Science.gov

Sample records for adhesive shear strength

  1. Shear adhesion strength of aligned electrospun nanofibers.

    PubMed

    Najem, Johnny F; Wong, Shing-Chung; Ji, Guang

    2014-09-01

    Inspiration from nature such as insects' foot hairs motivates scientists to fabricate nanoscale cylindrical solids that allow tens of millions of contact points per unit area with material substrates. In this paper, we present a simple yet robust method for fabricating directionally sensitive shear adhesive laminates. By using aligned electrospun nylon-6, we create dry adhesives, as a succession of our previous work on measuring adhesion energies between two single free-standing electrospun polymer fibers in cross-cylinder geometry, randomly oriented membranes and substrate, and peel forces between aligned fibers and substrate. The synthetic aligned cylindrical solids in this study are electrically insulating and show a maximal Mode II shear adhesion strength of 27 N/cm(2) on a glass slide. This measured value, for the purpose of comparison, is 270% of that reported from gecko feet. The Mode II shear adhesion strength, based on a commonly known "dead-weight" test, is 97-fold greater than the Mode I (normal) adhesion strength of the same. The data indicate a strong shear binding on and easy normal lifting off. Anisotropic adhesion (Mode II/Mode I) is pronounced. The size and surface boundary effects, crystallinity, and bending stiffness of fibers are used to understand these electrospun nanofibers, which vastly differ from otherwise known adhesive technologies. The anisotropic strength distribution is attributed to a decreasing fiber diameter and an optimized laminate thickness, which, in turn, influences the bending stiffness and solid-state "wettability" of points of contact between nanofibers and surface asperities. PMID:25105533

  2. Tensile and shear strength of adhesives

    NASA Technical Reports Server (NTRS)

    Stibolt, Kenneth A.

    1990-01-01

    This experiment is conducted in a freshman-level course: Introduction to Engineering Materials. There are no prerequisites for the course although students should have some knowledge of basic algebra. The objectives are to tension and shear test adhesives and to determine the tensile and shear properties of adhesives. Details of equipment of procedure are given.

  3. Geckolike high shear strength by carbon nanotube fiber adhesives

    NASA Astrophysics Data System (ADS)

    Maeno, Y.; Nakayama, Y.

    2009-01-01

    Carbon nanotube adhesives can adhere strongly to surfaces as a gecko does. The number of carbon nanotube layers is an important determinant of the contact area for adhesion. Balancing the catalyst ratio and buffer layer used for chemical vapor deposition processing controls the number of carbon nanotube layers and their distribution. The features of carbon nanotubes determine the shear strength of adhesion. Carbon nanotubes with a broad distribution of layers exhibit enhanced shear strength with equivalent adhesive capability to that of a natural Tokay Gecko (Gekko gecko)

  4. Copper-Filled Electrically Conductive Adhesives with Enhanced Shear Strength

    NASA Astrophysics Data System (ADS)

    Ho, Li-Ngee; Nishikawa, Hiroshi

    2014-09-01

    In this study, the effects of diethyl carbitol (diluent) and tertiary amines on the electrical, mechanical, and rheological properties of the Cu-filled polyurethane-based electrically conductive adhesives (ECAs) were investigated. Significant difference could be observed in the electrical resistivity and shear strength of ECA prepared with different amount of diethyl carbitol. Reduced electrical resistivity was found in ECAs prepared with addition of tertiary amines, but no obvious change was observed in the shear strength of the ECA joint. Rheological property of the ECA paste was investigated in order to understand the correlation of the viscosity of ECA paste and electrical resistivity and shear strength of ECA joint. Results revealed that decrease in viscosity of the ECA paste reduced electrical resistivity and enhanced shear strength of ECA joint. A Cu-filled polyurethane-based ECA with considerably low electrical resistivity at the magnitude order range of 10-3 Ω cm, and significantly high shear strength (above 17 MPa) could be achieved.

  5. Shear Strength of Conductive Adhesive Joints on Rigid and Flexible Substrates Depending on Adhesive Quantity

    NASA Astrophysics Data System (ADS)

    Hirman, Martin; Steiner, Frantisek

    2016-05-01

    This article deals with the impact of electrically conductive adhesive quantity on the shear strength of joints glued by adhesives "EPO-TEKⓇ H20S" and "MG8331S" on three types of substrates (FR-4, MELINEXⓇST504, DuPont™ PyraluxⓇAC). These joints were made by gluing chip resistors 1206, 0805 and 0603, with two curing profiles for each adhesive. Different thicknesses of stencil and reductions in the size of the hole in stencils were used for this experiment. These differences have an effect on the quantity of conductive adhesives which must be used on the samples. Samples were measured after the curing process by using a shear strength test applied by the device LabTest 3.030. This article presents the effects of different curing profiles, various types of substrates, and different quantities of adhesives on the mechanical strength of the joint.

  6. Effect of Molecular Flexibility upon Ice Adhesion Shear Strength

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G.; Wohl, Christopher J.; Kreeger, Richard E.; Palacios, Jose; Knuth, Taylor; Hadley, Kevin

    2016-01-01

    Ice formation on aircraft surfaces effects aircraft performance by increasing weight and drag leading to loss of lift. Current active alleviation strategies involve pneumatic boots, heated surfaces, and usage of glycol based de-icing fluids. Mitigation or reduction of in-flight icing by means of a passive approach may enable retention of aircraft capabilities, i.e., no reduction in lift, while reducing the aircraft weight and mechanical complexity. Under a NASA Aeronautics Research Institute Seedling activity, the effect of end group functionality and chain length upon ice adhesion shear strength (IASS) was evaluated with the results indicating that chemical functionality and chain length (i.e. molecular flexibility) affected IASS. Based on experimental and modeling results, diamine monomers incorporating molecular flexibility as either a side chain or in between diamine functionalities were prepared, incorporated into epoxy resins that were subsequently used to fabricate coatings on aluminum substrates, and tested in a simulated icing environment. The IASS was found to be lower when molecular flexibility was incorporated in the polymer chain as opposed to a side chain.

  7. Evaluation of bond strength of different adhesive systems: Shear and Microtensile Bond Strength Test

    PubMed Central

    GALLUSI, G.; GALEANO, P.; LIBONATI, A.; GIUCA, M.R.; CAMPANELLA, V.

    2010-01-01

    SUMMARY Objectives. Aim of this work is the in vitro bond strength evaluation of three bonding agents comparing the results of two kinds of test, Microtensile Bond Strength Test and a Shear Bond Strength Test. Bond strength tests have been used to test both direct and indirect restorative techniques to investigate if methods could give different results. Methods 72 human third molars have been collected and stored in physiological solution. Three kinds of test were conducted: 1- SB, 2- “Slice” preparation μTBS1, 3- “Stick” preparation μTBS2. We tested three different adhesive systems (Groups 1-2-3 n=24), two restorative techniques (subgroup A–B n=12). The tested adhesives were: Optibond FL (OFL) (Group 1), Optibond Solo Plus (OSP) (Group 2), Optibond Solo Plus Self-Etch (OSSE) (Group 3). For all tests was used a universal load machine Instron Machine. Results. Best values were found for Optibond FL with mean values of 45–50 MPa. Optibond Solo Plus resulted in values very similar and in some cases almost identical to FL. Optibond Solo Self Etch showed poorer adhesion in both direct and indirect restorative techniques. The parametric and non parametric statistical variance analysis pointed out the absence of significant differences between OFL and OSP, and demonstrated a significant difference for OSSE adhesive. Significance. The results confirm that a total etch two-step adhesive is the best compromise between easiness and effectiveness. PMID:23285371

  8. Comparison of Shear Bond Strength of Three Self-etching Adhesives: An In-Vitro Study

    PubMed Central

    Yadala, Chandrashekhar; Gaddam, Rajkumar; Arya, Siddarth; Baburamreddy, K V; Raju, V Ramakrishnam; Varma, Praveen Kumar

    2015-01-01

    Background: The aim of the study was to determine and compare the shear bond strength of brackets bonded with Adper Promt self-etching adhesive (3M ESPE), Xeno III self-etching adhesive (DENSPLY), Transbond plus self-etching adhesive (3M) with that of conversional bonding procedure, and to calculate the adhesive remnant index (ARI). Materials and Methods: Totally, 60 maxillary premolar teeth were collected, and divided into Group I (Blue): Transbond™ XT primer, Group II (Purple): Adper™ Prompt™ self-etching adhesive, Group III (Orange): Xeno III® self-etching adhesive, Group IV (Pink): Tranbond™ Plus self-etching adhesive. Results: The results of the study showed there was no statistical significance in the shear bond strength according to an analysis of variance (P = 0.207) of the four groups. The mean shear bond strength of Groups I, II, III, IV were 14.56 ± 2.97 Megapascals (MPa), 12.62 ± 2.48 MPa, 13.27 ± 3.16, and 12.64 ± 2.56, respectively. Chi-square comparison for the ARI indicated that there was a significant difference (P = 0.003) between the groups. Conclusion: All the four self-etching adhesives showed clinically acceptable mean shear bond strength. The ARI score showed a self-etching adhesive the debonding occurred more within the adhesive interface leaving less composite adhesive on the tooth surface making it easy to clean up. PMID:26229371

  9. Shear bond strength of one-step self-etch adhesives: pH influence

    PubMed Central

    Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Chiesa, Marco

    2015-01-01

    Background: The aim of this study was to compare the shear bond strength of four one-step self-etch adhesives with different pH values to enamel and dentin. Materials and Methods: In this in vitro study, 200 bovine permanent mandibular incisors were used. Four one-step self-etch adhesives with different pH values were tested both on enamel and on dentin: Adper™ Easy Bond Self-Etch Adhesive (pH = 0.8-1), Futurabond NR (pH=2), G-aenial Bond (pH = 1.5), Clearfil S3 Bond (pH = 2.7). After adhesive systems application, a nanohybrid composite resin was inserted into the bonded surface. The specimens were placed in a universal testing machine. The shear bond strength was performed at a cross-head speed of 1 mm/min until the sample rupture. The shear bond strength values (MPa) of the different groups were compared with analysis of variance after that Kolmogorov and Smirnov tests were applied to assess normality of distributions. P < 0.05 was considered as significant. Results: In enamel shear bond strength, the highest shear bond strength values were reported with Futurabond NR (P < 0.01); however, no significant differences were found with Clearfil S3 Bond. The others adhesive systems showed lower shear bond strength values with significant differences between them (P < 0.05). When comparing the dentin shear bond strength, the lowest shear bond strength values were reported with Clearfil S3 Bond (P < 0.05), while there were no significant differences among the other three products (P > 0.05). Conclusion: The pH values of adhesive systems did not influence significantly their shear bond strength to enamel or dentin. PMID:26005459

  10. Lap shear strength and healing capability of self-healing adhesive containing epoxy/mercaptan microcapsules

    NASA Astrophysics Data System (ADS)

    Ghazali, Habibah; Ye, Lin; Zhang, Ming-Qiu

    2016-03-01

    The aim of this work is to develop a self-healing polymeric adhesive formulation with epoxy/mercaptan microcapsules. Epoxy/mercaptan microcapsules were dispersed into a commercialize two-part epoxy adhesive for developing self-healing epoxy adhesive. The influence of different content of microcapsules on the shear strength and healing capability of epoxy adhesive were investigated using single-lap-joints with average thickness of adhesive layer of about 180 µm. This self-healing adhesive was used in bonding of 5000 series aluminum alloys adherents after mechanical and alkaline cleaning surface treatment. The adhesion strength was measured and presented as function of microcapsules loading. The results indicated that the virgin lap shear strength was increased by about 26% with addition of 3 wt% of self-healing microcapsules. 12% to 28% recovery of the shear strength is achieved after self-healing depending on the microcapsules content. Scanning electron microscopy was used to study fracture surface of the joints. The self-healing adhesives exhibit recovery of both cohesion and adhesion properties with room temperature healing.

  11. Shear bond strength of new self-adhesive flowable composite resins.

    PubMed

    Wajdowicz, Michael N; Vandewalle, Kraig S; Means, Mark T

    2012-01-01

    Recently, new self-adhesive flowable composite resin systems have been introduced to the market. These new composite resin systems reportedly bond to dentin and enamel without the application of an adhesive bonding agent. The purpose of this study was to evaluate the shear bond strength to enamel of two new self-adhesive flowable composites with and without the use of an etch-and-rinse bonding agent. The new self-adhesive flowable composites had significantly lower bond strengths to enamel compared to a traditional adhesively bonded flowable composite. Both self-adhesive flowable composites had a significant increase in bond strength to enamel with the use of a phosphoric acid-etch and adhesive bonding agent. PMID:22414513

  12. The influence of an adhesive system on shear bond strength of repaired high-copper amalgams.

    PubMed

    Hadavi, F; Hey, J H; Ambrose, E R; elBadrawy, H E

    1991-01-01

    The shear bond strengths of intact high-copper spherical and admixed amalgams were compared with repaired high-copper spherical and admixed amalgam specimens with and without the use of an adhesive system (Amalgambond). In the spherical group the shear bond strength of the repaired specimens was found to be 55 and 53.2% of the intact specimens without and with the use of the adhesive system. After thermocycling those percentages were 48.5 and 43. In the admixed groups those percentages were 39, 36.5, 34.5, and 35.2 respectively. It was found that the application of Amalgambond did not significantly increase the strength of the repaired amalgam. Thermocycling only had a significantly adverse effect on the repair strength in the admixed group repaired without an adhesive system. PMID:1813872

  13. Casein Phosphopeptide-Amorphous Calcium Phosphate and Shear Bond Strength of Adhesives to Primary Teeth Enamel

    PubMed Central

    Farokh Gisovar, Elham; Hedayati, Nassim; Shadman, Niloofar; Shafiee, Leila

    2015-01-01

    Background: CPP-ACP (Phosphopeptide-Amorphous Calcium Phosphate) has an important role in caries prevention in pediatric patients. This study was done, because of the great use of CPP-ACP and the need for restoration for teeth treated with CPP-ACP as well as the importance of shear bond strength of adhesives in the success of restorations. Objectives: This study aimed to evaluate the effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on shear bond strength of dental adhesives to enamel of primary teeth molars. Materials and Methods: This in vitro study was conducted on 180 extracted primary molars. They were randomly divided into 6 groups and each group was divided into 2 subgroups (treated with CPP-ACP and untreated). In subgroups with CPP-ACP, enamel was treated with CPP-ACP paste 1 h/d for 5 days. Types of adhesives that were evaluated in this study were Tetric N-Bond, AdheSE, AdheSE One F, single Bond 2, SE Bond, and Adper Prompt L-Pop. Shear bond strength was tested with a universal testing machine and mode of failure was evaluated under stereomicroscope. Data were analyzed by T test, 2-way analysis of variance (ANOVA), Tukey and Fisher exact test using SPSS18. P < 0.05 was considered as significance level. Results: Shear bond strengths of different adhesive systems to enamel of primary teeth treated and untreated with CPP-ACP showed no significant difference (P > 0.05). Mode of failure in all groups regardless of CPP-ACP administration was mainly adhesive type. Our results indicated that CPP-ACP did not affect shear bond strength of studied adhesives to primary teeth enamel. Conclusions: To have a successful and durable composite restoration, having a high strength bonding is essential. Considering the wide use of CPP-ACP in preventing tooth decay and the role of adhesive shear bond strength (SBS) in success of composite restoration, we conducted the present study to evaluate the effect of CPP-ACP on the SBS of adhesives to primary teeth

  14. Statistical Investigation of the Effect of Process Parameters on the Shear Strength of Metal Adhesive Joints

    NASA Astrophysics Data System (ADS)

    Rajkumar, Goribidanur Rangappa; Krishna, Munishamaih; Narasimhamurthy, Hebbale Narayanrao; Keshavamurthy, Yalanabhalli Channegowda

    2016-03-01

    The objective of the work was to optimize sheet metal joining parameters such as adhesive material, adhesive thickness, adhesive overlap length and surface roughness for single lap joint of aluminium sheet shear strength using robust design. An orthogonal array, main effect plot, signal-to-noise ratio and analysis of variance were employed to investigate the shear strength of the joints. The statistical result shows vinyl ester is best candidate among other two polymers viz. epoxy and polyester due to its low viscosity value compared to other two polymers. The experiment results shows that the adhesive thickness 0.6 mm, overlap length 50 mm and surface roughness 2.12 µm for obtained maximum shear strength of Al sheet joints. The ANOVA result shows one of the most significant factors is overlap length which affect joint strength in addition to adhesive thickness, adhesive material, and surface roughness. A confirmation test was carried out as the optimal combination of parameters will not match with the any of the experiments in the orthogonal array.

  15. Haemostatic agents on the shear bond strength of self-adhesive resin

    PubMed Central

    Anil, Akansha; Sekhar, Anand; Ginjupalli, Kishor

    2015-01-01

    Background Dentin surface contaminated with haemostatic agents can interfere with the bonding of self-adhesive resin cement. Therefore the purpose of this study was to evaluate the effect of various haemostatic agents such as Aluminium chloride, Ferric sulphate and Tannic acid on the shear bond strength of self-adhesive resin luting agent. Material and Methods The buccal surfaces of extracted premolars were flattened to expose the dentine. The teeth were then randomly divided into four groups. In Group I Aluminium Chloride was applied on the flattened dentinal surface, in Group II Ferric Sulphate was applied to exposed dentin surface, in Group III tannic acid was applied on to the dentinal surface, and the control group, i.e. Group IV was rinsed with saline. After the surface treatment, all the teeth were air dried. Then a predetermined dimension of RelyX™ U200 self-adhesive resin cement was bonded to the pretreated dentin surfaces. The samples were then stored under 370C in distilled water for 24 hours under 100 % humidity. Following this each sample was tested for shear bond strength with an Instron testing machine at a crosshead speed of 1mm/min. Results There was significant difference in the shear bond strength of control and tannic acid contaminated group (p<0.05), whereas there was no significant differences between the shear bond strength between control and aluminium chloride and ferric sulphate groups (p>0.05). Conclusions The usage of haemostatic agent can negatively affect the bond strength of self-adhesive resin cement (Rely X) on to the dentin surface. As per the study Tannic acid significantly weakened the bond between the self-adhesive resin and dentin. Key words:Aluminium chloride, Ferric sulphate, haemostatic agent, self-adhesive resin cement, shear bond strength, Tannic acid. PMID:26330930

  16. Shear adhesion strength of thermoplastic gecko-inspired synthetic adhesive exceeds material limits.

    PubMed

    Gillies, Andrew G; Fearing, Ronald S

    2011-09-20

    Natural gecko array wearless dynamic friction has recently been reported for 30,000 cycles on a smooth substrate. Following these findings, stiff polymer gecko-inspired synthetic adhesives have been proposed for high-cycle applications such as robot feet. Here we examine the behavior of high-density polyethylene (HDPE) and polypropylene (PP) microfiber arrays during repeated cycles of engagement on a glass surface, with a normal preload of less than 40 kPa. We find that fiber arrays maintained 54% of the original shear stress of 300 kPa after 10,000 cycles, despite showing a marked plastic deformation of fiber tips. This deformation could be due to shear-induced plastic creep of the fiber tips from high adhesion forces, adhesive wear, or thermal effects. We hypothesize that a fundamental material limit has been reached for these fiber arrays and that future gecko synthetic adhesive designs must take into account the high adhesive forces generated to avoid damage. Although the synthetic material and natural gecko arrays have a similar elastic modulus, the synthetic material does not show the same wear-free dynamic friction as the gecko. PMID:21848321

  17. Shear bond strength of self-etching adhesive systems to Er:YAG-laser-prepared dentin.

    PubMed

    Brulat, Nathalie; Rocca, Jean-Paul; Leforestier, Eric; Fiorucci, Gilbert; Nammour, Samir; Bertrand, Marie-France

    2009-01-01

    This study was conducted to compare the shear bond strengths of composite resin bonded to Er:YAG laser or bur-prepared dentin surfaces using three self-etching adhesive systems. The occlusal surfaces of 120 human third molars were ground flat to expose dentin. The dentin was prepared using either a carbide bur or an Er:YAG laser at 350 mJ/pulse and 10 Hz (fluence, 44.5 J/cm(2)). Three different self-etching adhesive systems were applied: iBond, Xeno III and Clearfil SE Bond. Rods of composite resin were bonded to dentin surfaces and shear bond tests were carried out. Both dentin surfaces after debonding and resin rods were observed using a scanning electron microscope. When the Xeno III was used, no difference was observed on shear bond strength values when bur and Er:YAG laser were compared. When using iBond and Clearfil SE Bond, bond strength values measured on Er:YAG-laser-prepared surfaces were lower than those observed on bur-prepared surfaces. The absence of smear layer formation during the preparation of the dentin by the Er:YAG laser did not improve the adhesion values of self-etching adhesive systems. PMID:18034284

  18. Shear bond strength of orthodontic color-change adhesives with different light-curing times

    PubMed Central

    Bayani, Shahin; Ghassemi, Amirreza; Manafi, Safa; Delavarian, Mohadeseh

    2015-01-01

    Background: The purpose of this study was to evaluate the effect of light-curing time on the shear bond strength (SBS) of two orthodontic color-change adhesives (CCAs). Materials and Methods: A total of 72 extracted premolars were randomly assigned into 6 groups of 12 teeth each. Subsequent to primer application, a metal bracket was bonded to the buccal surface using an orthodontic adhesive. Two CCAs (Greengloo and Transbond Plus) were tested and one conventional light-cured adhesive (Resilience) served as control. For each adhesive, the specimens were light-cured for two different times of 20 and 40 s. All the specimens underwent mechanical testing using a universal testing machine to measure the SBS. Adhesive remnant index (ARI) was used to assess the remnant adhesive material on the tooth surface. All statistical analyses were performed using SPSS software. The significance level for all statistical tests was set at P ≤ 0.05. Results: The SBSs of the tested groups were in the range of 14.05-31.25 MPa. Greengloo adhesive showed the highest SBS values when light-cured for 40 s, and Transbond Plus adhesive showed the lowest values when light-cured for 20 s. ARI scores of Transbond Plus adhesive were significantly higher than those of controls, while other differences in ARI values were not significant. Conclusion: Within the limitations of his study, decreasing the light-curing time from 40 to 20 s decreased the SBS of the tested adhesives; however, this decline in SBS was statistically significant only in Transbond Plus adhesive PMID:26005468

  19. Antibacterial effect and shear bond strength of an orthodontic adhesive cement containing Galla chinensis extract

    PubMed Central

    WANG, LU-FEI; LUO, FENG; XUE, CHAO-RAN; DENG, MENG; CHEN, CHEN; WU, HAO

    2016-01-01

    Galla chinensis extract (GCE), a naturally-derived agent, has a significant inhibitory effect on cariogenic bacteria. The present study aims to evaluate the antibacterial effect and shear bond strength of an orthodontic adhesive cement containing GCE. A resin-modified glass ionomer cement incorporated GCE at five mass fractions (0, 0.1, 0.2, 0.4, and 0.8%) to prepare GCE-containing cement for analysis. For the agar diffusion test, cement specimens were placed on agar disk inoculated with Streptococcus mutans (strain ATCC 25175). Following 48 h incubation, the inhibition halo diameter was measured. To assess bacteria colonization susceptibility, S. mutans adhesion to cement specimens was detected by scanning electron microscopy (SEM) following 48 h incubation. To evaluate bond strength, a total of 50 metal brackets were bonded on premolar surfaces by using cement (10 teeth/group). Following immersion in an artificial saliva for 3 days, shear bond strength (SBS) was measured. The results demonstrated that GCE-containing samples exhibited a larger bacterial inhibition halo than control, and the inhibition zone increased as the GCE mass fraction increased. SEM analysis demonstrated that S. mutans presented a weaker adherent capacity to all GCE-containing cements compared with control, but the difference between each GCE-containing group was not significant. SBS values of each GCE-containing group exhibited no difference compared with the control. In conclusion, GCE-containing adhesive cement exhibits a promising inhibitory effect on S. mutans growth and adhesion. Without compromising bond strength, adding GCE in adhesive cement may be an attractive option for preventing white spot lesions during orthodontic treatment. PMID:27073642

  20. Shear bond strength of rebonded brackets after removal of adhesives with Er,Cr:YSGG laser.

    PubMed

    Ishida, Katsuyuki; Endo, Toshiya; Shinkai, Koichi; Katoh, Yoshiroh

    2011-07-01

    This study was conducted to examine the bond strength of rebonded orthodontic brackets after adhesive residuals on the surface of the bracket bases were removed by Er,Cr:YSGG lasers. Seventy-six brackets bonded to premolars with a self-etching primer adhesive system were equally divided into four groups after the first debonding with the bracket bases (Group 1) untreated, and treated by (Group 2) Er,Cr:YSGG laser, (Group 3) sandblaster, and (Group 4) Er,Cr:YSGG laser/sandblaster. The treated brackets were rebonded to the new premolars in the same manner as the first-stage experiment. The shear bond strengths were measured, with the bonding/debonding procedures repeated once after the first debonding, and the bracket/adhesive failure modes were evaluated after each debonding. The treated bracket base surfaces were observed under a scanning electron microscopy (SEM). The mean rebond strengths were significantly lower in group 1 than in other groups, and there were no significant differences between the other groups. The mean initial bond strength was significantly higher than the mean rebond strength in group 1 but there was no significant difference between the two in the other three groups. Failures at the bracket-adhesive interface occurred frequently at second debonding in group 1. Under the SEM, residual adhesive was removed from the bracket bases by Er,Cr:YSGG laser, while adhesive remnant was seen underneath the meshwork of the bracket bases and microroughness appeared on the meshwork after sandblasting. Er,Cr:YSGG laser certainly could serve the purpose of promoting the use of recycled orthodontic brackets. PMID:21553071

  1. Effect of adhesive thickness and surface treatment on shear strength on single lap joint Al/CFRP using adhesive of epoxy/Al fine powder

    NASA Astrophysics Data System (ADS)

    Diharjo, Kuncoro; Anwar, Miftahul; Tarigan, Roy Aries P.; Rivai, Ahmad

    2016-02-01

    The objective of this study is to investigate the effect of adhesive thickness and surface treatment on the shear strength and failure type characteristic of single lap joint (SLJ) CFRP/Al using adhesive epoxy/Al-fine-powder. The CFRP was produced by using hand layup method for 30% of woven roving carbon fiber (w/w) and the resin used was bisphenolic. The adhesive was prepared using 12.5% of aluminum fine powder (w/w) in the epoxy adhesive. The powder was mixed by using a mixing machine at 60 rpm for 6 minutes, and then it was used to join the Al plate-2024 and CFRP. The start time to pressure for the joint process was 20 minutes after the application of adhesive on the both of adherends. The variables in this research are adhesive thickness (i.e. 0.2 mm, 0.4 mm, 0.6 mm, 0.8 mm and 1 mm) and surface treatment of adherends (i.e. acetone, chromate sulphuric acid, caustic etch and tucker's reagent). Before shear testing, all specimens were post-cured at 100 °C for 15 minutes. The result shows that the SLJ has the highest shear strength for 0.4 mm of adhesive thickness. When the adhesive thickness is more than 0.4 mm (0.6-1 mm), the shear strength decreases significantly. It might be caused by the property change of adhesive from ductile to brittle. The acetone surface treatment produces the best bonding between the adhesive and adherends (CFRP and Al-plate 2024), and the highest shear strength is 9.31 MPa. The surface treatment give the humidification effect of adherend surfaces by adhesive. The failure characteristic shows that the mixed failure of light-fiber-tear-failure and cohesive-failure are occurred on the high shear strength of SLJ, and the low shear strength commonly has the adhesive-failure type.

  2. Shear bond strength evaluation of resin composite bonded to GIC using three different adhesives.

    PubMed

    Gopikrishna, V; Abarajithan, M; Krithikadatta, J; Kandaswamy, D

    2009-01-01

    The current study evaluated the bonding ability of composite to glass ionomer cement (GIC) using three different bonding systems. One hundred samples of composites bonded to GIC were prepared and divided into five groups. In Group A, the composite was bonded to GIC after the initial setting of the GIC being employed as a total-etch adhesive. In Group B, the self-etch primer was employed to bond composite to GIC before the initial setting of the GIC. In Group C, the self-etch primer was employed to bond composite to the GIC after the initial setting of the GIC. In Group D, the GIC-based adhesive was employed to bond composite to the GIC before the initial setting of the GIC. In Group E, the GIC-based adhesive was employed to bond composite to the GIC after the initial setting of the GIC. Shear bond strength analysis was performed at a crosshead speed of 0.5 mm/minute. The results were tabulated and the statistical analysis was performed with one-way ANOVA; the Tukey's test showed that the bond strength of composite to GIC was significantly higher for the self-etch primer group employed on unset GIC and the GIC-based adhesive group employed on the set GIC for bonding composite to GIC. PMID:19678453

  3. Effects of two adhesion boosters on the shear bond strength of new and rebonded orthodontic brackets.

    PubMed

    Chung, C H; Fadem, B W; Levitt, H L; Mante, F K

    2000-09-01

    The purpose of this study was to evaluate the effects of 2 adhesion boosters, Enhance LC (Reliance, Itasca, Ill) and All-Bond 2 (Bisco, Schaumburg, Ill), on the shear bond strength of new and rebonded (previously debonded) brackets. Sixty new and 60 sandblasted rebonded brackets were bonded to 120 extracted human premolars with composite resin and divided equally into 6 groups based on the 2 adhesion boosters used: (1) new brackets/no booster (2) rebonded brackets/no booster (3) new brackets/Enhance (4) rebonded brackets/Enhance (5) new brackets/All-Bond (6) rebonded brackets/All-Bond. Shear bond strength of each sample was tested with an Instron machine (Instron Corp, Canton, Mass). Results show that the new brackets/All-Bond group yielded the highest strength (20.8 +/- 7.5 MPa), followed by the new brackets/Enhance group (18.6 +/- 6.5 MPa), rebond brackets/All-Bond group (17.3 +/- 7.2 MPa), new brackets/no booster group (16.8 +/- 6.3 MPa), rebonded brackets/no booster group (14.2 +/- 7.2 MPa), and rebonded brackets/Enhance group (13.6 +/- 6.7 MPa). No statistically significant difference was found among the 3 groups utilizing new brackets. For groups of rebonded brackets/no booster and rebonded brackets/Enhance, bond strength was significantly lower than groups of 3 new brackets and rebonded brackets/All-Bond. Rebonded brackets/All-Bond group had comparable bond strength to all 3 new brackets groups. It was concluded that in the process of replacing a failed bracket, (1) when new brackets are used, neither All-Bond 2 or Enhance LC improves bond strength significantly, (2) without the use of any adhesion booster, sandblasted rebonded brackets yield significantly less bond strength than new brackets, (3) Enhance LC fails to increase bond strength of sandblasted rebonded brackets, (4) All-Bond 2 significantly increases bond strength of sandblasted rebonded brackets, (5) sandblasted rebonded brackets with All-Bond 2 yield comparable bond strength to new brackets

  4. A study on the compatibility between one-bottle dentin adhesives and composite resins using micro-shear bond strength

    PubMed Central

    2015-01-01

    Objectives This study was performed to determine whether the combined use of one-bottle self-etch adhesives and composite resins from same manufacturers have better bond strengths than combinations of adhesive and resins from different manufacturers. Materials and Methods 25 experimental micro-shear bond test groups were made from combinations of five dentin adhesives and five composite resins with extracted human molars stored in saline for 24 hr. Testing was performed using the wire-loop method and a universal testing machine. Bond strength data was statistically analyzed using two way analysis of variance (ANOVA) and Tukey's post hoc test. Results Two way ANOVA revealed significant differences for the factors of dentin adhesives and composite resins, and significant interaction effect (p < 0.001). All combinations with Xeno V (Dentsply De Trey) and Clearfil S3 Bond (Kuraray Dental) adhesives showed no significant differences in micro-shear bond strength, but other adhesives showed significant differences depending on the composite resin (p < 0.05). Contrary to the other adhesives, Xeno V and BondForce (Tokuyama Dental) had higher bond strengths with the same manufacturer's composite resin than other manufacturer's composite resin. Conclusions Not all combinations of adhesive and composite resin by same manufacturers failed to show significantly higher bond strengths than mixed manufacturer combinations. PMID:25671210

  5. Shear Bond Strength of Orthodontic Brackets Fixed with Remineralizing Adhesive Systems after Simulating One Year of Orthodontic Treatment

    PubMed Central

    Bezerra, Gisele Lima; Torres, Carlos Rocha Gomes; Tonetto, Mateus Rodrigues; Borges, Alvaro Henrique; Kuga, Milton Carlos; Bandeca, Matheus Coelho; Firoozmand, Leily Macedo

    2015-01-01

    The objective of this study is to assess, in vitro, the shear bond strength of orthodontic brackets fixed with remineralizing adhesive systems submitted to thermomechanical cycling, simulating one year of orthodontic treatment. Sixty-four bovine incisor teeth were randomly divided into 4 experimental groups (n = 16): XT: Transbond XT, QC: Quick Cure, OL: Ortholite Color, and SEP: Transbond Plus Self-Etching Primer. The samples were submitted to thermomechanical cycling simulating one year of orthodontic treatment. Shear bond strength tests were carried out using a universal testing machine with a load cell of 50 KgF at 0.5 mm/minute. The samples were examined with a stereomicroscope and a scanning electron microscope (SEM) in order to analyze enamel surface and Adhesive Remnant Index (ARI). Kruskal-Wallis and Mann-Whitney (with Bonferroni correction) tests showed a significant difference between the studied groups (p < 0.05). Groups XT, QC, and SEP presented the highest values of adhesive resistance and no statistical differences were found between them. The highest frequency of failures between enamel and adhesive was observed in groups XT, QC, and OL. Quick Cure (QC) remineralizing adhesive system presented average adhesive resistance values similar to conventional (XT) and self-etching (SEP) adhesives, while remineralizing system (OL) provided the lowest values of adhesive resistance. PMID:26380371

  6. An in vitro comparison of adhesive techniques and rotary instrumentation on shear bond strength of nanocomposite with simulated pulpal pressure

    PubMed Central

    Hegde, Jayshree; Sravanthi, Y

    2011-01-01

    Aim: The aim of this study is to evaluate the shear bond strength of composite to tooth using different adhesive techniques and rotary instruments under simulated pulpal pressure. Materials and Methods: Sixty extracted human molars were randomly divided into two groups of 30 samples each (group I and II), according to the adhesive technique followed (i.e. total etch and self etch groups). Each group was further divided into two sub-groups (Sub-groups A and B) of 15 samples each according to the cutting instrument (diamond abrasive or carbide burs) used. Class II cavities were made with diamond abrasive or carbide burs, and restored with nano-composite under positive intra-pulpal pressure. Shear bond strength of the specimens were recorded simultaneously. Results: After statistical evaluation using two-way ANOVA and t-test, the mean shear bond strength values of the groups are as follows: Group IA- 4.69 MPa, Group IB-6.15 MPa, Group IIA-4.3 MPa, and Group IIB-6.24 MPa. It was seen that group IIB showed highest bond strength followed by group IB. Group II A showed the least bond strength. Conclusions: Within the limitations of the study, diamond abrasive gave better bond strength than carbide bur with both the adhesive techniques. PMID:22025823

  7. Effects of long-term repeated topical fluoride applications and adhesion promoter on shear bond strengths of orthodontic brackets

    PubMed Central

    Endo, Toshiya; Ishida, Rieko; Komatsuzaki, Akira; Sanpei, Shinya; Tanaka, Satoshi; Sekimoto, Tsuneo

    2014-01-01

    Objective: The purpose of this study was to assess the effects of long-term repeated topical application of fluoride before bonding and an adhesion promoter on the bond strength of orthodontic brackets. Materials and Methods: A total of 76 bovine incisors were collected and divided equally into four groups. In group 1, the brackets were bonded without topical fluoride application or adhesion promoter. In group 2, before bonding, the adhesion promoter was applied to nonfluoridated enamel. In group 3, the brackets were bonded without the application of the adhesion promoter to enamel, which had undergone long-term repeated topical fluoride treatments. Teeth in group 4 received the long-term repeated topical applications of fluoride, and the brackets were bonded using the adhesion promoter. All the brackets were bonded using BeautyOrtho Bond self-etching adhesive. The shear bond strength was measured and the bond failure modes were evaluated with the use of the adhesive remnant index (ARI) after debonding. Results: The mean shear bond strength was significantly lower in group 3 than in groups 1, 2, and 4, and there were no significant differences between the groups except for group 3. There were significant differences in the distribution of ARI scores between groups 2 and 3, and between groups 3 and 4. Conclusions: The adhesion promoter can recover the bond strength reduced by the long-term repeated topical applications of fluoride to the prefluoridation level and had a significantly great amount of adhesives left on either fluoridated or nonfluoridated enamel. PMID:25512720

  8. Shear Bond Strengths of Methacrylate- and Silorane-based Composite Resins to Feldspathic Porcelain using Different Adhesive Systems.

    PubMed

    Mohammadi, Narmin; Shakur Shahabi, Maryam; Kimyai, Soodabeh; Pournagi Azar, Fatemeh; Ebrahimi Chaharom, Mohammad Esmaeel

    2015-01-01

    Background and aims. Use of porcelain as inlays, laminates and metal-ceramic and all-ceramic crowns is common in modern dentistry. The high cost of ceramic restorations, time limitations and difficulty of removing these restorations result in delays in replacing fractured restorations; therefore, their repair is indicated. The aim of the present study was to compare the shear bond strengths of two types of composite resins (methacrylate-based and silorane-based) to porcelain, using three adhesive types. Materials and methods. A total of 156 samples of feldspathic porcelain surfaces were prepared with air-abrasion and randomly divided into 6 groups (n=26). In groups 1-3, Z250 composite resin was used to repair porcelain samples with Ad-per Single Bond 2 (ASB), Clearfil SE Bond (CSB) and Silorane Adhesive (SA) as the bonding systems, afterapplication of silane, respectively. In groups 4-6, the same adhesives were used in the same manner with Filtek Silorane composite resin. Finally, the shear bond strengths of the samples were measured. Two-way ANOVA and post hoc Tukey tests were used to compare bond strengths between the groups with different adhesives at P<0.05. Results. There were significant differences in the mean bond strength values in terms of the adhesive type (P<0.001). In addition, the interactive effect of the adhesive type and composite resin type had no significant effect on bond strength (P=0.602). Conclusion. The results of the present study showed the highest repair bond strength values to porcelain with both composite resin types with the application of SA and ASB. PMID:26697151

  9. Shear Bond Strengths of Methacrylate- and Silorane-based Composite Resins to Feldspathic Porcelain using Different Adhesive Systems

    PubMed Central

    Mohammadi, Narmin; Shakur Shahabi, Maryam; Kimyai, Soodabeh; Pournagi Azar, Fatemeh; Ebrahimi Chaharom, Mohammad Esmaeel

    2015-01-01

    Background and aims. Use of porcelain as inlays, laminates and metal-ceramic and all-ceramic crowns is common in modern dentistry. The high cost of ceramic restorations, time limitations and difficulty of removing these restorations result in delays in replacing fractured restorations; therefore, their repair is indicated. The aim of the present study was to compare the shear bond strengths of two types of composite resins (methacrylate-based and silorane-based) to porcelain, using three adhesive types. Materials and methods. A total of 156 samples of feldspathic porcelain surfaces were prepared with air-abrasion and randomly divided into 6 groups (n=26). In groups 1-3, Z250 composite resin was used to repair porcelain samples with Ad-per Single Bond 2 (ASB), Clearfil SE Bond (CSB) and Silorane Adhesive (SA) as the bonding systems, afterapplication of silane, respectively. In groups 4-6, the same adhesives were used in the same manner with Filtek Silorane composite resin. Finally, the shear bond strengths of the samples were measured. Two-way ANOVA and post hoc Tukey tests were used to compare bond strengths between the groups with different adhesives at P<0.05. Results. There were significant differences in the mean bond strength values in terms of the adhesive type (P<0.001). In addition, the interactive effect of the adhesive type and composite resin type had no significant effect on bond strength (P=0.602). Conclusion. The results of the present study showed the highest repair bond strength values to porcelain with both composite resin types with the application of SA and ASB. PMID:26697151

  10. The Effect of Temperature on Shear Bond Strength of Clearfil SE Bond and Adper Single Bond Adhesive Systems to Dentin

    PubMed Central

    Sharafeddin, Farahnaz; Nouri, Hossein; Koohpeima, Fatemeh

    2015-01-01

    Statement of the Problem Monomer viscosity and solvent evaporation can be affected by the adhesive system temperature. Higher temperature can elevate the vapor pressure in solution and penetration of adhesive in smear layer. Bonding mechanism may be influenced by the adhesive temperature. Purpose This study aimed to evaluate the effect of pre-heating on shear bond strength of etch-and-rinse and self-etching adhesives to ground bovine dentin surfaces, at temperatures of 4˚C, 25˚C and 40˚C. Materials and Method In this experimental study, 60 maxillary bovine incisors were randomly divided into 6 groups (n=10). The central part of labial dentin surfaces was exposed with a diamond bur and standardized smear layer was created by using silicon carbide paper (600 grit) under water-coolant while the specimens were mounted in acrylic resin. Two adhesive systems, an etch-and-rinse (Adper single bond) and a self-etch (Clearfil SE Bond) were stored at temperatures of 4˚C, 25˚C and 40˚C for 30 minutes and were then applied on the prepared labial surface according to the manufacturer’s instructions. The composite resin (Z350) was packed in Teflon mold (5 mm in diameter) on this surface and was cured. The shear bond strength (MPa) was evaluated by universal testing machine (Zwick/Roell Z020, Germany) at cross head speed of 1mm/min. The results were statistically analyzed by using ANOVA and Tukey tests (p< 0.05). Results No significant difference was found between the shear bond strength of Clearfil SE Bond adhesive in different temperature and single Bond adhesive system at 25 ˚C and 40 ˚C. However, there were significant differences between 4 ˚C of Adper single bond in comparison with 25˚C and 40˚C (p= 0.0001). Conclusion Pre-heating did not affect the shear bond strength of SE Bond, but could promote the shear bond strength of Adper Single Bond. PMID:25759852

  11. The Influence of No-Primer Adhesives and Anchor Pylons Bracket Bases on Shear Bond Strength of Orthodontic Brackets

    PubMed Central

    Sfondrini, Maria Francesca; Fraticelli, Danilo; Daina, Paola; Tamagnone, Alessandra; Gandini, Paola

    2013-01-01

    Objective. The aim of this study was to compare the shear bond strength (SBS) and adhesive remnant index (ARI) scores of no-primer adhesives tested with two different bracket bases. Materials and Methods. 120 bovine permanent mandibular incisors were divided into 6 groups of 20 specimens. Two brackets (ODP) with different bracket bases (anchor pylons and 80-gauge mesh) were bonded to the teeth using a conventional adhesive (Transbond XT) and two different no-primer adhesive (Ortho Cem; Heliosit) systems. Groups were tested using an instron universal testing machine. SBS values were recorded. ARI scores were measured. SEM microphotographs were taken to evaluate the pattern of bracket bases. Statistical analysis was performed. ANOVA and Tukey tests were carried out for SBS values, whereas a chi-squared test was applied for ARI scores. Results. Highest bond strength values were reported with Transbond XT (with both pad designs), Ortho Cem bonded on anchor pylons and Heliosit on 80-gauge mesh. A higher frequency of ARI score of “3” was reported for Transbond XT groups. Other groups showed a higher frequency of ARI score “2” and “1.” Conclusion. Transbond XT showed the highest shear bond strength values with both pad designs. PMID:23984339

  12. Evaluation of Self-Etching Adhesive and Er:YAG Laser Conditioning on the Shear Bond Strength of Orthodontic Brackets

    PubMed Central

    Contreras-Bulnes, Rosalía; Scougall-Vilchis, Rogelio J.; Rodríguez-Vilchis, Laura E.; Centeno-Pedraza, Claudia; Olea-Mejía, Oscar F.; Alcántara-Galena, María del Carmen Z.

    2013-01-01

    The purpose of this study was to evaluate the shear bond strength, the adhesive remnant index scores, and etch surface of teeth prepared for orthodontic bracket bonding with self-etching primer and Er:YAG laser conditioning. One hundred and twenty bovine incisors were randomly divided into four groups. In Group I (Control), the teeth were conditioned with 35% phosphoric acid for 15 seconds. In Group II the teeth were conditioned with Transbond Plus SEP (5 sec); III and IV were irradiated with the Er:YAG 150 mJ (11.0 J/cm2), 150 mJ (19.1 J/cm2), respectively, at 7–12 Hz with water spray. After surface preparation, upper central incisor stainless steel brackets were bonded with Transbond Plus Color Change Adhesive. The teeth were stored in water at 37°C for 24 hours and shear bond strengths were measured, and adhesive remnant index (ARI) was determined. The conditioned surface was observed under a scanning electron microscope. One-way ANOVA and chi-square test were used. Group I showed the significantly highest values of bond strength with a mean value of 8.2 megapascals (MPa). The lesser amount of adhesive remnant was found in Group III. The results of this study suggest that Er:YAG laser irradiation could not be an option for enamel conditioning. PMID:24228014

  13. The shear bond strength of MTA with three different types of adhesive systems: An in vitro study

    PubMed Central

    Tyagi, Nimish; Chaman, Chandrakar; Tyagi, Shashi Prabha; Singh, Udai Pratap; Sharma, Apoorv

    2016-01-01

    Aim: To evaluate the shear bond strength of MTA with three different types of adhesive systems- self-adhering flowable composite, etch and rinse adhesive system and self etch adhesive system. Methodology: MTA specimens (n = 60) were prepared using cylindrical acrylic blocks, having a central cavity with 4 mm diameter and 2 mm depth. MTA was mixed and placed in the prepared cavity, and was covered with a moist cotton pellet and temporary filling material. The specimens were divided into 3 groups which were further divided into 2 sub-groups (45 Minutes and 24 hours). After the application of bonding agents composite resin was placed over the MTA surface. The specimens were tested for shear bond strength and readings were statically analyzed. Result: After 24 hrs the mean value of etch and rinse group was significantly higher than self etch and the self adhering composite groups. Among the 45 minutes groups there were no significant difference. Conclusion: In single visit after 45 minutes self adhering flowable can be used successfully as a final restorative material in place of conventional flowable composite without using any alternative adhesive system over MTA. PMID:27099417

  14. Effect of placement agitation and placement time on the shear bond strength of 3 self-etching adhesives.

    PubMed

    Velasquez, Lina Maria; Sergent, Robert S; Burgess, John O; Mercante, D E

    2006-01-01

    This study measured the shear bond strength (SBS) of 3 self-etching bonding agents to enamel and dentin with and without agitation at 3 different application times. The null hypotheses tested were that agitation and application time have no effect on bond strength. Occlusal surfaces of 180 recently extracted caries-free human molars were wet ground with 600 grit wet-dry silica carbide abrasive paper to obtain a flat enamel surface. The teeth were divided into 18 groups of 10 teeth. Three self-etching bonding agents, Clearfil SE BOND (Kuraray America), Xeno III (Dentsply) and AdheSE (Ivoclar-Vivadent) were applied using application times of 10, 20 or 30 seconds with or without agitation, thinned with a gentle stream of air and cured for 10 seconds, according to manufacturers' directions. Z100 (3M ESPE) composite, A2 shade, was placed over the cured adhesive and cured for 40 seconds. The samples were stored in distilled water at room temperature until testing. The samples were tested in shear to failure with a 1-mm/minute crosshead speed. After enamel shear bond strength testing, the teeth were again ground with 400 and 600-grit wet-dry SiC paper to obtain a flat dentin surface. The protocol used for preparing the enamel bond test samples was repeated, and the teeth were stored until testing in distilled water at room temperature. The samples were again tested in shear at a 1-mm/minute crosshead speed. Values were converted to MPa and data analyzed for intergroup differences using ANOVA and Tukey post-hoc tests. Agitation did not improve enamel SBS for any of the materials tested, but there was a significant difference in enamel SBS among materials: Clearfil SE Bond shear bond strength was greater than Xeno III, which was greater than AdheSE. At 10 seconds application time on dentin, agitation improved the Clearfil SE Bond SBS and, at 20 seconds application time on dentin, agitation significantly improved SBS to dentin for all systems tested. Agitation had no affect

  15. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel

    PubMed Central

    Eshghi, Alireza; Khoroushi, Maryam; Rezvani, Alireza

    2014-01-01

    Objective: Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG) or alumina using etch-and-rinse and self-etch adhesives. Materials and Methods: Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12). Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05). Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation. Results: No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987). There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1). Also, decalcified or intact enamel groups had no significant difference (P=0.918). However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion. Conclusion: Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives. PMID:25628694

  16. Effects of Two Soft Drinks on Shear Bond Strength and Adhesive Remnant Index of Orthodontic Metal Brackets

    PubMed Central

    Sajadi, Soodabeh Sadat; Eslami Amirabadi, Gholamreza; Sajadi, Sepideh

    2014-01-01

    Objective: Bond failure of brackets during orthodontic treatment is a common problem; which results in treatment interference, increased treatment time and prolonged clinical time for rebonding of failed brackets. The purpose of this study was to evaluate the effects of Coca-Cola and a non-alcoholic beer on the shear bond strength and adhesive remnant index (ARI) of orthodontic metal brackets in vitro. Materials and Methods: Eighty intact human premolars were divided into two experimental groups of Coca-Cola and non-alcoholic beer (Istak), and a control group of artificial saliva. Over a period of thirty days, the test groups were immersed in the respective soft drinks for 5 minutes, twice a day. For the remainder of the time, they were kept in artificial saliva at 37°C. The control group was stored in artificial saliva during the experiment. All samples were subjected to shearing forces using Universal Testing Machine. ARI was determined with a stereomicroscope at ×12 magnification. The data of shear bond strength were statistically analyzed by one-way ANOVA and Tukey’s Post-Hoc test and the data of ARI scores were analyzed by Kruskal-Wallis test. Results: No significant difference was observed in ARIs of the three groups (P≤ 0.552). The shear bond strength of Coke group was significantly lower than that of the two other groups (P≤ 0.035); but there was no significant difference between the shear bond strength of Istak and the control group (P≤ 0.999). Conclusion: Coca-Cola decreased the shear bond strength of orthodontic brackets. PMID:25584049

  17. Shear Strength at 75 F to 500 F of Fourteen Adhesives Used to Bond a Glass-fabric-reinforced Phenolic Resin Laminate to Steel

    NASA Technical Reports Server (NTRS)

    Davidson, John R

    1956-01-01

    Fourteen adhesives used to bond a glass-fabric-reinforced phenolic resin laminate to steel were tested in order to determine their shear strengths at temperatures from 75 F to 500 F. Fabrication methods were varied to evaluate the effect of placing cloth between the facing surfaces to maintain a uniform bond-line thickness. One glass-fabric supported phenolic adhesive was found to have a shear strength of 3,400 psi at 300 F and over 1,000 psi at 500 F. Strength and fabrication data are tabulated for all adhesives tested.

  18. Shear bond strength to dentin and Ni-Cr-Be alloy with the All-Bond universal adhesive system.

    PubMed

    Barkmeier, W W; Suh, B I; Cooley, R L

    1991-01-01

    The shear bond strength of the All-Bond system to dentin and a nonprecious alloy was evaluated. Eighty human molar teeth (10 per group) were used in the dentin bonding phase of the study. A bond site was prepared in dentin, and both the succinic anhydride modified HEMA and 10 percent phosphoric acid dentin conditioning techniques were evaluated under both wet and dry conditions. Eighty Rexillium III specimens were used in the metal bonding phase of the study. All-Bond primer and opaquer were applied to the metal surface, followed by a visible light-cured composite restorative material. Dentin bond strengths were determined at 24 hours, while metal bond strengths were evaluated both at 24 hours and after thermocycling (2,500 cycles). Separate groups were established for adhesion to both dentin and metal with the composite placed in a plastic matrix or a gelatin capsule. The highest mean shear bond values to dentin were obtained in the groups with the gelatin capsule bonding procedure, where the dentin was treated with 10 percent phosphoric acid and then blotted dry (wet technique) before the bonding procedure (39.99 MPa). These values were higher than the succinic anhydride modified HEMA-treated group with gentle air drying (wet technique-29.56 MPa). There was essentially no difference in mean shear bond strengths to dentin when a succinic anhydride modified HEMA dentin conditioner was used with aggressive (dry technique) or gentle air drying (wet technique) [29.56 versus 29.08 MPa]. High bond strengths to Rexillium III were obtained when the All-Bond adhesive system was used in combination with a dual-care opaquer and a composite restorative material.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1817584

  19. Evaluation of pH, ultimate tensile strength, and micro-shear bond strength of two self-adhesive resin cements.

    PubMed

    Costa, Luciana Artioli; Carneiro, Karina Kato; Tanaka, Auro; Lima, Darlon Martins; Bauer, José

    2014-01-01

    The aim of this study was to evaluate the pH, ultimate tensile strength (UTS), and micro-shear bond strength (µSBS) of two self-adhesive resin cements to enamel and dentin. Sound bovine incisors (n = 10) and two self-adhesive resin cements (i.e., RelyX U-100 and seT PP) were used. The pH of the resin cements was measured using a pH-indicator paper (n = 3). Specimens for UTS were obtained from an hourglass-shaped mold. For µSBS, cylinders with internal diameter of 0.75 mm and height of 0.5 mm were bonded to the flat enamel and dentin surfaces. Bonded cylinders were tested in the shear mode using a loop wire. The fracture mode was also evaluated. The cement seT PP showed a low pH; U-100 showed significantly higher UTS (49.9 ± 2.0) than seT PP (40.0 ± 2.1) (p < 0.05) and high µSBS to enamel (10.7 ± 3.7). The lowest µSBS was found for seT PP to dentin (0.7 ± 0.6); seT PP to enamel (4.8 ± 1.7), and for U-100 to dentin (7.2 ± 1.9), showing an intermediate µSBS value (p < 0.05). Adhesive failure was the most frequently observed failure mode. The resin cement that presented the lowest pH and UTS also presented the lowest micro-shear bond strength to enamel and dentin. PMID:25337932

  20. Shear bond strength and SEM morphology evaluation of different dental adhesives to enamel prepared with ER:YAG laser

    PubMed Central

    Pires, Patrícia T.; Ferreira, João C.; Oliveira, Sofia A.; Azevedo, Álvaro F.; Dias, Walter R.; Melo, Paulo R.

    2013-01-01

    Context: Early observations of enamel surfaces prepared by erbium lasers motivated clinicians to use laser as an alternative to chemical etching. Aims: Evaluate shear bond strength (SBS) values of different dental adhesives on Erbium:Yttrium Aluminum Garnet (Er:YAG) laser prepared enamel and to evaluate possible etching patterns correlations between dental adhesives and SBS values. Subjects and Methods: One hundred bovine incisors were randomly assigned to SBS tests on enamel (n = 15) and to enamel morphology analysis (n = 5) after Er:YAG laser preparation as follows: Group I – 37% phosphoric acid (PA)+ ExciTE®; Group II – ExciTE®; Group III – AdheSE® self-etching; Group IV – FuturaBond® no-rinse. NR; Group V – Xeno® V. Teeth were treated with the adhesive systems and subjected to thermal cycling. SBS were performed in a universal testing machine at 5 mm/min. Statistical Analysis Used: One-way ANOVA and post-hoc tests (P < 0.05). For the morphology evaluation, specimens were immersed in Ethylenediamine tetraacetic acid (EDTA) and the etching pattern analyzed under Scanning Electron Microscope (SEM). Results: Mean bond strengths were Group I – 47.17 ± 1.61 MPa (type I etching pattern); Group II – 32.56 ± 1.64 MPa, Group III – 29.10 ± 1.34 MPa, Group IV – 23.32 ± 1.53 MPa (type III etching pattern); Group V – 24.43 MPa ± 1.55 (type II etching pattern). Conclusions: Different adhesive systems yielded significantly different SBSs. Acid etching significantly increased the adhesion in laser treated enamel. No differences in SBS values were obtained between AdheSE® and ExciTE® without condition with PA. FuturaBond® NR and Xeno® V showed similar SBS, which was lower in comparison to the others adhesives. No correlation between enamel surface morphology and SBS values was observed, except when PA was used. PMID:23853447

  1. Biomechanics of shear-sensitive adhesion in climbing animals: peeling, pre-tension and sliding-induced changes in interface strength.

    PubMed

    Labonte, David; Federle, Walter

    2016-09-01

    Many arthropods and small vertebrates use adhesive pads for climbing. These biological adhesives have to meet conflicting demands: attachment must be strong and reliable, yet detachment should be fast and effortless. Climbing animals can rapidly and reversibly control their pads' adhesive strength by shear forces, but the mechanisms underlying this coupling have remained unclear. Here, we show that adhesive forces of stick insect pads closely followed the predictions from tape peeling models when shear forces were small, but strongly exceeded them when shear forces were large, resulting in an approximately linear increase of adhesion with friction. Adhesion sharply increased at peel angles less than ca 30°, allowing a rapid switch between attachment and detachment. The departure from classic peeling theory coincided with the appearance of pad sliding, which dramatically increased the peel force via a combination of two mechanisms. First, partial sliding pre-stretched the pads, so that they were effectively stiffer upon detachment and peeled increasingly like inextensible tape. Second, pad sliding reduces the thickness of the fluid layer in the contact zone, thereby increasing the stress levels required for peeling. In combination, these effects can explain the coupling between adhesion and friction that is fundamental to adhesion control across all climbing animals. Our results highlight that control of adhesion is not solely achieved by direction-dependence and morphological anisotropy, suggesting promising new routes for the development of controllable bio-inspired adhesives. PMID:27605165

  2. Evaluating the shear bond strength of enamel and dentin with or without etching: A comparative study between dimethacrylate-based and silorane-based adhesives

    PubMed Central

    Hajizadeh, Hila; Nasseh, Atefeh; Rahmanpour, Naim

    2015-01-01

    Background Silorane-based composites and their specific self-etch adhesive were introduced to conquest the polymerization shrinkage of methacrylate-based composites. It has been shown that additional etching of enamel and dentin can improve the bond strength of self-etch methacrylate-based adhesives but this claim is not apparent about silorane-based adhesives. Our objective was to compare the shear bond strength (SBS) of enamel and dentin between silorane-based adhesive resin and a methacrylate-based resin with or without additional etching. Material and Methods 40 sound human premolars were prepared and divided into two groups: 1- Filtek P60 composite and Clearfil SE Bond adhesive; 2- Filtek P90 composite and Silorane adhesive. Each group divided into two subgroups: with or without additional etching. For additional etching, 37% acid phosphoric was applied before bonding procedure. A cylinder of the composite was bonded to the surface. After 24 hours storage and 500 thermo cycling between 5-55°C, shear bond strength was assessed with the cross head speed of 0.5 mm/min. Then, bonded surfaces were observed under stereomicroscope to determine the failure mode. Data were analyzed with two-way ANOVA and Fischer exact test. Results Shear bond strength of Filtek P60 composite was significantly higher than Filtek P90 composite both in enamel and dentin surfaces (P<0.05). However, additional etching had no significant effect on shear bond strength in enamel or dentin for each of the composites (P>0.05). There was no interaction between composite type and additional etching (P>0.05). Failure pattern was mainly adhesive and no significant correlation was found between failure and composite type or additional etching (P>0.05). Conclusions Shear bond strength of methacrylate-based composite was significantly higher than silorane-based composite both in enamel and dentin surfaces and additional etching had no significant effect on shear bond strength in enamel or dentin for

  3. Shear Bond Strength of Acidic Primer, Light-Cure Glass Ionomer, Light-Cure and Self Cure Composite Adhesive Systems - An In Vitro Study

    PubMed Central

    D, Krishnakanth Reddy; V, Kishore M S; Safeena, Safeena

    2013-01-01

    Background: The purpose of this study was to determine shear bond strength and the effect on the bracket/ adhesive failure mode when an acidic primer and other etchants were used to condition the enamel surface before bonding. Materials & Methods: Group I: Brackets bonded with Ultimate cure-on-light Light-cure composite adhesive system. Group II: Brackets bonded with Ortho-one no-mix. Self-cure composite adhesive system. Group III: Brackets bonded with Light-cure glass ionomer adhesive system. Group IV: Brackets bonded with Transbond plus self etching primer. Results: The results of this study indicated that the shear bond strength when using Transbond plus self etching primer showed the highest bond strength Group- IV(8.69 2.54 MPa) followed by Ultimate cure-on-light Group-I (8.62 1.84 MPa), Ortho-one no-mix (Bisco Inc. USA)Group-II (8.07 1.72 MPa), and least bond strength was seen in G.C. Fuji Ortho L.C. Group-III (6.01 1.6) MPa Conclusion: Use of self etching primer saves chairside time and satisfactory high bond strength was obtained. Care should be taken during debonding of ceramic brackets How to cite this article: Reddy K D, Kishore M S V, Safeena S. Shear Bond Strength of Acidic Primer, Light-Cure Glass Ionomer, Light-Cure and Self Cure Composite Adhesive Systems - An In Vitro Study. J Int Oral Health 2013; 5(3):73-78. PMID:24155606

  4. Shear Bond Strength of MDP-Containing Self-Adhesive Resin Cement and Y-TZP Ceramics: Effect of Phosphate Monomer-Containing Primers

    PubMed Central

    Ahn, Jin-Soo; Yi, Young-Ah; Lee, Yoon; Seo, Deog-Gyu

    2015-01-01

    Purpose. This study was conducted to evaluate the effects of different phosphate monomer-containing primers on the shear bond strength between yttria-tetragonal zirconia polycrystal (Y-TZP) ceramics and MDP-containing self-adhesive resin cement. Materials and Methods. Y-TZP ceramic surfaces were ground flat with #600-grit SiC paper and divided into six groups (n = 10). They were treated as follows: untreated (control), Metal/Zirconia Primer, Z-PRIME Plus, air abrasion, Metal/Zirconia Primer with air abrasion, and Z-PRIME Plus with air abrasion. MDP-containing self-adhesive resin cement was applied to the surface-treated Y-TZP specimens. After thermocycling, a shear bond strength test was performed. The surfaces of the Y-TZP specimens were analyzed under a scanning electron microscope. The bond strength values were statistically analyzed using one-way analysis of variance and the Student–Newman–Keuls multiple comparison test (P < 0.05). Results. The Z-PRIME Plus treatment combined with air abrasion produced the highest bond strength, followed by Z-PRIME Plus application, Metal/Zirconia Primer combined with air abrasion, air abrasion alone, and, lastly, Metal/Zirconia Primer application. The control group yielded the lowest results (P < 0.05). Conclusion. The application of MDP-containing primer resulted in increased bond strength between Y-TZP ceramics and MDP-containing self-adhesive resin cements. PMID:26539485

  5. Assessment of the Shear Bond Strength between Nanofilled Composite Bonded to Glass-ionomer Cement Using Self-etch Adhesive with Different pHs and Total-Etch Adhesive

    PubMed Central

    Sharafeddin, Farahnaz; Choobineh, Mohammad Mehdi

    2016-01-01

    Statement of the Problem In the sandwich technique, the undesirable bond between the composite resin and glass-ionomer cement (GIc) is one of the most important factors which lead to the failure of restoration. Total-etch and self-etch adhesives may improve the bond strength based on their pH. Purpose The purpose of this study was to evaluate the shear bond strength between the nanofilled composite resin and GIc using different adhesives. Materials and Method In this experimental study, 40 specimens (6×6mm) in 4 groups (n=10) were prepared in acrylic mold. Each specimen contained conventional GI ChemFil Superior with a height of 3mm, bonded to Z350 composite resin with a height measured 3mm. In order to bond the composite to the GI, the following adhesives were used, respectively: A: mild Clearfil SE Bond self-etch (pH=2), B: intermediate OptiBond self-etch (pH=1.4), C: strong Adper Prompt L-Pop (pH=1), and D: Adper Single Bond 2 total-etch (pH=7.2). The shear bond strength was measured by using universal testing machine with a crosshead speed of 1mm/min. One-way ANOVA and Tukey’s test were used to analyze the data (p< 0.05). Results The shear bond strength in group A was significantly higher than group B (p= 0.002), C (p< 0.001), and D (p< 0.001). Moreover, the shear bond strength of groups A and B (self-etch) was significantly different from group D (total-etch) (p< 0.001); and C (self-etch) with D (p= 0.024). Conclusion The results of this study showed that applying the mild self-etch adhesive between the composite and the GIc results in stronger shear bond strength compared to intermediate and strong self-etch adhesives. Moreover, the self-etch adhesive increased the shear bond strength between composite resin and GIc more significantly than total-etch adhesive. PMID:26966701

  6. Effect of collagen cross-linkers on the shear bond strength of a self-etch adhesive system to deep dentin

    PubMed Central

    Srinivasulu, Sakhamuri; Vidhya, Sampath; Sujatha, Manimaran; Mahalaxmi, Sekar

    2013-01-01

    Objectives: To evaluate the shear bond strength of composite resin to deep dentin, bonded using a self-etch adhesive, after treatment with two collagen cross-linkers at varying time intervals. Materials and Methods: Thirty extracted human incisors were sectioned longitudinally into equal mesial and distal halves (n = 60). The proximal deep dentin was exposed and the specimens were divided based on the surface treatment of dentin prior to bonding as follows: Group I (n = 12, control): No prior dentin surface treatment; group II (n = 24): Dentin surface pretreated with 10% sodium ascorbate; and group III (n = 24): Dentin surface pretreated with 6.5% proanthocyanidin. Groups II and III were further divided into two subgroups based on the pre-treatment time of five and 10 min. Shear bond strength of the specimens was tested using universal testing machine and the data were statistically analyzed. Results: Significantly higher shear bond strength to deep dentin was observed in teeth treated with 10% sodium ascorbate and 6.5% proanthocyanidin compared to control group. No significant difference was observed between 5 min and 10 min pre-treatment times. Conclusion: Dentin surface pre-treatment with both 10% sodium ascorbate and 6.5% proanthocyanidin resulted in significant improvement in bond strength of self-etch adhesive to deep dentin. PMID:23716965

  7. Shear bond strength of resin composite bonded with two adhesives: Influence of Er: YAG laser irradiation distance

    PubMed Central

    Shirani, Farzaneh; Birang, Reza; Malekipour, Mohammad Reza; Hourmehr, Zahra; Kazemi, Shantia

    2014-01-01

    Background: Dental surfaces prepared with different Er:YAG laser distance may have different characteristics compared with those prepared with conventional instruments. The aim of this study was to investigate the effect of Er:YAG laser irradiation distance from enamel and dentin surfaces on the shear bond strength of composite with self-etch and etch and rinse bonding systems compared with conventional preparation method. Materials and Methods: Two hundred caries-free human third molars were randomly divided into twenty groups (n = 10). Ten groups were designated for enamel surface (E1-E10) and ten for dentin surface (D1-D10). Er: YAG laser (2940 nm) was used on the E1-E8 (240 mJ, 25 Hz) and D1-D8 (140 mJ, 30 Hz) groups at four different distances of 0.5 (standard), 2, 4 and 11 mm. Control groups (E9, E10, D9 and D10) were ground with medium grit diamond bur. The enamel and dentin specimens were divided into two subgroups that were bonded with either Single Bond or Clearfil SE Bond. Resin composite (Z100) was dispensed on prepared dentin and enamel. The shear bond strengths were tested using a universal testing machine. Data were analyzed by SPSS12 statistical software using three way analysis of variance, Tukey and independent t-test. P < 0.05 was considered as significant. Results: There was a significant difference between enamel and dentin substrates (P < 0.001) and between lased and un-lased groups; the un-lased group had significantly higher bond strength (P < 0.001). Shear bond strength increased significantly with an increase in the laser irradiation distance (P < 0.05) on enamel surfaces (in both bonding agent subgroups) and on dentin surfaces (in the Single Bond subgroup). Conclusion: Laser irradiation decreases shear bond strength. Irradiation distance affects shear bond strength and increasing the distance would decrease the negative effects of laser irradiation. PMID:25540665

  8. First-principles comparative study on the interlayer adhesion and shear strength of transition-metal dichalcogenides and graphene

    NASA Astrophysics Data System (ADS)

    Levita, Giacomo; Molinari, Elisa; Polcar, Tomas; Righi, Maria Clelia

    2015-08-01

    Due to their layered structure, graphene and transition-metal dichalcogenides (TMDs) are easily sheared along the basal planes. Despite a growing attention towards their use as solid lubricants, so far no head-to-head comparison has been carried out. By means of ab initio modeling of a bilayer sliding motion, we show that graphene is characterized by a shallower potential energy landscape while more similarities are attained when considering the sliding forces; we propose that the calculated interfacial ideal shear strengths afford the most accurate information on the intrinsic sliding capability of layered materials. We also investigate the effect of an applied uniaxial load: in graphene, this introduces a limited increase in the sliding barrier while in TMDs it has a substantially different impact on the possible polytypes. The polytype presenting a parallel orientation of the layers (R 0 ) bears more similarities to graphene while that with antiparallel orientation (R 180 ) shows deep changes in the potential energy landscape and consequently a sharper increase of its sliding barrier.

  9. Evaluation of shear bond strength between self-etching adhesive systems and dentin and analysis of the resin-dentin interface.

    PubMed

    Teixeira, Cleonice Silveira; Chain, Marcelo Carvalho

    2010-01-01

    This study evaluated the shear bond strength between dentin and four self-etching adhesive systems: Clearfil SE Bond (Group 1), Optibond Solo Plus SE (Group 2), Adper Prompt SE (Group 3), and Tyrian SPE (Group 4). A single-bottle adhesive system (Optibond Solo Plus) was used as the control (Group 5). The resin-dentin interface was analyzed by using scanning electron microscopy (SEM). The facial and lingual surfaces of 40 human molars were wet-ground flat; the teeth then were assigned randomly to one of five groups. Each adhesive system was applied to the dentin and the respective resin was applied using a Teflon mold. After 24 hours, the specimens were sheared at a crosshead speed of 1 mm/minute. Five additional teeth were prepared for SEM. Mean scores (+/-SD) in MP a were highest for Group 1 (33.23 +/- 12.67), followed by Group 2 (32.41 +/- 9.90), Group 5 (30.68 +/- 4.08), Group 4 (21.37 +/- 5.87), and Group 3 (17.50 +/- 4.24). The statistical analysis by Kruskal-Wallis and Wilcoxon Rank-Sum tests revealed no significant difference (p > 0.05) between Groups 1, 2, and 5. Groups 3 and 4 were different from the others and from each other (p < 0.05). The fracture modes were mostly interfacial/adhesive and cohesive in the resin. SEM analysis of the resin-dentin interface showed a homogeneous gap-free hybrid layer for all groups. PMID:20236904

  10. The Effects of Prophylactic Ozone Pretreatment of Enamel on Shear Bond Strength of Orthodontic Brackets Bonded with Total or Self-Etch Adhesive Systems

    PubMed Central

    Cehreli, Sevi Burcak; Guzey, Asli; Arhun, Neslihan; Cetinsahin, Alev; Unver, Bahtiyar

    2010-01-01

    Objectives: The aim of this in vitro study is to determine (1) shear bond strength (SBS) of brackets bonded with self-etch and total-etch adhesive after ozone treatment (2) bond failure interface using a modified Adhesive Remnant Index (ARI). Methods: 52 premolars were randomly assigned into four groups (n=13) and received the following treatments: Group 1: 30 s Ozone (Biozonix, Ozonytron, Vehos Medikal, Ankara, Turkey) application + Transbond Plus Self-Etching Primer (SEP) (3M) + Transbond XT (3M), Group 2: Transbond Plus SEP + Transbond XT, Group 3: 30 s Ozone application + 37% orthophosphoric acid + Transbond XT Primer (3M) + Transbond XT, Group 4: 37% orthophosphoric acid + Transbond XT Primer + Transbond XT. All samples were stored in deionised water at 37°C for 24 hours. Shear debonding test was performed by applying a vertical force to the base of the bracket at a cross-head speed of 1 mm/min. Results: The mean SBS results were Group 1: 10.48 MPa; Group 2: 8.89 MPa; Group 3: 9.41 MPa; Group 4: 9.82 MPa. One-Way Variance Test revealed that the difference between the groups was not statistically significant (P=0.267). Debonded brackets were examined by an optical microscope at X16 magnification to determine the bond failure interface using a modified ARI. The results were (mean) Group 1: 2.38; Group 2: 1.31; Group 3: 3.00; Group 4: 1.92. Multiple comparisons showed that Groups 1 and 2, 2 and 3, 3 and 4 were statistically different (P=0.014, P<.001 and P=0.025). Conclusions: Ozone treatment prior to bracket bonding does not affect the shear bond strength. PMID:20922155

  11. Evaluation of Shear Bond Strength of Total- and Self-etching Adhesive Systems after Application of Chlorhexidine to Dentin Contaminated with a Hemostatic Agent

    PubMed Central

    Sharafeddin, Farahnaz; Farhadpour, Hajar

    2015-01-01

    Statement of the Problem Hemostatic agents may influence the bond strength of different bonding agents. Also, chlorhexidine has shown positive effects on bond strength values and their combination effect has not been reported yet. Purpose The aim of this study was to evaluate the effect of contamination with a hemostatic agent on shear bond strength (SBS) of total- and self-etching adhesive systems and the effect of chlorhexidine application after removal of the hemostatic agent. Materials and Method In this experimental study, the occlusal enamel of each sixty caries-free mandibular molars was removed and their midcoronal dentin was exposed. The specimens were then mounted in auto-polymerizing resin 1mm apical to CEJ. Then, the specimens were divided into 6 groups (n=10) based on contamination with a hemostatic agent (H), application of chlorhexidine (CHX) and the adhesive system used; and then were classified as Group 1: Adper Single Bond (ASB); Group 2: H+ASB; Group 3: H+0.2% CHX+ASB; Group 4: Clearfil SE Bond (CSB); Group 5: H+CSB; Group 6: H+0.2% CHX+CSB. Then, composite resin rods (4×2 mm) were built up on the dentin surfaces and after thermocycling, the SBS (MPa) was evaluated. Statistical analysis was performed using two-way ANOVA and post hoc Tukey tests (p< 0.05). Results There were statistically significant differences between bond strength values of group 1 (ASB) and group 2 (H+ASB) (p< 0.001) and group 1 (ASB) and group 3 (H+CHX+ASB) (p< 0.001). Similarly, significant differences were seen between group 4 (CSB) and group 5 (H+CSB) (p< 0.001) and between group 4 (CSB) and group 6 (H+CHX+CSB) (p< 0.001). Conclusion Contamination with hemostatic agent reduced the SBS of both total- and self-etching adhesive systems. In addition, application of chlorhexidine after the removal of hemostatic agent had a negative effect on SBS of total- and self-etching adhesive systems. PMID:26331146

  12. Shear Bond Strength of an Etch-and-rinse Adhesive to Er:YAG Laser- and/or Phosphoric Acid-treated Dentin

    PubMed Central

    Davari, Abdolrahim; Sadeghi, Mostafa; Bakhshi, Hamid

    2013-01-01

    Background and aims. Er:YAG laser irradiation has been claimed to improve the adhesive properties of dentin; therefore, it has been proposed as an alternative to acid etching. The aim of this in vitro study was to investigate the shear bond strength of an etch-and-rinse adhesive system to dentin surfaces following Er:YAG laser and/or phosphoric acid etching. Materials and methods. The roots of 75 sound maxillary premolars were sectioned below the CEJ and the crowns were embedded in auto-polymerizing acrylic resin with the buccal surfaces facing up. The buccal surfaces were ground using a diamond bur and polished until the dentin was exposed; the samples were randomly divided into five groups (n=15) according to the surface treatment: (1) acid etching; (2) laser etching; (3) laser etching followed by acid etching; (4) acid etching followed by laser etching and (5) no acid etching and no laser etching (control group). Composite resin rods (Point 4, Kerr Co) were bonded to treated dentin surfaces with an etch-and-rise adhesive system (Optibond FL, Kerr Co) and light-cured.After storage for two weeks at 37°C and 100% humidity and then thermocycling, bond strength was measured with a Zwick Universal Testing Machine at a crosshead speed of 1 mm/min. Data was analyzed using parametric and non-parametric tests (P<0.05). Results. Mean shear bond strength for acid etching (20.1±1.8 MPa) and acid+laser (15.6±3.5 MPa) groups were significantly higher than those for laser+acid (15.6±3.5 MPa), laser etching (14.1±3.4 MPa) and control (8.1±2.1 MPa) groups. However, there were no significant differences between acid etching and acid+laser groups, and between laser+acid and laser groups. Conclusion. When the cavity is prepared by bur, it is not necessary to etch the dentin surface by Er:YAG laser following acid etching and acid etching after laser etching. PMID:23875083

  13. Shear Bond Strength of an Etch-and-rinse Adhesive to Er:YAG Laser- and/or Phosphoric Acid-treated Dentin.

    PubMed

    Davari, Abdolrahim; Sadeghi, Mostafa; Bakhshi, Hamid

    2013-01-01

    Background and aims. Er:YAG laser irradiation has been claimed to improve the adhesive properties of dentin; therefore, it has been proposed as an alternative to acid etching. The aim of this in vitro study was to investigate the shear bond strength of an etch-and-rinse adhesive system to dentin surfaces following Er:YAG laser and/or phosphoric acid etching. Materials and methods. The roots of 75 sound maxillary premolars were sectioned below the CEJ and the crowns were embedded in auto-polymerizing acrylic resin with the buccal surfaces facing up. The buccal surfaces were ground using a diamond bur and polished until the dentin was exposed; the samples were randomly divided into five groups (n=15) according to the surface treatment: (1) acid etching; (2) laser etching; (3) laser etching followed by acid etching; (4) acid etching followed by laser etching and (5) no acid etching and no laser etching (control group). Composite resin rods (Point 4, Kerr Co) were bonded to treated dentin surfaces with an etch-and-rise adhesive system (Optibond FL, Kerr Co) and light-cured.After storage for two weeks at 37°C and 100% humidity and then thermocycling, bond strength was measured with a Zwick Universal Testing Machine at a crosshead speed of 1 mm/min. Data was analyzed using parametric and non-parametric tests (P<0.05). Results. Mean shear bond strength for acid etching (20.1±1.8 MPa) and acid+laser (15.6±3.5 MPa) groups were significantly higher than those for laser+acid (15.6±3.5 MPa), laser etching (14.1±3.4 MPa) and control (8.1±2.1 MPa) groups. However, there were no significant differences between acid etching and acid+laser groups, and between laser+acid and laser groups. Conclusion. When the cavity is prepared by bur, it is not necessary to etch the dentin surface by Er:YAG laser following acid etching and acid etching after laser etching. PMID:23875083

  14. Effect of light activation mode on the incompatibility between one-bottle adhesives and light-cured composites: an in vitro shear bond strength study.

    PubMed

    Shafiei, Fereshteh; Saffarpour, Aida; Safarpoor, Ida; Moradmand, Masoud; Alavi, Ali Asghar

    2009-01-01

    This study examined the effect of different light activation modes for light-cured resin-based composites on the shear bond strength to dentin of two one-bottle adhesives with differing acidity. In this experimental study, a flat middle dentin surface was prepared on 110 extracted sound molars using a 600-grit polish paper. The teeth were then randomly divided into 10 equal groups (n = 11). One-Step Plus (OS) and Prime & Bond NT (P&B NT) were used according to the manufacturer's instruction with their respective composite (Aelite, Spectrum TPH) applied and cured using five different light-activation modes: 1. Conventional (CO): 600 mW/cm2 (40 seconds) 2. Soft-Start I (SSI): 100 mW/cm2 (10 seconds) 600 mW/cm2 (30 seconds) 3. Soft-Start II (SSII): 200 mW/cm2 (10 seconds), 600 mW/cm2 (30 seconds) 4. Pulse-Delay I (PDI): 100 mW/cm2 (3 seconds), 3-minute delay, 600 mW/cm2 (37 seconds) 5. Pulse-Delay II (PDII): 200 mW/cm2 (3 seconds), 3-minute delay, 600 mW/cm2 (37 seconds) After 24 hours storage in distilled water at room temperature, a shear bond strength (SBS) test was performed using an Instron machine at 1 mm/minute and the results were recorded in MPa. Statistical analysis included two-way ANOVA and Tukey HSD (p < 0.05). The highest SBS (MPa) was shown in the OS conventional group (19.62 +/- 2.21) and the lowest SBS was shown in P&B NT, PDII (5.93 +/- 1.79). In each group of five curing modes, the mean SBS for P&B NT was significantly lower than OS: conventional mode--P&B NT (17.27 +/- 1.98) vs OS (19.62 +/- 2.21); SSI-P&B NT (10.84 +/- 2.82) vs OS (13.09 +/- 1.24); SSII - P&B NT (14.78 +/- 1.63) vs OS (18.79 +/- 1.57); PDI-P&B NT (5.93 +/- 1.79) vs OS (11.97 +/- 2.59) and PDII-P&B NT (11.82 +/- 1.24) vs OS (16.00 +/- 1.62) (p < 0.001 for all comparisons). For each of the adhesives, the ranking of SBS was as follows: CO > SSII > PDII > SSI > PDI, with the two-paired comparisons of curing modes being significantly different (p < 0.05). The results of the current

  15. Comparison of the effect of shear bond strength with silane and other three chemical presurface treatments of a glass fiber-reinforced post on adhesion with a resin-based luting agent: An in vitro study

    PubMed Central

    Belwalkar, Vaibhavi Ramkrishna; Gade, Jaykumar; Mankar, Nikhil Purushottam

    2016-01-01

    Background: Loss of retention has been cited to be the most common cause of the failure of postretained restoration with irreversible consequences when materials with different compositions are in intimate contact at the post/adhesive interface. With this background, a study was conducted to improve the adhesion at the resin phase of fiber posts using silane and other chemical pretreatments. Materials and Methods: Hundred glass fiber-reinforced posts were tested with 4 different protocols (n = 25) using silane as a control (Group A) and other three experimental groups, namely, Group B-20% potassium permanganate, Group C-4% hydrofluoric acid, and Group D-10% hydrogen peroxide were pretreated on the postsurface followed by silanization. These specimens were bonded with dual-polymerizing resin-based luting agent, which were then loaded at the crosshead speed of 1 mm/min to record the shear bond strength at the post/adhesive interface. The data were analyzed using one-way ANOVA test for multiple group comparisons and the post hoc Bonferroni test for pairwise comparisons (P < 0.05). Results: Group B showed more influence on the shear bond strength when compared to other protocols, respectively (P < 0.001). Conclusion: Alone silanization as a surface treatment did not improve the bond strength. Combination of chemical presurface treatments followed by silanization significantly enhanced the bond strength at the post/adhesive interface. PMID:27307666

  16. Shear Strength of Aluminum Oxynitride

    NASA Astrophysics Data System (ADS)

    Dandekar, Dattatraya P.; Vaughan, Brian A. M.; Proud, William G.

    2007-06-01

    Aluminum oxynitride (AlON) is a transparent, polycrystalline cubic spinel. The results of investigations^1-4 on shock response of AlON permit determination of the equation of state, and shear strength retained under shock compression. Whereas the values of the HEL of AlON holds no surprises, the inelastic response of AlON reported in Ref. 1-4 differ significantly and is stress dependent. The results of Ref. 1-2 show that AlON retains a shear strength of 3 to 4 GPa when shocked up to around 20 GPa, but the results of Ref, 3-4 seem to suggest a possible loss of shear strength when shocked to 16 GPa and beyond. Our analysis examines the observed differences in the inelastic response of AlON reported in these four studies . 1. J. U. Cazamias, et. al., in Fundamental Issues and Applications of Shock-Wave and High Strain Rate Phenomena, Eds. Staudhammer, Murr, and Meyers, Elsevier, NY, 173 (2001). 2. B. A. M. Vaughn, et.al., Shock Physics, Cavendish Laboratory, Report SP/1092 (2001) 3. T. Sekine, et.al., J. Appl. Phys. 94, 4803 (2003). 4. T. F. Thornhill, et.al., Shock Compression of Matter-2005, Eds. Furnish, Elert, Russell, White, AIP, NY, 143 (2006).

  17. Lap Shear Testing of Candidate Radiator Panel Adhesives

    NASA Technical Reports Server (NTRS)

    Ellis, David; Briggs, Maxwell; McGowan, Randy

    2013-01-01

    During testing of a subscale radiator section used to develop manufacturing techniques for a full-scale radiator panel, the adhesive bonds between the titanium heat pipes and the aluminum face sheets failed during installation and operation. Analysis revealed that the thermal expansion mismatch between the two metals resulted in relatively large shear stresses being developed even when operating the radiator at moderate temperatures. Lap shear testing of the adhesive used in the original joints demonstrated that the two-part epoxy adhesive fell far short of the strength required. A literature review resulted in several candidate adhesives being selected for lap shear joint testing at room temperature and 398 K, the nominal radiator operating temperature. The results showed that two-part epoxies cured at room and elevated temperatures generally did not perform well. Epoxy film adhesives cured at elevated temperatures, on the other hand, did very well with most being sufficiently strong to cause yielding in the titanium sheet used for the joints. The use of an epoxy primer generally improved the strength of the joint. Based upon these results, a new adhesive was selected for the second subscale radiator section.

  18. Shear-enhanced adhesion of Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Lecuyer, Sigolene; Rusconi, Roberto; Shen, Yi; Forsyth, Alison; Stone, Howard

    2010-03-01

    Bacterial adhesion is the first step in the development of surface-associated communities known as biofilms, which are the cause of many problems in medical devices and industrial water systems. However the underlying mechanisms of initial bacterial attachment are not fully understood. We have investigated the effects of hydrodynamics on the probability of adsorption and detachment of Pseudomonas aeruginosa strain PA14 on model surfaces under flow, in straight microfluidic channels, and measured the distribution of bacteria residence time as a function of the shear rate. Our main discovery is a counter-intuitive enhanced adhesion as the shear stress is increased over a wide range of shear rates. In order to identify the origin of this phenomenon, we have performed experiments with several mutant strains. Our results show that shear-enhanced adhesion is not regulated by primary surface organelles, and that this process is not specific to a certain type of surface, but rather appears a general feature of the adhesive behavior of P. aeruginosa. These results suggest that shear-induced adhesion could be a very widespread strategy in nature.

  19. SHEAR BOND STRENGTH OF METALLIC BRACKETS: INFLUENCE OF SALIVA CONTAMINATION

    PubMed Central

    Retamoso, Luciana Borges; Collares, Fabrício Mezzomo; Ferreira, Eduardo Silveira; Samuel, Susana Maria Werner

    2009-01-01

    Objective: To evaluate the influence of saliva contamination on shear bond strength and the bond failure pattern of 3 adhesive systems (Transbond XT, AdheSE and Xeno III) on orthodontic metallic brackets bonded to human enamel. Material and Methods: Seventy-two permanent human molars were cut longitudinally in a mesiodistal direction, producing seventy-two specimens randomly divided into six groups. Each system was tested under 2 different enamel conditions: no contamination and contaminated with saliva. In T, A and X groups, the adhesive systems were applied to the enamel surface in accordance with manufacturer's instructions. In TS, AS and XS groups, saliva was applied to enamel surface followed by adhesive system application. The samples were stored in distilled water at 37°C for 24 h, and then tested for shear bond strength in a universal testing machine (Emic, DL 2000) running at a crosshead speed of 1 mm/min. After bond failure, the enamel surfaces were observed under an optical microscope at 40x magnification. Results: The control and contaminated groups showed no significant difference in shear bond strength for the same adhesive system. However, shear bond strength of T group (17.03±4.91) was significantly higher than that of AS (8.58±1.73) and XS (10.39±4.06) groups (p<0.05). Regarding the bond failure pattern, TS group had significantly higher scores of no adhesive remaining on the tooth in the bonding area than other groups considering the adhesive remnant index (ARI) used to evaluate the amount of adhesive left on the enamel. Conclusion: Saliva contamination showed little influence on the 24-h shear bond strength of orthodontic brackets. PMID:19466249

  20. Shear bond strength evaluation of resin composite bonded to three different liners: TheraCal LC, Biodentine, and resin-modified glass ionomer cement using universal adhesive: An in vitro study

    PubMed Central

    Deepa, Velagala L; Dhamaraju, Bhargavi; Bollu, Indira Priyadharsini; Balaji, Tandri S

    2016-01-01

    Aims: To compare and evaluate the bonding ability of resin composite (RC) to three different liners: TheraCal LC™ (TLC), a novel resin-modified (RM) calcium silicate cement, Biodentine™ (BD), and resin-modified glass ionomer cement (RMGIC) using an universal silane-containing adhesive and characterizing their failure modes. Materials and Methods: Thirty extracted intact human molars with occlusal cavity (6-mm diameter and 2-mm height) were mounted in acrylic blocks and divided into three groups of 10 samples each based on the liner used as Group A (TLC), Group B (BD), and Group C (RMGIC). Composite post of 3 mm diameter and 3 mm height was then bonded to each sample using universal adhesive. Shear bond strength (SBS) analysis was performed at a cross-head speed of 1 mm/min. Statistical Analysis Used: Statistical analysis was performed with one-way analysis of variance (ANOVA) and post hoc test using Statistical Package for the Social Sciences (SPSS) version 20. Results: No significant difference was observed between group A and group C (P = 0.573) while group B showed the least bond strength values with a highly significant difference (P = 0.000). The modes of failure were predominantly cohesive in Groups A and B (TLC and BD) while RMGIC showed mixed and adhesive failures. Conclusions: Hence, this present study concludes that the bond strength of composite resin to TLC and RMGIC was similar and significantly higher than that of BD following application of universal adhesive. PMID:27099425

  1. Adhesive strength of autologous fibrin glue.

    PubMed

    Yoshida, H; Hirozane, K; Kamiya, A

    2000-03-01

    To establish an easy and rapid method for measuring the adhesive strength of fibrin glue and to clarify the factor(s) most affecting the strength, a study was made on the effect of the concentration of plasma components on the strength of cryoprecipitate (Cryo) prepared from a subject's own autologous plasma to be used as fibrin glue. The adhesive strength of the Cryo was measured with various supporting materials instead of animal skin using a tester of tension and compression. The results were as follows: (1) the strength of Cryo applied to ground flat glass (4 cm2) was significantly greater than that applied to clear glass, clear plastic, or smooth and flat wood chips; (2) the adhesive strength of Cryo depended on the concentration of thrombin with the optimal concentration being 50 units/ml; (3) the concentration of CaCl2 did not affect the adhesive strength of Cryo; (4) the adhesive reaction was dependent on the temperature and the adhesive strength more quickly reached a steady state at 37 degrees C than at lower temperature; (5) the adhesive strength was correlated well with the total concentration of fibrinogen and fibronectin. These results indicate that the adhesive strength of Cryo can be easily and quickly evaluated using a tester and ground glass with thrombin at 50 units/ml, and that the adhesive strength of Cryo can be predicted from the total concentration of fibrinogen and fibronectin. PMID:10726885

  2. Shear bond strength of partial coverage restorations to dentin

    PubMed Central

    Agustín-Panadero, Rubén; Alonso-Pérez-Barquero, Jorge; Fons-Font, Antonio; Solá-Ruíz, María-Fernanda

    2015-01-01

    Background When partial coverage restorations (veneers, inlays, onlays…) must be cemented to dentin, bond strength may not reach the same predictable values as to enamel. The purpose of this study was: 1. To compare, with a shear bond test, the bond strength to dentin of a total-etch and a self-etching bonding agent. 2. To determine whether creating microretention improves the bond strength to dentin. Material and Methods Two bonding agents were assayed, Optibond FL® (Kerr), two-bottle adhesive requiring acid etching, and Clearfil SE Bond® (Kuraray), two-bottle self-etching adhesive. The vestibular, lingual, distal and mesial surfaces of ten molars (n=10) were ground to remove all enamel and 40 ceramic samples were cemented with Variolink II® (Ivoclar Vivadent). Half the molar surfaces were treated to create round microretention (pits) to determine whether these could influence bond strength to dentin. The 40 molar surfaces were divided into four groups (n=10): Optibond FL (O); Clearfil SE (C); Optibond FL + microretention (OM); Clearfil SE + micro retention (CM). A shear bond test was performed and the bond failures provoked examined under an optical microscope. Results O=35.27±8.02 MPa; C=36.23±11.23 MPa; OM=28.61±6.27 MPa; CM=27.01±7.57 MPa. No statistically significant differences were found between the adhesives. Optibond FL showed less statistical dispersion than Clearfil SE. The presence of microretentions reduced bond strength values regardless of the adhesive used. Conclusions 1. Clearfil SE self-etching adhesive and Optibond FL acid-etch showed adequate bond strengths and can be recommended for bonding ceramic restorations to dentin. 2. The creation of round microretention pits compromises these adhesives’ bond strength to dentin. Key words:Adhesion to dentin, bonding agent, Optibond FL, Clearfil SE, microretention, shear bond test. PMID:26330937

  3. Bistability of Cell Adhesion in Shear Flow

    PubMed Central

    Efremov, Artem; Cao, Jianshu

    2011-01-01

    Cell adhesion plays a central role in multicellular organisms helping to maintain their integrity and homeostasis. This complex process involves many different types of adhesion proteins, and synergetic behavior of these proteins during cell adhesion is frequently observed in experiments. A well-known example is the cooperation of rolling and stationary adhesion proteins during the leukocytes extravasation. Despite the fact that such cooperation is vital for proper functioning of the immune system, its origin is not fully understood. In this study we constructed a simple analytic model of the interaction between a leukocyte and the blood vessel wall in shear flow. The model predicts existence of cell adhesion bistability, which results from a tug-of-war between two kinetic processes taking place in the cell-wall contact area—bond formation and rupture. Based on the model results, we suggest an interpretation of several cytoadhesion experiments and propose a simple explanation of the existing synergy between rolling and stationary adhesion proteins, which is vital for effective cell adherence to the blood vessel walls in living organisms. PMID:21889439

  4. Fatigue strength of adhesive bonded section beams under torsion

    SciTech Connect

    Tomioka, Noboru; Kakiage, Masashi; Niisawa, Junetsu; Kitagawa, Hideo

    1995-11-01

    Fatigue strength of adhesive bonded box beams was investigated. From results of the fatigue tests, it was seen that the fatigue strength of bonded beams was higher than that of spot welded beams. Fatigue strength of bonded beams was independent of plate thickness and partition. The flexural rigidity of the box beams in the plane of partition can increase without decrease of torsional rigidity and torsional fatigue strength, if the partition is jointed by adhesive bonding instead of spot welding. Since the fatigue strength and rigidity of adhesive bonded joints can be higher than the spot welded joints in the weight saving structures, it is expected that the structural adhesive joints will be employed more in the automobile body structure. For assuring the introduction of this joint more into the automobile body structures, it is necessary that the fatigue tests on the model members of the actual members used in the automobile body structure are conducted, in addition to those of the simple joints such as tension shear and T-type tension, and the property of the fatigue strength on the adhesive bonded members is known. But, the authors now have little data on fatigue tests of the adhesive bonded members. In the present research to be reported, the fatigue tests on adhesive bonded box beams under torsion, which are typical members in automobile body structure, were carried out and the effects of the presence of longitudinal partition and plate thickness on fatigue strength were investigated. Comparing the results of fatigue tests on adhesive bonded box beams with those on spot welded box beams, the property of fatigue strength on these adhesive bonded box beams was cleared.

  5. Microfluidic shear devices for quantitative analysis of cell adhesion.

    PubMed

    Lu, Hang; Koo, Lily Y; Wang, Wechung M; Lauffenburger, Douglas A; Griffith, Linda G; Jensen, Klavs F

    2004-09-15

    We describe the design, construction, and characterization of microfluidic devices for studying cell adhesion and cell mechanics. The method offers multiple advantages over previous approaches, including a wide range of distractive forces, high-throughput performance, simplicity in experimental setup and control, and potential for integration with other microanalytic modules. By manipulating the geometry and surface chemistry of the microdevices, we are able to vary the shear force and the biochemistry during an experiment. The dynamics of cell detachment under different conditions can be captured simultaneously using time-lapse videomicroscopy. We demonstrate assessment of cell adhesion to fibronectin-coated substrates as a function of the shear stress or fibronectin concentration in microchannels. Furthermore, a combined perfusion-shear device is designed to maintain cell viability for long-term culture as well as to introduce exogenous reagents for biochemical studies of cell adhesion regulation. In agreement with established literature, we show that fibroblasts cultured in the combined device reduced their adhesion strength to the substrate in response to epidermal growth factor stimulation. PMID:15362881

  6. Rectangle-capped and tilted micropillar array for enhanced anisotropic anti-shearing in biomimetic adhesion

    PubMed Central

    Wang, Yue; Li, Xiangming; Tian, Hongmiao; Hu, Hong; Tian, Yu; Shao, Jinyou; Ding, Yucheng

    2015-01-01

    Dry adhesion observed in the feet of various small creatures has attracted considerable attention owing to the unique advantages such as self-cleaning, adaptability to rough surfaces along with repeatable and reversible adhesiveness. Among these advantages, for practical applications, proper detachability is critical for dry adhesives with artificial microstructures. In this study, we present a microstructured array consisting of both asymmetric rectangle-capped tip and tilted shafts, which produce an orthogonal anisotropy of the shearing strength along the long and short dimensions of the tip, with a maximum anti-shearing in the two directions along the longer dimension. Meanwhile, the tilt feature can enhance anisotropic shearing adhesion by increasing shearing strength in the forward shearing direction and decreasing strength in the reverse shearing direction along the short dimension of the tip, leading to a minimum anti-shearing in only one of the two directions along the shorter dimension of the rectangular tip. Such a microstructured adhesive with only one weak shearing direction, leading to well-controlled attachment and detachment of the adhesive, is created in our experiment by conventional double-sided exposure of a photoresist followed by a moulding process. PMID:25808338

  7. Rectangle-capped and tilted micropillar array for enhanced anisotropic anti-shearing in biomimetic adhesion.

    PubMed

    Wang, Yue; Li, Xiangming; Tian, Hongmiao; Hu, Hong; Tian, Yu; Shao, Jinyou; Ding, Yucheng

    2015-05-01

    Dry adhesion observed in the feet of various small creatures has attracted considerable attention owing to the unique advantages such as self-cleaning, adaptability to rough surfaces along with repeatable and reversible adhesiveness. Among these advantages, for practical applications, proper detachability is critical for dry adhesives with artificial microstructures. In this study, we present a microstructured array consisting of both asymmetric rectangle-capped tip and tilted shafts, which produce an orthogonal anisotropy of the shearing strength along the long and short dimensions of the tip, with a maximum anti-shearing in the two directions along the longer dimension. Meanwhile, the tilt feature can enhance anisotropic shearing adhesion by increasing shearing strength in the forward shearing direction and decreasing strength in the reverse shearing direction along the short dimension of the tip, leading to a minimum anti-shearing in only one of the two directions along the shorter dimension of the rectangular tip. Such a microstructured adhesive with only one weak shearing direction, leading to well-controlled attachment and detachment of the adhesive, is created in our experiment by conventional double-sided exposure of a photoresist followed by a moulding process. PMID:25808338

  8. Passively stuck: death does not affect gecko adhesion strength.

    PubMed

    Stewart, William J; Higham, Timothy E

    2014-12-01

    Many geckos use adhesive toe pads on the bottom of their digits to attach to surfaces with remarkable strength. Although gecko adhesion has been studied for hundreds of years, gaps exist in our understanding at the whole-animal level. It remains unclear whether the strength and maintenance of adhesion are determined by the animal or are passively intrinsic to the system. Here we show, for the first time, that strong adhesion is produced passively at the whole-animal level. Experiments on both live and recently euthanized tokay geckos (Gekko gecko) revealed that death does not affect the dynamic adhesive force or motion of a gecko foot when pulled along a vertical surface. Using a novel device that applied repeatable and steady-increasing pulling forces to the foot in shear, we found that the adhesive force was similarly high and variable when the animal was alive (mean ± s.d. = 5.4 ± 1.7 N) and within 30 min after death (5.4 ± 2.1 N). However, kinematic analyses showed that live geckos are able to control the degree of toe pad engagement and can rapidly stop strong adhesion by hyperextending the toes. This study offers the first assessment of whole-animal adhesive force under extremely controlled conditions. Our findings reveal that dead geckos maintain the ability to adhere with the same force as living animals, disproving that strong adhesion requires active control. PMID:25472940

  9. Antibacterial capacity of cavity disinfectants against Streptococcus mutans and their effects on shear bond strength of a self-etch adhesive.

    PubMed

    Cha, Han-Sol; Shin, Dong-Hoon

    2016-01-01

    We evaluated the antibacterial properties of three disinfectants [2% chlorhexidine (CHX), 6% sodium hypochlorite (NaOCl), and 0.01% urushiol)] against Streptococcus mutans and their effects on bond strength of Scotchbond(TM) Universal. The reduction in bacterial growth was evaluated by the colony counting method. Total 105 specimens were assigned to seven groups, according to surface pretreatment: control group (C) without pretreatment; chlorhexidine gluconate with rinse (CR) or without rinse (CD); NaOCl with rinse (NR) or without rinse (ND); and urushiol with rinse (UR) or without rinse (UD). The shear bond test was performed at a cross-head speed of 0.5 mm/min. None of the disinfected specimens had viable microbes after a 30 min incubation. The control group exhibited the strongest bond; however, no significant difference was detected with the disinfectant-treated groups, except weak bonding with ND group. These findings suggest that all disinfectants tested had strong antibacterial capacity and may better be rinsed away. PMID:26830836

  10. Temperature Effects on Adhesive Bond Strengths and Modulus for Commonly Used Spacecraft Structural Adhesives

    NASA Technical Reports Server (NTRS)

    Ojeda, Cassandra E.; Oakes, Eric J.; Hill, Jennifer R.; Aldi, Dominic; Forsberg, Gustaf A.

    2011-01-01

    A study was performed to observe how changes in temperature and substrate material affected the strength and modulus of an adhesive bondline. Seven different adhesives commonly used in aerospace bonded structures were tested. Aluminum, titanium and Invar adherends were cleaned and primed, then bonded using the manufacturer's recommendations. Following surface preparation, the coupons were bonded with the adhesives. The single lap shear coupons were then pull tested per ASTM D 1002 Standard Test Method for Apparent Shear Strength of Single- Lap-Joint over a temperature range from -150 deg C up to +150 deg C. The ultimate strength was calculated and the resulting data were converted into B-basis design allowables. Average and Bbasis results were compared. Results obtained using aluminum adherends are reported. The effects of using different adherend materials and temperature were also studied and will be reported in a subsequent paper. Dynamic Mechanical Analysis (DMA) was used to study variations in adhesive modulus with temperature. This work resulted in a highly useful database for comparing adhesive performance over a wide range of temperatures, and has facilitated selection of the appropriate adhesive for spacecraft structure applications.

  11. 49 CFR 230.28 - Higher shearing strength of rivets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Higher shearing strength of rivets. 230.28 Section... Appurtenances Strength of Materials § 230.28 Higher shearing strength of rivets. A higher shearing strength may... quality as to justify a higher allowable shearing strength. Inspection and Repair...

  12. Shear Adhesive Connections for Glass Structures

    NASA Astrophysics Data System (ADS)

    Machalická, K.; Horčičková, I.; Eliášová, M.

    2015-11-01

    Unique aesthetical properties of glass - not only transparency but also smooth, glossy and primarily reflective surface - give this material special importance in the contemporary architecture. In every structural application of glass it is necessary to solve the problem associated with connections between glass pane and other part from a different material or between two glass elements. Moreover, there are many types of hybrid structures that combine glass and different materials to achieve safe failure behaviour and high degree of transparency at the same time. Connection of brittle glass and reinforcing material is an essential part of these structures, where composite action between two parts is beneficially ensured by a glued joint. The current paper deals with the experimental analysis focused on the determination of mechanical characteristics of adhesives applied in planar connections under shear loading.

  13. Shear strength of metal-sapphire contacts

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1976-01-01

    The shear strength of polycrystalline Ag, Cu, Ni, and Fe contacts on clean (0001) sapphire has been studied in ultrahigh vacuum. Both clean metal surfaces and surfaces exposed to O2, Cl2, and C2H4 were used. The results indicate that there are two sources of strength of Al2O3-metal contacts: an intrinsic one that depends on the particular clean metal in contact with Al2O3 and an additional one due to intermediate films. The shear strength of the clean metal contacts correlated directly with the free energy of oxide formation for the lowest metal oxide, in accord with the hypothesis that a chemical bond is formed between metal cations and oxygen anions in the sapphire surface. Contacts formed by metals exposed to chlorine exhibited uniformly low shear strength indicative of van der Waals bonding between chlorinated metal surfaces and sapphire. Contacts formed by metals exposed to oxygen exhibited enhanced shear strength, in accord with the hypothesis that an intermediate oxide layer increases interfacial strength.

  14. Strength of Footing with Punching Shear Preventers

    PubMed Central

    Lee, Sang-Sup; Moon, Jiho; Park, Keum-Sung; Bae, Kyu-Woong

    2014-01-01

    The punching shear failure often governs the strength of the footing-to-column connection. The punching shear failure is an undesirable failure mode, since it results in a brittle failure of the footing. In this study, a new method to increase the strength and ductility of the footing was proposed by inserting the punching shear preventers (PSPs) into the footing. The validation and effectiveness of PSP were verified through a series of experimental studies. The nonlinear finite element analysis was then performed to demonstrate the failure mechanism of the footing with PSPs in depth and to investigate the key parameters that affect the behavior of the footing with PSPs. Finally, the design recommendations for the footing with PSPs were suggested. PMID:25401141

  15. Peeling off an adhesive layer with spatially varying topography and shear modulus.

    PubMed

    Ghatak, Animangsu

    2014-03-01

    Inspired by recent experiments on hierarchically structured adhesives, we analyze here the effect of spatial variation in surface topography and shear modulus of an elastomeric adhesive on its ability to adhere strongly to a flexible contactor. The undulation of surface and modulus both were assumed to be periodic with periodicity, which is either identical or different for the two parameters; for identical periodicity, the phase lag between the respective undulations is also systematically varied. Calculations show that during continuous lifting of the flexible contactor from complete initial contact, the interfacial crack between the two adherents does not propagate continuously but intermittently, with crack arrest and initiation at the vicinity of minimum thickness and modulus of the layer; the torque required to initiate an arrested crack increases significantly over that required to propagate it on a smooth adhesive surface. The adhesion strength estimated from the corresponding force vs displacement plot is calculated to be higher than that achieved on a smooth and featureless adhesive surface. For in-phase variation in topography and shear modulus of the layer, the adhesive strength is found to be higher than for nonzero phase lag between the two parameters. The adhesion strength is found to diminish also for nonidentical periodicity between modulus and surface undulation. We have derived a scaling law for relating adhesion strength to several of these parameters. PMID:24730852

  16. Shear bond strength of composite resin to amalgam: an experiment in vitro using different bonding systems.

    PubMed

    Hadavi, F; Hey, J H; Ambrose, E R

    1991-01-01

    The shear bond strength between amalgam and composite resin with and without the use of adhesive systems was evaluated. It was found that the application of Cover-Up II or Prisma Universal Bond prior to placement of composite resin enhanced the shear bond strength between amalgam and composite resin more than five times; and a shear strength of 4.34 and 4.30 MPa was measured respectively. Acid-etching of the roughened amalgam surface prior to application of Prisma Universal Bond decreased the bond strength by nearly 45%. PMID:1784535

  17. Effects of environmental exposure on fiber/epoxy interfacial shear strength

    SciTech Connect

    Gaur, U.; Miller, B. )

    1990-08-01

    A microbond technique for direct determination of fiber/resin interfacial shear strength in composites (Miller et al., 1987) has been used to investigate the influence of environmental conditions on adhesive bonding in certain systems. The small dimensions involved in the method facilitate uniform exposure and short exposure times. Significant changes in both average shear strength and in shear strength distributions are observed on exposing aramid/epoxy and glass/epoxy microbond assemblies to steam or hot water. Shear strength drops to a plateau value in both cases, the reduction being more drastic with the glass fiber. Vacuum drying restores shear strength completely in aramid/epoxy microassemblies, even when the surface of the aramid fiber has been chemically modified, but there is only partial regeneration of bond strength with the glass/epoxy system. 15 refs.

  18. 49 CFR 230.28 - Higher shearing strength of rivets.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Appurtenances Strength of Materials § 230.28 Higher shearing strength of rivets. A higher shearing strength may be used for rivets when it can be shown through testing that the rivet material used is of such... 49 Transportation 4 2012-10-01 2012-10-01 false Higher shearing strength of rivets. 230.28...

  19. 49 CFR 230.28 - Higher shearing strength of rivets.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Appurtenances Strength of Materials § 230.28 Higher shearing strength of rivets. A higher shearing strength may be used for rivets when it can be shown through testing that the rivet material used is of such... 49 Transportation 4 2010-10-01 2010-10-01 false Higher shearing strength of rivets. 230.28...

  20. 49 CFR 230.27 - Maximum shearing strength of rivets.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Strength of Materials § 230.27 Maximum shearing strength of rivets. The maximum shearing strength... 49 Transportation 4 2012-10-01 2012-10-01 false Maximum shearing strength of rivets....

  1. 49 CFR 230.28 - Higher shearing strength of rivets.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Appurtenances Strength of Materials § 230.28 Higher shearing strength of rivets. A higher shearing strength may be used for rivets when it can be shown through testing that the rivet material used is of such... 49 Transportation 4 2013-10-01 2013-10-01 false Higher shearing strength of rivets. 230.28...

  2. 49 CFR 230.27 - Maximum shearing strength of rivets.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Strength of Materials § 230.27 Maximum shearing strength of rivets. The maximum shearing strength... 49 Transportation 4 2013-10-01 2013-10-01 false Maximum shearing strength of rivets....

  3. 49 CFR 230.28 - Higher shearing strength of rivets.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Appurtenances Strength of Materials § 230.28 Higher shearing strength of rivets. A higher shearing strength may be used for rivets when it can be shown through testing that the rivet material used is of such... 49 Transportation 4 2014-10-01 2014-10-01 false Higher shearing strength of rivets. 230.28...

  4. 49 CFR 230.27 - Maximum shearing strength of rivets.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Strength of Materials § 230.27 Maximum shearing strength of rivets. The maximum shearing strength... 49 Transportation 4 2014-10-01 2014-10-01 false Maximum shearing strength of rivets....

  5. 49 CFR 230.27 - Maximum shearing strength of rivets.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Strength of Materials § 230.27 Maximum shearing strength of rivets. The maximum shearing strength... 49 Transportation 4 2010-10-01 2010-10-01 false Maximum shearing strength of rivets....

  6. Evaluation of shear strength of oil treated laminated bamboo.

    PubMed

    Sulaiman, O; Hashim, R; Wahab, R; Ismail, Z A; Samsi, H W; Mohamed, A

    2006-12-01

    Studies were carried out on heat treatment of bamboo species Gigantochloa scortechinii Gamble using palm oil. The samples were laminated and glued. The adhesion results showed that the delamination of glue line increased as the temperature and duration of oil heat treatment increased. Maximum load and shear strength of the glue line reduced as the heat treatment become more severe. It was found that the palm oil used as the heating medium penetrated in some parts of the cell wall as well as in the cell lumen of the bamboo. PMID:16524726

  7. Material characterization of structural adhesives in the lap shear mode

    NASA Technical Reports Server (NTRS)

    Sancaktar, E.; Schenck, S. C.

    1983-01-01

    A general method for characterizing structual adhesives in the bonded lap shear mode is proposed. Two approaches in the form of semiempirical and theoretical approaches are used. The semiempirical approach includes Ludwik's and Zhurkov's equations to describe respectively, the failure stresses in the constant strain rate and constant stress loading modes with the inclusion of the temperature effects. The theoretical approach is used to describe adhesive shear stress-strain behavior with the use of viscoelastic or nonlinear elastic constitutive equations. Two different model adhesives are used in the single lap shear mode with titanium adherends. These adhesives (one of which was developed at NASA Langley Research Center) are currently considered by NASA for possible aerospace applications. Use of different model adhesives helps in assessment of the generality of the method.

  8. 49 CFR 230.27 - Maximum shearing strength of rivets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Maximum shearing strength of rivets. 230.27 Section 230.27 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Appurtenances Strength of Materials § 230.27 Maximum shearing strength of rivets. The maximum shearing...

  9. Interfacial Shear Strength Evaluation of Jute/Poly(Lactic Acid)

    NASA Astrophysics Data System (ADS)

    Kobayashi, Satoshi; Yamamoto, Tatsuro; Nakai, Asami

    In order to evaluate the interfacial shear strength between fiber bundle and matrix of jute/poly(lactic acid) (PLA), a fiber bundle pull-out test method is proposed. Shear stress distribution was calculated based on the parabolic shear-lag analysis. Fiber bundle pull-out tests were conducted to evaluate the effects of molding condition on the interfacial shear strength. The interfacial shear strength increased with increasing molding temperature up to 185°C. Then gradual decrease in the interfacial shear strength with molding temperature was observed. Similar tendency was also observed in the effect of molding time, whereas the interfacial shear strength decreased with increasing molding pressure. Comparing the result of the tensile tests in the previous study, interfacial shear strength has corelations with tensile strength.

  10. Shear lag sutures: Improved suture repair through the use of adhesives.

    PubMed

    Linderman, Stephen W; Kormpakis, Ioannis; Gelberman, Richard H; Birman, Victor; Wegst, Ulrike G K; Genin, Guy M; Thomopoulos, Stavros

    2015-09-01

    Suture materials and surgical knot tying techniques have improved dramatically since their first use over five millennia ago. However, the approach remains limited by the ability of the suture to transfer load to tissue at suture anchor points. Here, we predict that adhesive-coated sutures can improve mechanical load transfer beyond the range of performance of existing suture methods, thereby strengthening repairs and decreasing the risk of failure. The mechanical properties of suitable adhesives were identified using a shear lag model. Examination of the design space for an optimal adhesive demonstrated requirements for strong adhesion and low stiffness to maximize the strength of the adhesive-coated suture repair construct. To experimentally assess the model, we evaluated single strands of sutures coated with highly flexible cyanoacrylates (Loctite 4903 and 4902), cyanoacrylate (Loctite QuickTite Instant Adhesive Gel), rubber cement, rubber/gasket adhesive (1300 Scotch-Weld Neoprene High Performance Rubber & Gasket Adhesive), an albumin-glutaraldehyde adhesive (BioGlue), or poly(dopamine). As a clinically relevant proof-of-concept, cyanoacrylate-coated sutures were then used to perform a clinically relevant flexor digitorum tendon repair in cadaver tissue. The repair performed with adhesive-coated suture had significantly higher strength compared to the standard repair without adhesive. Notably, cyanoacrylate provides strong adhesion with high stiffness and brittle behavior, and is therefore not an ideal adhesive for enhancing suture repair. Nevertheless, the improvement in repair properties in a clinically relevant setting, even using a non-ideal adhesive, demonstrates the potential for the proposed approach to improve outcomes for treatments requiring suture fixation. Further study is necessary to develop a strongly adherent, compliant adhesive within the optimal design space described by the model. PMID:26022966

  11. 24% Indigenously Prepared Ethylene Diamine Tetra Acetic Acid Compared to Self-Etching Adhesives and their Effect on Shear Bond Strength of Composites in Primary Teeth: An In-vitro Study

    PubMed Central

    Nagar, Priya; Tandil, Yogesh L.; T.P., Chandru; Gupta, Anamika; Kalaria, Devendra; Kumar, Prafful

    2015-01-01

    Background: Over the years, it has been known that 34% phosphoric acid is the benchmark in etchants with the best shear bond strength shown with composites in primary teeth. However, with latest technological advancements and innovations, in order to reduce the number of steps and less damage to the tooth structure, non-rinse conditioner (NRC) & Single-Etch and various other etchants have been tried and tested. These etchants have been found to have shear bond strength comparable to phosphoric acid. In this study, indigenously prepared 24% ethylenediaminetetraacetic acid (EDTA) has been compared with established etchants, as to prove if their shear bond strength was closely related. As it is a well-known fact that EDTA could be less damaging to the enamel during etching and hence can be an alternative for etching of primary teeth. Materials and Methods: For the study 60 caries-free primary molars were used, they were sectioned in the middle, after making area for bonding; the marked area was then etched using different etchants for 30 s. Each of the teeth was then rinsed and bonded with composite resin and thermocycling was done. Shear bond strength testing was done on the composite using Universal Testing Machine. Results: Results of the study showed that phosphoric acid showed the highest bond strength, closely followed by Single Etch (Adper Prompt) and NRC, then by EDTA. Conclusions: About 24% EDTA can be another comparable replacement for phosphoric acid if used with a Single Etch Primer, like Prime and Bond NT on primary teeth. 34% phosphoric acid has the highest bond strength values with composite resin. Single etch followed by NRC has the second and third highest bond strength values, which are comparable to phosphoric acid. PMID:26464540

  12. Shear Strengths of Copper/Insulation Interfaces for Fusion Magnet Applications

    NASA Astrophysics Data System (ADS)

    Hooker, M. W.; Fabian, P. E.; Grandlienard, S. D.; Codell, D. E.; Lizotte, M. J.

    2006-03-01

    Magnet insulation materials in many Next-Step Option fusion research devices will be subjected to high shear stresses at both cryogenic and elevated temperatures. The low shear strength and poor adhesion of the insulation to copper conductors can be limiting design factors in these systems. While cyanate ester resins have been shown to provide the necessary electrical and mechanical properties for fusion magnet insulation applications, the adhesion of the resin to copper at temperatures ranging from 77 to 373 K is a critical aspect of long-term operational performance. This work compares the shear strengths of copper/cyanate-ester-insulation interfaces prepared using various copper surface treatments, including grit blasting, alkaline cleaners, oxidizers, and primers. The shear strengths of the copper/cyanate-ester-insulation interface were measured using a novel specimen design in which thin copper foils were treated and embedded in laminate structures. Short-beam-shear tests were conducted at 76, 293, and 373 K to assess the performance of the various surface treatments. The results of this investigation indicate that the adhesive shear strengths of copper/cyanate-ester-insulation interfaces can be improved by as much as 50% by treating the copper surfaces prior to impregnation with the cyanate ester resin.

  13. Shear Strengths of Copper/Insulation Interfaces for Fusion Magnet Applications

    SciTech Connect

    Hooker, M. W.; Fabian, P. E.; Grandlienard, S. D.; Codell, D. E.; Lizotte, M. J.

    2006-03-31

    Magnet insulation materials in many Next-Step Option fusion research devices will be subjected to high shear stresses at both cryogenic and elevated temperatures. The low shear strength and poor adhesion of the insulation to copper conductors can be limiting design factors in these systems. While cyanate ester resins have been shown to provide the necessary electrical and mechanical properties for fusion magnet insulation applications, the adhesion of the resin to copper at temperatures ranging from 77 to 373 K is a critical aspect of long-term operational performance. This work compares the shear strengths of copper/cyanate-ester-insulation interfaces prepared using various copper surface treatments, including grit blasting, alkaline cleaners, oxidizers, and primers. The shear strengths of the copper/cyanate-ester-insulation interface were measured using a novel specimen design in which thin copper foils were treated and embedded in laminate structures. Short-beam-shear tests were conducted at 76, 293, and 373 K to assess the performance of the various surface treatments. The results of this investigation indicate that the adhesive shear strengths of copper/cyanate-ester-insulation interfaces can be improved by as much as 50% by treating the copper surfaces prior to impregnation with the cyanate ester resin.

  14. New Experimental Sample for Shear Testing of Adhesively Bonded Assemblies

    NASA Astrophysics Data System (ADS)

    Challita, Georges; Othman, Ramzi; Guegan, Pierrick; Khalil, Khalid; Poitou, Arnaud

    In this paper, Split Hopkinson Bar technique was used to investigate the shear behaviour of adhesively bonded assemblies at high rates of loading. New sample geometry was adopted so that the compressive wave is transformed in a shear loading in the sample. Samples are conditioned at 20°C and 50% of hygrometry to eliminate any interference with temperature and humidity effects. The new technique is applied to an assembly built with a cyanoacrylate based adhesive and a metallic (Steel) adherent. They are found to be highly rate sensitive.

  15. Friction and shear fracture of an adhesive contact under torsion

    NASA Astrophysics Data System (ADS)

    Chateauminois, Antoine; Fretigny, Christian; Olanier, Ludovic

    2010-02-01

    The shear failure or stiction of an adhesive contact between a poly(dimethylsiloxane) (PDMS) rubber and a glass lens has been investigated using a torsional contact configuration. As compared to linear sliding, torsion presents the advantage of inducing a shear failure under a pure mode III condition, while preserving the cylindrical symmetry of the contact. The surface of the transparent PDMS substrate was marked using a network of dots in order to monitor continuously the in-plane surface displacements during the stiction process. Using a previously developed inversion procedure (A. Chateauminois and C. Fretigny, Eur. Phys. J. E 27, 221 (2008)), the corresponding surface shear stress distributions were obtained from the displacement fields. Stiction was found to involve the progressive shrinkage of a central adhesive zone surrounded by an annular microslip region. Adhesion effects were especially evidenced from a stress overshoot at the boundary of the adhesive zone. The experimental data were analysis using an extension to torsional contact of the Maugis-Dugdale approach’s to adhesive contacts which takes into account frictional effects. This model allowed to extract an effective adhesion energy in the presence of friction, which dependence on kinetics effect is briefly discussed.

  16. Preliminary evaluation of adhesion strength measurement devices for ceramic/titanium matrix composite bonds

    NASA Technical Reports Server (NTRS)

    Pohlchuck, Bobby; Zeller, Mary V.

    1992-01-01

    The adhesive bond between ceramic cement and a titanium matrix composite substrate to be used in the National Aerospace Plane program is evaluated. Two commercially available adhesion testers, the Sebastian Adherence Tester and the CSEM REVETEST Scratch Tester, are evaluated to determine their suitability for quantitatively measuring adhesion strength. Various thicknesses of cements are applied to several substrates, and bond strengths are determined with both testers. The Sabastian Adherence Tester has provided limited data due to an interference from the sample mounting procedure, and has been shown to be incapable of distinguishing adhesion strength from tensile and shear properties of the cement itself. The data from the scratch tester has been found to be difficult to interpret due to the porosity and hardness of the cement. Recommendations are proposed for a more reliable adhesion test method.

  17. Shear strength of municipal solid waste for stability analyses

    NASA Astrophysics Data System (ADS)

    Stark, Timothy D.; Huvaj-Sarihan, Nejan; Li, Guocheng

    2009-06-01

    This paper investigates the shear strength of municipal solid waste (MSW) using the back analysis of failed waste slopes as well as field and laboratory test results. Shear strength of MSW is a function of many factors such as waste type, composition, compaction, daily cover, moisture conditions, age, decomposition, overburden pressure, etc. These factors together with non-standardized sampling methods, insufficient sample size to be representative of in situ conditions, and limited shear displacement or axial strain imposed during the laboratory shear testing have created considerable scatter in reported results. Based on the data presented herein, large shear displacements are required to mobilize the peak shear strength of MSW which can lead to displacement incompatibility between MSW and the underlying material(s) such as geosynthetic interfaces and foundation soils. The data presented herein are used to develop displacement compatible shear strength parameters for MSW. Recommendations are presented for modeling the displacement and stress dependent strength envelope in stability analyses.

  18. Adhesive strength of paint-on resins to crown and bridge composites.

    PubMed

    Kanie, Takahito; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji

    2004-12-01

    This paper examined the adhesive strength of paint-on resin to crown and bridge composites after soaking in water and thermal-cycling. Three shades of paint-on resin were coated on three kinds of crown and bridge composite under four surface treatment conditions (a combination of sandblaster and pretreatment liquid). These specimens were soaked in water at 37 degrees C for 1 day, 1 month, and 1 year, and at 4 degrees C and 60 degrees C alternatively for 1-minute periods for 10,000 cycles by thermal-cycling machine. The adhesive strengths were obtained by shear test. There were no significant differences among the adhesive strengths of three shades of paint-on resin to three composites after storage (p > 0.05). The adhesive strengths to composites with sandblasting showed higher values than those without it (p < 0.01). PMID:15693161

  19. Estimation of Average Shear Strength Parameters along the Slip Surface Based on the Shear Strength Diagram of Landslide Soils

    NASA Astrophysics Data System (ADS)

    Kimura, Sho; Gibo, Seiichi; Nakamura, Shinya

    The average shear strength parameters along the slip surface (c´, φ´) of the four Shimajiri-mudstone landslides having different slide patterns have been obtained by two methods involving an estimation method using the shear strength diagram of landslide soils and an ordinary method using the results of laboratory shear tests of soil samples. The deference of the two average shear strengths was small in the case of the landslides where the residual and fractured-mudstone peak strengths had been mobilized, while the two methods produced close agreement in case of the landslides where the residual and fully softened strengths had been mobilized. Although, the determination of appropriate c´, φ´ is done using the measured shear strength of slip surface soil as a fundamental rule, when it is difficult to do it due to certain restrictions, c´, φ´ can be effectively estimated using the shear strength diagram.

  20. Adhesive dynamics simulations of the shear threshold effect for leukocytes.

    PubMed

    Caputo, Kelly E; Lee, Dooyoung; King, Michael R; Hammer, Daniel A

    2007-02-01

    Many experiments have measured the effect of force on the dissociation of single selectin bonds, but it is not yet clear how the force dependence of molecular dissociation can influence the rolling of cells expressing selectin molecules. Recent experiments using constant-force atomic force microscopy or high-resolution microscopic observations of pause-time distributions of cells in a flow chamber show that for some bonds, the dissociation rate is high at low force and initially decreases with force, indicating a catch bond. As the force continues to increase, the dissociation rate increases again, like a slip bond. It has been proposed that this catch-slip bond leads to the shear threshold effect, in which a certain level of shear rate is required to achieve rolling. We have incorporated a catch-slip dissociation rate into adhesive dynamics simulations of cell rolling. Using a relatively simple model for the shear-controlled association rate for selectin bonds, we were able to recreate characteristics of the shear threshold effect seen most prominently for rolling through L-selectin. The rolling velocity as a function of shear rate showed a minimum near 100 s-1. Furthermore, cells were observed to roll at a shear rate near the threshold, but detach and move more quickly when the shear rate was dropped below the threshold. Finally, using adhesive dynamics, we were able to determine ranges of parameters necessary to see the shear threshold effect in the rolling velocity. In summary, we found through simulation that the catch-slip behavior of selectin bonds can be responsible for the shear threshold effect. PMID:17085490

  1. Adhesive Dynamics Simulations of the Shear Threshold Effect for Leukocytes

    PubMed Central

    Caputo, Kelly E.; Lee, Dooyoung; King, Michael R.; Hammer, Daniel A.

    2007-01-01

    Many experiments have measured the effect of force on the dissociation of single selectin bonds, but it is not yet clear how the force dependence of molecular dissociation can influence the rolling of cells expressing selectin molecules. Recent experiments using constant-force atomic force microscopy or high-resolution microscopic observations of pause-time distributions of cells in a flow chamber show that for some bonds, the dissociation rate is high at low force and initially decreases with force, indicating a catch bond. As the force continues to increase, the dissociation rate increases again, like a slip bond. It has been proposed that this catch-slip bond leads to the shear threshold effect, in which a certain level of shear rate is required to achieve rolling. We have incorporated a catch-slip dissociation rate into adhesive dynamics simulations of cell rolling. Using a relatively simple model for the shear-controlled association rate for selectin bonds, we were able to recreate characteristics of the shear threshold effect seen most prominently for rolling through L-selectin. The rolling velocity as a function of shear rate showed a minimum near 100 s−1. Furthermore, cells were observed to roll at a shear rate near the threshold, but detach and move more quickly when the shear rate was dropped below the threshold. Finally, using adhesive dynamics, we were able to determine ranges of parameters necessary to see the shear threshold effect in the rolling velocity. In summary, we found through simulation that the catch-slip behavior of selectin bonds can be responsible for the shear threshold effect. PMID:17085490

  2. Interplay between shear stress and adhesion on neutrophil locomotion.

    PubMed

    Smith, Lee A; Aranda-Espinoza, Helim; Haun, Jered B; Hammer, Daniel A

    2007-01-15

    Leukocyte locomotion over the lumen of inflamed endothelial cells is a critical step, following firm adhesion, in the inflammatory response. Once firmly adherent, the cell will spread and will either undergo diapedesis through individual vascular endothelial cells or will migrate to tight junctions before extravasating to the site of injury or infection. Little is known about the mechanisms of neutrophil spreading or locomotion, or how motility is affected by the physical environment. We performed a systematic study to investigate the effect of the type of adhesive ligand and shear stress on neutrophil motility by employing a parallel-plate flow chamber with reconstituted protein surfaces of E-selectin, E-selectin/PECAM-1, and E-selectin/ICAM-1. We find that the level and type of adhesive ligand and the shear rate are intertwined in affecting several metrics of migration, such as the migration velocity, random motility, index of migration, and the percentage of cells moving in the direction of flow. On surfaces with high levels of PECAM-1, there is a near doubling in random motility at a shear rate of 180 s(-1) compared to the motility in the absence of flow. On surfaces with ICAM-1, neutrophil random motility exhibits a weaker response to shear rate, decreasing slightly when shear rate is increased from static conditions to 180 s(-1), and is only slightly higher at 1000 s(-1) than in the absence of flow. The random motility increases with increasing surface concentrations of E-selectin and PECAM-1 under static and flow conditions. Our findings illustrate that the endothelium may regulate neutrophil migration in postcapillary venules through the presentation of various adhesion ligands at sites of inflammation. PMID:17071667

  3. Bond strength evaluation in adhesive joints using NDE and DIC methods

    NASA Astrophysics Data System (ADS)

    Poudel, Anish

    Adhesive bonding of graphite epoxy composite laminates to itself or traditional metal alloys in modern aerospace and aircraft structural applications offers an excellent opportunity to use the most efficient and intelligent combination of materials available thus providing an attractive package for efficient structural designs. However, one of the major issues of adhesive bonding is the occasional formation of interfacial defects such as kissing or weak bonds in the bondline interface. Also, there are shortcomings of existing non-destructive evaluation (NDE) methods to non-destructively detect/characterize these interfacial defects and reliably predicting the bond shear strength. As a result, adhesive bonding technology is still not solely implemented in primary structures of an aircraft. Therefore, there is a greater demand for a novel NDE tool that can meet the existing aerospace requirement for adhesive bondline characterization. This research implemented a novel Acoustography ultrasonic imaging and digital image correlation (DIC) technique to detect and characterize interfacial defects in the bondline and determine bond shear strength in adhesively bonded composite-metal joints. Adhesively bonded Carbon Fiber Reinforced Plastic (CFRP) laminate and 2024-T3 Aluminum single lap shear panels subjected to various implanted kissing/weak bond defects were the primary focus of this study. Kissing/weak bonds were prepared by controlled surface contamination in the composite bonding surface and also by improperly mixing the adhesive constituent. SEM analyses were also conducted to understand the surface morphology of substrates and their interaction with the contaminants. Morphological changes were observed in the microscopic scale and the chemical analysis confirmed the stability of the contaminant at or very close to the interface. In addition, it was also demonstrated that contaminants migrated during the curing of the adhesive from CFRP substrate which caused a

  4. Assay of Adhesion Under Shear Stress for the Study of T Lymphocyte-Adhesion Molecule Interactions.

    PubMed

    Strazza, Marianne; Azoulay-Alfaguter, Inbar; Peled, Michael; Mor, Adam

    2016-01-01

    Overall, T cell adhesion is a critical component of function, contributing to the distinct processes of cellular recruitment to sites of inflammation and interaction with antigen presenting cells (APC) in the formation of immunological synapses. These two contexts of T cell adhesion differ in that T cell-APC interactions can be considered static, while T cell-blood vessel interactions are challenged by the shear stress generated by circulation itself. T cell-APC interactions are classified as static in that the two cellular partners are static relative to each other. Usually, this interaction occurs within the lymph nodes. As a T cell interacts with the blood vessel wall, the cells arrest and must resist the generated shear stress.(1,2) These differences highlight the need to better understand static adhesion and adhesion under flow conditions as two distinct regulatory processes. The regulation of T cell adhesion can be most succinctly described as controlling the affinity state of integrin molecules expressed on the cell surface, and thereby regulating the interaction of integrins with the adhesion molecule ligands expressed on the surface of the interacting cell. Our current understanding of the regulation of integrin affinity states comes from often simplistic in vitro model systems. The assay of adhesion using flow conditions described here allows for the visualization and accurate quantification of T cell-epithelial cell interactions in real time following a stimulus. An adhesion under flow assay can be applied to studies of adhesion signaling within T cells following treatment with inhibitory or stimulatory substances. Additionally, this assay can be expanded beyond T cell signaling to any adhesive leukocyte population and any integrin-adhesion molecule pair. PMID:27404581

  5. Incremental layer shear bond strength of low-shrinkage resin composites under different bonding conditions.

    PubMed

    Al Musa, A H; Al Nahedh, H N A

    2014-01-01

    The purpose of this study was to determine the incremental shear bond strength of a silorane-based composite (Filtek Silorane) repaired with silorane or a methacrylate-based composite (Filtek Z250) under various aging conditions. Also, the incremental bond strength of the silorane-based composite was compared with that of another low-shrinkage methacrylate-based composite (Aelite LS Posterior) under fresh and aged conditions, with and without the use of an adhesive resin between successive layers. The two brands of low-shrinkage composites were compared with a microhybrid, Filtek Z250, which served as the control. Substrate discs were fabricated and second layers were adhered to them immediately, after two weeks of aging, or after four weeks of aging and with and without an adhesive resin. Shear bond strengths were measured and failure modes were evaluated. The incremental bond strength of silorane to the silorane-based composite was not significantly different from that of the methacrylate-based composite. However, repairing a silorane-based composite with a methacrylate-based composite significantly reduced the bond strength. Aelite showed a lower incremental bond strength than Z250 and silorane, but the use of an adhesive significantly improved the bond strength. The absence of an oxygen-inhibited layer did not affect the bond strength of the consecutive layers of the silorane-based composite. PMID:24807812

  6. Importance of Tensile Strength on the Shear Behavior of Discontinuities

    NASA Astrophysics Data System (ADS)

    Ghazvinian, A. H.; Azinfar, M. J.; Geranmayeh Vaneghi, R.

    2012-05-01

    In this study, the shear behavior of discontinuities possessing two different rock wall types with distinct separate compressive strengths was investigated. The designed profiles consisted of regular artificial joints molded by five types of plaster mortars, each representing a distinct uniaxial compressive strength. The compressive strengths of plaster specimens ranged from 5.9 to 19.5 MPa. These specimens were molded considering a regular triangular asperity profile and were designed so as to achieve joint walls with different strength material combinations. The results showed that the shear behavior of discontinuities possessing different joint wall compressive strengths (DDJCS) tested under constant normal load (CNL) conditions is the same as those possessing identical joint wall strengths, but the shear strength of DDJCS is governed by minor joint wall compressive strength. In addition, it was measured that the predicted values obtained by Barton's empirical criterion are greater than the experimental results. The finding indicates that there is a correlation between the joint roughness coefficient (JRC), normal stress, and mechanical strength. It was observed that the mode of failure of asperities is either pure tensile, pure shear, or a combination of both. Therefore, Barton's strength criterion, which considers the compressive strength of joint walls, was modified by substituting the compressive strength with the tensile strength. The validity of the modified criterion was examined by the comparison of the predicted shear values with the laboratory shear test results reported by Grasselli (Ph.D. thesis n.2404, Civil Engineering Department, EPFL, Lausanne, Switzerland, 2001). These comparisons infer that the modified criterion can predict the shear strength of joints more precisely.

  7. Shear bond strength of seventh generation bonding agents on dentin of primary teeth--an in vitro study.

    PubMed

    Gonzalez, Geoffrey; Rich, Alfred P; Finkelman, Matthew D; Defuria, Catherine

    2012-01-01

    This controlled, randomized, in vitro study evaluated the shear bond strength of several seventh generation bonding agents on the dentin of primary teeth. Six different adhesives were used: Xeno IV, Clearfil S3 Bond, Adper Prompt-L-Pop, AdheSE One, Bond Force, and Optibond (control). Ninety primary teeth were prepared by wet grinding with a 320-grit silicon carbide paper on a polishing wheel running at 110 RPM. After 24 hours of storage in water, shear bond strengths of each group were determined. The mean shear bond strength of the tested adhesive systems to primary dentin was 12.27 MPa. One-way ANOVA testing showed a statistically significant difference between adhesive products (P < 0.001). Tukey HSD post hoc tests were used to assess which means were significantly different from one another. There was no statistically significant difference between the fifth generation adhesive system (Optibond) and the two seventh generation systems (Xeno IV and Bond Force), with Optibond exhibiting a lower mean shear bond strength compared to Bond Force. Within the limitations of this study, there is a significant difference between seventh generation bonding materials. Bond Force and Optibond appear to exhibit higher shear bond strengths than the other products. PMID:22313979

  8. Bond strength of self-adhesive resin cements to composite submitted to different surface pretreatments

    PubMed Central

    dos Santos, Victor Hugo; Griza, Sandro; de Moraes, Rafael Ratto

    2014-01-01

    Objectives Extensively destroyed teeth are commonly restored with composite resin before cavity preparation for indirect restorations. The longevity of the restoration can be related to the proper bonding of the resin cement to the composite. This study aimed to evaluate the microshear bond strength of two self-adhesive resin cements to composite resin. Materials and Methods Composite discs were subject to one of six different surface pretreatments: none (control), 35% phosphoric acid etching for 30 seconds (PA), application of silane (silane), PA + silane, PA + adhesive, or PA + silane + adhesive (n = 6). A silicone mold containing a cylindrical orifice (1 mm2 diameter) was placed over the composite resin. RelyX Unicem (3M ESPE) or BisCem (Bisco Inc.) self-adhesive resin cement was inserted into the orifices and light-cured. Self-adhesive cement cylinders were submitted to shear loading. Data were analyzed by two-way ANOVA and Tukey's test (p < 0.05). Results Independent of the cement used, the PA + Silane + Adhesive group showed higher microshear bond strength than those of the PA and PA + Silane groups. There was no difference among the other treatments. Unicem presented higher bond strength than BisCem for all experimental conditions. Conclusions Pretreatments of the composite resin surface might have an effect on the bond strength of self-adhesive resin cements to this substrate. PMID:24516824

  9. Fabrication and characterization of thermoplastic elastomer dry adhesives with high strength and low contamination.

    PubMed

    Bin Khaled, Walid; Sameoto, Dan

    2014-05-14

    Polydimethylsiloxane (PDMS) and polyurethane elastomers have commonly been used to manufacture mushroom shaped gecko-inspired dry adhesives with high normal adhesion strength. However, the thermosetting nature of these two materials severely limits the commercial viability of their manufacturing due to long curing times and high material costs. In this work, we introduce poly(styrene-ethylene/butylene-styrene) (SEBS) thermoplastic elastomers as an alternative for the manufacture of mushroom shaped dry adhesives with both directional and nondirectional performance. These materials are attractive for their potential to be less contaminating via oligomer transfer than thermoset elastomers, as well as being more suited to mass manufacturing. Low material transfer properties are attractive for adhesives that could potentially be used in cleanroom environments for microscale assembly and handling in which device contamination is a serious concern. We characterized a thermoplastic elastomer in terms of oligomer transfer using X-ray photoelectron spectroscopy and found that the SEBS transfers negligible amounts of its own oligomers, during contact with a gold-coated silicon surface, which may be representative of the metallic bond pads found in micro-electro-mechanical systems devices. We also demonstrate the fabrication of mushroom shaped isotropic and anisotropic adhesive fibers with two different SEBS elastomer grades using thermocompression molding and characterize the adhesives in terms of their shear-enhanced normal adhesion strength. The overall adhesion of one of the thermoplastic elastomer adhesives was found to be stronger or comparable to their polyurethane counterparts with identical dimensions. PMID:24712514

  10. Aerospace Threaded Fastener Strength in Combined Shear and Tension Loading

    NASA Technical Reports Server (NTRS)

    Steeve, B. E.; Wingate, R. J.

    2012-01-01

    A test program was initiated by Marshall Space Flight Center and sponsored by the NASA Engineering and Safety Center to characterize the failure behavior of a typical high-strength aerospace threaded fastener under a range of shear to tension loading ratios for both a nut and an insert configuration where the shear plane passes through the body and threads, respectively. The testing was performed with a customized test fixture designed to test a bolt with a single shear plane at a discrete range of loading angles. The results provide data to compare against existing combined loading failure criteria and to quantify the bolt strength when the shear plane passes through the threads.

  11. Shear bond strength, failure modes, and confocal microscopy of bonded amalgam restorations.

    PubMed

    Cianconi, Luigi; Conte, Gabriele; Mancini, Manuele

    2011-01-01

    This study evaluated the shear bond strength, failure modes, and confocal microscopy of two different amalgam alloy restorations lined with five adhesive systems. Two regular-set high-copper dental amalgam alloys, Amalcap Plus and Valiant Ph.D, and five commercially available adhesive systems were selected. One hundred and twenty freshly-extracted human third molars were used for the study. The results were statistically evaluated using two-factor analysis of variance (ANOVA). The shear bond strength (SBS) of amalgam to dentin was significantly affected by both the adhesive (p<0.0001) and amalgam alloy (p<0.0002). Regarding mode of failure (MF), among samples restored with Valiant Ph.D, 31 of 50 exhibited adhesive failure, and 19 displayed mixed failure. Laser optical microscopy (OM) of the bonded interface revealed the presence of a good hybrid layer was evident in all experimental groups. Higher bond strengths were measured for four of the five adhesives when used in combination with the spherical alloy. PMID:21383518

  12. Adhesion Strength Study of EVA Encapsulants on Glass Substrates

    SciTech Connect

    Pern, F. J.; Glick, S. H.

    2003-05-01

    An extensive peel-test study was conducted to investigate the various factors that may affect the adhesion strength of photovoltaic module encapsulants, primarily ethylene-vinyl acetate (EVA), on glass substrates of various laminates based on a common configuration of glass/encapsulant/backfoil. The results show that"pure" or"absolute" adhesion strength of EVA-to-glass was very difficult to obtain because of tensile deformation of the soft, semi-elastic EVA layer upon pulling. A mechanically"strong enough" backing foil on the EVA was critical to achieving the"apparent" adhesion strength. Peel test method with a 90-degree-pull yielded similar results to a 180-degree-pull. The 90-degree-pull method better revealed the four stages of delamination failure of the EVA/backfoil layers. The adhesion strength is affected by a number of factors, which include EVA type, formulation, backfoil type and manufacturing source, glass type, and surface priming treatment on the glass surface or on the backfoil. Effects of the glass-cleaning method and surface texture are not obvious. Direct priming treatments used in the work did not improve, or even worsened, the adhesion. Aging of EVA by storage over~5 years reduced notably the adhesion strength. Lower adhesion strengths were observed for the blank (unformulated) EVA and non-EVA copolymers, such as poly(ethylene-co-methacrylate) (PEMA) or poly(ethylene-co-butylacrylate) (PEBA). Their adhesion strengths increased if the copolymers were cross-linked. Transparent fluoropolymer superstrates such as TefzelTM and DureflexTM films used for thin-film PV modules showed low adhesion strengths to the EVA at a level of~2 N/mm.

  13. Surface deformation and shear flow in ligand mediated cell adhesion

    NASA Astrophysics Data System (ADS)

    Sircar, Sarthok; Roberts, Anthony; Sarthok Sircar / Anthony Roberts Collaboration

    We present a unified, multiscale model to study the attachment/detachment dynamics of two deforming, near spherical cells, coated with binding ligands and subject to a slow, homogeneous shear flow in a viscous fluid medium. The binding ligands on the surface of the cells experience attractive and repulsive forces in an ionic medium and exhibit finite resistance to rotation via bond tilting. The microscale drag forces and couples describing the fluid flow inside the small separation gap between the cells, are calculated using a combination of methods in lubrication theory and previously published numerical results. For a select range of material and fluid parameters, a hysteretic transition of the sticking probability curves (i.e., the function g*) between the adhesion phase (when g*>0.5) and the fragmentation phase (when g*<0.5) is attributed to a nonlinear relation between the total nanoscale binding forces and the separation gap between the cells. We show that adhesion is favored in highly ionic fluids, increased deformability of the cells, elastic binders and a higher fluid shear rate (until a critical value). Continuation of the limit points (i.e., the turning points where the slope of the function g* changes sign within a select range of critical shear SS is supported by the Adelaide University startup funds and AR is supported by the Australian Research Council Discovery Grant DP150102385.

  14. Displacement velocity effects on rock fracture shear strengths

    NASA Astrophysics Data System (ADS)

    Kleepmek, M.; Khamrat, S.; Thongprapha, T.; Fuenkajorn, K.

    2016-09-01

    Triaxial shear tests are performed to assess the effects of displacement velocity and confining pressure on shear strengths and dilations of tension-induced fractures and smooth saw-cut surfaces prepared in granite, sandstone and marl specimens. A polyaxial load frame is used to apply confining pressures between 1 and 18 MPa with displacement velocities ranging from 1.15 × 10-5 to 1.15 × 10-2 mm/s. The results indicate that the shearing resistances of smooth saw-cut surfaces tend to be independent of the displacement velocity and confining pressure. Under each confinement the peak and residual shear strengths and dilation rates of rough fractures increase with displacement velocities. The sheared-off areas increase when the confining pressure increases, and the displacement rate decreases. The velocity-dependent shear strengths tend to act more under high confining pressures for the rough fractures in strong rock (granite) than for the smoother fractures in weaker rocks (sandstone and marl). An empirical criterion that explicitly incorporates the effects of shear velocity is proposed to describe the peak and residual shear strengths. The criterion fits well to the test results for the three tested rocks.

  15. Comparison of shear bond strength to clinically simulated debonding of orthodontic brackets: An in vitro study

    PubMed Central

    Linjawi, Amal Ibrahim; Abbassy, Mona A

    2016-01-01

    Objectives: To assess in vitro the quantitative and qualitative debonding behavior of the AEZ debonding plier, compared to shear debonding force, in debonding orthodontic metal brackets. Materials and Methods: Thirty-two extracted premolars bonded with metal brackets were randomly divided into two equal groups according to the type of simulated debonding method; compressive bond strength (CBS) group using AEZ debonding plier (Ormco Corporation, USA) attached to the Instron machine, and shear bond strength (SBS) group using regular Instron attachments. All teeth were subjected to debonding forces, and debonding strength was assessed. The buccal surfaces were then examined, under a stereomicroscope, and adhesive remnants were scored using adhesive remnant index (ARI). Debonding strengths comparison was performed using the independent sample t-test. ARI score comparison was performed using the Mann–Whitney U-test. Correlation between debonding strength and ARI scores was performed using the Spearman correlation. Results: There was no significant difference in mean debonding strength between the SBS (M = 6.17 ± 0.77 MPa) and CBS (M = 6.68 ± 1.67 MPa) groups (P > 0.05). The CBS group showed significantly less adhesive remnants than the SBS group (P < 0.05); 62.5% of CBS group had ARI score 1, whereas 68.8% of SBS group had ARI score 3. No significant correlation between ARI and debonding strength was found (P < 0.05). Conclusion: SBS was found to produce similar debonding strength to the AEZ debonding plier in vitro. However, the AEZ debonding plier resulted in less adhesive remnant which is of great advantage for reducing chair-time during cleanup after debonding brackets. PMID:26998474

  16. The effect of saliva decontamination procedures on dentin bond strength after universal adhesive curing

    PubMed Central

    Kim, Jayang; Hong, Sungok; Choi, Yoorina

    2015-01-01

    Objectives The purpose of this study was to investigate the effectiveness of multiple decontamination procedures for salivary contamination after curing of a universal adhesive on dentin bond strength according to its etch modes. Materials and Methods Forty-two extracted bovine incisors were trimmed by exposing the labial dentin surfaces and embedded in cylindrical molds. A universal adhesive (All-Bond Universal, Bisco) was used. The teeth were randomly divided into groups according to etch mode and decontamination procedure. The adhesive was applied according to the manufacturer's instructions for a given etch mode. With the exception of the control groups, the cured adhesive was contaminated with saliva for 20 sec. In the self-etch group, the teeth were divided into three groups: control, decontamination with rinsing and drying, and decontamination with rinsing, drying, and adhesive. In the etch-and-rinse group, the teeth were divided into four groups: control, decontamination with rinsing and drying, decontamination with rinsing, drying, and adhesive, and decontamination with rinsing, drying, re-etching, and reapplication of adhesive. A composite resin (Filtek Z350XT, 3M ESPE) was used for filling and was cured on the treated surfaces. Shear bond strength was measured, and failure modes were evaluated. The data were subjected to one-way analysis of variation and Tukey's HSD test. Results The etch-and-rinse subgroup that was decontaminated by rinse, drying, re-etching, and reapplication of adhesive showed a significantly higher bond strength. Conclusions When salivary contamination occurs after curing of the universal adhesive, additional etching improves the bond strength to dentin. PMID:26587416

  17. Experimental Study on Peak Shear Strength Criterion for Rock Joints

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Rong, Guan; Hou, Di; Peng, Jun; Zhou, Chuangbing

    2016-03-01

    The three-dimensional (3D) morphology of a rock joint has a great impact on its shear behavior. To study the relationship between the 3D morphological characteristics and the peak shear strength, several tilt tests were conducted on four groups of tensile fractures and direct shear tests were carried out under different constant normal loads (CNL). The normal load ranges from 0.325 to 8.0 MPa. In this study, fresh tensile fractures which were splitted from granite and sandstone samples were used. The morphology of each tensile fracture was measured before direct shear tests. A new peak shear strength criterion for rock joints is proposed using two 3D morphological parameters which are termed as the maximum apparent dip angle θ_{max}^{*} and the roughness parameter C. The calculated peak strengths using the proposed criterion match well with the observed values. In addition, a comparison of the proposed model with the Grasselli's model (2003) and Xia's model (2014) shows that the proposed model is easier in the form and gives a rational improvement. At last, direct shear test data of tensile fractures which are collected from Grasselli (2003) are used to verify the proposed model. It is seen that the proposed model has a reliable estimate of the peak shear strength of tensile fractures and presumably for rock joints.

  18. Unsaturated Shear Strength and Numerical Analysis Methods for Unsaturated Soils

    NASA Astrophysics Data System (ADS)

    Kim, D.; Kim, G.; Kim, D.; Baek, H.; Kang, S.

    2011-12-01

    The angles of shearing resistance(φb) and internal friction(φ') appear to be identical in low suction range, but the angle of shearing resistance shows non-linearity as suction increases. In most numerical analysis however, a fixed value for the angle of shearing resistance is applied even in low suction range for practical reasons, often leading to a false conclusion. In this study, a numerical analysis has been undertaken employing the estimated shear strength curve of unsaturated soils from the residual water content of SWCC proposed by Vanapalli et al.(1996). The result was also compared with that from a fixed value of φb. It is suggested that, in case it is difficult to measure the unsaturated shear strength curve through the triaxial soil tests, the estimated shear strength curve using the residual water content can be a useful alternative. This result was applied for analyzing the slope stablity of unsaturated soils. The effects of a continuous rainfall on slope stability were analyzed using a commercial program "SLOPE/W", with the coupled infiltration analysis program "SEEP/W" from the GEO-SLOPE International Ltd. The results show that, prior to the infiltration by the intensive rainfall, the safety factors using the estimated shear strength curve were substantially higher than that from the fixed value of φb at all time points. After the intensive infiltration, both methods showed a similar behavior.

  19. Effect of Coarse Materials Percentage in the Shear Strength

    NASA Astrophysics Data System (ADS)

    Alshameri, B.; Bakar, I.; Madun, A.; Abdeldjouad, L.; Haimi Dahlan, S.

    2016-07-01

    There are several factors that affecting the shear strength and shear strength parameters (i.e. cohesion and friction angle). In this study, the effect of coarse material percentage was tested. Six different mixtures of soils (clay and sand) with different coarse material percentages (i.e. from 80% to 30% of coarse material percentage) were tested via using direct shear test under different moisture content percentage. The results indicated that the shear strength and friction angle were decreased by the increment of the percentage of coarse materials (sand). However, the cohesion results showed unique behavior. The cohesion (at every moisture content values) increased with the increment of the percentage of coarse materials until specific point then it started to decrease with the increment of the percentage of coarse materials.

  20. Shear Strength Prediction By Modified Plasticity Theory For SFRC Beams

    SciTech Connect

    Colajanni, Piero; Recupero, Antonino; Spinella, Nino

    2008-07-08

    the plastic Crack Sliding Model (CSM) is extended for derivation of a physical model for the prediction of ultimate shear strength of SFRC beams, by assuming that the critical cracks is modeled by a yield lines. To this aim, the CSM is improved in order to take into account the strength increases due to the arch effect for deep beam. Then, the effectiveness factors for the concrete under biaxial stress are calibrated for fibrous concrete. The proposed model, able to provide the shear strength and the position of the critical cracks, is validate by a large set of test results collected in literature.

  1. Comparison of bond strength of three adhesives: composite resin, hybrid GIC, and glass-filled GIC.

    PubMed

    Rix, D; Foley, T F; Mamandras, A

    2001-01-01

    The objective of this study was to compare 3 orthodontic adhesives in the areas of shear-peel bond strength, location of adhesive failure, and extent of enamel cracking before bonding and after debonding of orthodontic brackets. The adhesives included a composite resin control (Transbond XT; 3M/Unitek, St Paul, Minn), a resin-modified glass ionomer cement (Fuji Ortho LC; GC America Corp, Alsip, Ill), and a polyacid-modified composite resin under dry and saliva-contaminated conditions (Assure; Reliance Orthodontic Products Inc, Itasca, Ill). Metal brackets were bonded to the buccal surfaces of 160 (4 groups of 40) human premolars. The bonded teeth were stored in deionized water at 37 degrees C for 30 days and thermocycled for 24 hours before debonding with a Universal Instron (Instron Corp, Canton, Mass) testing machine. The extent of cracking in the buccal surfaces was evaluated under 16x magnification before bonding and after debonding. Although the bond strength of the composite resin control (20.19 MPa) was significantly greater (P <.05) than that of the adhesives in the other groups, clinically acceptable shear-peel bond strengths were found for all adhesives (Fuji Ortho LC = 13.57 MPa, Assure-dry = 10.74 MPa, Assure-wet = 10.99 MPa). The bond strength for the Assure adhesive was not significantly affected by saliva contamination. The sample of extracted premolars used in this study displayed a greater frequency of buccal surface enamel cracking (46.7%) than that reported in the literature for in vivo premolars (7.8%-10.2%), which was possibly due to the extraction process. The frequency of enamel cracking in a subset of this sample (n = 34) increased from 46.4% at prebonding to 62.4% at postdebonding as a result of the forces of debonding. PMID:11174538

  2. Cell adhesion strength from cortical tension - an integration of concepts.

    PubMed

    Winklbauer, Rudolf

    2015-10-15

    Morphogenetic mechanisms such as cell movement or tissue separation depend on cell attachment and detachment processes, which involve adhesion receptors as well as the cortical cytoskeleton. The interplay between the two components is of stunning complexity. Most strikingly, the binding energy of adhesion molecules is usually too small for substantial cell-cell attachment, pointing to a main deficit in our present understanding of adhesion. In this Opinion article, I integrate recent findings and conceptual advances in the field into a coherent framework for cell adhesion. I argue that active cortical tension is best viewed as an integral part of adhesion, and propose on this basis a non-arbitrary measure of adhesion strength - the tissue surface tension of cell aggregates. This concept of adhesion integrates heterogeneous molecular inputs into a single mechanical property and simplifies the analysis of attachment-detachment processes. It draws attention to the enormous variation of adhesion strengths among tissues, whose origin and function is little understood. PMID:26471994

  3. Effect of Self-adhesive Resin Cement and Tribochemical Treatment on Bond Strength to Zirconia

    PubMed Central

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Shinya, Akiyoshi

    2010-01-01

    Aim To evaluate the interactive effects of different self-adhesive resin cements and tribochemical treatment on bond strength to zirconia. Methodology The following self-adhesive resin cements for bonding two zirconia blocks were evaluated: Maxcem (MA), Smartcem (SM), Rely X Unicem Aplicap (UN), Breeze (BR), Biscem (BI), Set (SE), and Clearfil SA luting (CL). The specimens were grouped according to conditioning as follows: Group 1, polishing with 600 grit polishing paper; Group 2, silica coating with 110 µm Al2O3 particles which modified with silica; and, Group 3, tribochemical treatment - silica coating + silanization. Specimens were stored in distilled water at 37°C for 24 hours before testing shear bond strength. Results Silica coating and tribochemical treatment significantly increased the bond strength of the MA, UN, BR, BI, SE and CL to zirconia compared to #600 polishing. For both #600 polished and silica coating treatments, MDP-containing self-adhesive resin cement CL had the highest bond strengths to zirconia. Conclusion Applying silica coating and tribochemical treatment improved the bond strength of self-adhesive resin cement to zirconia, especially for CL. PMID:20690416

  4. Failure strength prediction for adhesively bonded single lap joints

    NASA Astrophysics Data System (ADS)

    Rahman, Niat Mahmud

    For adhesively bonded joint, failure strength depends on many factors such as material properties (both adhesive and adherend), specimen geometries, test environments, surface preparation procedures, etc. Failure occurs inside constitutive materials or along joint interfaces. Based on location, adhesively bonded failure mode can be classified as adhesive failure mode, cohesive failure mode and adherend failure mode. Failure mode directly affects the failure strength of joint. For last eight decades, researchers have developed analytical, empirical or semi-empirical methods capable of predicting failure strength for adhesively bonded joints generating either cohesive failure or adherend failure. Applicability of most of the methods is limited to particular cases. In this research, different failure modes for single lap joints (SLJs) were generated experimentally using epoxy based paste adhesive. Based on experimental data and analytical study, simplified failure prediction methods were developed for each failure mode. For adhesive failure mode, it is observed that peel stress distributions concur along interface near crack initiation points. All SLJs for this test endured consistent surface treatments. Geometric parameters of the joints were varied to study their effect on failure strength. Peel stress distributions were calculated using finite analysis (FEA). Based on peel stress distribution near crack initiation point, a failure model is proposed. Numerous analytical, empirical and semi-empirical models are available for predicting failure strengths of SLJs generating cohesive failures. However, most of the methods in the literature failed to capture failure behavior of SLJs having thickness of adhesive layer as variable. Cohesive failure mode was generated experimentally using aluminum as adherend and epoxy adhesive considering thickness of adhesive layers as variable within SLJs. Comparative study was performed among various methods. It was observed that

  5. Effect of Self-etching Adhesives on the Bond Strength of Glass-Ionomer Cements

    PubMed Central

    Jaberi Ansari, Zahra; Panahandeh, Narges; Tabatabaei Shafiei, Zahra Sadat; Akbarzadeh Baghban, Alireza

    2014-01-01

    Objective: Statement of Problem: Adequate bond strength between glass ionomer cements and composite resin is necessary for the success of the sandwich technique. Purpose of Study: This study assessed the micro-shear bond strength of composite resin to glass-ionomer cements (GIC) using self-etch adhesives with different pH values. Materials and Methods: One hundred specimens (6×4×2 mm) were made using Fuji II and Fuji II LC GICs and treated with different adhesives as follows: Group 1:Fuji II+ Adper Prompt L-Pop, Group-2: Fuji II+SE bond, Group-3: Fuji II + AdheSE, Group-4:Fuji II+ Protect bond, Group-5: Fuji II + Single bond, Group-6:Fuji II LC+ Adper Prompt LPop, Group-7: Fuji II LC+SE bond, Group-8:Fuji II LC+ AdheSE, Group-9: Fuji II LC+ Protect bond, and Group-10: Fuji II LC+ Single bond. Each group consisted of 10 specimens. A cylinder of Z100 composite resin was placed on each sample and light cured. After 24 hours of water storage (37°C), the specimens were subjected to micro-shear bond strength tests (0.5 mm/min). Data were analyzed using two-way ANOVA and Tukey’s test. Results: The mean micro-shear bond strength of groups 1–10 was 11.66±1.79, 16.50±1.85, 18.47±1.77, 13.95±1.77, 15.27±1.49, 15.14±0.90, 20.03±1.19, 17.48±3.00, 16.24±1.98 and 16.03±1.49 MPa, respectively. There were significant differences between groups 1 and 7 (P<0.05). No significant difference was observed between other groups (P>0.05). Fuji II LC showed higher bond strength than Fuji II (P<0.05). Conclusion: Type of self-etch adhesive had no significant effect on micro-shear bond strength of glass-ionomer to composite resin. Resin modified glass ionomer cement (RMGIC) exhibited higher bond strength than the conventional GIC. PMID:25628698

  6. Strength of adhesive-bonded hybrid structures

    NASA Technical Reports Server (NTRS)

    Kirschke, L.; Prinz, R.; Schnell, H.

    1979-01-01

    Structures prepared from materials with different thermal and mechanical properties by means of fiber-strengthened binders can fail in a number of ways. The present lecture is focused on failures through debonding at the metal or at the fiber-reinforced plastic. A method for calculating the stress distribution in adhesive layers as a function of the load is outlined, and its usefulness in providing insight into the behavior of bonds in hybrid structures is noted. Means of eliminating the unfavorable effects of temperature, humidity, creep and relaxation on the bonds in the manufacture of hybrid structures are examined, along with test methods developed for such structures.

  7. Effect of interfacial species on shear strength of metal-sapphire contacts

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1979-01-01

    The interfacial shear strength of the metal-insulator system has been studied by means of the coefficient of static friction of copper, nickel, or gold contacts on sapphire in ultrahigh vacuum. The effect on contact strength of adsorbed oxygen, nitrogen, chlorine, and carbon monoxide on the metal surfaces is reported. It was found that exposures as low as 1 L of O2 on Ni produced observable increases in contact strength, whereas exposures of 3 L of Cl2 lead to a decrease in contact strength. These results imply that submonolayer concentrations of these species at the interface of a thin Ni film on Al2O3 should affect film adhesion similarly. The atomic mechanism by which these surface or interface phases affect interfacial strength is not yet understood.

  8. Shear Bond Strength of Orthodontic Brackets and Disinclusion Buttons: Effect of Water and Saliva Contamination

    PubMed Central

    Sfondrini, Maria Francesca; Fraticelli, Danilo; Gandini, Paola

    2013-01-01

    Purpose. The aim of this study was to assess the effect of water and saliva contamination on the shear bond strength and failure site of orthodontic brackets and lingual buttons. Materials and Methods. 120 bovine permanent mandibular incisors were randomly divided into 6 groups of 20 specimens each. Both orthodontic brackets and disinclusion buttons were tested under three different enamel surface conditions: (a) dry, (b) water contamination, and (c) saliva contamination. Brackets and buttons were bonded to the teeth and subsequently tested using a Instron universal testing machine. Shear bond strength values and adhesive failure rate were recorded. Statistical analysis was performed using ANOVA and Tukey tests (strength values) and Chi squared test (ARI Scores). Results. Noncontaminated enamel surfaces showed the highest bond strengths for both brackets and buttons. Under water and saliva contamination orthodontic brackets groups showed significantly lower shear strengths than disinclusion buttons groups. Significant differences in debond locations were found among the groups under the various enamel surface conditions. Conclusions. Water and saliva contamination of enamel during the bonding procedure lowers bond strength values, more with orthodontic brackets than with disinclusion buttons. PMID:23762825

  9. Insulation interlaminar shear strength testing with compression and irradiation

    SciTech Connect

    McManamy, T.J.; Brasier, J.E.; Snook, P.; Idaho National Engineering Lab., Idaho Falls, ID; Princeton Univ., NJ )

    1989-01-01

    The Compact Ignition Tokamak (CIT) project identified the need for research and development for the insulation to be used in the toroidal field coils. The requirements included tolerance to a combination of high compression and shear and a high radiation dose. Samples of laminate-type sheet material were obtained from commercial vendors. The materials included various combinations of epoxy, polyimide, E-glass, S-glass, and T-glass. The T-glass was in the form of a three-dimensional weave. The first tests were with 50 {times} 25 {times} 1 mm samples. These materials were loaded in compression and then to failure in shear. At 345-MPa compression, the interlaminar shear strength was generally in the range of 110 to 140 MPa for the different materials. A smaller sample configuration was developed for irradiation testing. The data before irradiation were similar to those for the larger samples but approximately 10% lower. Limited fatigue testing was also performed by cycling the shear load. No reduction in shear strength was found after 50,000 cycles at 90% of the failure stress. Because of space limitations, only three materials were chosen for irradiation: two polyimide systems and one epoxy system. All used boron-free glass. The small shear/compression samples and some flexure specimens were irradiated to 4 {times} 10{sup 9} and 2 {times} 10{sup 10} rad in the Advanced Technology Reactor at Idaho National Engineering Laboratory. A lead shield was used to ensure that the majority of the dose was from neutrons. The shear strength with compression before and after irradiation at the lower dose was determined. Flexure strength and the results from irradiation at the higher dose level will be available in the near future. 7 refs., 7 figs., 2 tabs.

  10. Studies of fiber-matrix adhesion on compression strength

    NASA Technical Reports Server (NTRS)

    Bascom, Willard D.; Nairn, John A.; Boll, D. J.

    1991-01-01

    A study was initiated on the effect of the matrix polymer and the fiber matrix bond strength of carbon fiber polymer matrix composites. The work includes tests with micro-composites, single ply composites, laminates, and multi-axial loaded cylinders. The results obtained thus far indicate that weak fiber-matrix adhesion dramatically reduces 0 degree compression strength. Evidence is also presented that the flaws in the carbon fiber that govern compression strength differ from those that determine fiber tensile strength. Examination of post-failure damage in the single ply tests indicates kink banding at the crack tip.

  11. Triaxial determination of shear strength of tire chips

    SciTech Connect

    Wu, W.Y.; Benda, C.C.; Cauley, R.F.

    1997-05-01

    Triaxial compression tests following stress paths of constant {sigma}{sub 1} were conducted to determine the shear strength of five processed scrap tire products having different gradations and particle shapes. The interparticle frictional component was separated from the total shear strength according to the energy correction concept proposed by researchers. The experimental results show that all five tire chip products have ultimate internal friction angles of 45{degree} to over 60{degree}. The interparticle frictional component of the strength was fully mobilized and nearly reached a constant value after approximately 5% axial strain. The experimental results confirmed that the strength parameter obtained with constant {sigma}{sub 1} was more reasonable. This finding is supported by field observation in which the tire chips have an angle of repose ranging from 37{degree} to 43{degree} (loosely stock piled) and up to 85{degree} (compacted). The engineering applications of the experimental results are discussed.

  12. The variation of ice adhesion strength with substrate surface roughness

    NASA Astrophysics Data System (ADS)

    Hassan, M. F.; Lee, H. P.; Lim, S. P.

    2010-07-01

    The purpose of this study is to determine whether a relationship exists between the mean surface roughness Ra of an aluminium sample and the interfacial bonding strength σ between it and ice that has been frozen onto its surface. A method of forced vibration of a cantilevered composite beam at 10.0 Hz was used to study the interfacial fracture of the metal-ice interface. Low-cost strain gauges instead of piezoelectric PVDF sensors used in other reported studies were used for the adhesion strength measurements. It was found that increasing surface roughness would lead to a higher interfacial bonding strength, although there was no clearly defined mathematical relationship between Ra and σ. For smooth beams, the adhesion strength was found to be between 0.142 and 0.267 MPa, which was in good agreement with the range of values reported in other studies.

  13. Evaluation of micro-shear bond strength of resin modified glass-ionomer to composite resins using various bonding systems

    PubMed Central

    Kasraie, Shahin; Shokripour, Mohadese; Safari, Mahin

    2013-01-01

    Aim: The aim was to compare the micro-shear bond strength between composite and resin-modified glass-ionomer (RMGI) by different adhesive systems. Materials and Methods: A total of 16 discs of RMGI with a diameter of 15 mm and a thickness of 2 mm were randomly divided into four groups (n = 4). Four cylinders of composite resin (z250) were bonded to the RMGI discs with Single Bond, Clearfil SE Bond and Clearfil S3 Bond in Groups 1-3, respectively. The fourth group was the control. Samples were tested by a mechanical testing machine with a strain rate of 0.5 mm/min. Failure mode was assessed under a stereo-microscope. Results: The means of micro-shear bond strength values for Groups 1-4 were 14.45, 23.49, 16.23 and 5.46 MPa, respectively. Using a bonding agent significantly increased micro-shear bond strength (P = 0.0001). Conclusion: Micro-shear bond strength of RMGI to composite increased significantly with the use of adhesive resin. The bond strength of RMGI to composite resin could vary depending upon the type of adhesive system used. PMID:24347892

  14. High-pressure reactions and shear strength of serpentinized dunite.

    PubMed

    Sclar, C B; Carrison, L C; Rooney, T P; Riecker, R E

    1966-09-01

    The recently reported Pronounced decrease in shear strength of serpentine-bearing rocks at 30 to 40 kilobars in the temperature range 300 degrees to 520 degrees C may be attributed to the transformation of serpentine to a Pressure-dependent, 10-angstrom,2: 1 layer silicate plus brucite and periclase. This reaction increases density by about 8.5 percent. PMID:17754251

  15. Effect of new adhesion promoter and mechanical interlocking on bonding strength in metal-polymer composites

    NASA Astrophysics Data System (ADS)

    Schuberth, A.; Göring, M.; Lindner, T.; Töberling, G.; Puschmann, M.; Riedel, F.; Scharf, I.; Schreiter, K.; Spange, S.; Lampke, T.

    2016-03-01

    There are various opportunities to improve the adhesion between polymer and metal in metal-plastic composites. The addition of a bonding agent which reacts with both joining components at the interfaces of the composite can enhance the bonding strength. An alternative method for the adjustment of interfaces in metal-plastic composites is the specific surface structuring of the joining partners in order to exploit the mechanical interlock effect. In this study the potential of using an adhesion promoter based on twin polymerization for metal-plastic composites in combination with different methods of mechanical surface treatment is evaluated by using the tensile shear test. It is shown that the new adhesion promoter has a major effect when applied on smooth metal surfaces. A combination of both mechanical and chemical surface treatment of the metal part is mostly just as effective as the application of only one of these surface treatment methods.

  16. Shear Bond Strength of Repaired Composites Using Surface Treatments and Repair Materials: An In vitro Study

    PubMed Central

    Hemadri, M; Saritha, G; Rajasekhar, V; Pachlag, K Amit; Purushotham, R; Reddy, Veera Kishore Kumar

    2014-01-01

    Background: Enhancement of bond strength between new and old composite usually requires increased surface roughness of old composite to promote mechanical interlocking and subsequent coating with bonding agents to improve surface wetting and chemical bonding. So this study was carried out to evaluate and compare the effects of different surface treatments and repair materials on the shear bond strength (SBS) of composite repairs The mode of failure of repaired composites whether cohesive or adhesive was also evaluated. Materials and Methods: The substrates for 60 composite specimens were fabricated and aged with water treatment and subjected to various surface treatments. The surface treatment regimens used in the study were: No surface treatment, abraded with diamond bur, air abraded (sandblasted) with 50 µ aluminum oxide particles. Specimens were then repaired with fresh composite using either Clearfil™ repair or all-bond two adhesive systems. Specimens were water stored, thermocycled and tested for SBS using universal testing machine. Fractured specimens were then examined under stereomicroscope to determine the mode of failure. Results: It was clearly showed that surface roughening of the aged composite substrate with air abrasion, followed by the application of Clearfil™ repair adhesive system (Group IIIa) yielded the highest repair bond strength (32.3 ± 2.2 MPa). Conclusion: Surface treatment with air abrasion followed by bonding with Clearfil™ repair adhesive system can be attempted clinically for the repair of composite restorations. PMID:25628478

  17. Development of K-Basin High-Strength Homogeneous Sludge Simulants and Correlations Between Unconfined Compressive Strength and Shear Strength

    SciTech Connect

    Onishi, Yasuo; Baer, Ellen BK; Chun, Jaehun; Yokuda, Satoru T.; Schmidt, Andrew J.; Sande, Susan; Buchmiller, William C.

    2011-02-20

    K-Basin sludge will be stored in the Sludge Transport and Storage Containers (STSCs) at an interim storage location on Central Plateau before being treated and packaged for disposal. During the storage period, sludge in the STSCs may consolidate/agglomerate, potentially resulting in high-shear-strength material. The Sludge Treatment Project (STP) plans to use water jets to retrieve K-Basin sludge after the interim storage. STP has identified shear strength to be a key parameter that should be bounded to verify the operability and performance of sludge retrieval systems. Determining the range of sludge shear strength is important to gain high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from the STSCs. The shear strength measurements will provide a basis for bounding sludge properties for mobilization and erosion. Thus, it is also important to develop potential simulants to investigate these phenomena. Long-term sludge storage tests conducted by Pacific Northwest National Laboratory (PNNL) show that high-uranium-content K-Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has 'paste' and 'chunks' with shear strengths of approximately 3-5 kPa and 380-770 kPa, respectively. High-uranium-content sludge samples subjected to hydrothermal testing (e.g., 185 C, 10 hours) have been observed to form agglomerates with a shear strength up to 170 kPa. These high values were estimated by measured unconfined compressive strength (UCS) obtained with a pocket penetrometer. Due to its ease of use, it is anticipated that a pocket penetrometer will be used to acquire additional shear strength data from archived K-Basin sludge samples stored at the PNNL Radiochemical Processing Laboratory (RPL) hot cells. It is uncertain whether the pocket penetrometer provides accurate shear strength measurements of the material. To assess the bounding material strength and potential for erosion, it

  18. Enhanced shear strength of sodium bentonite using frictional additives

    SciTech Connect

    Schmitt, K.E.; Bowders, J.J.; Gilbert, R.B.; Daniel, D.E.

    1997-12-31

    One of the most important obstacles to using geosynthetic clay liners (GCLs) in landfill cover systems is the low shear strength provided by the bentonitic portion of the GCL. In this study, the authors propose that granular, frictional materials might be added to the bentonite to form an admixture that would have greater shear strength than the bentonite alone while still raining low hydraulic conductivity. Bentonite was mixed with two separate granular additives, expanded shale and recycled to form mixtures consisting of 20-70% bentonite by weight. In direct shear tests at normal stresses of 34.5-103.5 kPa, effective friction angles were measured as 45{degrees} for the expanded 36{degrees} for the recycled glass, and 7{degrees} for the hydrated granular bentonite. The strength of the expanded shale mixtures increased nearly linearly as the percentage shale in the mixture increased, to 44{degrees} for a bentonite mixture with 80% shale. The addition of recycled glass showed little effect on the shear strength of the mixtures of glass and bentonite. Hydraulic conductivity measurements for both types of mixtures indicated a linear increase with log(k) as the amount of granular additive increased. For applications involving geosynthetic clay liners for cover systems, a mixture of 40% expanded shale and 60% bentonite is recommended, although further testing must be done. The 40/60 mixture satisfies the hydraulic equivalency requirement, with k = 5.1X10{sup -9} cm/sec, while increasing the shear strength parameters of the bentonitic mixture to {phi}{prime} = 17{degrees} and c{prime} = 0.

  19. Shear bond strength of resin cement to an acid etched and a laser irradiated ceramic surface

    PubMed Central

    Motro, Pelin Fatma Karagoz; Yurdaguven, Haktan

    2013-01-01

    PURPOSE To evaluate the effects of hydrofluoric acid etching and Er,Cr:YSGG laser irradiation on the shear bond strength of resin cement to lithium disilicate ceramic. MATERIALS AND METHODS Fifty-five ceramic blocks (5 mm × 5 mm × 2 mm) were fabricated and embedded in acrylic resin. Their surfaces were finished with 1000-grit silicon carbide paper. The blocks were assigned to five groups: 1) 9.5% hydrofluoric-acid etching for 60 s; 2-4), 1.5-, 2.5-, and 6-W Er,Cr:YSGG laser applications for 60 seconds, respectively; and 5) no treatment (control). One specimen from each group was examined using scanning electron microscopy. Ceramic primer (Rely X ceramic primer) and adhesive (Adper Single Bond) were applied to the ceramic surfaces, followed by resin cement to bond the composite cylinders, and light curing. Bonded specimens were stored in distilled water at 37℃ for 24 hours. Shear bond strengths were determined by a universal testing machine at 1 mm/min crosshead speed. Data were analyzed using Kruskal-Wallis and Mann-Whitney U-tests (α=0.05). RESULTS Adhesion was significantly stronger in Group 2 (3.88 ± 1.94 MPa) and Group 3 (3.65 ± 1.87 MPa) than in Control group (1.95 ± 1.06 MPa), in which bonding values were lowest (P<.01). No significant difference was observed between Group 4 (3.59 ± 1.19 MPa) and Control group. Shear bond strength was highest in Group 1 (8.42 ± 1.86 MPa; P<.01). CONCLUSION Er,Cr:YSGG laser irradiation at 1.5 and 2.5 W increased shear bond strengths between ceramic and resin cement compared with untreated ceramic surfaces. Irradiation at 6 W may not be an efficient ceramic surface treatment technique. PMID:23755333

  20. Post-bleaching application of an antioxidant on dentin bond strength of three dental adhesives

    PubMed Central

    Khoroushi, Maryam; Saneie, Tahereh

    2012-01-01

    Background: Antioxidizing agents have recently been suggested to compensate decreased bond strength of resin materials to bleached tooth tissues. This study compared the shear bond strength (SBS) of three different adhesives on bleached dentin immediately after bleaching, bleached/delayed for 1 week, and bleached/applied antioxidizing agent. Materials and Methods: The dentinal surfaces of 132 intact extracted molars were prepared and divided into 12 groups. The following adhesives were investigated: Optibond FL (OFL) (three-step etch-and-rinse), Optibond Solo Plus (two-step etch-and-rinse), and Optibond all-in-one (OA) (one-step self-etch) (Kerr, Orange, USA). Unbleached dentin groups (groups 1-3) were prepared as negative controls (NC). The remainder surfaces (groups 4-12) were bleached with 20% Opalescent PF (Ultradent, USA). Specimens were bonded immediately after bleaching (groups 4-6), after 1 week (groups 7-9), or after using 10% sodium ascorbate (SA) gel (groups 10-12). Subsequent to bonding of composite resin, the samples were tested for SBS and analyzed using Kruskal-Wallis and Mann-Whitney tests (α=0.05). Results: Regarding control groups, OA showed the highest SBS among the studied adhesives (P<0.05). The SBS decreased for the adhesives after bleaching except for OFL. No statistically significant difference in SBS were noted when the SA and delayed bonding groups were compared with their similar NC groups (P>0.05) except the of delay bonding with OA. Conclusions: The findings suggest that bond strength of resin to bleached dentin may be affected with the adhesive system. Reduced SBS to bleached dentin can be amended by the use of SA as an antioxidizing agent. However, the amount of reversed bond strength subsequent to applying antioxidant might be related to the kind of dental adhesive. PMID:22363363

  1. Adhesive bond strengths to enamel and dentin using recommended and extended treatment times.

    PubMed

    Kimmes, Nicole S; Barkmeier, Wayne W; Erickson, Robert L; Latta, Mark A

    2010-01-01

    This study examined the effect of different enamel and dentin conditioning times on the shear bond strength of a resin composite using etch-and-rinse and self-etch adhesive systems. Shear bond strengths were determined following treatment of flat ground human enamel and dentin surfaces (4000 grit) with 11 adhesive systems: 1) AdheSE One Viva Pen-(ASE), 2) Adper Prompt L-Pop-(PLP), 3) Adper Single Bond Plus-(SBP), 4) Clearfil SE Bond-(CSE), 5) Clearfil S3 Bond-(CS3), 6) OptiBond All-In-One-(OBA), 7) OptiBond Solo Plus-(OBS), 8) Peak SE-(PSE), 9) Xeno IV-(X4), 10) Xeno V-(X5) and 11) XP Bond-(XPB) using recommended treatment times and an extended treatment time of 60 seconds (n = 10/group). Composite (Z100) to enamel and dentin bond strengths (24 hours) were determined using Ultradent fixtures and debonded with a crosshead speed of 1 mm/minute. The data were analyzed with a three-way Analysis of Variance (ANOVA) and Fisher's LSD post hoc test. The highest shear bond strengths (MPa) to enamel were achieved by the three etch-and-rinse systems at both the recommended treatment time (SBP-40.5 +/- 6.1; XPB-38.7 +/- 3.7; OBS- 35.2 +/- 6.2) and the extended treatment time (SBP-44.5 +/- 8.1; XPB-40.9 +/- 5.7; OBS-35.0 +/- 4.5). Extending the enamel treatment time did not produce a significant change (p > 0.05) in bond strength for the 11 adhesive systems tested. OBS generated the highest (46.2 +/- 7.9) bond strengths to dentin at the recommended treatment time. At the extended treatment time X4 (42.2 +/- 11.7), PSE (42.1 +/- 9.7) and OBS (41.4 +/- 8.0) produced the highest bond strengths to dentin. The bond strength change between recommend and extended treatment times was significant (p < 0.05) for PSE, but the other 10 systems did not exhibit any significant change. PMID:20166418

  2. Shear Wave Propagation Across Filled Joints with the Effect of Interfacial Shear Strength

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Liu, T. T.; Li, H. B.; Liu, Y. Q.; Liu, B.; Xia, X.

    2015-07-01

    The thin-layer interface model for filled joints is extended to analyze shear wave propagation across filled rock joints when the interfacial shear strength between the filling material and the rocks is taken into account. During the wave propagation process, the two sides of the filled joint are welded with the adjacent rocks first and slide on each other when the shear stress on the joint is greater than the interfacial shear strength. By back analysis, the relation between the shear stress and the relative tangential deformation of the filled joints is obtained from the present approach, which is shown as a cycle parallelogram. Comparison between the present approach and the existing method based on the zero-thickness interface model indicates that the present approach is efficient to analyze shear wave propagation across rock joints with slippery behavior. The calculation results show that the slippery behavior of joints is related to the interfacial failure. In addition, the interaction between the shear stress wave and the two sides of the filling joint influences not only the wave propagation process but also the dynamic response of the filled joint.

  3. Bond strength of self-adhesive resin cements to tooth structure

    PubMed Central

    Hattar, Susan; Hatamleh, Muhanad M.; Sawair, Faleh; Al-Rabab’ah, Mohammad

    2015-01-01

    Objectives The aim of this study was to evaluate the strength of the bond between newly introduced self-adhesive resin cements and tooth structures (i.e., enamel and dentin). Methods Three self-adhesive cements (SmartCem2, RelyX Unicem, seT SDI) were tested. Cylindrical-shaped cement specimens (diameter, 3 mm; height, 3 mm) were bonded to enamel and dentin. Test specimens were incubated at 37 °C for 24 h. The shear bond strength (SBS) was tested in a Zwick Roll testing machine. Results were analyzed by one-way ANOVA and t-test. Statistically significant differences were defined at the α = 0.05 level. Bond failures were categorized as adhesive, cohesive, or mixed. Results The SBS values ranged from 3.76 to 6.81 MPa for cements bonded to enamel and from 4.48 to 5.94 MPa for cements bonded to dentin (p > 0.05 between surfaces). There were no statistically significant differences between the SBS values to enamel versus dentin for any given cement type. All cements exhibited adhesive failure at the resin/tooth interface. Conclusions Regardless of their clinical simplicity, the self-adhesive resin cements examined in this study exhibit limited bond performance to tooth structures; therefore, these cements must be used with caution. PMID:26082572

  4. Evaluation of metal bond strength to dentin and enamel using different adhesives and surface treatments.

    PubMed

    Dundar, Mine; Gungor, Mehmet Ali; Cal, Ebru; Darcan, Alev; Erdem, Adalet

    2007-01-01

    Because adherence of base metal alloys is important for the long-term clinical success of adhesive fixed partial dentures, it has been necessary to improve adhesion to metal substrate by using different surface treatments. This study used different surface conditioning methods and two different luting resins to evaluate the shear bond strength of base metal alloys to dentin and enamel. Sixty noncarious freshly extracted human teeth were mounted in a plastic holder filled with autopolymerized acrylic resin. After the roots were removed and 30 flat enamel and 30 flat dentin surfaces were exposed, the specimens were divided randomly into two main luting cement groups. Sixty nickel chromium (NiCr) metal specimens were fabricated and subjected to three different surface conditioning procedures: sandblasting with 50 microm aluminum oxide, tribochemical silica coating, and a combination of the two. Scanning electron mircoscopy (SEM) evaluations revealed mainly cohesive failures. Self-cure adhesive resulted in higher bond strengths to dental substrates. Higher bond strengths were achieved through a combination of sandblasting and tribochemical silica coating; however, further clinical research is required. A surface treatment that combines sandblasting with tribochemical silica coating can achieve a more effective bond for adhesive restorations with metal substrates. PMID:17511361

  5. Influence of different etchants and etching times on shear bond strength.

    PubMed

    Holtan, J R; Nystrom, G P; Phelps, R A; Anderson, T B; Becker, W S

    1995-01-01

    This study compared the shear bond strength to enamel of Scotchbond Multi-Purpose Dental Adhesive System's bonding resin following etching of enamel with 10% maleic, 1.6% oxalic, 10% phosphoric, and 35% phosphoric acids for 15, 30, and 60 seconds. Three hundred and sixty human molar teeth were used to create 12 groups of 30 enamel specimens per group (n = 30). Flattened enamel surfaces were treated with the different etchants for the time periods indicated, the surfaces primed, and adhesive resin applied according to the manufacturer's recommendations. The specimens were completed with Silux Plus resin and subjected to 1000 thermocycles (5-55 degrees C) followed by shear stress in an Instron Testing Machine to failure within a 24-hour period. A two-way ANOVA revealed significant differences for shear bond strength values by type of etchant (10% phosphoric, 35% phosphoric > 10% maleic > 1.6% oxalic acid) (P < 0.005) and by length of application time (P < 0.005). The interaction term for these two treatments was statistically significant (P < 0.005). PMID:7479192

  6. Notched Strength Allowables and Inplane Shear Strength of AS4/VRM-34 Textile Laminates

    NASA Technical Reports Server (NTRS)

    Grenoble, Ray W.; Johnston, William M.

    2013-01-01

    Notched and unnotched strength allowables were developed for a textile composite to provide input data to analytical structural models based on the Pultruded Rod Stiffened Efficient Unitized Structure (PRSEUS) concept. Filled-hole tensile strength, filled-hole compressive strength, and inplane shear strength along stitch lines have been measured. The material system evaluated in this study is based on warp-knitted preforms of AS4 carbon fibers and VRM-34 epoxy resin, which have been processed via resin infusion and oven curing. All specimens were tested in as-fabricated (dry) condition. Filled-hole strengths were evaluated with and without through-thickness stitching. The effects of scaling on filled-hole tensile strength were evaluated by testing specimens in two widths, but with identical width / hole-diameter ratios. Inplane shear specimens were stitched in two configurations, and two specimen thicknesses were tested for each stitch configuration.

  7. Shear Pressed Aligned Carbon Nanotubes and their use as Composite and Adhesive Interlayers

    NASA Astrophysics Data System (ADS)

    Stahl, James Joseph, III

    The following studies utilize shearing force to consolidate and re-orient multi-walled carbon nanotubes (MWCNT) into a shear pressed sheet (SPS) preform. Carbon nanotube (CNT) array growth and shear pressing angle are studied to improve the quality of SPSs. Heat assisted vacuum infusion is used to form a nano-composite from the SPS preform, and mechanical properties are characterized and compared between non-functionalized and functionalized nano-composite tensile specimens. A novel functionalization technique is applied which rinses SPSs with an acidic wet chemical oxidation treatment of H2SO4 and KMnO4 in order to add sidewall carboxyl groups to the CNTs. This is shown to impart hydrophilicity to the SPS and improves composite modulus by 62%, strain-to-failure 42% and failure stress 113%. Composite laminates and joints are vulnerable to shearing forces which cause delamination in the former and failure in the latter. Damage is initiated and propagated at defects and free edges often due to high peel stress, which is much higher than the shear stress and functions as a tensile opening of the joint just as in Mode I delamination failure of laminate composites. In order to resist failure it is necessary to improve the strain-to-failure of the interphase where a crack propagates without sacrificing strength or modulus of the material, thus toughening the material without impacting the rigidity of the composite. Due to the similarity between peel stress/strain and Mode I delamination, the initiation fracture toughness of a double cantilever beam (DCB) test should provide a good indication of peel toughness at a joint free edge. Many studies have explored the possibility of improving Mode I fracture toughness (G IC) of a composite through locally incorporating a tough material into the interlaminar interphase; this material is termed an interleaf. Common interleaf categories are toughened adhesive, disperse particle, disperse fiber, short fiber nonwoven, and continuous

  8. The role of adhesion strength in human mesenchymal stem cell osteoblastic differentiation on biodegradable polymers

    NASA Astrophysics Data System (ADS)

    Krizan, Sylva Jana

    Human mesenchymal stem cells (hMSC) are promising candidates for promoting bone growth on biodegradable polymer scaffolds however little is known about early hMSC-polymer interactions. Adhesion is highly dynamic and during adhesive reinforcement, numerous proteins form adhesion plaques linking the cell's cytoskeleton with the extracellular environment. These proteins are known to affect cellular function but their role in hMSC differentiation is less clear. Adhesion plaques are associated with adhesive force, still a detachment force of hMSC on polycaprolactone (PCL), poly-lactide-co-glycolide (PLGA) or alginate has never been described or shown to affect downstream function. We demonstrate that hMSC attached to PCL, PLGA and alginate exhibit different adhesion strengths (tau50) as determined by both fluid shear and spinning disk systems, with PLGA demonstrating the greatest tau 50. Elastic modulus and hydrophobicity were characterized for these surfaces and correlated positively with tau50 to an optimum. Attachment studies of hMSC showed that adhesion plateau timespans were independent of cell line and surface but both morphology and focal adhesion expression varied by polymer type. Differentiation studies of hMSC on PLGA and PCL showed a strong association between markers of differentiation (alkaline phosphatase activity and mineral content) and tau50 within polymer groups, but a poor relationship was found between tau50 and differentiation across polymer groups, suggesting that other polymer properties may be important for differentiation. Subsequently, we examined the role of focal adhesion kinase (FAK) and Rho-GTPase (RhoA) on hMSC adhesion and differentiation when plated onto PLGA. hMSC were retrovirally transduced with mutant constructs of FAK and RhoA cDNA. Alternatively, hMSC were treated with Rho-kinase inhibitor, Y27632. Both cells transduced with mutant RhoA or FAK constructs, or those treated with Y27632 displayed aberrant cell morphology and changes

  9. Shear bond strength to enamel after power bleaching activated by different sources.

    PubMed

    Can-Karabulut, Deniz C; Karabulut, Baris

    2010-01-01

    The purpose of the present study was to evaluate enamel bond strength of a composite resin material after hydrogen peroxide bleaching, activated by a diode laser (LaserSmile), an ozone device (HealOzone), a light-emitting diode (BT Cool whitening system), and a quartz-Plus. Fifty extracted caries-free permanent incisors were used in this study. Thirty-eight percent hydrogen peroxidegel was applied to sound, flattened labial enamel surfaces and activated by different sources. Enamel surfaces that had received no treatment were used as control samples. Bonding agent was applied according to the manufacturer's instructions and the adhesion test was performed according to ISO/TS 11405. Statistical analysis showed significant influence of the different activation technique of hydrogen peroxide on shear bond strength to enamel (ANOVA, LSD, P < 0.05). The data in this vitro explorative study suggest the activation of hydrogen peroxide by different sources may further affect the shear bond strength of subsequent composite resin restoration to enamel. Within the limitations of this in vitro study, further studies examining the structural changes of activated hydrogen peroxide-treated enamel are needed. Due to the different activation methods; duration of light irradiation effects, longer time periods may be needed before application of adhesive restorations to enamel, compared with non-activated bleaching. PMID:21069109

  10. Shear strength of non-shear reinforced concrete elements. Part 3: Prestressed hollow-core slabs

    SciTech Connect

    Hoang, L.C.

    1997-12-31

    This paper deals with the shear strength of prestressed hollow-core slabs determined by the theory of plasticity. Two failure mechanisms are considered in order to derive the solutions. In the case of sliding failure in a diagonal crack, the shear strength is determined by means of the crack sliding model developed by Jin-Ping Zhang. The model takes into account the resistance against the formation of cracks due to prestressing as well as the variation of the prestressing force in the transfer zone. Due to the fact that the anchorage of the reinforcement takes place by bond, a rotation failure, which is indeed by a crack formed at the support with subsequent slip of the reinforcement, is also considered. This failure mode is likely to occur in cases with a high prestressing force combined with a short shear span. The theoretical calculations are compared with test results form the literature. A good agreement has been found.

  11. Shear strength of irradiated insulation under combined shear/compression loading

    SciTech Connect

    Reed, R.; Fabian, P.; Hazelton, C.

    1997-06-01

    The shear strengths of irradiated insulation systems were measured at 4 K under combined shear and compression loads. Sandwich-type (316LN/bonded insulation/316LN) specimens were irradiated at 4 K and tested at 4 K after storage at room temperature. Some specimens were stored at room temperature; others, at 77 K. Insulation systems included diglycidylether of bisphenol-A and tetraglycidyl diaminodiphenyl methane epoxies and polyimide resins reinforced with S-2 glass. Some contained polyimide film or mica electrical barriers. All specimens were irradiated to a fast neutron fluence of 1.8 X 10{sup 22} n/m{sup 2}. Insulation systems are compared on the basis of their irradiated and unirradiated shear strengths.

  12. Effect of glycine pretreatment on the shear bond strength of a CAD/CAM resin nano ceramic material to dentin

    PubMed Central

    Ceci, Matteo; Pigozzo, Marco; Scribante, Andrea; Beltrami, Riccardo; Colombo, Marco; Chiesa, Marco

    2016-01-01

    Background The purpose of this study was to evaluate the effect of glycine pretreatment on the shear bond strength between dentin and a CAD/CAM resin nano ceramic material (LavaTM Ultimate Restorative), bonded together with adhesive cements using three different luting protocols (total-etch; self-etch; self-adhesive). Material and Methods Thirty cylinders were milled from resin nano ceramic blocks with CAD/CAM technology. The cylinders were subsequently cemented to the exposed dentin of 30 bovine permanent mandibular incisors. The specimens were assigned into six groups of five teeth each according to luting procedure and dentin pretreatment. In the first two groups (A1, A2) 10 cylinders were cemented using a total-etch protocol; in groups B1 and B2, 10 cylinders were cemented using a self-etch protocol; in groups C1 and C2, 10 cylinders were cemented using a self-adhesive protocol; in groups A1, B1 and C1 the dentinal surface was also treated with glycine powder. All cemented specimens were submitted to a shear bond strength test. Statistical analysis was performed with Stata 9.0 software. Results ANOVA showed the presence of significant differences among the various groups (P <0.0001). Conclusions Glycine did not change the different bond strength demonstrated by the various luting protocols tested. Conventional resin composite cements used together with a self-etch adhesive reported the highest values. However the use of glycine seems to increase the bond strength of self-adhesive resin cements. Key words:Adhesive cements, CAD/CAM, glycine, luting system, resin nano ceramic, shear bond strength. PMID:27034754

  13. Influence of different pre-etching times on fatigue strength of self-etch adhesives to dentin.

    PubMed

    Takamizawa, Toshiki; Barkmeier, Wayne W; Tsujimoto, Akimasa; Suzuki, Takayuki; Scheidel, Donal D; Erickson, Robert L; Latta, Mark A; Miyazaki, Masashi

    2016-04-01

    The purpose of this study was to use shear bond strength (SBS) and shear fatigue strength (SFS) testing to determine the influence on dentin bonding of phosphoric acid pre-etching times before the application of self-etch adhesives. Two single-step self-etch universal adhesives [Prime & Bond Elect (EL) and Scotchbond Universal (SU)], a conventional single-step self-etch adhesive [G-aenial Bond (GB)], and a two-step self-etch adhesive [OptiBond XTR (OX)] were used. The SBS and SFS values were obtained with phosphoric acid pre-etching times of 3, 10, or 15 s before application of the adhesives, and for a control without pre-etching. For groups with 3 s of pre-etching, SU and EL showed higher SBS values than control groups. No significant difference was observed for GB among the 3 s, 10 s, and control groups, but the 15 s pre-etching group showed significantly lower SBS and SFS values than the control group. No significant difference was found for OX among the pre-etching groups. Reducing phosphoric acid pre-etching time can minimize the adverse effect on dentin bonding durability for the conventional self-etch adhesives. Furthermore, a short phosphoric acid pre-etching time enhances the dentin bonding performance of universal adhesives. PMID:26918658

  14. SHEAR STRENGTH MEASURING EQUIPMENT EVALUATION AT THE COLD TEST FACILITY

    SciTech Connect

    MEACHAM JE

    2009-09-09

    Retrievals under current criteria require that approximately 2,000,000 gallons of double-shell tank (DST) waste storage space not be used to prevent creating new tanks that might be susceptible to buoyant displacement gas release events (BDGRE). New criteria are being evaluated, based on actual sludge properties, to potentially show that sludge wastes do not exhibit the same BDGRE risk. Implementation of the new criteria requires measurement of in situ waste shear strength. Cone penetrometers were judged the best equipment for measuring in situ shear strength and an A.P. van den berg Hyson 100 kN Light Weight Cone Penetrometer (CPT) was selected for evaluation. The CPT was procured and then evaluated at the Hanford Site Cold Test Facility. Evaluation demonstrated that the equipment with minor modification was suitable for use in Tank Farms.

  15. Determination of transverse shear strength through torsion testing

    SciTech Connect

    Marcucelli, K.T.; Fish, J.C.

    1997-12-31

    The in-plane characterization of composite materials is, in general, well understood and widely utilized throughout the aerospace industry. However, the use of composites in structural elements such as fuselage frames and rotorcraft flexbeams place large out-of-plane or through-the-thickness stresses for which there is little data. Efforts to determine the interlaminar shear strength of laminated composites have been hampered due to the nonlinear behavior of test specimens and the limitations of current analysis tools. An inexpensive rectangular torsion test specimen was designed to determine the interlaminar shear strength, s{sub 23}, of composite materials. Six different layups were fabricated of AS4/2220-3 carbon/epoxy unidirectional tape and tested in pure torsion. All of the specimens failed abruptly with well-defined shear cracks and exhibited linear load-deflection behavior. A quasi-three-dimensional (Q-3-D) finite element analysis was conducted on each of the specimen configurations to determine the interlaminar shear stress at failure. From this analysis, s{sub 23} was found to be 107 MPa for this material.

  16. Analysis of interfacial structure and bond strength of self-etch adhesive systems

    PubMed Central

    Pinzon, Lilliam M; Watanabe, Larry G; Reis, Andre F; Powers, John M; Marshall, Sally J; Marshall, Grayson W

    2013-01-01

    Purpose To determine the bond strength, nanoleakage and interfacial morphology of four self-etch adhesives bonded to superficial dentin. Methods Micro-tensile (MT, n=15) and single plane shear (SP, n=8) bond tests were performed using human dentin polished through 320-grit SiC paper. Clearfil Protect Bond (PB), Clearfil S3 Bond (S3), Prompt L-Pop (PLP) and G-BOND (GB) were used according to manufacturers’ instructions. Composite was applied as cylinders with a thickness of 4 mm with a 1-mm diameter and stored in water at 37° C for 24 hours. Specimens were debonded with a testing machine at a cross-head speed of 1 mm/min. Means and standard deviations of bond strength were calculated. Data were analyzed using ANOVA. Fisher’s PLSD intervals were calculated at the 0.05 level of significance. Failure modes were determined at 100X. The hybrid layer was revealed by treatment with 5N HCl/5% NaOCl or fractured perpendicular to the interface and sputter coated with gold. Specimens were viewed at 1000X, 2500X, and 5000X in a field emission SEM at 15 kV. Teeth (n=2) sectioned into 0.9-mm thick slabs were immersed in ammoniacal silver nitrate solution for 24 hours, rinsed and immersed in photo-developing solution for 8h. Specimens were sectioned (90-nm thick) and observed under TEM. Results Means ranged from 25.0 to 73.1 MPa for MT and from 15.5 to 56.4 MPa for SP. MT values were greater than SP, but were highly correlated (R2 = 0.99, p= 0.003) and provided the same order for the systems studied. Fisher’s PLSD intervals (p<0.05) for bond strength techniques and adhesives results were 1.7 and 2.3 MPa, respectively. Failures sites were mixed. TEM showed that hybrid layers were ~0.5 µm for PB, GB and S3 and ~5 µm for PLP. SEM showed morphologic differences among adhesives. Silver nitrate deposits were observed within interfaces for all adhesive systems. Clinical significance Simplification of application procedures appears to induce loss of adhesion capabilities. In this

  17. The effect of antimicrobial agents on bond strength of orthodontic adhesives: a meta-analysis of in vitro studies.

    PubMed

    Altmann, A S P; Collares, F M; Leitune, V C B; Samuel, S M W

    2016-02-01

    Antimicrobial orthodontic adhesives aim to reduce white spot lesions' incidence in orthodontic patients, but they should not jeopardizing its properties. Systematic review and meta-analysis were performed to answer the question whether the association of antimicrobial agents with orthodontic adhesives compromises its mechanical properties and whether there is a superior antimicrobial agent. PubMed and Scopus databases. In vitro studies comparing shear bond strength of conventional photo-activated orthodontic adhesives to antimicrobial photo-activated orthodontic adhesives were considered eligible. Search terms included the following: orthodontics, orthodontic, antimicrobial, antibacterial, bactericidal, adhesive, resin, resin composite, bonding agent, bonding system, and bond strength. The searches yielded 494 citations, which turned into 467 after duplicates were discarded. Titles and abstracts were read and 13 publications were selected for full-text reading. Twelve studies were included in the meta-analysis. The global analysis showed no statistically significant difference between control and experimental groups. In the subgroup analysis, only the chlorhexidine subgroup showed a statistically significant difference, where the control groups had higher bond strength than the experimental groups. Many studies on in vitro orthodontic bond strength fail to report test conditions that could affect their outcomes. The pooled in vitro data suggest that adding an antimicrobial agent to an orthodontic adhesive system does not influence bond strength to enamel. It is not possible to state which antimicrobial agent is better to be associated. PMID:26257400

  18. Strength in Shear of the Thin Curved Sheets of Alclad

    NASA Technical Reports Server (NTRS)

    Smith, George Michael

    1930-01-01

    This note is on an investigation made to obtain information on the strength of thin curved sheets of Alclad in shear. Designers may utilize this material as a strength member as well as for a covering for the wings and fuselages. A reduction may then be made in the size of the internal strength members. These experiments were undertaken with the object of securing the maximum value from the metal in this respect. The point at which buckling occurs is of primary importance. The buckling shear of a curved thin plate was determined mathematically and also experimentally. The following formula was obtained mathematically: s=K E t/r in which s is the unit shear, K is a constant, E is the modulus of elasticity, t is the thickness of the material, and r is the radius of curvature. The value of K as determined by the experiments was found to be .075. This formula applies only when s is within the elastic limit of the material. The breaking point of the material was obtained in most of the tests as a matter of information and the results are included in this report. The effect of the supporting ribs was determined by varying the number used.

  19. Influence of adhesive shear deformation on laminate structural behavior with application to parabolic trough solar collectors. [SHEAR

    SciTech Connect

    Clauss, D.B.; Reuter, R.C. Jr.

    1983-02-01

    A simplified theory for the bending behavior of a thin flat bi-lamina panel is developed which includes the effects of shear deformation in the central adhesive layer. Static equilibrium equations for elastic thermomechanical cylindrical bending of a thin plate are used. A solution form is proposed which greatly facilitates application of this theory to structural panels with numerous discrete property changes in the variable direction. The influence of adhesive shear stiffness parameters upon overall laminate behavior is characterized through numerical examples typifying various thermal and mechanical loading conditions.

  20. Material characterization of structural adhesives in the lap shear mode. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Schenck, S. C.; Sancaktar, E.

    1983-01-01

    A general method for characterizing structural adhesives in the bonded lap shear mode is proposed. Two approaches in the form of semi-empirical and theoretical approaches are used. The semi-empirical approach includes Ludwik's and Zhurkov's equations to describe respectively, the failure stresses in the constant strain rate and constant stress loading modes with the inclusion of the temperature effects. The theoretical approach is used to describe adhesive shear stress-strain behavior with the use of viscoelastic or nonlinear elastic constitutive equations. Three different model adhesives are used in the simple lap shear mode with titanium adherends. These adhesives (one of which was developed at NASA Langley Research Center) are currently considered by NASA for possible aerospace applications. Use of different model adhesives helps in assessment of the generality of the method.

  1. Effect of silorane-based adhesive system on bond strength between composite and dentin substrate

    PubMed Central

    Pereira, Jefferson Ricardo; Júnior, Lindomar Corrêa; de Souza Almeida, Mauro; do Valle, Accácio Lins; Honório, Heitor Marques; Vidotti, Hugo Alberto; De Souza, Grace Mendonca

    2015-01-01

    Context: The complexities of the oral environment, the dentin substrate, and the different bond and composite resin systems represent a challenge to the maintenance of reasonable bond between the composite resin and the tooth structure. Aims: To evaluate the effect of the adhesive system on bond strength between silorane-based composite resin and dentin. Materials and Methods: Fourteen human molars extracted were selected and vertically cut into 3 dentin fragments, randomly divided among the experimental groups and restored with Z250 and P90 composite resin using different adhesive protocols (Adper Single Bond 2, Silorano primer, Adper SE Plus, and Scotchbond Multiuse). Two composite resin cylinders were built up on each dentin surface (n = 10) and subjected to a micro-shear bond strength test. Statistical Analysis Used: Kruskal–Wallis one-way analysis of variance and Tukey test (P = 0.05). Results: According to the results, Kruskal–Wallis test evidenced at least one statistical significant difference (P = 0.001). The Tukey test showed statistically significant differences among the group (P < 0.05). Group PSM8 (P90 + SM) showed statically significant higher results when compared with groups PSP4 (P90 + SP), PSB2 (P90 + SB), and ZSE5 (Z250 + SE). Conclusion: The results evidenced that the monomer of the adhesive system has an effect on bond strength between the composite resin and dentin. PMID:26752846

  2. Evaluation of shear bond strength with different enamel pre-treatments.

    PubMed

    Abu Alhaija, Elham S J; Al-Wahadni, Ahed M S

    2004-04-01

    The purpose of this study was to investigate the shear bond strengths of two adhesives, Panavia-21 and a composite resin (Transbond XT), with different enamel pre-treatments, acid etching (37 per cent phosphoric acid) and grit blasting (50 microm aluminium oxide particles). The mode of bond failure was also assessed using the modified adhesive remnant index (ARI). Ninety freshly extracted non-carious human premolar teeth were randomly divided into the following groups: (1) Transbond XT, acid-etched enamel surface; (2) Panavia-21, acid-etched enamel surface; (3) Transbond XT, grit-blasted enamel surface; (4) Panavia-21, grit-blasted enamel surface; (5) Transbond XT, acid-etched enamel surface with grit-blasted brackets; (6) Panavia-21, acid-etched enamel surface with grit-blasted brackets. All groups had stainless steel brackets bonded to the buccal surface of each tooth. An Instron universal testing machine was used to determine the shear bond strengths at a crosshead speed of 0.5 mm/second. Statistical analysis was undertaken using analysis of variance and the Tukey test. The mean bond strength values were as follows: group 1, 135.7 +/- 23.0 N; group 2, 181.5 +/- 18.4 N; group 3, 38.4 +/- 27.5 N; group 4, 59.1 +/- 24.1 N; group 5, 106.7 +/- 21.5 N; group 6, 165.3 +/- 21.4 N. Panavia-21 with the acid-etched enamel surface had a significantly higher shear bond strength than the other groups (P < 0.001). This was followed by the composite group with the acid-etched enamel surface. This group differed significantly from the composite and Panavia-21 groups with the grit-blasted tooth surface (P < 0.001) and from the composite and Panavia-21 groups with the acid-etched enamel surface and grit-blasted brackets (P < 0.01). The current findings indicate that Panavia-21 is an excellent adhesive and produces a bond strength that is clinically useful. Enamel surface preparation using grit blasting alone results in a significantly lower bond strength and should not be

  3. Shear bond strength of new and recycled brackets to enamel.

    PubMed

    Tavares, Stenyo Wanderley; Consani, Simonides; Nouer, Darcy Flávio; Magnani, Maria Beatriz Borges de Araújo; Nouer, Paulo Roberto Aranha; Martins, Laura Moura

    2006-01-01

    The purpose of this study was to evaluate in vitro the shear bond strength of recycled orthodontic brackets. S2C-03Z brackets (Dental Morelli, Brazil) were bonded to the buccal surfaces of 50 extracted human premolars using Concise Orthodontic chemically cured composite resin (3M, USA). The teeth were randomly assigned to 5 groups (n=10), as follows. In group I (control), the bonded brackets remained attached until shear testing (i.e., no debonding/rebonding). In groups II, III and IV, the bonded brackets were detached and rebonded after recycling by 90-microm particle aluminum oxide blasting, silicon carbide stone grinding or an industrial process at a specialized contractor company (Abzil-Lancer, Brazil), respectively. In group V, the bonded brackets were removed and new brackets were bonded to the enamel surface. Shear bond strength was tested in an Instron machine at a crosshead speed of 0.5 mm/min. Data were analyzed statistically by ANOVA and Tukey's test at 5% significance level. There was no statistically significant difference (p>0.05) between the control brackets (0.52 kgf/mm2), brackets recycled by aluminum oxide blasting (0.34 kgf/mm2) and new brackets attached to previously bonded teeth (0.43 kgf/mm2). Brackets recycled by the specialized company (0.28 kgf/mm2) and those recycled by silicon carbide stone grinding (0.14 kgf/mm2) showed the lowest shear strength means and differed statistically from control brackets (0.52 kgf/mm2) (p<0.05). In conclusion, the outcomes of this study showed that bracket recycling using 90-microm aluminum oxide particle air-abrasion was efficient and technically simple, and might provide cost reduction for orthodontists and patients alike. PMID:16721464

  4. Shear Bond Strength and Fracture Analysis of Human vs. Bovine Teeth

    PubMed Central

    Rüttermann, Stefan; Braun, Anika; Janda, Ralf

    2013-01-01

    Purpose To evaluate if bovine enamel and dentin are appropriate substitutes for the respective human hard tooth tissues to test shear bond strength (SBS) and fracture analysis. Materials and Methods 80 sound and caries-free human erupted third molars and 80 freshly extracted bovine permanent central incisors (10 specimens for each group) were used to investigate enamel and dentine adhesion of one 2-step self-etch (SE) and one 3-step etch and rinse (E&R) product. To test SBS the buccal or labial areas were ground plane to obtain appropriate enamel or dentine areas. SE and E&R were applied and SBS was measured prior to and after 500 thermocycles between +5 and +55°C. Fracture analysis was performed for all debonded areas. Results ANOVA revealed significant differences of enamel and dentin SBS prior to and after thermocycling for both of the adhesives. SBS- of E&R-bonded human enamel increased after thermocycling but SE-bonded did not. Bovine enamel SE-bonded showed higher SBS after TC but E&R-bonded had lower SBS. No differences were found for human dentin SE- or E&R-bonded prior to or after thermocycling but bovine dentin SE-bonded increased whereas bovine dentine E&R-bonded decreased. Considering the totalized and adhesive failures, fracture analysis did not show significances between the adhesives or the respective tooth tissues prior to or after thermocycling. Conclusion Although SBS was different on human and bovine teeth, no differences were found for fracture analysis. This indicates that solely conducted SBS on bovine substrate are not sufficient to judge the perfomance of adhesives, thus bovine teeth are questionnable as a substrate for shear bond testing. PMID:23527125

  5. An in vitro evaluation of shear bond strength of silorane and bis-GMA resin-based composite using different curing units

    PubMed Central

    Khosla, Manak; Malhotra, Neeraj; Mala, Kundabala

    2012-01-01

    Aim: To evaluate shear bond strength of silorane and bis-GMA based composite resins using self-etch and total-etch adhesive systems, and compare the effect of Quartz-tungten-halogen (QTH) and Light emitting diode (LED) on the shear bond strength of the experimental materials. Materials and Methods: Flat dentin surfaces were exposed on intact extracted molars and composite resin was built 2 mm in diameter. Teeth were divided randomly into four groups. Groups 1 and 2 were restored with P90 system adhesive and Filtek P90 and cured with QTH and LED units respectively. Groups 3 and 4 were restored with total etch adhesive and Filtek Z100 and cured with QTH and LED units respectively. Specimens were subjected to shear bond strength testing using Instrom Universal testing machine. Results: Data was subjected to one-way analysis of variance. Total-etch groups gave significantly higher shear bond strength values than the self-etch groups. No significant difference in shear bond strength was found between Groups 3 and 4, while Group 1 showed significantly higher values than Group 2. Conclusion: Type of light curing unit is not a significant factor affecting shear bond strength for bis-GMA RBCs using total-etch technique; while for curing silorane resin based composite (RBCs), conventional halogen curing units showed better results. PMID:22876019

  6. Nd:YAG Laser-aided ceramic brackets debonding: Effects on shear bond strength and enamel surface

    NASA Astrophysics Data System (ADS)

    Han, Xianglong; Liu, Xiaolin; Bai, Ding; Meng, Yao; Huang, Lan

    2008-11-01

    In order to evaluate the efficiency of Nd:YAG laser-aided ceramic brackets debonding technique, both ceramic brackets and metallic brackets were bonded with orthodontic adhesive to 30 freshly extracted premolars. The specimens were divided into three groups, 10 in each, according to the brackets employed and the debonding techniques used: (1) metallic brackets with shear debonding force, (2) ceramic brackets with shear debonding force, and (3) ceramic brackets with Nd:YAG laser irradiation. The result showed that laser irradiation could diminish shear bond strength (SBS) significantly and produce the most desired ARI scores. Moreover, scanning electron microscopy investigation displayed that laser-aided technique induced little enamel scratch or loss. It was concluded that Nd:YAG laser could facilitate the debonding of ceramic brackets and diminish the amount of remnant adhesive without damaging enamel structure.

  7. Interfacial Shear Strength of Oxide Scale and SS 441 Substrate

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2011-05-01

    Recent developments on decreasing the operating temperature for Solid Oxide Fuel Cells (SOFCs) have enabled the use of high temperature ferritic alloys as interconnect materials. Oxide scale will inevitably grow on the ferritic interconnects in a high temperature oxidation environment of SOFCs. The growth of the oxide scale induces growth stresses in the scale layer and on the scale/substrate interface. These growth stresses combined with the thermal stresses induced upon stacking cooling by the thermal expansion coefficient mismatch between the oxide scale and the substrate may lead to scale delamination/buckling and eventual spallation, which may lead to serious cell performance degradation. Hence the interfacial adhesion strength between the oxide scale and the substrate is crucial to the reliability and durability of the metallic interconnect in SOFC operating environments. In this paper, we applied an integrated experimental/modeling methodology to quantify the interfacial adhesion strength between the oxide scale and the SS 441 metallic interconnect. The predicted interfacial strength is discussed in details.

  8. The effects of three different desensitizing agents on the shear bond strength of composite resin bonding agents.

    PubMed

    Zorba, Yahya Orcun; Erdemir, Ali; Ercan, Ertugrul; Eldeniz, Ayce Unverdi; Kalaycioglu, Baris; Ulker, Mustafa

    2010-07-01

    The aim of this study was to evaluate the effects of three desensitizing agents on the shear bond strengths of four different bonding agents used to bond composite resin to dentin. A total of 160 extracted human molars were sectioned parallel to the occlusal plane under water cooling, polished and randomly divided into 4 groups of 40. Each group was treated with a different desensitizing agent (Tooth Mousse, Ultra-EZ, Cervitec Plus), except for an untreated control group. Each group was then randomly subdivided into 4 groups of 10, and a different dentin bonding agent (XP Bond, AdheSE, Adper Prompt L-pop, GBond) was applied to each group in order to bond the specimens to a resin composite (Gradia Direct) built up using a plastic apparatus. A Universal Testing Machine was used to measure the shear bond strength of each specimen. Statistical analysis was performed using one-way ANOVA and Tukey's tests. With the exception of the Control/AdheSE and Ultra-EZ/XP Bond groups, no statistically significant differences were found in the shear bond strength values of the groups tested. These findings suggest that the use of different desensitizing agents does not affect the shear bond strength of various adhesive systems used to bond resin composite to dentin. PMID:20416554

  9. Effect of composite resin contamination with powdered and unpowdered latex gloves on its shear bond strength to bovine dentin.

    PubMed

    Oskoee, S S; Navimipour, E J; Bahari, M; Ajami, A A; Oskoee, P A; Abbasi, N M

    2012-01-01

    The aim of the present study was to evaluate the effect of composite resin contamination with powdered and unpowdered latex gloves on the shear bond strength of etch-and-rinse and two-step self-etch adhesive systems. Standard flat dentin surfaces were prepared on the facial aspect of 120 bovine incisors and randomly assigned into two (n=60) groups: group 1: Single Bond (SB), group 2: Clearfil SE Bond (CSE). Furthermore, each group was randomly subdivided into three (n=20) based on the type of composite contamination (without contamination, contamination with powdered latex gloves, and contamination with unpowdered latex gloves). The adhesives were applied and resin composite bonded to the dentin. After thermocycling, the specimens were subjected to a shear bond strength test. Two-way analysis of variance (ANOVA) and a post hoc Bonferroni test were used for statistical analysis. One-way ANOVA was used to compare shear bond strength values in each group. Statistical significance was set at p < 0.02. Two-way ANOVA showed that the shear bond strength was significantly influenced by the type of composite surface contamination (p=0.001). In the SB group there were no significant differences between different surface treatments (p=0.08). In the CSE group a significant difference was observed between the subgroup without contamination and the subgroup with powdered latex glove contamination (p=0.01); however, no significant differences were observed between the other subgroups. PMID:22433010

  10. Effect of Sodium Ascorbate and Delayed Bonding on the Bond Strength of Silorane and Two-step Self-etch Adhesive Systems in Bleached Enamel

    PubMed Central

    Abed Kahnemooyi, Mehdi; Ajami, Amir Ahmad; Kimyai, Soodabeh; Pournaghiazar, Fatemeh; Savadi Oskoee, Siavash; Mhammadi Torkani, Mohammad Ali

    2014-01-01

    Background and aims. Studies have shown decreased bond strength of composite resin to human and bovine bleached enamel. This study evaluated the effect of sodium ascorbate and delayed bonding on the bond strength of two adhesive systems to bleached enamel. Materials and methods. The labial surfaces of 150 sound bovine incisor teeth were abraded with abrasive paper. The teeth were randomly divided into 8 groups: A: control; B: bleached with 35% hydrogen peroxide; C: bleached with 35% hydrogen peroxide + sodium ascorbate gel; and D: bleached with 35% hydrogen peroxide + delayed bonding. In groups A‒D, silorane adhesive system and Filtek silorane composite resin were used. In groups E‒H, the same preparation methods of groups A-D were used. Two-step self-etch Clearfil SE Bond adhesive systems and AP-X composite resin were administered. Shear bond strength of each group was measured. Two samples were prepared for each surface preparation for ultra-structural evaluation. Two-way ANOVA and Tukey test were used for data analysis at P<0.05. Results. The interaction between the adhesive system type and surface preparation protocol was significant (P=0.014), withsignificant differences in shear bond strengths in terms of the adhesive systems (P<0.01). There were significant differences in shear bond strength in terms of surface preparation techniques irrespective of the adhesive system (P<0.01). Conclusion. The results showed that bleaching with 35% hydrogen peroxide decreased the shear bond strength values with both adhesive systems, and a one-week delay in bonding and 10% sodium ascorbate for10 minutes restored the bond strength in both adhesive systems. PMID:25587382

  11. Correlation of ideal and actual shear strengths of metals with their friction properties

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1981-01-01

    The relation between the ideal and actual shear strengths and friction properties of clean metals in contact with clean diamond, boron nitride, silicon carbide, manganese-zinc ferrite, and the metals themselves in vacuum is discussed. An estimate of the ideal shear strength for metals is obtained from the shear modulus, the repeat distance of atoms in the direction of shear of the metal, and the interplanar spacing of the shearing planes. The coefficient of friction for metals is shown to be correlated with both the ideal and actual shear strength of metals. The higher the strength of the metal, the lower the coefficient of friction occurs.

  12. Effect of bromelain enzyme for dentin deproteinization on bond strength of adhesive system

    PubMed Central

    Chauhan, Kirti; Basavanna, Revaplar Siddaveerappa; Shivanna, Vasundhara

    2015-01-01

    Aims: To assess the deproteinizing effect of bromelain enzyme and compare it with 5% sodium hypochlorite (NaOCl) on shear bond strength before application of the adhesive system. Materials and Methods: A total of 30 extracted human premolars were divided into three groups, each one consisted of 10 teeth. The occlusal surface was wet ground to expose superficial dentin. In Group 1, teeth were etched; in Group 2, teeth were etched and deproteinized with bromelain enzyme; in Group 3, teeth were etched and deproteinized with 5% NaOCl. Upon completion of the adhesive procedures, resin composite was inserted into the plastic tube and light-polymerized. All specimens were stored at 37°C in water for 24 h, and the specimens were transferred to the universal testing machine, and then subjected to shear bond strength analysis at a crosshead speed of 1.0 mm/min. Statistical Analysis Used: Data were statistically analyzed using one-way analysis of variance and unpaired t-test at a significance level of 0.05. The statistical analysis was performed using SPSS version 12.0.1 for Windows (SPSS Inc., Chicago, IL, USA). Results: The bond strength results were significantly influenced by the application of bromelain enzyme. Statistically significant differences were not demonstrated in control group and NaOCl-treated group. The highest bond strength was seen in bromelain enzyme-treated group. Conclusions: Within the limitations of the present study, it was concluded that removal of unsupported collagen fiber with bromelain enzyme after acid etching results in improved bond strength. PMID:26430297

  13. Influence of different luting protocols on shear bond strength of computer aided design/computer aided manufacturing resin nanoceramic material to dentin

    PubMed Central

    Poggio, Claudio; Pigozzo, Marco; Ceci, Matteo; Scribante, Andrea; Beltrami, Riccardo; Chiesa, Marco

    2016-01-01

    Background: The purpose of this study was to evaluate the influence of three different luting protocols on shear bond strength of computer aided design/computer aided manufacturing (CAD/CAM) resin nanoceramic (RNC) material to dentin. Materials and Methods: In this in vitro study, 30 disks were milled from RNC blocks (Lava Ultimate/3M ESPE) with CAD/CAM technology. The disks were subsequently cemented to the exposed dentin of 30 recently extracted bovine permanent mandibular incisors. The specimens were randomly assigned into 3 groups of 10 teeth each. In Group 1, disks were cemented using a total-etch protocol (Scotchbond™ Universal Etchant phosphoric acid + Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 2, disks were cemented using a self-etch protocol (Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 3, disks were cemented using a self-adhesive protocol (RelyX™ Unicem 2 Automix self-adhesive resin cement). All cemented specimens were placed in a universal testing machine (Instron Universal Testing Machine 3343) and submitted to a shear bond strength test to check the strength of adhesion between the two substrates, dentin, and RNC disks. Specimens were stressed at a crosshead speed of 1 mm/min. Data were analyzed with analysis of variance and post-hoc Tukey's test at a level of significance of 0.05. Results: Post-hoc Tukey testing showed that the highest shear strength values (P < 0.001) were reported in Group 2. The lowest data (P < 0.001) were recorded in Group 3. Conclusion: Within the limitations of this in vitro study, conventional resin cements (coupled with etch and rinse or self-etch adhesives) showed better shear strength values compared to self-adhesive resin cements. Furthermore, conventional resin cements used together with a self-etch adhesive reported the highest values of adhesion. PMID:27076822

  14. Effect of different surface treatments on shear bond strength of zirconia to three resin cements

    NASA Astrophysics Data System (ADS)

    Dadjoo, Nisa

    Statement of problem: There are no standard guidelines for material selection to obtain acceptable bonding to high-strength zirconium oxide ceramic. Studies suggest resin cements in combination with MDP-containing primer is a reasonable choice, however, the other cements cannot be rejected and need further investigation. Objective: The purpose of this in vitro study was the evaluation of the shear bond strength of three composite resin cements to zirconia ceramic after using different surface conditioning methods. Materials and methods: One hundred and twenty sintered Y-TZP ceramic (IPS e.max ZirCAD) squares (8 x 8 x 4 mm) were embedded in acrylic molds, then divided into three groups (n=40) based on the type of cement used. Within each group, the specimens were divided into four subgroups (n=10) and treated as follows: (1) Air abrasion with 50microm aluminum oxide (Al2O 3) particles (ALO); (2) Air abrasion + Scotchbond Universal adhesive (SBU); (3) Air abrasion + Monobond Plus (MBP); (4) Air abrasion + Z-Prime Plus (ZPP). Composite cylinders were used as carriers to bond to conditioned ceramic using (1) RelyX Ultimate adhesive resin cement (RX); (2) Panavia SA self-adhesive resin cement (PSA); (3) Calibra esthetic cement (CAL). The bonded specimens were submerged in distilled water and subjected to 24-hour incubation period at 37°C. All specimens were stressed in shear at a constant crosshead speed of 0.5 mm/min until failure. Statistical analysis was performed by ANOVA. The bond strength values (MPa), means and standard deviations were calculated and data were analyzed using analysis of variance with Fisher's PLSD multiple comparison test at the 0.05 level of significance. The nature of failure was recorded. Results: The two-way ANOVA showed Panavia SA to have the highest strength at 44.3 +/- 16.9 MPa (p<0.05). The combination of Scotchbond Universal surface treatment with Panavia SA cement showed statistically higher bond strength (p=0.0054). The highest bond

  15. Shear Strength of Single Lap Joint Aluminium-Thermoplastic Natural Rubber (Al-TPNR) Laminated Composite

    NASA Astrophysics Data System (ADS)

    Muzakkar, M. Z.; Ahmad, S.; Yarmo, M. A.; Jalar, A.; Bijarimi, M.

    2013-04-01

    In this work, we studied the effect of surface treatment on the aluminium surface and a coupling agent to improve adhesion between aluminium with organic polymer. Thermoplastic natural rubber (TPNR) matrix was prepared by melt blending of natural rubber (NR), liquid natural rubber (LNR) compatibilizer, linear low density polyethylene (LLDPE) and polyethylene grafted maleic anhydride (PE-g-MAH). The PEgMAH concentration used was varied from 0% - 25%. In addition, the aluminium surface was pre-treated with 3-glycidoxy propyl trimethoxy silane (3-GPS) to enhance the mechanical properties of laminated composite. It was found that the shear strength of single lap joint Al-TPNR laminated composite showing an increasing trend as a function of PE-g-MAH contents for the 3-GPS surface treated aluminium. Moreover, the scanning electron microscope (SEM) revealed that the strength improvement was associated with the chemical state of the compound involved.

  16. Correlation of tensile and shear strengths of metals with their friction properties

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    The relation between the theoretical tensile and the shear strengths and the friction properties of metals in contact with diamond, boron nitride, silicon carbide, manganese-zinc ferrite, and the metals themselves in vacuum was investigated. The relationship between the actual shear strength and the friction properties of the metal was also investigated. An estimate of the theoretical uniaxial tensile strength was obtained in terms of the equilibrium surface energy, interplanar spacing of the planes perpendicular to the tensile axis, and the Young's modulus of elasticity. An estimate of the theoretical shear strength for metals was obtained from the shear modulus, the repeat distance of atoms in the direction of shear of the metal and the interplanar spacing of the shear planes. The coefficient of friction for metals was found to be related to the theoretical tensile, theoretical shear, and actual shear strengths of metals. The higher the strength of the metal, the lower the coefficient of friction.

  17. Generation of Shear Adhesion Map Using SynVivo Synthetic Microvascular Networks

    PubMed Central

    Smith, Ashley M.; Prabhakarpandian, Balabhaskar; Pant, Kapil

    2014-01-01

    Cell/particle adhesion assays are critical to understanding the biochemical interactions involved in disease pathophysiology and have important applications in the quest for the development of novel therapeutics. Assays using static conditions fail to capture the dependence of adhesion on shear, limiting their correlation with in vivo environment. Parallel plate flow chambers that quantify adhesion under physiological fluid flow need multiple experiments for the generation of a shear adhesion map. In addition, they do not represent the in vivo scale and morphology and require large volumes (~ml) of reagents for experiments. In this study, we demonstrate the generation of shear adhesion map from a single experiment using a microvascular network based microfluidic device, SynVivo-SMN. This device recreates the complex in vivo vasculature including geometric scale, morphological elements, flow features and cellular interactions in an in vitro format, thereby providing a biologically realistic environment for basic and applied research in cellular behavior, drug delivery, and drug discovery. The assay was demonstrated by studying the interaction of the 2 µm biotin-coated particles with avidin-coated surfaces of the microchip. The entire range of shear observed in the microvasculature is obtained in a single assay enabling adhesion vs. shear map for the particles under physiological conditions. PMID:24893648

  18. Analysis of Shear Bond Strength and Morphology of Er:YAG Laser-Recycled Ceramic Orthodontic Brackets.

    PubMed

    Han, Ruo-Qiao; Yang, Kai; Ji, Ling-Fei; Ling, Chen

    2016-01-01

    Objective. The aim of this study was to compare the recycling of deboned ceramic brackets via an Er:YAG laser or via the traditional chairside processing methods of flaming and sandblasting; shear bond strength and morphological changes were evaluated in recycled brackets versus new brackets. Materials and Methods. 3M Clarity Self-Ligating Ceramic Brackets with a microcrystalline base were divided into groups subjected to flaming, sandblasting, or exposure to an Er:YAG laser. New ceramic brackets served as a control group. Shear bond strengths were determined with an Electroforce test machine and tested for statistical significance through analysis of variance. Morphological examinations of the recycled ceramic bracket bases were conducted with scanning electron microscopy and confocal laser scanning microscopy. Residue on the bracket base was analyzed with Raman spectroscopy. Results. Faded, dark adhesive was left on recycled bracket bases processed via flaming. Adhesive was thoroughly removed by both sandblasting and exposure to an Er:YAG laser. Compared with new brackets, shear bond strength was lower after sandblasting (p < 0.05), but not after exposure to an Er:YAG laser. The Er:YAG laser caused no damage to the bracket. Conclusion. Er:YAG lasers effectively remove adhesive from the bases of ceramic brackets without damaging them; thus, this method may be preferred over other recycling methods. PMID:27047964

  19. Analysis of Shear Bond Strength and Morphology of Er:YAG Laser-Recycled Ceramic Orthodontic Brackets

    PubMed Central

    Han, Ruo-qiao; Ji, Ling-fei; Ling, Chen

    2016-01-01

    Objective. The aim of this study was to compare the recycling of deboned ceramic brackets via an Er:YAG laser or via the traditional chairside processing methods of flaming and sandblasting; shear bond strength and morphological changes were evaluated in recycled brackets versus new brackets. Materials and Methods. 3M Clarity Self-Ligating Ceramic Brackets with a microcrystalline base were divided into groups subjected to flaming, sandblasting, or exposure to an Er:YAG laser. New ceramic brackets served as a control group. Shear bond strengths were determined with an Electroforce test machine and tested for statistical significance through analysis of variance. Morphological examinations of the recycled ceramic bracket bases were conducted with scanning electron microscopy and confocal laser scanning microscopy. Residue on the bracket base was analyzed with Raman spectroscopy. Results. Faded, dark adhesive was left on recycled bracket bases processed via flaming. Adhesive was thoroughly removed by both sandblasting and exposure to an Er:YAG laser. Compared with new brackets, shear bond strength was lower after sandblasting (p < 0.05), but not after exposure to an Er:YAG laser. The Er:YAG laser caused no damage to the bracket. Conclusion. Er:YAG lasers effectively remove adhesive from the bases of ceramic brackets without damaging them; thus, this method may be preferred over other recycling methods. PMID:27047964

  20. Modelling and Simulating the Adhesion and Detachment of Chondrocytes in Shear Flow

    NASA Astrophysics Data System (ADS)

    Hao, Jian; Pan, Tsorng-Whay; Rosenstrauch, Doreen

    Chondrocytes are typically studied in the environment where they normally reside such as the joints in hips, intervertebral disks or the ear. For example, in [SKE+99], the effect of seeding duration on the strength of chondrocyte adhesion to articulate cartilage has been studied in shear flow chamber since such adhesion may play an important role in the repair of articular defects by maintaining cells in positions where their biosynthetic products can contribute to the repair process. However, in this investigation, we focus mainly on the use of auricular chondrocytes in cardiovascular implants. They are abundant, easily and efficiently harvested by a minimally invasive technique. Auricular chondrocytes have ability to produce collagen type-II and other important extracellular matrix constituents; this allows them to adhere strongly to the artificial surfaces. They can be genetically engineered to act like endothelial cells so that the biocompatibility of cardiovascular prothesis can be improved. Actually in [SBBR+02], genetically engineered auricular chondrocytes can be used to line blood-contacting luminal surfaces of left ventricular assist device (LVAD) and a chondrocyte-lined LVAD has been planted into the tissue-donor calf and the results in vivo have proved the feasibility of using autologous auricular chondrocytes to improve the biocompatibility of the blood-biomaterial interface in LVADs and cardiovascular prothesis. Therefore, cultured chondrocytes may offer a more efficient and less invasive means of covering artificial surface with a viable and adherent cell layer.

  1. Biomechanics of P-selectin PSGL-1 bonds: Shear threshold and integrin-independent cell adhesion

    SciTech Connect

    Xiao, Zhihua; Goldsmith, Harry L.; MacIntosh, Fiona A.; Shankaran, Harish; Neelamegham, Sriram

    2006-03-01

    Platelet-leukocyte adhesion may contribute to thrombosis and inflammation. We examined the heterotypic interaction between unactivated neutrophils and either thrombin receptor activating peptide (TRAP) stimulated platelets or P-selectin bearing beads (Ps-beads) in suspension. Cone-plate viscometers were used to apply controlled shear rates from 14-3000/s. Platelet-neutrophil and bead-neutrophil adhesion analysis was performed using both flow cytometry and high-speed videomicroscopy. We observed that while blocking antibodies against either P-selectin or P-selectin glycoprotein ligand-1 (PSGL-1) alone inhibited platelet-neutrophil adhesion by ~60% at 140/s, these reagents completely blocked adhesion at 3000/s. Anti-Mac-1 alone did not alter platelet-neutrophil adhesion rates at any shear rate, though in synergy with selectin antagonists it abrogated cell binding. Unstimulated neutrophils avidly bound Ps-beads and activated platelets in an integrin-independent manner, suggesting that purely selectin-dependent cell adhesion is possible. In support of this, antagonists against P-selectin or PSGL-1 dissociated previously formed platelet-neutrophil and Ps-bead neutrophil aggregates under shear in a variety of experimental systems, including in assays performed with whole blood. In studies where medium viscosity and shear rate were varied, a subtle shear threshold for P-selectin PSGL-1 binding was also noted at shear rates<100/s and at force loading rates of ~300pN/sec. Results are discussed in light of biophysical computations that characterize the collision between unequal size particles in linear shear flow. Overall, our studies reveal an integrin-independent regime for cell adhesion that may be physiologically relevant.

  2. Lap Shear and Impact Testing of Ochre and Beeswax in Experimental Middle Stone Age Compound Adhesives.

    PubMed

    Kozowyk, P R B; Langejans, G H J; Poulis, J A

    2016-01-01

    The production of compound adhesives using disparate ingredients is seen as some of the best evidence of advanced cognition outside of the use of symbolism. Previous field and laboratory testing of adhesives has shown the complexities involved in creating an effective Middle Stone Age glue using Acacia gum. However, it is currently unclear how efficient different adhesive recipes are, how much specific ingredients influence their performance, and how difficult it may have been for those ingredients to be combined to maximum effect. We conducted a series of laboratory-based lap shear and impact tests, following modern adhesion testing standards, to determine the efficacy of compound adhesives, with particular regard to the ingredient ratios. We tested rosin (colophony) and gum adhesives, containing additives of beeswax and ochre in varying ratios. During both lap shear and impact tests compound rosin adhesives performed better than single component rosin adhesives, and pure acacia gum was the strongest. The large difference in performance between each base adhesive and the significant changes in performance that occur due to relatively small changes in ingredient ratios lend further support to the notion that high levels of skill and knowledge were required to consistently produce the most effective adhesives. PMID:26983080

  3. Lap Shear and Impact Testing of Ochre and Beeswax in Experimental Middle Stone Age Compound Adhesives

    PubMed Central

    2016-01-01

    The production of compound adhesives using disparate ingredients is seen as some of the best evidence of advanced cognition outside of the use of symbolism. Previous field and laboratory testing of adhesives has shown the complexities involved in creating an effective Middle Stone Age glue using Acacia gum. However, it is currently unclear how efficient different adhesive recipes are, how much specific ingredients influence their performance, and how difficult it may have been for those ingredients to be combined to maximum effect. We conducted a series of laboratory-based lap shear and impact tests, following modern adhesion testing standards, to determine the efficacy of compound adhesives, with particular regard to the ingredient ratios. We tested rosin (colophony) and gum adhesives, containing additives of beeswax and ochre in varying ratios. During both lap shear and impact tests compound rosin adhesives performed better than single component rosin adhesives, and pure acacia gum was the strongest. The large difference in performance between each base adhesive and the significant changes in performance that occur due to relatively small changes in ingredient ratios lend further support to the notion that high levels of skill and knowledge were required to consistently produce the most effective adhesives. PMID:26983080

  4. Gecko toe and lamellar shear adhesion on macroscopic, engineered rough surfaces.

    PubMed

    Gillies, Andrew G; Henry, Amy; Lin, Hauwen; Ren, Angela; Shiuan, Kevin; Fearing, Ronald S; Full, Robert J

    2014-01-15

    The role in adhesion of the toes and lamellae - intermediate-sized structures - found on the gecko foot remains unclear. Insight into the function of these structures can lead to a more general understanding of the hierarchical nature of the gecko adhesive system, but in particular how environmental topology may relate to gecko foot morphology. We sought to discern the mechanics of the toes and lamellae by examining gecko adhesion on controlled, macroscopically rough surfaces. We used live Tokay geckos, Gekko gecko, to observe the maximum shear force a gecko foot can attain on an engineered substrate constructed with sinusoidal patterns of varying amplitudes and wavelengths in sizes similar to the dimensions of the toes and lamellae structures (0.5 to 6 mm). We found shear adhesion was significantly decreased on surfaces that had amplitudes and wavelengths approaching the lamella length and inter-lamella spacing, losing 95% of shear adhesion over the range tested. We discovered that the toes are capable of adhering to surfaces with amplitudes much larger than their dimensions even without engaging claws, maintaining 60% of shear adhesion on surfaces with amplitudes of 3 mm. Gecko adhesion can be predicted by the ratio of the lamella dimensions to surface feature dimensions. In addition to setae, remarkable macroscopic-scale features of gecko toes and lamellae that include compliance and passive conformation are necessary to maintain contact, and consequently, generate shear adhesion on macroscopically rough surfaces. Findings on the larger scale structures in the hierarchy of gecko foot function could provide the biological inspiration to drive the design of more effective and versatile synthetic fibrillar adhesives. PMID:24115057

  5. Strength analysis and design of adhesive joints between circular elements made of metal and reinforced polymer materials

    NASA Astrophysics Data System (ADS)

    Pelekh, B. L.; Marchuk, M. V.; Kogut, I. S.

    1992-06-01

    The stress-strain state of an adhesive joint between cylindrical components made of a metal (steel) and a cross-reinforced filament-wound composite (glass/polymer or basalt/polymer) was investigated under static axial loading using newly proposed experimental techniques and a refined mathematical model. Analytical expressions are obtained for contact stresses in the adhesive joint. The maximum permissible load and the ultimate shear strength of the joint are determined. The experimental results are found to be in satisfactory agreement with model predictions.

  6. Comparing the shear bond strength of direct and indirect composite inlays in relation to different surface conditioning and curing techniques

    PubMed Central

    Zorba, Yahya Orcun; Ilday, Nurcan Ozakar; Bayındır, Yusuf Ziya; Demirbuga, Sezer

    2013-01-01

    Objective: The aim of this study was to test the null hypothesis that different surface conditioning (etch and rinse and self-etch) and curing techniques (light cure/dual cure) had no effect on the shear bond strength of direct and indirect composite inlays. Materials and Methods: A total of 112 extracted human molar teeth were horizontally sectioned and randomly divided into two groups according to restoration technique (direct and indirect restorations). Each group was further subdivided into seven subgroups (n = 8) according to bonding agent (etch and rinse adhesives Scotchbond multi-purpose plus, All-Bond 3, Adper Single Bond and Prime Bond NT; and self-etch adhesives Clearfil Liner Bond, Futurabond DC and G bond). Indirect composites were cemented to dentin surfaces using dual-curing luting cement. Shear bond strength of specimens was tested using a Universal Testing Machine. Two samples from each subgroup were evaluated under Scanning electron microscopy to see the failing modes. Data was analyzed using independent sample t-tests and Tukey's tests. Results: Surface conditioning and curing of bonding agents were all found to have significant effects on shear bond strength (P < 0.05) of both direct and indirect composite inlays. With direct restoration, etch and rinse systems and dual-cured bonding agents yielded higher bond strengths than indirect restoration, self-etch systems and light-cured bonding agents. Conclusions: The results of the present study indicated that direct restoration to be a more reliable method than indirect restoration. Although etch and rinse bonding systems showed higher shear bond strength to dentin than self-etch systems, both systems can be safely used for the adhesion of direct as well as indirect restorations. PMID:24932118

  7. Shear bond strength of indirect composite material to monolithic zirconia

    PubMed Central

    2016-01-01

    PURPOSE This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). MATERIALS AND METHODS Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (α=.05). RESULTS Bond strength was significantly lower in untreated specimens than in sandblasted specimens (P<.05). No difference between the glaze layer and hydrofluoric acid application treated groups were observed. However, bond strength for these groups were significantly higher as compared with the other two groups (P<.05). CONCLUSION Combined use of glaze layer & hydrofluoric acid application and silanization are reliable for strong and durable bonding between indirect composite material and monolithic zirconia. PMID:27555895

  8. Effect of different surface treatments on the shear bond strength of nanofilled composite repairs.

    PubMed

    Ahmadizenouz, Ghazaleh; Esmaeili, Behnaz; Taghvaei, Arnica; Jamali, Zahra; Jafari, Toloo; Amiri Daneshvar, Farshid; Khafri, Soraya

    2016-01-01

    Background. Repairing aged composite resin is a challenging process. Many surface treatment options have been proposed to this end. This study evaluated the effect of different surface treatments on the shear bond strength (SBS) of nano-filled composite resin repairs. Methods. Seventy-five cylindrical specimens of a Filtek Z350XT composite resin were fabricated and stored in 37°C distilled water for 24 hours. After thermocycling, the specimens were divided into 5 groups according to the following surface treatments: no treatment (group 1); air abrasion with 50-μm aluminum oxide particles (group 2); irradiation with Er:YAG laser beams (group 3); roughening with coarse-grit diamond bur + 35% phosphoric acid (group 4); and etching with 9% hydrofluoric acid for 120 s (group 5). Another group of Filtek Z350XT composite resin samples (4×6 mm) was fabricated for the measurement of cohesive strength (group 6). A silane coupling agent and an adhesive system were applied after each surface treatment. The specimens were restored with the same composite resin and thermocycled again. A shearing force was applied to the interface in a universal testing machine. Data were analyzed using one-way ANOVA and post hoc Tukey tests (P < 0.05). Results. One-way ANOVA indicated significant differences between the groups (P < 0.05). SBS of controls was significantly lower than the other groups; differences between groups 2, 3, 4, 5 and 6 were not significant. Surface treatment with diamond bur + 35% phosphoric acid resulted in the highest bond strength. Conclusion. All the surface treatments used in this study improved the shear bond strength of nanofilled composite resin used. PMID:27092209

  9. Effect of different surface treatments on the shear bond strength of nanofilled composite repairs

    PubMed Central

    Ahmadizenouz, Ghazaleh; Esmaeili, Behnaz; Taghvaei, Arnica; Jamali, Zahra; Jafari, Toloo; Amiri Daneshvar, Farshid; Khafri, Soraya

    2016-01-01

    Background. Repairing aged composite resin is a challenging process. Many surface treatment options have been proposed to this end. This study evaluated the effect of different surface treatments on the shear bond strength (SBS) of nano-filled composite resin repairs. Methods. Seventy-five cylindrical specimens of a Filtek Z350XT composite resin were fabricated and stored in 37°C distilled water for 24 hours. After thermocycling, the specimens were divided into 5 groups according to the following surface treatments: no treatment (group 1); air abrasion with 50-μm aluminum oxide particles (group 2); irradiation with Er:YAG laser beams (group 3); roughening with coarse-grit diamond bur + 35% phosphoric acid (group 4); and etching with 9% hydrofluoric acid for 120 s (group 5). Another group of Filtek Z350XT composite resin samples (4×6 mm) was fabricated for the measurement of cohesive strength (group 6). A silane coupling agent and an adhesive system were applied after each surface treatment. The specimens were restored with the same composite resin and thermocycled again. A shearing force was applied to the interface in a universal testing machine. Data were analyzed using one-way ANOVA and post hoc Tukey tests (P < 0.05). Results. One-way ANOVA indicated significant differences between the groups (P < 0.05). SBS of controls was significantly lower than the other groups; differences between groups 2, 3, 4, 5 and 6 were not significant. Surface treatment with diamond bur + 35% phosphoric acid resulted in the highest bond strength. Conclusion. All the surface treatments used in this study improved the shear bond strength of nanofilled composite resin used. PMID:27092209

  10. Effect of surface treatments on shear bond strength of denture teeth to denture base resins

    PubMed Central

    Bahrani, Farideh; Khaledi, Amir Ali Reza

    2014-01-01

    Background: Debonding of denture teeth from denture bases is the most common failure in removable dentures. The purpose of this study was to evaluate the effect of surface treatments on shear bond strength of denture teeth to heat-polymerized and autopolymerized denture base resins. Materials and Methods: In this experimental in vitro study, 60 maxillary central incisor acrylic teeth were divided into two groups. Group M was polymerized with heat-polymerized acrylic resin (Meliodent) by compression molding technique and group F was processed by autopolymerized acrylic resin (Futura Gen) by injection molding technique. Within each group, specimens were divided into three subgroups according to the teeth surface treatments (n = 10): (1) ground surface as the control group (M1 and F1), (2) ground surface combined with monomer application (M2 and F2), and (3) airborne particle abrasion by 50 μm Al2O3 (M3 and F3). The shear bond strengths of the specimens were tested by universal testing machine with crosshead speed of 5 mm/min. Data were analyzed by two-way analysis of variance (ANOVA) and Tukey's honestly significant difference (HSD) tests (P < 0.05). Results: The mean shear bond strengths of the studied groups were 96.40 ± 14.01, 124.70 ± 15.64, and 118 ± 16.38 N for M1, M2, and M3 and 87.90 ± 13.48, 117 ± 13.88, and 109.70 ± 13.78 N for F1, F2, and F3, respectively. The surface treatment of the denture teeth significantly affected their shear bond strengths to the both the denture base resins (P < 0.001). However, there were no significant differences between the groups treated by monomer or airborne particle abrasion (P = 0.29). The highest percentage of failure mode was mixed in Meliodent and adhesive in Futura Gen. Conclusion: Monomer application and airborne particle abrasion of the ridge lap area of the denture teeth improved their shear bond strengths to the denture base resins regardless of the type of polymerization. PMID:24688570

  11. Shear bond strength of computer-aided design and computer-aided manufacturing feldspathic and nano resin ceramics blocks cemented with three different generations of resin cement

    PubMed Central

    Ab-Ghani, Zuryati; Jaafar, Wahyuni; Foo, Siew Fon; Ariffin, Zaihan; Mohamad, Dasmawati

    2015-01-01

    Aim: To evaluate the shear bond strength between the dentin substrate and computer-aided design and computer-aided manufacturing feldspathic ceramic and nano resin ceramics blocks cemented with resin cement. Materials and Methods: Sixty cuboidal blocks (5 mm × 5 mm × 5 mm) were fabricated in equal numbers from feldspathic ceramic CEREC® Blocs PC and nano resin ceramic Lava™ Ultimate, and randomly divided into six groups (n = 10). Each block was cemented to the dentin of 60 extracted human premolar using Variolink® II/Syntac Classic (multi-steps etch-and-rinse adhesive bonding), NX3 Nexus® (two-steps etch-and-rinse adhesive bonding) and RelyX™ U200 self-adhesive cement. All specimens were thermocycled, and shear bond strength testing was done using the universal testing machine at a crosshead speed of 1.0 mm/min. Data were analyzed using one-way ANOVA. Results: Combination of CEREC® Blocs PC and Variolink® II showed the highest mean shear bond strength (8.71 Mpa), while the lowest of 2.06 Mpa were observed in Lava™ Ultimate and RelyX™ U200. There was no significant difference in the mean shear bond strength between different blocks. Conclusion: Variolink® II cement using multi-steps etch-and-rinse adhesive bonding provided a higher shear bond strength than the self-adhesive cement RelyX U200. The shear bond strength was not affected by the type of blocks used. PMID:26430296

  12. Propagation of ultrasonic guided waves in lap-shear adhesive joints

    NASA Astrophysics Data System (ADS)

    Lanza di Scalea, Francesco; Rizzo, Piervincenzo; Marzani, Alessandro

    2004-07-01

    This paper deals with the propagation of ultrasonic guided waves in adhesively-bonded lap-shear joints. The topic is relevant to ultrasonic bond inspection in aerospace components. Specifically, the propagation of the lowest-order, antisymmetric a0 mode through the joint is examined. This mode can be easily generated and detected in the field due to the predominant out-of-plane displacements at the surface of the test piece. An important aspect is the mode conversion at the boundaries between the single-plate adherends and the multilayer overlap. The a0 strength of transmission is studied for three different bond states in aluminum joints, namely a fully cured adhesive bond, a poorly cured adhesive bond, and a slip bond. Theoretical predictions based on the Global Matrix Method indicate that the dispersive behavior of the guided waves in the multilayer overlap is highly dependent on bond state. Experimental tests of the joints are conducted by a hybrid, broadband laser/air-coupled ultrasonic setup in a through-transmission configuration. This system does not require any wet coupling and it can be moved flexibly across the test piece. The Gabor Wavelet transform is employed to extract energy transmission coefficients in the 100 kHz - 1.4 MHz range for the three different bond states examined. The cross-sectional mode shapes of the guided waves are shown to have a substantial role in the energy transfer through the joint. A rationale for the selection of the a0 excitation frequencies highly sensitive to bond state will be given.

  13. A novel method of testing the shear strength of thick honeycomb composites

    NASA Technical Reports Server (NTRS)

    Hodge, A. J.; Nettles, A. T.

    1991-01-01

    Sandwich composites of aluminum and glass/phenolic honeycomb core were tested for shear strength before and after impact damage. The assessment of shear strength was performed in two ways; by four point bend testing of sandwich beams and by a novel double lap shear (DLS) test. This testing technique was developed so smaller specimens could be used, thus making the use of common lab scale fabrication and testing possible. The two techniques yielded similar data. The DLS test gave slightly lower shear strength values of the two methods but were closer to the supplier's values for shear strength.

  14. Cell-matrix adhesion characterization using multiple shear stress zones in single stepwise microchannel

    NASA Astrophysics Data System (ADS)

    Kim, Min-Ji; Doh, Il; Bae, Gab-Yong; Cha, Hyuk-Jin; Cho, Young-Ho

    2014-08-01

    This paper presents a cell chip capable to characterize cell-matrix adhesion by monitoring cell detachment rate. The proposed cell chip can supply multiple levels of shear stress in single stepwise microchannel. As epithelial-mesenchymal transition (EMT), one of hallmarks of cancer metastasis is closely associated to the interaction with extracelluar matrix (ECM), we took advantage of two lung cancer cell models with different adhesion properties to ECM depending their epithelial or mesenchymal properties, including the pair of lung cancer cells with (A549sh) or without E-cadherin expression (A549sh-Ecad), which would be optimal model to examine the alteration of adhesion properties after EMT induction. The cell-matrix adhesion resisting to shear stress appeared to be remarkably differed between lung cancer cells. The detachment rate of epithelial-like H358 and mesenchymal-like H460 cells was 53%-80% and 25%-66% in the shear stress range of 34-60 dyn/cm2, respectively. A549sh-Ecad cells exhibits lower detachment rate (5%-9%) compared to A549sh cells (14%-40%). By direct comparison of adhesion between A549sh and A549sh-Ecad, we demonstrated that A549shE-cad to mimic EMT were more favorable to the ECM attachment under the various levels of shear stress. The present method can be applied to quantitative analysis of tumor cell-ECM adhesion.

  15. Innovative use of adhesive interface characteristics to nondestructively quantify the strength of bonded joints.

    SciTech Connect

    Roach, Dennis Patrick; Duvall, Randy L.; Rackow, Kirk A.

    2010-05-01

    Advances in structural adhesives have permitted engineers to contemplate the use of bonded joints in areas that have long been dominated by mechanical fasteners and welds. Although strength, modulus, and toughness have been improved in modern adhesives, the typical concerns with using these polymers still exist. These include concerns over long-term durability and an inability to quantify bond strength (i.e., identify weak bonds) in adhesive joints. Bond deterioration in aging structures and bond strength in original construction are now critical issues that require more than simple flaw detection. Whether the structure involves metallic or composite materials, it is necessary to extend inspections beyond the detection of disbond flaws to include an assessment of the strength of the bond. Use of advanced nondestructive inspection (NDI) methods to measure the mechanical properties of a bonded joint and associated correlations with post-inspection failure tests have provided some clues regarding the key parameters involved in assessing bond strength. Recent advances in ultrasonic- and thermographic-based inspection methods have shown promise for measuring such properties. Specialized noise reduction and signal enhancement schemes have allowed thermographic interrogations to image the subtle differences between bond lines of various strengths. Similarly, specialized ultrasonic (UT) inspection techniques, including laser UT, guided waves, UT spectroscopy, and resonance methods, can be coupled with unique signal analysis algorithms to accurately characterize the properties of weak interfacial bonds. The generation of sufficient energy input levels to derive bond strength variations, the production of sufficient technique sensitivity to measure such minor response variations, and the difficulty in manufacturing repeatable weak bond specimens are all issues that exacerbate these investigations. The key to evaluating the bond strength lies in the ability to exploit the

  16. Burst Strength of Tubing and Casing Based on Twin Shear Unified Strength Theory

    PubMed Central

    Lin, Yuanhua; Deng, Kuanhai; Sun, Yongxing; Zeng, Dezhi; Liu, Wanying; Kong, Xiangwei; Singh, Ambrish

    2014-01-01

    The internal pressure strength of tubing and casing often cannot satisfy the design requirements in high pressure, high temperature and high H2S gas wells. Also, the practical safety coefficient of some wells is lower than the design standard according to the current API 5C3 standard, which brings some perplexity to the design. The ISO 10400: 2007 provides the model which can calculate the burst strength of tubing and casing better than API 5C3 standard, but the calculation accuracy is not desirable because about 50 percent predictive values are remarkably higher than real burst values. So, for the sake of improving strength design of tubing and casing, this paper deduces the plastic limit pressure of tubing and casing under internal pressure by applying the twin shear unified strength theory. According to the research of the influence rule of yield-to-tensile strength ratio and mechanical properties on the burst strength of tubing and casing, the more precise calculation model of tubing-casing's burst strength has been established with material hardening and intermediate principal stress. Numerical and experimental comparisons show that the new burst strength model is much closer to the real burst values than that of other models. The research results provide an important reference to optimize the tubing and casing design of deep and ultra-deep wells. PMID:25397886

  17. The effects of two soft drinks on bond strength, bracket microleakage, and adhesive remnant on intact and sealed enamel.

    PubMed

    Navarro, Raúl; Vicente, Ascensión; Ortiz, Antonio J; Bravo, Luis A

    2011-02-01

    The purpose of this study was to evaluate the effects of Coca-Cola and Schweppes Limón on bond strength, adhesive remnant, and microleakage beneath brackets. One hundred and twenty upper central incisor brackets were bonded to bovine incisors and divided into three groups: (1) Control, (2) Coca-Cola, and (3) Schweppes Limón. The teeth were submerged in the drinks three times a day for 15 minutes over a 15 day period. Shear bond strength (SBS) was measured with a universal testing machine, and adhesive remnant evaluated using image analysis equipment. Microleakage at the enamel-adhesive and adhesive-bracket interfaces was determined using methylene blue. One hundred and eight teeth were used for scanning electron microscopy to determine the effect of the drinks on intact and sealed enamel. SBS and adhesive remnant data were analysed using the Kruskal-Wallis test (P < 0.05) and microleakage using the Kruskal-Wallis and Mann-Whitney tests applying Bonferroni correction (P < 0.017). No significant differences were found in SBS and adhesive remnant between the groups (P > 0.05). Microleakage at the enamel-adhesive interface for groups 2 and 3 was significantly greater than for group 1 (P < 0.017). At the adhesive-bracket interface, microleakage was significantly greater in group 2 than in group 1 (P < 0.017) while microleakage in group 3 did not differ significantly from either group 1 or 2 (P < 0.017). The drinks produced enamel erosion, loss of adhesive and microleakage. Coca-Cola and Schweppes Limón did not affect the SBS of brackets or the adhesive remnant. PMID:20631082

  18. Effect of various intraoral repair systems on the shear bond strength of composite resin to zirconia

    PubMed Central

    Han, In-Hae; Kang, Dong-Wan; Chung, Chae-Heon; Choe, Han-Cheol

    2013-01-01

    PURPOSE This study compared the effect of three intraoral repair systems on the bond strength between composite resin and zirconia core. MATERIALS AND METHODS Thirty zirconia specimens were divided into three groups according to the repair method: Group I- CoJet™ Repair System (3M ESPE) [chairside silica coating with 30 µm SiO2 + silanization + adhesive]; Group II- Ceramic Repair System (Ivoclar Vivadent) [etching with 37% phosphoric acid + Zirconia primer + adhesive]; Group III- Signum Zirconia Bond (Heraus) [Signum Zirconia Bond I + Signum Zirconia Bond II]. Composite resin was polymerized on each conditioned specimen. The shear bond strength was tested using a universal testing machine, and fracture sites were examined with FE-SEM. Surface morphology and wettability after surface treatments were examined additionally. The data of bond strengths were statistically analyzed with one-way ANOVA and Tamhane post hoc test (α=.05). RESULTS Increased surface roughness and the highest wettability value were observed in the CoJet sand treated specimens. The specimens treated with 37% phosphoric acid and Signum Zirconia Bond I did not show any improvement of surface irregularity, and the lowest wettability value were found in 37% phosphoric acid treated specimens. There was no significant difference in the bond strengths between Group I (7.80 ± 0.76 MPa) and III (8.98 ± 1.39 MPa). Group II (3.21 ± 0.78 MPa) showed a significant difference from other groups (P<.05). CONCLUSION The use of Intraoral silica coating system and the application of Signum Zirconia Bond are effective for increasing the bond strength of composite resin to zirconia. PMID:24049565

  19. Experimental Study on the Shear Strength of Sandy Clay Infilled Regular Rough Rock Joints

    NASA Astrophysics Data System (ADS)

    Jahanian, Homayoun; Sadaghiani, Mohammad Hosein

    2015-05-01

    Infill materials in rock joints usually cause a reduction in the joint shear strength. The shear behavior of rock discontinuities depends upon whether they are clean and unfilled or filled, so this concern invites accurate understanding of the shear behavior and strength of infilled joints. A series of constant normal load direct shear tests was performed to investigate the shear strength of artificial samples with infilled rough joint surfaces having different asperity and infill characteristics. The current study focuses on the effects of factors that influence the shear strength of infilled rock joints samples, with emphasis on forward and reverse shearing. In the forward cycle, the front joint wall is compressed and possibly sheared, and the back side fill is unbonded from the joint surface and slightly disturbed. In the reverse cycle, the disturbed and weakened back side fill is under shearing. The effect of the normal stress on the joint is studied, as this factor plays an important role on the shear behavior of infilled rock joint samples. The results show that joints with low asperity angle exhibit higher shear strength during the forward shearing cycle than the reverse cycle, but in joints with steeper asperity angle, the reverse cycle exhibits greater shear strength. In the reverse cycle, the joint infill has less influence compared to the effect of the rougher surface and higher asperity inclination, even in higher normal stress.

  20. Effect of bracket base design on shear bond strength to feldspathic porcelain

    PubMed Central

    Dalaie, Kazem; Mirfasihi, Armin; Eskandarion, Solmaz; Kabiri, Sattar

    2016-01-01

    Objectives: This study sought to assess the effect of bracket base design on the shear bond strength (SBS) of the bracket to feldspathic porcelain. Materials and Methods: This in vitro, experimental study was conducted on 40 porcelain-fused-to-metal restorations and four different bracket base designs were bonded to these specimens. The porcelain surfaces were etched, silanized, and bonded to brackets. Specimens were thermocycler, incubated for 24 h and were subjected to SBS. Data were analyzed using Shapiro–Wilk test, Levene's test, one-way ANOVA, and Tukey's honest significant difference test. Adhesive remnant index was calculated and compared using Fisher's exact test. Results: One-way ANOVA showed that the SBS values were significantly different among the four groups (P < 0.001). Groups 1, 2, and 4 were not significantly different, but group 3 had significantly lower SBS (P < 0.001). Fractures mostly occurred at the porcelain-adhesive interface in Groups 1 and 2 while in Groups 3 and 4, bracket-adhesive and mixed failures were more common. Conclusion: The bracket base design significantly affects the SBS to feldspathic porcelain. PMID:27403052

  1. Comparative evaluation of shear bond strength and nanoleakage of conventional and self-adhering flowable composites to primary teeth dentin

    PubMed Central

    Sachdeva, Priyanka; Goswami, Mousumi; Singh, Darrel

    2016-01-01

    Background: The latest advancement in adhesive dentistry is the development of self adhering flowable composite resin which incorporates the self-etch adhesion technology to eliminate the steps of etching, rinsing, priming and bonding. Few studies have addressed resin bonding to primary teeth. Aim: The aim of this study was to compare the shear bond strength and nanoleakage of conventional and self adhering flowable composites to primary teeth dentin. Settings and Design: This study was conducted in the Department of Pedodontics and Preventive Dentistry, I.T.S Dental College, Hospital and Research Centre, Greater Noida; in association with the Department of Mechanical Engineering, I.T.S Engineering College, Greater Noida; and the Advanced Instrumentation Research Facility (AIRF), Jawaharlal Nehru University, New Delhi. Materials and Methods: Sixty of the ninety primary teeth were evaluated for shear bond strength and thirty for nanoleakage. The samples were divided into three groups; Group I – Dyad Flow (Kerr), Group II – Fusio Liquid Dentin (Pentron Clinical Technologies) and Group III – G-aenial Universal Flo (GC). Shear bond strength was determined using a universal testing machine. Nanoleakage pattern was observed under scanning electron microscope. Results: The shear bond strength of conventional flowable composite was significantly greater than self adhering flowable composite (p<0.05). Nanoleakage scores of both conventional and self adhering flowable composites were comparable. Conclusions: Self adhering flowable composites combine properties of composites and self etch adhesives, eliminating the need for separate bond application that simplifies direct restorative procedure. The evolution of self adhering materials could open new horizons for pediatric dentistry.

  2. Comparative study of the shear bond strength of various veneering materials on grade II commercially pure titanium

    PubMed Central

    Lee, Eun-Young; Jun, Sul-Gi; Wright, Robert F.

    2015-01-01

    PURPOSE To compare the shear bond strength of various veneering materials to grade II commercially pure titanium (CP-Ti). MATERIALS AND METHODS Thirty specimens of CP-Ti disc with 9 mm diameter and 10 mm height were divided into three experimental groups. Each group was bonded to heat-polymerized acrylic resin (Lucitone 199), porcelain (Triceram), and indirect composite (Sinfony) with 7 mm diameter and 2 mm height. For the control group (n=10), Lucitone 199 were applied on type IV gold alloy castings. All samples were thermocycled for 5000 cycles in 5-55℃ water. The maximum shear bond strength (MPa) was measured with a Universal Testing Machine. After the shear bond strength test, the failure mode was assessed with an optic microscope and a scanning electron microscope. Statistical analysis was carried out with a Kruskal-Wallis Test and Mann-Whitney Test. RESULTS The mean shear bond strength and standard deviations for experimental groups were as follows: Ti-Lucitone 199 (12.11 ± 4.44 MPa); Ti-Triceram (11.09 ± 1.66 MPa); Ti-Sinfony (4.32 ± 0.64 MPa). All of these experimental groups showed lower shear bond strength than the control group (16.14 ± 1.89 MPa). However, there was no statistically significant difference between the Ti-Lucitone 199 group and the control group, and the Ti-Lucitone 199 group and the Ti-Triceram group. Most of the failure patterns in all experimental groups were adhesive failures. CONCLUSION The shear bond strength of veneering materials such as heat-polymerized acrylic resin, porcelain, and indirect composite to CP-Ti was compatible to that of heatpolymerized acrylic resin to cast gold alloy. PMID:25722841

  3. Effect of Er:YAG Laser on Shear Bond Strength of Composite to Enamel and Dentin of Primary Teeth

    PubMed Central

    Bahrololoomi, Zahra; Kabudan, Mona; Gholami, Leila

    2015-01-01

    Objectives: Bond strength of composite resin to enamel and dentin of primary teeth is lower than that to permanent teeth; therefore, it may compromise the adhesive bonding. New methods, such as laser application have been recently introduced for tooth preparation. The purpose of this study was to evaluate the effect of tooth preparation with bur and Er:YAG laser on shear bond strength of composite to enamel and dentin of primary teeth. Materials and Methods: Seventy-five primary molar teeth were collected and 150 specimens were obtained by mesiodistal sectioning of each tooth. In each of the enamel and dentin groups, the teeth were randomly assigned to 3 subgroups with the following preparations: bur preparation + etching (37% H3PO4), laser preparation + etching, and laser preparation without etching. Single Bond adhesive and Z250 composite were applied to all samples. After thermocycling, the shear bond strength testing was preformed using the Instron Testing Machine. Data were analysed using SPSS-17 and two-way ANOVA. Results: The bond strength of enamel specimens was significantly higher than that of dentin specimens, except for the laser-non-etched groups. The enamel and dentin laser-non-etched groups had no significant difference in bond strength. In both enamel and dentin groups, bur preparation + etching yielded the highest bond strength, followed by laser preparation + etching, and the laser preparation without etching yielded the lowest bond strength (P < 0.001). Conclusion: In both enamel and dentin groups, laser preparation caused lower shear bond strength compared to bur preparation. PMID:26622267

  4. Ultrasonic assessment of tension shear strength in resistance spot welding

    NASA Astrophysics Data System (ADS)

    Moghanizadeh, Abbas

    2015-05-01

    Resistance spot welding is extensively used to join sheet steel in the automotive industry. Ultrasonic non-destructive techniques for evaluation of the mechanical properties of resistance spot welding are presented. The aim of this study is to develop the capability of the ultrasonic techniques as an efficient tool in the assessment of the welding characterization. Previous researches have indicated that the measurements of ultrasonic attenuation are sensitive to grain- size variations in an extensive range of metallic alloys. Other researchers have frequently described grain sizes which are able to have significant effects on the physical characteristics of the material. This research provides a novel method to estimate the tension-shear strengths of the resistance spot welding directly from the ultrasonic attenuation measurements. The effects of spot welding parameters on the ultrasonic waves are further investigated. The results confirm that it is possible to determine the spot welding parameters for individual quality by using ultrasonic test.

  5. Shear bond strength of orthodontic brackets to aged resin composite surfaces: effect of surface conditioning.

    PubMed

    Bayram, Mehmet; Yesilyurt, Cemal; Kusgöz, Adem; Ulker, Mustafa; Nur, Metin

    2011-04-01

    The aim of this study was to investigate the effects of surface conditioning protocols on the shear bond strength (SBS) of metal brackets to aged composite resin surfaces in vitro. Ninety composite resin discs, 6 mm in diameter and 2 mm in height, were prepared and treated with an ageing procedure. After ageing, the specimens were randomly assigned to one of the following groups: (1) control with no surface treatment, (2) 38 per cent phosphoric acid gel, (3) 9.6 per cent hydrofluoric acid gel, (4) airborne aluminium trioxide particle abrasion, (5) sodium bicarbonate particle abrasion, and (6) diamond bur. The metal brackets were bonded to composite surfaces by means of an orthodontic adhesive (Transbond XT). All specimens were stored in water for 1 week at 37°C and then thermocycled (1000 cycles, 5-55°C) prior to SBS testing. SBS values and residual adhesive on the composite surface were evaluated. Analysis of variance showed a significant difference (P = 0.000) between the groups. Group 6 had the highest mean SBS (10.61 MPa), followed by group 4 (10.29 MPa). The results of this study suggest that a clinically acceptable bond strength can be achieved by surface conditioning of aged resin composite via the application of hydrofluoric acid, aluminium trioxide particle abrasion, sodium bicarbonate particle abrasion, or a diamond bur. PMID:20660131

  6. Bonding of self-adhesive resin cements to enamel using different surface treatments: bond strength and etching pattern evaluations.

    PubMed

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Shinya, Akiyoshi

    2010-08-01

    This study evaluated the shear bond strengths and etching patterns of seven self-adhesive resin cements to human enamel specimens which were subjected to one of the following surface treatments: (1) Polishing with #600 polishing paper; (2) Phosphoric acid; (3) G-Bond one-step adhesive; or (4) Phosphoric acid and G-Bond. After surface treatment, the human incisor specimens were bonded to a resin composite using a self-adhesive resin cement [Maxcem (MA), RelyX Unicem (UN), Breeze (BR), BisCem (BI), seT (SE), Clearfil SA Luting (CL)] or a conventional resin cement [ResiCem (RE)]. Representative morphology formed with self-adhesive resin cements showed areas of etched enamel intermingled with areas of featureless enamel. In conclusion, etching efficacy influenced the bonding effectiveness of self-adhesive resin cements to unground enamel, and that a combined use of phosphoric acid and G-Bond for pretreatment of human enamel surfaces improved the bond strength of self-adhesive resin cements. PMID:20668359

  7. Preparation and properties of a starch-based wood adhesive with high bonding strength and water resistance.

    PubMed

    Zhang, Yanhua; Ding, Longlong; Gu, Jiyou; Tan, Haiyan; Zhu, Libin

    2015-01-22

    A Highly efficient method was developed for preparing starch-based wood adhesives with high performance, using H2O2, a silane coupling agent and an olefin monomer as an oxidant, cross-linking agent and comonomer, respectively. The effects of various parameters on the shear adhesive strength were investigated in the dry state (DS) and wet state (WS). The results indicated that the bonding strength of starch-based wood adhesives could reach 7.88 MPa in dry state and 4.09 MPa in wet state. The oxidation could reduce the content of the hydroxyl transforming into carboxyl and aldehyde groups, and the graft copolymerization enhanced the thermal stability, which improved the bonding strength and water resistance. The starch-based adhesive and the fractures in the bonded joints were analyzed via Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The improved properties were attributed to the modified of microstructure of the graft-copolymerized starch-based adhesive. PMID:25439864

  8. Effect of shear forces and ageing on the compliance of adhesive pads in adult cockroaches.

    PubMed

    Zhou, Yanmin; Robinson, Adam; Viney, Christine; Federle, Walter

    2015-09-01

    The flexibility of insect adhesive pads is crucial for their ability to attach on rough surfaces. Here, we used transparent substrates with micropillars to test in adult cockroaches (Nauphoeta cinerea) whether and how the stiffness of smooth adhesive pads changes when shear forces are applied, and whether the insect's age has any influence. We found that during pulls towards the body, the pad's ability to conform to the surface microstructures was improved in comparison to a contact without shear, suggesting that shear forces make the pad more compliant. The mechanism underlying this shear-dependent increase in compliance is still unclear. The effect was not explained by viscoelastic creep, changes in normal pressure, or shear-induced pad rolling, which brings new areas of cuticle into surface contact. Adhesive pads were significantly stiffer in older cockroaches. Stiffness increased most rapidly in cockroaches aged between 2.5 and 4 months. This increase is probably based on wear and repair of the delicate adhesive cuticle. Recent wear (visualised by Methylene Blue staining) was not age dependent, whereas permanent damage (visible as brown scars) accumulated with age, reducing the pads' flexibility. PMID:26206353

  9. An In Vitro Comparative Study of Shear Bond Strength of Composite Resin to Bleached Enamel using Synthetic and Herbal Antioxidants

    PubMed Central

    Suneetha, Ram; Pavithra, S; Thomas, John; Nanga, G Swapna Priya; Shiromany, Aseem; Shivrayan, Amit

    2014-01-01

    Background: The bond strength to bleached enamel is reduced, if adhesive restorations are carried out immediately. So the purpose of this in vitro study was an attempt to regain the lost bond strength, for which, the comparison of shear bond strength of composite resin to bleached enamel was carried out using various antioxidants: 10% Sodium ascorbate, Rosemary extracts, Pedicularis extracts. Materials and Methods: Fifty human extracted single rooted teeth were collected. They were decoronated and coronal portions were embedded in self cure acrylic resin with their buccal surfaces facing upwards. The samples were randomly divided into positive, negative control groups and three experimental groups (n = 10). In positive control group, specimens were not bleached, before bonding procedure. In negative control group, bleaching was done with 10% carbamide peroxide and bonding was carried out immediately. In experimental groups, following antioxidants were used after bleaching: Group A: 10% Sodium ascorbate, Group B: Rosemary extracts, Group C: Pedicularis extracts. Then the bonding procedures were carried out in all the groups and were subjected for shear bond strength analysis. Results: Results clearly showed that groups A and B were effective in reversal of bond strength immediately. Conclusion: 10% sodium ascorbate solution and rosemary extracts were effective in reversal of shear bond strength immediately after bleaching. PMID:25628489

  10. State diagram for adhesion dynamics of deformable capsules under shear flow.

    PubMed

    Luo, Zheng Yuan; Bai, Bo Feng

    2016-08-17

    Due to the significance of understanding the underlying mechanisms of cell adhesion in biological processes and cell capture in biomedical applications, we numerically investigate the adhesion dynamics of deformable capsules under shear flow by using a three-dimensional computational fluid dynamic model. This model is based on the coupling of the front tracking-finite element method for elastic mechanics of the capsule membrane and the adhesion kinetics simulation for adhesive interactions between capsules and functionalized surfaces. Using this model, three distinct adhesion dynamic states are predicted, such as detachment, rolling and firm-adhesion. Specifically, the effects of capsule deformability quantified by the capillary number on the transitions of these three dynamic states are investigated by developing an adhesion dynamic state diagram for the first time. At low capillary numbers (e.g. Ca < 0.0075), whole-capsule deformation confers the capsule a flattened bottom in contact with the functionalized surface, which hence promotes the rolling-to-firm-adhesion transition. It is consistent with the observations from previous studies that cell deformation promotes the adhesion of cells lying in the rolling regime. However, it is surprising to find that, at relatively high capillary numbers (e.g. 0.0075 < Ca < 0.0175), the effect of capsule deformability on its adhesion dynamics is far more complex than just promoting adhesion. High deformability of capsules makes their bottom take a concave shape with no adhesion bond formation in the middle. The appearance of this specific capsule shape inhibits the transitions of both rolling-to-firm-adhesion and detachment-to-rolling, and it means that capsule deformation no longer promotes the capsule adhesion. Besides, it is interesting to note that, when the capillary number exceeds a critical value (e.g. Ca = 0.0175), the rolling state no longer appears, since capsules exhibit large deviation from the spherical shape

  11. [Adhesive strengths of cast crowns with various types of cements].

    PubMed

    Utz, K H; Grüner, M; Büscher, M

    1990-12-01

    In an in vitro study the adhesive strength of sand-blasted castings (gold alloy) was tested on human teeth prepared and finished in different ways. For cementation we used two glass ionomer and one phosphate cement. On the surfaces treated with carbide finishing instruments the force required for separating the crown from the tooth was about 1.9 N/mm2 for Ketac-cem, about 2 N/mm2 for Fuji Ionomer, and about 1.8 N/mm2 for Harvard (a zinc oxide phosphate cement). Compared with this, the values obtained for dentin surfaces pretreated with fine diamonds (red ring) were 1.5 N/mm2 for Ketac-cem, 1.6 N/mm2 for Fuji Ionomer, and 1.9 N/mm2 for Harvard. The measured differences between the various types of cement were statistically not significant. PMID:2135267

  12. The effect of tooth bleaching on the shear bond strength of orthodontic brackets using self-etching primer systems

    PubMed Central

    Akin, Mehmet; Aksakalli, Sertac; Basciftci, Faruk Ayhan; Demir, Abdullah

    2013-01-01

    Objective: The purpose of this study was to determine the effect of 10% carbamide peroxide and 38% hydrogen peroxide bleaching agents on the shear bond strength of orthodontic brackets using self-etching primer systems. Methods: Forty five freshly extracted human premolar teeth were randomly divided into 3 groups of 15 teeth each: control (group 1), 10% carbamide peroxide at-home bleached (group 2), and 38% hydrogen peroxide in-office bleached (group 3). Three weeks later, all brackets were bonded using a self-etching primer system. The shear bond strength of these brackets was measured and recorded in MPa. Adhesive remnant index (ARI) scores were determined after the brackets failed. Data were analyzed using Kruskal- Wallis test, pairwise comparisons were made using the Mann-Whitney U test and ARI scores were analyzed using a chi-square test at a significance level of P<.05. Results: The shear bond strengths of group 1 (mean: 17.7 ± 9.7 MPa) were significantly higher (P<.05) than those of group 3 (mean: 9.9 ± 5.4 MPa). No significant differences were found between group 2 (mean: 12.3 ± 4.7) and either group 1 or group 3 (P>.05). ARI scores did not differ significantly among the 3 groups. Conclusions: The use of 10% carbamide peroxide bleaching does not significantly reduce shear bond strength values. In contrast, use of 38% hydrogen peroxide bleaching significantly reduces these values. PMID:23408777

  13. Application of tung oil to improve adhesion strength and water resistance of cottonseed meal and protein adhesives on maple veneer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cottonseed meal-based products show promise in serving as environment-friendly wood adhesives. However, their practical utilization is currently limited due to low durability and water resistant properties. In this research, we tested the improvement of adhesion strength and water resistance of cott...

  14. Comparison of shear bond strength of two veneering ceramics to zirconia

    PubMed Central

    Rismanchian, Mansour; Shafiei, Soufia; Askari, Navid; Khodaeian, Niloufar

    2012-01-01

    Background: Chip-off fracture of veneering porcelain has been described as the most frequent reason for the failure of zirconia-based fixed partial dentures. The purpose of this study was to evaluate the shear bond strength (SBS) of two commercial zirconia core ceramics to their corresponding veneering ceramics. Materials and Methods: Zirconia disks with 7-mm diameter and 3-mm height were prepared (Cercon and Biodenta systems) and veneered with recommended layering ceramics (Cercon ceram and 2 in 1 ceramic, respectively) (n = 10). The disks were polished with diamond paste and airborne-particle abraded before layering. The specimens were mounted in a T-shaped metal holder using autopolymerized acrylic resin and stored in 37°C distilled water for one week, after which they were subjected to thermal cycling. SBS of zirconia core to veneering ceramic was measured using a universal testing machine and failure modes were determined microscopically. Data were analyzed using t test (α < 0.05). Results: Mean (±SD) SBS values were 27.19(±3.43) and 28.22(±4.08) MPa for Cercon and Biodenta systems, respectively, with no significant difference. Biodenta system showed more adhesive failure compared to more combined (adhesive and cohesive) failures in Cercon system. Conclusion: Within the limitations of this study it can be concluded that SBS of Biodenta and Cercon specimens were nearly the same, but the fracture mode of these two systems were different. Since Biodenta fracture pattern was predominantly adhesive, it seems that maybe Biodenta porcelain was stronger than Cercon porcelain where as its adhesive bond was weaker. PMID:23559931

  15. Bond Strength of a Bisphenol-A-Free Fissure Sealant With and Without Adhesive Layer under Conditions of Saliva Contamination.

    PubMed

    Mesquita-Guimarães, Késsia Suênia Fidelis de; Sabbatini, Iliana Ferraz; Almeida, Cintia Guimarães de; Galo, Rodrigo; Nelson-Filho, Paulo; Borsatto, Maria Cristina

    2016-01-01

    Dental sealants are important for prevention of carious lesions, if they have good shear strength. The aim of this study was to evaluate the shear bond strength (SBS) of two sealants to saliva-contaminated and non-contaminated enamel with and without an intermediate adhesive layer underneath the sealant. Ninety flat enamel surfaces from human third molars were randomly assigned to 6 groups (n=15): F (control): Fluroshield(tm) sealant; EWB (control): Embrace(tm) WetBond(tm); SB/F: Single Bond adhesive system + F; SB/EWB, s-SB/F and s-SB/EWB. In the s-SB/F and s-SB/EWB groups, the acid-etched enamel was contaminated with 0.01 mL of fresh human saliva for 20 s. Sealant cylinders were bonded to enamel surface with and without an intermediate adhesive system layer. The shear tests were performed using a universal testing machine (0.5 mm/min). Data were analyzed statistically by Kruskal-Wallis and Mann-Whitney tests (α=0.05). F presented higher mean SBS than EWB in all experimental conditions. The lowest SBS mean was obtained for EWB on contaminated enamel (p<0.05). In conclusion, an adhesive system layer should be used prior to sealant placement, in both dry and saliva-contaminated enamel. F had the best performance in all experimental conditions. EWB sealant showed very low results, but an adhesive layer underneath the sealant increased its SBS even after salivary contamination. PMID:27224565

  16. Effects of wall shear stress and its gradient on tumor cell adhesion in curved microvessels

    PubMed Central

    Yan, W. W.; Cai, B.

    2016-01-01

    Tumor cell adhesion to vessel walls in the microcirculation is one critical step in cancer metastasis. In this paper, the hypothesis that tumor cells prefer to adhere at the microvessels with localized shear stresses and their gradients, such as in the curved microvessels, was examined both experimentally and computationally. Our in vivo experiments were performed on the microvessels (post-capillary venules, 30–50 μm diameter) of rat mesentery. A straight or curved microvessel was cannulated and perfused with tumor cells by a glass micropipette at a velocity of ~1mm/s. At less than 10 min after perfusion, there was a significant difference in cell adhesion to the straight and curved vessel walls. In 60 min, the averaged adhesion rate in the curved vessels (n = 14) was ~1.5-fold of that in the straight vessels (n = 19). In 51 curved segments, 45% of cell adhesion was initiated at the inner side, 25% at outer side, and 30% at both sides of the curved vessels. To investigate the mechanical mechanism by which tumor cells prefer adhering at curved sites, we performed a computational study, in which the fluid dynamics was carried out by the lattice Boltzmann method, and the tumor cell dynamics was governed by the Newton’s law of translation and rotation. A modified adhesive dynamics model that included the influence of wall shear stress/gradient on the association/dissociation rates of tumor celladhesion was proposed, in which the positive wall shear stress/gradient jump would enhance tumor cell adhesion while the negative wall shear stress/gradient jump would weaken tumor cell adhesion. It was found that the wall shear stress/gradient, over a threshold, had significant contribution to tumor cell adhesion by activating or inactivating cell adhesion molecules. Our results elucidated why the tumor cell adhesion prefers to occur at the positive curvature of curved microvessels with very low Reynolds number (in the order of 10−2) laminar flow. PMID:21818636

  17. Elevated shear strength of sediments on active margins: Evidence for seismic strengthening

    NASA Astrophysics Data System (ADS)

    Sawyer, Derek E.; DeVore, Joshua R.

    2015-12-01

    Earthquakes are a primary trigger of submarine landslides, yet some of the most seismically active areas on Earth show a surprisingly low frequency of submarine landslides. Here we show that within the uppermost 100 m below seafloor (mbsf) in previously unfailed sediment, active margins have elevated shear strength by a factor of 2-3 relative to the same interval on passive margins. The elevated shear strength is seen in a global survey of undrained shear strength with depth as well as a normalized analysis that accounts for lithology and stress state. The enhanced shear strength is highest within the uppermost 10 mbsf. These results indicate that large areas of modern day slopes on active margins have enhanced slope stability, which may explain the relative paucity of landslides. These findings lend support to the seismic strengthening hypothesis that the repeated exposure to earthquake energy gradually increases shear strength by shear-induced compaction.

  18. Catch bonds govern adhesion through L-selectin at threshold shear.

    PubMed

    Yago, Tadayuki; Wu, Jianhua; Wey, C Diana; Klopocki, Arkadiusz G; Zhu, Cheng; McEver, Rodger P

    2004-09-13

    Flow-enhanced cell adhesion is an unexplained phenomenon that might result from a transport-dependent increase in on-rates or a force-dependent decrease in off-rates of adhesive bonds. L-selectin requires a threshold shear to support leukocyte rolling on P-selectin glycoprotein ligand-1 (PSGL-1) and other vascular ligands. Low forces decrease L-selectin-PSGL-1 off-rates (catch bonds), whereas higher forces increase off-rates (slip bonds). We determined that a force-dependent decrease in off-rates dictated flow-enhanced rolling of L-selectin-bearing microspheres or neutrophils on PSGL-1. Catch bonds enabled increasing force to convert short-lived tethers into longer-lived tethers, which decreased rolling velocities and increased the regularity of rolling steps as shear rose from the threshold to an optimal value. As shear increased above the optimum, transitions to slip bonds shortened tether lifetimes, which increased rolling velocities and decreased rolling regularity. Thus, force-dependent alterations of bond lifetimes govern L-selectin-dependent cell adhesion below and above the shear optimum. These findings establish the first biological function for catch bonds as a mechanism for flow-enhanced cell adhesion. PMID:15364963

  19. Coating of carbon nanotube fibers: variation of tensile properties, failure behavior and adhesion strength

    NASA Astrophysics Data System (ADS)

    Mäder, Edith; Liu, Jian-Wen; Hiller, Janett; Lu, Weibang; Li, Qingwen; Zhandarov, Serge; Chou, Tsu-Wei

    2015-07-01

    An experimental study of the tensile properties of CNT fibers and their interphasial behavior in epoxy matrices is reported. One of the most promising applications of CNT fibers is their use as reinforcement in multifunctional composites. For this purpose, an increase of the tensile strength of the CNT fibers in unidirectional composites as well as strong interfacial adhesion strength is desirable. However, the mechanical performance of the CNT fiber composites manufactured so far is comparable to that of commercial fiber composites. The interfacial properties of CNT fiber/polymer composites have rarely been investigated and provided CNT fiber/epoxy interfacial shear strength of 14.4 MPa studied by the microbond test. In order to improve the mechanical performance of the CNT fibers, an epoxy compatible coating with nano-dispersed aqueous based polymeric film formers and low viscous epoxy resin, respectively, was applied. For impregnation of high homogeneity, low molecular weight epoxy film formers and polyurethane film formers were used. The aqueous based epoxy film formers were not crosslinked and able to interdiffuse with the matrix resin after impregnation. Due to good wetting of the individual CNT fibers by the film formers, the degree of activation of the fibers was improved leading to increased tensile strength and Young’s modulus. Cyclic tensile loading and simultaneous determination of electric resistance enabled to characterize the fiber’s durability in terms of elastic recovery and hysteresis. The pull-out tests and SEM study reveal different interfacial failure mechanisms in CNT fiber/epoxy systems for untreated and film former treated fibers, on the one hand, and epoxy resin treated ones, on the other hand. The epoxy resin penetrated between the CNT bundles in the reference or film former coated fiber, forming a relatively thick CNT/epoxy composite layer and thus shifting the fracture zone within the fiber. In contrast to this, shear sliding along

  20. Evaluation of a sugar based edible adhesive utilizing a tensile strength tester

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new method to evaluate adhesives has been developed and utilized to formulate a recently patented adhesive based on sugar and citric acid. Factors affecting adhesive performance were uncovered, such as reduced strength due to improper heating time, and an optimal curing temperature of 60oC was ac...

  1. The effect of washing water temperature on resin-dentin micro-shear bond strength

    PubMed Central

    Malekipour, Mohammad Reza; Shirani, Farzaneh; Ebrahimi, Mehrnoush

    2016-01-01

    Background: The purpose of this study was to evaluate the effect of washing water temperature on the micro-shear bond strength (μSBS) of composite resin to dentin using a two-step etch-and-rinse system and a two-step self-etching system. Materials and Methods: In this in vitro study, the intact dentins of buccal and lingual surfaces of healthy third molars were exposed. Dentin surfaces were rinsed with different temperatures of distilled water (20 s) before applying Single Bond (SB) or Clearfil SE Bond(SE). After applying the adhesive, composite cylinders (0.8 mm diameter and 1 mm length) were bonded to the teeth surfaces. After storing the specimens in 37°C distilled water for 48 h and thermocycling, μSBS test was done. Data were analyzed using analysis of variance, post hoc Tukey tests, paired samples t-test, and Fisher exact test (α = 0.05). Results: Temperature and interaction of temperature and type of bonding agent affected the bond strength. The bond strength of SB groups was significantly higher at 50°C washing than 5°C (P = 0.003) and 22°C (P = 0.019), but no significant difference was observed between SE groups. The bond strength of SE was significantly higher at 22°C than that of SB (P = 0.031), whereas the bond strength of SB was significantly higher at 50°C than that of SE (P = 0.007). Conclusion: The use of high-temperature washing water is an appropriate method to enhance bond strength in etch-and-rinse systems. PMID:27076833

  2. Specific adhesion of glycophorin liposomes to a lectin surface in shear flow.

    PubMed Central

    Wattenbarger, M R; Graves, D J; Lauffenburger, D A

    1990-01-01

    The adhesion of cells to other cells or to surfaces by receptor-ligand binding in a shear field is an important aspect of many different biological processes and various cell separation techniques. The purpose of this study was to observe the adhesion of model cells with receptor molecules embedded in their surfaces to a ligand-coated surface under well-defined flow conditions in a parallel plate flow chamber. Liposomes containing glycophorin were used as the model cells to permit a variation in the adhesion parameters and then to observe the effect on adhesion. A mathematical model for cell sedimentation was created to predict the deposition time and the velocity preceding adhesion for the selection of experimental operating conditions and the methods useful for data analysis. The likelihood of cell attachment was represented by a quantity called the sticking probability which was defined as the inverse of the number of times a liposome made contact with the surface before attachment occurred. The sticking probability decreased as the cell receptor concentration was lowered from approximately 10(4) to 10(2) receptors per 4-microns diam liposome and as the shear rate increased from 5 to 22 s-1. The effect of the wall shear rate and particle diameter on detachment of liposomes from a surface was also observed. PMID:2344463

  3. Theory of the mechanical response of focal adhesions to shear flow

    NASA Astrophysics Data System (ADS)

    Biton, Y. Y.; Safran, S. A.

    2010-05-01

    The response of cells to shear flow is primarily determined by the asymmetry of the external forces and moments that are sensed by each member of a focal adhesion pair connected by a contractile stress fiber. In the theory presented here, we suggest a physical model in which each member of such a pair of focal adhesions is treated as an elastic body subject to both a myosin-activated contractile force and the shear stress induced by the external flow. The elastic response of a focal adhesion complex is much faster than the active cellular processes that determine the size of the associated focal adhesions and the direction of the complex relative to the imposed flow. Therefore, the complex attains its mechanical equilibrium configuration which may change because of the cellular activity. Our theory is based on the experimental observation that focal adhesions modulate their cross-sectional area in order to attain an optimal shear. Using this assumption, our elastic model shows that such a complex can passively change its orientation to align parallel to the direction of the flow.

  4. An Investigation about the Influence of Bleaching on Shear Bond Strength of Orthodontic Brackets and on Enamel Colour

    PubMed Central

    Immerz, Isabell; Proff, Peter; Roemer, Piero; Reicheneder, Claudia; Faltermeier, Andreas

    2012-01-01

    The aim of the study was to investigate the effect of bleaching on the colouration of tooth enamel and shear bond strength of orthodontic ceramic brackets based upon current whitening practice. The bleaching and bonding techniques were performed on extracted bovine teeth for the investigation of their colorimetric spectrum and the adhesive bond strength on surface enamel. One group was designated as the control group with no pre-treatment. Another group was treated with a 45% hydrogen peroxide solution prior to bonding. The difference in colour was expressed as the Euclidian distance ΔE. The resulting shear bond strength was analyzed and evaluated by scores of Adhesion Remnant Index. Statistical analysis was performed using the Kruskall-Wallis and post-hoc test. The colorimetric analysis revealed statistically significant differences between original and bleached as well as bleached and debonded teeth setting off a blue colour shift. Furthermore, statistically there was no significant difference noted in bonding strength between non-treated surfaces and those treated with peroxide. It can be concluded that peroxide pre-treatment does result in colour differences of teeth. Bonding and debonding procedures seem to have no statistically significant influence on the enamel colour using current materials. PMID:22536518

  5. Selectin catch-slip kinetics encode shear threshold adhesive behavior of rolling leukocytes.

    PubMed

    Beste, Michael T; Hammer, Daniel A

    2008-12-30

    The selectin family of leukocyte adhesion receptors is principally recognized for mediating transient rolling interactions during the inflammatory response. Recent studies using ultrasensitive force probes to characterize the force-lifetime relationship between P- and L-selectin and their endogenous ligands have underscored the ability of increasing levels of force to initially extend the lifetime of these complexes before disrupting bond integrity. This so-called "catch-slip" transition has provided an appealing explanation for shear threshold phenomena in which increasing levels of shear stress stabilize leukocyte rolling under flow. We recently incorporated catch-slip kinetics into a mechanical model for cell adhesion and corroborated this hypothesis for neutrophils adhering via L-selectin. Here, using adhesive dynamics simulations, we demonstrate that biomembrane force probe measurements of various P- and L-selectin catch bonds faithfully predict differences in cell adhesion patterns that have been described extensively in vitro. Using phenomenological parameters to characterize the dominant features of molecular force spectra, we construct a generalized phase map that reveals that robust shear-threshold behavior is possible only when an applied force very efficiently stabilizes the bound receptor complex. This criteria explains why only a subset of selectin catch bonds exhibit a shear threshold and leads to a quantitative relationship that may be used to predict the magnitude of the shear threshold for families of catch-slip bonds directly from their force spectra. Collectively, our results extend the conceptual framework of adhesive dynamics as a means to translate complex single-molecule biophysics to macroscopic cell behavior. PMID:19095798

  6. Recycling stainless steel orthodontic brackets with Er:YAG laser – An environmental scanning electron microscope and shear bond strength study

    PubMed Central

    Chacko, Prince K; Kodoth, Jithesh; John, Jacob; Kumar, Kishore

    2013-01-01

    Aim: To determine the efficiency of erbium: Yttrium aluminum garnet (Er:YAG) laser with Environmental Scanning Electron Microscope (ESEM) and shear bond strength analysis as a method of recycling stainless steel orthodontic brackets and compare with other methods of recycling. Materials and Methods: Eighty samples of extracted premolar teeth bonded to SS brackets were tested for rebonded shear bond strength after recycling by four methods and compared with a control group of 20 samples. These 80 samples were randomized into four groups which were recycled by four methods, namely, sandblasting, thermal method, adhesive grinding by tungsten carbide bur, and Er: YAG laser method. After recycling, ESEM and shear bond strength analysis were used to analyze the efficiency of the recycling methods Results: Er: YAG laser group was found to be having the greatest bond strength among the recycled brackets (8.33±2.51 followed by the sandblasting at 6.12±1.12 MPa, thermal and electropolishing at 4.44±0.95 MPa, and lastly the adhesive grinding method at 3.08±1.07 MPa. The shear bond strength of Er: YAG laser group was found to be having no statistically significant difference with that of the control group (P>0.05 and had statistical signifance with sandblasting, thermal and electropolishing and adhesive grinding groups at P>0.001. ESEM analysis showed complete removal of adhesive from the brackets recycled with Er: YAG laser which mimicked that of the control group. Conclusion: Er: YAG laser (2940 nm) was found to be the most efficient method for recycling, followed by the sandblasting, thermal, and the tungsten carbide methods, which had the least shear bond strength value and is not fit for clinical usage. PMID:24987647

  7. New Criterion for Evaluating the Peak Shear Strength of Rock Joints Under Different Contact States

    NASA Astrophysics Data System (ADS)

    Tang, Zhi Cheng; Wong, Louis Ngai Yuen

    2016-04-01

    In practice, the peak shear strength of rock joints is not dictated only by the surface roughness, but also the degree of matching between the joint surfaces. The latter is due to alteration/dislocation caused by external factors, such as the vibration due to nearby blasting, excavation or earthquake. In the present study, the peak shear strengths of rock joints under different contact states are investigated by direct shear test using artificial rock joints. The rock joints under different contact states are modeled by imposing varying magnitude of horizontal dislocation along the shear direction between the upper and lower rock blocks. The peak shear strength was found to decrease with increasing dislocation. A new empirical shear strength criterion is put forward to capture the peak shear strength of un-matching rock joints as an extension of a previously published peak shear strength criterion for matching rock joints by the first author and his co-workers. In the present proposed criterion, a new joint contact state coefficient, which is a function of the normalized dislocation and the quantified three-dimensional roughness metric of joint surface, is proposed. The good agreement between calculated values and test results indicates that the proposed criterion is capable of estimating the peak shear strength of rock joints under different contact states. The proposed criterion is expressed in a quantitative way and the required parameters can be easily determined in the laboratory.

  8. Adhesion dynamics of circulating tumor cells under shear flow in a bio-functionalized microchannel

    NASA Astrophysics Data System (ADS)

    Siu-Lun Cheung, Luthur; Zheng, Xiangjun; Wang, Lian; Baygents, James C.; Guzman, Roberto; Schroeder, Joyce A.; Heimark, Ronald L.; Zohar, Yitshak

    2011-05-01

    The adhesion dynamics of circulating tumor cells in a bio-functionalized microchannel under hydrodynamic loading is explored experimentally and analyzed theoretically. EpCAM antibodies are immobilized on the microchannel surface to specifically capture EpCAM-expressing target breast cancer cells MDA-MB-231 from a homogeneous cell suspension in shear flow. In the cross-stream direction, gravity is the dominant physical mechanism resulting in continuous interaction between the EpCAM cell receptors and the immobilized surface anti-EpCAM ligands. Depending on the applied shear rate, three dynamic states have been characterized: firm adhesion, rolling adhesion and free rolling. The steady-state velocity under adhesion- and free-rolling conditions as well as the time-dependent velocity in firm adhesion has been characterized experimentally, based on video recordings of target cell motion in functionalized microchannels. A previously reported theoretical model, utilizing a linear spring to represent the specific receptor-ligand bonds, has been adopted to analyze adhesion dynamics including features such as the cell-surface binding force and separation gap. By fitting theoretical predictions to experimental measurements, a unified exponential decay function is proposed to describe the target cell velocity evolution during capture; the fitting parameters, velocity and time scales, depend on the particular cell-surface system.

  9. Shear bond strength of bulk-fill and nano-restorative materials to dentin

    PubMed Central

    Colak, Hakan; Ercan, Ertugrul; Hamidi, Mehmet Mustafa

    2016-01-01

    Objectives: Bulk-fill composite materials are being developed for preparation depths of up to 4 mm in an effort to simplify and improve the placement of direct composite posterior restorations. The aim of our study was to compare shear-bond strength of bulk-fill and conventional posterior composite resins. Materials and Methods: In this study, 60 caries free extracted human molars were used and sectioned parallel to occlusal surface to expose midcoronal dentin. The specimens were randomly divided into four groups. Total-etch dentine bonding system (Adper Scotchbond 1XT, 3M ESPE) was applied to dentin surface in all the groups to reduce variability in results. Then, dentine surfaces covered by following materials. Group I: SonicFill Bulk-Fill, Group II: Tetric EvoCeram (TBF), Group III: Herculite XRV Ultra, and Group IV: TBF Bulk-Fill, 2 mm × 3 mm cylindrical restorations were prepared by using application apparatus. Shear bond testing was measured by using a universal testing machine. Kruskal–Wallis and Mann–Whitney U-tests were performed to evaluate the data. Results: The highest value was observed in Group III (14.42 ± 4.34) and the lowest value was observed in Group IV (11.16 ± 2.76) and there is a statistically significant difference between these groups (P = 0.046). However, there is no statistically significant difference between the values of other groups. In this study, Group III was showed higher strength values. Conclusion: There is a need for future studies about long-term bond strength and clinical success of these adhesive and bulk-fill systems. PMID:27011738

  10. Comparative Evaluation of Shear Bond Strength of Three Commercially Available Glass Ionomer Cements in Primary Teeth

    PubMed Central

    Murthy, S Srinivasa; Murthy, Gargi S

    2015-01-01

    Background: This study aims to comparatively evaluate the shear bond strength (SBS) of three commercially available glass ionomer cements - Miracle Mix (MM) (GC America Inc., Alsip, USA), Ketac Molar (KM) (3M Corp., Minnesota, USA) and amalgomer CR (AM) (Advanced Healthcare Ltd., Kent, England) in primary teeth and later examine the mode of the adhesive failure at the interface. Materials and Methods: Totally, 90 extracted sound primary molars were selected, and dentin on the buccal surface of crowns was exposed. Specimens were randomly assigned into three groups according to the restorative materials being tested. SBS tests were performed, and the obtained values were statistically analyzed using ANOVA and Tukey tests (P < 0.05). SBS mean values on were recorded in megapascals (MPa) and the mode of failure was assessed using a scanning electron microscope. Results: SBS (in MPa) was - MM-5.39, KM-4.84, AM-6.38. The predominant failure mode was cohesive. Conclusion: Amalgomer CR exhibited statistically significant higher SBS of 6.38 MPa to primary teeth and has better adhesion to the primary teeth compared to the other test materials and can be considered as a restorative material in pediatric dentistry. However, the results of this study should be corroborated with further investigation to reach a definitive conclusion. PMID:26464550

  11. Adhesion strength study between plasma treated polyester fibres and a rubber matrix

    NASA Astrophysics Data System (ADS)

    Krump, H.; Šimor, M.; Hudec, I.; Jaššo, M.; Luyt, A. S.

    2005-02-01

    In this work, the adhesion strength between poly(ethylene terephthalate) (PET) fibres and styrene-butadiene rubber (SBR) was studied. The effects of atmospheric plasma treatment, used to increase adhesion strength between PET fibres and the rubber matrix, were investigated and compared. It was confirmed that lubricants on the fibres caused a decrease in adhesion strength between the plasma treated reinforcing PET fibres and the SBR rubber matrix. These lubricants can be removed by acetone. When washed and treated in plasma, a substantial improvement in adhesion strength was observed. No ageing in air before combination with the rubber matrix was observed. This confirmed that the plasma streamers caused the creation of a new, relatively stable chemical species on the polymer surface. It suggests that the surface modification of PET fibres by plasma treatment at atmospheric gas pressure is a suitable and technologically applicable method for the improvement of adhesion strength of polyester reinforcing materials to rubber.

  12. Adhesion strength of sputtered TiAlN-coated WC insert tool

    NASA Astrophysics Data System (ADS)

    Budi, Esmar; Razali, M. Mohd.; Nizam, A. R. Md.

    2013-09-01

    The adhesion strength of TiAlN coating that deposited by using DC magnetron sputtering on WC insert tool are studied. TiAlN coating are deposited on Tungsten Carbide (WC) insert tool by varying negatively substrate bias from 79 to 221 volt and nitrogen flow rate from 30 to 72 sccm. The adhesion strength are obtained by using Rockwell indentation test method with a Brale diamond at applied load of 60,100 and 150 kgf. The lateral diameter of indentation is plotted on three different applied loads and the adhesion strength of TiAlN coating was obtained from the curved slopes at 100 and 150 kgf. The lower curve slop indicated better adhesion strength. The results shows that the adhesion strength of sputterred TiAlN coating tend to increase as the negatively substrate bias and nitrogen flow rate are increased.

  13. Adhesion strength of sputtered TiAlN-coated WC insert tool

    SciTech Connect

    Budi, Esmar; Razali, M. Mohd.; Nizam, A. R. Md.

    2013-09-09

    The adhesion strength of TiAlN coating that deposited by using DC magnetron sputtering on WC insert tool are studied. TiAlN coating are deposited on Tungsten Carbide (WC) insert tool by varying negatively substrate bias from 79 to 221 volt and nitrogen flow rate from 30 to 72 sccm. The adhesion strength are obtained by using Rockwell indentation test method with a Brale diamond at applied load of 60,100 and 150 kgf. The lateral diameter of indentation is plotted on three different applied loads and the adhesion strength of TiAlN coating was obtained from the curved slopes at 100 and 150 kgf. The lower curve slop indicated better adhesion strength. The results shows that the adhesion strength of sputterred TiAlN coating tend to increase as the negatively substrate bias and nitrogen flow rate are increased.

  14. Mixed-mode interfacial adhesive strength of a thin film on an anisotropic substrate

    NASA Astrophysics Data System (ADS)

    Kitey, Rajesh; Geubelle, Philippe H.; Sottos, Nancy R.

    2009-01-01

    The mixed-mode interfacial adhesion strength between a gold (Au) thin film and an anisotropic passivated silicon (Si) substrate is measured using laser-induced stress wave loading. Test specimens are prepared by bonding a fused silica (FS) prism to the back side of a <1 0 0> Si substrate with a thin silicon nitride (Si xN y) passivation layer deposited on the top surface. A high-amplitude stress wave is developed by pulsed laser ablation of a sacrificial absorbing layer on one of the lateral surfaces of the FS prism. Due to the negative non-linear elastic properties of the FS, the compressive stress wave evolves into a decompression shock with fast fall time. Careful selection of the incident angle between the pulse and the FS/Si interface generates a mode-converted shear wave in refraction, subjecting the Si xN y/Au thin film interface to dynamic mixed-mode loading, sufficient to cause interfacial fracture. A detailed analysis of the anisotropic wave propagation combined with interferometric measurements of surface displacements enables calculation of the interfacial stresses developed under mixed-mode loading. The mixed-mode interfacial strength is compared to the interfacial strength measured under purely tensile loading.

  15. Shear bond strength of orthodontic brackets bonded to different ceramic surfaces.

    PubMed

    Abu Alhaija, Elham S J; Al-Wahadni, Ahed M S

    2007-08-01

    This study was undertaken to measure the shear bond strength (SBS) of stainless steel brackets bonded to different ceramic surfaces, to compare the SBS of the different ceramics with each other and with conventional ceramo-metal porcelains, and to determine the mode of failure for each group following debonding. A total of 60 ceramic crowns were constructed on extracted teeth and divided into three equal groups as follows: In-Ceram ceramic crowns, IPS-Impress ceramic crowns, and conventional ceramo-metal porcelain. Standard edgewise metal premolar brackets were bonded to the prepared porcelain surfaces. After bonding, all samples were tested in shear mode on an Instron universal testing machine. Statistical analysis was undertaken using analysis of variance, LSD, and chi-squared tests. The results showed that the SBS for the ceramo-metal and the In-Ceram groups were comparable, with mean values of 80.54 +/- 13.44 N and 78.87 +/- 13.47 N, respectively. The IPS-Impress group showed the weakest SBS which averaged 67.40 +/- 8.99 N. This was significantly lower than that of the conventional ceramo-metal porcelain (P < 0.001) and the In-Ceram surface (P < 0.01). The mode of failure in the ceramo-metal group was between the porcelain surface and adhesive and in the other two ceramic groups, between the brackets and adhesive (P < 0.001). The SBS of orthodontic brackets to the three tested ceramic surfaces were adequate for orthodontic use. PMID:17702799

  16. Shear bond strength of provisional restoration materials repaired with light-cured resins.

    PubMed

    Chen, Hsiu-Lin; Lai, Yu-lin; Chou, I-chiang; Hu, Chiung-Jen; Lee, Shyh-yuan

    2008-01-01

    This study evaluated the repair bond strengths of light-cured resins to provisional restoration materials with different chemical compositions and polymerization techniques. Fifty discs (10 mm in diameter and 1.5 mm thick) were fabricated for each provisional resin base material, including a self-cured methacrylate (Alike), self-cured bis-acrylate (Protemp 3 Garant), light-cured bis-acrylate (Revotek LC) and a heat-cured methacrylate (Namilon). All specimens were stored in distilled water at 37 degrees C for seven days before undergoing repair with one of four light-cured resins, including AddOn, Revotek LC, Dyractflow and Unifast LC and a self-cured resin (Alike), according to the manufacturers' instructions, for a total of 200 specimens. After 24 hours of storage in 37 degrees C water, the shear bond strengths were measured with a universal testing machine and fracture surfaces were examined under a stereomicroscope. Two-way ANOVA revealed that provisional resin-base material (p < 0.001), repair material (p < 0.001) and their interactions (p < 0.001) significantly affected the repair strength. Tukey's multiple comparisons showed that the lowest bonding strengths were found in specimens of heat-cured methacrylate resin materials repaired with bis-acryl resins, with their failure modes primarily being of the adhesive type. The highest bond strengths were recorded when the provisional resin-base materials and repairing resins had similar chemical components and the failure modes tended to be of the cohesive type. PMID:18833857

  17. Evaluation of shear bond strength of repair acrylic resin to Co-Cr alloy

    PubMed Central

    Külünk, Şafak; Külünk, Tolga; Saraç, Duygu; Baba, Seniha

    2014-01-01

    PURPOSE The purpose of this study was to investigate the impact of different surface treatment methods and thermal ageing on the bond strength of autopolymerizing acrylic resin to Co-Cr. MATERIALS AND METHODS Co-Cr alloy specimens were divided into five groups according to the surface conditioning methods. C: No treatment; SP: flamed with the Silano-Pen device; K: airborne particle abrasion with Al2O3; Co: airborne particle abrasion with silica-coated Al2O3; KSP: flamed with the Silano-Pen device after the group K experimental protocol. Then, autopolymerized acrylic resin was applied to the treated specimen surfaces. All the groups were divided into two subgroups with the thermal cycle and water storage to determine the durability of the bond. The bond strength test was applied in an universal test machine and treated Co-Cr alloys were analyzed by scanning electron microscope (SEM). Two-way analysis of variance (ANOVA) was used to determine the significant differences among surface treatments and thermocycling. Their interactons were followed by a multiple comparison' test performed uing a post hoc Tukey HSD test (α=.05). RESULTS Surface treatments significantly increased repair strengths of repair resin to Co-Cr alloy. The repair strengths of Group K, and Co significantly decreased after 6,000 cycles (P<.001). CONCLUSION Thermocycling lead to a significant decrease in shear bond strength for air abrasion with silica-coated aluminum oxide particles. On the contrary, flaming with Silano-Pen did not cause a significant reduction in adhesion after thermocycling. PMID:25177470

  18. A comparative study of shear bond strength of orthodontic bracket after acid-etched and Er:YAG treatment on enamel surface

    NASA Astrophysics Data System (ADS)

    Leão, Juliana C.; Mota, Cláudia C. B. O.; Cassimiro-silva, Patricia F.; Gomes, Anderson S. L.

    2016-02-01

    This study aimed to evaluate the shear bond strength (SBS) of teeth prepared for orthodontic bracket bonding with 37% phosphoric acid and Er:YAG laser. Forty bovine incisors were divided into two groups. In Group I, the teeth were conditioned with 37% phosphoric acid and brackets were bonded with Transbond XT; in Group II, the teeth were irradiated with Er:YAG and bonding with Transbond XT. After SBS test, the adhesive remnant index was determined. Adhesion to dental hard tissues after Er:YAG laser etching was inferior to that obtained after acid etching but exceeded what is believed to be clinically sufficient strength, and therefore can be used in patients.

  19. Tailoring of interfacial mechanical shear strength by surface chemical modification of silicon microwires embedded in Nafion membranes.

    PubMed

    Gallant, Betar M; Gu, X Wendy; Chen, David Z; Greer, Julia R; Lewis, Nathan S

    2015-05-26

    The interfacial shear strength between Si microwires and a Nafion membrane has been tailored through surface functionalization of the Si. Acidic (-COOH-terminated) or basic (-NH2-terminated) surface-bound functionality was introduced by hydrosilylation reactions to probe the interactions between the functionalized Si microwires and hydrophilic ionically charged sites in the Nafion polymeric side chains. Surfaces functionalized with SiOx, Si-H, or Si-CH3 were also synthesized and investigated. The interfacial shear strength between the functionalized Si microwire surfaces and the Nafion matrix was quantified by uniaxial wire pull-out experiments in an in situ nanomechanical instrument that allowed simultaneous collection of mechanical data and visualization of the deformation process. In this process, an axial load was applied to the custom-shaped top portions of individual wires until debonding occurred from the Nafion matrix. The shear strength obtained from the nanomechanical measurements correlated with the chemical bond strength and the functionalization density of the molecular layer, with values ranging from 7 MPa for Si-CH3 surfaces to ∼16-20 MPa for oxygen-containing surface functionalities. Hence surface chemical control can be used to influence the mechanical adhesion forces at a Si-Nafion interface. PMID:25872455

  20. Bond strength of adhesives to dentin contaminated with smoker’s saliva

    PubMed Central

    Oguri, Makoto; O’Keefe, Kathy; Dusevish, Vladimir; Spencer, Paulette; Powers, John M.; Marshall, Grayson W.

    2010-01-01

    The purpose of this study was to determine the effects of contamination with smoker’s and non-smoker’s saliva on the bond strength of resin composite to superficial dentin using different adhesive systems. The interfacial structure between the resin and dentin was evaluated for each treatment using environmental scanning electron microscopy (ESEM). Freshly extracted human molars were ground with 600-grit SiC paper to expose the superficial dentin. Adhesives [One-Up-Bond-F-Plus (OUFP) and Adper-Prompt-L-Pop (APLP)] and resin composite (TPH-Spectrum) were bonded to the dentin (n = 8/group, 180 total specimens) under five surface conditions: control (adhesive applied following manufacturers’ instructions); saliva, then 5-s air dry, then adhesive; adhesive, saliva, 5-s air dry; adhesive, saliva, 5-s water rinse, 5-s air dry (ASW group); and adhesive, saliva, 5-s water rinse, 5-s air dry, reapply adhesive (ASWA group). After storage in water at 37°C for 24 h, the specimens were debonded under tension at a speed of 0.5 mm/min. ESEM photomicrographs of the dentin/adhesive interfaces were taken. Mean bond strength ranged from 8.1 to 24.1 MPa. Fisher’s protected least significant difference (P = 0.05) intervals for critical adhesive, saliva, and surface condition differences were 1.3, 1.3, and 2.1 MPa, respectively. There were no significant differences in bond strength to dentin between contamination by smoker’s and non-smoker’s saliva, but bond strengths were significantly different between adhesive systems, with OUFP twice as strong as APLP under almost all conditions. After adhesive application and contamination with either smoker’s or nonsmoker’s saliva followed by washing and reapplication of the adhesive (ASWA group), the bond strength of both adhesive systems was the same as that of the control group. PMID:20155506

  1. A Comparative Evaluation of Effect of Different Chemical Solvents on the Shear Bond Strength of Glass Fiber reinforced Post to Core Material

    PubMed Central

    Samadi, Firoza; Jaiswal, JN; Saha, Sonali

    2014-01-01

    ABSTRACT% Aim: To compare the effect of different chemical solvents on glass fiber reinforced posts and to study the effect of these solvents on the shear bond strength of glass fiber reinforced post to core material. Materials and methods: This study was conducted to evaluate the effect of three chemical solvents, i.e. silane coupling agent, 6% H2O2 and 37% phosphoric acid on the shear bond strength of glass fiber post to a composite resin restorative material. The changes in post surface characteristics after different treatments were also observed, using scanning electron microscopy (SEM) and shear bond strength was analyzed using universal testing machine (UTM). Results: Surface treatment with hydrogen peroxide had greatest impact on the post surface followed by 37% phosphoric acid and silane. On evaluation of the shear bond strength, 6% H2O2 exhibited the maximum shear bond strength followed in descending order by 37% phosphoric acid and silane respectively. Conclusion: The surface treatment of glass fiber post enhances the adhesion between the post and composite resin which is used as core material. Failure of a fiber post and composite resin core often occurs at the junction between the two materials. This failure process requires better characterization. How to cite this article: Sharma A, Samadi F, Jaiswal JN, Saha S. A Comparative Evaluation of Effect of Different Chemical Solvents on the Shear Bond Strength of Glass Fiber Reinforced Post to Core Material. Int J Clin Pediatr Dent 2014;7(3):192-196. PMID:25709300

  2. Perturbation Method for Study of Shear Strength of Materials at Pressures up to {approx}300 GPa

    SciTech Connect

    Lebedev, A. I.; Aprelkov, O. N.; Arinin, V. A.; Bulannikov, A. S.; Burtsev, V. V.; Golubev, V. A.; Davydov, N. B.; Zhernokletov, M. V.; Ignatova, O. N.; Igonin, V. V.; Makarov, Yu. M.; Manachkin, S. F.; Mochalov, M. A.; Nadezhin, S. S.; Nizovtsev, P. N.; Raevsky, V. A.; Sinitsyna, S. N.; Solov'ev, V. P.; Fadeev, L. A.

    2006-07-28

    The paper presents results of studies of shear strength of copper having various grain sizes under quasi-isentropic and shock-wave loading up to pressures 40 GPa and 70 GPa. The studies were performed for copper M1; large-grain copper with grain size 100 mm; and ultradispersed copper with grain size 0.5 mm. Basing on results of the experiments, the relaxation models of shear strength were developed. The model of shear strength of large -grain copper takes account for deformation heterogeneity. The first experimental data on strength properties of copper at pressure up to 300 GPa were obtained by the perturbation method.

  3. Effect of multiple debonding sequences on shear bond strength of new stainless steel brackets

    PubMed Central

    Eslamian, Ladan; Borzabadi-Farahani, Ali; Tavakol, Pegah; Tavakol, Ali; Amini, Nazila; Lynch, Edward

    2015-01-01

    Objectives: This in-vitro study aimed at evaluating the effect of three debonding sequences on the shear bond strength (SBS) of new stainless steel (SS) brackets. Materials and Methods: Stainless steel twin brackets (0.022-inch, American Orthodontics, Sheboygan, WI, USA) were bonded with light cure adhesive (Transbond XT, 3M Unitek, St. Paul, MN, USA) to 80 newly extracted human premolars after acid etching with 37% phosphoric acid (30 s). Brackets were debonded with a universal testing machine, and new brackets were bonded to teeth using the same adhesive and same manner. This process was repeated twice, and brackets were debonded within 24 h after bonding. The longitudinal changes of average SBS were assessed with the repeated measures ANOVA. Post-hoc tests using the Bonferroni correction were also used to compare the average SBS at three debonding sequences. Result: The mean SBS decreased significantly after each debonding sequence (P < 0.01). The corresponding mean values (standard deviation, 95% CI) after the first, second, and third debonding sequences were 22.88 MPa (4.08, 21.97-22.79), 19.36 MPa (4.54, 18.62-20.64), and 16.67 MPa (4.27, 15.72-17.62), respectively. There was no significant difference among the adhesive remnant index (ARI) scores of three debonding sequences (χ2= 5.067, df = 6, P = 0.53). Conclusion: Average SBS after three debonding sequences was significantly decreased, but was above the recommended 5.9-7.8 MPa. In-vivo studies are required to validate the finding of this study. PMID:26020036

  4. An Ultrasonic Technique to Determine the Residual Strength of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Achenbach, J. D.; Tang, Z.

    1999-01-01

    In this work, ultrasonic techniques to nondestructively evaluate adhesive bond degradation have been studied. The key to the present approach is the introduction of an external factor which pulls the adhesive bond in the nonlinear range, simultaneously with the application of an ultrasonic technique. With the aid of an external static tensile loading, a superimposed longitudinal wave has.been used to obtain the slopes of the stress-strain curve of an adhesive bond at a series of load levels. The critical load, at which a reduction of the slope is detected by the superimposed longitudinal wave, is an indication of the onset of nonlinear behavior of the adhesive bond, and therefore of bond degradation. This approach has been applied to the detection of adhesive bond degradation induced by cyclic fatigue loading. Analogously to the longitudinal wave case, a superimposed shear wave has been used to obtain the effective shear modulus of adhesive layers at different shear load levels. The onset of the nonlinear behavior of an adhesive bond under shear loading has been detected by the use of a superimposed shear wave. Experiments show that a longitudinal wave can also detect the nonlinear behavior when an adhesive bond is subjected to shear loading. An optimal combination of ultrasonic testing and mechanical loading methods for the detection of degradation related nonlinear behavior of adhesive bonds has been discussed. For the purpose of a practical application, an ultrasonic technique that uses a temperature increase as an alternative to static loading has also been investigated. A general strain-temperature correspondence principle that relates a mechanical strain to a temperature has been presented. Explicit strain-temperature correspondence relations for both the tension and shear cases have been derived. An important parameter which quantifies the relation between the wave velocity and temperature has been defined. This parameter, which is indicative of adhesive

  5. Comparison of shear bond strength and surface structure between conventional acid etching and air-abrasion of human enamel.

    PubMed

    Olsen, M E; Bishara, S E; Damon, P; Jakobsen, J R

    1997-11-01

    Recently, air-abrasion technology has been examined for potential applications within dentistry, including the field of orthodontics. The purpose of this study was to compare the traditional acid-etch technique with an air-abrasion surface preparation technique, with two different sizes of abrading particles. The following parameters were evaluated: (a) shear bond strength, (b) bond failure location, and (c) enamel surface preparation, as viewed through a scanning electron microscope. Sixty extracted human third molars were pumiced and divided into three groups of 20. The first group was etched with a 37% phosphoric acid gel for 30 seconds, rinsed for 30 seconds, and dried for 20 seconds. The second and third groups were air-abraded with (a) a 50 microm particle and (b) a 90 microm particle of aluminum oxide, with the Micro-etcher microabrasion machine (Danville Engineering Inc.). All three groups had molar stainless steel orthodontic brackets bonded to the buccal surface of each tooth with Transbond XT bonding system (3M Unitek). A Zwick Universal Testing Machine (Calitek Corp.) was used to determine shear bond strengths. The analysis of variance was used to compare the three groups. The Adhesive Remnant Index (ARI) was used to evaluate the residual adhesive on the enamel after bracket removal. The chi square test was used to evaluate differences in the ARI scores among the groups. The significance for all tests was predetermined at p < or = 0.05. The results indicated that there was a significant difference in shear bond strength among the three groups (p = 0.0001). The Duncan Multiple Range test showed a significant decrease in shear bond strength in the air-abraded groups. The chi square test revealed significant differences among the ARI scores of the acid-etched group and the air-abraded groups (chi(2) = 0.0001), indicating no adhesive remained on the enamel surface after debonding when air-abrasion was used. In conclusion, the current findings indicate that

  6. Calculation Method of Lateral Strengths and Ductility Factors of Constructions with Shear Walls of Different Ductility

    SciTech Connect

    Yamaguchi, Nobuyoshi; Nakao, Masato; Murakami, Masahide; Miyazawa, Kenji

    2008-07-08

    For seismic design, ductility-related force modification factors are named R factor in Uniform Building Code of U.S, q factor in Euro Code 8 and Ds (inverse of R) factor in Japanese Building Code. These ductility-related force modification factors for each type of shear elements are appeared in those codes. Some constructions use various types of shear walls that have different ductility, especially for their retrofit or re-strengthening. In these cases, engineers puzzle the decision of force modification factors of the constructions. Solving this problem, new method to calculate lateral strengths of stories for simple shear wall systems is proposed and named 'Stiffness--Potential Energy Addition Method' in this paper. This method uses two design lateral strengths for each type of shear walls in damage limit state and safety limit state. Two lateral strengths of stories in both limit states are calculated from these two design lateral strengths for each type of shear walls in both limit states. Calculated strengths have the same quality as values obtained by strength addition method using many steps of load-deformation data of shear walls. The new method to calculate ductility factors is also proposed in this paper. This method is based on the new method to calculate lateral strengths of stories. This method can solve the problem to obtain ductility factors of stories with shear walls of different ductility.

  7. Effect of Different Surface Treatments on Repair Micro-shear Bond Strength of Silica- and Zirconia-filled Composite Resins

    PubMed Central

    Joulaei, Mohammad; Bahari, Mahmoud; Ahmadi, Anahid; Savadi Oskoee, Siavash

    2012-01-01

    Background and aims Effect of surface treatments on repair bond strength of aged composite resins might be different due to their dissimilar fillers. The aim was to evaluate the effect of different surface treatments on repair micro-shear bond strength (µSBS) of silica- (Spectrum TPH) and zirconia-filled (Filtek Z250) composite resins. Materials and methods Twenty-seven composite resin blocks were made from each type of composite resin: Z250 and Spectrum TPH. After aging, blocks of each type were randomly divided into three groups according to surface treatments: alloy primer, silane, and only surface roughening. Subsequently, each group was further subdivided into 3 subgroups based on the adhesive system used: Single Bond, Clearfil SE Bond, and Margin Bond. Four composite resin columns were added on each block. After thermocycling, µSBStest were done at cross head speed of 0.5 mm/min. Data was analysed using multifactor ANOVA, one-way ANOVA and a post-hoc Bonferroni tests (α = 0.05). Results Analysis of data showed that the effect of composite resin type was not significant (p > 0.05), but the effects of the type of surface treatment (p = 0.01) and the type of adhesive system (p = 0.01) were significant on repair µSBS. In addition, the cumulative effect of the composite type-surface treatment and the composite type with the type of adhesive system were not statistically significant (p > 0.05). However, the cumulative effects of the adhesive system-surface treatment (p = 0.03) and the composite type-the adhesive system-surface treatments (p = 0.002) were significant. Conclusion Although repair µSBS values of both silica- and zirconia-filled composite resins were similar, use of different combinations of surface treatments and adhesive systems affected their repair µSBS differently. PMID:23277859

  8. Effect of acid etching on bond strength of nanoionomer as an orthodontic bonding adhesive

    PubMed Central

    Khan, Saba; Verma, Sanjeev K.; Maheshwari, Sandhya

    2015-01-01

    Aims: A new Resin Modified Glass Ionomer Cement known as nanoionomer containing nanofillers of fluoroaluminosilicate glass and nanofiller 'clusters' has been introduced. An in-vitro study aimed at evaluating shear bond strength (SBS) and adhesive remnant index (ARI) of nanoionomer under etching/unetched condition for use as an orthodontic bonding agent. Material and Methods: A total of 75 extracted premolars were used, which were divided into three equal groups of 25 each: 1-Conventional adhesive (Enlight Light Cure, SDS, Ormco, CA, USA) was used after and etching with 37% phosphoric acid for 30 s, followed by Ortho Solo application 2-nanoionomer (Ketac™ N100, 3M, ESPE, St. Paul, MN, USA) was used after etching with 37% phosphoric acid for 30 s 3-nanoionomer was used without etching. The SBS testing was performed using a digital universal testing machine (UTM-G-410B, Shanta Engineering). Evaluation of ARI was done using scanning electron microscopy. The SBS were compared using ANOVA with post-hoc Tukey test for intergroup comparisons and ARI scores were compared with Chi-square test. Results: ANOVA (SBS, F = 104.75) and Chi-square (ARI, Chi-square = 30.71) tests revealed significant differences between groups (P < 0.01). The mean (SD) SBS achieved with conventional light cure adhesive was significantly higher (P < 0.05) (10.59 ± 2.03 Mpa, 95% CI, 9.74-11.41) than the nanoionomer groups (unetched 4.13 ± 0.88 Mpa, 95% CI, 3.79-4.47 and etched 9.32 ± 1.87 Mpa, 95% CI, 8.58-10.06). However, nanoionomer with etching, registered SBS in the clinically acceptable range of 5.9–7.8 MPa, as suggested by Reynolds (1975). The nanoionomer groups gave significantly lower ARI values than the conventional adhesive group. Conclusion: Based on this in-vitro study, nanoionomer with etching can be successfully used as an orthodontic bonding agent leaving less adhesive remnant on enamel surface, making cleaning easier. However, in-vivo studies are needed to confirm the validity

  9. Surface morphology of platelet adhesion influenced by activators, inhibitors and shear stress

    NASA Astrophysics Data System (ADS)

    Watson, Melanie Groan

    Platelet activation involves multiple events, one of which is the generation and release of nitric oxide (NO), a platelet aggregation inhibitor. Platelets simultaneously send and receive various agents that promote a positive and negative feedback control system during hemostasis. Although the purpose of platelet-derived NO is not fully understood, NO is known to inhibit platelet recruitment. NO's relatively large diffusion coefficient allows it to diffuse more rapidly than platelet agonists. It may thus be able to inhibit recruitment of platelets near the periphery of a growing thrombus before agonists have substantially accumulated in those regions. Results from two studies in our laboratory differed in the extent to which platelet-derived NO decreased platelet adhesion. Frilot studied the effect of L-arginine (L-A) and NG-Methyl-L-arginine acetate salt (L-NMMA) on platelet adhesion to collagen under static conditions in a Petri dish. Eshaq examined the percent coverage on collagen-coated and fibrinogen-coated microchannels under shear conditions with different levels of L-A and Adenosine Diphosphate (ADP). Frilot's results showed no effect of either L-A or L-NMMA on surface coverage, thrombus size or serotonin release, while Eshaq's results showed a decrease in surface coverage with increased levels of L-A. A possible explanation for these contrasting results is that platelet-derived NO may be more important under flow conditions than under static conditions. For this project, the effects of L-A. ADP and L-NMMA on platelet adhesion were studied at varying shear stresses on protein-coated glass slides. The surface exposed to platelet-rich-plasma in combination with each chemical solution was observed under AFM, FE-SEM and fluorescence microscopy. Quantitative and qualitative comparisons of images obtained with these techniques confirmed the presence of platelets on the protein coatings. AFM images of fibrinogen and collagen-coated slides presented characteristic

  10. Bond strength of pressure sensitive adhesives for CFRP aluminium-alloy hybrid beams under impact loading

    NASA Astrophysics Data System (ADS)

    Sato, C.

    2003-09-01

    This paper discusses the impact absorbing capabilities of CFRP aluminium-alloy hybrid beams bonded with double-coated pressure sensitive adhesive tapes. Two sorts of double-coated adhesive tapes (VHB and SBT, 3M) were used in experiments. The strength and absorbed energy of the beams under impact loading were measured using an instrumented Charpy tester. Using the beams having the different adhesive tapes and the CFRP of different length, the variations of the strength and the absorbed energy were investigated. The beams bonded with VHB showed sufficient strength and absorbed energy. SBT showed also great capability of absorbing impact energy.

  11. Effect of particle state on the adhesive strength of HVOF sprayed metallic coating

    NASA Astrophysics Data System (ADS)

    Li, Chang-Jiu; Wang, Yu-Yue

    2002-12-01

    NiCrBSi and Ni-50Cr coatings were deposited using the high velocity oxygen fuel (HVOF) spray process under different spray parameters with two powders of different sizes to clarify the influence of the melting state of spray particles on the adhesive strength of the coating. The adhesive strength of the coating was estimated according to the American Society for Testing and Materials (ASTM) C633-79. The melting state of the spray droplet was examined from the coating microstructure. It was found that the melting state of spray particles had a significant effect on the adhesive strength of HVOF sprayed Ni-based coatings. The significant melting of the spray particle did not contribute to the increase in the adhesion of HVOF metallic coatings. On the other hand, the deposition of a partially melted large particle contributed to the substantial improvement of adhesive strength of the HVOF coating. The subsequent coating presented a dense microstructure and yielded an adhesive strength of more than 76 MPa, which was double that of the coating deposited with completely molten particles. It can be suggested that the good melting of the spray particle is mainly related to the mechanical interlocking effect, which reaches the limited and approximately defined adhesive strength up to 40 50 MPa.

  12. The Influence of Casing-Sand Adhesion on Cementing Bond Strength

    PubMed Central

    Zhao, Xiaofeng; Guan, Zhichuan; Xu, Minglei; Shi, Yucai; Liao, Hualin; Sun, Jia

    2015-01-01

    In the petroleum industry, one of the most serious problems encountered during cementing is the failure at the bonding interface. Many measures including casing-sand adhesion have been developed to improve cementing bond strength. However, due to the lack of detailed study of the technique, many questions remain. The primary goal of this study is to investigate the influence of casing-sand adhesion on cementing bond strength, and to optimize parameters. An orthogonal experiment and a supplementary experiment were conducted. The results indicated that casing-sand adhesion can improve the cementing bond strength. The priority orders of key factors are: sand grain size, sand coverage, adhesive curing temperature and adhesive curing time. The optimal parameters recommended for application are: 1.6mm~1.9mm sand grain size, 60%~70% sand coverage, 30°C curing temperature and 60 hours curing time. PMID:26115343

  13. Effects of ultrasonic agitation on adhesion strength of micro electroforming Ni layer on Cu substrate.

    PubMed

    Zhao, Zhong; Du, Liqun; Xu, Zheng; Shao, Ligeng

    2016-03-01

    Micro electroforming is an important technology, which is widely used for fabricating micro metal devices in MEMS. The micro metal devices have the problem of poor adhesion strength, which has dramatically influenced the dimensional accuracy of the devices and seriously limited the development of the micro electroforming technology. In order to improve the adhesion strength, ultrasonic agitation method is applied during the micro electroforming process in this paper. To explore the effect of the ultrasonic agitation, micro electroforming experiments were carried out under ultrasonic and ultrasonic-free conditions. The effects of the ultrasonic agitation on the micro electroforming process were investigated by polarization and alternating current (a.c.) impedance methods. The real surface area of the electroforming layer was measured by cyclic voltammetry method. The compressive stress and the crystallite size of the electroforming layer were measured by X-ray Diffraction (XRD) method. The adhesion strength of the electroforming layer was measured by scratch test. The experimental results show that the imposition of the ultrasonic agitation decreases the polarization overpotential and increases the charge transfer process at the electrode-electrolyte interface during the electroforming process. The ultrasonic agitation increases the crystallite size and the real surface area, and reduces the compressive stress. Then the adhesion strength is improved about 47% by the ultrasonic agitation in average. In addition, mechanisms of the ultrasonic agitation improving the adhesion strength are originally explored in this paper. The mechanisms are that the ultrasonic agitation increases the crystallite size, which reduces the compressive stress. The lower the compressive stress is, the larger the adhesion strength is. Furthermore, the ultrasonic agitation increases the real surface area, enhances the mechanical interlocking strength and consequently increases the adhesion

  14. Weibull models of fracture strengths and fatigue behavior of dental resins in flexure and shear.

    PubMed

    Baran, G R; McCool, J I; Paul, D; Boberick, K; Wunder, S

    1998-01-01

    In estimating lifetimes of dental restorative materials, it is useful to have available data on the fatigue behavior of these materials. Current efforts at estimation include several untested assumptions related to the equivalence of flaw distributions sampled by shear, tensile, and compressive stresses. Environmental influences on material properties are not accounted for, and it is unclear if fatigue limits exist. In this study, the shear and flexural strengths of three resins used as matrices in dental restorative composite materials were characterized by Weibull parameters. It was found that shear strengths were lower than flexural strengths, liquid sorption had a profound effect on characteristic strengths, and the Weibull shape parameter obtained from shear data differed for some materials from that obtained in flexure. In shear and flexural fatigue, a power law relationship applied for up to 250,000 cycles; no fatigue limits were found, and the data thus imply only one flaw population is responsible for failure. Again, liquid sorption adversely affected strength levels in most materials (decreasing shear strengths and flexural strengths by factors of 2-3) and to a greater extent than did the degree of cure or material chemistry. PMID:9730059

  15. Comparative evaluation of bond strength of three contemporary self-etch adhesives: An ex vivo study

    PubMed Central

    Nikhil, Vineeta; Singh, Vijay; Chaudhry, Suruchi

    2011-01-01

    Aim: This study evaluated the effect of 2-hydroxymethyl methacrylate (HEMA) and the type of solvent on the tensile bond strength of the following three self-etch adhesives: Adper easy one (HEMA-rich adhesive) which contained ethanol, G-Bond (HEMA-free adhesive) which contained acetone, and Xeno V (HEMA-free adhesive) which contained butanol as a solvent. Material and Methods: Intact mandibular molars were mounted in self-cured resin and the occlusal surfaces were ground with # 600 SiC paper. Adhesives were applied on the prepared dentinal surfaces and the resin composite was condensed in the split brass mold (5 × 3 mm) placed over the adhesive surface. The specimens were stored in normal saline and placed in incubator at 37°C. After 24 hours, the specimens were tested in tensile mode at a crosshead speed of 1 mm/min. Statistical analysis was done using One way ANOVA and Tukey's HSD test. Results: The mean bond strengths of Adper easy one, G-Bond, and Xeno V were 12.41 MPa, 10.09 MPa, and 8.67 MPa, respectively. Conclusions: Comparison of contemporary adhesives in this ex vivo study revealed that the ethanol-based HEMA-rich self-etch adhesive is better than HEMA-free self-etch adhesive that contained acetone and butanol as the solvents, when compared in terms of bond strength. PMID:21957383

  16. Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore

    SciTech Connect

    Sivakumar Babu, G.L.; Lakshmikanthan, P.; Santhosh, L.G.

    2015-05-15

    Highlights: • Shear strength properties of mechanically biologically treated municipal solid waste. • Effect of unit weight and particle size on the shear strength of waste. • Effect of particle size on the strength properties. • Stiffness ratio and the strength ratio of MSW. - Abstract: Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m{sup 3} to 10.3 kN/m{sup 3} at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43.

  17. Role of Powder Granulometry and Substrate Topography in Adhesion Strength of Thermal Spray Coatings

    NASA Astrophysics Data System (ADS)

    Kromer, R.; Cormier, J.; Costil, S.

    2016-06-01

    APS coating is deposited with different treated surfaces to understand the effects of surface topography and particle sizes on adhesion bond strength. Grit blasting and laser surface texturing have been used to create a controlled roughness and controlled surface topography, respectively. Coating adhesion is mainly controlled by a mechanical interlocking mechanism. Fully melted Ni-Al powder fills the respected target surface with high-speed radial flow. Pores around central flattening splat are usually seen due to splash effects. Laser surface texturing has been used to study near interface coating depending on the target shape and in-contact area. Pull-off test results have revealed predominant correlation with powder, surface topography, and adhesion bond strength. Adhesion bond strength is linked to the in-contact area. So, coating adhesion might be optimized with powder granulometry. Pores near the interface would be localized zones for crack initiations and propagations. A mixed-mode failure has been reported for sharp interface (interface and inter-splats cracks) due to crack kicking out phenomena. Coating toughness near the interface is a key issue to maximize adhesion bond strength. Volume particles and topography parameters have been proposed to enhance adhesion bond strength for thermal spray process for small and large in-contact area.

  18. Role of Powder Granulometry and Substrate Topography in Adhesion Strength of Thermal Spray Coatings

    NASA Astrophysics Data System (ADS)

    Kromer, R.; Cormier, J.; Costil, S.

    2016-05-01

    APS coating is deposited with different treated surfaces to understand the effects of surface topography and particle sizes on adhesion bond strength. Grit blasting and laser surface texturing have been used to create a controlled roughness and controlled surface topography, respectively. Coating adhesion is mainly controlled by a mechanical interlocking mechanism. Fully melted Ni-Al powder fills the respected target surface with high-speed radial flow. Pores around central flattening splat are usually seen due to splash effects. Laser surface texturing has been used to study near interface coating depending on the target shape and in-contact area. Pull-off test results have revealed predominant correlation with powder, surface topography, and adhesion bond strength. Adhesion bond strength is linked to the in-contact area. So, coating adhesion might be optimized with powder granulometry. Pores near the interface would be localized zones for crack initiations and propagations. A mixed-mode failure has been reported for sharp interface (interface and inter-splats cracks) due to crack kicking out phenomena. Coating toughness near the interface is a key issue to maximize adhesion bond strength. Volume particles and topography parameters have been proposed to enhance adhesion bond strength for thermal spray process for small and large in-contact area.

  19. Comparative Evaluation of Shear Bond Strength of Orthodontic Brackets on Pretreatment with CPPACP, Fluor Protector and Phosflur: An In-vitro Study

    PubMed Central

    2014-01-01

    Objective: The purpose of this study is to evaluate bond strength, bracket tooth interface of Orthodontic brackets that are bonded for fixed Orthodontic treatment procedure on pretreatment with CPPACP, Fluor Protector and Phosflur. The goal is to assess the adhesive remnants following application of these remineralizing agents using Adhesive Remnant Index. Materials and Methods: Two hundred freshly extracted premolar teeth each divided into Control, CPP-ACP, Fluor Protector and Phosflur. Teeth were pretreated with these agents prior to bonding procedure. Shear Bond Strength was tested using a Universal Testing Machine. A jig was attached to upper jaw of the machine. The acrylic block containing the embedded teeth was secured in the lower jaw of the machine such that the bracket base of the teeth parallel the direction of the shear force at a crosshead speed of 1 mm/minute until bracket failure. The force required to dislodge the bracket was recorded. Results: Mean Shear bond strength value is highest for Phosflur (15.3658 ± 2.4546 ) followed by Fluor Protector , CPP-ACP and lowest for Control (7.0462 ± 0.8838 MPa). Conclusion: Phosflur, Fluor protector,CPP-ACP have comparable Shear bond strength values in comparison to control. PMID:24995233

  20. In vitro comparative bond strength of contemporary self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion.

    PubMed

    Blatz, Markus B; Phark, Jin-Ho; Ozer, Fusun; Mante, Francis K; Saleh, Najeed; Bergler, Michael; Sadan, Avishai

    2010-04-01

    This study compared shear bond strengths of six self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion. One hundred twenty zirconia samples were air-abraded (group SB; n = 60) or left untreated (group NO). Composite cylinders were bonded to the zirconia samples with either BisCem (BC), Maxcem (MC), G-Cem (GC), RelyX Unicem Clicker (RUC), RelyX Unicem Applicator (RUA), or Clearfil SA Cement (CSA). Shear bond strength was tested after thermocycling, and data were analyzed with analysis of variance and Holm-Sidak pairwise comparisons. Without abrasion, RUA (8.0 MPa), GC (7.9 MPa), and CSA (7.6 MPa) revealed significantly higher bond strengths than the other cements. Air-particle abrasion increased bond strengths for all test cements (p < 0.001). GC (22.4 MPa) and CSA (18.4 MPa) revealed the highest bond strengths in group SB. Bond strengths of self-adhesive resin cements to zirconia were increased by air-particle abrasion. Cements containing adhesive monomers (MDP/4-META) were superior to other compositions. PMID:19415350

  1. Shear Strength Prediction of RC Beams Wrapped with Frp

    NASA Astrophysics Data System (ADS)

    Wang, Suyan; Zhou, Yingwu; Li, Hongnan

    During past decades, substantial studies on the external bonding of fiber reinforced polymer (FRP) strips to deficient reinforced concrete (RC) beams have been carried out for the well-known superior properties of the FRP. Several shear prediction models have been established by using the effective strain of the FRP or introducing an ultimate stress discount coefficient. And the latest design concept is the use of stress distribution factor. In this paper, an equivalent effective strain model of the FRP is presented, which contains the concepts of maximum strain, stress distribution factor and critical shear crack angle influences. To develop a simple and accurate approach for such equivalent effective strain, major influenced factors are investigated and analyzed by the statistical independent hypothetic tests on a database of 128 RC beams wrapped by the FRP. Finally, a simple and rational shear design proposal is given, which is more accurate than the existing models using the above database.

  2. Comparison of shear bond strength of orthodontic brackets using various zirconia primers

    PubMed Central

    Lee, Ji-Yeon; Kim, Jin-Seok

    2015-01-01

    Objective The aim of this study was to compare the shear bond strength (SBS) of orthodontic brackets bonded to zirconia surfaces using three different zirconia primers and one silane primer, and subjected to thermocycling. Methods We designed 10 experimental groups following the surface treatment and thermocycling. The surface was treated with one of the following method: no-primer (NP), Porcelain Conditioner (PC), Z-PRIME Plus (ZP), Monobond Plus (MP) and Zirconia Liner Premium (ZL) (n=20). Then each group was subdivided to non-thermocycled and thermocycled groups (NPT, PC, ZPT, MPT, ZLT) (n=10). Orthodontic brackets were bonded to the specimens using Transbond™ XT Paste and light cured for 15 s at 1,100 mW/cm2. The SBS was measured at a 1 mm/min crosshead speed. The failure mode was assessed by examination with a stereomicroscope and the amount of bonding resin remaining on the zirconia surface was scored using the modified adhesive remnant index (ARI). Results The SBS of all experimental groups decreased after thermocycling. Before thermocycling, the SBS was ZL, ZP ≥ MP ≥ PC > NP but after thermocycling, the SBS was ZLT ≥ MPT ≥ ZPT > PCT = NPT (p > 0.05). For the ARI score, both of the groups lacking primer (NP and NPT) displayed adhesive failure modes, but the groups with zirconia primers (ZP, ZPT, MP, MPT, ZL, and ZLT) were associated with mixed failure modes. Conclusions Surface treatment with a zirconia primer increases the SBS relative to no-primer or silane primer application between orthodontic brackets and zirconia prostheses. PMID:26258062

  3. COMPARISON OF SHEAR STRENGTH OF CERAMIC JOINTS DETERMINED BY VARIOUS TEST METHODS WITH SMALL SPECIMENS

    SciTech Connect

    Katoh, Yutai; Kiggans Jr, James O; Khalifa, Hesham; Back, Christina A.; Hinoki, Tatsuya; Ferraris, Monica

    2015-01-01

    Four different shear test methods i.e. doubled notched shear test, asymmetrical four point bend test, Iosipescu test, and torsion test, were investigated for their ability to evaluate one standard SiC to SiC ceramic brittle joint while using small size specimens. Double notched shear test showed higher stress concentration at the notch base and a lower nominal shear strength. Both asymmetrical four point bend test and Iosipescu test utilized epoxy jointed metal extensors, which failed during test and caused misalignment and tensile type of failure. Torsion test can deliver true shear loading. However, base material failure was observed for the torsion joint samples in this study. None of the tests can successfully induce true shear failure of the joint because the joint is stronger and tougher than the SiC substrate. Torsion test appears to be promising because of the pure shear loading, less stress concentration, and easy alignment.

  4. Effect of endodontic irrigation and dressing procedures on the shear bond strength of composite to coronal dentin.

    PubMed

    Abo-Hamar, Sahar E

    2013-01-01

    This study aimed to evaluate the effects of three sodium hypochlorite (NaOCl)-endodontic irrigation procedures used alone or in combinations with two intermediate dressing materials on bond strengths of two adhesive composite systems to coronal dentin. Surfaces were treated with NaOCl or NaOCl-Glyde-File-Prep (H2O2 and EDTA) with or without chlorhexidine (CHX) as a final rinse. Intermediate dressing materials of calcium hydroxide (Ca(OH)2) and sodium perborate (SP) were combined with surface treatments. Surface treatment groups (n = 10/group) included (1) distilled water (control), (2) 5.25% NaOCl (30 min), (3) NaOCl/Glyde (30 min), (4) NaOCl/Glyde (30 min) + CHX (2 min), (5) NaOCl/Glyde (30 min) + Ca(OH)2 (5 days) + CHX (2 min), and (6) NaOCl/Glyde (30 min) + SP (9 days) + CHX (2 min). For each surface treatment group, dentin shear bond strengths of two different composite systems (Excite/Tetric Flow Chroma, [EX/TFC], and Clearfil Protect Bond/Protect Liner F [PB/PLF]) were evaluated. Median shear bond strengths (EX/TFC, PB/PLF) for each surface treatment group in MPa were (1) 21, 18; (2) 26, 18; (3) 21, 17; (4) 22, 16; (5) 17, 11; and (6) 14, 11, respectively. NaOCl significantly increased the bond strength of EX/TFC (p < 0.05), but did not significantly affect that of PB/PLF. The use of NaOCl/Glyde with CHX did not significantly affect EX/TFC (p > 0.05), whereas it significantly decreased PB/PLF (p < 0.05). Ca(OH)2 and SP significantly decreased the bond strengths of both adhesive systems (p < 0.05). Adhesion to coronal dentin is dependent upon the irrigation regimen and the type of adhesive. PMID:25685402

  5. Effect of endodontic irrigation and dressing procedures on the shear bond strength of composite to coronal dentin

    PubMed Central

    Abo-Hamar, Sahar E.

    2012-01-01

    This study aimed to evaluate the effects of three sodium hypochlorite (NaOCl)-endodontic irrigation procedures used alone or in combinations with two intermediate dressing materials on bond strengths of two adhesive composite systems to coronal dentin. Surfaces were treated with NaOCl or NaOCl–Glyde-File-Prep (H2O2 and EDTA) with or without chlorhexidine (CHX) as a final rinse. Intermediate dressing materials of calcium hydroxide (Ca(OH)2) and sodium perborate (SP) were combined with surface treatments. Surface treatment groups (n = 10/group) included (1) distilled water (control), (2) 5.25% NaOCl (30 min), (3) NaOCl/Glyde (30 min), (4) NaOCl/Glyde (30 min) + CHX (2 min), (5) NaOCl/Glyde (30 min) + Ca(OH)2 (5 days) + CHX (2 min), and (6) NaOCl/Glyde (30 min) + SP (9 days) + CHX (2 min). For each surface treatment group, dentin shear bond strengths of two different composite systems (Excite/Tetric Flow Chroma, [EX/TFC], and Clearfil Protect Bond/Protect Liner F [PB/PLF]) were evaluated. Median shear bond strengths (EX/TFC, PB/PLF) for each surface treatment group in MPa were (1) 21, 18; (2) 26, 18; (3) 21, 17; (4) 22, 16; (5) 17, 11; and (6) 14, 11, respectively. NaOCl significantly increased the bond strength of EX/TFC (p < 0.05), but did not significantly affect that of PB/PLF. The use of NaOCl/Glyde with CHX did not significantly affect EX/TFC (p > 0.05), whereas it significantly decreased PB/PLF (p < 0.05). Ca(OH)2 and SP significantly decreased the bond strengths of both adhesive systems (p < 0.05). Adhesion to coronal dentin is dependent upon the irrigation regimen and the type of adhesive. PMID:25685402

  6. Influence of methyl mercaptan on the repair bond strength of composites fabricated using self-etch adhesives.

    PubMed

    Yokokawa, Miho; Rikuta, Akitomo; Tsujimoto, Akimasa; Tsuchiya, Kenji; Shibasaki, Syo; Matsuyoshi, Saki; Miyazaki, Masashi

    2015-02-01

    The influence of methyl mercaptan on the repair bond strength of composites fabricated using self-etch adhesives was investigated. The surface free-energies were determined by measuring the contact angles of test liquids placed on composites that had been immersed in different concentrations of methyl mercaptan (0.01, 0.1, and 1.0 M). To determine the repair bond strength, self-etch adhesives were applied to the aged composite, and then newly added composites were condensed. Ten samples of each specimen were subjected to shear testing at a crosshead speed of 1.0 mm min(-1). Samples were analyzed using two-way ANOVA followed by Tukey's honestly significant difference (HSD) test. Although the dispersion force of the composites remained relatively constant, their polar force increased slightly as the concentration of methyl mercaptan increased. The hydrogen-bonding forces were significantly higher after immersion in 1.0 M methyl mercaptan, leading to higher surface-free energies. However, the repair bond strengths for the repair restorations prepared from composites immersed in 1.0 M methyl mercaptan were significantly lower than for those immersed in 0.01 and 0.10 M methyl mercaptan. Considering the results of this study, it can be concluded that the repair bond strengths of both the aged and newly added composites were affected by immersion in methyl mercaptan solutions. PMID:25545663

  7. Shear Strength of Partially Bonded Concrete-Rock Interfaces for Application in Dam Stability Analyses

    NASA Astrophysics Data System (ADS)

    Krounis, Alexandra; Johansson, Fredrik; Larsson, Stefan

    2016-07-01

    The shear strength of the concrete-rock interface has a substantial influence on the sliding stability of concrete gravity dams founded on rock. While several studies have been done on concrete-rock contacts, there remains uncertainty regarding the peak shear strength of partially bonded interfaces. There exists, in particular, an uncertainty regarding the contribution from surface roughness of the unbonded parts to the peak shear strength of the interface due to the dependency of mobilized strength on shear displacement. In this study, a series of 24 direct shear tests are performed under CNL conditions on concrete-rock samples with different bonding conditions. Tests on samples with fully bonded and unbonded interfaces are conducted to study the strain compatibility of the different contacts, while the results of samples with partially bonded interfaces are evaluated in the context of linking the joint roughness of the unbonded parts to the peak shear strength of the interface. The results indicate that a significant part of the surface roughness of the unbonded parts is mobilized prior to degradation of bond strength, in particular for interfaces with low bonding percentages. It is recommended that further research should be conducted to understand how the contribution from roughness change with an increase in scale and degree of matedness.

  8. Evaluation of a sugar-based edible adhesive using a tensile strength tester.

    PubMed

    Doll, Kenneth M; Erhan, Sevim Z

    2011-04-01

    A method to evaluate adhesives has been developed and used to reformulate a recently patented adhesive which is based on sugar and citric acid. Factors affecting adhesive performance were uncovered, such as an optimal curing temperature of 60°C. The addition of maltodextrin and soy protein at optimized levels was shown to nearly double the bonding strength of the adhesive, from 0.46 ± 0.076 to 0.74 ± 0.26 kN, under our test conditions. Also discussed is the potential for this method to be automated using commercially available equipment. PMID:21609697

  9. Effect of 10% Sodium Ascorbate on Shear Bond Strength of Bleached Teeth - An in-vitro Study

    PubMed Central

    Ponnappa, K C; Nitin, Mirdha; Ramesh, Sachhi; Sharanappa, Kambale; Nishant, Ajgaonkar

    2015-01-01

    Background Patient often requires some additional interventions such as replacement of old restorations, laminates and veneers after bleaching, for aesthetic purposes. The residual oxygen inhibits polymerization of resin based materials which results in reduced bond strength of the restorations. Some techniques are available to solve the clinical problems related to the post bleach compromised bond strength. Objectives The purpose of this study is to evaluate, the role of 10% sodium ascorbate on reversing the compromised bond strength and compare enamel shear bond strength of 5th and 6th generation dentine bonding agents on bleached and unbleached teeth. Materials and Methods Eighty freshly extracted human anterior teeth were assigned in to Group A and Group B of 40 teeth each. Samples in both groups were subdivided in to 4 subgroups of 10 teeth each. In Group A composite resins was bonded using 5th generation dentine bonding agent (3M Single Bond) and Group B was bonded using 6th generation (3M ESPE Adper SE Plus). Subgroups were subjected to the procedure as, A1;B1 etching and bonding (control), A2; B2 bleaching, etching and immediate bonding, A3; B3 bleaching,10% ascorbic acid treatment for 10 minutes after that etching and bonding immediately, A4; B4 bleaching, storage in artificial saliva for 4 days and then etching and bonding. Pola office, in office bleach (SDI (082216) was used for bleaching. The specimens were subjected to shear load in a Universal testing machine to evaluate bond strength. Results A decrease in bond strength was seen with 6th generation adhesive system compared to 5th generation bonding system, which is statistically significant, p<0.001. Conclusion Treating the bleached enamel surfaces when treated with 10% sodium ascorbate, which reverses the compromised bond strength and is a good alternative to delayed bonding. PMID:26393201

  10. Effects of solvent volatilization time on the bond strength of etch-and-rinse adhesive to dentin using conventional or deproteinization bonding techniques

    PubMed Central

    de Sousa Júnior, José Aginaldo; Carregosa Santana, Márcia Luciana; de Figueiredo, Fabricio Eneas Diniz

    2015-01-01

    Objectives This study determined the effect of the air-stream application time and the bonding technique on the dentin bond strength of adhesives with different solvents. Furthermore, the content and volatilization rate of the solvents contained in the adhesives were also evaluated. Materials and Methods Three adhesive systems with different solvents (Stae, SDI, acetone; XP Bond, Dentsply De Trey, butanol; Ambar, FGM, ethanol) were evaluated. The concentrations and evaporation rates of each adhesive were measured using an analytical balance. After acid-etching and rinsing, medium occlusal dentin surfaces of human molars were kept moist (conventional) or were treated with 10% sodium hypochlorite for deproteinization. After applying adhesives over the dentin, slight air-stream was applied for 10, 30 or 60 sec. Composite cylinders were built up and submitted to shear testing. The data were submitted to ANOVA and Tukey's test (α = 0.05). Results Stae showed the highest solvent content and Ambar the lowest. Acetone presented the highest evaporation rate, followed by butanol. Shear bond strengths were significantly affected only by the factors of 'adhesive' and 'bonding technique' (p < 0.05), while the factor 'duration of air-stream' was not significant. Deproteinization of dentin increased the bond strength (p < 0.05). Stae showed the lowest bond strength values (p < 0.05), while no significant difference was observed between XP Bond and Ambar. Conclusions Despite the differences in content and evaporation rate of the solvents, the duration of air-stream application did not affect the bond strength to dentin irrespective of the bonding technique. PMID:26295023

  11. Parametric Study of Shear Strength of Concrete Beams Reinforced with FRP Bars

    NASA Astrophysics Data System (ADS)

    Thomas, Job; Ramadass, S.

    2016-06-01

    Fibre Reinforced Polymer (FRP) bars are being widely used as internal reinforcement in structural elements in the last decade. The corrosion resistance of FRP bars qualifies its use in severe and marine exposure conditions in structures. A total of eight concrete beams longitudinally reinforced with FRP bars were cast and tested over shear span to depth ratio of 0.5 and 1.75. The shear strength test data of 188 beams published in various literatures were also used. The model originally proposed by Indian Standard Code of practice for the prediction of shear strength of concrete beams reinforced with steel bars IS:456 (Plain and reinforced concrete, code of practice, fourth revision. Bureau of Indian Standards, New Delhi, 2000) is considered and a modification to account for the influence of the FRP bars is proposed based on regression analysis. Out of the 196 test data, 110 test data is used for the regression analysis and 86 test data is used for the validation of the model. In addition, the shear strength of 86 test data accounted for the validation is assessed using eleven models proposed by various researchers. The proposed model accounts for compressive strength of concrete (f ck ), modulus of elasticity of FRP rebar (E f ), longitudinal reinforcement ratio (ρ f ), shear span to depth ratio (a/d) and size effect of beams. The predicted shear strength of beams using the proposed model and 11 models proposed by other researchers is compared with the corresponding experimental results. The mean of predicted shear strength to the experimental shear strength for the 86 beams accounted for the validation of the proposed model is found to be 0.93. The result of the statistical analysis indicates that the prediction based on the proposed model corroborates with the corresponding experimental data.

  12. Mechanism of platelet adhesion to von Willebrand factor and microparticle formation under high shear stress

    PubMed Central

    Reininger, Armin J.; Heijnen, Harry F. G.; Schumann, Hannah; Specht, Hanno M.; Schramm, Wolfgang; Ruggeri, Zaverio M.

    2006-01-01

    We describe here the mechanism of platelet adhesion to immobilized von Willebrand factor (VWF) and subsequent formation of platelet-derived microparticles mediated by glycoprotein Ibα (GPIbα) under high shear stress. As visualized in whole blood perfused in a flow chamber, platelet attachment to VWF involved one or few membrane areas of 0.05 to 0.1 μm2 that formed discrete adhesion points (DAPs) capable of resisting force in excess of 160 pN. Under the influence of hydrodynamic drag, membrane tethers developed between the moving platelet body and DAPs firmly adherent to immobilized VWF. Continued stretching eventually caused the separation of many such tethers, leaving on the surface tube-shaped or spherical microparticles with a diameter as low as 50 to 100 nm. Adhesion receptors (GPIbα, αIIbβ3) and phosphatidylserine were expressed on the surface of these microparticles, which were procoagulant. Shearing platelet-rich plasma at the rate of 10 000 s–1 in a cone-and-plate viscosimeter increased microparticle counts up to 55-fold above baseline. Blocking the GPIb-VWF interaction abolished microparticle generation in both experimental conditions. Thus, a biomechanical process mediated by GPIbα-VWF bonds in rapidly flowing blood may not only initiate platelet arrest onto reactive vascular surfaces but also generate procoagulant microparticles that further enhance thrombus formation. PMID:16449527

  13. The blot rolling assay: a method for identifying adhesion molecules mediating binding under shear conditions.

    PubMed

    Sackstein, Robert; Fuhlbrigge, Robert

    2006-01-01

    Adhesive interactions of cells with blood vessel walls under flow conditions are critical to a variety of processes, including hemostasis, leukocyte trafficking, tumor metastasis, and atherosclerosis. We have developed a new technique for the observation of binding interactions under shear, which we have termed the "blot rolling assay." In this method, molecules in a complex mixture are resolved by gel electrophoresis and transferred to a membrane. This membrane can be rendered semitransparent and incorporated into a parallel-plate flow chamber apparatus. Cells or particles bearing adhesion proteins of interest are then introduced into the chamber under controlled flow, and their interactions with individual components of the immobilized substrates can be visualized in real time. The substrate molecules can be identified by staining with specific antibodies or by excising the relevant band(s) and performing mass spectrometry or microsequencing of the isolated material. Thus, this method allows for the identification, within a complex mixture and without previous isolation or purification, of both known and novel adhesion molecules capable of binding under shear conditions. PMID:16799202

  14. Tensile Bond Strengths of Two Adhesives on Irradiated and Nonirradiated Human Dentin.

    PubMed

    Bernard, Cécile; Villat, Cyril; Abouelleil, Hazem; Gustin, Marie-Paule; Grosgogeat, Brigitte

    2015-01-01

    The aim of this study was to assess the effect of radiotherapy on bond efficiency of two different adhesive systems using tensile bond strength test. Twenty extracted teeth after radiotherapy and twenty nonirradiated extracted teeth were used. The irradiation was applied in vivo to a minimal dose of 50 Gy. The specimens of each group were randomly assigned to two subgroups to test two different adhesive systems. A three-step/etch-and-rinse adhesive system (Optibond FL) and a two-steps/self-etch adhesive system (Optibond XTR) were used. Composite buildups were performed with a nanohybrid composite (Herculite XTR). All specimens were submitted to thermocycling ageing (10000 cycles). The specimens were sectioned in 1 mm(2) sticks. Microtensile bond strength tests were measured. Nonparametric statistical analyses were performed due to nonnormality of data. Optibond XTR on irradiated and nonirradiated teeth did not show any significant differences. However, Optibond FL bond strength was more effective on nonirradiated teeth than on irradiated teeth. Within the limitations of an in vitro study, it can be concluded that radiotherapy had a significant detrimental effect on bond strength to human dentin. However, it seems that adhesive choice could be adapted to the substrata. According to the present study, the two-steps/self-etch (Optibond XTR) adhesive system tested could be more effective on irradiated dentin compared to three-steps/etch-and-rinse adhesive system (Optibond FL). PMID:26783528

  15. Tensile Bond Strengths of Two Adhesives on Irradiated and Nonirradiated Human Dentin

    PubMed Central

    Bernard, Cécile; Abouelleil, Hazem; Gustin, Marie-Paule; Grosgogeat, Brigitte

    2015-01-01

    The aim of this study was to assess the effect of radiotherapy on bond efficiency of two different adhesive systems using tensile bond strength test. Twenty extracted teeth after radiotherapy and twenty nonirradiated extracted teeth were used. The irradiation was applied in vivo to a minimal dose of 50 Gy. The specimens of each group were randomly assigned to two subgroups to test two different adhesive systems. A three-step/etch-and-rinse adhesive system (Optibond FL) and a two-steps/self-etch adhesive system (Optibond XTR) were used. Composite buildups were performed with a nanohybrid composite (Herculite XTR). All specimens were submitted to thermocycling ageing (10000 cycles). The specimens were sectioned in 1 mm2 sticks. Microtensile bond strength tests were measured. Nonparametric statistical analyses were performed due to nonnormality of data. Optibond XTR on irradiated and nonirradiated teeth did not show any significant differences. However, Optibond FL bond strength was more effective on nonirradiated teeth than on irradiated teeth. Within the limitations of an in vitro study, it can be concluded that radiotherapy had a significant detrimental effect on bond strength to human dentin. However, it seems that adhesive choice could be adapted to the substrata. According to the present study, the two-steps/self-etch (Optibond XTR) adhesive system tested could be more effective on irradiated dentin compared to three-steps/etch-and-rinse adhesive system (Optibond FL). PMID:26783528

  16. High strength semi-active energy absorbers using shear- and mixedmode operation at high shear rates

    NASA Astrophysics Data System (ADS)

    Becnel, Andrew C.

    This body of research expands the design space of semi-active energy absorbers for shock isolation and crash safety by investigating and characterizing magnetorheological fluids (MRFs) at high shear rates ( > 25,000 1/s) under shear and mixed-mode operation. Magnetorheological energy absorbers (MREAs) work well as adaptive isolators due to their ability to quickly and controllably adjust to changes in system mass or impact speed while providing fail-safe operation. However, typical linear stroking MREAs using pressure-driven flows have been shown to exhibit reduced controllability as impact speed (shear rate) increases. The objective of this work is to develop MREAs that improve controllability at high shear rates by using pure shear and mixed shear-squeeze modes of operation, and to present the fundamental theory and models of MR fluids under these conditions. A proof of concept instrument verified that the MR effect persists in shear mode devices at shear rates corresponding to low speed impacts. This instrument, a concentric cylinder Searle cell magnetorheometer, was then used to characterize three commercially available MRFs across a wide range of shear rates, applied magnetic fields, and temperatures. Characterization results are presented both as flow curves according to established practice, and as an alternate nondimensionalized analysis based on Mason number. The Mason number plots show that, with appropriate correction coefficients for operating temperature, the varied flow curve data can be collapsed to a single master curve. This work represents the first shear mode characterization of MRFs at shear rates over 10 times greater than available with commercial rheometers, as well as the first validation of Mason number analysis to high shear rate flows in MRFs. Using the results from the magnetorheometer, a full scale rotary vane MREA was developed as part of the Lightweight Magnetorheological Energy Absorber System (LMEAS) for an SH-60 Seahawk helicopter

  17. Effect of surface treatment on adhesion strength between magnetron sputtered copper thin films and alumina substrate

    NASA Astrophysics Data System (ADS)

    Lim, Ju Dy; Lee, Pui Mun; Rhee, Daniel Min Woo; Leong, Kam Chew; Chen, Zhong

    2015-11-01

    A number of surface pre-treatments have been studied for their effectiveness on the adhesion strength between magnetron sputtered copper (Cu) thin film and polycrystalline alumina (Al2O3) substrate. The treatments include organic solvent cleaning, acid washing, heat treatment, plasma cleaning, and they were organized into different sequences in order to evaluate their individual contribution to the film adhesion. Adhesion strength was measured mechanically using a pull test. By proper pre-treatment, the adhesive strength of at least 34 MPa can be achieved with direct sputtering of Cu thin film onto the Al2O3 substrate. With the help of XPS, SEM, XRD, TGA and contact angle measurement, the effect of the different substrate surface treatment techniques has been elucidated.

  18. Effects of model coal tar components on adhesion strength of polyurethane coating on steel plate

    SciTech Connect

    Yokoyama, N.; Fujino, K.

    2005-04-15

    In order to study the effects of coal tar components on the adhesion strength of a heavy duty anticorrosive coating formed with tar-urethane resin oil on a steel plate, polyurethane coatings that were compounded with 15 kinds of polycyclic aromatic compounds as model coal tar components were prepared. In the model coal tar, components, naphthalene, quinoline, 2-naphthol, and phenanthrene showed good compatibility with polyurethane. To test their heavy duty anticorrosive properties, tensile adhesion strength of the cured coatings prepared with the compatible model coal tar components was measured, and the change in tensile adhesion strength as a function of time during salt-water spray treatment was measured. We found that the systems compounded with naphthalene, 2-naphthol, and phenanthrene showed good properties in an ordinary state for adhesion strength. However, only the system with 2-naphthol was found to have good properties in the change of tensile adhesion strength as a function or time during salt-water spray treatment. The curing time of the system with 2-naphthol was slower than that or the others, i.e., we found an inverse proportion between curing speed and adhesion durability. We also measured the dynamic viscoelasticity of cured coatings.

  19. Shear strength of metal - SiO2 contacts

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1978-01-01

    The strength of the bond between metals and SiO2 was studied by measuring the static coefficient of friction of metals contacting alpha-quartz in ultrahigh vacuum. It was found that copper with either chemisorbed oxygen, nitrogen, or sulphur exhibited higher contact strength on stoichiometric SiO2 than did clean copper. Since the surface density of states induced by these species on copper is similar, it appears that the strength of the interfacial bond can be related to the density of states on the metal surface.

  20. Shear strength of metal - SiO2 contacts

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1978-01-01

    The strength of the bond between metals and SiO2 is studied by measuring the static coefficient of friction of metals contacting alpha-quartz in ultrahigh vacuum. It was found that copper with either chemisorbed oxygen, nitrogen or sulphur exhibited higher contact strength on stoichiometric SiO2 than did clean copper. Since the surface density of states induced by these species on copper is similar, it appears that the strength of the interfacial bond can be related to the density of states on the metal surface.

  1. Characterization of compressive and short beam shear strength of bamboo opened cell foam core sandwich composites

    NASA Astrophysics Data System (ADS)

    Setyawan, Paryanto Dwi; Sugiman, Saputra, Yudhi

    2016-03-01

    The paper presents the compressive and the short beam shear strength of a sandwich composite with opened cell foam made of bamboo fiber as the core and plywood as the skins. The core thickness was varied from 10 mm to 40 mm keeping the volume fraction of fiber constant. Several test s were carried out including the core density, flatwise compressive and the short beam shear testing in three point bending. The results show that the density of bamboo opened cell foam is comparable with commercial plastic foam, such as polyurethane foam. The compressive strength tends to increase linearly with increasing the core thickness. The short beam shear failure load of the sandwich composite increases with the increase of core thickness, however on the contrary, the short beam shear strength which tends to sharply decrease from the thickness of 10 mm to 30 mm and then becomes flat.

  2. Effect of adhesive primers on bonding strength of heat cure denture base resin to cast titanium and cobalt-chromium alloy

    PubMed Central

    Kim, Su-Sung; Yang, Hong-So; Park, Sang-Won; Lim, Hyun-Pil

    2009-01-01

    STATEMENT OF PROBLEM The poor chemical bonding of a denture base resin to cast titanium framework often introduces adhesive failure and increases microleakage. PURPOSE This study evaluated the shear bond strengths of a heat cure denture base resin to commercially pure titanium, Ti-6Al-4V alloy and a cobalt-chromium alloy using two adhesive primers. MATERIAL AND METHODS Disks of commercially pure titanium, Ti-6Al-4V alloy and a cobalt-chromium alloy were cast. Specimens without the primer were also prepared and used as the controls. The shear bond strengths were measured on a screw-driven universal testing machine. RESULTS The primers significantly (P < .05) improved the shear bond strengths of the heat cure resin to all metals. However, the specimens primed with the Alloy primer® (MDP monomer) showed higher bond strength than those primed with the MR bond® (MAC-10 monomer) on titanium. Only adhesive failure was observed at the metal-resin interface in the non-primed specimens, while the primed specimens showed mixed failure of adhesive and cohesive failure. CONCLUSIONS The use of appropriate adhesive metal primers makes it possible not only to eliminate the need for surface preparation of the metal framework before applying the heat cure resins, but also reduce the need for retentive devices on the metal substructure. In particular, the Alloy primer®, which contains the phosphoric acid monomer, MDP, might be clinically more acceptable for bonding a heat cure resin to titanium than a MR bond®, which contains the carboxylic acid monomer, MAC-10. PMID:21165254

  3. Mechanisms of degradation in adhesive joint strength: Glassy polymer thermoset bond in a humid environment

    SciTech Connect

    Kropka, Jamie Michael; Adolf, Douglas Brian; Spangler, Scott Wilmer; Austin, Kevin N.; Chambers, Robert S.

    2015-08-06

    The degradation in the strength of napkin-ring (NR) joints bonded with an epoxy thermoset is evaluated in a humid environment. While adherend composition (stainless steel and aluminum) and surface preparation (polished, grit blasted, primed, coupling agent coated) do not affect virgin (time=0) joint strength, they can significantly affect the role of moisture on the strength of the joint. Adherend surface abrasion and corrosion processes are found to be key factors in determining the reliability of joint strength in humid environments. In cases where surface specific joint strength degradation processes are not active, decreases in joint strength can be accounted for by the glass transition temperature, Tg, depression of the adhesive associated with water sorption. Under these conditions, joint strength can be rejuvenated to virgin strength by drying. In addition, the decrease in joint strength associated with water sorption can be predicted by the Simplified Potential Energy Clock (SPEC) model by shifting the adhesive reference temperature, Tref, by the same amount as the Tg depression. When surface specific degradation mechanisms are active, they can reduce joint strength below that associated with adhesive Tg depression, and joint strength is not recoverable by drying. Furthermore, a critical relative humidity (or, potentially, critical water sorption concentration), below which the surface specific degradation does not occur, appears to exist for the polished stainless steel joints.

  4. Mechanisms of degradation in adhesive joint strength: Glassy polymer thermoset bond in a humid environment

    DOE PAGESBeta

    Kropka, Jamie Michael; Adolf, Douglas Brian; Spangler, Scott Wilmer; Austin, Kevin N.; Chambers, Robert S.

    2015-08-06

    The degradation in the strength of napkin-ring (NR) joints bonded with an epoxy thermoset is evaluated in a humid environment. While adherend composition (stainless steel and aluminum) and surface preparation (polished, grit blasted, primed, coupling agent coated) do not affect virgin (time=0) joint strength, they can significantly affect the role of moisture on the strength of the joint. Adherend surface abrasion and corrosion processes are found to be key factors in determining the reliability of joint strength in humid environments. In cases where surface specific joint strength degradation processes are not active, decreases in joint strength can be accounted formore » by the glass transition temperature, Tg, depression of the adhesive associated with water sorption. Under these conditions, joint strength can be rejuvenated to virgin strength by drying. In addition, the decrease in joint strength associated with water sorption can be predicted by the Simplified Potential Energy Clock (SPEC) model by shifting the adhesive reference temperature, Tref, by the same amount as the Tg depression. When surface specific degradation mechanisms are active, they can reduce joint strength below that associated with adhesive Tg depression, and joint strength is not recoverable by drying. Furthermore, a critical relative humidity (or, potentially, critical water sorption concentration), below which the surface specific degradation does not occur, appears to exist for the polished stainless steel joints.« less

  5. Microleakage and shear bond strength of orthodontc brackets bonded to hypomineralized enamel following different surface preparations

    PubMed Central

    Shahabi, Mostafa; Mohamadipour, Hamideh; Moosavi, Horieh

    2014-01-01

    Objectives: This study investigated the effects of several conditioning methods on shear bond strength (SBS) and microleakage of orthodontic brackets bonded to demineralized enamel. Study Design: One hundred premolars were selected and immersed in a cariogenic solution for 12 weeks. The teeth were randomly assigned into 5 groups. In groups 1 and 2, the teeth underwent acid etching for 30 and 120 seconds, respectively. In group 3, a combination of laser and acid etching was employed. A self-etch primer (SEP) was applied in group 4 and in group 5, the teeth were exposed to acidulated phosphate fluoride (APF) for 4 minutes before etching. After bracket bonding, the teeth were immersed in methylen blue for 12 hours and then were mounted in acrylic resin. SBS was determined with an Instron Universal Testing Machine and the amount of microleakage under the brackets was assessed under a stereomicroscope. Results: The lowest SBS was related to the SEP group and the highest one was observed in the specimens prepared by APF+acid etching. There was a significant difference in SBS (p=0.009), but not in microleakage (p=0.971) of the study groups. The SBS of the specimens treated with SEP was significantly Lower than the other groups, which were not significantly different from each other. The SEP group displayed a higher frequency of bond failure at the enamel-adhesive interface. Conclusions: Enamel preparation with SEP provided the lowest SBS among the groups. All groups showed some degree of microleakage. There was no significant correlation between SBS and microleakage. Key words:Bond strength, microleakage, bonding, self-etch primer, Er:YAG laser. PMID:24790708

  6. The effect of different adhesive system applications on push-out bond strengths of glass fiber posts

    PubMed Central

    Deniz Arısu, Hacer; Üçtaşlı, Mine Betül; Okay, Tufan Can

    2013-01-01

    PURPOSE Over the past years, the adhesion of fiber posts luted with simplified adhesive systems has been a matter of great interest. The aim of this study was to assess the post retentive potential of a self-adhesive resin cement using different adhesive systems to compare the push-out bond strengths of fiber posts. MATERIALS AND METHODS The post spaces of 56 mandibular premolar roots were prepared and divided into 4 experimental groups and further divided into 2 subgroups according to testing time (n=7). The fiber posts (Rely X Fiber Post) were luted with a self-adhesive resin cement (RelyX Unicem) and one of the following adhesive systems: no adhesive, a total-etch adhesive resin (Single Bond), a two-step self-etch adhesive resin (Clearfil SE Bond) and a one-step self-etch adhesive resin (Clearfil S3 Bond). Each root was cut horizontally, and 1.5 mm thick six root segments were prepared. Push-out tests were performed after one week or three months (0.5 mm/min). Statistical analysis were performed with three-way ANOVA (α=.05). RESULTS Cervical root segments showed higher bond strength values than middle segments. Adhesive application increased the bond strength. For one week group, the total-etch adhesive resin Single Bond showed higher bond strength than the self-adhesive resin cement RelyX Unicem applied without adhesive resin at middle region. For 3 months group, the two-step self-etch adhesive resin Clearfil SE Bond showed the highest bond strength for both regions. Regarding the time considered, Clearfil SE Bond 3 months group showed higher bond strength values than one week group. CONCLUSION Using the adhesive resins in combination with the self-adhesive resin cement improves the bond strengths. The bond strength values of two-step self-etch adhesive resin Clearfil SE Bond improved as time passes. PMID:24049572

  7. “Evaluation of shear bond strength of a composite resin to white mineral trioxide aggregate with three different bonding systems”-An in vitro analysis

    PubMed Central

    Patil, Anand C.

    2016-01-01

    Background Mineral trioxide aggregate (MTA) is a biomaterial that has been investigated for endodontic applications. With the increased use of MTA in pulp capping, pulpotomy, perforation repair, apexification and obturation, the material that would be placed over MTA as a final restoration is an important matter. As composite resins are one of the most widely used final restorative materials, this study was conducted to evaluate the shear bond strength of a composite resin to white mineral trioxide aggregate (WMTA) using three different bonding systems namely the two-step etch and rinse adhesive, the self-etching primer and the All-in-one system. Material and Methods Forty five specimens of white MTA (Angelus) were prepared and randomly divided into three groups of 15 specimens each depending on the bonding systems used respectively. In Group A, a Two-step etch and rinse adhesive or ‘total-etch adhesive’, Adper Single Bond 2 (3M/ESPE) and Filtek Z350 (3M ESPE, St Paul, MN) were placed over WMTA. In group B, a Two-step self-etching primer system, Clearfil SE Bond (Kuraray, Medical Inc) and Filtek Z350 were used. In Group C, an All-in-one system, G Bond (GC corporation, Tokyo, Japan) and Filtek Z350 were used. The shear bond strength was measured for all the specimens. The data obtained was subjected to One way Analysis of Variance (ANOVA) and Scheffe’s post hoc test. Results The results suggested that the Two-step etch and rinse adhesive when used to bond a composite resin to white MTA gave better bond strength values and the All-in-one exhibited the least bond strength values. Conclusions The placement of composite used with a Two-step etch and rinse adhesive over WMTA as a final restoration may be appropriate. Key words:Composite resins, dentin bonding agents, mineral trioxide aggregate, shear bond strength. PMID:27398177

  8. [Relationship between hardness, abrasion and bending strength of UV-polymerizable adhesives].

    PubMed

    Reinhardt, K J; Vahl, J

    1978-04-01

    These experiments were undertaken to explore the influence of hardening on bending and bending strength of photopolymerisable adhesives. It was shown that light sources at present in use only influence the bending strength to a small degree but enable 40% variation in bending. The use of more intensive light sources not yet in commercial use led to further improvements. PMID:274282

  9. Surface Plasmon Resonance (SPR) for the Evaluation of Shear-Force-Dependent Bacterial Adhesion

    PubMed Central

    Zagorodko, Oleksandr; Bouckaert, Julie; Dumych, Tetiana; Bilyy, Rostyslav; Larroulet, Iban; Yanguas Serrano, Aritz; Alvarez Dorta, Dimitri; Gouin, Sebastien G.; Dima, Stefan-Ovidiu; Oancea, Florin; Boukherroub, Rabah; Szunerits, Sabine

    2015-01-01

    The colonization of Escherichia coli (E. coli) to host cell surfaces is known to be a glycan-specific process that can be modulated by shear stress. In this work we investigate whether flow rate changes in microchannels integrated on surface plasmon resonance (SPR) surfaces would allow for investigating such processes in an easy and high-throughput manner. We demonstrate that adhesion of uropathogenic E. coli UTI89 on heptyl α-d-mannopyranoside-modified gold SPR substrates is minimal under almost static conditions (flow rates of 10 µL·min−1), and reaches a maximum at flow rates of 30 µL·min−1 (≈30 mPa). This concept is applicable to the investigation of any ligand-pathogen interactions, offering a robust, easy, and fast method for screening adhesion characteristics of pathogens to ligand-modified interfaces. PMID:26018780

  10. Comparative evaluation of Shear bond strength of different Pit and fissure Sealants in Primary and Permanent teeth - An In-Vitro Study

    PubMed Central

    Pushpalatha, H M; Ravichandra, K S; Srikanth, Koya; Divya, G; Done, Vasanthi; Krishna, K Bala; Patil, Vishwanath

    2014-01-01

    Background: Dental caries among children is one of the greatest challenges faced by dentists globally; especially that of susceptible surfaces like the Pit and fissures. Dental sealants have proved to be an effective way to prevent caries development. The Clinical success of any material depends upon its adhesion to tooth structure, resistance to wear and ability to withstand the masticatory or occlusal forces. Hence it is important to evaluate the shear bond strength (SBS). The Present study’s aim was to evaluate and compare the shear bond strength of different pit and fissure sealants placed on Primary molars and Permanent Premolars. Materials & Methods: Sixty noncarious extracted teeth comprising of thirty Primary molars and thirty Permanent Premolars were divided into four groups of 15 each. The buccal surfaces of all teeth were dried, etched and the etched surfaces of Primary molars (Group I) and Permanent Premolars (Group III) were placed with Helioseal-F while Groups II and IV, that included Primary molars and Permanent Premolars received Clinpro. Shear bond strength was evaluated and the mean was obtained for all the groups. The results were analyzed using twoway analysis of variance followed by Tukeys post hoc procedure to check for significant differences. Results: The specimens of unfilled sealant Clinpro (Groups II & IV) showed higher Shear bond strength when compared to the specimens of filled sealant Helioseal-F (Groups I & III). Conclusion: The unfilled sealant showed a better Shear bond strength compared to the filled sealant. The bond strength in Primary molars was slightly higher compared to Permanent Premolars. How to cite the article: Pushpalatha HM, Ravichandra KS, Srikanth K, Divya G, Done V, Krishna KB, Patil V. Comparative evaluation of Shear bond strength of different Pit and fissure Sealants in Primary and Permanent teeth - An In-Vitro Study. J Int Oral Health 2014;6(2):84-9. PMID:24876707

  11. Comparative Evaluation of Shear Bond Strength and Fluoride Release of Conventional Glass Ionomer with 1% Ethanolic Extract of Propolis Incorporated Glass Ionomer Cement –Invitro Study

    PubMed Central

    Prabhakar, Attiguppe Ramashetty; Basappa, Nadig

    2016-01-01

    Introduction Atraumatic restorative treatment is a minimal intervention approach which involves manual removal of caries followed by restoration using adhesive restorative material. Due to incomplete manual caries excavation, there is a high chance of secondary caries under the restoration. Hence, many antibacterial agents have been incorporated in cement to enhance their antibacterial effect. Propolis is one of the natural medicines that has highlighted application in dentistry. Aim The current study evaluated the shear bond strength and fluoride release of Glass Ionomer Cement (GIC) combined with 1% Ethanolic Extract of Propolis (EEP). The research hypothesis was that the incorporation of 1% EEP in GIC has an effect on shear bond strength and fluoride release. Materials and Methods A study was conducted among two groups. Group A conventional GIC (control), Group B GIC incorporated with 1% EEP (experimental). Shear bond strength: Thirty samples were prepared. Dentinal surface was restored and bond strength was assessed using a universal testing machine. Fluoride release: Thirty samples were prepared and stored in distilled water at a constant temperature until the time of measurement. The fluoride release was assessed by ion selective electrode after 1st day and 7th day. Data obtained by shear bond strength analysis was subjected to statistical analysis using an unpaired t-test and the data obtained by the fluoride release analysis was subjected to an unpaired t-test and paired t-test. Results Result showed that there was no statistically significant difference in shear bond strength between the groups (p-value 0.77). A statistically significant difference was noticed in fluoride release among the groups after 1st and 7th day (p-0.001). However, the release was lesser in both the groups after the 1st day. Conclusion A 1% EEP incorporated GIC enhanced the fluoride release without causing a significant effect on shear bond strength of GIC. PMID:27437368

  12. Determination of interfacial adhesion strength between oxide scale and substrate for metallic SOFC interconnects

    NASA Astrophysics Data System (ADS)

    Sun, X.; Liu, W. N.; Stephens, E.; Khaleel, M. A.

    The interfacial adhesion strength between the oxide scale and the substrate is crucial to the reliability and durability of metallic interconnects in solid oxide fuel cell (SOFC) operating environments. It is necessary, therefore, to establish a methodology to quantify the interfacial adhesion strength between the oxide scale and the metallic interconnect substrate, and furthermore to design and optimize the interconnect material as well as the coating materials to meet the design life of an SOFC system. In this paper, we present an integrated experimental/analytical methodology for quantifying the interfacial adhesion strength between the oxide scale and a ferritic stainless steel interconnect. Stair-stepping indentation tests are used in conjunction with subsequent finite element analyses to predict the interfacial strength between the oxide scale and Crofer 22 APU substrate.

  13. Influence of salivary contamination on the dentin bond strength of two different seventh generation adhesive systems: In vitro study

    PubMed Central

    Bhatia, Taranjeet Kaur; Asrani, Hemant; Banga, Harpreet; Jain, Aditi; Rawlani, Sudhir S.

    2015-01-01

    Aim: To investigate the effect of salivary contamination on the bond strength of two different seventh generation adhesive systems. Materials and Methods: Sixty caries-free human premolars with flat dentin surfaces were randomly divided into six groups of 10 teeth each and bonding was done using seventh-generation bonding agents Adper Easy One (3M ESPE) and Xeno V (Dentsply). Following the bonding procedure, resin composite was bonded to the surfaces using a plastic mould. The prepared specimen with composite cylinders attached were placed in 37°C distilled water for 24 h and then subjected to shear bond strength (SBS) with 0 h universal testing machine and the data were subjected to one-way analysis of variance and unpaired t-test. Results: Statistical significant difference between the Groups I, II and III in which Adper Easy One was used and similarly for Groups IV, V, and VI in which Xeno V was used. When an intergroup comparison was made using unpaired t-test Group II and Group V showed the nonsignificant difference. Conclusion: Salivary contamination significantly affects the SBS of both the seventh generation dentin bonding agents. However, 2-hydroxyethyl methacryate based adhesive has higher bond strength. PMID:26752841

  14. Probing the adhesion of particles to responsive polymer coatings with hydrodynamic shear stresses

    NASA Astrophysics Data System (ADS)

    Toomey, Ryan; Efe, Gulnur

    2015-03-01

    Lower critical solution temperature (LCST) polymers in confined geometries have found success in applications that benefit from reversible modulation of surface properties, including drug delivery, separations, tissue cultures, and chromatography. In this talk, we present the adhesion of polystyrene microspheres to cross-linked poly(N-isopropylacrylamide), or poly(NIPAAm) coatings, as studied with a spinning disk method. This method applies a linear range of hydrodynamic shear forces to physically adsorbed microspheres along the radius of a coated disk. Quantification of detachment is accomplished by optical microscopy to evaluate the minimum shear stress to remove adherent particles. Experiments were performed to assess the relationship between the surface chemistry of the microsphere, the thickness and cross-link density of the poly(NIPAAm) coating, the adsorption (or incubation) time, and the temperature on the detachment profiles of the microspheres. Results show that both the shear modulus and slow dynamic processes in the poly(NIPAAm) films strongly influence the detachment shear stresses. Moreover, whether an adsorbed microsphere can be released (through a modulation in the swelling of the poly(NIPAAm) coating by temperature) depends on both the surface chemistry of the microsphere and the extent of the adsorption time. Finally, the results show that the structure of the poly(NIPAAm) coating can significantly affect performance, which may explain several of the conflicting findings that have been reported in the literature.

  15. The effect of pretreatment on adhesive strength of Cu-plated liquid crystal polymer (LCP)

    NASA Astrophysics Data System (ADS)

    Zhou, Meisheng; Zhang, Wenlong; Ding, Dongyan; Li, Ming

    2012-01-01

    Copper metallization on LCP was carried out by means of electroless plating followed by electroplating and the effect of pretreatment on the adhesive strength of the Cu-plated LCP was investigated in detail. Compared with the other etching agents used here, potassium permanganate was found to be the most effective and the optimum etching time is 20 min. With potassium permanganate as the etching agent, the adhesive strength could reach 12.08 MPa, which is much higher than the reported maximum adhesive strength (lower than 8.0 MPa). XPS spectra of LCP film indicated that hydrophilic groups were introduced into the LCP surface by etching, creating a nanometer-scale surface roughness and improving the wettability between copper and LCP. SEM and AFM observations revealed that the distinctly increased adhesive strength could be attributed to the improved wetting and the mechanical interlocking effect. The failure mode of Cu-plated LCP film was found to be dependent on the etching time. When the etching time was short, the failure mode of Cu-plated LCP film was mainly adhesive. As the etching time increased, cohesive failure gradually occurred, causing an adhesive/cohesive mixed failure mode.

  16. The bond strength of elastomer tray adhesives to thermoplastic and acrylic resin tray materials.

    PubMed

    Hogans, W R; Agar, J R

    1992-04-01

    This study evaluated the bond strength of selected impression materials (Permlastic, Express, and Hydrosil) to a thermoplastic custom tray material as a function of drying time of the adhesive after application to a tray material. In addition, bond strengths of a polysulfide impression material to an acrylic resin tray material and to a thermoplastic tray material made directly against wax were evaluated. Bond strengths were obtained directly from values of applied load at failure and important conclusions were drawn. PMID:1507140

  17. In vitro evaluation of influence of salivary contamination on the dentin bond strength of one-bottle adhesive systems

    PubMed Central

    Suryakumari, Nujella B. P.; Reddy, P. Satyanarayana; Surender, L. R.; Kiran, Ram

    2011-01-01

    Aim: To evaluate the effect of salivary contamination on the bond strength of one-bottle adhesive systems — (the V generation) at various stages during the bonding procedure and to investigate the effect of the contaminant removing treatments on the recovery of bond strengths. Materials and Methods: In this study the V generation one-bottle system — (Adper Single Bond) was tested. Fifty caries-free human molars with flat dentin surfaces were randomly divided into five groups of ten teeth each: Group I had 15 second etching with 35% Ortho Phosphoric acid, 15 second rinse and blot dried (Uncontaminated); Group II contaminated and blot dried; Group III contaminated and completely dried; Group IV contaminated, washed, blot dried; Group V contaminated, retched washed, and blot dried. The bonding agent was applied and resin composite (Z-100 3M ESPE) was bonded to the treated surfaces using the Teflon mold. The specimens in each group were then subjected to shear bond strength testing in an Instron Universal testing machine at a crosshead speed of 1 mm / minute and the data were subjected to one way ANOVA for comparison among the groups (P<0.05). Results: There was a significant difference between the group that was dried with strong oil-free air after contamination (Group III) and the other groups. When the etched surface was contaminated by saliva, there was no statistical difference between the just blot dry, wash, or the re-etching groups (Groups II, IV, V) if the dentin surface was kept wet before priming. When the etched dentin surface was dried (Group III) the shear bond strength decreased considerably. Conclusion: The bond strengths to the tooth structure of the recent dentin bonding agents are less sensitive to common forms of contamination than assumed. Re-etching without additional mechanical preparation is sufficient to provide or achieve the expected bond strength. PMID:22090757

  18. Improvement of adhesion strength and scratch resistance of fluorocarbon thin films by cryogenic treatment

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaojun; Wang, Jun; Shen, Jinpeng; Li, Rui; Yang, Guangcheng; Huang, Hui

    2014-01-01

    Fluorocarbon thin films have been widely applied as protective coatings due to unique physical and chemical properties, but the scratch resistance and adhesion strength between the films and substrates are rather poor. Coating technologies for stronger scratch resistance and adhesion strength are definitely needed and have great significance in coatings applications of fluorocarbon thin films. In this work, the scratch resistance and adhesion strength between silicon substrates and fluorocarbon thin films deposited by radio frequency (R.F.) magnetron sputtering were improved via a remarkably simple, flexible and nondestructive cryogenic treatment method. The effect of the cryogenic treatment on the microstructure, hardness, adhesion strength and scratch resistance of fluorocarbon thin films were investigated. XPS results indicated that the content of fluorine decreased slightly and the amount of cross-linked units increased after cryogenic treatment. Furthermore, the hardness of fluorocarbon thin films slightly improved. Nano-scratch test revealed that fluorocarbon thin films after this treatment had excellent scratch resistance and good adhesion strength.

  19. Correlation Between Thermal Interface Conductance and Mechanical Adhesion Strength in Cu-Coated Glassy Carbon

    NASA Astrophysics Data System (ADS)

    Pelzl, J.; Kijamnajsuk, P.; Chirtoc, M.; Horny, N.; Eisenmenger-Sittner, C.

    2015-09-01

    The influence of defective areas in the interface on the correlation between the thermal interface conductance and the mechanical adhesion strength was investigated on as-prepared and heat-treated samples of copper-coated carbon flat specimens with different bonding layers between the copper film and the substrate. The thermal interface conductance was determined by frequency-domain photothermal radiometry. The mechanical adhesion strength of the film coating was deduced from pull-off experiments. The imperfect interfaces were modeled by two different values for the thermal interface conductance, G1 and G2, which co-exist at different areas on the interface and are weighted according to their areas, A1 and A2. The model parameters were determined by adjusting the frequency dependence of the normalized phases and phase differences of the PTR signals from as-prepared and heat-treated samples. The total thermal conductance of the interface was found to exhibit a correlation with the adhesion strength for most of the heat-treated samples whereas, among the as-prepared samples, considerable deviations from such a trend exist. The observations are explained by the impact of supplementary stress on the adhesion strength measurements which are due to the strain developed during the preparation process at the interface. The interfacial stress and strain are mostly released during thermal annealing. A semi-empirical formula was developed that describes the impact of the defective areas on the adhesion strength using the experimentally determined thermal model parameters.

  20. Comparison of shear bond strength of two porcelain repair systems after different surface treatment

    PubMed Central

    Kalra, Ashish; Mohan, Murali S.; Gowda, E. Mahesh

    2015-01-01

    Introduction: Intraoral chair side porcelain repair system is a quick, painless and highly patient acceptable procedure, without removal of restoration or fabrication of new restoration. There are very limited studies conducted to evaluate the shear bond strength of repair systems after different surface treatment. Objectives of Research: The objective of research was to evaluate the shear bond strength of two intraoral porcelain repair systems Clearfil repair system (Kuraray) and Ceramic repair system (Ivoclar) to repair metal-ceramic restoration after three different surface treatment. Materials and Methods: Totally, 120 discs of base metal alloy were fabricated. The opaque, dentine and enamel of ceramic were applied to achieve the uniform thickness. Defect was created, and repair was done using two repair systems after different surface treatment. Shear bond strength was measured. Results: Analysis of variance was utilized. Ceramic repair system after 40% phosphoric acid surface treatment showed the highest mean value and Clearfil repair system after surface treatment with 37% phosphoric acid showed the lowest. The statistical difference was found to be significant between the groups. Conclusion: The shear bond strength of Ceramic repair system with 40% phosphoric acid etching showed highest shear bond strength as compared to other system and surface treatment used in the study. PMID:26097354

  1. Effect of Fully Grouted Passive Bolts on Joint Shear Strength Parameters in a Blocky Mass

    NASA Astrophysics Data System (ADS)

    Srivastava, Lok Priya; Singh, Mahendra

    2015-05-01

    The present paper discusses an experimental study on shear strength response of unreinforced and reinforced block masses to find out the effect of fully grouted passive bolts on the shear strength parameters of joints in a mass. Direct shear tests were conducted on specimens of large-sized blocky masses, each with a dimension of 750 × 750 × 900 mm. Each blocky mass was assembled by piling elemental blocks of size 150 × 150 × 150 mm. For the reinforced condition, the mass was reinforced with three, five, and nine bolts perpendicular to the shear plane. The tests were conducted at different normal stress levels ranging from 0 to 2 MPa, which are common in rock slopes. Results from the tests show that passive bolts enhance the joint shear strength parameters. The strength enhancement is mainly due to improved interlocking and therefore, enhanced cohesion. The value of enhanced cohesion depends on the bolt area, the ratio of bolt spacing to block size and the strength of the intact material for a given set of steel and grout. A correlation has been established to find out enhanced cohesion for the given joints in the mass.

  2. Oxide film microstructure: the link between surface preparation processes and strength/durability of adhesively bonded aluminum. Final report

    SciTech Connect

    Hsia, K. Jimmy; Pearlstein, Arne J.; Scheeline, Alexander; Shang, Jian Ku

    2000-11-30

    Strength and durability of adhesive bonding of aluminum alloys structures are intrinsically determined by the surface microstructures and interfacial failure micromechanisms. The current project presents a multidisciplinary approach to addressing critical issues controlling the strength and durability of adhesive bonds of aluminum alloys. Three main thrust areas have been pursued: surface treatment technology development to achieve desirable surface microstructures; relationship between surface structure and properties of adhesive bonds; and failure mechanisms of adhesively bonded components.

  3. Evaluation of the Effect of Four Surface Conditioning Methods on the Shear Bond Strength of Metal Bracket to Porcelain Surface

    PubMed Central

    Zarif Najafi, Hooman; Torkan, Sepideh; Yousefipour, Bahareh; Salehi, Raha

    2014-01-01

    Abstract Objective: This study evaluated the effect of superpulse CO2 laser irradiation and deglazing of porcelain surfaces on the shear bond strength (SBS) of metal orthodontic brackets, and compared it with two conventional etching techniques. Methods: Forty-eight Feldspathic porcelain fused to metal specimens embedded in cylindrical acrylic resin tubes were fabricated, and all the specimens were divided into four groups. In Group 1, the specimens were roughened with a diamond bur and etched with hydrofluoric acid (HFA) gel for 4 min. In Group 2, the specimens were roughened with a bur and irradiated by a CO2 laser with a 2 W power setting for 20 sec. In Group 3, the specimens were only irradiated by a CO2 laser. In Group 4, the porcelain surface was sandblasted with 50 μm aluminum oxide. Before bonding, the bracket silane was applied on the porcelain surfaces. SBS was evaluated by a Universal testing machine (Zwickroll, Germany). The remaining adhesive after the bond failure was evaluated using an adhesive remnant index (ARI). Statistical analysis was conducted by analysis of variance (ANOVA), Tukey, and Kruskal–Wallis tests. Results: ANOVA revealed significant differences in SBS among the four groups (p<0.001). Group 1 demonstrated significantly higher bond strength (13.13±2.47) when compared with the other groups. Group 2 showed higher bond strength (9.60±1.91) when compared with group 4 (6.40±1.67) (p=0.016). Group 1 displayed the highest ARI scores among the groups. Conclusions: Deglazing combined with HFA etching produced the highest bond strength, but CO2 laser irradiation provided adequate bond strength and allowed for elimination of the HFA step. Deglazing is not recommended as a preliminary step before CO2 laser conditioning. PMID:25455957

  4. Shear bond strength of dental porcelains to nickel-chromium alloys.

    PubMed

    do Prado, Ricardo Alves; Panzeri, Heitor; Fernandes Neto, Alfredo Julio; das Neves, Flávio Domingues; da Silva, Marlete Ribeiro; Mendonça, Gustavo

    2005-01-01

    The continuous technological advance and increasing availability of new base metal alloys and ceramic systems in the market, coupled to the demands of daily clinical practice, have made the constant evaluation of the bond strength of metal/porcelain combinations necessary. This study evaluated the metal/porcelain shear bond strength of three ceramic systems (Duceram, Williams and Noritake) in combination with three nickel-chromium (Ni-Cr) alloys (Durabond, Verabond and Viron). Thirty cast cylinder specimens (15 mm high; 6 mm in diameter) were obtained for each alloy, in a way that 10 specimens of each alloy were tested with each porcelain. Bond strength was measured with an Emic screw-driven mechanical testing machine by applying parallel shear forces to the specimens until fracture. Shear strength was calculated using the ratio of the force applied to a demarcated area of the opaque layer. Mann-Whitney U test was used for statistical analysis of the alloy/ceramic combinations (p<0.05). Viron/Noritake had the highest shear bond sregnth means (32.93 MPa), while Verabond/Duceram (16.31 MPa) presented the lowest means. Viron/Noritake differed statistically from other combinations (p<0.05). Viron/Duceram had statistically significant higher bond strengths than Verabond/Duceram, Verabond/Williams and Durabond/Noritake (p<0.05). It was also found significant difference (p<0.05) between Verabond/Noritake, Verabond/Duceram and Durabond/Noritake. No statistically significant difference (p>0.05) were observed among the other combinations. In conclusion, the Noritake ceramic system used together with Viron alloy presented the highest resistance to shear forces, while Duceram bonded to Verabond presented the lowest bond strength. Viron/Duceram and Verabond/Noritake provided intermediate results. The combinations between the Williams ceramic system and Ni-Cr alloys had similar shear strengths among each other. PMID:16429185

  5. Effects of thermal fatigue on shear punch strength of tooth-colored restoratives

    PubMed Central

    Melody, Fam Mei Shi; U-Jin, Yap Adrian; Natalie, Tan Wei Min; Elizabeth, Tay Wan Ling; Chien, Jessica Yeo Siu

    2016-01-01

    Aims: This study investigated the effect of thermal fatigue on the shear strength of a range of tooth-colored restorative materials including giomers, zirconia-reinforced glass ionomer cement (GIC), nano-particle resin-modified GIC, highly viscous GICs, and composite resin. Materials and Methods: Twenty specimens of each material were fabricated in standardized washers (17 mm outer diameter, 9 mm internal diameter, 1 mm thick). The specimens were cured, stored in 100% humidity at 37.5°C for 24 h, and randomly divided into two groups of 10. Group A specimens were nonthermocycled (NT) and stored in distilled water at 37°C for 168 h. Group B specimens were thermocycled (TC) for 10,000 cycles (168 h) with baths X, Y, and Z adjusted to 35°C, 15°C, and 45°C, respectively. Each cycle had dwell times of 28 s in X, and 2s in Y/Z in the order XYXZ. Specimens then underwent shear punch testing at a crosshead speed of 0.5 mm/min with a 2 kN load cell. Statistical analysis of shear strength was done using t-test and two-way ANOVA/Scheffe's post hoc test at significance level P < 0.05. Results: The effect of thermal fatigue on shear strength was material dependent. Except for the “sculptable” giomer (Beautifil II) and a highly viscous GIC (Fuji IX GP Fast), no significant differences in shear strength were generally observed between the NT and TC groups. For both groups, the composite resin (Filtek Z250XT) had the highest shear strength while the zirconia-reinforced (zirconomer) and a highly viscous GIC (Ketac Molar Quick) had the lowest. Conclusions: The effect of thermocycling on shear strength was material dependent. Thermal fatigue, however, did not significantly influence the shear strength of most materials assessed. The “sculptable” composite and giomer were significantly stronger than the other materials evaluated. Shear strength of the “flowable” injectable hybrid giomer was intermediate between the composite and GICs. PMID:27563182

  6. High Fidelity Tape Transfer Printing Based On Chemically Induced Adhesive Strength Modulation

    NASA Astrophysics Data System (ADS)

    Sim, Kyoseung; Chen, Song; Li, Yuhang; Kammoun, Mejdi; Peng, Yun; Xu, Minwei; Gao, Yang; Song, Jizhou; Zhang, Yingchun; Ardebili, Haleh; Yu, Cunjiang

    2015-11-01

    Transfer printing, a two-step process (i.e. picking up and printing) for heterogeneous integration, has been widely exploited for the fabrication of functional electronics system. To ensure a reliable process, strong adhesion for picking up and weak or no adhesion for printing are required. However, it is challenging to meet the requirements of switchable stamp adhesion. Here we introduce a simple, high fidelity process, namely tape transfer printing(TTP), enabled by chemically induced dramatic modulation in tape adhesive strength. We describe the working mechanism of the adhesion modulation that governs this process and demonstrate the method by high fidelity tape transfer printing several types of materials and devices, including Si pellets arrays, photodetector arrays, and electromyography (EMG) sensors, from their preparation substrates to various alien substrates. High fidelity tape transfer printing of components onto curvilinear surfaces is also illustrated.

  7. High Fidelity Tape Transfer Printing Based On Chemically Induced Adhesive Strength Modulation

    PubMed Central

    Sim, Kyoseung; Chen, Song; Li, Yuhang; Kammoun, Mejdi; Peng, Yun; Xu, Minwei; Gao, Yang; Song, Jizhou; Zhang, Yingchun; Ardebili, Haleh; Yu, Cunjiang

    2015-01-01

    Transfer printing, a two-step process (i.e. picking up and printing) for heterogeneous integration, has been widely exploited for the fabrication of functional electronics system. To ensure a reliable process, strong adhesion for picking up and weak or no adhesion for printing are required. However, it is challenging to meet the requirements of switchable stamp adhesion. Here we introduce a simple, high fidelity process, namely tape transfer printing(TTP), enabled by chemically induced dramatic modulation in tape adhesive strength. We describe the working mechanism of the adhesion modulation that governs this process and demonstrate the method by high fidelity tape transfer printing several types of materials and devices, including Si pellets arrays, photodetector arrays, and electromyography (EMG) sensors, from their preparation substrates to various alien substrates. High fidelity tape transfer printing of components onto curvilinear surfaces is also illustrated. PMID:26553110

  8. High Fidelity Tape Transfer Printing Based On Chemically Induced Adhesive Strength Modulation.

    PubMed

    Sim, Kyoseung; Chen, Song; Li, Yuhang; Kammoun, Mejdi; Peng, Yun; Xu, Minwei; Gao, Yang; Song, Jizhou; Zhang, Yingchun; Ardebili, Haleh; Yu, Cunjiang

    2015-01-01

    Transfer printing, a two-step process (i.e. picking up and printing) for heterogeneous integration, has been widely exploited for the fabrication of functional electronics system. To ensure a reliable process, strong adhesion for picking up and weak or no adhesion for printing are required. However, it is challenging to meet the requirements of switchable stamp adhesion. Here we introduce a simple, high fidelity process, namely tape transfer printing (TTP), enabled by chemically induced dramatic modulation in tape adhesive strength. We describe the working mechanism of the adhesion modulation that governs this process and demonstrate the method by high fidelity tape transfer printing several types of materials and devices, including Si pellets arrays, photodetector arrays, and electromyography (EMG) sensors, from their preparation substrates to various alien substrates. High fidelity tape transfer printing of components onto curvilinear surfaces is also illustrated. PMID:26553110

  9. Experimental and computational analysis of a novel flow channel to assess the adhesion strength of sessile marine organisms.

    PubMed

    Dimartino, Simone; Mather, Anton V; Alestra, Tommaso; Nawada, Suhas; Haber, Meir

    2015-02-01

    Bioadhesives produced by marine macroalgae represent a potential source of inspiration for the development of water-resistant adhesives. Assessing their adhesion strength, however, remains difficult owing to low volumes of adhesive material produced, low solubility and rapid curing time. These difficulties can be circumvented by testing the adhesion strength of macroalgae propagules attached to a substrate. In this paper, we present a simple, novel flow channel used to test the adhesion strength of the germlings of the fucalean alga Hormosira banksii to four substrates of biomedical relevance (PMMA, agar, gelatin and gelatin + lipid). The adhesion strength of H. banksii germlings was found to increase in a time-dependent manner, with minimal adhesion success after a settlement period of 6 h and maximum adhesion strength achieved 24 h after initial settlement. Adhesion success increased most dramatically between 6 and 12 h settlement time, while no additional increase in adhesion strength was recorded for settlement times over 24 h. No significant difference in adhesion strength to the various substrates was observed. Computational fluid dynamics (CFD) was used to estimate the influence of fluid velocity and germling density on drag force acting on the settled organisms. CFD modelling showed that, on average, the drag force decreased with increasing germling number, suggesting that germlings would benefit from gregarious settlement behaviour. Collectively, our results contribute to a better understanding of the mechanisms allowing benthic marine organisms to thrive in hydrodynamically stressful environments and provide useful insights for further investigations. PMID:25657838

  10. Experimental and computational analysis of a novel flow channel to assess the adhesion strength of sessile marine organisms

    PubMed Central

    Dimartino, Simone; Mather, Anton V.; Alestra, Tommaso; Nawada, Suhas; Haber, Meir

    2015-01-01

    Bioadhesives produced by marine macroalgae represent a potential source of inspiration for the development of water-resistant adhesives. Assessing their adhesion strength, however, remains difficult owing to low volumes of adhesive material produced, low solubility and rapid curing time. These difficulties can be circumvented by testing the adhesion strength of macroalgae propagules attached to a substrate. In this paper, we present a simple, novel flow channel used to test the adhesion strength of the germlings of the fucalean alga Hormosira banksii to four substrates of biomedical relevance (PMMA, agar, gelatin and gelatin + lipid). The adhesion strength of H. banksii germlings was found to increase in a time-dependent manner, with minimal adhesion success after a settlement period of 6 h and maximum adhesion strength achieved 24 h after initial settlement. Adhesion success increased most dramatically between 6 and 12 h settlement time, while no additional increase in adhesion strength was recorded for settlement times over 24 h. No significant difference in adhesion strength to the various substrates was observed. Computational fluid dynamics (CFD) was used to estimate the influence of fluid velocity and germling density on drag force acting on the settled organisms. CFD modelling showed that, on average, the drag force decreased with increasing germling number, suggesting that germlings would benefit from gregarious settlement behaviour. Collectively, our results contribute to a better understanding of the mechanisms allowing benthic marine organisms to thrive in hydrodynamically stressful environments and provide useful insights for further investigations. PMID:25657838

  11. Evaluation of interlaminar shear strength of a unidirectional carbon/epoxy laminated composite under impact loading

    NASA Astrophysics Data System (ADS)

    Yokoyama, T.; Nakai, K.

    2006-08-01

    The interlaminar shear strength (ILSS) of a unidirectional carbon/epoxy (T700/2521) laminated composite under impact loading is determined using the conventional split Hopkinson pressure bar. Double-notch shear (DNS) specimens with lateral constraint from a supporting jig are used in the static and impact interlaminar compressive shear tests. Short-beam shear specimens are also used under static 3-point bending. Numerical stress analyses are performed to determine the shear stress and normal stress distributions on the expected failure plane in the DNS specimen using the MSC/NASTRAN package. The effect of deformation rate on the ILSS and failure mode is investigated. It is observed that the ILSS is independent of the deformation rate up to nearly 1.5m/s (dotγ ≈ 780/s). The validity of the test results is confirmed by microscopic examinations of both static and impact failure surfaces for the DNS specimens.

  12. Temperature-dependent residual shear strength characteristics of smectite-rich landslide soils

    NASA Astrophysics Data System (ADS)

    Shibasaki, Tatsuya; Matsuura, Sumio; Okamoto, Takashi

    2015-04-01

    On gentle clayey slopes in weathered argillaceous rock areas, there exist many landslides which repeatedly reactivate with slow movement. The slip surface soils of these landslides are sometimes composed dominantly of swelling clay mineral (smectite) which is well known to show extremely low residual friction angle. From field data monitored at landslide sites in Japan, it has become clear that some landslides with relatively shallow slip surface begin to move and become active in late autumn or early winter every year. In such cases, the triggering mechanisms of landslides have not been understood well enough, because landslide initiation and movement are not always clearly linked with rises in pore water pressures (ground water levels). In this study, we focus on the influence of seasonal variation in ground temperature on slope stability and have investigated the effect of temperature on the shear strength of slip surface soils. Undisturbed soil samples were collected by boring from the Busuno landslide in Japan. We performed box shear experiments on undisturbed slip surface soils at low temperature ranges (approximately 5-25 °C). XRD analysis revealed that these soils contain high fraction of smectite. Slickensided slip surface within test specimen was coincided with the shearing plane of the shear box and shear displacement was applied precisely along the localized slip surface. Experiments were performed under slow shearing rate condition (0.005mm/min) and the results showed that shear strength decreased with decreasing temperature. Temperature effect was rather significant on frictional angle than on cohesion. Ring shear experiments were also performed on normally-consolidated remoulded samples. Under residual strength condition, temperature-change experiments (cooling-event tests) ranging approximately from 5 to 25 °C were performed on smectite-rich landslide soils and commercial bentonites. As well as the results by box shear test, shear weakening

  13. Cytocompatibility studies of a biomimetic copolymer with simplified structure and high-strength adhesion.

    PubMed

    Brennan, M Jane; Meredith, Heather J; Jenkins, Courtney L; Wilker, Jonathan J; Liu, Julie C

    2016-04-01

    The development of adhesives suitable for biomedical applications has been challenging given that these materials must exhibit sufficient adhesion strengths and biocompatibility. Biomimetic materials inspired by mussel adhesive proteins appear to contain many of the necessary characteristics for biomedical adhesives. In particular, poly[(3,4-dihydroxystyrene)-co-styrene] has been shown to be a high strength adhesive material with bonding comparable to or even greater than several commercial glues. Herein, a thorough study on the cytocompatibility of this copolymer provides insights on the suitability of a mussel-mimicking adhesive for applications development. The cytotoxicity of poly[(3,4-dihydroxystyrene)-co-styrene] was evaluated through assessment of the viability, proliferation rate, and morphology of NIH/3T3 fibroblasts when cultured with copolymer extracts or directly in contact with the adhesive. After 1 and 3 days of culture, both the copolymer alone and copolymer cross-linked with periodate exhibited minimal effects on cell viability. Likewise, cells cultured on the copolymer displayed proliferation rates and morphologies similar to cells on the poly-L-lysine control. These results indicate that poly[(3,4-dihydroxystyrene)-co-styrene] is highly cytocompatible and therefore a promising material for use where biological contact is important. PMID:26714824

  14. The correlation of ultrasonic attenuation and shear strength in graphite-polyimide composites

    NASA Technical Reports Server (NTRS)

    Hayford, D. T.; Henneke, E. G., II; Stinchcomb, W. W.

    1977-01-01

    The buffer rod technique for measuring attenuation in thin specimens is modified here to apply to specimens having intermediate thicknesses and high attenuation. The described procedure, which requires only one accessible surface of the material, was used to determine the initial attenuation values of ultrasonic waves in short beam shear specimens of graphite-polyimide composite material. It is shown that there is good correlation between the initial attenuation values and the shear strengths of the specimens determined by the standard short beam shear test method. The modified ultrasonic buffer block technique offers much potential for service as a quantitative, nondestructive, quality assurance test for composite materials.

  15. Influence of Compression and Shear on the Strength of Composite Laminates with Z-Pinned Reinforcement

    NASA Technical Reports Server (NTRS)

    O'Brien, T. Kevin; Krueger, Ronald

    2005-01-01

    The influence of compression and shear loads on the strength of composite laminates with z-pins is evaluated parametrically using a 2D Finite Element Code (FLASH) based on Cosserat couple stress theory. Meshes were generated for three unique combinations of z-pin diameter and density. A laminated plate theory analysis was performed on several layups to determine the bi-axial stresses in the zero degree plies. These stresses, in turn, were used to determine the magnitude of the relative load steps prescribed in the FLASH analyses. Results indicated that increasing pin density was more detrimental to in-plane compression strength than increasing pin diameter. Compression strengths of lamina without z-pins agreed well with a closed form expression derived by Budiansky and Fleck. FLASH results for lamina with z-pins were consistent with the closed form results, and FLASH results without z-pins, if the initial fiber waviness due to z-pin insertion was added to the fiber waviness in the material to yield a total misalignment. Addition of 10% shear to the compression loading significantly reduced the lamina strength compared to pure compression loading. Addition of 50% shear to the compression indicated shear yielding rather than kink band formation as the likely failure mode. Two different stiffener reinforced skin configurations with z-pins, one quaiisotropic and one orthotropic, were also analyzed. Six unique loading cases ranging from pure compression to compression plus 50% shear were analyzed assuming material fiber waviness misalignment angles of 0, 1, and 2 degrees. Compression strength decreased with increased shear loading for both configurations, with the quasi-isotropic configuration yielding lower strengths than the orthotropic configuration.

  16. Influence of Compression and Shear on the Strength of Composite Laminates With Z-Pinned Reinforcement

    NASA Technical Reports Server (NTRS)

    OBrien, T. Kevin; Krueger, Ronald

    2005-01-01

    The influence of compression and shear loads on the strength of composite laminates with z-pins is evaluated parametrically using a 2D Finite Element Code (FLASH) based on Cosserat couple stress theory. Meshes were generated for three unique combinations of z-pin diameter and density. A laminated plate theory analysis was performed on several layups to determine the bi-axial stresses in the zero degree plies. These stresses, in turn, were used to determine the magnitude of the relative load steps prescribed in the FLASH analyses. Results indicated that increasing pin density was more detrimental to in-plane compression strength than increasing pin diameter. Compression strengths of lamina without z-pins agreed well with a closed form expression derived by Budiansky and Fleck. FLASH results for lamina with z-pins were consistent with the closed form results, and FLASH results without z-pins, if the initial fiber waviness due to z-pin insertion was added to the fiber waviness in the material to yield a total misalignment. Addition of 10% shear to the compression loading significantly reduced the lamina strength compared to pure compression loading. Addition of 50% shear to the compression indicated shear yielding rather than kink band formation as the likely failure mode. Two different stiffener reinforced skin configurations with z-pins, one quasi-isotropic and one orthotropic, were also analyzed. Six unique loading cases ranging from pure compression to compression plus 50% shear were analyzed assuming material fiber waviness misalignment angles of 0, 1, and 2 degrees. Compression strength decreased with increased shear loading for both configurations, with the quasi-isotropic configuration yielding lower strengths than the orthotropic configuration.

  17. Shear Strength of Remoulding Clay Samples Using Different Methods of Moulding

    NASA Astrophysics Data System (ADS)

    Norhaliza, W.; Ismail, B.; Azhar, A. T. S.; Nurul, N. J.

    2016-07-01

    Shear strength for clay soil was required to determine the soil stability. Clay was known as a soil with complex natural formations and very difficult to obtain undisturbed samples at the site. The aim of this paper was to determine the unconfined shear strength of remoulded clay on different methods in moulding samples which were proctor compaction, hand operated soil compacter and miniature mould methods. All the samples were remoulded with the same optimum moisture content (OMC) and density that were 18% and 1880 kg/m3 respectively. The unconfined shear strength results of remoulding clay soils for proctor compaction method was 289.56kPa with the strain 4.8%, hand operated method was 261.66kPa with the strain 4.4% and miniature mould method was 247.52kPa with the strain 3.9%. Based on the proctor compaction method, the reduction percentage of unconfined shear strength of remoulded clay soil of hand operated method was 9.66%, and for miniature mould method was 14.52%. Thus, because there was no significant difference of reduction percentage of unconfined shear strength between three different methods, so it can be concluded that remoulding clay by hand operated method and miniature mould method were accepted and suggested to perform remoulding clay samples by other future researcher. However for comparison, the hand operated method was more suitable to form remoulded clay sample in term of easiness, saving time and less energy for unconfined shear strength determination purposes.

  18. Effect of different provisional cement remnant cleaning procedures including Er:YAG laser on shear bond strength of ceramics

    PubMed Central

    Zortuk, Mustafa; Gumus, Hasan Onder; Kilinc, Halil Ibrahim

    2012-01-01

    PURPOSE The purpose of this study was to evaluate the effect of provisional cement removal by different dentin cleaning protocols (dental explorer, pumice, cleaning bur, Er:YAG laser) on the shear bond strength between ceramic and dentin. MATERIALS AND METHODS In total, 36 caries-free unrestored human third molars were selected as tooth specimens. Provisional restorations were fabricated and cemented with eugenol-free provisional cement. Then, disc-shaped ceramic specimens were fabricated and randomly assigned to four groups of dentin cleaning protocols (n = 9). Group 1 (control): Provisional cements were mechanically removed with a dental explorer. Group 2: The dentin surfaces were treated with a cleaning brush with pumice Group 3: The dentin surfaces were treated with a cleaning bur. Group 4: The provisional cements were removed by an Er:YAG laser. Self-adhesive luting cement was used to bond ceramic discs to dentin surfaces. Shear bond strength (SBS) was measured using a universal testing machine at a 0.05 mm/min crosshead speed. The data were analyzed using a Kolmogorov Smirnov, One-way ANOVA and Tukey HSD tests to perform multiple comparisons (α=0.05). RESULTS The dentin cleaning methods did not significantly affect the SBS of ceramic discs to dentin as follows: dental explorer, pumice, cleaning bur, and Er:YAG laser. CONCLUSION The use of different cleaning protocols did not affect the SBS between dentin and ceramic surfaces. PMID:23236570

  19. Improved Tensile Adhesion Specimens for High Strength Epoxy Systems in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Haddock, M. Reed; McLennan, Michael L.

    2000-01-01

    An improved tensile adhesion button has been designed and tested that results in higher measured tensile adhesion strength while providing increased capability for testing high strength epoxy adhesive systems. The best attributes of two well-established tensile button designs were combined and refined into an optimized tensile button. The most significant design change to the tensile button was to improve alignment of the bonded tensile button specimens during tensile testing by changing the interface between the tensile button and the tensile test machine. The established or old button design uses a test fixture that pulls from a grooved annulus or anvil head while the new button design pulls from a threaded hole in the centerline of the button. Finite element (FE) analysis showed that asymmetric loading of the established anvil head tensile button significantly increases the stress concentration in the adhesive, causing failure at lower tensile test loads. The new tensile button was designed to eliminate asymmetric loading and eliminate misalignment sensitivity. Enhanced alignment resulted in improved tensile adhesion strength measurement up to 13.8 MPa (2000psi) over the established button design. Another design change increased the capability of the button by increasing the threaded hole diameter allowing it to test high strength epoxy systems up to 85 MPa(less than 12,000 psi). The improved tensile button can be used in button- to-button or button-to-panel configurations.

  20. Resistivity and adhesive strength of thin film metallizations on single crystal quartz.

    PubMed

    Vianco, P T; Sifford, C H; Romero, J A

    1997-01-01

    Resistivity and adhesive strength were measured for the thin films 450 A Cr-1800 A Au, 450 A Cr-1000 A Mo-1800 A Au, 450 A Cr-1000 A Ni-1800 A Au, 450 A Mo-1800 A Au, 1800 A Au, and 2000 A Al on z-and AT-oriented single crystal quartz substrates in the as-deposited condition as well as after thermal annealing at 380 degrees C and 450 degrees C for 30 min in air or vacuum. The Cr-Au films exhibited significant resistivity increases after thermal annealing which were caused by the interdiffusion of Cr and Au. Barrier layers of Mo or Ni limited such increases after heat treatment. The Mo-Au, Au, and Al films exhibited resistivity decreases following thermal annealing. The mean adhesive strengths of the Cr-Au, Cr-Mo-Au, and Cr-Ni-Au films were excellent in the as-deposited and annealed conditions, ranging from 41 MPa to 70 MPa. The Mo-Au and Au films maintained relatively poor adhesion under all circumstances. Heat treatment improved the poor adhesive strength of the as-deposited Al films to values exceeding 63 MPa. Resistivity and adhesive strengths did not differ significantly between the z- and AT-oriented substrates. PMID:18244122

  1. In-plane and Interlaminar Shear Strength of a Unidirectional Hi-nicalon Fiber-reinforced Celsian Matrix Composite

    NASA Technical Reports Server (NTRS)

    Uenal, O.; Bansal, N. P.

    2000-01-01

    In-plane and interlaminar shear strength of a unidirectional SiC fiber-reinforced (BaSr)Al2Si2O8 celsian composite were measured by the double-notch shear test method between room temperature and 1200 C. The interlaminar shear strength was lower than the in-plane shear strength at all temperatures. Stress analysis, using finite element modeling, indicated that shear stress concentration was not responsible for the observed difference in strength. Instead, the difference in layer architecture and thus, the favorable alignment of fiber-rich layers with the shear plane in the interlaminar specimens appears to be the reason for the low strength of this composite. A rapid decrease in strength was observed with temperature due to softening of the glassy phase in the material.

  2. Shear Strength Correlations for Kaolin/Water Slurries: A Comparison of Recent Measurements with Historical Data

    SciTech Connect

    Burns, Carolyn A.; Gauglitz, Phillip A.; Russell, Renee L.

    2010-01-20

    This report documents testing funded by CH2M Hill Plateau Remediation and performed by Pacific Northwest National Laboratory (PNNL) in collaboration with Fauske and Associates, LLC (FAI) to determine the behavior of vessel spanning bubbles. The shear strengths of four samples of kaolin/water mixtures obtained by PNNL from FAI were measured and are reported here. The measured shear strengths of these samples were then used to determine how the Rassat correlation fit these new measurements or if a new correlation was needed. These results were then compared with previously reported data.

  3. The shear strength of three-dimensional capillary-porous titanium coatings for intraosseous implants.

    PubMed

    Kalita, V I; Komlev, D I; Komlev, V S; Radyuk, A A

    2016-03-01

    A plasma spraying process for the deposition of three-dimensional capillary-porous titanium coatings using a wire has been developed. In this process, two additional dc arcs are discharged between plasmatron and both the wire and the substrate, resulting in additional activation of the substrate and the particles, particularly by increasing their temperature. The shear strength of the titanium coating with 46% porosity is 120.6 MPa. A new procedure for estimating the shear strength of porous coatings has been developed. PMID:26706529

  4. Effect of indirect composite treatment microtensile bond strength of self-adhesive resin cements

    PubMed Central

    Escribano, Nuria; Baracco, Bruno; Romero, Martin; Ceballos, Laura

    2016-01-01

    Background No specific indications about the pre-treatment of indirect composite restorations is provided by the manufacturers of most self-adhesive resin cements. The potential effect of silane treatment to the bond strength of the complete tooth/indirect restoration complex is not available.The aim of this study was to determine the contribution of different surface treatments on microtensile bond strength of composite overlays to dentin using several self-adhesive resin cements and a total-etch one. Material and Methods Composite overlays were fabricated and bonding surfaces were airborne-particle abraded and randomly assigned to two different surface treatments: no treatment or silane application (RelyX Ceramic Primer) followed by an adhesive (Adper Scotchbond 1 XT). Composite overlays were luted to flat dentin surfaces using the following self-adhesive resin cements: RelyX Unicem, G-Cem, Speedcem, Maxcem Elite or Smartcem2, and the total-etch resin cement RelyX ARC. After 24 h, bonded specimens were cut into sticks 1 mm thick and stressed in tension until failure. Two-way ANOVA and SNK tests were applied at α=0.05. Results Bond strength values were significantly influenced by the resin cement used (p<0.001). However, composite surface treatment and the interaction between the resin cement applied and surface treatment did not significantly affect dentin bond strength (p>0.05). All self-adhesive resin cements showed lower bond strength values than the total-etch RelyX ARC. Among self-adhesive resin cements, RelyX Unicem and G-Cem attained statistically higher bond strength values. Smartcem2 and Maxcem Elite exhibited 80-90% of pre-test failures. Conclusions The silane and adhesive application after indirect resin composite sandblasting did not improve the bond strength of dentin-composite overlay complex. Selection of the resin cement seems to be a more relevant factor when bonding indirect composites to dentin than its surface treatment. Key words

  5. Enhancing the adhesion strength of micro electroforming layer by ultrasonic agitation method and the application.

    PubMed

    Zhao, Zhong; Du, Liqun; Tao, Yousheng; Li, Qingfeng; Luo, Lei

    2016-11-01

    Micro electroforming is widely used for fabricating micro metal devices in Micro Electro Mechanism System (MEMS). However, there is the problem of poor adhesion strength between micro electroforming layer and substrate. This dramatically influences the dimensional accuracy of the device. To solve this problem, ultrasonic agitation method is applied during the micro electroforming process. To explore the effect of the ultrasonic agitation on the adhesion strength, micro electroforming experiments were carried out under different ultrasonic power (0W, 100W, 150W, 200W, 250W) and different ultrasonic frequencies (0kHz, 40kHz, 80kHz, 120kHz, 200kHz). The effects of the ultrasonic power and the ultrasonic frequency on the micro electroforming process were investigated by polarization method and alternating current (a.c.) impedance method. The adhesion strength between the electroforming layer and the substrate was measured by scratch test. The compressive stress of the electroforming layer was measured by X-ray Diffraction (XRD) method. The crystallite size of the electroforming layer was measured by Transmission Electron Microscopy (TEM) method. The internal contact surface area of the electroforming layer was measured by cyclic voltammetry (CV) method. The experimental results indicate that the ultrasonic agitation can decrease the polarization overpotential and increase the charge transfer process. Generally, the internal contact surface area is increased and the compressive stress is reduced. And then the adhesion strength is enhanced. Due to the different depolarization effects of the ultrasonic power and the ultrasonic frequency, the effects on strengthening the adhesion strength are different. When the ultrasonic agitation is 200W and 40kHz, the effect on strengthening the adhesion strength is the best. In order to prove the effect which the ultrasonic agitation can improve the adhesion strength of the micro devices, micro pillar arrays were fabricated under

  6. Influence of superconductor film composition on adhesion strength of coated conductors

    SciTech Connect

    Kesgin, Ibrahim; Khatri, Narayan; Liu, Yuhao; Delgado, Louis; Galstyan, Eduard; Selvamanickam, Venkat

    2015-11-20

    The effect of high temperature superconductor (HTS) film composition on the adhesion strength of rare- earth barium copper oxide coated conductors (CCs) has been studied. It has been found that the mechanical integrity of the superconductor layer is very susceptible to the defects especially those along the ab plane, probably due to the weak interfaces between the defects and the matrix. Gd and Y in the standard composition were substituted with Sm and the number of in-plane defects was drastically reduced. Consequently, a four-fold increase in adhesion or peeling strength in Sm-based CCs was achieved compared to the standard GdYBCO samples.

  7. Shear Bond Strength of Orthodontic Brackets to Tooth Enamel After Treatment With Different Tooth Bleaching Methods

    PubMed Central

    Vahid Dastjerdi, Elahe; Khaloo, Negar; Mojahedi, Seyed Masoud; Azarsina, Mohadese

    2015-01-01

    Background: Bleaching treatments decrease shear bond strength between orthodontic brackets and teeth; although definite results have not been reported in this regard. Objectives: This study determined the effects of different bleaching protocols on the shear bond strength of orthodontic brackets to teeth. Materials and Methods: This experimental study was performed in Iran. Forty-eight extracted human premolars were randomly assigned into four groups. In the control group, no bleaching treatment was performed. In groups 2 - 4, the bleaching procedures were performed using carbamide peroxide 45%, carbamide peroxide 20% and diode laser, respectively. Two weeks later, brackets were bonded to teeth and thermocycled. The shear bond strengths of the brackets to the teeth were measured. Data was analyzed by one-way ANOVA and Dunnett post-hoc test. Results: Shear bond strength of the brackets to the teeth were 10.54 ± 1.51, 6.37 ± 0.92, 7.67 ± 1.01 and 7.49 ± 1.19 MPa, in groups 1 - 4, respectively. Significant differences were found between control group and all other groups (P < 0.001); and also between groups 2 and 3 (P < 0.05). No significant differences were found between the other groups. Conclusions: The bleaching procedures using 20% carbamide peroxide and 45% carbamide peroxide and diode laser significantly decreased shear bond strength of brackets to the teeth. 45% carbamide peroxide had a more significant effect on bond strength compared to 20% carbamide peroxide. The difference in bond strength was not significant between laser group and either carbamide peroxide groups. PMID:26734481

  8. Influence of surface treatments on the shear bond strength of orthodontic brackets to porcelain

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Zeng, Jishan; Wang, Shaoan; Yang, Zheng; Huang, Qian; Chen, Pixiu; Zhou, Shujuan; Liu, Xiaoqing

    2008-11-01

    The purpose of this study was to investigate the effect of various surface treatments after different storage time and thermocycling on the shear bond strength of orthodontic brackets to the feldspathic porcelain surfaces. 128 disc-shaped porcelain specimens were randomly assigned to the following surface treatments: 9.6% HFA, 9.6% HFA combined with silane, 50 μ aluminum trioxide sandblasting followed by silane and application of silane after 37% phosphoric acid. Metal or ceramic brackets were bonded onto each treated porcelain facet with light cured resin. The samples were stored in 37 °C water 1 day or 7 days, thermocycled 500 times from 5 to 55 °C. The shear bond strengths were measured (1 mm/min), and statistically analyzed. The bond failure sites were classified according to ARI system. The surface of the glazed, sandblasted, hydrofluoric and phosphoric acid etched porcelain were examined with SEM. All groups achieved reasonable bond strengths to withstand the application of orthodontic forces. Water storage for 7 days caused lower shear bond strength than that of 1 day. But there is no statistically significant difference between the two groups. The mean shear bond strength provided by ceramic bracket with mechanical retention had no statistical difference with that of metal bracket. Therefore, the optimal treatment for orthodontic brackets bonding to feldspathic porcelain was to apply phosphoric acid combined with silane.

  9. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel

    PubMed Central

    Sekhri, Sahil; Garg, Sandeep

    2016-01-01

    Introduction In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. Aim The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. Materials and Methods On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Results Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non–significant (p > 0.05). Conclusion Surface treatment of enamel increases the bond strength of self adhesive resin cement. PMID:26894165

  10. Effect of Fluoride and Simplified Adhesive Systems on the Bond Strength of Primary Molars and Incisors.

    PubMed

    Firoozmand, Leily Macedo; Noleto, Lawanne Ellen Carvalho; Gomes, Isabella Azevedo; Bauer, José Roberto de Oliveira; Ferreira, Meire Coelho

    2015-01-01

    The aim of this study was evaluate in vitro the influence of simplified adhesive systems (etch-and-rinse and self-etching) and 1.23% acidulated phosphate fluoride (APF) on the microshear bond strength (μ-SBS) of composite resins on primary molars and incisors. Forty primary molars and forty incisors vestibular enamel was treated with either the self-etching Clearfil SE Bond (CSE, Kuraray) or etch-and-rinse Adper Single Bond 2 (SB2, 3M/ESPE) adhesive system. Each group was subdivided based on the prior treatment of the enamel with or without the topical application of 1.23% APF. Thereafter, matrices were positioned and filled with composite resin and light cured. After storage in distilled water at 37 ± 1°C for 24 h, the specimens were submitted to μ-SBS in a universal testing machine. Kruskal-Wallis and Mann-Whitney tests (p < 0.05) showed that the prior application of 1.23% APF led to a significant reduction in bond strength. The type of adhesive exerted no significant influence bond strength. In the inter-group analysis, however, significantly bond strength reduction was found for the incisors when CSE was employed with APF. Adhesive failure was the most common type of fracture. The bond strength was affected by the prior application of 1.23% APF and type of tooth. PMID:26312974

  11. Effect of thermal cycling on the bond strength of self-adhesive cements to fiber posts.

    PubMed

    Mazzitelli, Claudia; Monticelli, Francesca; Toledano, Manuel; Ferrari, Marco; Osorio, Raquel

    2012-06-01

    The aim of this study was to assess the push-out bond strengths of self-adhesive resin cements to epoxy resin-based fiber posts after challenging by thermocycling. Thirty-six single-rooted premolars were endodontically treated, and the post-spaces were drilled to receive RelyX Fiber posts #1. Three self-adhesive resin cements (RelyX Unicem, G-Cem, and Breeze) were used for luting fiber posts. The bonded specimens were either stored for 1 month in a moist field (37°C) or submitted to thermocycling (5,000 times) prior to push-out test. The maximum force required to dislodge the post via an apical-coronal direction was recorded (megapascal). The data were statistically analyzed with two-way ANOVA and Tukey tests (p < 0.05). The factors "luting cement" and "thermocycling" significantly influenced bond strengths. The initial push-out values of RelyX Unicem and Breeze were higher than those of G-Cem. After thermocycling, the bond strength of G-Cem increased and no differences were found between groups. RelyX Unicem and Breeze bond strengths were not affected by the thermal challenge. Thermal cycling and cement type differently influence the bond strengths of self-adhesive resin cements. Self-adhesive cements can represent an option for luting fiber posts into root canal. PMID:21670983

  12. Dentin bond strength and degree of conversion evaluation of experimental self-etch adhesive systems

    PubMed Central

    Yazdi, Fatemeh-Maleknejad; Atai, Mohammad; Zeynali, Mahsa

    2015-01-01

    Background The aim of this study was to investigate the effect of different concentrations of 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) monomer in one-step self-etch experimental adhesives on dentinal microshear bond strength (µSBS), their degree of conversion and bonded micro structure. Material and Methods Composite resin cylinders (Clearfil AP-X) were bonded on human sound molar dentinal surfaces by using five experimental one-step self-etching adhesives (1-SEAs) containing 0% (E0), 5% (E5), 10% (E10), 15% (E15), 20% (E20) (by weight) 10-MDP monomer and Clearfil S3 Bond (CS3) as a control. After 24 hours, microshear bond strength was tested. The degree of conversion was also measured using Fourier transform infrared spectroscopy. Interfacial ultrastructure was observed under a scanning electron microscope in all the groups. Results A higher microshear bond strength was observed with adhesives containing 10% and 15% 10-MDP in comparison to study groups (P<.05). Clearfil S3 Bond and 10% MDP had a significantly greater degree of conversion than other groups (P<.05). Conclusions The amount of functional monomer in 1-SEAs influences both the bonding performance and degree of conversion; 10% 10-MDP showed the best combination of bond strength and degree of conversion. Key words:Self-etch adhesives, 10-MDP, bond strength, degree of conversion. PMID:26155340

  13. New primers for adhesive bonding of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Burrell, B. W.; Port, W. S.

    1971-01-01

    Synthetic polypeptide adhesive primers are effective, with high temperature epoxy resins, at temperatures from 100 deg to 300 deg C. Lap-shear failure loads and lap-shear strength of both primers are discussed.

  14. Cone Penetrometer Shear Strength Measurements of Sludge Waste in Tanks 241-AN-101 and 241-AN-106

    SciTech Connect

    Follett, Jordan R.

    2014-03-06

    This document presents the resulting shear strength profiles for sludge waste in Tanks 241-AN-101 and 241-AN-106, as determined with a full-flow cone penetrometer. Full-flow penetrometer measurements indicate shear strength profiles that increase roughly uniformly with depth. For Tank 241-AN-101, the undrained shear strength was calculated to range from 500 Pa near the sludge surface to roughly 3,300 Pa at 15 inches above the tank bottom. For 241-AN-106, the undrained shear strength was calculated to range from 500 Pa near the sludge surface to roughly 5,000 Pa at 15 inches above the tank bottom.

  15. Influence of Compression and Shear on the Strength of Composite Laminates with Z-Pinned Reinforcement

    NASA Technical Reports Server (NTRS)

    O'Brien, T. Kevin; Krueger, Ronald

    2005-01-01

    The influence of compression and shear loads on the strength of composite laminates with z-pins is evaluated parametrically using a 2D Finite Element Code (FLASH). Meshes were generated for three unique combinations of z-pin diameter and density. A laminated plate theory analysis was performed on several layups to determine the bi-axial stresses in the zero degree plies. These stresses, in turn, were used to determine the magnitude of the relative load steps prescribed in the FLASH analyses. Results indicated that increasing pin density was more detrimental to in-plane compression strength than increasing pin diameter. FLASH results for lamina with z-pins were consistent with the closed form results, and FLASH results without z-pins, if the initial fiber waviness due to z-pin insertion was added to the fiber waviness in the material to yield a total misalignment. Addition of 10% shear to the compression loading significantly reduced the lamina strength compared to pure compression loading. Addition of 50% shear to the compression indicated shear yielding rather than kink band formation as the likely failure mode. Two different stiffener reinforced skin configurations with z-pins, one quasi-isotropic and one orthotropic, were also analyzed. Six unique loading cases ranging from pure compression to compression plus 50% shear were analyzed assuming material fiber waviness misalignment angles of 0, 1, and 2 degrees. Compression strength decreased with increased shear loading for both configurations, with the quasi-isotropic configuration yielding lower strengths than the orthotropic configuration.

  16. Microtensile and tensile bond strength of single-bottle adhesives: a new test method.

    PubMed

    Abdalla, A I

    2004-04-01

    To evaluate the tensile and microtensile bond strength of five single-bottle adhesives to dentine, extracted human molar teeth were used. For each tooth dentine was exposed on the occlusal surface by cutting with an isomet saw and the remaining part was mounted in a plastic ring using dental stone. The tested adhesive materials were: Scotchbond 1, Syntac SC, One-Step, Prime & Bond 2.1 and Clearfil SE Bond. The adhesive was applied to either 1 mm(2) of dentine or a circular area with a diameter of 3.9 mm. Composite resin Clearfil AP-X was placed to the adhesives using a Teflon split mould 3.9 mm in diameter and 2.5 mm in height. Tensile and microtensile bond strengths were measured using a universal testing machine at a crosshead speed of 0.5 mm min(-1). Under tensile mode, the bond strengths were 16.7 +/- 3.5, 15.2 +/- 2.5, 11.5 +/- 3.2, 13.7 +/- 2.6, 20.9 +/- 4.2 MPa for each material. Under microtensile mode, the bond strengths were 52.5 +/- 9.5, 55.3 +/- 8.3, 40.5 +/- 5.2, 37.5 +/- 8.7, 60 +/- 6.21 MPa. Fracture pattern of bonded specimens showed 66% cohesive dentine failure in samples tested for tensile bond strength. For the microtensile test, failures were mainly adhesive at the interface between adhesive and dentine (94%). PMID:15089946

  17. Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore.

    PubMed

    Sivakumar Babu, G L; Lakshmikanthan, P; Santhosh, L G

    2015-05-01

    Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3kN/m(3) to 10.3kN/m(3) at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43. PMID:25746176

  18. Evaluation of Shear Bond Strength of Newer Bonding Systems on Superficial and Deep Dentin

    PubMed Central

    Kumari, R Veena; Siddaraju, Kishore; Nagaraj, Hema; Poluri, Ramya Krishna

    2015-01-01

    Background: The purpose of this study was to compare the shear bond strength of nanocomposite resin to superficial dentin and deep dentin using two different dentin bonding systems. Materials and Methods: All teeth were sectioned at various levels (superficial dentin: Dentin within 0.5-1 mm of dentinoenamel junction; deep dentin: Dentin within 0.5 mm of the highest pulp horn) using a Carborundum Disc and embedded in acrylic block of specific size. Selected specimens (60 premolar teeth) were grouped randomly into three groups, the groups were differentiated into superficial dentin, deep dentin, and control group which were further divided into sub Group A and Subgroup B containing 10 teeth each, depending on the bonding agents used. In Subgroup A, Tetric N Bond, and in Subgroup B Single Bond Universal were used. In the control group no bonding agent was used. The specimens were thermocycled for 500 cycles between 5°C and 55°C water bath for 40 s. Finally, the specimens were subjected to shear bond strength study under INSTRON machine (Universal Testing Machine). The maximum shear bond strengths were noted at the time of fracture (de-bonding) of the restorative material. Results were analyzed using ANOVA test, Bonferroni test, and paired t-test. Results: Bond strength values of fifth generation bonding system (Tetric N Bond) showed higher mean shear bond strength compared to seventh generation bonding system (Single Bond Universal). There was a significant fall in bond strength values as one reaches deeper levels of dentin from superficial to deep dentin. Conclusion: There was a significant difference between the bond strength of fifth generation bonding system (Tetric N Bond) and seventh generation bonding system (Single Bond Universal). Decrease in the bond strength values is seen for the deeper level of dentin as compared to superficial dentin. PMID:26435613

  19. Comparison of Shear Bond Strength of Composite to Stainless Steel Crowns Using Two Mechanical Surface Treatments and Two Bonding Systems

    PubMed Central

    Ghadimi, Sara; Heidari, Alireza

    2016-01-01

    Objectives: This study aimed to compare the shear bond strength (SBS) of composite to stainless steel crowns (SSC) using two mechanical surface treatments (MSTs) and two bonding systems. Materials and Methods: Eighty-four SSCs were divided into six groups of 14; Group1: No MST+Scotchbond Universal adhesive (N+U), Group 2: Surface roughening by a diamond bur+Scotchbond Universal adhesive (R+U), Group 3: Sandblasting+Scotchbond Universal adhesive (S+U), Group 4: No MST+Alloy Primer+Clearfil SE Primer and Bond (N+A), Group 5: Surface roughening by a diamond bur+Alloy Primer+Clearfil SE Primer and Bond (R+A), Group 6: Sandblasting+Alloy Primer+Clearfil SE Primer and Bond (S+A). After MST and bonding procedure, composite cylinders were bonded to the lingual surface of SSCs, then the SBS of composite to SSCs was measured using a universal testing machine following thermocycling. Results: The SBS of groups R+U and S+U was significantly higher than that of group N+U. No significant difference was noted in SBS of groups R+U and S+U. The SBS of group S+A was significantly higher than that of groups N+A and R+A. No significant difference was noted in the SBS of groups N+A and R+A (P>0.05). Conclusions: In Scotchbond Universal adhesive groups, sandblasting and surface roughening by diamond bur significantly increased the SBS of composite to SSCs compared to no MST. In Alloy Primer groups, sandblasting significantly increased the SBS of composite to SSC compared to surface roughening with diamond bur and no MST. PMID:27536330

  20. Microtensile bond strength of silorane-based composite specific adhesive system using different bonding strategies

    PubMed Central

    Bastos, Laura Alves; Sousa, Ana Beatriz Silva; Drubi-Filho, Brahim; Panzeri Pires-de-Souza, Fernanda de Carvalho

    2015-01-01

    Objectives The aim of this study was to evaluate the effect of pre-etching on the bond strength of silorane-based composite specific adhesive system to dentin. Materials and Methods Thirty human molars were randomly divided into 5 groups according to the different bonding strategies. For teeth restored with silorane-based composite (Filtek Silorane, 3M ESPE), the specific self-etching adhesive system (Adhesive System P90, 3M ESPE) was used with and without pre-etching (Pre-etching/Silorane and Silorane groups). Teeth restored with methacrylate based-composite (Filtek Z250, 3M ESPE) were hybridized with the two-step self-etching system (Clearfil SE Bond, Kuraray), with and without pre-etching (Pre-etching/Methacrylate and Methacrylate groups), or three-step adhesive system (Adper Scotchbond Multi-Purpose, 3M ESPE) (Three-step/Methacrylate group) (n = 6). The restored teeth were sectioned into stick-shaped test specimens (1.0 × 1.0 mm), and coupled to a universal test machine (0.5 mm/min) to perform microtensile testing. Results Pre-etching/Methacrylate group presented the highest bond strength values, with significant difference from Silorane and Three-step/Methacrylate groups (p < 0.05). However, it was not significantly different from Preetching/Silorane and Methacrylate groups. Conclusions Pre-etching increased bond strength of silorane-based composite specific adhesive system to dentin. PMID:25671209

  1. Effect of refrigeration on bond strength of self-etching adhesive systems.

    PubMed

    Borges, Gilberto Antonio; Spohr, Ana Maria; de Oliveira, Wildomar José; Correr-Sobrinho, Lourenço; Correr, Américo Bortolazzo; Borges, Luis Henrique

    2006-01-01

    The purpose of this study was to investigate the tensile bond strength to dentin of three self-etching adhesive systems at refrigerated and room temperatures. Seventy-eight bovine incisors were embedded in self-cured acrylic resin, abraded on a water-cooled lathe and polished with 400- and 600-grit sandpapers to obtain standard dentin surfaces. The specimens were randomly assigned to 6 groups (n=13). Clearfil SE Bond, AdheSE and One-Up Bond F adhesive systems at refrigerated (4 degrees C) and room temperatures (23 degrees C) were applied to dentin according to the manufacturers' instructions. A truncated composite resin (Herculite XRV) cone was bonded to dentin surface. The specimens were stored in distilled water at 37 degrees C for 24 h and submitted to tensile bond strength testing at a crosshead speed of 0.5 mm/min. Means in MPa were analyzed statistically by Student's t-test at 5% significance level. No statistically significant differences (p>0.05) were found between the adhesive systems applied at refrigerated and room temperatures. In conclusion, no adverse effects on tensile bond strength were observed when self-etching adhesive systems were used after being taken directly from the refrigerated storage. PMID:17262122

  2. Shear Bond Strength of the Repair Composite Resin to Zirconia Ceramic by Different Surface Treatment

    PubMed Central

    Arami, Sakineh; Hasani Tabatabaei, Masoumeh; Namdar, Fatemeh; Safavi, Nassimeh; Chiniforush, Nasim

    2014-01-01

    Introduction: The purpose of this study is the evaluation of the amount of surface roughness (Ra) of Zirconia Ceramic following different surface treatments as well as the assessment of its shear bond strength to composite resin. Methods: 40 sintered zirconia ceramic block samples were randomly divided in 4 groups of 10 and underwent the following surface treatments: a) Control group without treatment b) Air abrasion with Al2O3 particles (50um) c) Er:YAG laser with 2W power for 10s d) Nd:YAG laser with 1.5W power for 2min Then the mean surface roughness (Ra) was evaluated by profilometer. In the next step, Alloy primer was used on a section of 9mm2 on the samples following the manufacturer’s instructions. After that Clearfil AP-X composite resin in cylinder shape with an internal diameter and height of 3mm were cured on the sections mentioned. At the end, all samples were tested to assess the shear bond strength by the Universal Testing Machine at a speed of 0.5mm/min until fracture occurred. The mean shear bond strengths were calculated and statistically analyzed by One Way ANOVA. Results: ANOVA analysis showed that roughness (Ra) was significantly different between the groups (P≤0.05). Ra was higher in the Nd:YAG group compared to the other groups (P≤0.05). The lower Ra was related to the control group. Air abrasion group showed highest amounts of shear bond strength and Nd:YAG laser group demonstrated lower amounts of shear bond strength (P≤0.05). Conclusion: Various surface treatments are differently effective on bond strength. Air abrasion is the most effective method to condition zirconia ceramic surfaces. PMID:25653817

  3. The effect of dentin primer on the shear bond strength between composite resin and enamel.

    PubMed

    Hadavi, F; Hey, J H; Ambrose, E R; Louie, P W; Shinkewski, D J

    1993-01-01

    The purpose of this study was to determine the effect of accidental dentin primer contact with etched enamel on shear bond strength of composite resin to enamel. Four dentin bonding systems were included in this study: GLUMA Dentin Bond, Scotchbond, and Prisma Universal Bond 2 and 3. Eighty extracted human permanent anterior teeth were used and divided in eight test groups. The vestibular surfaces were ground and acid etched. For each dentin bonding system 10 samples were treated with dentin primer prior to placement of resin. Shear bond testing showed that enamel contact with dentin primer in the above two systems decreased the shear bond strength between composite and enamel by 31 to 44%. PMID:8337183

  4. Correlation Between Shear Punch and Tensile Strength for Low-Carbon Steel and Stainless Steel Sheets

    NASA Astrophysics Data System (ADS)

    Mahmudi, R.; Sadeghi, M.

    2013-02-01

    The deformation behavior of AISI 1015 low-carbon steel, and AISI 304 stainless steel sheets was investigated by uniaxial tension and the shear punch test (SPT). Both materials were cold rolled to an 80% thickness reduction and subsequently annealed in the temperature range 25-850 °C to produce a wide range of yield and ultimate strength levels. The correlations between shear punch and tensile yield and ultimate stresses were established empirically. Different linear relationships having different slopes and intercepts were found for the low-carbon and stainless steel sheets, and the possible parameters affecting the correlation were discussed. It was shown that, within limits, yield and tensile strength of thin steel sheets can be predicted from the shear data obtained by the easy-to-perform SPT.

  5. Micro-shear bond strength and surface micromorphology of a feldspathic ceramic treated with different cleaning methods after hydrofluoric acid etching

    PubMed Central

    STEINHAUSER, Henrique Caballero; TURSSI, Cecília Pedroso; FRANÇA, Fabiana Mantovani Gomes; do AMARAL, Flávia Lucisano Botelho; BASTING, Roberta Tarkany

    2014-01-01

    Objective The aim of this study was to evaluate the effect of feldspathic ceramic surface cleaning on micro-shear bond strength and ceramic surface morphology. Material and Methods Forty discs of feldspathic ceramic were prepared and etched with 10% hydrofluoric acid for 2 minutes. The discs were randomly distributed into five groups (n=8): C: no treatment, S: water spray + air drying for 1 minute, US: immersion in ultrasonic bath for 5 minutes, F: etching with 37% phosphoric acid for 1 minute, followed by 1-minute rinse, F+US: etching with 37% phosphoric acid for 1 minute, 1-minute rinse and ultrasonic bath for 5 minutes. Composite cylinders were bonded to the discs following application of silane and hydrophobic adhesive for micro-shear bond strength testing in a universal testing machine at 0.5 mm/min crosshead speed until failure. Stereomicroscopy was used to classify failure type. Surface micromorphology of each treatment type was evaluated by scanning electron microscopy at 500 and 2,500 times magnification. Results One-way ANOVA test showed no significant difference between treatments (p=0.3197) and the most common failure types were cohesive resin cohesion followed by adhesive failure. Micro-shear bond strength of the feldspathic ceramic substrate to the adhesive system was not influenced by the different surface cleaning techniques. Absence of or less residue was observed after etching with hydrofluoric acid for the groups US and F+US. Conclusions Combining ceramic cleaning techniques with hydrofluoric acid etching did not affect ceramic bond strength, whereas, when cleaning was associated with ultrasound, less residue was observed. PMID:24676577

  6. A cross-shear deformation for optimizing the strength and ductility of AZ31 magnesium alloys

    PubMed Central

    Hamad, Kotiba; Ko, Young Gun

    2016-01-01

    Magnesium alloys have recently attracted great interest due their lightweight and high specific strength. However, because of their hexagonal close-packed structure, they have few active slip systems, resulting in poor ductility and high mechanical anisotropy at room temperature. In the present work, we used a cross-shear deformation imposed by a differential speed rolling (DSR) technique to improve the room temperature strength and ductility of AZ31 magnesium alloy sheets. To introduce the cross-shear deformation, the sheets were rotated 180° around their longitudinal axis between the adjacent passes of DSR. The sheets of the AZ31 alloy subjected to the cross-shear deformation showed a uniform fine microstructure (1.2 ± 0.1 μm) with weak basal textures. The fabricated sheets showed a simultaneous high ultimate tensile strength and elongation-to-failure, i.e., ~333 MPa and ~21%, respectively. These were explained based on the structural features evolved due to the cross-shear deformation by DSR. The high strength was attributed to the uniform fine microstructure, whereas the high ductility was explained based on the basal texture weakening. PMID:27406685

  7. A cross-shear deformation for optimizing the strength and ductility of AZ31 magnesium alloys.

    PubMed

    Hamad, Kotiba; Ko, Young Gun

    2016-01-01

    Magnesium alloys have recently attracted great interest due their lightweight and high specific strength. However, because of their hexagonal close-packed structure, they have few active slip systems, resulting in poor ductility and high mechanical anisotropy at room temperature. In the present work, we used a cross-shear deformation imposed by a differential speed rolling (DSR) technique to improve the room temperature strength and ductility of AZ31 magnesium alloy sheets. To introduce the cross-shear deformation, the sheets were rotated 180° around their longitudinal axis between the adjacent passes of DSR. The sheets of the AZ31 alloy subjected to the cross-shear deformation showed a uniform fine microstructure (1.2 ± 0.1 μm) with weak basal textures. The fabricated sheets showed a simultaneous high ultimate tensile strength and elongation-to-failure, i.e., ~333 MPa and ~21%, respectively. These were explained based on the structural features evolved due to the cross-shear deformation by DSR. The high strength was attributed to the uniform fine microstructure, whereas the high ductility was explained based on the basal texture weakening. PMID:27406685

  8. A cross-shear deformation for optimizing the strength and ductility of AZ31 magnesium alloys

    NASA Astrophysics Data System (ADS)

    Hamad, Kotiba; Ko, Young Gun

    2016-07-01

    Magnesium alloys have recently attracted great interest due their lightweight and high specific strength. However, because of their hexagonal close-packed structure, they have few active slip systems, resulting in poor ductility and high mechanical anisotropy at room temperature. In the present work, we used a cross-shear deformation imposed by a differential speed rolling (DSR) technique to improve the room temperature strength and ductility of AZ31 magnesium alloy sheets. To introduce the cross-shear deformation, the sheets were rotated 180° around their longitudinal axis between the adjacent passes of DSR. The sheets of the AZ31 alloy subjected to the cross-shear deformation showed a uniform fine microstructure (1.2 ± 0.1 μm) with weak basal textures. The fabricated sheets showed a simultaneous high ultimate tensile strength and elongation-to-failure, i.e., ~333 MPa and ~21%, respectively. These were explained based on the structural features evolved due to the cross-shear deformation by DSR. The high strength was attributed to the uniform fine microstructure, whereas the high ductility was explained based on the basal texture weakening.

  9. Shear bond strength of novel calcium aluminate-based cement (EndoBinder) to root dentine

    PubMed Central

    Garcia, Lucas da Fonseca Roberti; Rossetto, Hebert Luis; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2014-01-01

    Objective: To evaluate the shear bond strength of a novel calcium aluminate-based cement, EndoBinder (EB), to dentine in comparison with Grey and White Mineral Trioxide Aggregate (MTA). Materials and Methods: Root canal hemi-sections obtained from 30 extracted molar teeth were embedded in self-polymerized acrylic resin and were grounded wet in order to obtain a flat dentine surface. Next, the roots were randomly assigned into three groups (n = 10), according to the cement used, as follows: EB: EndoBinder; WMTA: White MTA and GMTA: Grey MTA. The shear bond strength test was performed using a Universal Testing Machine (0.5 mm/min) and the data were submitted to statistical analysis (1-way ANOVA and Tukey tests, P < 0.05). Results: EB presented the highest shear bond strength values; however, there was no statistically significant difference in comparison with GMTA (P > 0.05). WMTA presented the lowest mean values, which were significant in comparison with EB (P < 0.05). Conclusions: The novel calcium aluminate-based cement presented higher shear bond strength than WMTA, and should be considered as a promising alternative in endodontic therapy. PMID:25512731

  10. Comparative Evaluation of Shear Bond Strength of Recycled Brackets using Different Methods: An In vitro Study

    PubMed Central

    Kumar, Mukesh; Maheshwari, Amit; Lall, Rajeev; Navit, Pragati; Singh, Rajeshwar; Navit, S

    2014-01-01

    Background: Debonding of brackets commonly occurs during orthodontic treatment. Due to increase in costs replacement of a damaged bracket is not liked by the dentist. This study is done to assess the shear bond strength of recycled brackets using different methods. Materials and Methods: This study was conducted using five groups of orthodontic brackets (0.022” × 0.028”, MBT prescription) bonded on the premolars mounted in cubes. Other materials required were cubical trays, bonding material, light cure unit, universal testing machine, digital camera and sandblasting unit. Results: From the result of ANOVA test we observed the test is significant (F = 20.79, P < 0.01) and the test is rejected. When the Tukey’s t-test result was applied it was seen that the mean shear bond strength of all groups of brackets is as follows: Group I (5.31 Megapascals [Mpa]) < Group II (7.37 Mpa) < Group III (8.96 Mpa) < Group IV (5.56 Mpa) < Control group (9.24 Mpa). Alternatively we can say that shear bond strength of following bracket groups can be arranged as Group I < Group IV < Group II < Group III. Conclusion: From this study we conclude that Group III, which was recycled with an ultrasonic cleaner with electropolisher and silane coupling agent in place of primer, showed the highest shear bond strength. PMID:25395785

  11. Adhesive strength and curing rate of marine mussel protein extracts on porcine small intestinal submucosa*

    PubMed Central

    Ninan, Lal; Stroshine, R L; Wilker, J.J.; Shi, Riyi

    2008-01-01

    An adhesive protein extracted from marine mussel (Mytilus edulis) was used to bond strips of connective tissue for the purpose of evaluating the use of curing agents to improve adhesive curing. Specifically, mussel adhesive protein solution (MAPS, 0.5 mM dihydroxyphenylalanine) was applied, with or without the curing agents, to the ends of two overlapping strips of porcine small intestinal submucosa. The bond strength of this lap joint was determined after curing for 1 h at room temperature (25°C). The strength of joints formed using only MAPS or with only the ethyl, butyl or octyl cyanoacrylate adhesives were determined. Although joints bonded using ethyl cyanoacrylate were strongest, those using MAPS were stronger than those using butyl and octyl cyanoacrylates. The addition of 25 mM solutions of the transition metal ions V5+, Fe3+ and Cr6+, which are all oxidants, increased the bond strength of the MAPS joints. The V5+ gave the strongest bonds and the Fe3+ the second strongest. In subsequent tests with V5+ and Fe3+ solutions, the bond strength increased with V5+ concentration, but it did not increase with Fe3+ concentration. Addition of 250 mM V5+ gave a very strong bond. PMID:17434815

  12. The Effect of CFRP Surface Treatment on the Splat Morphology and Coating Adhesion Strength

    NASA Astrophysics Data System (ADS)

    Ganesan, Amirthan; Yamada, Motohiro; Fukumoto, Masahiro

    2014-01-01

    Metallization of Carbon Fiber-Reinforced Polymer (CFRP) composites aggrandized their application to aircraft, automobile, and wind power industries. Recently, the metallization of CFRP surface using thermal spray technique, especially the cold spray, a solid state deposition technique, is a topic of research. However, a direct cold spray deposition on the CFRP substrate often imposes severe erosion on the surface owing to the high-impact energy of the sprayed particles. This urges the requirement of an interlayer on the CFRP surface. In the present study, the effect of surface treatment on the interlayer adhesion strength is evaluated. The CFRP samples were initially treated mechanically, chemically, and thermally and then an interlayer was developed by atmospheric plasma spray system. The quality of the coating is highly dependent on the splat taxonomy; therefore the present work also devoted to study the splat formation behavior using the splat-collection experiments, where the molten Cu particles impinged on the treated CFRP substrates. These results were correlated with the coating adhesion strength. The coating adhesion strength was measured by pull-out test. The results showed that the surface treatment, particularly the chemical treatment, was fairly successful in improving the adhesion strength.

  13. Proanthocyanidins Alter Adhesive/Dentin Bonding Strengths when Included in a Bonding System

    PubMed Central

    Hechler, Benjamin; Yao, Xiaomei; Wang, Yong

    2014-01-01

    Purpose To determine the effect of proanthocyanidins (PA) incorporation into a bonding system on dentin/adhesive bond stability following long-term storage in buffer and collagenase. Methods Human dentin surfaces were bonded with no PA (0-PA), PA incorporated in the primer (PA-primer), or PA incorporated in the adhesive (PA-adhesive), and composite build-ups were created. Following sectioning into beams, bonded specimens were stored in buffer or collagenase for 0, 1, 4, 26, or 52 weeks before being tested for microtensile bond strength (μTBS). ANOVA and Tukey’s HSD post-hoc were performed. Fractured surfaces were viewed with scanning electron microscopy (SEM). Results Both bonding system and storage time but not storage medium significantly affected μTBS. Initially, 0-PA and PA-primer were superior to PA-adhesive, and after 1 week both PA groups were inferior to 0-PA. However, after 4 weeks PA-adhesive had significantly increased and 0-PA significantly decreased such that all three groups were equal. Thereafter, both PA-primer/adhesive groups trended with an increase (the 0-PA group remaing consistent) such that at 52 weeks PA-primer samples were significantly stronger (p < 0.001) or nearly so (p = 0.08) when compared to 0-PA samples. SEM revealed that initial fractures tended to occur at the middle/bottom of the hybrid layer for 0-PA and PA-primer groups but at the top of the hybrid layer/in the adhesive for PA-adhesive. After 4 weeks, however, all groups fractured similarly at the middle/bottom of the hybrid layer. Clinical Significance PA incorporation into a bonding system significantly alters interfacial bonding strengths, and its incorporation may stabilize the interface and protect degradation over time under clinical conditions. PMID:23243975

  14. Effect of Pore Fluid Salinity on Compressibility and Shear Strength Development of Clayey Soils

    NASA Astrophysics Data System (ADS)

    van Paassen, Leon A.; Gareau, Laurent F.

    Investigations of shear strength, compressibility and moisture content of a recent marine clay in the Caspian Sea showed soil profiles with a lower shear strength and higher moisture content, than expected for a normally consolidated soil. Further, measured preconsolidation pressures were lower than the calculated in-situ effective stress, suggesting that the deposit was underconsolidated. The pore fluid salinity was also measured and showed an increase with depth up to saturation concentration. A research project was carried out to study the effect of pore fluid salinity on shear strength and compressibility of remoulded clays. Results of this study showed that increasing pore fluid salinity caused a decrease of the moisture content for a normally consolidated clayey soil of high plasticity. The remoulded shear strength corresponded with the measured moisture contents. The observed compressive behaviour of these clays is explained using the modified effective stress concept, which considers not only (excess) pore pressure and effective pressure, but also the electrochemical repulsive and attractive forces between the clay particles. The laboratory tests on remoulded clays show opposite results to the measurements on the natural soils. The effects of soil structure are used to explain the differences for the measurements of moisture content, undrained shear strength and preconsolidation pressure. The oedometer test procedure was reviewed and additional tests were performed on natural clay samples from this site. Results showed that the measured pre-consolidation pressure depends largely on the salinity of the permeating fluid used in the oedometer apparatus and suggest that when testing marine clays with very high pore fluid salinity, using a brine solution that closely resembles the pore fluid chemistry yields a measured preconsolidation pressure closer to the known geological stress history.

  15. Effects of blood contamination on microtensile bond strength to dentin of three self-etch adhesives.

    PubMed

    Chang, Seok Woo; Cho, Byeong Hoon; Lim, Ran Yeob; Kyung, Seung Hyun; Park, Dong Sung; Oh, Tae Seok; Yoo, Hyun Mi

    2010-01-01

    This study evaluated the effects of blood contamination and decontamination methods during different steps of bonding procedures on the microtensile bond strength of two-step self-etch adhesives to dentin. Sixty extracted human molars were ground flat to expose occlusal dentin. The 60 molars were randomly assigned to three groups, each treated with a different two-step self-etch adhesive: Clearfil SE Bond, AdheSE and Tyrian SPE. In turn, these groups were subdivided into five subgroups (n = 20), each treated using different experimental conditions as follows: control group-no contamination; contamination group 1-CG1: primer application/ contamination/primer re-application; contamination group 2-CG2: primer application/contamination/wash/dry/primer re-application; contamination group 3-CG3: primer application/adhesive application/light curing/contamination/ adhesive re-application/light curing; contamina- tion group 4-CG4: primer application/adhesive application/light curing/contamination/wash/ dry/adhesive re-application/light curing. Composite buildup was performed using Z250. After 24 hours of storage in distilled water at 37 degrees C, the bonded specimens were trimmed to an hourglass shape and serially sectioned into slabs with 0.6 mm2 cross-sectional areas. Microtensile bond strengths (MTBS) were assessed for each specimen using a universal testing machine. The data were analyzed by two-way ANOVA followed by a post hoc LSD test. SEM evaluations of the fracture modes were also performed. The contaminated specimens showed lower bond strengths than specimens in the control group (p < 0.05), with the exception of CG1 in the Clearfil SE group and CG2 and CG3 in the Tyrian SPE group. Among the three self-etch adhesives, the Tyrian SPE group exhibited a significantly lower average MTBS compared to the Clearfil SE Bond and AdheSE (p < 0.05) groups. Based on the results of the current study, it was found that blood contamination reduced the MTBS of all three self

  16. Effect of adsorbed chlorine and oxygen on shear strength of iron and copper junctions

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.

    1975-01-01

    Static friction experiments were performed in ultrahigh vacuum at room temperature on copper, iron, and steel contacts selectively contaminated with oxygen and chlorine in submonolayer amounts. The concentration of the adsorbates was determined with Auger electron spectroscopy and was measured relative to the saturation concentration of oxygen on iron (concentration 1.0). The coefficient of static friction decreased with increasing adsorbate concentration. It was independent of the metal and the adsorbate. The results compared satisfactorily with an extension of the junction growth theory to heterogeneous interfaces. The reduction in interfacial shear strength was measured by the ratio sub a/sub m where sub a is the shear strength of the interface with an adsorbate concentration of 1.0, and sub m is the strength of the clean metal interface. This ratio was 0.835 + or - 0.012 for all the systems tested.

  17. Joint shear strength of FRP reinforced concrete beam-column joints

    NASA Astrophysics Data System (ADS)

    Saravanan, Jagadeesan; Kumaran, Ganapathy

    2011-03-01

    An assessment of the joint shear strength of exterior concrete beam-column joints reinforced internally with Glass Fibre Reinforced Polymer (GFRP) reinforcements under monotonically increasing load on beams keeping constant load on columns is carried out in this study. Totally eighteen numbers of specimens are cast and tested for different parametric conditions like beam longitudinal reinforcement ratio, concrete strength, column reinforcement ratio, joint aspect ratio and influence of the joint stirrups at the joint. Also finite element analysis is performed to simulate the behaviour of the beam-column joints under various parametric conditions. Based on this study, a modified design equation is proposed for assessing the joint shear strength of the GFRP reinforced beam-column specimens based on the experimental results and the review of the prevailing design equations.

  18. Interfacial Shear Strength of Cast and Directionally Solidified Nial-Sapphire Fiber Composites

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Asthana, R.; Noebe, R. D.

    1993-01-01

    The feasibility of fabricating intermetallic NiAl-sapphire fiber composites by casting and zone directional solidification has been examined. The fiber-matrix interfacial shear strengths measured using a fiber push-out technique in both cast and directionally solidified composites are greater than the strengths reported for composites fabricated by powder cloth process using organic binders. Microscopic examination of fibers extracted from cast, directionally solidified (DS), and thermally cycled composites, and the high values of interfacial shear strengths suggest that the fiber-matrix interface does not degrade due to casting and directional solidification. Sapphire fibers do not pin grain boundaries during directional solidification, suggesting that this technique can be used to fabricate sapphire fiber reinforced NiAl composites with single crystal matrices.

  19. Effect of digluconate chlorhexidine on bond strength between dental adhesive systems and dentin: A systematic review

    PubMed Central

    Dionysopoulos, Dimitrios

    2016-01-01

    Aim: This study aimed to systematically review the literature for the effect of digluconate chlorhexidine (CHX) on bond strength between dental adhesive systems and dentin of composite restorations. Materials and Methods: The electronic databases that were searched to identify manuscripts for inclusion were Medline via PubMed and Google search engine. The search strategies were computer search of the database and review of reference lists of the related articles. Search words/terms were as follows: (digluconate chlorhexidine*) AND (dentin* OR adhesive system* OR bond strength*). Results: Bond strength reduction after CHX treatments varied among the studies, ranging 0-84.9%. In most of the studies, pretreatment CHX exhibited lower bond strength reduction than the control experimental groups. Researchers who previously investigated the effect of CHX on the bond strength of dental adhesive systems on dentin have reported contrary results, which may be attributed to different experimental methods, different designs of the experiments, and different materials investigated. Conclusions: Further investigations, in particular clinical studies, would be necessary to clarify the effect of CHX on the longevity of dentin bonds. PMID:26957786

  20. Effect of cleaning methods on bond strength of self-etching adhesive to dentin

    PubMed Central

    Bronzato, Juliana Delatorre; Cecchin, Doglas; Miyagaki, Daniela Cristina; de Almeida, José Flávio Affonso; Ferraz, Caio Cezar Randi

    2016-01-01

    Aim: The aim of this study was to investigate the influence of cleaning methods to remove zinc oxide-eugenol-based root canal sealer (Endomethasone) on the bond strength of the self-etching adhesive to dentin. Materials and Methods: Twenty crowns of bovine incisors were cut to expose the pulp chamber. A zinc oxide- and eugenol-based sealer was placed for 10 min in contact with the pulp chamber dentin. Specimens were divided into four groups according to the cleaning method of dentin used: G1, no root canal sealer (control); G2, 0.9% sodium chlorite (NaCl); G3, ethanol; and G4, followed by diamond drill. After cleaning, the teeth were restored with composite resin and Clearfil SE Bond. All specimens were sectioned to produce rectangular sticks and dentin/resin interface was submitted to microtensile bond testing. The mean bond strengths were analyzed using ANOVA/Tukey (α = 0.05). Results: G3 and G4 showed bond strengths similar to the G1 (P > 0.05). A significant decrease in the bond strength in the G2 was observed (P < 0.05). G1, G3, and G4, the predominant failure mode was the mixed type. The prevalence of adhesive failure mode was verified in the G2. Conclusion: The cleaning methods affected the bond strength of the self-etching adhesive to dentin differently. PMID:26957789

  1. Dentin bond strengths of three adhesive/composite core systems using different curing units.

    PubMed

    Ariyoshi, Meu; Nikaido, Toru; Okada, Ayako; Foxton, Richard M; Tagami, Junji

    2008-03-01

    This study evaluated the tensile bond strengths of three adhesive/composite core materials to bovine dentin using three different curing units. Bovine dentin surfaces were ground with 600-grit SiC paper. Bonding area was demarcated with a vinyl tape (4-mm-diameter hole). Three adhesive/composite core systems--S6054 (experimental), UniFil Core, and Clearfil DC Core Automix--were used with three curing units--Curing Light XL3000 (quartz-tungsten-halogen), Hyper Lightel (high-power quartz-tungsten-halogen), and LEDemetronl (blue light-emitting diode)--according to manufacturers' instructions. After 24 hours of storage in water at 37 degrees C, tensile bond strengths were measured at a crosshead speed of 2 mm/min. Results were statistically analyzed with one-way ANOVA and Tukey's HSD test (p < 0.05). Highest tensile bond strength was obtained using Clearfil DC Core Automix with Hyper Lightel. PMID:18540391

  2. The effects of daily cover soils on shear strength of municipal solid waste in bioreactor landfills.

    PubMed

    Hossain, Md Sahadat; Haque, Mohamed A

    2009-05-01

    Bioreactor landfills are operated to enhance refuse decomposition, gas production, and waste stabilization. The major aspect of bioreactor landfill operation is the recirculation of collected leachate back through the refuse mass. Due to the accelerated decomposition and settlement of solid waste, bioreactor landfills are gaining popularity as an alternative to the conventional landfill. The addition or recirculation of leachate to accelerate the waste decomposition changes the geotechnical characteristics of waste mass. The daily cover soils, usually up to 20-30% of total MSW volumes in the landfill, may also influence the decomposition and shear strength behavior of MSW. The objective of this paper is to study the effects of daily covers soils on the shear strength properties of municipal solid waste (MSW) in bioreactor landfills with time and decomposition. Two sets of laboratory-scale bioreactor landfills were simulated in a laboratory, and samples were prepared to represent different phases of decomposition. The state of decomposition was quantified by methane yield, pH, and volatile organic content (VOC). Due to decomposition, the matrix structure of the degradable solid waste component was broken down and contributed to a significant decrease in the reinforcing effect of MSW. However, the daily cover soil, a non-degradable constituent of MSW, remains constant. Therefore, the interaction between daily cover soil particles and MSW particles will affect shear strength behavior. A number of triaxial tests were performed to evaluate the shear strength of MSW. The test results indicated that the shear strength of MSW was affected by the presence of cover soils. The friction angle of MSW with the presence of cover soil is higher than the friction angle of MSW without any cover soils. The friction angle of MSW increased from 27 degrees to 30 degrees due to the presence of cover soils for Phase 1 samples. The increased strength was attributed to the friction nature

  3. Effects of different vegetation types on the shear strength of root-permeated soils

    NASA Astrophysics Data System (ADS)

    Yildiz, Anil; Graf, Frank; Rickli, Christian; Springman, Sarah M.

    2016-04-01

    The effects of vegetation and, in particular, of forests on the stability of slopes are well recognized and have been widely studied in recent decades. However, there is still a lack of understanding of the underlying processes that occur prior to triggering superficial failures in root-permeated soil. Thus, appropriate quantification of the vegetation effects on the shear strength of soil is crucial in order to be able to evaluate the stability of a vegetated slope. Direct shear testing is widely employed to determine the shearing response of root-permeated soil. However, mechanical aspects of direct shear apparatuses may affect the shear strength parameters derived, which often remains unnoticed and hampers direct comparison between different studies. A robust Inclinable Large-scale Direct Shear Apparatus (ILDSA), with dimensions of 500x500x400 mm, was built in order to shear root-permeated soil specimens and to analyse the influence of the machine setup on the results, too. Two different sets of planted specimens were prepared using moraine (SP-SM) from a recent landslide area in Central Switzerland: a first set consisting of Alnus incana, Trifolium pratense, Poa pratensis and a second set, consisting of these three species complemented with Salix appendiculata, Achillea millefolium, Anthyllis vulneraria. Direct shear tests were conducted on specimens planted with the different vegetation types, at a constant rate of horizontal displacement of 1 mm/min up to a maximum horizontal displacement of 190 mm, and under three different applied normal stresses: 6 kPa, 11 kPa and 16 kPa. Artificial rainfall was applied at a constant intensity (100 mm/h) prior to shearing. Tensiometers had been installed close to the shear surface and were monitored continuously to obtain the matric suction during the saturation process. Suctions were reduced as close to 0 kPa as possible, in order to simulate the loss of strength after a heavy period of rainfall. The analyses of the above

  4. The bond strength of different tray adhesives on vinyl polysiloxane to two tray materials: an in vitro study.

    PubMed

    Ashwini, B L; Manjunath, S; Mathew, K Xavier

    2014-03-01

    There has been no established chemical bonding between custom tray resin and the elastomeric impression materials without the use of manufacturer's recommended specific tray adhesive. The present study was aimed to compare the bond strength of the manufacturer recommended tray adhesives with the universal tray adhesives using the medium body consistency vinyl polysiloxane (VPS) material and custom tray made of autopolymerising resin and visible light cure (VLC) resin. A total 90 cubicle specimens of autopolymerising resin and 90 specimens of VLC resin were tested for its tensile bond strength. Effectiveness of universal tray adhesive was compared with manufactured tray adhesive. Each of these specimens was then subjected to tensile load in hounsefield universal testing machine at a cross head speed of 5 mm/min and the results were compared and evaluated using one way analysis of variance and post hoc Tuckey's test. Analysis of bond strength revealed that the universal tray adhesive showed better strength and was statiscally significant when compared to the manufacture supplied tray adhesive. Comparison between both the groups, VLC resin showed better bond strength as compared to autopolymerizing resin. Universal tray adhesive had better tensile bond strength than the manufacturers recommended tray adhesive with the medium body viscosity VPS impression material for both autopolymerising and VLC tray resin. PMID:24604995

  5. Shear bond strength comparison of implant-retained overdenture attachment pickup materials.

    PubMed

    Cayouette, Monica J; Barnes, Logan; Vuthiganon, Jompobe; McPherson, Karen

    2016-01-01

    This study evaluated the shear bond strength (SBS) of 4 different retentive materials for the chairside pickup of dental implant attachments. Shear force was applied to determine the SBS of each material to denture acrylic resin. The difference between SBSs of polymethyl methacrylate and UBAR (claimed to bond to metal) to metal housings was also evaluated. There were no statistically significant differences among the SBSs of Jet Denture Repair Acrylic, EZ PickUp, and UBAR, but Quick Up had an SBS that was significantly lower than that of the other 3 materials. In addition, UBAR had a higher SBS to metal housings than did processed polymethyl methacrylate. PMID:27367633

  6. Effect of Saliva on the Tensile Bond Strength of Different Generation Adhesive Systems: An In-Vitro Study

    PubMed Central

    Tripathi, Abhay Mani; Saha, Sonali; Dhinsa, Kavita; Garg, Aarti

    2015-01-01

    Background Newer development of bonding agents have gained a better understanding of factors affecting adhesion of interface between composite and dentin surface to improve longevity of restorations. Objective The present study evaluated the influence of salivary contamination on the tensile bond strength of different generation adhesive systems (two-step etch-and-rinse, two-step self-etch and one-step self-etch) during different bonding stages to dentin where isolation is not maintained. Materials and Methods Superficial dentin surfaces of 90 extracted human molars were randomly divided into three study Groups (Group A: Two-step etch-and-rinse adhesive system; Group B: Two-step self-etch adhesive system and Group C: One-step self-etch adhesive system) according to the different generation of adhesives used. According to treatment conditions in different bonding steps, each Group was further divided into three Subgroups containing ten teeth in each. After adhesive application, resin composite blocks were built on dentin and light cured subsequently. The teeth were then stored in water for 24 hours before sending for testing of tensile bond strength by Universal Testing Machine. The collected data were then statistically analysed using one-way ANOVA and Tukey HSD test. Results One-step self-etch adhesive system revealed maximum mean tensile bond strength followed in descending order by Two-step self-etch adhesive system and Two-step etch-and-rinse adhesive system both in uncontaminated and saliva contaminated conditions respectively. Conclusion Unlike One-step self-etch adhesive system, saliva contamination could reduce tensile bond strength of the two-step self-etch and two-step etch-and-rinse adhesive system. Furthermore, the step of bonding procedures and the type of adhesive seems to be effective on the bond strength of adhesives contaminated with saliva. PMID:26393214

  7. Shear bond strength of composite resin to titanium according to various surface treatments

    PubMed Central

    Lee, Seung-Yun; Yang, Hong-So; Park, Sang-Won; Park, Ha-Ok; Lim, Hyun-Pil

    2009-01-01

    STATEMENT OF PROBLEM When veneering composite resin-metal restoration is prepared, the fact that bond strength between Ti and composite resin is relatively weak should be considered. PURPOSE The purpose of this study is to evaluate the shear bond strength between the veneering composite resin and commercial pure (CP) Ti / Ti-6Al-4V alloy according to the method of surface treatment. MATERIAL AND METHODS The disks were cast by two types of metal. Their surfaces were treated by sandblasting, metal conditioner, TiN coating and silicoating respectively. After surface treatment, the disks were veneered by composite resin (Tescera™, Bisco, USA) which is 5 mm in diameter and 3 mm in thickness. The specimens were stored in water at 25℃ for 24 hours, and then evaluated for their shear bond strength by universal testing machine (STM-5®, United Calibration, USA). These values were statistically analyzed. RESULTS 1. All methods of surface treatment were used in this study satisfied the requirements of ISO 10477 which is the standard of polymer-based crown and bridge materials. 2. The metal conditioner treated group showed the highest value in shear bond strength of CP Ti, silicoated group, TiN coated group, sandblasted group, in following order. 3. The silicoated group showed the highest value in shear bond strength of Ti-6Al-4V alloy, metal conditioner treated group, sandblasted group, TiN coated group, in following order. CONCLUSION Within the limitations of this study, all methods of surface treatment used in this study are clinically available. PMID:21165258

  8. The effects of silver coating on friction coefficient and shear bond strength of steel orthodontic brackets.

    PubMed

    Arash, Valiollah; Anoush, Keivan; Rabiee, Sayed Mahmood; Rahmatei, Manuchehr; Tavanafar, Saeid

    2015-01-01

    Aims of the present study was to measure frictional resistance between silver coated brackets and different types of arch wires, and shear bond strength of these brackets to the tooth. In an experimental clinical research 28 orthodontic brackets (standard, 22 slots) were coated with silver ions using electroplate method. Six brackets (coated: 3, uncoated: 3) were evaluated with Scanning Electron Microscopy and Atomic Force Microscopy. The amount of friction in 15 coated brackets was measured with three different kinds of arch wires (0.019 × 0.025-in stainless steel [SS], 0.018-in stainless steel [SS], 0.018-in Nickel-Titanium [Ni-Ti]) and compared with 15 uncoated steel brackets. In addition, shear bond strength values were compared between 10 brackets with silver coating and 10 regular brackets. Universal testing machine was used to measure shear bond strength and the amount of friction between the wires and brackets. SPSS 18 was used for data analysis with t-test. SEM and AFM results showed deposition of a uniform layer of silver, measuring 8-10 μm in thickness on bracket surfaces. Silver coating led to higher frictional forces in all the three types of arch wires, which was statistically significant in 0.019 × 0.025-in SS and 0.018-in Ni-Ti, but it did not change the shear bond strength significantly. Silver coating with electroplating method did not affect the bond strength of the bracket to enamel; in addition, it was not an effective method for decreasing friction in sliding mechanics. PMID:25997114

  9. Flexibilized copolyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St.clair, Terry L.

    1988-01-01

    Two copolyimides, LARC-STPI and STPI-LARC-2, with flexible backbones were processed and characterized as adhesives. The processability and adhesive properties were compared to those of a commercially available form of LARC-TPI. Lap shear specimens were fabricated using adhesive tape prepared from each of the three polymers. Lap shear tests were performed at room temperature, 177 C, and 204 C before and after exposure to water-boil and to thermal aging at 204 C for up to 1000 hours. The three adhesive systems possess exceptional lap shear strengths at room temperature and elevated temperatures both before and after thermal exposure. LARC-STPI, because of its high glass transition temperature provided high lap shear strengths up to 260 C. After water-boil, LARC-TPI exhibited the highest lap shear strengths at room temperature and 177 C, whereas the LARC-STPI retained a higher percentage of its original strength when tested at 204 C. These flexible thermoplastic copolyimides show considerable potential as adhesives based on this study and because of the ease of preparation with low cost, commercially available materials.

  10. Influence of adhesive system and bevel preparation on fracture strength of teeth restored with composite resin.

    PubMed

    Coelho-de-Souza, Fábio Herrmann; Rocha, Analice da Cunha; Rubini, Alessandro; Klein-Júnior, Celso Afonso; Demarco, Flávio Fernando

    2010-01-01

    The aim of this study was to evaluate the fracture strength of teeth with different cavosurface margin cavity preparations and restored with composite resin and different adhesive systems. Eighty premolars were randomly divided in 8 groups, as follow: G1- sound teeth; G2- MOD preparation (no restoration); G3- Adper Single Bond without bevel preparation (butt joint); G4- Adper Single Bond with bevel preparation; G5- Adper Single Bond with chamfer preparation; G6- Clearfil SE Bond without bevel (butt joint); G7- Clearfil SE Bond with bevel preparation; G8- Clearfil SE Bond with chamfer preparation. The adhesive systems were applied according to manufacturers' instructions. Composite resin (Filtek Z250) was incrementally placed in all cavities. After 24 h, the specimens were tested in a universal testing machine at a crosshead speed of 0.5 mm/min. Data were analyzed statistically by ANOVA and Tukey's test (fracture strength) and Fisher's exact test (fracture pattern). The confidence level was set at 95% for all tests. Prepared and non-restored teeth showed the worst performance and G4 exhibited the highest fracture strength among all groups (p<0.05). In conclusion, all restorative treatments were able to recover the fracture strength of non-restored teeth to levels similar to those of sound teeth. Using a total-etch adhesive system with bevel preparation significantly improved the resistance to fracture. PMID:20976383

  11. The effects on tensile, shear, and adhesive mechanical properties when recycled epoxy/fiberglass is used as an alternative for glass microballoons in fiberglass foam core sandwiches

    NASA Astrophysics Data System (ADS)

    Wilson, Dru Matthew

    The problem of this study was to determine whether fiberglass foam core sandwiches made with recycled epoxy/fiberglass have equal or better flatwise tension, shear, and peel (adhesion) mechanical properties when compared with composite sandwiches made with industry standard glass microballoons. Recycling epoxy/fiberglass could save money by: (1) reusing cured composite materials, (2) consuming less virgin composite materials, (3) spending less on transportation and disposing of unusable composites, and (4) possibly enabling companies to sell their recycled composite powder to other manufacturers. This study used three mechanical property tests, which included: flatwise tensile test, shear test, and peel (adhesion) test. Each test used 300 samples for a combined total of 900 sandwich test samples for this study. A factorial design with three independent variables was used. The first variable, filler type, had three levels: no filler, microballoon filler, and recycled epoxy/fiberglass filler. The second variable, foam density, had four levels: 3 lb/ft³, 4 lb/ft³, 5 lb/ft³, and 6 lb/ft³. The third variable, filler percentage ratio, had eight levels: 0%, 10%, 20%, 30%, 40%, 50%, 60%, and 70%. The results of this study revealed two primary conclusions. The first conclusion was that sandwich test panels produced with recycled epoxy/fiberglass powder were equal or significantly better in tensile, shear, and peel (adhesion) strength than sandwiches produced with hollow glass microballoons. The second conclusion was that sandwich test panels produced with recycled epoxy/fiberglass powder were equal or significantly lighter in weight than sandwiches produced with hollow glass microballoons.

  12. Effect of CO2 and Nd:YAG Lasers on Shear Bond Strength of Resin Cement to Zirconia Ceramic

    PubMed Central

    Kasraei, Shahin; Yarmohamadi, Ebrahim; Shabani, Amanj

    2015-01-01

    Objectives: Because of poor bond between resin cement and zirconia ceramics, laser surface treatments have been suggested to improve adhesion. The present study evaluated the effect of CO2 and Nd:YAG lasers on the shear bond strength (SBS) of resin cement to zirconia ceramic. Materials and Methods: Ninety zirconia disks (6×2 mm) were randomly divided into six groups of 15. In the control group, no surface treatment was used. In the test groups, laser surface treatment was accomplished using CO2 and Nd:YAG lasers, respectively (groups two and three). Composite resin disks (3×2 mm) were fabricated and cemented to zirconia disks with self-etch resin cement and stored in distilled water for 24 hours. In the test groups four-six, the samples were prepared as in groups one-three and then thermocycled and stored in distilled water for six months. The SBS tests were performed (strain rate of 0.5 mm/min). The fracture modes were observed via stereomicroscopy. Data were analyzed with one and two-way ANOVA, independent t and Tukey’s tests. Results: The SBS values of Nd:YAG group (18.95±3.46MPa) was significantly higher than that of the CO2 group (14.00±1.96MPa), but lower than that of controls (23.35±3.12MPa). After thermocycling and six months of water storage, the SBS of the untreated group (1.80±1.23 MPa) was significantly lower than that of the laser groups. In groups stored for 24 hours, 60% of the failures were adhesive; however, after thermocycling and six months of water storage, 100% of failures were adhesive. Conclusion: Bonding durability of resin cement to zirconia improved with CO2 and Nd:YAG laser surface treatment of zirconia ceramic. PMID:27148380

  13. Mechanism for interfacial adhesion strength of an ion beam mixed Cu/polyimide with a thin buffer layer

    NASA Astrophysics Data System (ADS)

    Chang, G. S.; Chae, K. H.; Whang, C. N.; Kurmaev, E. Z.; Zatsepin, D. A.; Winarski, R. P.; Ederer, D. L.; Moewes, A.; Lee, Y. P.

    1999-01-01

    A Cu (400 Å)/Al (50 Å)/polyimide system showed larger adhesion strength than that of Cu (400 Å)/polyimide after N2+ ion beam mixing. X-ray emission spectroscopy was performed to elucidate the mechanism of adhesion enhancement of the ion beam mixed Cu (400 Å)/polyimide with a thin Al buffer layer. Cu L2,3 x-ray emission spectra showed the formation of a CuAl2O4 layer which is strongly correlated with the large adhesion strength of a Cu/Al/polyimide. A decrease in adhesion strength at an ion dose higher than 5×1015cm-2 was also explained by the formation of an amorphous carbon. This was understood by investigating C Kα x-ray emission spectra. The overall spectroscopic results were in accordance with the behavior of quantitative adhesion strength.

  14. Effects of surface-conditioning methods on shear bond strength of brackets bonded to different all-ceramic materials.

    PubMed

    Saraç, Y Şinasi; Külünk, Tolga; Elekdağ-Türk, Selma; Saraç, Duygu; Türk, Tamer

    2011-12-01

    The aims of this study were to investigate the effects of two surface-conditioning methods on the shear bond strength (SBS) of metal brackets bonded to three different all-ceramic materials, and to evaluate the mode of failure after debonding. Twenty feldspathic, 20 fluoro-apatite, and 20 leucite-reinforced ceramic specimens were examined following two surface-conditioning methods: air-particle abrasion (APA) with 25 μm Al(2)O(3) and silica coating with 30 μm Al(2)O(3) particles modified by silica. After silane application, metal brackets were bonded with light cure composite and then stored in distilled water for 1 week and thermocycled (×1000 at 5-55°C for 30 seconds). The SBS of the brackets was measured on a universal testing machine. The ceramic surfaces were examined with a stereomicroscope to determine the amount of composite resin remaining using the adhesive remnant index. Two-way analysis of variance, Tukey's multiple comparison test, and Weibull analysis were used for evaluation of SBS. The lowest SBS was with APA for the fluoro-apatite ceramic (11.82 MPa), which was not significantly different from APA for the feldspathic ceramic (13.58 MPa). The SBS for the fluoro-apatite ceramic was significantly lower than that of leucite-reinforced ceramic with APA (14.82 MPa). The highest SBS value was obtained with silica coating of the leucite-reinforced ceramic (24.17 MPa), but this was not significantly different from the SBS for feldspathic and fluoro-apatite ceramic (23.51 and 22.18 MPa, respectively). The SBS values with silica coating showed significant differences from those of APA. For all samples, the adhesive failures were between the ceramic and composite resin. No ceramic fractures or cracks were observed. Chairside tribochemical silica coating significantly increased the mean bond strength values. PMID:21228120

  15. Shear bond strength of orthodontic brackets after acid-etched and erbium-doped yttrium aluminum garnet laser-etched

    PubMed Central

    Alavi, Shiva; Birang, Reza; Hajizadeh, Fatemeh

    2014-01-01

    Background: Laser ablation has been suggested as an alternative method to acid etching; however, previous studies have obtained contrasting results. The purpose of this study was to compare the shear bond strength (SBS) and fracture mode of orthodontic brackets that are bonded to enamel etched with acid and erbium-doped yttrium aluminum garnet (Er:YAG) laser. Materials and Methods: In this experimental in vitro study, buccal surfaces of 15 non-carious human premolars were divided into mesial and distal regions. Randomly, one of the regions was etched with 37% phosphoric acid for 15 s and another region irradiated with Er:YAG laser at 100 mJ energy and 20 Hz frequency for 20 s. Stainless steel brackets were then bonded using Transbond XT, following which all the samples were stored in distilled water for 24 h and then subjected to 500 thermal cycles. SBS was tested by a chisel edge, mounted on the crosshead of universal testing machine. After debonding, the teeth were examined under ×10 magnification and adhesive remnant index (ARI) score determined. SBS and ARI scores of the two groups were then compared using t-test and Mann-Whitney U test. Significant level was set at P < 0.05. Results: The mean SBS of the laser group (16.61 ± 7.7 MPa) was not significantly different from that of the acid-etched group (18.86 ± 6.09 MPa) (P = 0.41). There was no significant difference in the ARI scores between two groups (P = 0.08). However, in the laser group, more adhesive remained on the brackets, which is not suitable for orthodontic purposes. Conclusion: Laser etching at 100 mJ energy produced bond strength similar to acid etching. Therefore, Er:YAG laser may be an alternative method for conventional acid-etching. PMID:25097641

  16. Differentiation of Crohn’s Disease-Associated Isolates from Other Pathogenic Escherichia coli by Fimbrial Adhesion under Shear Force

    PubMed Central

    Szunerits, Sabine; Zagorodko, Oleksandr; Cogez, Virginie; Dumych, Tetiana; Chalopin, Thibaut; Alvarez Dorta, Dimitri; Sivignon, Adeline; Barnich, Nicolas; Harduin-Lepers, Anne; Larroulet, Iban; Yanguas Serrano, Aritz; Siriwardena, Aloysius; Pesquera, Amaia; Zurutuza, Amaia; Gouin, Sébastien G.; Boukherroub, Rabah; Bouckaert, Julie

    2016-01-01

    Shear force exerted on uropathogenic Escherichia coli adhering to surfaces makes type-1 fimbriae stretch out like springs to catch on to mannosidic receptors. This mechanism is initiated by a disruption of the quaternary interactions between the lectin and the pilin of the two-domain FimH adhesin and transduces allosterically to the mannose-binding pocket of FimH to increase its affinity. Mannose-specific adhesion of 14 E. coli pathovars was measured under flow, using surface plasmon resonance detection on functionalized graphene-coated gold interfaces. Increasing the shear had important differential consequences on bacterial adhesion. Adherent-invasive E. coli, isolated from the feces and biopsies of Crohn’s disease patients, consistently changed their adhesion behavior less under shear and displayed lower SPR signals, compared to E. coli opportunistically infecting the urinary tract, intestines or loci of knee and hip prostheses. We exemplified this further with the extreme behaviors of the reference strains UTI89 and LF82. Whereas their FimA major pilins have identical sequences, FimH of LF82 E. coli is marked by the Thr158Pro mutation. Positioned in the inter-domain region known to carry hot spots of mutations in E. coli pathotypes, residue 158 is indicated to play a structural role in the allosteric regulation of type-1 fimbriae-mediated bacterial adhesion. PMID:27043645

  17. Interaction morphology and bond strength of nanofilled simplified-step adhesives to acid etched dentin

    PubMed Central

    Di Hipólito, Vinicius; Reis, André Figueiredo; Mitra, Sumita B.; de Goes, Mario Fernando

    2012-01-01

    Objective: To evaluate the effect of nanofillers incorporated into adhesives on the microtensile bond strength (μ-TBS) and interfacial micromorphology to dentin. Methods: The occlusal enamel of 5 human molars was removed and each tooth sectioned into four quarters. The exposed dentin was treated with one of the following adhesives: Adper Single Bond (SB-unfilled), OptiBond Solo Plus (OS-barium aluminoborosilicate, 400nm Ø), Prime & Bond NT (NT-colloidal silica, 7–40 nm Ø) and Adper Single Bond 2 (SB2-colloidal silica, 5nm Ø). Cylinders of resin-based composite were constructed on the adhesive layers. After 24-hour storage, the restored tooth-quadrants were sectioned to obtain stick-shaped specimens (0.8 mm2, cross-sectional area) and submitted to μ-TBS at a cross-speed of 0.5 mm/min. Data were analyzed using one-way ANOVA and Tukey’s test (alpha = .05). Twenty-eight additional teeth were used for interfacial micro-morphologic analysis by SEM (16-teeth) and TEM (12-teeth). The dentin surfaces of 32 discs were treated with the adhesives (8 discs for adhesive) and laminated to form disc-pairs using a flowable resin composite for SEM/EDS analysis. For TEM, 90nm-thick nondemineralized unstained sections were processed. Results: SB2 showed significant higher bond strength than SB, OS and NT. The SEM/EDS and TEM analysis revealed nanofillers infiltrated within the interfibrillar spaces of the SB2-hybrid layer. Fillers were concentrated around patent tubular orifices and in the adhesive layer for OS and NT. Conclusion: The presence of nanofillers within the interfibrillar spaces of the SB2-hybrid layer suggests its importance in the improvement of the μ-TBS. PMID:23077413

  18. Effects of external environments on the short beam shear strength of filament wound graphite/epoxy

    NASA Technical Reports Server (NTRS)

    Penn, B. G.; Clemons, J. M.

    1986-01-01

    Filament wound graphite/epoxy samples were immersed in seawater, deionized water, and toluene at room temperature and 80 deg C for 5, 15, and 43 days, and in methanol at room temperature for 15 and 43 days. The percent weight gains and short beam shear strengths were determined after environmental exposure. Samples immersed in deionized water and seawater had higher percent weight gains than those immersed in toluene at room temperature and 80 deg C. The percent weight gains for samples immersed in methanol at room temperature were comparable to those of deionized water and seawater immersed samples. A comparison of percent decreases in short beam shear strengths could not be made due to a large scatter in data. This may indicate defects in samples due to machining or variations in material properties due to processing.

  19. Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion.

    PubMed Central

    Hammer, D A; Apte, S M

    1992-01-01

    The receptor-mediated adhesion of cells to ligand-coated surfaces in viscous shear flow is an important step in many physiological processes, such as the neutrophil-mediated inflammatory response, lymphocyte homing, and tumor cell metastasis. This paper describes a calculational method which simulates the interaction of a single cell with a ligand-coated surface under flow. The cell is idealized as a microvilli-coated hard sphere covered with adhesive springs. The distribution of microvilli on the cell surface, the distribution of receptors on microvilli tips, and the forward and reverse reaction between receptor and ligand are all simulated using random number sampling of appropriate probability functions. The velocity of the cell at each time step in the simulation results from a balance of hydrodynamic, colloidal and bonding forces; the bonding force is derived by summing the individual contributions of each receptor-ligand tether. The model can simulate the effect of many parameters on adhesion, such as the number of receptors on microvilli tips, the density of ligand, the rates of reaction between receptor and ligand, the stiffness of the resulting receptor-ligand springs, the response of springs to strain, and the magnitude of the bulk hydrodynamic stresses. The model can successfully recreate the entire range of expected and observed adhesive phenomena, from completely unencumbered motion, to rolling, to transient attachment, to firm adhesion. Also, the method can generate meaningful statistical measures of adhesion, including the mean and variance in velocity, rate constants for cell attachment and detachment, and the frequency of adhesion. We find a critical modulating parameter of adhesion is the fractional spring slippage, which relates the strain of a bond to its rate of breakage; the higher the slippage, the faster the breakage for the same strain. Our analysis of neutrophil adhesive behavior on selectin-coated (CD62-coated) surfaces in viscous shear

  20. Microtensile Bond Strength of Self-Adhesive Luting Cements to Ceramics

    PubMed Central

    Abo, Tomoko; Uno, Shigeru; Yoshiyama, Masahiro; Yamada, Toshimoto; Hanada, Nobuhiro

    2012-01-01

    The purpose of this paper was to compare the bond strengths of the self-adhesive luting cements between ceramics and resin cores and examine their relation to the cement thickness. Three self-adhesive luting cements (Smartcem, Maxcem, and G-CEM) and a resin cement (Panavia F 2.0) for control were used in the paper. The thickness of the cements was controlled in approximately 25, 50, 100, or 200 μm. Each 10 specimens were made according to the manufacturers' instructions and stored in water at 37°C. After 24 hours, microtensile bond strength (μTBS) was measured. There were significant differences in cements. Three self-adhesive cements showed significantly lower μTBSs than control that required both etching and priming before cementation (Tukey, P < 0.05). The cement thickness of 50 or 100 μm tended to induce the highest μTBSs for each self-adhesive luting cements though no difference was found. PMID:22606202

  1. Adhesion strength measurements of excimer-laser-treated PTFE surfaces using liquid photoreagents

    NASA Astrophysics Data System (ADS)

    Hopp, Bela; Smausz, Tomi; Kresz, Norbert; Ignacz, Ferenc

    2003-04-01

    The most known feature of polytetrafluoroethylene (PTFE) is its adhesion behavior: it is hydrophobic and oleophobic at the same time. This can cause serious problems and obstacles during the surface treatment and fixing of PTFE objects. During our experiments Teflon films were irradiated by an ArF excimer laser beam in presence of liquid photoreagents containing amine groups (aminoethanol, 1,2-diaminoethane, triethylene-tetramine). In consequence of the treatment the adhesion of the modified surfaces significantly increased, the samples could be glued and moistened. The adhesion strength of the glued surfaces was measured in the function of the applied laser fluence. The adhesion strength increased drastically between 0 - 1 mJ/cm2 and showed saturation above 1 mJ/cm2 at approximately 5 - 9 MPa values depending on the applied photoreagents. On the basis of our experiments it was found that the treatment with triethylene-tetramine was the most effective. The surface chemical modifications of the treated Teflon samples can be due to the incorporation of amine groups into the surface layer.

  2. Effect of dentin surface roughness on the shear bond strength of resin bonded restorations

    PubMed Central

    Koodaryan, Roodabeh; Poursoltan, Sajjad

    2016-01-01

    PURPOSE This study aimed to investigate whether dentin surface preparation with diamond rotary instruments of different grit sizes affects the shear bond strength of resin-bonded restorations. MATERIALS AND METHODS The buccal enamel of 60 maxillary central incisors was removed with a low speed diamond saw and wet ground with silicon carbide papers. The polished surfaces of the teeth were prepared with four groups of rotary diamond burs with super-coarse (SC), coarse (C), medium (M), and fine (F) grit sizes. Following surface preparation, 60 restorations were casted with nickel-chromium alloy and bonded with Panavia cement. To assess the shear bond strength, the samples were mounted on a universal testing machine and an axial load was applied along the cement-restoration interface at the crosshead speed of 0.5 mm/min. The acquired data was analyzed with one way ANOVA and Tukey post hoc test (α=.05). RESULTS The mean ± SD shear bond strengths (in MPa) of the study groups were 17.75 ± 1.41 for SC, 13.82 ± 1.13 for C, 10.40 ± 1.45 for M, and 7.13 ± 1.18 for F. Statistical analysis revealed the significant difference among the study groups such that the value for group SC was significantly higher than that for group F (P<.001). CONCLUSION Dentin surface roughness created by diamond burs of different grit sizes considerably influences the shear bond strength of resin bonded restorations. PMID:27350858

  3. Investigation of interfacial shear strength in SiC/Si3N4 composites

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Bhatt, R. T.; Kiser, J. D.

    1991-01-01

    A fiber push-out technique was used to determine fiber/matrix interfacial shear strength (ISS) for silicon carbide fiber reinforced reaction-bonded silicon nitride (SiC/RBSN) composites in the as-fabricated condition and after consolidation by hot isostatic pressing (HIPing). In situ video microscopy and acoustic emission detection greatly aided the interpretation of push-out load/displacement curves.

  4. Effect of synthetic Fibers on consolidation and Shear Strength of Clayey Soil

    NASA Astrophysics Data System (ADS)

    Bordbar, A. T.; Estabragh, A. R.; Hoorfar, A.

    2009-04-01

    Soft soils are well known for their low strength and high compressibility. Several techniques such as reinforcement are usually used for increasing the strength and reducing deformation characteristics of this kind of soil. Reinforcement of clayey soils with reeds, straw and other natural fibers has been practised before. This paper presents the results of an experimental study on the influence of short, discrete and randomly distributed fibers on the shear strength and consolidation of a clayey soil. Soil specimen types used in this study were consisted of clayey soil as the control treatment and clay mixed with different weight fractions of synthetic Fibers, 10, 20, & 30 percent. Series of triaxial compression tests were conducted in a conventional triaxial cell. Comparison of the results of triaxial compression tests show that the strength of clay soil increased with increasing the proportion of fibers. Consolidation tests were conducted according to ASTM tests to determine the consolidation settlement of samples. The results of consolidation tests show that the settlement and preconsolidation pressure of samples increased and decreased correspondingly with increasing the proportion of fibers. Key words: clayey soil, synthetic fiber, shear strength, consolidation

  5. Effect of surface treatment on micro shear bond strength of two indirect composites

    PubMed Central

    Moezizadeh, Maryam; Ansari, Zahra Jaberi; Fard, Fatemeh Matin

    2012-01-01

    Aim: To determine the effect of surface treatment on micro shear bond strength of two indirect composites. Materials and Methods: Blocks of 2 × 7 × 20 mm dimensions were made from two kinds of resin composites, Gradia and Signum plus. Samples were subjected to secondary curing to complete polymerization. They were divided into five groups: control without any preparation, second group sandblasted with aluminum oxide, third, fourth and fifth groups were lased under a beam of 0.5, 1 and 2 W respectively. Panavia resin cement was placed on the composite blocks using tygon tubes and cured and micro shear bond strength was measured. One sample of each group was observed under electronic microscope. Data was analyzed by two-way ANOVA and Tukey's multiple comparison tests. Results: For Gradia composite, the sandblasted group showed highest strength (25.7±2.9 MPa) followed by the laser beam of 1 W group (with 23.6± 2.8 MPa). In Signum composite, the laser beam of 1 W (21.4±4.2 MPa) showed the highest strength followed by the sandblasted group (with 19.4±3.2 MPa). Conclusion: Surface treatments using sandblast and laser beam of 1W power along with silane are two effective methods to increase the bond strength of composites. PMID:22876007

  6. Effect of Chlorhexidine on Dentin Bond Strength of Two Adhesive Systems after Storage in Different Media.

    PubMed

    Da Silva, Enio Marcos; Glir, Daniel Hatschbach; Gill, Allana Walesca Martins Castanho; Giovanini, Allan Fernando; Furuse, Adilson Yoshio; Gonzaga, Carla Castiglia

    2015-01-01

    The aim of this study was to evaluate the effect of 2% chlorhexidine (CHX) application during the bonding protocol on microshear bond strength of two adhesive systems, after storage in different media. Seventy-two human molars had their crowns cut in half and embedded in PVC cylinders with acrylic resin. The specimens were randomly divided into experimental groups (n=12) according to the adhesive system (Ambar and Single Bond 2), use of CHX in the bonding protocol, and time interval (24 h and 15 days) in the storage media (distilled water, mineral oil and 1% sodium hypochlorite - NaOCl). Adhesive systems were applied in accordance to manufacturers' recommendations, with or without the use of CHX, and resin composite (Z350 XT) cylinders were placed on the hybridized dentin. After photoactivation, the specimens were stored in distilled water, mineral oil and 1% NaOCl for 24 h and 15 days. Microshear bond strength was determined at a crosshead speed of 0.5 mm/min until fracture. The bond strength data were analyzed statistically by 4-way ANOVA and Tukey's test (α=5%). Use of CHX in the bonding protocol did not cause loss of bond strength in any of the evaluated situations, irrespective of time and storage medium. The storage medium had no influence on bond strength values after 15 days when the bond protocol without CHX application was used. However, the use of CHX in the protocol influenced negatively the bond strength values for Single Bond 2 after 15 days storage in distilled water and 1% NaOCl. PMID:26963210

  7. [Comparative in vitro evaluation of modern glass ionomer cements for adhesion strength and fluoride release].

    PubMed

    Zhitkov, M Yu; Rusanov, F S; Poyurovskaya, I Ya

    2016-01-01

    The study proved similar adhesion strength and fluoride release level in aqueous extracts of glass ionomer cements Cemion (VladMiVa, Russia), Glassin Rest (Omega-Dent, Russia), Cemfil 10 (StomaDent, Russia) and Fuji VIII (GC Corporation, Japan). Despite of close concentrations of fluoride in glasses, the rate of fluoride release in water from calcium and calcium-barium glasses is much higher than that of strontium glasses. PMID:27239999

  8. Dentin bond strength of a fluoride-releasing adhesive system submitted to pH-cycling.

    PubMed

    Costa, Ana Rosa; Correr-Sobrinho, Lourenço; Ambrosano, Glaucia Maria Bovi; Sinhoreti, Mario Alexandre Coelho; Borges, Gilberto Antonio; Platt, Jeffrey A; Puppin-Rontani, Regina Maria

    2014-01-01

    To evaluate the microtensile bond strength (µTBS) of a fluoride-containing adhesive system submitted to a pH-cycling and storage time regimen for primary outcomes. As secondary outcomes the fluoride released amount was evaluated. Twelve dentin surfaces from sound third molar were divided into 2 groups according to adhesive systems: Clearfil SE Protect (PB) and Clearfil SE Bond (SE). Sticks obtained (1.0 mm2) from teeth were randomly divided into 3 subgroups according to storage regimen model: immediate (24h); 5-month deionized water (W); and pH-cycling model (C). All sticks were tested for µTBS in a universal testing machine. Fluoride concentration was obtained from 1-4 days and 30-day in W and 1-4 days in demineralization (DE)/remineralization (RE) solutions from C, using a fluoride-specific electrode. µTBS and fluoride released data were, respectively, submitted to ANOVA in a split plot design and Tukey, and Friedman' tests (a=0.05). There was no significant interaction between adhesive system and storage regimen for µTBS. W showed the lowest µTBS values. There was no significant difference between 24 h and C models for µTBS. There was no significant difference between adhesive systems. Failure mode was predominantly cohesive within composite for the 24 h and W, for the C group it was mixed for SE and cohesive within composite for PB adhesive system. Fluoride concentrations in the DE/RE solutions were less than 0.03125 ppm and not detected in W. In conclusion, the fluoride-containing adhesive system performed similarly to the regular one. Hydrolytic degradation is the main problem with both adhesive systems, regardless of fluoride contents. PMID:25590191

  9. Shear strength and structural behaviours of HPRWO with web openings with circular steel tubes

    NASA Astrophysics Data System (ADS)

    Lee, S. J.; Park, J. M.

    2015-12-01

    The purpose of this study was to evaluate the shear strength and structural behavior of reinforced-concrete beams with web openings (hereinafter, “HPRWO”), where the web openings are reinforced with circular steel tubes. The experiments were conducted under the monotonic loading condition. Based on the structural experiments involving HPRWO, ultimate load ratio (d0,d0/h, etc.), ductility, load-deflection curve, and failure mode comparisons were made for evaluation purposes. This study utilized the design formula for predicting the shear strength proposed by the previous studies and formulas to determine the appropriate shear strength for HPRWO. The results of the experiments confirmed that the rigidity, ductility, and other properties of the HPRWO specimens reinforced with circular steel tubes, fiber, and admixtures were superior to those of the unreinforced HPRWOs. With Mansur's formula, a noticeable tendency for the increase in d0 and the sectional area of the web openings to lead to the overestimation of Vu/Vu,cal was found. The Vu/Vu,cal value was found to be more in line with the experiment results based on the AIJ formula compared with the results obtained using other formulas

  10. Determination of dynamic shear strength of 2024 aluminum alloy under shock compression

    NASA Astrophysics Data System (ADS)

    Zhang, H. S.; Yan, M.; Wang, H. Y.; Shen, L. T.; Dai, L. H.

    2016-04-01

    A series of plate impact shock-reshock and shock-release experiments were conducted by using an one-stage light gas gun to determine the critical shear strength of the 2024 aluminum alloy under shock compression levels ranging from 0.66 to 3.05 GPa in the present study. In the experiments, a dual flyer plate assembly, i.e., the 2024 aluminum alloy flyer backed either by a brass plate or a PMMA plate, was utilized to produce reshock or release wave. The stress profiles of uniaxial plane strain wave propagation in the 2024 aluminum alloy sample under different pre-compressed states were measured by the embedded stress gauges. The stress-strain data at corresponding states were then calculated by a Lagrangian analysis method named as path line method. The critical shear strengths at different stress levels were finally obtained by self-consistent method. The results show that, at the low shock compression level (0.66 to 3.05 GPa), the critical shear strength of the 2024 aluminum alloy cannot be ignored and increases with the increasing longitudinal stress, which may be attributed to rate-dependence and/or pressure dependent yield behavior of the 2024 aluminum alloy.

  11. Polyurethane adhesive with improved high temperature properties

    NASA Technical Reports Server (NTRS)

    Stuckey, J. M.

    1977-01-01

    A polyurethane resin with paste activator, capable of providing useful bond strengths over the temperature range of -184 C to 149 C, is described. The adhesive system has a pot life of over one hour. Tensile shear strength ratings are given for various adhesive formulations.

  12. Surface Physicochemistry and Ionic Strength Affects eDNA’s Role in Bacterial Adhesion to Abiotic Surfaces

    PubMed Central

    Regina, Viduthalai R.; Lokanathan, Arcot R.; Modrzyński, Jakub J.; Sutherland, Duncan S.; Meyer, Rikke L.

    2014-01-01

    Extracellular DNA (eDNA) is an important structural component of biofilms formed by many bacteria, but few reports have focused on its role in initial cell adhesion. The aim of this study was to investigate the role of eDNA in bacterial adhesion to abiotic surfaces, and determine to which extent eDNA-mediated adhesion depends on the physicochemical properties of the surface and surrounding liquid. We investigated eDNA alteration of cell surface hydrophobicity and zeta potential, and subsequently quantified the effect of eDNA on the adhesion of Staphylococcus xylosus to glass surfaces functionalised with different chemistries resulting in variable hydrophobicity and charge. Cell adhesion experiments were carried out at three different ionic strengths. Removal of eDNA from S. xylosus cells by DNase treatment did not alter the zeta potential, but rendered the cells more hydrophilic. DNase treatment impaired adhesion of cells to glass surfaces, but the adhesive properties of S. xylosus were regained within 30 minutes if DNase was not continuously present, implying a continuous release of eDNA in the culture. Removal of eDNA lowered the adhesion of S. xylosus to all surfaces chemistries tested, but not at all ionic strengths. No effect was seen on glass surfaces and carboxyl-functionalised surfaces at high ionic strength, and a reverse effect occurred on amine-functionalised surfaces at low ionic strength. However, eDNA promoted adhesion of cells to hydrophobic surfaces irrespective of the ionic strength. The adhesive properties of eDNA in mediating initial adhesion of S. xylosus is thus highly versatile, but also dependent on the physicochemical properties of the surface and ionic strength of the surrounding medium. PMID:25122477

  13. In-vitro study of the adhesive strengths of brackets on metals, ceramic and composite. Part 1: Bonding to precious metals and amalgam.

    PubMed

    Jost-Brinkmann, P G; Drost, C; Can, S

    1996-04-01

    Adult patients often have fillings, artificial crowns and/or bridges that make fitting of conventional bands difficult or even impossible. In such cases bonding rather than banding would be preferable. The present paper presents the investigation of more than 25 resin/conditioner combinations with respect to their bond strength to different metals as well as to amalgam. For that purpose stainless steel lingual buttons were bonded with the various adhesives and their shear bond strengths and types of bond failure were determined after 24 hours. All specimens were air-abraded with 50 microns Al2O3 for 2 or 4 seconds by means of a Microetcher before bonding. For comparison, buttons were also bonded to bovine enamel after air-abrasion or conventional etching with 37% H3PO4. Results show that, on all metals investigated, several materials yield bond strengths which are similar to or higher than what is achieved with the conventional acid etch technique on enamel. Maximum adhesive strength is not always desirable, however, for bonding brackets. The type of bond failure and the risk of irreversible damage to the bonded material have also to be taken into consideration. Al2O3 abrasion may cause considerable damage to enamel within 4 seconds. Since the bond strength on air-abraded enamel is about the same as on acid etched enamel, conventional etching with H3PO4 is preferable to the sandblasting of enamel. PMID:8647560

  14. Shear bond strength and debonding characteristics of metal and ceramic brackets bonded with conventional acid-etch and self-etch primer systems: An in-vivo study

    PubMed Central

    Mirzakouchaki, Behnam; Sharghi, Reza; Shirazi, Samaneh; Moghimi, Mahsan; Shahrbaf, Shirin

    2016-01-01

    Background Different in-vitro studies have reported various results regarding shear bond strength (SBS) of orthodontic brackets when SEP technique is compared to conventional system. This in-vivo study was designed to compare the effect of conventional acid-etching and self-etching primer adhesive (SEP) systems on SBS and debonding characteristics of metal and ceramic orthodontic brackets. Material and Methods 120 intact first maxillary and mandibular premolars of 30 orthodontic patients were selected and bonded with metal and ceramic brackets using conventional acid-etch or self-etch primer system. The bonded brackets were incorporated into the wire during the study period to simulate the real orthodontic treatment condition. The teeth were extracted and debonded after 30 days. The SBS, debonding characteristics and adhesive remnant indices (ARI) were determined in all groups. Results The mean SBS of metal brackets was 10.63±1.42 MPa in conventional and 9.38±1.53 MPa in SEP system, (P=0.004). No statistically significant difference was noted between conventional and SEP systems in ceramic brackets. The frequency of 1, 2 and 3 ARI scores and debonding within the adhesive were the most common among all groups. No statistically significant difference was observed regarding ARI or failure mode of debonded specimens in different brackets or bonding systems. Conclusions The SBS of metal brackets bonded using conventional system was significantly higher than SEP system, although the SBS of SEP system was clinically acceptable. No significant difference was found between conventional and SEP systems used with ceramic brackets. Total SBS of metal brackets was significantly higher than ceramic brackets. Due to adequate SBS of SEP system in bonding the metal brackets, it can be used as an alternative for conventional system. Key words:Shear bond strength, Orthodontic brackets, Adhesive remnant index, self-etch. PMID:26855704

  15. Degradation in the Fatigue Strength of Dentin by Cutting, Etching and Adhesive Bonding

    PubMed Central

    Lee, H.-H.; Majd, H.; Orrego, S.; Majd, B.; Romberg, E.; Mutluay, M.M.; Arola, D.

    2014-01-01

    The processes involved in placing resin composite restorations may degrade the fatigue strength of dentin and increase the likelihood of fractures in restored teeth. Objective The objective of this study was to evaluate the relative changes in strength and fatigue behavior of dentin caused by bur preparation, etching and resin bonding procedures using a 3-step system. Methods Specimens of dentin were prepared from the crowns of unrestored 3rd molars and subjected to either quasi-static or cyclic flexural loading to failure. Four treated groups were prepared including dentin beams subjected to a burr treatment only with a conventional straight-sided bur, or etching treatment only. An additional treated group received both bur and etching treatments, and the last was treated by bur treatment and etching, followed by application of a commercial resin adhesive. The control group consisted of “as sectioned” dentin specimens. Results Under quasi-static loading to failure there was no significant difference between the strength of the control group and treated groups. Dentin beams receiving only etching or bur cutting treatments exhibited fatigue strengths that were significantly lower (p≤0.0001) than the control; there was no significant difference in the fatigue resistance of these two groups. Similarly, the dentin receiving bur and etching treatments exhibited significantly lower (p≤0.0001) fatigue strength than that of the control, regardless of whether an adhesive was applied. Significance The individual steps involved in the placement of bonded resin composite restorations significantly decrease the fatigue strength of dentin, and application of a bonding agent does not increase the fatigue strength of dentin. PMID:24985539

  16. Hybridization quality and bond strength of adhesive systems according to interaction with dentin

    PubMed Central

    Salvio, Luciana Andrea; Hipólito, Vinicius Di; Martins, Adriano Luis; de Goes, Mario Fernando

    2013-01-01

    Objective: To evaluate the hybridization quality and bond strength of adhesives to dentin. Materials and Methods: Ten human molars were ground to expose the dentin and then sectioned in four tooth-quarters. They were randomly divided into 5 groups according to the adhesive used: Two single-step self-etch adhesives – Adper Prompt (ADP) and Xeno III (XE), two two-step self-etching primer systems – Clearfil SE Bond (SE) and Adhe SE (ADSE), and one one-step etch-and-rinse system – Adper Single Bond (SB). Resin composite (Filtek Z250) crown buildups were made on the bonded surfaces and incrementally light-cured for 20 s. The restored tooth-quarters were stored in water at 37°C for 24 h and then sectioned into beams (0.8 mm2 in cross-section). Maximal microtensile bond strength (μ-TBS) was recorded (0.5 mm/min in crosshead speed). The results were submitted to one-way ANOVA and Tukey's test (α = 0.05). Thirty additional teeth were used to investigate the hybridization quality by SEM using silver methenamine or ammoniacal silver nitrate dyes. Results: SE reached significantly higher μ-TBS (P < 0.05); no significance was found between ADSE and XE (P > 0.05), and between SB and ADP (P > 0.05); ADSE and XE were significantly higher than SB and ADP (P < 0.05). The bonding interface of SB showed the most intense silver uptake. SE and ADSE showed more favorable hybridization quality than that observed for ADP and XE. Conclusions: The bond strength and hybridization quality were affected by the interaction form of the adhesives with dentin. The hybridization quality was essential to improve the immediate μ-TBS to dentin. PMID:24926212

  17. Determination of Shear Strength of Rocks from Scratch Tests: Theoretical Justification

    NASA Astrophysics Data System (ADS)

    Detournay, E.

    2014-12-01

    There is considerable empirical evidence that the specific energy ɛ determined from shallow scratch tests on sedimentary rocks is about equal to the uniaxial compressive strength q, see Figure showing the correlation between ɛ and q for 334 rocks (Richard et al, J Engineering Geology, 2012). The specific energy ɛ, defined as the energy expended per unit volume of fragmented rock, corresponds to the ratio of the average cutting force over the cross-sectional area of the groove created by the motion of the cutter; it is virtually independent of the depth of cut provided that the cutter is sufficiently sharp so that frictional dissipation beneath the cutter is negligible and also provided that the depth of cut is below a critical value dc that is proportional to the intrinsic length scale (KIc/q)2 with KIc denoting the rock toughness. Indeed, the critical depth of cut dc separates two regimes of cutting, ductile and brittle. In the ductile regime (depth of cut d smaller than dc but larger than the grain size), the rock is intensively sheared ahead of the cutter and the specific energy is constant. On the other hand, in the brittle regime (d larger than dc) chipping takes place and the specific energy decreases as the inverse square root of d. In sedimentary rocks, dcis typically less than 1 mm. The apparent correlation between the specific energy ɛ in the ductile regime and the uniaxial compressive strength q can be explained from an analysis of results of plane strain compression tests conducted in an apparatus that does not inhibit the development of shear bands (Labuz and Dai, J. of Geotechnical and Reoenvironmental Eng., 2000). This analysis indicates that the residual strength is reached on the shear band for slip distance of about 1~2 grain size and that the thickness of the shear band is also equal to about 2 grain size. Furthermore, the ratio of the energy required to destroy the cohesive links between the grains inside the shear band over the volume of

  18. Self-etching bonding systems: in-vitro shear bond strength evaluation.

    PubMed

    Brandt, P D; de Wet, F A; du Preez, I C

    2006-02-01

    The purpose of this in vitro study was to compare the dentine shear bond strength of five self-etching bonding agents with that of a total-etch dentine bonding agent (used as control). Sixty recently extracted third molar teeth were mounted in acrylic resin and the occlusal surfaces ground to expose superficial dentine. A standardised smear layer was created by polishing with wet 600-grit SiC paper. Products evaluated were Xeno III (XIII), Clearfil SE Bond (SE), ABF (ABF), Optibond Solo Self-etch (OS), Adper Prompt-L-Pop (PLP) and the control, Scotchbond Multipurpose Plus (SBMP). Resin stubs were bonded to the dentine using the bonding agents according to manufacturer's instructions. Composite stubs were manufactured using an Ultradent jig and two increments of Z100, A1 shade composite. The bonds were subsequently stressed to failure with an Instron testing machine, operating at a crosshead speed of 0.5 mm/min. The data was statistically analysed using ANOVA (alpha < or = 0.05). The mean SBS (MPa) were: SBMP (Control) = 24.1 +/- 7.6; XIII = 17.3 +/- 4.1; SE = 26.2 +/- 7.8; ABF = 25.9 +/- 4.3; OS = 21.9 +/- 3.9 and PLP = 15.4 +/- 3.1. The shear bond strengths of both XIII and PLP to dentine were significantly lower than the control SBMP (p < 0.05). The remaining three products (SE, ABF and OS) displayed bond strengths comparable to the control (p > 0.05). Further research into cut (ground) and un-cut (un-ground) enamel shear bond strength and micro-leakage using these bonding agents are needed. PMID:16562613

  19. Dependency of Shear Strength on Test Rate in SiC/BSAS Ceramic Matrix Composite at Elevated Temperature

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.

    2003-01-01

    Both interlaminar and in-plane shear strengths of a unidirectional Hi-Nicalon(TM) fiber-reinforced barium strontium aluminosilicate (SiC/BSAS) composite were determined at 1100 C in air as a function of test rate using double notch shear test specimens. The composite exhibited a significant effect of test rate on shear strength, regardless of orientation which was either in interlaminar or in in-plane direction, resulting in an appreciable shear-strength degradation of about 50 percent as test rate decreased from 3.3 10(exp -1) mm/s to 3.3 10(exp -5) mm/s. The rate dependency of composite's shear strength was very similar to that of ultimate tensile strength at 1100 C observed in a similar composite (2-D SiC/BSAS) in which tensile strength decreased by about 60 percent when test rate varied from the highest (5 MPa/s) to the lowest (0.005 MPa/s). A phenomenological, power-law slow crack growth formulation was proposed and formulated to account for the rate dependency of shear strength of the composite.

  20. Relationship between voids and interlaminar shear strength of polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Frimpong, Stephen

    1991-01-01

    The effect of voids on the interlaminar shear strength of a polyimide matrix composite system is described. The AS4 graphite/PMR-15 composite was chosen for study because this system can be readily processed by using the standard specified cure cycle to produce void-free composites and because preliminary work in this study had shown that the processing parameters of this resin matrix system can be altered to produce cured composites of varying void contents. Thirty-eight 12-ply unidirectional composite panels were fabricated for this study. A significant range of void contents (0 to 10 percent) was produced. The panels were mapped, ultrasonically inspected, and sectioned into interlaminar shear, flexure, and fiber content specimens. The density of each specimen was measured and interlaminar shear and flexure strength measurements were then made. The fiber content was measured last. The results of these tests were evaluated by using ultrasonic results, photomicrographs, statistical methods, theoretical relationships derived by other investigators, and comparison of the test data with the Integrated Composite Analyzer (ICAN) computer program developed at the Lewis Research Center for predicting composite ply properties. The testing is described in as much detail as possible in order to help others make realistic comparisons.

  1. Adhesive strength of bioactive oxide layers fabricated on TNTZ alloy by three different alkali-solution treatments.

    PubMed

    Takematsu, E; Cho, K; Hieda, J; Nakai, M; Katsumata, K; Okada, K; Niinomi, M; Matsushita, N

    2016-08-01

    Bioactive oxide layers were fabricated on Ti-29Nb-13Ta-4.6Zr alloy (TNTZ) by three different alkali solution treatments: hydrothermal (H), electrochemical (E), and hydrothermal-electrochemical (HE). The adhesive strength of the oxide layer to the TNTZ substrate was measured to determine whether this process achieves sufficient adhesive strength for implant materials. Samples subjected to the HE process, in which a current of 15mA/cm(2) was applied at 90°C for 1h (HE90-1h), exhibited a comparatively higher adhesive strength of approximately 18MPa while still maintaining a sufficiently high bioactivity. Based on these results, an oxide layer fabricated on TNTZ by HE90-1h is considered appropriate for practical biomaterial application, though thicker oxide layers with many cracks can lead to a reduced adhesive strength. PMID:26866453

  2. The effects of molecular weight on the single lap shear creep and constant strain rate behavior of thermoplastic polyimidesulfone adhesive

    NASA Technical Reports Server (NTRS)

    Dembosky, Stanley K.; Sancaktar, Erol

    1985-01-01

    The bonded shear creep and constant strain rate behaviors of zero, one, and three percent endcapped thermoplastic polyimidesulfone adhesive were examined at room and elevated temperatures. Endcapping was accomplished by the addition of phthalic anhydrides. The primary objective was to determine the effects of molecular weight on the mechanical properties of the adhesive. Viscoelastic and nonlinear elastic constitutive equations were utilized to model the adhesive. Ludwik's and Crochet's relations were used to describe the experimental failure data. The effects of molecular weight changes on the above mentioned mechanical behavior were assessed. The viscoelastic Chase-Goldsmith and elastic nonlinear relations gave a good fit to the experimental stress strain behavior. Crochet's relations based on Maxwell and Chase-Goldsmith models were fit to delayed failure data. Ludwik's equations revealed negligible rate dependence. Ultimate stress levels and the safe levels for creep stresses were found to decrease as molecular weight was reduced.

  3. The plane strain shear fracture of the advanced high strength steels

    SciTech Connect

    Sun, Li

    2013-12-16

    The “shear fracture” which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of “shear fracture” phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a “shear fracture” in the component.

  4. Influence of fluoride-containing adhesives and bleaching agents on enamel bond strength.

    PubMed

    Cavalli, Vanessa; Liporoni, Priscila Cristiane Suzy; Rego, Marcos Augusto do; Berger, Sandrine Bittencourt; Giannini, Marcelo

    2012-01-01

    This study evaluated the influence of fluoride-containing carbamide peroxide (CP) bleaching agents and adhesive systems on bonded enamel interfaces that are part of the dynamic pH cycling and thermal cycling models. The buccal surfaces of 60 bovine incisors were restored with a composite resin and bonded with three- and two-step, etch-and-rinse, fluoride-containing adhesives, Optibond FL (FL) and Optibond Solo Plus (SP), respectively. Restored teeth were subjected to thermal cycling to age the interface. Both SP and FL adhesive-restored teeth were bleached (n = 10) with 10% CP (CP) and 10% CP + fluoride (CPF) or were left unbleached (control). Bleaching was performed for 14 days simultaneously with pH cycling, which comprised of 14 h of remineralization, 2 h of demineralization and 8 h of bleaching. The control groups (FL and SP) were stored in remineralizing solution during their bleaching periods and were also subjected to carious lesion formation. Parallelepiped-shaped samples were obtained from the bonded interface for microtensile bond strength (μTBS) testing. The enamel μTBS of the FL and SP groups (control, not bleached) were higher (p < 0.05) than those of the bleached interfaces (FL > FL + CPF = FL + CP and SP > SP + CPF = SP + CP). The groups subjected to treatment with the fluoride-containing bleaching agents exhibited similar μTBS compared to regular bleaching agents. Bleaching agents, regardless of whether they contained fluoride, decreased enamel bond strength. PMID:23184165

  5. Determination of carbon fiber adhesion to thermoplastic polymers using the single fiber/matrix tensile test

    NASA Technical Reports Server (NTRS)

    Bascom, W. D.; Cordner, L. W.; Hinkley, J. L.; Johnston, N. J.

    1986-01-01

    The single fiber adhesion shear test has been adapted to testing the adhesion between carbon fiber and thermoplastic polymers. Tests of three thermoplastics, polycarbonate, polyphenylene oxide and polyetherimide indicate the shear adhesion strength is significantly less than of an epoxy polymer to the same carbon fiber.

  6. Effect of laser-assisted bleaching with Nd:YAG and diode lasers on shear bond strength of orthodontic brackets.

    PubMed

    Mirhashemi, Amirhossein; Emadian Razavi, Elham Sadat; Behboodi, Sara; Chiniforush, Nasim

    2015-12-01

    The aim of the present study was to assess the effect of laser-assisted bleaching with neodymium:yttrium-aluminum-garnet (Nd:YAG) and diode lasers on shear bond strength (SBS) of orthodontic brackets. One hundred and four extracted human premolars were randomly divided into four groups: group 1: No bleaching applied (control group); group 2: Teeth bleached with 40 % hydrogen peroxide; group 3: Teeth treated with 30 % hydrogen peroxide activated with Nd:YAG laser (1064 nm, 2.5 W, 25 Hz, pulse duration of 100 μs, 6 mm distance); and group 4: Teeth treated with 30 % hydrogen peroxide activated with diode laser (810 nm, 1 W, CW, 6 mm distance). Equal numbers of teeth in groups 2, 3, and 4 were bonded at start, 1 h, 24 h, and 1 week after bleaching. A universal testing machine measured the SBS of the samples 24 h after bonding. After bracket debonding, the amount of residual adhesive on the enamel surface was observed under a stereomicroscope to determine the adhesive remnant index (ARI) scores. The SBS in the unbleached group was significantly higher than that in the bleached groups bonded immediately and 1 h after laser-assisted bleaching (P < 0.05). In groups 3 and 4 at start and group 2 at start and 1 h after laser-assisted bleaching, the SBS was found to be significantly lower than that in the control group. Significant differences in the ARI scores existed among groups as well. The SBS of brackets seems to increase quickly within an hour after laser-assisted bleaching and 24 h after conventional bleaching. Thus, this protocol can be recommended if it is necessary to bond the brackets on the same day of bleaching. PMID:26319247

  7. A Comparison of Shear Bond Strength of Ceramic and Resin Denture Teeth on Different Acrylic Resin Bases

    PubMed Central

    Corsalini, Massimo; Venere, Daniela Di; Pettini, Francesco; Stefanachi, Gianluca; Catapano, Santo; Boccaccio, Antonio; Lamberti, Luciano; Pappalettere, Carmine; Carossa, Stefano

    2014-01-01

    The purpose of this study is to compare the shear bond strength of different resin bases and artificial teeth made of ceramic or acrylic resin materials and whether tooth-base interface may be treated with aluminium oxide sandblasting. Experimental measurements were carried on 80 specimens consisting of a cylinder of acrylic resin into which a single tooth is inserted. An ad hoc metallic frame was realized to measure the shear bond strength at the tooth-base interface. A complete factorial plan was designed and a three-way ANalysis Of VAriance (ANOVA) was carried out to investigate if shear bond strength is affected by the following factors: (i) tooth material (ceramic or resin); (ii) base material (self-curing or thermal-curing resin); (iii) presence or absence of aluminium oxide sandblasting treatment at the tooth-base interface. Tukey post hoc test was also conducted to evaluate any statistically significant difference between shear strength values measured for the dif-ferently prepared samples. It was found from ANOVA that the above mentioned factors all affect shear strength. Furthermore, post hoc analysis indi-cated that there are statistically significant differences (p-value=0.000) between measured shear strength values for: (i) teeth made of ceramic material vs. teeth made of acrylic resin material; (ii) bases made of self-curing resin vs. thermal-curing resin; (iii) specimens treated with aluminium oxide sandblasting vs. untreated specimens. Shear strength values measured for acryl-ic resin teeth were on average 70% higher than those measured for ceramic teeth. The shear bond strength was maximized by preparing samples with thermal-curing resin bases and resin teeth submitted to aluminium oxide sandblasting. PMID:25614770

  8. Effect of shear strength on the Hugoniot-compression curve and EOS of some metals

    NASA Astrophysics Data System (ADS)

    Mashimo, Tsutomu; Gomoto, Yuya; Liu, Xun; Zaretsky, Eugene; Katayama, Masahide; Nagayama, Kunihito

    2015-06-01

    To derive true equations of state (EOS) of matter, we need the precise Hugoniot data, and must access the strength under shock compression to draw the isothermal hydrostatic compression curve. For this, we have established the high-speed streak camera measurement system consisting of rotating-mirror type streak camera and pulsed dye laser combined with the one-stage powder gun and two-stage light gas gun. We performed the plate-mirror Hugoniot measurement experiments on tungsten (W), copper (Cu), etc. in the pressure range up to >200 GPa by symmetric impact method, and measured the Hugoniot data where the effects of tilt and bowing of the impact plate were carefully considered. It was found that the zero-intercept value (C0) of Us-Up relation (Us =C0 +SUp) of W were larger than the bulk sound velocity by 3.1%, which may show the effect of shear strength in plastic region. The hydrostatic-compression curves were drawn by using the shear strength values reported by Sandia National Laboratories group, and the EOS's were discussed. The hypothesized Us-Up Hugoniot curve of the hydrostatic compression curve converged to the bulk sound velocity.

  9. A comparative study of the shear bond strengths of four different crystal growth solutions.

    PubMed

    Jones, M L; Pizarro, K A

    1994-05-01

    Previously, solutions based on polyacrylic acid have been found to initiate crystal growth on the enamel surface. Such crystals have been proposed as being suitable for the attachment of orthodontic brackets via a conventional composite interface, the advantages being improved clean-up characteristics and reduced damage to the enamel. In order to try and improve the reliability of the technique this base solution has been modified by the authors, by the addition of various ionic salts. The strength of the resultant bond was assessed for the base solution of 50 per cent polyacrylic acid and concentrated sulphuric, and for three more solutions modified by the addition of the sulphates of lithium, magnesium, and potassium, respectively. A standard acid/etch method of bracket attachment was also included for the purposes of comparison. The bond strength of each material was assessed by shear testing, performed on human extracted premolar teeth to a standard method. As might have been expected the acid/etch system proved to be the strongest method of bonding brackets. Amongst the crystal solutions, the addition of lithium sulphate provided the highest mean shear strength at 80 per cent of that for acid etch. Therefore, this latter solution provides the most potential for development in the future. PMID:8043561

  10. CD44 sensitivity of platelet activation, membrane scrambling and adhesion under high arterial shear rates.

    PubMed

    Liu, Guilai; Liu, Guoxing; Alzoubi, Kousi; Chatterjee, Madhumita; Walker, Britta; Münzer, Patrick; Luo, Dong; Umbach, Anja T; Elvira, Bernat; Chen, Hong; Voelkl, Jakob; Föller, Michael; Mak, Tak W; Borst, Oliver; Gawaz, Meinrad; Lang, Florian

    2016-01-01

    CD44 is required for signalling of macrophage migration inhibitory factor (MIF), an anti-apoptotic pro-inflammatory cytokine. MIF is expressed and released from blood platelets, key players in the orchestration of occlusive vascular disease. Nothing is known about a role of CD44 in the regulation of platelet function. The present study thus explored whether CD44 modifies degranulation (P-selectin exposure), integrin activation, caspase activity, phosphatidylserine exposure on the platelet surface, platelet volume, Orai1 protein abundance and cytosolic Ca(2+)-activity ([Ca2+]i). Platelets from mice lacking CD44 (cd44(-/-)) were compared to platelets from corresponding wild-type mice (cd44(+/+)). In resting platelets, P-selectin abundance, α(IIb)β3 integrin activation, caspase-3 activity and phosphatidylserine exposure were negligible in both genotypes and Orai1 protein abundance, [Ca2+]i, and volume were similar in cd44(-/-) and cd44(+/+) platelets. Platelet degranulation and α(IIb)β3 integrin activation were significantly increased by thrombin (0.02 U/ml), collagen related peptide (CRP, 2 µg/ml and Ca(2+)-store depletion with thapsigargin (1 µM), effects more pronounced in cd44(-/-) than in cd44(+/+) platelets. Thrombin (0.02 U/ml) increased platelet [Ca2+]i, caspase-3 activity, phosphatidylserine exposure and Orai1 surface abundance, effects again significantly stronger in cd44(-/-) than in cd44(+/+) platelets. Thrombin further decreased forward scatter in cd44(-/-) and cd44(+/+) platelets, an effect which tended to be again more pronounced in cd44(-/-) than in cd44(+/+) platelets. Platelet adhesion and in vitro thrombus formation under high arterial shear rates (1,700 s(-1)) were significantly augmented in cd44(-/-) mice. In conclusion, genetic deficiency of CD44 augments activation, apoptosis and pro-thrombotic potential of platelets. PMID:26355696

  11. Evaluation of Shear Bond Strength of Feldspathic CAD/CAM Ceramic with Dentin using 2 Bonding Agents and 2 Surface Treatments- An Invitro Study

    PubMed Central

    Balasubramaniam, Muthukumar; Chidambaranathan, Ahila Singaravel; Srinivasan, Suganya

    2015-01-01

    Background All ceramics are the material of choice for aesthetic tooth replacements. The success of all ceramic restoration depends on the bond between the ceramic and the tooth surface hence this study was done to evaluate the shear bond strength of Feldspathic CAD/CAM ceramic with <5% hydrofluoric acid and hydrofluoric acid combined with silane coupling agent. Aim To evaluate the shear bond strength of Feldspathic CAD/CAM ceramic with Dentin using bonding agents Prime & Bond NT, XenoIII and surface treatments <5% hydrofluric acid, hydrofluric acid combined with silane coupling agent. Materials and Methods Forty cylinders with 6mm diameter and 5mm height were milled from CEREC Blocs through CAD/CAM technology. Cerec blocks were bonded to etch freshly extracted tooth surface using a self etch and total etch bonding agent. The samples were divided into 4 groups. Group A1-Ceramic cylinders were treated with < 5% HF and bonded using Prime & Bond NT and Variolink II. Group A2- treated with < 5% HF and silane coupling agent and bonded same as group A1. Group B1- treated with < 5% HF and bonded using Xeno III and Variolink II. Group B2- treated with < 5% HF and silane coupling agent, and bonded same as Group A3. The shear bond strength was evaluated after 24 hours by Storing in distilled water in Instron 3385 universal testing machine with 10-KN force. Results Statistical analysis was done using student’s t-test and Lavene’s test. The p-value <0.05 shows significant difference in bond strength between A1 and A2 & B1and B2. Conclusion The application of a silane coupling agent to the ceramic surface after etching with hydrofluoric acid increased the adhesion strength with both bonding agents. Student’s t-test revealed a significant effect of silanization. PMID:26674522

  12. Adhesion

    MedlinePlus

    ... adhesions Ovarian cyst References Munireddy S, Kavalukas SL, Barbul A. Intra-abdominal healing: gastrointestinal tract and adhesions. Surg Clin N Am Kulaylat MN, Dayton, MT. Surgical complications. In: Townsend CM Jr, Beauchamp RD, Evers BM, Mattox KL, ...

  13. The effects of tooth preparation cleansing protocols on the bond strength of self-adhesive resin luting cement to contaminated dentin.

    PubMed

    Chaiyabutr, Yada; Kois, John C

    2008-01-01

    This in vitro study evaluated the bond strength of a self-adhesive luting cement after using four different techniques to remove surface contamination on dentin. Extracted human molars were flattened to expose the dentin surface and prepared for full crown preparation. Acrylic temporary crowns were fabricated and placed using temporary cement. The specimens were stored at room temperature with 100% relative humidity for seven days. Following removal of the temporary crowns, the specimens were randomly divided into four groups, and excess provisional cement was removed with (1) a hand instrument (excavator), (2) prophy with a mixture of flour pumice and water (3) aluminous oxide abrasion with a particle size of 27 microm at 40 psi and (4) aluminous oxide abrasion with a particle size of 50 microm at 40 psi. The microstructure morphology of the tooth surface was evaluated and residual materials were detected using SEM and EDS analysis of randomly selected specimens. The ceramics were treated with 9.5% hydrofluoric acid-etch and silanized to the prepared dentin prior to cementing with self-adhesive resin cement (RelyX Unicem, 3M ESPE). The shear bond strength was determined at a crosshead speed of 0.5 mm/minute. The results were analyzed with one-way ANOVA, followed by Tukey's test. Particle abrasion treatment of dentin with an aluminous oxide particle provided the highest values of bond strength, while hand instrument excavation was the lowest (p < 0.05). Aluminous oxide particle size did not significantly influence the bond strength at 40 psi. The use of low pressure and small particle abrasion treated dentin as a mechanical cleansing protocol prior to definitive cementation increased the bond strength of self-adhesive resin-luting cement to dentin following eugenol-containing temporary cement. PMID:18833862

  14. Frictional strength of wet- and dry- talc gouge in high-velocity shear experiments

    NASA Astrophysics Data System (ADS)

    Chen, X.; Reches, Z.; Elwood Madden, A. S.

    2015-12-01

    The strength of the creeping segment of the San Andres fault may be controlled by the distinct weakness and stability of talc (Moore & Rymer, 2007). We analyze talc frictional strength at high slip-velocity of 0.002 - 0.66 m/s, long slip-distances of 0.01 m to 33 m, and normal stresses up to 4.1 MPa. This analysis bridges the gap between nucleation stage of low velocity/distance, and the frictional behavior during large earthquakes. We tested wet and dry samples of pure talc gouge in a confined rotary cell, and continuously monitored the slip-velocity, stresses, dilation and temperature. We run 29 experiments of single and stepped velocities to obtain 243 values of quasi-static frictional coefficients. Dry talc gouge showed distinct slip-strengthening: friction coefficient of µ ~0.4 at short slip-distances of D < 0.1 m, and it increased systematically to µ ~0.8 at slip-distances of D = 0.1- 1 m; at D > 1 m, the frictional strength saturated at µ= 0.8 - 1 level. Wet talc gouge (16-20% water) displayed low frictional strength of µ= 0.1-0.3, in agreement with published triaxial tests. The stepped-velocity runs revealed a consistent velocity-strengthening trend. For a velocity jump from V1 to V2, we used VD = (µ2 -µ1)/ln (V2/V1), and found that on average VD = 0.06 and 0.03 for dry and wet talc, respectively, and for slip distances shorter than 1 m. Microstructural analysis of post-shearing wet talc gouge revealed extreme slip localization to a principal-slip-zone of a few microns, and significant shear compaction of 10-30%. In contrast, dry talc gouge exhibited distributed shear in a wide zone and systematic shear dilation (10-50%). We propose slip along weak interlayer talc plates and thermal-pressurization as the possible weakening mechanisms for wet talc. The development of distributed secondary fault network along with substantial grain crushing is responsible for slip-strengthening in dry condition. Fig. 1. Friction maps of talc gouge as function of slip

  15. Shock Induced Shear Strength in Two HMX Based Polymer Bonded Explosives

    NASA Astrophysics Data System (ADS)

    Millett, Jeremy; Taylor, Peter; Appleby-Thomas, Gareth

    2015-06-01

    The response of energetic materials to shock loading has largely concentrated on their detonation behaviour. However, they can also be considered to be structural materials in their own right, and hence their response to a purely mechanical shock loading is also of interest. Therefore we present results from two HMX based polymer bonded explosives, EDC37 and EDC32, where we investigate the shock induced shear strength behind the shock front. Results are discussed in terms of microstructure and differences of the binder phases.

  16. INFLUENCE OF DIFFERENT ADHESIVE SYSTEMS ON THE PULL-OUT BOND STRENGTH OF GLASS FIBER POSTS

    PubMed Central

    da Silva, Luciana Mendonça; de Andrade, Andréa Mello; Machuca, Melissa Fernanda Garcia; da Silva, Paulo Maurício Batista; da Silva, Ricardo Virgolino C.; Veronezi, Maria Cecília

    2008-01-01

    This in vitro study evaluated the tensile bond strength of glass fiber posts (Reforpost – Angelus-Brazil) cemented to root dentin with a resin cement (RelyX ARC – 3M/ESPE) associated with two different adhesive systems (Adper Single Bond - 3M/ESPE and Adper Scotchbond Multi Purpose (MP) Plus – 3M/ESPE), using the pull-out test. Twenty single-rooted human teeth with standardized root canals were randomly assigned to 2 groups (n=10): G1- etching with 37% phosphoric acid gel (3M/ESPE) + Adper Single Bond + #1 post (Reforpost – Angelus) + four #1 accessory posts (Reforpin – Angelus) + resin cement; G2- etching with 37% phosphoric acid gel + Adper Scotchbond MP Plus + #1 post + four #1 accessory posts + resin cement. The specimens were stored in distilled water at 37°C for 7 days and submitted to the pull-out test in a universal testing machine (EMIC) at a crosshead speed of 0.5 mm/min. The mean values of bond strength (kgf) and standard deviation were: G1- 29.163 ± 7.123; G2- 37.752 ±13.054. Statistical analysis (Student's t-test; α=0.05 showed no statistically significant difference (p<0.05) between the groups. Adhesive bonding failures between resin cement and root canal dentin surface were observed in both groups, with non-polymerized resin cement in the apical portion of the post space when Single Bond was used (G1). The type of adhesive system employed on the fiber post cementation did not influence the pull-out bond strength. PMID:19089224

  17. Thermal Processing Effects on the Adhesive Strength of PS304 High Temperature Solid Lubricant Coatings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Edmonds, Brian J.; Benoy, Patricia A.

    2001-01-01

    In this paper the effects of post deposition heat treatments on the cohesive and adhesive strength properties of PS304, a plasma sprayed nickel-chrome based, high temperature solid lubricant coating deposited on stainless steel, are studied. Plasma spray deposited coating samples were exposed in air at temperatures from 432 to 650 C for up to 500 hr to promote residual stress relief, enhance particle to particle bonding and increase coating to substrate bond strength. Coating pull-off strength was measured using a commercial adhesion tester that utilizes 13 mm diameter aluminum pull studs attached to the coating surface with epoxy. Pull off force was automatically recorded and converted to coating pull off strength. As deposited coating samples were also tested as a baseline. The as-deposited (untreated) samples either delaminated at the coating-substrate interface or failed internally (cohesive failure) at about 17 MPa. Samples heat treated at temperatures above 540 C for 100 hr or at 600 C or above for more than 24 hr exhibited strengths above 31 MPa, nearly a two fold increase. Coating failure occurred inside the body of the coating (cohesive failure) for nearly all of the heat-treated samples and only occasionally at the coating substrate interface (adhesive failure). Metallographic analyses of heat-treated coatings indicate that the Nickel-Chromium binder in the PS304 appears to have segregated into two phases, a high nickel matrix phase and a high chromium precipitated phase. Analysis of the precipitates indicates the presence of silicon, a constituent of a flow enhancing additive in the commercial NiCr powder. The exact nature and structure of the precipitate phase is not known. This microstructural change is believed to be partially responsible for the coating strength increase. Diffusion bonding between particles may also be playing a role. Increasing the heat treatment temperature, exposure time or both accelerate the heat treatment process. Preliminary

  18. Effects of erbium:yttrium-aluminum-garnet and neodymium:yttrium-aluminum-garnet laser hypersensitivity treatment parameters on the bond strength of self-etch adhesives.

    PubMed

    Yazici, E; Gurgan, S; Gutknecht, N; Imazato, S

    2010-07-01

    This in vitro study evaluated the shear bond strength (SBS) of two self-etch adhesives to coronal and root dentin treated with erbium:yttrium-aluminum-garnet (Er:YAG) or neodymium:yttrium-aluminum-garnet (Nd:YAG) lasers for dentin hypersensitivity. The coronal and root dentin surfaces of 60 extracted human cuspids were divided into three groups (n = 20): (1) control (without treatment); (2) treated with Er:YAG; (3) treated with Nd:YAG laser and a one-step (S3) or two-step self-etch adhesive (SE). A nano-composite was applied and SBS tests were performed. The mean SBS values were calculated, failure modes were determined, and data were subjected to statistical analysis (P = 0.05). Control/SE exhibited higher values than did control/S3 and Nd:YAG/S3 on coronal dentin (P < 0.05). No significant differences were observed between the SE and S3 groups in root dentin (P > 0.05). Comparisons of two dentin substrates did not show any difference except control/SE (P < 0.05). The failure modes were mainly adhesive. The SBSs of self-etch adhesives to Er:YAG or Nd:YAG laser-treated surfaces were comparable with control for both coronal and root dentin. PMID:19475475

  19. The effect of particle strength on the ballistic resistance of shear thickening fluids

    NASA Astrophysics Data System (ADS)

    Petel, Oren E.; Ouellet, Simon; Loiseau, Jason; Marr, Bradley J.; Frost, David L.; Higgins, Andrew J.

    2013-02-01

    The response of shear thickening fluids (STFs) under ballistic impact has received considerable attention due to its field-responsive nature. While efforts have primarily focused on traditional ballistic fabrics impregnated with these fluids, the response of pure STFs to penetration has received limited attention. In the present study, the ballistic response of particle-based STFs is investigated and the effects of fluid density and particle strength on ballistic performance are isolated. It is shown that the loss of ballistic resistance in the STFs at higher impact velocities is governed by the material strength of the particles in suspension. The results illustrate the range of velocities over which these STFs may provide effective armor solutions.

  20. High Shear Deformation to Produce High Strength and Energy Absorption in Mg Alloys

    SciTech Connect

    Joshi, Vineet V.; Jana, Saumyadeep; Li, Dongsheng; Garmestani, Hamid; Nyberg, Eric A.; Lavender, Curt A.

    2014-02-01

    Magnesium alloys have the potential to reduce the mass of transportation systems however to fully realize the benefits it must be usable in more applications including those that require higher strength and ductility. It has been known that fine grain size in Mg alloys leads to high strength and ductility. However, the challenge is how to achieve this optimal microstructure in a cost effective way. This work has shown that by using optimized high shear deformation and second phase particles of Mg2Si and MgxZnZry the energy absorption of the extrusions can exceed that of AA6061. The extrusion process under development described in this presentation appears to be scalable and cost effective. In addition to process development a novel modeling approach to understand the roles of strain and state-of-strain on particle fracture and grain size control has been developed

  1. An assessment of shear bond strength between ceramic repair systems and different ceramic infrastructures.

    PubMed

    Kocaağaoğlu, Hasan Hüseyin; Gürbulak, Ayşegül

    2015-01-01

    The purpose of this study was to evaluate of shear bond strengths between two ceramic repair systems and different ceramic infrastructure materials. One hundred cylindrical specimens of ceramic infrastructure were fabricated with non precious metal alloy, zirconia, alumina, galvano, and glass ceramic: 20 non precious metal alloy (NP), 20 zirconia (Z), 20 alumina (A), 20 galvano (G), and 20 glass ceramic (GC). Specimens were divided into 2 subgroups. One half of the specimens were applied by Clearfil™ (CR) repair system and, another half of that were applied by Cimara&Cimara(®) Zircon (CZ) repair system. Bonded specimens were stored in 37°C distilled water for 24 h and were thermocycled at 5-55°C for 1,200 cycles with a 30-sec dwell time and 5-sec transfer time. Shear bond strengths were determined with a mechanical testing device. And mode of failure was recorded. Mann Whitney-U and Kruskal Wallis tests were applied to the data at 95% confidence interval level. Infrastructure groups displayed the following values in megapascals: NP = 10.70 ± 1.88; Z = 9.15 ± 0.80; A = 11.65 ± 0.70; GC = 10.95 ± 0.80; and G = 6.88 ± 0.88. The Mann Whitney-U test results showed no significant difference between the repair systems. The Kruskal Wallis test results demonstrated significant difference between the infrastructures. The lowest bond strength values were observed in G group. In conclusion, average bond strength values were in accordance with previously reported values, therefore it can be suggested that intraoral repair of ceramic restorations can be temporary, but a satisfying alternative for patients. PMID:25906827

  2. Effect of Initial Fabric on Cyclic and Monotonic Undrained Shear Strength of Gioia Tauro Sand

    NASA Astrophysics Data System (ADS)

    Porcino, Daniela; Marcianò, Vincenzo

    2008-07-01

    An experimental study is presented aimed at a direct comparison of the undrained behaviour of a natural coarse sand using specimens reconstituted by different techniques. Undrained monotonic and cyclic triaxial compression tests were carried out on reconstituted specimens of Gioia Tauro sand, as well as on truly undisturbed specimens retrieved by in-situ ground freezing. It is worth noting that Gioia Tauro Plain, on the Calabrian side of the Messina Strait, manifested various types of geotechnical hazards related to soil liquefaction during several catastrofic earthquakes. Two different preparation methods were employed, namely air pluviation and water sedimentation. Soil fabrics resulting from the above methods appear to exhibit different undrained response during monotonic straining. The behaviour of truly undisturbed specimens (and hence with their natural fabric) appears to be similar to that exhibited by water sedimentation reconstituted specimens in both undrained monotonic and cyclic triaxial tests. Finally, in view of assessing equivalent simple shear or in-situ response of the natural deposit, undrained cyclic shear strength characteristics of the tested sand from triaxial tests were compared with those gathered from the simple shear device.

  3. Tamarindus indica pectin blend film composition for coating tablets with enhanced adhesive force strength.

    PubMed

    Khurana, Rajneet; Singh, Kuldeep; Sapra, Bharti; Tiwary, A K; Rana, Vikas

    2014-02-15

    Tablet coating is the most useful method to improve tablet texture, odour and mask taste. Thus, the present investigation was aimed at developing an industrially acceptable aqueous tablet coating material. The physico-chemical, electrical and SEM investigations ensures that blending of Tamarindus indica (Linn.) pectin (TP) with chitosan gives water resistant film texture. Therefore, CH-TP (60:40) spray coated tablets were prepared. The evaluation of CH-TP coated tablets showed enhanced adhesive force strength (between tablet surface to coat) and negligible cohesive force strength (between two tablets) both evaluated using texture analyzer. The comparison of CH-TP coated tablets with Eudragit coated tablets further supported superiority of the former material. Thus, the findings pointed towards the potential of CH-TP for use as a tablet coating material in food as well as pharmaceutical industry. PMID:24507255

  4. Using drill cutting separates to estimate the strength of narrow shear zones at SAFOD

    USGS Publications Warehouse

    Morrow, C.; Solum, J.; Tembe, S.; Lockner, D.; Wong, T.-F.

    2007-01-01

    A technique is presented for estimating frictional strength of narrow shear zones based on hand selection of drillhole cuttings separates. Tests were conducted on cuttings from the SAFOD scientific drillhole near Parkfield, California. Since cuttings are mixed with adjacent material as they travel up the drillhole, these fault-derived separates give a better representation of the frictional properties of narrow features than measurements from the bulk material alone. Cuttings from two shear zones (one an active trace of the San Andreas fault) contain a significant weight percent of clay-rich grains that exhibit deformation-induced slickensides. In addition, cuttings from the active SAF trace contain around 1% serpentine. Coefficients of friction for clay-rich and serpentine grains were 0.3-0.5 and 0.4-0.45, respectively. These values are around 0.12 lower than the friction coefficient of the corresponding bulk cuttings, providing an improved estimate of the frictional strength of the San Andreas fault. Copyright 2007 by the American Geophysical Union.

  5. Comparative evaluation of compressive strength, diametral tensile strength and shear bond strength of GIC type IX, chlorhexidine-incorporated GIC and triclosan-incorporated GIC: An in vitro study

    PubMed Central

    Jaidka, Shipra; Somani, Rani; Singh, Deepti J.; Shafat, Shazia

    2016-01-01

    Aim: To comparatively evaluate the compressive strength, diametral tensile strength, and shear bond strength of glass ionomer cement type IX, chlorhexidine-incorporated glass ionomer cement, and triclosan-incorporated glass ionomer cement. Materials and Methods: In this study, glass ionomer cement type IX was used as a control. Chlorhexidine diacetate, and triclosan were added to glass ionomer cement type IX powder, respectively, in order to obtain 0.5, 1.25, and 2.5% concentrations of the respective experimental groups. Compressive strength, diametral tensile strength, and shear bond strength were evaluated after 24 h using Instron Universal Testing Machine. The results obtained were statistically analyzed using the independent t-test, Dunnett test, and Tukey test. Results: There was no statistical difference in the compressive strength, diametral tensile strength, and shear bond strength of glass ionomer cement type IX (control), 0.5% triclosan-glass ionomer cement, and 0.5% chlorhexidine-glass ionomer cement. Conclusion: The present study suggests that the compressive strength, diametral tensile strength, and shear bond strength of 0.5% triclosan-glass ionomer cement and 0.5% chlorhexidine-glass ionomer cement were similar to those of the glass ionomer cement type IX, discernibly signifying that these can be considered as viable options for use in pediatric dentistry with the additional value of antimicrobial property along with physical properties within the higher acceptable range. PMID:27195231

  6. Evaluation of the interfacial shear strength and residual stress of TiAlN coating on ZIRLO™ fuel cladding using a modified shear-lag model approach

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Bhamji, I.; Withers, P. J.; Wolfe, D. E.; Motta, A. T.; Preuss, M.

    2015-11-01

    This paper investigates the residual stresses and interfacial shear strength of a TiAlN coating on Zr-Nb-Sn-Fe alloy (ZIRLO™) substrate designed to improve corrosion resistance of fuel cladding used in water-cooled nuclear reactors, both during normal and exceptional conditions, e.g. a loss of coolant event (LOCA). The distribution and maximum value of the interfacial shear strength has been estimated using a modified shear-lag model. The parameters critical to this analysis were determined experimentally. From these input parameters the interfacial shear strength between the TiAlN coating and ZIRLO™ substrate was inferred to be around 120 MPa. It is worth noting that the apparent strength of the coating is high (∼3.4 GPa). However, this is predominantly due to the large compressive residuals stress (3 GPa in compression), which must be overcome for the coating to fail in tension, which happens at a load just 150 MPa in excess of this.

  7. Influence of Er,Cr:YSGG laser treatment on microtensile bond strength of adhesives to enamel.

    PubMed

    Cardoso, Marcio Vivan; De Munck, Jan; Coutinho, Eduardo; Ermis, R Banu; Van Landuyt, Kirsten; de Carvalho, Rubens Corte Real; Van Meerbeek, Bart

    2008-01-01

    The current trend towards minimum-intervention dentistry has introduced laser technology as an alternative technique for cavity preparation. This study assessed the null hypothesis that enamel prepared either by Er,Cr:YSGG laser or conventional diamond bur is equally receptive to adhesive procedures. The buccal and lingual surfaces of 35 sound human molars were prepared with Er,Cr:YSGG laser or a medium-grit diamond bur. One etch&rinse (OptiBond FL) and three self-etch adhesives (Adper Prompt L-Pop, Clearfil SE Bond and Clearfil S3 Bond) were applied on laser-irradiated and bur-cut enamel, followed by the application of a 5-6 mm build-up of Z100. The micro-tensile bond strength (microTBS) was determined after 24 hours of storage in water at 37 degrees C. Prepared enamel surfaces and failure patterns were evaluated using a stereomicroscope and a field-emission-gun scanning electron microscope (Feg-SEM). The pTBS to laser-irradiated enamel was significantly lower than to bur-cut enamel (p<0.05), with the exception of Clearfil S3 Bond, which bonded equally effectively to both substrates. The latter presented the highest microTBS on laser-irradiated enamel, though it was not statistically different from the microTBS of OptiBond FL. SEM analysis revealed significant morphological alterations of the laser-irradiated enamel surface, such as areas of melted and recrystalized hydroxyapatite and deep extensive micro-cracks. In conclusion, the bonding effectiveness of adhesives to laser-irradiated enamel depends not only on the structural substrate alterations induced by the laser, but also on the characteristics of the adhesive employed. PMID:18666504

  8. Tensile bond strength of indirect composites luted with three new self-adhesive resin cements to dentin

    PubMed Central

    TÜRKMEN, Cafer; DURKAN, Meral; CİMİLLİ, Hale; ÖKSÜZ, Mustafa

    2011-01-01

    Objective The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM. Material and Methods Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group): direct composite resin restoration (Alert) with etch-and-rinse adhesive system (Bond 1 primer/adhesive), Group 2: indirect composite restoration (Estenia) luted with a resin cement (Cement-It) combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond), Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively) onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student's t-test. The failure modes of all groups were also evaluated. Results The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7) showed better results compared to the other groups (p<0.05). Group 4 showed the weakest bond strength (p>0.05). The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure. Conclusion The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces. PMID:21710095

  9. Magnetically applied pressure-shear : a new technique for direct strength measurement at high pressure (final report for LDRD project 117856).

    SciTech Connect

    Lamppa, Derek C.; Haill, Thomas A.; Alexander, C. Scott; Asay, James Russell

    2010-09-01

    A new experimental technique to measure material shear strength at high pressures has been developed for use on magneto-hydrodynamic (MHD) drive pulsed power platforms. By applying an external static magnetic field to the sample region, the MHD drive directly induces a shear stress wave in addition to the usual longitudinal stress wave. Strength is probed by passing this shear wave through a sample material where the transmissible shear stress is limited to the sample strength. The magnitude of the transmitted shear wave is measured via a transverse VISAR system from which the sample strength is determined.

  10. Influence of adhesive systems on microtensile bond strength of resin-based endodontic sealers to the root dentin

    PubMed Central

    Rodríguez-Martínez, Juan B.; González-Rodríguez, María P.; González-López, Santiago

    2014-01-01

    Objective: The aim of this study was to determine the microtensile bond strength to root dentin of AH Plus™ and EndoREZ® with Clearfil Liner Bond 2V and Optibond Solo™ Plus adhesive systems. Study Design: The coronal and middle thirds of six single rooted bovine teeth was split longitudinally in a mesio-distal direction. The two halves were joined with AH Plus or EndoREZ, with and without the use of Clearfil Liner Bond 2V and Optibond Solo™ Plus adhesive systems. Build-ups were vertically sectioned into quadrangular (≈1mmx1mm) compound bars and subjected to tensile tests at a constant crosshead speed (1 mm/min) until debonding. Results: Optibond® Solo Plus™ in combination with AH Plus™ and EndoREZ® showed the highest mean microtensile bond strength values, in both coronal and middle thirds. The lowest results were seen in the groups where no dentine adhesive was applied, and in those where the self-etching adhesive Clearfil Liner Bond 2V was used. Conclusion: The microtensile bond strength to root dentin of AH Plus™ and EndoREZ may be increased with the use of a total-etch adhesive. Key words:Adhesive systems, AH Plus, EndoREZ, microtensile bond strength, root dentin. PMID:25136417

  11. Promotion of adhesive penetration and resin bond strength to dentin using non-thermal atmospheric pressure plasma.

    PubMed

    Kim, Jae-Hoon; Han, Geum-Jun; Kim, Chang-Keun; Oh, Kyu-Hwan; Chung, Sung-No; Chun, Bae-Hyeock; Cho, Byeong-Hoon

    2016-02-01

    Non-thermal atmospheric pressure plasmas (NT-APPs) have been shown to improve the bond strength of resin composites to demineralized dentin surfaces. Based on a wet-bonding philosophy, it is believed that a rewetting procedure is necessary after treatment with NT-APP because of its air-drying effect. This study investigated the effect of 'plasma-drying' on the bond strength of an etch-and-rinse adhesive to dentin by comparison with the wet-bonding technique. Dentin surfaces of human third molars were acid-etched and divided into four groups according to the adhesion procedure: wet bonding, plasma-drying, plasma-drying/rewetting, and dry bonding. In plasma treatment groups, the demineralized dentin surfaces were treated with a plasma plume generated using a pencil-type low-power plasma torch. After the adhesion procedures, resin composite/dentin-bonded specimens were subjected to a microtensile bond-strength test. The hybrid layer formation was characterized by micro-Raman spectroscopy and scanning electron microscopy. The plasma-drying group presented significantly higher bond strength than the wet-bonding and dry-bonding groups. Micro-Raman spectral analysis indicated that plasma-drying improved the penetration and polymerization efficacy of the adhesive. Plasma-drying could be a promising method to control the moisture of demineralized dentin surfaces and improve the penetration of adhesive and the mechanical property of the adhesive/dentin interface. PMID:26714586

  12. Shear strength, cohesion, and overconsolidation in low-stress sediments and their importance for submarine slope failure

    NASA Astrophysics Data System (ADS)

    Ikari, M.; Kopf, A.

    2015-12-01

    Factor-of-safety analyses of submarine slope failure depend critically on the shear strength of the slope material, which has two components: friction and cohesion. While evaluating friction is from laboratory testing is common, cohesion is commonly ignored despite its potential importance in resisting failure. Here, we report on laboratory experiments conducted at effective normal stresses of < 2 MPa where we measure shear strength, but and also directly measure sediment cohesion by measuring its shear strength in a direct-shear apparatus by removing the applied effective normal stress (σn' = 0). We document systematic behavior demonstrating that cohesion depends positively on clay mineral content and consolidation stress. The dependence on clay content suggests that the mechanism of cohesion is hydrogen bonding between charged clay surfaces and water molecules. The stress dependence indicates that estimating cohesion from extrapolating a Coulomb-Mohr failure envelope could lead to inaccurate predictions. Furthermore, the proportion of shear strength attributable to cohesion is higher at lower stresses corresponding to shallow depths where landslide failures are expected. Measuring shear strength and cohesion over a wide range of overconsolidation ratios (OCR) for sediments containing clays show that significantly higher peak strengths are expected to occur for OCR > 4, and the primary source of this strength increase is not friction, but rather increased cohesion which depends log-linearly on the OCR. Our data suggest that in areas which have experienced unroofing due previous mass movements, overconsolidated clays can be stronger than cohesionless sediments such as quartz silt/sand. Overconsolidated clays would exhibit increased peak strength toward the surface, therefore failure would be expected to occur deeper where the OCR is lower. In seismically active areas, this could explain why slope failure recurrence appears to be lower than expected when

  13. Comparison of the push-out shear bond strength of four types of glass ionomers when used to bond amalgam: An in vitro study

    PubMed Central

    Mathew, Vinod Babu; Ramachandran, S; Indira, R; Shankar, P

    2011-01-01

    Background: Dental amalgam is the primary direct posterior restorative material used worldwide, but it have certain shortcomings due to the lack of adhesiveness to the cavity. The introduction of the concept of bonded amalgam helped improve the use of amalgam as a restorative material. Aim: Evaluation of the comparative push-out shear bond strength of four types of conventional glass ionomers used to bond amalgam to tooth in simulated class I situations. Materials and Methods: Four chemical cure glass ionomers are used: GC Fuji I, GC Fuji II, GC Fuji III and GC Fuji VII, and are compared with unbonded amalgam. The push-out bond strength was tested using the Instron Universal Testing Machine at a crosshead speed of 0.5 mm/min. Statistical Analysis: One-way ANOVA and post hoc Bonferroni tests were used to analyze the data. Results: The results showed that the use of glass ionomer to bond amalgam resulted in an increase in the bond strength of amalgam. The Type VII glass ionomer showed the highest bond strength in comparison with the other glass ionomers. Conclusions: Conventional glass ionomer bonds to amalgam and shows a beneficial increase in the bond strength of the restoration in comparison with unbonded amalgam. PMID:22144798

  14. A Laboratory Shear Cell Used for Simulation of Shear Strength and Asperity Degradation of Rough Rock Fractures

    NASA Astrophysics Data System (ADS)

    Asadi, M. S.; Rasouli, V.; Barla, G.

    2013-07-01

    Different failure modes during fracture shearing have been introduced including dilation, sliding, asperity cut-off and degradation. Several laboratory studies have reported the complexity of these failure modes during shear tests performed under either constant normal load (CNL) or constant normal stiffness (CNS) conditions. This paper is concerned with the mechanical behaviour of synthetic fractures during direct shear tests using a modified shear cell and related numerical simulation studies. The modifications made to an existing true triaxial stress cell (TTSC) in order to use it for performing shear tests under CNL conditions are presented. The large loading capacity and the use of accurate hydraulic pumps capable of applying a constant shear velocity are the main elements of this cell. Synthetic mortar specimens with different fracture surface geometries are tested to study the failure modes, including fracture sliding, asperity degradation, and to understand failure during shearing. A bonded particle model of the direct shear test with the PFC2D particle flow code is used to mimic the tests performed. The results of a number of tests are presented and compared with PFC2D simulations. The satisfactory results obtained both qualitatively and quantitatively are discussed.

  15. In-vitro comparison of the effect of different bonding strategies on the micro-shear bond strength of a silorane-based composite resin to dentin

    PubMed Central

    Samimi, Pouran; Alizadeh, Vahid; Fathpour, Kamyar; Mazaheri, Hamid; Mortazavi, Vajihosadat

    2016-01-01

    Background: The current study evaluated the micro-shear bond strengths of a new low-shrinkage composite resin to dentin. Materials and Methods: In this in-vitro study, 70 extracted premolars were assigned to one of seven groups (n = 10): Group 1: OptiBond Solo Plus (Opt; Kerr); Group 2: SE Bond (SE; Kuraray); Group 3: Silorane System Adhesive (SSA; 3M ESPE); Group 4: OptiBond Solo Plus + LS Bond (Opt LS); Group 5: SE Bond + LS Bond (SE LS); Group 6: OptiBond Solo Plus (Opt Po); and Group 7: SE Bond (SE Po). Occlusal dentin was exposed and restored with Filtek LS (3M ESPE) in groups 1 to 5 and Point 4 (Kerr) in groups 6 and 7. After thermocycling (1000 cycles at 5/55΀C), micro-shear bond test was carried out to measure the bond strengths. The results were submitted to analysis of variance and post hoc Tukeytests (P < 0.05). Results: Two-way ANOVA showed no significant differences between the two types of composite resin (P = 0.187), between bonding agents (P = 0.06) and between composite resin and bonding agents (P = 0.894). Because P value of bonding agents was near the significance level, one-way ANOVA was used separately between the two composite groups. This analysis showed significant differences between silorane composite resin groups (P = 0.045) and Tukey test showed a significant difference between Groups 4 and 5 (P = 0.03). Conclusion: The application of total-etch and self-etch methacrylate-based adhesives with and without use of a hydrophobic resin coating resulted in acceptable bond strengths. PMID:27076826

  16. Effect of Surface Treatment on Shear Bond Strength between Resin Cement and Ce-TZP/Al2O3

    PubMed Central

    Kim, Jong-Eun; Kim, Jee-Hwan; Shim, June-Sung; Roh, Byoung-Duck

    2016-01-01

    Purpose. Although several studies evaluating the mechanical properties of Ce-TZP/Al2O3 have been published, to date, no study has been published investigating the bonding protocol between Ce-TZP/Al2O3 and resin cement. The aim of this study was to evaluate the shear bond strength to air-abraded Ce-TZP/Al2O3 when primers and two different cement types were used. Materials and Methods. Two types of zirconia (Y-TZP and Ce-TZP/Al2O3) specimens were further divided into four subgroups according to primer application and the cement used. Shear bond strength was measured after water storage for 3 days or 5,000 times thermocycling for artificial aging. Results. The Y-TZP block showed significantly higher shear bond strength than the Ce-TZP/Al2O3 block generally. Primer application promoted high bond strength and less effect on bond strength reduction after thermocycling, regardless of the type of cement, zirconia block, or aging time. Conclusions. Depending on the type of the primer or resin cement used after air-abrasion, different wettability of the zirconia surface can be observed. Application of primer affected the values of shear bond strength after the thermocycling procedure. In the case of using the same bonding protocol, Y-TZP could obtain significantly higher bond strength compared with Ce-TZP/Al2O3. PMID:27382569

  17. Shear-rate-dependent strength control on the dynamics of rainfall-triggered landslides, Tokushima Prefecture, Japan

    USGS Publications Warehouse

    Wang, G.; Suemine, A.; Schulz, W.H.

    2010-01-01

    A typhoon (Typhoon No. 10) attacked Shikoku Island and the Tyugoku area of Japan in 2004. This typhoon produced a new daily precipitation record of 1317 mm on Shikoku Island and triggered hundreds of landslides in Tokushima Prefecture. One catastrophic landslide was triggered in the Shiraishi area of Kisawa village, and destroyed more than 10 houses while also leaving an unstable block high on the slope. The unstable block kept moving after the event, showing accelerating and decelerating movement during and after rainfall and reaching a displacement of several meters before countermeasures were put into place. To examine the mechanism for this landsliding characteristic, samples (weathered serpentinite) were taken from the field, and their shear behaviours examined using ring shear tests. The test results revealed that the residual shear strength of the samples is positively dependent on the shear rate, which may provide an explanation for the continuous acceleratingdecelerating process of the landsliding. The roughness of the shear surface and the microstructure of the shear zone were measured and observed by laser microscope and SEM techniques in an attempt to clarify the mechanism of shear rate effect on the residual shear strength. Copyright ?? 2010 John Wiley & Sons, Ltd.

  18. Adhesive strength of medical polymer on anodic oxide nanostructures fabricated on biomedical β-type titanium alloy.

    PubMed

    Hieda, Junko; Niinomi, Mitsuo; Nakai, Masaaki; Cho, Ken; Mohri, Tomoyoshi; Hanawa, Takao

    2014-03-01

    Anodic oxide nanostructures (nanopores and nanotubes) were fabricated on a biomedical β-type titanium alloy, Ti-29Nb-13Ta-4.6Zr alloy (TNTZ), by anodization in order to improve the adhesive strength of a medical polymer, segmented polyurethane (SPU), to TNTZ. TNTZ was anodized in 1.0M H3PO4 solution with 0.5 mass% NaF using a direct-current power supply at a voltage of 20V. A nanoporous structure is formed on TNTZ in the first stage of anodization, and the formation of a nanotube structure occurs subsequently beneath the nanoporous structure. The nanostructures formed on TNTZ by anodization for less than 3,600s exhibit higher adhesive strengths than those formed at longer anodization times. The adhesive strength of the SPU coating on the nanoporous structure formed on top of TNTZ by anodization for 1,200s improves by 144% compared to that of the SPU coating on as-polished TNTZ with a mirror surface. The adhesive strength of the SPU coating on the nanotube structure formed on TNTZ by anodization for 3,600s increases by 50%. These improvements in the adhesive strength of SPU are the result of an anchor effect introduced by the nanostructures formed by anodization. Fracture occurs at the interface of the nanoporous structure and the SPU coating layer. In contrast, in the case that SPU coating has been performed on the nanotube structure, fracture occurs inside the nanotubes. PMID:24433910

  19. Shear Dependent Adhesion of Leukocytes and Lectins to the Endothelium and Concurrent Changes in Thickness of the Glycocalyx of Post-capillary Venules in the Low Flow State

    PubMed Central

    Lipowsky, Herbert H.; Lescanic, Anne

    2012-01-01

    Objectives To elucidate shear dependent effects of deformation of the endothelial glycocalyx on adhesion of circulating ligands in post-capillary venules, and delineate effect of matrix metalloproteases (MMPs). Methods Adhesion of leukocytes (WBCs) and lectin-coated fluorescently labeled microspheres (FLMs, 0.1 μm diameter), to endothelium (EC) of post-capillary venules in mesentery was examined during acute reductions in shear rates (γ̇, hemorrhagic hypotension). Adhesion was examined with or without superfusion with 0.5 μM doxycycline to inhibit MMPs. Thickness of the glycocalyx was measured by exclusion of fluorescent 70 kDa dextran from the EC surface. Results During superfusion with Ringers, rapid reductions in γ̇ resulted in a significant rise in WBC adhesion and a two-fold rise in microsphere adhesion. With addition of doxycycline WBC and FLM adhesion increased two-fold under high and low flow conditions. FLM adhesion was invariant with γ̇ throughout the network in the normal (high) flow state. With reductions in γ̇, thickness of the glycocalyx increased significantly, with or without doxycycline. Conclusions The concurrent increase in WBC and FLM adhesion with increased thickness of the glycocalyx during reductions in shear suggests that glycocalyx core proteins recoil from their deformed steady state configuration, which increases exposure of binding sites for circulating ligands. PMID:22963321

  20. Optimizing Adhesive Design by Understanding Compliance.

    PubMed

    King, Daniel R; Crosby, Alfred J

    2015-12-23

    Adhesives have long been designed around a trade-off between adhesive strength and releasability. Geckos are of interest because they are the largest organisms which are able to climb utilizing adhesive toepads, yet can controllably release from surfaces and perform this action over and over again. Attempting to replicate the hierarchical, nanoscopic features which cover their toepads has been the primary focus of the adhesives field until recently. A new approach based on a scaling relation which states that reversible adhesive force capacity scales with (A/C)(1/2), where A is the area of contact and C is the compliance of the adhesive, has enabled the creation of high strength, reversible adhesives without requiring high aspect ratio, fibrillar features. Here we introduce an equation to calculate the compliance of adhesives, and utilize this equation to predict the shear adhesive force capacity of the adhesive based on the material components and geometric properties. Using this equation, we have investigated important geometric parameters which control force capacity and have shown that by controlling adhesive shape, adhesive force capacity can be increased by over 50% without varying pad size. Furthermore, we have demonstrated that compliance of the adhesive far from the interface still influences shear adhesive force capacity. Utilizing this equation will allow for the production of adhesives which are optimized for specific applications in commercial and industrial settings. PMID:26618537

  1. Evaluation of shear bond strength of porcelain bonded to laser welded titanium surface and determination of mode of bond failure.

    PubMed

    Patil, Narendra P; Dandekar, Minal; Nadiger, Ramesh K; Guttal, Satyabodh S

    2010-09-01

    The aim of this study was to evaluate the shear bond strength of porcelain to laser welded titanium surface and to determine the mode of bond failure through scanning electron microscopy (SEM) and energy dispersive spectrophotometry (EDS). Forty five cast rectangular titanium specimens with the dimension of 10 mm x 8 mm x 1 mm were tested. Thirty specimens had a perforation of 2 mm diameter in the centre. These were randomly divided into Group A and B. The perforations in the Group B specimens were repaired by laser welding using Cp Grade II titanium wire. The remaining 15 specimens were taken as control group. All the test specimens were layered with low fusing porcelain and tested for shear bond strength. The debonded specimens were subjected to SEM and EDS. Data were analysed with 1-way analysis of variance and Student's t-test for comparison among the different groups. One-way analysis of variance (ANOVA) showed no statistically significant difference in shear bond strength values at a 5% level of confidence. The mean shear bond strength values for control group, Group A and B was 8.4 +/- 0.5 Mpa, 8.1 +/- 0.4 Mpa and 8.3 +/- 0.3 Mpa respectively. SEM/EDS analysis of the specimens showed mixed and cohesive type of bond failure. Within the limitations of the study laser welding did not have any effect on the shear bond strength of porcelain bonded to titanium. PMID:21077419

  2. Evaluation on Shear Bond Strength of Different Glass Ionomer and Hydroxy Apatite Cements Used in Ossiculoplasty

    PubMed Central

    Kalcıoğlu, M. Tayyar; Uzun, İsmail Hakkı; Yalçın, Muhammet; Malkoç, Meral Arslan; Öğreten, Ayşe Tuba; Hanege, Fatih Mehmet

    2015-01-01

    Background: Glass ionomer cements (GIC) have been widely used in dentistry for many years. In recent years, GIC have also been used for ossiculoplasty. The bond strength of GIC used in ossiculoplasty and the way they may change over the years in the cementation area are being questioned. The bonding strength of the substance may be of importance for long-term outcomes. Aims: The aim of this study was to investigate the bond strength of different GIC on ossicles. Study Design: In vitro study. Methods: Twenty ossicles were obtained from patients who had undergone ear surgery. All specimens were randomly divided into four subgroups. All specimens were inserted into a specially designed apparatus for shear bond strength (SBS) testing. The tested materials [Aqua Meron (AM), Aqua Cem (AC), Ketac Cem (KC), and Otomimix CPB (OH)] were prepared and applied according to the manufacturer’s instructions. The SBS was tested using a universal testing machine at a crosshead speed of 0.5 mm/min. Results: The mean SBSs were found to be 13.28 MPa, 23.43 MPa, 8.51MPa, and 1.78 MPa for AM, AC, KC, and OH, respectively. AC had the highest SBS, which was statistically significantly different from that of KC and OH (p<0.05). Both AM and KC had higher SBS than OH (p<0.05). Conclusion: The results obtained in this study by investigating the bone-bonding strength of cements widely used in ossiculoplasty demonstrate that some of these substances have a greater ability to bond to ossicles compared to others. Further clinical investigations are needed to test different parameters. PMID:25759768

  3. The effect of Zircaloy-4 substrate surface condition on the adhesion strength and corrosion of SiC coatings

    NASA Astrophysics Data System (ADS)

    Al-Olayyan, Y.; Fuchs, G. E.; Baney, R.; Tulenko, J.

    2005-11-01

    Chemical vapor deposition (CVD) coatings of silicon carbide were deposited on various Zircaloy-4 substrates having different surface preparations to increase the corrosion resistance. The effects of several different surface treatments of the Zircaloy-4 substrate, such as surface roughness, the presence of interlayer, and pickling, on the adhesion and corrosion resistance of the SiC coatings have been evaluated using a scratch test method, electrochemical impedance spectroscopy and scanning electron microscopy. The scratch test was found to be a good tool for qualitative measurement of adhesion strength of thin coating films. Higher adhesion strengths were obtained for a moderate level of substrate roughness and the corrosion resistance of these films was closely related with the adhesion of the film on the substrate, as measured by impedance.

  4. Covering of fiber-reinforced composite bars by adhesive materials, is it necessary to improve the bond strength of lingual retainers?

    PubMed Central

    Heravi, Farzin; Kerayechian, Navid; Moazzami, Saied Mostafa; Shafaee, Hooman; Heravi, Parya

    2015-01-01

    Objectives: The objectives were to evaluate the shear bond strength (SBS) of fiber-reinforced composite (FRC) retainers when bonding them to teeth with and without covering the FRC bars using two different adhesive systems. Materials and Methods: Hundred and twenty extracted human maxillary premolars were randomly divided into eight groups (n = 15). FRC bars (4 mm length, Everstick Ortho®, Stick Tech, Oy, Turku, Finland) were bonded to the proximal (distal) surfaces of the teeth using two different adhesives (Tetric Flow [TF, Ivoclar Vivadent, Switzerland] and resin-modified glass ionomer cement [RMGIC, ODP, Vista, CA, USA]) with and without covering with the same adhesive. Specimens were exposed to thermocycling (625 cycles per day [5–55°C, intervals: 30 s] for 8 days). The SBS test was then performed using the universal testing machine (Zwick, GMBH, Ulm, Germany). After debonding, the remaining adhesive on the teeth was recorded by the adhesive remnant index (0–3). Results: The lowest mean SBS (standard deviation) was found in the TF group without covering with adhesive (12.6 [2.11] MPa), and the highest bond strength was in the TF group with covering with adhesive (16.01 [1.09] MPa). Overall, the uncovered RMGIC (15.65 [3.57] MPa) provided a higher SBS compared to the uncovered TF. Covering of FRC with TF led to a significant increase in SBS (P = 0.001), but this was not true for RMGIC (P = 0.807). Thermal cycling did not significantly change the SBS values (P = 0.537). Overall, eight groups were statistically different (ANOVA test, F = 3.32, P = 0.034), but no significant differences in bond failure locations were found between the groups (Fisher's exact tests, P = 0.92). Conclusions: The present findings showed no significant differences between SBS of FRC bars with and without covering by RMGIC. However, when using TF, there was a significant difference in SBS measurements between covering and noncovering groups. Therefore, the use of RMGIC without

  5. Analysis of bonding stress with high strength adhesive between the reflector and the mounts in space camera

    NASA Astrophysics Data System (ADS)

    Li, Yan; Hu, Yongming; Li, Yingcai; Qu, Youshan; Ding, Jiaoteng

    2010-05-01

    The bond stress is analyzed when the optics were attached to their mounts with high strength adhesive in space camera. The model was founded that a circular planar reflector supported by one, three, six or twelve adhesive points, which evenly distributed on different circles. The surface deformation of reflector is mainly caused by the shrinkage after solidity. The functional relation was deduced between the bonding force of the reflector and the characteristic dimension of the adhesive spot using piecewise function, and then analyzing the RMS error of no gravity assuming that the adhesive spot is fixed connect to the reflector using Nastran. The analytical RMS error was the aberration which added by solidification of adhesive. The calculation result is in good agreement with the experiment results. This analyzing method will be useful for the microstress clamping of high performance reflector system for application in space optical systems.

  6. Bond strengths of a self-etching adhesive to dentin surfaces treated with saliva, blood, and different hemostatic agents.

    PubMed

    Unlu, Nimet; Cebe, Fatma; Cebe, Mehmet Ata; Cetin, Ali Riza; Cobanoglu, Nevin

    2015-01-01

    The aim of this study was to evaluate the microtensile bond strengths of a self-etching adhesive to dentin surfaces after treatment with 4 different hemostatic agents in the presence of saliva and blood. After testing, no significant differences were found between the mean bond strength of Clearfil SE (CSE) Bond resin adhesive to normal dentin and those of CSE to dentin treated with the hemostatic agents ViscoStat Clear, Astringedent, or Astringedent X (P > 0.05). However, the mean bond strength of CSE Bond to dentin treated with Ankaferd Blood Stopper (ABS) was significantly greater than those of the other groups (P < 0.05). Thus, while 3 of the tested hemostatic agents did not have significant effects on the bond strength of composite resin to dentin, ABS increased the bond strength of CSE Bond to dentin. PMID:26147164

  7. Effect of blood contamination with 1-step self-etching adhesives on microtensile bond strength to dentin.

    PubMed

    Yoo, H M; Pereira, P N R

    2006-01-01

    This study evaluated the effect of blood contamination and decontamination methods on the microtensile bond strength of 1-step self-etching adhesive systems to dentin contaminated after adhesive application and light curing. Three commercially available "all-in-one" adhesives (One Up Bond F, Xeno III and Adper Prompt L-Pop) and 1 resin composite (Clearfil AP-X) were used. Third molars that had been stored in distilled water with 0.5% thymol at 4 degrees C were ground with #600 SiC paper under running water to produce a standardized smear layer. The specimens were randomly divided into groups according to the 3 adhesive systems. The adhesive systems were used under 3 conditions: no contamination, which was the control (C); contamination of the light-cured adhesive surface with blood and reapplication of adhesive (Contamination 1) and contamination of the light-cured adhesive surface with blood, then washing, drying and reapplication of the adhesive (Contamination 2). Following light curing of the adhesive, the resin composite was placed in 3 increments up to a 5-mm-thick layer on the bonded surface. All specimens were stored in distilled water at 37 degrees C for 24 hours. The microtensile bond strength was measured using a universal testing machine (EZ test), and data were analyzed by 1-way ANOVA followed by the Duncan test to make comparisons among the groups (p=0.05). After debonding, 5 specimens were selected from each group and examined in a scanning electron microscope to evaluate the modes of fracture. For all adhesives, contamination groups showed lower bond strength than the control (p<0.05). There was no statistically significant difference among the control groups (p>0.05). For Xeno III and Adper Prompt L-Pop, contamination group #2 showed the lowest bond strength among the groups (p<0.05). For One Up Bond F, contamination group #2 showed higher bond strength than contamination group #1 but showed no statistical significance between them (p>0.05). PMID

  8. The Effect of Veneer Layers on the Bending Shear Strength and Delamination of Laminated Veneer Lumber (LVL) from Oil Palm Trunk (OPT)

    NASA Astrophysics Data System (ADS)

    Jamaludin, M. A.; Nordin, K.; Bahari, S. A.; Ahmad, M.

    2010-03-01

    The aim of this study was to evaluate the effects of the number of veneer layers on the bending shear strength and delamination of Laminated Veneer Lumber (LVL) from oil palm trunk (OPT). Five (5), Six (6) and Seven (7) veneer layers of OPT LVL were manufacture