA and Tukey tests were carried out for SBS values, whereas a chi-squared test was applied for ARI scores. Results. Highest bond strength values were reported with Transbond XT (with both pad designs), Ortho Cem bonded on anchor pylons and Heliosit on 80-gauge mesh. A higher frequency of ARI score of “3” was reported for Transbond XT groups. Other groups showed a higher frequency of ARI score “2” and “1.” Conclusion. Transbond XT showed the highest shear bond strength values with both pad designs. PMID:23984339

  11. Evaluation of Self-Etching Adhesive and Er:YAG Laser Conditioning on the Shear Bond Strength of Orthodontic Brackets

    PubMed Central

    Contreras-Bulnes, Rosalía; Scougall-Vilchis, Rogelio J.; Rodríguez-Vilchis, Laura E.; Centeno-Pedraza, Claudia; Olea-Mejía, Oscar F.; Alcántara-Galena, María del Carmen Z.

    2013-01-01

    The purpose of this study was to evaluate the shear bond strength, the adhesive remnant index scores, and etch surface of teeth prepared for orthodontic bracket bonding with self-etching primer and Er:YAG laser conditioning. One hundred and twenty bovine incisors were randomly divided into four groups. In Group I (Control), the teeth were conditioned with 35% phosphoric acid for 15 seconds. In Group II the teeth were conditioned with Transbond Plus SEP (5 sec); III and IV were irradiated with the Er:YAG 150 mJ (11.0 J/cm2), 150 mJ (19.1 J/cm2), respectively, at 7–12 Hz with water spray. After surface preparation, upper central incisor stainless steel brackets were bonded with Transbond Plus Color Change Adhesive. The teeth were stored in water at 37°C for 24 hours and shear bond strengths were measured, and adhesive remnant index (ARI) was determined. The conditioned surface was observed under a scanning electron microscope. One-way ANOVA and chi-square test were used. Group I showed the significantly highest values of bond strength with a mean value of 8.2 megapascals (MPa). The lesser amount of adhesive remnant was found in Group III. The results of this study suggest that Er:YAG laser irradiation could not be an option for enamel conditioning. PMID:24228014

  12. Shear bond strength of ceramic and metallic orthodontic brackets bonded with self-etching primer and conventional bonding adhesives

    PubMed Central

    Arash, Valiollah; Naghipour, Fatemeh; Ravadgar, Mehdi; Karkhah, Ahmad; Barati, Mohammad Saleh

    2017-01-01

    Introduction Adult patients typically require high-quality orthodontic treatment for ceramic brackets, but some clinicians remain concerned about the bond strength of these brackets. Therefore, the aim of this study was to determine the shear bond strength and de-bonding characteristics of metallic and ceramic brackets bonded with two types of bonding agents. Methods In an experimental study done in 2013 in Babol, Iran, 120 extracted human maxillary premolar teeth were randomly divided into four groups as follows: HM group: metallic bracket/conventional bonding agent; SM group: metallic bracket/Transbond self-etching primer; HC group: ceramic bracket/conventional bonding agent; SC group: ceramic bracket/Transbond self-etching primer. Twenty-four hours after thermocycling (1000 cycle, 5 °C–55 °C), the shear bond strength values were measured. The amount of resin remaining on the tooth surface (adhesive remnant index: ARI) was determined under a stereomicroscope. Enamel detachment index was evaluated under a scanning electron microscope. To perform statistical analysis, ANOVA, Kruskal–Wallis, and Tukey post-hoc tests were applied. The level of significance was set at p <0.05. Results The mean shear bond strength values (MPa ± SD) were group HM=12.59, group SM=11.15, group HC=7.7, and group SC=7.41. Bond strength differences between groups HM and SM (p=0.063) and between HC and SC (p=0.091) were not statistically significant. There were significant differences between HM and HC and between SM and SC groups (p < 0.05). Insignificant differences were found in ARI among all groups. Conclusion Our findings indicated that the metallic brackets had higher bond strengths in comparison with ceramic brackets. In addition, self-etching primer was able to produce fewer bonds compared with the conventional technique. Many samples showed the bracket-adhesive interface failure or failure inside the adhesive. PMID:28243410

  13. Shear Bond Strength of Calcium Enriched Mixture Cement and Mineral Trioxide Aggregate to Composite Resin with Two Different Adhesive Systems

    PubMed Central

    Savadi Oskoee, Siavash; Bahari, Mahmoud; Kimyai, Soodabeh; Motahhari, Paria; Eghbal, Mohammad Jafar; Asgary, Saeed

    2014-01-01

    Objective: Immediate restoration after vital pulp therapy is essential in order to create and maintain effective coronal seal. Purpose of Study: The aim of this study was to evaluate the shear bond strength of recently used pulp capping materials: white mineral trioxide aggregate (MTA), and calcium enriched mixture cement (CEM) to composite resin with the use of etch-and-rinse and self-etch adhesive systems and compare them with the bond strength of commonly used resin modified glass ionomer (RMGI) cement. Materials and Methods: Forty specimens from each test material were fabricated, measuring 4 mm in diameter and 2 mm in depth. The specimens of each material were divided into 2 groups of 20 specimens according to the adhesive system (Single Bond vs. Clearfil SE Bond) used for bonding of resin composite. The shear bond strength values were measured at a crosshead speed of 1.0 mm/min and fractured surfaces were examined. Data were analyzed using two-way ANOVA and a post hoc Tukey’s test (P<0.05). Results: Analysis of data showed a significantly higher bond strength for RMGI compared to MTA and CEM (P<0.001); however, no significant differences were observed in the bond strength values of MTA and CEM (P=0.9). Furthermore, there were no significant differences in relation to the type of the adhesive system irrespective of the type of the material used (P=0.95) All the failures were of cohesive type in RMGI, MTA and CEM. Conclusion: Bond strength of RMGI cement to composite resin was higher than that of MTA or CEM cement irrespective of the type of the adhesive system. PMID:25628696

  14. The shear bond strength of MTA with three different types of adhesive systems: An in vitro study

    PubMed Central

    Tyagi, Nimish; Chaman, Chandrakar; Tyagi, Shashi Prabha; Singh, Udai Pratap; Sharma, Apoorv

    2016-01-01

    Aim: To evaluate the shear bond strength of MTA with three different types of adhesive systems- self-adhering flowable composite, etch and rinse adhesive system and self etch adhesive system. Methodology: MTA specimens (n = 60) were prepared using cylindrical acrylic blocks, having a central cavity with 4 mm diameter and 2 mm depth. MTA was mixed and placed in the prepared cavity, and was covered with a moist cotton pellet and temporary filling material. The specimens were divided into 3 groups which were further divided into 2 sub-groups (45 Minutes and 24 hours). After the application of bonding agents composite resin was placed over the MTA surface. The specimens were tested for shear bond strength and readings were statically analyzed. Result: After 24 hrs the mean value of etch and rinse group was significantly higher than self etch and the self adhering composite groups. Among the 45 minutes groups there were no significant difference. Conclusion: In single visit after 45 minutes self adhering flowable can be used successfully as a final restorative material in place of conventional flowable composite without using any alternative adhesive system over MTA. PMID:27099417

  15. Effects of Two Soft Drinks on Shear Bond Strength and Adhesive Remnant Index of Orthodontic Metal Brackets

    PubMed Central

    Sajadi, Soodabeh Sadat; Eslami Amirabadi, Gholamreza; Sajadi, Sepideh

    2014-01-01

    Objective: Bond failure of brackets during orthodontic treatment is a common problem; which results in treatment interference, increased treatment time and prolonged clinical time for rebonding of failed brackets. The purpose of this study was to evaluate the effects of Coca-Cola and a non-alcoholic beer on the shear bond strength and adhesive remnant index (ARI) of orthodontic metal brackets in vitro. Materials and Methods: Eighty intact human premolars were divided into two experimental groups of Coca-Cola and non-alcoholic beer (Istak), and a control group of artificial saliva. Over a period of thirty days, the test groups were immersed in the respective soft drinks for 5 minutes, twice a day. For the remainder of the time, they were kept in artificial saliva at 37°C. The control group was stored in artificial saliva during the experiment. All samples were subjected to shearing forces using Universal Testing Machine. ARI was determined with a stereomicroscope at ×12 magnification. The data of shear bond strength were statistically analyzed by one-way ANOVA and Tukey’s Post-Hoc test and the data of ARI scores were analyzed by Kruskal-Wallis test. Results: No significant difference was observed in ARIs of the three groups (P≤ 0.552). The shear bond strength of Coke group was significantly lower than that of the two other groups (P≤ 0.035); but there was no significant difference between the shear bond strength of Istak and the control group (P≤ 0.999). Conclusion: Coca-Cola decreased the shear bond strength of orthodontic brackets. PMID:25584049

  16. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel

    PubMed Central

    Eshghi, Alireza; Khoroushi, Maryam; Rezvani, Alireza

    2014-01-01

    Objective: Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG) or alumina using etch-and-rinse and self-etch adhesives. Materials and Methods: Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12). Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05). Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation. Results: No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987). There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1). Also, decalcified or intact enamel groups had no significant difference (P=0.918). However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion. Conclusion: Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives. PMID:25628694

  17. Shear Strength at 75 F to 500 F of Fourteen Adhesives Used to Bond a Glass-fabric-reinforced Phenolic Resin Laminate to Steel

    NASA Technical Reports Server (NTRS)

    Davidson, John R

    1956-01-01

    Fourteen adhesives used to bond a glass-fabric-reinforced phenolic resin laminate to steel were tested in order to determine their shear strengths at temperatures from 75 F to 500 F. Fabrication methods were varied to evaluate the effect of placing cloth between the facing surfaces to maintain a uniform bond-line thickness. One glass-fabric supported phenolic adhesive was found to have a shear strength of 3,400 psi at 300 F and over 1,000 psi at 500 F. Strength and fabrication data are tabulated for all adhesives tested.

  18. The effect of early static loading on the in vitro shear/peel bond strength of a 'no-mix' orthodontic adhesive.

    PubMed

    Ching, E; Cook, P A; Bubb, N L; Wood, D J

    2000-10-01

    This study addressed the question of whether shear and tensile loads applied 15 minutes after bonding metal brackets to enamel affected the shear/peel bond strength of the adhesive. Ninety standard 0.022-inch stainless steel edgewise premolar mesh-backed brackets were bonded using a no-mix chemical-cured adhesive to 90 teeth, which had been prepared in a standardized manner. After 15 minutes three groups of 30 teeth were subjected to the following regimes: no applied load, tensile static load of 0.77 N (78 g), and shear static load of 0.77 N. After 14 days storage in 100 per cent relative humidity at 37 degrees C, the shear/peel strength of the adhesive bond was measured using a purpose built jig mounted on a universal testing machine. Shear/peel bond strengths were analysed using Weibull statistics. The Weibull moduli of the three groups indicated that the adhesive performed consistently despite early static loading. Characteristic strengths were 9.22, 9.27, and 9.05 MPa for the control, tensile, and shear groups, respectively. The findings indicate that static loads (such as tying in of archwires) can be placed on brackets 15 minutes after cementation, without a clinically significant reduction in bond strength of the tested adhesive.

  19. In vitro evaluation of casein phosphopeptide-amorphous calcium phosphate effect on the shear bond strength of dental adhesives to enamel

    PubMed Central

    Shadman, Niloofar; Ebrahimi, Shahram Farzin; Shoul, Maryam Azizi; Sattari, Hasti

    2015-01-01

    Background: Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) is applied for remineralization of early caries lesions or tooth sensitivity conditions and may affect subsequent resin bonding. This in vitro study investigated the effect of CPP-ACP on the shear bond strength of dental adhesives to enamel. Materials and Methods: Sixty extracted human molar teeth were selected and randomly divided into three groups and six subgroups. Buccal or lingual surfaces of teeth were prepared to create a flat enamel surface. Adhesives used were Tetric N-Bond, AdheSE and AdheSE One F. In three subgroups, before applying adhesives, enamel surfaces were treated with Tooth Mousse CPP-ACP for one hour, rinsed and stored in 37°C temperature with 100% humidity. This procedure was repeated for 5 days and then adhesives were applied and Tetric N-Ceram composite was adhered to the enamel. This procedure was also fulfilled for the other three subgroups without CPP-ACP treatment. After 24 hour water storage, samples were tested for shear bond strength test in a universal testing machine. Failure modes were determined by stereomicroscope. Data were analyzed by t-test and one-way analysis of variance with P < 0.05 as the level of significance. Results: In comparison between applied and non-applied CPP-ACP subgroups, there was no significant decrease in the shear bond strength to enamel only in Tetric N-Bond (P > 0.05). In non-applied CPP-ACP subgroups, there were statistically significant differences among all subgroups. Tetric N-Bond had the highest and AdheSE One F had the lowest shear bond strength. Conclusion: CPP-ACP application reduces the shear bond strength of AdheSE and AdheSE One F to enamel but not Tetric N-Bond. PMID:25878683

  20. Shear bond strength and microleakage of a self-etching adhesive for fissure sealing after different types of aging.

    PubMed

    Schuldt, Christoph; Birlbauer, Sebastian; Pitchika, Vinay; Crispin, Alexander; Hickel, Reinhard; Kühnisch, Jan

    2016-01-01

    The aim of this study was to evaluate shear bond strength (SBS) and microleakage of a self-etching adhesive (Adper Prompt L-Pop) in comparison to acid etching prior fissure sealing. Each procedure was tested with 3 aging procedures (1-day water storage, 3-month water storage and 1-day water storage/5,000× thermocycling). SBS was determined according to ISO standard 29022. Additional 30 third molars were utilized for the microleakage analyses. Data were analyzed using Mann-Whitney-U-Test and multiple linear regression models. The SBS of the self-etching adhesive were significantly lower (14.9, 11.9, and 13.0 MPa) than those of conventional fissure sealing (19.1, 18.2, and 15.6 MPa). Multiple linear regression models predicted that material and alteration significantly influenced SBS. The microleakage revealed no difference between both groups (1.3% vs. 1.2%). It can be concluded that the selfetching adhesive might be a pre-treatment alternative for fissure sealing in terms of the easier and shorter clinical workflow.

  1. Biomechanics of shear-sensitive adhesion in climbing animals: peeling, pre-tension and sliding-induced changes in interface strength

    PubMed Central

    2016-01-01

    Many arthropods and small vertebrates use adhesive pads for climbing. These biological adhesives have to meet conflicting demands: attachment must be strong and reliable, yet detachment should be fast and effortless. Climbing animals can rapidly and reversibly control their pads' adhesive strength by shear forces, but the mechanisms underlying this coupling have remained unclear. Here, we show that adhesive forces of stick insect pads closely followed the predictions from tape peeling models when shear forces were small, but strongly exceeded them when shear forces were large, resulting in an approximately linear increase of adhesion with friction. Adhesion sharply increased at peel angles less than ca 30°, allowing a rapid switch between attachment and detachment. The departure from classic peeling theory coincided with the appearance of pad sliding, which dramatically increased the peel force via a combination of two mechanisms. First, partial sliding pre-stretched the pads, so that they were effectively stiffer upon detachment and peeled increasingly like inextensible tape. Second, pad sliding reduces the thickness of the fluid layer in the contact zone, thereby increasing the stress levels required for peeling. In combination, these effects can explain the coupling between adhesion and friction that is fundamental to adhesion control across all climbing animals. Our results highlight that control of adhesion is not solely achieved by direction-dependence and morphological anisotropy, suggesting promising new routes for the development of controllable bio-inspired adhesives. PMID:27605165

  2. Evaluating the shear bond strength of enamel and dentin with or without etching: A comparative study between dimethacrylate-based and silorane-based adhesives

    PubMed Central

    Hajizadeh, Hila; Nasseh, Atefeh; Rahmanpour, Naim

    2015-01-01

    Background Silorane-based composites and their specific self-etch adhesive were introduced to conquest the polymerization shrinkage of methacrylate-based composites. It has been shown that additional etching of enamel and dentin can improve the bond strength of self-etch methacrylate-based adhesives but this claim is not apparent about silorane-based adhesives. Our objective was to compare the shear bond strength (SBS) of enamel and dentin between silorane-based adhesive resin and a methacrylate-based resin with or without additional etching. Material and Methods 40 sound human premolars were prepared and divided into two groups: 1- Filtek P60 composite and Clearfil SE Bond adhesive; 2- Filtek P90 composite and Silorane adhesive. Each group divided into two subgroups: with or without additional etching. For additional etching, 37% acid phosphoric was applied before bonding procedure. A cylinder of the composite was bonded to the surface. After 24 hours storage and 500 thermo cycling between 5-55°C, shear bond strength was assessed with the cross head speed of 0.5 mm/min. Then, bonded surfaces were observed under stereomicroscope to determine the failure mode. Data were analyzed with two-way ANOVA and Fischer exact test. Results Shear bond strength of Filtek P60 composite was significantly higher than Filtek P90 composite both in enamel and dentin surfaces (P<0.05). However, additional etching had no significant effect on shear bond strength in enamel or dentin for each of the composites (P>0.05). There was no interaction between composite type and additional etching (P>0.05). Failure pattern was mainly adhesive and no significant correlation was found between failure and composite type or additional etching (P>0.05). Conclusions Shear bond strength of methacrylate-based composite was significantly higher than silorane-based composite both in enamel and dentin surfaces and additional etching had no significant effect on shear bond strength in enamel or dentin for

  3. Comparison of Shear Bond Strength and Estimation of Adhesive Remnant Index between Light-cure Composite and Dual-cure Composite: An in vitro Study

    PubMed Central

    Trehan, Mridula; Sharma, Sunil

    2013-01-01

    ABSTRACT Aims and objectives: To measure and compare the shear bond strength and adhesive remnant index of light-cure composite. (Enlight, Ormco.) and dual-cure composite (Phase II dual cure, Reliance Ortho). Materials and methods: Sixty extracted human premolar teeth were divided into two groups: group I (blue): conventional light cure composite resin. (Enlight, Ormco.) and group II (green): dual cure composite resin. (Phase II dual cure, Reliance Ortho.) with 30 teeth in each group. These samples were tested on the universal testing machine to measure the shear bond strength. Results: Student t-test showed that the mean shear bond strength of the conventional light cure group (8.54 MPa - 10.42 MPa) was significantly lower than dual cure group (10.45 MPa -12.17 MPa). Conclusion: These findings indicate that the shear bond strength of dual-cure composite resin (Phase II dual cure, Reliance Ortho) is comparatively higher than conventional light-cure composite resin (Enlight, Ormco). In the majority of the samples, adhesive remnant index (ARI) scores were 4 and 5 in both the groups whereas score 1 is attained by the least number of samples in both the groups. How to cite this article: Verma G, Trehan M, Sharma S. Comparison of Shear Bond Strength and Estimation of Adhesive Remnant Index between Light-cure Composite and Dual-cure Composite: An in vitro Study. Int J Clin Pediatr Dent 2013;6(3):166-170. PMID:25206216

  4. Shear bond strength and ultrastructural interface analysis of different adhesive systems to Er:YAG laser-prepared dentin.

    PubMed

    Guven, Yeliz; Aktoren, Oya

    2015-02-01

    The aim of this study was to evaluate the shear bond strength (SBS) of a microhybrid composite resin bonded with three different adhesive systems to Er:YAG laser- (EL) or bur-prepared dentin surfaces and to analyze the quality and ultrastructure of the adhesive-dentin interfaces by scanning electron microscopy (SEM). The specimens prepared for SBS test and SEM analysis were randomly assigned to eight groups (G1-G8): G1, EL (Fidelis PlusIII, Fotona) + Clearfil S3 Bond (C3S); G2, EL + AdperSE Plus (SE); G3, EL + laser etch + Adper Single Bond2 (SB2); G4, EL + acid etch + SB2; G5, EL + SB2 (no etching); G6, bur + acid etch + SB2; G7, bur + S3; G8, bur + SE. Laser was used in very short pulse mode at a setting of 200 mJ/20 Hz for dentin preparation and at 80 mJ/10 Hz for dentin etching. Bond strength test: 3.5 × 2.0 mm cylindrical molds were placed onto adhesives and filled with the composites. After 24 h in distilled water, SBS was tested at a crosshead speed of 0.5 mm/min. SEM analysis: The dentin-adhesive interfaces were evaluated for the ultrastructure of hybrid layer. Data of SBS (MPa) were statistically analyzed by ANOVA and Tukey HSD. ER:YAG laser-prepared dentin has demonstrated significantly more SBS (p < 0.01) for SE when compared to bur-prepared dentin. No significancies (p > 0.05) in SBS have been determined between the total-etch adhesive applied groups with regard to etching types. SEM analysis revealed that hybrid layers obtained in Er:YAG laser-irradiated dentin exhibited more irregular and non-homogeneous pattern than the conventionally prepared dentin. In conclusion, SE Bond demonstrated superior results in Er:YAG laser-ablated dentin compared to bur-prepared dentin.

  5. The effect of dentin desensitizer on shear bond strength of conventional and self-adhesive resin luting cements after aging.

    PubMed

    Stawarczyk, B; Hartmann, R; Hartmann, L; Roos, M; Ozcan, M; Sailer, I; Hämmerle, C H F

    2011-01-01

    This study tested the impact of Gluma Desensitizer on the shear bond strength (SBS) of two conventional (RelyX ARC, Panavia 21) and two self-adhesive (RelyX Unicem, G-Cem) resin luting cements after water storage and thermocycling. Human third molars (N=880) were embedded in acrylic resin. The buccal dentin was exposed. Teeth were randomly divided into four main groups, and the following cements were adhered: 1) RelyX ARC, 2) Panavia 21, 3) RelyX Unicem, and 4) G-Cem. In half of the teeth in each group, dentin was treated with Gluma Desensitizer. In the conventional cement groups, the corresponding etchant and adhesive systems were applied. SBS of the cements was tested after 1 hour (initial); at 1, 4, 9, 16, and 25 days of water storage; and at 1, 4, 9, 16, and 25 days of thermocycling. SBS data were analyzed by one-way analysis of variance (ANOVA); this was followed by the post hoc Scheffé test and a t-test. Overall, the highest mean SBS (MPa) was obtained by RelyX ARC (ranging from 14.6 ± 3.9 to 17.6 ± 5.2) and the lowest by Panavia 21 in combination with Gluma Desensitizer (ranging from 0.0 to 2.9 ± 1.0). All tested groups with and without desensitizer showed no significant decrease after aging conditions compared with baseline values (p>0.05). Only the Panavia 21/Gluma Desensitizer combination showed a significant decrease after 4 days of thermocyling compared with initial values and 1 day thermocycling. Self-adhesive cements with Gluma Desensitizer showed increased SBS after aging conditions (ranging from 7.4 ± 1.4 to 15.2 ± 3) compared with groups without desensitizer (ranging from 2.6 ± 1.2 to 8.8 ± 2.9). No cohesive failures in dentin were observed in any of the test groups. Although self-adhesive cements with and without desensitizer presented mainly adhesive failures after water storage (95.8%) and thermocyling (100%), conventional cement (RelyX ARC) showed mainly mixed failures (90.8% and 89.2%, after water storage and thermocyling, respectively

  6. Comparative evaluation and influence on shear bond strength of incorporating silver, zinc oxide, and titanium dioxide nanoparticles in orthodontic adhesive

    PubMed Central

    Reddy, Aileni Kaladhar; Kambalyal, Prabhuraj B; Patil, Santosh R; Vankhre, Mallikarjun; Khan, Mohammed Yaser Ahmed; Kumar, Thamtam Ramana

    2016-01-01

    Objective: To investigate the influence of silver (Ag), zinc oxide (ZnO), and titanium dioxide (TiO2) nanoparticles on shear bond strength (SBS). Materials and Methods: One hundred and twenty extracted premolars divided into four groups with thirty specimens in each group. Group 1 (control): brackets (American Orthodontics) were bonded with Transbond XT primer. Groups 2, 3, and 4: brackets (American Orthodontics) were bonded with adhesives incorporated with Ag, ZnO, and TiO2 nanoparticles in the concentration of 1.0% nanoparticles of Ag, 1.0% TiO2, and 1.0% ZnO weight/weight, respectively. An Instron universal testing machine AGS-10k NG (SHIMADZU) was used to measure the SBS. The data were analyzed by SPSS software and then, the normal distribution of the data was confirmed by Kolmogorov–Smirnov test. One-way ANOVA test and Tukey's multiple post hoc procedures were used to compare between groups. In all statistical tests, the significance level was set at 5% (P < 0.05). Results: A significant difference was observed between control (mean [standard deviation (SD)] 9.43 [3.03], confidence interval [CI]: 8.30–10.56), Ag (mean [SD]: 7.55 [1.29], CI: 7.07–8.03), ZnO (mean [SD]: 6.50 [1.15], CI: 6.07–6.93), and TiO2 (mean [SD]: 6.33 [1.51], CI: 5.77–0.89) with SBS (F = 16.8453, P < 0.05) at 5% level of significance. Conclusion: Incorporation of various nanoparticles into adhesive materials in minimal amounts may decrease SBS and may lead to the failure of bracket or adhesive. The limitation of this study is that it is an in vitro research and these results may not be comparable to what the expected bond strengths observed in vivo. Further clinical studies are needed to evaluate biological effects of adding such amounts of nanoparticles and approve such adhesives as clinically sustainable. PMID:27843887

  7. Shear Bond Strength of Bracket Bases to Adhesives Based on Bracket Base Design

    DTIC Science & Technology

    2016-04-13

    moving in the right direction. And to my wife, Allyson, I’m forever grateful for your patience and support, enabling me to pursue dreams as we begin... intrusion and extrusion in Angle and post Angle eras. As a result, the strength and precision of systems to apply forces through teeth have also

  8. Shear Bond Strength of Acidic Primer, Light-Cure Glass Ionomer, Light-Cure and Self Cure Composite Adhesive Systems - An In Vitro Study

    PubMed Central

    D, Krishnakanth Reddy; V, Kishore M S; Safeena, Safeena

    2013-01-01

    Background: The purpose of this study was to determine shear bond strength and the effect on the bracket/ adhesive failure mode when an acidic primer and other etchants were used to condition the enamel surface before bonding. Materials & Methods: Group I: Brackets bonded with Ultimate cure-on-light Light-cure composite adhesive system. Group II: Brackets bonded with Ortho-one no-mix. Self-cure composite adhesive system. Group III: Brackets bonded with Light-cure glass ionomer adhesive system. Group IV: Brackets bonded with Transbond plus self etching primer. Results: The results of this study indicated that the shear bond strength when using Transbond plus self etching primer showed the highest bond strength Group- IV(8.69 2.54 MPa) followed by Ultimate cure-on-light Group-I (8.62 1.84 MPa), Ortho-one no-mix (Bisco Inc. USA)Group-II (8.07 1.72 MPa), and least bond strength was seen in G.C. Fuji Ortho L.C. Group-III (6.01 1.6) MPa Conclusion: Use of self etching primer saves chairside time and satisfactory high bond strength was obtained. Care should be taken during debonding of ceramic brackets How to cite this article: Reddy K D, Kishore M S V, Safeena S. Shear Bond Strength of Acidic Primer, Light-Cure Glass Ionomer, Light-Cure and Self Cure Composite Adhesive Systems - An In Vitro Study. J Int Oral Health 2013; 5(3):73-78. PMID:24155606

  9. Strength distributions of adhesive bonded and adhesive/rivet combined joints

    NASA Astrophysics Data System (ADS)

    Imanaka, Makoto; Haraga, Kosuke; Nishikawa, Tetsuya

    1992-11-01

    The tensile and shear strengths of adhesive and adhesive/rivet combined joints are statistically evaluated, and the probability of failure is calculated for these two types of joints. Attention is given to the effects of the adhesive/rivet combination on mean tensile shear strength and coefficient of variation. The adhesive joint's strength distribution was well approximated by Weibull or doubly-exponential distribution function; tensile shear strength is significantly improved by the combination with rivets.

  10. Shear Bond Strength of MDP-Containing Self-Adhesive Resin Cement and Y-TZP Ceramics: Effect of Phosphate Monomer-Containing Primers

    PubMed Central

    Ahn, Jin-Soo; Yi, Young-Ah; Lee, Yoon; Seo, Deog-Gyu

    2015-01-01

    Purpose. This study was conducted to evaluate the effects of different phosphate monomer-containing primers on the shear bond strength between yttria-tetragonal zirconia polycrystal (Y-TZP) ceramics and MDP-containing self-adhesive resin cement. Materials and Methods. Y-TZP ceramic surfaces were ground flat with #600-grit SiC paper and divided into six groups (n = 10). They were treated as follows: untreated (control), Metal/Zirconia Primer, Z-PRIME Plus, air abrasion, Metal/Zirconia Primer with air abrasion, and Z-PRIME Plus with air abrasion. MDP-containing self-adhesive resin cement was applied to the surface-treated Y-TZP specimens. After thermocycling, a shear bond strength test was performed. The surfaces of the Y-TZP specimens were analyzed under a scanning electron microscope. The bond strength values were statistically analyzed using one-way analysis of variance and the Student–Newman–Keuls multiple comparison test (P < 0.05). Results. The Z-PRIME Plus treatment combined with air abrasion produced the highest bond strength, followed by Z-PRIME Plus application, Metal/Zirconia Primer combined with air abrasion, air abrasion alone, and, lastly, Metal/Zirconia Primer application. The control group yielded the lowest results (P < 0.05). Conclusion. The application of MDP-containing primer resulted in increased bond strength between Y-TZP ceramics and MDP-containing self-adhesive resin cements. PMID:26539485

  11. Modeling of Sylgard Adhesive Strength

    SciTech Connect

    Stevens, Ralph Robert

    2015-02-03

    Sylgard is the name of a silicone elastomeric potting material manufactured by Dow Corning Corporation.1 Although the manufacturer cites its low adhesive strength as a feature of this product, thin layers of Sylgard do in fact have a non-negligible strength, which has been measured in recent tensile and shear debonding tests. The adhesive strength of thin layers of Sylgard potting material can be important in applications in which components having signi cantly di erent thermal expansion properties are potted together, and the potted assembly is subjected to temperature changes. The tensile and shear tractions developed on the potted surfaces of the components can cause signi cant internal stresses, particularly for components made of low-strength materials with a high area-to-volume ratio. This report is organized as follows: recent Sylgard debonding tests are rst brie y summarized, with particular attention to the adhesion between Sylgard and PBX 9501, and also between Sylgard and aluminum. Next, the type of numerical model that will be used to simulate the debonding behavior exhibited in these tests is described. Then the calibration of the debonding model will be illustrated. Finally, the method by which the model parameters are adjusted (scaled) to be applicable to other, non- tested bond thicknesses is summarized, and all parameters of the model (scaled and unscaled) are presented so that other investigators can reproduce all of the simulations described in this report as well as simulations of the application of interest.

  12. Assessment of the Shear Bond Strength between Nanofilled Composite Bonded to Glass-ionomer Cement Using Self-etch Adhesive with Different pHs and Total-Etch Adhesive

    PubMed Central

    Sharafeddin, Farahnaz; Choobineh, Mohammad Mehdi

    2016-01-01

    Statement of the Problem In the sandwich technique, the undesirable bond between the composite resin and glass-ionomer cement (GIc) is one of the most important factors which lead to the failure of restoration. Total-etch and self-etch adhesives may improve the bond strength based on their pH. Purpose The purpose of this study was to evaluate the shear bond strength between the nanofilled composite resin and GIc using different adhesives. Materials and Method In this experimental study, 40 specimens (6×6mm) in 4 groups (n=10) were prepared in acrylic mold. Each specimen contained conventional GI ChemFil Superior with a height of 3mm, bonded to Z350 composite resin with a height measured 3mm. In order to bond the composite to the GI, the following adhesives were used, respectively: A: mild Clearfil SE Bond self-etch (pH=2), B: intermediate OptiBond self-etch (pH=1.4), C: strong Adper Prompt L-Pop (pH=1), and D: Adper Single Bond 2 total-etch (pH=7.2). The shear bond strength was measured by using universal testing machine with a crosshead speed of 1mm/min. One-way ANOVA and Tukey’s test were used to analyze the data (p< 0.05). Results The shear bond strength in group A was significantly higher than group B (p= 0.002), C (p< 0.001), and D (p< 0.001). Moreover, the shear bond strength of groups A and B (self-etch) was significantly different from group D (total-etch) (p< 0.001); and C (self-etch) with D (p= 0.024). Conclusion The results of this study showed that applying the mild self-etch adhesive between the composite and the GIc results in stronger shear bond strength compared to intermediate and strong self-etch adhesives. Moreover, the self-etch adhesive increased the shear bond strength between composite resin and GIc more significantly than total-etch adhesive. PMID:26966701

  13. Effect of different concentrations of specific inhibitor of matrix metalloproteinases on the shear bond strength of self-adhesive resin cements to dentin

    PubMed Central

    Ebrahimi-Chaharom, Mohammad-Esmaeel; Abed-Kahnamoui, Mehdi; Hamishehkar, Hamed; Gharouni, Mahya

    2017-01-01

    Background Considering the probability of chemical and enzymatic reactions between matrix metalloproteinases (MMPs) in the dentin structure and their specific inhibitors, the aim of the present study was to evaluate the effect of different concentrations of specific inhibitor of MMPs (galardin) on the shear bond strength of self-adhesive resin cements to dentin. Material and Methods Forty-eight sound human premolars were mounted in self-cured acrylic resin after removal of the enamel on the buccal and lingual surfaces. The dentin surfaces achieved were polished and prepared with 600-grit silicon carbide paper. The samples were divided into 3 groups (n=16) based on the concentration of galardin used (with no galardin, galardin at a high concentration and galardin at a low concentration). In addition, 96 composite resin blocks, measuring 3 mm in height and diameter, were prepared. The composite resin blocks were bonded to the buccal and lingual surface dentin with Rely-X Unicem (RXC) and Speed CEM (SPC) self-adhesive resin cements, respectively, according to manufacturers’ instructions. After 24 hours of storage in distilled water at 37°C, the shear bond strength values were determined in MPa and fracture modes were evaluated under a stereomicroscope. Data were analyzed with two-way ANOVA and post-hoc Bonferroni test (α=0.05). Results The shear bond strength of galardin at high concentration was significantly higher than that in the control group and galardin at a low concentrations (P<0.001). In addition, galardin at a low concentration exhibited higher shear bond strength compared to the control group (P=0.005). Furthermore, higher shear bond strength values were reported with the use of RXC compared to SPC (P<0.001). Conclusions Irrigation with galardin increased the shear bond strength of self-adhesive resin cements to dentin and this increase had a direct relationship with the concentration of galardin in the solution. Key words:N-(2(R)-2

  14. Shear bond strength of resin composite bonded with two adhesives: Influence of Er: YAG laser irradiation distance

    PubMed Central

    Shirani, Farzaneh; Birang, Reza; Malekipour, Mohammad Reza; Hourmehr, Zahra; Kazemi, Shantia

    2014-01-01

    Background: Dental surfaces prepared with different Er:YAG laser distance may have different characteristics compared with those prepared with conventional instruments. The aim of this study was to investigate the effect of Er:YAG laser irradiation distance from enamel and dentin surfaces on the shear bond strength of composite with self-etch and etch and rinse bonding systems compared with conventional preparation method. Materials and Methods: Two hundred caries-free human third molars were randomly divided into twenty groups (n = 10). Ten groups were designated for enamel surface (E1-E10) and ten for dentin surface (D1-D10). Er: YAG laser (2940 nm) was used on the E1-E8 (240 mJ, 25 Hz) and D1-D8 (140 mJ, 30 Hz) groups at four different distances of 0.5 (standard), 2, 4 and 11 mm. Control groups (E9, E10, D9 and D10) were ground with medium grit diamond bur. The enamel and dentin specimens were divided into two subgroups that were bonded with either Single Bond or Clearfil SE Bond. Resin composite (Z100) was dispensed on prepared dentin and enamel. The shear bond strengths were tested using a universal testing machine. Data were analyzed by SPSS12 statistical software using three way analysis of variance, Tukey and independent t-test. P < 0.05 was considered as significant. Results: There was a significant difference between enamel and dentin substrates (P < 0.001) and between lased and un-lased groups; the un-lased group had significantly higher bond strength (P < 0.001). Shear bond strength increased significantly with an increase in the laser irradiation distance (P < 0.05) on enamel surfaces (in both bonding agent subgroups) and on dentin surfaces (in the Single Bond subgroup). Conclusion: Laser irradiation decreases shear bond strength. Irradiation distance affects shear bond strength and increasing the distance would decrease the negative effects of laser irradiation. PMID:25540665

  15. Effect of self-etching primer/adhesive and conventional bonding on the shear bond strength in metallic and ceramic brackets

    PubMed Central

    Kimyai, Soodabeh; Hydari, Mahboubeh; Shahrbaf, Shirin; Mirzakouchaki-Boroujeni, Parvin

    2012-01-01

    Introduction: Bracket debonding from the tooth surface is a common problem in fixed orthodontics. The aims of the present study were to assess the bond strength and failure sites in two ways of bonding technique, with metallic and ceramic brackets. Material and Methods: One hundred premolars were assigned to 4 groups of 25 each: Group A, metallic brackets/ conventional procedure; Group B, metallic brackets/Transbond XT; Group C, ceramic brackets/conventional procedure; and Group D, ceramic brackets/Transbond XT. Transbond XT composite paste was used for bracket bonding and cured by conventional light-cure device. Specimens were subjected to thermocycling. One week after bonding shearing force was applied to the bracket-tooth interface. Bonding failure site optically examined using a stereomicroscope under 10 × magnifications and scoring was done using the adhesive remnant index (ARI). Data were subjected to analysis of One-way variance, Tukey post hoc, Chi-square and Spearman’s tests. Results: Mean bond strength (in MPa) were: group A=9.2, group B=8.5, group C=6.2 and group D=5.7. Bond strength differences between groups A and B, and between C and D were not significant, (p<0.0005). Insignificant difference found in ARI in all groups. Conclusion: The bond strengths of metallic brackets were significantly higher than ceramic ones and the selfetching primer produce fewer bonds than the conventional method (clinically acceptable). A positive correlation found between changes in shearing bond strength and ARI. Key words: Acid etching, adhesive remnant index, orthodontic brackets, self-etching primer, shearing bond strength. PMID:21743430

  16. The impact of Er,Cr:YSGG laser on the shear strength of the bond between dentin and ceramic is dependent on the adhesive material.

    PubMed

    Cvikl, Barbara; Moser, Gundula; Wernisch, Jörg; Raabe, Modesto; Gruber, Reinhard; Moritz, Andreas

    2012-07-01

    The bond joint between dentin and ceramic is a critical determinant in prosthodontic dentistry. The laser is an alternative to the diamond bur for preparing tooth cavities. However, the impact of lasers on the bond between the laser-irradiated dentin and the ceramic remains a matter of controversy. We determined the shear strength of bonds between ceramic blocks and human dentin discs prepared with either an Er,Cr:YSGG laser or a diamond bur. A total of 180 dentin discs were randomly assigned to four groups. Three groups of discs were prepared with the Er,Cr:YSGG laser irradiation (2 W, 30 Hz, 50% H(2)O, 70% air) and the fourth group was prepared with a diamond bur. In one of the laser groups the discs surfaces were also treated with phosphoric acid and in another with phosphoric acid and mechanical smoothing using a dental excavator. The ceramic blocks were bonded to the dentin discs with Syntac adhesive (together with Variolink II curing system), ExciTE adhesive (together with Variolink II curing system) or RelyX self-adhesive cement. The shear strength of the bond between ceramic and dentin was significantly higher following dentin surface treatment with the laser alone than following treatment with the diamond bur and Variolink II/Syntac (p = 0.021) but not significantly higher than following treatment with the diamond bur and Variolink II/ExciTE (p = 0.138) or RelyX (p = 0.150). A significant difference was not observed when the laser-treated dentin was conditioned with phosphoric acid and mechanical smoothing. These findings demonstrate that the bond between dentin and ceramic may be stronger after laser irradiation; however, the selection of the adhesive material is an additional factor that affects the bond strength.

  17. The Effects of Prophylactic Ozone Pretreatment of Enamel on Shear Bond Strength of Orthodontic Brackets Bonded with Total or Self-Etch Adhesive Systems

    PubMed Central

    Cehreli, Sevi Burcak; Guzey, Asli; Arhun, Neslihan; Cetinsahin, Alev; Unver, Bahtiyar

    2010-01-01

    Objectives: The aim of this in vitro study is to determine (1) shear bond strength (SBS) of brackets bonded with self-etch and total-etch adhesive after ozone treatment (2) bond failure interface using a modified Adhesive Remnant Index (ARI). Methods: 52 premolars were randomly assigned into four groups (n=13) and received the following treatments: Group 1: 30 s Ozone (Biozonix, Ozonytron, Vehos Medikal, Ankara, Turkey) application + Transbond Plus Self-Etching Primer (SEP) (3M) + Transbond XT (3M), Group 2: Transbond Plus SEP + Transbond XT, Group 3: 30 s Ozone application + 37% orthophosphoric acid + Transbond XT Primer (3M) + Transbond XT, Group 4: 37% orthophosphoric acid + Transbond XT Primer + Transbond XT. All samples were stored in deionised water at 37°C for 24 hours. Shear debonding test was performed by applying a vertical force to the base of the bracket at a cross-head speed of 1 mm/min. Results: The mean SBS results were Group 1: 10.48 MPa; Group 2: 8.89 MPa; Group 3: 9.41 MPa; Group 4: 9.82 MPa. One-Way Variance Test revealed that the difference between the groups was not statistically significant (P=0.267). Debonded brackets were examined by an optical microscope at X16 magnification to determine the bond failure interface using a modified ARI. The results were (mean) Group 1: 2.38; Group 2: 1.31; Group 3: 3.00; Group 4: 1.92. Multiple comparisons showed that Groups 1 and 2, 2 and 3, 3 and 4 were statistically different (P=0.014, P<.001 and P=0.025). Conclusions: Ozone treatment prior to bracket bonding does not affect the shear bond strength. PMID:20922155

  18. Evaluation of Shear Bond Strength of Total- and Self-etching Adhesive Systems after Application of Chlorhexidine to Dentin Contaminated with a Hemostatic Agent

    PubMed Central

    Sharafeddin, Farahnaz; Farhadpour, Hajar

    2015-01-01

    Statement of the Problem Hemostatic agents may influence the bond strength of different bonding agents. Also, chlorhexidine has shown positive effects on bond strength values and their combination effect has not been reported yet. Purpose The aim of this study was to evaluate the effect of contamination with a hemostatic agent on shear bond strength (SBS) of total- and self-etching adhesive systems and the effect of chlorhexidine application after removal of the hemostatic agent. Materials and Method In this experimental study, the occlusal enamel of each sixty caries-free mandibular molars was removed and their midcoronal dentin was exposed. The specimens were then mounted in auto-polymerizing resin 1mm apical to CEJ. Then, the specimens were divided into 6 groups (n=10) based on contamination with a hemostatic agent (H), application of chlorhexidine (CHX) and the adhesive system used; and then were classified as Group 1: Adper Single Bond (ASB); Group 2: H+ASB; Group 3: H+0.2% CHX+ASB; Group 4: Clearfil SE Bond (CSB); Group 5: H+CSB; Group 6: H+0.2% CHX+CSB. Then, composite resin rods (4×2 mm) were built up on the dentin surfaces and after thermocycling, the SBS (MPa) was evaluated. Statistical analysis was performed using two-way ANOVA and post hoc Tukey tests (p< 0.05). Results There were statistically significant differences between bond strength values of group 1 (ASB) and group 2 (H+ASB) (p< 0.001) and group 1 (ASB) and group 3 (H+CHX+ASB) (p< 0.001). Similarly, significant differences were seen between group 4 (CSB) and group 5 (H+CSB) (p< 0.001) and between group 4 (CSB) and group 6 (H+CHX+CSB) (p< 0.001). Conclusion Contamination with hemostatic agent reduced the SBS of both total- and self-etching adhesive systems. In addition, application of chlorhexidine after the removal of hemostatic agent had a negative effect on SBS of total- and self-etching adhesive systems. PMID:26331146

  19. Shear Bond Strength of an Etch-and-rinse Adhesive to Er:YAG Laser- and/or Phosphoric Acid-treated Dentin

    PubMed Central

    Davari, Abdolrahim; Sadeghi, Mostafa; Bakhshi, Hamid

    2013-01-01

    Background and aims. Er:YAG laser irradiation has been claimed to improve the adhesive properties of dentin; therefore, it has been proposed as an alternative to acid etching. The aim of this in vitro study was to investigate the shear bond strength of an etch-and-rinse adhesive system to dentin surfaces following Er:YAG laser and/or phosphoric acid etching. Materials and methods. The roots of 75 sound maxillary premolars were sectioned below the CEJ and the crowns were embedded in auto-polymerizing acrylic resin with the buccal surfaces facing up. The buccal surfaces were ground using a diamond bur and polished until the dentin was exposed; the samples were randomly divided into five groups (n=15) according to the surface treatment: (1) acid etching; (2) laser etching; (3) laser etching followed by acid etching; (4) acid etching followed by laser etching and (5) no acid etching and no laser etching (control group). Composite resin rods (Point 4, Kerr Co) were bonded to treated dentin surfaces with an etch-and-rise adhesive system (Optibond FL, Kerr Co) and light-cured.After storage for two weeks at 37°C and 100% humidity and then thermocycling, bond strength was measured with a Zwick Universal Testing Machine at a crosshead speed of 1 mm/min. Data was analyzed using parametric and non-parametric tests (P<0.05). Results. Mean shear bond strength for acid etching (20.1±1.8 MPa) and acid+laser (15.6±3.5 MPa) groups were significantly higher than those for laser+acid (15.6±3.5 MPa), laser etching (14.1±3.4 MPa) and control (8.1±2.1 MPa) groups. However, there were no significant differences between acid etching and acid+laser groups, and between laser+acid and laser groups. Conclusion. When the cavity is prepared by bur, it is not necessary to etch the dentin surface by Er:YAG laser following acid etching and acid etching after laser etching. PMID:23875083

  20. Adhesion of an endodontic sealer to dentin and gutta-percha: shear and push-out bond strength measurements and SEM analysis.

    PubMed

    Teixeira, Cleonice Silveira; Alfredo, Edson; Thomé, Luis Henrique de Camargo; Gariba-Silva, Ricardo; Silva-Sousa, Yara T Correa; Sousa-Neto, Manoel Damião

    2009-01-01

    The use of an adequate method for evaluation of the adhesion of root canal filling materials provides more reliable results to allow comparison of the materials and substantiate their clinical choice. The aims of this study were to compare the shear bond strength (SBS) test and push-out test for evaluation of the adhesion of an epoxy-based endodontic sealer (AH Plus) to dentin and gutta-percha, and to assess the failure modes on the debonded surfaces by means of scanning electron microscopy (SEM). Three groups were established (n=7): in group 1, root cylinders obtained from human canines were embedded in acrylic resin and had their canals prepared and filled with sealer; in group 2, longitudinal sections of dentin cylinders were embedded in resin with the canal surface smoothed and turned upwards; in group 3, gutta-percha cylinders were embedded in resin. Polyethylene tubes filled with sealer were positioned on the polished surface of the specimens (groups 2 and 3). The push-out test (group 1) and the SBS test (groups 2 and 3) were performed in an Instron universal testing machine running at crosshead speed of 1 mm/min. Means (+/-SD) in MPa were: G1 (8.8+/-1.13), G2 (5.9+/-1.05) and G3 (3.8+/-0.55). Statistical analysis by ANOVA and Student's t-test (alpha=0.05) revealed statistically significant differences (p<0.01) among the groups. SEM analysis showed a predominance of adhesive and mixed failures of AH Plus sealer. The tested surface affected significantly the results with the sealer reaching higher bond strength to dentin than to gutta-percha with the SBS test. The comparison of the employed methodologies showed that the SBS test produced significantly lower bond strength values than the push-out test, was skillful in determining the adhesion of AH Plus sealer to dentin and gutta-percha, and required specimens that could be easily prepared for SEM, presenting as a viable alternative for further experiments.

  1. The effect of moisture on the shear bond strength of gold alloy rods bonded to enamel with a self-adhesive and a hydrophobic resin cement.

    PubMed

    Dursun, Elisabeth; Wiechmann, Dirk; Attal, Jean-Pierre

    2010-06-01

    The aim of this in vitro study was to investigate the influence of enamel moisture on the shear bond strength (SBS) of a hydrophobic resin cement, Maximum Cure (MC), and a self-adhesive resin cement, Multilink Sprint (MLS), after etching of the enamel. Forty cylindrical gold alloy rods were used to simulate the Incognito lingual bracket system. They were bonded to the enamel of 40 human teeth embedded in self-cured acrylic resin. Twenty were bonded with MC (10 on dry and 10 on wet enamel) and 20 with MLS (10 on dry and 10 on wet enamel). The SBS of MC and MLS was determined in a universal testing machine and the site of bond failure was defined by the adhesive remnant index (ARI). A Kruskal-Wallis test was performed followed by Games-Howell post hoc pairwise comparison tests on the SBS results (P < 0.05) and a chi-square test was used for the analysis of ARI scores (P < 0.05). On dry enamel, no significant differences between MC (58 +/- 5 MPa) and MLS (64 +/- 13 MPa) were noted. On wet enamel, the adherence of MC (6 +/- 8 MPa) and MLS (37 +/- 13 MPa) significantly decreased but to a lesser extent for MLS. The ARI scores corroborated these results. In conclusion, MC did not tolerate moisture. MLS was also affected but maintained sufficient adherence.

  2. Shear strength of metals under uniaxial deformation and pure shear

    NASA Astrophysics Data System (ADS)

    Latypov, F. T.; Mayer, A. E.

    2015-11-01

    In this paper, we investigate the dynamic shear strength of perfect monocrystalline metals using the molecular dynamics simulation. Three types of deformation (single shear, uniaxial compression and tension) are investigated for five metals of different crystallographic systems (fcc, bcc and hcp). A strong dependence of the calculated shear strength on the deformation type is observed. In the case of bcc (iron) and hcp (titanium) metals, the maximal shear strength is achieved at the uniaxial compression, while the minimal shear strength is observed at the uniaxial tension. In the case of fcc metals (aluminum, copper, nickel) the largest strength is achieved at the pure shear, the lowest strength is obtained at the uniaxial compression.

  3. Comparison of the effect of shear bond strength with silane and other three chemical presurface treatments of a glass fiber-reinforced post on adhesion with a resin-based luting agent: An in vitro study

    PubMed Central

    Belwalkar, Vaibhavi Ramkrishna; Gade, Jaykumar; Mankar, Nikhil Purushottam

    2016-01-01

    Background: Loss of retention has been cited to be the most common cause of the failure of postretained restoration with irreversible consequences when materials with different compositions are in intimate contact at the post/adhesive interface. With this background, a study was conducted to improve the adhesion at the resin phase of fiber posts using silane and other chemical pretreatments. Materials and Methods: Hundred glass fiber-reinforced posts were tested with 4 different protocols (n = 25) using silane as a control (Group A) and other three experimental groups, namely, Group B-20% potassium permanganate, Group C-4% hydrofluoric acid, and Group D-10% hydrogen peroxide were pretreated on the postsurface followed by silanization. These specimens were bonded with dual-polymerizing resin-based luting agent, which were then loaded at the crosshead speed of 1 mm/min to record the shear bond strength at the post/adhesive interface. The data were analyzed using one-way ANOVA test for multiple group comparisons and the post hoc Bonferroni test for pairwise comparisons (P < 0.05). Results: Group B showed more influence on the shear bond strength when compared to other protocols, respectively (P < 0.001). Conclusion: Alone silanization as a surface treatment did not improve the bond strength. Combination of chemical presurface treatments followed by silanization significantly enhanced the bond strength at the post/adhesive interface. PMID:27307666

  4. Shear Strength of Aluminum Oxynitride

    NASA Astrophysics Data System (ADS)

    Dandekar, Dattatraya P.; Vaughan, Brian A. M.; Proud, William G.

    2007-06-01

    Aluminum oxynitride (AlON) is a transparent, polycrystalline cubic spinel. The results of investigations^1-4 on shock response of AlON permit determination of the equation of state, and shear strength retained under shock compression. Whereas the values of the HEL of AlON holds no surprises, the inelastic response of AlON reported in Ref. 1-4 differ significantly and is stress dependent. The results of Ref. 1-2 show that AlON retains a shear strength of 3 to 4 GPa when shocked up to around 20 GPa, but the results of Ref, 3-4 seem to suggest a possible loss of shear strength when shocked to 16 GPa and beyond. Our analysis examines the observed differences in the inelastic response of AlON reported in these four studies . 1. J. U. Cazamias, et. al., in Fundamental Issues and Applications of Shock-Wave and High Strain Rate Phenomena, Eds. Staudhammer, Murr, and Meyers, Elsevier, NY, 173 (2001). 2. B. A. M. Vaughn, et.al., Shock Physics, Cavendish Laboratory, Report SP/1092 (2001) 3. T. Sekine, et.al., J. Appl. Phys. 94, 4803 (2003). 4. T. F. Thornhill, et.al., Shock Compression of Matter-2005, Eds. Furnish, Elert, Russell, White, AIP, NY, 143 (2006).

  5. Retentive shear strengths of various bonding attachment bases.

    PubMed

    Lopez, J I

    1980-06-01

    The purpose of this study was to determine whether any of the commercially available attachment bases had significantly better retentive properties. This was determined by their shear strengths after all were bonded to bovine incisors with Auto-Tach. The mean shear strengths of sixteen bases were statistically compared to each other at 24 hours and at 30 days. In addition, the data were converted to pounds per square inch to ascertain if the size of the base significantly influenced the mean shear strength. It was concluded that (1). one of the foil mesh bases tested for shear strength was significantly superior to the two other base designs (indents with undercuts and solid bases with perforations); (2). mechanical retention of the attachment bases to the adhesive was not significantly affected after being placed in distilled water at 37 degrees C. either for 24 hours or for 30 days; (3). smaller foil mesh bases could be used without sacrificing significant shear strength.

  6. Lap Shear Testing of Candidate Radiator Panel Adhesives

    NASA Technical Reports Server (NTRS)

    Ellis, David; Briggs, Maxwell; McGowan, Randy

    2013-01-01

    During testing of a subscale radiator section used to develop manufacturing techniques for a full-scale radiator panel, the adhesive bonds between the titanium heat pipes and the aluminum face sheets failed during installation and operation. Analysis revealed that the thermal expansion mismatch between the two metals resulted in relatively large shear stresses being developed even when operating the radiator at moderate temperatures. Lap shear testing of the adhesive used in the original joints demonstrated that the two-part epoxy adhesive fell far short of the strength required. A literature review resulted in several candidate adhesives being selected for lap shear joint testing at room temperature and 398 K, the nominal radiator operating temperature. The results showed that two-part epoxies cured at room and elevated temperatures generally did not perform well. Epoxy film adhesives cured at elevated temperatures, on the other hand, did very well with most being sufficiently strong to cause yielding in the titanium sheet used for the joints. The use of an epoxy primer generally improved the strength of the joint. Based upon these results, a new adhesive was selected for the second subscale radiator section.

  7. Shear bond strength evaluation of resin composite bonded to three different liners: TheraCal LC, Biodentine, and resin-modified glass ionomer cement using universal adhesive: An in vitro study

    PubMed Central

    Deepa, Velagala L; Dhamaraju, Bhargavi; Bollu, Indira Priyadharsini; Balaji, Tandri S

    2016-01-01

    Aims: To compare and evaluate the bonding ability of resin composite (RC) to three different liners: TheraCal LC™ (TLC), a novel resin-modified (RM) calcium silicate cement, Biodentine™ (BD), and resin-modified glass ionomer cement (RMGIC) using an universal silane-containing adhesive and characterizing their failure modes. Materials and Methods: Thirty extracted intact human molars with occlusal cavity (6-mm diameter and 2-mm height) were mounted in acrylic blocks and divided into three groups of 10 samples each based on the liner used as Group A (TLC), Group B (BD), and Group C (RMGIC). Composite post of 3 mm diameter and 3 mm height was then bonded to each sample using universal adhesive. Shear bond strength (SBS) analysis was performed at a cross-head speed of 1 mm/min. Statistical Analysis Used: Statistical analysis was performed with one-way analysis of variance (ANOVA) and post hoc test using Statistical Package for the Social Sciences (SPSS) version 20. Results: No significant difference was observed between group A and group C (P = 0.573) while group B showed the least bond strength values with a highly significant difference (P = 0.000). The modes of failure were predominantly cohesive in Groups A and B (TLC and BD) while RMGIC showed mixed and adhesive failures. Conclusions: Hence, this present study concludes that the bond strength of composite resin to TLC and RMGIC was similar and significantly higher than that of BD following application of universal adhesive. PMID:27099425

  8. Adhesive strength of autologous fibrin glue.

    PubMed

    Yoshida, H; Hirozane, K; Kamiya, A

    2000-03-01

    To establish an easy and rapid method for measuring the adhesive strength of fibrin glue and to clarify the factor(s) most affecting the strength, a study was made on the effect of the concentration of plasma components on the strength of cryoprecipitate (Cryo) prepared from a subject's own autologous plasma to be used as fibrin glue. The adhesive strength of the Cryo was measured with various supporting materials instead of animal skin using a tester of tension and compression. The results were as follows: (1) the strength of Cryo applied to ground flat glass (4 cm2) was significantly greater than that applied to clear glass, clear plastic, or smooth and flat wood chips; (2) the adhesive strength of Cryo depended on the concentration of thrombin with the optimal concentration being 50 units/ml; (3) the concentration of CaCl2 did not affect the adhesive strength of Cryo; (4) the adhesive reaction was dependent on the temperature and the adhesive strength more quickly reached a steady state at 37 degrees C than at lower temperature; (5) the adhesive strength was correlated well with the total concentration of fibrinogen and fibronectin. These results indicate that the adhesive strength of Cryo can be easily and quickly evaluated using a tester and ground glass with thrombin at 50 units/ml, and that the adhesive strength of Cryo can be predicted from the total concentration of fibrinogen and fibronectin.

  9. Shear bond strength of partial coverage restorations to dentin

    PubMed Central

    Agustín-Panadero, Rubén; Alonso-Pérez-Barquero, Jorge; Fons-Font, Antonio; Solá-Ruíz, María-Fernanda

    2015-01-01

    Background When partial coverage restorations (veneers, inlays, onlays…) must be cemented to dentin, bond strength may not reach the same predictable values as to enamel. The purpose of this study was: 1. To compare, with a shear bond test, the bond strength to dentin of a total-etch and a self-etching bonding agent. 2. To determine whether creating microretention improves the bond strength to dentin. Material and Methods Two bonding agents were assayed, Optibond FL® (Kerr), two-bottle adhesive requiring acid etching, and Clearfil SE Bond® (Kuraray), two-bottle self-etching adhesive. The vestibular, lingual, distal and mesial surfaces of ten molars (n=10) were ground to remove all enamel and 40 ceramic samples were cemented with Variolink II® (Ivoclar Vivadent). Half the molar surfaces were treated to create round microretention (pits) to determine whether these could influence bond strength to dentin. The 40 molar surfaces were divided into four groups (n=10): Optibond FL (O); Clearfil SE (C); Optibond FL + microretention (OM); Clearfil SE + micro retention (CM). A shear bond test was performed and the bond failures provoked examined under an optical microscope. Results O=35.27±8.02 MPa; C=36.23±11.23 MPa; OM=28.61±6.27 MPa; CM=27.01±7.57 MPa. No statistically significant differences were found between the adhesives. Optibond FL showed less statistical dispersion than Clearfil SE. The presence of microretentions reduced bond strength values regardless of the adhesive used. Conclusions 1. Clearfil SE self-etching adhesive and Optibond FL acid-etch showed adequate bond strengths and can be recommended for bonding ceramic restorations to dentin. 2. The creation of round microretention pits compromises these adhesives’ bond strength to dentin. Key words:Adhesion to dentin, bonding agent, Optibond FL, Clearfil SE, microretention, shear bond test. PMID:26330937

  10. Bistability of cell adhesion in shear flow.

    PubMed

    Efremov, Artem; Cao, Jianshu

    2011-09-07

    Cell adhesion plays a central role in multicellular organisms helping to maintain their integrity and homeostasis. This complex process involves many different types of adhesion proteins, and synergetic behavior of these proteins during cell adhesion is frequently observed in experiments. A well-known example is the cooperation of rolling and stationary adhesion proteins during the leukocytes extravasation. Despite the fact that such cooperation is vital for proper functioning of the immune system, its origin is not fully understood. In this study we constructed a simple analytic model of the interaction between a leukocyte and the blood vessel wall in shear flow. The model predicts existence of cell adhesion bistability, which results from a tug-of-war between two kinetic processes taking place in the cell-wall contact area-bond formation and rupture. Based on the model results, we suggest an interpretation of several cytoadhesion experiments and propose a simple explanation of the existing synergy between rolling and stationary adhesion proteins, which is vital for effective cell adherence to the blood vessel walls in living organisms.

  11. Improved Bond Strength of Cyanoacrylate Adhesives Through Nanostructured Chromium Adhesion Layers

    NASA Astrophysics Data System (ADS)

    Gobble, Kyle; Stark, Amelia; Stagon, Stephen P.

    2016-09-01

    The performance of many consumer products suffers due to weak and inconsistent bonds formed to low surface energy polymer materials, such as polyolefin-based high-density polyethylene (HDPE), with adhesives, such as cyanoacrylate. In this letter, we present an industrially relevant means of increasing bond shear strength and consistency through vacuum metallization of chromium thin films and nanorods, using HDPE as a prototype material and cyanoacrylate as a prototype adhesive. For the as received HDPE surfaces, unmodified bond shear strength is shown to be only 0.20 MPa with a standard deviation of 14 %. When Cr metallization layers are added onto the HDPE at thicknesses of 50 nm or less, nanorod-structured coatings outperform continuous films and have a maximum bond shear strength of 0.96 MPa with a standard deviation of 7 %. When the metallization layer is greater than 50 nm thick, continuous films demonstrate greater performance than nanorod coatings and have a maximum shear strength of 1.03 MPa with a standard deviation of 6 %. Further, when the combination of surface roughening with P400 grit sandpaper and metallization is used, 100-nm-thick nanorod coatings show a tenfold increase in shear strength over the baseline, reaching a maximum of 2.03 MPa with a standard deviation of only 3 %. The substantial increase in shear strength through metallization, and the combination of roughening with metallization, may have wide-reaching implications in consumer products which utilize low surface energy plastics.

  12. The effect of adhesive type and thickness on bond strength of orthodontic brackets.

    PubMed

    Mackay, F

    1992-02-01

    Fine-mesh based brackets were bonded to plastic cylinders using four different adhesives. Adhesive thickness was controlled using a bonding jig. The bond was then tested to failure using a shear force. Each adhesive had its own minimum thickness, probably related to its viscosity. Increasing the thickness of the adhesiveness to 0.26 mm, using a stainless steel spacer had minimal effect on their mean shear bond strength.

  13. Rectangle-capped and tilted micropillar array for enhanced anisotropic anti-shearing in biomimetic adhesion

    PubMed Central

    Wang, Yue; Li, Xiangming; Tian, Hongmiao; Hu, Hong; Tian, Yu; Shao, Jinyou; Ding, Yucheng

    2015-01-01

    Dry adhesion observed in the feet of various small creatures has attracted considerable attention owing to the unique advantages such as self-cleaning, adaptability to rough surfaces along with repeatable and reversible adhesiveness. Among these advantages, for practical applications, proper detachability is critical for dry adhesives with artificial microstructures. In this study, we present a microstructured array consisting of both asymmetric rectangle-capped tip and tilted shafts, which produce an orthogonal anisotropy of the shearing strength along the long and short dimensions of the tip, with a maximum anti-shearing in the two directions along the longer dimension. Meanwhile, the tilt feature can enhance anisotropic shearing adhesion by increasing shearing strength in the forward shearing direction and decreasing strength in the reverse shearing direction along the short dimension of the tip, leading to a minimum anti-shearing in only one of the two directions along the shorter dimension of the rectangular tip. Such a microstructured adhesive with only one weak shearing direction, leading to well-controlled attachment and detachment of the adhesive, is created in our experiment by conventional double-sided exposure of a photoresist followed by a moulding process. PMID:25808338

  14. Passively stuck: death does not affect gecko adhesion strength.

    PubMed

    Stewart, William J; Higham, Timothy E

    2014-12-01

    Many geckos use adhesive toe pads on the bottom of their digits to attach to surfaces with remarkable strength. Although gecko adhesion has been studied for hundreds of years, gaps exist in our understanding at the whole-animal level. It remains unclear whether the strength and maintenance of adhesion are determined by the animal or are passively intrinsic to the system. Here we show, for the first time, that strong adhesion is produced passively at the whole-animal level. Experiments on both live and recently euthanized tokay geckos (Gekko gecko) revealed that death does not affect the dynamic adhesive force or motion of a gecko foot when pulled along a vertical surface. Using a novel device that applied repeatable and steady-increasing pulling forces to the foot in shear, we found that the adhesive force was similarly high and variable when the animal was alive (mean ± s.d. = 5.4 ± 1.7 N) and within 30 min after death (5.4 ± 2.1 N). However, kinematic analyses showed that live geckos are able to control the degree of toe pad engagement and can rapidly stop strong adhesion by hyperextending the toes. This study offers the first assessment of whole-animal adhesive force under extremely controlled conditions. Our findings reveal that dead geckos maintain the ability to adhere with the same force as living animals, disproving that strong adhesion requires active control.

  15. Passively stuck: death does not affect gecko adhesion strength

    PubMed Central

    Stewart, William J.; Higham, Timothy E.

    2014-01-01

    Many geckos use adhesive toe pads on the bottom of their digits to attach to surfaces with remarkable strength. Although gecko adhesion has been studied for hundreds of years, gaps exist in our understanding at the whole-animal level. It remains unclear whether the strength and maintenance of adhesion are determined by the animal or are passively intrinsic to the system. Here we show, for the first time, that strong adhesion is produced passively at the whole-animal level. Experiments on both live and recently euthanized tokay geckos (Gekko gecko) revealed that death does not affect the dynamic adhesive force or motion of a gecko foot when pulled along a vertical surface. Using a novel device that applied repeatable and steady-increasing pulling forces to the foot in shear, we found that the adhesive force was similarly high and variable when the animal was alive (mean ± s.d. = 5.4 ± 1.7 N) and within 30 min after death (5.4 ± 2.1 N). However, kinematic analyses showed that live geckos are able to control the degree of toe pad engagement and can rapidly stop strong adhesion by hyperextending the toes. This study offers the first assessment of whole-animal adhesive force under extremely controlled conditions. Our findings reveal that dead geckos maintain the ability to adhere with the same force as living animals, disproving that strong adhesion requires active control. PMID:25472940

  16. Shear Strength Behavior of Human Trabecular Bone

    PubMed Central

    Sanyal, Arnav; Gupta, Atul; Bayraktar, Harun H.; Kwon, Ronald Y.; Keaveny, Tony M.

    2012-01-01

    The shear strength of human trabecular bone may influence overall bone strength under fall loading conditions and failure at bone-implant interfaces. Here, we sought to compare shear and compressive yield strengths of human trabecular bone and elucidate the underlying failure mechanisms. We analyzed 54 specimens (5-mm cubes), all aligned with the main trabecular orientation and spanning four anatomic sites, 44 different cadavers, and a wide range of bone volume fraction (0.06–0.38). Micro-CT-based non-linear finite element analysis was used to assess the compressive and shear strengths and the spatial distribution of yielded tissue; the tissue-level constitutive model allowed for kinematic non-linearity and yielding with strength asymmetry. We found that the computed values of both the shear and compressive strengths depended on bone volume fraction via power law relations having an exponent of 1.7 (R2=0.95 shear; R2=0.97 compression). The ratio of shear to compressive strengths (mean ± SD, 0.44 ± 0.16) did not depend on bone volume fraction (p=0.24) but did depend on microarchitecture, most notably the intra-trabecular standard deviation in trabecular spacing (R2=0.23, p<0.005). For shear, the main tissue-level failure mode was tensile yield of the obliquely oriented trabeculae. By contrast, for compression, specimens having low bone volume fraction failed primarily by large-deformation-related tensile yield of horizontal trabeculae and those having high bone volume failed primarily by compressive yield of vertical trabeculae. We conclude that human trabecular bone is generally much weaker in shear than compression at the apparent level, reflecting different failure mechanisms at the tissue level. PMID:22884967

  17. Temperature Effects on Adhesive Bond Strengths and Modulus for Commonly Used Spacecraft Structural Adhesives

    NASA Technical Reports Server (NTRS)

    Ojeda, Cassandra E.; Oakes, Eric J.; Hill, Jennifer R.; Aldi, Dominic; Forsberg, Gustaf A.

    2011-01-01

    A study was performed to observe how changes in temperature and substrate material affected the strength and modulus of an adhesive bondline. Seven different adhesives commonly used in aerospace bonded structures were tested. Aluminum, titanium and Invar adherends were cleaned and primed, then bonded using the manufacturer's recommendations. Following surface preparation, the coupons were bonded with the adhesives. The single lap shear coupons were then pull tested per ASTM D 1002 Standard Test Method for Apparent Shear Strength of Single- Lap-Joint over a temperature range from -150 deg C up to +150 deg C. The ultimate strength was calculated and the resulting data were converted into B-basis design allowables. Average and Bbasis results were compared. Results obtained using aluminum adherends are reported. The effects of using different adherend materials and temperature were also studied and will be reported in a subsequent paper. Dynamic Mechanical Analysis (DMA) was used to study variations in adhesive modulus with temperature. This work resulted in a highly useful database for comparing adhesive performance over a wide range of temperatures, and has facilitated selection of the appropriate adhesive for spacecraft structure applications.

  18. Improved Bond Strength of Cyanoacrylate Adhesives Through Nanostructured Chromium Adhesion Layers.

    PubMed

    Gobble, Kyle; Stark, Amelia; Stagon, Stephen P

    2016-12-01

    The performance of many consumer products suffers due to weak and inconsistent bonds formed to low surface energy polymer materials, such as polyolefin-based high-density polyethylene (HDPE), with adhesives, such as cyanoacrylate. In this letter, we present an industrially relevant means of increasing bond shear strength and consistency through vacuum metallization of chromium thin films and nanorods, using HDPE as a prototype material and cyanoacrylate as a prototype adhesive. For the as received HDPE surfaces, unmodified bond shear strength is shown to be only 0.20 MPa with a standard deviation of 14 %. When Cr metallization layers are added onto the HDPE at thicknesses of 50 nm or less, nanorod-structured coatings outperform continuous films and have a maximum bond shear strength of 0.96 MPa with a standard deviation of 7 %. When the metallization layer is greater than 50 nm thick, continuous films demonstrate greater performance than nanorod coatings and have a maximum shear strength of 1.03 MPa with a standard deviation of 6 %. Further, when the combination of surface roughening with P400 grit sandpaper and metallization is used, 100-nm-thick nanorod coatings show a tenfold increase in shear strength over the baseline, reaching a maximum of 2.03 MPa with a standard deviation of only 3 %. The substantial increase in shear strength through metallization, and the combination of roughening with metallization, may have wide-reaching implications in consumer products which utilize low surface energy plastics.

  19. Strength of Footing with Punching Shear Preventers

    PubMed Central

    Lee, Sang-Sup; Moon, Jiho; Park, Keum-Sung; Bae, Kyu-Woong

    2014-01-01

    The punching shear failure often governs the strength of the footing-to-column connection. The punching shear failure is an undesirable failure mode, since it results in a brittle failure of the footing. In this study, a new method to increase the strength and ductility of the footing was proposed by inserting the punching shear preventers (PSPs) into the footing. The validation and effectiveness of PSP were verified through a series of experimental studies. The nonlinear finite element analysis was then performed to demonstrate the failure mechanism of the footing with PSPs in depth and to investigate the key parameters that affect the behavior of the footing with PSPs. Finally, the design recommendations for the footing with PSPs were suggested. PMID:25401141

  20. Bond strength of adhesive resin cement with different adhesive systems

    PubMed Central

    Lorenzoni e Silva, Fabrizio; Pamato, Saulo; Kuga, Milton-Carlos; Só, Marcus-Vinicius-Reis

    2017-01-01

    Background To assess the immediate bond strength of a dual-cure adhesive resin cement to the hybridized dentin with different bonding systems. Material and Methods Fifty-six healthy human molars were randomly divided into 7 groups (n=8). After 3 longitudinal sections, the central cuts were included in PVC matrix and were submitted to dentin hybridization according to the groups: G1 - etch & rinse system with 3-step (Apder™ Scotchbond™ Multi-Purpose, 3M ESPE), G2 - etch & rinse system with 3-step (Optibond™ FL, Kerr), G3 - etch & rinse system with 3-step (All-Bond 3®, Bisco), G4 - etch & rinse simplified system (Adper™ Single Bond 2, 3M ESPE), G5 - self-etching system with one step (Bond Force, Tokuyama), G6 - universal system in moist dentin (Single Bond Universal, 3M ESPE), G7 - universal system in dry dentin (Single Bond Universal, 3M ESPE). Then all groups received the cementing of a self-adhesive resin cement cylinder (Duo-link, Bisco) made from a polypropylene matrix. In the evaluation of bond strength, the samples were subjected to the microshear test and evaluated according to the fracture pattern by optical microscopy. Results The Kruskal-Wallis test suggests a statistically significant difference between groups (p=0,039), and Tukey for multiple comparisons, indicating a statistically significant difference between G3 and G4 (p<0.05). It was verified high prevalence of adhesive failures, followed by mixed failure and cohesive in dentin. Conclusions The technique and the system used to dentin hybridization are able to affect the immediate bond strength of resin cement dual adhesive. Key words:Adhesion, adhesive resin cement, adhesive systems, microshear. PMID:28149471

  1. Single-Phase Photo-Cross-Linkable Bioinspired Adhesive for Precise Control of Adhesion Strength.

    PubMed

    Harper, Tristan; Slegeris, Rimantas; Pramudya, Irawan; Chung, Hoyong

    2017-01-18

    A bioinspired, modular terpolymer adhesive, poly(N-methacryloyl-3,4-dihydroxyl-l-phenylalanine-co-9-(acryloyloxy)butyl anthracene-9-carboxylate-co-acrylic acid), has been synthesized containing three different functionalities: a photo-cross-linking segment, a wet interfacial adhesion segment, and a water-soluble segment. The synthesized adhesive polymer is the first example of a single-phase, photo-cross-linkable adhesive which does not require additional photoinitiator or other cross-linking agents. The terpolymer demonstrates strong adhesion when it swells in water and/or ethanol. The terpolymer is composed of three repeating units: N-methacryloyl-3,4-dihydroxyl-l-phenylalanine (MDOPA), which has been known to generate strong adhesion under wet conditions, poly(acrylic acid), which has been known to increase water solubility of polymers, and a photo-cross-linking segment consisting of an anthracene-based monomer used for enhancement of cohesion properties via UV irradiation (352 nm). A photomediated [4 + 4] cycloaddition reaction of anthracene results in the cross-linking of individual polymer chains after interfacial adhesion between substrates and adhesive polymers. Chemically, the covalent photo-cross-linking was confirmed by UV-vis, (1)H NMR, and gel permeation chromatography (GPC). The cross-linking-fortified cohesion of the adhesive polymer network yields strengthened cohesion properties of the bulk material. The photoreaction was conveniently controlled via the duration of UV-irradiation. The adhesion properties of new adhesives were characterized by lap shear strength on transparent Mylar film and glasses after the adhesive was swollen in biologically friendly solvents including water and ethanol. The adhesion strength (J/m(2)) was enhanced by 850% under 352 nm UV-irradiation. Multiple application variables were tested to determine the optimal conditions, such as solvent, concentration, polymer composition, and substrate. The best adhesion properties were

  2. Effects of the addition of fluoride to a 4-META/MMA-TBB-based resin adhesive on fluoride release, acid resistance of enamel and shear bond strength in vitro.

    PubMed

    Iijima, Masahiro; Ito, Shuichi; Nakagaki, Susumu; Muguruma, Takeshi; Kohda, Naohisa; Saito, Takashi; Mizoguchi, Itaru

    2013-01-01

    This study investigated fluoride release, acid resistance and shear bond strength (SBS) of new 4-META/MMA-TBB-based fluoride-containing resin adhesive (Super-Bond/F3). Super-Bond, Transbond Plus and Fuji Ortho LC were selected for comparison. Fluoride release into distilled water during 6-month period was measured using disk-shaped specimens. Brackets were bonded to human premolars with each material and then the specimens for the nanoindentation test were subjected to alternating immersion (demineralizing and remineralizing solutions); the hardness and elastic modulus of the enamel around bracket were determined. Rest of the specimens was subjected to examine the SBS. Super-Bond/F3 and Fuji Ortho LC showed significantly greater fluoride release compared with the other materials. The reductions in hardness and the elastic modulus for Super-Bond/F3 and Fuji Ortho LC were lower than those for the other materilas. Super-Bond and Super-Bond/F3 showed significantly greater SBS than Fuji Ortho FC. In conclusion, Super-Bond/F3 showed high fluoride-release, cariostatic potential and equivalent SBS.

  3. 49 CFR 230.27 - Maximum shearing strength of rivets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Appurtenances Strength of Materials § 230.27 Maximum shearing strength of rivets. The maximum shearing strength... 49 Transportation 4 2011-10-01 2011-10-01 false Maximum shearing strength of rivets. 230.27 Section 230.27 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL...

  4. 49 CFR 230.27 - Maximum shearing strength of rivets.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Appurtenances Strength of Materials § 230.27 Maximum shearing strength of rivets. The maximum shearing strength... 49 Transportation 4 2014-10-01 2014-10-01 false Maximum shearing strength of rivets. 230.27 Section 230.27 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL...

  5. 49 CFR 230.28 - Higher shearing strength of rivets.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Appurtenances Strength of Materials § 230.28 Higher shearing strength of rivets. A higher shearing strength may be used for rivets when it can be shown through testing that the rivet material used is of such... 49 Transportation 4 2013-10-01 2013-10-01 false Higher shearing strength of rivets. 230.28...

  6. 49 CFR 230.27 - Maximum shearing strength of rivets.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Appurtenances Strength of Materials § 230.27 Maximum shearing strength of rivets. The maximum shearing strength... 49 Transportation 4 2010-10-01 2010-10-01 false Maximum shearing strength of rivets. 230.27 Section 230.27 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL...

  7. 49 CFR 230.28 - Higher shearing strength of rivets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Appurtenances Strength of Materials § 230.28 Higher shearing strength of rivets. A higher shearing strength may be used for rivets when it can be shown through testing that the rivet material used is of such... 49 Transportation 4 2011-10-01 2011-10-01 false Higher shearing strength of rivets. 230.28...

  8. 49 CFR 230.27 - Maximum shearing strength of rivets.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Appurtenances Strength of Materials § 230.27 Maximum shearing strength of rivets. The maximum shearing strength... 49 Transportation 4 2013-10-01 2013-10-01 false Maximum shearing strength of rivets. 230.27 Section 230.27 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL...

  9. 49 CFR 230.27 - Maximum shearing strength of rivets.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Appurtenances Strength of Materials § 230.27 Maximum shearing strength of rivets. The maximum shearing strength... 49 Transportation 4 2012-10-01 2012-10-01 false Maximum shearing strength of rivets. 230.27 Section 230.27 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL...

  10. 49 CFR 230.28 - Higher shearing strength of rivets.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Appurtenances Strength of Materials § 230.28 Higher shearing strength of rivets. A higher shearing strength may be used for rivets when it can be shown through testing that the rivet material used is of such... 49 Transportation 4 2014-10-01 2014-10-01 false Higher shearing strength of rivets. 230.28...

  11. 49 CFR 230.28 - Higher shearing strength of rivets.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Appurtenances Strength of Materials § 230.28 Higher shearing strength of rivets. A higher shearing strength may be used for rivets when it can be shown through testing that the rivet material used is of such... 49 Transportation 4 2012-10-01 2012-10-01 false Higher shearing strength of rivets. 230.28...

  12. 49 CFR 230.28 - Higher shearing strength of rivets.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Appurtenances Strength of Materials § 230.28 Higher shearing strength of rivets. A higher shearing strength may be used for rivets when it can be shown through testing that the rivet material used is of such... 49 Transportation 4 2010-10-01 2010-10-01 false Higher shearing strength of rivets. 230.28...

  13. Material characterization of structural adhesives in the lap shear mode

    NASA Technical Reports Server (NTRS)

    Sancaktar, E.; Schenck, S. C.

    1983-01-01

    A general method for characterizing structual adhesives in the bonded lap shear mode is proposed. Two approaches in the form of semiempirical and theoretical approaches are used. The semiempirical approach includes Ludwik's and Zhurkov's equations to describe respectively, the failure stresses in the constant strain rate and constant stress loading modes with the inclusion of the temperature effects. The theoretical approach is used to describe adhesive shear stress-strain behavior with the use of viscoelastic or nonlinear elastic constitutive equations. Two different model adhesives are used in the single lap shear mode with titanium adherends. These adhesives (one of which was developed at NASA Langley Research Center) are currently considered by NASA for possible aerospace applications. Use of different model adhesives helps in assessment of the generality of the method.

  14. Biomechanics of cell rolling: shear flow, cell-surface adhesion, and cell deformability.

    PubMed

    Dong, C; Lei, X X

    2000-01-01

    The mechanics of leukocyte (white blood cell; WBC) deformation and adhesion to endothelial cells (EC) has been investigated using a novel in vitro side-view flow assay. HL-60 cell rolling adhesion to surface-immobilized P-selectin was used to model the WBC-EC adhesion process. Changes in flow shear stress, cell deformability, or substrate ligand strength resulted in significant changes in the characteristic adhesion binding time, cell-surface contact and cell rolling velocity. A 2-D model indicated that cell-substrate contact area under a high wall shear stress (20 dyn/cm2) could be nearly twice of that under a low stress (0.5 dyn/cm2) due to shear flow-induced cell deformation. An increase in contact area resulted in more energy dissipation to both adhesion bonds and viscous cytoplasm, whereas the fluid energy that inputs to a cell decreased due to a flattened cell shape. The model also predicted a plateau of WBC rolling velocity as flow shear stresses further increased. Both experimental and computational studies have described how WBC deformation influences the WBC-EC adhesion process in shear flow.

  15. The Adhesive System and Anisotropic Shear Force of Guizhou Gastromyzontidae

    NASA Astrophysics Data System (ADS)

    Zou, Jun; Wang, Jinrong; Ji, Chen

    2016-11-01

    The Guizhou gastromyzontidae (Beaufortia kweichowensis) can adhere to slippery and fouled surfaces in torrential streams. A unique adhesive system utilized by the fish was observed by microscope and CLSM as an attachment disc sealed by a round belt of micro bubbles. The system is effective in wet or underwater environments and can resist a normal pulling force up to 1000 times the fish’s weight. Moreover, a mechanism for passive anisotropic shear force was observed. The shear forces of the fish under different conditions were measured, showing that passive shear force plays an important role in wet environments. The adhesive system of the fish was compared with other biological adhesion principles, from which we obtained potential values for the system that refer to the unique micro sealing and enhanced adhesion in a wet environment.

  16. The Adhesive System and Anisotropic Shear Force of Guizhou Gastromyzontidae

    PubMed Central

    Zou, Jun; Wang, Jinrong; Ji, Chen

    2016-01-01

    The Guizhou gastromyzontidae (Beaufortia kweichowensis) can adhere to slippery and fouled surfaces in torrential streams. A unique adhesive system utilized by the fish was observed by microscope and CLSM as an attachment disc sealed by a round belt of micro bubbles. The system is effective in wet or underwater environments and can resist a normal pulling force up to 1000 times the fish’s weight. Moreover, a mechanism for passive anisotropic shear force was observed. The shear forces of the fish under different conditions were measured, showing that passive shear force plays an important role in wet environments. The adhesive system of the fish was compared with other biological adhesion principles, from which we obtained potential values for the system that refer to the unique micro sealing and enhanced adhesion in a wet environment. PMID:27849018

  17. Fracture strength and adhesive strength of hydroxyapatite-filled polycaprolactone.

    PubMed

    Wong, Shing-Chung; Baji, Avinash

    2008-02-01

    Fracture toughness and tear strength of hydroxyapatite (HAP)-filled poly(epsilon-caprolactone) (PCL) with increasing HAP concentration were studied. The toughness was assessed in terms of essential work of fracture (EWF). Adhesive strength between HAP and PCL interfaces was evaluated using T-peel testing. The adhesion between the two components was found to be relatively strong. Double edge notched tension (DENT) and trousers test specimens were used for the EWF tests. The effect of HAP phase in PCL on the fracture and tearing toughness was investigated. The results obtained from the EWF tests for the HAP-filled PCL complied with the validity criteria of the EWF concept, namely, (1) geometric similarity for all ligament lengths; (2) fully yielded ligament and (3) plane-stress fracture condition. Values for specific essential work of fracture (w ( e )) and specific plastic work of fracture (betaw ( p )) were found to decrease with increase in HAP concentration. The testing procedure showed promise in quantifying the tearing resistance and rising R-curve behavior common in natural materials and it can be extended to other biomaterials that exhibit post-yield deformation. A quantitative assessment based on fracture mechanics of the adhesive strength between the bioactive interfaces plays an important role for continued development of tissue replacement and tissue regeneration materials.

  18. Real-time analysis of cell-surface adhesive interactions using thickness shear mode resonator.

    PubMed

    Hong, Soonjin; Ergezen, Ertan; Lec, Ryszard; Barbee, Kenneth A

    2006-12-01

    The cell adhesion process and the molecular interactions that determine its kinetics were investigated using a thickness shear mode (TSM) sensor. The goal of this study was to correlate sensor readings with the progression of cell adhesion. In particular, the specific effects of receptor-mediated adhesion, the glycocalyx, and surface charge on initial cell-surface attachment and steady-state adhesion of endothelial cells were investigated. We found a strong correlation between resistance changes (DeltaR) and the development of cell adhesion strength by comparing the sensor readings with independently assessed cell adhesion. The result showed that integrin binding determines the kinetics of initial cell attachment while heparan sulfate proteoglycan (HSPG) modulates steady-state adhesion strength. Coating the sensor surface with the positively charged poly-d-lysine (PDL) enhanced the initial interaction with substratum. These data confirm our current understanding of the contribution of these three phenomena to the adhesion process. The real-time monitoring capability of this technique with high temporal resolution provides more detailed information on the kinetics of the different stages of the adhesion process. This technique has the potential to facilitate the evaluation of biomaterials and surface treatments used for implants and tissue-engineering scaffolds for their bioactive effects on the cell adhesion process.

  19. Shear lag sutures: Improved suture repair through the use of adhesives.

    PubMed

    Linderman, Stephen W; Kormpakis, Ioannis; Gelberman, Richard H; Birman, Victor; Wegst, Ulrike G K; Genin, Guy M; Thomopoulos, Stavros

    2015-09-01

    Suture materials and surgical knot tying techniques have improved dramatically since their first use over five millennia ago. However, the approach remains limited by the ability of the suture to transfer load to tissue at suture anchor points. Here, we predict that adhesive-coated sutures can improve mechanical load transfer beyond the range of performance of existing suture methods, thereby strengthening repairs and decreasing the risk of failure. The mechanical properties of suitable adhesives were identified using a shear lag model. Examination of the design space for an optimal adhesive demonstrated requirements for strong adhesion and low stiffness to maximize the strength of the adhesive-coated suture repair construct. To experimentally assess the model, we evaluated single strands of sutures coated with highly flexible cyanoacrylates (Loctite 4903 and 4902), cyanoacrylate (Loctite QuickTite Instant Adhesive Gel), rubber cement, rubber/gasket adhesive (1300 Scotch-Weld Neoprene High Performance Rubber & Gasket Adhesive), an albumin-glutaraldehyde adhesive (BioGlue), or poly(dopamine). As a clinically relevant proof-of-concept, cyanoacrylate-coated sutures were then used to perform a clinically relevant flexor digitorum tendon repair in cadaver tissue. The repair performed with adhesive-coated suture had significantly higher strength compared to the standard repair without adhesive. Notably, cyanoacrylate provides strong adhesion with high stiffness and brittle behavior, and is therefore not an ideal adhesive for enhancing suture repair. Nevertheless, the improvement in repair properties in a clinically relevant setting, even using a non-ideal adhesive, demonstrates the potential for the proposed approach to improve outcomes for treatments requiring suture fixation. Further study is necessary to develop a strongly adherent, compliant adhesive within the optimal design space described by the model.

  20. Shear lag sutures: Improved suture repair through the use of adhesives

    PubMed Central

    Linderman, Stephen W.; Kormpakis, Ioannis; Gelberman, Richard H.; Birman, Victor; Wegst, Ulrike G. K.; Genin, Guy M.; Thomopoulos, Stavros

    2015-01-01

    Suture materials and surgical knot tying techniques have improved dramatically since their first use over five millennia ago. However, the approach remains limited by the ability of the suture to transfer load to tissue at suture anchor points. Here, we predict that adhesive-coated sutures can improve mechanical load transfer beyond the range of performance of existing suture methods, thereby strengthening repairs and decreasing the risk of failure. The mechanical properties of suitable adhesives were identified using a shear lag model. Examination of the design space for an optimal adhesive demonstrated requirements for strong adhesion and low stiffness to maximize the strength of the adhesive-coated suture repair construct. To experimentally assess the model, we evaluated single strands of sutures coated with highly flexible cyanoacrylates (Loctite 4903 and 4902), cyanoacrylate (Loctite QuickTite Instant Adhesive Gel), rubber cement, rubber/gasket adhesive (1300 Scotch-Weld Neoprene High Performance Rubber & Gasket Adhesive), an albumin-glutaraldehyde adhesive (BioGlue), or poly(dopamine). As a clinically relevant proof-of-concept, cyanoacrylate-coated sutures were then used to perform a clinically relevant flexor digitorum tendon repair in cadaver tissue. The repair performed with adhesive-coated suture had significantly higher strength compared to the standard repair without adhesive. Notably, cyanoacrylate provides strong adhesion with high stiffness and brittle behavior, and is therefore not an ideal adhesive for enhancing suture repair. Nevertheless, the improvement in repair properties in a clinically relevant setting, even using a non-ideal adhesive, demonstrates the potential for the proposed approach to improve outcomes for treatments requiring suture fixation. Further study is necessary to develop a strongly adherent, compliant adhesive within the optimal design space described by the model. PMID:26022966

  1. Shear bond strength of orthodontic buccal tubes to porcelain

    PubMed Central

    Purmal, Kathiravan; Alam, Mohammad K.; Sukumaran, Prema

    2013-01-01

    Background: Bonding of molar tubes is becoming more popular in orthodontics. Occasionally, these bonding are done on posterior porcelain crowns or bridges. The purpose of this study was to evaluate the shear bond strength of buccal tubes on feldspathic porcelain crowns with two different methods. Materials and Methods: Forty porcelain right molar crowns were fabricated for this study. The crowns were randomly divided into two groups. In group 1, the crowns were etched with 9.6% hydrofluoric acid, silane coupling agent applied, coated with bonding primer and bonded with Transbond XT (3M Unitek, Monrovia, Calif). In group 2, the crowns were etched with phosphoric acid 37%, silane coupling agent applied, coated with bonding primer and bonded with Transbond XT. All the crowns were stored for 24 hours at 37°C and thermo-cycled before the shear bond test. The analysis of variance (ANOVA) was used to determine whether significant difference were present between the groups. Results: The results of the analysis of variance (F = 0.23) indicated the shear bond strength of group 1 (3.57 ± 0.87 MPa) was not significantly different (P > 0.05) from group 2 (3.46 ± 0.65 Mpa). Fisher's exact test for the adhesive remnant index (ARI) revealed significant difference between both groups (P < 0.05). Eighty percent of group 1 buccal tubes failed at buccal tube/resin interface and eighty percent of group 2 mostly failed at porcelain/resin interface. Conclusion: Etching with phosphoric acid with the use of silane coupling agent would be safer and should make it easier for clinicians to clean the adhesive on the porcelain surface after debonding. PMID:23878568

  2. Shear Strengths of Copper/Insulation Interfaces for Fusion Magnet Applications

    NASA Astrophysics Data System (ADS)

    Hooker, M. W.; Fabian, P. E.; Grandlienard, S. D.; Codell, D. E.; Lizotte, M. J.

    2006-03-01

    Magnet insulation materials in many Next-Step Option fusion research devices will be subjected to high shear stresses at both cryogenic and elevated temperatures. The low shear strength and poor adhesion of the insulation to copper conductors can be limiting design factors in these systems. While cyanate ester resins have been shown to provide the necessary electrical and mechanical properties for fusion magnet insulation applications, the adhesion of the resin to copper at temperatures ranging from 77 to 373 K is a critical aspect of long-term operational performance. This work compares the shear strengths of copper/cyanate-ester-insulation interfaces prepared using various copper surface treatments, including grit blasting, alkaline cleaners, oxidizers, and primers. The shear strengths of the copper/cyanate-ester-insulation interface were measured using a novel specimen design in which thin copper foils were treated and embedded in laminate structures. Short-beam-shear tests were conducted at 76, 293, and 373 K to assess the performance of the various surface treatments. The results of this investigation indicate that the adhesive shear strengths of copper/cyanate-ester-insulation interfaces can be improved by as much as 50% by treating the copper surfaces prior to impregnation with the cyanate ester resin.

  3. Friction and shear fracture of an adhesive contact under torsion

    NASA Astrophysics Data System (ADS)

    Chateauminois, Antoine; Fretigny, Christian; Olanier, Ludovic

    2010-02-01

    The shear failure or stiction of an adhesive contact between a poly(dimethylsiloxane) (PDMS) rubber and a glass lens has been investigated using a torsional contact configuration. As compared to linear sliding, torsion presents the advantage of inducing a shear failure under a pure mode III condition, while preserving the cylindrical symmetry of the contact. The surface of the transparent PDMS substrate was marked using a network of dots in order to monitor continuously the in-plane surface displacements during the stiction process. Using a previously developed inversion procedure (A. Chateauminois and C. Fretigny, Eur. Phys. J. E 27, 221 (2008)), the corresponding surface shear stress distributions were obtained from the displacement fields. Stiction was found to involve the progressive shrinkage of a central adhesive zone surrounded by an annular microslip region. Adhesion effects were especially evidenced from a stress overshoot at the boundary of the adhesive zone. The experimental data were analysis using an extension to torsional contact of the Maugis-Dugdale approach’s to adhesive contacts which takes into account frictional effects. This model allowed to extract an effective adhesion energy in the presence of friction, which dependence on kinetics effect is briefly discussed.

  4. Molybdenum Sound Velocity and Shear Strength Softening

    NASA Astrophysics Data System (ADS)

    Nguyen, Jeffrey; Akin, Minta; Chau, Ricky; Fratandouno, Dayne; Ambrose, Pat; Fat'yanov, Oleg; Asimow, Paul; Holmes, Neil

    2013-06-01

    We recently carried out a series of light-gas gun experiments to measure molybdenum acoustic sound speed up to 5 Mbars on the Hugoniot. Our measured sound speeds increase linearly with pressure up to 2.6 Mbars and taper off near the melting pressure. The gradual leveling off of sound speed suggests a possible loss of shear strength near the melt. A linear extrapolation of our data to zero pressure is in good agreement with the sound speed measured at ambient condition. The results indicate that molybdenum remains in the bcc phase on the Hugoniot up to the melting pressure. There is no bcc solid phase transition on the Hugoniot as previously reported. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Stiffness, strength and adhesion characterization of electrochemically deposited conjugated polymer films

    PubMed Central

    Qu, Jing; Ouyang, Liangqi; Kuo, Chin-chen; Martin, David C.

    2015-01-01

    Conjugated polymers such as poly(3,4-ethylenedioxythiphene) (PEDOT) are of interest for a variety of applications including interfaces between electronic biomedical devices and living tissue. The mechanical properties, strength, and adhesion of these materials to solid substrates are all vital for long-term applications. We have been developing methods to quantify the mechanical properties of conjugated polymer thin films. In this study the stiffness, strength and the interfacial shear strength (adhesion) of electrochemically deposited PEDOT and PEDOT-co-1,3,5-tri[2-(3,4-ethylene dioxythienyl)]-benzene (EPh) were studied. The estimated Young’s modulus of the PEDOT films was 2.6 ± 1.4 GPa, and the strain to failure was around 2%. The tensile strength was measured to be 56 ± 27 MPa. The effective interfacial shear strength was estimated with a shear-lag model by measuring the crack spacing as a function of film thickness. For PEDOT on gold/palladium-coated hydrocarbon film substrates an interfacial shear strength of 0.7 ± 0.3 MPa was determined. The addition of 5 mole% of a tri-functional EDOT crosslinker (EPh) increased the tensile strength of the films to 283 ± 67 MPa, while the strain to failure remained about the same (2%). The effective interfacial shear strength was increased to 2.4 ± 0.6 MPa. PMID:26607768

  6. Bond strength of a fluoride-releasing bracket adhesive. Experimental study.

    PubMed

    Graf, I; Breier, M; Huck, L; Schwarze, C W

    1999-01-01

    The aim of the study was to examine a new fluoride-releasing light-cured filling composite for its bonding and debonding qualities when used as a bracket adhesive. The material investigated was a hybrid composite containing a chemically modified fluoride apatite, which is claimed to provide the enamel with phosphate, calcium, and fluoride ions in the presence of an acid pH, recharging its resources of these ions through fluoride-containing toothpastes used in daily oral hygiene. Concurrently suitability as an enamel conditioner was tested in a new self-etching primer, which does not require water rinsing but is gently air dried instead. For comparison a conventional light-cure single-component adhesive was used together with 37% orthophosphoric acid. After application of the respective conditioners, mesh-backed metal brackets were bonded to 20 human premolars in each of the 2 adhesive groups and subjected to a shear test. Bond failure location was evaluated using the Adhesive Remnant Index (ARI). Average bond strength of the experimental bracket adhesive and the conventional etchant was 8.96 MPa. Conditioning with the self-etching primer led to a decrease of mean shear bond strength values to 6.55 MPa. Highest bond strength was determined in the control group (12.19 MPa). The bond strength results obtained in the shear test recommend the new material as a bracket adhesive to be used with orthophosphoric acid for etching.

  7. Effects of dentin surface treatments on shear bond strength of glass-ionomer cements

    PubMed Central

    Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Lombardini, Marco

    2014-01-01

    Summary Aim The aim of this in vitro study was to evaluate the effect of different surface treatments on shear bond strength of a conventional glass-ionomer cement (GIC) and a resin-modified glass-ionomer cement (RMGIC) to dentin. Materials and methods 80 bovine permanent incisors were used. 40 cylindrical specimens of a GIC (Fuji IX GP Extra) and 40 cylindrical specimens of a RMGIC (Fuji II LC) were attached to the dentin. The teeth were then randomly assigned to 8 groups of equal size (n=10), 4 for every type of glass-ionomer cement, corresponding to type of dentin surface treatments. Group 1: GC Cavity Conditioner; Group 2: 37% phosphoric acid gel; Group 3: Clearfil SE Bond; Group 4: no dentin conditioning (control). The specimens were placed in a universal testing machine (Model 3343, Instron Corp., Canton, Mass., USA) and subsequently tested for shear bond strength (MPa). Results ANOVA showed the presence of significant differences among the various groups. Post hoc Tukey test showed different values of shear bond strength for Fuji IX GP Extra and for Fuji II LC. The different conditioners variably influence the adhesion of the glass-ionomer cements tested. Conclusions. RMGIC shear bond to dentin was higher than GIC. The use of a Self-etch adhesive system improved the shear bond strength values of RMGIC and lowered the shear bond strength values of GIC significantly. PMID:24753797

  8. Preliminary evaluation of adhesion strength measurement devices for ceramic/titanium matrix composite bonds

    NASA Technical Reports Server (NTRS)

    Pohlchuck, Bobby; Zeller, Mary V.

    1992-01-01

    The adhesive bond between ceramic cement and a titanium matrix composite substrate to be used in the National Aerospace Plane program is evaluated. Two commercially available adhesion testers, the Sebastian Adherence Tester and the CSEM REVETEST Scratch Tester, are evaluated to determine their suitability for quantitatively measuring adhesion strength. Various thicknesses of cements are applied to several substrates, and bond strengths are determined with both testers. The Sabastian Adherence Tester has provided limited data due to an interference from the sample mounting procedure, and has been shown to be incapable of distinguishing adhesion strength from tensile and shear properties of the cement itself. The data from the scratch tester has been found to be difficult to interpret due to the porosity and hardness of the cement. Recommendations are proposed for a more reliable adhesion test method.

  9. Factors associated with shear bond strength of composite resin to human enamel.

    PubMed

    Gray, G B; MacMillan, S; Payne, A P; McGadey, J

    1996-12-01

    The preparation of enamel surfaces before etching by removing 0.5 mm of surface tooth structure is common-place in modern restorative dentistry. This study was designed to measure and compare the shear bond strength of composite resin bonded to prepared and unprepared enamel using various proprietary bonding systems. The analysed results failed to show significant differences between the shear bond strengths of the prepared and unprepared enamel specimens. Conditioning enamel surfaces for 60 seconds using 2.5% nitric acid where the solution was allowed to desiccate, resulted in significantly lower bond strengths compared to the other regimes. A correlation of the etchant pH with the mean shear bond strength of the adhesive systems to enamel was observed. The surface topography of the etched enamel surfaces correlated moderately well with the bond strengths obtained.

  10. Vane shear strength of dewatered sludge from Hong Kong.

    PubMed

    Koenig, A; Bari, Q H

    2001-01-01

    The vane shear strength and total solids content of dewatered sludge from Hong Kong were determined in order to evaluate their geotechnical suitability for disposal in landfills. The results obtained indicate that (i) the total solids and vane shear strength of dewatered sludge from different treatment plants varied considerably depending on the type of sludge and dewatering method; and, (ii) percent total solids alone is not sufficient to guarantee geotechnical stability in terms of vane shear strength. The critical state model for soils provided a good fit for the characteristic relationship between vane shear strength and total solids, which can be used to estimate vane shear strength from total solids only. No relationship between volatile solids and vane shear strength was found. The results of the laboratory vane shear test correlated well with those obtained by a pocket shearmeter indicating the usefulness of this method for rapid determination of vane shear strength on site. Some factors that influence vane shear strength were briefly evaluated. Implications of the results for sludge management with special emphasis on dewatering and landfilling were discussed.

  11. In Vitro Evaluation of Shear Bond Strength of Nanocomposites to Dentin

    PubMed Central

    Vellanki, Vinay Kumar; Shetty, Vikram K; Kushwah, Sudhanshu; Goyal, Geeta; Chandra, S.M. Sharath

    2015-01-01

    Aims: To compare the shear bond strength of nanocomposites to dentin using three different types of adhesive systems; and to test few specimens under Scanning Electron Microscope (SEM) for analysing whether the bond failure is adhesive or cohesive. Materials and Methods: Sixty human premolar teeth were selected and were randomly grouped, with 20 specimens in each group: group 1 - fluoride releasing dentin bonding agent; group 2 - antibacterial containing dentin bonding agent; and group 3 - one step conventional self etch adhesive. Each group was treated with its respective bonding agents, composite resin build up was done, and shear bond strengths were tested using Instron Universal testing machine. Few of the specimens were tested under SEM. Results: The results were statistically analysed using One-way ANOVA and paired t-test. It was observed that group 3 has the highest shear bond strength followed by group 2, and then group 1. Adhesive failures and mixed failures were most frequent types of failures as seen under SEM. Conclusion: Addition of antimicrobial agent decreases the bond strength of dentin bonding agent and addition of fluoride further decreases the bond strength. From SEM results it can be concluded that the zone of failure could not be defined and also that the failure mode was independent of the dentin bonding agent used. PMID:25738077

  12. Influence of composition on the adhesive strength and initial viscosity of denture adhesives.

    PubMed

    Han, Jian-min; Hong, Guang; Hayashida, Kentaro; Maeda, Takeshi; Murata, Hiroshi; Sasaki, Keiichi

    2014-01-01

    To investigate the effect of composition on the initial viscosity and adhesive strength between denture adhesives and the denture base. Two types of water-soluble polymers (methoxy ethylene maleic anhydride copolymer [PVM-MA] and sodium carboxymethyl cellulose [CMC]) were used. Samples were divided into three groups. Group 1 contained only PVM-MA; Group 2 contained only CMC; and Group 3 contained PVM-MA and CMC. The initial viscosity and adhesive strength were measured. For Group 1, the initial viscosity increased significantly as PVM-MA content increased. The adhesive strength of Group 1 lasted longer than Group 2. The adhesive strength of Group 3 varied greatly. The ratio of CMC and PVM-MA has a significant effect on the initial viscosity and adhesive strength of denture adhesives. Our results suggest that it is possible to improve the durability of a denture adhesive by combining different water-soluble polymers.

  13. Effect of ozone gas on the shear bond strength to enamel

    PubMed Central

    PIRES, Patrícia Teixeira; FERREIRA, João Cardoso; OLIVEIRA, Sofia Arantes; SILVA, Mário Jorge; MELO, Paulo Ribeiro

    2013-01-01

    Ozone is an important disinfecting agent, however its influence on enamel adhesion has not yet been clarified. Objective: Evaluate the influence of ozone pretreatment on the shear strength of an etch-and-rinse and a self-etch system to enamel and analyze the respective failure modes. Material and Methods: Sixty sound bovine incisors were used. Specimens were randomly assigned to four experimental groups (n=15): Group G1 (Excite® with ozone) and group G3 (AdheSE® with ozone) were prepared with ozone gas from the HealOzone unit (Kavo®) for 20 s prior to adhesion, and groups G2 (Excite®) and G4 (AdheSE®) were used as control. Teeth were bisected and polished to simulate a smear layer just before the application of the adhesive systems. The adhesives were applied according to the manufacturer's instructions to a standardized 3 mm diameter surface, and a composite (Synergy D6, Coltene Whaledent) cylinder with 2 mm increments was build. Specimens were stored in 100% humidity for 24 h at 37º C and then subjected to a thermal cycling regimen of 500 cycles. Shear bond tests were performed with a Watanabe device in a universal testing machine at 5 mm/min. The failure mode was analyzed under scanning electron microscope. Means and standard deviation of shear bond strength (SBS) were calculated and difference between the groups was analyzed using ANOVA, Kolmogorov-Smirnov, Levene and Bonferroni. Chi-squared statistical tests were used to evaluate the failure modes. Results: Mean bond strength values and failure modes were as follows: G1- 26.85±6.18 MPa (33.3% of adhesive cohesive failure); G2 - 27.95±5.58 MPa (53.8% of adhesive failures between enamel and adhesive); G3 - 15.0±3.84 MPa (77.8% of adhesive failures between enamel and adhesive) and G4 - 13.1±3.68 MPa (36.4% of adhesive failures between enamel and adhesive). Conclusions: Shear bond strength values of both adhesives tested on enamel were not influenced by the previous application of ozone gas. PMID

  14. Effect of adherend steel strength on static and fatigue strength of adhesive/rivet combined joint

    NASA Astrophysics Data System (ADS)

    Imanaka, Makoto; Haraga, Kosuke; Nishikawa, Tetsuya

    1992-02-01

    Adhesive/rivet combined bonding has attracted special interest recently as a joining technique of high-strength steel because of its high joint efficiency. In this study, the effects of steel strength on the tensile and fatigue strength of adhesive/rivet combined and adhesive joints were investigated. In addition, the stress distributions of these joints were analyzed by finite-element methods, taking into consideration the plastic deformation of adherend steels. With the increase of steel strength, the tensile strength of combined and adhesive joints increased and tensile strength was improved by the combination with the rivet. However, irrespective of the steel strength, the fatigue strength of combined and adhesive joints was constant and the fatigue strength of the combined joint was similar to that of the adhesive joint. These findings could be explained from the difference of stress distribution between static and fatigue load conditions.

  15. Shear bond strength of enamel surface treated with air-abrasive system.

    PubMed

    Borsatto, Maria Cristina; Catirse, Alma Blásida Elisaur Benitez; Palma Dibb, Regina Guenka; Nascimento, Telma Nunes do; Rocha, Renata Andréa Salvitti de Sá; Corona, Silmara Aparecida Milori

    2002-01-01

    The aim of this study was to evaluate the shear bond strength of a composite resin to dental enamel, using three different surface treatments. Fifteen sound third molars were randomly assigned to three groups. The mesial and distal surfaces were flattened and covered using adhesive tape with a central orifice delimiting the adhesion area (7.07 mm2). Group I, the enamel surface was conditioned with 37% phosphoric acid for 15 s; group II, the surface was treated using air abrasion with aluminum oxide; group III, the enamel surface was treated using an association of air abrasion with aluminum oxide and 37% phosphoric acid. The Single Bond (3M) adhesive system was applied and a Teflon matrix was placed and filled with composite resin Z-100 (3M) and light-cured. The shear bond strength test was performed with a universal testing machine. The acid etching technique and air abrasion with aluminum oxide associated with acid etching had the highest shear bond strength values. Data were subjected to statistical analysis using ANOVA and the Turkey test, and no statistically significant difference in shear bond strength was observed between group I (12.49 +/- 2.85 MPa) and group III (12.59 +/- 2.68 MPa). In contrast, both groups had statistically better shear bond strengths compared to group II (0.29 +/- 0.56 MPa; p < 0.05). Air abrasion with aluminum oxide does not substitute acid etching. The association of these methods to obtain adequate adhesion to the substrate is necessary.

  16. Bond strength evaluation in adhesive joints using NDE and DIC methods

    NASA Astrophysics Data System (ADS)

    Poudel, Anish

    Adhesive bonding of graphite epoxy composite laminates to itself or traditional metal alloys in modern aerospace and aircraft structural applications offers an excellent opportunity to use the most efficient and intelligent combination of materials available thus providing an attractive package for efficient structural designs. However, one of the major issues of adhesive bonding is the occasional formation of interfacial defects such as kissing or weak bonds in the bondline interface. Also, there are shortcomings of existing non-destructive evaluation (NDE) methods to non-destructively detect/characterize these interfacial defects and reliably predicting the bond shear strength. As a result, adhesive bonding technology is still not solely implemented in primary structures of an aircraft. Therefore, there is a greater demand for a novel NDE tool that can meet the existing aerospace requirement for adhesive bondline characterization. This research implemented a novel Acoustography ultrasonic imaging and digital image correlation (DIC) technique to detect and characterize interfacial defects in the bondline and determine bond shear strength in adhesively bonded composite-metal joints. Adhesively bonded Carbon Fiber Reinforced Plastic (CFRP) laminate and 2024-T3 Aluminum single lap shear panels subjected to various implanted kissing/weak bond defects were the primary focus of this study. Kissing/weak bonds were prepared by controlled surface contamination in the composite bonding surface and also by improperly mixing the adhesive constituent. SEM analyses were also conducted to understand the surface morphology of substrates and their interaction with the contaminants. Morphological changes were observed in the microscopic scale and the chemical analysis confirmed the stability of the contaminant at or very close to the interface. In addition, it was also demonstrated that contaminants migrated during the curing of the adhesive from CFRP substrate which caused a

  17. Importance of Tensile Strength on the Shear Behavior of Discontinuities

    NASA Astrophysics Data System (ADS)

    Ghazvinian, A. H.; Azinfar, M. J.; Geranmayeh Vaneghi, R.

    2012-05-01

    In this study, the shear behavior of discontinuities possessing two different rock wall types with distinct separate compressive strengths was investigated. The designed profiles consisted of regular artificial joints molded by five types of plaster mortars, each representing a distinct uniaxial compressive strength. The compressive strengths of plaster specimens ranged from 5.9 to 19.5 MPa. These specimens were molded considering a regular triangular asperity profile and were designed so as to achieve joint walls with different strength material combinations. The results showed that the shear behavior of discontinuities possessing different joint wall compressive strengths (DDJCS) tested under constant normal load (CNL) conditions is the same as those possessing identical joint wall strengths, but the shear strength of DDJCS is governed by minor joint wall compressive strength. In addition, it was measured that the predicted values obtained by Barton's empirical criterion are greater than the experimental results. The finding indicates that there is a correlation between the joint roughness coefficient (JRC), normal stress, and mechanical strength. It was observed that the mode of failure of asperities is either pure tensile, pure shear, or a combination of both. Therefore, Barton's strength criterion, which considers the compressive strength of joint walls, was modified by substituting the compressive strength with the tensile strength. The validity of the modified criterion was examined by the comparison of the predicted shear values with the laboratory shear test results reported by Grasselli (Ph.D. thesis n.2404, Civil Engineering Department, EPFL, Lausanne, Switzerland, 2001). These comparisons infer that the modified criterion can predict the shear strength of joints more precisely.

  18. Shear bond strength of seventh generation bonding agents on dentin of primary teeth--an in vitro study.

    PubMed

    Gonzalez, Geoffrey; Rich, Alfred P; Finkelman, Matthew D; Defuria, Catherine

    2012-01-01

    This controlled, randomized, in vitro study evaluated the shear bond strength of several seventh generation bonding agents on the dentin of primary teeth. Six different adhesives were used: Xeno IV, Clearfil S3 Bond, Adper Prompt-L-Pop, AdheSE One, Bond Force, and Optibond (control). Ninety primary teeth were prepared by wet grinding with a 320-grit silicon carbide paper on a polishing wheel running at 110 RPM. After 24 hours of storage in water, shear bond strengths of each group were determined. The mean shear bond strength of the tested adhesive systems to primary dentin was 12.27 MPa. One-way ANOVA testing showed a statistically significant difference between adhesive products (P < 0.001). Tukey HSD post hoc tests were used to assess which means were significantly different from one another. There was no statistically significant difference between the fifth generation adhesive system (Optibond) and the two seventh generation systems (Xeno IV and Bond Force), with Optibond exhibiting a lower mean shear bond strength compared to Bond Force. Within the limitations of this study, there is a significant difference between seventh generation bonding materials. Bond Force and Optibond appear to exhibit higher shear bond strengths than the other products.

  19. Shear bond strength of Dyract compomer material to dentin of primary molars.

    PubMed

    Megid, F Y; Salama, F S

    1997-01-01

    The purpose of this study was to measure and compare the shear bond strength and fracture pattern of Dyract compomer material with and without use of PSA prime/adhesive as well as 35% phosphoric acid etching to the buccal dentin of primary first and second molars. In addition, micromorphology of the restorative surfaces opposing the tooth structure following these different surface treatments was evaluated. For shear bond strength measurement and fracture pattern evaluation, 36 extracted non-restored human primary molars with mild to moderate caries divided into 3 groups of 12 teeth each were used. Dyract with and without use of PSA prime/adhesive as well as 35% phosphoric acid etching for 15 seconds prior to placement of PSA prime/adhesive was applied to the buccal surface of exposed dentin. A standardized tube of Dyract was placed on each dentin surface and polymerized. The tubes were sheared off with a Universal testing machine at a cross head speed of 12.7 mm/min. For evaluation of the restorative surfaces opposing the tooth structure, 9 teeth divided into 3 groups of 3 teeth each were used to prepare the specimens, which were then demineralized in 10% hydrochloric acid for 24 hours. Fitting surfaces of these specimens were prepared and examined using scanning electron microscope. Tukey's multiple range test showed that the shear bond strength of Dyract with PSA prime/adhesive (group 1) was statistically significantly higher than Dyract without PSA prime/adhesive (group 2) and phosphoric acid etching (group 3). The shear bond strength in group 1 averaged 5.89 +/- 1.40 (X + SD MPa) while for groups 2 and averaged 1.49 +/- 0.69 and 3.69 +/- 0.89 respectively. Pretreatment of dentin surface with 35% phosphoric acid increased resin tags formation but it did significantly lower shear bond strength of Dyract with PSA prime/adhesive to dentin of primary molars. Bond failure patterns for all groups were only adhesive and mixed type failures.

  20. Aerospace Threaded Fastener Strength in Combined Shear and Tension Loading

    NASA Technical Reports Server (NTRS)

    Steeve, B. E.; Wingate, R. J.

    2012-01-01

    A test program was initiated by Marshall Space Flight Center and sponsored by the NASA Engineering and Safety Center to characterize the failure behavior of a typical high-strength aerospace threaded fastener under a range of shear to tension loading ratios for both a nut and an insert configuration where the shear plane passes through the body and threads, respectively. The testing was performed with a customized test fixture designed to test a bolt with a single shear plane at a discrete range of loading angles. The results provide data to compare against existing combined loading failure criteria and to quantify the bolt strength when the shear plane passes through the threads.

  1. Anisotropy of Shear Strength of Silica: a Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Luo, S.; Tschauner, O.

    2005-12-01

    We investigate the shear strengths of silica glass, alpha-quartz, coesite, and stishovite using classical molecular dynamics simulations with a modified van Beest-Kramer-van Santen potential. Shear strengths along different crystallographic orientations are studied. We also explore the effects of hydrostatic pressure, temperature, and defects on the shear strength. *Work partly performed under the auspices of the U.S. Department of Energy under contract No. W-7405-ENG-36 and NNSA Cooperative Agreement DE-FC88-01NV14049

  2. Shear bond strength of epoxy resin-based endodontic sealers to bovine dentin after ozone application.

    PubMed

    Bojar, Witold; Czarnecka, Beata; Pryliński, Mariusz; Walory, Jarosław

    2009-01-01

    The idea of using ozone to disinfect root canals is of recent origin. The wide acceptance of epoxy resin-based sealers lead us to investigate whether ozone can influence the adhesion to the dentin. In this study, we tested the shear bond strength of AH Plus and EZ Fill. Forty freshly extracted bovine teeth were randomly divided into 5 groups. 16 of these samples were treated with ozone for 60 seconds (HealOzone, Kavo). 8 samples were conditioned with the G Bond bonding system. The groups tested were: (1) AH Plus, (2) AH Plus and ozone, (3) EZ Fill, (4) EZ Fill and ozone, (5) AH Plus and G Bond. 48 hours after being prepared the specimens were tested for shear bond strength. Statistical analysis showed significant differences between materials (AH Plus > EZ Fill) and significant, positive influence of ozone and bonding agent on the shear bond strength.

  3. Bond strength of self-adhesive resin cements to composite submitted to different surface pretreatments

    PubMed Central

    dos Santos, Victor Hugo; Griza, Sandro; de Moraes, Rafael Ratto

    2014-01-01

    Objectives Extensively destroyed teeth are commonly restored with composite resin before cavity preparation for indirect restorations. The longevity of the restoration can be related to the proper bonding of the resin cement to the composite. This study aimed to evaluate the microshear bond strength of two self-adhesive resin cements to composite resin. Materials and Methods Composite discs were subject to one of six different surface pretreatments: none (control), 35% phosphoric acid etching for 30 seconds (PA), application of silane (silane), PA + silane, PA + adhesive, or PA + silane + adhesive (n = 6). A silicone mold containing a cylindrical orifice (1 mm2 diameter) was placed over the composite resin. RelyX Unicem (3M ESPE) or BisCem (Bisco Inc.) self-adhesive resin cement was inserted into the orifices and light-cured. Self-adhesive cement cylinders were submitted to shear loading. Data were analyzed by two-way ANOVA and Tukey's test (p < 0.05). Results Independent of the cement used, the PA + Silane + Adhesive group showed higher microshear bond strength than those of the PA and PA + Silane groups. There was no difference among the other treatments. Unicem presented higher bond strength than BisCem for all experimental conditions. Conclusions Pretreatments of the composite resin surface might have an effect on the bond strength of self-adhesive resin cements to this substrate. PMID:24516824

  4. Characterization of interlaminar shear strength of ceramic matrix composites

    SciTech Connect

    Fang, N.J.J.; Tsuwei Chou . Dept. of Mechanical Engineering)

    1993-10-01

    The interlaminar shear strengths of three ceramic matrix composites have been characterized using a double-notch shear (DNS) test. The material systems investigated are plain woven C/SiC, plain woven SiC/SiC, and cross-plied SiC/calcium aluminosilicate-II. The use of the double-notch shear test for measuring the interlaminar shear strength of ceramic matrix composites is evaluated first. Numerical stress analyses are performed to investigate the effect of DNS specimen length, notch distance, and specimen supporting jig on the stress distribution in the expected fracture plane and the interlaminar shear strength. The numerical findings are then compared with an analytical model proposed elsewhere and correlated with the experimental results. The validity of this test technique has been established.

  5. Prediction of residual shear strength of corroded reinforced concrete beams

    NASA Astrophysics Data System (ADS)

    Imam, Ashhad; Azad, Abul Kalam

    2016-09-01

    With the aim of providing experimental data on the shear capacity and behavior of corroded reinforced concrete beams that may help in the development of strength prediction models, the test results of 13 corroded and four un-corroded beams are presented. Corrosion damage was induced by accelerated corrosion induction through impressed current. Test results show that loss of shear strength of beams is mostly attributable to two important damage factors namely, the reduction in stirrups area due to corrosion and the corrosion-induced cracking of concrete cover to stirrups. Based on the test data, a method is proposed to predict the residual shear strength of corroded reinforced concrete beams in which residual shear strength is calculated first by using corrosion-reduced steel area alone, and then it is reduced by a proposed reduction factor, which collectively represents all other applicable corrosion damage factors. The method seems to yield results that are in reasonable agreement with the available test data.

  6. The effect of saliva on shear bond strengths of hydrophilic bonding systems.

    PubMed

    Webster, M J; Nanda, R S; Duncanson, M G; Khajotia, S S; Sinha, P K

    2001-01-01

    Failure of orthodontic bonded attachments and brackets is mostly attributed to contamination of the enamel surface. To overcome this problem, materials have been developed that purportedly overcome the moisture and contaminants present in the oral environment. This study compared the shear bond strengths of 2 lightcured hydrophilic bonding systems, Transbond XT with MIP (3M/Unitek, Monrovia, Calif) and Assure (Reliance Orthodontics, Itasca, Ill) with a hydrophobic bonding system, Transbond XT with XT primer (3M/Unitek). Comparison tests were conducted under 4 enamel surface conditions: (1) etched and dried; (2) etched and moistened with artificial saliva; (3) etched, primed, and moistened with artificial saliva; and (4) etched, primed, moistened with artificial saliva, and reprimed. In addition, an adhesive remnant index score was used to determine the amount of adhesive remaining on the tooth. Stainless steel brackets with mesh-backed pads (n = 144) were bonded to bovine teeth. Bond strength was then tested in shear using an Instron mechanical testing instrument. There were significant differences in the bond strengths among the products (P <.05), within surface treatments (P <.05), and among the different bonding materials in combination with various surface treatments (P <.05). Treatments 1 and 4 showed the highest mean bond strengths adhesive remnant index scores, whereas treatments 2 and 3 showed the lowest mean bond strengths and scores.

  7. Experimental Study on Peak Shear Strength Criterion for Rock Joints

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Rong, Guan; Hou, Di; Peng, Jun; Zhou, Chuangbing

    2016-03-01

    The three-dimensional (3D) morphology of a rock joint has a great impact on its shear behavior. To study the relationship between the 3D morphological characteristics and the peak shear strength, several tilt tests were conducted on four groups of tensile fractures and direct shear tests were carried out under different constant normal loads (CNL). The normal load ranges from 0.325 to 8.0 MPa. In this study, fresh tensile fractures which were splitted from granite and sandstone samples were used. The morphology of each tensile fracture was measured before direct shear tests. A new peak shear strength criterion for rock joints is proposed using two 3D morphological parameters which are termed as the maximum apparent dip angle θ_{max}^{*} and the roughness parameter C. The calculated peak strengths using the proposed criterion match well with the observed values. In addition, a comparison of the proposed model with the Grasselli's model (2003) and Xia's model (2014) shows that the proposed model is easier in the form and gives a rational improvement. At last, direct shear test data of tensile fractures which are collected from Grasselli (2003) are used to verify the proposed model. It is seen that the proposed model has a reliable estimate of the peak shear strength of tensile fractures and presumably for rock joints.

  8. Evaluation of adhesive and compressive strength of glass ionomer cements.

    PubMed

    Ramashanker; Singh, Raghuwar D; Chand, Pooran; Jurel, Sunit Km; Tripathi, Shuchi

    2011-12-01

    The aim of the study was to assess, compare and evaluate the adhesive strength and compressive strength of different brands of glass ionomer cements to a ceramometal alloy. (A) Glass ionomer cements: GC Fuji II (GC Corporation, Tokyo), Chem Flex (Dentsply DeTrey, Germany), Glass ionomer FX (Shofu-11, Japan), MR dental (MR dental suppliers Pvt Ltd, England). (B) Ceramometal alloy (Ni-Cr: Wiron 99; Bego, Bremen, Germany). (C) Cold cure acrylic resin. (E) Temperature cum humidity control chamber. (F) Instron Universal Testing Machine. Four different types of Glass ionomer cements were used in the study. From each type of the Glass ionomer cements, 15 specimens for each were made to evaluate the compressive strength and adhesive strength, respectively. The 15 specimens were further divided into three subgroups of five specimens. For compressive strength, specimens were tested at 2, 4 and 12 h by using Instron Universal Testing Machine. To evaluate the adhesive strength, specimens were surface treated with diamond bur, silicone carbide bur and sandblasting and tested under Instron Universal Testing Machine. It was concluded from the study that the compressive strength as well as the adhesive bond strength of MR dental glass ionomer cement with a ceramometal alloy was found to be maximum compare to other glass ionomer cements. Sandblasting surface treatment of ceramometal alloy was found to be comparatively more effective for adhesive bond strength between alloy and glass ionomer cement.

  9. Inhibition of bacterial and leukocyte adhesion under shear stress conditions by material surface chemistry.

    PubMed

    Patel, Jasmine D; Ebert, Michael; Stokes, Ken; Ward, Robert; Anderson, James M

    2003-01-01

    Biomaterial-centered infections, initiated by bacterial adhesion, persist due to a compromised host immune response. Altering implant materials with surface modifying endgroups (SMEs) may enhance their biocompatibility by reducing bacterial and inflammatory cell adhesion. A rotating disc model, which generates shear stress within physiological ranges, was used to characterize adhesion of leukocytes and Staphylococcus epidermidis on polycarbonate-urethanes and polyetherurethanes modified with SMEs (polyethylene oxide, fluorocarbon and dimethylsiloxane) under dynamic flow conditions. Bacterial adhesion in the absence of serum was found to be mediated by shear stress and surface chemistry, with reduced adhesion exhibited on materials modified with polydimethylsiloxane and polyethylene oxide SMEs. In contrast, bacterial adhesion was enhanced on materials modified with fluorocarbon SMEs. In the presence of serum, bacterial adhesion was primarily neither material nor shear dependent. However, bacterial adhesion in serum was significantly reduced to < or = 10% compared to adhesion in serum-free media. Leukocyte adhesion in serum exhibited a shear dependency with increased adhesion occurring in regions exposed to lower shear-stress levels of < or = 7 dyne/cm2. Additionally, polydimethylsiloxane and polyethylene oxide SMEs reduced leukocyte adhesion on polyether-urethanes. In conclusion, these results suggest that surface chemistry and shear stress can mediate bacterial and cellular adhesion. Furthermore, materials modified with polyethylene oxide SMEs are capable of inhibiting bacterial adhesion, consequently minimizing the probability of biomaterial-centered infections.

  10. Comparison of the shear bond strengths of conventional mesh bases and sandblasted orthodontic bracket bases.

    PubMed

    Lugato, Isabel Cristina Prado Torres; Pignatta, Lilian Maria Brisque; Arantes, Flávia de Moraes; Santos, Eduardo César Almada

    2009-01-01

    This study aimed to compare in vitro the shear bond strength between metallic brackets (Abzil) with conventional mesh bases and metallic brackets with bases industrially sandblasted with aluminum oxide using three adhesive systems, in order to assess the influence of sandblasting on adhesiveness and to compare 3 different bonding systems. Two hundred and forty bovine incisors were used and randomly divided into 6 groups (40 teeth in each group), according to the bracket base and to the bonding system. The brackets were direct-bonded in bovine teeth with 3 adhesive systems: System A - conventional Transbond XT (3M - Unitek); System B - Transbond Plus Self Etching Primer + Transbond XT (3M - Unitek) and System C - Fuji ORTHO LC resin-reinforced glass ionomer cement in capsules (GC Corp.). Shear bond strength tests were performed 24 hours after bonding, in a DL-3000 universal testing machine (EMIC), using a load cell of 200 kgf and a speed of 1 mm/min. The results were submitted to statistical analysis and showed no significant difference between conventional and sandblasted bracket bases. However, comparison between the bonding systems presented significantly different results. System A (14.92 MPa) and system C (13.24 MPa) presented statistically greater shear bond strength when compared to system B (10.66 MPa). There was no statistically significant difference between system A and system C.

  11. Gap measurement and bond strength of five selected adhesive systems bonded to tooth structure.

    PubMed

    Arbabzadeh, F; Gage, J P; Young, W G; Shahabi, S; Swenson, S M

    1998-06-01

    The ability of a restorative material to bond and seal the interface with tooth structure is perhaps the most significant factor in determining resistance to marginal caries. Thus, the quality and durability of marginal seal and bond strength are major considerations in the selection of restorative materials. The purpose of this study was to compare the bond strength and marginal discrepancies of five adhesive systems: All-Bond 2, Clearfil Liner Bond, KB 200, ProBond and AELITE Bond. Twenty-five buccal and 25 lingual cavities were prepared in 25 caries-free extracted molar teeth, giving 10 cavities for each of the 5 adhesive systems. All teeth were restored with the resin composite Pertac Hybrid, or PRISMA Total Performance Hybrid with their appropriate adhesive systems. After restoration, the teeth were thermocycled, were stained with a 1.5% aqueous solution of a procion dye (reactive orange 14) and sectioned coronally with a saw microtome. Three sections of 200 microns thickness were prepared from each restoration which were then examined microscopically to measure marginal gap widths using a confocal tandem microscope. Shear bond strength measurements were carried out on the dentine bond using a universal testing machine. The All-Bond 2 adhesive system was found to have higher shear bond strength and to have the least gap width at the cementodentinal margin.

  12. Comparison of shear bond strength of amalgam bonded to primary and permanent dentin.

    PubMed

    Mahdi, S; Bahman, S; Arghavan, A B; Fatemeh, M

    2008-06-01

    Amalgam's non-adhesive characteristics necessitate cavity preparations incorporating retentive features, which often require the removal of non-carious tooth structure. Use of adhesives beneath amalgam restorations, would be helpful to overcome this disadvantage. This study was undertaken to compare the mean shear bond strength of amalgam bonded to primary and permanent dentin, to evaluate the efficacy of amalgam adhesives in pediatric dentistry.27 primary and 28 permanent posterior teeth with intact buccal or lingual surfaces were grounded to expose dentin and wet-polished with 400-grit silicone carbide paper. Scotchbond Multi Purpose Plus adhesive system was applied to the dentin surfaces and light cured. Amalgam was condensed onto the treated dentin through a plastic mold.shear bond strength testing was done using an Instron Universal testing machine, at a crosshead speed of 0.5 mm/min.The data were analyzed by independent samples t-test The difference among the two groups was not statistically significant (p>0.05) Bonded amalgam showed the same level of bond strength to primary and permanent dentin; so, application of amalgam bonding agents in pediatric dentistry can be recommended.

  13. Blood contamination effect on shear bond strength of an orthodontic hydrophilic resin

    PubMed Central

    da CUNHA, Taís de Morais Alves; BEHRENS, Bruna Ariela; NASCIMENTO, Denise; RETAMOSO, Luciana Borges; LON, Luís Filipe Siu; TANAKA, Orlando; GUARIZA FILHO, Odilon

    2012-01-01

    Objective The aim of this study was to assess the impact of blood contamination on shear bond strength (SBS) and bond failure pattern of metallic brackets bonded using a new hydrophilic resin. Material and Methods Eighty human premolars were randomly allocated into 4 groups (n=20) according to the bonding material and contamination pattern. GI: brackets bonded with the Transbond XT conventional system without contamination; GII: brackets bonded with the Transbond XT conventional system with blood contamination; GIII: brackets bonded with the Transbond Self Etching Primer and Transbond Plus Color without contamination; GIV: brackets bonded with the Transbond Self Etching Primer and Transbond Plus Color with blood contamination. The specimens were stored in distilled water at 37ºC for 24 h and then submitted to SBS test at a crosshead speed of 0.5 mm/min. After bond failure, the enamel surfaces were observed under an optical microscope at 40x magnification. Results Blood contamination decreased (P<0.05) shear bond strength when both the hydrophobic (GII) and the hydrophilic resin (GIV) were used. However, the bond strength of Transbond Color Change group was significantly higher (P<0.05) than that of the Transbond XT conventional system group under blood contamination condition. Under dry conditions no difference was observed between the hydrophobic and hydrophilic resin groups. Regarding the bond failure pattern, when blood contaminated the enamel, the adhesive remnant index (ARI) showed predominance of scores 0 and 1, which indicates low adhesion to enamel. Conclusions Although there was a significant decrease in the shear bond strength for both adhesive systems under blood contamination, the hydrophilic system showed significantly higher bond strength than the hydrophobic resin adhesive. Therefore, it is advisable to use the hydrophilic resin under risk of blood contamination. PMID:22437684

  14. Shear Strength Prediction By Modified Plasticity Theory For SFRC Beams

    SciTech Connect

    Colajanni, Piero; Recupero, Antonino; Spinella, Nino

    2008-07-08

    the plastic Crack Sliding Model (CSM) is extended for derivation of a physical model for the prediction of ultimate shear strength of SFRC beams, by assuming that the critical cracks is modeled by a yield lines. To this aim, the CSM is improved in order to take into account the strength increases due to the arch effect for deep beam. Then, the effectiveness factors for the concrete under biaxial stress are calibrated for fibrous concrete. The proposed model, able to provide the shear strength and the position of the critical cracks, is validate by a large set of test results collected in literature.

  15. Shear bond strength of veneering porcelain to porous zirconia.

    PubMed

    Nakamura, Takashi; Sugano, Tsuyoshi; Usami, Hirofumi; Wakabayashi, Kazumichi; Ohnishi, Hiroshi; Sekino, Tohru; Yatani, Hirofumi

    2014-01-01

    In this study, two types of porous zirconia and dense zirconia were used. The flexural strength of non-layered zirconia specimens and those of the layered zirconia specimens with veneering porcelain were examined. Furthermore, the shear bond strength of veneering porcelain to zirconia was examined. The flexural strength of the non-layered specimens was 1,220 MPa for dense zirconia and 220 to 306 MPa for porous zirconia. The flexural strength of the layered specimens was 360 MPa for dense zirconia and 132 to 156 MPa for porous zirconia, when a load was applied to the porcelain side. The shear bond strength of porcelain veneered to dense zirconia was 27.4 MPa and that of porcelain veneered to porous zirconia was 33.6 to 35.1 MPa. This suggests that the veneering porcelain bonded strongly to porous zirconia although porous zirconia has a lower flexural strength than dense zirconia.

  16. The effect of saliva decontamination procedures on dentin bond strength after universal adhesive curing

    PubMed Central

    Kim, Jayang; Hong, Sungok; Choi, Yoorina

    2015-01-01

    Objectives The purpose of this study was to investigate the effectiveness of multiple decontamination procedures for salivary contamination after curing of a universal adhesive on dentin bond strength according to its etch modes. Materials and Methods Forty-two extracted bovine incisors were trimmed by exposing the labial dentin surfaces and embedded in cylindrical molds. A universal adhesive (All-Bond Universal, Bisco) was used. The teeth were randomly divided into groups according to etch mode and decontamination procedure. The adhesive was applied according to the manufacturer's instructions for a given etch mode. With the exception of the control groups, the cured adhesive was contaminated with saliva for 20 sec. In the self-etch group, the teeth were divided into three groups: control, decontamination with rinsing and drying, and decontamination with rinsing, drying, and adhesive. In the etch-and-rinse group, the teeth were divided into four groups: control, decontamination with rinsing and drying, decontamination with rinsing, drying, and adhesive, and decontamination with rinsing, drying, re-etching, and reapplication of adhesive. A composite resin (Filtek Z350XT, 3M ESPE) was used for filling and was cured on the treated surfaces. Shear bond strength was measured, and failure modes were evaluated. The data were subjected to one-way analysis of variation and Tukey's HSD test. Results The etch-and-rinse subgroup that was decontaminated by rinse, drying, re-etching, and reapplication of adhesive showed a significantly higher bond strength. Conclusions When salivary contamination occurs after curing of the universal adhesive, additional etching improves the bond strength to dentin. PMID:26587416

  17. Fracture and shear bond strength analyses of different dental veneering ceramics to zirconia.

    PubMed

    Diniz, Alexandre C; Nascimento, Rubens M; Souza, Julio C M; Henriques, Bruno B; Carreiro, Adriana F P

    2014-05-01

    The purpose of this work was to evaluate the interaction of different layering porcelains with zirconia via shear bond strength test and microscopy. Four different groups of dental veneering porcelains (VM9, Zirkonzanh, Ceramco, IPS) were fused onto forty zirconia-based cylindrical substrates (8mm in diameter and 12 mm in height) (n=10), according to the manufacturer's recommendations. Additionally, layered dental porcelain (D-sign, Ivoclar) was fired on ten Ni-Cr cylindrical substrates Shear bond strength tests of the veneering porcelain to zirconia or Ni-Cr were carried out at a crosshead speed of 0.5mm/min. After the shear bond tests, the interfaces were analyzed by scanning electron microscopy (SEM). The fracture type exhibited by the different systems was also assessed. The results were statistically analyzed by ANOVA at a significant level of p<.05. The shear bond strength values of the porcelain-to-NiCr interfaces (25.3±7.1 MPa) were significantly higher than those recorded for the following porcelain-to-zirconia systems: Zirkonzanh (18.8±1 MPa), Ceramco (18.2±4.7 MPa), and IPS (16±4.5 MPa). However, no significant differences were found in the shear bond strength values between the porcelain-to-NiCr and porcelain (VM9)-to-zirconia (23.2±5.1 MPa) groups (p>.05). All-ceramic interfaces revealed mixed failure type, cohesive in the porcelain and adhesive at the interface. This study demonstrated that all-ceramic systems do not attain yet the same bond strength standards equivalent to metal-ceramic systems. Therefore, despite the esthetic appeal of all-ceramic restorations, the adhesion between the porcelain and zirconia framework is still an issue considering the long term success of the restoration.

  18. Effect of laser preparation on bond strength of a self-adhesive flowable resin.

    PubMed

    Yazici, A Rüya; Agarwal, Ishita; Campillo-Funollet, Marc; Munoz-Viveros, Carlos; Antonson, Sibel A; Antonson, Donald E; Mang, Thomas

    2013-01-01

    The aim of this in vitro study was to evaluate the effect of laser treatment on shear bond strength of a self-adhesive flowable resin composite to human dentin. Eighty extracted sound human molar teeth were used for the study. The teeth were sectioned mesiodistally and embedded in acrylic blocks. The dentin surfaces were ground wet with 600-grit silicon carbide (SiC) paper. They were randomly divided into two preparation groups: laser (Er:YAG laser, with 12 Hz, 350 mJ energy) and control (SiC). Each group was then divided into two subgroups according to the flowable resin composite type (n = 20). A self-adhesive flowable (Vertise Flow) and a conventional flowable resin (Premise Flow) were used. Flowable resin composites were applied according to the manufacturer's recommendations using the Ultradent shear bond Teflon mold system. The bonded specimens were stored in water at 37 °C for 24 h. Shear bond strength was tested at 1 mm/min. The data were logarithmically transformed and analyzed using two-way analysis of variance and Student-Newman-Keul's test at a significance level of 0.05. The self-adhesive flowable resin showed significantly higher bond strength values to laser-prepared surfaces than to SiC-prepared surfaces (p < 0.001). The conventional flowable resin did not show such differences (p = 0.224). While there was a significant difference between the two flowable resin composites in SiC-prepared surfaces (p < 0.001), no significant difference was detected in laser-prepared surfaces (p = 0.053). The bond strength of a self-adhesive flowable resin composite differs according to the type of dentin surface preparation. Laser treatment increased the dentin bonding values of the self-adhesive flowable resin.

  19. Temperature effect on ideal shear strength of Al and Cu

    NASA Astrophysics Data System (ADS)

    Iskandarov, Albert M.; Dmitriev, Sergey V.; Umeno, Yoshitaka

    2011-12-01

    According to Frenkel’s estimation, at critical shear stress τc=G/2π, where G is the shear modulus, plastic deformation or fracture is initiated even in defect-free materials. In the past few decades it was realized that, if material strength is probed at the nanometer scale, it can be close to the theoretical limit, τc. The weakening effect of the free surface and other factors has been discussed in the literature, but the effect of temperature on the ideal strength of metals has not been addressed thus far. In the present study, we perform molecular dynamics simulations to estimate the temperature effect on the ideal shear strength of two fcc metals, Al and Cu. Shear parallel to the close-packed (111) plane along the [112¯] direction is studied at temperatures up to 800 K using embedded atom method potentials. At room temperature, the ideal shear strength of Al (Cu) is reduced by 25% (22%) compared to its value at 0 K. For both metals, the shear modulus, G, and the critical shear stress at which the stacking fault is formed, τc, decrease almost linearly with increasing temperature. The ratio G/τc linearly increases with increasing temperature, meaning that τc decreases with temperature faster than G. Critical shear strain, γc, also decreases with temperature, but in a nonlinear fashion. The combination of parameters, Gγc/τc, introduced by Ogata as a generalization of Frenkel’s formula, was found to be almost independent of temperature. We also discuss the simulation cell size effect and compare our results with the results of abinitio calculations and experimental data.

  20. Laboratory Investigation on Shear Behavior of Rock Joints and a New Peak Shear Strength Criterion

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaobo; Jiang, Qinghui; Chen, Na; Wei, Wei; Feng, Xixia

    2016-09-01

    In this study, shear tests on artificial rock joints with different roughness were conducted under five normal stress levels. Test results showed that the shear strength of rock joints had a positive correlation with roughness and the applied normal stress. Observation of joint specimens after shear tests indicated that asperity damage was mainly located in the steep areas facing the shear direction. The damaged joint surfaces tend to be rough, which implies that tensile failure plays an important role in shear behavior. As a result of the anisotropic characteristic of joint roughness, two quantitative 2D roughness parameters, i.e., the revised root-mean-square of asperity angle tan-1( Z 2r) and the maximum contact coefficient C m, were proposed considering the shear direction. The proposed roughness parameters can capture the difference of roughness in forward and reverse directions along a single joint profile. The normalized tensile strength and the proposed roughness parameters were used to perform a rational derivation of peak dilatancy angle. A negative exponential-type function was found to be appropriate to model the peak dilatancy angle. Using the new model of peak dilatancy angle, we obtained a new criterion for peak shear strength of rock joints. The good agreement between test results and predicted results by the new criterion indicated that the proposed criterion is capable of estimating the peak shear strength of rock joints. Comparisons between the new criterion and published models from available literature revealed that the proposed criterion has a good accuracy for predicting the peak shear strength of joints investigated in this study.

  1. Bond strength comparison of color-change adhesives for orthodontic bonding using a self-etching primer

    PubMed Central

    Ekhlassi, Sara; English, Jeryl D; Ontiveros, Joe C; Powers, John M; Bussa, Harry I; Frey, Gary N; Colville, Clark D; Ellis, Randy K

    2011-01-01

    Background The purpose of this study was to compare the shear bond strengths of two color-change adhesives with a commonly used conventional light-cure adhesive while using a self-etching primer, and to compare any changes in shear bond strengths over time. Methods One hundred and eighty extracted bovine incisors were randomly divided into nine groups of 20 teeth each. The teeth were prepared with a self-etching primer (Transbond™ Plus) Metal lower incisor brackets were bonded directly to each tooth with two different color-change adhesives (TransbondPlus and Grēngloo™) and a control (Transbond XT). The teeth were debonded at three different time points (15 minutes, 24 hours, 1 week) using an Instron at 1.0 mm/min. The teeth that were to be debonded at 24 hours and 1 week were stored in distilled water at 37°C to simulate the oral environment. The data were analyzed by two-way analysis of variance and with Fisher’s protected least-significant difference multiple comparisons test at the P < 0.05 level of significance. Adhesive remnant index (ARI) scores were calculated for each debonded tooth. Results Transbond Plus at 1 week had the highest mean shear bond strength (14.7 mPa). Grēngloo tested at 24 hours had the lowest mean shear bond strength (11.3 mPa). The mean shear bond strengths for the remaining seven groups had a range of 12–14.5 mPa. Grēngloo had >80% samples presenting with an ARI score of 1 at all times. Interestingly, both Transbond groups had ARI scores of 3 in more than 50% of their samples. Conclusion Time had no significant effect on the mean shear bond strength of Transbond XT, Grēngloo, or Transbond Plus adhesive. PMID:23674913

  2. The influence of orthodontic bracket base design on shear bond strength.

    PubMed

    Sharma-Sayal, Seema K; Rossouw, P Emile; Kulkarni, Gajanan V; Titley, Keith C

    2003-07-01

    Many bracket base designs and adhesive materials are in clinical use today. Bases have evolved from perforated metal bases to the present foil mesh bases, and treatments range from none, to spraying metal alloy onto the base, to the most common treatment of microetching. The purpose of this study was to determine the effect of orthodontic bracket base design on mean shear bond strength 1 hour or 24 hours after bonding. For each time group, 12 specimens of 6 types of metal brackets were bonded to bovine incisors with Transbond XT (3M Unitek, Monrovia, Calif) light-cured composite resin. Brackets were debonded 1 hour or 24 hours later, and the shear bond strength was recorded. Six debonded brackets of each type from each time group were selected at random and sandblasted. All the teeth were cleaned, and half were rebonded with used brackets, and half were rebonded with new brackets. Bond strength was measured again, 1 hour or 24 hours later. Representative specimens were inspected under the scanning electron microscope. Bracket base design significantly affected mean shear bond strength. Speed (60-gauge, microetched foil-mesh base; Strite Industries, Cambridge, Ontario, Canada) had the highest bond strength at 1 hour; followed by Time (machined, integral, microetched base with mechanical undercuts; American Orthodontics, Sheboygan, Wis); American Master Series (80-gauge foil-mesh base; American Orthodontics); Ovation Roth (80-gauge layered onto 150-gauge, microetched foil-mesh base; GAC, Central Islip, NY); Orthos Optimesh XRT (100-gauge microetched foil-mesh base; Ormco, Orange, Calif); and, finally, the nickel-free brackets (injection molded, 100-gauge, microetched, foil-mesh base; World Class Technology, McMinnville, Ore). The 24-hour results were similar except that Time had the highest mean shear bond strength (ANOVA, P <.05). Chairside sandblasting significantly affected the 1-hour, but not the 24-hour, mean shear bond strengths (ANOVA, P <.05). Sandblasting

  3. Effect of saliva and blood contamination on the bond strength of self-etching adhesive system- An in vitro study

    PubMed Central

    Koppolu, Madhusudhana; Gogala, Dorasani; Mathew, Vinod B; Thangala, Venugopal; Deepthi, Mandava; Sasidhar, Nalluru

    2012-01-01

    Aim: The aims of this study were to determine the effect of saliva and blood contamination on the shear bond strength of self-etching adhesive to enamel and dentin; and, to compare the difference in bond strength due to contamination beforeand after application of the self-etch adhesive. Materials and Methods: 40 human mandibular molars were wet ground on both buccal and lingual surfaces to prepare flat superficial enamel and dentin surfaces. They were randomly divided into two groups (n = 40) based on the substrate (enamel and dentin). Each group was further divided into five subgroups (n = 8) based on the type of contamination it was subjected to, and the step in the bonding sequence when the contamination occurred (before or after adhesive application). Fresh saliva and fresh human blood were applied either before or after the application of Xeno III® self-etching adhesive system (SES). Composite resin was applied as inverted, truncated cured cones that were subjected to shear bond strength test. Statistical Analysis: One-way analysis of variance (ANOVA) and Tukey's Honestly Significant Difference (HSD) test were used. Results: Statistically significant reduction in the bond strength was shown after both saliva and blood contamination before and after Xeno III® application (P< 0.05). Bond strength is significantly reduced after contamination with blood as compared to saliva. Conclusions: When self-etching adhesive systems are used, saliva and blood contamination significantly decrease the bond strength of the adhesive to enamel and dentin of the tooth. PMID:22876017

  4. Shear Bond Strength of Orthodontic Brackets and Disinclusion Buttons: Effect of Water and Saliva Contamination

    PubMed Central

    Sfondrini, Maria Francesca; Fraticelli, Danilo; Gandini, Paola

    2013-01-01

    Purpose. The aim of this study was to assess the effect of water and saliva contamination on the shear bond strength and failure site of orthodontic brackets and lingual buttons. Materials and Methods. 120 bovine permanent mandibular incisors were randomly divided into 6 groups of 20 specimens each. Both orthodontic brackets and disinclusion buttons were tested under three different enamel surface conditions: (a) dry, (b) water contamination, and (c) saliva contamination. Brackets and buttons were bonded to the teeth and subsequently tested using a Instron universal testing machine. Shear bond strength values and adhesive failure rate were recorded. Statistical analysis was performed using ANOVA and Tukey tests (strength values) and Chi squared test (ARI Scores). Results. Noncontaminated enamel surfaces showed the highest bond strengths for both brackets and buttons. Under water and saliva contamination orthodontic brackets groups showed significantly lower shear strengths than disinclusion buttons groups. Significant differences in debond locations were found among the groups under the various enamel surface conditions. Conclusions. Water and saliva contamination of enamel during the bonding procedure lowers bond strength values, more with orthodontic brackets than with disinclusion buttons. PMID:23762825

  5. Ideal pure shear strength of aluminum and copper.

    PubMed

    Ogata, Shigenobu; Li, Ju; Yip, Sidney

    2002-10-25

    Although aluminum has a smaller modulus in [111]<112> shear than that of copper, we find by first-principles calculation that its ideal shear strength is larger because of a more extended deformation range before softening. This fundamental behavior, along with an abnormally high intrinsic stacking fault energy and a different orientation dependence on pressure hardening, are traced to the directional nature of its bonding. By a comparative analysis of ion relaxations and valence charge redistributions in aluminum and copper, we arrive at contrasting descriptions of bonding characteristics in these two metals that can explain their relative strength and deformation behavior.

  6. Shear Strength Measurement Benchmarking Tests for K Basin Sludge Simulants

    SciTech Connect

    Burns, Carolyn A.; Daniel, Richard C.; Enderlin, Carl W.; Luna, Maria; Schmidt, Andrew J.

    2009-06-10

    Equipment development and demonstration testing for sludge retrieval is being conducted by the K Basin Sludge Treatment Project (STP) at the MASF (Maintenance and Storage Facility) using sludge simulants. In testing performed at the Pacific Northwest National Laboratory (under contract with the CH2M Hill Plateau Remediation Company), the performance of the Geovane instrument was successfully benchmarked against the M5 Haake rheometer using a series of simulants with shear strengths (τ) ranging from about 700 to 22,000 Pa (shaft corrected). Operating steps for obtaining consistent shear strength measurements with the Geovane instrument during the benchmark testing were refined and documented.

  7. Effects of salicylic-lactic acid conditioner on the shear bond strength of brackets and enamel surfaces.

    PubMed

    Chang, W-G; Lim, B-S; Yoon, T-H; Lee, Y-K; Kim, C-W

    2005-04-01

    The purpose of this study was to evaluate the effects of salicylic-lactic (SL) acid conditioner on the shear bond strength of brackets. Fluoride releasing (Light-bond) and non-fluoride releasing (Enlight) composite adhesives were used after conditioning with 0.22% salicylic + 9% lactic acid or 34% phosphoric acid. Composite adhesives were light cured with either a halogen light curing (HLC) unit for 30-50 s or a plasma arc curing (PAC) unit for 4 s. The shear bond strength was measured with an Instron. Failure modes of debonded brackets were identified based on adhesive remnants on the bracket and tooth. Salicylic-lactic acid conditioning was found to provide adequate shear bond strength. Groups conditioned with SL acid were debonded mainly at the enamel-resin interface and comparatively clean enamel surface after debonding was observed than those conditioned with phosphoric acid. Using confocal laser scanning microscopic examinations, it was found that demineralization patterns between SL acid and phosphoric acid conditioned groups were not different when the same adhesive was used. The SL acid conditioner did not reduce the demineralization. Light-bond adhesive showed less demineralization than Enlight adhesive. The PAC unit can be recommended as an alterative to the HLC unit because it significantly reduces the irradiation time.

  8. Prediction of tensile and flexural strength of unidirectional CFRP considering the interfacial shear strength

    NASA Astrophysics Data System (ADS)

    Na, Wonjin; Lee, Geunsung; Sung, Minchang; Yu, Woong-Ryeol

    2016-10-01

    The tensile strength of unidirectional fiber composites is interpreted as an initiation and propagation of crack inside, and the crack propagation is the result of fiber fracture and load transfer to surroundings. After the fiber fracture the load is carried by matrix in shear loading, so the load transfer capacity is expected to increase according to improved interfacial shear strength (IFSS). In theoretical study the extreme IFSS can make enhanced property, reaching to rule of mixture, however experiments have demonstrated that optimum interfacial shear strength exists in tensile strength. This can be explained by the effect of multiple fracture. When a fiber is broken, it induces concurrent breakage of surrounding fibers due to stress concentration. This `multiple fracture' phenomenon is important to determine the tensile strength of fiber composites. In this study, the tensile and flexural strength of unidirectional carbon fiber composites were predicted considering the interfacial shear strength. First, the effect of interfacial shear strength on the load transfer to surrounding fibers (i.e., local stress concentration) when a fiber is broken was analyzed using finite element method, determining the stress concentration factor of each surrounding fiber. Based on the stress concentration factor, the `multiple fracture number' was calculated using statistical prediction approach. Using the multiple fracture number, the tensile strength of unidirectional fiber composites is predicted, the validity of which is investigated using carbon fiber/nylon 6 composites.

  9. Effect of Self-adhesive Resin Cement and Tribochemical Treatment on Bond Strength to Zirconia

    PubMed Central

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Shinya, Akiyoshi

    2010-01-01

    Aim To evaluate the interactive effects of different self-adhesive resin cements and tribochemical treatment on bond strength to zirconia. Methodology The following self-adhesive resin cements for bonding two zirconia blocks were evaluated: Maxcem (MA), Smartcem (SM), Rely X Unicem Aplicap (UN), Breeze (BR), Biscem (BI), Set (SE), and Clearfil SA luting (CL). The specimens were grouped according to conditioning as follows: Group 1, polishing with 600 grit polishing paper; Group 2, silica coating with 110 µm Al2O3 particles which modified with silica; and, Group 3, tribochemical treatment - silica coating + silanization. Specimens were stored in distilled water at 37°C for 24 hours before testing shear bond strength. Results Silica coating and tribochemical treatment significantly increased the bond strength of the MA, UN, BR, BI, SE and CL to zirconia compared to #600 polishing. For both #600 polished and silica coating treatments, MDP-containing self-adhesive resin cement CL had the highest bond strengths to zirconia. Conclusion Applying silica coating and tribochemical treatment improved the bond strength of self-adhesive resin cement to zirconia, especially for CL. PMID:20690416

  10. Effect of Self-etching Adhesives on the Bond Strength of Glass-Ionomer Cements

    PubMed Central

    Jaberi Ansari, Zahra; Panahandeh, Narges; Tabatabaei Shafiei, Zahra Sadat; Akbarzadeh Baghban, Alireza

    2014-01-01

    Objective: Statement of Problem: Adequate bond strength between glass ionomer cements and composite resin is necessary for the success of the sandwich technique. Purpose of Study: This study assessed the micro-shear bond strength of composite resin to glass-ionomer cements (GIC) using self-etch adhesives with different pH values. Materials and Methods: One hundred specimens (6×4×2 mm) were made using Fuji II and Fuji II LC GICs and treated with different adhesives as follows: Group 1:Fuji II+ Adper Prompt L-Pop, Group-2: Fuji II+SE bond, Group-3: Fuji II + AdheSE, Group-4:Fuji II+ Protect bond, Group-5: Fuji II + Single bond, Group-6:Fuji II LC+ Adper Prompt LPop, Group-7: Fuji II LC+SE bond, Group-8:Fuji II LC+ AdheSE, Group-9: Fuji II LC+ Protect bond, and Group-10: Fuji II LC+ Single bond. Each group consisted of 10 specimens. A cylinder of Z100 composite resin was placed on each sample and light cured. After 24 hours of water storage (37°C), the specimens were subjected to micro-shear bond strength tests (0.5 mm/min). Data were analyzed using two-way ANOVA and Tukey’s test. Results: The mean micro-shear bond strength of groups 1–10 was 11.66±1.79, 16.50±1.85, 18.47±1.77, 13.95±1.77, 15.27±1.49, 15.14±0.90, 20.03±1.19, 17.48±3.00, 16.24±1.98 and 16.03±1.49 MPa, respectively. There were significant differences between groups 1 and 7 (P<0.05). No significant difference was observed between other groups (P>0.05). Fuji II LC showed higher bond strength than Fuji II (P<0.05). Conclusion: Type of self-etch adhesive had no significant effect on micro-shear bond strength of glass-ionomer to composite resin. Resin modified glass ionomer cement (RMGIC) exhibited higher bond strength than the conventional GIC. PMID:25628698

  11. Modelling the effect of shear strength on isentropic compression experiments

    NASA Astrophysics Data System (ADS)

    Thomson, Stuart; Howell, Peter; Ockendon, John; Ockendon, Hilary

    2017-01-01

    Isentropic compression experiments (ICE) are a way of obtaining equation of state information for metals undergoing violent plastic deformation. In a typical experiment, millimetre thick metal samples are subjected to pressures on the order of 10 - 102 GPa, while the yield strength of the material can be as low as 10-2 GPa. The analysis of such experiments has so far neglected the effect of shear strength, instead treating the highly plasticised metal as an inviscid compressible fluid. However making this approximation belies the basic elastic nature of a solid object. A more accurate method should strive to incorporate the small but measurable effects of shear strength. Here we present a one-dimensional mathematical model for elastoplasticity at high stress which allows for both compressibility and the shear strength of the material. In the limit of zero yield stress this model reproduces the hydrodynamic models currently used to analyse ICEs. Numerical solutions of the governing equations will then be presented for problems relevant to ICEs in order to investigate the effects of shear strength compared with a model based purely on hydrodynamics.

  12. Shear bond strength of porcelain veneers rebonded to enamel.

    PubMed

    St Germain, H A; St Germain, T H

    2015-01-01

    In this laboratory research, shear bond strength (SBS) and mode of failure of veneers rebonded to enamel in shear compression were determined. Three groups (A, B, and C; n=10 each) of mounted molar teeth were finished flat using wet 600-grit silicon carbide paper, and 30 leucite-reinforced porcelain veneers (5.0 × 0.75 mm) were air abraded on the internal surface with 50 μm aluminum oxide, etched with 9.5% hydrofluoric acid, and silanated. The control group (A) veneer specimens were bonded to enamel after etching with 37% phosphoric acid using bonding resin and a dual cure resin composite cement. Groups B and C were prepared similarly to group A with the exception that a release agent was placed before the veneer was positioned on the prepared enamel surface and the resin cement was subsequently light activated. The debonded veneers from groups B and C were placed in a casting burnout oven and heated to 454°C/850°F for 10 minutes to completely carbonize the resin cement and stay below the glass transition temperature (Tg) of the leucite-reinforced porcelain. The recovered veneers were then prepared for bonding. The previously bonded enamel surfaces in group B were air abraded using 50 μm aluminum oxide followed by 37% phosphoric acid etching, while group C enamel specimens were acid etched only. All specimens were thermocycled between 5°C and 55°C for 2000 cycles using a 30-second dwell time and stored in 37°C deionized water for 2 weeks. SBS was determined at a crosshead speed of 1.0 mm/min. SBS results in MPa for the groups were (A) = 20.6±5.1, (B) = 18.1±5.5, and (C) = 17.2±6.1. One-way analysis of variance indicated that there were no significant interactions (α=0.05), and Tukey-Kramer post hoc comparisons (α=0.05) detected no significant pairwise differences. An adhesive mode of failure at the enamel interface was observed to occur more often in the experimental groups (B = 40%, C = 50%). Rebonding the veneers produced SBS values that were not

  13. An evaluation and comparison of shear bond strength of composite resin to dentin, using newer dentin bonding agents

    PubMed Central

    Hegde, Mithra N; Bhandary, Shruti

    2008-01-01

    The purpose of this study was to assess the shear bond strength of Total etch Prime and Bond NT and self etch newer dentin bonding agents Clearfil S3, Xeno III Bond, Clearfil Protect Bond and G Bond used to bond composite resin to dentin, and to compare the difference in the shear bond strengths of the self etch newer dentin bonding agents. Hundred freshly extracted noncarious human maxillary premolar teeth were selected. The occlusal surfaces of each tooth were ground to prepare flat dentin surfaces at a depth of 1.5 mm and were randomly grouped, with twenty specimens in each: Group I - Prime and Bond NT, Group II - Clearfil Protect Bond, Group III - Xeno III Bond, Group IV - Clearfil S3 Bond, Group V - G Bond. Each group was treated with its respective bonding agents, as per the manufacturers' instructions Clearfill – Kuraray, Japan, G bond – GC Tokyo, Japan, Xeno- De Trey Densply, Germany. Blocks or Cylinders of composite resin were built up using Teflon mold and cured. Shear bond strengths were tested using Instron Universal testing machine and recorded in Mpa. The results were statistically analyzed using One-way anova and Tukeys HSD test. The total etch adhesive showed higher shear bond strength than self etching adhesives (P < 0.001). Within the limitations of this in vitro study, it can be concluded that all the adhesive agents evaluated showed optimal shear bond strength 17-20 Mpa, except G bond. However, shear bond strength of composite resin to dentin is better with one bottle total etch adhesive than with the newer self etching bonding agents. PMID:20142888

  14. Failure strength prediction for adhesively bonded single lap joints

    NASA Astrophysics Data System (ADS)

    Rahman, Niat Mahmud

    For adhesively bonded joint, failure strength depends on many factors such as material properties (both adhesive and adherend), specimen geometries, test environments, surface preparation procedures, etc. Failure occurs inside constitutive materials or along joint interfaces. Based on location, adhesively bonded failure mode can be classified as adhesive failure mode, cohesive failure mode and adherend failure mode. Failure mode directly affects the failure strength of joint. For last eight decades, researchers have developed analytical, empirical or semi-empirical methods capable of predicting failure strength for adhesively bonded joints generating either cohesive failure or adherend failure. Applicability of most of the methods is limited to particular cases. In this research, different failure modes for single lap joints (SLJs) were generated experimentally using epoxy based paste adhesive. Based on experimental data and analytical study, simplified failure prediction methods were developed for each failure mode. For adhesive failure mode, it is observed that peel stress distributions concur along interface near crack initiation points. All SLJs for this test endured consistent surface treatments. Geometric parameters of the joints were varied to study their effect on failure strength. Peel stress distributions were calculated using finite analysis (FEA). Based on peel stress distribution near crack initiation point, a failure model is proposed. Numerous analytical, empirical and semi-empirical models are available for predicting failure strengths of SLJs generating cohesive failures. However, most of the methods in the literature failed to capture failure behavior of SLJs having thickness of adhesive layer as variable. Cohesive failure mode was generated experimentally using aluminum as adherend and epoxy adhesive considering thickness of adhesive layers as variable within SLJs. Comparative study was performed among various methods. It was observed that

  15. Triaxial determination of shear strength of tire chips

    SciTech Connect

    Wu, W.Y.; Benda, C.C.; Cauley, R.F.

    1997-05-01

    Triaxial compression tests following stress paths of constant {sigma}{sub 1} were conducted to determine the shear strength of five processed scrap tire products having different gradations and particle shapes. The interparticle frictional component was separated from the total shear strength according to the energy correction concept proposed by researchers. The experimental results show that all five tire chip products have ultimate internal friction angles of 45{degree} to over 60{degree}. The interparticle frictional component of the strength was fully mobilized and nearly reached a constant value after approximately 5% axial strain. The experimental results confirmed that the strength parameter obtained with constant {sigma}{sub 1} was more reasonable. This finding is supported by field observation in which the tire chips have an angle of repose ranging from 37{degree} to 43{degree} (loosely stock piled) and up to 85{degree} (compacted). The engineering applications of the experimental results are discussed.

  16. Strength of adhesive-bonded hybrid structures

    NASA Technical Reports Server (NTRS)

    Kirschke, L.; Prinz, R.; Schnell, H.

    1979-01-01

    Structures prepared from materials with different thermal and mechanical properties by means of fiber-strengthened binders can fail in a number of ways. The present lecture is focused on failures through debonding at the metal or at the fiber-reinforced plastic. A method for calculating the stress distribution in adhesive layers as a function of the load is outlined, and its usefulness in providing insight into the behavior of bonds in hybrid structures is noted. Means of eliminating the unfavorable effects of temperature, humidity, creep and relaxation on the bonds in the manufacture of hybrid structures are examined, along with test methods developed for such structures.

  17. The Effect of Deposition Conditions on Adhesion Strength of Ti and Ti6Al4V Cold Spray Splats

    NASA Astrophysics Data System (ADS)

    Goldbaum, Dina; Shockley, J. Michael; Chromik, Richard R.; Rezaeian, Ahmad; Yue, Stephen; Legoux, Jean-Gabriel; Irissou, Eric

    2012-03-01

    Cold spray is a complex process where many parameters have to be considered in order to achieve optimized material deposition and properties. In the cold spray process, deposition velocity influences the degree of material deformation and material adhesion. While most materials can be easily deposited at relatively low deposition velocity (<700 m/s), this is not the case for high yield strength materials like Ti and its alloys. In the present study, we evaluate the effects of deposition velocity, powder size, particle position in the gas jet, gas temperature, and substrate temperature on the adhesion strength of cold spayed Ti and Ti6Al4V splats. A micromechanical test technique was used to shear individual splats of Ti or Ti6Al4V and measure their adhesion strength. The splats were deposited onto Ti or Ti6Al4V substrates over a range of deposition conditions with either nitrogen or helium as the propelling gas. The splat adhesion testing coupled with microstructural characterization was used to define the strength, the type and the continuity of the bonded interface between splat and substrate material. The results demonstrated that optimization of spray conditions makes it possible to obtain splats with continuous bonding along the splat/substrate interface and measured adhesion strengths approaching the shear strength of bulk material. The parameters shown to improve the splat adhesion included the increase of the splat deposition velocity well above the critical deposition velocity of the tested material, increase in the temperature of both powder and the substrate material, decrease in the powder size, and optimization of the flow dynamics for the cold spray gun nozzle. Through comparisons to the literature, the adhesion strength of Ti splats measured with the splat adhesion technique correlated well with the cohesion strength of Ti coatings deposited under similar conditions and measured with tubular coating tensile (TCT) test.

  18. Evaluation of micro-shear bond strength of resin modified glass-ionomer to composite resins using various bonding systems

    PubMed Central

    Kasraie, Shahin; Shokripour, Mohadese; Safari, Mahin

    2013-01-01

    Aim: The aim was to compare the micro-shear bond strength between composite and resin-modified glass-ionomer (RMGI) by different adhesive systems. Materials and Methods: A total of 16 discs of RMGI with a diameter of 15 mm and a thickness of 2 mm were randomly divided into four groups (n = 4). Four cylinders of composite resin (z250) were bonded to the RMGI discs with Single Bond, Clearfil SE Bond and Clearfil S3 Bond in Groups 1-3, respectively. The fourth group was the control. Samples were tested by a mechanical testing machine with a strain rate of 0.5 mm/min. Failure mode was assessed under a stereo-microscope. Results: The means of micro-shear bond strength values for Groups 1-4 were 14.45, 23.49, 16.23 and 5.46 MPa, respectively. Using a bonding agent significantly increased micro-shear bond strength (P = 0.0001). Conclusion: Micro-shear bond strength of RMGI to composite increased significantly with the use of adhesive resin. The bond strength of RMGI to composite resin could vary depending upon the type of adhesive system used. PMID:24347892

  19. Functionalization enhancement on interfacial shear strength between graphene and polyethylene

    NASA Astrophysics Data System (ADS)

    Jin, Yikuang; Duan, Fangli; Mu, Xiaojing

    2016-11-01

    Pull-out processes were simulated to investigate the interfacial mechanical properties between the functionalized graphene sheet (FGS) and polyethylene (PE) matrix by using molecular dynamics simulation with ReaxFF reactive force field. The interfacial structure of polymer and the interfacial interaction in the equilibrium FGS/PE systems were also analyzed to reveal the enhancement mechanism of interfacial shear strength. We observed the insertion of functional groups into polymer layer in the equilibrium FGS/PE systems. During the pull-out process, some interfacial chains were attached on the FGS and pulled out from the polymer matrix. The behavior of these pulled out chains was further analyzed to clarify the different traction action of functional groups applied on them. The results show that the traction effect of functional groups on the pulled-out chains is agreement with their enhancement influence on the interfacial shear strength of the FGS/PE systems. They both are basically dominated by the size of functional groups, suggesting the enhancement mechanism of mechanical interlocking. However, interfacial binding strength also exhibits an obvious influence on the interfacial shear properties of the hybrid system. Our simulation show that geometric constrains at the interface is the principal contributor to the enhancement of interfacial shear strength in the FGS/PE systems, which could be further strengthened by the wrinkled morphology of graphene in experiments.

  20. Effect of adsorption time on the adhesion strength between salivary pellicle and human tooth enamel.

    PubMed

    Zhang, Y F; Zheng, J; Zheng, L; Zhou, Z R

    2015-02-01

    Salivary pellicle is a biofilm that is formed by the selective adsorption of salivary proteins. Almost all the functions of the salivary pellicle (lubricating properties, anti-caries properties, etc.) are closely associated with its adhesion strength to tooth surface. The objective of this study was to investigate the effect of adsorption time on the adhesion strength between salivary pellicle and human tooth enamel, aiming to understand what act as the determinant of the interfacial adhesion. In this study, human tooth enamel samples were immersed in human whole saliva in vitro to obtain a salivary pellicle on the surface of enamel. Immersion treatments lasting up to 1, 3, 10 and 60 min were conducted, respectively. Nano-scratch tests were conducted on the surface of enamel after different adsorption times. The wettability of enamel surface was measured through water contact angle. Results showed that the shear energy between salivary pellicle and enamel surface increased exponentially with the adsorption time. The adhesion force between salivary pellicle and bare enamel surface was more than twice that between salivary pellicle and salivary pellicle. It was found that both the wettability and zeta potential of enamel increased obviously after 1 min saliva-adsorption treatment, and then they almost kept stable as the adsorption time further increased. In summary, the adhesion strength between initial salivary pellicle and enamel surface was much higher than that between initial salivary pellicle and outer salivary pellicle. It seemed that electrostatic interaction contributed to the adhesion between the initial salivary pellicle and enamel surface, but not to the adhesion between the initial and outer salivary pellicle. The results would be helpful to extend the understanding of the adhesion mechanism of salivary pellicle and then to develop new artificial saliva and dental restorative materials.

  1. Development of K-Basin High-Strength Homogeneous Sludge Simulants and Correlations Between Unconfined Compressive Strength and Shear Strength

    SciTech Connect

    Onishi, Yasuo; Baer, Ellen BK; Chun, Jaehun; Yokuda, Satoru T.; Schmidt, Andrew J.; Sande, Susan; Buchmiller, William C.

    2011-02-20

    K-Basin sludge will be stored in the Sludge Transport and Storage Containers (STSCs) at an interim storage location on Central Plateau before being treated and packaged for disposal. During the storage period, sludge in the STSCs may consolidate/agglomerate, potentially resulting in high-shear-strength material. The Sludge Treatment Project (STP) plans to use water jets to retrieve K-Basin sludge after the interim storage. STP has identified shear strength to be a key parameter that should be bounded to verify the operability and performance of sludge retrieval systems. Determining the range of sludge shear strength is important to gain high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from the STSCs. The shear strength measurements will provide a basis for bounding sludge properties for mobilization and erosion. Thus, it is also important to develop potential simulants to investigate these phenomena. Long-term sludge storage tests conducted by Pacific Northwest National Laboratory (PNNL) show that high-uranium-content K-Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has 'paste' and 'chunks' with shear strengths of approximately 3-5 kPa and 380-770 kPa, respectively. High-uranium-content sludge samples subjected to hydrothermal testing (e.g., 185 C, 10 hours) have been observed to form agglomerates with a shear strength up to 170 kPa. These high values were estimated by measured unconfined compressive strength (UCS) obtained with a pocket penetrometer. Due to its ease of use, it is anticipated that a pocket penetrometer will be used to acquire additional shear strength data from archived K-Basin sludge samples stored at the PNNL Radiochemical Processing Laboratory (RPL) hot cells. It is uncertain whether the pocket penetrometer provides accurate shear strength measurements of the material. To assess the bounding material strength and potential for erosion, it

  2. Thermomechanical characterization of graphite/polymide composites. [Stiffness; strength; shear properties

    SciTech Connect

    Kunz, S. C.

    1980-01-01

    The stiffness, strength and shear properties of three polyimide resins (NR-150B2, PMR-15 and CPI-2237) combined with three different moduli graphite fibers (C-6000, F-5A and GY-70) were determined at 20 to 371/sup 0/. Stiffness retention with increasing temperature is affected only by the thermal integrity of the polymide matrix. No loss in modulus occurs up to 316/sup 0/C for the PMR-15 and CPI-2237 based composites (T/sub g/ = 377/sup 0/C) or to 260/sup 0/C for the NR-150B2 based material (T/sub g/ approx. = 349/sup 0/C), with any of the three fibers. Both flexure and shear strengths show fiber dependent behavior with temperature. The higher modulus fiber composites (F-5A, GY-70) undergo little strength change up to 343/sup 0/C. Composite strengths of the lower modulus fibers (C-6000), however, degrade by as much as 50% over the same temperature range. Thermal-oxidative stability of the various graphite fibers, and its effect on interfacial strength degradation, are considered primary causes for the fiber-type dominated strength behavior. In general, strength retention appears directly related to degree of graphitization (modulus) of the fibers. The accumulated mechanical property data, some previously unknown, are correlated with microstructural features such as the fiber-matrix adhesion, porosity and processing defects. 11 figures.

  3. Shear Wave Propagation Across Filled Joints with the Effect of Interfacial Shear Strength

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Liu, T. T.; Li, H. B.; Liu, Y. Q.; Liu, B.; Xia, X.

    2015-07-01

    The thin-layer interface model for filled joints is extended to analyze shear wave propagation across filled rock joints when the interfacial shear strength between the filling material and the rocks is taken into account. During the wave propagation process, the two sides of the filled joint are welded with the adjacent rocks first and slide on each other when the shear stress on the joint is greater than the interfacial shear strength. By back analysis, the relation between the shear stress and the relative tangential deformation of the filled joints is obtained from the present approach, which is shown as a cycle parallelogram. Comparison between the present approach and the existing method based on the zero-thickness interface model indicates that the present approach is efficient to analyze shear wave propagation across rock joints with slippery behavior. The calculation results show that the slippery behavior of joints is related to the interfacial failure. In addition, the interaction between the shear stress wave and the two sides of the filling joint influences not only the wave propagation process but also the dynamic response of the filled joint.

  4. Enhanced shear strength of sodium bentonite using frictional additives

    SciTech Connect

    Schmitt, K.E.; Bowders, J.J.; Gilbert, R.B.; Daniel, D.E.

    1997-12-31

    One of the most important obstacles to using geosynthetic clay liners (GCLs) in landfill cover systems is the low shear strength provided by the bentonitic portion of the GCL. In this study, the authors propose that granular, frictional materials might be added to the bentonite to form an admixture that would have greater shear strength than the bentonite alone while still raining low hydraulic conductivity. Bentonite was mixed with two separate granular additives, expanded shale and recycled to form mixtures consisting of 20-70% bentonite by weight. In direct shear tests at normal stresses of 34.5-103.5 kPa, effective friction angles were measured as 45{degrees} for the expanded 36{degrees} for the recycled glass, and 7{degrees} for the hydrated granular bentonite. The strength of the expanded shale mixtures increased nearly linearly as the percentage shale in the mixture increased, to 44{degrees} for a bentonite mixture with 80% shale. The addition of recycled glass showed little effect on the shear strength of the mixtures of glass and bentonite. Hydraulic conductivity measurements for both types of mixtures indicated a linear increase with log(k) as the amount of granular additive increased. For applications involving geosynthetic clay liners for cover systems, a mixture of 40% expanded shale and 60% bentonite is recommended, although further testing must be done. The 40/60 mixture satisfies the hydraulic equivalency requirement, with k = 5.1X10{sup -9} cm/sec, while increasing the shear strength parameters of the bentonitic mixture to {phi}{prime} = 17{degrees} and c{prime} = 0.

  5. Shear bond strength of resin cement to an acid etched and a laser irradiated ceramic surface

    PubMed Central

    Motro, Pelin Fatma Karagoz; Yurdaguven, Haktan

    2013-01-01

    PURPOSE To evaluate the effects of hydrofluoric acid etching and Er,Cr:YSGG laser irradiation on the shear bond strength of resin cement to lithium disilicate ceramic. MATERIALS AND METHODS Fifty-five ceramic blocks (5 mm × 5 mm × 2 mm) were fabricated and embedded in acrylic resin. Their surfaces were finished with 1000-grit silicon carbide paper. The blocks were assigned to five groups: 1) 9.5% hydrofluoric-acid etching for 60 s; 2-4), 1.5-, 2.5-, and 6-W Er,Cr:YSGG laser applications for 60 seconds, respectively; and 5) no treatment (control). One specimen from each group was examined using scanning electron microscopy. Ceramic primer (Rely X ceramic primer) and adhesive (Adper Single Bond) were applied to the ceramic surfaces, followed by resin cement to bond the composite cylinders, and light curing. Bonded specimens were stored in distilled water at 37℃ for 24 hours. Shear bond strengths were determined by a universal testing machine at 1 mm/min crosshead speed. Data were analyzed using Kruskal-Wallis and Mann-Whitney U-tests (α=0.05). RESULTS Adhesion was significantly stronger in Group 2 (3.88 ± 1.94 MPa) and Group 3 (3.65 ± 1.87 MPa) than in Control group (1.95 ± 1.06 MPa), in which bonding values were lowest (P<.01). No significant difference was observed between Group 4 (3.59 ± 1.19 MPa) and Control group. Shear bond strength was highest in Group 1 (8.42 ± 1.86 MPa; P<.01). CONCLUSION Er,Cr:YSGG laser irradiation at 1.5 and 2.5 W increased shear bond strengths between ceramic and resin cement compared with untreated ceramic surfaces. Irradiation at 6 W may not be an efficient ceramic surface treatment technique. PMID:23755333

  6. Studies of fiber-matrix adhesion on compression strength

    NASA Technical Reports Server (NTRS)

    Bascom, Willard D.; Nairn, John A.; Boll, D. J.

    1991-01-01

    A study was initiated on the effect of the matrix polymer and the fiber matrix bond strength of carbon fiber polymer matrix composites. The work includes tests with micro-composites, single ply composites, laminates, and multi-axial loaded cylinders. The results obtained thus far indicate that weak fiber-matrix adhesion dramatically reduces 0 degree compression strength. Evidence is also presented that the flaws in the carbon fiber that govern compression strength differ from those that determine fiber tensile strength. Examination of post-failure damage in the single ply tests indicates kink banding at the crack tip.

  7. The Shear Bond Strength of Porcelain Laminate to Prepared and Unprepared Anterior Teeth

    PubMed Central

    Alavi, Ali Asghar; Behroozi, Zeinab; Nik Eghbal, Farid

    2017-01-01

    Statement of the Problem: Porcelain laminate veneer is an esthetic restoration used as an alternative to full veneer crowns and requires minimal tooth preparation. In restoration with porcelain laminate veneers, both the longevity of the laminate and conservation of the sound tooth structure are imperative. Purpose: The present study aimed to investigate the shear bond strength of porcelain laminates to prepared- and unprepared- anterior teeth in order to compare their longevity and success rate. Materials and Method: Thirty extracted maxillary central incisors were randomly divided into 3 groups regarding their preparation methods. The preparation methods were full-preparation in group A, full-preparation and finishing with fine diamond bur in group B, and no-preparation, only grinding with diamond bur in group C. After conditioning the teeth, ceramic veneers (IP S e.max) were silanated and then cemented with DuoLink luting cement. The shear bond strength was measured for each group and failure mode was determined by stereomicroscopic examination. Results: Group C exhibited the highest shear bond strength. The shear bond strength was significantly different between groups C and B (p< 0.05). However, the difference between group A and C was insignificant, as was the difference between group A and B (p> 0.05). Adhesion failure mode was found to be more common than the cohesive mode. Conclusion: Regarding the shear bond strength of unprepared anterior teeth to porcelain laminate veneers yielded by this study, no-preparation veneers might be used when the enamel is affected by wearing, trauma, or abrasion. It can also be used in patients who refuse the treatments which involve tooth reduction and preparation. PMID:28280760

  8. Effect of new adhesion promoter and mechanical interlocking on bonding strength in metal-polymer composites

    NASA Astrophysics Data System (ADS)

    Schuberth, A.; Göring, M.; Lindner, T.; Töberling, G.; Puschmann, M.; Riedel, F.; Scharf, I.; Schreiter, K.; Spange, S.; Lampke, T.

    2016-03-01

    There are various opportunities to improve the adhesion between polymer and metal in metal-plastic composites. The addition of a bonding agent which reacts with both joining components at the interfaces of the composite can enhance the bonding strength. An alternative method for the adjustment of interfaces in metal-plastic composites is the specific surface structuring of the joining partners in order to exploit the mechanical interlock effect. In this study the potential of using an adhesion promoter based on twin polymerization for metal-plastic composites in combination with different methods of mechanical surface treatment is evaluated by using the tensile shear test. It is shown that the new adhesion promoter has a major effect when applied on smooth metal surfaces. A combination of both mechanical and chemical surface treatment of the metal part is mostly just as effective as the application of only one of these surface treatment methods.

  9. Does hybridized dentin affect bond strength of self-adhesive resin cement?

    PubMed Central

    do Valle, Accácio-Lins; de Andrade, Gustavo-Henrique-Barbosa; Vidotti, Hugo-Alberto; Só, Marcus-Vinícius-Reis; Pereira, Jefferson-Ricardo

    2016-01-01

    Background Evaluate the influence of different hybridization bonding techniques of a self-adhesive resin cement. Material and Methods 30 human health molars were divided into six groups (n=10). The specimens received three longitudinal sections, allowing insertion of central cuts in PVC matrices. Each group received a different dentin pretreatment according to the manufacturer’s recommendations, except the control group (G1), as follows. G2 - a 3-step total-etch adhesive system (Optibond™ FL, Kerr); G3 - a 3-step total-etch adhesive system (Adper™ Scotchbond™ Multi-Purpose, 3M ESPE); G4 - a 2-step total-etch adhesive system (Adper™ Single Bond 2, 3M ESPE); G5 - a single-step self-etching system (Bond Force, Tokuyama); and G6 - universal bonding system (Single Bond Universal, 3M ESPE). Then, cylinders made of self-adhesive resin cement with polypropylene matrix was cemented in all groups (RelyX U200, 3M ESPE). Bond strength was assessed by submitting the specimens to micro-shear test and was characterized according to the fracture pattern observed through optical microscopy. Results The results were submitted to the Kruskal-Wallis test, which indicated a statistically significant difference between the groups (p=0.04), and Tukey’s multiple comparisons, which indicated a statistically significant difference between G1 and G3 (p<0.05). The microscopic analysis revealed a high prevalence of adhesive failures, followed by mixed fractures, and cohesive failures in the dentin. Conclusions The use of a previous dentin hybridization protocol is able to increase adhesive bonding resistance of self-adhesive resin cement, especially when used Adper™ Scotchbond™ Multi-Purpose system. Key words:Bonding, self-adhesive resin cement, adhesive systems, microshear. PMID:27703609

  10. The effect of simplified adhesives on the bond strength to dentin of dual-cure resin cements.

    PubMed

    Shade, A M; Wajdowicz, M N; Bailey, C W; Vandewalle, K S

    2014-01-01

    The purpose of this study was to compare the shear bond strengths to dentin of two dual-cure resin cements, one with a unique initiator, NX3 (Kerr Corp), and the other with a traditional redox-initiator system, Calibra (Dentsply), when used in combination with simplified or nonsimplified adhesive agents. The two dual-cure resin cements, in either self- or dual-cure activation modes, were bonded to human dentin with four dental adhesives to create 16 subgroups of 10 specimens each. After 24 hours of storage in distilled water at 37°C, the specimens were tested in shear in a universal testing machine. With both NX3 and Calibra, bond strengths significantly increased when the specimens were dual cured. In addition, with either cement in either mode, the nonsimplified adhesives performed significantly better than did the simplified adhesive bonding agents. When used specifically with simplified adhesives in either cure mode, NX3 did not produce significantly higher bond strengths than did Calibra. In general, lower dentin bond strengths were found with simplified adhesives or self-cure activation with either resin cement.

  11. Evaluation of shear bond strength of orthodontic brackets bonded with Er-YAG laser etching

    PubMed Central

    Raji, S. Hamid; Birang, Reza; Majdzade, Fateme; Ghorbanipour, Reza

    2012-01-01

    Background: Based on contradictory findings concerning the use of lasers for enamel etching, the purpose of this study was to investigate the shear bond strength of teeth prepared for bonding with Er-YAG laser etching and compare them with phosphoric acid etching. Materials and Methods: In this in vitro study forty – eight premolars, extracted for orthodontic purposes were randomly divided in to three groups. Thirty-two teeth were exposed to laser energy for 25 s: 16 teeth at 100 mj setting and 16 teeth at 150 mj setting. Sixteen teeth were etched with 37% phosphoric acid. The shear bond strength of bonded brackets with the Transbond XT adhesive system was measured with the Zwick testing machine. Descriptive statistics, Kolmogorov–Smirnov test, of homogeneity of variances, one- way analysis of variances and Tukey's test and Kruskal Wallis were used to analyze the data. Results: The mean shear bond strength of the teeth lased with 150 mj was 12.26 ± 4.76 MPa, which was not significantly different from the group with acid etching (15.26 ± 4.16 MPa). Irradiation with 100 mj resulted in mean bond strengths of 9.05 ± 3.16 MPa, which was significantly different from that of acid etching (P < 0.001). Conclusions: laser etching at 150 and 100 mj was adequate for bond strength but the failure pattern of brackets bonded with laser etching is dominantly at adhesive – enamel interface and is not safe for enamel during debonding. PMID:23087733

  12. Notched Strength Allowables and Inplane Shear Strength of AS4/VRM-34 Textile Laminates

    NASA Technical Reports Server (NTRS)

    Grenoble, Ray W.; Johnston, William M.

    2013-01-01

    Notched and unnotched strength allowables were developed for a textile composite to provide input data to analytical structural models based on the Pultruded Rod Stiffened Efficient Unitized Structure (PRSEUS) concept. Filled-hole tensile strength, filled-hole compressive strength, and inplane shear strength along stitch lines have been measured. The material system evaluated in this study is based on warp-knitted preforms of AS4 carbon fibers and VRM-34 epoxy resin, which have been processed via resin infusion and oven curing. All specimens were tested in as-fabricated (dry) condition. Filled-hole strengths were evaluated with and without through-thickness stitching. The effects of scaling on filled-hole tensile strength were evaluated by testing specimens in two widths, but with identical width / hole-diameter ratios. Inplane shear specimens were stitched in two configurations, and two specimen thicknesses were tested for each stitch configuration.

  13. Adhesive bond strengths to enamel and dentin using recommended and extended treatment times.

    PubMed

    Kimmes, Nicole S; Barkmeier, Wayne W; Erickson, Robert L; Latta, Mark A

    2010-01-01

    This study examined the effect of different enamel and dentin conditioning times on the shear bond strength of a resin composite using etch-and-rinse and self-etch adhesive systems. Shear bond strengths were determined following treatment of flat ground human enamel and dentin surfaces (4000 grit) with 11 adhesive systems: 1) AdheSE One Viva Pen-(ASE), 2) Adper Prompt L-Pop-(PLP), 3) Adper Single Bond Plus-(SBP), 4) Clearfil SE Bond-(CSE), 5) Clearfil S3 Bond-(CS3), 6) OptiBond All-In-One-(OBA), 7) OptiBond Solo Plus-(OBS), 8) Peak SE-(PSE), 9) Xeno IV-(X4), 10) Xeno V-(X5) and 11) XP Bond-(XPB) using recommended treatment times and an extended treatment time of 60 seconds (n = 10/group). Composite (Z100) to enamel and dentin bond strengths (24 hours) were determined using Ultradent fixtures and debonded with a crosshead speed of 1 mm/minute. The data were analyzed with a three-way Analysis of Variance (ANOVA) and Fisher's LSD post hoc test. The highest shear bond strengths (MPa) to enamel were achieved by the three etch-and-rinse systems at both the recommended treatment time (SBP-40.5 +/- 6.1; XPB-38.7 +/- 3.7; OBS- 35.2 +/- 6.2) and the extended treatment time (SBP-44.5 +/- 8.1; XPB-40.9 +/- 5.7; OBS-35.0 +/- 4.5). Extending the enamel treatment time did not produce a significant change (p > 0.05) in bond strength for the 11 adhesive systems tested. OBS generated the highest (46.2 +/- 7.9) bond strengths to dentin at the recommended treatment time. At the extended treatment time X4 (42.2 +/- 11.7), PSE (42.1 +/- 9.7) and OBS (41.4 +/- 8.0) produced the highest bond strengths to dentin. The bond strength change between recommend and extended treatment times was significant (p < 0.05) for PSE, but the other 10 systems did not exhibit any significant change.

  14. Effect of quaternary ammonium and silver nanoparticle-containing adhesives on dentin bond strength and dental plaque microcosm biofilms

    PubMed Central

    Zhang, Ke; Melo, Mary Anne S.; Cheng, Lei; Weir, Michael D.; Bai, Yuxing; Xu, Hockin H. K.

    2012-01-01

    Objectives Antibacterial bonding agents are promising to hinder the residual and invading bacteria at the tooth-restoration interfaces. The objectives of this study were to develop an antibacterial bonding agent by incorporation of quaternary ammonium dimethacrylate (QADM) and nanoparticles of silver (NAg), and to investigate the effect of QADM-NAg adhesive and primer on dentin bond strength and plaque microcosm biofilm response for the first time. Methods Scotchbond Multi-Purpose adhesive and primer were used as control. Experimental adhesive and primer were made by adding QADM and NAg into control adhesive and primer. Human dentin shear bond strengths were measured (n = 10). A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate biofilm metabolic activity, colony-forming unit (CFU) counts, lactic acid production, and live/dead staining assay (n = 6). Results Adding QADM and NAg into adhesive and primer did not compromise the dentin shear bond strength which ranged from 30 to 35 MPa (p > 0.1). Scanning electron microscopy (SEM) examinations revealed numerous resin tags, which were similar for the control and the QADM and NAg groups. Adding QADM or NAg markedly reduced the biofilm viability, compared to adhesive control. QADM and NAg together in the adhesive had a much stronger antibacterial effect than using each agent alone (p < 0.05). Adding QADM and NAg in both adhesive and primer had the strongest antibacterial activity, reducing metabolic activity, CFU, and lactic acid by an order of magnitude, compared to control. Significance Without compromising dentin bond strength and resin tag formation, the QADM and NAg containing adhesive and primer achieved strong antibacterial effects against microcosm biofilms for the first time. QADM-NAg adhesive and primer are promising to combat residual bacteria in tooth cavity and invading bacteria at the margins, thereby to inhibit secondary caries. QADM and NAg incorporation may have a

  15. Improvement in Adhesive Strength of PTFE using Nitrogen Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Watanabe, Tsuyoshi; Iwao, Toru; Yumoto, Motoshige

    The adhesive strength doesn't improve so much even if the surface is activated. It is known that PTFE (polytetra fluoroethylene) is one of the collapse type polymer since the binding energy of main chain is smaller than that of side chain. Accordingly, it is assumed that adhesive strength may improve by suppressing the collapse of structure. It is also expected that introduction of cross-linking structure may suppress the collapse of structure. It was confirmed that a lot of polar radicals were introduced at the surface by nitrogen ion irradiation around 30 eV. Thus, to introduce the cross-linking structure several 100 eV nitrogen ions were irradiated after irradiation of nitrogen with 30 eV ion. As a result, adhesive strength irradiated by 300 eV improved more than that of 1000 eV. From the result of XPS (X-ray-Photoelectron-Spectroscopy) analysis, many C-N-C bonds contributing cross-linking structure was detected at a shallow layer by irradiation of ions with 300 eV. From these results, it is concluded that the depth of cross-link formation is important to improve the adhesive strength.

  16. Post-bleaching application of an antioxidant on dentin bond strength of three dental adhesives

    PubMed Central

    Khoroushi, Maryam; Saneie, Tahereh

    2012-01-01

    Background: Antioxidizing agents have recently been suggested to compensate decreased bond strength of resin materials to bleached tooth tissues. This study compared the shear bond strength (SBS) of three different adhesives on bleached dentin immediately after bleaching, bleached/delayed for 1 week, and bleached/applied antioxidizing agent. Materials and Methods: The dentinal surfaces of 132 intact extracted molars were prepared and divided into 12 groups. The following adhesives were investigated: Optibond FL (OFL) (three-step etch-and-rinse), Optibond Solo Plus (two-step etch-and-rinse), and Optibond all-in-one (OA) (one-step self-etch) (Kerr, Orange, USA). Unbleached dentin groups (groups 1-3) were prepared as negative controls (NC). The remainder surfaces (groups 4-12) were bleached with 20% Opalescent PF (Ultradent, USA). Specimens were bonded immediately after bleaching (groups 4-6), after 1 week (groups 7-9), or after using 10% sodium ascorbate (SA) gel (groups 10-12). Subsequent to bonding of composite resin, the samples were tested for SBS and analyzed using Kruskal-Wallis and Mann-Whitney tests (α=0.05). Results: Regarding control groups, OA showed the highest SBS among the studied adhesives (P<0.05). The SBS decreased for the adhesives after bleaching except for OFL. No statistically significant difference in SBS were noted when the SA and delayed bonding groups were compared with their similar NC groups (P>0.05) except the of delay bonding with OA. Conclusions: The findings suggest that bond strength of resin to bleached dentin may be affected with the adhesive system. Reduced SBS to bleached dentin can be amended by the use of SA as an antioxidizing agent. However, the amount of reversed bond strength subsequent to applying antioxidant might be related to the kind of dental adhesive. PMID:22363363

  17. Bond strength of self-adhesive resin cements to tooth structure

    PubMed Central

    Hattar, Susan; Hatamleh, Muhanad M.; Sawair, Faleh; Al-Rabab’ah, Mohammad

    2015-01-01

    Objectives The aim of this study was to evaluate the strength of the bond between newly introduced self-adhesive resin cements and tooth structures (i.e., enamel and dentin). Methods Three self-adhesive cements (SmartCem2, RelyX Unicem, seT SDI) were tested. Cylindrical-shaped cement specimens (diameter, 3 mm; height, 3 mm) were bonded to enamel and dentin. Test specimens were incubated at 37 °C for 24 h. The shear bond strength (SBS) was tested in a Zwick Roll testing machine. Results were analyzed by one-way ANOVA and t-test. Statistically significant differences were defined at the α = 0.05 level. Bond failures were categorized as adhesive, cohesive, or mixed. Results The SBS values ranged from 3.76 to 6.81 MPa for cements bonded to enamel and from 4.48 to 5.94 MPa for cements bonded to dentin (p > 0.05 between surfaces). There were no statistically significant differences between the SBS values to enamel versus dentin for any given cement type. All cements exhibited adhesive failure at the resin/tooth interface. Conclusions Regardless of their clinical simplicity, the self-adhesive resin cements examined in this study exhibit limited bond performance to tooth structures; therefore, these cements must be used with caution. PMID:26082572

  18. Shear strength of non-shear reinforced concrete elements. Part 3: Prestressed hollow-core slabs

    SciTech Connect

    Hoang, L.C.

    1997-12-31

    This paper deals with the shear strength of prestressed hollow-core slabs determined by the theory of plasticity. Two failure mechanisms are considered in order to derive the solutions. In the case of sliding failure in a diagonal crack, the shear strength is determined by means of the crack sliding model developed by Jin-Ping Zhang. The model takes into account the resistance against the formation of cracks due to prestressing as well as the variation of the prestressing force in the transfer zone. Due to the fact that the anchorage of the reinforcement takes place by bond, a rotation failure, which is indeed by a crack formed at the support with subsequent slip of the reinforcement, is also considered. This failure mode is likely to occur in cases with a high prestressing force combined with a short shear span. The theoretical calculations are compared with test results form the literature. A good agreement has been found.

  19. Shear Strength and Interfacial Toughness Characterization of Sapphire-Epoxy Interfaces for Nacre-Inspired Composites.

    PubMed

    Behr, Sebastian; Jungblut, Laura; Swain, Michael V; Schneider, Gerold A

    2016-10-12

    The common tensile lap-shear test for adhesive joints is inappropriate for brittle substrates such as glasses or ceramics where stress intensifications due to clamping and additional bending moments invalidate results. Nevertheless, bonding of glasses and ceramics is still important in display applications for electronics, in safety glass and ballistic armor, for dental braces and restoratives, or in recently developed bioinspired composites. To mechanically characterize adhesive bondings in these fields nonetheless, a novel approach based on the so-called Schwickerath test for dental sintered joints is used. This new method not only matches data from conventional analysis but also uniquely combines the accurate determination of interfacial shear strength and toughness in one simple test. The approach is verified for sapphire-epoxy joints that are of interest for bioinspired composites. For these, the procedure not only provides quantitative interfacial properties for the first time, it also exemplarily suggests annealing of sapphire at 1000 °C for 10 h for mechanically and economically effective improvements of the interfacial bond strength and toughness. With increases of strength and toughness from approximately 8 to 29 MPa and from 2.6 to 35 J/m(2), respectively, this thermal modification drastically enhances the properties of unmodified sapphire-epoxy interfaces. At the same time, it is much more convenient than wet-chemical approaches such as silanization. Hence, besides the introduction of a new testing procedure for adhesive joints of brittle or expensive substrates, a new and facile annealing process for improvements of the adhesive properties of sapphire is suggested and quantitative data for the mechanical properties of sapphire-epoxy interfaces that are common in synthetic nacre-inspired composites are provided for the first time.

  20. Shear Pressed Aligned Carbon Nanotubes and their use as Composite and Adhesive Interlayers

    NASA Astrophysics Data System (ADS)

    Stahl, James Joseph, III

    The following studies utilize shearing force to consolidate and re-orient multi-walled carbon nanotubes (MWCNT) into a shear pressed sheet (SPS) preform. Carbon nanotube (CNT) array growth and shear pressing angle are studied to improve the quality of SPSs. Heat assisted vacuum infusion is used to form a nano-composite from the SPS preform, and mechanical properties are characterized and compared between non-functionalized and functionalized nano-composite tensile specimens. A novel functionalization technique is applied which rinses SPSs with an acidic wet chemical oxidation treatment of H2SO4 and KMnO4 in order to add sidewall carboxyl groups to the CNTs. This is shown to impart hydrophilicity to the SPS and improves composite modulus by 62%, strain-to-failure 42% and failure stress 113%. Composite laminates and joints are vulnerable to shearing forces which cause delamination in the former and failure in the latter. Damage is initiated and propagated at defects and free edges often due to high peel stress, which is much higher than the shear stress and functions as a tensile opening of the joint just as in Mode I delamination failure of laminate composites. In order to resist failure it is necessary to improve the strain-to-failure of the interphase where a crack propagates without sacrificing strength or modulus of the material, thus toughening the material without impacting the rigidity of the composite. Due to the similarity between peel stress/strain and Mode I delamination, the initiation fracture toughness of a double cantilever beam (DCB) test should provide a good indication of peel toughness at a joint free edge. Many studies have explored the possibility of improving Mode I fracture toughness (G IC) of a composite through locally incorporating a tough material into the interlaminar interphase; this material is termed an interleaf. Common interleaf categories are toughened adhesive, disperse particle, disperse fiber, short fiber nonwoven, and continuous

  1. Adhesion to tooth structure: a critical review of "micro" bond strength test methods.

    PubMed

    Armstrong, Steve; Geraldeli, Saulo; Maia, Rodrigo; Raposo, Luís Henrique Araújo; Soares, Carlos José; Yamagawa, Junichiro

    2010-02-01

    The objective of this paper is to critically review the literature regarding the mechanics, geometry, load application and other testing parameters of "micro" shear and tensile adhesion tests, and to outline their advantages and limitations. The testing of multiple specimens from a single tooth conserves teeth and allows research designs not possible using conventional 'macro' methods. Specimen fabrication, gripping and load application methods, in addition to material properties of the various components comprising the resin-tooth adhesive bond, will influence the stress distribution and consequently, the nominal bond strength and failure mode. These issues must be understood; as should the limitations inherent to strength-based testing of a complicated adhesive bond joining dissimilar substrates, for proper test selection, conduct and interpretation. Finite element analysis and comprehensive reporting of test conduct and results will further our efforts towards a standardization of test procedures. For the foreseeable future, both "micro" and "macro" bond strength tests will, as well as various morphological and spectroscopic investigative techniques, continue to be important tools for improving resin-tooth adhesion to increase the service life of dental resin-based composite restorations.

  2. Effect of glycine pretreatment on the shear bond strength of a CAD/CAM resin nano ceramic material to dentin

    PubMed Central

    Ceci, Matteo; Pigozzo, Marco; Scribante, Andrea; Beltrami, Riccardo; Colombo, Marco; Chiesa, Marco

    2016-01-01

    Background The purpose of this study was to evaluate the effect of glycine pretreatment on the shear bond strength between dentin and a CAD/CAM resin nano ceramic material (LavaTM Ultimate Restorative), bonded together with adhesive cements using three different luting protocols (total-etch; self-etch; self-adhesive). Material and Methods Thirty cylinders were milled from resin nano ceramic blocks with CAD/CAM technology. The cylinders were subsequently cemented to the exposed dentin of 30 bovine permanent mandibular incisors. The specimens were assigned into six groups of five teeth each according to luting procedure and dentin pretreatment. In the first two groups (A1, A2) 10 cylinders were cemented using a total-etch protocol; in groups B1 and B2, 10 cylinders were cemented using a self-etch protocol; in groups C1 and C2, 10 cylinders were cemented using a self-adhesive protocol; in groups A1, B1 and C1 the dentinal surface was also treated with glycine powder. All cemented specimens were submitted to a shear bond strength test. Statistical analysis was performed with Stata 9.0 software. Results ANOVA showed the presence of significant differences among the various groups (P <0.0001). Conclusions Glycine did not change the different bond strength demonstrated by the various luting protocols tested. Conventional resin composite cements used together with a self-etch adhesive reported the highest values. However the use of glycine seems to increase the bond strength of self-adhesive resin cements. Key words:Adhesive cements, CAD/CAM, glycine, luting system, resin nano ceramic, shear bond strength. PMID:27034754

  3. SHEAR STRENGTH MEASURING EQUIPMENT EVALUATION AT THE COLD TEST FACILITY

    SciTech Connect

    MEACHAM JE

    2009-09-09

    Retrievals under current criteria require that approximately 2,000,000 gallons of double-shell tank (DST) waste storage space not be used to prevent creating new tanks that might be susceptible to buoyant displacement gas release events (BDGRE). New criteria are being evaluated, based on actual sludge properties, to potentially show that sludge wastes do not exhibit the same BDGRE risk. Implementation of the new criteria requires measurement of in situ waste shear strength. Cone penetrometers were judged the best equipment for measuring in situ shear strength and an A.P. van den berg Hyson 100 kN Light Weight Cone Penetrometer (CPT) was selected for evaluation. The CPT was procured and then evaluated at the Hanford Site Cold Test Facility. Evaluation demonstrated that the equipment with minor modification was suitable for use in Tank Farms.

  4. Determination of transverse shear strength through torsion testing

    SciTech Connect

    Marcucelli, K.T.; Fish, J.C.

    1997-12-31

    The in-plane characterization of composite materials is, in general, well understood and widely utilized throughout the aerospace industry. However, the use of composites in structural elements such as fuselage frames and rotorcraft flexbeams place large out-of-plane or through-the-thickness stresses for which there is little data. Efforts to determine the interlaminar shear strength of laminated composites have been hampered due to the nonlinear behavior of test specimens and the limitations of current analysis tools. An inexpensive rectangular torsion test specimen was designed to determine the interlaminar shear strength, s{sub 23}, of composite materials. Six different layups were fabricated of AS4/2220-3 carbon/epoxy unidirectional tape and tested in pure torsion. All of the specimens failed abruptly with well-defined shear cracks and exhibited linear load-deflection behavior. A quasi-three-dimensional (Q-3-D) finite element analysis was conducted on each of the specimen configurations to determine the interlaminar shear stress at failure. From this analysis, s{sub 23} was found to be 107 MPa for this material.

  5. Microvoid Formation during Shear Deformation of Ultrahigh Strength Steels

    DTIC Science & Technology

    1989-01-01

    axial ....,e 0. 1 . and I and quasIstatc shear tests (iO AM. ESR . and VAR 4340 steeL the yield strength METALLURGICAL TRANSACTIONS A ’OUE20lA. JA...in high strength 4340 steel is nearly identical for both isothermal (quas- 11. BACKGROUND istatic) and adiabatic (dynamic) loading conditions. While...a 4340 steel Rc 52 plate (5.6 mm thick)I that underwent a localized deformation mode of failure during ballistic R=5.56 T impact. Note the white

  6. Shear Bond Strength of Three Orthodontic Bonding Systems on Enamel and Restorative Materials

    PubMed Central

    Ebeling, Jennifer; Schauseil, Michael; Stein, Steffen; Roggendorf, Matthias; Korbmacher-Steiner, Heike

    2016-01-01

    Objective. The aim of this in vitro study was to determine the shear bond strength (SBS) and adhesive remnant index (ARI) score of two self-etching no-mix adhesives (iBond™ and Scotchbond™) on different prosthetic surfaces and enamel, in comparison with the commonly used total etch system Transbond XT™. Materials and Methods. A total of 270 surfaces (1 enamel and 8 restorative surfaces, n = 30) were randomly divided into three adhesive groups. In group 1 (control) brackets were bonded with Transbond XT primer. In the experimental groups iBond adhesive (group 2) and Scotchbond Universal adhesive (group 3) were used. The SBS was measured using a Zwicki 1120™ testing machine. The ARI and SBS were compared statistically using the Kruskal–Wallis test (P ≤ 0.05). Results. Significant differences in SBS and ARI were found between the control group and experimental groups. Conclusions. Transbond XT showed the highest SBS on human enamel. Scotchbond Universal on average provides the best bonding on all other types of surface (metal, composite, and porcelain), with no need for additional primers. It might therefore be helpful for simplifying bonding in orthodontic procedures on restorative materials in patients. If metal brackets have to be bonded to a metal surface, the use of a dual-curing resin is recommended. PMID:27738633

  7. The role of adhesion strength in human mesenchymal stem cell osteoblastic differentiation on biodegradable polymers

    NASA Astrophysics Data System (ADS)

    Krizan, Sylva Jana

    Human mesenchymal stem cells (hMSC) are promising candidates for promoting bone growth on biodegradable polymer scaffolds however little is known about early hMSC-polymer interactions. Adhesion is highly dynamic and during adhesive reinforcement, numerous proteins form adhesion plaques linking the cell's cytoskeleton with the extracellular environment. These proteins are known to affect cellular function but their role in hMSC differentiation is less clear. Adhesion plaques are associated with adhesive force, still a detachment force of hMSC on polycaprolactone (PCL), poly-lactide-co-glycolide (PLGA) or alginate has never been described or shown to affect downstream function. We demonstrate that hMSC attached to PCL, PLGA and alginate exhibit different adhesion strengths (tau50) as determined by both fluid shear and spinning disk systems, with PLGA demonstrating the greatest tau 50. Elastic modulus and hydrophobicity were characterized for these surfaces and correlated positively with tau50 to an optimum. Attachment studies of hMSC showed that adhesion plateau timespans were independent of cell line and surface but both morphology and focal adhesion expression varied by polymer type. Differentiation studies of hMSC on PLGA and PCL showed a strong association between markers of differentiation (alkaline phosphatase activity and mineral content) and tau50 within polymer groups, but a poor relationship was found between tau50 and differentiation across polymer groups, suggesting that other polymer properties may be important for differentiation. Subsequently, we examined the role of focal adhesion kinase (FAK) and Rho-GTPase (RhoA) on hMSC adhesion and differentiation when plated onto PLGA. hMSC were retrovirally transduced with mutant constructs of FAK and RhoA cDNA. Alternatively, hMSC were treated with Rho-kinase inhibitor, Y27632. Both cells transduced with mutant RhoA or FAK constructs, or those treated with Y27632 displayed aberrant cell morphology and changes

  8. Effects of modifying the bonding protocol on the shear bond strength of metallic and ceramic orthodontic brackets.

    PubMed

    Fernandes, Thais Maria Friere; Janson, Guilherme; Somensi, Joyce; Pinzan, Arnaldo; Francisconi, Paulo Afonso Silveira; Sathler, Renata; Henriques, Jose Fernando Castanha

    2012-01-01

    The purpose of this study was to evaluate the in vitro shear bond strength and failure site of metallic and ceramic orthodontic brackets with modified bonding protocols. Sixty bovine mandibular incisors with similar anatomy were selected and divided into six groups (n = 10). In the first protocol, metallic and ceramic brackets were bonded according to the manufacturers' directions (controls); in the second protocol, the step of photocuring with the primer agent was eliminated; and in the third protocol, the primer agent was applied on the tooth and on the bracket base, followed by application of the composite adhesive on the bracket base, with one-step photocure. The same orthodontic adhesive was used for all groups. Shear bond strengths were measured and adhesive remnant index scores (ARI) were determined after bracket failure. The results demonstrated similar shear bond strengths in the protocols but presented significantly greater values for the metallic groups (two-way ANOVA, P < 0.05). ARI scores were compared with chi-square tests, and the ceramic brackets had significantly greater ARI scores compared to the metallic brackets. Based on these results, the manufacturer's bonding protocol can be modified to save clinical time without compromising adhesion of the brackets.

  9. Bond Strength of One-Step Adhesives under Different Substrate Moisture Conditions

    PubMed Central

    Faria-e-Silva, André Luís; Fabião, Mayra Melo; Sfalcin, Ravana Angelini; de Souza Meneses, Murilo; Santos-Filho, Paulo César Freitas; Soares, Paulo Vinícius; Martins, Luís Roberto

    2009-01-01

    Objectives The aim of this study was to evaluate the bond strength of one-step adhesive systems to dry or moist dental substrate. Methods Thirty human third molars were sectioned into two halves, in the mesio-distal direction, parallel to the long axis of the tooth. Each half was embedded in a polystyrene resin cylinder so that the buccal/lingual surface remained exposed. This exposed surface was abraded to obtain both flat exposed enamel and dentin. The samples were randomly allocated according to the adhesive system (Xeno III, Adper Prompt and iBond) and moisture condition (dry and moist). The substrates were air-dried for 30 s for dry condition, while the moist substrates were re-wet with 2.5 μl of distilled water after drying. After the adhesive procedures, two resin composite cylinders were build-up on dentin and enamel substrates, totaling four per sample. A shear load was applied to the samples at a crosshead speed of 0.5 mm/min until failure. Data were statistically analyzed by three-way ANOVA and the Tukey test (α=0.05). Results The evaluated one-step adhesives showed higher bond strength to dentin than enamel. The iBond presented better bond performance to moist substrate and Xeno III to dry substrate. The moisture condition did not interfere in the performance of Adper Prompt. The Xeno III and iBond presented higher bond strength than the other adhesives to both dry and moist substrates. Conclusions The moisture condition of substrate interfered in the performance of one-step self-etching adhesives and the best moisture condition was material dependent. PMID:19826601

  10. Impact of wall shear stress on initial bacterial adhesion in rotating annular reactor.

    PubMed

    Saur, Thibaut; Morin, Emilie; Habouzit, Frédéric; Bernet, Nicolas; Escudié, Renaud

    2017-01-01

    The objective of this study was to investigate the bacterial adhesion under different wall shear stresses in turbulent flow and using a diverse bacterial consortium. A better understanding of the mechanisms governing microbial adhesion can be useful in diverse domains such as industrial processes, medical fields or environmental biotechnologies. The impact of wall shear stress-four values ranging from 0.09 to 7.3 Pa on polypropylene (PP) and polyvinyl chloride (PVC)-was carried out in rotating annular reactors to evaluate the adhesion in terms of morphological and microbiological structures. A diverse inoculum consisting of activated sludge was used. Epifluorescence microscopy was used to quantitatively and qualitatively characterize the adhesion. Attached bacterial communities were assessed by molecular fingerprinting profiles (CE-SSCP). It has been demonstrated that wall shear stress had a strong impact on both quantitative and qualitative aspects of the bacterial adhesion. ANOVA tests also demonstrated the significant impact of wall shear stress on all three tested morphological parameters (surface coverage, number of objects and size of objects) (p-values < 2.10-16). High wall shear stresses increased the quantity of attached bacteria but also altered their spatial distribution on the substratum surface. As the shear increased, aggregates or clusters appeared and their size grew when increasing the shears. Concerning the microbiological composition, the adhered bacterial communities changed gradually with the applied shear.

  11. Impact of wall shear stress on initial bacterial adhesion in rotating annular reactor

    PubMed Central

    Saur, Thibaut; Morin, Emilie; Habouzit, Frédéric; Bernet, Nicolas

    2017-01-01

    The objective of this study was to investigate the bacterial adhesion under different wall shear stresses in turbulent flow and using a diverse bacterial consortium. A better understanding of the mechanisms governing microbial adhesion can be useful in diverse domains such as industrial processes, medical fields or environmental biotechnologies. The impact of wall shear stress—four values ranging from 0.09 to 7.3 Pa on polypropylene (PP) and polyvinyl chloride (PVC)—was carried out in rotating annular reactors to evaluate the adhesion in terms of morphological and microbiological structures. A diverse inoculum consisting of activated sludge was used. Epifluorescence microscopy was used to quantitatively and qualitatively characterize the adhesion. Attached bacterial communities were assessed by molecular fingerprinting profiles (CE-SSCP). It has been demonstrated that wall shear stress had a strong impact on both quantitative and qualitative aspects of the bacterial adhesion. ANOVA tests also demonstrated the significant impact of wall shear stress on all three tested morphological parameters (surface coverage, number of objects and size of objects) (p-values < 2.10−16). High wall shear stresses increased the quantity of attached bacteria but also altered their spatial distribution on the substratum surface. As the shear increased, aggregates or clusters appeared and their size grew when increasing the shears. Concerning the microbiological composition, the adhered bacterial communities changed gradually with the applied shear. PMID:28207869

  12. Analysis of interfacial structure and bond strength of self-etch adhesive systems

    PubMed Central

    Pinzon, Lilliam M; Watanabe, Larry G; Reis, Andre F; Powers, John M; Marshall, Sally J; Marshall, Grayson W

    2013-01-01

    Purpose To determine the bond strength, nanoleakage and interfacial morphology of four self-etch adhesives bonded to superficial dentin. Methods Micro-tensile (MT, n=15) and single plane shear (SP, n=8) bond tests were performed using human dentin polished through 320-grit SiC paper. Clearfil Protect Bond (PB), Clearfil S3 Bond (S3), Prompt L-Pop (PLP) and G-BOND (GB) were used according to manufacturers’ instructions. Composite was applied as cylinders with a thickness of 4 mm with a 1-mm diameter and stored in water at 37° C for 24 hours. Specimens were debonded with a testing machine at a cross-head speed of 1 mm/min. Means and standard deviations of bond strength were calculated. Data were analyzed using ANOVA. Fisher’s PLSD intervals were calculated at the 0.05 level of significance. Failure modes were determined at 100X. The hybrid layer was revealed by treatment with 5N HCl/5% NaOCl or fractured perpendicular to the interface and sputter coated with gold. Specimens were viewed at 1000X, 2500X, and 5000X in a field emission SEM at 15 kV. Teeth (n=2) sectioned into 0.9-mm thick slabs were immersed in ammoniacal silver nitrate solution for 24 hours, rinsed and immersed in photo-developing solution for 8h. Specimens were sectioned (90-nm thick) and observed under TEM. Results Means ranged from 25.0 to 73.1 MPa for MT and from 15.5 to 56.4 MPa for SP. MT values were greater than SP, but were highly correlated (R2 = 0.99, p= 0.003) and provided the same order for the systems studied. Fisher’s PLSD intervals (p<0.05) for bond strength techniques and adhesives results were 1.7 and 2.3 MPa, respectively. Failures sites were mixed. TEM showed that hybrid layers were ~0.5 µm for PB, GB and S3 and ~5 µm for PLP. SEM showed morphologic differences among adhesives. Silver nitrate deposits were observed within interfaces for all adhesive systems. Clinical significance Simplification of application procedures appears to induce loss of adhesion capabilities. In this

  13. Material characterization of structural adhesives in the lap shear mode. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Schenck, S. C.; Sancaktar, E.

    1983-01-01

    A general method for characterizing structural adhesives in the bonded lap shear mode is proposed. Two approaches in the form of semi-empirical and theoretical approaches are used. The semi-empirical approach includes Ludwik's and Zhurkov's equations to describe respectively, the failure stresses in the constant strain rate and constant stress loading modes with the inclusion of the temperature effects. The theoretical approach is used to describe adhesive shear stress-strain behavior with the use of viscoelastic or nonlinear elastic constitutive equations. Three different model adhesives are used in the simple lap shear mode with titanium adherends. These adhesives (one of which was developed at NASA Langley Research Center) are currently considered by NASA for possible aerospace applications. Use of different model adhesives helps in assessment of the generality of the method.

  14. An in vitro evaluation of shear bond strength of silorane and bis-GMA resin-based composite using different curing units

    PubMed Central

    Khosla, Manak; Malhotra, Neeraj; Mala, Kundabala

    2012-01-01

    Aim: To evaluate shear bond strength of silorane and bis-GMA based composite resins using self-etch and total-etch adhesive systems, and compare the effect of Quartz-tungten-halogen (QTH) and Light emitting diode (LED) on the shear bond strength of the experimental materials. Materials and Methods: Flat dentin surfaces were exposed on intact extracted molars and composite resin was built 2 mm in diameter. Teeth were divided randomly into four groups. Groups 1 and 2 were restored with P90 system adhesive and Filtek P90 and cured with QTH and LED units respectively. Groups 3 and 4 were restored with total etch adhesive and Filtek Z100 and cured with QTH and LED units respectively. Specimens were subjected to shear bond strength testing using Instrom Universal testing machine. Results: Data was subjected to one-way analysis of variance. Total-etch groups gave significantly higher shear bond strength values than the self-etch groups. No significant difference in shear bond strength was found between Groups 3 and 4, while Group 1 showed significantly higher values than Group 2. Conclusion: Type of light curing unit is not a significant factor affecting shear bond strength for bis-GMA RBCs using total-etch technique; while for curing silorane resin based composite (RBCs), conventional halogen curing units showed better results. PMID:22876019

  15. Shear Bond Strength and Fracture Analysis of Human vs. Bovine Teeth

    PubMed Central

    Rüttermann, Stefan; Braun, Anika; Janda, Ralf

    2013-01-01

    Purpose To evaluate if bovine enamel and dentin are appropriate substitutes for the respective human hard tooth tissues to test shear bond strength (SBS) and fracture analysis. Materials and Methods 80 sound and caries-free human erupted third molars and 80 freshly extracted bovine permanent central incisors (10 specimens for each group) were used to investigate enamel and dentine adhesion of one 2-step self-etch (SE) and one 3-step etch and rinse (E&R) product. To test SBS the buccal or labial areas were ground plane to obtain appropriate enamel or dentine areas. SE and E&R were applied and SBS was measured prior to and after 500 thermocycles between +5 and +55°C. Fracture analysis was performed for all debonded areas. Results ANOVA revealed significant differences of enamel and dentin SBS prior to and after thermocycling for both of the adhesives. SBS- of E&R-bonded human enamel increased after thermocycling but SE-bonded did not. Bovine enamel SE-bonded showed higher SBS after TC but E&R-bonded had lower SBS. No differences were found for human dentin SE- or E&R-bonded prior to or after thermocycling but bovine dentin SE-bonded increased whereas bovine dentine E&R-bonded decreased. Considering the totalized and adhesive failures, fracture analysis did not show significances between the adhesives or the respective tooth tissues prior to or after thermocycling. Conclusion Although SBS was different on human and bovine teeth, no differences were found for fracture analysis. This indicates that solely conducted SBS on bovine substrate are not sufficient to judge the perfomance of adhesives, thus bovine teeth are questionnable as a substrate for shear bond testing. PMID:23527125

  16. Correlation of ideal and actual shear strengths of metals with their friction properties

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1981-01-01

    The relation between the ideal and actual shear strengths and friction properties of clean metals in contact with clean diamond, boron nitride, silicon carbide, manganese-zinc ferrite, and the metals themselves in vacuum is discussed. An estimate of the ideal shear strength for metals is obtained from the shear modulus, the repeat distance of atoms in the direction of shear of the metal, and the interplanar spacing of the shearing planes. The coefficient of friction for metals is shown to be correlated with both the ideal and actual shear strength of metals. The higher the strength of the metal, the lower the coefficient of friction occurs.

  17. Disinclusion of unerupted teeth by mean of self-ligating brackets: Effect of blood contamination on shear bond strength

    PubMed Central

    Sfondrini, Maria F.; Gatti, Sara; Gandini, Paola

    2013-01-01

    Objectives: The aim of this study was to assess the effect of blood contamination on the shear bond strength and failure site of three different orthodontic self-ligating brackets. Study Design: 240 bovine permanent mandibular incisors were randomly divided into 12 groups of 20 specimens each. Orthodontic self-ligating brackets were tested under four different enamel surface conditions: a) dry, b) blood contamination before priming, c) blood contamination after priming, d) blood contamination before and after priming. Brackets were bonded to the teeth and subsequently tested using a Instron universal testing machine. Shear bond strength values and adhesive failure rate were recorded. Statistical analysis was performed using ANOVA and Tukey tests (strength values), and Chi squared test (ARI Scores). Results: Non-contaminated enamel surfaces showed highest bond strengths for all self ligating brackets. Under blood-contamination shear bond strengths lowered for all brackets tested. Groups contaminated before and after primer application showed the lowest shear bond strength. Significant differences in debond locations were found among the groups under the various enamel surface conditions. Conclusions: Blood contamination of enamel during the bonding procedure lowers bond strength values of self ligating brackets, expecially when contamination occur in different times of the bonding procedure. Key words:Disinclusion, self ligating brackets, blood, contamination, enamel, orthodontics, oral surgery. PMID:23229253

  18. Interfacial Shear Strength of Oxide Scale and SS 441 Substrate

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2011-05-01

    Recent developments on decreasing the operating temperature for Solid Oxide Fuel Cells (SOFCs) have enabled the use of high temperature ferritic alloys as interconnect materials. Oxide scale will inevitably grow on the ferritic interconnects in a high temperature oxidation environment of SOFCs. The growth of the oxide scale induces growth stresses in the scale layer and on the scale/substrate interface. These growth stresses combined with the thermal stresses induced upon stacking cooling by the thermal expansion coefficient mismatch between the oxide scale and the substrate may lead to scale delamination/buckling and eventual spallation, which may lead to serious cell performance degradation. Hence the interfacial adhesion strength between the oxide scale and the substrate is crucial to the reliability and durability of the metallic interconnect in SOFC operating environments. In this paper, we applied an integrated experimental/modeling methodology to quantify the interfacial adhesion strength between the oxide scale and the SS 441 metallic interconnect. The predicted interfacial strength is discussed in details.

  19. Effects of wall shear stress and its gradient on tumor cell adhesion in curved microvessels.

    PubMed

    Yan, W W; Cai, B; Liu, Y; Fu, B M

    2012-05-01

    Tumor cell adhesion to vessel walls in the microcirculation is one critical step in cancer metastasis. In this paper, the hypothesis that tumor cells prefer to adhere at the microvessels with localized shear stresses and their gradients, such as in the curved microvessels, was examined both experimentally and computationally. Our in vivo experiments were performed on the microvessels (post-capillary venules, 30-50 μm diameter) of rat mesentery. A straight or curved microvessel was cannulated and perfused with tumor cells by a glass micropipette at a velocity of ~1mm/s. At less than 10 min after perfusion, there was a significant difference in cell adhesion to the straight and curved vessel walls. In 60 min, the averaged adhesion rate in the curved vessels (n = 14) was ~1.5-fold of that in the straight vessels (n = 19). In 51 curved segments, 45% of cell adhesion was initiated at the inner side, 25% at outer side, and 30% at both sides of the curved vessels. To investigate the mechanical mechanism by which tumor cells prefer adhering at curved sites, we performed a computational study, in which the fluid dynamics was carried out by the lattice Boltzmann method , and the tumor cell dynamics was governed by the Newton's law of translation and rotation. A modified adhesive dynamics model that included the influence of wall shear stress/gradient on the association/dissociation rates of tumor cell adhesion was proposed, in which the positive wall shear stress/gradient jump would enhance tumor cell adhesion while the negative wall shear stress/gradient jump would weaken tumor cell adhesion. It was found that the wall shear stress/gradient, over a threshold, had significant contribution to tumor cell adhesion by activating or inactivating cell adhesion molecules. Our results elucidated why the tumor cell adhesion prefers to occur at the positive curvature of curved microvessels with very low Reynolds number (in the order of 10(-2)) laminar flow.

  20. Effect of silorane-based adhesive system on bond strength between composite and dentin substrate

    PubMed Central

    Pereira, Jefferson Ricardo; Júnior, Lindomar Corrêa; de Souza Almeida, Mauro; do Valle, Accácio Lins; Honório, Heitor Marques; Vidotti, Hugo Alberto; De Souza, Grace Mendonca

    2015-01-01

    Context: The complexities of the oral environment, the dentin substrate, and the different bond and composite resin systems represent a challenge to the maintenance of reasonable bond between the composite resin and the tooth structure. Aims: To evaluate the effect of the adhesive system on bond strength between silorane-based composite resin and dentin. Materials and Methods: Fourteen human molars extracted were selected and vertically cut into 3 dentin fragments, randomly divided among the experimental groups and restored with Z250 and P90 composite resin using different adhesive protocols (Adper Single Bond 2, Silorano primer, Adper SE Plus, and Scotchbond Multiuse). Two composite resin cylinders were built up on each dentin surface (n = 10) and subjected to a micro-shear bond strength test. Statistical Analysis Used: Kruskal–Wallis one-way analysis of variance and Tukey test (P = 0.05). Results: According to the results, Kruskal–Wallis test evidenced at least one statistical significant difference (P = 0.001). The Tukey test showed statistically significant differences among the group (P < 0.05). Group PSM8 (P90 + SM) showed statically significant higher results when compared with groups PSP4 (P90 + SP), PSB2 (P90 + SB), and ZSE5 (Z250 + SE). Conclusion: The results evidenced that the monomer of the adhesive system has an effect on bond strength between the composite resin and dentin. PMID:26752846

  1. Correlation of tensile and shear strengths of metals with their friction properties

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    The relation between the theoretical tensile and the shear strengths and the friction properties of metals in contact with diamond, boron nitride, silicon carbide, manganese-zinc ferrite, and the metals themselves in vacuum was investigated. The relationship between the actual shear strength and the friction properties of the metal was also investigated. An estimate of the theoretical uniaxial tensile strength was obtained in terms of the equilibrium surface energy, interplanar spacing of the planes perpendicular to the tensile axis, and the Young's modulus of elasticity. An estimate of the theoretical shear strength for metals was obtained from the shear modulus, the repeat distance of atoms in the direction of shear of the metal and the interplanar spacing of the shear planes. The coefficient of friction for metals was found to be related to the theoretical tensile, theoretical shear, and actual shear strengths of metals. The higher the strength of the metal, the lower the coefficient of friction.

  2. Influence of different luting protocols on shear bond strength of computer aided design/computer aided manufacturing resin nanoceramic material to dentin

    PubMed Central

    Poggio, Claudio; Pigozzo, Marco; Ceci, Matteo; Scribante, Andrea; Beltrami, Riccardo; Chiesa, Marco

    2016-01-01

    Background: The purpose of this study was to evaluate the influence of three different luting protocols on shear bond strength of computer aided design/computer aided manufacturing (CAD/CAM) resin nanoceramic (RNC) material to dentin. Materials and Methods: In this in vitro study, 30 disks were milled from RNC blocks (Lava Ultimate/3M ESPE) with CAD/CAM technology. The disks were subsequently cemented to the exposed dentin of 30 recently extracted bovine permanent mandibular incisors. The specimens were randomly assigned into 3 groups of 10 teeth each. In Group 1, disks were cemented using a total-etch protocol (Scotchbond™ Universal Etchant phosphoric acid + Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 2, disks were cemented using a self-etch protocol (Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 3, disks were cemented using a self-adhesive protocol (RelyX™ Unicem 2 Automix self-adhesive resin cement). All cemented specimens were placed in a universal testing machine (Instron Universal Testing Machine 3343) and submitted to a shear bond strength test to check the strength of adhesion between the two substrates, dentin, and RNC disks. Specimens were stressed at a crosshead speed of 1 mm/min. Data were analyzed with analysis of variance and post-hoc Tukey's test at a level of significance of 0.05. Results: Post-hoc Tukey testing showed that the highest shear strength values (P < 0.001) were reported in Group 2. The lowest data (P < 0.001) were recorded in Group 3. Conclusion: Within the limitations of this in vitro study, conventional resin cements (coupled with etch and rinse or self-etch adhesives) showed better shear strength values compared to self-adhesive resin cements. Furthermore, conventional resin cements used together with a self-etch adhesive reported the highest values of adhesion. PMID:27076822

  3. Shear Strength of Single Lap Joint Aluminium-Thermoplastic Natural Rubber (Al-TPNR) Laminated Composite

    NASA Astrophysics Data System (ADS)

    Muzakkar, M. Z.; Ahmad, S.; Yarmo, M. A.; Jalar, A.; Bijarimi, M.

    2013-04-01

    In this work, we studied the effect of surface treatment on the aluminium surface and a coupling agent to improve adhesion between aluminium with organic polymer. Thermoplastic natural rubber (TPNR) matrix was prepared by melt blending of natural rubber (NR), liquid natural rubber (LNR) compatibilizer, linear low density polyethylene (LLDPE) and polyethylene grafted maleic anhydride (PE-g-MAH). The PEgMAH concentration used was varied from 0% - 25%. In addition, the aluminium surface was pre-treated with 3-glycidoxy propyl trimethoxy silane (3-GPS) to enhance the mechanical properties of laminated composite. It was found that the shear strength of single lap joint Al-TPNR laminated composite showing an increasing trend as a function of PE-g-MAH contents for the 3-GPS surface treated aluminium. Moreover, the scanning electron microscope (SEM) revealed that the strength improvement was associated with the chemical state of the compound involved.

  4. Effect of different surface treatments on shear bond strength of zirconia to three resin cements

    NASA Astrophysics Data System (ADS)

    Dadjoo, Nisa

    Statement of problem: There are no standard guidelines for material selection to obtain acceptable bonding to high-strength zirconium oxide ceramic. Studies suggest resin cements in combination with MDP-containing primer is a reasonable choice, however, the other cements cannot be rejected and need further investigation. Objective: The purpose of this in vitro study was the evaluation of the shear bond strength of three composite resin cements to zirconia ceramic after using different surface conditioning methods. Materials and methods: One hundred and twenty sintered Y-TZP ceramic (IPS e.max ZirCAD) squares (8 x 8 x 4 mm) were embedded in acrylic molds, then divided into three groups (n=40) based on the type of cement used. Within each group, the specimens were divided into four subgroups (n=10) and treated as follows: (1) Air abrasion with 50microm aluminum oxide (Al2O 3) particles (ALO); (2) Air abrasion + Scotchbond Universal adhesive (SBU); (3) Air abrasion + Monobond Plus (MBP); (4) Air abrasion + Z-Prime Plus (ZPP). Composite cylinders were used as carriers to bond to conditioned ceramic using (1) RelyX Ultimate adhesive resin cement (RX); (2) Panavia SA self-adhesive resin cement (PSA); (3) Calibra esthetic cement (CAL). The bonded specimens were submerged in distilled water and subjected to 24-hour incubation period at 37°C. All specimens were stressed in shear at a constant crosshead speed of 0.5 mm/min until failure. Statistical analysis was performed by ANOVA. The bond strength values (MPa), means and standard deviations were calculated and data were analyzed using analysis of variance with Fisher's PLSD multiple comparison test at the 0.05 level of significance. The nature of failure was recorded. Results: The two-way ANOVA showed Panavia SA to have the highest strength at 44.3 +/- 16.9 MPa (p<0.05). The combination of Scotchbond Universal surface treatment with Panavia SA cement showed statistically higher bond strength (p=0.0054). The highest bond

  5. Effect of Sodium Ascorbate and Delayed Bonding on the Bond Strength of Silorane and Two-step Self-etch Adhesive Systems in Bleached Enamel

    PubMed Central

    Abed Kahnemooyi, Mehdi; Ajami, Amir Ahmad; Kimyai, Soodabeh; Pournaghiazar, Fatemeh; Savadi Oskoee, Siavash; Mhammadi Torkani, Mohammad Ali

    2014-01-01

    Background and aims. Studies have shown decreased bond strength of composite resin to human and bovine bleached enamel. This study evaluated the effect of sodium ascorbate and delayed bonding on the bond strength of two adhesive systems to bleached enamel. Materials and methods. The labial surfaces of 150 sound bovine incisor teeth were abraded with abrasive paper. The teeth were randomly divided into 8 groups: A: control; B: bleached with 35% hydrogen peroxide; C: bleached with 35% hydrogen peroxide + sodium ascorbate gel; and D: bleached with 35% hydrogen peroxide + delayed bonding. In groups A‒D, silorane adhesive system and Filtek silorane composite resin were used. In groups E‒H, the same preparation methods of groups A-D were used. Two-step self-etch Clearfil SE Bond adhesive systems and AP-X composite resin were administered. Shear bond strength of each group was measured. Two samples were prepared for each surface preparation for ultra-structural evaluation. Two-way ANOVA and Tukey test were used for data analysis at P<0.05. Results. The interaction between the adhesive system type and surface preparation protocol was significant (P=0.014), withsignificant differences in shear bond strengths in terms of the adhesive systems (P<0.01). There were significant differences in shear bond strength in terms of surface preparation techniques irrespective of the adhesive system (P<0.01). Conclusion. The results showed that bleaching with 35% hydrogen peroxide decreased the shear bond strength values with both adhesive systems, and a one-week delay in bonding and 10% sodium ascorbate for10 minutes restored the bond strength in both adhesive systems. PMID:25587382

  6. Amalgam buildups: shear strength and dentin sealing properties.

    PubMed

    Pashley, E L; Comer, R W; Parry, E E; Pashley, D H

    1991-01-01

    The retentive strength and sealing properties of amalgam buildups were compared in vitro in three groups of specimens. All teeth were prepared with flat, nonretentive surfaces. In the first group, the amalgam buildups were retained by four self-threading Minim pins. In the second group, retention was provided by a circumferential slot prepared in the dentin just inside the DEJ. The third group utilized an adhesive resin for retention. Dentin permeability was measured as a hydraulic conductance before and after placement of the amalgam buildups and before and after thermocycling. All methods of retention sealed dentin very well even in the absence of cavity varnish. The 90 degree retentive strength was: pins, 10.3 +/- 0.9 MPa; slots, 4.1 +/- 0.5 MPa; resin, 3.1 +/- 0.8 MPa (mean +/- SEM).

  7. Influence of different tooth types on the bond strength of two orthodontic adhesive systems

    PubMed Central

    Öztürk, Bora; Koyutürk, Alp Erdin; Çatalbaş, Bülent; Özer, Füsun

    2008-01-01

    The aim of this investigation was to evaluate the effects of different tooth types on the shear bond strength (SBS) of two orthodontic resin adhesive systems in vitro. Two hundred extracted sound human teeth were used in the study. Ten teeth of each tooth type were the mounted in acrylic resin leaving the buccal surface of the crowns parallel to the base of the moulds. In each experimental group, the adhesives (Transbond XT™ and Light Bond™) were applied to the etched enamel surfaces. The orthodontic composite resins were then applied to the surface in cylindrical-shaped plastic matrices. For SBS testing, a force transducer (Ultradent™) was applied at a crosshead speed of 1 mm/minute at the interface between the tooth and composite until failure occurred. Data were analysed using two-way analysis of variance (ANOVA), Kruskal–Wallis one-way ANOVA, a Bonferroni adjusted Mann–Whitney U-test, and an independent t-test. Generally, it was found that tooth type had a significant effect on SBS (P < 0.05) with Light Bond™ showing a higher SBS than Transbond XT™ (P < 0.05). The highest bond strengths were observed for the upper central incisor and lower molars with Light Bond™ (P < 0.05) and the lowest mean bond strengths for the upper molars and lower canine with Transbond XT™ (P <0.05). The results demonstrated that enamel SBS was significantly altered by both tooth type and adhesive system. Thus, the findings of this study confirm that enamel bond strength is not uniform for all teeth. These results may also explain the variability in the enamel-bonding efficacy of adhesives. PMID:18678760

  8. Shear bond strength comparison of moisture-insensitive primer and self-etching primer

    PubMed Central

    Goswami, Arunima; Mitali, Borah; Roy, BK

    2014-01-01

    Context: The detrimental effect of moisture on orthodontic bonding has long been known. Hydrophilic bonding materials have been introduced suggesting the possibility of obtaining successful orthodontic bonding to a moisture contaminated enamel surface. Aims: This study has been performed with an aim to compare the in vitro shear bond strength (SBS) and debonding characteristic of moisture-insensitive primer (MIP) (Transbond MIP) (3M Unitek, South Peck Road, Monrovia, California, USA) and self-etching primer (SEP) (Transbond Plus SEP) (3M Unitek, South Peck Road, Monrovia, California, USA) in combination with a color changing adhesive system (Transbond Plus Color Change) (3M Unitek, South Peck Road, Monrovia, California, USA) under both dry and contaminated condition. Settings and Design: Randomized controlled clinical study. Subjects and Methods: One hundred and twenty freshly extracted teeth for the purpose of orthodontic treatment were collected. Teeth were randomly assigned into four groups, each consisting of 30 specimen and stainless steel brackets were bonded using each primer-adhesive combination under different enamel conditions, that is, dry and enamel contaminated with natural saliva. SBS and adhesive remnant index were calculated for each group. Results: Analysis of variance of SBS for both MIP and SEP under dry and contaminated condition showed no statistical significance (P = 0.5). Chi-square test showed significant difference in debonding characteristics among the test groups (P < 0.001). All the groups showed typical debonding characteristics of separation either at the bracket-adhesive interface or within the adhesive itself. Conclusions: Moisture contamination did not affect the SBS and adhesive remaining on tooth for both MIP and SEP. PMID:25143933

  9. Analysis of Shear Bond Strength and Morphology of Er:YAG Laser-Recycled Ceramic Orthodontic Brackets

    PubMed Central

    Han, Ruo-qiao; Ji, Ling-fei; Ling, Chen

    2016-01-01

    Objective. The aim of this study was to compare the recycling of deboned ceramic brackets via an Er:YAG laser or via the traditional chairside processing methods of flaming and sandblasting; shear bond strength and morphological changes were evaluated in recycled brackets versus new brackets. Materials and Methods. 3M Clarity Self-Ligating Ceramic Brackets with a microcrystalline base were divided into groups subjected to flaming, sandblasting, or exposure to an Er:YAG laser. New ceramic brackets served as a control group. Shear bond strengths were determined with an Electroforce test machine and tested for statistical significance through analysis of variance. Morphological examinations of the recycled ceramic bracket bases were conducted with scanning electron microscopy and confocal laser scanning microscopy. Residue on the bracket base was analyzed with Raman spectroscopy. Results. Faded, dark adhesive was left on recycled bracket bases processed via flaming. Adhesive was thoroughly removed by both sandblasting and exposure to an Er:YAG laser. Compared with new brackets, shear bond strength was lower after sandblasting (p < 0.05), but not after exposure to an Er:YAG laser. The Er:YAG laser caused no damage to the bracket. Conclusion. Er:YAG lasers effectively remove adhesive from the bases of ceramic brackets without damaging them; thus, this method may be preferred over other recycling methods. PMID:27047964

  10. Generation of shear adhesion map using SynVivo synthetic microvascular networks.

    PubMed

    Smith, Ashley M; Prabhakarpandian, Balabhaskar; Pant, Kapil

    2014-05-25

    Cell/particle adhesion assays are critical to understanding the biochemical interactions involved in disease pathophysiology and have important applications in the quest for the development of novel therapeutics. Assays using static conditions fail to capture the dependence of adhesion on shear, limiting their correlation with in vivo environment. Parallel plate flow chambers that quantify adhesion under physiological fluid flow need multiple experiments for the generation of a shear adhesion map. In addition, they do not represent the in vivo scale and morphology and require large volumes (~ml) of reagents for experiments. In this study, we demonstrate the generation of shear adhesion map from a single experiment using a microvascular network based microfluidic device, SynVivo-SMN. This device recreates the complex in vivo vasculature including geometric scale, morphological elements, flow features and cellular interactions in an in vitro format, thereby providing a biologically realistic environment for basic and applied research in cellular behavior, drug delivery, and drug discovery. The assay was demonstrated by studying the interaction of the 2 µm biotin-coated particles with avidin-coated surfaces of the microchip. The entire range of shear observed in the microvasculature is obtained in a single assay enabling adhesion vs. shear map for the particles under physiological conditions.

  11. Shear Bond Strength of Self-Adhering Flowable Composite and Resin-modified Glass Ionomer to Two Pulp Capping Materials

    PubMed Central

    Doozaneh, Maryam; Koohpeima, Fatemeh; Firouzmandi, Maryam; Abbassiyan, Forugh

    2017-01-01

    Introduction: The aim of this study was to compare the shear bond strength of a self-adhering flowable composite (SAFC) and resin-modified glass ionomer (RMGI) to mineral trioxide aggregate (MTA) and calcium-enriched mixture (CEM) cement. Methods and Materials: A total of 72 acrylic blocks with a central hole (4 mm in diameter and 2 mm in depth) were prepared. The holes were filled with MTA (sub group A) and CEM cement. The specimens of both restorative materials were divided into 6 groups; overall there were 12 groups. In groups 1 and 4, SAFC was used without bonding while in groups 2 and 5 SAFC was used with bonding agent. In all these groups the material was placed into the plastic mold and light cured. In groups 3 and 6, after surface conditioning with poly acrylic acid and rinsing, RMGI was placed into the mold and photo polymerized. After 24 h, the shear bond strength values were measured and fracture patterns were examined by a stereomicroscope. Data were analyzed using the two-way ANOVA and student’s t-test. Results: The use of bonding agent significantly increased the shear bond strength of FC to MTA and CEM cement (P=0.008 and 0.00, respectively). In both materials, RMGI had the lowest shear bond strength values (2.25 Mpa in MTA and 1.32 Mpa in CEM). The mean shear bond strength were significantly higher in MTA specimen than CEM cement (P=0.003). There was a significant differences between fracture patterns among groups (P=0.001). Most failures were adhesive/mix in MTA specimen but in CEM cement groups the cohesive failures were observed in most of the samples. Conclusion: The bond strength of self-adhering flowable composite resin to MTA and CEM cement was higher than RMGI which was improved after the additional application of adhesive. PMID:28179935

  12. Effect of bromelain enzyme for dentin deproteinization on bond strength of adhesive system

    PubMed Central

    Chauhan, Kirti; Basavanna, Revaplar Siddaveerappa; Shivanna, Vasundhara

    2015-01-01

    Aims: To assess the deproteinizing effect of bromelain enzyme and compare it with 5% sodium hypochlorite (NaOCl) on shear bond strength before application of the adhesive system. Materials and Methods: A total of 30 extracted human premolars were divided into three groups, each one consisted of 10 teeth. The occlusal surface was wet ground to expose superficial dentin. In Group 1, teeth were etched; in Group 2, teeth were etched and deproteinized with bromelain enzyme; in Group 3, teeth were etched and deproteinized with 5% NaOCl. Upon completion of the adhesive procedures, resin composite was inserted into the plastic tube and light-polymerized. All specimens were stored at 37°C in water for 24 h, and the specimens were transferred to the universal testing machine, and then subjected to shear bond strength analysis at a crosshead speed of 1.0 mm/min. Statistical Analysis Used: Data were statistically analyzed using one-way analysis of variance and unpaired t-test at a significance level of 0.05. The statistical analysis was performed using SPSS version 12.0.1 for Windows (SPSS Inc., Chicago, IL, USA). Results: The bond strength results were significantly influenced by the application of bromelain enzyme. Statistically significant differences were not demonstrated in control group and NaOCl-treated group. The highest bond strength was seen in bromelain enzyme-treated group. Conclusions: Within the limitations of the present study, it was concluded that removal of unsupported collagen fiber with bromelain enzyme after acid etching results in improved bond strength. PMID:26430297

  13. Regional bond strengths of adhesive resins to pulp chamber dentin.

    PubMed

    Belli, S; Zhang, Y; Pereira, P N; Ozer, F; Pashley, D H

    2001-08-01

    Microleakage of oral microorganisms, which can occur due to the lack of sealing ability of permanent restorative materials, may cause failure of root canal treatments. Although a great deal of research has been done on sealing enamel and coronal dentin with resins, little research has been done on the adhesion of resins to the walls of pulp chambers. The purpose of this study was to evaluate regional bond strengths of two adhesive systems to the walls of pulp chambers. A section was made horizontally through the middle of the pulp chamber of extracted human third molars to divide the chamber into upper and lower halves. The pulp tissue was removed and the tooth segments were then divided into treatment subgroups. The pulp chambers were bonded with C&B Metabond (Parkell) or One-Step (Bisco), with or without 5% NaOCI pretreatment. The microtensile bond strengths of these resins to four different pulp chamber regions (bottom, wall, roof, and pulp horn areas) were then measured using an Instron machine. The data were expressed in MPa and were analyzed by a three-way ANOVA. Statistically significant differences were found among the test groups (p < 0.001). One-Step produced higher bond strengths to all pulp chamber regions except the floor, compared with C&B Metabond. The results indicated that high bond strengths can be achieved between adhesive resins and the various regions of the pulp chamber. This should permit the use of a thick layer of unfilled resin along the floor of the pulp chamber and over the canal orifices as a secondary protective seal after finishing root canal therapy.

  14. Modelling and Simulating the Adhesion and Detachment of Chondrocytes in Shear Flow

    NASA Astrophysics Data System (ADS)

    Hao, Jian; Pan, Tsorng-Whay; Rosenstrauch, Doreen

    Chondrocytes are typically studied in the environment where they normally reside such as the joints in hips, intervertebral disks or the ear. For example, in [SKE+99], the effect of seeding duration on the strength of chondrocyte adhesion to articulate cartilage has been studied in shear flow chamber since such adhesion may play an important role in the repair of articular defects by maintaining cells in positions where their biosynthetic products can contribute to the repair process. However, in this investigation, we focus mainly on the use of auricular chondrocytes in cardiovascular implants. They are abundant, easily and efficiently harvested by a minimally invasive technique. Auricular chondrocytes have ability to produce collagen type-II and other important extracellular matrix constituents; this allows them to adhere strongly to the artificial surfaces. They can be genetically engineered to act like endothelial cells so that the biocompatibility of cardiovascular prothesis can be improved. Actually in [SBBR+02], genetically engineered auricular chondrocytes can be used to line blood-contacting luminal surfaces of left ventricular assist device (LVAD) and a chondrocyte-lined LVAD has been planted into the tissue-donor calf and the results in vivo have proved the feasibility of using autologous auricular chondrocytes to improve the biocompatibility of the blood-biomaterial interface in LVADs and cardiovascular prothesis. Therefore, cultured chondrocytes may offer a more efficient and less invasive means of covering artificial surface with a viable and adherent cell layer.

  15. Bonding Strength Properties of Adhesively-Timber Joint with Thixotropic and Room Temperature Cured Epoxy Based Adhesive Reinforced with Nano- and Micro-particles

    NASA Astrophysics Data System (ADS)

    Ahmad, Z.; Ansell, M. P.; Smedley, D.

    2011-02-01

    This research work is concerned with in situ bonded-in timber connection using pultruded rod; where the manufacturing of such joint requires adhesive which can produce thick glue-lines and does not allow any use of pressure and heat. Four types of thixotropic (for ease application) and room temperature cured epoxy based were used namely CB10TSS (regarded as standards adhesive), Nanopox (modification of CB10TSS with addition of nanosilica), Albipox (modification of CB10TSS with addition of liquid rubber) and Timberset (an epoxy-based adhesive with addition of micro-size ceramic particles). The quality of the adhesive bonds was accessed using block shear test in accordance with ASTM D905. The bond strength depends on how good the adhesive wet the timber surface. Therefore the viscosity and contact angle was also measured. The nano- and microfiller additions increased the bond strength significantly. The viscosity correlates well with contact angle measurements where lower viscosities are associated with lower contact angles. However contact angle contradicts with measured strength and wettability.

  16. [Bonding agent influence on shear bond strength of titanium/polyglass interface].

    PubMed

    Oyafuso, Denise Kanashiro; Bottino, Marco Antonio; Itinoche, Marcos Koiti; Nasraui, Anna Paula; Costa, Elza Maria Valadares da

    2003-09-01

    There is little information regarding bond strengths of polyglass to metal alloys. This study evaluated the influence of bonding system on shear bond strength of a composite resin (Artglass/Heraeus Kulzer) to cast titanium (Ti). Twenty metallic structures (4mm in diameter, 5mm thick) of titanium grade I were cast shaped and abraded with 250mm aluminum oxide and separated into two groups. For each group was applied one bonding system (Siloc or Retention Flow) before opaque and dentin polymer superposition. This procedure was managed using teflon matrices. They were manipulated and polymerized according to the manufacturer's recommendations. The samples were stored in distilled water for 24 hours at 37º and thermocycled (5º and 55ºC/500 cycles). Shear bond strength tests were performed by using an Instron Universal testing machine at a crosshead speed of 5mm/min. Results were analyzed statistically with one-way ANOVA (a=0,5) and they indicated that the Retention Flow system was statistically better than Siloc (20.74 MPa and 11.65 MPa , respectively). It was possible to conclude that the bonding agent influenced the adhesion between polymer and cast titanium.

  17. Shear bond strength of indirect composite material to monolithic zirconia

    PubMed Central

    2016-01-01

    PURPOSE This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). MATERIALS AND METHODS Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (α=.05). RESULTS Bond strength was significantly lower in untreated specimens than in sandblasted specimens (P<.05). No difference between the glaze layer and hydrofluoric acid application treated groups were observed. However, bond strength for these groups were significantly higher as compared with the other two groups (P<.05). CONCLUSION Combined use of glaze layer & hydrofluoric acid application and silanization are reliable for strong and durable bonding between indirect composite material and monolithic zirconia. PMID:27555895

  18. Lap Shear and Impact Testing of Ochre and Beeswax in Experimental Middle Stone Age Compound Adhesives.

    PubMed

    Kozowyk, P R B; Langejans, G H J; Poulis, J A

    2016-01-01

    The production of compound adhesives using disparate ingredients is seen as some of the best evidence of advanced cognition outside of the use of symbolism. Previous field and laboratory testing of adhesives has shown the complexities involved in creating an effective Middle Stone Age glue using Acacia gum. However, it is currently unclear how efficient different adhesive recipes are, how much specific ingredients influence their performance, and how difficult it may have been for those ingredients to be combined to maximum effect. We conducted a series of laboratory-based lap shear and impact tests, following modern adhesion testing standards, to determine the efficacy of compound adhesives, with particular regard to the ingredient ratios. We tested rosin (colophony) and gum adhesives, containing additives of beeswax and ochre in varying ratios. During both lap shear and impact tests compound rosin adhesives performed better than single component rosin adhesives, and pure acacia gum was the strongest. The large difference in performance between each base adhesive and the significant changes in performance that occur due to relatively small changes in ingredient ratios lend further support to the notion that high levels of skill and knowledge were required to consistently produce the most effective adhesives.

  19. Lap Shear and Impact Testing of Ochre and Beeswax in Experimental Middle Stone Age Compound Adhesives

    PubMed Central

    2016-01-01

    The production of compound adhesives using disparate ingredients is seen as some of the best evidence of advanced cognition outside of the use of symbolism. Previous field and laboratory testing of adhesives has shown the complexities involved in creating an effective Middle Stone Age glue using Acacia gum. However, it is currently unclear how efficient different adhesive recipes are, how much specific ingredients influence their performance, and how difficult it may have been for those ingredients to be combined to maximum effect. We conducted a series of laboratory-based lap shear and impact tests, following modern adhesion testing standards, to determine the efficacy of compound adhesives, with particular regard to the ingredient ratios. We tested rosin (colophony) and gum adhesives, containing additives of beeswax and ochre in varying ratios. During both lap shear and impact tests compound rosin adhesives performed better than single component rosin adhesives, and pure acacia gum was the strongest. The large difference in performance between each base adhesive and the significant changes in performance that occur due to relatively small changes in ingredient ratios lend further support to the notion that high levels of skill and knowledge were required to consistently produce the most effective adhesives. PMID:26983080

  20. Effect of different surface treatments on the shear bond strength of nanofilled composite repairs.

    PubMed

    Ahmadizenouz, Ghazaleh; Esmaeili, Behnaz; Taghvaei, Arnica; Jamali, Zahra; Jafari, Toloo; Amiri Daneshvar, Farshid; Khafri, Soraya

    2016-01-01

    Background. Repairing aged composite resin is a challenging process. Many surface treatment options have been proposed to this end. This study evaluated the effect of different surface treatments on the shear bond strength (SBS) of nano-filled composite resin repairs. Methods. Seventy-five cylindrical specimens of a Filtek Z350XT composite resin were fabricated and stored in 37°C distilled water for 24 hours. After thermocycling, the specimens were divided into 5 groups according to the following surface treatments: no treatment (group 1); air abrasion with 50-μm aluminum oxide particles (group 2); irradiation with Er:YAG laser beams (group 3); roughening with coarse-grit diamond bur + 35% phosphoric acid (group 4); and etching with 9% hydrofluoric acid for 120 s (group 5). Another group of Filtek Z350XT composite resin samples (4×6 mm) was fabricated for the measurement of cohesive strength (group 6). A silane coupling agent and an adhesive system were applied after each surface treatment. The specimens were restored with the same composite resin and thermocycled again. A shearing force was applied to the interface in a universal testing machine. Data were analyzed using one-way ANOVA and post hoc Tukey tests (P < 0.05). Results. One-way ANOVA indicated significant differences between the groups (P < 0.05). SBS of controls was significantly lower than the other groups; differences between groups 2, 3, 4, 5 and 6 were not significant. Surface treatment with diamond bur + 35% phosphoric acid resulted in the highest bond strength. Conclusion. All the surface treatments used in this study improved the shear bond strength of nanofilled composite resin used.

  1. Effect of different surface treatments on the shear bond strength of nanofilled composite repairs

    PubMed Central

    Ahmadizenouz, Ghazaleh; Esmaeili, Behnaz; Taghvaei, Arnica; Jamali, Zahra; Jafari, Toloo; Amiri Daneshvar, Farshid; Khafri, Soraya

    2016-01-01

    Background. Repairing aged composite resin is a challenging process. Many surface treatment options have been proposed to this end. This study evaluated the effect of different surface treatments on the shear bond strength (SBS) of nano-filled composite resin repairs. Methods. Seventy-five cylindrical specimens of a Filtek Z350XT composite resin were fabricated and stored in 37°C distilled water for 24 hours. After thermocycling, the specimens were divided into 5 groups according to the following surface treatments: no treatment (group 1); air abrasion with 50-μm aluminum oxide particles (group 2); irradiation with Er:YAG laser beams (group 3); roughening with coarse-grit diamond bur + 35% phosphoric acid (group 4); and etching with 9% hydrofluoric acid for 120 s (group 5). Another group of Filtek Z350XT composite resin samples (4×6 mm) was fabricated for the measurement of cohesive strength (group 6). A silane coupling agent and an adhesive system were applied after each surface treatment. The specimens were restored with the same composite resin and thermocycled again. A shearing force was applied to the interface in a universal testing machine. Data were analyzed using one-way ANOVA and post hoc Tukey tests (P < 0.05). Results. One-way ANOVA indicated significant differences between the groups (P < 0.05). SBS of controls was significantly lower than the other groups; differences between groups 2, 3, 4, 5 and 6 were not significant. Surface treatment with diamond bur + 35% phosphoric acid resulted in the highest bond strength. Conclusion. All the surface treatments used in this study improved the shear bond strength of nanofilled composite resin used. PMID:27092209

  2. Gecko toe and lamellar shear adhesion on macroscopic, engineered rough surfaces.

    PubMed

    Gillies, Andrew G; Henry, Amy; Lin, Hauwen; Ren, Angela; Shiuan, Kevin; Fearing, Ronald S; Full, Robert J

    2014-01-15

    The role in adhesion of the toes and lamellae - intermediate-sized structures - found on the gecko foot remains unclear. Insight into the function of these structures can lead to a more general understanding of the hierarchical nature of the gecko adhesive system, but in particular how environmental topology may relate to gecko foot morphology. We sought to discern the mechanics of the toes and lamellae by examining gecko adhesion on controlled, macroscopically rough surfaces. We used live Tokay geckos, Gekko gecko, to observe the maximum shear force a gecko foot can attain on an engineered substrate constructed with sinusoidal patterns of varying amplitudes and wavelengths in sizes similar to the dimensions of the toes and lamellae structures (0.5 to 6 mm). We found shear adhesion was significantly decreased on surfaces that had amplitudes and wavelengths approaching the lamella length and inter-lamella spacing, losing 95% of shear adhesion over the range tested. We discovered that the toes are capable of adhering to surfaces with amplitudes much larger than their dimensions even without engaging claws, maintaining 60% of shear adhesion on surfaces with amplitudes of 3 mm. Gecko adhesion can be predicted by the ratio of the lamella dimensions to surface feature dimensions. In addition to setae, remarkable macroscopic-scale features of gecko toes and lamellae that include compliance and passive conformation are necessary to maintain contact, and consequently, generate shear adhesion on macroscopically rough surfaces. Findings on the larger scale structures in the hierarchy of gecko foot function could provide the biological inspiration to drive the design of more effective and versatile synthetic fibrillar adhesives.

  3. Bond strengths of three chemical adhesive cements adhered to a nickel-chromium alloy for direct bonded retainers.

    PubMed

    Atta, M O; Smith, B G; Brown, D

    1990-02-01

    Sandblasted surfaces of a beryllium-free, nickel-chromium alloy were bonded with one of three chemical adhesives. After either immersion in water for up to 6 months or thermal cycling between 5 degrees and 60 degrees C for 500 cycles, the bonded specimens were tested for both shear and tensile strength. The highest values of tensile and shear bond strengths were found with Panavia Ex material, and these values showed no significant changes after thermal cycling. For ABC cement and for Super-Bond C & B material, the strength of the bond was significantly improved with thermal cycling. However, immersion in water for 6 months caused a significant decrease in the strength of the bond of specimens adhered with ABC cement.

  4. Shear bond strength of computer-aided design and computer-aided manufacturing feldspathic and nano resin ceramics blocks cemented with three different generations of resin cement

    PubMed Central

    Ab-Ghani, Zuryati; Jaafar, Wahyuni; Foo, Siew Fon; Ariffin, Zaihan; Mohamad, Dasmawati

    2015-01-01

    Aim: To evaluate the shear bond strength between the dentin substrate and computer-aided design and computer-aided manufacturing feldspathic ceramic and nano resin ceramics blocks cemented with resin cement. Materials and Methods: Sixty cuboidal blocks (5 mm × 5 mm × 5 mm) were fabricated in equal numbers from feldspathic ceramic CEREC® Blocs PC and nano resin ceramic Lava™ Ultimate, and randomly divided into six groups (n = 10). Each block was cemented to the dentin of 60 extracted human premolar using Variolink® II/Syntac Classic (multi-steps etch-and-rinse adhesive bonding), NX3 Nexus® (two-steps etch-and-rinse adhesive bonding) and RelyX™ U200 self-adhesive cement. All specimens were thermocycled, and shear bond strength testing was done using the universal testing machine at a crosshead speed of 1.0 mm/min. Data were analyzed using one-way ANOVA. Results: Combination of CEREC® Blocs PC and Variolink® II showed the highest mean shear bond strength (8.71 Mpa), while the lowest of 2.06 Mpa were observed in Lava™ Ultimate and RelyX™ U200. There was no significant difference in the mean shear bond strength between different blocks. Conclusion: Variolink® II cement using multi-steps etch-and-rinse adhesive bonding provided a higher shear bond strength than the self-adhesive cement RelyX U200. The shear bond strength was not affected by the type of blocks used. PMID:26430296

  5. Influence of additional adhesive application on the microtensile bond strength of adhesive systems.

    PubMed

    de Silva, André Luís Faria; Lima, Débora Alves Nunes Leite; de Souza, Grace Mendonça Dias; dos Santos, Carlos Tadeu Dias; Paulillo, Luís Alexandre Maffei Sartini

    2006-01-01

    This study evaluated microtensile bond strength (pTBS) when an additional adhesive layer was applied to the dentin surface. Thirty-five human third molars were flattened to expose the occlusal dentin surface. The teeth were randomly assigned to 7 experimental groups: G1-Single Bond (SB); G2-additional layer of SB; G3--a layer of Scotchbond Multi-purpose (SMP) adhesive applied over SB; G4-Clearfil SE Bond (CE); G5-additional layer of CE; G6-Adper Prompt (AP) and G7-additional layer of AP. For the G2, G3, G5 and G7 groups, the first adhesive layer was light-cured before application of the additional layer. After bonding procedures, 5-mm high composite crowns were incrementally built up. The samples were sectioned to obtain 0.9 x 0.9 beams, which were tested under tension at a crosshead speed of 0.5-mm/minute until failure. The failure mode and adhesive thickness were evaluated under SEM. The pTBS data were analyzed by 1-way ANOVA and post-hoc Ducan's Test (a=0.05). Mean adhesive thickness was analyzed by 1-way ANOVA and post-hoc Tukey's test (a=0.05). The results indicated that G3 presented the highest microTBS and the thickest adhesive layer. G6 and G7 presented the lowest microTBS values. When solvent-free adhesives systems were used, microTBS values were not affected by the thicker layer.

  6. Shear wave velocity measurements of thin epoxy adhesive samples using broadband EMATs

    NASA Astrophysics Data System (ADS)

    Dixon, S.; Edwards, C.; Palmer, S. B.

    2002-05-01

    This paper describes an ultrasonic analysis of thin epoxy resin samples using normal incidence radially polarized shear wave ElectroMagnetic Acoustic Transducers (EMATs). The adhesive thickness in the first set of experiments was approximately 0.5 mm. The adhesive used in the first set of experiments was obtained from a 2 component cartridge and it was found that adhesive extruded from such cartridges can be inhomogeneous within the same cartridge. The second experiment described here demonstrated how material property changes of a thin adhesive layer (70 μm) could be ultrasonically measured during cure via spectral analysis.

  7. Cell-matrix adhesion characterization using multiple shear stress zones in single stepwise microchannel

    NASA Astrophysics Data System (ADS)

    Kim, Min-Ji; Doh, Il; Bae, Gab-Yong; Cha, Hyuk-Jin; Cho, Young-Ho

    2014-08-01

    This paper presents a cell chip capable to characterize cell-matrix adhesion by monitoring cell detachment rate. The proposed cell chip can supply multiple levels of shear stress in single stepwise microchannel. As epithelial-mesenchymal transition (EMT), one of hallmarks of cancer metastasis is closely associated to the interaction with extracelluar matrix (ECM), we took advantage of two lung cancer cell models with different adhesion properties to ECM depending their epithelial or mesenchymal properties, including the pair of lung cancer cells with (A549sh) or without E-cadherin expression (A549sh-Ecad), which would be optimal model to examine the alteration of adhesion properties after EMT induction. The cell-matrix adhesion resisting to shear stress appeared to be remarkably differed between lung cancer cells. The detachment rate of epithelial-like H358 and mesenchymal-like H460 cells was 53%-80% and 25%-66% in the shear stress range of 34-60 dyn/cm2, respectively. A549sh-Ecad cells exhibits lower detachment rate (5%-9%) compared to A549sh cells (14%-40%). By direct comparison of adhesion between A549sh and A549sh-Ecad, we demonstrated that A549shE-cad to mimic EMT were more favorable to the ECM attachment under the various levels of shear stress. The present method can be applied to quantitative analysis of tumor cell-ECM adhesion.

  8. Comparative evaluation of shear bond strength and nanoleakage of conventional and self-adhering flowable composites to primary teeth dentin

    PubMed Central

    Sachdeva, Priyanka; Goswami, Mousumi; Singh, Darrel

    2016-01-01

    Background: The latest advancement in adhesive dentistry is the development of self adhering flowable composite resin which incorporates the self-etch adhesion technology to eliminate the steps of etching, rinsing, priming and bonding. Few studies have addressed resin bonding to primary teeth. Aim: The aim of this study was to compare the shear bond strength and nanoleakage of conventional and self adhering flowable composites to primary teeth dentin. Settings and Design: This study was conducted in the Department of Pedodontics and Preventive Dentistry, I.T.S Dental College, Hospital and Research Centre, Greater Noida; in association with the Department of Mechanical Engineering, I.T.S Engineering College, Greater Noida; and the Advanced Instrumentation Research Facility (AIRF), Jawaharlal Nehru University, New Delhi. Materials and Methods: Sixty of the ninety primary teeth were evaluated for shear bond strength and thirty for nanoleakage. The samples were divided into three groups; Group I – Dyad Flow (Kerr), Group II – Fusio Liquid Dentin (Pentron Clinical Technologies) and Group III – G-aenial Universal Flo (GC). Shear bond strength was determined using a universal testing machine. Nanoleakage pattern was observed under scanning electron microscope. Results: The shear bond strength of conventional flowable composite was significantly greater than self adhering flowable composite (p<0.05). Nanoleakage scores of both conventional and self adhering flowable composites were comparable. Conclusions: Self adhering flowable composites combine properties of composites and self etch adhesives, eliminating the need for separate bond application that simplifies direct restorative procedure. The evolution of self adhering materials could open new horizons for pediatric dentistry. PMID:27630496

  9. Effect of various intraoral repair systems on the shear bond strength of composite resin to zirconia

    PubMed Central

    Han, In-Hae; Kang, Dong-Wan; Chung, Chae-Heon; Choe, Han-Cheol

    2013-01-01

    PURPOSE This study compared the effect of three intraoral repair systems on the bond strength between composite resin and zirconia core. MATERIALS AND METHODS Thirty zirconia specimens were divided into three groups according to the repair method: Group I- CoJet™ Repair System (3M ESPE) [chairside silica coating with 30 µm SiO2 + silanization + adhesive]; Group II- Ceramic Repair System (Ivoclar Vivadent) [etching with 37% phosphoric acid + Zirconia primer + adhesive]; Group III- Signum Zirconia Bond (Heraus) [Signum Zirconia Bond I + Signum Zirconia Bond II]. Composite resin was polymerized on each conditioned specimen. The shear bond strength was tested using a universal testing machine, and fracture sites were examined with FE-SEM. Surface morphology and wettability after surface treatments were examined additionally. The data of bond strengths were statistically analyzed with one-way ANOVA and Tamhane post hoc test (α=.05). RESULTS Increased surface roughness and the highest wettability value were observed in the CoJet sand treated specimens. The specimens treated with 37% phosphoric acid and Signum Zirconia Bond I did not show any improvement of surface irregularity, and the lowest wettability value were found in 37% phosphoric acid treated specimens. There was no significant difference in the bond strengths between Group I (7.80 ± 0.76 MPa) and III (8.98 ± 1.39 MPa). Group II (3.21 ± 0.78 MPa) showed a significant difference from other groups (P<.05). CONCLUSION The use of Intraoral silica coating system and the application of Signum Zirconia Bond are effective for increasing the bond strength of composite resin to zirconia. PMID:24049565

  10. Cell adhesion on zein films under shear stress field.

    PubMed

    Han, Yi-Long; Xu, Qin; Lu, Zhiqian; Wang, Jin-Ye

    2013-11-01

    Vascular implants after implantation need to improve the ability of cells to withstand flow-shear stress. As such, we want to test whether zein films could improve the flow-shear stress resistance of cells by control of their surface morphology. We chose Collagen, poly L-lactic acid (PLLA) and three types of zein as the coating films and evaluated the flow-shear stress resistance of NIH3T3, and EA.hy926 on these respective films. The results showed that the retention of two cell lines on Collagen film was better than PLLA and zein films. The cell retention of EA.hy926 on Zein 3 film with higher roughness was better than Zein 1 film with a flat surface in the first 2h. The cell retention of NIH3T3 on a rougher surface was always better than the smoother one under flow-shear stress condition for 6h. Observation of cell morphologies showed that the aspect ratio changed significantly for NIH3T3 cells upon flow-shear stress condition, as shown by reduced numbers of pseudopodia, increased cell rounding and shrinkage. Zein 3 film with higher roughness improved the flow-shear stress resistance of cells and might be used in vascular implant coatings.

  11. Effect of three adhesive primers on the bond strengths of four light-activated opaque resins to noble alloy.

    PubMed

    Yoshida, K; Kamada, K; Taira, Y; Atsuta, M

    2001-02-01

    The effect of commercial adhesive primers for noble metals on the bond strength of light-activated opaque resin has not been determined. This study evaluated the effect of three adhesive primers on the shear bond strengths of each of the four light-activated opaque resins to silver--palladium--copper--gold (Ag--Pd--Cu--Au) alloy. The adhesive primers Alloy Primer (AP), Metal Primer II (MPII) and Metaltite(MT) were used. Four commercial light-activated opaque resins (Axis (AX), Cesead II (CEII), Dentacolor(DE) and Solidex (SO) were used to bond a light-activated resin-veneered composite to Ag--Pd--Cu--Au alloy. The specimens were stored in water at 37 degrees C for 24 h and then immersed alternatively in water baths at 4 and 60 degrees C for 1 min each for up to 20,000 thermal cycles before shear mode testing at a cross-head speed of 0.5 mm min(-1). All the primers examined improved the shear bond strength between opaque resin and Ag--Pd--Cu--Au alloy compared with non-primed specimens prior to thermal cycling. After 20,000 thermal cycles, the bond strengths of combined use of AP and DE and that of MT and each of AX, CE or DE were significantly greater than any other groups. Significant difference was observed between the bond strengths at thermal cycles 0 and 20,000, with the combined use of MT and DE. With the combination of appropriate adhesive metal primers and light-activated opaque resins, complicated surface preparations of metal frameworks of resin-veneered prostheses that are composed of casting Ag-Pd-Cu-Au alloy may be negligible.

  12. Theoretical adhesion strength of diamond coating with metallic interlayers.

    NASA Astrophysics Data System (ADS)

    Guo, Haibo; Qi, Yue; Li, Xiaodong

    2009-03-01

    Metallic interlayers are often needed to enhance the adhesion of diamond coatings to substrates and to promote diamond nucleation and growth. The interfaces between diamond coatings and metallic interlayer materials with different carbide formation enthalpies, Cu, Al, and Ti, are studied using density functional theory. The ideal interface strength or the work of separation is found to decrease with the carbide formation enthalpy. Analysis to the electronic structure shows that covalent metal-carbon bonds form at the interface, and the perturbation from the interface weakens nearby metal phase. Comparing the work of separation at the interface with the fracture energy of the metal, a fracture is likely to initiate in the metal phase near the interface, therefore a tough metal with a large surface energy is needed to achieve a higher overall toughness. In addition, when the surface energy is larger than the interface energy, a wetted diamond/metal interface is formed during diamond nucleation, which also contributes to good adhesion. The interface energy, which is an energy barrier to diamond nucleation, is found to decrease with the carbide formation enthalpy. These results indicate strong carbide formability and a large surface energy of the interlayer enhance the adhesion and the fracture resistance of the interface, and also conduce to the diamond nucleation on the interlayer.

  13. Effect of bracket base design on shear bond strength to feldspathic porcelain

    PubMed Central

    Dalaie, Kazem; Mirfasihi, Armin; Eskandarion, Solmaz; Kabiri, Sattar

    2016-01-01

    Objectives: This study sought to assess the effect of bracket base design on the shear bond strength (SBS) of the bracket to feldspathic porcelain. Materials and Methods: This in vitro, experimental study was conducted on 40 porcelain-fused-to-metal restorations and four different bracket base designs were bonded to these specimens. The porcelain surfaces were etched, silanized, and bonded to brackets. Specimens were thermocycler, incubated for 24 h and were subjected to SBS. Data were analyzed using Shapiro–Wilk test, Levene's test, one-way ANOVA, and Tukey's honest significant difference test. Adhesive remnant index was calculated and compared using Fisher's exact test. Results: One-way ANOVA showed that the SBS values were significantly different among the four groups (P < 0.001). Groups 1, 2, and 4 were not significantly different, but group 3 had significantly lower SBS (P < 0.001). Fractures mostly occurred at the porcelain-adhesive interface in Groups 1 and 2 while in Groups 3 and 4, bracket-adhesive and mixed failures were more common. Conclusion: The bracket base design significantly affects the SBS to feldspathic porcelain. PMID:27403052

  14. Comparison of Shear Bond Strength of RMGI and Composite Resin for Orthodontic Bracket Bonding

    PubMed Central

    Yassaei, Soghra; Davari, Abdolrahim; Goldani Moghadam, Mahjobeh; Kamaei, Ahmad

    2014-01-01

    Objective: The aim of this study was to compare the shear bond strength (SBS) of resin modified glass ionomer (RMGI) and composite resin for bonding metal and ceramic brackets. Materials and Methods: Eighty-eight human premolars extracted for orthodontic purposes were divided into 4 groups (n=22). In groups 1 and 2, 22 metal and ceramic brackets were bonded using composite resin (Transbond XT), respectively. Twenty-two metal and ceramic brackets in groups 3 and 4, respectively were bonded using RMGI (Fuji Ortho LC, Japan). After photo polymerization, the teeth were stored in water and thermocycled (500 cycles between 5° and 55°). The SBS value of each sample was determined using a Universal Testing Machine. The amount of residual adhesive remaining on each tooth was evaluated under a stereomicroscope. Statistical analyses were done using two-way ANOVA. Results: RMGI bonded brackets had significantly lower SBS value compared to composite resin bonded groups. No statistically significant difference was observed between metal and ceramic brackets bonded with either the RMGI or composite resin. The comparison of the adhesive remnant index (ARI) scores between the groups indicated that the bracket failure mode was significantly different among groups (P<0.001) with more adhesive remaining on the teeth bonded with composite resin. Conclusion: RMGIs have significantly lower SBS compared to composite resin for orthodontic bonding purposes; however the provided SBS is still within the clinically acceptable range. PMID:25628663

  15. Effect of Er:YAG Laser on Shear Bond Strength of Composite to Enamel and Dentin of Primary Teeth

    PubMed Central

    Bahrololoomi, Zahra; Kabudan, Mona; Gholami, Leila

    2015-01-01

    Objectives: Bond strength of composite resin to enamel and dentin of primary teeth is lower than that to permanent teeth; therefore, it may compromise the adhesive bonding. New methods, such as laser application have been recently introduced for tooth preparation. The purpose of this study was to evaluate the effect of tooth preparation with bur and Er:YAG laser on shear bond strength of composite to enamel and dentin of primary teeth. Materials and Methods: Seventy-five primary molar teeth were collected and 150 specimens were obtained by mesiodistal sectioning of each tooth. In each of the enamel and dentin groups, the teeth were randomly assigned to 3 subgroups with the following preparations: bur preparation + etching (37% H3PO4), laser preparation + etching, and laser preparation without etching. Single Bond adhesive and Z250 composite were applied to all samples. After thermocycling, the shear bond strength testing was preformed using the Instron Testing Machine. Data were analysed using SPSS-17 and two-way ANOVA. Results: The bond strength of enamel specimens was significantly higher than that of dentin specimens, except for the laser-non-etched groups. The enamel and dentin laser-non-etched groups had no significant difference in bond strength. In both enamel and dentin groups, bur preparation + etching yielded the highest bond strength, followed by laser preparation + etching, and the laser preparation without etching yielded the lowest bond strength (P < 0.001). Conclusion: In both enamel and dentin groups, laser preparation caused lower shear bond strength compared to bur preparation. PMID:26622267

  16. Innovative use of adhesive interface characteristics to nondestructively quantify the strength of bonded joints.

    SciTech Connect

    Roach, Dennis Patrick; Duvall, Randy L.; Rackow, Kirk A.

    2010-05-01

    Advances in structural adhesives have permitted engineers to contemplate the use of bonded joints in areas that have long been dominated by mechanical fasteners and welds. Although strength, modulus, and toughness have been improved in modern adhesives, the typical concerns with using these polymers still exist. These include concerns over long-term durability and an inability to quantify bond strength (i.e., identify weak bonds) in adhesive joints. Bond deterioration in aging structures and bond strength in original construction are now critical issues that require more than simple flaw detection. Whether the structure involves metallic or composite materials, it is necessary to extend inspections beyond the detection of disbond flaws to include an assessment of the strength of the bond. Use of advanced nondestructive inspection (NDI) methods to measure the mechanical properties of a bonded joint and associated correlations with post-inspection failure tests have provided some clues regarding the key parameters involved in assessing bond strength. Recent advances in ultrasonic- and thermographic-based inspection methods have shown promise for measuring such properties. Specialized noise reduction and signal enhancement schemes have allowed thermographic interrogations to image the subtle differences between bond lines of various strengths. Similarly, specialized ultrasonic (UT) inspection techniques, including laser UT, guided waves, UT spectroscopy, and resonance methods, can be coupled with unique signal analysis algorithms to accurately characterize the properties of weak interfacial bonds. The generation of sufficient energy input levels to derive bond strength variations, the production of sufficient technique sensitivity to measure such minor response variations, and the difficulty in manufacturing repeatable weak bond specimens are all issues that exacerbate these investigations. The key to evaluating the bond strength lies in the ability to exploit the

  17. Shear bond strength of dentin and deproteinized enamel of AI mouse incisors

    PubMed Central

    Pugach, M.K.; Ozer, F.; Mulmadgi, R.; Li, Y.; Suggs, C.; Wright, J.T.; Bartlett, J.D.; Gibson, C.W.; Lindemeyer, R.G.

    2014-01-01

    Purpose To investigate the adhesion through shear bond strength (SBS) testing of a resin composite bonded with a self-etching bonding system (SEB) to amelogenesis imperfecta (AI)-affected deproteinized mouse enamel or dentin; and to compare wild-type (WT), amelogenin null (AmelxKO) and matrix metalloproteinase-20 null (Mmp20KO) enamel and dentin phenotypes using microCT and nanoindentation. Methods Enamel incisor surfaces of WT, AmelxKO and Mmp20KO mice were treated with SEB with and without NaOCl and tested for SBS. Incisor dentin was also treated with SEB and tested for SBS. These surfaces were further examined by SEM. MicroCT and nanoindentation analyses were performed on mouse dentin and enamel. Data were analyzed for significance by ANOVA. Results Deproteinization did not improve SBS of SEB to these AI-affected enamel surfaces. SBS of AmelxKO teeth was similar in dentin and enamel; however, it was higher in Mmp20KO dentin. The nanohardness of knockout enamel was significantly lower than WT, while knockout dentin nanohardness was not different from WT. Conclusions Using animal AI models, it was demonstrated that enamel NaOCl deproteinization of hypoplastic and hypoplastic-hypomaturation enamel did not increase shear bond strength while removal of the defective enamel allowed optimal dentin bonding. PMID:25303500

  18. A strategy for enhancing shear strength and bending strength of FRP laminate using MWCNTs

    NASA Astrophysics Data System (ADS)

    Rawat, Prashant; Singh, K. K.

    2016-09-01

    Multi-wall carbon nanotubes (MWCNTs) promises to enhance mechanical properties exceptionally when it is doped with fiber reinforced polymer (FRP) composite. Glass fiber symmetrical laminate with eight layers of 4.0 mm thickness was fabricated by hand lay-up technique assisted by vacuum bagging method. Ply orientations for symmetrical laminate used [(0,90)/(+45,-45)/(+45,-45)/(0,90)//(90,0)/(+45,-45)/(+45,-45)/(90,0)]. MWCNTs reinforced three different samples (0 wt.%, 0.5 wt.% and 0.75 wt.% by weight) were tested on universal testing machine (UTM). Short beam strength test and inter laminar shear strength (ILSS) calculation have been done according to ASTM D2344 and ASTM D7264. UTM having maximum load capacity of 50 KN with loading rate of 0.1 mm/min to 50 mm/min was used for mechanical testing. Testing results justified that by adding 0.50 wt.% MWCNTs in symmetrical GFRP laminate can enhance inter laminar shear strength by 13.66% and bending strength by 44.22%.

  19. The Influence of Soil Suction on the Shear Strength of Unsaturated Soil

    DTIC Science & Technology

    1990-09-01

    the shear strength parameters c’ and 0’ for montmorillonitic and kaolinitic clays increased following the addition of divalent calcium hydroxide to...503-513. Sridharan, A., Rao, S.N., and Rao, G.V. (1971), "Shear Strength Char- acteristics of Saturated Montmorillonite and Kaolinite Clays," Soils...Summary of Shear Strengths of Unsaturated Specimens of Compacted Kaolinite and Compacted Red Earth (After Murthy, Sridharan and Nagaraj, 1987

  20. The effects of two soft drinks on bond strength, bracket microleakage, and adhesive remnant on intact and sealed enamel.

    PubMed

    Navarro, Raúl; Vicente, Ascensión; Ortiz, Antonio J; Bravo, Luis A

    2011-02-01

    The purpose of this study was to evaluate the effects of Coca-Cola and Schweppes Limón on bond strength, adhesive remnant, and microleakage beneath brackets. One hundred and twenty upper central incisor brackets were bonded to bovine incisors and divided into three groups: (1) Control, (2) Coca-Cola, and (3) Schweppes Limón. The teeth were submerged in the drinks three times a day for 15 minutes over a 15 day period. Shear bond strength (SBS) was measured with a universal testing machine, and adhesive remnant evaluated using image analysis equipment. Microleakage at the enamel-adhesive and adhesive-bracket interfaces was determined using methylene blue. One hundred and eight teeth were used for scanning electron microscopy to determine the effect of the drinks on intact and sealed enamel. SBS and adhesive remnant data were analysed using the Kruskal-Wallis test (P < 0.05) and microleakage using the Kruskal-Wallis and Mann-Whitney tests applying Bonferroni correction (P < 0.017). No significant differences were found in SBS and adhesive remnant between the groups (P > 0.05). Microleakage at the enamel-adhesive interface for groups 2 and 3 was significantly greater than for group 1 (P < 0.017). At the adhesive-bracket interface, microleakage was significantly greater in group 2 than in group 1 (P < 0.017) while microleakage in group 3 did not differ significantly from either group 1 or 2 (P < 0.017). The drinks produced enamel erosion, loss of adhesive and microleakage. Coca-Cola and Schweppes Limón did not affect the SBS of brackets or the adhesive remnant.

  1. Shear strength of resin developed by four bonding agents used with cast metal restorations.

    PubMed

    Reilly, B; Davis, E L; Joynt, R B; Quevedo, J

    1992-07-01

    The evolution of the acid etch technique has made possible a more conservative approach to the fabrication of cast metal restorations. The resin bonding technique, however, places a greater burden for success on the selection of a bonding agent. This study examined the shear bond strength durability of cast metal restorations bonded to tooth structure with one of four metal adhesive bonding agents. Results indicated stronger bonds for restorations cemented with Panavia EX bonding agent than with any of the other bonding agents tested, both with and without exposure to thermal stress. Although it was one of the easier materials with which to work, Panavia EX bonding agent requires the additional step of applying an agent to prevent oxygen contact in the setting process.

  2. The effect of tooth bleaching on the shear bond strength of orthodontic brackets using self-etching primer systems

    PubMed Central

    Akin, Mehmet; Aksakalli, Sertac; Basciftci, Faruk Ayhan; Demir, Abdullah

    2013-01-01

    Objective: The purpose of this study was to determine the effect of 10% carbamide peroxide and 38% hydrogen peroxide bleaching agents on the shear bond strength of orthodontic brackets using self-etching primer systems. Methods: Forty five freshly extracted human premolar teeth were randomly divided into 3 groups of 15 teeth each: control (group 1), 10% carbamide peroxide at-home bleached (group 2), and 38% hydrogen peroxide in-office bleached (group 3). Three weeks later, all brackets were bonded using a self-etching primer system. The shear bond strength of these brackets was measured and recorded in MPa. Adhesive remnant index (ARI) scores were determined after the brackets failed. Data were analyzed using Kruskal- Wallis test, pairwise comparisons were made using the Mann-Whitney U test and ARI scores were analyzed using a chi-square test at a significance level of P<.05. Results: The shear bond strengths of group 1 (mean: 17.7 ± 9.7 MPa) were significantly higher (P<.05) than those of group 3 (mean: 9.9 ± 5.4 MPa). No significant differences were found between group 2 (mean: 12.3 ± 4.7) and either group 1 or group 3 (P>.05). ARI scores did not differ significantly among the 3 groups. Conclusions: The use of 10% carbamide peroxide bleaching does not significantly reduce shear bond strength values. In contrast, use of 38% hydrogen peroxide bleaching significantly reduces these values. PMID:23408777

  3. Influence of adhesive shear deformation on laminate structural behavior with application to parabolic trough solar collectors

    NASA Astrophysics Data System (ADS)

    Clauss, D. B.; Reuter, R. C., Jr.

    1983-02-01

    A simplified theory for the bending behavior of a thin flat bilamina panel was developed which includes the effects of shear deformation in the central adhesive layer. Static equilibrium equations for elastic thermomechanical cylindrical bending of a thin plate are used. A solution form is proposed which greatly facilitates application of this theory to structural panels with numerous discrete property changes in the variable direction. The influence of adhesive shear stiffness parameters upon overall laminate behavior is characterized through numerical examples typifying various thermal and mechanical loading conditions.

  4. Adding silanes to MMA: the effects on the water absorption, adhesive strength and mechanical properties of acrylic denture base resins.

    PubMed

    Kanie, T; Fujii, K; Arikawa, H; Inoue, K

    2000-12-01

    The adhesive strength of porcelain artificial teeth and polymethylmethacrylates (PMMAs), which contained silanes with various number of vinyl or ethoxy groups, and the mechanical and physical properties of the PMMAs were measured. Four types of PMMAs with silanes showed high adhesive shear strength and caused fractures in the porcelain. Water absorption of the PMMAs increased with the addition of silane, but that of one type with silane was almost the same as the PMMA only type. The flexural strengths of the PMMAs with silane, except for one type, showed no significant differences compared with that of PMMA (p < 0.05). The Tg levels of all PMMAs with silane fell less than that of PMMA. From these results, it was found that PMMA with silane from three vinyl groups and one ethoxy group showed excellent chemical bonding to porcelain and low water absorption.

  5. Dynamic adhesion of umbilical cord blood endothelial progenitor cells under laminar shear stress.

    PubMed

    Angelos, Mathew G; Brown, Melissa A; Satterwhite, Lisa L; Levering, Vrad W; Shaked, Natan T; Truskey, George A

    2010-12-01

    Late outgrowth endothelial progenitor cells (EPCs) represent a promising cell source for rapid reendothelialization of damaged vasculature after expansion ex vivo and injection into the bloodstream. We characterized the dynamic adhesion of umbilical-cord-blood-derived EPCs (CB-EPCs) to surfaces coated with fibronectin. CB-EPC solution density affected the number of adherent cells and larger cells preferentially adhered at lower cell densities. The number of adherent cells varied with shear stress, with the maximum number of adherent cells and the shear stress at maximum adhesion depending upon fluid viscosity. CB-EPCs underwent limited rolling, transiently tethering for short distances before firm arrest. Immediately before arrest, the instantaneous velocity decreased independent of shear stress. A dimensional analysis indicated that adhesion was a function of the net force on the cells, the ratio of cell diffusion to sliding speed, and molecular diffusivity. Adhesion was not limited by the settling rate and was highly specific to α(5)β(1) integrin. Total internal reflection fluorescence microscopy showed that CB-EPCs produced multiple contacts of α(5)β(1) with the surface and the contact area grew during the first 20 min of attachment. These results demonstrate that CB-EPC adhesion from blood can occur under physiological levels of shear stress.

  6. Platelet adhesion from shear blood flow is controlled by near-wall rebounding collisions with erythrocytes.

    PubMed

    Tokarev, A A; Butylin, A A; Ataullakhanov, F I

    2011-02-16

    The efficacy of platelet adhesion in shear flow is known to be substantially modulated by the physical presence of red blood cells (RBCs). The mechanisms of this regulation remain obscure due to the complicated character of platelet interactions with RBCs and vascular walls. To investigate this problem, we have created a mathematical model that takes into account shear-induced transport of platelets across the flow, platelet expulsion by the RBCs from the near-wall layer of the flow onto the wall, and reversible capture of platelets by the wall and their firm adhesion to it. This model analysis allowed us to obtain, for the first time to our knowledge, an analytical determination of the platelet adhesion rate constant as a function of the wall shear rate, hematocrit, and average sizes of platelets and RBCs. This formula provided a quantitative description of the results of previous in vitro adhesion experiments in perfusion chambers. The results of the simulations suggest that under a wide range of shear rates and hematocrit values, the rate of platelet adhesion from the blood flow is mainly limited by the frequency of their near-wall rebounding collisions with RBCs. This finding reveals the mechanism by which erythrocytes physically control platelet hemostasis.

  7. Effect of shear forces and ageing on the compliance of adhesive pads in adult cockroaches.

    PubMed

    Zhou, Yanmin; Robinson, Adam; Viney, Christine; Federle, Walter

    2015-09-01

    The flexibility of insect adhesive pads is crucial for their ability to attach on rough surfaces. Here, we used transparent substrates with micropillars to test in adult cockroaches (Nauphoeta cinerea) whether and how the stiffness of smooth adhesive pads changes when shear forces are applied, and whether the insect's age has any influence. We found that during pulls towards the body, the pad's ability to conform to the surface microstructures was improved in comparison to a contact without shear, suggesting that shear forces make the pad more compliant. The mechanism underlying this shear-dependent increase in compliance is still unclear. The effect was not explained by viscoelastic creep, changes in normal pressure, or shear-induced pad rolling, which brings new areas of cuticle into surface contact. Adhesive pads were significantly stiffer in older cockroaches. Stiffness increased most rapidly in cockroaches aged between 2.5 and 4 months. This increase is probably based on wear and repair of the delicate adhesive cuticle. Recent wear (visualised by Methylene Blue staining) was not age dependent, whereas permanent damage (visible as brown scars) accumulated with age, reducing the pads' flexibility.

  8. Influence of laser etching on enamel and dentin bond strength of Silorane System Adhesive.

    PubMed

    Ustunkol, Ildem; Yazici, A Ruya; Gorucu, Jale; Dayangac, Berrin

    2015-02-01

    The aim of this in vitro study was to evaluate the shear bond strength (SBS) of Silorane System Adhesive to enamel and dentin surfaces that had been etched with different procedures. Ninety freshly extracted human third molars were used for the study. After the teeth were embedded with buccal surfaces facing up, they were randomly divided into two groups. In group I, specimens were polished with a 600-grit silicon carbide (SiC) paper to obtain flat exposed enamel. In group II, the overlying enamel layer was removed and exposed dentin surfaces were polished with a 600-grit SiC paper. Then, the teeth in each group were randomly divided into three subgroups according to etching procedures: etched with erbium, chromium:yttrium-scandium-gallium-garnet laser (a), etched with 35% phosphoric acid (b), and non-etched (c, control). Silorane System Adhesive was used to bond silorane restorative to both enamel and dentin. After 24-h storage in distilled water at room temperature, a SBS test was performed using a universal testing machine at a crosshead speed of 1 mm/min. The data were analyzed using two-way ANOVA and Bonferroni tests (p < 0.05). The highest SBS was found after additional phosphoric acid treatment in dentin groups (p < 0.05). There were no statistically significant differences between the laser-etched and non-etched groups in enamel and dentin (p > 0.05). The SBS of self-etch adhesive to dentin was not statistically different from enamel (p > 0.05). Phosphoric acid treatment seems the most promising surface treatment for increasing the enamel and dentin bond strength of Silorane System Adhesive.

  9. Influence of zinc-oxide eugenol, formocresol, and ferric sulfate on bond strength of dentin adhesives to primary teeth.

    PubMed

    Salama, Fouad Saad

    2005-08-15

    This study evaluated in vitro the influence of a temporary filling {zinc oxide-eugenol (ZOE)} and two pulpotomy agents {formocresol (FC) and ferric sulfate (FS)} on shear bond strength (SBS) of two dentin adhesives to the dentin of primary molars. A total of 80 dentin surfaces were prepared and randomly allocated into 10 groups of 8 specimens each. Groups were subjected to different treatments, which included covering with a paste of ZOE mixed at different powder:liquid (P:L) ratios, placement on a gauze soaked in FC or FS, or they received no pretreatment and served as a control. XRV Herculite composite cylinders were bonded to dentin surfaces using Prime and Bond NT adhesive resin or Opti Bond Solo Plus adhesive resin. SBSs were determined using the lnstron testing machine running at a crosshead speed of 0.5 mm/min. The use of ZOE mixed at the lower P:L ratio of 10g:2g significantly decreased the values of SBS of the two adhesives. The use of two pulpotomy agents (FC and FS) significantly decreased the SBS of the two adhesives. The bond strength to dentin of primary teeth was influenced by the pulpotomy agents used and the ZOE P:L ratio but not by the adhesive system used.

  10. Bonding of self-adhesive resin cements to enamel using different surface treatments: bond strength and etching pattern evaluations.

    PubMed

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Shinya, Akiyoshi

    2010-08-01

    This study evaluated the shear bond strengths and etching patterns of seven self-adhesive resin cements to human enamel specimens which were subjected to one of the following surface treatments: (1) Polishing with #600 polishing paper; (2) Phosphoric acid; (3) G-Bond one-step adhesive; or (4) Phosphoric acid and G-Bond. After surface treatment, the human incisor specimens were bonded to a resin composite using a self-adhesive resin cement [Maxcem (MA), RelyX Unicem (UN), Breeze (BR), BisCem (BI), seT (SE), Clearfil SA Luting (CL)] or a conventional resin cement [ResiCem (RE)]. Representative morphology formed with self-adhesive resin cements showed areas of etched enamel intermingled with areas of featureless enamel. In conclusion, etching efficacy influenced the bonding effectiveness of self-adhesive resin cements to unground enamel, and that a combined use of phosphoric acid and G-Bond for pretreatment of human enamel surfaces improved the bond strength of self-adhesive resin cements.

  11. Strength and Performance Enhancement of Bonded Joints by Spatial Tailoring of Adhesive Compliance via 3D Printing.

    PubMed

    Kumar, S; Wardle, Brian L; Arif, Muhamad F

    2017-01-11

    Adhesive bonding continues to emerge as a preferred route for joining materials with broad applications including advanced structures, microelectronics, biomedical systems, and consumer goods. Here, we study the mechanics of deformation and failure of tensile-loaded single-lap joints with a compliance-tailored adhesive. Tailoring of the adhesive compliance redistributes stresses and strains to reduce both shear and peel concentrations at the ends of the adhesive that determine failure of the joint. Utilizing 3D printing, the modulus of the adhesive is spatially varied along the bondlength. Experimental strength testing, including optical strain mapping, reveals that the strain redistribution results in a greater than 100% increase in strength and toughness concomitant with a 50% increase in strain-to-break while maintaining joint stiffness. The tailoring demonstrated here is immediately realizable in a broad array of 3D printing applications, and the level of performance enhancement suggests that compliance tailoring of the adhesive is a generalizable route for achieving superior performance of joints in other applications, such as advanced structural composites.

  12. Western blot analysis of adhesive interactions under fluid shear conditions: the blot rolling assay.

    PubMed

    Sackstein, Robert; Fuhlbrigge, Robert

    2015-01-01

    Western blotting has proven to be an important technique in the analysis of receptor-ligand interactions (i.e., by ligand blotting) and for identifying molecules mediating cell attachment (i.e., by cell blotting). Conventional ligand blotting and cell blotting methods employ non-dynamic (static) incubation conditions, whereby molecules or cells of interest are placed in suspension and overlaid on membranes. However, many cell-cell and cell-matrix adhesive interactions occur under fluid shear conditions, and shear stress itself mediates and/or facilitates the engagement of these physiologically appropriate receptors and ligands. Notably, shear forces critically influence the adhesion of circulating cells and platelets to vessel walls in physiologic cell migration and hemostasis, as well as in inflammatory and thrombotic disorders, cancer metastasis, and atherosclerosis. Use of non-dynamic blotting conditions to analyze such interactions can introduce bias, overtly missing relevant effectors and/or exaggerating the relative role(s) of non-physiologic adhesion molecules. To address this shortfall, we have developed a new technique for identifying binding interactions under fluid shear conditions, the "blot rolling assay." Using this method, molecules in a complex mixture are resolved by gel electrophoresis, transferred to a membrane that is rendered semitransparent, and the membrane is then incorporated into a parallel-plate flow chamber apparatus. Under controlled flow conditions, cells or particles bearing adhesion proteins of interest are then introduced into the chamber and interactions with individual immobilized molecules (bands) can be visualized in real time. The substrate molecule(s) supporting adhesion under fluid shear can then be identified by staining with specific antibodies or by excising the relevant band(s) and performing mass spectrometry or microsequencing of the isolated material. This method thus allows for the identification, within a complex

  13. Western blot analysis of adhesive interactions under fluid shear conditions: the blot rolling assay.

    PubMed

    Sackstein, Robert; Fuhlbrigge, Robert

    2009-01-01

    Western blotting has proven to be an important technique in analysis of receptor-ligand interactions (i.e., by ligand blotting) and for identifying molecules mediating cell attachment (i.e., by cell blotting). Conventional ligand blotting and cell blotting methods employ nondynamic (static) incubation conditions, whereby molecules or cells of interest are placed in suspension and overlaid on membranes. However, many cell-cell and cell-matrix adhesive interactions occur under fluid shear conditions, and shear stress itself mediates and/or facilitates the engagement of these physiologically appropriate receptors and ligands. Notably, shear forces critically influence the adhesion of circulating cells and platelets to vessel walls in physiologic cell migration and hemostasis, as well as in inflammatory and thrombotic disorders, cancer metastasis, and atherosclerosis. Use of nondynamic blotting conditions to analyze such interactions can introduce bias, overtly missing relevant effectors and/or exaggerating the relative role(s) of nonphysiologic adhesion molecules. To address this shortfall, we have developed a new technique for identifying binding interactions under fluid shear conditions, the "blot rolling assay." Using this method, molecules in a complex mixture are resolved by gel electrophoresis, transferred to a membrane that is rendered semi-transparent, and the membrane is then incorporated into a parallel-plate flow chamber apparatus. Under controlled flow conditions, cells or particles bearing adhesion proteins of interest are then introduced into the chamber and interactions with individual immobilized molecules (bands) can be visualized in real-time. The substrate molecule(s) supporting adhesion under fluid shear can then be identified by staining with specific antibodies or by excising the relevant band(s) and performing mass spectrometry or microsequencing of the isolated material. This method thus allows for the identification, within a complex mixture

  14. Study of the Influence of Particle Velocity on Adhesive Strength of Cold Spray Deposits

    NASA Astrophysics Data System (ADS)

    Huang, R.; Fukanuma, H.

    2012-06-01

    The adhesion mechanism of deposit/substrate interface prepared by the cold spray method is not fully understood at present. It seems that the adhesion strength is mainly determined by the mechanical (including the plastic deformation of particle and substrate) and thermal interaction between particle and substrate when the particles impact onto the substrate with a high velocity. In order to understand the adhesion mechanism, a novel adhesive strength test was developed to measure the higher bonding strength of cold sprayed coatings in this study. The method breaks through the limits imposed by glue strength in the conventional adhesive strength test, and it can be used to measure the coatings with a higher adhesive strength. The particle velocity was obtained with DPV-2000 measurement and CFD simulation. The relationships between the adhesion strength of deposits/substrate interface and particle velocity were discussed. The results show that stronger adhesion strength can be obtained with the increase of particle velocity. There are two available ways to improve the adhesion strength. One is to increase the temperature of working gas, and another is to employ helium gas as the working gas instead of nitrogen gas.

  15. Exposed Dentin: Influence of Cleaning Procedures and Simulated Pulpal Pressure on Bond Strength of a Universal Adhesive System

    PubMed Central

    2017-01-01

    Purpose To compare various pre-treatments serving as cleaning procedures of dentin on the bond strength of resin composite promoted by a universal adhesive system applied either in the absence or presence of simulated pulpal pressure. Materials and Methods Prior to application of the adhesive system (Scotchbond Universal) and resin composite (Filtek Z250), ground dentin surfaces were given one of five pre-treatments either without or with simulated pulpal pressure: 1) no pre-treatment, adhesive system in “self-etch” mode, 2) phosphoric acid etching, adhesive system in “total-etch” mode, 3) polishing with pumice on prophylaxis cup, 4) air abrasion with AIR-FLOW PLUS powder, 5) air abrasion with AIR-FLOW PERIO powder; n = 20/group of pre-treatment. After storage (37°C, 100% humidity, 24 h), micro shear bond strength was measured and data analyzed with parametric ANOVA including Bonferroni-Holm correction for multiple testing followed by Student’s t tests (significance level: α = 0.05). Results The ANOVA found type of pre-treatment and simulated pulpal pressure to have no significant effect on dentin bond strength. The explorative post-hoc tests showed a negative effect of simulated pulpal pressure for phosphoric acid etching (adhesive system in “total-etch” mode; p = 0.020), but not for the other four pre-treatments (all p = 1.000). Conclusion Air abrasion with powders containing either erythritol and chlorhexidine (AIR-FLOW PLUS) or glycine (AIR-FLOW PERIO) yielded dentin bond strengths similar to no pre-treatment, phosphoric acid etching, or polishing with pumice. Simulated pulpal pressure reduced the bond strength only when the self-etch adhesive system was used in total-etch mode. PMID:28081572

  16. The effect of washing water temperature on resin-dentin micro-shear bond strength

    PubMed Central

    Malekipour, Mohammad Reza; Shirani, Farzaneh; Ebrahimi, Mehrnoush

    2016-01-01

    Background: The purpose of this study was to evaluate the effect of washing water temperature on the micro-shear bond strength (μSBS) of composite resin to dentin using a two-step etch-and-rinse system and a two-step self-etching system. Materials and Methods: In this in vitro study, the intact dentins of buccal and lingual surfaces of healthy third molars were exposed. Dentin surfaces were rinsed with different temperatures of distilled water (20 s) before applying Single Bond (SB) or Clearfil SE Bond(SE). After applying the adhesive, composite cylinders (0.8 mm diameter and 1 mm length) were bonded to the teeth surfaces. After storing the specimens in 37°C distilled water for 48 h and thermocycling, μSBS test was done. Data were analyzed using analysis of variance, post hoc Tukey tests, paired samples t-test, and Fisher exact test (α = 0.05). Results: Temperature and interaction of temperature and type of bonding agent affected the bond strength. The bond strength of SB groups was significantly higher at 50°C washing than 5°C (P = 0.003) and 22°C (P = 0.019), but no significant difference was observed between SE groups. The bond strength of SE was significantly higher at 22°C than that of SB (P = 0.031), whereas the bond strength of SB was significantly higher at 50°C than that of SE (P = 0.007). Conclusion: The use of high-temperature washing water is an appropriate method to enhance bond strength in etch-and-rinse systems. PMID:27076833

  17. Evaluation of the bond strength of different adhesive agents to a resin-modified calcium silicate material (TheraCal LC).

    PubMed

    Karadas, Muhammed; Cantekin, Kenan; Gumus, Husniye; Ateş, Sabit Melih; Duymuş, Zeynep Yesil

    2016-09-01

    This study evaluated the bond strength of different adhesive agents to TheraCal LC and mineral trioxide aggregate (MTA) and examined the morphologic changes of these materials with different surface treatments. A total of 120 specimens, 60 of MTA Angelus (AMTA), and 60 of TheraCal LC, were prepared and divided into six subgroups according to the adhesive agent used; these agents included Scotchbond Multipurpose, Clearfil SE Bond, Clearfil Protect Bond, Clearfil S(3) Bond, OptiBond All-in-One, and G-aenial Bond. After application of adhesive agents, Filtek Z250 composite resin was placed onto the specimens. Shear bond strengths were measured using a universal testing machine, followed by examination of the fractured surfaces. The surface changes of the specimens were observed using scanning electron microscopy. Data were compared by two-way analysis of variance. Although no significant differences were found among the bond strengths of different adhesives to AMTA (p = 0.69), a significant difference was found in terms of bond strengths of different adhesives to the TheraCal LC surface (p < 0.001). The total-etch adhesive system more strongly bonded to TheraCal LC compared to the bond with other adhesives. TheraCal LC bonded significantly more strongly than AMTA regardless of the adhesive agents tested. Resin-modified calcium silicate showed higher bond strength than AMTA in terms of the composite bond to these materials with different bonding systems. On the other hand, the highest shear bond-strength values were found for composite bonds with the combination of TheraCal LC and the total-etch adhesive system. SCANNING 38:403-411, 2016. © 2015 Wiley Periodicals, Inc.

  18. An Investigation about the Influence of Bleaching on Shear Bond Strength of Orthodontic Brackets and on Enamel Colour

    PubMed Central

    Immerz, Isabell; Proff, Peter; Roemer, Piero; Reicheneder, Claudia; Faltermeier, Andreas

    2012-01-01

    The aim of the study was to investigate the effect of bleaching on the colouration of tooth enamel and shear bond strength of orthodontic ceramic brackets based upon current whitening practice. The bleaching and bonding techniques were performed on extracted bovine teeth for the investigation of their colorimetric spectrum and the adhesive bond strength on surface enamel. One group was designated as the control group with no pre-treatment. Another group was treated with a 45% hydrogen peroxide solution prior to bonding. The difference in colour was expressed as the Euclidian distance ΔE. The resulting shear bond strength was analyzed and evaluated by scores of Adhesion Remnant Index. Statistical analysis was performed using the Kruskall-Wallis and post-hoc test. The colorimetric analysis revealed statistically significant differences between original and bleached as well as bleached and debonded teeth setting off a blue colour shift. Furthermore, statistically there was no significant difference noted in bonding strength between non-treated surfaces and those treated with peroxide. It can be concluded that peroxide pre-treatment does result in colour differences of teeth. Bonding and debonding procedures seem to have no statistically significant influence on the enamel colour using current materials. PMID:22536518

  19. Application of tung oil to improve adhesion strength and water resistance of cottonseed meal and protein adhesives on maple veneer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cottonseed meal-based products show promise in serving as environment-friendly wood adhesives. However, their practical utilization is currently limited due to low durability and water resistant properties. In this research, we tested the improvement of adhesion strength and water resistance of cott...

  20. Adhesion of endothelial cells and endothelial progenitor cells on peptide-linked polymers in shear flow.

    PubMed

    Wang, Xin; Cooper, Stuart

    2013-05-01

    The initial adhesion of human umbilical vein endothelial cells (HUVECs), cord blood endothelial colony-forming cells (ECFCs), and human blood outgrowth endothelial cells (HBOECs) was studied under radial flow conditions. The surface of a variable shear-rate device was either coated with polymer films or covered by synthetic fibers. Spin-coating was applied to produce smooth polymer films, while fibrous scaffolds were generated by electrospinning. The polymer was composed of hexyl methacrylate, methyl methacrylate, poly(ethylene glycol) methacrylate (PEGMA), and CGRGDS peptide. The peptide was incorporated into the polymer system by coupling to an acrylate-PEG-N-hydroxysuccinimide comonomer. A shear-rate-dependent increase of the attached cells with time was observed with all cell types. The adhesion of ECs increased on RGD-linked polymer surfaces compared to polymers without adhesive peptides. The number of attached ECFCs and HBOECs are significantly higher than that of HUVECs within the entire shear-rate range and surfaces examined, especially on RGD-linked polymers at low shear rates. Their superior adhesion ability of endothelial progenitor cells under flow conditions suggests they are a promising source for in vivo seeding of vascular grafts and shows the potential to be used for self-endothelialized implants.

  1. New Criterion for Evaluating the Peak Shear Strength of Rock Joints Under Different Contact States

    NASA Astrophysics Data System (ADS)

    Tang, Zhi Cheng; Wong, Louis Ngai Yuen

    2016-04-01

    In practice, the peak shear strength of rock joints is not dictated only by the surface roughness, but also the degree of matching between the joint surfaces. The latter is due to alteration/dislocation caused by external factors, such as the vibration due to nearby blasting, excavation or earthquake. In the present study, the peak shear strengths of rock joints under different contact states are investigated by direct shear test using artificial rock joints. The rock joints under different contact states are modeled by imposing varying magnitude of horizontal dislocation along the shear direction between the upper and lower rock blocks. The peak shear strength was found to decrease with increasing dislocation. A new empirical shear strength criterion is put forward to capture the peak shear strength of un-matching rock joints as an extension of a previously published peak shear strength criterion for matching rock joints by the first author and his co-workers. In the present proposed criterion, a new joint contact state coefficient, which is a function of the normalized dislocation and the quantified three-dimensional roughness metric of joint surface, is proposed. The good agreement between calculated values and test results indicates that the proposed criterion is capable of estimating the peak shear strength of rock joints under different contact states. The proposed criterion is expressed in a quantitative way and the required parameters can be easily determined in the laboratory.

  2. Recycling stainless steel orthodontic brackets with Er:YAG laser – An environmental scanning electron microscope and shear bond strength study

    PubMed Central

    Chacko, Prince K; Kodoth, Jithesh; John, Jacob; Kumar, Kishore

    2013-01-01

    Aim: To determine the efficiency of erbium: Yttrium aluminum garnet (Er:YAG) laser with Environmental Scanning Electron Microscope (ESEM) and shear bond strength analysis as a method of recycling stainless steel orthodontic brackets and compare with other methods of recycling. Materials and Methods: Eighty samples of extracted premolar teeth bonded to SS brackets were tested for rebonded shear bond strength after recycling by four methods and compared with a control group of 20 samples. These 80 samples were randomized into four groups which were recycled by four methods, namely, sandblasting, thermal method, adhesive grinding by tungsten carbide bur, and Er: YAG laser method. After recycling, ESEM and shear bond strength analysis were used to analyze the efficiency of the recycling methods Results: Er: YAG laser group was found to be having the greatest bond strength among the recycled brackets (8.33±2.51 followed by the sandblasting at 6.12±1.12 MPa, thermal and electropolishing at 4.44±0.95 MPa, and lastly the adhesive grinding method at 3.08±1.07 MPa. The shear bond strength of Er: YAG laser group was found to be having no statistically significant difference with that of the control group (P>0.05 and had statistical signifance with sandblasting, thermal and electropolishing and adhesive grinding groups at P>0.001. ESEM analysis showed complete removal of adhesive from the brackets recycled with Er: YAG laser which mimicked that of the control group. Conclusion: Er: YAG laser (2940 nm) was found to be the most efficient method for recycling, followed by the sandblasting, thermal, and the tungsten carbide methods, which had the least shear bond strength value and is not fit for clinical usage. PMID:24987647

  3. Shear bond strength of bulk-fill and nano-restorative materials to dentin

    PubMed Central

    Colak, Hakan; Ercan, Ertugrul; Hamidi, Mehmet Mustafa

    2016-01-01

    Objectives: Bulk-fill composite materials are being developed for preparation depths of up to 4 mm in an effort to simplify and improve the placement of direct composite posterior restorations. The aim of our study was to compare shear-bond strength of bulk-fill and conventional posterior composite resins. Materials and Methods: In this study, 60 caries free extracted human molars were used and sectioned parallel to occlusal surface to expose midcoronal dentin. The specimens were randomly divided into four groups. Total-etch dentine bonding system (Adper Scotchbond 1XT, 3M ESPE) was applied to dentin surface in all the groups to reduce variability in results. Then, dentine surfaces covered by following materials. Group I: SonicFill Bulk-Fill, Group II: Tetric EvoCeram (TBF), Group III: Herculite XRV Ultra, and Group IV: TBF Bulk-Fill, 2 mm × 3 mm cylindrical restorations were prepared by using application apparatus. Shear bond testing was measured by using a universal testing machine. Kruskal–Wallis and Mann–Whitney U-tests were performed to evaluate the data. Results: The highest value was observed in Group III (14.42 ± 4.34) and the lowest value was observed in Group IV (11.16 ± 2.76) and there is a statistically significant difference between these groups (P = 0.046). However, there is no statistically significant difference between the values of other groups. In this study, Group III was showed higher strength values. Conclusion: There is a need for future studies about long-term bond strength and clinical success of these adhesive and bulk-fill systems. PMID:27011738

  4. Shear bond strength of composite resin to dentin after application of cavity disinfectants – SEM study

    PubMed Central

    Sharma, Vivek; Rampal, Poonam; Kumar, Sukesh

    2011-01-01

    Aim: The aim was to evaluate the effect of different cavity disinfectants on dentin bond strengths of composite resin applied with two different adhesive systems. Materials and Methods: Two-hundred mandibular molars were sectioned parallel to the occlusal surface to expose dentin in the midcoronal one-third. The dentinal surfaces were polished with waterproof-polishing papers. The specimens were randomly divided into five groups of 40 teeth each as follows: group 1(control) -- specimens were not treated with any cavity disinfectants. Groups 2--5 (experimental groups) -- dentin surfaces were treated with the following cavity disinfectants, respectively; 2% chlorhexidine solution, 0.1% benzalkonium chloride-based disinfectant, 1% chlorhexidine gel, and an iodine potassium iodide/copper sulfate-based disinfectant. The specimens were then randomly divided into two subgroups including 20 teeth each to evaluate the effect of different bonding systems. Dentin bonding systems were applied to the dentin surfaces and the composite buildups were done. After the specimens were stored in an incubator for 24 hours, the shear bond strength was measured at a crosshead speed of 1 mm/min. The specimens were then statistically analyzed. Statistical Analysis Used: One way analysis of variance and Tukey-HSD tests were used. Results: There was no significant difference between chlorhexidine gel and control groups regardless of the type of the bonding agent used (P>0.05). On the other hand, pretreatment with benzalkonium chloride-based, iodine potassium iodide/copper sulfate-based disinfectants or chlorhexidine solutions had a negative effect on the shear bond strength of self-etching bonding systems. Conclusions: The findings of this study suggest that when benzalkonium chloride-based, iodine potassium iodide/copper sulfate-based disinfectants or chlorhexidine solutions are used as a cavity disinfectant, an etch-and-rinse bonding system should be preferred. PMID:22090756

  5. Shear horizontal guided wave modes to infer the shear stiffness of adhesive bond layers.

    PubMed

    Le Crom, Bénédicte; Castaings, Michel

    2010-04-01

    This paper presents a non-destructive, ultrasonic technique to evaluate the quality of bonds between substrates. Shear-horizontally polarized (SH) wave modes are investigated to infer the shear stiffness of bonds, which is necessarily linked to the shear resistance that is a critical parameter for bonded structures. Numerical simulations are run for selecting the most appropriate SH wave modes, i.e., with higher sensitivity to the bond than to other components, and experiments are made for generating-detecting pre-selected SH wave modes and for measuring their phase velocities. An inverse problem is finally solved, consisting of the evaluation of the shear stiffness modulus of a bond layer at different curing times between a metallic plate and a composite patch, such assembly being investigated in the context of repair of aeronautical structures.

  6. Coating of carbon nanotube fibers: variation of tensile properties, failure behavior and adhesion strength

    NASA Astrophysics Data System (ADS)

    Mäder, Edith; Liu, Jian-Wen; Hiller, Janett; Lu, Weibang; Li, Qingwen; Zhandarov, Serge; Chou, Tsu-Wei

    2015-07-01

    An experimental study of the tensile properties of CNT fibers and their interphasial behavior in epoxy matrices is reported. One of the most promising applications of CNT fibers is their use as reinforcement in multifunctional composites. For this purpose, an increase of the tensile strength of the CNT fibers in unidirectional composites as well as strong interfacial adhesion strength is desirable. However, the mechanical performance of the CNT fiber composites manufactured so far is comparable to that of commercial fiber composites. The interfacial properties of CNT fiber/polymer composites have rarely been investigated and provided CNT fiber/epoxy interfacial shear strength of 14.4 MPa studied by the microbond test. In order to improve the mechanical performance of the CNT fibers, an epoxy compatible coating with nano-dispersed aqueous based polymeric film formers and low viscous epoxy resin, respectively, was applied. For impregnation of high homogeneity, low molecular weight epoxy film formers and polyurethane film formers were used. The aqueous based epoxy film formers were not crosslinked and able to interdiffuse with the matrix resin after impregnation. Due to good wetting of the individual CNT fibers by the film formers, the degree of activation of the fibers was improved leading to increased tensile strength and Young’s modulus. Cyclic tensile loading and simultaneous determination of electric resistance enabled to characterize the fiber’s durability in terms of elastic recovery and hysteresis. The pull-out tests and SEM study reveal different interfacial failure mechanisms in CNT fiber/epoxy systems for untreated and film former treated fibers, on the one hand, and epoxy resin treated ones, on the other hand. The epoxy resin penetrated between the CNT bundles in the reference or film former coated fiber, forming a relatively thick CNT/epoxy composite layer and thus shifting the fracture zone within the fiber. In contrast to this, shear sliding along

  7. The effect of various primers on shear bond strength of zirconia ceramic and resin composite

    PubMed Central

    Sanohkan, Sasiwimol; Kukiattrakoon, Boonlert; Larpboonphol, Narongrit; Sae-Yib, Taewalit; Jampa, Thibet; Manoppan, Satawat

    2013-01-01

    Aims: To determine the in vitro shear bond strengths (SBS) of zirconia ceramic to resin composite after various primer treatments. Materials and Methods: Forty zirconia ceramic (Zeno, Wieland Dental) specimens (10 mm in diameter and 2 mm thick) were prepared, sandblasted with 50 μm alumina, and divided into four groups (n = 10). Three experimental groups were surface treated with three primers; CP (RelyX Ceramic Primer, 3M ESPE), AP (Alloy Primer, Kuraray Medical), and MP (Monobond Plus, Ivoclar Vivadent AG). One group was not treated and served as the control. All specimens were bonded to a resin composite (Filtek Supreme XT, 3M ESPE) cylinder with an adhesive system (Adper Scotchbond Multi-Purpose Plus Adhesive, 3M ESPE) and then stored in 100% humidity at 37°C for 24 h before SBS testing in a universal testing machine. Mean SBS (MPa) were analyzed with one-way analysis of variance (ANOVA) and the Tukey's Honestly Significant Difference (HSD) test (α = 0.05). Results: Group AP yielded the highest mean and standard deviation (SD) value of SBS (16.8 ± 2.5 MPa) and Group C presented the lowest mean and SD value (15.4 ± 1.6 MPa). The SBS did not differ significantly among the groups (P = 0.079). Conclusions: Within the limitations of this study, the SBS values between zirconia ceramic to resin composite using various primers and untreated surface were not significantly different. PMID:24347881

  8. Comparative Evaluation of Shear Bond Strength of Three Commercially Available Glass Ionomer Cements in Primary Teeth

    PubMed Central

    Murthy, S Srinivasa; Murthy, Gargi S

    2015-01-01

    Background: This study aims to comparatively evaluate the shear bond strength (SBS) of three commercially available glass ionomer cements - Miracle Mix (MM) (GC America Inc., Alsip, USA), Ketac Molar (KM) (3M Corp., Minnesota, USA) and amalgomer CR (AM) (Advanced Healthcare Ltd., Kent, England) in primary teeth and later examine the mode of the adhesive failure at the interface. Materials and Methods: Totally, 90 extracted sound primary molars were selected, and dentin on the buccal surface of crowns was exposed. Specimens were randomly assigned into three groups according to the restorative materials being tested. SBS tests were performed, and the obtained values were statistically analyzed using ANOVA and Tukey tests (P < 0.05). SBS mean values on were recorded in megapascals (MPa) and the mode of failure was assessed using a scanning electron microscope. Results: SBS (in MPa) was - MM-5.39, KM-4.84, AM-6.38. The predominant failure mode was cohesive. Conclusion: Amalgomer CR exhibited statistically significant higher SBS of 6.38 MPa to primary teeth and has better adhesion to the primary teeth compared to the other test materials and can be considered as a restorative material in pediatric dentistry. However, the results of this study should be corroborated with further investigation to reach a definitive conclusion. PMID:26464550

  9. Torsional Shear Strength Tests for Glass-Ceramic Joined Silicon Carbide

    DOE PAGES

    Ferraris, Monica; Ventrella, Andrea; Salvo, Milena; ...

    2014-03-17

    A torsion test on hour-glass-shaped samples with a full joined or a ring-shaped joined area was chosen in this study to measure shear strength of glass-ceramic joined silicon carbide. Shear strength of about 100 MPa was measured for full joined SiC with fracture completely inside their joined area. Attempts to obtain this shear strength with a ring-shaped joined area failed due to mixed mode fractures. However, full joined and ring-shaped steel hour-glasses joined by a glass-ceramic gave the same shear strength, thus suggesting that this test measures shear strength of joined components only when their fracture is completely inside theirmore » joined area.« less

  10. Torsional Shear Strength Tests for Glass-Ceramic Joined Silicon Carbide

    SciTech Connect

    Ferraris, Monica; Ventrella, Andrea; Salvo, Milena; Katoh, Yutai; Gross, Dietmar

    2014-03-17

    A torsion test on hour-glass-shaped samples with a full joined or a ring-shaped joined area was chosen in this study to measure shear strength of glass-ceramic joined silicon carbide. Shear strength of about 100 MPa was measured for full joined SiC with fracture completely inside their joined area. Attempts to obtain this shear strength with a ring-shaped joined area failed due to mixed mode fractures. However, full joined and ring-shaped steel hour-glasses joined by a glass-ceramic gave the same shear strength, thus suggesting that this test measures shear strength of joined components only when their fracture is completely inside their joined area.

  11. Shear Bond Strength of Ceramic Brackets with Different Base Designs: Comparative In-vitro Study

    PubMed Central

    Ansari, Mohd. Younus; Agarwal, Deepak K; Bhattacharya, Preeti; Ansar, Juhi; Bhandari, Ravi

    2016-01-01

    Introduction Knowledge about the Shear Bond Strength (SBS) of ceramic brackets with different base design is essential as it affects bond strength to enamel. Aim The aim of the present study was to evaluate and compare the effect of base designs of different ceramic brackets on SBS, and to determine the fracture site after debonding. Materials and Methods Four groups of ceramic brackets and one group of metal brackets with different base designs were used. Adhesive precoated base of Clarity Advanced (APC Flash-free) (Unitek/3M, Monrovia, California), microcrystalline base of Clarity Advanced (Unitek/3M, Monrovia, California), polymer mesh base of InVu (TP Orthodontics, Inc., La Porte, IN, United States), patented bead ball base of Inspire Ice (Ormco, Glendora, California), and a mechanical mesh base of Gemini Metal bracket (Unitek/3M, Monrovia, California). Ten brackets of each type were bonded to 50 maxillary premolars with Transbond XT (Unitek/3M). Samples were stored in distilled water at room temperature for 24 hours and subsequently tested in shear mode on a universal testing machine (Model 3382; Instron Corp., Canton, Massachusetts, USA) at a cross head speed of 1mm/minute with the help of a chisel. The debonded interface was recorded and analyzed to determine the predominant bond failure site under an optical microscope (Stereomicroscope) at 10X magnification. One way analysis of variance (ANOVA) was used to compare SBS. Tukey’s significant differences tests were used for post-hoc comparisons. The Adhesive Remnant Index (ARI) scores were compared by chi-square test. Results Mean SBS of microcrystalline base (27.26±1.73), was the highest followed by bead ball base (23.45±5.09), adhesive precoated base (20.13±5.20), polymer mesh base (17.54±1.91), and mechanical mesh base (17.50±2.41) the least. Comparing the frequency (%) of ARI Score among the groups, chi-square test showed significantly different ARI scores among the groups (χ2 = 34.07, p<0

  12. Effect of different adhesion strategies on bond strength of resin composite to composite-dentin complex.

    PubMed

    Özcan, M; Pekkan, G

    2013-01-01

    : four seconds in circular motion). After conditioning protocols, the repair resin was adhered to the substrate surfaces using transparent polyethylene molds (diameter: 3.6 mm) incrementally and photo-polymerized. The substrate-adherend combinations were as follows: AS-AS, G-G, AS-G. Shear force was applied to the adhesive interface in a Universal Testing Machine (crosshead speed: 1 mm/min). The types of failures were further evaluated and categorized as follows: 1) cohesive in the composite substrate and 2) adhesive at the interface. Bond strength values (MPa) were statistically analyzed using two-way analysis of variance and least significant difference post hoc tests (α=0.05). Significant effects of the adhesion strategy (p=0.006) and the composite type (p=0.000) were found. Interaction terms were not significant (p=0.292). Regardless of the substrate-adherend combination, protocol 1 (17-22 MPa) showed significantly higher results than did protocols 2 (15-17 MPa) and 3 (11-17 MPa) (p=0.028, p=0.002, respectively). The highest results were obtained from the G-G combination after all three protocols (17-22 MPa). The incidence of cohesive failures was more common when the substrate and the adherend were the same composite type (AS-AS: 87.5%, 87.5%, 75%; G-G: 100%, 75%, 50% for protocols 1, 2, and 3, respectively). When substrate and adherend were used interchangeably, adhesive failures were more frequent (25%, 50%, and 100% for protocol 1, 2, and 3, respectively). When the substrate and the adherend are of the same type, greater repair strength could be expected. In the repair of composites next to the dentin, depending on the composite type, conditioning the composite with silica coating and silanization after etching the dentin adds to the repair strength compared to the results obtained with silane application only.

  13. Evaluation of a sugar based edible adhesive utilizing a tensile strength tester

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new method to evaluate adhesives has been developed and utilized to formulate a recently patented adhesive based on sugar and citric acid. Factors affecting adhesive performance were uncovered, such as reduced strength due to improper heating time, and an optimal curing temperature of 60oC was ac...

  14. A Comparative Evaluation of Effect of Different Chemical Solvents on the Shear Bond Strength of Glass Fiber reinforced Post to Core Material

    PubMed Central

    Samadi, Firoza; Jaiswal, JN; Saha, Sonali

    2014-01-01

    ABSTRACT% Aim: To compare the effect of different chemical solvents on glass fiber reinforced posts and to study the effect of these solvents on the shear bond strength of glass fiber reinforced post to core material. Materials and methods: This study was conducted to evaluate the effect of three chemical solvents, i.e. silane coupling agent, 6% H2O2 and 37% phosphoric acid on the shear bond strength of glass fiber post to a composite resin restorative material. The changes in post surface characteristics after different treatments were also observed, using scanning electron microscopy (SEM) and shear bond strength was analyzed using universal testing machine (UTM). Results: Surface treatment with hydrogen peroxide had greatest impact on the post surface followed by 37% phosphoric acid and silane. On evaluation of the shear bond strength, 6% H2O2 exhibited the maximum shear bond strength followed in descending order by 37% phosphoric acid and silane respectively. Conclusion: The surface treatment of glass fiber post enhances the adhesion between the post and composite resin which is used as core material. Failure of a fiber post and composite resin core often occurs at the junction between the two materials. This failure process requires better characterization. How to cite this article: Sharma A, Samadi F, Jaiswal JN, Saha S. A Comparative Evaluation of Effect of Different Chemical Solvents on the Shear Bond Strength of Glass Fiber Reinforced Post to Core Material. Int J Clin Pediatr Dent 2014;7(3):192-196. PMID:25709300

  15. Evaluation of shear bond strength of repair acrylic resin to Co-Cr alloy

    PubMed Central

    Külünk, Şafak; Külünk, Tolga; Saraç, Duygu; Baba, Seniha

    2014-01-01

    PURPOSE The purpose of this study was to investigate the impact of different surface treatment methods and thermal ageing on the bond strength of autopolymerizing acrylic resin to Co-Cr. MATERIALS AND METHODS Co-Cr alloy specimens were divided into five groups according to the surface conditioning methods. C: No treatment; SP: flamed with the Silano-Pen device; K: airborne particle abrasion with Al2O3; Co: airborne particle abrasion with silica-coated Al2O3; KSP: flamed with the Silano-Pen device after the group K experimental protocol. Then, autopolymerized acrylic resin was applied to the treated specimen surfaces. All the groups were divided into two subgroups with the thermal cycle and water storage to determine the durability of the bond. The bond strength test was applied in an universal test machine and treated Co-Cr alloys were analyzed by scanning electron microscope (SEM). Two-way analysis of variance (ANOVA) was used to determine the significant differences among surface treatments and thermocycling. Their interactons were followed by a multiple comparison' test performed uing a post hoc Tukey HSD test (α=.05). RESULTS Surface treatments significantly increased repair strengths of repair resin to Co-Cr alloy. The repair strengths of Group K, and Co significantly decreased after 6,000 cycles (P<.001). CONCLUSION Thermocycling lead to a significant decrease in shear bond strength for air abrasion with silica-coated aluminum oxide particles. On the contrary, flaming with Silano-Pen did not cause a significant reduction in adhesion after thermocycling. PMID:25177470

  16. Comparison of Shear Strength Properties for Undisturbed and Reconstituted Parit Nipah Peat, Johor

    NASA Astrophysics Data System (ADS)

    Azhar, A. T. S.; Norhaliza, W.; Ismail, B.; Abdullah, M. E.; Zakaria, M. N.

    2016-11-01

    Shear strength of soil is required to determine the soil stability and design the foundations. Peat is known as a soil with complex natural formations which also contributes problems to the researchers, developers, engineers and contractors in constructions and infrastructures. Most researchers conducted experiment and investigation of shear strength on peat using shear box test and simple shear test, but only a few had discovered the behavior of peat using triaxial consolidated undrained test. The aim of this paper is to determine the undrained shear strength properties of reconstituted peat and undisturbed peat of Parit Nipah, Johor for comparison purposes. All the reconstituted peat samples were formed with the size that passed opening sieve 3.35 mm and preconsolidation pressure at 100 kPa. The result of undrained shear strength of reconstituted peat was 21kPa for cohesion with the angle of friction, 41° compare to the undisturbed peat with cohesion 10 kPa and angle of friction, 16°. The undrained shear strength properties result obtained shows that the reconstituted peat has higher strength than undisturbed peat. For relationship deviator stress-strain, σd max and excess pore pressure, Δu, it shows that both of undisturbed and reconstituted gradually increased when σ’ increased, but at the end of the test, the values are slightly dropped. The physical properties of undisturbed and reconstituted peat were also investigated to correlate with the undrained shear strength results.

  17. A comparative study of shear bond strength of orthodontic bracket after acid-etched and Er:YAG treatment on enamel surface

    NASA Astrophysics Data System (ADS)

    Leão, Juliana C.; Mota, Cláudia C. B. O.; Cassimiro-silva, Patricia F.; Gomes, Anderson S. L.

    2016-02-01

    This study aimed to evaluate the shear bond strength (SBS) of teeth prepared for orthodontic bracket bonding with 37% phosphoric acid and Er:YAG laser. Forty bovine incisors were divided into two groups. In Group I, the teeth were conditioned with 37% phosphoric acid and brackets were bonded with Transbond XT; in Group II, the teeth were irradiated with Er:YAG and bonding with Transbond XT. After SBS test, the adhesive remnant index was determined. Adhesion to dental hard tissues after Er:YAG laser etching was inferior to that obtained after acid etching but exceeded what is believed to be clinically sufficient strength, and therefore can be used in patients.

  18. In vitro study of 24-hour and 30-day shear bond strengths of three resin-glass ionomer cements used to bond orthodontic brackets.

    PubMed

    Lippitz, S J; Staley, R N; Jakobsen, J R

    1998-06-01

    Interest in using composite resin-glass ionomer hybrid cements as orthodontic bracket adhesives has grown because of their potential for fluoride release. The purpose of this pilot study was to compare shear bond strengths of three resin-glass ionomer cements (Advance, Fuji Duet, Fuji Ortho LC) used as bracket adhesives with a composite resin 24 hours and 30 days after bonding. The amount of adhesive remaining on the debonded enamel surface was scored for each adhesive. Mesh-backed stainless-steel brackets were bonded to 100 extracted human premolars, which were stored in artificial saliva at 37 degrees C until being tested to failure in a testing machine. The hybrid cements, with one exception, had bond strengths similar to those of the composite resin at 24 hours and 30 days. Fuji Ortho LC had significantly lower bond strengths (ANOVA p < or = 0.05) than the other adhesives at 24 hours and 30 days when it was bonded to unetched, water-moistened enamel. Adhesive-remnant scores were similar for all cements, except for cement Fuji Ortho LC when it was bonded to unetched enamel. The resin-glass ionomer cements we tested appear to have bond strengths suitable for routine use as orthodontic bracket-bonding adhesives.

  19. Effect of artificial saliva and pH on shear bond strength of resin cements to zirconia-based ceramic.

    PubMed

    Geramipanah, F; Majidpour, M; Sadighpour, L; Fard, M J Kharazi

    2013-03-01

    The aim of the present study was to evaluate the effect of media with different pH on shear and strength of resin cements to zirconia-based ceramics. Sixty rectangularly shaped specimens made of a zirconia based ceramic (Cercon, Dentsply) were prepared, air-blasted with 110 microm aluminum oxide particles (Al203) and randomly assigned into three groups (n = 30). A universal resin composite (Filtek Z250, 3M/ESPE) was bonded to each specimen using one of the following three cements: Calibra (Dentsply), Panavia F2 (kurary) and Unicem (3M/ESPE). Specimens were thermal cycled and stored in one of the following three media for two weeks: water at pH = 7, saliva at pH = 7 and saliva at pH = 3.5. The mean shear bond strength of each group was analyzed using the Kruskal-Wallis test (alpha = 0.05). The modes of failure were recorded using a streomicroscope. All specimens in the Calibra groups showed premature debonding. No significant difference was found between the two other cements or different media. The failure modes in the two latter cements were predominantly adhesive. Despite the adverse effect of acidic media on the properties of restorative materials, the media did not significantly influence the bond strength of MDP-containing resin cement and a self-adhesive cement to a zirconia- based ceramic.

  20. Mechanics of leukocyte deformation and adhesion to endothelium in shear flow.

    PubMed

    Dong, C; Cao, J; Struble, E J; Lipowsky, H H

    1999-01-01

    The mechanics of leukocyte [white blood cell (WBC)] deformation and adhesion to endothelial cells (EC) in shear flow has been investigated. Experimental data on transient WBC-EC adhesion were obtained from in vivo measurements. Microscopic images of WBC-EC contact during incipient WBC rolling revealed that for a given wall shear stress, the contact area increases with time as new bonds are formed at the leading edge, and then decreases with time as the trailing edge of the WBC membrane peels away from the EC. A two-dimensional model (2D) was developed consisting of an elastic ring adhered to a surface under fluid stresses. This ring represents an actin-rich WBC cortical layer and contains an incompressible fluid as the cell interior. All molecular bonds are modeled as elastic springs distributed in the WBC-EC contact region. Variations of the proportionality between wall shear stress (tau(w)) in the vicinity of the WBC and the resulting drag force (F(s)), i.e., F(s)/tau(w), reveal its decrease with WBC deformation and increasing vessel channel height (2D). The computations also find that the peeling zone between adherent WBC and EC may account for less than 5% of the total contact interface. Computational studies describe the WBC-EC adhesion and the extent of WBC deformation during the adhesive process.

  1. Adhesion strength of sputtered TiAlN-coated WC insert tool

    SciTech Connect

    Budi, Esmar; Razali, M. Mohd.; Nizam, A. R. Md.

    2013-09-09

    The adhesion strength of TiAlN coating that deposited by using DC magnetron sputtering on WC insert tool are studied. TiAlN coating are deposited on Tungsten Carbide (WC) insert tool by varying negatively substrate bias from 79 to 221 volt and nitrogen flow rate from 30 to 72 sccm. The adhesion strength are obtained by using Rockwell indentation test method with a Brale diamond at applied load of 60,100 and 150 kgf. The lateral diameter of indentation is plotted on three different applied loads and the adhesion strength of TiAlN coating was obtained from the curved slopes at 100 and 150 kgf. The lower curve slop indicated better adhesion strength. The results shows that the adhesion strength of sputterred TiAlN coating tend to increase as the negatively substrate bias and nitrogen flow rate are increased.

  2. Adhesion strength of sputtered TiAlN-coated WC insert tool

    NASA Astrophysics Data System (ADS)

    Budi, Esmar; Razali, M. Mohd.; Nizam, A. R. Md.

    2013-09-01

    The adhesion strength of TiAlN coating that deposited by using DC magnetron sputtering on WC insert tool are studied. TiAlN coating are deposited on Tungsten Carbide (WC) insert tool by varying negatively substrate bias from 79 to 221 volt and nitrogen flow rate from 30 to 72 sccm. The adhesion strength are obtained by using Rockwell indentation test method with a Brale diamond at applied load of 60,100 and 150 kgf. The lateral diameter of indentation is plotted on three different applied loads and the adhesion strength of TiAlN coating was obtained from the curved slopes at 100 and 150 kgf. The lower curve slop indicated better adhesion strength. The results shows that the adhesion strength of sputterred TiAlN coating tend to increase as the negatively substrate bias and nitrogen flow rate are increased.

  3. Effect of activation mode on shear bond strength of metallic brackets.

    PubMed

    Correr, Américo Bortolazzo; Costa, Ana Rosa; Lucato, Adriana Simoni; Vedovello, Silvia Amélia; Valdrighi, Heloísa Cristina; Vedovello Filho, Mário; Correr-Sobrinho, Lourenço

    2013-01-01

    The aim of this study was to evaluate the shear bond strength (SBS) of metallic orthodontic brackets bonded to bovine teeth using light-activated or chemically activated composite resins. One hundred and twenty bovine mandibular incisors were divided into 6 groups (n=20), according to the bonding materials: Transbond XT (T); Enforce Dual (ED); Enforce chemical (EC); Enforce Light-activated (EL); Concise Orthodontic (C); and RelyX Unicem Capsule (UN). Metallic brackets were positioned and firmly bonded to the teeth. Light-activation for T, ED, EL and UN was carried out with four exposures on each side of the bracket with 20 s total exposure times using XL2500 (3M ESPE). EC and C were chemically cured. Next, all specimens were stored in deionized water at 37 °C for 24 h. The shear bond strength was carried out at a crosshead speed of 1.0 mm/min. Data were subjected to one-way ANOVA and Tukey's test (α=0.05). The adhesive remnant index (ARI) was evaluated at 8× magnification. C (17.72 ± 4.45) presented significantly higher SBS means (in MPa) than the other groups (p<0.05), followed by EC (11.97 ± 5.77) and ED (10.57 ± 1.32). EL (5.39 ± 1.06) and UN (4.32 ± 1.98) showed the lowest SBS means, while T (9.09 ± 2.56) showed intermediate values. For ARI, there was a predominance of score 0 for EC, C and UN, and score 3 for T, ED and EL. In conclusion, the activation mode influenced the SBS.

  4. Calculation Method of Lateral Strengths and Ductility Factors of Constructions with Shear Walls of Different Ductility

    SciTech Connect

    Yamaguchi, Nobuyoshi; Nakao, Masato; Murakami, Masahide; Miyazawa, Kenji

    2008-07-08

    For seismic design, ductility-related force modification factors are named R factor in Uniform Building Code of U.S, q factor in Euro Code 8 and Ds (inverse of R) factor in Japanese Building Code. These ductility-related force modification factors for each type of shear elements are appeared in those codes. Some constructions use various types of shear walls that have different ductility, especially for their retrofit or re-strengthening. In these cases, engineers puzzle the decision of force modification factors of the constructions. Solving this problem, new method to calculate lateral strengths of stories for simple shear wall systems is proposed and named 'Stiffness--Potential Energy Addition Method' in this paper. This method uses two design lateral strengths for each type of shear walls in damage limit state and safety limit state. Two lateral strengths of stories in both limit states are calculated from these two design lateral strengths for each type of shear walls in both limit states. Calculated strengths have the same quality as values obtained by strength addition method using many steps of load-deformation data of shear walls. The new method to calculate ductility factors is also proposed in this paper. This method is based on the new method to calculate lateral strengths of stories. This method can solve the problem to obtain ductility factors of stories with shear walls of different ductility.

  5. Influence of diatom microfossils on sediment shear strength and slope stability

    NASA Astrophysics Data System (ADS)

    Wiemer, G.; Kopf, A.

    2017-01-01

    Diatom microfossils have been detected in many natural marine sediment deposits around the globe and are held responsible for the disobedience to well-established geotechnical relationships between index-properties and shear strength. We revisit the static shear strength and present the first cyclic undrained shear strength experiments on diatom microfossil—clayey-silt mixtures to study the role of diatoms on submarine slope stability. It is attested that the angle of internal friction (Φ) increases with diatom content, however, we provide evidence for a significant overestimation of Φ in previous studies. Based on direct shear tests at varying normal stresses ≤ 600 kPa we find Φ = 32° in contrast to 43° in pure diatom. Similarly, to static shear strength, cyclic shear strength increases with diatom content, however, in contrast to static shear strength the most drastic increase does not occur from 0% to 25% diatoms but from 75% to 100%. Interestingly, diatomaceous sediments tend to fail by liquefaction although well-established relations between index properties and liquefaction susceptibility predict the opposite. Liquefaction failure is observed solely in samples containing ≥ 50% diatoms whereas samples with lower diatom content fail by cyclic softening. We conclude diatom microfossils in marine sediments significantly contribute to an increased slope stability under static and cyclic loading conditions since diatoms lead to higher resistance independently of the loading mode. The strength increase is interpreted as a result of particle interlocking and surface roughness, which is very efficient given the highly variable habitus of diatom species.

  6. Effect of a fluoride-releasing self-etch acidic primer on the shear bond strength of orthodontic brackets.

    PubMed

    Bishara, Samir E; Ajlouni, Raed; Laffoon, John F; Warren, John J

    2002-06-01

    Conventional adhesive systems use three different agents--an enamel conditioner, a primer solution, and an adhesive resin--during the bonding of orthodontic brackets to enamel. A unique characteristic of some new bonding systems in operative dentistry is that they combine the conditioning and priming agents into a single application. Combining conditioning and priming saves time and should be more cost-effective to the clinician and indirectly to the patient. The purpose of this study was to assess and compare the effects of self-etching primers, including a fluoride-releasing primer, on the shear bond strength of orthodontic brackets. The brackets were bonded to extracted human teeth according to one of four protocols. In group 1 (control), teeth were etched with 37% phosphoric acid; after the sealant was applied, the brackets were bonded with Transbond XT (3M Unitek, Monrovia, Calif) and light cured for 20 seconds. In group 2, a self-etch acidic primer (3M ESPE, St Paul, Minn) was applied as suggested by the manufacturer, and the brackets were then bonded with Transbond XT as in the first group. In group 3, an experimental self-etch primer EXL #547 (3M ESPE) was applied to the teeth as suggested by the manufacturer, and the brackets were then bonded as in groups 1 and 2. In group 4, a fluoride-releasing self-etch primer, One-Up Bond F (J. Mortia, USA Inc. Irvine, Calif) that also has a novel dye-sensitized photo polymerization initiator system was applied as suggested by the manufacturer, and the brackets were then bonded as in the other groups. The present in vitro findings indicated that the shear bond strengths of the four groups were significantly different (P = .001). Duncan multiple range tests indicated that One-Up Bond F (mean +/- SD strength, 5.1+/-2.5 MPa) and Prompt L-Pop (strength, 7.1+/-4.4 MPa) had significantly lower shear bond strengths than both the EXL #547 self-etch primer (strength, 9.7+/-3.7 MPa) or the phosphoric acid etch and the

  7. Comparison of shear bond strength and surface structure between conventional acid etching and air-abrasion of human enamel.

    PubMed

    Olsen, M E; Bishara, S E; Damon, P; Jakobsen, J R

    1997-11-01

    Recently, air-abrasion technology has been examined for potential applications within dentistry, including the field of orthodontics. The purpose of this study was to compare the traditional acid-etch technique with an air-abrasion surface preparation technique, with two different sizes of abrading particles. The following parameters were evaluated: (a) shear bond strength, (b) bond failure location, and (c) enamel surface preparation, as viewed through a scanning electron microscope. Sixty extracted human third molars were pumiced and divided into three groups of 20. The first group was etched with a 37% phosphoric acid gel for 30 seconds, rinsed for 30 seconds, and dried for 20 seconds. The second and third groups were air-abraded with (a) a 50 microm particle and (b) a 90 microm particle of aluminum oxide, with the Micro-etcher microabrasion machine (Danville Engineering Inc.). All three groups had molar stainless steel orthodontic brackets bonded to the buccal surface of each tooth with Transbond XT bonding system (3M Unitek). A Zwick Universal Testing Machine (Calitek Corp.) was used to determine shear bond strengths. The analysis of variance was used to compare the three groups. The Adhesive Remnant Index (ARI) was used to evaluate the residual adhesive on the enamel after bracket removal. The chi square test was used to evaluate differences in the ARI scores among the groups. The significance for all tests was predetermined at p < or = 0.05. The results indicated that there was a significant difference in shear bond strength among the three groups (p = 0.0001). The Duncan Multiple Range test showed a significant decrease in shear bond strength in the air-abraded groups. The chi square test revealed significant differences among the ARI scores of the acid-etched group and the air-abraded groups (chi(2) = 0.0001), indicating no adhesive remained on the enamel surface after debonding when air-abrasion was used. In conclusion, the current findings indicate that

  8. A tapered channel microfluidic device for comprehensive cell adhesion analysis, using measurements of detachment kinetics and shear stress-dependent motion.

    PubMed

    Rupprecht, Peter; Golé, Laurent; Rieu, Jean-Paul; Vézy, Cyrille; Ferrigno, Rosaria; Mertani, Hichem C; Rivière, Charlotte

    2012-03-01

    We have developed a method for studying cellular adhesion by using a custom-designed microfluidic device with parallel non-connected tapered channels. The design enables investigation of cellular responses to a large range of shear stress (ratio of 25) with a single input flow-rate. For each shear stress, a large number of cells are analyzed (500-1500 cells), providing statistically relevant data within a single experiment. Besides adhesion strength measurements, the microsystem presented in this paper enables in-depth analysis of cell detachment kinetics by real-time videomicroscopy. It offers the possibility to analyze adhesion-associated processes, such as migration or cell shape change, within the same experiment. To show the versatility of our device, we examined quantitatively cell adhesion by analyzing kinetics, adhesive strength and migration behaviour or cell shape modifications of the unicellular model cell organism Dictyostelium discoideum at 21 °C and of the human breast cancer cell line MDA-MB-231 at 37 °C. For both cell types, we found that the threshold stresses, which are necessary to detach the cells, follow lognormal distributions, and that the detachment process follows first order kinetics. In addition, for particular conditions' cells are found to exhibit similar adhesion threshold stresses, but very different detachment kinetics, revealing the importance of dynamics analysis to fully describe cell adhesion. With its rapid implementation and potential for parallel sample processing, such microsystem offers a highly controllable platform for exploring cell adhesion characteristics in a large set of environmental conditions and cell types, and could have wide applications across cell biology, tissue engineering, and cell screening.

  9. An Ultrasonic Technique to Determine the Residual Strength of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Achenbach, J. D.; Tang, Z.

    1999-01-01

    In this work, ultrasonic techniques to nondestructively evaluate adhesive bond degradation have been studied. The key to the present approach is the introduction of an external factor which pulls the adhesive bond in the nonlinear range, simultaneously with the application of an ultrasonic technique. With the aid of an external static tensile loading, a superimposed longitudinal wave has.been used to obtain the slopes of the stress-strain curve of an adhesive bond at a series of load levels. The critical load, at which a reduction of the slope is detected by the superimposed longitudinal wave, is an indication of the onset of nonlinear behavior of the adhesive bond, and therefore of bond degradation. This approach has been applied to the detection of adhesive bond degradation induced by cyclic fatigue loading. Analogously to the longitudinal wave case, a superimposed shear wave has been used to obtain the effective shear modulus of adhesive layers at different shear load levels. The onset of the nonlinear behavior of an adhesive bond under shear loading has been detected by the use of a superimposed shear wave. Experiments show that a longitudinal wave can also detect the nonlinear behavior when an adhesive bond is subjected to shear loading. An optimal combination of ultrasonic testing and mechanical loading methods for the detection of degradation related nonlinear behavior of adhesive bonds has been discussed. For the purpose of a practical application, an ultrasonic technique that uses a temperature increase as an alternative to static loading has also been investigated. A general strain-temperature correspondence principle that relates a mechanical strain to a temperature has been presented. Explicit strain-temperature correspondence relations for both the tension and shear cases have been derived. An important parameter which quantifies the relation between the wave velocity and temperature has been defined. This parameter, which is indicative of adhesive

  10. Effect of adhesive layers on microshear bond strength of nanocomposite resin to dentin

    PubMed Central

    Ebrahim, Mohamed I.

    2017-01-01

    Background Bond strength of adhesive layer can absorb unwanted stresses of polymerization shrinkage in composite resin restorations; increased microshear bond strength can prevent failure of restoration materials, the purpose of this study was to evaluate the effect of adhesive layers on microshear bond strength of nanocomposite resin to dentin. Material and Methods Two different types of adhesive systems: universal adhesive (ExciTE) and newly developed adhesive (Nano-Bond), and one type of light-cured resin restorative material (Nanocomposite resin) were used in this study. The occlusal surfaces of extracted human molar teeth were ground perpendicular to the long axis of each tooth to expose a flat dentin surface. The adhesives were applied on dentin surfaces (single application or double application). Nanocomposite resin was then placed and light cured for 40 seconds. After 24 hours of immersion in water at 37°C, then subjected to thermocycling before testing, a microshear bond test was carried out. The data were analyzed by a two-way ANOVA. For comparison between groups, Tukey’s post-hoc test was used. Results The mean bond strengths of ExciTE and Nano-Bond adhesives with a single application were 8.8 and 16.6 MPa, respectively. The mean bond strengths of ExciTE and Nano-Bond adhesives with double application were 13.2 and 21.8MPa, respectively. There were no statistically significant differences in microshear bond strengths between the single application of Nano-Bond and the double application of ExciTE adhesives. Conclusions Microshear bond strength increased significantly as the applied adhesive layer was doubled. Key words:Adhesive, microshear, bond, strength, nanocomposite. PMID:28210433

  11. Effect of Different Surface Treatments on Repair Micro-shear Bond Strength of Silica- and Zirconia-filled Composite Resins

    PubMed Central

    Joulaei, Mohammad; Bahari, Mahmoud; Ahmadi, Anahid; Savadi Oskoee, Siavash

    2012-01-01

    Background and aims Effect of surface treatments on repair bond strength of aged composite resins might be different due to their dissimilar fillers. The aim was to evaluate the effect of different surface treatments on repair micro-shear bond strength (µSBS) of silica- (Spectrum TPH) and zirconia-filled (Filtek Z250) composite resins. Materials and methods Twenty-seven composite resin blocks were made from each type of composite resin: Z250 and Spectrum TPH. After aging, blocks of each type were randomly divided into three groups according to surface treatments: alloy primer, silane, and only surface roughening. Subsequently, each group was further subdivided into 3 subgroups based on the adhesive system used: Single Bond, Clearfil SE Bond, and Margin Bond. Four composite resin columns were added on each block. After thermocycling, µSBStest were done at cross head speed of 0.5 mm/min. Data was analysed using multifactor ANOVA, one-way ANOVA and a post-hoc Bonferroni tests (α = 0.05). Results Analysis of data showed that the effect of composite resin type was not significant (p > 0.05), but the effects of the type of surface treatment (p = 0.01) and the type of adhesive system (p = 0.01) were significant on repair µSBS. In addition, the cumulative effect of the composite type-surface treatment and the composite type with the type of adhesive system were not statistically significant (p > 0.05). However, the cumulative effects of the adhesive system-surface treatment (p = 0.03) and the composite type-the adhesive system-surface treatments (p = 0.002) were significant. Conclusion Although repair µSBS values of both silica- and zirconia-filled composite resins were similar, use of different combinations of surface treatments and adhesive systems affected their repair µSBS differently. PMID:23277859

  12. The Contribution of Frictional Contacts to the Shear Strength of Coarse Glass Bead Powders and Slurries

    SciTech Connect

    Poloski, Adam P.; Bredt, Paul R.; Daniel, Richard C.; Saez, Avelino E.

    2006-12-01

    The shear strength of powders and slurries containing coarse particles using a vane impeller were examined as a function of vane size, vane immersion depth, container size, and interstitial fluid. Results show that for powders and concentrated slurry systems containing coarse particles, vane immersion depth and container diameter significantly impact the measured shear strength. An equation describing interparticle frictional and cohesive contributions to shear vane measurements was derived in an effort to describe experimental results. A Janssen stress distribution model for granular materials was the basis for this equation. The use of a Janssen stress distribution appears to explain the behavior of shear strength measurements at varying immersion depths with dry cohesionless glass beads, water saturated glass beads, and glass beads dispersed in a non-Newtonian matrix of kaolin clay slurry. The presence of the Janssen stress distribution can affect the interpretation of shear vane results. Rather than shear strength being a material property as is the case with flocculated colloid slurries and polymer solutions, shear strength becomes a process property where vane depth, container size, and container material can result in significant measurement variations. Such parameters should be considered before using the shear vane results on applications involving granular material components.

  13. Surface morphology of platelet adhesion influenced by activators, inhibitors and shear stress

    NASA Astrophysics Data System (ADS)

    Watson, Melanie Groan

    Platelet activation involves multiple events, one of which is the generation and release of nitric oxide (NO), a platelet aggregation inhibitor. Platelets simultaneously send and receive various agents that promote a positive and negative feedback control system during hemostasis. Although the purpose of platelet-derived NO is not fully understood, NO is known to inhibit platelet recruitment. NO's relatively large diffusion coefficient allows it to diffuse more rapidly than platelet agonists. It may thus be able to inhibit recruitment of platelets near the periphery of a growing thrombus before agonists have substantially accumulated in those regions. Results from two studies in our laboratory differed in the extent to which platelet-derived NO decreased platelet adhesion. Frilot studied the effect of L-arginine (L-A) and NG-Methyl-L-arginine acetate salt (L-NMMA) on platelet adhesion to collagen under static conditions in a Petri dish. Eshaq examined the percent coverage on collagen-coated and fibrinogen-coated microchannels under shear conditions with different levels of L-A and Adenosine Diphosphate (ADP). Frilot's results showed no effect of either L-A or L-NMMA on surface coverage, thrombus size or serotonin release, while Eshaq's results showed a decrease in surface coverage with increased levels of L-A. A possible explanation for these contrasting results is that platelet-derived NO may be more important under flow conditions than under static conditions. For this project, the effects of L-A. ADP and L-NMMA on platelet adhesion were studied at varying shear stresses on protein-coated glass slides. The surface exposed to platelet-rich-plasma in combination with each chemical solution was observed under AFM, FE-SEM and fluorescence microscopy. Quantitative and qualitative comparisons of images obtained with these techniques confirmed the presence of platelets on the protein coatings. AFM images of fibrinogen and collagen-coated slides presented characteristic

  14. Tissue repair strength using chitosan adhesives with different physical-chemical characteristics.

    PubMed

    Barton, Matthew J; Morley, John W; Mahns, David A; Mawad, Damia; Wuhrer, Richard; Fania, David; Frost, Samuel J; Loebbe, Christian; Lauto, Antonio

    2014-11-01

    A range of chitosan-based biomaterials have recently been used to perform sutureless, laser-activated tissue repair. Laser-activation has the advantage of bonding to tissue through a non-contact, aseptic mechanism. Chitosan adhesive films have also been shown to adhere to sheep intestine strongly without any chemical modification to chitosan. In this study, we continue to investigate chitosan adhesive films and explore the impact on the tissue repair strength and tensile strength characteristics of four types of adhesive film based on chitosan with different molecular weight and degree of deacetylation. Results showed that adhesives based on chitosan with medium molecular weight achieved the highest bonding strength, tensile strength and E-modulus when compared to the other adhesives.

  15. EFFECT OF THERMOCYCLING ON THE TENSILE AND SHEAR BOND STRENGTHS OF THREE SOFT LINERS TO A DENTURE BASE RESIN

    PubMed Central

    Elias, Carlos Nelson; Henriques, Flavio Queiroz

    2007-01-01

    Statement of problem In clinical practice, loss of adhesion between the silicone-based denture liner and the denture base resin is always an undesirable event that might cause loss of material softness, water sorption, bacterial colonization and functional failure of the prosthesis. Purpose This study evaluated the effect of thermocycling on tensile and shear bond strengths of three soft liner materials to a denture base acrylic resin. Material and methods Three resilient liners (Mucopren-Soft, Mollosil-Plus and Dentusil) and a heat-polymerized acrylic resin (QC-20) were processed according to manufacturers’ directions. Sixty specimens (14 x 14 mm cross-sectional area) per bond strength test (20 for each liner) were fabricated and either stored in water at 37°C for 24 hours (control groups; n=10) or thermocycled 3,000 times in water between 5°C and 55°C (test groups; n=10). The specimens were tested in tensile and shear strength in a universal testing machine until fracture. Bond strength means were compared between water-stored and thermocycled groups for each material, as well as among materials for each treatment (water storage or thermocycling). Failure mode (adhesive, cohesive and mixed) after debonding was assessed. Data were analyzed statistically by paired Student’s t-test and ANOVA at 5% significance level. Results The water-stored groups had statistically significant higher bond strengths than the thermocycled groups (p<0.05). Without thermocycling, Mucopren-Soft (2.83 ± 0.48 MPa) had higher bond strength than Mollosil-Plus (1.04 ± 0.26 MPa) and Dentusil (1.14 ± 0.51 MPa). After thermocycling, Mucopren-Soft (1.63 ± 0.48 MPa) had the highest bond strength (p<0.05). Conclusion The bond strength of the three soft denture liners tested in this study changed with their chemical composition and all of them exhibited higher bond strengths than those usually reported as clinically acceptable. Clinical Implications All soft lining materials tested in

  16. Effect of acid etching on bond strength of nanoionomer as an orthodontic bonding adhesive

    PubMed Central

    Khan, Saba; Verma, Sanjeev K.; Maheshwari, Sandhya

    2015-01-01

    Aims: A new Resin Modified Glass Ionomer Cement known as nanoionomer containing nanofillers of fluoroaluminosilicate glass and nanofiller 'clusters' has been introduced. An in-vitro study aimed at evaluating shear bond strength (SBS) and adhesive remnant index (ARI) of nanoionomer under etching/unetched condition for use as an orthodontic bonding agent. Material and Methods: A total of 75 extracted premolars were used, which were divided into three equal groups of 25 each: 1-Conventional adhesive (Enlight Light Cure, SDS, Ormco, CA, USA) was used after and etching with 37% phosphoric acid for 30 s, followed by Ortho Solo application 2-nanoionomer (Ketac™ N100, 3M, ESPE, St. Paul, MN, USA) was used after etching with 37% phosphoric acid for 30 s 3-nanoionomer was used without etching. The SBS testing was performed using a digital universal testing machine (UTM-G-410B, Shanta Engineering). Evaluation of ARI was done using scanning electron microscopy. The SBS were compared using ANOVA with post-hoc Tukey test for intergroup comparisons and ARI scores were compared with Chi-square test. Results: ANOVA (SBS, F = 104.75) and Chi-square (ARI, Chi-square = 30.71) tests revealed significant differences between groups (P < 0.01). The mean (SD) SBS achieved with conventional light cure adhesive was significantly higher (P < 0.05) (10.59 ± 2.03 Mpa, 95% CI, 9.74-11.41) than the nanoionomer groups (unetched 4.13 ± 0.88 Mpa, 95% CI, 3.79-4.47 and etched 9.32 ± 1.87 Mpa, 95% CI, 8.58-10.06). However, nanoionomer with etching, registered SBS in the clinically acceptable range of 5.9–7.8 MPa, as suggested by Reynolds (1975). The nanoionomer groups gave significantly lower ARI values than the conventional adhesive group. Conclusion: Based on this in-vitro study, nanoionomer with etching can be successfully used as an orthodontic bonding agent leaving less adhesive remnant on enamel surface, making cleaning easier. However, in-vivo studies are needed to confirm the validity

  17. Evaluation of the effects of the oxygen-inhibited layer on shear bond strength of two resin composites

    PubMed Central

    Sehgal, Ankur; Rao, Y Madhukar; Joshua, Martha; Narayanan, L. Lakshmi

    2008-01-01

    Aim: The rising demand for aesthetic adhesive restorations has led to the wide use of composites. Multilayer techniques are recommended for the success of these restorations. However, this technique of layering causes the problem of interlayer adhesion, thus supporting the influence of the oxygen-inhibited layer. This study sought to test the hypothesis that the oxygen-inhibited layer increases the shear bond strength of composite resin by allowing the resins on both sides to cross the interface and form an interdiffusion zone. Materials and Methods: A microhybrid composite resin, Charisma, and a nanofill composite resin, Solare, were used in this study. Cylindrical specimens of the composites of 5 mm diameter and 6 mm height were prepared and embedded in acrylic resin moulds after curing. Curing was done in an argon atmosphere to prevent the formation of the oxygen-inhibited layer. To clinically simulate an inert atmosphere, a cellophane matrix strip was used during the process of curing. Results: Shear bond strength of the specimens was tested using a universal testing machine and the results were tabulated and statistically analyzed. PMID:20351974

  18. Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore

    SciTech Connect

    Sivakumar Babu, G.L.; Lakshmikanthan, P.; Santhosh, L.G.

    2015-05-15

    Highlights: • Shear strength properties of mechanically biologically treated municipal solid waste. • Effect of unit weight and particle size on the shear strength of waste. • Effect of particle size on the strength properties. • Stiffness ratio and the strength ratio of MSW. - Abstract: Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m{sup 3} to 10.3 kN/m{sup 3} at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43.

  19. Analysis of interface cracks in adhesively bonded lap shear joints, part 4

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Yau, J. F.

    1981-01-01

    Conservation laws of elasticity for nonhomogeneous materials were developed and were used to study the crack behavior in adhesively bonded lap shear joints. By using these laws and the fundamental relationships in fracture mechanics of interface cracks, the problem is reduced to a pair of linear algebraic equations, and stress intensity solutions can be determined directly by information extracted from the far field. The numerical results obtained show that: (1) in the lap-shear joint with a given adherend, the opening-mode stress intensity factor, (K sub 1) is always larger than that of the shearing-mode (K sub 2); (2) (K sub 1) is not sensitive to adherent thickness abut (K sub 2) increases rapidly with increasing thickness; and (3) (K sub 1) and (K sub 2) increase simultaneously as the interfacial crack length increases.

  20. COMPARISON OF SHEAR STRENGTH OF CERAMIC JOINTS DETERMINED BY VARIOUS TEST METHODS WITH SMALL SPECIMENS

    SciTech Connect

    Katoh, Yutai; Kiggans Jr, James O; Khalifa, Hesham; Back, Christina A.; Hinoki, Tatsuya; Ferraris, Monica

    2015-01-01

    Four different shear test methods i.e. doubled notched shear test, asymmetrical four point bend test, Iosipescu test, and torsion test, were investigated for their ability to evaluate one standard SiC to SiC ceramic brittle joint while using small size specimens. Double notched shear test showed higher stress concentration at the notch base and a lower nominal shear strength. Both asymmetrical four point bend test and Iosipescu test utilized epoxy jointed metal extensors, which failed during test and caused misalignment and tensile type of failure. Torsion test can deliver true shear loading. However, base material failure was observed for the torsion joint samples in this study. None of the tests can successfully induce true shear failure of the joint because the joint is stronger and tougher than the SiC substrate. Torsion test appears to be promising because of the pure shear loading, less stress concentration, and easy alignment.

  1. Comparative Evaluation of Shear Bond Strength of Orthodontic Brackets on Pretreatment with CPPACP, Fluor Protector and Phosflur: An In-vitro Study

    PubMed Central

    2014-01-01

    Objective: The purpose of this study is to evaluate bond strength, bracket tooth interface of Orthodontic brackets that are bonded for fixed Orthodontic treatment procedure on pretreatment with CPPACP, Fluor Protector and Phosflur. The goal is to assess the adhesive remnants following application of these remineralizing agents using Adhesive Remnant Index. Materials and Methods: Two hundred freshly extracted premolar teeth each divided into Control, CPP-ACP, Fluor Protector and Phosflur. Teeth were pretreated with these agents prior to bonding procedure. Shear Bond Strength was tested using a Universal Testing Machine. A jig was attached to upper jaw of the machine. The acrylic block containing the embedded teeth was secured in the lower jaw of the machine such that the bracket base of the teeth parallel the direction of the shear force at a crosshead speed of 1 mm/minute until bracket failure. The force required to dislodge the bracket was recorded. Results: Mean Shear bond strength value is highest for Phosflur (15.3658 ± 2.4546 ) followed by Fluor Protector , CPP-ACP and lowest for Control (7.0462 ± 0.8838 MPa). Conclusion: Phosflur, Fluor protector,CPP-ACP have comparable Shear bond strength values in comparison to control. PMID:24995233

  2. Shock induced shear strength in an HMX based plastic bonded explosive

    NASA Astrophysics Data System (ADS)

    Millett, J. C. F.; Taylor, P.; Appleby-Thomas, G.

    2017-01-01

    The shock induced mechanical response of an HMX based plastic bonded explosive (PBX) has been investigated in terms of the shear strength. Results show that shear strength increases with impact stress. However comparison with the calculated elastic response of both the PBX and pure HMX suggests that the overall mechanical response is controlled by the HMX crystals, with the near liquid like nature of the binder phase having a minimal contribution.

  3. Adhesive ability of a heat-resistant double-chain polymer and the strength of CFRP based on it

    NASA Astrophysics Data System (ADS)

    Gorbatkina, Yu. A.; Ivanova-Mumjieva, V. G.; Kuperman, A. M.; Ponomarev, I. I.; Sidorenko, V. I.

    2008-07-01

    The adhesive ability of a heat-resistant polyiminoquinazolindione (PIQD) binder, based on a double-chain polymer, and the physicomechanical characteristics of unidirectional CFRPs made with it are investigated. It is shown that, at room temperature, the strength of model adhesive joints (PIQD-steel wire) and of the CFRPs in shear and bending is rather low — about half of that of similar specimens based on an epoxy binder. At the same time, all their mechanical characteristics, to a large measure (50%), are retained at temperatures up to 450°C, which considerably exceeds the heat resistance of all polymer matrices used at the present time. The elastic modulus of the CFRPs in bending practically remains the same up to 450°C.

  4. The effect of herbal teas on the shear bond strength of orthodontic brackets.

    PubMed

    Ulusoy, Cagri; Müjdeci, Arzu; Gökay, Osman

    2009-08-01

    The present study was conducted to evaluate the effects of some types of herbal tea on the shear bond strength (SBS) of orthodontic brackets to enamel surfaces. The brackets were bonded with Transbond XT to 90 extracted human premolar teeth and divided equally into six groups, that is, black, mint-mate herbal, mint-lemon herbal, and rosehip fruit tea and two control groups, Coca-Cola and distilled water. All groups were conditioned for three 5-minute sessions with equal intervening intervals for 90 days. The initial pH, SBS, and adhesive remnant index (ARI) of the groups were evaluated and the data were analysed statistically by Kruskal-Wallis and Mann-Whitney U-tests, one-way analysis of variance, and Duncan and Z-tests, respectively. Rosehip fruit tea (2.4 +/- 0.07) and Coca-Cola (2.5 +/- 0.05) had the lowest pH values. Coca-Cola (6.04 +/- 1.11 MPa) and rosehip fruit tea (7.26 +/- 1.11 MPa) significantly reduced the SBS to enamel (P < 0.001). The SBS results for the other groups were similar (P > 0.05). Except for the Coca-Cola group (ARI score = 0), fracture sites for all other groups were similar with the majority of bond failures at the enamel-adhesive interface (ARI score = 1). Although this experiment could not completely replicate the complex oral environment, it seems to confirm that Coca-Cola and rosehip fruit tea may be a causative factor in bracket-enamel bonding failure.

  5. Comparison of shear bond strength of orthodontic brackets using various zirconia primers

    PubMed Central

    Lee, Ji-Yeon; Kim, Jin-Seok

    2015-01-01

    Objective The aim of this study was to compare the shear bond strength (SBS) of orthodontic brackets bonded to zirconia surfaces using three different zirconia primers and one silane primer, and subjected to thermocycling. Methods We designed 10 experimental groups following the surface treatment and thermocycling. The surface was treated with one of the following method: no-primer (NP), Porcelain Conditioner (PC), Z-PRIME Plus (ZP), Monobond Plus (MP) and Zirconia Liner Premium (ZL) (n=20). Then each group was subdivided to non-thermocycled and thermocycled groups (NPT, PC, ZPT, MPT, ZLT) (n=10). Orthodontic brackets were bonded to the specimens using Transbond™ XT Paste and light cured for 15 s at 1,100 mW/cm2. The SBS was measured at a 1 mm/min crosshead speed. The failure mode was assessed by examination with a stereomicroscope and the amount of bonding resin remaining on the zirconia surface was scored using the modified adhesive remnant index (ARI). Results The SBS of all experimental groups decreased after thermocycling. Before thermocycling, the SBS was ZL, ZP ≥ MP ≥ PC > NP but after thermocycling, the SBS was ZLT ≥ MPT ≥ ZPT > PCT = NPT (p > 0.05). For the ARI score, both of the groups lacking primer (NP and NPT) displayed adhesive failure modes, but the groups with zirconia primers (ZP, ZPT, MP, MPT, ZL, and ZLT) were associated with mixed failure modes. Conclusions Surface treatment with a zirconia primer increases the SBS relative to no-primer or silane primer application between orthodontic brackets and zirconia prostheses. PMID:26258062

  6. Shear Strength of Partially Bonded Concrete-Rock Interfaces for Application in Dam Stability Analyses

    NASA Astrophysics Data System (ADS)

    Krounis, Alexandra; Johansson, Fredrik; Larsson, Stefan

    2016-07-01

    The shear strength of the concrete-rock interface has a substantial influence on the sliding stability of concrete gravity dams founded on rock. While several studies have been done on concrete-rock contacts, there remains uncertainty regarding the peak shear strength of partially bonded interfaces. There exists, in particular, an uncertainty regarding the contribution from surface roughness of the unbonded parts to the peak shear strength of the interface due to the dependency of mobilized strength on shear displacement. In this study, a series of 24 direct shear tests are performed under CNL conditions on concrete-rock samples with different bonding conditions. Tests on samples with fully bonded and unbonded interfaces are conducted to study the strain compatibility of the different contacts, while the results of samples with partially bonded interfaces are evaluated in the context of linking the joint roughness of the unbonded parts to the peak shear strength of the interface. The results indicate that a significant part of the surface roughness of the unbonded parts is mobilized prior to degradation of bond strength, in particular for interfaces with low bonding percentages. It is recommended that further research should be conducted to understand how the contribution from roughness change with an increase in scale and degree of matedness.

  7. Influence of Light Source, Thermocycling and Silane on the Shear Bond Strength of Metallic Brackets to Ceramic.

    PubMed

    De Abreu Neto, Hugo Franco; Costa, Ana Rosa; Correr, Américo Bortolazzo; Vedovello, Silvia Amélia; Valdrighi, Heloísa Cristina; Santos, Eduardo Cesar Almada; Correr-Sobrinho, Lourenço; Vedovello Filho, Mário

    2015-01-01

    The objective of this study was to evaluate the effects of different light sources, thermocycling and silane on the bond strength of metallic brackets to ceramic. Cylinders of feldspathic ceramic were etched with 10% hydrofluoric acid for 60 s. Half of the cylinders (Groups 1 to 4) received two layers of silane. Metallic brackets were bonded to the cylinders using Transbond XT and divided into 8 groups (n=20), according to light source (Radii Plus LED - 40 s; Groups 1, 2, 5 and 6 and XL 2500 halogen light - 40 s; Groups 3, 4, 7 and 8) and experimental conditions with (Groups 2, 4, 6 and 8) without thermocycling (Groups 1, 3, 5 and 7). Shear bond testing was carried out after 24 h of deionized water storage (Groups 1, 3, 5 and 7) and thermocycling (Groups 2, 4, 6 and 8; 7,000 cycles - 5°/55 °C). Date were submitted to three-way ANOVA and Tukey's post hoc test (α=0.05). The Adhesive Remnamt Index (ARI) was evaluated at 8× magnification. The application of silane was effective in increasing the shear bond strength of the brackets to ceramic (p<0.05). Significant difference (p<0.05) on the bond strength was observed between light sources with or without thermocycling. The ARI showed a predominance of scores 0 for all groups, with an increase in scores 1, 2 and 3 for the silane groups. In conclusion, silane improved significantly the shear bond strength of the brackets to ceramic. The thermocycling and light sources influence on the bond strength.

  8. Effect of endodontic irrigation and dressing procedures on the shear bond strength of composite to coronal dentin

    PubMed Central

    Abo-Hamar, Sahar E.

    2012-01-01

    This study aimed to evaluate the effects of three sodium hypochlorite (NaOCl)-endodontic irrigation procedures used alone or in combinations with two intermediate dressing materials on bond strengths of two adhesive composite systems to coronal dentin. Surfaces were treated with NaOCl or NaOCl–Glyde-File-Prep (H2O2 and EDTA) with or without chlorhexidine (CHX) as a final rinse. Intermediate dressing materials of calcium hydroxide (Ca(OH)2) and sodium perborate (SP) were combined with surface treatments. Surface treatment groups (n = 10/group) included (1) distilled water (control), (2) 5.25% NaOCl (30 min), (3) NaOCl/Glyde (30 min), (4) NaOCl/Glyde (30 min) + CHX (2 min), (5) NaOCl/Glyde (30 min) + Ca(OH)2 (5 days) + CHX (2 min), and (6) NaOCl/Glyde (30 min) + SP (9 days) + CHX (2 min). For each surface treatment group, dentin shear bond strengths of two different composite systems (Excite/Tetric Flow Chroma, [EX/TFC], and Clearfil Protect Bond/Protect Liner F [PB/PLF]) were evaluated. Median shear bond strengths (EX/TFC, PB/PLF) for each surface treatment group in MPa were (1) 21, 18; (2) 26, 18; (3) 21, 17; (4) 22, 16; (5) 17, 11; and (6) 14, 11, respectively. NaOCl significantly increased the bond strength of EX/TFC (p < 0.05), but did not significantly affect that of PB/PLF. The use of NaOCl/Glyde with CHX did not significantly affect EX/TFC (p > 0.05), whereas it significantly decreased PB/PLF (p < 0.05). Ca(OH)2 and SP significantly decreased the bond strengths of both adhesive systems (p < 0.05). Adhesion to coronal dentin is dependent upon the irrigation regimen and the type of adhesive. PMID:25685402

  9. Effects of ultrasonic agitation on adhesion strength of micro electroforming Ni layer on Cu substrate.

    PubMed

    Zhao, Zhong; Du, Liqun; Xu, Zheng; Shao, Ligeng

    2016-03-01

    Micro electroforming is an important technology, which is widely used for fabricating micro metal devices in MEMS. The micro metal devices have the problem of poor adhesion strength, which has dramatically influenced the dimensional accuracy of the devices and seriously limited the development of the micro electroforming technology. In order to improve the adhesion strength, ultrasonic agitation method is applied during the micro electroforming process in this paper. To explore the effect of the ultrasonic agitation, micro electroforming experiments were carried out under ultrasonic and ultrasonic-free conditions. The effects of the ultrasonic agitation on the micro electroforming process were investigated by polarization and alternating current (a.c.) impedance methods. The real surface area of the electroforming layer was measured by cyclic voltammetry method. The compressive stress and the crystallite size of the electroforming layer were measured by X-ray Diffraction (XRD) method. The adhesion strength of the electroforming layer was measured by scratch test. The experimental results show that the imposition of the ultrasonic agitation decreases the polarization overpotential and increases the charge transfer process at the electrode-electrolyte interface during the electroforming process. The ultrasonic agitation increases the crystallite size and the real surface area, and reduces the compressive stress. Then the adhesion strength is improved about 47% by the ultrasonic agitation in average. In addition, mechanisms of the ultrasonic agitation improving the adhesion strength are originally explored in this paper. The mechanisms are that the ultrasonic agitation increases the crystallite size, which reduces the compressive stress. The lower the compressive stress is, the larger the adhesion strength is. Furthermore, the ultrasonic agitation increases the real surface area, enhances the mechanical interlocking strength and consequently increases the adhesion

  10. Parametric Study of Shear Strength of Concrete Beams Reinforced with FRP Bars

    NASA Astrophysics Data System (ADS)

    Thomas, Job; Ramadass, S.

    2016-09-01

    Fibre Reinforced Polymer (FRP) bars are being widely used as internal reinforcement in structural elements in the last decade. The corrosion resistance of FRP bars qualifies its use in severe and marine exposure conditions in structures. A total of eight concrete beams longitudinally reinforced with FRP bars were cast and tested over shear span to depth ratio of 0.5 and 1.75. The shear strength test data of 188 beams published in various literatures were also used. The model originally proposed by Indian Standard Code of practice for the prediction of shear strength of concrete beams reinforced with steel bars IS:456 (Plain and reinforced concrete, code of practice, fourth revision. Bureau of Indian Standards, New Delhi, 2000) is considered and a modification to account for the influence of the FRP bars is proposed based on regression analysis. Out of the 196 test data, 110 test data is used for the regression analysis and 86 test data is used for the validation of the model. In addition, the shear strength of 86 test data accounted for the validation is assessed using eleven models proposed by various researchers. The proposed model accounts for compressive strength of concrete ( f ck ), modulus of elasticity of FRP rebar ( E f ), longitudinal reinforcement ratio ( ρ f ), shear span to depth ratio ( a/ d) and size effect of beams. The predicted shear strength of beams using the proposed model and 11 models proposed by other researchers is compared with the corresponding experimental results. The mean of predicted shear strength to the experimental shear strength for the 86 beams accounted for the validation of the proposed model is found to be 0.93. The result of the statistical analysis indicates that the prediction based on the proposed model corroborates with the corresponding experimental data.

  11. Effect of 10% Sodium Ascorbate on Shear Bond Strength of Bleached Teeth - An in-vitro Study

    PubMed Central

    Ponnappa, K C; Nitin, Mirdha; Ramesh, Sachhi; Sharanappa, Kambale; Nishant, Ajgaonkar

    2015-01-01

    Background Patient often requires some additional interventions such as replacement of old restorations, laminates and veneers after bleaching, for aesthetic purposes. The residual oxygen inhibits polymerization of resin based materials which results in reduced bond strength of the restorations. Some techniques are available to solve the clinical problems related to the post bleach compromised bond strength. Objectives The purpose of this study is to evaluate, the role of 10% sodium ascorbate on reversing the compromised bond strength and compare enamel shear bond strength of 5th and 6th generation dentine bonding agents on bleached and unbleached teeth. Materials and Methods Eighty freshly extracted human anterior teeth were assigned in to Group A and Group B of 40 teeth each. Samples in both groups were subdivided in to 4 subgroups of 10 teeth each. In Group A composite resins was bonded using 5th generation dentine bonding agent (3M Single Bond) and Group B was bonded using 6th generation (3M ESPE Adper SE Plus). Subgroups were subjected to the procedure as, A1;B1 etching and bonding (control), A2; B2 bleaching, etching and immediate bonding, A3; B3 bleaching,10% ascorbic acid treatment for 10 minutes after that etching and bonding immediately, A4; B4 bleaching, storage in artificial saliva for 4 days and then etching and bonding. Pola office, in office bleach (SDI (082216) was used for bleaching. The specimens were subjected to shear load in a Universal testing machine to evaluate bond strength. Results A decrease in bond strength was seen with 6th generation adhesive system compared to 5th generation bonding system, which is statistically significant, p<0.001. Conclusion Treating the bleached enamel surfaces when treated with 10% sodium ascorbate, which reverses the compromised bond strength and is a good alternative to delayed bonding. PMID:26393201

  12. In vitro comparative bond strength of contemporary self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion.

    PubMed

    Blatz, Markus B; Phark, Jin-Ho; Ozer, Fusun; Mante, Francis K; Saleh, Najeed; Bergler, Michael; Sadan, Avishai

    2010-04-01

    This study compared shear bond strengths of six self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion. One hundred twenty zirconia samples were air-abraded (group SB; n = 60) or left untreated (group NO). Composite cylinders were bonded to the zirconia samples with either BisCem (BC), Maxcem (MC), G-Cem (GC), RelyX Unicem Clicker (RUC), RelyX Unicem Applicator (RUA), or Clearfil SA Cement (CSA). Shear bond strength was tested after thermocycling, and data were analyzed with analysis of variance and Holm-Sidak pairwise comparisons. Without abrasion, RUA (8.0 MPa), GC (7.9 MPa), and CSA (7.6 MPa) revealed significantly higher bond strengths than the other cements. Air-particle abrasion increased bond strengths for all test cements (p < 0.001). GC (22.4 MPa) and CSA (18.4 MPa) revealed the highest bond strengths in group SB. Bond strengths of self-adhesive resin cements to zirconia were increased by air-particle abrasion. Cements containing adhesive monomers (MDP/4-META) were superior to other compositions.

  13. High strength semi-active energy absorbers using shear- and mixedmode operation at high shear rates

    NASA Astrophysics Data System (ADS)

    Becnel, Andrew C.

    This body of research expands the design space of semi-active energy absorbers for shock isolation and crash safety by investigating and characterizing magnetorheological fluids (MRFs) at high shear rates ( > 25,000 1/s) under shear and mixed-mode operation. Magnetorheological energy absorbers (MREAs) work well as adaptive isolators due to their ability to quickly and controllably adjust to changes in system mass or impact speed while providing fail-safe operation. However, typical linear stroking MREAs using pressure-driven flows have been shown to exhibit reduced controllability as impact speed (shear rate) increases. The objective of this work is to develop MREAs that improve controllability at high shear rates by using pure shear and mixed shear-squeeze modes of operation, and to present the fundamental theory and models of MR fluids under these conditions. A proof of concept instrument verified that the MR effect persists in shear mode devices at shear rates corresponding to low speed impacts. This instrument, a concentric cylinder Searle cell magnetorheometer, was then used to characterize three commercially available MRFs across a wide range of shear rates, applied magnetic fields, and temperatures. Characterization results are presented both as flow curves according to established practice, and as an alternate nondimensionalized analysis based on Mason number. The Mason number plots show that, with appropriate correction coefficients for operating temperature, the varied flow curve data can be collapsed to a single master curve. This work represents the first shear mode characterization of MRFs at shear rates over 10 times greater than available with commercial rheometers, as well as the first validation of Mason number analysis to high shear rate flows in MRFs. Using the results from the magnetorheometer, a full scale rotary vane MREA was developed as part of the Lightweight Magnetorheological Energy Absorber System (LMEAS) for an SH-60 Seahawk helicopter

  14. Characterization of compressive and short beam shear strength of bamboo opened cell foam core sandwich composites

    NASA Astrophysics Data System (ADS)

    Setyawan, Paryanto Dwi; Sugiman, Saputra, Yudhi

    2016-03-01

    The paper presents the compressive and the short beam shear strength of a sandwich composite with opened cell foam made of bamboo fiber as the core and plywood as the skins. The core thickness was varied from 10 mm to 40 mm keeping the volume fraction of fiber constant. Several test s were carried out including the core density, flatwise compressive and the short beam shear testing in three point bending. The results show that the density of bamboo opened cell foam is comparable with commercial plastic foam, such as polyurethane foam. The compressive strength tends to increase linearly with increasing the core thickness. The short beam shear failure load of the sandwich composite increases with the increase of core thickness, however on the contrary, the short beam shear strength which tends to sharply decrease from the thickness of 10 mm to 30 mm and then becomes flat.

  15. Shear-strength signatures of mass movements, continental slope of Campos Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Kowsmann, R. O.; da Costa, A. M.; Amaral, C. S.

    2003-04-01

    Downhole shear-strength profiles, obtained from cone-penetrometer and lab tests were tied to sedimentary facies from adjacent continuous cores. The geotechnical response of mass-transport deposits was investigated. In the Campos Basin, sediments have evacuated from the upper continental slope and have accumulated as folded deposits on the middle slope. Sediment removal is recognised by an abrupt step-like increase in shear-strength at the level of the unconformity. The folded deposits are characterised by a belly-shaped increase in shear-strength coinciding with a zone of intense lamination within the deposit, induced by internal shearing and fluid loss (strain hardening). In contrast, highly disintegrated muddy debris-flow deposits are indistinguishable, in terms of shear-strength, from normal hemipelagic slope sediments. Debris-flow tongues emanating from canyon mouths, which contain a significant amount of more consolidated mud clasts can however be differentiated from in situ sediments by their serrated signature and higher shear-strength.

  16. Improved adhesive strength and toughness of polyvinyl acetate glue on addition of small quantities of graphene.

    PubMed

    Khan, Umar; May, Peter; Porwal, Harshit; Nawaz, Khalid; Coleman, Jonathan N

    2013-02-01

    We have prepared composites of polyvinyl acetate (PVAc) reinforced with solution exfoliated graphene. We observe a 50% increase in stiffness and a 100% increase in tensile strength on addition of 0.1 vol % graphene compared to the pristine polymer. As PVAc is commonly used commercially as a glue, we have tested such composites as adhesives. The adhesive strength and toughness of the composites were up to 4 and 7 times higher, respectively, than the pristine polymer.

  17. Influence of methyl mercaptan on the repair bond strength of composites fabricated using self-etch adhesives.

    PubMed

    Yokokawa, Miho; Rikuta, Akitomo; Tsujimoto, Akimasa; Tsuchiya, Kenji; Shibasaki, Syo; Matsuyoshi, Saki; Miyazaki, Masashi

    2015-02-01

    The influence of methyl mercaptan on the repair bond strength of composites fabricated using self-etch adhesives was investigated. The surface free-energies were determined by measuring the contact angles of test liquids placed on composites that had been immersed in different concentrations of methyl mercaptan (0.01, 0.1, and 1.0 M). To determine the repair bond strength, self-etch adhesives were applied to the aged composite, and then newly added composites were condensed. Ten samples of each specimen were subjected to shear testing at a crosshead speed of 1.0 mm min(-1). Samples were analyzed using two-way ANOVA followed by Tukey's honestly significant difference (HSD) test. Although the dispersion force of the composites remained relatively constant, their polar force increased slightly as the concentration of methyl mercaptan increased. The hydrogen-bonding forces were significantly higher after immersion in 1.0 M methyl mercaptan, leading to higher surface-free energies. However, the repair bond strengths for the repair restorations prepared from composites immersed in 1.0 M methyl mercaptan were significantly lower than for those immersed in 0.01 and 0.10 M methyl mercaptan. Considering the results of this study, it can be concluded that the repair bond strengths of both the aged and newly added composites were affected by immersion in methyl mercaptan solutions.

  18. Shear strength of metal - SiO2 contacts

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1978-01-01

    The strength of the bond between metals and SiO2 was studied by measuring the static coefficient of friction of metals contacting alpha-quartz in ultrahigh vacuum. It was found that copper with either chemisorbed oxygen, nitrogen, or sulphur exhibited higher contact strength on stoichiometric SiO2 than did clean copper. Since the surface density of states induced by these species on copper is similar, it appears that the strength of the interfacial bond can be related to the density of states on the metal surface.

  19. LDL decreases the membrane compliance and cell adhesion of endothelial cells under fluid shear stress.

    PubMed

    Wei, Dangheng; Chen, Yongpeng; Tang, Chaojun; Huang, Hua; Liu, Lushan; Wang, Zuo; Li, Ruming; Wang, Guixue

    2013-03-01

    Atherosclerosis is an inflammatory disease of large and medium sized arteriole walls that is precipitated by elevated levels of low-density lipoprotein (LDL) cholesterol in the blood. However, the mechanisms that lead to the initiation of atherosclerosis are not fully understood. In this study, endothelial cells (ECs) were incubated with LDL for 24 h, and then the lipid was detected with Oil Red O staining and cholesterol ester was assayed with high-performance liquid chromatography (HPLC). F-actin was examined by fluorescence microscopy and the viscoelasticity of ECs was investigated using the micropipette aspiration technique. Then, a parallel-plate flow chamber device was used to observe the adhesion and retention of ECs under shear stress. The results demonstrated that elevated LDL significantly increased the cellular lipid content and induced the rearrangement of cytoskeletal F-actin. The initial rapid deformability (l/K 1 + l/K 2) was reduced by elevated cellular LDL levels, while membrane viscosity (μ) was increased by LDL accumulation. After treatment with 150 mg L(-1) LDL for 24 h, the adhesion of ECs under fluid shear stress was significantly decreased (p < 0.05). These results suggested that LDL induced cellular lipid accumulation and cytoskeleton reorganization which increased the cellular stiffness and decreased the adhesion of ECs.

  20. Neutrophil adhesion and crawling dynamics on liver sinusoidal endothelial cells under shear flow.

    PubMed

    Yang, Hao; Li, Ning; Du, Yu; Tong, Chunfang; Lü, Shouqin; Hu, Jinrong; Zhang, Yan; Long, Mian

    2017-02-01

    Neutrophil (polymorphonuclear leukocyte, PMN) recruitment in the liver sinusoid takes place in almost all liver diseases and contributes to pathogen clearance or tissue damage. While PMN rolling unlikely appears in liver sinusoids and Mac-1 or CD44 is assumed to play respective roles during in vivo local or systematic inflammatory stimulation, the regulating mechanisms of PMN adhesion and crawling dynamics are still unclear from those in vivo studies. Here we developed a two-dimensional in vitro sinusoidal model with primary liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs) to investigate TNF-α-induced PMN recruitment under shear flow. Our data demonstrated that LFA-1 dominates the static or shear resistant adhesion of PMNs while Mac-1 decelerates PMN crawling on LSEC monolayer. Any one of LFA-1, Mac-1, and CD44 molecules is not able to work effectively for mediating PMN transmigration across LSEC monolayer. The presence of KCs only affects the randomness of PMN crawling. These findings further the understandings of PMN recruitment under shear flow in liver sinusoids.

  1. Microleakage and shear bond strength of orthodontc brackets bonded to hypomineralized enamel following different surface preparations

    PubMed Central

    Shahabi, Mostafa; Mohamadipour, Hamideh; Moosavi, Horieh

    2014-01-01

    Objectives: This study investigated the effects of several conditioning methods on shear bond strength (SBS) and microleakage of orthodontic brackets bonded to demineralized enamel. Study Design: One hundred premolars were selected and immersed in a cariogenic solution for 12 weeks. The teeth were randomly assigned into 5 groups. In groups 1 and 2, the teeth underwent acid etching for 30 and 120 seconds, respectively. In group 3, a combination of laser and acid etching was employed. A self-etch primer (SEP) was applied in group 4 and in group 5, the teeth were exposed to acidulated phosphate fluoride (APF) for 4 minutes before etching. After bracket bonding, the teeth were immersed in methylen blue for 12 hours and then were mounted in acrylic resin. SBS was determined with an Instron Universal Testing Machine and the amount of microleakage under the brackets was assessed under a stereomicroscope. Results: The lowest SBS was related to the SEP group and the highest one was observed in the specimens prepared by APF+acid etching. There was a significant difference in SBS (p=0.009), but not in microleakage (p=0.971) of the study groups. The SBS of the specimens treated with SEP was significantly Lower than the other groups, which were not significantly different from each other. The SEP group displayed a higher frequency of bond failure at the enamel-adhesive interface. Conclusions: Enamel preparation with SEP provided the lowest SBS among the groups. All groups showed some degree of microleakage. There was no significant correlation between SBS and microleakage. Key words:Bond strength, microleakage, bonding, self-etch primer, Er:YAG laser. PMID:24790708

  2. “Evaluation of shear bond strength of a composite resin to white mineral trioxide aggregate with three different bonding systems”-An in vitro analysis

    PubMed Central

    Patil, Anand C.

    2016-01-01

    Background Mineral trioxide aggregate (MTA) is a biomaterial that has been investigated for endodontic applications. With the increased use of MTA in pulp capping, pulpotomy, perforation repair, apexification and obturation, the material that would be placed over MTA as a final restoration is an important matter. As composite resins are one of the most widely used final restorative materials, this study was conducted to evaluate the shear bond strength of a composite resin to white mineral trioxide aggregate (WMTA) using three different bonding systems namely the two-step etch and rinse adhesive, the self-etching primer and the All-in-one system. Material and Methods Forty five specimens of white MTA (Angelus) were prepared and randomly divided into three groups of 15 specimens each depending on the bonding systems used respectively. In Group A, a Two-step etch and rinse adhesive or ‘total-etch adhesive’, Adper Single Bond 2 (3M/ESPE) and Filtek Z350 (3M ESPE, St Paul, MN) were placed over WMTA. In group B, a Two-step self-etching primer system, Clearfil SE Bond (Kuraray, Medical Inc) and Filtek Z350 were used. In Group C, an All-in-one system, G Bond (GC corporation, Tokyo, Japan) and Filtek Z350 were used. The shear bond strength was measured for all the specimens. The data obtained was subjected to One way Analysis of Variance (ANOVA) and Scheffe’s post hoc test. Results The results suggested that the Two-step etch and rinse adhesive when used to bond a composite resin to white MTA gave better bond strength values and the All-in-one exhibited the least bond strength values. Conclusions The placement of composite used with a Two-step etch and rinse adhesive over WMTA as a final restoration may be appropriate. Key words:Composite resins, dentin bonding agents, mineral trioxide aggregate, shear bond strength. PMID:27398177

  3. Effects of solvent volatilization time on the bond strength of etch-and-rinse adhesive to dentin using conventional or deproteinization bonding techniques

    PubMed Central

    de Sousa Júnior, José Aginaldo; Carregosa Santana, Márcia Luciana; de Figueiredo, Fabricio Eneas Diniz

    2015-01-01

    Objectives This study determined the effect of the air-stream application time and the bonding technique on the dentin bond strength of adhesives with different solvents. Furthermore, the content and volatilization rate of the solvents contained in the adhesives were also evaluated. Materials and Methods Three adhesive systems with different solvents (Stae, SDI, acetone; XP Bond, Dentsply De Trey, butanol; Ambar, FGM, ethanol) were evaluated. The concentrations and evaporation rates of each adhesive were measured using an analytical balance. After acid-etching and rinsing, medium occlusal dentin surfaces of human molars were kept moist (conventional) or were treated with 10% sodium hypochlorite for deproteinization. After applying adhesives over the dentin, slight air-stream was applied for 10, 30 or 60 sec. Composite cylinders were built up and submitted to shear testing. The data were submitted to ANOVA and Tukey's test (α = 0.05). Results Stae showed the highest solvent content and Ambar the lowest. Acetone presented the highest evaporation rate, followed by butanol. Shear bond strengths were significantly affected only by the factors of 'adhesive' and 'bonding technique' (p < 0.05), while the factor 'duration of air-stream' was not significant. Deproteinization of dentin increased the bond strength (p < 0.05). Stae showed the lowest bond strength values (p < 0.05), while no significant difference was observed between XP Bond and Ambar. Conclusions Despite the differences in content and evaporation rate of the solvents, the duration of air-stream application did not affect the bond strength to dentin irrespective of the bonding technique. PMID:26295023

  4. Shear bond strength of veneering ceramic to coping materials with different pre-surface treatments

    PubMed Central

    Anuar, Norsamihah; Ahmad, Marlynda

    2016-01-01

    PURPOSE Pre-surface treatments of coping materials have been recommended to enhance the bonding to the veneering ceramic. Little is known on the effect on shear bond strength, particularly with new coping material. The aim of this study was to investigate the shear bond strength of veneering ceramic to three coping materials: i) metal alloy (MA), ii) zirconia oxide (ZO), and iii) lithium disilicate (LD) after various pre-surface treatments. MATERIALS AND METHODS Thirty-two (n = 32) discs were prepared for each coping material. Four pre-surface treatments were prepared for each sub-group (n = 8); a) no treatment or control (C), b) sandblast (SB), c) acid etch (AE), and d) sandblast and acid etch (SBAE). Veneering ceramics were applied to all discs. Shear bond strength was measured with a universal testing machine. Data were analyzed with two-way ANOVA and Tukey's multiple comparisons tests. RESULTS Mean shear bond strengths were obtained for MA (19.00 ± 6.39 MPa), ZO (24.45 ± 5.14 MPa) and LD (13.62 ± 5.12 MPa). There were statistically significant differences in types of coping material and various pre-surface treatments (P<.05). There was a significant correlation between coping materials and pre-surface treatment to the shear bond strength (P<.05). CONCLUSION Shear bond strength of veneering ceramic to zirconia oxide was higher than metal alloy and lithium disilicate. The highest shear bond strengths were obtained in sandblast and acid etch treatment for zirconia oxide and lithium disilicate groups, and in acid etch treatment for metal alloy group. PMID:27826383

  5. Shear bond strength of resin-modified glass ionomer cements to Er:YAG laser-treated tooth structure.

    PubMed

    de Souza-Gabriel, Aline Evangelista; do Amaral, Flávia Lucisano Botelho; Pécora, Jesus Djalma; Palma-Dibb, Regina Guenka; Corona, Silmara Aparecida Milori

    2006-01-01

    This study evaluated the effect of Er:YAG laser irradiation of enamel and dentin on the shear bond strength of resin-modified glass ionomer cements (RMGIC). Twenty molars were selected and the roots removed. The crowns were bisected, embedded in polyester resin and ground to plane the enamel or expose the dentin. The bonding site was delimited, and samples were randomly assigned according to the cavity preparation device: I--Er.YAG laser (350mJ/2Hz); II--Carbide bur (control group). They were subdivided according to the restorative material employed: A) Fuji II LC (GC); B) Vitremer (3M). Samples were then fixed to a metallic device where ionomer cylinders were prepared. Sequentially, the molars were stored for 24 hours and subjected to a shear bond strength test (50Kgf at 0.5 mm/minute). Means in MPa were: Enamel--IA) 4.77 (+/- 1.12); IB) 4.36 (+/- 1.50); IIA) 7.70 (+/- 1.53); IIB) 7.34 (+/- 1.52) and Dentin--IA) 3.13 (+/- 1.15); IB) 2.67 (+/- 0.74); IIA) 6.38 (+/- 1.44); IIB) 5.58 (+/-2.09). Data were submitted to statistical analysis by ANOVA. Adhesion for enamel was more efficient than for dentin (p < 0.01). The cavities prepared with a conventional bur (control group) presented higher bond strength values than those recorded for Er:YAG laser (p < 0.01). No significant differences were observed between the restorative materials. Based on these results, it was concluded that Er:YAG laser adversely affected the shear bond strength of RMGIC for both enamel and dentin.

  6. Comparative evaluation of shear bond strength of two different chairside soft liners to heat processed acrylic denture base resin: An in vitro study

    PubMed Central

    Rajaganesh, N.; Sabarinathan, S.; Azhagarasan, N. S.; Shankar, Chitra; Krishnakumar, Jaya; Swathi, S.

    2016-01-01

    Background: Chairside softliners are used more frequently than is reported and studies regarding the bond strength of chairside softliners to heat-polymerized denture base resin are few and limited. Hence, this study was conducted to comparatively evaluate the shear bond strength of two chairside soft relining materials viz., autopolymerizing plasticized acrylic resin liner and a silicone-based liner bonded to heat polymerized polymethyl methacrylate denture base resin and to analyze the mode of interfacial bond failure. Materials and Methods: Forty test specimens (n = 40) were prepared by bonding plasticized acrylic- and silicone-based soft liner to heat polymerized acrylic resin blocks. Twenty specimens, ten from each group, were subjected to thermal cycling and later to shear bond strength testing. The debonded specimens were then qualitatively analyzed for the mode of failure using scanning electron microscopy. The results obtained were tabulated and statistically analyzed. Results: The mean shear bond strength values obtained for acrylic-based soft liner before and after thermal cycling were 0.3365 ± 0.025 MPa and 0.3164 ± 0.04 MPa, respectively. The mean shear bond strength values obtained for silicone-based soft liner before and after thermal cycling were 0.4159 ± 0.025 MPa and 0.4335 ± 0.02 MPa, respectively. Silicone-based soft liner showed higher shear bond strength than the acrylic-based both before and after thermal cycling (P = 0.0001). Scanning electron microscopy analysis showed a predominantly mixed mode of failure with silicone-based liner and predominantly adhesive mode of failure with acrylic-based soft liner. Conclusion: The silicone-based soft liner showed higher shear bond strength to heat polymerized acrylic resin than acrylic-based soft liner both before and after thermal cycling. PMID:27829769

  7. Comparative Evaluation of Shear Bond Strength and Fluoride Release of Conventional Glass Ionomer with 1% Ethanolic Extract of Propolis Incorporated Glass Ionomer Cement –Invitro Study

    PubMed Central

    Prabhakar, Attiguppe Ramashetty; Basappa, Nadig

    2016-01-01

    Introduction Atraumatic restorative treatment is a minimal intervention approach which involves manual removal of caries followed by restoration using adhesive restorative material. Due to incomplete manual caries excavation, there is a high chance of secondary caries under the restoration. Hence, many antibacterial agents have been incorporated in cement to enhance their antibacterial effect. Propolis is one of the natural medicines that has highlighted application in dentistry. Aim The current study evaluated the shear bond strength and fluoride release of Glass Ionomer Cement (GIC) combined with 1% Ethanolic Extract of Propolis (EEP). The research hypothesis was that the incorporation of 1% EEP in GIC has an effect on shear bond strength and fluoride release. Materials and Methods A study was conducted among two groups. Group A conventional GIC (control), Group B GIC incorporated with 1% EEP (experimental). Shear bond strength: Thirty samples were prepared. Dentinal surface was restored and bond strength was assessed using a universal testing machine. Fluoride release: Thirty samples were prepared and stored in distilled water at a constant temperature until the time of measurement. The fluoride release was assessed by ion selective electrode after 1st day and 7th day. Data obtained by shear bond strength analysis was subjected to statistical analysis using an unpaired t-test and the data obtained by the fluoride release analysis was subjected to an unpaired t-test and paired t-test. Results Result showed that there was no statistically significant difference in shear bond strength between the groups (p-value 0.77). A statistically significant difference was noticed in fluoride release among the groups after 1st and 7th day (p-0.001). However, the release was lesser in both the groups after the 1st day. Conclusion A 1% EEP incorporated GIC enhanced the fluoride release without causing a significant effect on shear bond strength of GIC. PMID:27437368

  8. Evaluation of a sugar-based edible adhesive using a tensile strength tester.

    PubMed

    Doll, Kenneth M; Erhan, Sevim Z

    2011-04-01

    A method to evaluate adhesives has been developed and used to reformulate a recently patented adhesive which is based on sugar and citric acid. Factors affecting adhesive performance were uncovered, such as an optimal curing temperature of 60°C. The addition of maltodextrin and soy protein at optimized levels was shown to nearly double the bonding strength of the adhesive, from 0.46 ± 0.076 to 0.74 ± 0.26 kN, under our test conditions. Also discussed is the potential for this method to be automated using commercially available equipment.

  9. Desmosomes: adhesive strength and signalling in health and disease.

    PubMed

    Thomason, Helen A; Scothern, Anthea; McHarg, Selina; Garrod, David R

    2010-08-01

    Desmosomes are intercellular junctions whose primary function is strong intercellular adhesion, known as hyperadhesion. In the present review, we discuss how their structure appears to support this function as well as how they are assembled and down-regulated. Desmosomal components also have signalling functions that are important in tissue development and remodelling. Their adhesive and signalling functions are both compromised in genetic and autoimmune diseases that affect the heart, skin and mucous membranes. We conclude that much work is required on structure-function relationships within desmosomes in vivo and on how they participate in signalling processes to enhance our knowledge of tissue homoeostasis and human disease.

  10. Effects of endodontic tri-antibiotic paste on bond strengths of dentin adhesives to coronal dentin

    PubMed Central

    Mirzakoucheki, Parvin; Walter, Ricardo; Jahromi, Maryam Zare; Mirsattari, Sanaz; Akbarzadeh, Navid

    2015-01-01

    Objectives The aim of this study was to evaluate the effects of tri-antibiotic paste (TAP) on microtensile bond strengths (MTBS) of dental adhesives to dentin. Materials and Methods Sixty extracted molars had their occlusal surfaces flattened to expose dentin. They were divided into two groups, i.e., control group with no dentin treatment and experimental group with dentin treatment with TAP. After 10 days, specimens were bonded using self-etch (Filtek P90 adhesive) or etch-and-rinse (Adper Single Bond Plus) adhesives and restored with composite resin. Teeth were sectioned into beams, and the specimens were subjected to MTBS test. Data were analyzed using two-way ANOVA and post hoc Tukey tests. Results There was a statistically significant interaction between dentin treatment and adhesive on MTBS to coronal dentin (p = 0.003). Despite a trend towards worse MTBS being noticed in the experimental groups, TAP application showed no significant effect on MTBS (p = 0.064). Conclusions The etch-and-rinse adhesive Adper Single Bond Plus presented higher mean bond strengths than the self-etch adhesive Filtek P90, irrespective of the group. The superior bond performance for Adper Single Bond when compared to Filtek P90 adhesive was confirmed by a fewer number of adhesive failures. The influence of TAP in bond strength is insignificant. PMID:25984475

  11. Effect of adhesive primers on bonding strength of heat cure denture base resin to cast titanium and cobalt-chromium alloy

    PubMed Central

    Kim, Su-Sung; Yang, Hong-So; Park, Sang-Won; Lim, Hyun-Pil

    2009-01-01

    STATEMENT OF PROBLEM The poor chemical bonding of a denture base resin to cast titanium framework often introduces adhesive failure and increases microleakage. PURPOSE This study evaluated the shear bond strengths of a heat cure denture base resin to commercially pure titanium, Ti-6Al-4V alloy and a cobalt-chromium alloy using two adhesive primers. MATERIAL AND METHODS Disks of commercially pure titanium, Ti-6Al-4V alloy and a cobalt-chromium alloy were cast. Specimens without the primer were also prepared and used as the controls. The shear bond strengths were measured on a screw-driven universal testing machine. RESULTS The primers significantly (P < .05) improved the shear bond strengths of the heat cure resin to all metals. However, the specimens primed with the Alloy primer® (MDP monomer) showed higher bond strength than those primed with the MR bond® (MAC-10 monomer) on titanium. Only adhesive failure was observed at the metal-resin interface in the non-primed specimens, while the primed specimens showed mixed failure of adhesive and cohesive failure. CONCLUSIONS The use of appropriate adhesive metal primers makes it possible not only to eliminate the need for surface preparation of the metal framework before applying the heat cure resins, but also reduce the need for retentive devices on the metal substructure. In particular, the Alloy primer®, which contains the phosphoric acid monomer, MDP, might be clinically more acceptable for bonding a heat cure resin to titanium than a MR bond®, which contains the carboxylic acid monomer, MAC-10. PMID:21165254

  12. Real time monitoring of the effects of Heparan Sulfate Proteoglycan (HSPG) and surface charge on the cell adhesion process using thickness shear mode (TSM) sensor.

    PubMed

    Ergezen, E; Hong, S; Barbee, K A; Lec, R

    2007-04-15

    The effects of Heparan Sulfate Proteoglycan (HSPG) and surface charge on the cellular interactions of the cell membrane with different substrates to determine the kinetics of cell adhesion was studied using thickness shear mode (TSM) sensor. The TSM sensor was operated at its first, third, fifth and seventh harmonics. Since the penetration depth of the shear wave decreases with increases in frequency, the multi-resonance operation of the TSM sensor was used to monitor the changes in the kinetics of the cell-substrate interaction at different distances from the sensor surface. During the sedimentation and the initial attachment of the cells on the sensor surface, the changes in the sensor resonant frequency and the magnitude response were monitored. First, HSPGs were partially digested with the enzyme Heparinase III to evaluate the effect of HSPG on the cell adhesion process. The results indicated that HSPG did not have any effect on the kinetics of the initial attachment, but it did reduce the strength of steady-state cell adhesion. Next, we investigated the effect of the electrostatic interactions of the cell membrane with the substrate on the cell adhesion. In this case, the sensor surface was coated with positively charged Poly-D-Lysine (PDL). It was observed that electrostatic interaction of the negatively charged cell membrane with the PDL surface promoted the initial cell adhesion but did not support long-term cell adhesion. The multi-resonant TSM technique was shown to be a very promising method for monitoring specific interfacial effects involving in cell adhesion process in real-time.

  13. Tensile Bond Strengths of Two Adhesives on Irradiated and Nonirradiated Human Dentin

    PubMed Central

    Bernard, Cécile; Abouelleil, Hazem; Gustin, Marie-Paule; Grosgogeat, Brigitte

    2015-01-01

    The aim of this study was to assess the effect of radiotherapy on bond efficiency of two different adhesive systems using tensile bond strength test. Twenty extracted teeth after radiotherapy and twenty nonirradiated extracted teeth were used. The irradiation was applied in vivo to a minimal dose of 50 Gy. The specimens of each group were randomly assigned to two subgroups to test two different adhesive systems. A three-step/etch-and-rinse adhesive system (Optibond FL) and a two-steps/self-etch adhesive system (Optibond XTR) were used. Composite buildups were performed with a nanohybrid composite (Herculite XTR). All specimens were submitted to thermocycling ageing (10000 cycles). The specimens were sectioned in 1 mm2 sticks. Microtensile bond strength tests were measured. Nonparametric statistical analyses were performed due to nonnormality of data. Optibond XTR on irradiated and nonirradiated teeth did not show any significant differences. However, Optibond FL bond strength was more effective on nonirradiated teeth than on irradiated teeth. Within the limitations of an in vitro study, it can be concluded that radiotherapy had a significant detrimental effect on bond strength to human dentin. However, it seems that adhesive choice could be adapted to the substrata. According to the present study, the two-steps/self-etch (Optibond XTR) adhesive system tested could be more effective on irradiated dentin compared to three-steps/etch-and-rinse adhesive system (Optibond FL). PMID:26783528

  14. Effect of surface treatment on adhesion strength between magnetron sputtered copper thin films and alumina substrate

    NASA Astrophysics Data System (ADS)

    Lim, Ju Dy; Lee, Pui Mun; Rhee, Daniel Min Woo; Leong, Kam Chew; Chen, Zhong

    2015-11-01

    A number of surface pre-treatments have been studied for their effectiveness on the adhesion strength between magnetron sputtered copper (Cu) thin film and polycrystalline alumina (Al2O3) substrate. The treatments include organic solvent cleaning, acid washing, heat treatment, plasma cleaning, and they were organized into different sequences in order to evaluate their individual contribution to the film adhesion. Adhesion strength was measured mechanically using a pull test. By proper pre-treatment, the adhesive strength of at least 34 MPa can be achieved with direct sputtering of Cu thin film onto the Al2O3 substrate. With the help of XPS, SEM, XRD, TGA and contact angle measurement, the effect of the different substrate surface treatment techniques has been elucidated.

  15. Effects of model coal tar components on adhesion strength of polyurethane coating on steel plate

    SciTech Connect

    Yokoyama, N.; Fujino, K.

    2005-04-15

    In order to study the effects of coal tar components on the adhesion strength of a heavy duty anticorrosive coating formed with tar-urethane resin oil on a steel plate, polyurethane coatings that were compounded with 15 kinds of polycyclic aromatic compounds as model coal tar components were prepared. In the model coal tar, components, naphthalene, quinoline, 2-naphthol, and phenanthrene showed good compatibility with polyurethane. To test their heavy duty anticorrosive properties, tensile adhesion strength of the cured coatings prepared with the compatible model coal tar components was measured, and the change in tensile adhesion strength as a function of time during salt-water spray treatment was measured. We found that the systems compounded with naphthalene, 2-naphthol, and phenanthrene showed good properties in an ordinary state for adhesion strength. However, only the system with 2-naphthol was found to have good properties in the change of tensile adhesion strength as a function or time during salt-water spray treatment. The curing time of the system with 2-naphthol was slower than that or the others, i.e., we found an inverse proportion between curing speed and adhesion durability. We also measured the dynamic viscoelasticity of cured coatings.

  16. Eroded dentin does not jeopardize the bond strength of adhesive restorative materials.

    PubMed

    Cruz, Janaina Barros; Lenzi, Tathiane Larissa; Tedesco, Tamara Kerber; Guglielmi, Camila de Almeida Brandão; Raggio, Daniela Prócida

    2012-01-01

    This in vitro study evaluated the bond strength of adhesive restorative materials to sound and eroded dentin. Thirty-six bovine incisors were embedded in acrylic resin and ground to obtain flat buccal dentin surfaces. Specimens were randomly allocated in 2 groups: sound dentin (immersion in artificial saliva) and eroded dentin (pH cycling model - 3× / cola drink for 7 days). Specimens were then reassigned according to restorative material: glass ionomer cement (KetacTM Molar Easy Mix), resin-modified glass ionomer cement (VitremerTM) or adhesive system with resin composite (Adper Single Bond 2 + Filtek Z250). Polyethylene tubes with an internal diameter of 0.76 mm were placed over the dentin and filled with the material. The microshear bond test was performed after 24 h of water storage at 37ºC. The failure mode was evaluated using a stereomicroscope (400×). Bond strength data were analyzed with two-way ANOVA and Tukey's post hoc tests (α = 0.05). Eroded dentin showed bond strength values similar to those for sound dentin for all materials. The adhesive system showed the highest bond strength values, regardless of the substrate (p < 0.0001). For all groups, the adhesive/mixed failure prevailed. In conclusion, adhesive materials may be used in eroded dentin without jeopardizing the bonding quality. It is preferable to use an etch-and-rinse adhesive system because it shows the highest bond strength values compared with the glass ionomer cements tested.

  17. Influence of previous acid etching on bond strength of universal adhesives to enamel and dentin.

    PubMed

    Torres, Carlos Rocha Gomes; Zanatta, Rayssa Ferreira; Silva, Tatiane Josefa; Huhtala, Maria Filomena Rocha Lima; Borges, Alessandra Bühler

    2017-01-01

    The objective of this study was to evaluate the effect of acid pretreatment on the bond strength of composite resin bonded to enamel and dentin with 2 different universal self-etching adhesives. The null hypothesis was that the acid treatment performed prior to adhesive application would not significantly change the bond strength to enamel or dentin for either universal adhesive tested. A sample of 112 bovine incisors were selected and embedded in acrylic resin. Half were ground until a flat enamel surface was obtained, and the other half were polished until a 6 × 6-mm area of dentin was exposed, resulting into 2 groups (n = 56). The enamel and dentin groups were divided into 2 subgroups according to the adhesive system applied: Futurabond U or Scotchbond Universal. Each of these subgroups was divided into 2 additional subgroups (n = 14); 1 subgroup received phosphoric acid pretreatment, and 1 subgroup did not. The bond strength was assessed with a microtensile test. Data from enamel and dentin specimens were analyzed separately using 1-way analysis of variance. The acid pretreatment did not significantly change the bond strength of the adhesives tested, either to enamel (P = 0.4161) or to dentin (P = 0.4857). The acid etching pretreatment did not affect the bond strength to dentin and enamel when the tested universal multipurpose adhesive systems were used.

  18. Mechanisms of degradation in adhesive joint strength: Glassy polymer thermoset bond in a humid environment

    DOE PAGES

    Kropka, Jamie Michael; Adolf, Douglas Brian; Spangler, Scott Wilmer; ...

    2015-08-06

    The degradation in the strength of napkin-ring (NR) joints bonded with an epoxy thermoset is evaluated in a humid environment. While adherend composition (stainless steel and aluminum) and surface preparation (polished, grit blasted, primed, coupling agent coated) do not affect virgin (time=0) joint strength, they can significantly affect the role of moisture on the strength of the joint. Adherend surface abrasion and corrosion processes are found to be key factors in determining the reliability of joint strength in humid environments. In cases where surface specific joint strength degradation processes are not active, decreases in joint strength can be accounted formore » by the glass transition temperature, Tg, depression of the adhesive associated with water sorption. Under these conditions, joint strength can be rejuvenated to virgin strength by drying. In addition, the decrease in joint strength associated with water sorption can be predicted by the Simplified Potential Energy Clock (SPEC) model by shifting the adhesive reference temperature, Tref, by the same amount as the Tg depression. When surface specific degradation mechanisms are active, they can reduce joint strength below that associated with adhesive Tg depression, and joint strength is not recoverable by drying. Furthermore, a critical relative humidity (or, potentially, critical water sorption concentration), below which the surface specific degradation does not occur, appears to exist for the polished stainless steel joints.« less

  19. Mechanisms of degradation in adhesive joint strength: Glassy polymer thermoset bond in a humid environment

    SciTech Connect

    Kropka, Jamie Michael; Adolf, Douglas Brian; Spangler, Scott Wilmer; Austin, Kevin N.; Chambers, Robert S.

    2015-08-06

    The degradation in the strength of napkin-ring (NR) joints bonded with an epoxy thermoset is evaluated in a humid environment. While adherend composition (stainless steel and aluminum) and surface preparation (polished, grit blasted, primed, coupling agent coated) do not affect virgin (time=0) joint strength, they can significantly affect the role of moisture on the strength of the joint. Adherend surface abrasion and corrosion processes are found to be key factors in determining the reliability of joint strength in humid environments. In cases where surface specific joint strength degradation processes are not active, decreases in joint strength can be accounted for by the glass transition temperature, Tg, depression of the adhesive associated with water sorption. Under these conditions, joint strength can be rejuvenated to virgin strength by drying. In addition, the decrease in joint strength associated with water sorption can be predicted by the Simplified Potential Energy Clock (SPEC) model by shifting the adhesive reference temperature, Tref, by the same amount as the Tg depression. When surface specific degradation mechanisms are active, they can reduce joint strength below that associated with adhesive Tg depression, and joint strength is not recoverable by drying. Furthermore, a critical relative humidity (or, potentially, critical water sorption concentration), below which the surface specific degradation does not occur, appears to exist for the polished stainless steel joints.

  20. In vitro evaluation of shear bond strength and microleakage of different pit and fissure sealants

    PubMed Central

    Babaji, Prashant; Vaid, Shivali; Deep, S.; Mishra, Samvit; Srivastava, Madhulika; Manjooran, Thomas

    2016-01-01

    Aim and Objectives: Fissure caries is most common in children due to deep pit and fissures. Pit and fissure areas on the occlusal surface of the teeth make them susceptible to dental caries, which need to be prevented or restored. Fissures sealant reduces the risk of occlusal caries. The present study was done to evaluate microleakage and shear bond strength of various fissure sealants. Materials and Methods: Thirty-six extracted molars were randomly allocated equally (n = 12) into three groups with three different sealants to evaluate shear bond strength and microleakage at sealant space. The shear bond strengths was evaluated with one-way analysis of variance and microleakage by Kruskal-Wallis nonparametric test using the Statistical Package for the Social Sciences version 18.0 (Chicago: SPSS Inc, 2009). Results: Tetric flow (16.8 MPa) recorded the highest shear bond strength and the difference was statistically significant with enamel loc (12.8 MPa). There was no statistically significant difference in relation to microleakage (P > 0.05) in the tested groups. Conclusions: Tetric flow recorded the highest shear bond strength and the difference was statistically significant with enamel loc. However, there was no statistically significant difference among the groups regarding microleakage. PMID:27652241

  1. Comparison of shear bond strength of two porcelain repair systems after different surface treatment

    PubMed Central

    Kalra, Ashish; Mohan, Murali S.; Gowda, E. Mahesh

    2015-01-01

    Introduction: Intraoral chair side porcelain repair system is a quick, painless and highly patient acceptable procedure, without removal of restoration or fabrication of new restoration. There are very limited studies conducted to evaluate the shear bond strength of repair systems after different surface treatment. Objectives of Research: The objective of research was to evaluate the shear bond strength of two intraoral porcelain repair systems Clearfil repair system (Kuraray) and Ceramic repair system (Ivoclar) to repair metal-ceramic restoration after three different surface treatment. Materials and Methods: Totally, 120 discs of base metal alloy were fabricated. The opaque, dentine and enamel of ceramic were applied to achieve the uniform thickness. Defect was created, and repair was done using two repair systems after different surface treatment. Shear bond strength was measured. Results: Analysis of variance was utilized. Ceramic repair system after 40% phosphoric acid surface treatment showed the highest mean value and Clearfil repair system after surface treatment with 37% phosphoric acid showed the lowest. The statistical difference was found to be significant between the groups. Conclusion: The shear bond strength of Ceramic repair system with 40% phosphoric acid etching showed highest shear bond strength as compared to other system and surface treatment used in the study. PMID:26097354

  2. The effect of different adhesive system applications on push-out bond strengths of glass fiber posts

    PubMed Central

    Deniz Arısu, Hacer; Üçtaşlı, Mine Betül; Okay, Tufan Can

    2013-01-01

    PURPOSE Over the past years, the adhesion of fiber posts luted with simplified adhesive systems has been a matter of great interest. The aim of this study was to assess the post retentive potential of a self-adhesive resin cement using different adhesive systems to compare the push-out bond strengths of fiber posts. MATERIALS AND METHODS The post spaces of 56 mandibular premolar roots were prepared and divided into 4 experimental groups and further divided into 2 subgroups according to testing time (n=7). The fiber posts (Rely X Fiber Post) were luted with a self-adhesive resin cement (RelyX Unicem) and one of the following adhesive systems: no adhesive, a total-etch adhesive resin (Single Bond), a two-step self-etch adhesive resin (Clearfil SE Bond) and a one-step self-etch adhesive resin (Clearfil S3 Bond). Each root was cut horizontally, and 1.5 mm thick six root segments were prepared. Push-out tests were performed after one week or three months (0.5 mm/min). Statistical analysis were performed with three-way ANOVA (α=.05). RESULTS Cervical root segments showed higher bond strength values than middle segments. Adhesive application increased the bond strength. For one week group, the total-etch adhesive resin Single Bond showed higher bond strength than the self-adhesive resin cement RelyX Unicem applied without adhesive resin at middle region. For 3 months group, the two-step self-etch adhesive resin Clearfil SE Bond showed the highest bond strength for both regions. Regarding the time considered, Clearfil SE Bond 3 months group showed higher bond strength values than one week group. CONCLUSION Using the adhesive resins in combination with the self-adhesive resin cement improves the bond strengths. The bond strength values of two-step self-etch adhesive resin Clearfil SE Bond improved as time passes. PMID:24049572

  3. Effect of thermal aging on the tensile bond strength at reduced areas of seven current adhesives.

    PubMed

    Baracco, Bruno; Fuentes, M Victoria; Garrido, Miguel A; González-López, Santiago; Ceballos, Laura

    2013-07-01

    The purpose of this study was to determine the micro-tensile bond strength (MTBS) to dentin of seven adhesive systems (total and self-etch adhesives) after 24 h and 5,000 thermocycles. Dentin surfaces of human third molars were exposed and bonded with two total-etch adhesives (Adper Scotchbond 1 XT and XP Bond), two two-step self-etch adhesives (Adper Scotchbond SE and Filtek Silorane Adhesive System) and three one-step self-etch adhesives (G-Bond, Xeno V and Bond Force). All adhesive systems were applied following manufacturers' instructions. Composite buildups were constructed and the bonded teeth were then stored in water (24 h, 37 °C) or thermocycled (5,000 cycles) before being sectioned and submitted to MTBS test. Two-way ANOVA and subsequent comparison tests were applied at α = 0.05. Characteristic de-bonded specimens were analyzed using scanning electron microscopy (SEM). After 24 h water storage, MTBS values were highest with XP Bond, Adper Scotchbond 1 XT, Filtek Silorane Adhesive System and Adper Scotchbond SE and lowest with the one-step self-etch adhesives Bond Force, Xeno V and G-Bond. After thermocycling, MTBS values were highest with XP Bond, followed by Filtek Silorane Adhesive System, Adper Scotchbond SE and Adper Scotchbond 1 XT and lowest with the one-step self-etch adhesives Bond Force, Xeno V and G-Bond. Thermal aging induced a significant decrease in MTBS values with all adhesives tested. The resistance of resin-dentin bonds to thermal-aging degradation was material dependent. One-step self-etch adhesives obtained the lowest MTBS results after both aging treatments, and their adhesive capacity was significantly reduced after thermocycling.

  4. Effects of thermal fatigue on shear punch strength of tooth-colored restoratives

    PubMed Central

    Melody, Fam Mei Shi; U-Jin, Yap Adrian; Natalie, Tan Wei Min; Elizabeth, Tay Wan Ling; Chien, Jessica Yeo Siu

    2016-01-01

    Aims: This study investigated the effect of thermal fatigue on the shear strength of a range of tooth-colored restorative materials including giomers, zirconia-reinforced glass ionomer cement (GIC), nano-particle resin-modified GIC, highly viscous GICs, and composite resin. Materials and Methods: Twenty specimens of each material were fabricated in standardized washers (17 mm outer diameter, 9 mm internal diameter, 1 mm thick). The specimens were cured, stored in 100% humidity at 37.5°C for 24 h, and randomly divided into two groups of 10. Group A specimens were nonthermocycled (NT) and stored in distilled water at 37°C for 168 h. Group B specimens were thermocycled (TC) for 10,000 cycles (168 h) with baths X, Y, and Z adjusted to 35°C, 15°C, and 45°C, respectively. Each cycle had dwell times of 28 s in X, and 2s in Y/Z in the order XYXZ. Specimens then underwent shear punch testing at a crosshead speed of 0.5 mm/min with a 2 kN load cell. Statistical analysis of shear strength was done using t-test and two-way ANOVA/Scheffe's post hoc test at significance level P < 0.05. Results: The effect of thermal fatigue on shear strength was material dependent. Except for the “sculptable” giomer (Beautifil II) and a highly viscous GIC (Fuji IX GP Fast), no significant differences in shear strength were generally observed between the NT and TC groups. For both groups, the composite resin (Filtek Z250XT) had the highest shear strength while the zirconia-reinforced (zirconomer) and a highly viscous GIC (Ketac Molar Quick) had the lowest. Conclusions: The effect of thermocycling on shear strength was material dependent. Thermal fatigue, however, did not significantly influence the shear strength of most materials assessed. The “sculptable” composite and giomer were significantly stronger than the other materials evaluated. Shear strength of the “flowable” injectable hybrid giomer was intermediate between the composite and GICs. PMID:27563182

  5. Evaluation of modifying the bonding protocol of a new acid-etch primer on the shear bond strength of orthodontic brackets.

    PubMed

    Ajlouni, Raed; Bishara, Samir E; Oonsombat, Charuphan; Denehy, Gerald E

    2004-06-01

    The purpose of the study was to evaluate the shear bond strength of orthodontic brackets when light curing both the self-etch primer and the adhesive in one step. Fourty eight teeth were bonded with self-etch primer Angel I (3M/ESPE, St Paul, Minn) and divided into three groups. In group I (control), 16 teeth were stored in deionized water for 24 hours before debonding. In group II, 16 teeth were debonded within half-an-hour to simulate when the initial archwires were ligated. In group III, 16 additional teeth were bonded using exactly the same procedure as in groups I and II, but the light cure used for 10 seconds after applying the acid-etch primer was eliminated, and the light cure used for 20 seconds after the precoated bracket was placed over the tooth. This saved at least two minutes of the total time of the bonding procedure. The teeth in this group were also debonded within half-an-hour from the time of initial bonding. The teeth debonded after 24 hours of water storage at 37 degrees C had a mean shear bond strength of 6.0 +/- 3.5 MPa, the group that was debonded within half-an-hour of two light exposures had a mean shear bond strength of 5.9 +/- 2.7 MPa, and the mean for the group with only one light cure exposure was 4.3 +/- 2.6 MPa. Light curing the acid-etch primer together with the adhesive after placing the orthodontic bracket did not significantly diminish the shear bond strength as compared with light curing the acid-etch primer and the adhesive separately.

  6. Influence of salivary contamination on the dentin bond strength of two different seventh generation adhesive systems: In vitro study

    PubMed Central

    Bhatia, Taranjeet Kaur; Asrani, Hemant; Banga, Harpreet; Jain, Aditi; Rawlani, Sudhir S.

    2015-01-01

    Aim: To investigate the effect of salivary contamination on the bond strength of two different seventh generation adhesive systems. Materials and Methods: Sixty caries-free human premolars with flat dentin surfaces were randomly divided into six groups of 10 teeth each and bonding was done using seventh-generation bonding agents Adper Easy One (3M ESPE) and Xeno V (Dentsply). Following the bonding procedure, resin composite was bonded to the surfaces using a plastic mould. The prepared specimen with composite cylinders attached were placed in 37°C distilled water for 24 h and then subjected to shear bond strength (SBS) with 0 h universal testing machine and the data were subjected to one-way analysis of variance and unpaired t-test. Results: Statistical significant difference between the Groups I, II and III in which Adper Easy One was used and similarly for Groups IV, V, and VI in which Xeno V was used. When an intergroup comparison was made using unpaired t-test Group II and Group V showed the nonsignificant difference. Conclusion: Salivary contamination significantly affects the SBS of both the seventh generation dentin bonding agents. However, 2-hydroxyethyl methacryate based adhesive has higher bond strength. PMID:26752841

  7. Influence of matric suction on shear strength behavior of a residual clayey soil

    NASA Astrophysics Data System (ADS)

    Kayadelen, C.; Tekinsoy, M. A.; Taşkıran, T.

    2007-12-01

    In this paper, the shear strength with respect to the matric suction of unsaturated soils was studied. For this purpose, unsaturated triaxial testing procedures were applied to the undisturbed residual soil specimens. An apparatus for performing triaxial tests was designed and constructed. In the tests, matric suction was controlled by using the axis translation technique, and pore water volume changes were measured by means of a volume change transducer with 10-8 m3 sensitivity. The test results indicated that the matric suction contributes to the shear strength of unsaturated soil specimens, and this contribution called suction strength varies non-linearly with respect to the matric suction. The logarithmic model needing to know the air-entry value and the internal friction angle of a soil specimen for prediction of the suction strength were presented and compared with the test results. It was found that suction strength values predicted from the proposed model were in satisfactory agreement with the experimental results.

  8. In vitro shear bond strength of the Amalgambond Plus system.

    PubMed

    van der Vyver, P J; de Wet, F A; Dearlove, W R

    1995-06-01

    The bonding of composite resins to dentine by means of dentine bonding agents is common practice. Although amalgam has been used for many years, no attempt had been made to bond it chemically to tooth structure. Amalgambond Plus (ABP) was developed to bond amalgam (as well as composite) to various substrates. The purpose of this study was to evaluate the ABP system for its ability to bond amalgam, as well as composite, to dentine, and also to assess the strength of the product when bonding composite to set amalgam. The following values (MPa) were obtained for the different ABP variations: Amalgam to Dentine (with HPA): 5.20; Amalgam to Dentine (without HPA): 3.26; Composite to Dentine (without HPA): 17.57; Composite to Amalgam (without HPA): 12.00. It can be concluded that Amalgambond Plus gives varying bond strengths to different substrates, with the highest value obtained when used to bond Composite to Dentine.

  9. Determination of Interfacial Adhesion Strength between Oxide Scale and Substrate for Metallic SOFC Interconnects

    SciTech Connect

    Sun, Xin; Liu, Wenning N.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2008-01-21

    The interfacial adhesion strength between the oxide scale and the substrate is crucial to the reliability and durability of metallic interconnects in SOFC operating environments. It is necessary, therefore, to establish a methodology to quantify the interfacial adhesion strength between the oxide scale and the metallic interconnect substrate, and furthermore to design and optimize the interconnect material as well as the coating materials to meet the design life of an SOFC system. In this paper, we present an integrated experimental/analytical methodology for quantifying the interfacial adhesion strength between oxide scale and a ferritic stainless steel interconnect. Stair-stepping indentation tests are used in conjunction with subsequent finite element analyses to predict the interfacial strength between the oxide scale and Crofer 22 APU substrate.

  10. Temperature-dependent residual shear strength characteristics of smectite-rich landslide soils

    NASA Astrophysics Data System (ADS)

    Shibasaki, Tatsuya; Matsuura, Sumio; Okamoto, Takashi

    2015-04-01

    On gentle clayey slopes in weathered argillaceous rock areas, there exist many landslides which repeatedly reactivate with slow movement. The slip surface soils of these landslides are sometimes composed dominantly of swelling clay mineral (smectite) which is well known to show extremely low residual friction angle. From field data monitored at landslide sites in Japan, it has become clear that some landslides with relatively shallow slip surface begin to move and become active in late autumn or early winter every year. In such cases, the triggering mechanisms of landslides have not been understood well enough, because landslide initiation and movement are not always clearly linked with rises in pore water pressures (ground water levels). In this study, we focus on the influence of seasonal variation in ground temperature on slope stability and have investigated the effect of temperature on the shear strength of slip surface soils. Undisturbed soil samples were collected by boring from the Busuno landslide in Japan. We performed box shear experiments on undisturbed slip surface soils at low temperature ranges (approximately 5-25 °C). XRD analysis revealed that these soils contain high fraction of smectite. Slickensided slip surface within test specimen was coincided with the shearing plane of the shear box and shear displacement was applied precisely along the localized slip surface. Experiments were performed under slow shearing rate condition (0.005mm/min) and the results showed that shear strength decreased with decreasing temperature. Temperature effect was rather significant on frictional angle than on cohesion. Ring shear experiments were also performed on normally-consolidated remoulded samples. Under residual strength condition, temperature-change experiments (cooling-event tests) ranging approximately from 5 to 25 °C were performed on smectite-rich landslide soils and commercial bentonites. As well as the results by box shear test, shear weakening

  11. Measurement of interfacial shear strength in SiC-fiber/Si3N4 composites

    NASA Technical Reports Server (NTRS)

    Laughner, James W.; Bhatt, Rham T.

    1989-01-01

    An indentation method for measuring shear strength in brittle matrix composites was applied to SiC-fiber/Si3N4-matrix samples. Three methods were used to manufacture the composites: reaction bonding of a Si/SiC preform, hot-pressing, and nitrogen-overpressure sintering. An indentation technique developed by Marshall for thin specimens was used to measure the shear strength of the interface and the interfacial friction stresses. This was done by inverting the sample after the initial push through and retesting the pushed fibers. SEM observations showed that the shear strength was determined by the degree of reaction between the fiber and the matrix unless the fiber was pushed out of its (well-bonded) sheath.

  12. α-Catenin and Vinculin Cooperate to Promote High E-cadherin-based Adhesion Strength*

    PubMed Central

    Thomas, William A.; Boscher, Cécile; Chu, Yeh-Shiu; Cuvelier, Damien; Martinez-Rico, Clara; Seddiki, Rima; Heysch, Julie; Ladoux, Benoit; Thiery, Jean Paul; Mege, René-Marc; Dufour, Sylvie

    2013-01-01

    Maintaining cell cohesiveness within tissues requires that intercellular adhesions develop sufficient strength to support traction forces applied by myosin motors and by neighboring cells. Cadherins are transmembrane receptors that mediate intercellular adhesion. The cadherin cytoplasmic domain recruits several partners, including catenins and vinculin, at sites of cell-cell adhesion. Our study used force measurements to address the role of αE-catenin and vinculin in the regulation of the strength of E-cadherin-based adhesion. αE-catenin-deficient cells display only weak aggregation and fail to strengthen intercellular adhesion over time, a process rescued by the expression of αE-catenin or chimeric E-cadherin·αE-catenins, including a chimera lacking the αE-catenin dimerization domain. Interestingly, an αE-catenin mutant lacking the modulation and actin-binding domains restores cadherin-dependent cell-cell contacts but cannot strengthen intercellular adhesion. The expression of αE-catenin mutated in its vinculin-binding site is defective in its ability to rescue cadherin-based adhesion strength in cells lacking αE-catenin. Vinculin depletion or the overexpression of the αE-catenin modulation domain strongly decreases E-cadherin-mediated adhesion strength. This supports the notion that both molecules are required for intercellular contact maturation. Furthermore, stretching of cell doublets increases vinculin recruitment and α18 anti-αE-catenin conformational epitope immunostaining at cell-cell contacts. Taken together, our results indicate that αE-catenin and vinculin cooperatively support intercellular adhesion strengthening, probably via a mechanoresponsive link between the E-cadherin·β-catenin complexes and the underlying actin cytoskeleton. PMID:23266828

  13. Neutrophil adhesion on endothelial cells in a novel asymmetric stenosis model: effect of wall shear stress gradients.

    PubMed

    Rouleau, Leonie; Copland, Ian B; Tardif, Jean-Claude; Mongrain, Rosaire; Leask, Richard L

    2010-09-01

    Leukocytes play a pivotal role in the progression of atherosclerosis. A novel three-dimensional in vitro asymmetric stenosis model was used to better investigate the role of local hemodynamics in the adhesion of leukocytes to an established plaque. The adhesion of a human promyelocytic cell line (NB4) on a human abdominal aortic endothelial cell (EC) monolayer was quantified. NB4 cells were circulated over TNF-alpha stimulated and nonstimulated ECs for 1 or 6 h at 1.25 or 6.25 dynes/cm(2) and compared to static conditions. Cytokine stimulation increased significantly EC expression of intercellular adhesion molecule and vascular cell adhesion molecule. Under static conditions, neutrophils adhered overall more than under flow, with decreased adhesion with increasing shear. Adhesion was significantly higher in the recirculation region distal to the stenosis than in the inlet. Preshearing the ECs decreased the expression of cell adhesion molecules in inflamed endothelium and significantly decreased adhesion. However, the ratio of adhesion between the recirculation zone and the inlet increased, hence exhibiting an increased regional difference. This work suggests an important role for neutrophil-EC interactions in the atherosclerotic process, especially in wall shear stress gradient regions. This is important clinically, potentially helping to explain plaque stability.

  14. In-plane and Interlaminar Shear Strength of a Unidirectional Hi-nicalon Fiber-reinforced Celsian Matrix Composite

    NASA Technical Reports Server (NTRS)

    Uenal, O.; Bansal, N. P.

    2000-01-01

    In-plane and interlaminar shear strength of a unidirectional SiC fiber-reinforced (BaSr)Al2Si2O8 celsian composite were measured by the double-notch shear test method between room temperature and 1200 C. The interlaminar shear strength was lower than the in-plane shear strength at all temperatures. Stress analysis, using finite element modeling, indicated that shear stress concentration was not responsible for the observed difference in strength. Instead, the difference in layer architecture and thus, the favorable alignment of fiber-rich layers with the shear plane in the interlaminar specimens appears to be the reason for the low strength of this composite. A rapid decrease in strength was observed with temperature due to softening of the glassy phase in the material.

  15. Streptococcus mutans and Streptococcus intermedius adhesion to fibronectin films are oppositely influenced by ionic strength.

    PubMed

    Busscher, Henk J; van de Belt-Gritter, Betsy; Dijkstra, Rene J B; Norde, Willem; van der Mei, Henny C

    2008-10-07

    Bacterial adhesion to protein-coated surfaces is mediated by an interplay of specific and nonspecific interactions. Although nonspecific interactions are ubiquitously present, little is known about the physicochemical mechanisms of specific interactions. The aim of this paper is to determine the influence of ionic strength on the adhesion of two streptococcal strains to fibronectin films. Streptococcus mutans LT11 and Streptococcus intermedius NCTC11324 both possess antigen I/II with the ability to bind fibronectin from solution, but S. intermedius binds approximately 20x less fibronectin than does the S. mutans strain under identical conditions. Both strains as well as fibronectin films are negatively charged in low ionic strength phosphate buffered saline (PBS, 10x diluted), but bacteria appear uncharged in high ionic strength PBS. Physicochemical modeling on the basis of overall cell surface properties (cell surface hydrophobicity and zeta potentials) demonstrates that both strains should favor adhesion to fibronectin films in a high ionic strength environment as compared to in a low ionic strength environment, where electrostatic repulsion between equally charged surfaces is dominant. Adhesion of S. intermedius to fibronectin films in a parallel plate flow chamber was completely in line with this modeling, while in addition atomic force microscopy (AFM) indicated stronger adhesion forces upon retraction between fibronectin-coated tips and the cell surfaces in high ionic strength PBS than in low ionic strength PBS. Thus, the dependence of the interaction on ionic strength is dominated by the overall negative charge on the interacting surfaces. Adhesion of S. mutans to fibronectin films, however, was completely at odds with theoretical modeling, and the strain adhered best in low ionic strength PBS. Moreover, AFM indicated weaker repulsive forces upon approach between fibronectin-coated tips and the cell surfaces in low ionic strength PBS than in high ionic

  16. Effect of water storage on ultimate tensile strength and mass changes of universal adhesives

    PubMed Central

    Bahrololumi, Nazanin; Najafi-Abrandabadi, Ahmad; Sadr, Alireza; Sheikh-Al-Eslamian, Seyedeh-Mahsa; Ghasemi, Amir

    2017-01-01

    Background The aim of the present study was to evaluate the influence of water storage on micro tensile strength (µTS) and mass changes (MC) of two universal adhesives. Material and Methods 10 disk-shaped specimens were prepared for each adhesive; Scotchbond Universal (SCU) All-Bond Universal (ABU) and Adper Single Bond 2 (SB2). At the baseline and after 1 day and 28 days of water storage, their mass were measured and compared to estimate water sorption and solubility. For µTS test, 20 dumbbell shaped specimens were also prepared for each adhesive in two subgroups of 1 day and 28 days water storage. Results MC was significantly lower for SCU and ABU than SB2 (P < 0.05) at both time intervals. In all three adhesives, the MC was significantly lower at 28 days compared to that at 1 day (P < 0.05). Similarly, µTS was significantly higher for SCU and ABU than SB2 at both storage intervals (P < 0.05). After 28 days, µTS increased significantly for universal adhesives (P < 0.05). Conclusions MC and µTS of adhesives were both material and time dependent when stored in water; both universal adhesives showed less water sorption and higher values of µTS than the control group. Key words:Absorption, dental adhesives, dentin-bonding agents, solubility, tensile strength. PMID:28149468

  17. Effect of light-tip distance on the shear bond strengths of composite resin.

    PubMed

    Cacciafesta, Vittorio; Sfondrini, Maria Francesca; Scribante, Andrea; Boehme, Andreas; Jost-Brinkmann, Paul-Georg

    2005-05-01

    The purpose of this study was to assess the effect of light-tip distance on the shear bond strength and failure site of brackets cured with three different light curing units: a high-intensity halogen (Astralis 10, 10-second curing), a light-emitting diode (LED, e-Light, six-second curing), and a plasma arc (PAC System, four-second curing). One hundred and thirty-five bovine permanent mandibular incisors were randomly allocated to nine groups of 15 specimens each. Stainless steel brackets were bonded with a composite resin to the teeth, and each curing light was tested at zero, three, and six mm from the bracket. After bonding, all samples were stored in distilled water at room temperature for 24 hours and subsequently tested for shear bond strength. When the three light curing units were compared at a light-tip distance of zero mm, the three lights showed no significantly different shear bond strengths. At light-tip distances of three and six mm, no significant differences were found between the halogen and plasma arc lights, but both lights showed significantly higher shear bond strengths than the LED light. When evaluating the effect of the light-tip distance on each light curing unit, the halogen light showed no significant differences between the three distances. However, the LED light produced significantly lower shear bond strengths at a greater light-tip distance, and the plasma arc lamp showed significantly higher shear bond strengths at a greater light-tip distance. In hard-to-reach areas, the use of PAC system is suggested, whereas the LED evaluated in this study is not recommended.

  18. Influence of Compression and Shear on the Strength of Composite Laminates with Z-Pinned Reinforcement

    NASA Technical Reports Server (NTRS)

    O'Brien, T. Kevin; Krueger, Ronald

    2005-01-01

    The influence of compression and shear loads on the strength of composite laminates with z-pins is evaluated parametrically using a 2D Finite Element Code (FLASH) based on Cosserat couple stress theory. Meshes were generated for three unique combinations of z-pin diameter and density. A laminated plate theory analysis was performed on several layups to determine the bi-axial stresses in the zero degree plies. These stresses, in turn, were used to determine the magnitude of the relative load steps prescribed in the FLASH analyses. Results indicated that increasing pin density was more detrimental to in-plane compression strength than increasing pin diameter. Compression strengths of lamina without z-pins agreed well with a closed form expression derived by Budiansky and Fleck. FLASH results for lamina with z-pins were consistent with the closed form results, and FLASH results without z-pins, if the initial fiber waviness due to z-pin insertion was added to the fiber waviness in the material to yield a total misalignment. Addition of 10% shear to the compression loading significantly reduced the lamina strength compared to pure compression loading. Addition of 50% shear to the compression indicated shear yielding rather than kink band formation as the likely failure mode. Two different stiffener reinforced skin configurations with z-pins, one quaiisotropic and one orthotropic, were also analyzed. Six unique loading cases ranging from pure compression to compression plus 50% shear were analyzed assuming material fiber waviness misalignment angles of 0, 1, and 2 degrees. Compression strength decreased with increased shear loading for both configurations, with the quasi-isotropic configuration yielding lower strengths than the orthotropic configuration.

  19. Influence of Compression and Shear on the Strength of Composite Laminates With Z-Pinned Reinforcement

    NASA Technical Reports Server (NTRS)

    OBrien, T. Kevin; Krueger, Ronald

    2005-01-01

    The influence of compression and shear loads on the strength of composite laminates with z-pins is evaluated parametrically using a 2D Finite Element Code (FLASH) based on Cosserat couple stress theory. Meshes were generated for three unique combinations of z-pin diameter and density. A laminated plate theory analysis was performed on several layups to determine the bi-axial stresses in the zero degree plies. These stresses, in turn, were used to determine the magnitude of the relative load steps prescribed in the FLASH analyses. Results indicated that increasing pin density was more detrimental to in-plane compression strength than increasing pin diameter. Compression strengths of lamina without z-pins agreed well with a closed form expression derived by Budiansky and Fleck. FLASH results for lamina with z-pins were consistent with the closed form results, and FLASH results without z-pins, if the initial fiber waviness due to z-pin insertion was added to the fiber waviness in the material to yield a total misalignment. Addition of 10% shear to the compression loading significantly reduced the lamina strength compared to pure compression loading. Addition of 50% shear to the compression indicated shear yielding rather than kink band formation as the likely failure mode. Two different stiffener reinforced skin configurations with z-pins, one quasi-isotropic and one orthotropic, were also analyzed. Six unique loading cases ranging from pure compression to compression plus 50% shear were analyzed assuming material fiber waviness misalignment angles of 0, 1, and 2 degrees. Compression strength decreased with increased shear loading for both configurations, with the quasi-isotropic configuration yielding lower strengths than the orthotropic configuration.

  20. [Comparison of adhesion of different endothelial cells under shear stress load in the flow field in vitro].

    PubMed

    Xiao, Zhenghua; Zhang, Bengui; Zhang, Eryong; Xu, Weilin; Shi, Yingkang; Guo, Yingqiang

    2011-02-01

    This study was aimed to compare the differences of adhesion properties of endothelial cells (EC) from arteries (AEC), veins (VEC) and capillaries (MVEC) under shear stress condition, and to explore whether they can get the same adhesive ability as graft in similar shear stress conditions. With mended parallel plate flow apparatus and peristalsis pump providing fluid shear stress used, endothelial culture models were established in vitro with the same environmental factors as steady culture. To compare the adhesion among three kinds of endothelial cells under dynamic condition and static condition, the dynamic change of cytoskeletal actin filaments and the effects of different adhesive proteins coated on the adhesion of EC to the glass were studied. The cultured endothelial cells under flow conditions were extended and arranged along the direction of flow. The adhesive ability from high to low under static condition were AEC, MVEC and VEC (VEC compared with AEC or MVEC, P < 0.05), sequentially. The adhesion of endothelial cells from variety sources under dynamic culture condition was significantly increased than that of the static groups. The ratio of cell retention was not significantly different between AEC and MVEC. But VEC was significantly different (P < 0.05) compared with AEC or MVEC. The actin filaments (F-actin) were bundled together and arranged along the direction of flow after fluid culture. Dense peripheral band (DPB) gradually disappeared and distinct stress fibers were formed, which even interconnected to form a whole in the MVEC. The adhesion of AEC, VEC and MVEC under shear stress conditions are more significantly increased than those under the static culture conditions, and the MVEC can achieve the same adhesion as AEC.

  1. Shear Strength Correlations for Kaolin/Water Slurries: A Comparison of Recent Measurements with Historical Data

    SciTech Connect

    Burns, Carolyn A.; Gauglitz, Phillip A.; Russell, Renee L.

    2010-01-20

    This report documents testing funded by CH2M Hill Plateau Remediation and performed by Pacific Northwest National Laboratory (PNNL) in collaboration with Fauske and Associates, LLC (FAI) to determine the behavior of vessel spanning bubbles. The shear strengths of four samples of kaolin/water mixtures obtained by PNNL from FAI were measured and are reported here. The measured shear strengths of these samples were then used to determine how the Rassat correlation fit these new measurements or if a new correlation was needed. These results were then compared with previously reported data.

  2. Whole animal measurements of shear and adhesive forces in adult tree frogs: insights into underlying mechanisms of adhesion obtained from studying the effects of size and scale.

    PubMed

    Barnes, W Jon P; Oines, Christine; Smith, Joanna M

    2006-11-01

    This allometric study of adhesion in 15 Trinidadian tree frog species investigates how relationships between length, area and mass limit the ability of adult frog species of different sizes to adhere to inclined and overhanging surfaces. Our experiments show that hylid frogs possess an area-based wet adhesive system in which larger species are lighter than expected from isometry and adhere better than expected from their toe pad area. However, in spite of these adaptations, larger species adhere less well than smaller species. In addition to these adhesive forces, tree frogs also generate significant shear forces that scale with mass, suggesting that they are frictional forces. Toe pads detach by peeling and frogs have strategies to prevent peeling from taking place while they are adhering to surfaces, including orienting themselves head-up on slopes. The scaling of tree frog adhesion is also used to distinguish between different models for adhesion, including classic formulae for capillarity and Stefan adhesion. These classic equations grossly overestimate the adhesive forces that tree frogs produce. More promising are peeling models, designed to predict the pull-off forces of adhesive tape. However, more work is required before we can qualitatively and quantitatively describe the adhesive mechanism of tree frogs.

  3. Timing considerations on the shear bond strength of orthodontic brackets after topical fluoride varnish applications

    PubMed Central

    Cossellu, Gianguido; Lanteri, Valentina; Butera, Andrea; Laffi, Nicola; Merlini, Alberto; Farronato, Giampietro

    2017-01-01

    Objectives: To assess the best temporal association between the application of a fluoride varnish on enamel and bonding procedures. Materials and Methods: Eighty mandibular bovine incisors were used. Teeth were divided into 4 groups (20 per group); Groups 1–3 were treated with fluoride varnish (Fluor Protector, Ivoclar Vivadent, Schaan, Liechtenstein), and Group 4 served as control with no pretreatment. Tooth were stored in deionized water (37°C) and subjected to thermal cycling for 400 (Group 1), 800 (Group 2), and 2500 (Group 3) cycles corresponding, respectively, to 15, 30, and 90 days in order to simulate the three different timing of bracket bonding. Shear bond strength (SBS) was measured using an Instron Universal Testing machine. Tooth surfaces were examined under a stereomicroscope at 10× magnification to assess the amount of adhesive remnant index (ARI). One-way analysis of variance (ANOVA) and Tukey's honestly significant difference post-hoc test were used for the comparison of SBS values between groups (P < 0.05). The Chi-square test was used to examine differences among ARI scores. (P < 0.05). Results: One-way ANOVA and Tukey post-hoc test showed that the SBS of different groups were significantly different and was impacted by different timing of bonding (P < 0.05). The main differences were between the control group (17.02 ± 6.38 MPa) and Group 1 (6.93 ± 4.3 MPa). The ARI scores showed that there were no significant differences between the four tested groups. Conclusions: The SBS of the brackets bonded 15 days after the application of the fluoride was set back to an optimal value. PMID:28197397

  4. Measurement of Shear-Strength in Quasi-Isentropic Loading

    NASA Astrophysics Data System (ADS)

    Rosenberg, Z.; Bourne, N. K.; Millett, J. C. F.

    2001-06-01

    Recent work has indicated that an FCC material loaded at lower strain rate can exhibit higher strength than one loaded under shock. This result is puzzling given the hardening mechanisms involving dislocation pile-up usually accepted as occurring during shock. The effect may be followed by loading to a shocked state and then ringing up on an isentrope so that the loading departs from the Hugoniot after the first bounce. As a means of observing the strength of a material the lateral stress in the sample may be monitored along with the longitudinal stress so allowing a direct measurement in uniaxial strain as the difference between these two values. This relies on the development of an analysis to convert the voltage recorded in the gauge to lateral stress that must be checked for the step loading. The materials that are tested are iron and copper that are representative of BCC and FCC materials to give an insight as to the mechanism responsible for the observed phenomena. A mechanism is suggested to explain observations.

  5. Shear Bond Strength of Orthodontic Brackets to Tooth Enamel After Treatment With Different Tooth Bleaching Methods

    PubMed Central

    Vahid Dastjerdi, Elahe; Khaloo, Negar; Mojahedi, Seyed Masoud; Azarsina, Mohadese

    2015-01-01

    Background: Bleaching treatments decrease shear bond strength between orthodontic brackets and teeth; although definite results have not been reported in this regard. Objectives: This study determined the effects of different bleaching protocols on the shear bond strength of orthodontic brackets to teeth. Materials and Methods: This experimental study was performed in Iran. Forty-eight extracted human premolars were randomly assigned into four groups. In the control group, no bleaching treatment was performed. In groups 2 - 4, the bleaching procedures were performed using carbamide peroxide 45%, carbamide peroxide 20% and diode laser, respectively. Two weeks later, brackets were bonded to teeth and thermocycled. The shear bond strengths of the brackets to the teeth were measured. Data was analyzed by one-way ANOVA and Dunnett post-hoc test. Results: Shear bond strength of the brackets to the teeth were 10.54 ± 1.51, 6.37 ± 0.92, 7.67 ± 1.01 and 7.49 ± 1.19 MPa, in groups 1 - 4, respectively. Significant differences were found between control group and all other groups (P < 0.001); and also between groups 2 and 3 (P < 0.05). No significant differences were found between the other groups. Conclusions: The bleaching procedures using 20% carbamide peroxide and 45% carbamide peroxide and diode laser significantly decreased shear bond strength of brackets to the teeth. 45% carbamide peroxide had a more significant effect on bond strength compared to 20% carbamide peroxide. The difference in bond strength was not significant between laser group and either carbamide peroxide groups. PMID:26734481

  6. Oxide film microstructure: the link between surface preparation processes and strength/durability of adhesively bonded aluminum. Final report

    SciTech Connect

    Hsia, K. Jimmy; Pearlstein, Arne J.; Scheeline, Alexander; Shang, Jian Ku

    2000-11-30

    Strength and durability of adhesive bonding of aluminum alloys structures are intrinsically determined by the surface microstructures and interfacial failure micromechanisms. The current project presents a multidisciplinary approach to addressing critical issues controlling the strength and durability of adhesive bonds of aluminum alloys. Three main thrust areas have been pursued: surface treatment technology development to achieve desirable surface microstructures; relationship between surface structure and properties of adhesive bonds; and failure mechanisms of adhesively bonded components.

  7. Cone Penetrometer Shear Strength Measurements of Sludge Waste in Tanks 241-AN-101 and 241-AN-106

    SciTech Connect

    Follett, Jordan R.

    2014-03-06

    This document presents the resulting shear strength profiles for sludge waste in Tanks 241-AN-101 and 241-AN-106, as determined with a full-flow cone penetrometer. Full-flow penetrometer measurements indicate shear strength profiles that increase roughly uniformly with depth. For Tank 241-AN-101, the undrained shear strength was calculated to range from 500 Pa near the sludge surface to roughly 3,300 Pa at 15 inches above the tank bottom. For 241-AN-106, the undrained shear strength was calculated to range from 500 Pa near the sludge surface to roughly 5,000 Pa at 15 inches above the tank bottom.

  8. Use of micro-tomography for validation of method to identify interfacial shear strength from tensile tests of short regenerated cellulose fibre composites

    NASA Astrophysics Data System (ADS)

    Hajlane, A.; Miettinen, A.; Madsen, B.; Beauson, J.; Joffe, R.

    2016-07-01

    The interfacial shear strength of short regenerated cellulose fibre/polylactide composites was characterized by means of an industry-friendly adhesion test method. The interfacial shear strength was back-calculated from the experimental tensile stress-strain curves of composites by using a micro-mechanical model. The parameters characterizing the microstructure of the composites, e.g. fibre length and orientation distributions, used as input in the model were obtained by micro-tomography. The investigation was carried out on composites with untreated and surface treated fibres with various fibre weight contents (5wt%, 10wt%, and 15wt% for untreated fibres, and 15wt% for treated fibres). The properties of fibres were measured by an automated single fibre tensile test method. Based on these results, the efficiency of the fibre treatment to improve fibre/matrix adhesion is evaluated, and the applicability of the method to measure the interfacial shear strength is discussed. The results are compared with data from previous work, and with other results from the literature.

  9. Influence of Compression and Shear on the Strength of Composite Laminates with Z-Pinned Reinforcement

    NASA Technical Reports Server (NTRS)

    O'Brien, T. Kevin; Krueger, Ronald

    2005-01-01

    The influence of compression and shear loads on the strength of composite laminates with z-pins is evaluated parametrically using a 2D Finite Element Code (FLASH). Meshes were generated for three unique combinations of z-pin diameter and density. A laminated plate theory analysis was performed on several layups to determine the bi-axial stresses in the zero degree plies. These stresses, in turn, were used to determine the magnitude of the relative load steps prescribed in the FLASH analyses. Results indicated that increasing pin density was more detrimental to in-plane compression strength than increasing pin diameter. FLASH results for lamina with z-pins were consistent with the closed form results, and FLASH results without z-pins, if the initial fiber waviness due to z-pin insertion was added to the fiber waviness in the material to yield a total misalignment. Addition of 10% shear to the compression loading significantly reduced the lamina strength compared to pure compression loading. Addition of 50% shear to the compression indicated shear yielding rather than kink band formation as the likely failure mode. Two different stiffener reinforced skin configurations with z-pins, one quasi-isotropic and one orthotropic, were also analyzed. Six unique loading cases ranging from pure compression to compression plus 50% shear were analyzed assuming material fiber waviness misalignment angles of 0, 1, and 2 degrees. Compression strength decreased with increased shear loading for both configurations, with the quasi-isotropic configuration yielding lower strengths than the orthotropic configuration.

  10. BOND STRENGTH AND MORPHOLOGY OF ENAMEL USING SELF-ETCHING ADHESIVE SYSTEMS WITH DIFFERENT ACIDITIES

    PubMed Central

    Moura, Sandra Kiss; Reis, Alessandra; Pelizzaro, Arlete; Dal-Bianco, Karen; Loguercio, Alessandro Dourado; Arana-Chavez, Victor Elias; Grande, Rosa Helena Miranda

    2009-01-01

    Objectives: To assess the bond strength and the morphology of enamel after application of self-etching adhesive systems with different acidities. The tested hypothesis was that the performance of the self-etching adhesive systems does not vary for the studied parameters. Material and methods: Composite resin (Filtek Z250) buildups were bonded to untreated (prophylaxis) and treated (burcut or SiC-paper) enamel surfaces of third molars after application of four self-etching and two etch-and-rinse adhesive systems (n=6/condition): Clearfil SE Bond (CSE); OptiBond Solo Plus Self-Etch (OP); AdheSe (AD); Tyrian Self Priming Etching (TY), Adper Scotchbond Multi-Purpose Plus (SBMP) and Adper Single Bond (SB). After storage in water (24 h/37°C), the bonded specimens were sectioned into sticks with 0.8 mm2 cross-sectional area and the microtensile bond strength was tested at a crosshead speed of 0.5 mm/min. The mean bond strength values (MPa) were subjected to two-way ANOVA and Tukey's test (α=0.05). The etching patterns of the adhesive systems were also observed with a scanning electron microscope. Results: The main factor adhesive system was statistically significant (p<0.05). The mean bond strength values (MPa) and standard deviations were: CSE (20.5±3.5), OP (11.3±2.3), AD (11.2±2.8), TY (11.1±3.0), SBMP (21.9±4.0) and SB (24.9±3.0). Different etching patterns were observed for the self-etching primers depending on the enamel treatment and the pH of the adhesive system. Conclusion: Although there is a tendency towards using adhesive systems with simplified application procedures, this may compromise the bonding performance of some systems to enamel, even when the prismless enamel is removed. PMID:19668991

  11. High Fidelity Tape Transfer Printing Based On Chemically Induced Adhesive Strength Modulation

    PubMed Central

    Sim, Kyoseung; Chen, Song; Li, Yuhang; Kammoun, Mejdi; Peng, Yun; Xu, Minwei; Gao, Yang; Song, Jizhou; Zhang, Yingchun; Ardebili, Haleh; Yu, Cunjiang

    2015-01-01

    Transfer printing, a two-step process (i.e. picking up and printing) for heterogeneous integration, has been widely exploited for the fabrication of functional electronics system. To ensure a reliable process, strong adhesion for picking up and weak or no adhesion for printing are required. However, it is challenging to meet the requirements of switchable stamp adhesion. Here we introduce a simple, high fidelity process, namely tape transfer printing(TTP), enabled by chemically induced dramatic modulation in tape adhesive strength. We describe the working mechanism of the adhesion modulation that governs this process and demonstrate the method by high fidelity tape transfer printing several types of materials and devices, including Si pellets arrays, photodetector arrays, and electromyography (EMG) sensors, from their preparation substrates to various alien substrates. High fidelity tape transfer printing of components onto curvilinear surfaces is also illustrated. PMID:26553110

  12. High Fidelity Tape Transfer Printing Based On Chemically Induced Adhesive Strength Modulation

    NASA Astrophysics Data System (ADS)

    Sim, Kyoseung; Chen, Song; Li, Yuhang; Kammoun, Mejdi; Peng, Yun; Xu, Minwei; Gao, Yang; Song, Jizhou; Zhang, Yingchun; Ardebili, Haleh; Yu, Cunjiang

    2015-11-01

    Transfer printing, a two-step process (i.e. picking up and printing) for heterogeneous integration, has been widely exploited for the fabrication of functional electronics system. To ensure a reliable process, strong adhesion for picking up and weak or no adhesion for printing are required. However, it is challenging to meet the requirements of switchable stamp adhesion. Here we introduce a simple, high fidelity process, namely tape transfer printing(TTP), enabled by chemically induced dramatic modulation in tape adhesive strength. We describe the working mechanism of the adhesion modulation that governs this process and demonstrate the method by high fidelity tape transfer printing several types of materials and devices, including Si pellets arrays, photodetector arrays, and electromyography (EMG) sensors, from their preparation substrates to various alien substrates. High fidelity tape transfer printing of components onto curvilinear surfaces is also illustrated.

  13. New primers for adhesive bonding of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Burrell, B. W.; Port, W. S.

    1971-01-01

    Synthetic polypeptide adhesive primers are effective, with high temperature epoxy resins, at temperatures from 100 deg to 300 deg C. Lap-shear failure loads and lap-shear strength of both primers are discussed.

  14. Experimental and computational analysis of a novel flow channel to assess the adhesion strength of sessile marine organisms

    PubMed Central

    Dimartino, Simone; Mather, Anton V.; Alestra, Tommaso; Nawada, Suhas; Haber, Meir

    2015-01-01

    Bioadhesives produced by marine macroalgae represent a potential source of inspiration for the development of water-resistant adhesives. Assessing their adhesion strength, however, remains difficult owing to low volumes of adhesive material produced, low solubility and rapid curing time. These difficulties can be circumvented by testing the adhesion strength of macroalgae propagules attached to a substrate. In this paper, we present a simple, novel flow channel used to test the adhesion strength of the germlings of the fucalean alga Hormosira banksii to four substrates of biomedical relevance (PMMA, agar, gelatin and gelatin + lipid). The adhesion strength of H. banksii germlings was found to increase in a time-dependent manner, with minimal adhesion success after a settlement period of 6 h and maximum adhesion strength achieved 24 h after initial settlement. Adhesion success increased most dramatically between 6 and 12 h settlement time, while no additional increase in adhesion strength was recorded for settlement times over 24 h. No significant difference in adhesion strength to the various substrates was observed. Computational fluid dynamics (CFD) was used to estimate the influence of fluid velocity and germling density on drag force acting on the settled organisms. CFD modelling showed that, on average, the drag force decreased with increasing germling number, suggesting that germlings would benefit from gregarious settlement behaviour. Collectively, our results contribute to a better understanding of the mechanisms allowing benthic marine organisms to thrive in hydrodynamically stressful environments and provide useful insights for further investigations. PMID:25657838

  15. Experimental and computational analysis of a novel flow channel to assess the adhesion strength of sessile marine organisms.

    PubMed

    Dimartino, Simone; Mather, Anton V; Alestra, Tommaso; Nawada, Suhas; Haber, Meir

    2015-02-06

    Bioadhesives produced by marine macroalgae represent a potential source of inspiration for the development of water-resistant adhesives. Assessing their adhesion strength, however, remains difficult owing to low volumes of adhesive material produced, low solubility and rapid curing time. These difficulties can be circumvented by testing the adhesion strength of macroalgae propagules attached to a substrate. In this paper, we present a simple, novel flow channel used to test the adhesion strength of the germlings of the fucalean alga Hormosira banksii to four substrates of biomedical relevance (PMMA, agar, gelatin and gelatin + lipid). The adhesion strength of H. banksii germlings was found to increase in a time-dependent manner, with minimal adhesion success after a settlement period of 6 h and maximum adhesion strength achieved 24 h after initial settlement. Adhesion success increased most dramatically between 6 and 12 h settlement time, while no additional increase in adhesion strength was recorded for settlement times over 24 h. No significant difference in adhesion strength to the various substrates was observed. Computational fluid dynamics (CFD) was used to estimate the influence of fluid velocity and germling density on drag force acting on the settled organisms. CFD modelling showed that, on average, the drag force decreased with increasing germling number, suggesting that germlings would benefit from gregarious settlement behaviour. Collectively, our results contribute to a better understanding of the mechanisms allowing benthic marine organisms to thrive in hydrodynamically stressful environments and provide useful insights for further investigations.

  16. Comparative Study of the Shear Bond Strength of Flowable Composite in Permanent Teeth Treated with Conventional Bur and Contact or Non-Contact Er:YAG Laser

    PubMed Central

    Parhami, Parisa; Pourhashemi, Seyed Jalal; Ghandehari, Mehdi; Mighani, Ghasem; Chiniforush, Nasim

    2014-01-01

    Introduction: The aim of this study was to evaluate and compare the in vitro effect of the Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) laser with different radiation distances and high-speed rotary treatment on the shear bond strength of flowable composite to enamel of human permanent posterior teeth. Methods: freshly extracted human molar teeth with no caries or other surface defects were used in this study (n=45). The teeth were randomly divided into 3 groups. Group 1: treated with non-contact Er:YAG Laser and etched with Er:YAG laser, Group 2: treated with contact Er:YAG Laser and etched with Er:YAG laser, Group 3 (control): treated with diamond fissure bur and etched with acid phosphoric 37%. Then the adhesive was applied on the surafces of the teeth and polymerized using a curing light appliance. Resin cylinders were fabricated from flowable composite. Shear bond strength was tested at a crosshead speed of 0.5 mm/min. Results: The amount of Shear Bond Strength (SBS) in the 3 treatment groups was not the same (P<0.05).The group in which enamel surfaces were treated with diamond fissure bur and etched with acid (conrtol group) had the highest mean shear bond strength (19.92±4.76) and the group in which the enamel surfaces were treated with contact Er:YAG laser and etched with Er:YAG laser had the lowest mean shear bond strength (10.89±2.89). Mann-whitney test with adjusted P-value detected significant difference in shear bond strength between the control group and the other 2 groups (P < 0.05). Conclusion: It was concluded that both contact and non-contact Er:YAG laser treatment reduced shear bond strength of flowable resin composite to enamel in comparison with conventional treatment with high speed rotary. Different Er:YAG laser distance irradiations did not influence the shear bond strength of flowable composite to enamel. PMID:25653813

  17. Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore.

    PubMed

    Sivakumar Babu, G L; Lakshmikanthan, P; Santhosh, L G

    2015-05-01

    Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3kN/m(3) to 10.3kN/m(3) at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43.

  18. Shear Elastic and Strength Characteristics of Syntactics Based on Hollow Glass Microspheres

    NASA Astrophysics Data System (ADS)

    Kuperman, A. M.; Turusov, R. A.; Gorenberg, A. J.; Solodilov, V. I.; Korokhin, R. A.; Gorbatkina, Yu. A.; Ivanova-Mumzhieva, V. G.; Zhuravleva, O. A.; Baikov, A. V.

    2015-01-01

    Different methods to study the elastic and strength properties of syntactics — materials based on epoxy resins filled with hollow glass microspheres (HGMs) — are presented. Measurement results for the shear modulus and strength of the materials are analyzed. The effect of microsphere volume fraction in the polymeric matrix on the characteristics is shown. Experiments are performed to investigate the failure mechanisms of syntactics under compression.

  19. Evaluation of Shear Bond Strength of Newer Bonding Systems on Superficial and Deep Dentin

    PubMed Central

    Kumari, R Veena; Siddaraju, Kishore; Nagaraj, Hema; Poluri, Ramya Krishna

    2015-01-01

    Background: The purpose of this study was to compare the shear bond strength of nanocomposite resin to superficial dentin and deep dentin using two different dentin bonding systems. Materials and Methods: All teeth were sectioned at various levels (superficial dentin: Dentin within 0.5-1 mm of dentinoenamel junction; deep dentin: Dentin within 0.5 mm of the highest pulp horn) using a Carborundum Disc and embedded in acrylic block of specific size. Selected specimens (60 premolar teeth) were grouped randomly into three groups, the groups were differentiated into superficial dentin, deep dentin, and control group which were further divided into sub Group A and Subgroup B containing 10 teeth each, depending on the bonding agents used. In Subgroup A, Tetric N Bond, and in Subgroup B Single Bond Universal were used. In the control group no bonding agent was used. The specimens were thermocycled for 500 cycles between 5°C and 55°C water bath for 40 s. Finally, the specimens were subjected to shear bond strength study under INSTRON machine (Universal Testing Machine). The maximum shear bond strengths were noted at the time of fracture (de-bonding) of the restorative material. Results were analyzed using ANOVA test, Bonferroni test, and paired t-test. Results: Bond strength values of fifth generation bonding system (Tetric N Bond) showed higher mean shear bond strength compared to seventh generation bonding system (Single Bond Universal). There was a significant fall in bond strength values as one reaches deeper levels of dentin from superficial to deep dentin. Conclusion: There was a significant difference between the bond strength of fifth generation bonding system (Tetric N Bond) and seventh generation bonding system (Single Bond Universal). Decrease in the bond strength values is seen for the deeper level of dentin as compared to superficial dentin. PMID:26435613

  20. Shear Bond Strength of the Repair Composite Resin to Zirconia Ceramic by Different Surface Treatment

    PubMed Central

    Arami, Sakineh; Hasani Tabatabaei, Masoumeh; Namdar, Fatemeh; Safavi, Nassimeh; Chiniforush, Nasim

    2014-01-01

    Introduction: The purpose of this study is the evaluation of the amount of surface roughness (Ra) of Zirconia Ceramic following different surface treatments as well as the assessment of its shear bond strength to composite resin. Methods: 40 sintered zirconia ceramic block samples were randomly divided in 4 groups of 10 and underwent the following surface treatments: a) Control group without treatment b) Air abrasion with Al2O3 particles (50um) c) Er:YAG laser with 2W power for 10s d) Nd:YAG laser with 1.5W power for 2min Then the mean surface roughness (Ra) was evaluated by profilometer. In the next step, Alloy primer was used on a section of 9mm2 on the samples following the manufacturer’s instructions. After that Clearfil AP-X composite resin in cylinder shape with an internal diameter and height of 3mm were cured on the sections mentioned. At the end, all samples were tested to assess the shear bond strength by the Universal Testing Machine at a speed of 0.5mm/min until fracture occurred. The mean shear bond strengths were calculated and statistically analyzed by One Way ANOVA. Results: ANOVA analysis showed that roughness (Ra) was significantly different between the groups (P≤0.05). Ra was higher in the Nd:YAG group compared to the other groups (P≤0.05). The lower Ra was related to the control group. Air abrasion group showed highest amounts of shear bond strength and Nd:YAG laser group demonstrated lower amounts of shear bond strength (P≤0.05). Conclusion: Various surface treatments are differently effective on bond strength. Air abrasion is the most effective method to condition zirconia ceramic surfaces. PMID:25653817

  1. Improved Tensile Adhesion Specimens for High Strength Epoxy Systems in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Haddock, M. Reed; McLennan, Michael L.

    2000-01-01

    An improved tensile adhesion button has been designed and tested that results in higher measured tensile adhesion strength while providing increased capability for testing high strength epoxy adhesive systems. The best attributes of two well-established tensile button designs were combined and refined into an optimized tensile button. The most significant design change to the tensile button was to improve alignment of the bonded tensile button specimens during tensile testing by changing the interface between the tensile button and the tensile test machine. The established or old button design uses a test fixture that pulls from a grooved annulus or anvil head while the new button design pulls from a threaded hole in the centerline of the button. Finite element (FE) analysis showed that asymmetric loading of the established anvil head tensile button significantly increases the stress concentration in the adhesive, causing failure at lower tensile test loads. The new tensile button was designed to eliminate asymmetric loading and eliminate misalignment sensitivity. Enhanced alignment resulted in improved tensile adhesion strength measurement up to 13.8 MPa (2000psi) over the established button design. Another design change increased the capability of the button by increasing the threaded hole diameter allowing it to test high strength epoxy systems up to 85 MPa(less than 12,000 psi). The improved tensile button can be used in button- to-button or button-to-panel configurations.

  2. Influence of conditioning time on bond strength: evaluation of self-etching adhesive systems.

    PubMed

    Borges, Marciano de Freitas; Skupien, Jovito Adiel; Montagner, Anelise Fernandes; Marchiori, Jeferson da Costa; Bortolotto, Tissiana; Krejci, Ivo; Susin, Alexandre Henrique

    2011-01-01

    The aim of this study was to evaluate the tensile bond strength of self-etching adhesive systems with different dentin conditioning times. Sixty caries-free, extracted third molars were selected, with the occlusal surface removed by a diamond saw disc. The specimens were embedded in epoxy resin and divided randomly into six groups (n = 10), according to the conditioning time and adhesive system used. After restoration, the specimens were stored in distilled water at room temperature for 24 hours; they then were submitted to the tensile bond strength test. The results were measured in MPa, then submitted to ANOVA and Tukey's test (P = 0.05). The adhesive system used and the length of dentin conditioning time were statistically significant (P < 0.05). The application time of the conditioner before photocuring did not have a significant effect on tensile bond strength. These results indicate that the resting time of adhesive above the dentin does not directly affect the bond strength of the adhesive system.

  3. Behaviour of reinforced concrete beams with confined concrete related to ultimate bending and shear strength

    NASA Astrophysics Data System (ADS)

    Tee, Horng Hean; Al-Sanjery, Kousay; Chiang, Jeffrey Choong Luin

    2017-03-01

    This research is to investigate the behaviour of over-balanced High Strength Reinforced Concrete Beams with the compression zone confined with spiral / helical steel reinforcements. The study covered beam behaviour with respect to flexural strength, shear strength, deflection and cracking related to confined concrete. Six 200mm (width) X 300mm (depth) X 3000mm (length) Reinforced Concrete (RC) Beams, the first three beams incorporating steel ratio of 1.42ρb and the remaining 1.64ρb were tested under a four point static load test. The confinement of the concrete was carried out using spiral reinforcements of diameter 6mm and yield stress of 406N/mm2 with pitches of 50mm and 100mm. Measurements of deflection, cracking, and strains on both main reinforcements and concrete of the beams were taken. At the same level of stress, beams with confined concrete strained less than control beams without confinement for both tensile strain at the main steel reinforcement and compressive strain across the compression zone of concrete. Deflections of beams with helical confinement were less than the control beams. All beams failed in shear / flexural mode and gave fair warning against failure, more specifically beams with 1.42ρb, which is not normally associated with shear-type failure of beams which are over reinforced. The early shear failure prevented the beams from achieving its full utilisation of the ultimate strength. It is recommended that for over-reinforced confined concrete beams, the shear strength of beams should be based on using the diagonal compressive strut angle (θ) of more than 22 degrees recommended in Eurocode 2 (EC2), hence giving the beam higher safety factor against shear failure. All samples exhibited flexure and shear cracks in a manner which gave a good warning against failure. The ratio of the failure load to the theoretical ultimate load for shear ranged between 0.98 and 1.25 while the ratio of the failure load to the ultimate flexural load ranged

  4. Comparison of Shear Bond Strength of Composite to Stainless Steel Crowns Using Two Mechanical Surface Treatments and Two Bonding Systems

    PubMed Central

    Ghadimi, Sara; Heidari, Alireza

    2016-01-01

    Objectives: This study aimed to compare the shear bond strength (SBS) of composite to stainless steel crowns (SSC) using two mechanical surface treatments (MSTs) and two bonding systems. Materials and Methods: Eighty-four SSCs were divided into six groups of 14; Group1: No MST+Scotchbond Universal adhesive (N+U), Group 2: Surface roughening by a diamond bur+Scotchbond Universal adhesive (R+U), Group 3: Sandblasting+Scotchbond Universal adhesive (S+U), Group 4: No MST+Alloy Primer+Clearfil SE Primer and Bond (N+A), Group 5: Surface roughening by a diamond bur+Alloy Primer+Clearfil SE Primer and Bond (R+A), Group 6: Sandblasting+Alloy Primer+Clearfil SE Primer and Bond (S+A). After MST and bonding procedure, composite cylinders were bonded to the lingual surface of SSCs, then the SBS of composite to SSCs was measured using a universal testing machine following thermocycling. Results: The SBS of groups R+U and S+U was significantly higher than that of group N+U. No significant difference was noted in SBS of groups R+U and S+U. The SBS of group S+A was significantly higher than that of groups N+A and R+A. No significant difference was noted in the SBS of groups N+A and R+A (P>0.05). Conclusions: In Scotchbond Universal adhesive groups, sandblasting and surface roughening by diamond bur significantly increased the SBS of composite to SSCs compared to no MST. In Alloy Primer groups, sandblasting significantly increased the SBS of composite to SSC compared to surface roughening with diamond bur and no MST. PMID:27536330

  5. Correlation Between Shear Punch and Tensile Strength for Low-Carbon Steel and Stainless Steel Sheets

    NASA Astrophysics Data System (ADS)

    Mahmudi, R.; Sadeghi, M.

    2013-02-01

    The deformation behavior of AISI 1015 low-carbon steel, and AISI 304 stainless steel sheets was investigated by uniaxial tension and the shear punch test (SPT). Both materials were cold rolled to an 80% thickness reduction and subsequently annealed in the temperature range 25-850 °C to produce a wide range of yield and ultimate strength levels. The correlations between shear punch and tensile yield and ultimate stresses were established empirically. Different linear relationships having different slopes and intercepts were found for the low-carbon and stainless steel sheets, and the possible parameters affecting the correlation were discussed. It was shown that, within limits, yield and tensile strength of thin steel sheets can be predicted from the shear data obtained by the easy-to-perform SPT.

  6. Effects of grain size distribution on the packing fraction and shear strength of frictionless disk packings.

    PubMed

    Estrada, Nicolas

    2016-12-01

    Using discrete element methods, the effects of the grain size distribution on the density and the shear strength of frictionless disk packings are analyzed. Specifically, two recent findings on the relationship between the system's grain size distribution and its rheology are revisited, and their validity is tested across a broader range of distributions than what has been used in previous studies. First, the effects of the distribution on the solid fraction are explored. It is found that the distribution that produces the densest packing is not the uniform distribution by volume fractions as suggested in a recent publication. In fact, the maximal packing fraction is obtained when the grading curve follows a power law with an exponent close to 0.5 as suggested by Fuller and Thompson in 1907 and 1919 [Trans Am. Soc. Civ. Eng. 59, 1 (1907) and A Treatise on Concrete, Plain and Reinforced (1919), respectively] while studying mixtures of cement and stone aggregates. Second, the effects of the distribution on the shear strength are analyzed. It is confirmed that these systems exhibit a small shear strength, even if composed of frictionless particles as has been shown recently in several works. It is also found that this shear strength is independent of the grain size distribution. This counterintuitive result has previously been shown for the uniform distribution by volume fractions. In this paper, it is shown that this observation keeps true for different shapes of the grain size distribution.

  7. A cross-shear deformation for optimizing the strength and ductility of AZ31 magnesium alloys

    PubMed Central

    Hamad, Kotiba; Ko, Young Gun

    2016-01-01

    Magnesium alloys have recently attracted great interest due their lightweight and high specific strength. However, because of their hexagonal close-packed structure, they have few active slip systems, resulting in poor ductility and high mechanical anisotropy at room temperature. In the present work, we used a cross-shear deformation imposed by a differential speed rolling (DSR) technique to improve the room temperature strength and ductility of AZ31 magnesium alloy sheets. To introduce the cross-shear deformation, the sheets were rotated 180° around their longitudinal axis between the adjacent passes of DSR. The sheets of the AZ31 alloy subjected to the cross-shear deformation showed a uniform fine microstructure (1.2 ± 0.1 μm) with weak basal textures. The fabricated sheets showed a simultaneous high ultimate tensile strength and elongation-to-failure, i.e., ~333 MPa and ~21%, respectively. These were explained based on the structural features evolved due to the cross-shear deformation by DSR. The high strength was attributed to the uniform fine microstructure, whereas the high ductility was explained based on the basal texture weakening. PMID:27406685

  8. Effects of grain size distribution on the packing fraction and shear strength of frictionless disk packings

    NASA Astrophysics Data System (ADS)

    Estrada, Nicolas

    2016-12-01

    Using discrete element methods, the effects of the grain size distribution on the density and the shear strength of frictionless disk packings are analyzed. Specifically, two recent findings on the relationship between the system's grain size distribution and its rheology are revisited, and their validity is tested across a broader range of distributions than what has been used in previous studies. First, the effects of the distribution on the solid fraction are explored. It is found that the distribution that produces the densest packing is not the uniform distribution by volume fractions as suggested in a recent publication. In fact, the maximal packing fraction is obtained when the grading curve follows a power law with an exponent close to 0.5 as suggested by Fuller and Thompson in 1907 and 1919 [Trans Am. Soc. Civ. Eng. 59, 1 (1907) and A Treatise on Concrete, Plain and Reinforced (1919), respectively] while studying mixtures of cement and stone aggregates. Second, the effects of the distribution on the shear strength are analyzed. It is confirmed that these systems exhibit a small shear strength, even if composed of frictionless particles as has been shown recently in several works. It is also found that this shear strength is independent of the grain size distribution. This counterintuitive result has previously been shown for the uniform distribution by volume fractions. In this paper, it is shown that this observation keeps true for different shapes of the grain size distribution.

  9. Effect of indirect composite treatment microtensile bond strength of self-adhesive resin cements

    PubMed Central

    Escribano, Nuria; Baracco, Bruno; Romero, Martin; Ceballos, Laura

    2016-01-01

    Background No specific indications about the pre-treatment of indirect composite restorations is provided by the manufacturers of most self-adhesive resin cements. The potential effect of silane treatment to the bond strength of the complete tooth/indirect restoration complex is not available.The aim of this study was to determine the contribution of different surface treatments on microtensile bond strength of composite overlays to dentin using several self-adhesive resin cements and a total-etch one. Material and Methods Composite overlays were fabricated and bonding surfaces were airborne-particle abraded and randomly assigned to two different surface treatments: no treatment or silane application (RelyX Ceramic Primer) followed by an adhesive (Adper Scotchbond 1 XT). Composite overlays were luted to flat dentin surfaces using the following self-adhesive resin cements: RelyX Unicem, G-Cem, Speedcem, Maxcem Elite or Smartcem2, and the total-etch resin cement RelyX ARC. After 24 h, bonded specimens were cut into sticks 1 mm thick and stressed in tension until failure. Two-way ANOVA and SNK tests were applied at α=0.05. Results Bond strength values were significantly influenced by the resin cement used (p<0.001). However, composite surface treatment and the interaction between the resin cement applied and surface treatment did not significantly affect dentin bond strength (p>0.05). All self-adhesive resin cements showed lower bond strength values than the total-etch RelyX ARC. Among self-adhesive resin cements, RelyX Unicem and G-Cem attained statistically higher bond strength values. Smartcem2 and Maxcem Elite exhibited 80-90% of pre-test failures. Conclusions The silane and adhesive application after indirect resin composite sandblasting did not improve the bond strength of dentin-composite overlay complex. Selection of the resin cement seems to be a more relevant factor when bonding indirect composites to dentin than its surface treatment. Key words

  10. Influence of superconductor film composition on adhesion strength of coated conductors

    SciTech Connect

    Kesgin, Ibrahim; Khatri, Narayan; Liu, Yuhao; Delgado, Louis; Galstyan, Eduard; Selvamanickam, Venkat

    2015-11-20

    The effect of high temperature superconductor (HTS) film composition on the adhesion strength of rare- earth barium copper oxide coated conductors (CCs) has been studied. It has been found that the mechanical integrity of the superconductor layer is very susceptible to the defects especially those along the ab plane, probably due to the weak interfaces between the defects and the matrix. Gd and Y in the standard composition were substituted with Sm and the number of in-plane defects was drastically reduced. Consequently, a four-fold increase in adhesion or peeling strength in Sm-based CCs was achieved compared to the standard GdYBCO samples.

  11. Micro-tensile bond strength of adhesive systems applied on occlusal primary enamel.

    PubMed

    Ramires-Romito, Ana Cláudia; Reis, Alessandra; Loguercio, Alessandro Dourado; de Góes, Mario Fernando; Grande, Rosa Helena Miranda

    2004-01-01

    The aim of this study was to evaluate the micro-tensile bond strength of adhesive systems (OptiBond Solo, Kerr; Prime & Bond NT, Dentsply) on occlusal surface of primary molars. The adhesives were tested under manufacturers' specifications and after contamination of the bonding site with saliva. Hourglass cylindrical-shaped samples were obtained and subjected to a tensile force. No significant difference was observed among the groups. OptiBond Solo and Prime & Bond NT showed similar values of bond strengths when applied on occlusal enamel of primary molar under either saliva contamination or not.

  12. Enhancing the adhesion strength of micro electroforming layer by ultrasonic agitation method and the application.

    PubMed

    Zhao, Zhong; Du, Liqun; Tao, Yousheng; Li, Qingfeng; Luo, Lei

    2016-11-01

    Micro electroforming is widely used for fabricating micro metal devices in Micro Electro Mechanism System (MEMS). However, there is the problem of poor adhesion strength between micro electroforming layer and substrate. This dramatically influences the dimensional accuracy of the device. To solve this problem, ultrasonic agitation method is applied during the micro electroforming process. To explore the effect of the ultrasonic agitation on the adhesion strength, micro electroforming experiments were carried out under different ultrasonic power (0W, 100W, 150W, 200W, 250W) and different ultrasonic frequencies (0kHz, 40kHz, 80kHz, 120kHz, 200kHz). The effects of the ultrasonic power and the ultrasonic frequency on the micro electroforming process were investigated by polarization method and alternating current (a.c.) impedance method. The adhesion strength between the electroforming layer and the substrate was measured by scratch test. The compressive stress of the electroforming layer was measured by X-ray Diffraction (XRD) method. The crystallite size of the electroforming layer was measured by Transmission Electron Microscopy (TEM) method. The internal contact surface area of the electroforming layer was measured by cyclic voltammetry (CV) method. The experimental results indicate that the ultrasonic agitation can decrease the polarization overpotential and increase the charge transfer process. Generally, the internal contact surface area is increased and the compressive stress is reduced. And then the adhesion strength is enhanced. Due to the different depolarization effects of the ultrasonic power and the ultrasonic frequency, the effects on strengthening the adhesion strength are different. When the ultrasonic agitation is 200W and 40kHz, the effect on strengthening the adhesion strength is the best. In order to prove the effect which the ultrasonic agitation can improve the adhesion strength of the micro devices, micro pillar arrays were fabricated under

  13. Effect of shear stress on platelet adhesion to expanded polytetrafluoroethylene, a silicone sheet, and an endothelial cell monolayer.

    PubMed

    Furukawa, K S; Ushida, T; Sugano, H; Tamaki, T; Ohshima, N; Tateishi, T

    2000-01-01

    We visualized in real-time platelets adhering to the surface of three representative biomaterials, by using an apparatus consisting of a modified cone and plate rheometer combined with an upright epifluorescence microscope under two shear flows (0.1 and 5.0 dyne/cm2). The materials were expanded polytetrafluoroethylene (ePTFE), silicone sheet, and a monolayer of bovine endothelial cells (ECs) formed on glass, all of which are opaque materials used for artificial blood vessels and medical devices. According to quantitative analysis, the monolayer of ECs formed on glass had better blood compatibility than did either the ePTFE or the silicone sheet under shear flow conditions. Under a shear flow condition of 0.1 dyne/cm2, platelet adhesion was silicone sheet > ePTFE. In contrast, under a shear flow condition of 5.0 dyne/cm2, ePTFE > silicone sheet. These results indicate that the intensity of shear stress could modify the order of hemocompatibility of the materials. Therefore, direct observation of platelet adhesion under shear flow conditions is indispensable for testing and screening biomaterials and for providing a precise quantitative evaluation of platelet adhesion.

  14. Micro-shear bond strength and surface micromorphology of a feldspathic ceramic treated with different cleaning methods after hydrofluoric acid etching

    PubMed Central

    STEINHAUSER, Henrique Caballero; TURSSI, Cecília Pedroso; FRANÇA, Fabiana Mantovani Gomes; do AMARAL, Flávia Lucisano Botelho; BASTING, Roberta Tarkany

    2014-01-01

    Objective The aim of this study was to evaluate the effect of feldspathic ceramic surface cleaning on micro-shear bond strength and ceramic surface morphology. Material and Methods Forty discs of feldspathic ceramic were prepared and etched with 10% hydrofluoric acid for 2 minutes. The discs were randomly distributed into five groups (n=8): C: no treatment, S: water spray + air drying for 1 minute, US: immersion in ultrasonic bath for 5 minutes, F: etching with 37% phosphoric acid for 1 minute, followed by 1-minute rinse, F+US: etching with 37% phosphoric acid for 1 minute, 1-minute rinse and ultrasonic bath for 5 minutes. Composite cylinders were bonded to the discs following application of silane and hydrophobic adhesive for micro-shear bond strength testing in a universal testing machine at 0.5 mm/min crosshead speed until failure. Stereomicroscopy was used to classify failure type. Surface micromorphology of each treatment type was evaluated by scanning electron microscopy at 500 and 2,500 times magnification. Results One-way ANOVA test showed no significant difference between treatments (p=0.3197) and the most common failure types were cohesive resin cohesion followed by adhesive failure. Micro-shear bond strength of the feldspathic ceramic substrate to the adhesive system was not influenced by the different surface cleaning techniques. Absence of or less residue was observed after etching with hydrofluoric acid for the groups US and F+US. Conclusions Combining ceramic cleaning techniques with hydrofluoric acid etching did not affect ceramic bond strength, whereas, when cleaning was associated with ultrasound, less residue was observed. PMID:24676577

  15. The Effect of Peel Stress on the Strength of Adhesively Bonded Joints

    SciTech Connect

    Guess, T.R.; Metzinger, K.E.

    1998-10-14

    Composite wind turbine blades are often attached to a metallic structure with an adhesive bond. The objective of this investigation is to determine which parameters affect the durability of these adhesively bonded joints. The composite-to-steel joint considered in this study typically fails when the adhesive debonds from the steel adherend. Previously, this joint was monotonically loaded in either compression or tension. Compressive and tensile axial loads of the same magnitude produce adhesive stresses with very similar magnitudes but opposite signs. (For the joint considered, tensile loads produce compressive peeh stresses in the adhesive at the location where debonding initiates.) The tensile specimens failed at much higher loads, establishing that the sign of the adhesive peel stresses strongly influences the single-cycle strength of these joints. Building on this earlier work, this study demonstrates that the adhesive peel stresses are also critical for fatigue loading. The results of low-cycle (axial) and high- cycle (bending) fatigue tests are presented. To complement the test results, finite element analyses demonstrate the localized nature of the peel stresses that develop in the adhesive. In addition, these analyses are used to investigate some of the causes of these peel stresses.

  16. Regional Variations in Shear Strength and Density of the Human Thoracic Vertebral Endplate and Trabecular Bone

    PubMed Central

    Jauregui, Julio J.; Cornish, Nathan; Jason-Rousseau, Rebecca; Chatterjee, Dipal; Feuer, Gavriel; Hayes, Westley; Kapadia, Bhaveen H.; Carter, John N.; Yoshihara, Hiroyuki; Saha, Subrata

    2017-01-01

    Background Previous studies investigated the overall mechanical strength of the vertebral body; however, limited information is available on the biomechanical properties of different regions within the vertebral endplate and cancellous bone. In addition, the correlation between mechanical strength and various density measurements has not been studied yet. Methods Thoracic (T10) vertebrae were harvested from fifteen human cadaveric spines (average age: 77 years old). Twelve cylindrical cores of 7.2 mm (diameter) by 3.2 mm (height) were prepared from each vertebral body. Shear was produced using a stainless steel tubular blade and measured with a load cell from a mechanical testing machine. Optical and bulk densities were calculated before mechanical testing. Apparent, material, and ash densities were measured after testing. Results Material density and shear strength increased from anterior to lateral regions of both endplate and cancellous bone. Endplate shear strength was significantly lower in the anterior (0.52 ± 0.08 MPa) than in the lateral region (2.72 ± 0.59 MPa) (p=0.017). Trabecular bone maximum load carrying capacity was 5 times higher in the lateral (12 ± 2.74 N) (p=0.09) and 4.5 times higher in the central (10 ± 2.24 N) (p=0.2) than in the anterior (2 ± 0.60 N) regions. Mechanical strength positively correlated with ash density, and even moreso with material density. Conclusion Shear strength was the lowest at the anterior region and highest at the lateral region for both endplate and cancellous bone. Material density had the best correlation with mechanical strength. Newer spinal implants could optimize the loading in the lateral aspects of both endplate and cancellous bone to reduce the likelihood of screw loosening and the subsidence of disc replacement devices. This study was reviewed by the SUNY Downstate Medical Center IRB Committee; IRB#: 533603-2. PMID:28377865

  17. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel

    PubMed Central

    Sekhri, Sahil; Garg, Sandeep

    2016-01-01

    Introduction In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. Aim The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. Materials and Methods On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Results Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non–significant (p > 0.05). Conclusion Surface treatment of enamel increases the bond strength of self adhesive resin cement. PMID:26894165

  18. Dentin bond strength and degree of conversion evaluation of experimental self-etch adhesive systems

    PubMed Central

    Yazdi, Fatemeh-Maleknejad; Atai, Mohammad; Zeynali, Mahsa

    2015-01-01

    Background The aim of this study was to investigate the effect of different concentrations of 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) monomer in one-step self-etch experimental adhesives on dentinal microshear bond strength (µSBS), their degree of conversion and bonded micro structure. Material and Methods Composite resin cylinders (Clearfil AP-X) were bonded on human sound molar dentinal surfaces by using five experimental one-step self-etching adhesives (1-SEAs) containing 0% (E0), 5% (E5), 10% (E10), 15% (E15), 20% (E20) (by weight) 10-MDP monomer and Clearfil S3 Bond (CS3) as a control. After 24 hours, microshear bond strength was tested. The degree of conversion was also measured using Fourier transform infrared spectroscopy. Interfacial ultrastructure was observed under a scanning electron microscope in all the groups. Results A higher microshear bond strength was observed with adhesives containing 10% and 15% 10-MDP in comparison to study groups (P<.05). Clearfil S3 Bond and 10% MDP had a significantly greater degree of conversion than other groups (P<.05). Conclusions The amount of functional monomer in 1-SEAs influences both the bonding performance and degree of conversion; 10% 10-MDP showed the best combination of bond strength and degree of conversion. Key words:Self-etch adhesives, 10-MDP, bond strength, degree of conversion. PMID:26155340

  19. Exploring the Limits of Cell Adhesion under Shear Stress within Physiological Conditions and beyond on a Chip

    PubMed Central

    Stamp, Melanie E. M.; Jötten, Anna M.; Kudella, Patrick W.; Breyer, Dominik; Strobl, Florian G.; Geislinger, Thomas M.; Wixforth, Achim; Westerhausen, Christoph

    2016-01-01

    Cell adhesion processes are of ubiquitous importance for biomedical applications such as optimization of implant materials. Here, not only physiological conditions such as temperature or pH, but also topographical structures play crucial roles, as inflammatory reactions after surgery can diminish osseointegration. In this study, we systematically investigate cell adhesion under static, dynamic and physiologically relevant conditions employing a lab-on-a-chip system. We screen adhesion of the bone osteosarcoma cell line SaOs-2 on a titanium implant material for pH and temperature values in the physiological range and beyond, to explore the limits of cell adhesion, e.g., for feverish and acidic conditions. A detailed study of different surface roughness Rq gives insight into the correlation between the cells’ abilities to adhere and withstand shear flow and the topography of the substrates, finding a local optimum at Rq = 22 nm. We use shear stress induced by acoustic streaming to determine a measure for the ability of cell adhesion under an external force for various conditions. We find an optimum of cell adhesion for T = 37 °C and pH = 7.4 with decreasing cell adhesion outside the physiological range, especially for high T and low pH. We find constant detachment rates in the physiological regime, but this behavior tends to collapse at the limits of 41 °C and pH 4. PMID:27775638

  20. Exploring the Limits of Cell Adhesion under Shear Stress within Physiological Conditions and beyond on a Chip.

    PubMed

    Stamp, Melanie E M; Jötten, Anna M; Kudella, Patrick W; Breyer, Dominik; Strobl, Florian G; Geislinger, Thomas M; Wixforth, Achim; Westerhausen, Christoph

    2016-10-21

    Cell adhesion processes are of ubiquitous importance for biomedical applications such as optimization of implant materials. Here, not only physiological conditions such as temperature or pH, but also topographical structures play crucial roles, as inflammatory reactions after surgery can diminish osseointegration. In this study, we systematically investigate cell adhesion under static, dynamic and physiologically relevant conditions employing a lab-on-a-chip system. We screen adhesion of the bone osteosarcoma cell line SaOs-2 on a titanium implant material for pH and temperature values in the physiological range and beyond, to explore the limits of cell adhesion, e.g., for feverish and acidic conditions. A detailed study of different surface roughness Rq gives insight into the correlation between the cells' abilities to adhere and withstand shear flow and the topography of the substrates, finding a local optimum at Rq = 22 nm. We use shear stress induced by acoustic streaming to determine a measure for the ability of cell adhesion under an external force for various conditions. We find an optimum of cell adhesion for T = 37 °C and pH = 7.4 with decreasing cell adhesion outside the physiological range, especially for high T and low pH. We find constant detachment rates in the physiological regime, but this behavior tends to collapse at the limits of 41 °C and pH 4.

  1. Adhesion Strength of Settled Spores of the Green Alga Enteromorpha

    DTIC Science & Technology

    2002-01-01

    strength and colonization patterns of two macrofouling species on substrata with different surface tension (in situ studies). Mar Biol 117: 301–309 Beltaos S ...5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ...REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM( S ) 11. SPONSOR/MONITOR’S REPORT NUMBER( S ) 12

  2. Joint shear strength of FRP reinforced concrete beam-column joints

    NASA Astrophysics Data System (ADS)

    Saravanan, Jagadeesan; Kumaran, Ganapathy

    2011-03-01

    An assessment of the joint shear strength of exterior concrete beam-column joints reinforced internally with Glass Fibre Reinforced Polymer (GFRP) reinforcements under monotonically increasing load on beams keeping constant load on columns is carried out in this study. Totally eighteen numbers of specimens are cast and tested for different parametric conditions like beam longitudinal reinforcement ratio, concrete strength, column reinforcement ratio, joint aspect ratio and influence of the joint stirrups at the joint. Also finite element analysis is performed to simulate the behaviour of the beam-column joints under various parametric conditions. Based on this study, a modified design equation is proposed for assessing the joint shear strength of the GFRP reinforced beam-column specimens based on the experimental results and the review of the prevailing design equations.

  3. Effect of adsorbed chlorine and oxygen on the shear strength of iron and copper junctions

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.

    1976-01-01

    Static-friction experiments were performed in ultrahigh vacuum at room temperature on copper, iron, and steel contacts selectively contaminated with oxygen and chlorine in submonolayer amounts. The concentration of the adsorbates was determined with Auger electron spectroscopy and was measured relative to the saturation concentration of oxygen on iron (concentration, 1.0). The coefficient of static friction decreased with increasing adsorbate concentration; however, it was independent of the type of metal and the adsorbate species. The results compared satisfactorily with an extension of the junction growth theory to heterogeneous interfaces. The reduction in interfacial shear strength was measured by the ratio of the shear strength of the interface with an adsorbate concentration of 1.0 and the strength of the clean metal interface. This ratio was about 0.835 for all the systems tested.

  4. Interfacial Shear Strength of Cast and Directionally Solidified Nial-Sapphire Fiber Composites

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Asthana, R.; Noebe, R. D.

    1993-01-01

    The feasibility of fabricating intermetallic NiAl-sapphire fiber composites by casting and zone directional solidification has been examined. The fiber-matrix interfacial shear strengths measured using a fiber push-out technique in both cast and directionally solidified composites are greater than the strengths reported for composites fabricated by powder cloth process using organic binders. Microscopic examination of fibers extracted from cast, directionally solidified (DS), and thermally cycled composites, and the high values of interfacial shear strengths suggest that the fiber-matrix interface does not degrade due to casting and directional solidification. Sapphire fibers do not pin grain boundaries during directional solidification, suggesting that this technique can be used to fabricate sapphire fiber reinforced NiAl composites with single crystal matrices.

  5. Effect of adsorbed chlorine and oxygen on shear strength of iron and copper junctions

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.

    1975-01-01

    Static friction experiments were performed in ultrahigh vacuum at room temperature on copper, iron, and steel contacts selectively contaminated with oxygen and chlorine in submonolayer amounts. The concentration of the adsorbates was determined with Auger electron spectroscopy and was measured relative to the saturation concentration of oxygen on iron (concentration 1.0). The coefficient of static friction decreased with increasing adsorbate concentration. It was independent of the metal and the adsorbate. The results compared satisfactorily with an extension of the junction growth theory to heterogeneous interfaces. The reduction in interfacial shear strength was measured by the ratio sub a/sub m where sub a is the shear strength of the interface with an adsorbate concentration of 1.0, and sub m is the strength of the clean metal interface. This ratio was 0.835 + or - 0.012 for all the systems tested.

  6. Thermal and tensile strength testing of thermally-conductive adhesives and carbon foam

    NASA Astrophysics Data System (ADS)

    Chertok, M.; Fu, M.; Irving, M.; Neher, C.; Shi, M.; Tolfa, K.; Tripathi, M.; Vinson, Y.; Wang, R.; Zheng, G.

    2017-01-01

    Future collider detectors, including silicon tracking detectors planned for the High Luminosity LHC, will require components and mechanical structures providing unprecedented strength-to-mass ratios, thermal conductivity, and radiation tolerance. This paper studies carbon foam used in conjunction with thermally conductive epoxy and thermally conductive tape for such applications. Thermal performance and tensile strength measurements of aluminum-carbon foam-adhesive stacks are reported, along with initial radiation damage test results.

  7. Shear bond strength between an indirect composite veneering material and zirconia ceramics after thermocycling.

    PubMed

    Komine, Futoshi; Kobayashi, Kazuhisa; Saito, Ayako; Fushiki, Ryosuke; Koizumi, Hiroyasu; Matsumura, Hideo

    2009-12-01

    The present study evaluated the shear bond strength between an indirect composite material and zirconium dioxide (zirconia) ceramics after thermocycling. A total of 80 zirconia (Katana) discs were divided into five groups and primed with one of following agents: All Bond 2 Primer B (ABB), Alloy Primer (ALP), AZ Primer (AZP), Estenia Opaque Primer (EOP), and Porcelain Liner M Liquid A (PLA). An indirect composite material (Estenia C&B) was then bonded to the primed zirconia. One-half of the specimens (n = 8) in each group were stored in distilled water at 37 degrees C for 24 h, and the remaining eight specimens were thermocycled 5,000 times before shear bond strength testing. Mean bond strengths before thermocycling varied from 10.1 to 15.6 MPa; bond strengths after thermocycling ranged from 4.3 to 17.6 MPa. The ALP group had the highest strengths after thermocycling; there were no significant differences among the PLA, AZP, and EOP groups. The bond strength values for PLA, AZP, EOP, and ALP did not decrease with thermocycling. The application of an acidic functional monomer containing carboxylic anhydride (4-META), phosphonic acid (6-MHPA), or phosphate monomer (MDP) provided durable bond strength between Estenia C&B indirect composite and Katana zirconia.

  8. Impact of oxalate desensitizer combined with ethylene-diamine tetra acetic acid-conditioning on dentin bond strength of one-bottle adhesives during dry bonding

    PubMed Central

    Shafiei, Fereshteh; Doozandeh, Maryam

    2013-01-01

    Background: Elimination of water entrapment in hybrid layer during bonding procedure would increase bonding durability. Aims: This study evaluated the effect of oxalate desensitizer (OX) pretreatment on bond strength of three one-bottle adhesives to ethylene-diamine tetra acetic acid (EDTA)-conditioned dentin under dry bonding. Materials and Methods: Three adhesive systems, One-Step Plus (OS), Optibond Solo Plus (OP) and Adper Single Bond (SB) were bonded on dentin surfaces under four bonding conditions: (1) Wet-bonding on acid-etched dentin, (2) wet bonding on EDTA-conditioned dentin, (3) dry bonding on EDTA-conditioned dentin, (4) dry bonding associated with OX on the EDTA-conditioned dentin. After storage and thermo cycling, shear bond strength test was performed. Data were analyzed using two-way analysis of variance and Tukey tests. Results: Wet bonding with EDTA or acid etching showed similar bond strength for test adhesives. Dry bonding with EDTA significantly decreased the bond strength of OS, but it had no effect on the bonding of OP and SB. OX application in the forth bonding condition, in comparison with the third condition, had a negative effect on the bond strength of OP, but not influence on OS and SB. Conclusions: The use of an OX on EDTA-conditioned dentin compromised the bonding efficacy of OS and OP under dry bonding but compatible for SB. PMID:23833461

  9. Effects of different vegetation types on the shear strength of root-permeated soils

    NASA Astrophysics Data System (ADS)

    Yildiz, Anil; Graf, Frank; Rickli, Christian; Springman, Sarah M.

    2016-04-01

    The effects of vegetation and, in particular, of forests on the stability of slopes are well recognized and have been widely studied in recent decades. However, there is still a lack of understanding of the underlying processes that occur prior to triggering superficial failures in root-permeated soil. Thus, appropriate quantification of the vegetation effects on the shear strength of soil is crucial in order to be able to evaluate the stability of a vegetated slope. Direct shear testing is widely employed to determine the shearing response of root-permeated soil. However, mechanical aspects of direct shear apparatuses may affect the shear strength parameters derived, which often remains unnoticed and hampers direct comparison between different studies. A robust Inclinable Large-scale Direct Shear Apparatus (ILDSA), with dimensions of 500x500x400 mm, was built in order to shear root-permeated soil specimens and to analyse the influence of the machine setup on the results, too. Two different sets of planted specimens were prepared using moraine (SP-SM) from a recent landslide area in Central Switzerland: a first set consisting of Alnus incana, Trifolium pratense, Poa pratensis and a second set, consisting of these three species complemented with Salix appendiculata, Achillea millefolium, Anthyllis vulneraria. Direct shear tests were conducted on specimens planted with the different vegetation types, at a constant rate of horizontal displacement of 1 mm/min up to a maximum horizontal displacement of 190 mm, and under three different applied normal stresses: 6 kPa, 11 kPa and 16 kPa. Artificial rainfall was applied at a constant intensity (100 mm/h) prior to shearing. Tensiometers had been installed close to the shear surface and were monitored continuously to obtain the matric suction during the saturation process. Suctions were reduced as close to 0 kPa as possible, in order to simulate the loss of strength after a heavy period of rainfall. The analyses of the above

  10. A mussel-inspired adhesive with stronger bonding strength under underwater conditions than under dry conditions.

    PubMed

    Li, Ailei; Mu, Youbing; Jiang, Wei; Wan, Xiaobo

    2015-06-04

    A mussel-inspired adhesive based on a polyvinylpyrrolidone (PVP) backbone shows a much higher bonding strength under underwater/seawater conditions than under dry conditions. We reasoned that besides catechol moieties, the structure and properties of the backbone also play an important role in the realization of strong underwater bonding.

  11. Macroalgal assemblage type affects predation pressure on sea urchins by altering adhesion strength.

    PubMed

    Gianguzza, P; Bonaviri, C; Milisenda, G; Barcellona, A; Agnetta, D; Vega Fernández, T; Badalamenti, F

    2010-07-01

    In the Mediterranean, sea breams are the most effective Paracentrotus lividus and Arbacia lixula predators. Generally, seabreams dislodge adult urchins from the rocky substrate, turn them upside down and crush their tests. Sea urchins may respond to fish attacks clinging tenaciously to the substratum. This study is the first attempt to investigate sea urchin adhesion strength in two alternative algal assemblages of the rocky infralittoral and valuated its possible implication for fish predation. We hypothesized that (1) sea urchin adhesion strength is higher in rocky shores dominated by encrusting macroalgae (ECA) than in erected macroalgae (EMA); (2) predation rates upon sea urchins are lower in ECA than in EMA; and (3) predation rate on A. lixula is lower than that on P. lividus. We observed that attachment tenacity of both sea urchins was higher in ECA than EMA and that A. lixula exhibited a stronger attachment tenacity than P. lividus in ECA. Results supported the importance of adhesion strength, as efficient defence against sea bream attacks, only for, P. lividus. A. lixula adhesion strength does not seem to be an important factor in avoiding fish predation, possibly because of the low palatability of the species. These patterns may deserve particular interest in understanding the processes responsible for the maintenance of sea urchin barrens that are dominated by ECA assemblage.

  12. Bond Strength of Methacrylate-Based Composite to Dentin using a Silorane Adhesive

    DTIC Science & Technology

    2013-06-06

    failures using Clearfil SE Bond were mixed or cohesive in nature suggesting a more stable adhesive interface (Al- Salehi and Burke, 1997). However, the...REFERENCES Al- Salehi SK, Burke FJ. Methods used in dentin bonding tests: An analysis of 50 investigations on bond strength. Quint Inter 1997;28:717–723

  13. Single-cycle and fatigue strengths of adhesively bonded lap joints

    SciTech Connect

    Metzinger, K.E.; Guess, T.R.

    1998-12-31

    This study considers a composite-to-steel tubular lap joint in which failure typically occurs when the adhesive debonds from the steel adherend. The same basic joint was subjected to compressive and tensile axial loads (single-cycle) as well as bending loads (fatigue). The purpose of these tests was to determine whether failure is more dependent on the plastic strain or the peel stress that develops in the adhesive. For the same joint, compressive and tensile loads of the same magnitude will produce similar plastic strains but peel stresses of opposite signs in the adhesive. In the axial tests, the tensile strengths were much greater than the compressive strengths - indicating that the peel stress is key to predicting the single-cycle strengths. To determine the key parameter(s) for predicting high-cycle fatigue strengths, a test technique capable of subjecting a specimen to several million cycles per day was developed. In these bending tests, the initial adhesive debonding always occurred on the compressive side. This result is consistent with the single-cycle tests, although not as conclusive due to the limited number of tests. Nevertheless, a fatigue test method has been established and future tests are planned.

  14. Tensile bond strength and SEM evaluation of caries-affected dentin using dentin adhesives.

    PubMed

    Nakajima, M; Sano, H; Burrow, M F; Tagami, J; Yoshiyama, M; Ebisu, S; Ciucchi, B; Russell, C M; Pashley, D H

    1995-10-01

    Tensile bond strength measurements are commonly used for the evaluation of dentin adhesive systems. Most tests are performed using extracted non-carious human or bovine dentin. However, the adhesion of resins to caries-affected dentin is still unclear. The objectives of this study were to test the hypothesis that bonding to caries-affected dentin is inferior to bonding to normal dentin, and that the quality of the hybrid layer plays a major role in creating good adhesion. We used a micro-tensile bond strength test to compare test bond strengths made to either caries-affected dentin or normal dentin, using three commercial adhesive systems (All Bond 2, Scotchbond Multi-Purpose, and Clearfil Liner Bond II). For scanning electron microscopy, the polished interfaces between the adhesive bond and dentin were subjected to brief exposure to 10% phosphoric acid solution and 5% sodium hypochlorite, so that the quality of the hybrid layers could be observed. Bonding to normal dentin with either All Bond 2 (26.9 +/- 8.8 MPa) or Clearfil Liner Bond II (29.5 +/- 10.9 MPa) showed tensile bond strengths higher than those to caries-affected dentin (13.0 +/- 3.6 MPa and 14.0 +/- 4.3 MPa, respectively). The tensile bond strengths obtained with Scotchbond Multi-Purpose were similar in normal and caries-affected dentin (20.3 +/- 5.5 MPa and 18.5 +/- 4.0 MPa, respectively). The hybrid layers created by All Bond 2 in normal dentin and by Clearfil Liner Bond II in normal or caries-affected dentin showed phosphoric acid and sodium hypochlorite resistance, whereas the hybrid layers created by All Bond 2 in caries-affected dentin and those created by Scotchbond Multi-Purpose to normal and caries-affected dentin showed partial susceptibility to the acid and sodium hypochlorite treatment. The results indicate that the strength of adhesion to dentin depends upon both the adhesive system used and the type of dentin. Moreover, the quality of the hybrid layer may not always contribute

  15. Proanthocyanidins Alter Adhesive/Dentin Bonding Strengths when Included in a Bonding System

    PubMed Central

    Hechler, Benjamin; Yao, Xiaomei; Wang, Yong

    2014-01-01

    Purpose To determine the effect of proanthocyanidins (PA) incorporation into a bonding system on dentin/adhesive bond stability following long-term storage in buffer and collagenase. Methods Human dentin surfaces were bonded with no PA (0-PA), PA incorporated in the primer (PA-primer), or PA incorporated in the adhesive (PA-adhesive), and composite build-ups were created. Following sectioning into beams, bonded specimens were stored in buffer or collagenase for 0, 1, 4, 26, or 52 weeks before being tested for microtensile bond strength (μTBS). ANOVA and Tukey’s HSD post-hoc were performed. Fractured surfaces were viewed with scanning electron microscopy (SEM). Results Both bonding system and storage time but not storage medium significantly affected μTBS. Initially, 0-PA and PA-primer were superior to PA-adhesive, and after 1 week both PA groups were inferior to 0-PA. However, after 4 weeks PA-adhesive had significantly increased and 0-PA significantly decreased such that all three groups were equal. Thereafter, both PA-primer/adhesive groups trended with an increase (the 0-PA group remaing consistent) such that at 52 weeks PA-primer samples were significantly stronger (p < 0.001) or nearly so (p = 0.08) when compared to 0-PA samples. SEM revealed that initial fractures tended to occur at the middle/bottom of the hybrid layer for 0-PA and PA-primer groups but at the top of the hybrid layer/in the adhesive for PA-adhesive. After 4 weeks, however, all groups fractured similarly at the middle/bottom of the hybrid layer. Clinical Significance PA incorporation into a bonding system significantly alters interfacial bonding strengths, and its incorporation may stabilize the interface and protect degradation over time under clinical conditions. PMID:23243975

  16. Two interfacial shear strength calculations based on the single fiber composite test

    NASA Astrophysics Data System (ADS)

    Zhandarov, S. F.; Pisanova, E. V.

    1996-07-01

    The fragmentation of a single fiber embedded in a polymer matrix upon stretching (SFC test) provides valuable information on the fiber-matrix bond strength (τ), which determines stress transfer through the interface and, thus, significantly affects the mechanical properties of the composite material. However, the calculated bond strength appears to depend on data interpretation, i.e., on the applied theoretical model, since the direct result of the SFC test is the fiber fragment length distribution rather than the τ value. Two approaches are used in SFC testing for calculation of the bond strength: 1) the Kelly-Tyson model, in which the matrix is assumed to be totally elastic and 2) the Cox model using the elastic constants of the fiber and the matrix. In this paper, an attempt has been made to compare these two approaches employing theory as well as the experimental data of several authors. The dependence of the tensile stress in the fiber and the interfacial shear stress on various factors has been analyzed. For both models, the mean interfacial shear stress in the fragment of critical length (lc) was shown to satisfy the same formula (τ) = (σcD)/2lc, where D is the fiber diameter and σc is the tensile strength of a fiber at gauge length equal to lc. However, the critical lengths from the Kelly-Tyson approach and Cox model are differently related to the fragment length distribution parameters such as the mean fragment length. This discrepancy results in different (τ) values for the same experimental data set. While the main parameter in the Kelly-Tyson model assumed constant for a given fiber-matrix pair is the interfacial shear strength, the ultimate (local) bond strength τult may be seen as the corresponding parameter in the Cox model. Various τult values were obtained for carbon fiber-epoxy matrix systems by analyzing the data of continuously monitored single fiber composite tests. Whereas the mean value of the interfacial shear stress calculated in

  17. Effect of increased dwell times for solvent evaporation on the bond strength and degree of conversion of an ethanol-based adhesive system.

    PubMed

    Argolo, Saryta; Oliveira, Denise C; Fontes, Céres M; Lima, Adriano F; de Freitas, Anderson P; Cavalcanti, Andrea N

    2012-01-01

    This study evaluated the influence of the prolonged setting time of an ethanol-based adhesive system on the dentin bond strength and degree of conversion. Labial and lingual surfaces of fifteen human third molars were flattened until the dentin was exposed and randomly allocated to 3 groups (n = 10), according to the dwell time between the application of two consecutive layers of the adhesive system (Adper Single Bond Plus, 3M ESPE) and light activation: G1--control (no extra dwell time); G2 and G3--dwell time of 30 seconds and 60 seconds, respectively. After light curing, two cylinders (1.4 x 1 mm) of composite resin (Filtek Flow, 3M ESPE) were bonded to each surface and submitted to micro-shear testing, 24 hours after light curing. A similar adhesive procedure was used for the degree of conversion evaluation using Fourier transform infrared spectroscopy (FTIR). Significant differences between bond strength values (p = 0.0003) and degrees of conversion (p = 0.0004) were detected. The bond strength of G3 (60-second dwell time) was statistically higher than that of other groups. G1 (control) and G2 (30-second dwell time) presented similar results. Values of degree of conversion indicated that both the 30-second and 60-second dwell times resulted in similar and greater percentages of conversion. The use of a longer dwell time (60 seconds) might provide better solvent volatilization and monomer infiltration; bringing benefits to dentin bonding using simplified etch & rinse adhesive systems.

  18. Microleakage and shear bond strength of a new sealant containing prereacted glass ionomer particles.

    PubMed

    Durham, Samuel N; Meyers, Erik J; Bailey, Clifton W; Vandewalle, Kraig S

    2017-01-01

    A new fluoride-releasing sealant system is claimed to allow easier and faster placement while providing high bond strengths without the need for phosphoric acid etching. A study was designed to compare the microleakage and shear bond strength of a self-etching, Giomer-based sealant system with those of a traditional resin sealant. Group 1 received traditional sealant applied after use of a 35% phosphoric acid etchant; group 2 received Giomer sealant after use of a self-etching primer; and group 3 received Giomer sealant after the addition of an initial phosphoric acid etching step and placement of the primer. The sealants were placed in the occlusal pits and fissures of extracted human third molars, thermocycled, placed in dye, and sectioned. The extent of microleakage (dye penetration) was expressed as a percentage of the cross-sectional length of the sealed interface. The sealants were also bonded to the facial enamel of bovine incisors. Specimens were thermocycled and tested in shear mode in a universal testing machine. The new self-etching sealant demonstrated significantly greater microleakage (P < 0.017) and lower bond strength (P < 0.05) than both the traditional sealant system and the new system when placed with phosphoric acid etchant. Phosphoric acid etching significantly improved the shear bond strength and reduced the microleakage of the new sealant.

  19. Influence of different repair procedures on bond strength of adhesive filling materials to etched enamel in vitro.

    PubMed

    Hannig, Christian; Hahn, Petra; Thiele, Patrick-Philipp; Attin, Thomas

    2003-01-01

    Contamination of etched enamel with repair bond agents during repair of dental restorations may interfere with the bonding of composite to enamel. This study examined the bond strength of adhesive filling materials to etched bovine enamel after pre-treatment with the repair systems Monobond S, Silibond and Co-Jet. The materials Tetric Ceram, Dyract and Definite and their corresponding bonding agents (Syntac Single Comp, Prime & Bond NT, Etch and Prime) were tested in combination with the repair systems. One hundred and thirty-five enamel specimens were etched (37% phosphoric acid, 60 seconds) and equally distributed among three groups (A-C). In Group A, the repair materials were applied on etched enamel followed by applying the composite materials without using their respective bonding material. In Group B, the composite materials were placed on etched enamel after applying the repair materials and bonding agents. In control Group C, the composite materials and bonding agents were applied on etched enamel without using the repair systems. In each sub-group, every composite material was applied on 15 specimens. Samples were stored in artificial saliva for 14 days and thermocycled 1,000 times (5 degrees C/55 degrees C). The shear bond strength of the samples were then determined in a universal testing machine (ISO 10477). Applying Monobond or Silibond followed by the use of its respective bonding agents resulted in a bond strength that was not statistically different from the controls for all filling materials (Group C). The three composites that used Monobond and Silibond without applying the corresponding bonding agent resulted in bond strengths that were significantly lower than the controls. Utilizing the Co-Jet-System drastically reduced the bond strength of composites on etched enamel. Contamination of etched enamel with the repairing bonding agents Monobond and Silibond does not interfere with bond strength if the application of Monobond and Silibond is

  20. Shear bond strength of composite resin to titanium according to various surface treatments

    PubMed Central

    Lee, Seung-Yun; Yang, Hong-So; Park, Sang-Won; Park, Ha-Ok; Lim, Hyun-Pil

    2009-01-01

    STATEMENT OF PROBLEM When veneering composite resin-metal restoration is prepared, the fact that bond strength between Ti and composite resin is relatively weak should be considered. PURPOSE The purpose of this study is to evaluate the shear bond strength between the veneering composite resin and commercial pure (CP) Ti / Ti-6Al-4V alloy according to the method of surface treatment. MATERIAL AND METHODS The disks were cast by two types of metal. Their surfaces were treated by sandblasting, metal conditioner, TiN coating and silicoating respectively. After surface treatment, the disks were veneered by composite resin (Tescera™, Bisco, USA) which is 5 mm in diameter and 3 mm in thickness. The specimens were stored in water at 25℃ for 24 hours, and then evaluated for their shear bond strength by universal testing machine (STM-5®, United Calibration, USA). These values were statistically analyzed. RESULTS 1. All methods of surface treatment were used in this study satisfied the requirements of ISO 10477 which is the standard of polymer-based crown and bridge materials. 2. The metal conditioner treated group showed the highest value in shear bond strength of CP Ti, silicoated group, TiN coated group, sandblasted group, in following order. 3. The silicoated group showed the highest value in shear bond strength of Ti-6Al-4V alloy, metal conditioner treated group, sandblasted group, TiN coated group, in following order. CONCLUSION Within the limitations of this study, all methods of surface treatment used in this study are clinically available. PMID:21165258

  1. In vitro bond strength and fatigue stress test evaluation of different adhesive cements used for fixed space maintainer cementation

    PubMed Central

    Cantekin, Kenan; Delikan, Ebru; Cetin, Secil

    2014-01-01

    Objective: The purposes of this research were to (1) compare the shear-peel bond strength (SPBS) of a band of a fixed space maintainer (SM) cemented with five different adhesive cements; and (2) compare the survival time of bands of SM with each cement type after simulating mechanical fatigue stress. Materials and Methods: Seventy-five teeth were used to assess retentive strength and another 50 teeth were used to assess the fatigue survival time. SPBS was determined with a universal testing machine. Fatigue testing was conducted in a ball mill device. Results: The mean survival time of bands cemented with R & D series Nova Glass-LC (6.2 h), Transbond Plus (6.7 h), and R & D series Nova Resin (6.8 h) was significantly longer than for bands cemented with Ketac-Cem (5.4 h) and GC Equia (5.2 h) (P < 0.05). Conclusion: Although traditional glass ionomer cement (GIC) cement presented higher retentive strength than resin-based cements (resin, resin modified GIC, and compomer cement), resin based cements, especially dual cure resin cement (nova resin cement) and compomer (Transbond Plus), can be expected to have lower failure rates for band cementation than GIC (Ketac-Cem) in the light of the results of the ball mill test. PMID:25202209

  2. Effect of cleaning methods on bond strength of self-etching adhesive to dentin

    PubMed Central

    Bronzato, Juliana Delatorre; Cecchin, Doglas; Miyagaki, Daniela Cristina; de Almeida, José Flávio Affonso; Ferraz, Caio Cezar Randi

    2016-01-01

    Aim: The aim of this study was to investigate the influence of cleaning methods to remove zinc oxide-eugenol-based root canal sealer (Endomethasone) on the bond strength of the self-etching adhesive to dentin. Materials and Methods: Twenty crowns of bovine incisors were cut to expose the pulp chamber. A zinc oxide- and eugenol-based sealer was placed for 10 min in contact with the pulp chamber dentin. Specimens were divided into four groups according to the cleaning method of dentin used: G1, no root canal sealer (control); G2, 0.9% sodium chlorite (NaCl); G3, ethanol; and G4, followed by diamond drill. After cleaning, the teeth were restored with composite resin and Clearfil SE Bond. All specimens were sectioned to produce rectangular sticks and dentin/resin interface was submitted to microtensile bond testing. The mean bond strengths were analyzed using ANOVA/Tukey (α = 0.05). Results: G3 and G4 showed bond strengths similar to the G1 (P > 0.05). A significant decrease in the bond strength in the G2 was observed (P < 0.05). G1, G3, and G4, the predominant failure mode was the mixed type. The prevalence of adhesive failure mode was verified in the G2. Conclusion: The cleaning methods affected the bond strength of the self-etching adhesive to dentin differently. PMID:26957789

  3. Effect of digluconate chlorhexidine on bond strength between dental adhesive systems and dentin: A systematic review

    PubMed Central

    Dionysopoulos, Dimitrios

    2016-01-01

    Aim: This study aimed to systematically review the literature for the effect of digluconate chlorhexidine (CHX) on bond strength between dental adhesive systems and dentin of composite restorations. Materials and Methods: The electronic databases that were searched to identify manuscripts for inclusion were Medline via PubMed and Google search engine. The search strategies were computer search of the database and review of reference lists of the related articles. Search words/terms were as follows: (digluconate chlorhexidine*) AND (dentin* OR adhesive system* OR bond strength*). Results: Bond strength reduction after CHX treatments varied among the studies, ranging 0-84.9%. In most of the studies, pretreatment CHX exhibited lower bond strength reduction than the control experimental groups. Researchers who previously investigated the effect of CHX on the bond strength of dental adhesive systems on dentin have reported contrary results, which may be attributed to different experimental methods, different designs of the experiments, and different materials investigated. Conclusions: Further investigations, in particular clinical studies, would be necessary to clarify the effect of CHX on the longevity of dentin bonds. PMID:26957786

  4. Effect of CO2 and Nd:YAG Lasers on Shear Bond Strength of Resin Cement to Zirconia Ceramic

    PubMed Central

    Kasraei, Shahin; Yarmohamadi, Ebrahim; Shabani, Amanj

    2015-01-01

    Objectives: Because of poor bond between resin cement and zirconia ceramics, laser surface treatments have been suggested to improve adhesion. The present study evaluated the effect of CO2 and Nd:YAG lasers on the shear bond strength (SBS) of resin cement to zirconia ceramic. Materials and Methods: Ninety zirconia disks (6×2 mm) were randomly divided into six groups of 15. In the control group, no surface treatment was used. In the test groups, laser surface treatment was accomplished using CO2 and Nd:YAG lasers, respectively (groups two and three). Composite resin disks (3×2 mm) were fabricated and cemented to zirconia disks with self-etch resin cement and stored in distilled water for 24 hours. In the test groups four-six, the samples were prepared as in groups one-three and then thermocycled and stored in distilled water for six months. The SBS tests were performed (strain rate of 0.5 mm/min). The fracture modes were observed via stereomicroscopy. Data were analyzed with one and two-way ANOVA, independent t and Tukey’s tests. Results: The SBS values of Nd:YAG group (18.95±3.46MPa) was significantly higher than that of the CO2 group (14.00±1.96MPa), but lower than that of controls (23.35±3.12MPa). After thermocycling and six months of water storage, the SBS of the untreated group (1.80±1.23 MPa) was significantly lower than that of the laser groups. In groups stored for 24 hours, 60% of the failures were adhesive; however, after thermocycling and six months of water storage, 100% of failures were adhesive. Conclusion: Bonding durability of resin cement to zirconia improved with CO2 and Nd:YAG laser surface treatment of zirconia ceramic. PMID:27148380

  5. An in vitro study of the bond strength of five adhesives used for vinyl polysiloxane impression materials and tray materials.

    PubMed

    Kumar, Surender; Gandhi, Udey Vir; Banerjee, Saurav

    2014-03-01

    Although stock trays often provide mechanical retention for elastomeric impression materials, manufacturers typically recommend the use of an adhesive, whether a stock or custom tray is used. The mention of the bond strength on the adhesive packaging is not available, therefore the clinician has no idea whatsoever of the ideal adhesive. The aim of this study was to evaluate the bond strength of three vinyl polysiloxane (VPS) materials, one with a poly(methyl methacrylate) autopolymerizing (PMMA) specimen and another with a light-polymerizing tray material (VLC), using the adhesive recommended by the manufacturer of the impression material, and two universal adhesives. A total of ninety specimens (15 × 15 × 20 mm) were used, 45 specimens were made in PMMA and rest 45 was made in VLC. Five paint-on adhesives (Coltene, Caulk, 3M, universal Zhermack and universal GC) were applied. Three impression materials, Affinis, Reprosil, and 3M, were mixed and injected into a perforated poly vinyl chloride cylinder. Tray specimens were positioned against the open cylinder end in contact with the VPS material. Tensile strength tests were conducted until adhesive separation failure. Mean values and standard errors of the adhesive strength were recorded in MPa for each material combination. GC paint-on universal adhesive provided significantly higher adhesive strength values.

  6. Strength and stability of calcite gouge sheared at 20-600°C

    NASA Astrophysics Data System (ADS)

    Verberne, Berend A.; Niemeijer, André R.; Spiers, Christopher J.

    2014-05-01

    As strong earthquakes often nucleate at depths corresponding to the frictional-viscous transition, it is important to understand the velocity dependence of fault zone shear strength throughout the transition. We conducted ring shear experiments on simulated pure calcite gouges at constant temperatures (T) of 22, 100, 200, 400, 490, 500, 540, and 590°C, while performing displacement rate stepping tests within the range v=0.01-100 μm/s. All experiments used a constant pore water pressure (10-60 MPa) and a constant effective normal stress (50 MPa). For experiments conducted at T≡22°C, the results showed a near-constant strength (τ≡30-37 MPa) and stable velocity strengthening at all displacements. For T>22°C, a peak strength (τpk≡33-56 MPa) developed at low displacements (0.5-2 mm), followed by weakening to a near-constant (average) value (τ≡15-42 MPa) depending on slip rate. Velocity weakening was observed in each experiment conducted at T≡100-540°C, where the magnitude of velocity weakening generally increased with increasing temperature and decreasing slip rate, which often resulted in unstable slip i.e. stick-slips. At 500°C, at v=0.01 μm/s, stick-slip showed a strength drop from ~41 to ~13 MPa, hence a stress release of nearly 70%! Experiments conducted at T≡590°C showed stable sliding throughout and velocity strengthening. Recovered sheared microstructures of samples deformed at T≡22°C showed shear bands characterized by a sub-micron grain size and a Crystallographic Preferred Orientation (CPO), similar to microstructures from earlier experiments conducted using a direct-shear geometry. For samples deformed a