Science.gov

Sample records for adhesive system clearfil

  1. The Effect of Temperature on Shear Bond Strength of Clearfil SE Bond and Adper Single Bond Adhesive Systems to Dentin

    PubMed Central

    Sharafeddin, Farahnaz; Nouri, Hossein; Koohpeima, Fatemeh

    2015-01-01

    Statement of the Problem Monomer viscosity and solvent evaporation can be affected by the adhesive system temperature. Higher temperature can elevate the vapor pressure in solution and penetration of adhesive in smear layer. Bonding mechanism may be influenced by the adhesive temperature. Purpose This study aimed to evaluate the effect of pre-heating on shear bond strength of etch-and-rinse and self-etching adhesives to ground bovine dentin surfaces, at temperatures of 4˚C, 25˚C and 40˚C. Materials and Method In this experimental study, 60 maxillary bovine incisors were randomly divided into 6 groups (n=10). The central part of labial dentin surfaces was exposed with a diamond bur and standardized smear layer was created by using silicon carbide paper (600 grit) under water-coolant while the specimens were mounted in acrylic resin. Two adhesive systems, an etch-and-rinse (Adper single bond) and a self-etch (Clearfil SE Bond) were stored at temperatures of 4˚C, 25˚C and 40˚C for 30 minutes and were then applied on the prepared labial surface according to the manufacturer’s instructions. The composite resin (Z350) was packed in Teflon mold (5 mm in diameter) on this surface and was cured. The shear bond strength (MPa) was evaluated by universal testing machine (Zwick/Roell Z020, Germany) at cross head speed of 1mm/min. The results were statistically analyzed by using ANOVA and Tukey tests (p< 0.05). Results No significant difference was found between the shear bond strength of Clearfil SE Bond adhesive in different temperature and single Bond adhesive system at 25 ˚C and 40 ˚C. However, there were significant differences between 4 ˚C of Adper single bond in comparison with 25˚C and 40˚C (p= 0.0001). Conclusion Pre-heating did not affect the shear bond strength of SE Bond, but could promote the shear bond strength of Adper Single Bond. PMID:25759852

  2. Clinical status of ten dentin adhesive systems.

    PubMed

    Van Meerbeek, B; Peumans, M; Verschueren, M; Gladys, S; Braem, M; Lambrechts, P; Vanherle, G

    1994-11-01

    Laboratory testing of dentin adhesive systems still requires corroboration by long-term clinical trials for their ultimate clinical effectiveness to be validated. The objective of this clinical investigation was to evaluate, retrospectively, the clinical effectiveness of earlier-investigated dentin adhesive systems (Scotchbond, Gluma, Clearfil New Bond, Scotchbond 2, Tenure, and Tripton), and to compare their clinical results with those obtained with four modern total-etch adhesive systems (Bayer exp. 1 and 2, Clearfil Liner Bond System, and Scotchbond Multi-Purpose). In total, 1177 Class V cervical lesions in the teeth of 346 patients were restored following two cavity designs: In Group A, enamel was neither beveled nor intentionally etched, as per ADA guidelines; in Group B, adjacent enamel was beveled and conditioned. Clinical retention rates definitely indicated the improved clinical efficacy of the newest dentin adhesives over the earlier systems. With regard to adhesion strategy, adhesive systems that removed the smear layer and concurrently demineralized the dentin surface layer performed clinically better than systems that modified the disorderly layer of smear debris without complete removal. Hybridization by resin interdiffusion into the exposed dentinal collagen layer, combined with attachment of resin tags into the opened dentin tubules, appeared to be essential for reliable dentin bonding but might be insufficient by itself. The additional formation of an elastic bonding area as a polymerization shrinkage absorber and the use of a microfine restorative composite apparently guaranteed an efficient clinical result. The perfect one-year retention recorded for Clearfil Liner Bond System and Scotchbond Multi-Purpose must be confirmed at later recalls. PMID:7983255

  3. The effect of different adhesive system applications on push-out bond strengths of glass fiber posts

    PubMed Central

    Deniz Arısu, Hacer; Üçtaşlı, Mine Betül; Okay, Tufan Can

    2013-01-01

    PURPOSE Over the past years, the adhesion of fiber posts luted with simplified adhesive systems has been a matter of great interest. The aim of this study was to assess the post retentive potential of a self-adhesive resin cement using different adhesive systems to compare the push-out bond strengths of fiber posts. MATERIALS AND METHODS The post spaces of 56 mandibular premolar roots were prepared and divided into 4 experimental groups and further divided into 2 subgroups according to testing time (n=7). The fiber posts (Rely X Fiber Post) were luted with a self-adhesive resin cement (RelyX Unicem) and one of the following adhesive systems: no adhesive, a total-etch adhesive resin (Single Bond), a two-step self-etch adhesive resin (Clearfil SE Bond) and a one-step self-etch adhesive resin (Clearfil S3 Bond). Each root was cut horizontally, and 1.5 mm thick six root segments were prepared. Push-out tests were performed after one week or three months (0.5 mm/min). Statistical analysis were performed with three-way ANOVA (α=.05). RESULTS Cervical root segments showed higher bond strength values than middle segments. Adhesive application increased the bond strength. For one week group, the total-etch adhesive resin Single Bond showed higher bond strength than the self-adhesive resin cement RelyX Unicem applied without adhesive resin at middle region. For 3 months group, the two-step self-etch adhesive resin Clearfil SE Bond showed the highest bond strength for both regions. Regarding the time considered, Clearfil SE Bond 3 months group showed higher bond strength values than one week group. CONCLUSION Using the adhesive resins in combination with the self-adhesive resin cement improves the bond strengths. The bond strength values of two-step self-etch adhesive resin Clearfil SE Bond improved as time passes. PMID:24049572

  4. Morphological categorization of acid-base resistant zones with self-etching primer adhesive systems.

    PubMed

    Inoue, Go; Nikaido, Toru; Sadr, Alireza; Tagami, Junji

    2012-01-01

    This study investigated the influence of the composition of self-etching primer adhesive systems on the morphology of acid-base resistant zones (ABRZs). One-step self-etching primer systems (Clearfil Tri-S Bond, G-Bond, and One-Up Bond F Plus) and two-step self-etching primer systems (Clearfil SE Bond, Clearfil Protect Bond, UniFil Bond, and Mac Bond II) were used in this study. Each adhesive was applied on prepared dentin disk surfaces, and a resin composite was placed between two dentin disks. All resin-bonded specimens were subjected to acid-base challenge. Observation under a scanning electron microscope (SEM) revealed the creation of an ABRZ adjacent to the hybrid layer for all the self-etch primer adhesive systems, even when non-fluoride releasing adhesives were used. The presence of fluoride in two-step self-etching adhesive significantly increased the thickness of ABRZ created. Results suggested that an ABRZ was created with the use of self-etching primer adhesive systems, but its morphology differed between one-and two-step self-etching primer adhesive systems and was influenced by fluoride release activity.

  5. Bonding Durability of Four Adhesive Systems

    PubMed Central

    Seyed Tabai, Elaheh; Mohammadi Basir, Mahshid

    2015-01-01

    Objectives: This study aimed to compare the durability of four adhesive systems by assessing their microtensile bond strength (MTBS) and microleakage during six months of water storage. Materials and Methods: A total of 128 human third molars were used. The adhesives tested were Scotch Bond Multipurpose (SBMP), Single Bond (SB), Clearfil-SE bond (CSEB), and All-Bond SE (ABSE). After sample preparation for MTBS testing, the microspecimens were subjected to microtensile tester after one day and six months of water storage. For microleakage evaluation, facial and lingual class V cavities were prepared and restored with composite. After thermocycling, microleakage was evaluated. Bond strength values were subjected to one-way ANOVA and Tamhane’s test, and the microleakage data were analyzed by the Kruskal-Wallis, Dunn, Mann Whitney and Wilcoxon tests (P<0.05). Results: Single Bond yielded the highest and ABSE yielded the lowest bond strength at one day and six months. Short-term bond strength of SBMP and CSEB was similar. After six months, a significant decrease in bond strength was observed in ABSE and SBMP groups. At one day, ABSE showed the highest microleakage at the occlusal margin; however, at the gingival margin, there was no significant difference among groups. Long-term microleakage of all groups at the occlusal margins was similar, whilst gingival margins of SBMP and SB showed significantly higher microleakage. Conclusion: The highest MTBS and favorable sealability were obtained by Clearfil SE bond. Water storage had no effect on microleakage of self-etch adhesives at the gingival margin or MTBS of CSEB and SB. PMID:27123015

  6. Effect of Fluoride-Releasing Adhesive Systems on the Mechanical Properties of Eroded Dentin.

    PubMed

    Guedes, Ana Paula Albuquerque; Moda, Mariana Dias; Suzuki, Thaís Yumi Umeda; Godas, André Gustavo de Lima; Sundfeld, Renato Herman; Briso, André Luiz Fraga; Santos, Paulo Henrique dos

    2016-01-01

    The aim of the study was to evaluate the effect of erosive pH cycling with solutions that simulate dental erosion on Martens hardness (HMV) and elastic modulus (Eit) of dentin restored with fluoride-releasing adhesive systems. Twenty-seven bovine dentin slabs were restored with three adhesive systems: Adper Single Bond 2 total-etch adhesive system, One Up Bond F and Clearfil SE Protect fluoride-containing self-etching adhesive systems. The restorations were made with Filtek Z250. The HMV and Eit values at distances of 10, 30, 50 and 70 µm from the interface were evaluated using a dynamic ultra microhardness tester before and after immersion in deionized water, citric acid and hydrochloric acid (n=9). Data were submitted to repeated-measures ANOVA and Fisher's PLSD tests (=0.05). After erosive cycling, HMV values of dentin decreased in all groups. For dentin restored with Adper Single Bond 2, the lowest values were found closer to the hybrid layer, while for One Up Bond F and Clearfil SE Protect, the values remained unaltered at all distances. For dentin restored with fluoride-releasing adhesive systems, a decrease in Eit was found, but after 30 µm this difference was not significant. The acid substances were able to alter HMV and Eit of the underlying dentin. For fluoride-releasing adhesives, the greater the distance from bonded interface, the lower the Eit values. The fluoride in One Up Bond F and Clearfil SE Protect was able to protect the underlying dentin closer to the materials. In this way, the fluoride from adhesive systems could have some positive effect in the early stages of erosive lesions.

  7. Effect of Fluoride-Releasing Adhesive Systems on the Mechanical Properties of Eroded Dentin.

    PubMed

    Guedes, Ana Paula Albuquerque; Moda, Mariana Dias; Suzuki, Thaís Yumi Umeda; Godas, André Gustavo de Lima; Sundfeld, Renato Herman; Briso, André Luiz Fraga; Santos, Paulo Henrique dos

    2016-01-01

    The aim of the study was to evaluate the effect of erosive pH cycling with solutions that simulate dental erosion on Martens hardness (HMV) and elastic modulus (Eit) of dentin restored with fluoride-releasing adhesive systems. Twenty-seven bovine dentin slabs were restored with three adhesive systems: Adper Single Bond 2 total-etch adhesive system, One Up Bond F and Clearfil SE Protect fluoride-containing self-etching adhesive systems. The restorations were made with Filtek Z250. The HMV and Eit values at distances of 10, 30, 50 and 70 µm from the interface were evaluated using a dynamic ultra microhardness tester before and after immersion in deionized water, citric acid and hydrochloric acid (n=9). Data were submitted to repeated-measures ANOVA and Fisher's PLSD tests (=0.05). After erosive cycling, HMV values of dentin decreased in all groups. For dentin restored with Adper Single Bond 2, the lowest values were found closer to the hybrid layer, while for One Up Bond F and Clearfil SE Protect, the values remained unaltered at all distances. For dentin restored with fluoride-releasing adhesive systems, a decrease in Eit was found, but after 30 µm this difference was not significant. The acid substances were able to alter HMV and Eit of the underlying dentin. For fluoride-releasing adhesives, the greater the distance from bonded interface, the lower the Eit values. The fluoride in One Up Bond F and Clearfil SE Protect was able to protect the underlying dentin closer to the materials. In this way, the fluoride from adhesive systems could have some positive effect in the early stages of erosive lesions. PMID:27058377

  8. 10-year clinical evaluation of a self-etching adhesive system.

    PubMed

    Akimoto, Naotake; Takamizu, Masaaki; Momoi, Yasuko

    2007-01-01

    This study evaluated the long-term clinical performance of a self-etching adhesive system, Clearfil Liner Bond 2. Two operators placed a total of 87 restorations among 42 patients. Carious dentin was identified with the help of Caries Detector and was removed using only a low speed round bur. Clearfil Liner Bond 2 was applied following the manufacturer's directions, and the resin composite was then placed. The number of restorations placed by cavity classification were: 8-Class I, 11-Class II, 21-Class III, 2-Class IV and 45-Class V. The restorations were evaluated in 5 categories according to modified USPHS criteria: pulpal response, marginal integrity, marginal discoloration, retention and secondary caries. Assessments were done at baseline, immediately after placement and at 6-months and 1, 5, 7 and 10 years. Recall rates at each assessment period were 83.9% (6-months), 82.8% (1 year), 59.8% (5 years), 77.0% (7 years) and 50.6% (10 years). In terms of assessment categories, there were no recorded sensitivity, retention loss or secondary caries at any of the five recall periods. At the 10-year assessment, 40 out of 44 restorations (90.9%) were rated Bravo for marginal integrity and 39 restorations (88.6%) were rated Bravo for marginal discoloration (Wilcoxon signed-ranks test p < 0.05). This data demonstrates the retention rate and pulpal response of the self-etching adhesive system Clearfil Liner Bond 2 was excellent at 10 years. Most cases showed slight marginal changes during clinical function; however, these changes were not clinically severe by USPHS criteria. These data demonstrate that placement of the Clearfil Liner Bond 2 self-etching adhesive system was demonstrated to be acceptable for the clinical restoration of human teeth following 10 years of clinical function.

  9. Shear bond strength of self-etching adhesive systems to Er:YAG-laser-prepared dentin.

    PubMed

    Brulat, Nathalie; Rocca, Jean-Paul; Leforestier, Eric; Fiorucci, Gilbert; Nammour, Samir; Bertrand, Marie-France

    2009-01-01

    This study was conducted to compare the shear bond strengths of composite resin bonded to Er:YAG laser or bur-prepared dentin surfaces using three self-etching adhesive systems. The occlusal surfaces of 120 human third molars were ground flat to expose dentin. The dentin was prepared using either a carbide bur or an Er:YAG laser at 350 mJ/pulse and 10 Hz (fluence, 44.5 J/cm(2)). Three different self-etching adhesive systems were applied: iBond, Xeno III and Clearfil SE Bond. Rods of composite resin were bonded to dentin surfaces and shear bond tests were carried out. Both dentin surfaces after debonding and resin rods were observed using a scanning electron microscope. When the Xeno III was used, no difference was observed on shear bond strength values when bur and Er:YAG laser were compared. When using iBond and Clearfil SE Bond, bond strength values measured on Er:YAG-laser-prepared surfaces were lower than those observed on bur-prepared surfaces. The absence of smear layer formation during the preparation of the dentin by the Er:YAG laser did not improve the adhesion values of self-etching adhesive systems.

  10. Bonding stability of adhesive systems to eroded dentin.

    PubMed

    Cruz, Janaina Barros; Bonini, Gabriela; Lenzi, Tathiane Larissa; Imparato, José Carlos Pettorossi; Raggio, Daniela Prócida

    2015-01-01

    This in vitro study evaluated the immediate and 6 months microshear bond strength (µSBS) of different adhesive systems to sound and eroded dentin. Sixty bovine incisors were embedded in acrylic resin and ground to obtain flat buccal dentin surfaces. Specimens were randomly allocated into two groups: sound dentin (immersion in artificial saliva) and eroded dentin (erosive challenge following a pH cycling model comprising 4 ×/day Sprite Light® drink for 10 days). Then, specimens were reassigned according to the adhesive system: etch-and-rinse adhesive (Adper Single Bond), two-step self-etch system (Clearfil SE Bond), or one-step self-etch adhesive (Adper Easy One). Polyethylene tubes with an internal diameter of 0.76 mm were placed over pre-treated dentin and filled with resin composite (Z250). Half of the specimens were evaluated by the µSBS test after 24 h, and the other half 6 months later, after water storage at 37 °C. Failure mode was evaluated using a stereomicroscope (400 ×). Data were analyzed by three-way repeated measures analysis of variance and Tukey's post hoc tests (α = 0.05). After 6 months of water aging, marked reductions in µSBS values were observed, irrespective of the substrate. The µSBS values for eroded dentin were lower than those obtained for sound dentin. No difference in bonding effectiveness was observed among adhesive systems. For all groups, adhesive/mixed failure was observed. In conclusion, eroded dentin compromises the bonding quality of adhesive systems over time. PMID:26154377

  11. Effect of a caries-detecting solution on the tensile bond strength of four dentin adhesive systems.

    PubMed

    Yokota, Haruka; Kubo, Shisei; Yokota, Hiroaki; Ohsawa, Masahiro; Hayashi, Yoshihiko

    2006-03-01

    This study investigated the effect of a caries-detecting solution on the tensile bond strength (TBS) to sound bovine dentin--which was either rinsed thoroughly of or contaminated with the caries-detecting solution. Caries Detector (1.0% acid red in propylene glycol) was applied on flat dentin surfaces for 10 seconds, rinsed, and dried with syringe air. In another group, Caries Detector was not rinsed but air-dried. Then, the surfaces were treated with one of the following adhesive systems: Clearfil Protect Bond, Clearfil SE Bond, One-Up Bond F, or Single Bond. Furthermore, an ingredient of Caries Detector, either 1.0% acid red aqueous solution or propylene glycol, was applied to evaluate the effect of each component. In the control groups, Caries Detector was not applied to the dentin surfaces. Finally, a resin composite was light-cured and the TBS measured. Fractured specimens and treated dentin surfaces were observed by SEM. Caries Detector did not reduce the tensile bond strength of any adhesive system (p>0.05) when rinsed thoroughly. On the other hand, when dentin surface was contaminated with Caries Detector, TBS decreased significantly with Clearfil SE Bond and Single Bond. As for the ingredients of Caries Detector, the effect of acid red on TBS was not significant, but that of propylene glycol was significant.

  12. Effect of curing unit and adhesive system on marginal adaptation of composite restorations.

    PubMed

    Casselli, Denise Sa Maia; Faria-e-Silva, Andre Luis; Casselli, Henrique; Martins, Luis Roberto Marcondes

    2012-01-01

    This study sought to evaluate how a curing unit and adhesive system affected the marginal adaptation of resin composite restorations. Class V cavities were prepared in bovine teeth with a gingival margin in dentin and an incisal margin in enamel. The cavities were restored with a micro-hybrid resin composite using one of four adhesives: Single Bond 2, Prime & Bond NT, Clearfil SE Bond, Xeno IV. The light-activations were performed using a quartz-tungsten-halogen (QTH) lamp or a second-generation light-emitting diode (LED). Restorations were finished and polished and epoxy replicas were prepared. Marginal adaptation was analyzed by using scanning electronic microscopy (magnification 500X). The widest gaps in each margin were recorded, and data were submitted to Kruskal-Wallis, Mann-Whitney, and Wilcoxon tests (α = 0.05). Differences between the adhesives were observed only when the dentin margins were evaluated: Clearfil SE Bond demonstrated better marginal adaptation than Prime & Bond NT or Single Bond 2 (which demonstrated the widest gaps in the dentin margin). The type of curing unit only affected the results for Xeno IV when the enamel margin was analyzed; the LED lamp promoted smaller gaps than the QTH lamp. PMID:23220321

  13. Instant acting adhesive system

    NASA Technical Reports Server (NTRS)

    Davis, T. R.; Haines, R. C.

    1971-01-01

    Adhesive developes 80 percent of minimum bond strength of 250 psi less than 30 sec after activation is required. Adhesive is stable, handles easily, is a low toxic hazard, and is useful in industrial and domestic prototype bonding and clamping operations.

  14. Influence of dentin pre-treatment with NaOCl on the morphology of adhesive interface of self-etching adhesive systems

    NASA Astrophysics Data System (ADS)

    Delfino, Carina Sinclér; Palma-Dibb, Regina Guenka

    2006-12-01

    The aim of this in vitro study was to evaluate the influence of pre-treatment using NaOCl in the morphology of dentin/resin interface. The three self-etching adhesive systems were selected: One-Up Bond F (Tokuyama, Tokyo, Japan), Prime & Bond NT/NRC (Dentsply, Konstanz, Germany) and Clearfil SE Bond (Kuraray, Osaka, Japan). Nine dentin disks were used in this study. Half disk was treated strictly following manufacturers' instructions (control groups). The other half was treated with a solution of 2.5% NaOCl (experimental groups). After the bonding protocols were accomplished, a low viscosity resin (Flow-it/Jeneric Pentron) was inserted and light-cured. Specimens were prepared for SEM. Morphological aspects were observed, comparing both the groups. The analysis of the photomicrographs revealed formation of a hybrid layer for both controls groups along the interface. The experimental groups showed a resin/dentin interface more irregular and produced topographical features with funnel-shaped dentin tubules. Areas with absence of hybrid layer formation were observed, mainly for One-Up Bond F, although tubules their lateral branches were filled with Prime & Bond NT/NRC and Clearfil Se Bond adhesive systems. It was concluded that the use of NaOCl influenced negatively in the formation of the hybrid layer, mainly for the One-Up Bond F.

  15. Distribution of calcium ions at the interface between resin bonding materials and tooth dentin. Use of commercially available adhesive systems.

    PubMed

    Hanaizumi, Y; Maeda, T; Takano, Y

    1998-01-01

    It has been proposed that calcium ions play a key role in chemical (chelate) binding between the adhesive resin and dentin surface. However, no data is available concerning how calcium ions are distributed at the binding sites. The aim of this study is to demonstrate calcium ions at the resin-dentin interface by means of X-ray microanalysis and calcium ion-sensitive histochemical staining. The dentin surface in human teeth was ground by use of 240 grit silicon carbide abrasive paper under running water and treated with the dentin-primer and adhesive resin in Clearfil Liner Bond System or IMPERVA Bond System according to the manufacturer's instructions. After removing dentin matrix and isolating adhesive resin by the KOH-digestion method, one half of the samples were processed for scanning electron microscopy. The rest were embedded in Epon 812 and processed either for glyoxal bis (2-hydroxyanil) (GBHA) staining or transmission electron microscopy combined with X-ray microanalysis. Transmission electron microscopy revealed Ca-phosphate deposits at the bottom of the resin-impregnated layer. The adhesive resin above the resin-impregnated layer was amorphous and showed no precipitates of Ca-phosphate. GBHA displayed intense calcium reactions throughout the resin-impregnated layer and also moderate ones in the 10 microns (Clearfil Liner Bond System) or 30 microns (IMPERVA Bonding System) thick boundary zone of the adhesive resin as well as in the resin tags. These data are the first to offer a distinct localization of calcium ions within the adhesive resin at the dentin-resin interface.

  16. Microleakage Evaluation of Adhesive Systems Following Pulp Chamber Irrigation with Sodium Hypochlorite

    PubMed Central

    Moghaddas, Mohammad Javad; Moosavi, Horieh; Ghavamnasiri, Marjaneh

    2014-01-01

    Background and aims. This in vitro study evaluated the effect of delaying composite resin restorative procedures bonded with total-etch and self-etch adhesive systems on microleakage following root canal irrigation with sodium hy-pochlorite (NaOCl) solution. Materials and methods. The roofs of pulp chambers and roots (1–2 mm below furcation) of 40 human first molar teeth were cut and pulp tissues completely removed. The teeth were randomly divided into two main groups (n = 20). Group E (experimental) was irrigated with 5% NaOCl and group C (control) was left untreated. For the experimental group, after obturation of root canals with gutta-percha and sealing the cavity with Cavit, the specimens were stored in artificialsaliva for two weeks. Then each group was divided into two subgroups according to the total-etch or self-etch adhesive application protocol: Scotchbond Multi-Purpose and Clearfil SE Bond. The specimens were restored with composite resin using each bonding agent: Z250 and Clearfil Photo Core, respectively. Fluid filtration method was used for evaluation of microleakage. Data was analyzed using two-way ANOVA ( α= 0.05). Results. Two types of dentin adhesive systems showed no statistically significant differences in microleakage (P = 0.77). NaOCl-treated groups demonstrated significantly higher microleakage values compared to the non-NaOCl-treated groups (P= 0.001). The interaction between the two factors was not significant (P = 0.78). Conclusion. Differences in inlay temperature had no effect on microleakage. CAD/CAM inlays had lower cement thick-ness than laboratory-made inlays, but this was not related to their microleakage. PMID:25024835

  17. Silorane adhesive system: a case report.

    PubMed

    Ruschel, Vanessa Carla; Baratieri, Luiz Narciso; Monteiro Júnior, Sylvio; Andrada, Mauro Amaral Caldeira de

    2014-01-01

    Silorane-based composite resin requires a specific adhesive system: a 2-step self-etching adhesive. Clinical protocols are well established and are based on the principles of adhesion to mineralized dental tissues. In this paper, we present a clinical application of the silorane adhesive system in a class-II restoration using silorane-based composite resin.

  18. Micro-tensile bond strength of self-etching primer adhesive systems to human coronal carious dentin.

    PubMed

    Doi, J; Itota, T; Torii, Y; Nakabo, S; Yoshiyama, M

    2004-10-01

    The aim of this study was to evaluate the micro-tensile bond strengths of three self-etching primer adhesive systems to normal dentin (ND), caries-affected dentin (CAD) and caries-infected dentin (CID). Human extracted molars with caries were used, and flat dentin surfaces ground by 600-grit SiC paper were prepared. The surfaces were dyed using Caries-Detector solution, treated with Clearfil SE Bond, Mac-Bond II and UniFil Bond, and then covered with resin composites according to manufacturer's instructions. After immersion in 37 degrees C water for 24 h, the teeth were serially sectioned into multiple slices. Each slice was distinguished into ND, CAD and CID groups by the degree of staining, and the bond strength was measured in a universal testing machine. Scanning electron microscopic (SEM) observation was also performed. For statistical analysis, anova and Scheffe's test were used (P < 0.05). The bond strengths of the three adhesive systems to CAD and CID were significantly lower than those to ND. There was significant difference in the bond strength to ND between Clearfil SE Bond and UniFil Bond, but no significant differences to CAD and CID among the three adhesive systems. On SEM, the hybrid layers in CAD and CID showed more porous structures compared with ND. The results indicated that the bond strengths to CAD and CID were not affected by a variety of self-etching primer adhesive systems because of the porous hybrid layer formation in carious dentin.

  19. Influence of two self-etching primer systems on enamel adhesion.

    PubMed

    Borges, Márcio Antônio Paraizo; Matos, Irma Cunha; Dias, Kátia Regina Hostílio Cervantes

    2007-01-01

    The aim of this study was to compare two self-etching and a total-etch adhesive systems by assessing their shear bond strength to bovine enamel and the microleakage on class V composite restorations prepared on bovine enamel. Bovine teeth selected and allocated in three groups: Group 1: Scothbond Multi-Purpose; Group 2: Clearfil Liner Bond 2V; Group 3: Etch & Prime 3.0. For the microleakage test, each group was composed of ten class V restorations on the buccal surface. Two examiners attributed scores ranging from 0 (without leakage) to 3 (maximum leakage) to determine silver nitrate penetration at enamel-composite interface. Microleakage data were analyzed statistically by Kruskal-Wallis and Mann-Whitney tests at 5% significance level. For the bond strength test, ten teeth of each group were included, had their buccal surfaces flattened in order to obtain a 3-mm-diameter area to which a resin cylinder was bonded. After one week, the specimens were tested in shear strength at a crosshead speed of 0.5 mm/min. Bond strength data were treated by ANOVA and LSD tests at 5% significance level. The debonded interfaces were examined under scanning electron microscopy. No leakage was observed along enamel margins. Means (+/- SD) in MPa were: 18.75 (+/-5.83), 22.17 (+/-4.95) and 14.93 (+/-6.7) for Groups 1, 2, and 3, respectively. According to the results of this study, the self-etching primer systems presented statistically similar behavior (p>0.05) to that of the total-etch adhesive system (used as a control), not only regarding marginal leakage at bovine enamel-composite resin interface, but also regarding the shear bond strength of the bovine enamel. However, the self-etching primer systems differed significantly (p>0.05) to each other, with better results for Clearfil Liner Bond 2V. In conclusion, the self-etching primer systems had a performance comparable to that of the total-etch adhesive system. PMID:17982549

  20. Effect of the concentrations of calcium chloride and synthetic peptides in primers on dentin bond strength of an experimental adhesive system.

    PubMed

    Shinkai, Koichi; Taira, Yoshihisa; Suzuki, Masaya; Kato, Chikage; Yamauchi, Junichi; Suzuki, Shiro; Katoh, Yoshiroh

    2010-11-01

    The purpose of this study was to evaluate the microtensile bond strength (MTBS) of an experimental adhesive system, which was prepared using different concentrations of calcium chloride (CaCl(2)) and synthetic peptides (pA/pB). Specimens were divided into six experimental groups and two control groups. In the experimental groups, self-etching primers used in the adhesive system comprised both Primer-I (Clearfil SE Bond Primer (SEP) containing 1, 5, or 10 wt% CaCl(2)) and Primer-II (SEP containing 0.1, 1, 5, or 10 wt% pA/pB). The negative control group used Primer-I containing 10 wt% CaCl(2 )and Primer-II containing 10 wt% pA/pB. The positive control group used Clearfil SE Bond only. Respective primers, bonding resin, and composite paste were applied and photopolymerized individually on flattened dentin surfaces of extracted human molars. All specimens were subjected to MTBS testing (n=20). Two-way ANOVA revealed significant differences in MTBS among CaCl(2 )concentrations in Primer-I and pA/pB concentrations in Primer-II (p<0.001), and there was a significant interaction between these two factors (p=0.011).

  1. Antibacterial effect of self-etching adhesive systems on Streptococcus mutans

    PubMed Central

    Kim, Seung-Ryong

    2014-01-01

    Objectives In this study, we evaluated the antibacterial activity of self-etching adhesive systems against Streptococcus mutans using the agar diffusion method. Materials and Methods Three 2-step systems, Clearfil SE Bond (SE, Kuraray), Contax (CT, DMG), and Unifil Bond (UnB, GC), and three 1-step systems, Easy Bond (EB, 3M ESPE), U-Bond (UB, Vericom), and All Bond SE (AB, BISCO) were used. 0.12% chlorhexidine (CHX, Bukwang) and 37% phosphoric acid gel (PA, Vericom) were used as positive controls. Results The antibacterial activity of CHX and PA was stronger than that of the other groups, except SE. After light activation, the inhibition zone was reduced in the case of all 2-step systems except CT. However, all 1-step systems did not exhibit any inhibition zone upon the light activation. Conclusions SE may be better than CT or UnB among the 2-step systems with respect to antibacterial activity, however, 1-step systems do not exhibit any antibacterial activity after light curing. PMID:24516827

  2. Cytotoxicity of universal, self-etching and etch-and-rinse adhesive systems according to the polymerization time.

    PubMed

    Elias, Silvia T; Santos, Andressa F Dos; Garcia, Fernanda C P; Pereira, Patrícia N R; Hilgert, Leandro A; Fonseca-Bazzo, Yris M; Guerra, Eliete N S; Ribeiro, Ana Paula Dias

    2015-01-01

    This in vitro study evaluated in fibroblast cultures the direct cytotoxicity of universal, self-etching and etch-and-rinse adhesive systems according to the polymerization time. Paper discs were impregnated with adhesives and light-cured (10, 20 or 40 s). The discs were then immersed in culture medium to obtain the eluates for the experimental groups (A1-Single Bond 2; A2-Scotchbond Multi-purpose; A3-Clearfil SE Bond; A4 Scotchbond Universal). As a negative control, paper discs were immersed in culture medium only. After 24 h or 7 days, the eluate obtained was applied on fibroblast culture. Cell viability, cell morphology, membrane damage and the presence of residual monomers were evaluated by MTT assay, SEM, flow cytometry and high-performance liquid chromatography (HPLC), respectively. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests (=0.05). All adhesive systems significantly reduced 33-51% cell metabolism when compared to the negative control, regardless of polymerization time, storage period and adhesive system. Moreover, the adhesives caused intense morphological alterations and cell membrane damage. Toxicity was directly related to the presence of residual monomers in the eluates. Residual monomers and additional components are capable of reducing mitochondrial activity, causing morphological alterations and disruption of the cell membrane in fibroblasts, regardless of the polymerization time. This study highlights that despite the more complex composition of the universal adhesive system, its biological response was not more toxic when compared with other systems, even when the shortest polymerization time was tested in cell culture.

  3. Fracture of composite-adhesive-composite systems

    NASA Technical Reports Server (NTRS)

    Ripling, E. J.; Santner, J. S.; Crosley, P. B.

    1984-01-01

    This program was undertaken to initiate the development of a test method for testing adhesive joints in metal-adhesive-composite systems. The uniform double cantilever beam (UDCB) and the width tapered beam (WTB) specimen geometries were evaluated for measuring Mode I fracture toughness in these systems. The WTB specimen is the preferred geometry in spite of the fact that it is more costly to machine than the UDCB specimen. The use of loading tabs attached to thin sheets of composites proved to be experimentally unsatisfactory. Consequently, a new system was developed to load thin sheets of adherends. This system allows for the direct measurement of displacement along the load line. In well made joints separation occurred between the plies rather than in the adhesive.

  4. Shear Bond Strengths of Methacrylate- and Silorane-based Composite Resins to Feldspathic Porcelain using Different Adhesive Systems.

    PubMed

    Mohammadi, Narmin; Shakur Shahabi, Maryam; Kimyai, Soodabeh; Pournagi Azar, Fatemeh; Ebrahimi Chaharom, Mohammad Esmaeel

    2015-01-01

    Background and aims. Use of porcelain as inlays, laminates and metal-ceramic and all-ceramic crowns is common in modern dentistry. The high cost of ceramic restorations, time limitations and difficulty of removing these restorations result in delays in replacing fractured restorations; therefore, their repair is indicated. The aim of the present study was to compare the shear bond strengths of two types of composite resins (methacrylate-based and silorane-based) to porcelain, using three adhesive types. Materials and methods. A total of 156 samples of feldspathic porcelain surfaces were prepared with air-abrasion and randomly divided into 6 groups (n=26). In groups 1-3, Z250 composite resin was used to repair porcelain samples with Ad-per Single Bond 2 (ASB), Clearfil SE Bond (CSB) and Silorane Adhesive (SA) as the bonding systems, afterapplication of silane, respectively. In groups 4-6, the same adhesives were used in the same manner with Filtek Silorane composite resin. Finally, the shear bond strengths of the samples were measured. Two-way ANOVA and post hoc Tukey tests were used to compare bond strengths between the groups with different adhesives at P<0.05. Results. There were significant differences in the mean bond strength values in terms of the adhesive type (P<0.001). In addition, the interactive effect of the adhesive type and composite resin type had no significant effect on bond strength (P=0.602). Conclusion. The results of the present study showed the highest repair bond strength values to porcelain with both composite resin types with the application of SA and ASB. PMID:26697151

  5. Shear Bond Strengths of Methacrylate- and Silorane-based Composite Resins to Feldspathic Porcelain using Different Adhesive Systems

    PubMed Central

    Mohammadi, Narmin; Shakur Shahabi, Maryam; Kimyai, Soodabeh; Pournagi Azar, Fatemeh; Ebrahimi Chaharom, Mohammad Esmaeel

    2015-01-01

    Background and aims. Use of porcelain as inlays, laminates and metal-ceramic and all-ceramic crowns is common in modern dentistry. The high cost of ceramic restorations, time limitations and difficulty of removing these restorations result in delays in replacing fractured restorations; therefore, their repair is indicated. The aim of the present study was to compare the shear bond strengths of two types of composite resins (methacrylate-based and silorane-based) to porcelain, using three adhesive types. Materials and methods. A total of 156 samples of feldspathic porcelain surfaces were prepared with air-abrasion and randomly divided into 6 groups (n=26). In groups 1-3, Z250 composite resin was used to repair porcelain samples with Ad-per Single Bond 2 (ASB), Clearfil SE Bond (CSB) and Silorane Adhesive (SA) as the bonding systems, afterapplication of silane, respectively. In groups 4-6, the same adhesives were used in the same manner with Filtek Silorane composite resin. Finally, the shear bond strengths of the samples were measured. Two-way ANOVA and post hoc Tukey tests were used to compare bond strengths between the groups with different adhesives at P<0.05. Results. There were significant differences in the mean bond strength values in terms of the adhesive type (P<0.001). In addition, the interactive effect of the adhesive type and composite resin type had no significant effect on bond strength (P=0.602). Conclusion. The results of the present study showed the highest repair bond strength values to porcelain with both composite resin types with the application of SA and ASB. PMID:26697151

  6. Effect of Sodium Ascorbate and Delayed Bonding on the Bond Strength of Silorane and Two-step Self-etch Adhesive Systems in Bleached Enamel.

    PubMed

    Abed Kahnemooyi, Mehdi; Ajami, Amir Ahmad; Kimyai, Soodabeh; Pournaghiazar, Fatemeh; Savadi Oskoee, Siavash; Mhammadi Torkani, Mohammad Ali

    2014-01-01

    Background and aims. Studies have shown decreased bond strength of composite resin to human and bovine bleached enamel. This study evaluated the effect of sodium ascorbate and delayed bonding on the bond strength of two adhesive systems to bleached enamel. Materials and methods. The labial surfaces of 150 sound bovine incisor teeth were abraded with abrasive paper. The teeth were randomly divided into 8 groups: A: control; B: bleached with 35% hydrogen peroxide; C: bleached with 35% hydrogen peroxide + sodium ascorbate gel; and D: bleached with 35% hydrogen peroxide + delayed bonding. In groups A‒D, silorane adhesive system and Filtek silorane composite resin were used. In groups E‒H, the same preparation methods of groups A-D were used. Two-step self-etch Clearfil SE Bond adhesive systems and AP-X composite resin were administered. Shear bond strength of each group was measured. Two samples were prepared for each surface preparation for ultra-structural evaluation. Two-way ANOVA and Tukey test were used for data analysis at P<0.05. Results. The interaction between the adhesive system type and surface preparation protocol was significant (P=0.014), withsignificant differences in shear bond strengths in terms of the adhesive systems (P<0.01). There were significant differences in shear bond strength in terms of surface preparation techniques irrespective of the adhesive system (P<0.01). Conclusion. The results showed that bleaching with 35% hydrogen peroxide decreased the shear bond strength values with both adhesive systems, and a one-week delay in bonding and 10% sodium ascorbate for10 minutes restored the bond strength in both adhesive systems. PMID:25587382

  7. Effect of Sodium Ascorbate and Delayed Bonding on the Bond Strength of Silorane and Two-step Self-etch Adhesive Systems in Bleached Enamel

    PubMed Central

    Abed Kahnemooyi, Mehdi; Ajami, Amir Ahmad; Kimyai, Soodabeh; Pournaghiazar, Fatemeh; Savadi Oskoee, Siavash; Mhammadi Torkani, Mohammad Ali

    2014-01-01

    Background and aims. Studies have shown decreased bond strength of composite resin to human and bovine bleached enamel. This study evaluated the effect of sodium ascorbate and delayed bonding on the bond strength of two adhesive systems to bleached enamel. Materials and methods. The labial surfaces of 150 sound bovine incisor teeth were abraded with abrasive paper. The teeth were randomly divided into 8 groups: A: control; B: bleached with 35% hydrogen peroxide; C: bleached with 35% hydrogen peroxide + sodium ascorbate gel; and D: bleached with 35% hydrogen peroxide + delayed bonding. In groups A‒D, silorane adhesive system and Filtek silorane composite resin were used. In groups E‒H, the same preparation methods of groups A-D were used. Two-step self-etch Clearfil SE Bond adhesive systems and AP-X composite resin were administered. Shear bond strength of each group was measured. Two samples were prepared for each surface preparation for ultra-structural evaluation. Two-way ANOVA and Tukey test were used for data analysis at P<0.05. Results. The interaction between the adhesive system type and surface preparation protocol was significant (P=0.014), withsignificant differences in shear bond strengths in terms of the adhesive systems (P<0.01). There were significant differences in shear bond strength in terms of surface preparation techniques irrespective of the adhesive system (P<0.01). Conclusion. The results showed that bleaching with 35% hydrogen peroxide decreased the shear bond strength values with both adhesive systems, and a one-week delay in bonding and 10% sodium ascorbate for10 minutes restored the bond strength in both adhesive systems. PMID:25587382

  8. An Invitro Evaluation of Antibacterial Properties of Self Etching Dental Adhesive Systems

    PubMed Central

    Rekha A, Sri; Poppuri, Krishna Chaitanya; Prashanth P, Sai; Garapati, Surendranath

    2014-01-01

    Background and Objectives: The microbial flora of the oral cavity is extremely diverse. Residual bacteria in the oral cavity may remain at the tooth restoration interface and increase the risk of developing recurrent caries. The aim of this study is to evaluate the immediate and long term antibacterial effect of polymerised self etching adhesive systems. Materials and Methods: Streptococcus mutans were used as a test organism. The self etching dental adhesives that were used are Adper Easy One, G-Bond, Clearfil S3 bond and Xeno V. Agar diffusion test (ADT) was performed on agar plates, in which four holes that were 4mm in diameter were punched. Then 200 μL of freshly grown S.mutans spread evenly. The four holes were immediately filled with the four tested materials and light polymerised them using a light curing unit. The agar plates were incubated for 72h at 37°C. For the direct contact test (DCT), the bonding agents were placed on the side walls of microtiter plate wells and light polymerized according to the manufacturer’s instructions. A 10μL bacterial suspension was placed on the tested material samples. Bacteria were allowed to directly contact the polymerized dental adhesives for 1h at 37oC. Fresh Brain heart infusion broth was then added. The bacterial growth was then spectrophotometrically measured in the wells every 30 min for 16h for 1,2, 7 and 14 days. Results: In the ADT, inhibitory halos were found around all the bonding agents, with greater inhibition halo seen around Xeno V after incubating for 72 h at 37°C. The readings obtained through DCT were subjected to ANOVA and Tukey’s multiple comparisons tests, which showed no bacterial growth on fresh samples and after aging for one day in PBS with self etching adhesives. Results of DCT after aging for 2 days, 7 days and 14 days showed bacterial growth in all the bonding agents used with no significant difference from the control group.(p<0.001) Conclusion: All the dental adhesives showed

  9. Dentin bond strength of an experimental adhesive system containing calcium chloride, synthetic peptides derived from dentin matrix protein 1 (pA and pB), and hydroxyapatite for direct pulp capping and as a bonding agent.

    PubMed

    Shinkai, Koichi; Taira, Yoshihisa; Suzuki, Masaya; Kato, Chikage; Yamauchi, Junichi; Suzuki, Shiro; Katoh, Yoshiroh

    2010-07-01

    The purpose of this study was to evaluate the microtensile bond strength (microTBS) of an experimental adhesive system containing calcium chloride (CaCl(2)), synthetic peptides derived from dentin matrix protein 1 (DMP1: pA and pB), and hydroxyapatite experimentally developed for direct pulp capping to human dentin. Clearfil SE Bond/Primer (SEP) and Bond (SEB) were used for each experimental group as the matrix agents. Experimental self-etching primers included: primer-I, SEP containing 10 wt% CaCl(2), and primer-II, SEP containing a 10 wt% compound of pA and pB. The experimental bonding agent was a mixture of SEB and 10 wt% hydroxyapatite. Specimens were divided into five experimental groups, including the control, according to the mode of primer application. Primer-I was primarily applied, followed by primer-II for group 1, primer-I as the primary and SEP as the secondary for group 2, SEP as the primary and primer-II as the secondary for group 3, and SEP was applied twice for group 4, and SEP was applied once for the control. Clearfil SE Bond adhesive system was used as the control. Flat dentin surfaces of human molars were assigned to bonding tests. After each experimental primer was applied to the dentin surface, each experimental bonding agent was applied and photopolymerized, and then resin composite paste (Clearfil Flow FX and Clearfil AP-X) was placed and photopolymerized. The specimens were subjected to microTBS testing. The data were compared using analysis of variance (ANOVA) and post-hoc Bonferroni/Dunn tests. Results showed that the minimum mean value of microTBS was 15.4 MPa for group 1, while the maximum mean value of microTBS was 52.7 MPa for the control. There were significant differences among the experimental groups, except for group 4 and the control. The experimental primers containing CaCl(2) or DMP1 negatively affected the microTBS value of the experimental adhesive system to dentin.

  10. Evaluation of microshear bond strength of resin composites to enamel of dental adhesive systems associated with Er,Cr:YSGG laser

    NASA Astrophysics Data System (ADS)

    Cassimiro-Silva, Patricia F.; Zezell, Denise M.; Monteiro, Gabriela Q. d. M.; Benetti, Carolina; de Paula Eduardo, Carlos; Gomes, Anderson S. L.

    2016-02-01

    The aim of this in vitro study was to evaluate the microshear bond strength (μSBS) of resin composite to enamel etching by Er,Cr:YSGG laser with the use of two differents adhesives systems. Fifty freshly extracted human molars halves were embedded in acrylic resin before preparation for the study, making a total of up to 100 available samples. The specimens were randomly assigned into six groups (η=10) according to substrate pre-treatment and adhesive system on the enamel. A two-step self-etching primer system (Clearfil SE Bond) and a universal adhesive used as an etch-andrinse adhesive (Adper Single Bond Universal) were applied to the nonirradiated enamel surface according to manufacturer's instructions, as control groups (Control CF and Control SB, respectively). For the other groups, enamel surfaces were previously irradiated with the Er,Cr:YSGG laser with 0.5 W, 75 mJ and 66 J/cm2 (CF 5 Hz and SB 5 Hz) and 1.25 W, 50 mJ and 44 J/cm2 (CF 15 Hz and SB 15 Hz). Irradiation was performed under air (50%) and water (50%) cooling. An independent t-test was performed to compare the adhesive systems. Mean μSBS ± sd (MPa) for each group was 16.857 +/- 2.61, 17.87 +/- 5.83, 12.23 +/- 2.02, 9.88 +/- 2.26, 15.94 +/- 1.98, 17.62 +/- 2.10, respectively. The control groups and the 50 mJ laser groups showed no statistically significant differences, regardless of the adhesive system used. The results obtained lead us to affirm that the bonding interaction of adhesives to enamel depends not only on the morphological aspects of the dental surface, but also on the characteristics of the adhesive employed and the parameters of the laser.

  11. The effect of cavity disinfectants on the micro-shear bond strength of dentin adhesives

    PubMed Central

    Elkassas, Dina Wafik; Fawzi, Elham Mostafa; El Zohairy, Ahmed

    2014-01-01

    Objectives: This study was carried out to examine the effect of application of four different disinfecting agents on the micro-shear bond strength (μ-SBS) of an etch-and-rinse and self-etch adhesive systems. Materials and Methods: One hundred flat dentin surfaces of human molars were produced by wet grinding the buccal surfaces. Specimens were randomly assigned to five groups according to the disinfectant used: Group I: Control (no disinfectant); Group II: 5.25% sodium hypochlorite based; Group III: 2% chlorhexidine based (Consepsis), Group IV: 0.1% benzalkoniumchloride based (Tubulicid red) and Group V: 3% doxycycline based (Biopure, MTAD). Specimens were bonded using either Adper Single Bond 2 or Clearfil S3 Bond, which were employed according to the manufacturer's instructions. Resin composite microcylinders were bonded using Tygon® tubes for μ-SBS testing. The modes of failure were noted after visual examination using a binocular stereomicroscope at ×25 magnification. Failures were classified as adhesive, or mixed. μ-SBS results were analyzed using two-way ANOVA followed by Tukey's post-hoc test. Results: Dentin disinfectants tested significantly negated the bonding of Adper Single bond 2 and the groups were ranked; Group I > Group V = Group IV > Group II = Group III, meanwhile they enhanced significantly the μ-SBS values upon using Clearfil S3 Bond and were ranked; Group II > Group III = Group IV = Group V > Group I. Most failures were adhesive with the Adper single bond adhesive system. Mixed modes of failure were evident with Clearfil S3 bond. Conclusions: The disinfectants tested should not be used with Adper Single Bond 2 when applied before the etching step, However they could be used safely prior to bonding with Clearfil S3 Bond. PMID:24966768

  12. Shear Bond Strength of Calcium Enriched Mixture Cement and Mineral Trioxide Aggregate to Composite Resin with Two Different Adhesive Systems

    PubMed Central

    Savadi Oskoee, Siavash; Bahari, Mahmoud; Kimyai, Soodabeh; Motahhari, Paria; Eghbal, Mohammad Jafar; Asgary, Saeed

    2014-01-01

    Objective: Immediate restoration after vital pulp therapy is essential in order to create and maintain effective coronal seal. Purpose of Study: The aim of this study was to evaluate the shear bond strength of recently used pulp capping materials: white mineral trioxide aggregate (MTA), and calcium enriched mixture cement (CEM) to composite resin with the use of etch-and-rinse and self-etch adhesive systems and compare them with the bond strength of commonly used resin modified glass ionomer (RMGI) cement. Materials and Methods: Forty specimens from each test material were fabricated, measuring 4 mm in diameter and 2 mm in depth. The specimens of each material were divided into 2 groups of 20 specimens according to the adhesive system (Single Bond vs. Clearfil SE Bond) used for bonding of resin composite. The shear bond strength values were measured at a crosshead speed of 1.0 mm/min and fractured surfaces were examined. Data were analyzed using two-way ANOVA and a post hoc Tukey’s test (P<0.05). Results: Analysis of data showed a significantly higher bond strength for RMGI compared to MTA and CEM (P<0.001); however, no significant differences were observed in the bond strength values of MTA and CEM (P=0.9). Furthermore, there were no significant differences in relation to the type of the adhesive system irrespective of the type of the material used (P=0.95) All the failures were of cohesive type in RMGI, MTA and CEM. Conclusion: Bond strength of RMGI cement to composite resin was higher than that of MTA or CEM cement irrespective of the type of the adhesive system. PMID:25628696

  13. Nanoleakage in Hybrid Layer and Acid-Base Resistant Zone at the Adhesive/Dentin Interface.

    PubMed

    Nikaido, Toru; Nurrohman, Hamid; Takagaki, Tomohiro; Sadr, Alireza; Ichinose, Shizuko; Tagami, Junji

    2015-10-01

    The aim of interfacial nanoleakage evaluation is to gain a better understanding of degradation of the adhesive-dentin interface. The acid-base resistant zone (ABRZ) is recognized at the bonded interface under the hybrid layer (HL) in self-etch adhesive systems after an acid-base challenge. The purpose of this study was to evaluate nanoleakage in HL and ABRZ using three self-etch adhesives; Clearfil SE Bond (SEB), Clearfil SE One (SEO), and G-Bond Plus (GBP). One of the three adhesives was applied on the ground dentin surface and light cured. The specimens were longitudinally divided into two halves. One half remained as the control group. The others were immersed in ammoniacal silver nitrate solution, followed by photo developing solution under fluorescent light. Following this, the specimens were subjected to acid-base challenges with an artificial demineralization solution (pH4.5) and sodium hypochlorite, and prepared in accordance with common procedures for transmission electron microscopy (TEM) examination. The TEM images revealed silver depositions in HL and ABRZ due to nanoleakage in all the adhesives; however, the extent of nanoleakage was material dependent. Funnel-shaped erosion beneath the ABRZ was observed only in the all-in-one adhesive systems; SEO and GBP, but not in the two-step self-etch adhesive system; SEB.

  14. A Comparative Study of Microleakage on Dental Surfaces Bonded with Three Self-Etch Adhesive Systems Treated with the Er:YAG Laser and Bur.

    PubMed

    Sanhadji El Haddar, Youssef; Cetik, Sibel; Bahrami, Babak; Atash, Ramin

    2016-01-01

    Aim. This study sought to compare the microleakage of three adhesive systems in the context of Erbium-YAG laser and diamond bur cavity procedures. Cavities were restored with composite resin. Materials and Methods. Standardized Class V cavities were performed in 72 extracted human teeth by means of diamond burs or Er-YAG laser. The samples were randomly divided into six groups of 12, testing three adhesive systems (Clearfil s(3) Bond Plus, Xeno® Select, and Futurabond U) for each method used. Cavities were restored with composite resin before thermocycling (methylene blue 2%, 24 h). The slices were prepared using a microtome. Optical microscope photography was employed to measure the penetration. Results. No statistically significant differences in microleakage were found in the use of bur or laser, nor between adhesive systems. Only statistically significant values were observed comparing enamel with cervical walls (p < 0.001). Conclusion. It can be concluded that the Er:YAG laser is as efficient as diamond bur concerning microleakage values in adhesive restoration procedures, thus constituting an alternative tool for tooth preparation. PMID:27419128

  15. A Comparative Study of Microleakage on Dental Surfaces Bonded with Three Self-Etch Adhesive Systems Treated with the Er:YAG Laser and Bur

    PubMed Central

    Sanhadji El Haddar, Youssef; Cetik, Sibel; Bahrami, Babak; Atash, Ramin

    2016-01-01

    Aim. This study sought to compare the microleakage of three adhesive systems in the context of Erbium-YAG laser and diamond bur cavity procedures. Cavities were restored with composite resin. Materials and Methods. Standardized Class V cavities were performed in 72 extracted human teeth by means of diamond burs or Er-YAG laser. The samples were randomly divided into six groups of 12, testing three adhesive systems (Clearfil s3 Bond Plus, Xeno® Select, and Futurabond U) for each method used. Cavities were restored with composite resin before thermocycling (methylene blue 2%, 24 h). The slices were prepared using a microtome. Optical microscope photography was employed to measure the penetration. Results. No statistically significant differences in microleakage were found in the use of bur or laser, nor between adhesive systems. Only statistically significant values were observed comparing enamel with cervical walls (p < 0.001). Conclusion. It can be concluded that the Er:YAG laser is as efficient as diamond bur concerning microleakage values in adhesive restoration procedures, thus constituting an alternative tool for tooth preparation. PMID:27419128

  16. A Comparative Study of Microleakage on Dental Surfaces Bonded with Three Self-Etch Adhesive Systems Treated with the Er:YAG Laser and Bur.

    PubMed

    Sanhadji El Haddar, Youssef; Cetik, Sibel; Bahrami, Babak; Atash, Ramin

    2016-01-01

    Aim. This study sought to compare the microleakage of three adhesive systems in the context of Erbium-YAG laser and diamond bur cavity procedures. Cavities were restored with composite resin. Materials and Methods. Standardized Class V cavities were performed in 72 extracted human teeth by means of diamond burs or Er-YAG laser. The samples were randomly divided into six groups of 12, testing three adhesive systems (Clearfil s(3) Bond Plus, Xeno® Select, and Futurabond U) for each method used. Cavities were restored with composite resin before thermocycling (methylene blue 2%, 24 h). The slices were prepared using a microtome. Optical microscope photography was employed to measure the penetration. Results. No statistically significant differences in microleakage were found in the use of bur or laser, nor between adhesive systems. Only statistically significant values were observed comparing enamel with cervical walls (p < 0.001). Conclusion. It can be concluded that the Er:YAG laser is as efficient as diamond bur concerning microleakage values in adhesive restoration procedures, thus constituting an alternative tool for tooth preparation.

  17. Evaluation of dentin bonding performance and acid-base resistance of the interface of two-step self-etching adhesive systems.

    PubMed

    IIda, Yasuhiro; Nikaido, Toru; Kitayama, Shuzo; Takagaki, Tomohiro; Inoue, Go; Ikeda, Masaomi; Foxton, Richard M; Tagami, Junji

    2009-07-01

    The purpose of this study was to evaluate dentin bond strengths and to observe the adhesive-dentin interface after acid-base challenge using fluoride-free and fluoride-releasing self-etching adhesive systems; Clearfil SE Bond (SE), FL-Bond (FL) and FL-Bond II(FL II). Fifteen dentin surfaces from human molars were ground and bonded with one of three adhesive systems. The microtensile bond strength (muTBS) test was performed at a crosshead speed of 1 mm/min. The interface of the bonded specimens after acid-base challenge were also examined by a SEM. The muTBS of SE were significantly higher than those of FL and FL II (p<0.05), however, there were no significant differences between FL and FL II (p>0.05). An acid-base resistant zone (ABRZ) was observed in all the groups, however, formation of the ABRZ was material dependent. Fluoride-release from the adhesive is a key factor to create thick ABRZ.

  18. Design and fabrication of polymer based dry adhesives inspired by the gecko adhesive system

    NASA Astrophysics Data System (ADS)

    Jin, Kejia

    There has been significant interest in developing dry adhesives mimicking the gecko adhesive system, which offers several advantages compared to conventional pressure sensitive adhesives. Specifically, gecko adhesive pads have anisotropic adhesion properties: the adhesive pads (spatulae) stick strongly when sheared in one direction but are non-adherent when sheared in the opposite direction. This anisotropy property is attributed to the complex topography of the array of fine tilted and curved columnar structures (setae) that bear the spatulae. In this thesis, easy, scalable methods, relying on conventional and unconventional techniques are presented to incorporate tilt in the fabrication of synthetic polymer-based dry adhesives mimicking the gecko adhesive system, which provide anisotropic adhesion properties. In the first part of the study, the anisotropic adhesion and friction properties of samples with various tilt angles to test the validity of a nanoscale tape-peeling model of spatular function are measured. Consistent with the Peel Zone model, samples with lower tilt angles yielded larger adhesion forces. Contact mechanics of the synthetic array were highly anisotropic, consistent with the frictional adhesion model and gecko-like. Based on the original design, a new design of gecko-like dry adhesives was developed which showed superior tribological properties and furthermore showed anisotropic adhesive properties without the need for tilt in the structures. These adhesives can be used to reversibly suspend weights from vertical surfaces (e.g., walls) and, for the first time to our knowledge, horizontal surfaces (e.g., ceilings) by simultaneously and judiciously activating anisotropic friction and adhesion forces. Furthermore, adhesion properties between artificial gecko-inspired dry adhesives and rough substrates with varying roughness are studied. The results suggest that both adhesion and friction forces on a rough substrate depends significantly on the

  19. The Effect of Epigallocatechin Gallate on the Dentin Bond Durability of Two Self-etch Adhesives

    PubMed Central

    Khamverdi, Zahra; Rezaei-Soufi, Loghman; Rostamzadeh, Tayebeh

    2015-01-01

    Statement of the Problem Self-etch adhesives can activate matrix metalloproteinase (MMP) which hydrolyzes organic matrix of demineralized dentin. Epigallocatechin gallate (EGCG), especially found in green tea, could inhibit the activation of MMP. Purpose The aim of this study was to evaluate the effect of adding Epigallocatechin gallate (EGCG) into two types of adhesives on dentin bond strength. Materials and Method In this experimental study, 64 extracted third molars were randomly divided into 16 groups. Clearfil SE Bond and Filtek Silorane System with 0 µM, 25µM, 50µM, and 100µM concentration of 95% EGCG were used for bonding. Following the bonding and fabrication of beams (1±0.1 mm2) and storage in distilled water, the specimens were subjected to thermal cycles. Microtensile bond strengths of 8 groups were examined after 24 hours and others were tested after 6 months. The fracture modes of specimens were evaluated by stereomicroscope and SEM. Data were analyzed by three-way ANOVA and t-test (α = 0.05). Results The results of the three- way ANOVA test showed that types of bonding, storage time and interactive effect of EGCG concentration and bonding influenced the bond strength of specimens significantly (p<0.05). The results of the t-test indicated that storage time only had significant effect on bond strength of Clearfil SE Bond with no EGCG (p= 0.017). The most common failure modes in Filtek Silorane System groups and Clearfil SE Bond groups were adhesive and mixed/cohesive, respectively. The results of SEM at different magnifications showed that most fractures have occurred in the hybrid layer. Conclusion Although adding 100 µM volume of EGCG to Clearfil SE Bond can preserve the dentin bond, incorporation of EGCG in the silorane system, especially in high concentrations, decreases the bond strength after 6 months. PMID:26046100

  20. Effect of Non-Thermal Argon Plasma on Bond Strength of a Self-Etch Adhesive System to NaOCl-Treated Dentin.

    PubMed

    Abreu, João Luiz Bittencourt de; Prado, Maíra; Simão, Renata Antoun; Silva, Eduardo Moreira da; Dias, Katia Regina Hostilio Cervantes

    2016-01-01

    Studies have been showing a decrease of bond strength in dentin treated with sodium hypochlorite (NaOCl). The aim of this study was to evaluate the effect of non-thermal argon plasma on the bond strength of a self-etch adhesive system to dentin exposed to NaOCl. Thirty-two flat dentin surfaces of bovine incisors were immersed in 2.5% NaOCl for 30 min to simulate the irrigation step during endodontic treatment. The specimens were divided into four groups (n=8), according to the surface treatment: Control (without plasma treatment), AR15 (argon plasma for 15 s), AR30 (argon plasma for 30 s) and AR45 (argon plasma for 45 s). For microtensile bond strength test, 5 specimens were used per group. In each group, the specimens were hybridized with a self-etch adhesive system (Clearfil SE Bond) and resin composite buildups were constructed. After 48 h of water storage, specimens were sectioned into sticks (5 per tooth, 25 per group) and subjected to microtensile bond strength test (μTBS) until failure, evaluating failure mode. Three specimens per group were analyzed under FTIR spectroscopy to verify the chemical modifications produced in dentin. μTBS data were analyzed using ANOVA and Tamhane tests (p<0.05). AR30 showed the highest μTBS (20.86±9.0). AR15 (13.81±6.4) and AR45 (11.51±6.8) were statistically similar to control (13.67±8.1). FTIR spectroscopy showed that argon plasma treatment produced chemical modifications in dentin. In conclusion, non-thermal argon plasma treatment for 30 s produced chemical changes in dentin and improved the μTBs of Clearfil SE Bond to NaOCl-treated dentin. PMID:27652709

  1. Effect of Non-Thermal Argon Plasma on Bond Strength of a Self-Etch Adhesive System to NaOCl-Treated Dentin.

    PubMed

    Abreu, João Luiz Bittencourt de; Prado, Maíra; Simão, Renata Antoun; Silva, Eduardo Moreira da; Dias, Katia Regina Hostilio Cervantes

    2016-01-01

    Studies have been showing a decrease of bond strength in dentin treated with sodium hypochlorite (NaOCl). The aim of this study was to evaluate the effect of non-thermal argon plasma on the bond strength of a self-etch adhesive system to dentin exposed to NaOCl. Thirty-two flat dentin surfaces of bovine incisors were immersed in 2.5% NaOCl for 30 min to simulate the irrigation step during endodontic treatment. The specimens were divided into four groups (n=8), according to the surface treatment: Control (without plasma treatment), AR15 (argon plasma for 15 s), AR30 (argon plasma for 30 s) and AR45 (argon plasma for 45 s). For microtensile bond strength test, 5 specimens were used per group. In each group, the specimens were hybridized with a self-etch adhesive system (Clearfil SE Bond) and resin composite buildups were constructed. After 48 h of water storage, specimens were sectioned into sticks (5 per tooth, 25 per group) and subjected to microtensile bond strength test (μTBS) until failure, evaluating failure mode. Three specimens per group were analyzed under FTIR spectroscopy to verify the chemical modifications produced in dentin. μTBS data were analyzed using ANOVA and Tamhane tests (p<0.05). AR30 showed the highest μTBS (20.86±9.0). AR15 (13.81±6.4) and AR45 (11.51±6.8) were statistically similar to control (13.67±8.1). FTIR spectroscopy showed that argon plasma treatment produced chemical modifications in dentin. In conclusion, non-thermal argon plasma treatment for 30 s produced chemical changes in dentin and improved the μTBs of Clearfil SE Bond to NaOCl-treated dentin.

  2. Adhesion

    MedlinePlus

    ... as the shoulder Eyes Inside the abdomen or pelvis Adhesions can become larger or tighter over time. ... Other causes of adhesions in the abdomen or pelvis include: Appendicitis , most often when the appendix breaks ...

  3. Shear bond strength of one-step self-etch adhesives: pH influence

    PubMed Central

    Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Chiesa, Marco

    2015-01-01

    Background: The aim of this study was to compare the shear bond strength of four one-step self-etch adhesives with different pH values to enamel and dentin. Materials and Methods: In this in vitro study, 200 bovine permanent mandibular incisors were used. Four one-step self-etch adhesives with different pH values were tested both on enamel and on dentin: Adper™ Easy Bond Self-Etch Adhesive (pH = 0.8-1), Futurabond NR (pH=2), G-aenial Bond (pH = 1.5), Clearfil S3 Bond (pH = 2.7). After adhesive systems application, a nanohybrid composite resin was inserted into the bonded surface. The specimens were placed in a universal testing machine. The shear bond strength was performed at a cross-head speed of 1 mm/min until the sample rupture. The shear bond strength values (MPa) of the different groups were compared with analysis of variance after that Kolmogorov and Smirnov tests were applied to assess normality of distributions. P < 0.05 was considered as significant. Results: In enamel shear bond strength, the highest shear bond strength values were reported with Futurabond NR (P < 0.01); however, no significant differences were found with Clearfil S3 Bond. The others adhesive systems showed lower shear bond strength values with significant differences between them (P < 0.05). When comparing the dentin shear bond strength, the lowest shear bond strength values were reported with Clearfil S3 Bond (P < 0.05), while there were no significant differences among the other three products (P > 0.05). Conclusion: The pH values of adhesive systems did not influence significantly their shear bond strength to enamel or dentin. PMID:26005459

  4. Current pharmaceutical design on adhesive based transdermal drug delivery systems.

    PubMed

    Ghosh, Animesh; Banerjee, Subham; Kaity, Santanu; Wong, Tin W

    2015-01-01

    Drug-in-adhesive transdermal drug delivery matrix exploits intimate contact of the carrier with stratum corneum, the principal skin barrier to drug transport, to deliver the actives across the skin and into the systemic circulation. The main application challenges of drug-in-adhesive matrix lie in the physicochemical properties of skin varying with age, gender, ethnicity, health and environmental condition of patients. This in turn poses difficulty to design a universal formulation to meet the intended adhesiveness, drug release and drug permeation performances. This review focuses on pressure-sensitive adhesives, and their adhesiveness and drug release/permeation modulation mechanisms as a function of adhesive molecular structure and formulation attributes. It discusses approaches to modulate adhesive tackiness, strength, elasticity, hydrophilicity, molecular suspension capability and swelling capacity, which contribute to the net effect of adhesive on skin bonding, drug release and drug permeation. PMID:25925119

  5. Current pharmaceutical design on adhesive based transdermal drug delivery systems.

    PubMed

    Ghosh, Animesh; Banerjee, Subham; Kaity, Santanu; Wong, Tin W

    2015-01-01

    Drug-in-adhesive transdermal drug delivery matrix exploits intimate contact of the carrier with stratum corneum, the principal skin barrier to drug transport, to deliver the actives across the skin and into the systemic circulation. The main application challenges of drug-in-adhesive matrix lie in the physicochemical properties of skin varying with age, gender, ethnicity, health and environmental condition of patients. This in turn poses difficulty to design a universal formulation to meet the intended adhesiveness, drug release and drug permeation performances. This review focuses on pressure-sensitive adhesives, and their adhesiveness and drug release/permeation modulation mechanisms as a function of adhesive molecular structure and formulation attributes. It discusses approaches to modulate adhesive tackiness, strength, elasticity, hydrophilicity, molecular suspension capability and swelling capacity, which contribute to the net effect of adhesive on skin bonding, drug release and drug permeation.

  6. Shear bond strength and ultrastructural interface analysis of different adhesive systems to Er:YAG laser-prepared dentin.

    PubMed

    Guven, Yeliz; Aktoren, Oya

    2015-02-01

    The aim of this study was to evaluate the shear bond strength (SBS) of a microhybrid composite resin bonded with three different adhesive systems to Er:YAG laser- (EL) or bur-prepared dentin surfaces and to analyze the quality and ultrastructure of the adhesive-dentin interfaces by scanning electron microscopy (SEM). The specimens prepared for SBS test and SEM analysis were randomly assigned to eight groups (G1-G8): G1, EL (Fidelis PlusIII, Fotona) + Clearfil S3 Bond (C3S); G2, EL + AdperSE Plus (SE); G3, EL + laser etch + Adper Single Bond2 (SB2); G4, EL + acid etch + SB2; G5, EL + SB2 (no etching); G6, bur + acid etch + SB2; G7, bur + S3; G8, bur + SE. Laser was used in very short pulse mode at a setting of 200 mJ/20 Hz for dentin preparation and at 80 mJ/10 Hz for dentin etching. Bond strength test: 3.5 × 2.0 mm cylindrical molds were placed onto adhesives and filled with the composites. After 24 h in distilled water, SBS was tested at a crosshead speed of 0.5 mm/min. SEM analysis: The dentin-adhesive interfaces were evaluated for the ultrastructure of hybrid layer. Data of SBS (MPa) were statistically analyzed by ANOVA and Tukey HSD. ER:YAG laser-prepared dentin has demonstrated significantly more SBS (p < 0.01) for SE when compared to bur-prepared dentin. No significancies (p > 0.05) in SBS have been determined between the total-etch adhesive applied groups with regard to etching types. SEM analysis revealed that hybrid layers obtained in Er:YAG laser-irradiated dentin exhibited more irregular and non-homogeneous pattern than the conventionally prepared dentin. In conclusion, SE Bond demonstrated superior results in Er:YAG laser-ablated dentin compared to bur-prepared dentin. PMID:23982720

  7. Evaluation of the micro-shear bond strength of four adhesive systems to dentin with and without adhesive area limitation.

    PubMed

    Chai, Yuan; Lin, Hong; Zheng, Gang; Zhang, Xuehui; Niu, Guangliang; Du, Qiao

    2015-01-01

    The purpose of this study was to evaluate the bonding ability of four representative dentin-adhesive systems by applying the micro-shear bond strength (μ-SBS) test method and to evaluate the influence of adhesive area limitation on the bond strength. Two different adhesive application methods were used in the μ-SBS test (with and without adhesives area limitation), and four representative adhesive systems were used in this study. Each dentin surface was treated with one of the four representative adhesive systems, and with twenty samples per group (n=20), each of the four groups underwent a μ-SBS test. The results showed that the bond strength was significantly influenced by the adhesive application method (p<0.05), the adhesive type (p<0.05) and the interaction between the two factors (p<0.05). With regard to the four representative dentin-adhesive systems, 3-E&R has a much better bond quality compared to the other adhesive systems. Furthermore, the micro-shear bond strength test method of restricting the area of both the adhesive and the resin is more reliable for evaluating the bonding property of adhesives to dentin, and it is also adequate for comparing the different adhesives systems. PMID:26406058

  8. Adhesions

    MedlinePlus

    ... surfaces so they can shift easily as the body moves. Adhesions cause tissues and organs to stick together. They might connect the loops of the intestines to each other, to nearby ... can occur anywhere in the body. But they often form after surgery on the ...

  9. Adhesive and nonadhesive systems for health-care packaging.

    PubMed

    Pilchik, R

    2000-04-01

    This review of the important attributes of adhesive systems also assesses the potential benefits of nonadhesive systems, such as peelable films, which are gaining favour as cost-saving alternatives. PMID:10947334

  10. Scaling Reversible Adhesion in Synthetic and Biological Systems

    NASA Astrophysics Data System (ADS)

    Bartlett, Michael; Irschick, Duncan; Crosby, Alfred

    2013-03-01

    High capacity, easy release polymer adhesives, as demonstrated by a gecko's toe, present unique opportunities for synthetic design. However, without a framework that connects biological and synthetic adhesives from basic nanoscopic features to macroscopic systems, synthetic mimics have failed to perform favorably at large length scales. Starting from an energy balance, we develop a scaling approach to understand unstable interfacial fracture over multiple length scales. The simple theory reveals that reversibly adhesive polymers do not rely upon fibrillar features but require contradicting attributes: maximum compliance normal to the substrate and minimum compliance in the loading direction. We use this counterintuitive criterion to create reversible, easy release adhesives at macroscopic sizes (100 cm2) with unprecedented force capacities on the order of 3000 N. Importantly, we achieve this without fibrillar features, supporting our predictions and emphasizing the importance of subsurface anatomy in biological adhesive systems. Our theory describes adhesive force capacity as a function of material properties and geometry and is supported by over 1000 experiments, spanning both synthetic and biological adhesives, with agreement over 14 orders of magnitude in adhesive force.

  11. Resin bonding to primary teeth using three adhesive systems.

    PubMed

    Mazzeo, N; Ott, N W; Hondrum, S O

    1995-01-01

    In vitro bond strengths of three resin adhesive systems were tested using 111 primary teeth. Ninety-six flat dentin surface specimens were divided into six groups consisting of 16 primed or 16 unprimed samples for each adhesive system. The remaining 15 tooth samples were divided into three groups of five to determine each adhesive system's bond strength to primary etched enamel. Resin buttons were polymerized to all specimens with visible light, thermocycled for 2000 cycles between 5 and 55 degrees C, and shear bond strength was measured with a Instron Testing Machine (Instron Engineering Corp, Canton, MA). ANOVA and multiple comparison tests showed that Optibond Multiuse Bonding Agent had a statistically greater mean shear bond strength to primary dentin (20.5 +/- 3.5 MPa) than Prisma Universal Bond 3 Multi-purpose Bonding System (9.1 +/- 4.4 MPa), Scotchbond Multi-purpose Dental Adhesive System (7.3 +/- 3.7 MPa), and primary etched enamel (9.8 +/- 4.4 MPa) at P < 0.05. This study demonstrated that resin adhesive systems may achieve bond strengths to primary dentin comparable to those of primary enamel, and that these bonds may be as strong as bonds to permanent enamel and dentin. These adhesive systems may allow more confident esthetic restoration of primary anterior teeth.

  12. Thin resin coating by dual-application of all-in-one adhesives improves dentin bond strength of resin cements for indirect restorations.

    PubMed

    Takahashi, Rena; Nikaido, Toru; Ariyoshi, Meu; Kitayama, Shuzo; Sadr, Alireza; Foxton, Richard M; Tagami, Junji

    2010-10-01

    This study was evaluated the tensile bond strength (TBS) of resin cements to bovine dentin resin-coated with all-in-one adhesive systems. Each of the dual-polymerizing resin cements; Link Max, Clearfil Esthetic Cement, Bistite II and Chemiace II were used to bond indirect resin disks to bovine dentin, as control, or coated by single-application or by dual-application of an adhesive system from the same manufacturer; G-Bond, Clearfil Tri-S Bond, Tokuyama Bond Force and Hybrid-Coat (n=10). After 24-hour water storage, TBSs were measured. The fracture pattern and the adhesive interface were observed using an SEM. Dual-application of the adhesive yielded significantly higher TBSs compared to control and single-application groups for all materials (p<0.001). From the limited information of this study, it was concluded that dual-application of all-in-one adhesive systems created a thin coating on dentin, and significantly improved the bond strengths of resin cements.

  13. Thin resin coating by dual-application of all-in-one adhesives improves dentin bond strength of resin cements for indirect restorations.

    PubMed

    Takahashi, Rena; Nikaido, Toru; Ariyoshi, Meu; Kitayama, Shuzo; Sadr, Alireza; Foxton, Richard M; Tagami, Junji

    2010-10-01

    This study was evaluated the tensile bond strength (TBS) of resin cements to bovine dentin resin-coated with all-in-one adhesive systems. Each of the dual-polymerizing resin cements; Link Max, Clearfil Esthetic Cement, Bistite II and Chemiace II were used to bond indirect resin disks to bovine dentin, as control, or coated by single-application or by dual-application of an adhesive system from the same manufacturer; G-Bond, Clearfil Tri-S Bond, Tokuyama Bond Force and Hybrid-Coat (n=10). After 24-hour water storage, TBSs were measured. The fracture pattern and the adhesive interface were observed using an SEM. Dual-application of the adhesive yielded significantly higher TBSs compared to control and single-application groups for all materials (p<0.001). From the limited information of this study, it was concluded that dual-application of all-in-one adhesive systems created a thin coating on dentin, and significantly improved the bond strengths of resin cements. PMID:20823621

  14. Adhesion Molecules: Master Controllers of the Circulatory System.

    PubMed

    Schmidt, Eric P; Kuebler, Wolfgang M; Lee, Warren L; Downey, Gregory P

    2016-03-15

    This manuscript will review our current understanding of cellular adhesion molecules (CAMs) relevant to the circulatory system, their physiological role in control of vascular homeostasis, innate and adaptive immune responses, and their importance in pathophysiological (disease) processes such as acute lung injury, atherosclerosis, and pulmonary hypertension. This is a complex and rapidly changing area of research that is incompletely understood. By design, we will begin with a brief overview of the structure and classification of the major groups of adhesion molecules and their physiological functions including cellular adhesion and signaling. The role of specific CAMs in the process of platelet aggregation and hemostasis and leukocyte adhesion and transendothelial migration will be reviewed as examples of the complex and cooperative interplay between CAMs during physiological and pathophysiological processes. The role of the endothelial glycocalyx and the glycobiology of this complex system related to inflammatory states such as sepsis will be reviewed. We will then focus on the role of adhesion molecules in the pathogenesis of specific disease processes involving the lungs and cardiovascular system. The potential of targeting adhesion molecules in the treatment of immune and inflammatory diseases will be highlighted in the relevant sections throughout the manuscript.

  15. High-performance adhesive systems for polymer composite bonding applications

    NASA Astrophysics Data System (ADS)

    Klug, Jeremy Hager

    Adhesive films are utilized for polymeric composite bonding in numerous high-performance products including aerospace structures. These films must provide high bond strengths over the life-cycle of the part while not compromising the thermal or mechanical performance of the overall system. Currently, epoxy materials are most often employed in commercial adhesive films because of their versatility, cost, processing characteristics, and performance. However, there still exists a desire to improve these materials so that highly robust systems capable of optimized thermal, mechanical, and fracture resistance properties can be realized. In order to create these improved systems, a better understanding of the fundamental characteristics important in adhesion between dissimilar resin systems is needed. The goal of this research was to provide a means for obtaining this knowledge using an engineering approach. A methodology was developed by which model adhesive systems could be designed to explore processing-structure-property relationships. These model systems were designed to be characteristically similar and not chemically identical to commercial adhesive films. The methodology included a simulation engineering step to characterize the commercial product and develop the model system and a re-engineering step that occurs with the material manufacturer and customer to produce an improved product. The methodology was used to explore several issues for toughened epoxy adhesives including the adducting influence on performance, flexibilized liquid elastomer content importance, the relation between elastomer dispersed phase conversion and properties, the feasibility and performance of hybrid toughened resins, and the microcracking behavior of layered composite materials. Collectively, this research created a process that was applied to explore and identify important material parameters and provided information that can be used to design improved film adhesives.

  16. Effect of tooth surface preparation on the bonding of self-etching primer adhesives.

    PubMed

    Adebayo, O A; Burrow, M F; Tyas, M J; Palamara, J

    2012-01-01

    The aim of this study was to determine the bonding effectiveness of four self-etching primer adhesives after various tooth preparation protocols. Enamel/dentin specimens were prepared from 84 permanent molars, divided into three enamel preparation groups (silicon carbide paper [SiC1; erbium, chromium:yttri-um, scandium, gallium, garnet [Er,Cr:YSGG] laser [EL] and diamond bur [DB]) and five dentin preparation groups (SiC, EL, DB, steel[SB], and ceramic burs [CBs]). In each group,specimens were equally divided into four sub-groups and were bonded using Clearfil SEBond (CSE, Kuraray), Xeno IV (XE, Dentsply),Tokuyama Bond Force (TK, Tokuyama) and Filtek Silorane System Adhesive (FS, 3MESPE), as well as a hybrid resin composite(Clearfil Majesty Esthetic, Kuraray) for CSE,XE, and TK, and Filtek Posterior Restorative(3M ESPE) for FS). After 24 hours of water storage at 370C, microshear bond strength(iSBS) testing was carried out. Data were analyzed using analysis of variance (ANOVA)-Tukey test at a=0.05 and bond failure modes assessed. Representative debonded specimens were prepared and examined under the scanning electron microscope (SEM). All adhesives exhibited no significant differences in 1SBS on enamel and dentin under the clinical cavity preparation protocols, except for TK on den-tin. SEM revealed areas of altered subsurface enamel/dentin following EL ablation.

  17. Effect of placement agitation and placement time on the shear bond strength of 3 self-etching adhesives.

    PubMed

    Velasquez, Lina Maria; Sergent, Robert S; Burgess, John O; Mercante, D E

    2006-01-01

    This study measured the shear bond strength (SBS) of 3 self-etching bonding agents to enamel and dentin with and without agitation at 3 different application times. The null hypotheses tested were that agitation and application time have no effect on bond strength. Occlusal surfaces of 180 recently extracted caries-free human molars were wet ground with 600 grit wet-dry silica carbide abrasive paper to obtain a flat enamel surface. The teeth were divided into 18 groups of 10 teeth. Three self-etching bonding agents, Clearfil SE BOND (Kuraray America), Xeno III (Dentsply) and AdheSE (Ivoclar-Vivadent) were applied using application times of 10, 20 or 30 seconds with or without agitation, thinned with a gentle stream of air and cured for 10 seconds, according to manufacturers' directions. Z100 (3M ESPE) composite, A2 shade, was placed over the cured adhesive and cured for 40 seconds. The samples were stored in distilled water at room temperature until testing. The samples were tested in shear to failure with a 1-mm/minute crosshead speed. After enamel shear bond strength testing, the teeth were again ground with 400 and 600-grit wet-dry SiC paper to obtain a flat dentin surface. The protocol used for preparing the enamel bond test samples was repeated, and the teeth were stored until testing in distilled water at room temperature. The samples were again tested in shear at a 1-mm/minute crosshead speed. Values were converted to MPa and data analyzed for intergroup differences using ANOVA and Tukey post-hoc tests. Agitation did not improve enamel SBS for any of the materials tested, but there was a significant difference in enamel SBS among materials: Clearfil SE Bond shear bond strength was greater than Xeno III, which was greater than AdheSE. At 10 seconds application time on dentin, agitation improved the Clearfil SE Bond SBS and, at 20 seconds application time on dentin, agitation significantly improved SBS to dentin for all systems tested. Agitation had no affect

  18. The effect of temperature and humidity on adhesion of a gecko-inspired adhesive: implications for the natural system.

    PubMed

    Stark, Alyssa Y; Klittich, Mena R; Sitti, Metin; Niewiarowski, Peter H; Dhinojwala, Ali

    2016-01-01

    The adhesive system of geckos has inspired hundreds of synthetic adhesives. While this system has been used relentlessly as a source of inspiration, less work has been done in reverse, where synthetics are used to test questions and hypotheses about the natural system. Here we take such an approach. We tested shear adhesion of a mushroom-tipped synthetic gecko adhesive under conditions that produced perplexing results in the natural adhesive system. Synthetic samples were tested at two temperatures (12 °C and 32 °C) and four different humidity levels (30%, 55%, 70%, and 80% RH). Surprisingly, adhesive performance of the synthetic samples matched that of living geckos, suggesting that uncontrolled parameters in the natural system, such as surface chemistry and material changes, may not be as influential in whole-animal performance as previously thought. There was one difference, however, when comparing natural and synthetic adhesive performance. At 12 °C and 80% RH, adhesion of the synthetic structures was lower than expected based on the natural system's performance. Our approach highlights a unique opportunity for both biologists and material scientists, where new questions and hypotheses can be fueled by joint comparisons of the natural and synthetic systems, ultimately improving knowledge of both. PMID:27480603

  19. The effect of temperature and humidity on adhesion of a gecko-inspired adhesive: implications for the natural system.

    PubMed

    Stark, Alyssa Y; Klittich, Mena R; Sitti, Metin; Niewiarowski, Peter H; Dhinojwala, Ali

    2016-08-02

    The adhesive system of geckos has inspired hundreds of synthetic adhesives. While this system has been used relentlessly as a source of inspiration, less work has been done in reverse, where synthetics are used to test questions and hypotheses about the natural system. Here we take such an approach. We tested shear adhesion of a mushroom-tipped synthetic gecko adhesive under conditions that produced perplexing results in the natural adhesive system. Synthetic samples were tested at two temperatures (12 °C and 32 °C) and four different humidity levels (30%, 55%, 70%, and 80% RH). Surprisingly, adhesive performance of the synthetic samples matched that of living geckos, suggesting that uncontrolled parameters in the natural system, such as surface chemistry and material changes, may not be as influential in whole-animal performance as previously thought. There was one difference, however, when comparing natural and synthetic adhesive performance. At 12 °C and 80% RH, adhesion of the synthetic structures was lower than expected based on the natural system's performance. Our approach highlights a unique opportunity for both biologists and material scientists, where new questions and hypotheses can be fueled by joint comparisons of the natural and synthetic systems, ultimately improving knowledge of both.

  20. The effect of temperature and humidity on adhesion of a gecko-inspired adhesive: implications for the natural system

    PubMed Central

    Stark, Alyssa Y.; Klittich, Mena R.; Sitti, Metin; Niewiarowski, Peter H.; Dhinojwala, Ali

    2016-01-01

    The adhesive system of geckos has inspired hundreds of synthetic adhesives. While this system has been used relentlessly as a source of inspiration, less work has been done in reverse, where synthetics are used to test questions and hypotheses about the natural system. Here we take such an approach. We tested shear adhesion of a mushroom-tipped synthetic gecko adhesive under conditions that produced perplexing results in the natural adhesive system. Synthetic samples were tested at two temperatures (12 °C and 32 °C) and four different humidity levels (30%, 55%, 70%, and 80% RH). Surprisingly, adhesive performance of the synthetic samples matched that of living geckos, suggesting that uncontrolled parameters in the natural system, such as surface chemistry and material changes, may not be as influential in whole-animal performance as previously thought. There was one difference, however, when comparing natural and synthetic adhesive performance. At 12 °C and 80% RH, adhesion of the synthetic structures was lower than expected based on the natural system’s performance. Our approach highlights a unique opportunity for both biologists and material scientists, where new questions and hypotheses can be fueled by joint comparisons of the natural and synthetic systems, ultimately improving knowledge of both. PMID:27480603

  1. Three-Dimensional Adhesion Map Based on Surface and Interfacial Cutting Analysis System for Predicting Adhesion Properties of Composite Electrodes.

    PubMed

    Kim, Kyuman; Byun, Seoungwoo; Cho, Inseong; Ryou, Myung-Hyun; Lee, Yong Min

    2016-09-14

    Using a surface and interfacial cutting analysis system (SAICAS) that can measure the adhesion strength of a composite electrode at a specific depth from the surface, we can subdivide the adhesion strength of a composite electrode into two classes: (1) the adhesion strength between the Al current collector and the cathode composite electrode (FAl-Ca) and (2) the adhesion strength measured at the mid-depth of the cathode composite electrode (Fmid). Both adhesion strengths, FAl-Ca and Fmid, increase with increasing electrode density and loading level. From the SAICAS measurement, we obtain a mathematical equation that governs the adhesion strength of the composite electrodes. This equation revealed a maximum accuracy of 97.2% and 96.1% for FAl-Ca and Fmid, respectively, for four randomly chosen composite electrodes varying in electrode density and loading level. PMID:27398829

  2. Evaluation of a metering, mixing, and dispensing system for mixing polysulfide adhesive

    NASA Technical Reports Server (NTRS)

    Evans, Kurt B.

    1989-01-01

    Tests were performed to evaluate whether a metered mixing system can mix PR-1221 polysulfide adhesive as well as or better than batch-mixed adhesive; also, to evaluate the quality of meter-mixed PR-1860 and PS-875 polysulfide adhesives. These adhesives are candidate replacements for PR-1221 which will not be manufactured in the future. The following material properties were evaluated: peel strength, specific gravity and adhesive components of mixed adhesives, Shore A hardness, tensile adhesion strength, and flow rate. Finally, a visual test called the butterfly test was performed to observe for bubbles and unmixed adhesive. The results of these tests are reported and discussed.

  3. Comparison of two all-in-one adhesives bonded to non-carious cervical lesions--results at 3 years.

    PubMed

    Burrow, Michael F; Tyas, Martin J

    2012-08-01

    The aim of this study was to evaluate the clinical performance of S(3) Bond (Kuraray Corp., Japan) and G-Bond (GC Corp., Japan) all-in-one bonding agents, over 3 years in non-carious cervical lesions (NCCLs). Ethics Committee approval was obtained, and 60 restorations were placed in 11 patients aged 45-84 years (mean 60.5 years), using either Clearfil ST resin composite (Kuraray) and S(3) Bond or Gradia resin composite (GC) and G-Bond alternately, without phosphoric acid etch on the uncut enamel margins. Patients were recalled at 6 months, 1 year, 2 years and 3 years, and photographs were taken for assessment of colour match and marginal discoloration. One patient was not available at 3 years, resulting in 54 restorations being available for evaluation. One restoration of S(3)/Clearfil ST was lost at 2 years, giving retention rates of 97% for S(3) and 100% for G-Bond. At 3 years, six restorations for S(3)/Clearfil ST showed slight marginal discoloration and one restoration pronounced marginal staining. For G-Bond/Gradia at 3 years, 11 restorations exhibited slight marginal staining and one restoration pronounced marginal staining. Most restorations were bonded to sclerotic dentin. Statistical analysis of marginal staining showed no significant difference between the two restoration groups. The degree of marginal staining was almost identical for both materials and tended to be in larger restorations. Both S(3) and G-Bond all-in-one bonding systems appear to be good adhesives for the restoration of NCCL for the length of the current study. Restoration of NCCLs with the newer all-in-one adhesives appears to be a viable alternative technique to more complicated adhesive materials. PMID:21789590

  4. One-year water sorption and solubility of "all-in-one" adhesives.

    PubMed

    Walter, Ricardo; Feiring, Andrew E; Boushell, Lee W; Braswell, Krista; Bartholomew, Whitley; Chung, Yunro; Phillips, Ceib; Pereira, Patricia N R; Swift, Edward J

    2013-01-01

    The aim of this study was to evaluate the water sorption and solubility of different adhesives. Adper Easy Bond, Adper Single Bond Plus, Bond Force, Clearfil SE Bond (bonding resin only), and Xeno IV were the materials evaluated. Ten disks of each adhesive were made in Teflon molds and evaporation of any volatile components was allowed. The disks were weighed daily in an analytical balance until a constant mass was obtained (m1). Disks were then immersed in water for 12 months when their wet weight was recorded (m2). The disks were again weighed daily until a constant mass was obtained and the final weight recorded (m3). Water sorption and solubility (percentages) were calculated using the recorded mass values. Kruskal-Wallis tests were used to compare the average water sorption and solubility among the different adhesives. Mann-Whitney tests with a Bonferroni correction were used to determine the pairwise differences between adhesives in water sorption and solubility. The level of significance was set at 0.05. Water sorption and solubility were significantly different among the groups (p<0.05). Pairwise comparisons showed no significant differences (p>0.05) between Adper Single Bond Plus and Bond Force, or between Clearfil SE Bond and Xeno IV in either water sorption or solubility. Xeno IV did not differ from Adper Easy Bond in water sorption (p>0.05). Water sorption and solubility of all-in-one adhesives increased with time, and the rates of increase were composition-dependent. The results suggest that monomers other than HEMA contribute to water sorption and solubility of adhesive systems from different categories. PMID:24173253

  5. Randomized crossover comparison of adhesively coupled colostomy pouching systems.

    PubMed

    Berg, Kirsten; Seidler, Heidi

    2005-03-01

    Ostomy pouching systems affect well being and quality of life, making selection of the appropriate system a key element of ostomy care. Several innovative adhesively coupled, two-piece systems are on the market. They feature flexible low profiles, allowing pouch removal/replacement without changing the skin barrier or wafer. This facilitates inspection or pouch changes without disrupting peristomal skin. Because few controlled trials compare pouching system effectiveness, a prospective, randomized open-label, crossover study was conducted. Under the supervision of ostomy care nurses in six outpatient clinics in Germany, clinical performance of and patient preferences for two adhesively coupled, closed-end pouching systems were compared during normal use. One is a gelatin/pectin-based skin barrier sealed to the pouch with a company-specific adhesive coupling technology (System E); the other, a grooved base plate wafer adhesive pouch coupling system (System F). Seventeen attributes and seven end-of-study measures that included comfort, flexibility, wear time, ease of removal, and overall performance were assessed. Informed, consenting participants were randomly assigned to use one system for five skin barrier/wafer changes or up to 15 days and subsequently switched to the alternative system for a similar period. The 39 participants used a total of 1,645 pouches and 342 skin barriers. All were found safe as determined by incidence and nature of the reported peristomal skin problems, subject withdrawals, and adverse events for both systems. However, System E provided longer pouch wear times (P < 0.01). End-phase ratings favored System E on 10 of the 17 attributes (P < 0.04) and System Fon none. More participants preferred System E on all seven end-of-study measures, five significantly (comfort, flexibility, wear time, ease of removal, and overall performance; (P < 0.02). These participant-reported, ostomy-related outcomes underscore the importance of product evaluation

  6. Shuttle active thermal control system development testing. Volume 7: Improved radiator coating adhesive tests

    NASA Technical Reports Server (NTRS)

    Reed, M. W.

    1973-01-01

    Silver/Teflon thermal control coatings have been tested on a modular radiator system projected for use on the space shuttle. Seven candidate adhesives have been evaluated in a thermal vacuum test on radiator panels similar to the anticipated flight hardware configuration. Several classes of adhesives based on polyester, silicone, and urethane resin systems were tested. These included contact adhesives, heat cured adhesives, heat and pressure cured adhesives, pressure sensitive adhesives, and two part paint on or spray on adhesives. The coatings attached with four of the adhesives, two silicones and two urethanes, had no changes develop during the thermal vacuum test. The two silicone adhesives, both of which were applied to the silver/Teflon as transfer laminates to form a tape, offered the most promise based on application process and thermal performance. Each of the successful silicone adhesives required a heat and pressure cure to adhere during the cryogenic temperature excursion of the thermal-vacuum test.

  7. Evaluation of Shear Bond Strength of Total- and Self-etching Adhesive Systems after Application of Chlorhexidine to Dentin Contaminated with a Hemostatic Agent

    PubMed Central

    Sharafeddin, Farahnaz; Farhadpour, Hajar

    2015-01-01

    Statement of the Problem Hemostatic agents may influence the bond strength of different bonding agents. Also, chlorhexidine has shown positive effects on bond strength values and their combination effect has not been reported yet. Purpose The aim of this study was to evaluate the effect of contamination with a hemostatic agent on shear bond strength (SBS) of total- and self-etching adhesive systems and the effect of chlorhexidine application after removal of the hemostatic agent. Materials and Method In this experimental study, the occlusal enamel of each sixty caries-free mandibular molars was removed and their midcoronal dentin was exposed. The specimens were then mounted in auto-polymerizing resin 1mm apical to CEJ. Then, the specimens were divided into 6 groups (n=10) based on contamination with a hemostatic agent (H), application of chlorhexidine (CHX) and the adhesive system used; and then were classified as Group 1: Adper Single Bond (ASB); Group 2: H+ASB; Group 3: H+0.2% CHX+ASB; Group 4: Clearfil SE Bond (CSB); Group 5: H+CSB; Group 6: H+0.2% CHX+CSB. Then, composite resin rods (4×2 mm) were built up on the dentin surfaces and after thermocycling, the SBS (MPa) was evaluated. Statistical analysis was performed using two-way ANOVA and post hoc Tukey tests (p< 0.05). Results There were statistically significant differences between bond strength values of group 1 (ASB) and group 2 (H+ASB) (p< 0.001) and group 1 (ASB) and group 3 (H+CHX+ASB) (p< 0.001). Similarly, significant differences were seen between group 4 (CSB) and group 5 (H+CSB) (p< 0.001) and between group 4 (CSB) and group 6 (H+CHX+CSB) (p< 0.001). Conclusion Contamination with hemostatic agent reduced the SBS of both total- and self-etching adhesive systems. In addition, application of chlorhexidine after the removal of hemostatic agent had a negative effect on SBS of total- and self-etching adhesive systems. PMID:26331146

  8. Effect of sodium ascorbate on the bond strength of all-in-one adhesive systems to NaOCl-treated dentin

    PubMed Central

    Ebrahimi-Chaharom, Mohammad-Esmaeel; Kimyai, Soodabeh; Mohammadi, Narmin; Oskoee, Parnian-Alizadeh; Daneshpuy, Mehdi

    2015-01-01

    Background Ascorbic acid and its salts are low-toxicity products, which are routinely used in food industries as antioxidants. The aim of the present study was to evaluate the effect of 10% sodium ascorbate on the bond strength of two all-in-one adhesive systems to NaOCl-treated dentin. Material and Methods After exposing the dentin on the facial surface of 90 sound human premolars and mounting in an acrylic resin mold, the exposed dentin surfaces were polished with 600-grit SiC paper under running water. Then the samples were randomly divided into 6 groups of 15. Groups 1 and 4 were the controls, in which no surface preparation was carried out. In groups 2 and 5 the dentin surfaces were treated with 5.25% NaOCl alone for 10 minutes and in groups 3 and 6 with 5.25% NaOCl for 10 minutes followed by 10% sodium ascorbate for 10 minutes. Then composite resin cylinders, measuring 2 mm in diameter and 2 mm in height, were bonded on the dentin surfaces in groups 1, 2 and 3 with Clearfil S3 Bond and in groups 4, 5 and 6 with Adper Easy One adhesive systems according to manufacturers’ instructions. The samples were stored in distilled water for 24 hours at 37°C and then thermocycled. Finally, the samples underwent shear bond strength test in a universal testing machine at a strain rate of 1 mm/min. Data were analyzed with two-way ANOVA and post hoc Tukey tests at α=0.05. Results The differences between groups 1 and 2 (P=0.01), 1 and 5 (P=0.003). 1 and 6 (P=0.03) and 4 and 5 (P=0.03) were statistically significant. Two-by-two comparisons did not reveal any significant difference between other groups (P>0.05). Conclusions Use of 10% sodium ascorbate for 10 minutes restored the decreased bond strength of the adhesive systems to that of the control groups. Key words:Sodium ascorbate, adhesive systems, all-in-one, bond strength, sodium hypochlorite. PMID:26644835

  9. Influence of cement type and thickness on polyfiber post adhesion

    PubMed Central

    Uzunoğlu, Emel; Türker, Sevinç Aktemur; Yilmaz, Zeliha

    2014-01-01

    Introduction: To evaluate the effect of two different post space diameters and related resin cement film thicknesses on the bond strength of a polyfiber post. Materials and Methods: A total of 48 premolars were randomly divided into two according to the post space diameter: 1.1 mm and 1.5 mm. Then each group was divided into three sub-groups according to luting cement used: RelyX U100, Panavia F2.0/ED primer, Clearfil SA cement. Spirapost was then luted into the canal using luting cements. Two slices were obtained from each root specimen. Push-out tests were performed. Data was analyzed with Kruskal-Wallis and Connover post-hoc and Mann-Whitney U-test (P < 0.05). Results: Push-out bond strength was found to vary significantly according to type of adhesive system and post space diameter size (P < 0.05). The self-adhesive resin cement RelyX U100 had significantly higher bond strengths compared with the other adhesive system (P < 0.05). The self-etch adhesive system (Panavia F2.0) showed significantly lower bond strengths compared with the other systems (P < 0.05). There was a significant interaction between the luting systems and post space diameter (P < 0.05). Conclusion: The increases in post space diameter significantly reduced the bond strength of Spirapost to root dentine for both groups. PMID:24944450

  10. Discrete Particle Dynamics Simulations of Adhesive Systems with Thermostatting

    NASA Astrophysics Data System (ADS)

    Pierce, Flint; Lechman, Jeremy; Hewson, John

    2012-02-01

    Aggregation/coagulation/flocculation processes are ubiquitous in modern industry from fields as diverse as waste water treatment, the food industry, algae biofuel production, and materials processing where control of the size and morphology of aggregates is paramount to the application of interest. Population balance models have historically been used with success in predicting aggregation kinetics and size distributions for these processes. However, even the most robust population balance schemes can lack an exact description of the underlying physical processes governing attractive or adhesive particulate matter suspended in a background medium, including finite aggregate strength and yield stress, restructuring length and time scales, and response to hydrodynamic forces. In order to elucidate these phenomena, We develop and use a JKR type model for simulating adhesive particulate matter in a background medium varying from dilute gas to liquid. We evaluate the time and length scales for restructuring/fragmentation that result from this model as a function of aggregate size and fractal dimension. We additionally introduce a method for pairwise thermostatting of the adhesive potential and discuss the applicability of this model to various adhesive systems.

  11. Effect of adhesive application methods on bond strength to bovine enamel.

    PubMed

    Ando, Susumu; Watanabe, Takayuki; Tsubota, Keishi; Yoshida, Takeshi; Irokawa, Atsushi; Takamizawa, Toshiki; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2008-06-01

    Single-step self-etch adhesive systems have been developed to simplify and shorten bonding procedures. With the gain in popularity of these simplified systems, their reliability has become a focus of interest. The purpose of this study was to determine the effect of adhesive application method on enamel bond strength. Two commercial single-step self-etch adhesive systems, Clearfil tri-S Bond, and G-Bond, were used. Bovine mandibular incisors were mounted in self-curing resin and the facial enamel surfaces were ground wet on 600-grit SiC paper. Adhesives were only applied without agitation (inactive) or were agitated by a brush (active), and resin composites were condensed into the mold on the enamel surface and light-activated. Ten specimens per test group were stored in water at 37 degrees C for 24 h, then shear-tested at a cross-head speed of 1.0 mm/min. Two-way ANOVA followed by the Tukey HSD test were used. The bond strengths for active application were higher than those for inactive application. Significant differences were found for both adhesive systems. From the results of this study, active application of single-step self-etch adhesive may help to ensure the creation of a roughened enamel surface and enhance the penetration of resin monomer into the subsurface demineralized enamel. PMID:18587208

  12. Influence of Organic Acids from the Oral Biofilm on the Bond Strength of Self-Etch Adhesives to Dentin.

    PubMed

    Amaral, Cristiane Mariote; Correa, Danielly de Sá; Miragaya, Luciana Meirelles; Silva, Eduardo Moreira da

    2015-10-01

    The aim of this study was to evaluate the microtensile bond strength of self-etch adhesive systems to dentin after storage in acids from oral biofilm. Three adhesive systems were used in the study: a two-step self-etch adhesive for use with a silorane-based resin composite (Filtek P90 adhesive system - P90), a two-step self-etch adhesive (Clearfil SE Bond - CSE) and a one-step self-etch adhesive (Adper Easy One - AEO). The bond strength of these products was evaluated by bonding resin composite (Filtek Z350 for CSE and AEO; and Filtek P90 for P90) to 90 bovine dentin tooth fragments, according to the manufacturer's instructions. After 24 h of water storage at 37 °C, the specimens were sectioned into beams (1 mm2) divided and stored in distilled water, lactic acid and propionic acid, for 7 and 30 days. After storage, the specimens were tested for microtensile bond strength. Data were analyzed by three-way ANOVA and Tukey´s test (α=0.05). CSE presented the highest microtensile bond strength after storage in distilled water for 7 and 30 days. The microtensile bond strength of all adhesive systems was lower after storage in lactic acid and propionic acid than after water storage. Significant difference was not found between storage times. PMID:26647935

  13. Role of tilted adhesion fibrils (setae) in the adhesion and locomotion of gecko-like systems.

    PubMed

    Zhao, Boxin; Pesika, Noshir; Zeng, Hongbo; Wei, Zhensong; Chen, Yunfei; Autumn, Kellar; Turner, Kimberly; Israelachvili, Jacob

    2009-03-26

    Geckos are super climbers: they can readily and rapidly stick to almost any surface, whether hydrophilic or hydrophobic, rough or smooth, in dry or wet conditions, and detach with equal rapidity within tens of milliseconds. In this paper, we discuss the rapid switching between the strong adhesion/friction (attached) state and zero adhesion/friction (detached) state, and present a finite element analysis of gecko setae in terms of their adhesion and friction forces. The analysis shows why the asymmetric, naturally curved setae with a directional tilt play a crucial role in the gecko's articulation mechanism, consistent with recent experimental studies of gecko setal arrays. We derive guidelines for designing synthetic versions of gecko adhesive pads, and propose a design for a "gecko-inspired" adhesive surface consisting of arrays of curved, asymmetric, and directionally oriented microfibrils, attached to a semirigid backing, and suggest a method for its actuation.

  14. Endoglin regulates mural cell adhesion in the circulatory system.

    PubMed

    Rossi, Elisa; Smadja, David M; Boscolo, Elisa; Langa, Carmen; Arevalo, Miguel A; Pericacho, Miguel; Gamella-Pozuelo, Luis; Kauskot, Alexandre; Botella, Luisa M; Gaussem, Pascale; Bischoff, Joyce; Lopez-Novoa, José M; Bernabeu, Carmelo

    2016-04-01

    The circulatory system is walled off by different cell types, including vascular mural cells and podocytes. The interaction and interplay between endothelial cells (ECs) and mural cells, such as vascular smooth muscle cells or pericytes, play a pivotal role in vascular biology. Endoglin is an RGD-containing counter-receptor for β1 integrins and is highly expressed by ECs during angiogenesis. We find that the adhesion between vascular ECs and mural cells is enhanced by integrin activators and inhibited upon suppression of membrane endoglin or β1-integrin, as well as by addition of soluble endoglin (SolEng), anti-integrin α5β1 antibody or an RGD peptide. Analysis of different endoglin mutants, allowed the mapping of the endoglin RGD motif as involved in the adhesion process. In Eng (+/-) mice, a model for hereditary hemorrhagic telangectasia type 1, endoglin haploinsufficiency induces a pericyte-dependent increase in vascular permeability. Also, transgenic mice overexpressing SolEng, an animal model for preeclampsia, show podocyturia, suggesting that SolEng is responsible for podocytes detachment from glomerular capillaries. These results suggest a critical role for endoglin in integrin-mediated adhesion of mural cells and provide a better understanding on the mechanisms of vessel maturation in normal physiology as well as in pathologies such as preeclampsia or hereditary hemorrhagic telangiectasia. PMID:26646071

  15. Strategies for precision adhesive bonding of micro-optical systems

    NASA Astrophysics Data System (ADS)

    Müller, Tobias; Kotnur Venu, Vyshak; Haag, Sebastian; Zontar, Daniel; Sauer, Sebastian; Wenzel, Christian; Brecher, Christian

    2015-02-01

    Today's piezo-based micromanipulator technology allows for highly precise manipulation of optical components. A crucial question for the quality of optical assemblies is the misalignment after curing. The challenge of statistical deviations in the curing process requires a sophisticated knowledge on the relevant process parameters. An approach to meet these requirements is the empirical analysis such as characterization of shrinkage. Gaining sophisticated knowledge about the statistical process of adhesive bonding advances the quality of related production steps like beam-shaping optics, mounting of turning mirrors for fiber coupling or building resonators evaluating power, mode characteristics and beam shape. Maximizing the precision of these single assembly steps fosters the scope of improving the overall efficiency of the entire laser system. At Fraunhofer IPT research activities on the identification of relevant parameters for improved adhesive bonding precision have been undertaken and are ongoing. The influence of the volumetric repeatability of different automatic and manual dispensing methods play an important role. Also, the evaluation of UV-light sources and the relating illumination properties have a significant influence on the bonding result. Furthermore, common UV-curing adhesives are being examined on their performance and reliability for both highest precision prototyping, as well as their application as robust bonding medium in automated optics assembly cells. This paper sums up the parameters of most influence. Overall goal of these activities is the development of a prediction model for optimized shrinkage compensation and thus improved assembly quality.

  16. Endoglin regulates mural cell adhesion in the circulatory system.

    PubMed

    Rossi, Elisa; Smadja, David M; Boscolo, Elisa; Langa, Carmen; Arevalo, Miguel A; Pericacho, Miguel; Gamella-Pozuelo, Luis; Kauskot, Alexandre; Botella, Luisa M; Gaussem, Pascale; Bischoff, Joyce; Lopez-Novoa, José M; Bernabeu, Carmelo

    2016-04-01

    The circulatory system is walled off by different cell types, including vascular mural cells and podocytes. The interaction and interplay between endothelial cells (ECs) and mural cells, such as vascular smooth muscle cells or pericytes, play a pivotal role in vascular biology. Endoglin is an RGD-containing counter-receptor for β1 integrins and is highly expressed by ECs during angiogenesis. We find that the adhesion between vascular ECs and mural cells is enhanced by integrin activators and inhibited upon suppression of membrane endoglin or β1-integrin, as well as by addition of soluble endoglin (SolEng), anti-integrin α5β1 antibody or an RGD peptide. Analysis of different endoglin mutants, allowed the mapping of the endoglin RGD motif as involved in the adhesion process. In Eng (+/-) mice, a model for hereditary hemorrhagic telangectasia type 1, endoglin haploinsufficiency induces a pericyte-dependent increase in vascular permeability. Also, transgenic mice overexpressing SolEng, an animal model for preeclampsia, show podocyturia, suggesting that SolEng is responsible for podocytes detachment from glomerular capillaries. These results suggest a critical role for endoglin in integrin-mediated adhesion of mural cells and provide a better understanding on the mechanisms of vessel maturation in normal physiology as well as in pathologies such as preeclampsia or hereditary hemorrhagic telangiectasia.

  17. Surface pH and bond strength of a self-etching primer/adhesive system to intracoronal dentin after application of hydrogen peroxide bleach with sodium perborate.

    PubMed

    Elkhatib, Hanadi; Nakajima, Masatoshi; Hiraishi, Noriko; Kitasako, Yuichi; Tagami, Junji; Nomura, Satoshi

    2003-01-01

    This study compared the dentin bond strength of a self-etching primer/adhesive system with dentin surface pH with or without bleaching and observed the morphological changes in bleached dentin treated with a self-etching primer. Dentin disks were prepared from the coronal-labial region of 32 human anterior teeth. The pulpal surfaces of the dentin disks were polished with 600-grit SiC paper under running water. The dentin surfaces on all specimens were bleached with a mixture of 30% hydrogen peroxide and sodium perborate in 100% humidity at 37 degrees C for one week. The bleaching agent was then rinsed off with water for 5, 15 or 30 seconds. All specimens were stored in water at 37 degrees C. Half of the five-second rinsing specimens were stored in water for an additional week. Dentin surface pH with or without bleaching was examined using a pH-imaging microscope (SCHEM-100). A self-etching primer/adhesive system (Clearfil SE Bond) was applied to bleached or unbleached dentin according to the manufacturer's instructions. After 24-hour water storage, the bonded specimens were prepared for microtensile testing. Microtensile bond strength (microTBS) to dentin was measured using a universal-testing machine (EZ test, Shimadzu, Japan) at a crosshead speed of 1.0 mm/minute. Data were analyzed by one-way ANOVA and Scheffe's test (alpha=0.05). The pH values of the dentin surfaces of the 5 and 15 second rinsing groups were significantly higher than the control group (p<0.05), while the 30-second rinsing and one-week water storage groups had similar surface pH values to the control group (p<0.05). The microTBS of 5, 15 and 30 second rinsing specimens after bleaching were significantly lower than the control specimens (p<0.05). However, after one-week of water storage, the microTBS returned to the control group. The application of a bleaching agent increased the pH value of the dentin surface and decreased the bond strength of the self-etching primer/adhesive system. One

  18. Effect of etch-and-rinse and self-etching adhesive systems on hardness uniformity of resin cements after glass fiber post cementation

    PubMed Central

    Grande da Cruz, Fernanda Zander; Grande, Christiana Zander; Roderjan, Douglas Augusto; Galvão Arrais, César Augusto; Bührer Samra, Adriana Postiglione; Calixto, Abraham Lincoln

    2012-01-01

    Objective To evaluate the effects of etch-and-rinse and self-etching adhesive systems on Vickers hardness (VHN) uniformity of dual-cured resin cements after fiber post cementation. Methods: Fifty glass fiber posts were cemented into bovine roots using the following cementing systems: Prime&Bond 2.1 Dual Cure and Enforce with light-activation (PBDC-LCEN); Prime&Bond 2.1 and Enforce with light-activation (PB-CLEN); Prime&Bond 2.1 Dual Cure and Enforce without light exposure (PBDC-SCEN); ED Primer and Panavia 21 (ED-SCPN); and Clearfil SE Bond and Panavia 21 (CF-SCPN). The roots were stored in distilled water for 72 h and transversely sectioned into thirds (coronal, medium, and apical). The VHN values of the resin cement layers were measured close to the post and to the dentin wall on the transversely sectioned flat surfaces. The results were analyzed by three-way repeated measures analysis of variance (ANOVA) and Tukey’s post-hoc test (pre-set alpha of 5%). Results: Most resin cements presented higher VHN values near the post than near the dentin wall. The ED-SCPN group showed the highest VHN values regardless of the root third, while the self-cured group PBDC-SCEN exhibited the lowest values. The resin cements from the light-activated groups PBDC-LCEN and PB-LCEN showed lower VHN values at the apical third than at the coronal third. The VHN values were not influenced by the root third in self-cured groups PBDC-SCEN, ED-SCPN, and ED-SCPN. Conclusion: Depending on the product, bonding agents might promote changes in hardness uniformity of resin cements after post cementation. PMID:22904652

  19. Effect of the erbium:yttrium-aluminum-garnet laser or diamond bur cavity preparation on the marginal microleakage of class V cavities restored with different adhesives and composite systems.

    PubMed

    Yaman, Batu Can; Guray, Begum Efes; Dorter, Can; Gomeç, Yavuz; Yazıcıoglu, Oktay; Erdilek, Dina

    2012-07-01

    The aim of this in vitro study was to compare the microleakage of Er:YAG laser and diamond bur on different bonding systems in class V restorations. Class V cavities were prepared with Er:YAG laser or diamond bur on 80 intact human molars. Teeth were randomly distributed into ten groups and cavities were restored with CeramX duo (DENTSPLY) or Filtek Silorane (3M/ESPE) using different bonding materials (One Coat 7.0 (Coltène), XP Bond (DENTSPLY), Clearfil Protect Bond (Kuraray), AdperSE (3M/ESPE), and Silorane System Adhesive (3M/ESPE). All specimens were subjected to thermocycling and load cycling. After being immersed in silver nitrate dye, the specimens were sectioned. Microleakage was evaluated by stereomicroscope and SEM. Data were statistically analyzed by one-way ANOVA, Kruskal-Wallis, and Mann-Whitney tests. Statistically differences were found between groups (p > 0.05) and cavities prepared with the Er:YAG laser showed higher microleakage than diamond bur. The microleakage of different bonding systems was influenced by the choice of diamond bur or Er:YAG laser for class V composite cavity preparation.

  20. Effect of a plant-based hemostatic agent on microleakage of self-etching adhesives

    PubMed Central

    Arslan, Soley; Ertaş, Hüseyin; Zorba, Yahya O.

    2013-01-01

    Objective: This in vitro study evaluated the effect of Ankaferd Blood Stopper (ABS) contamination on the microleakage of one-step and two-step self-etching adhesives. Study design: Class V cavities were prepared at the cemento-enamel junction on both buccal and lingual surfaces of 60 freshly extracted human molars. Teeth were randomly assigned into three groups according to contamination material applied (Group I, no contamination; Group II, blood contamination; Group III, ABS contamination). In contaminated groups, one drop of blood and ABS solution was applied directly to the dentin surface and air-dried. Each group was further divided into two subgroups according to bonding agent used [Group A, Clearfil SE Bond (two-step self-etching adhesive); Group B, Adper Easy One (one-step self-etching adhesive)]. Adhesive materials were applied according to the manufacturers’ recommendations. The specimens were restored using a universal microhybrid composite (Arabesk). After thermocycling (5000x, 5°C – 55°C) and immersion in a 0.5% basic fuchsin, dye penetration was evaluated under a stereomicroscope. Statistical analysis was performed with Kruskal-Wallis and Mann-Whitney U tests at p < 0.05. Results: Significantly higher microleakage scores were observed when one-step self-etching adhesive was applied to blood- and ABS-contaminated dentin. However, when a two-step self etching adhesive was used, microleakage was observed only following blood contamination, not following ABS contamination. Conclusions: Although, blood contamination before adhesive application resulted in increased microleakage with both one-step and two-step self-etching adhesive systems, ABS contamination did not affect microleakage when a two-step self-ething adhesive system was used. Key words:Ankaferd Blood Stopper, blood, microleakage, self-etching adhesive. PMID:23229238

  1. Instantly switchable adhesion of bridged fibrillar adhesive via gecko-inspired detachment mechanism and its application to a transportation system.

    PubMed

    Bae, Won-Gyu; Kim, Doogon; Suh, Kahp-Yang

    2013-12-01

    Inspired by the exceptional climbing ability of gecko lizards, artificial fibrillar adhesives have been extensively studied over the last decade both experimentally and theoretically. Therefore, a new leap towards practical uses beyond the academic horizon is timely and highly anticipated. To this end, we present a fibrillar adhesive in the form of bridged micropillars and its application to a transportation system with the detachment mechanism inspired by the climbing behaviour of gecko lizards. The adhesive shows strong normal attachment (~30 N cm(-2)) as well as easy and fast detachment within 0.5 s without involving complex dynamic mechanisms or specific stimulus-responsive materials. The fabrication of the bridged micropillars consists of replica moulding of polydimethylsiloxane (PDMS) micropillars, transfer of the PDMS precursor to the heads of the micropillars, and inverse placement on an inert Teflon-coated surface. Owing to the spontaneous interconnections of low viscosity PDMS precursor, bridged micropillars with a uniform capping nanomembrane (~800 nm thickness) are formed over a large area. Interestingly, macroscopic adhesion in the normal direction can be immediately switched between on and off states by changing the two detachment modes of pulling and peeling, respectively. To prove the potential of the fibrillar adhesive for practical use, an automated transportation system is demonstrated for lifting and releasing a mass of stacked glass slides over 1000 cycles of attachment and detachment.

  2. Kinetics of conversion of two dual-cured adhesive systems.

    PubMed

    Faria-e-Silva, André Luis; Casselli, Denise Sá Maia; Lima, Giana Silveira; Ogliari, Fabrício Aulo; Piva, Evandro; Martins, Luis Roberto Marcondes

    2008-09-01

    The aim of this study was to evaluate the kinetics of conversion of Scotchbond Multi-purpose Plus (3M ESPE, St Paul, MN) and Prime&Bond NT (Dentsply De Trey, Konstanz, Germany) used in light-cured, self-cured, or dual-cured versions. The adhesive systems were used in the light-cured version (without the use of chemical initiator) or mixed with its respective chemical initiator either with light activation (dual-cured) or not (self-cured). The degree of conversion (DC) was monitored as a function of time during 5 minutes with a Fourier transform infrared spectrometer equipped with an attenuated total reflectance device. Light-cured and dual-cured modes of Scotchbond Multi-purpose Plus presented the highest DC at 5 minutes. The addition of the self-cure activator (dual-cured mode) to Prime&Bond NT reduced the DC. For the self-cured versions, only the Scotchbond Multi-purpose Plus presented any polymerization reaction at 5 minutes. For the two bonding systems tested, it appears that light curing of the adhesive is important in order to reach a high DC in the first moments after the bonding procedure.

  3. Instantly switchable adhesion of bridged fibrillar adhesive via gecko-inspired detachment mechanism and its application to a transportation system

    NASA Astrophysics Data System (ADS)

    Bae, Won-Gyu; Kim, Doogon; Suh, Kahp-Yang

    2013-11-01

    Inspired by the exceptional climbing ability of gecko lizards, artificial fibrillar adhesives have been extensively studied over the last decade both experimentally and theoretically. Therefore, a new leap towards practical uses beyond the academic horizon is timely and highly anticipated. To this end, we present a fibrillar adhesive in the form of bridged micropillars and its application to a transportation system with the detachment mechanism inspired by the climbing behaviour of gecko lizards. The adhesive shows strong normal attachment (~30 N cm-2) as well as easy and fast detachment within 0.5 s without involving complex dynamic mechanisms or specific stimulus-responsive materials. The fabrication of the bridged micropillars consists of replica moulding of polydimethylsiloxane (PDMS) micropillars, transfer of the PDMS precursor to the heads of the micropillars, and inverse placement on an inert Teflon-coated surface. Owing to the spontaneous interconnections of low viscosity PDMS precursor, bridged micropillars with a uniform capping nanomembrane (~800 nm thickness) are formed over a large area. Interestingly, macroscopic adhesion in the normal direction can be immediately switched between on and off states by changing the two detachment modes of pulling and peeling, respectively. To prove the potential of the fibrillar adhesive for practical use, an automated transportation system is demonstrated for lifting and releasing a mass of stacked glass slides over 1000 cycles of attachment and detachment.Inspired by the exceptional climbing ability of gecko lizards, artificial fibrillar adhesives have been extensively studied over the last decade both experimentally and theoretically. Therefore, a new leap towards practical uses beyond the academic horizon is timely and highly anticipated. To this end, we present a fibrillar adhesive in the form of bridged micropillars and its application to a transportation system with the detachment mechanism inspired by the

  4. Introduction to the adhesive bonding session. [foam system for attaching thermal insulation on space shuttle

    NASA Technical Reports Server (NTRS)

    Mccarty, J. E.

    1972-01-01

    Space shuttle unique requirements call for the development of a specific adhesive system to reliable attach reusable surface insulation. A low density foam system has been developed that provides strain isolation from the support structure and remains structurally stable in space shuttle thermal environment. Surface preparation and its stabilization by an adhesive primer system are the most important factors in preventing corrosion from reducing the reliability and durability of the adhesive bonding component.

  5. Ultrastructural observation of the acid-base resistant zone of all-in-one adhesives using three different acid-base challenges.

    PubMed

    Tsujimoto, Miho; Nikaido, Toru; Inoue, Go; Sadr, Alireza; Tagami, Junji

    2010-11-01

    The aim of this study was to analyze the ultrastructure of the dentin-adhesive interface using two all-in-one adhesive systems (Clearfil Tri-S Bond, TB; Tokuyama Bond Force, BF) after different acid-base challenges. Three solutions were used as acidic solutions for the acid-base challenges: a demineralizing solution (DS), a phosphoric acid solution (PA), and a hydrochloric acid solution (HCl). After the acid-base challenges, the bonded interfaces were examined by scanning electron microscopy. Thickness of the acid-base resistant zone (ABRZ) created in PA and HCl was thinner than in DS for both adhesive systems. For BF adhesive, an eroded area was observed beneath the ABRZ after immersion in PA and HCl, but not in DS. Conversely for TB adhesive, the eroded area was observed only after immersion in PA. In conclusion, although the ABRZ was observed for both all-in-one adhesive systems, its morphological features were influenced by the ingredients of both the adhesive material and acidic solution.

  6. Interfacial adhesion of dental ceramic-resin systems

    NASA Astrophysics Data System (ADS)

    Della Bona, Alvaro

    The clinical success of resin bonding procedures for indirect ceramic restorations and ceramic repairs depends on the quality and durability of the bond between the ceramic and the resin. The quality of this bond will depend upon the bonding mechanisms that are controlled in part by the surface treatment that promotes micromechanical and/or chemical bonding to the substrate. The objective of this study is to correlate interfacial toughness (K A) with fracture surface morphological parameters of the dental ceramic-resin systems as a function of ceramic surface treatment. The analytical procedures focused on characterizing the microstructure and fracture properties of EmpressRTM ceramics (a leucite-based core ceramic, two lithia disilicate-based core ceramics, and a glass veneer) and determining the ceramic-resin adhesion zone bond strength characteristics. Microstructure and composition are controlling factors in the development of micromechanical retention produced by etching. Silane treated ceramics negated the effect of surface roughening produced by etching, inducing lower surface energy of the ceramic and, reduced bonding effectiveness. There was a positive correlation between WA, tensile bond strength (a), and KA, i.e., higher mean WA value, and higher mean sigma and KA values. This study suggests that (1) the sigma and KA values for ceramic bonded to resin are affected by the ceramic microstructure and the ceramic surface treatments; (2) the definition of the adhesion zone is essential to classify the modes of failure, which should be an integral component of all failure analyses; (3) the microtensile test may be preferable to conventional shear or flexural tests as an indicator of composite-ceramic bond quality; and (4) careful microscopic analysis of fracture surfaces and an x-ray dot map can produce a more consistent and complete description of the fracture process and interpretation of the modes of failure. The mode of failure and fractographic analyses

  7. Sealing and dentin bond strengths of adhesive systems.

    PubMed

    Del Nero, M O; de la Macorra, J C

    1999-01-01

    The objectives of this research were (1) to analyze the variations of the permeability of dentin after restoration with two polyacid-modified resin composites (Compoglass, Dyract) and four single-bottle adhesives (Prime & Bond 2.0, Syntac Single Component, OptiBond Solo, and Single Bond--Scotch Bond 1 in Europe--immediately (approximately 1 hour) after insertion. A perfusion system with distilled water was used at a pressure of 32.5 cm of water; (2) to study the bond strength of their interfaces; and (3) to find the correlation, if any, between both parameters. None of the materials used produced a complete cessation in fluid filtration. Tensile bond strengths were very low (maximum: P&B = 3.96 MPa) probably because of the very large bonding surfaces used (mean bonded surface area = 88.8 mm2). No significant correlation was found between tensile bond strength and the sealing ability for any material.

  8. Laser Phototherapy Enhances Mesenchymal Stem Cells Survival in Response to the Dental Adhesives

    PubMed Central

    Marques, Márcia Martins

    2015-01-01

    Background. We investigated the influence of laser phototherapy (LPT) on the survival of human mesenchymal stem cells (MSCs) submitted to substances leached from dental adhesives. Method. MSCs were isolated and characterized. Oral mucosa fibroblasts and osteoblast-like cells were used as comparative controls. Cultured medium conditioned with two adhesive systems was applied to the cultures. Cell monolayers were exposed or not to LPT. Laser irradiations were performed using a red laser (GaAlAs, 780 nm, 0.04 cm2, 40 mW, 1 W/cm2, 0.4 J, 10 seconds, 1 point, 10 J/cm2). After 24 h, cell viability was assessed by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide reduction assay. Data were statistically compared by ANOVA followed by Tukey's test (P < 0.05). Results. Different cell types showed different viabilities in response to the same materials. Substances leached from adhesives were less cytotoxic to MSCs than to other cell types. Substances leached from Clearfil SE Bond were highly cytotoxic to all cell types tested, except to the MSCs when applied polymerized and in association with LPT. LPT was unable to significantly increase the cell viability of fibroblasts and osteoblast-like cells submitted to the dental adhesives. Conclusion. LPT enhances mesenchymal stem cells survival in response to substances leached from dental adhesives. PMID:25879065

  9. New adhesive systems based on functionalized block copolymers

    SciTech Connect

    Kent, M.; Saunders, R.; Hurst, M.; Small, J.; Emerson, J.; Zamora, D.

    1997-05-01

    The goal of this work was to evaluate chemically-functionalized block copolymers as adhesion promoters for metal/thermoset resin interfaces. Novel block copolymers were synthesized which contain pendant functional groups reactive toward copper and epoxy resins. In particular, imidazole and triazole functionalities that chelate with copper were incorporated onto one block, while secondary amines were incorporated onto the second block. These copolymers were found to self-assemble from solution onto copper surfaces to form monolayers. The structure of the adsorbed monolayers were studied in detail by neutron reflection and time-of-flight secondary ion mass spectrometry. The monolayer structure was found to vary markedly with the solution conditions and adsorption protocol. Appropriate conditions were found for which the two blocks form separate layers on the surface with the amine functionalized block exposed at the air surface. Adhesion testing of block copolymer-coated copper with epoxy resins was performed in both lap shear and peel modes. Modest enhancements in bond strengths were observed with the block copolymer applied to the native oxide. However, it was discovered that the native oxide is the weak link, and that by simply removing the native oxide, and then applying an epoxy resin before the native oxide can reform, excellent bond strength in the as-prepared state as well as excellent retention of bond strength after exposure to solder in ambient conditions are obtained. It is recommended that long term aging studies be performed with and without the block copolymer. In addition, the functionalized block copolymer method should be evaluated for another system that has inherently poor bonding, such as the nickel/silicone interface, and for systems involving metals and alloys which form oxides very rapidly, such as aluminum and stainless steel, where bonding strategies involve stabilizing the native oxide.

  10. Relevance of in vitro tests of adhesive and composite dental materials. A review in 3 parts. Part 3: in vitro tests of adhesive systems.

    PubMed

    Heintze, Siegward D; Zimmerli, Brigitte

    2011-01-01

    In the third part of this review of laboratory testing, methods of testing adhesive systems are evaluated. Test set-ups that are used to analyze the restorative material in combination with the adhesive system are presented. Currently, there is no standardized protocol available for the evaluation of adhesives. This complicates any direct comparisons of values between different testing institutes. Therefore, the statistically evaluated ranking of the different adhesives is more important than mean values. Depending on the testing institute, a correlation between bond strength measurements and clinical outcomes may exist. Qualitative analysis of adhesive/tooth interaction can help explain the functioning of a system, but the depth of penetration of the adhesive cannot predict bond strength. Indirect bond measurements or analyses of the interactions of adhesive and composite materials, such as dye penetration or marginal analysis, do not correlate or correlate only partially with clinical findings. Adhesive systems should be tested in vitro and compared to a well-known standard adhesive before they are used in the clinic. Water storage of specimens for several months before testing increases the predictability of the bonding performance of the tested adhesive.

  11. Bond strength of composite to dentin: effect of acid etching and laser irradiation through an uncured self-etch adhesive system

    NASA Astrophysics Data System (ADS)

    Castro, F. L. A.; Carvalho, J. G.; Andrade, M. F.; Saad, J. R. C.; Hebling, J.; Lizarelli, R. F. Z.

    2014-08-01

    This study evaluated the effect on micro-tensile bond strength (µ-TBS) of laser irradiation of etched/unetched dentin through an uncured self-etching adhesive. Dentinal surfaces were treated with Clearfil SE Bond Adhesive (CSE) either according to the manufacturer’s instructions (CSE) or without applying the primer (CSE/NP). The dentin was irradiated through the uncured adhesive, using an Nd:YAG laser at 0.75 or 1 W power settings. The adhesive was cured, composite crowns were built up, and the teeth were sectioned into beams (0.49 mm2) to be stressed under tension. Data were analyzed using one-way ANOVA and Tukey statistics (α = 5%). Dentin of the fractured specimens and the interfaces of untested beams were observed under scanning electron microscopy (SEM). The results showed that non-etched irradiated surfaces presented higher µ-TBS than etched and irradiated surfaces (p < 0.05). Laser irradiation alone did not lead to differences in µ-TBS (p > 0.05). SEM showed solidification globules on the surfaces of the specimens. The interfaces were similar on irradiated and non-irradiated surfaces. Laser irradiation of dentin through the uncured adhesive did not lead to higher µ-TBS when compared to the suggested manufacturer’s technique. However, this treatment brought benefits when performed on unetched dentin, since bond strengths were higher when compared to etched dentin.

  12. Direct pulp capping effect with experimentally developed adhesive resin systems containing reparative dentin-promoting agents on rat pulp: mixed amounts of additives and their effect on wound healing.

    PubMed

    Taira, Yoshihisa; Shinkai, Koichi; Suzuki, Masaya; Kato, Chikage; Katoh, Yoshiroh

    2011-07-01

    This study examined the wound-healing process of exposed rat pulp when treated with experimental adhesive resin systems. The experimental direct pulp capping adhesive resin systems were composed of primer-I, primer-II and an experimental bonding agent. Primer-I was Clearfil SE Bond (CSE) primer containing 1.0 or 5.0 wt% CaCl(2), and primer-II was CSE primer containing 0.1, 1.0 or 5.0 wt% compound of equal mole of pA and pB with synthetic peptides derived from dentin matrix protein 1 (DMP1). Primer-I containing 1.0 and 5.0 wt% CaCl(2) was assigned to the experimental groups 1-3 and 4-6, respectively. Primer-II containing 0.1, 1.0 or 5.0 wt% compound of pA and pB was assigned to the experimental groups 1 and 4, 2 and 5, and 3 and 6, respectively. In all experimental groups, CSE bond containing 10 wt% hydroxyapatite powder was used as the experimental bonding agent. The positive control teeth were capped with calcium hydroxide preparation (Dycal), and the negative control teeth were capped with CSE. The specimens were alternately stained with Mayer's H&E and the enhanced polymer one-step staining methods. Experimental groups 1, 4, 5 and 6 showed a higher level of reparative dentin formation compared to the negative control 14 days postoperatively. At 28 days postoperatively, all experimental groups showed the formation of extensive reparative dentin, and experimental groups 4, 5 and 6 demonstrated similar dentin bridge formation as that of the positive control. How quickly reparative dentin formation occurs may depend on the concentration of CaCl(2) and the compound of pA and pB in the experimental primer.

  13. A new x-ray adhesive system with embedded nanoparticulate silver markers for dental applications

    NASA Astrophysics Data System (ADS)

    Bessudnova, Nadezda O.; Bilenko, David I.; Venig, Sergey B.; Atkin, Vsevolod S.; Zacharevich, Andrey M.

    2013-02-01

    In the present study a new adhesive system with embedded PVP-stabilized nano-particulate silver markers has been designed. Nanosized silver was used as a radio-opaque contrast material in SEM examination of adhesive system in dentine. It was studied the impact of nano-particulate silver fillers on rheological properties of adhesive system and its penetration in dentine volume. A SEM comparative evaluation of resin replicas produced using adhesive system with embedded silver nanoparticles and that without ones was carried out. It was shown that embedding of silver nanoparticles into adhesive system did not make its penetration worse. It was established that embedding of nanosized silver changed adhesive system morphology. The methodology that allows visualizing interfaces and intermediate layers between dentine, adhesive system and restorative material using silver nano-particulate markers was developed and approved. Silver nanoparticles were used to compare the objective depth of penetration of adhesive systems of different generations in root dentine with differently oriented dentinal tubules, bonding resin delivery and gravity.

  14. Effect of different adhesive strategies on the post-operative sensitivity of class I composite restorations

    PubMed Central

    Sancakli, Hande Sar; Yildiz, Esra; Bayrak, Isil; Ozel, Sevda

    2014-01-01

    Objective: To evaluate the post-operative sensitivity of occlusal restorations using different dentin adhesives performed by an undergraduate and a post-doctorate dentist. Materials and Methods: One hundred and eighty-eight molar occlusal restorations were placed in 39 patients (ages between 18 and 30) using 3 different kind of adhesive systems; Optibond FL (OBF), Clearfil Protect Bond (CPB), and iBond (IB) by a post-doctorate dentist or a fifth-year dental student according to the manufacturers’ instructions. Post-operative sensitivity to cold and air was evaluated using a Visual Analog Scale (VAS) after 24 hours, 30, 90, and 180 days. Data were analyzed using the Mann-Whitney U and Friedman tests (P < 0.05). Results: Post-operative sensitivity scores for OBF and CPB were higher for the dental student (P < 0.05), while IB scores did not differ statistical significantly according to the operator (P > 0.05). Conclusion: Operator skill and experience appears to play a role in determining the outcome of post-operative sensitivity of multi-step adhesive systems although the post-operative sensitivity was low. It is suggested that the less experienced clinicians (rather than experienced clinicians) should better use the self-etching dentin bonding systems with reduced application steps to minimize the potential risk of post-operative sensitivity of dental adhesives. PMID:24966741

  15. A novel composite-to-composite adhesive bond mechanism.

    PubMed

    Akimoto, Naotake; Sakamoto, Tominori; Kubota, Yuya; Kondo, Yoshie; Momoi, Yasuko

    2011-01-01

    The purpose of this study was to determine if adhesion between various resin composites can occur by a chelation reaction of elemental ions. The surface composition of four commercially available resin composites (Beautifil II, Clearfil AP-X, Estelite Σ Quick and Solare) were measured by X-ray fluorescence analysis. Composite-to-composite adhesion with conventional silane coupling treatment was compared to self-etching primer treatment and evaluated by conventional shear bond strength testing. Our results detected Strontium and Barium (alkaline metallic earth ions) on the surface of Beautifil II and Clearfil AP-X resins. The shear bond strength values of self-etching primer treatments of Beautifil II and Clearfil AP-X was significantly higher than Estelite Σ Quick and Solare. Our data suggest that self-etching primer treatment is effective for adhesion of resin composites, depending on their filler composition, due to the chelation adhesion reaction between the acidic monomer and incorporated alkaline metal ions. PMID:21778602

  16. Effect of light-curing unit and adhesive system on marginal adaptation of class v composite restorations.

    PubMed

    Maia-Casseli, Denise S; Faria-e-Silva, André L; Cavalcanti, Andréa N; Romani, Eliene A O N; Martins, Luis R M

    2012-01-01

    The aim of this study was to evaluate the effect of light-curing units (LED or halogen) on the marginal adaptation of composite restorations performed with etch-and-rinse and self-etching adhesive. Class V cavities were prepared on bovine teeth with the gingival margin on dentin and the incisal margin on enamel. The cavities were restored with a micro-hybrid resin composite using an etch-and-rinse (Single Bond 2--SB) or a self-etching adhesive (Clearfil SE Bond--CL). The light-activations were performed using halogen lamp (Optilux 501--QTH) or second-generation light-emitting diode (Radii-Cal--LED) (n = 10). After finishing and polishing the restorations, epoxy replicas were prepared. The marginal adaptation was analyzed under scanning electronic microscopy with 500x of magnification. The greatest gap width at each margin was recorded. Data were submitted to Mann-Whitney and Wilcoxon tests (a = 0.05). SB and CL showed similar behavior of enamel margins when the light-activations were performed with QTH. The same was observed for dentin margins with LED. When the LED was used, higher gap measurements at enamel margins were observed with CL, while higher gap values in dentin were observed for SB within QTH. No significant difference between substrates was found when CL was used. However, SB had significantly higher gap measurements in dentin. The light-curing unit seems to affect the marginal adaptation of resin composite restorations. However this effect was dependent on the adhesive and the location of the margin. PMID:22928384

  17. Biomimetic nanowire coatings for next generation adhesive drug delivery systems

    PubMed Central

    Fischer, Kathleen E.; Alemán, Benjamin J.; Tao, Sarah L.; Daniels, R. Hugh; Li, Esther M.; Bünger, Mark D.; Nagaraj, Ganesh; Singh, Parminder; Zettl, Alex; Desai, Tejal A.

    2010-01-01

    Without bioadhesive delivery devices, complex compounds are typically degraded or cleared from mucosal tissues by the mucus layer.1–3 While some chemically-modified, micro-structured surfaces have been studied in aqueous environments,4,5 adhesion due to geometry alone has not been investigated. Silicon nanowire-coated beads show significantly better adhesion than those with targeting agents under shear, and can increase the lift-off force 100-fold. We have shown that nanowire coatings, paired with epithelial physiology, significantly increase adhesion in mucosal conditions. PMID:19199759

  18. Effect of adhesive system on retention in posts comprising fiber post and core resin.

    PubMed

    Soejima, Hirotaka; Takemoto, Shinji; Hattori, Masayuki; Yoshinari, Masao; Kawada, Eiji; Oda, Yutaka

    2013-01-01

    The purpose of this study was to compare the retention of fiber-reinforced composite (FRC) posts luted with either conventional or self-adhesive resin cement. The FRC posts and core resin were built up in bovine teeth. The posts were luted with standard etch-andrinse cement, self-etch cement, or one of two self-adhesive cements. The samples were stored in water for 1 or 14 days or subjected to thermal cycling (TC). Retention value was measured with the pull-out test using a universal testing machine. Conventional adhesive resin cement yielded significantly greater retention than self-adhesive resin cement at 1 day. No significant difference was observed in retention among the adhesive systems tested at 14 days or after TC. During the early luting stage, self-adhesive resin cement yielded lower retention value than conventional resin cement. After 14 days storage or TC, retention was comparable to that with conventional resin cement.

  19. In Vitro Effects of 2.5% Titanium Tetrafluoride on Streptococcus Mutans and Lactobacillus Casei in Dentin Followed by Self-Etching Adhesive Systems.

    PubMed

    Bridi, Enrico Coser; Amaral Flávia Lucisano Botelho; França Fabiana Mantovani Gomes; Turssi Cecilia Pedroso; Florio, Flávia Martão; Basting, Roberta Tarkany

    2015-12-01

    The aim was to evaluate the effect of a 2.5% titanium tetrafluoride (TiF4) solution followed by self-etching adhesives against Streptococcus mutans/Sm and Lactobacillus casei/Lc. Four cylindrical-shaped cavities were performed on each dentin surface of 40 third molars and contaminated with Sm or Lc. Each one of the four cavities received one of the following treatments (n = 10): 1) control; 2) TiF4; 3) Clearfil SE Bond/CSE or Adper EasyOne/AEO; 4) TiF4 followed by CSE or AED. ANOVA was applied to data. The TiF4 solution showed an antimicrobial effect, although the TiF4 used for dentin pretreatment before CSE or AEO showed no influence on antimicrobial effect. PMID:26767239

  20. Bond strength of self-etch adhesives after saliva contamination at different application steps.

    PubMed

    Cobanoglu, N; Unlu, N; Ozer, F F; Blatz, M B

    2013-01-01

    This study evaluated and compared the effect of saliva contamination and possible decontamination methods on bond strengths of two self-etching adhesive systems (Clearfil SE Bond [CSE], Optibond Solo Plus SE [OSE]). Flat occlusal dentin surfaces were created on 180 extracted human molar teeth. The two bonding systems and corresponding composite resins (Clearfil AP-X, Kerr Point 4) were bonded to the dentin under six surface conditions (n=15/group): group 1 (control): primer/bonding/composite; group 2: saliva/drying/primer/bonding/composite; group 3: primer/saliva/rinsing/drying/primer/bonding/composite; group 4: primer/saliva/rinsing/drying/bonding/composite; group 5: primer/bonding (cured)/saliva/rinsing/drying/primer/bonding/composite; group 6: primer/bonding (cured)/saliva/removing contaminated layer with a bur/rinsing/drying/primer/bonding/composite. Shear bond strength was tested after specimens were stored in distilled water at 37°C for 24 hours. One-way analysis of variance and Tukey post hoc tests were used for statistical analyses. For CSE, groups 2, 3, and 4 and for OSE, groups 6, 2, and 4 showed significantly lower bond strengths than the control group (p<0.05). CSE groups 5 and 6 and OSE groups 3 and 5 revealed bond strengths similar to the control. When saliva contamination occurred after light polymerization of the bonding agent, repeating the bonding procedure recovered the bonding capacity of both self-etch adhesives. However, saliva contamination before or after primer application negatively affected their bond strength. PMID:23327232

  1. LOCALIZED MECHANICS OF DENTIN SELF-ETCHING ADHESIVE SYSTEM

    PubMed Central

    Anchieta, Rodolfo Bruniera; Rocha, Eduardo Passos; Ko, Ching-Chang; Sundfeld, Renato Herman; Martin, Manoel; Archangelo, Carlos Marcelo

    2007-01-01

    The bond strength of composite resins (CRs) to dentin is influenced by the interfacial microstructure of the hybrid layer (HL) and the resin tags (TAG). The contemporary self-etching primer adhesive systems overcame the inconvenient of the etch-and-rinse protocol. Studies, however, have demonstrated that HL thickness and TAG length vary according to the wetting time and additional use of acid-etching prior to self-etching primers. This study investigated the localized stress distribution in the HL and the dentin/adhesive interface. Two HL thicknesses (3 or 6 μm), two TAG lengths (13 or 17 μm) and two loading conditions (perpendicular and oblique-25o) were investigated by the finite element (FE) analysis. Five two-dimensional FE models (M) of a dentin specimen restored with CR (38 x 64 μm) were constructed: Ml - no HL and no TAG; M2 - 3 μm of HL and 13 μm of TAG; M3 - 3 μm of HL and 17 μm of TAG; M4 - 6 μm of HL and 13 μm of TAG; and M5 - 6 μm of HL and 17 μm of TAG. Two distributed loadings (L) (20N) were applied on CR surface: L1 - perpendicular, and L2 - oblique (25°). Fixed interfacial conditions were assigned on the border of the dentin specimen. Ansys 10.0 (Ansys®, Houston, PA, USA) software was used to calculate the stress fields. The peak of von Mises (σvM) and maximum principal stress (σmax) was higher in L2 than in L1. Microstructures (HL and TAG) had no effect on local stresses for L1. Decreasing HL decreased σvM and σmax in all structures for L2, but the TAG length had influence only on the peributular dentin. The thickness of HL had more influence on the σvM and σmax than TAG length. The peritubular dentin and its adjacent structures showed the highest σvM and σmax, mainly in the oblique loading. PMID:19089152

  2. Adhesive Bonding for Optical Metrology Systems in Space Applications

    NASA Astrophysics Data System (ADS)

    Gohlke, Martin; Schuldt, Thilo; Döringshoff, Klaus; Peters, Achim; Johann, Ulrich; Weise, Dennis; Braxmaier, Claus

    2015-05-01

    Laser based metrology systems become more and more attractive for space applications and are the core elements of planned missions such as LISA (NGO, eLISA) or NGGM where laser interferometry is used for distance measurements between satellites. The GRACE-FO mission will for the first time demonstrate a Laser Ranging Instrument (LRI) in space, starting 2017. Laser based metrology also includes optical clocks/references, either as ultra-stable light source for high sensitivity interferometry or as scientific payload e.g. proposed in fundamental physics missions such as mSTAR (mini SpaceTime Asymmetry Research), a mission dedicated to perform a Kennedy-Thorndike experiment on a satellite in a low-Earth orbit. To enable the use of existing optical laboratory setups, optimization with respect to power consumption, weight and dimensions is necessary. At the same time the thermal and structural stability must be increased. Over the last few years we investigated adhesive bonding of optical components to thermally highly stable glass ceramics as an easy-to-handle assembly integration technology. Several setups were implemented and tested for potential later use in space applications. We realized a heterodyne LISA related interferometer with demonstrated noise levels in the pm-range for translation measurement and nano-radiant-range for tilt measurements and two iodine frequency references on Elegant Breadboard (EBB) and Engineering Model (EM) level with frequency stabilities in the 10-15 range for longer integration times. The EM setup was thermally cycled and vibration tested.

  3. The adhesion model considering capillarity for gecko attachment system.

    PubMed

    Kim, Tae Wan; Bhushan, Bharat

    2008-03-01

    Geckos make use of approximately a million microscale hairs (setae) that branch off into hundreds of nanoscale spatulae to cling to different smooth and rough surfaces and detach at will. This hierarchical surface construction gives the gecko the adaptability to create a large real area of contact with surfaces. It is known that van der Waals force is the primary mechanism used to adhere to surfaces, and capillary force is a secondary effect that can further increase adhesive force. To investigate the effects of capillarity on gecko adhesion, we considered the capillary force as well as the solid-to-solid interaction. The capillary force expressed in terms of elliptical integral is calculated by numerical method to cope with surfaces with a wide range of contact angles. The adhesion forces exerted by a single gecko spatula in contact with planes with different contact angles for various relative humidities are calculated, and the contributions of capillary force to total adhesion force are evaluated. The simulation results are compared with experimental data. Finally, using the three-level hierarchical model recently developed to simulate a gecko seta contacting with random rough surface, the effect of the relative humidity and the hydrophobicity of surface on the gecko adhesion is investigated.

  4. Frictional adhesion of patterned surfaces and implications for gecko and biomimetic systems.

    PubMed

    Zeng, Hongbo; Pesika, Noshir; Tian, Yu; Zhao, Boxin; Chen, Yunfei; Tirrell, Matthew; Turner, Kimberly L; Israelachvili, Jacob N

    2009-07-01

    Geckos and smaller animals such as flies, beetles, and spiders have extraordinary climbing abilities: They can firmly attach and rapidly detach from almost any kind of surface. In the case of geckos, this ability is attributed to the surface topography of their attachment pads, which are covered with fine columnar structures (setae). Inspired by this biological system, various kinds of regularly structured or "patterned" surfaces are being fabricated for use as responsive adhesives or in robotic systems. In this study, we theoretically analyze the correlated adhesion and friction (frictional adhesion) of patterned surfaces against smooth (unstructured) surfaces by applying well-established theories of van der Waals forces, together with the classic Johnson-Kendall-Roberts (JKR) theory of contact (or adhesion) mechanics, to recent theories of adhesion-controlled friction. Our results, when considered with recent experiments, suggest criteria for simultaneously optimizing the adhesion and friction of patterned surfaces. We show that both the van der Waals adhesion and the friction forces of flexible, tilted, and optimally spaced setal stalks or (synthetic) pillars are high enough to support not only a large gecko on rough surfaces of ceilings (adhesion) and walls (friction) but also a human being if the foot or toe pads-effectively the area of the hands-have a total area estimated at approximately 230 cm2.

  5. Resilience and Treatment Adhesion in Patients with Systemic Lupus Erythematosus

    PubMed Central

    Faria, Daniella Antunes Pousa; Revoredo, Luciana Silva; Vilar, Maria José; Eulália Maria Chaves, Maia

    2014-01-01

    Background: Systemic Lupus Erythematosus (SLE) is a chronic autoimmune, rheumatic inflammatory disease that can cause significant morbidity with evident psychological impacts and obvious harm to quality-of-life that require the patient to adapt treatment. Objective: Assessment of resilience and the self-reported treatment adhesion behaviors of patients with SLE, investigating which of these factors are associated to resilience. Method: Cross-sectional study of 40 women with SLE. A questionnaire with social demographic data, health history and the Wagnild Young Resilience Scale were used. Results: 62.5% followed the medical treatment properly but 55% found it difficult. 27.5% of the patients presented low resilience, 57.5% medium and 15% high resilience. Resilience was associated in the chi-square test (p-value < 0.05) with the variables work, understanding SLE, trying to find out about SLE, following the treatment correctly, difficulty in following the treatment and stopping some activity because of the disease. In the correlation analysis, resilience was associated with age (-0.3960), number of working hours (0.5533), specialized treatment duration (-0.8103) and disease duration from diagnosis (-0.8014). Conclusion: Patients with high resilience tended to follow treatment correctly, tried to understand the disease and adhered more to the treatment to avoid risks and promote protection factors. Therefore knowledge of resilience in patients with SLE is necessary. It is important that the state takes necessary actions to facilitate access to treatment, to educational programs and to medical support. Awareness and counselling sessions must be initiated to develop and promote individual capacities to learn how to tackle with the disease for which psychological support of family and doctors can play a significant role. PMID:24665352

  6. Cytotoxic effects of one-step self-etching adhesives on an odontoblast cell line.

    PubMed

    Lee, Yoon; An, So-Youn; Park, Yoon-Jung; Yu, Frank H; Park, Joo-Cheol; Seo, Deog-Gyu

    2016-01-01

    The aim of this study was to evaluate the cytotoxic effects of one-step self-etching adhesives. Cells from an immortalized mouse odontoblast cell line (MDPC-23) were cultured with six different dental adhesive systems (diluted to concentrations of 0.5% for 4 h): Adper Easy Bond (EB), Xeno V (XV), iBond (IB), AdheSE One (AO), Clearfil SE primer (CS), and Adper Single Bond 2 (SB). MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and flow cytometric apoptosis assays were used to evaluate cell viability and the rate of apoptosis. The odontoblasts were also examined under a scanning electron microscope. While all of the cultures with adhesives showed reduced viability, the viabilities in the IB and SB groups were not significantly different from the control group. Although increased apoptosis rates were observed in all of the cultures with adhesives, the rate in the SB group was not significantly different from the rate in the control. The control group showed the lowest apoptosis rate followed by the SB, AO, IB, EB, XV, and CS groups. When examined under a scanning electron microscope, control odontoblasts and the SB group exhibited relatively large cytoplasmic extensions. In contrast, in the EB and CS groups, fewer fibroblasts remained adhered to the plate surface. Cytoplasmic membrane shrinkage and cell-free areas with residual membrane fragments from dead cells were observed. In conclusion, all cultures with one-step self-etching adhesives showed increased apoptotic activity. SB, an etch-and-rinse adhesive, was comparable to the control group, and CS and EB showed the lowest odontoblast viabilities according to the MTT assay. PMID:26186405

  7. In vitro assessment of solvent evaporation from commercial adhesive systems compared to experimental systems.

    PubMed

    Nihi, Fabio Mitugui; Fabre, Hebert Samuel Carafa; Garcia, Georges; Fernandes, Karen Barros Parron; Ferreira, Flaviana Bombarda de Andrade; Wang, Linda

    2009-01-01

    Solvents should be properly evaporated after application to dental substrates. The aim of this study was to assess the evaporation of commercial, experimental and neat solvents. The tested null hypotheses were that there are no differences in solvent evaporation regardless of its formulation and over time. Evaporation from commercial adhesive systems (Scotchbond Multipurpose Primer, Scotchbond Multipurpose Adhesive, Prime & Bond NT, Multi Bond, Excite, Single Bond 2, Adhese Primer, Adhese Bond, Xeno III A and Xeno III B) and experimental primers (35% HEMA plus 65% acetone or ethanol or water v/v) were compared to neat solvents (acetone, ethanol and water). Samples (10 microL) of these products were dripped into glass containers placed on a digital precision balance. Evaporation was assessed at 0, 5, 10, 15, 30, 60, 120, 300 and 600 s times to calculate mass loss. Data were analyzed statistically by ANOVA and Bonferroni's correction (a=0.05). Acetone-based products exhibited a remarkable capacity to evaporate spontaneously over time. Neat acetone evaporated significantly more than the HEMA-mixtures and the commercial formulations (p<0.05). The incorporation of monomers and other ingredients in the commercial formulations seem to reduce the evaporation capacity. Solvent evaporation was time and material-dependent. PMID:20126908

  8. Comparison of Shear Bond Strength of Composite to Stainless Steel Crowns Using Two Mechanical Surface Treatments and Two Bonding Systems

    PubMed Central

    Ghadimi, Sara; Heidari, Alireza

    2016-01-01

    Objectives: This study aimed to compare the shear bond strength (SBS) of composite to stainless steel crowns (SSC) using two mechanical surface treatments (MSTs) and two bonding systems. Materials and Methods: Eighty-four SSCs were divided into six groups of 14; Group1: No MST+Scotchbond Universal adhesive (N+U), Group 2: Surface roughening by a diamond bur+Scotchbond Universal adhesive (R+U), Group 3: Sandblasting+Scotchbond Universal adhesive (S+U), Group 4: No MST+Alloy Primer+Clearfil SE Primer and Bond (N+A), Group 5: Surface roughening by a diamond bur+Alloy Primer+Clearfil SE Primer and Bond (R+A), Group 6: Sandblasting+Alloy Primer+Clearfil SE Primer and Bond (S+A). After MST and bonding procedure, composite cylinders were bonded to the lingual surface of SSCs, then the SBS of composite to SSCs was measured using a universal testing machine following thermocycling. Results: The SBS of groups R+U and S+U was significantly higher than that of group N+U. No significant difference was noted in SBS of groups R+U and S+U. The SBS of group S+A was significantly higher than that of groups N+A and R+A. No significant difference was noted in the SBS of groups N+A and R+A (P>0.05). Conclusions: In Scotchbond Universal adhesive groups, sandblasting and surface roughening by diamond bur significantly increased the SBS of composite to SSCs compared to no MST. In Alloy Primer groups, sandblasting significantly increased the SBS of composite to SSC compared to surface roughening with diamond bur and no MST. PMID:27536330

  9. Effect of Er:YAG laser energy on the morphology of enamel/adhesive system interface

    NASA Astrophysics Data System (ADS)

    Delfino, Carina Sinclér; Souza-Zaroni, Wanessa Christine; Corona, Silmara Aparecida Milori; Pécora, Jesus Djalma; Palma-Dibb, Regina Guenka

    2006-10-01

    The aim of this study was to evaluate in vitro the influence of Er:YAG laser energy variation to cavity preparation on the morphology of enamel/adhesive system interface, using SEM. Eighteen molars were used and the buccal surfaces were flattened without dentine exposure. The specimens were randomly assigned to two groups, according to the adhesive system (conventional total-etching or self-etching), and each group was divided into three subgroups (bur carbide in turbine of high rotation, Er:YAG laser 250 mJ/4 Hz and Er:YAG laser 300 mJ/4 Hz) containing six teeth each. The enamel/adhesive system interface was serially sectioned and prepared for SEM. The Er:YAG laser, in general, produced a more irregular adhesive interface than the control group. For Er:YAG laser 250 mJ there was formation of a more regular hybrid layer with good tag formation, mainly in the total-etching system. However, Er:YAG laser 300 mJ showed a more irregular interface with amorphous enamel and fused areas, for both adhesive systems. It was concluded that cavity preparation with Er:YAG laser influenced on the morphology of enamel/adhesive system interface and the tissual alterations were more evident when the energy was increased.

  10. Nanoleakage of Class V Resin Restorations Using Two Nanofilled Adhesive Systems

    PubMed Central

    Al-Agha, Ebaa I; Alagha, Mustafa I

    2015-01-01

    Background: This study was carried out to evaluate the nanoleakage of two types of nanofilled adhesive systems in Class V composite resin restorations. Materials and Methods: Totally 60 human premolars were randomly assigned to two groups (n = 30). Standardized round Class V cavities (enamel and dentin margins) were prepared. A total-etch (N-Bond total etch) (Ivoclar Vivadent) and self-etching (N-Bond self-etch) (Ivoclar Vivadent) adhesive system were evaluated. The cavities were restored incrementally with nanohybird composite resin (Tetric N-Ceram). The teeth were sectioned into a series of 1 mm thick beams then they were immersed in the prepared ammoniacal silver nitrate tracer solution for 24 h in a black photo-film container to ensure total darkness. The beams were then rinsed with distilled water, and immersed in photo-developing solution for eight hours then they were subjected to the nanoleakage evaluation. The specimens were analyzed in the environmental scanning electron operated with backscattered electron mode at ×1000 magnification. Results: Self-etch adhesive recorded higher nanoleakage % mean value than the total-etch adhesive. The difference in nanoleakage % mean values between total and self-etch adhesive was statistically significant. Conclusion: The self-etch adhesive had statistically significant higher nanoleakage mean values than the total-etch adhesive. PMID:26229363

  11. Role of pressure-sensitive adhesives in transdermal drug delivery systems.

    PubMed

    Lobo, Shabbir; Sachdeva, Sameer; Goswami, Tarun

    2016-01-01

    Transdermal drug delivery systems (TDDS) are employed for the delivery of drugs across skin into the systemic circulation. Pressure-sensitive adhesive (PSA) is one of the most critical components used in a TDDS. The primary function of PSA is to help in adhesion of patch to skin, but more importantly it acts as a matrix for the drug and other excipients. Hence, apart from adhesion of the patch, PSA also affects other critical quality attributes of the TDDS such as drug delivery, flux through skin and physical and chemical stability of the finished product. This review article provides a summary of the adhesives used in various types of TDDS. In particular, this review will cover the design types of TDDS, categories of PSAs and their evaluation and regulatory aspects.

  12. Effect of Saliva on the Tensile Bond Strength of Different Generation Adhesive Systems: An In-Vitro Study

    PubMed Central

    Tripathi, Abhay Mani; Saha, Sonali; Dhinsa, Kavita; Garg, Aarti

    2015-01-01

    Background Newer development of bonding agents have gained a better understanding of factors affecting adhesion of interface between composite and dentin surface to improve longevity of restorations. Objective The present study evaluated the influence of salivary contamination on the tensile bond strength of different generation adhesive systems (two-step etch-and-rinse, two-step self-etch and one-step self-etch) during different bonding stages to dentin where isolation is not maintained. Materials and Methods Superficial dentin surfaces of 90 extracted human molars were randomly divided into three study Groups (Group A: Two-step etch-and-rinse adhesive system; Group B: Two-step self-etch adhesive system and Group C: One-step self-etch adhesive system) according to the different generation of adhesives used. According to treatment conditions in different bonding steps, each Group was further divided into three Subgroups containing ten teeth in each. After adhesive application, resin composite blocks were built on dentin and light cured subsequently. The teeth were then stored in water for 24 hours before sending for testing of tensile bond strength by Universal Testing Machine. The collected data were then statistically analysed using one-way ANOVA and Tukey HSD test. Results One-step self-etch adhesive system revealed maximum mean tensile bond strength followed in descending order by Two-step self-etch adhesive system and Two-step etch-and-rinse adhesive system both in uncontaminated and saliva contaminated conditions respectively. Conclusion Unlike One-step self-etch adhesive system, saliva contamination could reduce tensile bond strength of the two-step self-etch and two-step etch-and-rinse adhesive system. Furthermore, the step of bonding procedures and the type of adhesive seems to be effective on the bond strength of adhesives contaminated with saliva. PMID:26393214

  13. Dentin bonding performance using Weibull statistics and evaluation of acid-base resistant zone formation of recently introduced adhesives.

    PubMed

    Guan, Rui; Takagaki, Tomohiro; Matsui, Naoko; Sato, Takaaki; Burrow, Michael F; Palamara, Joseph; Nikaido, Toru; Tagami, Junji

    2016-07-30

    Dentin bonding durability of recently introduced dental adhesives: Clearfil SE Bond 2 (SE2), Optibond XTR (XTR), and Scotchbond Universal (SBU) was investigated using Weibull analysis as well as analysis of the micromorphological features of the acid-base resistant zone (ABRZ) created for the adhesives. The bonding procedures of SBU were divided into three subgroups: self-etch (SBS), phosphoric acid (PA) etching on moist (SBM) or dry dentin (SBD). All groups were thermocycled for 0, 5,000 and 10,000 cycles followed by microtensile bond strength testing. Acid-base challenge was undertaken before SEM and TEM observations of the adhesive interface. The etch-and-rinse method with SBU (SBM and SBD) created inferior interfaces on the dentin surface which resulted in reduced bond durability. ABRZ formation was detected with the self-etch adhesive systems; SE2, XTR and SBS. In the PA etching protocols of SBM and SBD, a thick hybrid layer but no ABRZ was detected, which might affect dentin bond durability. PMID:27335136

  14. Adhesion-creepage characteristics of wheel/rail system under dry and contaminated rail surfaces

    NASA Astrophysics Data System (ADS)

    Alzoubi, Mohammed F.

    1998-11-01

    This thesis presents an experimental and theoretical study of adhesion and creepage characteristics of wheel and rail under both dry and contaminated rail surfaces. The experimental work was conducted largely on the IIT 1/4.5 Scale Wheel/Rail Simulation Facility. Based on the experimental data in the laboratory, a theoretical model of adhesion and creepage relationship with different degrees of contamination was developed. Non-dimensional analysis of parameters yielded four important non-dimensional groups, which include the adhesion, creepage coefficients, the elastic properties of the materials, the load on the wheel surface roughness of wheel and rail, train speed and the contaminant density, viscosity and minimum film thickness. Rail contaminants were gathered from several U.S. passenger rail systems and tested on the laboratory facility. It was found that presence of moisture reduce the adhesion levels with these contaminants. Under hot air jet applications, normal adhesion could be achieved. A series of tests were conducted with water contamination on clean rail. Maximum adhesion for different tests was nearly constant and approximately 0.2. Maximum adhesion produced under water contamination is significantly affected by the average roughness of the wheel and the rail. As the roughness decreases, maximum adhesion drops sharply. Maximum adhesion also decreases with speed in the presence of moisture even at relatively low speeds (4--8 mph). An empirical relation of maximum adhesion with axle load, speed and roughness has been derived. An analytical expression for the adhesion-creepage curves under (TOR) lubrication has been derived. The maximum adhesion coefficient achieved for different (TOR) lubricant formulations was found to be approximately proportional to kinematic viscosity. A theoretical approach for estimating potential energy savings with the (TOR) lubricant was developed using the laboratory data of the 1/12.5 scale simulator and 1/4.5 scale test

  15. Influence of human and bovine substrate on the microleakage of two adhesive systems.

    PubMed

    Almeida, Karoline Guará Brusaca; Scheibe, Kristine Guará Brusaca Almeida; Oliveira, Ana Emília Figuerêdo; Alves, Cláudia Maria Coêlho; Costa, José Ferreira

    2009-01-01

    The aim of this study was to evaluate in vitro the marginal sealing of two adhesive systems and to analyze the influence of human and bovine substrates on marginal microleakage in enamel. Rectangular-shaped class V cavities (4 mm wide x 2 mm high x 2 mm deep) were made as follows: 8 cavities were prepared on the buccal and lingual surfaces of the human teeth with margins located on enamel and 16 cavities were prepared on the buccal surfaces of the bovine teeth. The cavities were randomly assigned to 4 groups of 8 cavities according to the adhesive system and substrate: G1--Prime & Bond 2.1 (Dentsply)/human substrate; G2--Adhese (Ivoclar/Vivadent)/human substrate; G3--Prime & Bond 2.1 (Dentsply)/bovine substrate; G4--Adhese (Ivoclar/Vivadent)/bovine substrate. The cavities were filled with microhybrid composite resin (Fillmagic) and after polishing/finishing procedures, the teeth were subjected to a thermocycling regimen of 500 cycles with 1-min immersions in water at 55 degrees+/-2 degrees C and 5 degrees+/-2 degrees C. Next, the teeth were coated with two layers of nail polish to within 1 mm of the margin, submerged in a 50% silver nitrate solution for 2 h, rinsed thoroughly in running tap and immersed in developing solution for 8 h. The restorations were bisected resulting in 16 specimens. Microleakage was observed under a stereomicroscope at x25 and recorded using four-point (0-3) scoring system. The data were analyzed statistically by the Mann Whitney U-test at 5% significance level. Leakage was present in all specimens and there was statistically significant difference between the adhesive systems. Adhese self-etching system showed significantly more leakage in both substrates (human--p= 0.0001 and bovine--p=0.0031). There was no statistically significant difference between human and bovine substrates for either of the adhesive systems based on different bonding mechanisms (Prime & Bond 2.1--p= 0.6923 and Adhese--p= 0.6109). Neither of the adhesive systems was

  16. A measurement system analysis with design of experiments: Investigation of the adhesion performance of a pressure sensitive adhesive with the probe tack test.

    PubMed

    Michaelis, Marc; Leopold, Claudia S

    2015-12-30

    The tack of a pressure sensitive adhesive (PSA) is not an inherent material property and strongly depends on the measurement conditions. Following the concept of a measurement system analysis (MSA), influencing factors of the probe tack test were investigated by a design of experiments (DoE) approach. A response surface design with 38 runs was built to evaluate the influence of detachment speed, dwell time, contact force, adhesive film thickness and API content on tack, determined as the maximum of the stress strain curve (σmax). It could be shown that all investigated factors have a significant effect on the response and that the DoE approach allowed to detect two-factorial interactions between the dwell time, the contact force, the adhesive film thickness and the API content. Surprisingly, it was found that tack increases with decreasing and not with increasing adhesive film thickness. PMID:26428630

  17. A measurement system analysis with design of experiments: Investigation of the adhesion performance of a pressure sensitive adhesive with the probe tack test.

    PubMed

    Michaelis, Marc; Leopold, Claudia S

    2015-12-30

    The tack of a pressure sensitive adhesive (PSA) is not an inherent material property and strongly depends on the measurement conditions. Following the concept of a measurement system analysis (MSA), influencing factors of the probe tack test were investigated by a design of experiments (DoE) approach. A response surface design with 38 runs was built to evaluate the influence of detachment speed, dwell time, contact force, adhesive film thickness and API content on tack, determined as the maximum of the stress strain curve (σmax). It could be shown that all investigated factors have a significant effect on the response and that the DoE approach allowed to detect two-factorial interactions between the dwell time, the contact force, the adhesive film thickness and the API content. Surprisingly, it was found that tack increases with decreasing and not with increasing adhesive film thickness.

  18. Integrin-mediated adhesion complex: Cooption of signaling systems at the dawn of Metazoa.

    PubMed

    Sebé-Pedrós, Arnau; Ruiz-Trillo, Iñaki

    2010-09-01

    The integrin-mediated adhesion machinery is the primary cell-matrix adhesion mechanism in Metazoa. The integrin adhesion complex, which modulates important aspects of the cell physiology, is composed of integrins (alpha and beta subunits) and several scaffolding and signaling proteins. Integrins appeared to be absent in all non-metazoan eukaryotes so-far analyzed, including fungi, plants and choanoflagellates, the sister-group to Metazoa. Thus, integrins and, therefore, the integrin-mediated adhesion and signaling mechanism was considered a metazoan innovation. Recently, a broad comparative genomic analysis including new genome data from several unicellular organisms closely related to fungi and metazoans shattered previous views. The integrin adhesion and signaling complex is not specific to Metazoa, but rather it is present in apusozoans and holozoan protists. Thus, this important signaling and adhesion system predated the origin of Fungi and Metazoa, and was subsequently lost in fungi and choanoflagellates. This finding suggests that cooption played a more important role in the origin of Metazoa than previously believed. Here, we hypothesize that the integrin adhesome was ancestrally involved in signaling.

  19. Evaluation of micro-shear bond strength of resin modified glass-ionomer to composite resins using various bonding systems

    PubMed Central

    Kasraie, Shahin; Shokripour, Mohadese; Safari, Mahin

    2013-01-01

    Aim: The aim was to compare the micro-shear bond strength between composite and resin-modified glass-ionomer (RMGI) by different adhesive systems. Materials and Methods: A total of 16 discs of RMGI with a diameter of 15 mm and a thickness of 2 mm were randomly divided into four groups (n = 4). Four cylinders of composite resin (z250) were bonded to the RMGI discs with Single Bond, Clearfil SE Bond and Clearfil S3 Bond in Groups 1-3, respectively. The fourth group was the control. Samples were tested by a mechanical testing machine with a strain rate of 0.5 mm/min. Failure mode was assessed under a stereo-microscope. Results: The means of micro-shear bond strength values for Groups 1-4 were 14.45, 23.49, 16.23 and 5.46 MPa, respectively. Using a bonding agent significantly increased micro-shear bond strength (P = 0.0001). Conclusion: Micro-shear bond strength of RMGI to composite increased significantly with the use of adhesive resin. The bond strength of RMGI to composite resin could vary depending upon the type of adhesive system used. PMID:24347892

  20. Measurement of Interfacial Adhesion in Glass-Epoxy Systems Using the Indentation Method

    SciTech Connect

    Hutchins, Karen Isabel

    2015-07-01

    The adhesion of coatings often controls the performance of the substrate-coating system. Certain engineering applications require an epoxy coating on a brittle substrate to protect and improve the performance of the substrate. Experimental observations and measurements of interfacial adhesion in glass-epoxy systems are described in this thesis. The Oliver and Pharr method was utilized to calculate the bulk epoxy hardness and elastic modulus. Spherical indentations were used to induce delaminations at the substrate-coating interface. The delamination sizes as a function of load were used to calculate the interfacial toughness. The interfacial fracture energy of my samples is an order of magnitude higher than a previous group who studied a similar glass-epoxy system. A comparison study of how different glass treatments affect adhesion was also conducted: smooth versus rough, clean versus dirty, stressed versus non-stressed.

  1. A single-step lithography system based on an enhanced robotic adhesive dispenser

    NASA Astrophysics Data System (ADS)

    Xing, Jiyao; Rong, Weibin; Sun, Ding; Wang, Lefeng; Sun, Lining

    2016-09-01

    In the paper, we present a single-step lithography system whereby the robotically controlled micro-extrusion of resist adhesive onto a substrate surface to directly create resist adhesive patterns of interest. This system is modified from a robotic adhesive dispenser by shrinking the aperture of the nozzle to a few micrometers aiming to realize patterns at microscale. From experimental investigation, it is found that working factors including writing speed, working time, and applied pressure can be adopted to conveniently regulate the feature size (the width of the line features and the diameter of the dot features). To test its functionality, the system was used to pattern line features on silicon dioxide (SiO2) and generate an array of square-like silicon microstructure by combining with wet etching. It provides a simple and flexible alternative tool to facilitate the development of microfabrication.

  2. Chemical adhesion rather than mechanical retention enhances resin bond durability of a dental glass-ceramic with leucite crystallites.

    PubMed

    Meng, X F; Yoshida, K; Gu, N

    2010-08-01

    This study aims to evaluate the effect of chemical adhesion by a silane coupler and mechanical retention by hydrofluoric acid (HFA) etching on the bond durability of resin to a dental glass ceramic with leucite crystallites. Half of the ceramic plates were etched with 4.8% HFA (HFA group) for 60 s, and the other half were not treated (NoHFA group). The scale of their surface roughness and rough area was measured by a 3D laser scanning microscope. These plates then received one of the following two bond procedures to form four bond test groups: HFA/cement, NoHFA/cement, HFA/silane/cement and NoHFA/silane/cement. The associated micro-shear bond strength and bond failure modes were tested after 0 and 30 000 thermal water bath cycles. Four different silane/cement systems (Monobond S/Variolink II, GC Ceramic Primer/Linkmax HV, Clearfil Ceramic Primer/Clearfil Esthetic Cement and Porcelain Liner M/SuperBond C&B) were used. The data for each silane/cement system were analyzed by three-way ANOVA. HFA treatment significantly increased the surface R(a) and R(y) values and the rough area of the ceramic plates compared with NoHFA treatment. After 30 000 thermal water bath cycles, the bond strength of all the test groups except the HFA/Linkmax HV group was significantly reduced, while the HFA/Linkmax HV group showed only adhesive interface failure. The other HFA/cement groups and all NoHFA/cement groups lost bond strength completely, and all NoHFA/silane/cement groups with chemical adhesion had significantly higher bond strength and more ceramic cohesive failures than the respective HFA/cement groups with mechanical retention. The result of the HFA/silane/cement groups with both chemical adhesion and mechanical retention revealed that HFA treatment could enhance the bond durability of resin/silanized glass ceramics, which might result from the increase of the chemical adhesion area on the ceramic rough surface and subsequently reduced degradation speed of the silane coupler

  3. Improved Tensile Adhesion Specimens for High Strength Epoxy Systems in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Haddock, M. Reed; McLennan, Michael L.

    2000-01-01

    An improved tensile adhesion button has been designed and tested that results in higher measured tensile adhesion strength while providing increased capability for testing high strength epoxy adhesive systems. The best attributes of two well-established tensile button designs were combined and refined into an optimized tensile button. The most significant design change to the tensile button was to improve alignment of the bonded tensile button specimens during tensile testing by changing the interface between the tensile button and the tensile test machine. The established or old button design uses a test fixture that pulls from a grooved annulus or anvil head while the new button design pulls from a threaded hole in the centerline of the button. Finite element (FE) analysis showed that asymmetric loading of the established anvil head tensile button significantly increases the stress concentration in the adhesive, causing failure at lower tensile test loads. The new tensile button was designed to eliminate asymmetric loading and eliminate misalignment sensitivity. Enhanced alignment resulted in improved tensile adhesion strength measurement up to 13.8 MPa (2000psi) over the established button design. Another design change increased the capability of the button by increasing the threaded hole diameter allowing it to test high strength epoxy systems up to 85 MPa(less than 12,000 psi). The improved tensile button can be used in button- to-button or button-to-panel configurations.

  4. Detection of HEMA in self-etching adhesive systems with high performance liquid chromatography

    NASA Astrophysics Data System (ADS)

    Panduric, V.; Tarle, Z.; Hameršak, Z.; Stipetić, I.; Matosevic, D.; Negovetić-Mandić, V.; Prskalo, K.

    2009-04-01

    One of the factors that can decrease hydrolytic stability of self-etching adhesive systems (SEAS) is 2-hydroxymethylmethacrylate (HEMA). Due to hydrolytic instability of acidic methacrylate monomers in SEAS, HEMA can be present even if the manufacturer did not include it in original composition. The aim of the study was to determine the presence of HEMA because of decomposition by hydrolysis of methacrylates during storage, resulting with loss of adhesion strength to hard dental tissues of the tooth crown. Three most commonly used SEAS were tested: AdheSE ONE, G-Bond and iBond under different storage conditions. High performance liquid chromatography analysis was performed on a Nucleosil C 18-100 5 μm (250 × 4.6 mm) column, Knauer K-501 pumps and Wellchrom DAD K-2700 detector at 215 nm. Data were collected and processed by EuroCrom 2000 HPLC software. Calibration curves were made related eluted peak area to known concentrations of HEMA (purchased from Fluka). The elution time for HEMA is 12.25 min at flow rate 1.0 ml/min. Obtained results indicate that no HEMA was present in AdheSE ONE because methacrylates are substituted with methacrylamides that seem to be more stable under acidic aqueous conditions. In all other adhesive systems HEMA was detected.

  5. Reducing Seal Adhesion in Low Impact Docking Systems

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K.

    2010-01-01

    Silicone elastomers, used in seals for airlocks or other sealing surfaces in space, are sticky in their as-received condition. Because of the sticking, a greater force may be needed to separate the mating surfaces. If the adhesion is sufficiently high, a sudden unpredicted movement of the spacecraft during undocking, vibration, or uneven release could pull off the seal, resulting in a damage that would have to be repaired before another docking. The damaged seal can result in significant gas leakage and possibly in a catastrophic mishap impacting the safety of the crew. It is also possible that a compromised seal could result in a delayed but sudden gas leak that could put the crew at unexpected risk. This is especially of concern for androgynous seals, which have identical mating surfaces on both sides for interchangeability and redundancy. Such seals typically have elastomer-on-elastomer sealing surfaces. To reduce sticking, one could use release agents such as powders and lubricants, but these can be easily removed and transferred to other surfaces, causing uneven sealing and contamination. Modification of the elastomer surface to make a more slippery and less sticky surface that is integral with the bulk elastomer would be more desirable.

  6. Heterogeneity of cell adhesion molecules in the developing nervous system

    SciTech Connect

    Williams, R.K.

    1985-01-01

    Cell-surface molecules, especially glycoproteins, are believed to mediate interactions between developing neurons and their environment. These interactions include pathfinding by growing processes, recognition of appropriate targets, and formation of synaptic structures. In order to identify neuronal cell-surface molecules, monoclonal antibodies (Mab's) were prepared against synaptic fractions from adult rat brain. From this group three monoclonal antibodies, designated 3C5.59, 3G5.34, and 3G6.41, that react with cell-surface antigens of embryonic neurons were selected for further study. In immunofluoresence experiments each of these antibodies strongly reacted with the processes of cultured granule cell neurons, the major class of small cerebellar neurons, cultured from developing rat cerebellum. Mab's 3C5.59 and 3G5.34 reacted only with neurons in the cerebellar cultures. Mab 3G6.41, however, also reacted with cultured brain astrocytes. On frozen sections Mab's 3G5.34 and 3G6.41 also strongly stained the molecular layer, the site of active granule cell axon growth, in the developing cerebellum. Monoclonal and polyclonal antibodies specific for the neural cell adhesion molecule (N-CAM) were used to compare the two glycoproteins recognized by Mab 3G6.41 with N-CAM. Band 1, another large neuronal cell-surface glycoprotein was originally identified in mouse N18 neuroblastoma cells. In this study /sup 125/I-labeled N18-derived band 1 was tested for binding to 9 plant lectins and Limulus polyphemus agglutinin coupled to agarose beads. Band 1 solubilized from brain also specifically bound to LCA-agarose, indicating that mannose containing sugar moieties are present on band 1 from brain.

  7. The improvement of adhesive properties of PEEK through different pre-treatments

    NASA Astrophysics Data System (ADS)

    Hallmann, Lubica; Mehl, Albert; Sereno, Nuno; Hämmerle, Christoph H. F.

    2012-07-01

    The purpose of this in vitro study was the evaluation of the bond strength of the adhesives/composite resin to Poly Ether Ether Ketone (PEEK) based dental polymer after using different surface conditioning methods. PEEK blanks were cut into discs. All disc specimens were polished with 800 grit SiC paper and divided into 6 main groups. Main groups were divided into 2 subgroups. The main groups of 32 specimens each were treated as follow: (1) control specimens (no treatment), (2) piranha solution etching, (3) abraded with 50 μm alumina particles and chemical etching, (4) abraded with 110 μm alumina particles and chemical etching, (5) abraded with 30 μm silica-coated alumina particles and chemical etching, (6) abraded with 110 μm silica-coated alumina particles and chemical etching. Plexiglas tubes filled with a composite resin (RelyX Unicem) were bonded to the specimens. The adhesives used were Heliobond and Clearfil Ceramic Primer. Each specimen was stored in distilled water (37 °C) for 3 days. Tensile bond strength was measured in a universal testing machine and failure methods were evaluated. Abraded surface with 50 μm alumina particles followed by etching with piranha solution lead to the highest bond strength of 21.4 MPa when Heliobond like adhesive was used. Tribochemical silica coated/etched PEEK surfaces did not have an effect on the bond strength. Non-treated PEEK surface was not able to establish a bond with composite resin. The proper choice of adhesive/composite resin system leads to a strong bond. ConclusionAirborne particle abrasion in combination with piranha solution etching improves the adhesive properties of PEEK.

  8. Modelling and laboratory studies on the adhesion fatigue performance for thin-film asphalt and aggregate system.

    PubMed

    Wang, Dongsheng; Yi, Junyan; Feng, Decheng

    2014-01-01

    Adhesion between asphalt and aggregate plays an important role in the performance of asphalt mixtures. A low-frequency adhesion fatigue test was proposed in this paper to study the effect of environment on the asphalt-aggregate adhesion system. The stress-based fatigue model had been utilized to describe the fatigue behavior of thin-film asphalt and aggregate system. The factors influencing the adhesion fatigue performance were also investigated. Experiment results show that asphalt has more important effect on the adhesion performance comparing with aggregate. Basalt, which is regarded as hydrophobic aggregates with low silica content, has better adhesion performance to asphalt binder when compared with granite. The effects of aging on the adhesion fatigue performance are different for PG64-22 and rubber asphalt. Long-term aging is found to reduce the adhesion fatigue lives for rubber asphalt and aggregate system, while the effect of long-term aging for aggregate and PG64-22 binder system is positive. Generally the increased stress amplitude and test temperature could induce greater damage and lead to less fatigue lives for adhesion test system. PMID:25054187

  9. Modelling and laboratory studies on the adhesion fatigue performance for thin-film asphalt and aggregate system.

    PubMed

    Wang, Dongsheng; Yi, Junyan; Feng, Decheng

    2014-01-01

    Adhesion between asphalt and aggregate plays an important role in the performance of asphalt mixtures. A low-frequency adhesion fatigue test was proposed in this paper to study the effect of environment on the asphalt-aggregate adhesion system. The stress-based fatigue model had been utilized to describe the fatigue behavior of thin-film asphalt and aggregate system. The factors influencing the adhesion fatigue performance were also investigated. Experiment results show that asphalt has more important effect on the adhesion performance comparing with aggregate. Basalt, which is regarded as hydrophobic aggregates with low silica content, has better adhesion performance to asphalt binder when compared with granite. The effects of aging on the adhesion fatigue performance are different for PG64-22 and rubber asphalt. Long-term aging is found to reduce the adhesion fatigue lives for rubber asphalt and aggregate system, while the effect of long-term aging for aggregate and PG64-22 binder system is positive. Generally the increased stress amplitude and test temperature could induce greater damage and lead to less fatigue lives for adhesion test system.

  10. Adhesive Bonding of Titanium to Carbon-Carbon Composites for Heat Rejection Systems

    NASA Technical Reports Server (NTRS)

    Cerny, Jennifer; Morscher, Gregory

    2006-01-01

    High temperature adhesives with good thermal conductivity, mechanical performance, and long term durability are crucial for the assembly of heat rejection system components for space exploration missions. In the present study, commercially available adhesives were used to bond high conductivity carbon-carbon composites to titanium sheets. Bonded pieces were also exposed to high (530 to 600 Kelvin for 24 hours) and low (liquid nitrogen 77K for 15 minutes) temperatures to evaluate the integrity of the bonds. Results of the microstructural characterization and tensile shear strengths of bonded specimens will be reported. The effect of titanium surface roughness on the interface microstructure will also be discussed.

  11. A Novel Approach to Study Adhesion Mechanisms by Isolation of the Interacting System

    PubMed Central

    Coyle-Thompson, Cathy; Oppenheimer, Steven B.

    2007-01-01

    Summary For decades most investigations into mechanisms of adhesive interactions have examined whole organisms or single cells. Results using whole organisms are often unclear because it may not be known if a probe used in an experiment is directly affecting the cellular interaction under study or if it is an indirect effect resulting from action on some other structure or pathway. Here we develop a novel approach to isolate the structural components of a cellular interaction by dissecting them out of the organism to study them in a pristine environment away from all confounding factors. We used the adhesion between the archenteron and blastocoel roof of the sea urchin gastrula stage embryo as a model that can be replicated in many other developmental and pathological systems. The isolated components of the cellular interaction and those in the whole organism possessed identical cell surface receptors and adhesive affinities. PMID:16181663

  12. Friction and Adhesion Forces of Bacillus thuringiensis Spores on Planar Surfaces in Atmospheric Systems

    SciTech Connect

    Kweon, Hyojin; Yiacoumi, Sotira; Tsouris, Costas

    2011-01-01

    The kinetic friction force and the adhesion force of Bacillus thuringiensis spores on planar surfaces in atmospheric systems were studied using atomic force microscopy. The influence of relative humidity (RH) on these forces varied for different surface properties including hydrophobicity, roughness, and surface charge. The friction force of the spore was greater on a rougher surface than on mica, which is atomically flat. As RH increases, the friction force of the spores decreases on mica whereas it increases on rough surfaces. The influence of RH on the interaction forces between hydrophobic surfaces is not as strong as for hydrophilic surfaces. The friction force of the spore is linear to the sum of the adhesion force and normal load on the hydrophobic surface. The poorly defined surface structure of the spore and the adsorption of contaminants from the surrounding atmosphere are believed to cause a discrepancy between the calculated and measured adhesion forces.

  13. Systemic EP4 Inhibition Increases Adhesion Formation in a Murine Model of Flexor Tendon Repair.

    PubMed

    Geary, Michael B; Orner, Caitlin A; Bawany, Fatima; Awad, Hani A; Hammert, Warren C; O'Keefe, Regis J; Loiselle, Alayna E

    2015-01-01

    Flexor tendon injuries are a common clinical problem, and repairs are frequently complicated by post-operative adhesions forming between the tendon and surrounding soft tissue. Prostaglandin E2 and the EP4 receptor have been implicated in this process following tendon injury; thus, we hypothesized that inhibiting EP4 after tendon injury would attenuate adhesion formation. A model of flexor tendon laceration and repair was utilized in C57BL/6J female mice to evaluate the effects of EP4 inhibition on adhesion formation and matrix deposition during flexor tendon repair. Systemic EP4 antagonist or vehicle control was given by intraperitoneal injection during the late proliferative phase of healing, and outcomes were analyzed for range of motion, biomechanics, histology, and genetic changes. Repairs treated with an EP4 antagonist demonstrated significant decreases in range of motion with increased resistance to gliding within the first three weeks after injury, suggesting greater adhesion formation. Histologic analysis of the repair site revealed a more robust granulation zone in the EP4 antagonist treated repairs, with early polarization for type III collagen by picrosirius red staining, findings consistent with functional outcomes. RT-PCR analysis demonstrated accelerated peaks in F4/80 and type III collagen (Col3a1) expression in the antagonist group, along with decreases in type I collagen (Col1a1). Mmp9 expression was significantly increased after discontinuing the antagonist, consistent with its role in mediating adhesion formation. Mmp2, which contributes to repair site remodeling, increases steadily between 10 and 28 days post-repair in the EP4 antagonist group, consistent with the increased matrix and granulation zones requiring remodeling in these repairs. These findings suggest that systemic EP4 antagonism leads to increased adhesion formation and matrix deposition during flexor tendon healing. Counter to our hypothesis that EP4 antagonism would improve the

  14. Systemic EP4 Inhibition Increases Adhesion Formation in a Murine Model of Flexor Tendon Repair.

    PubMed

    Geary, Michael B; Orner, Caitlin A; Bawany, Fatima; Awad, Hani A; Hammert, Warren C; O'Keefe, Regis J; Loiselle, Alayna E

    2015-01-01

    Flexor tendon injuries are a common clinical problem, and repairs are frequently complicated by post-operative adhesions forming between the tendon and surrounding soft tissue. Prostaglandin E2 and the EP4 receptor have been implicated in this process following tendon injury; thus, we hypothesized that inhibiting EP4 after tendon injury would attenuate adhesion formation. A model of flexor tendon laceration and repair was utilized in C57BL/6J female mice to evaluate the effects of EP4 inhibition on adhesion formation and matrix deposition during flexor tendon repair. Systemic EP4 antagonist or vehicle control was given by intraperitoneal injection during the late proliferative phase of healing, and outcomes were analyzed for range of motion, biomechanics, histology, and genetic changes. Repairs treated with an EP4 antagonist demonstrated significant decreases in range of motion with increased resistance to gliding within the first three weeks after injury, suggesting greater adhesion formation. Histologic analysis of the repair site revealed a more robust granulation zone in the EP4 antagonist treated repairs, with early polarization for type III collagen by picrosirius red staining, findings consistent with functional outcomes. RT-PCR analysis demonstrated accelerated peaks in F4/80 and type III collagen (Col3a1) expression in the antagonist group, along with decreases in type I collagen (Col1a1). Mmp9 expression was significantly increased after discontinuing the antagonist, consistent with its role in mediating adhesion formation. Mmp2, which contributes to repair site remodeling, increases steadily between 10 and 28 days post-repair in the EP4 antagonist group, consistent with the increased matrix and granulation zones requiring remodeling in these repairs. These findings suggest that systemic EP4 antagonism leads to increased adhesion formation and matrix deposition during flexor tendon healing. Counter to our hypothesis that EP4 antagonism would improve the

  15. [Bond strength to dentin of resin composites associated with filled and unfilled adhesive systems].

    PubMed

    Youssef, J A; Turbino, M L; Youssef, M N; Matson, E

    2001-01-01

    This study analyzed in vitro two brands of one-step adhesive systems of fourth generation (Optisolo--Kerr, filled; and Single Bond--3M, unfilled) and two composite resins (Prodigy--Kerr and Z100--3M), aiming at evaluating their bond strength to dentin. Eighty human extracted molars were embedded in acrylic resin and grounded until dentin was exposed in longitudinal direction. The specimens were divided in 4 groups. Composite resin cones were bonded to the specimens using the mentioned adhesive systems, following the instructions of the manufacturers. The test-specimens were submitted to tensile tests using a 4442 Universal Mini-Instron Machine with the speed of 0.5 mm/min. The results were converted into MPa, according to the area of adhesion, and submitted to statistical analysis with ANOVA. There was significant statistical difference (p < 0.01) between the adhesive systems (F = 7.24). Optisolo (m = 11.03 +/- 4.23) showed better bond strength than Single Bond (m = 8.37 +/- 4.54). There was no significant statistical difference (p > 0.05) between the composites (F = 0.43).

  16. Evaluating the bonding of two adhesive systems to enamel submitted to whitening dentifrices.

    PubMed

    Briso, André Luiz Fraga; Toseto, Roberta Mariano; de Arruda, Alex Mendes; Tolentino, Patricia Ramos; de Alexandre, Rodrigo Sversut; dos Santos, Paulo Henrique

    2010-01-01

    The aim of this study was to evaluate by micro-shear bond strength test, the bond strength of composite resin restoration to enamel submitted to whitening dentifrices. Forty bovine teeth were embedded in polystyrene resin and polished. The specimens were randomly divided into eight groups (n=5), according to the dentifrice (carbamide peroxide, hydrogen peroxide and conventional dentifrice) and the adhesive system (Prime & Bond 2.1 and Adper Single Bond 2). Dentifrice was applied for 15 minutes a day, for 21 days. Thirty minutes after the last exposure to dentifrice, the samples were submitted to a bonding procedure with the respective adhesive system. After that, four buttons of resin were bonded in each sample using transparent cylindrical molds. After 24 hours, the teeth were submitted to the micro-shear bond strength test and subsequent analysis of the fracture mode. Data were submitted to analysis of variance and Fisher's PLSD test (alpha = 0.05). The micro-shear bond strength showed no difference between adhesives systems but a significant reduction was found between the control and carbamide groups (p = 0.0145) and the control and hydrogen groups (p = 0.0370). The evaluation of the failures modes showed that adhesive failures were predominant. Cohesive failures were predominant in group IV The use of dentifrice with peroxides can decrease bonding strength in enamel.

  17. Control system for maximum use of adhesive forces of a railway vehicle in a tractive mode

    NASA Astrophysics Data System (ADS)

    Spiryagin, Maksym; Lee, Kwan Soo; Yoo, Hong Hee

    2008-04-01

    The realization of maximum adhesive forces for a railway vehicle is a very difficult process, because it involves using tractive efforts and depends on friction characteristics in the contact zone between wheels and rails. Tractive efforts are realized by means of tractive torques of motors, and their maximum values can provide negative effects such as slip and skid. These situations usually happen when information about friction conditions is lacking. The negative processes have a major influence on wearing of contact bodies and tractive units. Therefore, many existing control systems for vehicles use an effect of a prediction of a friction coefficient between wheels and rails because measuring a friction coefficient at the moment of running vehicle movement is very difficult. One of the ways to solve this task is to use noise spectrum analysis for friction coefficient detection. This noise phenomenon has not been clearly studied and analyzed. In this paper, we propose an adhesion control system of railway vehicles based on an observer, which allows one to determine the maximum tractive torque based on the optimal adhesive force between the wheels (wheel pair) of a railway vehicle and rails (rail track) depending on weight load from a wheel to a rail, friction conditions in the contact zone, a lateral displacement of wheel set and wheel sleep. As a result, it allows a railway vehicle to be driven in a tractive mode by the maximum adhesion force for real friction conditions.

  18. Dentin bond strength of an adhesive system irradiated with an Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Ruschel, V. C.; Malta, D. A. M. P.; Monteiro, S., Jr.

    2016-11-01

    The objective of this study was to evaluate the microtensile bond strength of an adhesive system applied to dentin, followed by Nd:YAG laser irradiation. Twenty-two recently extracted third molars were divided into four groups (n  =  5). In the G1 and G2 groups, the adhesive system was applied conventionally, and in groups G3 and G4, the adhesive system was irradiated with an Nd:YAG laser (100 J cm‑2). The specimens were stored in distilled water at 37 °C, those in groups G1 and G3 for 24 h, and those in groups G2 and G4 for 3 months. Two teeth from groups G1 and G3 were used for observation of the hybrid layer, using a confocal microscope (n  =  1). The teeth were submitted to a microtensile bond strength test. Analysis of the type of fracture was performed using a stereoscope (40×). The results for microtensile bond strength (MPa) and standard deviation (±SD) were: G1—31.68 (5.14); G2—37.88 (±5.04) G3—35.32 (±8.79) G4—31.53 (±9.01). There were no significant differences among the groups (p  >  0.05). Adhesive failure was predominant in all the groups. The Nd:YAG laser irradiation of the adhesives did not influence dentin bond strength during the periods of 24 h or 3 months of storage in distilled water.

  19. Effect of thermocycling on the durability of etch-and-rinse and self-etch adhesives on dentin.

    PubMed

    Sangwichit, Ketkamon; Kingkaew, Ruksaphon; Pongprueksa, Pong; Senawongse, Pisol

    2016-01-01

    The objective was to compare bond strengths of adhesives with/without thermocycling and to analyze the micromorphology of resindentin interfaces. Flat dentin surfaces were prepared and divided into eight groups to bond with four etch-and-rinse adhesives (Optibond FL, Adper Scotchbond Multi-Purpose, Optibond Solo Plus, and Single Bond 2) and four self-etch adhesives (Clearfil SE Bond, Adper SE Plus, Clearfil S(3) Bond and Adper Easy Bond). Specimens were further divided into two subgroups subjected for with/without thermocycling and then subjected to both micro-tensile test and resin-dentin interface evaluation. The results revealed that there were significant differences in bond strength between the groups with and without thermocycling for all etch-and-rinse groups and for the Adper Easy Bond self-etch group (p<0.01). Clearfil SE Bond demonstrated highly durable bond strengths. Furthermore, more silver ion uptake was observed at the resin-dentin interfaces for all etch-and-rinse adhesives and Adper SE Plus and Adper Easy Bond after thermocycling. PMID:27251990

  20. Effect of stiffness of multi-level hierarchical attachment system on adhesion enhancement.

    PubMed

    Kim, Tae Wan; Bhushan, Bharat

    2007-10-01

    Geckos are known for their remarkable ability to cling on and detach from ceilings and walls using a unique attachment system. Their foot pads are covered by a large number of small hair (setae) that contain many branches per seta with a lower level of spatulae. This hierarchical structure gives the gecko adaptability to create a large real area of contact with rough surfaces. In this study, using the three-level hierarchical model recently developed to simulate a gecko seta contacting with random rough surface, the effects of spring stiffness and number of springs on the adhesion enhancement of multi-level hierarchical model are investigated. One- and three-level hierarchically structured spring models with different spring stiffnesses and number of springs on each level in contact with various rough surfaces are considered. The efficiency of attachment-the adhesion coefficient, the adhesion force, the number of contacts and the adhesion energy-for the three-level models with different stiffness is investigated in contact with different rough surfaces.

  1. Reliability of materials in MEMS : residual stress and adhesion in a micro power generation system.

    SciTech Connect

    Moody, Neville Reid; Kennedy, Marian S.; Bahr, David F.

    2007-09-01

    The reliability of thin film systems is important to the continued development of microelectronic and micro-electro-mechanical systems (MEMS). The reliability of these systems is often tied to the ability of the films to remain adhered to its substrate. By measuring the amount of energy to separate the film from the substrate, researchers can predicts film lifetimes. Recent work has resulted in several different testing techniques to measure this energy including spontaneous buckling, indentation induced delamination and four point bending. This report focuses on developing quantifiable adhesion measurements for multiple thin film systems used in MEMS and other thin film systems of interest to Sandia programs. First, methods of accurately assessing interfacial toughness using stressed overlayer methods are demonstrated using both the W/Si and Au/Si systems. For systems where fracture only occurs along the interface, such as Au/Si, the calculated fracture energies between different tests are identical if the energy put into the system is kept near the needed strain energy to cause delamination. When the energy in the system is greater than needed to cause delamination, calculated adhesion energies can increase by a factor of three due to plastic deformation. Dependence of calculated adhesion energies on applied energy in the system was also shown when comparisons of four point bending and stressed overlayer test methods were completed on Pt/Si systems. The fracture energies of Pt/Ti/SiO{sub 2} were studied using four-point bending and compressive overlayers. Varying the thickness of the Ti film from 2 to 17 nm in a Pt/Ti/SiO{sub 2} system, both test methods showed an increase of adhesion energy until the nominal Ti thickness was 12nm. Then the adhesion energy began to decrease. While the trends in toughness are similar, the magnitude of the toughness values measured between the test methods is not the same, demonstrating the difficulty in extracting mode I toughness

  2. Thermal Characterization of Adhesive

    NASA Technical Reports Server (NTRS)

    Spomer, Ken A.

    1999-01-01

    The current Space Shuttle Reusable Solid Rocket Motor (RSRM) nozzle adhesive bond system is being replaced due to obsolescence. Down-selection and performance testing of the structural adhesives resulted in the selection of two candidate replacement adhesives, Resin Technology Group's Tiga 321 and 3M's EC2615XLW. This paper describes rocket motor testing of these two adhesives. Four forty-pound charge motors were fabricated in configurations that would allow side by side comparison testing of the candidate replacement adhesives and the current RSRM adhesives. The motors provided an environment where the thermal performance of adhesives in flame surface bondlines was compared. Results of the FPC testing show that: 1) The phenolic char depths on radial bond lines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used; 2) The adhesive char depth of the candidate replacement adhesives is less than the char depth of the current adhesives; 3) The heat-affected depth of the candidate replacement adhesives is less than the heat-affected depth of the current adhesives; and 4) The ablation rates for both replacement adhesives are slower than that of the current adhesives.

  3. SEM evaluation of resin-carious dentin interfaces formed by two dentin adhesive systems

    PubMed Central

    Hsu, Kuang-Wei; Marshall, Sally J.; Pinzon, Lilliam M.; Watanabe, Larry; Saiz, Eduardo; Marshall, Grayson W.

    2008-01-01

    Objectives We investigated the influence of dentin tubule direction and identifiable zone of carious dentin on the microstructure and the thickness of the hybrid-like layer (HL) formed by self-etch and etch-rinse adhesive systems. Methods An etch-rinse and a self-etching adhesive were bonded to dentin carious zones divided into groups with parallel or perpendicular orientation relative to the dentin tubules at the resin-carious dentin interface (N = 5/variable). Bonds were prepared to each of the four zones of carious dentin apparent after staining with Caries Detector: pink, light pink, transparent and apparently normal Six non-carious third molars were controls. The microstructure and thickness of the HL were determined by SEM.and compared using three-way ANOVA and Tukey's multiple comparisons (p<0.05). Results Etch-rinse controls gave thicker HLs than self-etching systems; ; orientation did not affect thickness for the self-etch system. Perpendicular orientations gave thicker HLs than parallel for the pink zone bonded with the etch-rinse system. For both adhesives, HL thickness in the pink zone were significantly greater than in light pink for the perpendicular group, but no significant differences were found among other variables. HL microstructure was more granular and rougher for the etch rinse than for the self etching system. Pores and cracks were obvious in the more demineralized zones, Resin tags were shorter and irregular in the transparent zone and often were completely absent in the outer demineralized zones (pink, light pink). Significance Microstructure of bonded interfaces varies markedly depending on adhesive system, tubule orientation and carious zone. PMID:18155289

  4. Shear Bond Strength of Orthodontic Brackets Fixed with Remineralizing Adhesive Systems after Simulating One Year of Orthodontic Treatment.

    PubMed

    Bezerra, Gisele Lima; Torres, Carlos Rocha Gomes; Tonetto, Mateus Rodrigues; Borges, Alvaro Henrique; Kuga, Milton Carlos; Bandeca, Matheus Coelho; Firoozmand, Leily Macedo

    2015-01-01

    The objective of this study is to assess, in vitro, the shear bond strength of orthodontic brackets fixed with remineralizing adhesive systems submitted to thermomechanical cycling, simulating one year of orthodontic treatment. Sixty-four bovine incisor teeth were randomly divided into 4 experimental groups (n = 16): XT: Transbond XT, QC: Quick Cure, OL: Ortholite Color, and SEP: Transbond Plus Self-Etching Primer. The samples were submitted to thermomechanical cycling simulating one year of orthodontic treatment. Shear bond strength tests were carried out using a universal testing machine with a load cell of 50 KgF at 0.5 mm/minute. The samples were examined with a stereomicroscope and a scanning electron microscope (SEM) in order to analyze enamel surface and Adhesive Remnant Index (ARI). Kruskal-Wallis and Mann-Whitney (with Bonferroni correction) tests showed a significant difference between the studied groups (p < 0.05). Groups XT, QC, and SEP presented the highest values of adhesive resistance and no statistical differences were found between them. The highest frequency of failures between enamel and adhesive was observed in groups XT, QC, and OL. Quick Cure (QC) remineralizing adhesive system presented average adhesive resistance values similar to conventional (XT) and self-etching (SEP) adhesives, while remineralizing system (OL) provided the lowest values of adhesive resistance. PMID:26380371

  5. Shear Bond Strength of Orthodontic Brackets Fixed with Remineralizing Adhesive Systems after Simulating One Year of Orthodontic Treatment

    PubMed Central

    Bezerra, Gisele Lima; Torres, Carlos Rocha Gomes; Tonetto, Mateus Rodrigues; Borges, Alvaro Henrique; Kuga, Milton Carlos; Bandeca, Matheus Coelho; Firoozmand, Leily Macedo

    2015-01-01

    The objective of this study is to assess, in vitro, the shear bond strength of orthodontic brackets fixed with remineralizing adhesive systems submitted to thermomechanical cycling, simulating one year of orthodontic treatment. Sixty-four bovine incisor teeth were randomly divided into 4 experimental groups (n = 16): XT: Transbond XT, QC: Quick Cure, OL: Ortholite Color, and SEP: Transbond Plus Self-Etching Primer. The samples were submitted to thermomechanical cycling simulating one year of orthodontic treatment. Shear bond strength tests were carried out using a universal testing machine with a load cell of 50 KgF at 0.5 mm/minute. The samples were examined with a stereomicroscope and a scanning electron microscope (SEM) in order to analyze enamel surface and Adhesive Remnant Index (ARI). Kruskal-Wallis and Mann-Whitney (with Bonferroni correction) tests showed a significant difference between the studied groups (p < 0.05). Groups XT, QC, and SEP presented the highest values of adhesive resistance and no statistical differences were found between them. The highest frequency of failures between enamel and adhesive was observed in groups XT, QC, and OL. Quick Cure (QC) remineralizing adhesive system presented average adhesive resistance values similar to conventional (XT) and self-etching (SEP) adhesives, while remineralizing system (OL) provided the lowest values of adhesive resistance. PMID:26380371

  6. EFFECT OF SURFACE TREATMENTS ON THE SPREADING VELOCITY OF SIMPLIFIED ADHESIVE SYSTEMS

    PubMed Central

    Pazinatto, Flávia B.; Lopes, Fernanda A.; Marquezini, Luiz; de Castro, Fabrício L. A.; Atta, Maria Teresa

    2006-01-01

    Objectives: To determine the roughness of glass surfaces submitted to different treatments and to correlate it with the spreading velocity of two adhesive systems. Materials and Methods: Glass slides were used as substrates to evaluate the spreading velocity of Single Bond and Prime & Bond NT adhesive systems. Six different surface treatments were compared: 1) no treatment; 2) silanization (SL); 3) sandblasting (SB); 4) SB + SL; 5) 10% hydrofluoric acid treatment (HF); 6) HF + SL. Before and after treatments, surface roughness was measured by a profilometer (Ra, μm). Drop volumes (10 μl) of the adhesive systems were deposited onto substrates with a micropipette to observe materials spreading during 30s. Data were expressed in mm/s as spreading velocity. Statistical significances among groups were analyzed using one-way and two-way-ANOVA designs and the SNK test. Results: Significant differences in spreading velocity were found between materials (p < 0.001) and among treatments (p < 0.001). Silanization decreased the spreading velocity for both adhesives in comparison to groups where it was not performed (p < 0.05). Differences in roughness were found only for SB surfaces that were rougher than the others (p < 0.05). Silanization decreased the roughness of SB surfaces (p < 0.05). Linear regression did not indicate any correlation between spreading velocity and roughness (R = 0.173). Conclusions: Although surface treatments yielded different roughness, they did not provide differences in the spreading velocity of the simplified bonding systems studied. Silanization decreased bonding systems' spreading velocities. PMID:19089237

  7. Laser-Generated Rayleigh Waves Propagating in Transparent Viscoelastic Adhesive Coating/Metal Substrate Systems

    NASA Astrophysics Data System (ADS)

    Guan, Yi-jun; Sun, Hong-xiang; Yuan, Shou-qi; Zhang, Shu-yi; Ge, Yong

    2016-10-01

    We have established numerical models for simulating laser-generated Rayleigh waves in coating/substrate systems by a finite element method and investigated the propagation characteristics of Rayleigh waves in systems concerning the viscoelasticity and transparency of adhesive coatings. In this way, we have studied the influence of the mechanical properties of the coating, such as the elastic moduli, viscoelastic moduli, coating thickness, transparency, and coating material, on the propagation characteristics of the Rayleigh waves. The results show that the propagation characteristics of the Rayleigh waves can be divided into low- and high-frequency parts. The high-frequency propagation characteristics of the Rayleigh wave are closely related to the properties of the adhesive coating.

  8. Initial and long-term bond strengths of one-step self-etch adhesives with silane coupling agent to enamel-dentin-composite in combined situation.

    PubMed

    Mamanee, Teerapong; Takahashi, Masahiro; Nakajima, Masatoshi; Foxton, Richard M; Tagami, Junji

    2015-01-01

    This study evaluated the effect of adding silane coupling agent on initial and long-term bond strengths of one-step self-etch adhesives to enamel-dentin-composite in combined situation. Cervical cavities were prepared on extracted molars and filled with Clearfil AP-X. After water-storage for one-week, the filled teeth were sectioned in halves to expose enamel, dentin and composite surfaces and then enamel-dentin-composite surface was totally applied with one of adhesive treatments (Clearfil SE One, Clearfil SE One with Clearfil Porcelain Bond Activator, Beautibond Multi, Beautibond Multi with Beautibond Multi PR Plus and Scotchbond Universal). After designed period, micro-shear bond strengths (µSBSs) to each substrate were determined. For each period of water-storage, additive silane treatments significantly increased µSBS to composite (p<0.001). On the other hand, they significantly decreased µSBS to dentin (p<0.001), although did not have adverse effect on µSBS to enamel (p>0.05). Moreover, the stability of µSBS was depended on materials and substrates used.

  9. Effect of silorane-based adhesive system on bond strength between composite and dentin substrate

    PubMed Central

    Pereira, Jefferson Ricardo; Júnior, Lindomar Corrêa; de Souza Almeida, Mauro; do Valle, Accácio Lins; Honório, Heitor Marques; Vidotti, Hugo Alberto; De Souza, Grace Mendonca

    2015-01-01

    Context: The complexities of the oral environment, the dentin substrate, and the different bond and composite resin systems represent a challenge to the maintenance of reasonable bond between the composite resin and the tooth structure. Aims: To evaluate the effect of the adhesive system on bond strength between silorane-based composite resin and dentin. Materials and Methods: Fourteen human molars extracted were selected and vertically cut into 3 dentin fragments, randomly divided among the experimental groups and restored with Z250 and P90 composite resin using different adhesive protocols (Adper Single Bond 2, Silorano primer, Adper SE Plus, and Scotchbond Multiuse). Two composite resin cylinders were built up on each dentin surface (n = 10) and subjected to a micro-shear bond strength test. Statistical Analysis Used: Kruskal–Wallis one-way analysis of variance and Tukey test (P = 0.05). Results: According to the results, Kruskal–Wallis test evidenced at least one statistical significant difference (P = 0.001). The Tukey test showed statistically significant differences among the group (P < 0.05). Group PSM8 (P90 + SM) showed statically significant higher results when compared with groups PSP4 (P90 + SP), PSB2 (P90 + SB), and ZSE5 (Z250 + SE). Conclusion: The results evidenced that the monomer of the adhesive system has an effect on bond strength between the composite resin and dentin. PMID:26752846

  10. Effect of digluconate chlorhexidine on bond strength between dental adhesive systems and dentin: A systematic review

    PubMed Central

    Dionysopoulos, Dimitrios

    2016-01-01

    Aim: This study aimed to systematically review the literature for the effect of digluconate chlorhexidine (CHX) on bond strength between dental adhesive systems and dentin of composite restorations. Materials and Methods: The electronic databases that were searched to identify manuscripts for inclusion were Medline via PubMed and Google search engine. The search strategies were computer search of the database and review of reference lists of the related articles. Search words/terms were as follows: (digluconate chlorhexidine*) AND (dentin* OR adhesive system* OR bond strength*). Results: Bond strength reduction after CHX treatments varied among the studies, ranging 0-84.9%. In most of the studies, pretreatment CHX exhibited lower bond strength reduction than the control experimental groups. Researchers who previously investigated the effect of CHX on the bond strength of dental adhesive systems on dentin have reported contrary results, which may be attributed to different experimental methods, different designs of the experiments, and different materials investigated. Conclusions: Further investigations, in particular clinical studies, would be necessary to clarify the effect of CHX on the longevity of dentin bonds. PMID:26957786

  11. Systems, Apparatuses, and Methods for Using Durable Adhesively Bonded Joints for Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Smeltzer, III, Stanley S. (Inventor); Lundgren, Eric C. (Inventor)

    2014-01-01

    Systems, methods, and apparatus for increasing durability of adhesively bonded joints in a sandwich structure. Such systems, methods, and apparatus includes an first face sheet and an second face sheet as well as an insert structure, the insert structure having a first insert face sheet, a second insert face sheet, and an insert core material. In addition, sandwich core material is arranged between the first face sheet and the second face sheet. A primary bondline may be coupled to the face sheet(s) and the splice. Further, systems, methods, and apparatus of the present disclosure advantageously reduce the load, provide a redundant path, reduce structural fatigue, and/or increase fatigue life.

  12. Shear bond strength of fibre-reinforced composite nets using two different adhesive systems.

    PubMed

    Sfondrini, Maria Francesca; Cacciafesta, Vittorio; Scribante, Andrea

    2011-02-01

    The purpose of this study was to evaluate the effect of two different adhesive systems (Tetric Flow and Transbond XT) in combination with fibre-reinforced composites (FRC) net (Ever Stick) on the shear bond strength (SBS) of orthodontic brackets. Eighty bovine permanent mandibular incisors were randomly divided into four equal groups. Stainless steel maxillary central incisor brackets with a 0.018 inch slot (DB Leone) were bonded to the teeth using the two different adhesive systems. Fifty per cent of the brackets were bonded without and 50 per cent with a FRC net under the bracket base. After bonding, all samples were stored in distilled water at room temperature for 24 hours and subsequently tested for SBS. Analysis of variance indicated significant differences among the various groups. Brackets bonded with FRC nets under the base showed a significantly lower SBS than those bonded without nets (P < 0.05). Moreover, teeth bonded with Transbond XT showed a significantly higher SBS than the other groups. Additionally, significant differences in debond locations [adhesive remnant index (ARI) score] were found among the various groups. Transbond XT can successfully be used for direct bonding of FRC nets, thus improving their SBS values. PMID:20573712

  13. Effect of prolonged air drying on the bond strength of adhesive systems to dentin.

    PubMed

    Werle, Stefanie Bressan; Steglich, Ana; Soares, Fabio Zovico Maxnuck; Rocha, Rachel Oliveira

    2015-01-01

    This in vitro study evaluated the effect of air-drying time on degree of solvent evaporation (DE), dentin microtensile bond strength (µTBS), and degree of conversion (DC) of 5 adhesive systems: Adper Single Bond 2, XP Bond, Prime & Bond 2.1, OptiBond Solo, and Adper Easy One. For DE testing, 20 µL of each material was submitted to measurements in a digital balance after an air stream of 3, 5, 10, 20, 30, or 60 seconds; the weight loss was computed and converted to a percentage (DE). For µTBS testing, 50 sound human molars were divided into groups (n = 5). The 5 adhesive systems were applied either in accordance with manufacturers' instructions for solvent drying time (control) or with a prolonged drying time (20-30 seconds). After composite resin was built up on the hybridized surfaces, the teeth were stored for 24 hours and then sectioned to obtain beams that were loaded until fracture. For DC testing, specimens of each adhesive and air-drying condition (n = 3) were evaluated by means of attenuated total reflectance Fourier transform infrared spectroscopy. Data were submitted to 2-way analysis of variance, t test, and Spearman test for correlation analysis. Prolonged air drying resulted in significantly greater DE than did the time suggested by the manufacturers. The adhesives XP Bond and Adper Easy One showed significantly greater µTBS with prolonged air drying. The DC was not affected by air-drying time. No statistically significant correlation was found between DC and µTBS values. Depending on the material, bond strength can be improved by prolonged air-drying times.

  14. Effect of prolonged air drying on the bond strength of adhesive systems to dentin.

    PubMed

    Werle, Stefanie Bressan; Steglich, Ana; Soares, Fabio Zovico Maxnuck; Rocha, Rachel Oliveira

    2015-01-01

    This in vitro study evaluated the effect of air-drying time on degree of solvent evaporation (DE), dentin microtensile bond strength (µTBS), and degree of conversion (DC) of 5 adhesive systems: Adper Single Bond 2, XP Bond, Prime & Bond 2.1, OptiBond Solo, and Adper Easy One. For DE testing, 20 µL of each material was submitted to measurements in a digital balance after an air stream of 3, 5, 10, 20, 30, or 60 seconds; the weight loss was computed and converted to a percentage (DE). For µTBS testing, 50 sound human molars were divided into groups (n = 5). The 5 adhesive systems were applied either in accordance with manufacturers' instructions for solvent drying time (control) or with a prolonged drying time (20-30 seconds). After composite resin was built up on the hybridized surfaces, the teeth were stored for 24 hours and then sectioned to obtain beams that were loaded until fracture. For DC testing, specimens of each adhesive and air-drying condition (n = 3) were evaluated by means of attenuated total reflectance Fourier transform infrared spectroscopy. Data were submitted to 2-way analysis of variance, t test, and Spearman test for correlation analysis. Prolonged air drying resulted in significantly greater DE than did the time suggested by the manufacturers. The adhesives XP Bond and Adper Easy One showed significantly greater µTBS with prolonged air drying. The DC was not affected by air-drying time. No statistically significant correlation was found between DC and µTBS values. Depending on the material, bond strength can be improved by prolonged air-drying times. PMID:26545278

  15. Investigating the use of phenolic rich fraction of pyrolysis bio-oils as an adhesive system

    NASA Astrophysics Data System (ADS)

    Sahaf, Amir

    Fast pyrolysis allows converting of up to 75 % of biomass into a crude bio-oil, which can be separated into a phenolic rich fraction (PRF) via ethyl acetate extraction while a sugar rich fraction preferentially concentrates in the aqueous phase. Rheological and thermal characterization of heat treated PRF from pyrolysis of Douglas Fir is performed using cone and plate rheology set up, dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). The results show that this material demonstrates a unique thermoplastic behavior with low Tg and softening point that can be systematically manipulated through changes in thermal history. As these materials are good candidates for development of hot melt adhesives, lap shear tests were also performed using wood stripes to evaluate their mechanical properties as an adhesive. Optimization of properties of the PRF is sought in this study through polymer blending with other bio-degradable thermoplastic poly(epsilon-caprolactone) (PCL) and poly(lactic acid) (PLA). Blends of PRF/PCL and PRF/PLA of different ratios are prepared by solvent casting and melt blending and thermally and thermomechanically characterized for their miscibility and phase behavior. Presence of molecular interactions are furthur investigated using Fourier transform infrared spectoscopy (FTIR). The blends show complete miscibility based on their Tg and melting points and significant improvement in shear strength is observed. Mechanisms leading to changes in properties are described and a physical model is proposed. The blend systems have good potential to be used as a thermoplastic bio degradable adhesives with satisfactoty properies.

  16. Influence of Surface Treatments and Adhesive Systems on Lithium Disilicate Microshear Bond Strength.

    PubMed

    Garboza, Celso Sebastião; Berger, Sandrine Bittencourt; Guiraldo, Ricardo Danil; Fugolin, Ana Paula Piovezan; Gonini-Júnior, Alcides; Moura, Sandra Kiss; Lopes, Murilo Baena

    2016-01-01

    The purpose of this study was to evaluate the microshear bond strength of ceramic prosthetic structures reinforced by lithium disilicate cemented with resin cement under conditions of different surface treatments and adhesive systems. Seventy-two rectangular blocks of lithium disilicate (6.5 mm long × 5 mm wide × 1 mm thick) were fabricated, air abraded with 50-μm Al2O3 particles and divided into six groups (n=12) depending on the surface pretreatments. The groups were as follows: 10HF/S/SBM: 10% hydrofluoric acid etched for 20 s (10HF) + silane (S) + Adper Scotchbond Multi-Purpose (SBM); 10HF/S/SB: 10HF + S + Single Bond Universal (SB); 10HF/SBM; 10HF/SB; S/SBM and S/SB. Two 1-mm-long plastic tubes were placed on the specimens, filled with RelyX ARC resin cement and cured for 20 s per tube. The plastic tube was removed, and the microshear bond strength was tested. Data were submitted to analysis of variance and Tukey's tests (α=0.05). Fractured specimens were observed under optical microscopy. For both adhesives, the bond strengths (MPa) of groups treated with acid-etching and silane (10HF/S/SB: 24.82, 10HF/S/SBM: 24.90) were higher (p<0.001) than those of groups treated with acid-etching (10HF/SB: 16.47, 10HF/SBM: 19.94) only or only silane (S/SB: 18.42, S/SBM: 13.24). All groups showed a predominance of failure adhesive. The silanization should be a clinical step in cementing ceramic structures reinforced by lithium disilicate, even with the application of universal adhesive that contains silane in its formulation. PMID:27652711

  17. Marginal microleakage of cervical composite resin restorations bonded using etch-and-rinse and self-etch adhesives: two dimensional vs. three dimensional methods

    PubMed Central

    Khoroushi, Maryam

    2016-01-01

    Objectives This study was evaluated the marginal microleakage of two different adhesive systems before and after aging with two different dye penetration techniques. Materials and Methods Class V cavities were prepared on the buccal and lingual surfaces of 48 human molars. Clearfil SE Bond and Single Bond (self-etching and etch-and-rinse systems, respectively) were applied, each to half of the prepared cavities, which were restored with composite resin. Half of the specimens in each group underwent 10,000 cycles of thermocycling. Microleakage was evaluated using two dimensional (2D) and three dimensional (3D) dye penetration techniques separately for each half of each specimen. Data were analyzed with SPSS 11.5 (SPSS Inc.), using the Kruskal-Wallis and Mann-Whitney U tests (α = 0.05). Results The difference between the 2D and 3D microleakage evaluation techniques was significant at the occlusal margins of Single bond groups (p = 0.002). The differences between 2D and 3D microleakage evaluation techniques were significant at both the occlusal and cervical margins of Clearfil SE Bond groups (p = 0.017 and p = 0.002, respectively). The difference between the 2D and 3D techniques was significant at the occlusal margins of non-aged groups (p = 0.003). The difference between these two techniques was significant at the occlusal margins of the aged groups (p = 0.001). The Mann-Whitney test showed significant differences between the two techniques only at the occlusal margins in all specimens. Conclusions Under the limitations of the present study, it can be concluded that the 3D technique has the capacity to detect occlusal microleakage more precisely than the 2D technique. PMID:27200275

  18. Bond strength of an adhesive system irradiated with Nd:YAG laser in dentin treated with Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Malta, D. A. M. P.; Costa, M. M.; Pelino, J. E. P.; de Andrade, M. F.; Lizarelli, R. F. Z.

    2008-02-01

    The purpose of this in vitro study was to verify through micro tensile bond test the bond strength of an adhesive system irradiated with Nd:YAG laser in dentine previously treated with Er:YAG laser. Twenty caries free extracted human third molars were used. The teeth were divided in four experimental groups (n = 5): (G1) control group; (G2) irradiation of the adhesive system with the Nd:YAG laser; (G3) dentin treatment with Er:YAG laser; (G4) dentin treatment with Er:YAG laser followed by the irradiation of the adhesive system with Nd:YAG laser. The Er:YAG laser fluency parameter for the dentin treatment was of 60 J/cm2. The adhesive system was irradiated with the Nd:YAG laser with fluency of 100 J/cm2. Dental restorations were performed with Adper Single Bond 2/Z250. One tooth from each group was prepared for the evaluation of the adhesive interface under SEM and bond failure tests were also performed and evaluated. The statistical analysis showed statistical significant difference between the groups G1 and G3, G1 and G4, G2 and G3, and G2 and G4; and similarity between the groups G1 and G2, and G3 and G4. The adhesive failures were predominant in all the experimental groups. The SEM analysis showed an adhesive interface with features confirming the results of the mechanical tests. The Nd:YAG laser on the adhesive system did not influence the bond strength in dentin treated or not with the Er:YAG laser.

  19. Evaluation of Underwater Adhesives and Friction Coatings for In Situ Attachment of Fiber Optic Sensor System for Subsea Applications

    NASA Technical Reports Server (NTRS)

    Tang, Henry H.; Le, Suy Q.; Orndoff, Evelyne S.; Smith, Frederick D.; Tapia, Alma S.; Brower, David V.

    2012-01-01

    Integrity and performance monitoring of subsea pipelines and structures provides critical information for managing offshore oil and gas production operation and preventing environmentally damaging and costly catastrophic failure. Currently pipeline monitoring devices require ground assembly and installation prior to the underwater deployment of the pipeline. A monitoring device that could be installed in situ on the operating underwater structures could enhance the productivity and improve the safety of current offshore operation. Through a Space Act Agreement (SAA) between the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) and Astro Technology, Inc. (ATI), JSC provides technical expertise and testing facilities to support the development of fiber optic sensor technologies by ATI. This paper details the first collaboration effort between NASA JSC and ATI in evaluating underwater applicable adhesives and friction coatings for attaching fiber optic sensor system to subsea pipeline. A market survey was conducted to examine different commercial ]off ]the ]shelf (COTS) underwater adhesive systems and to select adhesive candidates for testing and evaluation. Four COTS epoxy based underwater adhesives were selected and evaluated. The adhesives were applied and cured in simulated seawater conditions and then evaluated for application characteristics and adhesive strength. The adhesive that demonstrated the best underwater application characteristics and highest adhesive strength were identified for further evaluation in developing an attachment system that could be deployed in the harsh subsea environment. Various friction coatings were also tested in this study to measure their shear strengths for a mechanical clamping design concept for attaching fiber optic sensor system. A COTS carbide alloy coating was found to increase the shear strength of metal to metal clamping interface by up to 46 percent. This study provides valuable data for

  20. Comparative study of the dentin bond strength of a new universal adhesive.

    PubMed

    Jang, Ji-Hyun; Lee, Myoung Geun; Woo, Sang Uk; Lee, Chung Ok; Yi, Jin-Kyu; Kim, Duck-Su

    2016-01-01

    This study compared the dentin bond strength of a new universal adhesive with that of contemporary multi-step dentin adhesives. Six experimental groups were prepared according to the adhesives used and their application modes: Optibond FL (OB), Adper Single Bond Plus (SB), One-Step Plus (OS), Clearfil SE Bond (CS), All-Bond Universal using etch-and-rinse mode (ABE), and AllBond Universal using self-etch mode (ABS). Micro-tensile bond strength (µTBS) and failure mode were evaluated for each group. The bonded interface was analyzed using transmission electron microscopy (TEM). As a result, µTBS of 6 experimental groups was followed as: OB=ABE=SE=ABS>SB>OS group. TEM micrographs of ABE and ABS groups revealed a homogenous adhesive layer formation. In conclusion, a new universal adhesive can make reliable bond to dentin, regardless of the application mode. PMID:27477226

  1. Role of bacterial adhesion in the microbial ecology of biofilms in cooling tower systems

    PubMed Central

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P.; Packman, Aaron

    2009-01-01

    The fate of the three heterotrophic biofilm forming bacteria, Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. in pilot scale cooling towers was evaluated both by observing the persistence of each species in the recirculating water and the formation of biofilms on steel coupons placed in each cooling tower water reservoir. Two different cooling tower experiments were performed: a short-term study (6 days) to observe the initial bacterial colonization of the cooling tower, and a long-term study (3 months) to observe the ecological dynamics with repeated introduction of the test strains. An additional set of batch experiments (6 days) was carried out to evaluate the adhesion of each strain to steel surfaces under similar conditions to those found in the cooling tower experiments. Substantial differences were observed in the microbial communities that developed in the batch systems and cooling towers. P. aeruginosa showed a low degree of adherence to steel surfaces both in batch and in the cooling towers, but grew much faster than K. pneumoniae and Flavobacterium in mixed-species biofilms and ultimately became the dominant organism in the closed batch systems. However, the low degree of adherence caused P. aeruginosa to be rapidly washed out of the open cooling tower systems, and Flavobacterium became the dominant microorganism in the cooling towers in both the short-term and long-term experiments. These results indicate that adhesion, retention and growth on solid surfaces play important roles in the bacterial community that develops in cooling tower systems. PMID:19177226

  2. Role of bacterial adhesion in the microbial ecology of biofilms in cooling tower systems.

    PubMed

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P; Packman, Aaron

    2009-01-01

    The fate of the three heterotrophic biofilm forming bacteria, Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. in pilot scale cooling towers was evaluated both by observing the persistence of each species in the recirculating water and the formation of biofilms on steel coupons placed in each cooling tower water reservoir. Two different cooling tower experiments were performed: a short-term study (6 days) to observe the initial bacterial colonization of the cooling tower, and a long-term study (3 months) to observe the ecological dynamics with repeated introduction of the test strains. An additional set of batch experiments (6 days) was carried out to evaluate the adhesion of each strain to steel surfaces under similar conditions to those found in the cooling tower experiments. Substantial differences were observed in the microbial communities that developed in the batch systems and cooling towers. P. aeruginosa showed a low degree of adherence to steel surfaces both in batch and in the cooling towers, but grew much faster than K. pneumoniae and Flavobacterium in mixed-species biofilms and ultimately became the dominant organism in the closed batch systems. However, the low degree of adherence caused P. aeruginosa to be rapidly washed out of the open cooling tower systems, and Flavobacterium became the dominant microorganism in the cooling towers in both the short-term and long-term experiments. These results indicate that adhesion, retention and growth on solid surfaces play important roles in the bacterial community that develops in cooling tower systems. PMID:19177226

  3. The role of electrostatic charge in the adhesion of spherical particles onto planar surfaces in atmospheric systems

    DOE PAGES

    Kweon, Hyojin; Yiacoumi, Sotira Z.; Tsouris, Costas

    2015-06-19

    In this study, the influence of electrostatic charge on the adhesive force between spherical particles and planar surfaces in atmospheric systems was studied using atomic force microscopy. Electrical bias was applied to modify the surface charge, and it was found that application of a stronger positive bias to a particle induces a stronger total adhesive force. The sensitivity of the system to changes in the bias depended on the surface charge density. For larger-size particles, the contribution of the electrostatic force decreased, and the capillary force became the major contributor to the total adhesive force. The influence of water adsorptionmore » on the total adhesive force and, specifically, on the contribution of the electrostatic force depended on the hydrophobicity of interacting surfaces. For a hydrophilic surface, water adsorption either attenuated the surface charge or screened the effect of surface potential. An excessive amount of adsorbed water provided a path to surface charge leakage, which might cancel out the electrostatic force, leading to a reduction in the adhesive force. Theoretically calculated forces were comparable with measured adhesive forces except for mica which has a highly localized surface potential. The results of this study provide information on the behavior of charged colloidal particles in atmospheric systems.« less

  4. The role of electrostatic charge in the adhesion of spherical particles onto planar surfaces in atmospheric systems

    SciTech Connect

    Kweon, Hyojin; Yiacoumi, Sotira Z.; Tsouris, Costas

    2015-06-19

    In this study, the influence of electrostatic charge on the adhesive force between spherical particles and planar surfaces in atmospheric systems was studied using atomic force microscopy. Electrical bias was applied to modify the surface charge, and it was found that application of a stronger positive bias to a particle induces a stronger total adhesive force. The sensitivity of the system to changes in the bias depended on the surface charge density. For larger-size particles, the contribution of the electrostatic force decreased, and the capillary force became the major contributor to the total adhesive force. The influence of water adsorption on the total adhesive force and, specifically, on the contribution of the electrostatic force depended on the hydrophobicity of interacting surfaces. For a hydrophilic surface, water adsorption either attenuated the surface charge or screened the effect of surface potential. An excessive amount of adsorbed water provided a path to surface charge leakage, which might cancel out the electrostatic force, leading to a reduction in the adhesive force. Theoretically calculated forces were comparable with measured adhesive forces except for mica which has a highly localized surface potential. The results of this study provide information on the behavior of charged colloidal particles in atmospheric systems.

  5. Microleakage of Posterior Composite Restorations with Fiber Inserts Using two Adhesives after ging

    PubMed Central

    Sharafeddin, F; Yousefi, H; Modiri, Sh; Tondari, A; Safaee Jahromi, SR

    2013-01-01

    Statement of Problem: Microleakage is one of the most frequent problems associated with resin composites, especially at the gingival margin of posterior restorations. Insertion of fibers in composite restorations can reduce the total amount of composite and help to decrease the shrinkage. Purpose: The aim of this study was to evaluate the effect of polyethylene fiber inserts on gingival microleakage of class II composite restorations using two different adhesive systems. Materials and Method: In this experimental study, class II cavities were prepared on 60 premolars. The gingival floor was located 1.0 mm below the CEJ. Dimension of each cavity were 3 mm buccolingually and 1.5 mm in axial depth. The specimens were divided into 4 groups according to the adhesive type and fiber insert (n=4). Single bond and Clearfill SE bond and Filtek p60 were used to restore the cavities. In groups without fiber inserts composite was adapted onto cavities using layering technique. For cavities with fiber inserts, 3 mm piece of fiber insert was placed onto the composite increment and cured. The specimens were stored in distilled water at 37oC for 6 months. All specimens were subjected to 3000 thermo-cycling. The tooth surfaces except for 1 mm around the restoration margins covered with two layers of nail varnish .The teeth were immersed in 2% Basic Fuchsin for 24 hours, then rinsed and sectioned mesiodistally. The microleakage was determined under a stereomicroscope (40X). Data were statistically analyzed by Kruskal-wallis and Mann-Whitney U tests (p< 0.05). Results: The Kruskal-Wallis test revealed no significant differences in mean microleakage scores among all groups (p= 0.281). Conclusion: Use of polyethylene fiber inserts and etch-and-rinse and self-etch adhesives had no effect on microleakage in class II resin composite restorations with gingival margins below the CEJ after 6- month water storage. PMID:24724129

  6. Designed drug-release systems having various breathable polyurethane film-backed hydrocolloid acrylated adhesive layers for moisture healing.

    PubMed

    Chang, Ching-Hsien; Liu, Hsia-Wei; Huang, Ching-Cheng

    2014-01-01

    A series of designed drug-release systems were prepared and established for clear moisture healing. These systems were designed to have an interpenetrating polymer network (IPN) structure, which contained a breathable polyurethane film, hydrocolloidlayer, and polyacrylate adhesive layer. Breathable polyurethane film (2000 g/m(2)/24 hr) with high moisture permeability was employed as a base for new drug-release systems or wound dressings. All drug-release systems having a polyurethane film-backed hydrocolloid acrylated adhesive layer showed an increase of water uptakes with increasing time. After 114 hours, high water uptakes of drug-release systems with 20% hydrocolloid components were observed in the values of 160, 1100, and 1870% for different additional hydrocolloid components of carboxymethylcellulose, sodium alginate, and carbomer U10, respectively. New drug-release systems of polyurethane film-backed hydrocolloid/adhesive layers could be designed and established for wound care managements.

  7. An in vitro study to assess glucose microleakage along fiber posts cemented with 2- and 3-step etch-and-rinse resin adhesive systems.

    PubMed

    Barbério, Daniel; De-Deus, Gustavo; Luna, Aderval; Namen, Fátima; Canabarro, Antonio

    2011-03-01

    The aim of the study is to compare the sealing ability of two adhesive systems. Thirty teeth were endodontically treated and were randomly assigned to 2 groups: G 1 - 3-step adhesive (Solobond-Plus) and G 2 - 2-step adhesive (Solobond-M). Posts containing glass fiber were cemented using the adhesive technique recommended by the manufacturer. All samples were mounted on a glucose leakage model. A 10 microL aliquot of solution was drawn from the glass bottle using a micropipette. The samples were then analyzed in a UV-Vis spectrophotometer. The two tested adhesive systems presented a similar capacity to prevent the glucose infiltration. PMID:21528686

  8. INFLUENCE OF DIFFERENT ADHESIVE SYSTEMS ON THE PULL-OUT BOND STRENGTH OF GLASS FIBER POSTS

    PubMed Central

    da Silva, Luciana Mendonça; de Andrade, Andréa Mello; Machuca, Melissa Fernanda Garcia; da Silva, Paulo Maurício Batista; da Silva, Ricardo Virgolino C.; Veronezi, Maria Cecília

    2008-01-01

    This in vitro study evaluated the tensile bond strength of glass fiber posts (Reforpost – Angelus-Brazil) cemented to root dentin with a resin cement (RelyX ARC – 3M/ESPE) associated with two different adhesive systems (Adper Single Bond - 3M/ESPE and Adper Scotchbond Multi Purpose (MP) Plus – 3M/ESPE), using the pull-out test. Twenty single-rooted human teeth with standardized root canals were randomly assigned to 2 groups (n=10): G1- etching with 37% phosphoric acid gel (3M/ESPE) + Adper Single Bond + #1 post (Reforpost – Angelus) + four #1 accessory posts (Reforpin – Angelus) + resin cement; G2- etching with 37% phosphoric acid gel + Adper Scotchbond MP Plus + #1 post + four #1 accessory posts + resin cement. The specimens were stored in distilled water at 37°C for 7 days and submitted to the pull-out test in a universal testing machine (EMIC) at a crosshead speed of 0.5 mm/min. The mean values of bond strength (kgf) and standard deviation were: G1- 29.163 ± 7.123; G2- 37.752 ±13.054. Statistical analysis (Student's t-test; α=0.05 showed no statistically significant difference (p<0.05) between the groups. Adhesive bonding failures between resin cement and root canal dentin surface were observed in both groups, with non-polymerized resin cement in the apical portion of the post space when Single Bond was used (G1). The type of adhesive system employed on the fiber post cementation did not influence the pull-out bond strength. PMID:19089224

  9. Effect of saliva and blood contamination on the bond strength of self-etching adhesive system- An in vitro study

    PubMed Central

    Koppolu, Madhusudhana; Gogala, Dorasani; Mathew, Vinod B; Thangala, Venugopal; Deepthi, Mandava; Sasidhar, Nalluru

    2012-01-01

    Aim: The aims of this study were to determine the effect of saliva and blood contamination on the shear bond strength of self-etching adhesive to enamel and dentin; and, to compare the difference in bond strength due to contamination beforeand after application of the self-etch adhesive. Materials and Methods: 40 human mandibular molars were wet ground on both buccal and lingual surfaces to prepare flat superficial enamel and dentin surfaces. They were randomly divided into two groups (n = 40) based on the substrate (enamel and dentin). Each group was further divided into five subgroups (n = 8) based on the type of contamination it was subjected to, and the step in the bonding sequence when the contamination occurred (before or after adhesive application). Fresh saliva and fresh human blood were applied either before or after the application of Xeno III® self-etching adhesive system (SES). Composite resin was applied as inverted, truncated cured cones that were subjected to shear bond strength test. Statistical Analysis: One-way analysis of variance (ANOVA) and Tukey's Honestly Significant Difference (HSD) test were used. Results: Statistically significant reduction in the bond strength was shown after both saliva and blood contamination before and after Xeno III® application (P< 0.05). Bond strength is significantly reduced after contamination with blood as compared to saliva. Conclusions: When self-etching adhesive systems are used, saliva and blood contamination significantly decrease the bond strength of the adhesive to enamel and dentin of the tooth. PMID:22876017

  10. Bonding between oxide ceramics and adhesive cement systems: a systematic review.

    PubMed

    Papia, Evaggelia; Larsson, Christel; du Toit, Madeleine; Vult von Steyern, Per

    2014-02-01

    The following aims were set for this systematic literature review: (a) to make an inventory of existing methods to achieve bondable surfaces on oxide ceramics and (b) to evaluate which methods might provide sufficient bond strength. Current literature of in vitro studies regarding bond strength achieved using different surface treatments on oxide ceramics in combination with adhesive cement systems was selected from PubMed and systematically analyzed and completed with reference tracking. The total number of publications included for aim a was 127 studies, 23 of which were used for aim b. The surface treatments are divided into seven main groups: as-produced, grinding/polishing, airborne particle abrasion, surface coating, laser treatment, acid treatment, and primer treatment. There are large variations, making comparison of the studies difficult. An as-produced surface of oxide ceramic needs to be surface treated to achieve durable bond strength. Abrasive surface treatment and/or silica-coating treatment with the use of primer treatment can provide sufficient bond strength for bonding oxide ceramics. This conclusion, however, needs to be confirmed by clinical studies. There is no universal surface treatment. Consideration should be given to the specific materials to be cemented and to the adhesive cement system to be used.

  11. Bonding between oxide ceramics and adhesive cement systems: a systematic review.

    PubMed

    Papia, Evaggelia; Larsson, Christel; du Toit, Madeleine; Vult von Steyern, Per

    2014-02-01

    The following aims were set for this systematic literature review: (a) to make an inventory of existing methods to achieve bondable surfaces on oxide ceramics and (b) to evaluate which methods might provide sufficient bond strength. Current literature of in vitro studies regarding bond strength achieved using different surface treatments on oxide ceramics in combination with adhesive cement systems was selected from PubMed and systematically analyzed and completed with reference tracking. The total number of publications included for aim a was 127 studies, 23 of which were used for aim b. The surface treatments are divided into seven main groups: as-produced, grinding/polishing, airborne particle abrasion, surface coating, laser treatment, acid treatment, and primer treatment. There are large variations, making comparison of the studies difficult. An as-produced surface of oxide ceramic needs to be surface treated to achieve durable bond strength. Abrasive surface treatment and/or silica-coating treatment with the use of primer treatment can provide sufficient bond strength for bonding oxide ceramics. This conclusion, however, needs to be confirmed by clinical studies. There is no universal surface treatment. Consideration should be given to the specific materials to be cemented and to the adhesive cement system to be used. PMID:24123837

  12. Effect of Casein Phosphopeptide-amorphous Calcium Phosphate Treatment on Microtensile Bond Strength to Carious Affected Dentin Using Two Adhesive Strategies.

    PubMed

    Bahari, Mahmoud; Savadi Oskoee, Siavash; Kimyai, Soodabeh; Pouralibaba, Firoz; Farhadi, Farrokh; Norouzi, Marouf

    2014-01-01

    Background and aims. The aim was to evaluate the effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on microtensile bond strength (μTBS) to carious affected dentin (CAD) using etch-and-rinse and self-etch adhesive systems. Materials and methods. The occlusal surface of 32 human molars with moderate occlusal caries was removed. Infected dentin was removed until reaching CAD and the teeth were randomly divided into two groups based on the Single Bond (SB) and Clearfil SE Bond (CSE) adhesive systems. Before composite resin bonding, each group was subdivided into three subgroups of ND, CAD and CPP-ACP-treated CAD (CAD-CPP) based on the dentin substrate. After dissecting samples to l-mm-thick cross-sections (each subgroup: n = 13), μTBS was measured at a strain rate of 0.5 mm/min. Data was analyzed using two-way ANOVA, independent samples t-test and post-hoc Tukey tests (α=0.05). Results. Bond strength of both adhesive systems to ND was significantly higher than that to CAD (P <0.001) and CAD/CPP (P < 0.001). There were no significant differences between the μTBS of SB to CAD and CAD-CPP (P > 0.05).μTBS of CSE to CAD-CPP was higher than that to CAD; however, the difference was not significant (P > 0.05). Significant differences were found between SB and CSE systems only with CAD substrate (P < 0.001). Conclusion. Regardless of the adhesive system used, surface treatment of CAD with CPP-ACP did not have a significant effect on bond strength. However, bond strength to CAD was higher with SB rather than with CSE. PMID:25346832

  13. Effect of Casein Phosphopeptide-amorphous Calcium Phosphate Treatment on Microtensile Bond Strength to Carious Affected Dentin Using Two Adhesive Strategies

    PubMed Central

    Bahari, Mahmoud; Savadi Oskoee, Siavash; Kimyai, Soodabeh; Pouralibaba, Firoz; Farhadi, Farrokh; Norouzi, Marouf

    2014-01-01

    Background and aims. The aim was to evaluate the effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on microtensile bond strength (μTBS) to carious affected dentin (CAD) using etch-and-rinse and self-etch adhesive systems. Materials and methods. The occlusal surface of 32 human molars with moderate occlusal caries was removed. Infected dentin was removed until reaching CAD and the teeth were randomly divided into two groups based on the Single Bond (SB) and Clearfil SE Bond (CSE) adhesive systems. Before composite resin bonding, each group was subdivided into three subgroups of ND, CAD and CPP-ACP-treated CAD (CAD-CPP) based on the dentin substrate. After dissecting samples to l-mm-thick cross-sections (each subgroup: n = 13), μTBS was measured at a strain rate of 0.5 mm/min. Data was analyzed using two-way ANOVA, independent samples t-test and post-hoc Tukey tests (α=0.05). Results. Bond strength of both adhesive systems to ND was significantly higher than that to CAD (P <0.001) and CAD/CPP (P < 0.001). There were no significant differences between the μTBS of SB to CAD and CAD-CPP (P > 0.05).μTBS of CSE to CAD-CPP was higher than that to CAD; however, the difference was not significant (P > 0.05). Significant differences were found between SB and CSE systems only with CAD substrate (P < 0.001). Conclusion. Regardless of the adhesive system used, surface treatment of CAD with CPP-ACP did not have a significant effect on bond strength. However, bond strength to CAD was higher with SB rather than with CSE. PMID:25346832

  14. Pulpal responses to bacterial contamination following dentin bridging beneath hard-setting calcium hydroxide and self-etching adhesive resin system.

    PubMed

    Kitasako, Yuichi; Ikeda, Masaomi; Tagami, Junji

    2008-04-01

    To evaluate the pulp healing to bacterial contamination beneath a hard-setting calcium hydroxide (DY: Dycal, L.D. Caulk Co.) and a self-etching adhesive resin (2V: Clearfil Liner Bond 2V, Kuraray Medical Inc.) following dentin bridge formation. Class V cavities were prepared on 30 monkey teeth, and the pulps were exposed with a carbide bur through the cavity floor. Each exposed pulp was capped with either DY or 2V. The cavities were restored with a hybrid resin composite. The resin composite was removed at 180 days after capping, and then cavities were left open to the oral environment for 2 weeks to obtain bacteria contamination DY (BDY) and 2V (B2V; n = 10). A non-bacterial-contaminated group capped with DY was used as control. After bacterial challenges, inflammatory cell infiltration, incidence and differentiation of dentin bridges were evaluated histologically. There were significant differences in the presence of inflammatory cell infiltration among all groups (P < 0.05). No moderate or severe inflammatory reaction was found in Group DY. Group BDY showed moderate or severe inflammatory cell infiltration in 50%, and showed four necrotic specimens. Although no statistically significant difference was found in the formation and differentiation of dentin bridges among all groups, tunnel defects in dentin bridges were detected in 70% (DY), 80% (BDY), and 50% (B2V). Group B2V showed a significantly lower presence of inflammatory cell infiltration than Group BDY (P < 0.05). Bonding agent is supposed to seal the exposure site, and the remaining bonding agent on the cavities was effective as the barrier in the dentin bridges after bacterial challenges.

  15. Evaluation of the single yeast cell's adhesion to ITO substrates with various surface energies via ESEM nanorobotic manipulation system.

    PubMed

    Shen, Yajing; Ahmad, Mohd Ridzuan; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Fukuda, Toshio

    2011-12-01

    Cell-surface adhesion force is important for cell activities and the development of bio materials. In this paper, a method for in situ single cell (W303) adhesion force measurement was proposed based on nanorobotic manipulation system inside an environment scanning electron microscope (ESEM). An end effector was fabricated from a commercial atomic force microscope (AFM) cantilever by focused ion beam (FIB) etching. The spring constant of it was calibrated by nanomanipulation approach. Three kinds of hydrophilic and hydrophobic ITO plates were prepared by using VUV-irradiation and OTS coating techniques. The shear adhesion strength of the single yeast cell to each substrate was measured based on the deflection of the end effector. The results demonstrated that the cell adhesion force was larger under the wet condition in the ESEM environment than in the aqueous condition. It also showed that the cell adhesion force to hydrophilic surface was larger than that to the hydrophobic surface. Studies of single cell's adhesion on various plate surfaces and environments could give new insights into the tissue engineering and biological field.

  16. Ankyrin-binding activity of nervous system cell adhesion molecules expressed in adult brain.

    PubMed

    Davis, J Q; Bennett, V

    1993-01-01

    A family of ankyrin-binding glycoproteins have been identified in adult rat brain that include alternatively spliced products of the same pre-mRNA. A composite sequence of ankyrin-binding glycoprotein (ABGP) shares 72% amino acid sequence identity with chicken neurofascin, a membrane-spanning neural cell adhesion molecule in the Ig super-family expressed in embryonic brain. ABGP polypeptides and ankyrin associate as pure proteins in a 1:1 molar stoichiometry at a site located in the predicted cytoplasmic domain. ABGP polypeptides are expressed late in postnatal development to approximately the same levels as ankyrin, and comprise a significant fraction of brain membrane proteins. Immunofluorescence studies have shown that ABGP polypeptides are co-localized with ankyrinB. Major differences in developmental expression have been reported for neurofascin in embryos compared with the late postnatal expression of ABGP, suggesting that ABGP and neurofascin represent products of gene duplication events that have subsequently evolved in parallel with distinct roles. Predicted cytoplasmic domains of rat ABGP and chicken neurofascin are nearly identical to each other and closely related to a group of nervous system cell adhesion molecules with variable extracellular domains, including L1, Nr-CAM and Ng-CAM of vertebrates, and neuroglian of Drosophila. A hypothesis to be evaluated is that ankyrin-binding activity is shared by all of these proteins.

  17. Preventing Oxide Adhesion of Liquid Metal Alloys to Enable Actuation in Microfluidic Systems

    NASA Astrophysics Data System (ADS)

    Joshipura, Ishan; Johnson, Alexander; Ayers, Hudson; Dickey, Michael

    This work explores the wetting behavior of an oxide-coated liquid metal, eutectic alloy of gallium and indium (`EGaIn'), which remains a liquid at room temperature. Liquid metals uniquely combine fluidity with metallic properties. Combined, these properties enable soft, stretchable, and shape reconfigurable electronics with `softer than skin' interfaces. Ga forms spontaneously a thin surface oxide that alters its wetting behavior and makes it difficult to move across surfaces without leaving residue behind. We examine the effects of surface roughness (i.e., Cassie-Baxter state) and lubrication to minimize adhesion of Ga oxide to surfaces. Lubricated surfaces create a `slip-layer' of liquid between the metal and surface that also inhibits wetting. This slip layer allows the metal to move reversibly through microchannels by preventing adhesion of the oxide. The metal may be pumped or moved by using low voltages or pneumatic actuation. Optical microscopy confirms the importance of the slip-layer, which enables non-stick motion of the metal through capillaries. Finally, electrochemical impedance spectroscopy characterizes the electrohydrodynanic motion of EGaIn in capillary systems.

  18. Microscopic evaluation of dentin interface obtained with 10 contemporary self-etching systems: correlation with their pH.

    PubMed

    Grégoire, Geneviéve; Millas, Arlette

    2005-01-01

    This study investigated micromorphological differences in the hybridized complex formed using 10 commercially available self-etch bonding systems. In addition, the influence of the pH of the primer of these adhesives was evaluated. The self-etching systems tested were AdheSE, Adper Prompt L-Pop, Clearfil SE Bond, Etch&Prime 3.0 (Degussa, Germany), Prime & Bond NT Non Rinse Conditioner (Dentsply, Konstanz, Germany), One-Up Bond F, OptiBond Solo Plus Self Etch, Prompt L-Pop and Xeno III. One hundred non-carious human third molars were used. The teeth were divided into two groups of 50 and prepared for evaluation by optical microscopy or scanning electron microscopy. The specimens in each group were further divided into 10 subgroups of five specimens each to evaluate the 10 bonding systems. The pH of the primers of the bonding systems was measured. The results demonstrated morphological differences at the interface, depending on adhesive composition. The differences mainly concerned thickness of the hybrid layer, the absence or presence of microscopic voids at the adhesive-composite interface and whether the dentinal tubuli were completely sealed. The pH was not the determining factor conditioning the action of the self-etching adhesives.

  19. Improvement of initial adhesion to aluminum of insulating glass polyurethane sealants using a tertiary amine based curing system

    SciTech Connect

    Hubin-Eschger, P.J.

    1996-12-31

    Hydroxylated polybutadiene based insulated glass sealants are well known to have a very low moisture vapor transmission rate and an excellent adhesion to glass and aluminum. Since the beginning of their industrial development, the best and most known and effective curing system for these sealants has been an organomercuric ester based catalyst. The current and future pressure regarding ecological and toxicological issues will make this type of product increasingly difficult to use. This paper presents the results of work to develop other catalytic systems, which were obtained with the tertiary amine dimethylbenzylamine. The final improvement of initial adhesion to aluminum is obtained with the use of phenolic derivatives of coumarone indene.

  20. Degree of conversion of simplified contemporary adhesive systems as influenced by extended air-activated or passive solvent volatilization modes.

    PubMed

    Borges, Boniek C D; Souza-Junior, Eduardo Jose; Brandt, William C; Loguercio, Alessandro D; Montes, Marcos A J R; Puppin-Rontani, Regina M; Sinhoreti, Mario Alexandre Coelho

    2012-01-01

    This study evaluated the effect of five methods of solvent volatilization on the degree of conversion (DC) of nine one-bottle adhesive systems using Fourier transform infrared/attenuated total reflectance (FTIR/ATR) analysis. Nine adhesives were tested: Adper Single Bond 2 (SB), Adper Easy One (EO), One Up Bond F Plus (OUP), One Coat Bond SL (OC), XP Bond (XP), Ambar (AM), Natural Bond (NB), GO, and Stae. The adhesive systems were applied to a zinc-selenide pellet and 1) cured without solvent volatilization, 2) left undisturbed for 10 seconds before curing, 3) left undisturbed for 60 seconds before curing, 4) air-dried with an air stream for 10 seconds before curing, and 5) air-dried with an air stream for 60 seconds before curing. FTIR/ATR spectra were obtained, and the DC was calculated by comparing the aliphatic bonds/reference peaks before and after light activation for 10 seconds (FlashLite 1401). The DC means of each material were analyzed by one-way analysis of variance and post hoc Tukey test (p<0.05). The DC of GO and Stae adhesive systems was not affected by the five evaporation conditions. Air-drying for 60 seconds before curing yielded the highest DC for SB, EO, and OC. Extended solvent volatilization time (60 seconds) either with or without air-drying before curing provided the highest DC for AM, NB, XP, and OUP. Thus, the monomer conversion of adhesive systems was material dependent. In general, the 60-second passive or active air-drying modes to volatilize solvents before curing enhanced the degree of conversion for the one-bottle simplified adhesive systems. PMID:22313268

  1. Active Metal Brazing and Adhesive Bonding of Titanium to C/C Composites for Heat Rejection System

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, Tarah; Cerny, Jennifer

    2006-01-01

    Robust assembly and integration technologies are critically needed for the manufacturing of heat rejection system (HRS) components for current and future space exploration missions. Active metal brazing and adhesive bonding technologies are being assessed for the bonding of titanium to high conductivity Carbon-Carbon composite sub components in various shapes and sizes. Currently a number of different silver and copper based active metal brazes and adhesive compositions are being evaluated. The joint microstructures were examined using optical microscopy, and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). Several mechanical tests have been employed to ascertain the effectiveness of different brazing and adhesive approaches in tension and in shear that are both simple and representative of the actual system and relatively straightforward in analysis. The results of these mechanical tests along with the fractographic analysis will be discussed. In addition, advantages, technical issues and concerns in using different bonding approaches will also be presented.

  2. A new concept in hybridization: Bromelain enzyme for deproteinizing dentin before application of adhesive system

    PubMed Central

    Dayem, Raad Niama; Tameesh, Mona Adnan

    2013-01-01

    Objective: The objective of this study is to assess the deproteinizing effect of bromelain enzyme and compare it with neodymium-doped yttrium aluminum garnet (Nd:YAG) laser and 10% sodium hypochlorite (NaOCl) by using scanning electron microscope (SEM) and polarized microscope. Materials and Methods: A total of 60 extracted human upper premolars were selected to be given standardized buccal and lingual class V cavities. The teeth were divided into three groups each one consisted of 20 teeth. Thirty teeth were recruited for SEM study and the other 30 for polarized microscope. Group 1: Teeth were deproteinized with Nd:YAG laser, Group 2: Teeth were deproteinized with bromelain enzyme and Group 3: Teeth were deproteinized with 10% NaOCl. Results and Conclusions: Application of bromelain enzyme has led to removing collagen network and significantly decreased the global leakage scores of the adhesive system. PMID:24403782

  3. Systemic kappaAL amyloidosis associated with bovine leukocyte adhesion deficiency.

    PubMed

    Taniyama, H; Yamamoto, S; Sako, T; Hirayama, K; Higuchi, H; Nagahata, H

    2000-01-01

    Histopathologic and immunohistochemical examinations were conducted on a 5-year-old Holstein-Friesian cow with systemic kappaAL amyloidosis associated with bovine leukocyte adhesion deficiency. Amyloid deposits were present in the perivascular and intercellular spaces of the visceral organs, such as the liver, kidneys, pancreas, adrenal glands, and upper alimentary tract. Amyloid was stained positively with Congo red with or without 5% potassium permanganate pretreatment and had green birefringence observed under polarized light. Immunohistochemically, amyloid reacted strongly against anti-bovine IgG (H+L) and anti-bovine kappa-light chain and reacted weakly against bovine X-light chain antibodies but was negative for anti-human amyloid AA antibody. This is the first description of AL amyloidosis immunohistochemically related to immunoglobulin kappa-light chains of precursor protein in cattle. PMID:10643989

  4. Effect of the application of a casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) paste and adhesive systems on bond durability of a fissure sealant.

    PubMed

    Borges, Boniek Castillo Dutra; Catelan, Anderson; Sasaki, Robson Tetsuo; Ambrosano, Gláucia Maria Bovi; Reis, André Figueiredo; Aguiar, Flávio Henrique Baggio

    2013-01-01

    This study aimed to evaluate the effect of the previous application of a casein phosphopeptide-amorphous calcium phosphate paste (MI Paste, MI) and adhesive systems on the bond durability of a fissure sealant. Ninety-eight enamel blocks were obtained from proximal surfaces of erupted third molars. Specimens were divided into 14 groups (n = 7) according to the previous application of MI (with and without) and the adhesive systems used (no adhesive system; hydrophobic resin of a three-step etch-and-rinse adhesive system; etch-and-rinse single-bottle adhesive system; all-in-one adhesive system; two-step self-etching adhesive system; additional phosphoric acid conditioning and all-in-one adhesive system; additional phosphoric acid conditioning and two-step self-etching adhesive system). A fissure sealant (Fluroshield) was applied and photoactivated for 20 s. Beams (~0.7 mm(2)) were prepared for the microtensile bond strength test, which was executed after 24 h or 6 months of water storage. Fractured specimens were analyzed by scanning electronic microscopy. Data were analyzed by two-way ANOVA with repeated measures/Tukey's test (P < 0.05). Groups that received MI application and adhesive systems presented higher means than those groups where MI was not applied. Higher frequency of cohesive failures was observed for groups with MI. Applying a CPP-ACP containing paste on enamel before adhesive systems was an effective method to increase bond durability of the sealant tested.

  5. Evaluation of Biocompatibility of an Etch-and-Rinse Adhesive System Based in Tertiary Butanol Applied in Deep Cavity

    PubMed Central

    Alves, Gilvanely Cardoso; Sobral, Ana Paula Veras

    2015-01-01

    The aim of this study was to evaluate biocompatibility of an etch-and-rinse adhesive system based in tertiary butanol applied in deep cavity human teeth with approximately 1 mm of remaining dentin by observing histological changes of the pulp tissue of humans at intervals of 01, 07, 14 and 21 days. Twenty third molars with indication for xtraction from patients of both sexes, presenting no systemic alterations were used. Class I cavity was made deeper and then, XP BOND adhesive system and resin Filtek Z250 were applied. The sample was divided into four groups according to the time intervals between the application of adhesive system and extraction. Morphologic criteria analysed considered the presence of hyperemia, type of inflammatory cell response, organization of odontoblast cells layer, organization of pulp tissue and the presence or absence of bacteria. Data were submitted to Fisher Exact Test p> 0.05. We observed mild inflammatory infiltrate, preserved pulp tissue morphology, disorganization of the odontoblast layer in most specimens, as well as absence of bacteria at the intervals of 01, 07, 14 and 21 days. In some cases there was pulp hyperemia. The etchand- rinse adhesive system based in tertiary butanol showed satisfactory behavior in the conditions studied. PMID:26140062

  6. Evaluation of Biocompatibility of an Etch-and-Rinse Adhesive System Based in Tertiary Butanol Applied in Deep Cavity.

    PubMed

    Alves, Gilvanely Cardoso; Sobral, Ana Paula Veras

    2015-01-01

    The aim of this study was to evaluate biocompatibility of an etch-and-rinse adhesive system based in tertiary butanol applied in deep cavity human teeth with approximately 1 mm of remaining dentin by observing histological changes of the pulp tissue of humans at intervals of 01, 07, 14 and 21 days. Twenty third molars with indication for xtraction from patients of both sexes, presenting no systemic alterations were used. Class I cavity was made deeper and then, XP BOND adhesive system and resin Filtek Z250 were applied. The sample was divided into four groups according to the time intervals between the application of adhesive system and extraction. Morphologic criteria analysed considered the presence of hyperemia, type of inflammatory cell response, organization of odontoblast cells layer, organization of pulp tissue and the presence or absence of bacteria. Data were submitted to Fisher Exact Test p> 0.05. We observed mild inflammatory infiltrate, preserved pulp tissue morphology, disorganization of the odontoblast layer in most specimens, as well as absence of bacteria at the intervals of 01, 07, 14 and 21 days. In some cases there was pulp hyperemia. The etchand- rinse adhesive system based in tertiary butanol showed satisfactory behavior in the conditions studied. PMID:26140062

  7. Durability of Ti-6Al-4V/LaRC-PETI-5 adhesive bonded system for HSCT applications

    SciTech Connect

    Parvatareddy, H.; Pasricha, A.; Dillard, D.A.; Dillard, J.G.

    1996-12-31

    Structural adhesive joints are being widely used and studied as alternatives to conventional fasteners in the aerospace, automotive, and other industries. Adhesive bonding offers advantages such as lower weight and lower manufacturing costs. Furthermore, high performance adhesives which are currently being synthesized (e.g. epoxies, phenolics, acrylics, thermoplastic polyimides) offer other useful properties such as higher modulus, higher toughness, and stability at high temperatures. In the present study, the durability of the Ti-6Al-4V/LaRC PETI-5 adhesive bonded system is being evaluated utilizing double cantilever beam (DCB) fracture specimens. These DCB tests have been used extensively to study adhesive joints. The current study is part of a comprehensive study to develop a durable material system for application in the proposed mach 2.4 high speed civil transport (HSCT) aircraft. According to the design criteria, the material system to be used on the aircraft should be durable for over 60,000 hours of flight encountering temperatures during flight in the range of 177{degrees}C. Physical aging and chemical aging of the adhesive material are some of the important issues which have to be evaluated and taken into consideration for predicting the bond durability. In order to simulate the service environment conditions of the HSCT, the Ti-6Al-4V/LaRC PETI-5 bonds were aged in one of three temperatures; 150, 177, and 204{degrees}C, at one of three different environments; atmospheric air, and reduced air pressures of 2 psi air (13.8 KPa) and 0.2 psi air (1.38 KPa).

  8. Effect of a Desensitizing Varnish on Microleakage of Two Self-Etch Adhesives

    PubMed Central

    Saffarpour, Anna; Saffarpour, Aida; Kharazifard, Mohammad Javad; Golmohamadi, Niloofar

    2015-01-01

    Objectives: The aim of this in-vitro experimental study was to assess the effect of application of a desensitizing varnish on the enamel and dentin marginal seal. Materials and Methods: Seventy-two freshly extracted, intact human premolar teeth were divided into four groups (n=18). Class V cavities (3mm in length, 2mm in width and 2mm in depth) were prepared on the buccal surface of each tooth. The following sealing materials were applied in the four groups: One-step Clearfil S3 Bond (S3) self-etch adhesive, two-step Clearfil SE Bond (SE) self-etch adhesive, S3 Bond+ VivaSens desensitizing varnish (VS+S3) and Clearfil SE Bond + VivaSens (VS+SE). The cavities on the teeth were then incrementally filled with Z350 light-cure composite. The teeth were stored in distilled water for 24 hours at 37°C, and were then thermocycled for 1000 cycles. Then, all the specimens were prepared for dye penetration test and were immersed in 2% basic fuchsin dye and incubated at 37°C for 24 hours. The teeth were then sectioned buccolingually along the center of restorations with a diamond disk. Microleakage at the tooth-restoration interface was assessed in the enamel and dentin margins blindly using dye penetration under a stereomicroscope at ×20 magnification. Results: There was significantly greater leakage at the enamel and dentin margins in group VS+SE than in group SE; also, these values were higher in group VS+S3 than in S3. Conclusion: Combined application of desensitizing varnish and self-etch adhesives seems to increase microleakage in composite restorations. Thus, its application is not suggested. PMID:27507991

  9. Transdentinal cytotoxicity of experimental adhesive systems of different hydrophilicity applied to ethanol-saturated dentin

    PubMed Central

    Bianchi, Luciana; Ribeiro, Ana Paula Dias; de Oliveira Carrilho, Marcela Rocha; Pashley, David H.; de Souza Costa, Carlos Alberto; Hebling, Josimeri

    2014-01-01

    The aim of this study was to evaluate the transdentinal cytotoxicity of experimental adhesive systems (EASs) with different hydrophilicity and dentin saturation solutions (ethanol and water) on odontoblast-like cells. One hundred 0.4-mm-thick dentin discs were mounted in in vitro pulp chambers and assigned to 10 groups. Odontoblast-like cells MDPC-23 were seeded onto the pulpal side of the discs, incubated for 48h. The EASs with increasing hydrophilicity (R2, R3, R4 and R5) were applied to the occlusal side of the discs after acid etching and saturation of demineralized dentin with water or ethanol. R0 (water and ethanol- no adhesive) served as controls. After 24h, cell metabolism was evaluated by SDH enzyme production (MTT assay; n=8 discs) and cell morphology was examined by SEM (n=2 discs). The type of cell death was identified by flow cytometry and the degree of monomer conversion (%DC) was determined by infrared spectroscopy (FTIR) after two photoactivation times (10 s or 20 s). Data were analyzed statistically by the Kruskal-Wallis and Mann-Whitney tests (α=0.05). Dentin saturation with ethanol resulted in higher necrotic cell death ratios for R3, R4 and R5 compared with water saturation, although R3 and R4 induced higher SDH production. Photoactivation for 20 s significantly improved the %DC of all EASs compared with 10 s. A significant positive correlation was observed between the degree of hydrophilicity and %DC, for both photoactivation times. In conclusion, except for R2, dentin saturation with ethanol increased the cytotoxicity of EASs, as expressed by the induction of necrotic cell death. PMID:23906501

  10. Effect of bromelain enzyme for dentin deproteinization on bond strength of adhesive system

    PubMed Central

    Chauhan, Kirti; Basavanna, Revaplar Siddaveerappa; Shivanna, Vasundhara

    2015-01-01

    Aims: To assess the deproteinizing effect of bromelain enzyme and compare it with 5% sodium hypochlorite (NaOCl) on shear bond strength before application of the adhesive system. Materials and Methods: A total of 30 extracted human premolars were divided into three groups, each one consisted of 10 teeth. The occlusal surface was wet ground to expose superficial dentin. In Group 1, teeth were etched; in Group 2, teeth were etched and deproteinized with bromelain enzyme; in Group 3, teeth were etched and deproteinized with 5% NaOCl. Upon completion of the adhesive procedures, resin composite was inserted into the plastic tube and light-polymerized. All specimens were stored at 37°C in water for 24 h, and the specimens were transferred to the universal testing machine, and then subjected to shear bond strength analysis at a crosshead speed of 1.0 mm/min. Statistical Analysis Used: Data were statistically analyzed using one-way analysis of variance and unpaired t-test at a significance level of 0.05. The statistical analysis was performed using SPSS version 12.0.1 for Windows (SPSS Inc., Chicago, IL, USA). Results: The bond strength results were significantly influenced by the application of bromelain enzyme. Statistically significant differences were not demonstrated in control group and NaOCl-treated group. The highest bond strength was seen in bromelain enzyme-treated group. Conclusions: Within the limitations of the present study, it was concluded that removal of unsupported collagen fiber with bromelain enzyme after acid etching results in improved bond strength. PMID:26430297

  11. Effect of pretreatment with calcium-containing desensitizer on the dentine bonding of mild self-etch adhesives.

    PubMed

    Pei, Dandan; Liu, Siying; Huang, Cui; Du, Xijin; Yang, Hongye; Wang, Yake; Deng, Donglai

    2013-06-01

    Desensitizing agents are frequently applied to sensitive teeth and may affect subsequent resin bonding. The current study aimed to evaluate the bonding performance of two self-etch adhesives containing functional monomers to dentine pretreated with three new calcium-containing desensitizers. No desensitizer was applied in the control group. Groups 1, 2, and 3 were treated with an arginine-calcium carbonate-containing polishing paste, a casein phosphopeptide-amorphous calcium phosphate (CPP-ACP)-containing paste, and an experimental hydroxyapatite paste, respectively. G-Bond and Clearfil S(3) Bond were used for bonding after desensitizer treatments. The microtensile bond strength (μTBS) was tested (n = 20 beams per group) and failure mode distribution was analyzed. Scanning electron microscopy was used to observe the occlusion of dentinal tubules. The mean (±SD) μTBS values, expressed in MPa, of groups 1, 2, and 3 and the control group were, respectively, 30.81 (7.79), 44.41 (8.02), 31.49 (6.13), and 41.40 (8.67) for G-Bond and 39.63 (9.59), 32.55 (7.86), 37.50 (8.60), 27.90 (6.52) for S3 Bond. Most failures were recorded as adhesive failure (69.375%), instead of cohesive failure or mixed failure. The dentinal tubules were seldom plugged in group 2, but were mostly occluded in groups 1 and 3. Two-way anova indicated that desensitizer application in association with a compatible adhesive system should be used when endeavoring to control hypersensitivity without adverse interference in bonding. PMID:23659244

  12. A systemic review of randomized controlled studies about prevention with pharmacologic agents of adhesion formation in the rat uterine horn model

    PubMed Central

    Ulug, Pasa

    2015-01-01

    Introduction Evaluation of treatment attempts in postoperative adhesion formation is pivotal for the prevention of several morbidities including infertility, pelvic pain, bowel obstruction, and subsequent intraoperative complications. The purpose of this systemic review was to assess the literature on the rat uterine horn model for adhesion formation and treatment modalities to prevent adhesion in the most frequently used experimental animal model. Material and methods We performed a systemic review of publications from January 1st 2000 to December 31st 2013 via a PubMed search. A high number of agents were evaluated for the prevention of postoperative adhesion formation in the rat uterine horn model. Results According to most of the studies, adjuvants such as antiinflamatuars, antiestrogens, antioxidants were effective to prevent adhesion formation. Conclusions Prevention of adhesion formation is pivotal and numerous types of agents were described in the literature were summarized in this review. PMID:25995741

  13. Desulfurization characteristics of rapidly hydrated sorbents with various adhesive carrier particles for a semidry CFB-FGD system.

    PubMed

    You, Changfu; Li, Yuan

    2013-03-19

    Semidry flue gas desulfurization (FGD) experiments were conducted using rapidly hydrated sorbents with four different adhesive carrier particles: circulation ash from a circulating fluidized bed boiler (CFBB circulation ash), fly ash from the first electrical field of the electrostatic precipitator of a circulating fluidized bed boiler (CFBB ESP ash), fly ash from a chain boiler (chain boiler ash), and river sand smaller than 1 mm. The influences of various adhesive carrier particles and operating conditions on the desulfurization characteristics of the sorbents were investigated, including sprayed water, reaction temperature, and the ratio of calcium to sulfur (Ca/S). The experimental results indicated that the rapidly hydrated sorbents had better desulfurization characteristics by using adhesive carrier particles which possessed better pore, adhesion, and fluidization characteristics. The desulfurization efficiency of the system increased as the reaction temperature decreased, it improved from 35% to 90% as the mass flow rate of the sprayed water increased from 0 to 10 kg/h, and it increased from 65.6% to 82.7% as Ca/S increased from 1.0 to 2.0. Based on these findings, a new semidry circulating fluidized bed (CFB)-FGD system using rapidly hydrated sorbent was developed. Using the rapidly hydrated sorbent, this system uses a cyclone separator instead of an ESP or a bag filter to recycle the sorbent particles, thereby decreasing the system flow resistance, saving investment and operating costs of the solids collection equipment.

  14. Desulfurization characteristics of rapidly hydrated sorbents with various adhesive carrier particles for a semidry CFB-FGD system.

    PubMed

    You, Changfu; Li, Yuan

    2013-03-19

    Semidry flue gas desulfurization (FGD) experiments were conducted using rapidly hydrated sorbents with four different adhesive carrier particles: circulation ash from a circulating fluidized bed boiler (CFBB circulation ash), fly ash from the first electrical field of the electrostatic precipitator of a circulating fluidized bed boiler (CFBB ESP ash), fly ash from a chain boiler (chain boiler ash), and river sand smaller than 1 mm. The influences of various adhesive carrier particles and operating conditions on the desulfurization characteristics of the sorbents were investigated, including sprayed water, reaction temperature, and the ratio of calcium to sulfur (Ca/S). The experimental results indicated that the rapidly hydrated sorbents had better desulfurization characteristics by using adhesive carrier particles which possessed better pore, adhesion, and fluidization characteristics. The desulfurization efficiency of the system increased as the reaction temperature decreased, it improved from 35% to 90% as the mass flow rate of the sprayed water increased from 0 to 10 kg/h, and it increased from 65.6% to 82.7% as Ca/S increased from 1.0 to 2.0. Based on these findings, a new semidry circulating fluidized bed (CFB)-FGD system using rapidly hydrated sorbent was developed. Using the rapidly hydrated sorbent, this system uses a cyclone separator instead of an ESP or a bag filter to recycle the sorbent particles, thereby decreasing the system flow resistance, saving investment and operating costs of the solids collection equipment. PMID:23398211

  15. The shear bond strength of MTA with three different types of adhesive systems: An in vitro study

    PubMed Central

    Tyagi, Nimish; Chaman, Chandrakar; Tyagi, Shashi Prabha; Singh, Udai Pratap; Sharma, Apoorv

    2016-01-01

    Aim: To evaluate the shear bond strength of MTA with three different types of adhesive systems- self-adhering flowable composite, etch and rinse adhesive system and self etch adhesive system. Methodology: MTA specimens (n = 60) were prepared using cylindrical acrylic blocks, having a central cavity with 4 mm diameter and 2 mm depth. MTA was mixed and placed in the prepared cavity, and was covered with a moist cotton pellet and temporary filling material. The specimens were divided into 3 groups which were further divided into 2 sub-groups (45 Minutes and 24 hours). After the application of bonding agents composite resin was placed over the MTA surface. The specimens were tested for shear bond strength and readings were statically analyzed. Result: After 24 hrs the mean value of etch and rinse group was significantly higher than self etch and the self adhering composite groups. Among the 45 minutes groups there were no significant difference. Conclusion: In single visit after 45 minutes self adhering flowable can be used successfully as a final restorative material in place of conventional flowable composite without using any alternative adhesive system over MTA. PMID:27099417

  16. Influence of Er:YAG and Ti:sapphire laser irradiation on the microtensile bond strength of several adhesives to dentin.

    PubMed

    Portillo, M; Lorenzo, M C; Moreno, P; García, A; Montero, J; Ceballos, L; Fuentes, M V; Albaladejo, A

    2015-02-01

    The aim of the present study was to evaluate the influence of erbium:yttrium-aluminum-garnet (Er:YAG) and Ti:sapphire laser irradiation on the microtensile bond strength (MTBS) of three different adhesive systems to dentin. Flat dentin surfaces from 27 molars were divided into three groups according to laser irradiation: control, Er:YAG (2,940 nm, 100 μs, 2.7 W, 9 Hz) and Ti:sapphire laser (795 nm, 120 fs, 1 W, 1 kHz). Each group was divided into three subgroups according to the adhesive system used: two-step total-etching adhesive (Adper Scotchbond 1 XT, from now on XT), two-step self-etching adhesive (Clearfil SE Bond, from now on CSE), and all-in-one self-etching adhesive (Optibond All-in-One, from now on OAO). After 24 h of water storage, beams of section at 1 mm(2) were longitudinally cut from the samples. Each beam underwent traction test in an Instron machine. Fifteen polished dentin specimens were used for the surface morphology analysis by scanning electron microscopy (SEM). Failure modes of representative debonded microbars were SEM-assessed. Data were analyzed by ANOVA, chi-square test, and multiple linear regression (p < 0.05). In the control group, XT obtained higher MTBS than that of laser groups that performed equally. CSE showed higher MTBS without laser than that with laser groups, where Er:YAG attained higher MTBS than ultrashort laser. When OAO was used, MTBS values were equal in the three treatments. CSE obtained the highest MTBS regardless of the surface treatment applied. The Er:YAG and ultrashort laser irradiation reduce the bonding effectiveness when a two-step total-etching adhesive or a two-step self-etching adhesive are used and do not affect their effectiveness when an all-in-one self-etching adhesive is applied.

  17. Different patterns of soluble adhesion molecules in systemic and cutaneous lupus erythematosus.

    PubMed

    Nyberg, F; Acevedo, F; Stephansson, E

    1997-10-01

    Circulating isoforms of cellular adhesion molecules (CAMs) have been described recently, and elevated levels of certain sCAMs have been reported in various inflammatory diseases such as systemic lupus erythematosus (SLE). There are previously no reports on sCAMs in cutaneous LE. Sera from 61 patients with LE: systemic (SLE: n=24), chronic cutaneous (discoid LE, DLE: n= 19) or subacute cutaneous (SCLE: n=8), chronic biologically false positive (CBFP) reactors for syphilis (n= 10) and 32 controls were examined for sICAM-1, sVCAM-1 and sE-Selectin with specific ELISA kits. Protocol forms were reviewed. We found significantly elevated levels of sE-Selectin in patients with DLE and widespread cutaneous symptoms, and a correlation between active cutaneous disease as well as polymorphous light eruption (PLE) and elevated levels of sE-Selectin. In contrast, patients with systemic LE did not have elevated levels of sE-Selectin, but in concordance with earlier reports, sICAM-1 and sVCAM-1 levels were elevated compared to controls in SLE, as well as in SCLE patients, which has not been reported previously. Since activated endothelial cells are the only source for E-Selectin, the elevated sE-Selectin level in patients with widespread and active cutaneous disease suggests a more important role for endothelial cells in the pathogenesis of cutaneous LE than previously assumed.

  18. [Study of tensile bond strength of 3 different adhesive systems associated with composites on dentinal surfaces].

    PubMed

    Matos, A B; Saraceni, C H; Jacobs, M M; Oda, M

    2001-01-01

    The aim of this in vitro study was to compare the tensile bond strength of 3 different bonding systems, associated to composite resins, bonded to dentinal surfaces. Forty-four dentinal surfaces were obtained from recently extracted human molars. A standardized smear layer was obtained and the surfaces were divided in 3 groups: G1) self etch + microhybrid composite; G2) single-component adhesive + phosphoric acid + microhybrid composite and G3) conventional system (acid + primer + bond) + microhybrid composite. Specimens made of composite resin were constructed in the shape of an inverted truncated cone with 3 mm of diameter. Tensile bond strength test was performed at the speed of 0.5 mm/min, and the results were expressed in MPa. The analysis of variance ANOVA (p < 0.05) determined that the type of bonding system used influenced tensile bond strength. Tukey's test, however, showed that the results of the comparison between G2 and G3 were the only statistically significant ones, with G2 showing greater values of tensile bond strength.

  19. Investigation of strength of a hybrid adhesive anchor system used in precast concrete welded repair applications subjected to tensile and eccentric shear loading

    NASA Astrophysics Data System (ADS)

    Eilers, Michael Glenn

    A common precast industry repair for missing or misplaced connection plates is the use of an adhesive anchor system to fasten repair plates to precast members. Typically, the repair plate will experience elevated temperatures during the welding of the loose erection plate to the repair plate. Limited testing and theoretical data are currently available to provide design guidelines on how the elevated temperatures induced by welding affect the behavior and capacity of the adhesive anchoring systems. This dissertation outlines bond tests, eccentric shear tests, and a temperature investigation performed using a hybrid adhesive system in precast concrete repair applications. In addition, limited bond strength testing data using a high strength two-part epoxy adhesive is also included. The overall aim of this work is to provide test data and guidance to the industry and design professionals when designing adhesive anchoring systems for repair applications exposed to welding.

  20. Adhesives in larynx repair.

    PubMed

    Lyons, M B; Lyons, G D; Webster, D; Wheeler, V R

    1989-04-01

    Guinea pig laryngeal fractures were used as a model to compare the ease of application and effectiveness of the fibrinogen-adhesive system with the ease of application and effectiveness of cyanoacrylate glue and control fractures stinted with contralateral gelatin film. Seven fibrin adhesive-treated and two cyanoacrylate glue-treated guinea pigs were perfused after 60 and 35 days, respectively. The larynges were serial sectioned, and the wound sites were compared. The fibrinogen adhesive system was easier to dispense than cyanoacrylate glue, did not require a completely dry surface, and stabilized within 3 minutes. Cartilage segment alignment with focal, complete fracture healing and symmetrical chondrocyte proliferation were seen in fibrogen adhesive-stinted larynges. In the cyanoacrylate glue-treated larynges, there was no alignment and minimal, asymmetrical chondrocyte proliferation. Gelatin film-stinted controls exhibited similar features. Thus, fibrogen adhesive was easier to apply and more effectively bound laryngeal fractures than cyanoacrylate glue or gelatin film.

  1. Effects of dentin moisture on the push-out bond strength of a fiber post luted with different self-adhesive resin cements

    PubMed Central

    Uzunoğlu, Emel; Yılmaz, Zeliha

    2013-01-01

    Objectives This study evaluated the effects of intraradicular moisture on the pushout bond strength of a fibre post luted with several self-adhesive resin cements. Materials and Methods Endodontically treated root canals were treated with one of three luting cements: (1) RelyX U100, (2) Clearfil SA, and (3) G-Cem. Roots were then divided into four subgroups according to the moisture condition tested: (I) dry: excess water removed with paper points followed by dehydration with 95% ethanol, (II) normal moisture: canals blot-dried with paper points until appearing dry, (III) moist: canals dried by low vacuum using a Luer adapter, and (IV) wet: canals remained totally flooded. Two 1-mm-thick slices were obtained from each root sample and bond strength was measured using a push-out test setup. The data were analysed using a two-way analysis of variance and the Bonferroni post hoc test with p = 0.05. Results Statistical analysis demonstrated that moisture levels had a significant effect on the bond strength of luting cements (p < 0.05), with the exception of G-Cem. RelyX U100 displayed the highest bond strength under moist conditions (III). Clearfil SA had the highest bond strength under normal moisture conditions (II). Statistical ranking of bond strength values was as follows: RelyX U100 > Clearfil SA > G-Cem. Conclusions The degree of residual moisture significantly affected the adhesion of luting cements to radicular dentine. PMID:24303359

  2. Adhesive sealing of dentin surfaces in vitro: A review

    PubMed Central

    Abu-Nawareg, Manar M; Zidan, Ahmed Z; Zhou, Jianfeng; Agee, Kelli; Chiba, Ayaka; Tagami, Jungi; Pashley, David H

    2016-01-01

    Purpose The purpose of this review is to describe the evolution of the use of dental adhesives to form a tight seal of freshly prepared dentin to protect the pulp from bacterial products, during the time between crown preparation and final cementum of full crowns. The evolution of these “immediate dentin sealants” follows the evolution of dental adhesives, in general. That is, they began with multiple-step, etch-and-rinse adhesives, and then switched to the use of simplified adhesives. Methods Literature was reviewed for evidence that bacteria or bacterial products diffusing across dentin can irritate pulpal tissues before and after smear layer removal. Smear layers can be solubilized by plaque organisms within 7–10 days if they are directly exposed to oral fluids. It is likely that smear layers covered by temporary restorations may last more than one month. As long as smear layers remain in place, they can partially seal dentin. Thus, many in vitro studies evaluating the sealing ability of adhesive resins use smear layer-covered dentin as a reference condition. Surprisingly, many adhesives do not seal dentin as well as do smear layers. Results Both in vitro and in vivo studies show that resin-covered dentin allows dentinal fluid to cross polymerized resins. The use of simplified single bottle adhesives to seal dentin was a step backwards. Currently, most authorities use either 3-step adhesives such as Scotchbond Multi-Purposea or OptiBond FLb or two-step self-etching primer adhesives, such as Clearfil SEc, Unifil Bondd or AdheSEe, respectfully. PMID:26846037

  3. Chemical Vapor Deposition of Fluoroalkylsilane Monolayer Films for Adhesion Control in Microelectromechanical Systems

    SciTech Connect

    MAYER,THOMAS M.; DE BOER,MAARTEN P.; SHINN,NEAL D.; CLEWS,PEGGY J.; MICHALSKE,TERRY A.

    2000-01-26

    We have developed a new process for applying a hydrophobic, low adhesion energy coating to microelectromechanical (MEMS) devices. Monolayer films are synthesized from tridecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane (FOTS) and water vapor in a low-pressure chemical vapor deposition process at room temperature. Film thickness is self-limiting by virtue of the inability of precursors to stick to the fluorocarbon surface of the film once it has formed. We have measured film densities of {approx}3 molecules nm{sup 2} and film thickness of {approx}1 nm. Films are hydrophobic, with a water contact angle >110{sup o}. We have also incorporated an in-situ downstream microwave plasma cleaning process, which provides a clean, reproducible oxide surface prior to film deposition. Adhesion tests on coated and uncoated MEMS test structures demonstrate superior performance of the FOTS coatings. Cleaned, uncoated cantilever beam structures exhibit high adhesion energies in a high humidity environment. An adhesion energy of 100 mJ m{sup -2} is observed after exposure to >90% relative humidity. Fluoroalkylsilane coated beams exhibit negligible adhesion at low humidity and {<=} 20 {micro}J m{sup -2} adhesion energy at >90% relative humidity. No obvious film degradation was observed for films exposed to >90% relative humidity at room temperature for >24 hr.

  4. Switchable bio-inspired adhesives

    NASA Astrophysics Data System (ADS)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  5. Bond performance of "Touch and Cure" adhesives on resin core systems.

    PubMed

    Kadowaki, Yoshitaka; Kakuda, Shinichi; Kawano, Shimpei; Katsumata, Aiichiro; Ting, Shihchun; Hoshika, Shuhei; Ikeda, Takatsumi; Tanaka, Toru; Carvalho, Ricardo Marinsde; Sano, Hidehiko

    2016-01-01

    The purpose of this study was to compare the micro-tensile bond strength (µTBS) of three resin core composites to dentin and to examine the bonded interface of the composites. One experimental TDK-03(TD) and, two commercial, DC core Automix One (DC) and Unifil core EM(UN) were used. Flat dentin surfaces of human molars were exposed using #600 SiC paper and bonded with the respective adhesive of each system. After bonding, the composites were built up on the surfaces and cured under two conditions: "light condition" or "dark condition". µTBSs (MPa) in the light condition were: TD; 60.02±17.08, DC; 38.21±13.70, and UN; 29.50±9.71; in the dark condition: TD; 54.62±17.11, DC; 8.40±4.81, and UN; 9.47±6.56. Dark curing negatively affected the bond strength of the two commercial resin-core materials. The experimental material was not affected by the curing conditions. PMID:27251993

  6. Morphological and mechanical characterization of the acid-base resistant zone at the adhesive-dentin interface of intact and caries-affected dentin.

    PubMed

    Inoue, Go; Tsuchiya, Satoko; Nikaido, Toru; Foxton, Richard M; Tagami, Junji

    2006-01-01

    This study examined the ultrastructure of both intact and caries affected dentin-adhesive interface after artificial secondary caries formation, using scanning electron microscopy and nanoindentation testing. Half of the prepared specimens were bonded with Clearfil SE Bond (Kuraray Medical, Japan) and a resin composite (Metafil Flo, Sun Medical, Japan) for the nanoindentation test. The other specimens were stored in a buffered demineralizing solution for 90 minutes, then observed using SEM. An acid-base resistant zone (ABRZ) was observed beneath the hybrid layer, distinguished by argon-ion etching. The ABRZ of caries-affected dentin was thicker than that of normal dentin, while its nanohardess was lower than normal dentin (p<0.05). It is suggested that the monomer of Clearfil SE Bond penetrated deeper than previously reported, creating a so-called "hybrid layer." However, its physical properties depended on the condition of the dentin.

  7. Paucity of Nanolayering in Resin-Dentin Interfaces of MDP-based Adhesives.

    PubMed

    Tian, F; Zhou, L; Zhang, Z; Niu, L; Zhang, L; Chen, C; Zhou, J; Yang, H; Wang, X; Fu, B; Huang, C; Pashley, D H; Tay, F R

    2016-04-01

    Self-assembled nanolayering structures have been reported in resin-dentin interfaces created by adhesives that contain 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). These structures have been hypothesized to contribute to bond durability. The objective of the present study was to determine the extent of nanolayering in resin-dentin interfaces after application of commercialized 10-MDP-containing self-etch and universal adhesives to human dentin. Seven commercialized adhesives were examined: Adhese Universal (Ivoclar-Vivadent), All-Bond Universal (Bisco, Inc.), Clearfil SE Bond 2, Clearfil S3 Bond Plus, Clearfil Universal Bond (all from Kuraray Noritake Dental Inc.), G-Premio Bond (GC Corp.), and Scotchbond Universal (3M ESPE). Each adhesive was applied in the self-etch mode on midcoronal dentin according to the respective manufacturer's instructions. Bonded specimens (n = 6) were covered with flowable resin composite, processed for transmission electron microscopy, and examined at 30 random sites without staining. Thin-film glancing angle X-ray diffraction (XRD) was used to detect the characteristic peaks exhibited by nanolayering (n = 4). The control consisted of 15%wt, 10%wt, and 5%wt 10-MDP (DM Healthcare Products, Inc.) dissolved in a mixed solvent (ethanol and water weight ratio 9:8, with photoinitiators). Experimental primers were applied to dentin for 20 s, covered with hydrophobic resin layer, and examined in the same manner. Profuse nanolayering with highly ordered periodicity (~3.7 nm wide) was observed adjacent to partially dissolved apatite crystallites in dentin treated with the 15% 10-MDP primer. Three peaks in the 2θ range of 2.40° (3.68 nm), 4.78° (1.85 nm), and 7.18° (1.23 nm) were identified from thin-film XRD. Reduction in the extent of nanolayering was observed in the 10% and 5% 10-MDP experimental primer-dentin interface along with lower intensity XRD peaks. Nanolayering and characteristic XRD peaks were rarely observed in

  8. Paucity of Nanolayering in Resin-Dentin Interfaces of MDP-based Adhesives.

    PubMed

    Tian, F; Zhou, L; Zhang, Z; Niu, L; Zhang, L; Chen, C; Zhou, J; Yang, H; Wang, X; Fu, B; Huang, C; Pashley, D H; Tay, F R

    2016-04-01

    Self-assembled nanolayering structures have been reported in resin-dentin interfaces created by adhesives that contain 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). These structures have been hypothesized to contribute to bond durability. The objective of the present study was to determine the extent of nanolayering in resin-dentin interfaces after application of commercialized 10-MDP-containing self-etch and universal adhesives to human dentin. Seven commercialized adhesives were examined: Adhese Universal (Ivoclar-Vivadent), All-Bond Universal (Bisco, Inc.), Clearfil SE Bond 2, Clearfil S3 Bond Plus, Clearfil Universal Bond (all from Kuraray Noritake Dental Inc.), G-Premio Bond (GC Corp.), and Scotchbond Universal (3M ESPE). Each adhesive was applied in the self-etch mode on midcoronal dentin according to the respective manufacturer's instructions. Bonded specimens (n = 6) were covered with flowable resin composite, processed for transmission electron microscopy, and examined at 30 random sites without staining. Thin-film glancing angle X-ray diffraction (XRD) was used to detect the characteristic peaks exhibited by nanolayering (n = 4). The control consisted of 15%wt, 10%wt, and 5%wt 10-MDP (DM Healthcare Products, Inc.) dissolved in a mixed solvent (ethanol and water weight ratio 9:8, with photoinitiators). Experimental primers were applied to dentin for 20 s, covered with hydrophobic resin layer, and examined in the same manner. Profuse nanolayering with highly ordered periodicity (~3.7 nm wide) was observed adjacent to partially dissolved apatite crystallites in dentin treated with the 15% 10-MDP primer. Three peaks in the 2θ range of 2.40° (3.68 nm), 4.78° (1.85 nm), and 7.18° (1.23 nm) were identified from thin-film XRD. Reduction in the extent of nanolayering was observed in the 10% and 5% 10-MDP experimental primer-dentin interface along with lower intensity XRD peaks. Nanolayering and characteristic XRD peaks were rarely observed in

  9. System integration and demonstration of adhesive bonded high temperature aluminum alloys for aerospace structure, phase 2

    NASA Technical Reports Server (NTRS)

    Falcone, Anthony; Laakso, John H.

    1993-01-01

    Adhesive bonding materials and processes were evaluated for assembly of future high-temperature aluminum alloy structural components such as may be used in high-speed civil transport aircraft and space launch vehicles. A number of candidate high-temperature adhesives were selected and screening tests were conducted using single lap shear specimens. The selected adhesives were then used to bond sandwich (titanium core) test specimens, adhesive toughness test specimens, and isothermally aged lap shear specimens. Moderate-to-high lap shear strengths were obtained from bonded high-temperature aluminum and silicon carbide particulate-reinforced (SiC(sub p)) aluminum specimens. Shear strengths typically exceeded 3500 to 4000 lb/in(sup 2) and flatwise tensile strengths exceeded 750 lb/in(sup 2) even at elevated temperatures (300 F) using a bismaleimide adhesive. All faceskin-to-core bonds displayed excellent tear strength. The existing production phosphoric acid anodize surface preparation process developed at Boeing was used, and gave good performance with all of the aluminum and silicon carbide particulate-reinforced aluminum alloys investigated. The results of this program support using bonded assemblies of high-temperature aluminum components in applications where bonding is often used (e.g., secondary structures and tear stoppers).

  10. Development of a multifunctional adhesive system for prevention of root caries and secondary caries

    PubMed Central

    Zhang, Ning; Melo, Mary A. S.; Chen, Chen; Liu, Jason; Weir, Michael D.; Bai, Yuxing; Xu, Hockin H. K.

    2015-01-01

    Objectives The objectives of this study were to: (1) develop a novel adhesive for prevention of tooth root caries and secondary caries by possessing a combination of protein-repellent, antibacterial, and remineralization capabilities for the first time; and (2) investigate the effects of 2-methacryloyloxyethyl phosphorylcholine (MPC), dimethylaminohexadecyl methacrylate (DMAHDM), and nanoparticles of amorphous calcium phosphate (NACP) on dentine bond strength, protein-repellent properties, and dental plaque microcosm biofilm response. Methods MPC, DMAHDM and NACP were added into Scotchbond Multi-Purpose primer and adhesive. Dentine shear bond strengths were measured. Adhesive coating thickness, surface texture and dentine-adhesive interfacial structure were examined. Protein adsorption onto adhesive resin surface was determined by the micro bicinchoninic acid method. A human saliva microcosm biofilm model was used to investigate biofilm metabolic activity, colony-forming unit (CFU) counts, and lactic acid production. Results The resin with 7.5% MPC + 5% DMAHDM + 30% NACP did not adversely affect dentine shear bond strength (p > 0.1). The resin with 7.5% MPC + 5% DMAHDM + 30% NACP produced a coating on root dentine with a thickness of approximately 70 μm and completely sealed all the dentinal tubules. The resin with 7.5% MPC + 5% DMAHDM + 30% NACP had 95% reduction in protein adsorption, compared to SBMP control (p < 0.05). The resin with 7.5% MPC + 5% DMAHDM + 30% NACP was strongly antibacterial, with biofilm CFU being four orders of magnitude lower than that of SBMP control. Significance The novel multifunctional adhesive with strong protein-repellent, antibacterial and remineralization properties is promising to coat tooth roots to prevent root caries and secondary caries. The combined use of MPC, DMAHDM and NACP may have wide applicability to bonding agents, cements, sealants and composites to inhibit caries. PMID:26187532

  11. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    PubMed

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  12. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives

    PubMed Central

    2015-01-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm2 provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  13. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    PubMed

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  14. Optical adhesive property study

    SciTech Connect

    Sundvold, P.D.

    1996-01-01

    Tests were performed to characterize the mechanical and thermal properties of selected optical adhesives to identify the most likely candidate which could survive the operating environment of the Direct Optical Initiation (DOI) program. The DOI system consists of a high power laser and an optical module used to split the beam into a number of channels to initiate the system. The DOI requirements are for a high shock environment which current military optical systems do not operate. Five candidate adhesives were selected and evaluated using standardized test methods to determine the adhesives` physical properties. EC2216, manufactured by 3M, was selected as the baseline candidate adhesive based on the test results of the physical properties.

  15. Effect of food and oral simulating fluids on structure of adhesive composite systems.

    PubMed

    Lee, S Y; Greener, E H; Mueller, H J

    1995-02-01

    This work evaluates the degradation of three adhesive/composite systems (Tenure/Marathon One. Scotchbond Multi-Purpose/Z100 and Optibond/Herculite XRV) upon immersion in 75% ethanol solution and in an artificial saliva (Moi-Stir). Shear bond strength (SBS) and diametral tensile strength (DTS) specimens were employed for this study. For the SBS specimens, the bonded interface and composite were exposed to food and oral simulating fluids at 37 degrees C for up to 30 days. A similar control series was stored in air. DTS specimens were stored in 75% ethanol at 37 degrees C for up to 30 days. The SBS specimens were sheared to failure. Small quantities of bonding resin were removed from the tooth side of the fractured surface and from the non-fractured fractured end of the composite for Fourier transform infrared microscopic evaluation. Similar scrapings were taken from DTS specimen surfaces. The infrared absorbance intensity (AI) of the major peaks was measured as a function of storage time and ratioed against the aromatic C = C (1609.4 cm-1) peak. The data were analysed using ANOVA and the Tukey LSD test. The AI of major peaks was similar for the materials stored either in air or in Moi-Stir for all testing periods. Storage in ethanol caused the AI of aliphatic C = C (1638 cm-1) and of O-H (approximately 3500 cm-1) bonds to significantly decrease (30-50%) for specimens of bonding resin while the AI of C = O bonds (1730 cm-1) increased (60-120%).(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Nanoleakage of dentin adhesive systems bonded to Carisolv-treated dentin.

    PubMed

    Kubo, Shisei; Li, Heping; Burrow, Michael F; Tyas, Martin J

    2002-01-01

    The hybrid layer created in caries-affected dentin has not been fully elucidated and may influence bond durability. This study investigated the nanoleakage patterns of caries-affected dentin after excavation with Carisolv or conventional instruments treated with one of three adhesive systems. Flat occlusal dentin surfaces, including carious lesions, were prepared from extracted human molars and finished with wet 600-grit silicon carbide paper. Carious dentin was removed with Carisolv or round steel burs in conjunction with Caries Detector. PermaQuik, Single Bond or One-Up Bond F was bonded to the excavated dentin surfaces and adjacent flat occlusal surfaces and it was covered with Silux Plus resin-based composite. After 24-hour storage in 37 degrees C water, the bonded interfaces were polished to remove flash, and the surrounding tooth surfaces were coated with nail varnish. Specimens were immersed in 50% (w/v) silver nitrate solution for 24 hours, exposed to photo developing solution for eight hours, then sectioned longitudinally through the bonded, excavated dentin or "normal" dentin surfaces. The sectioned surfaces were polished, carbon coated and observed in a Field Emission-SEM using back scattered electrons. Silver deposition occurred along the base of the hybrid layer for all specimens. However, Single Bond showed a greater density of silver deposition in the caries-affected dentin compared with normal dentin. PermaQuik had a thicker hybrid layer in caries-affected dentin than normal dentin. One-Up Bond F exhibited a thin hybrid layer in normal dentin, but the hybrid layer was often difficult to detect in caries-affected dentin.

  17. Nanoleakage of dentin adhesive systems bonded to Carisolv-treated dentin.

    PubMed

    Kubo, Shisei; Li, Heping; Burrow, Michael F; Tyas, Martin J

    2002-01-01

    The hybrid layer created in caries-affected dentin has not been fully elucidated and may influence bond durability. This study investigated the nanoleakage patterns of caries-affected dentin after excavation with Carisolv or conventional instruments treated with one of three adhesive systems. Flat occlusal dentin surfaces, including carious lesions, were prepared from extracted human molars and finished with wet 600-grit silicon carbide paper. Carious dentin was removed with Carisolv or round steel burs in conjunction with Caries Detector. PermaQuik, Single Bond or One-Up Bond F was bonded to the excavated dentin surfaces and adjacent flat occlusal surfaces and it was covered with Silux Plus resin-based composite. After 24-hour storage in 37 degrees C water, the bonded interfaces were polished to remove flash, and the surrounding tooth surfaces were coated with nail varnish. Specimens were immersed in 50% (w/v) silver nitrate solution for 24 hours, exposed to photo developing solution for eight hours, then sectioned longitudinally through the bonded, excavated dentin or "normal" dentin surfaces. The sectioned surfaces were polished, carbon coated and observed in a Field Emission-SEM using back scattered electrons. Silver deposition occurred along the base of the hybrid layer for all specimens. However, Single Bond showed a greater density of silver deposition in the caries-affected dentin compared with normal dentin. PermaQuik had a thicker hybrid layer in caries-affected dentin than normal dentin. One-Up Bond F exhibited a thin hybrid layer in normal dentin, but the hybrid layer was often difficult to detect in caries-affected dentin. PMID:12120777

  18. Analysis of micro-shear bond strength of self-etch adhesive systems with dentine: An in vitro study

    PubMed Central

    Shakya, Vijay Kumar; Singh, Rajeev Kumar; Pathak, Anjani Kumar; Singh, Balendra Pratap; Chandra, Anil; Bharti, Ramesh; Yadav, Rakesh Kumar

    2015-01-01

    Background Success or failure of a composite restoration largely depends on its bonding to enamel/dentine. Several better adhesive systems have been developed during the last few years due to rapid advancement in the technology. Recent self-etched adhesives have fewer clinical steps and are less technique sensitive. Methods Ninety extracted human permanent molars were collected, grounded and finished to prepare flat dentine-bonding surfaces on their occlusal surface. All specimens were divided into three groups (n = 30) on the basis of three adhesive systems Adper Easy Bond (AE), Beautibond (BB) and Xeno IV (XE). These adhesive systems were applied on prepared mid-dentine-bonding surface. A restorative resin was added with the help of a transparent tube of 2 mm height and 1.7 mm internal diameter and cured. Fifteen specimens in each group were loaded to failure in an Instron Universal Testing Machine after storage for 24 h at 37 °C to check micro-shear bond strength. Another fifteen specimens from each group were thermocycled 500 times at 5 °C and 55 °C with dwell time of 1 min in each bath followed by loading to failure. The data obtained was analyzed with SPSS version 21 at significance level of <05. Results After 24 h, micro-shear bond strength of BB was higher (26.04 MPa) than XE (23.69 MPa) and AE (21.50 MPa). After thermocycling, micro-shear bond strength decreased significantly in BB (P = .001) and XE (P = .03). Conclusion The micro-shear bond strength of BB was highest among three groups, which decreased after thermocycling. PMID:26605144

  19. Focal adhesions in osteoneogenesis

    PubMed Central

    Biggs, M.J.P; Dalby, M.J

    2010-01-01

    As materials technology and the field of tissue engineering advances, the role of cellular adhesive mechanisms, in particular the interactions with implantable devices, becomes more relevant in both research and clinical practice. A key tenet of medical device technology is to use the exquisite ability of biological systems to respond to the material surface or chemical stimuli in order to help develop next-generation biomaterials. The focus of this review is on recent studies and developments concerning focal adhesion formation in osteoneogenesis, with an emphasis on the influence of synthetic constructs on integrin mediated cellular adhesion and function. PMID:21287830

  20. Thermally responsive polymer systems for self-healing, reversible adhesion and shape memory applications

    NASA Astrophysics Data System (ADS)

    Luo, Xiaofan

    Responsive polymers are "smart" materials that are capable of performing prescribed, dynamic functions under an applied stimulus. In this dissertation, we explore several novel design strategies to develop thermally responsive polymers and polymer composites for self-healing, reversible adhesion and shape memory applications. In the first case described in Chapters 2 and 3, a thermally triggered self-healing material was prepared by blending a high-temperature epoxy resin with a thermoplastic polymer, poly(epsilon-caprolactone) (PCL). The initially miscible system undergoes polymerization induced phase separation (PIPS) during the curing of epoxy and yields a variety of compositionally dependent morphologies. At a particular PCL loading, the cured blend displays a "bricks-and-mortar" morphology in which epoxy exists as interconnected spheres ("bricks") within a continuous PCL matrix ("mortar"). A heat induced "bleeding" phenomenon was observed in the form of spontaneous wetting of all free surfaces by the molten PCL, and is attributed to the volumetric thermal expansion of PCL above its melting point in excess of epoxy brick expansion, which we term differential expansive bleeding (DEB). This DEB is capable of healing damage such as cracks. In controlled self-healing experiments, heating of a cracked specimen led to PCL bleeding from the bulk that yields a liquid layer bridging the crack gap. Upon cooling, a "scar" composed of PCL crystals was formed at the site of the crack, restoring a significant portion of mechanical strength. We further utilized DEB to enable strong and thermally-reversible adhesion of the material to itself and to metallic substrates, without any requirement for macroscopic softening or flow. After that, Chapters 4--6 present a novel composite strategy for the design and fabrication of shape memory polymer composites. The basic approach involves physically combining two or more functional components into an interpenetrating fiber

  1. The effect of surface roughness on the adhesion of solid surfaces for systems with and without liquid lubricant

    NASA Astrophysics Data System (ADS)

    Samoilov, V. N.; Sivebaek, I. M.; Persson, B. N. J.

    2004-11-01

    We present molecular dynamics results for the interaction between two solid elastic walls during pull-off for systems with and without octane (C8H18) lubricant. We used two types of substrate—flat and corrugated—and varied the lubricant coverage from ˜1/8 to ˜4 ML (monolayers) of octane. For the flat substrate without lubricant the maximum adhesion was found to be approximately three times larger than for the system with the corrugated substrate. As a function of the octane coverage (for the corrugated substrate) the pull-off force first increases as the coverage increases from 0 to ˜1 ML, and then decreases as the coverage is increased beyond monolayer coverage. It is shown that at low octane coverage, the octane molecules located in the substrate corrugation wells during squeezing are pulled out of the wells during pull-off, forming a network of nanocapillary bridges around the substrate nanoasperities, thus increasing the adhesion between two surfaces. For greater lubricant coverages a single capillary bridge is formed. The adhesion force saturates for lubricant coverages greater than 3 ML. For the flat substrate, during pull-off we observe discontinuous, thermally activated changes in the number n of lubricant layers (n-1→n layering transitions), whereas for the corrugated substrate these transitions are "averaged" by the substrate surface roughness.

  2. New restoration and direct pulp capping systems using adhesive composite resin.

    PubMed

    Kashiwada, T; Takagi, M

    1991-12-01

    There have been many arguments on the irritating mechanisms of the composite resin on the dental pulp. While the direct irritative effect of the resin has been preferred, some authors considered that the marginal microleakage and the resulting bacterial infection play a more important role in inducing the complicating pulp irritation. We developed a new filling technique, called the direct inlay restoration method, which could prevent the marginal leakage associated with the polymerization shrinkage of the adhesive composite resin. In this study, we tried to apply our method clinically. None of the 440 cases which were filled with the adhesive composite resin and 60 cases out of 64 cases in which the pulps were directly capped with the adhesive composite resin developed any signs and symptoms of pulp irritation. The other 4 cases developed signs of pulp irritation. Two of those 4 cases were pulpectomized due to spontaneous pain and the other 2 cases turned out to be well after re-restoration. With the informed consent of the patients, the direct pulp capping using the adhesive composite resin was experimentally performed on 6 caries-free 3rd molars and the histopathological examination of these capped molars revealed that neither significant degenerative nor inflammatory changes were brought about in the dental pulp. These clinical and histopathological observation suggest that the dental pulp irritation after resin filling is not induced by the composite resin itself. PMID:1764760

  3. Effect of the application time of phosphoric acid and self-etch adhesive systems to sclerotic dentin

    PubMed Central

    MENA-SERRANO, Alexandra Patricia; GARCIA, Eugenio Jose; PEREZ, Miguel Muñoz; MARTINS, Gislaine Cristine; GRANDE, Rosa Helena Miranda; LOGUERCIO, Alessandro Dourado; REIS, Alessandra

    2013-01-01

    Objectives: To evaluate the effect of application time on the resin-dentin bond strength (µTBS) and etching pattern of adhesive systems applied on sclerotic dentine. Material and Methods: A total of forty-two bovine incisors had their roots removed. The 1-step self-etch GO (SDI), the 2-step self-etch Adper SE Bond (3MESPE) and the 35% phosphoric acid (3MESPE) from the 2-step etch-and-rinse Adper Single Bond 2 (3MESPE) were applied on the bovine incisal surfaces according to the manufacturer's instructions or duplicating the recommended conditioning time. After adhesive application, thirty teeth were restored with composite resin, stored for 24 h in distilled water at 37º C, and sectioned into resin-dentin bonded sticks (0.8 mm2) and tested according to the µTBS at 0.5 mm/min. The etching pattern of the remaining twelve teeth (n=4 for each material) was examined under scanning electron microscopy. Each tooth was divided into a buccal-to-lingual direction into three thirds, and each third randomly assigned to the groups: control (no treatment), according to the manufacturers' instructions and duplicating the recommended application time. The µTBS and the relative percentage of the tubule area opening were evaluated by two-way repeated measures ANOVA and Tukey's tests (α=0.05). Results: The duplication of the conditioning time favored only the GO adhesive (p<0.05). Both application methods significantly increased the tubule area opening (p<0.05) compared to the controls. Conclusions: The efficacy of duplicating the conditioning time was only effective for the 1-step self-etch adhesive system tested. PMID:23739856

  4. Micro-tensile bond strength of different adhesive systems on sound dentin and resin-based composite: An in-vitro study

    PubMed Central

    Mallick, Rashmirekha; Sarangi, Priyanka; Mohanty, Sandhyarani; Behera, Subasish; Nanda, Soumyaranjan; Satapathy, Sukanta Kumar

    2015-01-01

    Aim: To analyze the difference in the micro-tensile bond strength of specimens made with two different adhesive systems and compare them with two homogenous substrates. Materials and Methods: Sixty permanent mandibular molars were mounted in acrylic blocks and sectioned with exposed dentin surfaces. Samples were then divided into four groups. To Group-I Adper Single Bond 2 and to Group-II Adper Self-Etch plus bonding agents were applied. For Group-I and Group-II beams consisted of resin composite in the upper half and dentin in the lower half. In Group-III beams were made of only dentin. In Group-IV beams were made of only composite. Fifteen specimens of each group were taken for the micro-tensile bond strength test. Statistical Analysis: The results are analyzed using one-way analysis of variance and Critical Difference test. Results: The interface bonded with the two adhesive systems had lower micro-tensile bond strength than those of dentin and resin composite and the self-etching adhesive Adper Self-Etch plus had comparable bond strength with total-etch adhesive Adper Single Bond 2. Conclusion: The bond strength values for current adhesive systems cannot be compared to the micro-tensile bond strength of dentin and resin composite, and self-etching adhesives have comparable bond strength with total-etch adhesives. PMID:26430301

  5. Understanding the adhesion phenomena in carbohydrate-hydrogel-based systems: Water up-take, swelling and elastic detachment.

    PubMed

    Caccavo, Diego; Lamberti, Gaetano; Cascone, Sara; Barba, Anna Angela; Larsson, Anette

    2015-10-20

    The bio-adhesion is a complex phenomenon which takes place when two materials (at least one of biological nature, the other usually is a polymeric one) are held together for extended periods of time, usually for local drug delivery purposes. Despite bio-adhesion is widely exploited in commercial pharmaceuticals such as the buccal patches, the underlying phenomena of the process are not completely clarified yet. In this study experimental tests, in which the role of biological membranes is played by a water-rich agarose gel whereas patches are mimicked by hydrogel tablets (made of Carbopol or of Carbopol added with NaCl), have been used to analyze the behavior of the model system above described. Tablets have been forced to adhere on the agarose gel, and after a given contact time they have been detached, recording the required forces. Furthermore weight gain of the tablets (the water transported from the agarose gel toward the tablet) has been quantified. Water transport (during the time in which the contact between tablet and agarose gel is held) and elastic part of mechanical response during the detachment are modelled to achieve a better understanding of the adhesion process. Both the two sub-models nicely reproduce, respectively, the weight gain as well as the swelling of the Carbopol tablets, and the point at which the mechanical response ceases to be purely elastic. PMID:26256158

  6. [Bonding strength of metal frameworks and adhesive agents in the resin-bonded bridge technic. 3. Comparative research on various retention mechanisms and adhesive systems].

    PubMed

    Wirz, J; Besimo, C; Schmidli, F

    1989-01-01

    In fixed denture prosthetics, macro- and micromechanical as well as chemical adhesive mechanisms may be used between metal and bonding agent. The in vitro research presented here determines the adhesive strength of six different bonding agents and five different retention mechanisms on twelve precious and nonprecious metal alloys using shearing stress. The evaluation of the results should help to assess the suitability of the various combinations of materials and anchoring methods for the fixation of adhesive bridges. On the basis of the adhesive strengths and the examination of the various clinical advantages and disadvantages of the different methods that were analyzed, the electrolytic etching of nonprecious metal alloys appears to be particularly suitable for fixed denture prostheses. An efficient combination between alloy and bonding agent is of particular importance in this area. Macromechanical mesh and negative retentions can only be used to a limited clinical extent due to their high space requirements. Very good results were produced by the preconditioning of inner anchor surfaces with silanes. Sandblasting, however, provided unsatisfactory shear-stress results over a broad front independently of the type of alloy.

  7. Mating in Chlamydomonas: a system for the study of specific cell adhesion. I. Ultrastructural and electrophoretic analyses of flagellar surface components involved in adhesion

    PubMed Central

    1976-01-01

    To determine the ultrastructural and biochemical bases for flagellar adhesiveness in the mating reaction in Chlamydomonas, gametic and vegetative flagella and flagellar membranes were studied by use of electron microscope and electrophoretic procedures. Negative staining with uranyl acetate revealed no differences in gametic and vegetative flagellar surfaces; both had flagellar membranes, flagellar sheaths, and similar numbers and distributions of mastigonemes. Freezecleave procedures suggested that there may be a greater density of intramembranous particles on the B faces of gametic flagellar membranes than on the B faces of vegetative flagellar membranes. Gamone, the adhesive material that gametes release into their medium, was demonstrated, on the basis of ultrastructural and biochemical analyses, to be composed of flagellar surface components, i.e., membrane vesicles and mastigonemes. Comparison of vegetative (nonadhesive) and gametic (adhesive) "gamones" by use of SDS polyacrylamide gel electrophoresis showed both preparations to be composed of membrane, mastigoneme, and some microtubule proteins, as well as several unidentified protein and carbohydrate-staining components. However, there was an additional protein of approximately 70,000 mol wt in gametic gamone which was not present in vegetative gamone. When gametic gamone was separated into a membrane and a mastigoneme fraction on CSCl gradients, only the membrane fraction had isoagglutinating activity; the mastigoneme fraction was inactive, suggesting that mastigonemes are not involved in adhesion. PMID:1245545

  8. Biological adhesion of the flatworm Macrostomum lignano relies on a duo-gland system and is mediated by a cell type-specific intermediate filament protein

    PubMed Central

    2014-01-01

    Background Free-living flatworms, in both marine and freshwater environments, are able to adhere to and release from a substrate several times within a second. This reversible adhesion relies on adhesive organs comprised of three cell types: an adhesive gland cell, a releasing gland cell, and an anchor cell, which is a modified epidermal cell responsible for structural support. However, nothing is currently known about the molecules that are involved in this adhesion process. Results In this study we present the detailed morphology of the adhesive organs of the free-living marine flatworm Macrostomum lignano. About 130 adhesive organs are located in a horse-shoe-shaped arc along the ventral side of the tail plate. Each organ consists of exactly three cells, an adhesive gland cell, a releasing gland cell, and an anchor cell. The necks of the two gland cells penetrate the anchor cell through a common pore. Modified microvilli of the anchor cell form a collar surrounding the necks of the adhesive- and releasing glands, jointly forming the papilla, the outer visible part of the adhesive organs. Next, we identified an intermediate filament (IF) gene, macif1, which is expressed in the anchor cells. RNA interference mediated knock-down resulted in the first experimentally induced non-adhesion phenotype in any marine animal. Specifically, the absence of intermediate filaments in the anchor cells led to papillae with open tips, a reduction of the cytoskeleton network, a decline in hemidesmosomal connections, and to shortened microvilli containing less actin. Conclusion Our findings reveal an elaborate biological adhesion system in a free-living flatworm, which permits impressively rapid temporary adhesion-release performance in the marine environment. We demonstrate that the structural integrity of the supportive cell, the anchor cell, is essential for this adhesion process: the knock-down of the anchor cell-specific intermediate filament gene resulted in the inability of

  9. Using surface interactions to tune adhesion and morphology in polymer systems

    NASA Astrophysics Data System (ADS)

    Asoo, Beverly Yoshiko

    Surface interactions govern physical behavior at polymer interfaces. The first part of this dissertation focuses on surface interactions and the adhesion between PET and gelatin, two surfaces that would not normally adhere with each other. However, by plasma-treating the PET, the two materials can be joined. The fracture energy of this PET/gelatin interface was measured using the asymmetric double cantilever beam (ACDB) technique and it was determined that increasing the treatment time and power of the plasma on PET increased the fracture energy of the interface. Additionally, due to the hydroscopic nature of gelatin, higher relative humidity during testing also increased the interfacial fracture energy. The second part of the dissertation examines surface interactions in polymer blends. Thermoplastic blends enjoy large-scale commercial appeal for both engineering and economic reasons. Blends can be tuned to improve various materials properties, such as elastic modulus or impact resistance. Although blends offer many advantageous benefits, the thermodynamics of these blends are not fully understood, since each particular blend has its own behavior and morphology based on processing conditions. Even more complicated morphologies could be obtained by adding filler particles. The main interest of this area of research is the formation of co-continuous morphologies by adding particles in a blend of two homopolymers. In our system, one of the homopolymers coated the particles. At very high particle concentrations, the colloidal particles facilitated the transport of aqueous solutions. This research explored the role of particle concentration in the blends, as well as the role of concentration of the homopolymer that wets the particles. In order to study the morphology and determine the percolation threshold, the resulting microstructures were imaged in real space using techniques such as transmission electron microscopy, scanning electron microscopy, and confocal

  10. Application of liquefied wood as a new particle board adhesive system.

    PubMed

    Kunaver, Matjaz; Medved, Sergej; Cuk, Natasa; Jasiukaityte, Edita; Poljansek, Ida; Strnad, Tatjana

    2010-02-01

    Different types of southern European hardwoods and softwoods were subjected to a liquefaction process with glycerol/diethylene glycol. The liquefied spruce wood was reacted in a condensation reaction in the hot press with different melamine-formaldehyde and melamine-urea-formaldehyde resin precursors and used as adhesives for wood particle boards. The mechanical properties of these particle boards and the determination of formaldehyde release, proved that addition of 50% of the liquefied wood to such resin precursors caused the product to meet the European standard quality demands for particle boards. Up to 40% reduction of the formaldehyde emission was achieved. The temperature of the press unit was lowered from 180 degrees C to 160 degrees C with no significant influence on the mechanical properties. On the basis of the presented results it was possible to conclude that liquefied wood can be used as substitute for synthetic resin precursors in adhesives that are used for the particle board production.

  11. Adhesives for Aerospace

    NASA Technical Reports Server (NTRS)

    Meade, L. E.

    1985-01-01

    The industry is hereby challenged to integrate adhesive technology with the total structure requirements in light of today's drive into automation/mechanization. The state of the art of adhesive technology is fairly well meeting the needs of the structural designers, the processing engineer, and the inspector, each on an individual basis. The total integration of these needs into the factory of the future is the next collective hurdle to be achieved. Improved processing parameters to fit the needs of automation/mechanization will necessitate some changes in the adhesive forms, formulations, and chemistries. Adhesives have, for the most part, kept up with the needs of the aerospace industry, normally leading the rest of the industry in developments. The wants of the aerospace industry still present a challenge to encompass all elements, achieving a totally integrated joined and sealed structural system. Better toughness with hot-wet strength improvements is desired. Lower cure temperatures, longer out times, and improved corrosion inhibition are desired.

  12. Microleakage in Class V cavities with self-etching adhesive system and conventional rotatory or laser Er,Cr:YSGG

    PubMed Central

    Arnabat, J; España-Tost, T

    2012-01-01

    Objective: To analyse microleakage in Class V cavity preparation with Er;Cr:YSGG at different parameters using a self-etching adhesive system. Background: Several studies reported microleakage around composite restorations when cavity preparation is done or treated by Er;Cr:YSGG laser. We want to compare different energy densities in order to obtain the best parameters, when using a self-etching adhesive system. Methods: A class V preparations was performed in 120 samples of human teeth were divided in 3 groups: (1) Preparation using the burr. (2) Er;Cr:YSGG laser preparation with high energy 4W, 30 Hz, 50% Water 50% Air and (3) Er;Cr:YSGG laser preparation lower energy 1.5 W, 30 Hz, 30% Water 30% Air. All the samples were restored with self-etching adhesive system and hybrid composite. Thermocycling (5000 cycles) and immersed in 0.5% fuchsin. The restorations were sectioned and evaluated the microleakage with a stereomicroscope. Results: Lower energy laser used for preparation showed significant differences in enamel and dentin. To group 3, the microleakage in the enamel was less, whilst the group 1, treated with the turbine, showed less microleakage at dentin level. Group 2 showed the highest microleakage at dentin/cement level. Conclusion: Burr preparation gives the lowest microleakage at cement/dentin level, whilst Er;Cr:YSGG laser at lower power has the low energy obtains lowest microleakage at enamel. On the contrary high-energy settings produce inferior results in terms of microleakage. PMID:24511195

  13. Development and evaluation of a new push-pull ventilation system for sheet-adhesive work inside bus-body.

    PubMed

    Yotsumoto, Hisao; Hayakawa, Yoshihisa; Myojo, Toshihiko

    2003-01-01

    We present the performance of a new push-pull ventilation system for sheet-adhesive work inside the body of a sightseeing coach. The target sightseeing coach was 12 m long, 2.5 m wide and 2 m high from floor to ceiling. We made a prototype of an airflow system and a half-scale model of the bus-body. The half scale model was 6 m long, 1.25 m wide and 0.965 m high. The push-pull ventilation system and half-scale model were used to evaluate the flow distributions inside the model. We also measured the concentration of xylene and methanol vapors during simulated sheet-adhesive work. As a result, it was found that the best combination was a the push flow of 24 m3/min and a pull flow of 78 m3/min in this model, and the flow velocity in the model was less than 1 m/s. This system is potentially applicable to any interior work for not only bus-bodies but also train and airplane bodies, which have elongated and confined space with many openings.

  14. The Outcome of Immediate or Delayed Application of a Single-Step Self-Etch Adhesive to Coronal Dentin Following the Application of Different Endodontic Irrigants

    PubMed Central

    Saber, Shehab-El Din Mohammed; El-Askary, Farid Sabry

    2009-01-01

    Objectives: The aim of this study was to evaluate the outcome of immediate or delayed bonding of a single-step self-etch adhesive to coronal dentin after the application of different endodontic irrigants. Methods: Thirty five human molars were used. The coronal dentin was irrigated with either 0.9% physiologic saline (NS), 2% Chlorhexidine gluconate (CHX) or 2.5% commercially used sodium hypochlorite (NaOCl). Composite cylinders were bonded with the coronal dentin using the Clearfil S3 bond, which was applied either immediately or after one week storage time following the irrigation procedures. Shear bond strength testing was performed at a cross-head speed of 0.5 mm/min, and the resin/dentin interface was evaluated using SEM. Results: Irrigation with NS, CHX, or NaOCL followed by immediate adhesive application resulted in a reduction in the shear bond strength values recorded and this was statistically significant in comparison with the control group (P<.05). However, delaying the adhesive application resulted in a statistically significant (P<.05) improvement in the shear bond strength recorded in specimens irrigated with NS and CHX only. Conclusions: Delaying the bonding procedures for one week appeared to be beneficial in improving the shear bond strength of Clearfil S3 bond with coronal dentin especially when NS and CHX were used as endodontic irrigants. NaOCL proved to be an incompatible irrigating solution when used prior to the application of such adhesive. PMID:19421386

  15. Bond strength of Epiphany™ Sealer combined with different adhesive systems photo-activated with LED and QTH

    NASA Astrophysics Data System (ADS)

    Minto, A. M. P.; Bandéca, M. C.; Borges, A. H.; Nadalin, M. R.; Thomé, L. H. C.

    2009-08-01

    The Epiphany™ Sealer is a new dual-curing resin-based sealer and has been introduced as an alternative to gutta-percha and traditional root canal sealers. The canal filling is claimed to create a seal with the dentinal tubules within the root canal system producing a ‘monoblock’ effect between the sealer and dentinal tubules. Therefore, considering the possibility to incorporate the others adhesive systems, it is important to study the bond strength of the resulting cement. Forty-eight root mandibular canines were sectioned 8-mm below CEJ. The dentine discs were prepared using a tapered diamond bur and irrigated with 1% NaOCl and 17% EDTA. Previous the application Epiphany™ Sealer, the Epiphany™ Primer, AdheSE, and One Up Bond F were applied to the root canal walls. The LED and QTH (Quartz Tungsten Halogen) were used to photo-activation during 45 s with power density of 400 and 720 mW/cm2, respectively. The specimens were performed on a universal testing machine at a cross-head speed of 1 mm/min until bond failure occurred. The force was recorded and the debonding values were used to calculate Push-out bond strength. The analysis of variance (ANOVA) and Tukey’s post-hoc tests showed significant statistical differences ( P < 0.05) to Epiphany™ Sealer/Epiphany™ Primer/QTH and EpiphanyTM Sealer/AdheSE/QTH, which had the highest mean values of bond strength. The efficiency of resin-based filling materials are dependent the type of light curing unit used including the power density, the polymerization characteristics of these resin-based filling materials, depending on the primer/adhesive used.

  16. Micromechanical testing of the dentin hybrid zone formed by all-in-one adhesive system in sound human dentin

    NASA Astrophysics Data System (ADS)

    Koytchev, E.; Datcheva, M.; Iankov, R.

    2015-10-01

    This study explored the spatial variations in mechanical behavior of the dentin hybrid layer formed by a single step (one bottle) dentin adhesive system. Objective. The objectives were to: (1) evaluate the mechanical behavior of the hybrid zone formed by a single sep dentin adhesive system using nanoindentation technique, (2) compare the indentation moduli (EIT) and indentation hardness (HIT) of human dentin and the hybrid zone, and (3) assess the importance of specimen hydration on the nanoindentation response. Methods. Specimens of human dentin, treated with commercial single step resin adhesive and restored with composite material were evaluated using a nanoindenter in a load-displacement control mode. The load and displacement responses were used to perform nanoindentation characterization of dentin and the hybrid layer and estimate EIT and HIT, using Oliver & Pharr approximation method. Results. In hydrated state, EIT for dentin and hybrid layer were 18.214 ± 1.30 GPa and 12.535 ± 0.19 GPa respectively. For HIT, also in hydrated state, the values in dentin and hybrid layer were 0.56 ± 0.06 GPa and 0.36 ± 0.005 GPa respectively. Viscoelastic deformation of the dentin hybrid zone exceeded that occuring in regions of uniform dentin tissue. The load displacement curves of the two zones were also estimated and analyzed. They generally follow the same pattern without any noticeable pop-ins or irregularities. Significance. The microstructure and hydration play critical roles on the mechanical behavior of the hybrid layer and nanoindentation provides a potent measurment tool for identifying the spatial variations.

  17. Clinical and Histological Evaluation of Direct Pulp Capping on Human Pulp Tissue Using a Dentin Adhesive System

    PubMed Central

    Parafiniuk, Mirosław; Grocholewicz, Katarzyna; Sobolewska, Ewa; Buczkowska-Radlińska, Jadwiga

    2016-01-01

    Objective. This study presents a clinical and histological evaluation of human pulp tissue responses after direct capping using a new dentin adhesive system. Methods. Twenty-eight caries-free third molar teeth scheduled for extraction were evaluated. The pulps of 22 teeth were mechanically exposed and randomly assigned to 1 of 2 groups: Single Bond Universal or calcium hydroxide. Another group of 6 teeth acted as the intact control group. The periapical response was assayed, and a clinical examination was performed. The teeth were extracted after 6 weeks, and a histological analysis was performed. The pulp status was assessed, and the thickness of the dentin bridge was measured and categorized using a histological scoring system. Results. The clinical phase was asymptomatic for Single Bond Universal patients. Patients in the calcium hydroxide group reported mild symptoms of pain, although the histological examination revealed that dentin bridges with or without limited pulpitis had begun forming in each tooth. The universal adhesive system exhibited nonsignificantly increased histological signs of pulpitis (P > 0.05) and a significantly weaker thin mineralized tissue layer (P < 0.001) compared with the calcium hydroxide group. Conclusion. The results suggest that Single Bond Universal is inappropriate for human pulp capping; however, further long-term studies are needed to determine the biocompatibility of this agent. PMID:27803922

  18. High temperature adhesive silicone foam composition, foam generating system and method of generating foam

    DOEpatents

    Mead, Judith W.; Montoya, Orelio J.; Rand, Peter B.; Willan, Vernon O.

    1984-01-01

    Access to a space is impeded by generation of a sticky foam from a silicone polymer and a low boiling solvent such as a halogenated hydrocarbon. In a preferred aspect, the formulation is polydimethylsiloxane gel mixed with F502 Freon as a solvent and blowing agent, and pressurized with CO.sub.2 in a vessel to about 250 PSI, whereby when the vessel is opened, a sticky and solvent resistant foam is deployed. The foam is deployable, over a wide range of temperatures, adhering to wet surfaces as well as dry, is stable over long periods of time and does not propagate flame or lose adhesive properties during an externally supported burn.

  19. Effect of functional monomers in all-in-one adhesive systems on formation of enamel/dentin acid-base resistant zone.

    PubMed

    Nikaido, Toru; Ichikawa, Chiaki; Li, Na; Takagaki, Tomohiro; Sadr, Alireza; Yoshida, Yasuhiro; Suzuki, Kazuomi; Tagami, Junji

    2011-01-01

    This study aimed at evaluating the effect of functional monomers in all-in-one adhesive systems on formation of acid-base resistant zone (ABRZ) in enamel and dentin. Experimental adhesive systems containing one of three functional monomers; MDP, 3D-SR and 4-META were applied to enamel or dentin surface and light-cured. A universal resin composite was then placed. The specimens were subjected to a demineralizing solution (pH 4.5) and 5% NaClO for acid-base challenge and then observed by SEM. The ABRZ was clearly observed in both enamel and dentin interfaces. However, enamel ABRZ was thinner than dentin ABRZ in all adhesives. Morphology of the ABRZ was different between enamel and dentin, and also among the adhesives. Funnel-shaped erosion was observed only in the enamel specimen with the 4-META adhesive. The formation of enamel/dentin ABRZ was confirmed in all adhesives, but the morphology was influenced by the functional monomers.

  20. The Surface Sensor NlpE of Enterohemorrhagic Escherichia coli Contributes to Regulation of the Type III Secretion System and Flagella by the Cpx Response to Adhesion.

    PubMed

    Shimizu, Takeshi; Ichimura, Kimitoshi; Noda, Masatoshi

    2016-02-01

    Although the adhesion of enterohemorrhagic Escherichia coli (EHEC) is central to the EHEC-host interaction during infection, it remains unclear how such adhesion regulates virulence factors. Adhesion to abiotic surfaces by E. coli has been reported to be an outer membrane lipoprotein NlpE-dependent activation cue of the Cpx pathway. Therefore, we investigated the role of NlpE in EHEC on the adhesion-mediated expression of virulence genes. NlpE in EHEC contributed to upregulation of the locus of enterocyte effacement (LEE) genes encoded type III secretion system and to downregulated expression of the flagellin gene by activation of the Cpx pathway during adherence to hydrophobic glass beads and undifferentiated Caco-2 cells. Moreover, LysR homologue A (LrhA) in EHEC was involved in regulating the expression of the LEE genes and flagellin gene in response to adhesion. Gel mobility shift analysis revealed that response regulator CpxR bound to the lrhA promoter region and thereby regulated expressions of the LEE genes and flagellin gene via the transcriptional regulator LrhA in EHEC. Therefore, these results suggest that the sensing of adhesion signals via NlpE is important for regulation of the expression of the type III secretion system and flagella in EHEC during infection. PMID:26644384

  1. The Surface Sensor NlpE of Enterohemorrhagic Escherichia coli Contributes to Regulation of the Type III Secretion System and Flagella by the Cpx Response to Adhesion

    PubMed Central

    Ichimura, Kimitoshi; Noda, Masatoshi

    2015-01-01

    Although the adhesion of enterohemorrhagic Escherichia coli (EHEC) is central to the EHEC-host interaction during infection, it remains unclear how such adhesion regulates virulence factors. Adhesion to abiotic surfaces by E. coli has been reported to be an outer membrane lipoprotein NlpE-dependent activation cue of the Cpx pathway. Therefore, we investigated the role of NlpE in EHEC on the adhesion-mediated expression of virulence genes. NlpE in EHEC contributed to upregulation of the locus of enterocyte effacement (LEE) genes encoded type III secretion system and to downregulated expression of the flagellin gene by activation of the Cpx pathway during adherence to hydrophobic glass beads and undifferentiated Caco-2 cells. Moreover, LysR homologue A (LrhA) in EHEC was involved in regulating the expression of the LEE genes and flagellin gene in response to adhesion. Gel mobility shift analysis revealed that response regulator CpxR bound to the lrhA promoter region and thereby regulated expressions of the LEE genes and flagellin gene via the transcriptional regulator LrhA in EHEC. Therefore, these results suggest that the sensing of adhesion signals via NlpE is important for regulation of the expression of the type III secretion system and flagella in EHEC during infection. PMID:26644384

  2. Microscopic modeling of the dynamics of frictional adhesion in the gecko attachment system.

    PubMed

    Yamaguchi, Tetsuo; Gravish, Nick; Autumn, Kellar; Creton, Costantino

    2009-03-26

    We present a simple microscopic model describing the unique friction behavior of gecko setal arrays as they are dragged on smooth surfaces. Unlike other solids of high elastic modulus that do not stick under van der Waals forces alone, the gecko setal arrays do not require a compressive force to display a drag resistance but rather develop a tensile normal force when they are dragged (J. Experim. Biol. 2006, 209, 3569). We describe this unique behavior with a microscopic model involving curved beam structures at two length scales: at the spatula level, thousands of independent curved beams repeat detachment and reattachment, whereas at the seta level, the curved beam geometry of the seta induces a coupling between the frictional force and the adhesive force that depends on the angle of contact, therefore allowing easy release when the animal needs it. Our model accounts well for the dependence of the drag and adhesion forces on the drag velocity and can also explain macroscopic attachment/ detachment cycles of the setal array.

  3. Effect of fluoride concentration in adhesives on morphology of acid-base resistant zones.

    PubMed

    Kirihara, Masaru; Inoue, Go; Nikaido, Toru; Ikeda, Masaomi; Sadr, Alireza; Tagami, Junji

    2013-01-01

    This study aimed to investigate the effect of fluoride concentration in adhesives on morphology of acid-base resistant zone (ABRZ). Seven experimental adhesives with different concentrations of NaF (0 wt%; F0 to 100 wt%: F100) were prepared based on the formulation of a commercially available adhesive (Clearfil Protect Bond, F100). The resin-dentin interface of the bonded specimen was subjected to demineralizing solution and NaOCl, sectioned, polished and argon-ion etched for SEM observation. Fluoride release from each adhesive was measured using an ion-selective electrode. Fluoride ion release from the adhesive linearly increased with higher NaF concentration. The ABRZ area increased significantly with higher NaF concentration except for F0, F10, and F20 (p<0.05). F100 showed the largest ABRZ, where a slope of acid-resistant dentin was clearly observed at the bottom of the ABRZ. The concentration of NaF in the two-step self-etching adhesive resin influenced the amount of dentin structure remaining after acid-challenge.

  4. Design of a Side-View Particle Imaging Velocimetry Flow System for Cell-Substrate Adhesion Studies

    PubMed Central

    Leyton-Mange, Jordan; Yang, Sung; Hoskins, Meghan H.; Kunz, Robert F.; Zahn, Jeffrey D.; Dong, Cheng

    2009-01-01

    Experimental models that mimic the flow conditions in microcapillaries have suggested that the local shear stresses and shear rates can mediate tumor cell and leukocyte arrest on the endothelium and subsequent sustained adhesion. However, further investigation has been limited by the lack of experimental models that allow quantitative measurement of the hydrodynamic environment over adherent cells. The purpose of this study was to develop a system capable of acquiring quantitative flow profiles over adherent cells. By combining the techniques of side-view imaging and particle image velocimetry (PIV), an in vitro model was constructed that is capable of obtaining quantitative flow data over cells adhering to the endothelium. The velocity over an adherent leukocyte was measured and the shear rate was calculated under low and high upstream wall shear. The microcapillary channel was modeled using computational fluid dynamics (CFD) and the calculated velocity profiles over cells under the low and high shear rates were compared to experimental results. The drag force applied to each cell by the fluid was then computed. This system provides a means for future study of the forces underlying adhesion by permitting characterization of the local hydrodynamic conditions over adherent cells. PMID:16524340

  5. High temperature and environmental effects on the durability of Ti-6Al-4V/FM5 adhesive bonded system

    SciTech Connect

    Parvatareddy, H.; Pasricha, A.; Dillard, D.A.; Holmes, B.; Dillard, J.G.

    1997-12-31

    A fracture mechanics based approach using wedge and double cantilever beam (DCB) specimens is used to evaluate the durability of a titanium/adhesive system. The adhesive used was a polyimide developed by NASA Langley Research Center, modified and supplied by Cytec Engineered Materials, Inc., and designated as FM5. Prior to bonding, the adherend surfaces were pretreated by one of two surface pretreatments: phenylethynyl trimethyl silane or chromic acid anodization. Samples were aged at one of three different temperatures, 150, 177, and 204 C, all of which are well below the glass transition temperature of the adhesive. Aging was also carried out in one of three different environments, ambient atmospheric air and reduced air pressures of 2 psi air (13.8 KPa) and 0.2 psi air (1.38 KPa), for several months. Samples aged for different times were then tested to evaluate both static and fatigue properties. Results obtained thus far indicate that the greatest loss in strength occurs after aging in air at the highest aging temperature of 204 C. Strain energy release rate G values obtained from the static DCB tests dropped by 10 to 20% after aging for periods of up to 6 months. Solvent uptake tests were conducted on neat FM5 resin in several common organic solvents followed by tensile tests to evaluate both saturated and residual properties. Strain energy release rate values were also computed from wedge tests of samples immersed in the different solvents for several days. Results showed the FM5 resin to be quite solvent resistant.

  6. Genetics Home Reference: leukocyte adhesion deficiency type 1

    MedlinePlus

    ... adhesion deficiency type 1 leukocyte adhesion deficiency type 1 Enable Javascript to view the expand/collapse boxes. ... All Close All Description Leukocyte adhesion deficiency type 1 is a disorder that causes the immune system ...

  7. A multi-faceted treatment approach for anterior reconstructions using current ceramics, implants, and adhesive systems.

    PubMed

    Hajtó, Jan; Gehringer, Uwe; Ozcan, Mutlu

    2010-01-01

    Of all developments in dental technology, fulfilling the esthetic and functional demands of the patient, especially regarding anterior reconstructions, is still a challenge for both dentists and dental technicians. This becomes more difficult for patients with a previous treatment history that is not ideal. This case presentation demonstrates reconstruction of an anterior zirconia resin-bonded fixed dental prosthesis (RBFDP) for the mandible with a combined approach utilizing veneers for harmonized space distribution on the abutment teeth and an implant-supported zirconia fixed dental prosthesis in the anterior segment of the maxilla. Adhesive cementation of the restorations is also presented in a step-by-step approach based on the current state of the art.

  8. Influence of salivary contamination on the dentin bond strength of two different seventh generation adhesive systems: In vitro study

    PubMed Central

    Bhatia, Taranjeet Kaur; Asrani, Hemant; Banga, Harpreet; Jain, Aditi; Rawlani, Sudhir S.

    2015-01-01

    Aim: To investigate the effect of salivary contamination on the bond strength of two different seventh generation adhesive systems. Materials and Methods: Sixty caries-free human premolars with flat dentin surfaces were randomly divided into six groups of 10 teeth each and bonding was done using seventh-generation bonding agents Adper Easy One (3M ESPE) and Xeno V (Dentsply). Following the bonding procedure, resin composite was bonded to the surfaces using a plastic mould. The prepared specimen with composite cylinders attached were placed in 37°C distilled water for 24 h and then subjected to shear bond strength (SBS) with 0 h universal testing machine and the data were subjected to one-way analysis of variance and unpaired t-test. Results: Statistical significant difference between the Groups I, II and III in which Adper Easy One was used and similarly for Groups IV, V, and VI in which Xeno V was used. When an intergroup comparison was made using unpaired t-test Group II and Group V showed the nonsignificant difference. Conclusion: Salivary contamination significantly affects the SBS of both the seventh generation dentin bonding agents. However, 2-hydroxyethyl methacryate based adhesive has higher bond strength. PMID:26752841

  9. Water interaction and bond strength to dentin of dye-labelled adhesive as a function of the addition of rhodamine B

    PubMed Central

    WANG, Linda; BIM, Odair; LOPES, Adolfo Coelho de Oliveira; FRANCISCONI-DOS-RIOS, Luciana Fávaro; MAENOSONO, Rafael Massunari; D’ALPINO, Paulo Henrique Perlatti; HONÓRIO, Heitor Marques; ATTA, Maria Teresa

    2016-01-01

    ABSTRACT Objective This study investigated the effect of the fluorescent dye rhodamine B (RB) for interfacial micromorphology analysis of dental composite restorations on water sorption/solubility (WS/WSL) and microtensile bond strength to dentin (µTBS) of a 3-step total etch and a 2-step self-etch adhesive system. Material and Methods The adhesives Adper Scotchbond Multi-Purpose (MP) and Clearfil SE Bond (SE) were mixed with 0.1 mg/mL of RB. For the WS/WSL tests, cured resin disks (5.0 mm in diameter x 0.8 mm thick) were prepared and assigned into four groups (n=10): MP, MP-RB, SE, and SE-RB. For µTBS assessment, extracted human third molars (n=40) had the flat occlusal dentin prepared and assigned into the same experimental groups (n=10). After the bonding and restoration procedures, specimens were sectioned in rectangular beams, stored in water and tested after seven days or after 12 months. The failure mode of fractured specimens was qualitatively evaluated under optical microscope (x40). Data from WS/WSL and µTBS were assessed by one-way and three-way ANOVA, respectively, and Tukey’s test (α=5%). Results RB increased the WSL of MP and SE. On the other hand, WS of both MP and SE was not affected by the addition of RB. No significance in µTBS between MP and MP-RB for seven days or one year was observed, whereas for SE a decrease in the µTBS means occurred in both storage times. Conclusions RB should be incorporated into non-simplified DBSs with caution, as it can interfere with their physical-mechanical properties, leading to a possible misinterpretation of bonded interface. PMID:27556201

  10. Adhesive plasters

    DOEpatents

    Holcombe, Jr., Cressie E.; Swain, Ronald L.; Banker, John G.; Edwards, Charlene C.

    1978-01-01

    Adhesive plaster compositions are provided by treating particles of Y.sub.2 O.sub.3, Eu.sub.2 O.sub.3, Gd.sub.2 O.sub.3 or Nd.sub.2 O.sub.3 with dilute acid solutions. The resulting compositions have been found to spontaneously harden into rigid reticulated masses resembling plaster of Paris. Upon heating, the hardened material is decomposed into the oxide, yet retains the reticulated rigid structure.

  11. Adhesive particle shielding

    DOEpatents

    Klebanoff, Leonard Elliott; Rader, Daniel John; Walton, Christopher; Folta, James

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  12. Development of improved H.E. adhesives systems. Quarterly report, January, February, March 1964

    SciTech Connect

    Christiansen, H.P.

    1997-09-01

    Optimum mix of allyl glycidyl ether, needed as a thinner for Aerobond H-7, appears to be about 10 pph AGE which reduces viscosity to 165 cps. This reduces torsional shear strength to 930 in-lbs/in{sup 2} versus 1616 in-lbs/in{sup 2} in tests this quarter and values as low as 520 in-lbs/in{sup 2} reported previously. Water permeability was measured again for Adiprene, Perm-A-Lon and Estane; Aerobond H-7 was also measured using a filter paper backing material. The value for Estane was lower than in previous tests, 0.27 mg/cm{sup 2}/hour versus 1.08 and 1.15 mg/cm{sup 2} hour reported earlier. The disc extrudability test was set up and preliminary data were gathered for three lots of LX-0201 and several tile materials. The experiment to detect deficiencies in Adiprene L-100 as an adhesive for H.E. caused by aging is in its third year. Tensile strength results indicated no deterioration; but shear strength results were questionable. In both cases, breakage occurred in the H.E.

  13. Adhesion of human gingival fibroblasts/Streptococcus mitis co-culture on the nanocomposite system Chitlac-nAg.

    PubMed

    Cataldi, Amelia; Gallorini, Marialucia; Di Giulio, Mara; Guarnieri, Simone; Mariggiò, Maria Addolorata; Traini, Tonino; Di Pietro, Roberta; Cellini, Luigina; Marsich, Eleonora; Sancilio, Silvia

    2016-05-01

    Composite materials are increasingly used as dental restoration. In the field of biomaterials, infections remain the main reason of dental devices failure. Silver, in the form of nanoparticles (AgNPs), ions and salt, well known for its antimicrobial properties, is used in several medical applications in order to avoid bacterial infection. To reduce both bacterial adhesion to dental devices and cytotoxicity against eukaryotic cells, we coated BisGMA/TEGDMA methacrylic thermosets with a new material, Chitlac-nAg, formed by stabilized AgNPs with a polyelectrolyte solution containing Chitlac. Here we analyzed the proliferative and adhesive ability of human gingival fibroblasts (HGFs) on BisGMA/TEGDMA thermosets uncoated and coated with AgNPs in a coculture model system with Streptococcus mitis. After 48 h, HGFs well adhered onto both surfaces, while S. mitis cytotoxic response was higher in the presence of AgNPs coated thermosets. After 24 h thermosets coated with Chitlac as well as those coated with Chitlac-nAg exerted a minimal cytotoxic effect on HGFs, while after 48 h LDH release raised up to 20 %. Moreover the presence of S. mitis reduced this release mainly when HGFs adhered to Chitlac-nAg coated thermosets. The reduced secretion of collagen type I was significant in the presence of both surfaces with the co-culture system even more when saliva is added. Integrin β1 localized closely to cell membranes onto Chitlac-nAg thermosets and PKCα translocated into nuclei. These data confirm that Chitlac-nAg have a promising utilization in the field of restorative dentistry exerting their antimicrobial activity due to AgNPs without cytotoxicity for eukaryotic cells.

  14. Natural Underwater Adhesives

    PubMed Central

    Stewart, Russell J.; Ransom, Todd C.; Hlady, Vladimir

    2011-01-01

    The general topic of this review is protein-based underwater adhesives produced by aquatic organisms. The focus is on mechanisms of interfacial adhesion to native surfaces and controlled underwater solidification of natural water-borne adhesives. Four genera that exemplify the broad range of function, general mechanistic features, and unique adaptations are discussed in detail: blue mussels, acorn barnacles, sandcastle worms, and freshwater caddisfly larva. Aquatic surfaces in nature are charged and in equilibrium with their environment, populated by an electrical double layer of ions as well as adsorbed natural polyelectrolytes and microbial biofilms. Surface adsorption of underwater bioadhesives likely occurs by exchange of surface bound ligands by amino acid sidechains, driven primarily by relative affinities and effective concentrations of polymeric functional groups. Most aquatic organisms exploit modified amino acid sidechains, in particular phosphorylated serines and hydroxylated tyrosines (dopa), with high-surface affinity that form coordinative surface complexes. After delivery to the surfaces as a fluid, permanent natural adhesives solidify to bear sustained loads. Mussel plaques are assembled in a manner superficially reminiscent of in vitro layer-by-layer strategies, with sequentially delivered layers associated through Fe(dopa)3 coordination bonds. The adhesives of sandcastle worms, caddisfly larva, and barnacles may be delivered in a form somewhat similar to in vitro complex coacervation. Marine adhesives are secreted, or excreted, into seawater that has a significantly higher pH and ionic strength than the internal environment. Empirical evidence suggests these environment triggers could provide minimalistic, fail-safe timing mechanisms to prevent premature solidification (insolubilization) of the glue within the secretory system, yet allow rapid solidification after secretion. Underwater bioadhesives are further strengthened by secondary covalent

  15. Bond strengths of a self-etching adhesive to dentin surfaces treated with saliva, blood, and different hemostatic agents.

    PubMed

    Unlu, Nimet; Cebe, Fatma; Cebe, Mehmet Ata; Cetin, Ali Riza; Cobanoglu, Nevin

    2015-01-01

    The aim of this study was to evaluate the microtensile bond strengths of a self-etching adhesive to dentin surfaces after treatment with 4 different hemostatic agents in the presence of saliva and blood. After testing, no significant differences were found between the mean bond strength of Clearfil SE (CSE) Bond resin adhesive to normal dentin and those of CSE to dentin treated with the hemostatic agents ViscoStat Clear, Astringedent, or Astringedent X (P > 0.05). However, the mean bond strength of CSE Bond to dentin treated with Ankaferd Blood Stopper (ABS) was significantly greater than those of the other groups (P < 0.05). Thus, while 3 of the tested hemostatic agents did not have significant effects on the bond strength of composite resin to dentin, ABS increased the bond strength of CSE Bond to dentin. PMID:26147164

  16. Platelet adhesion to decorin but not collagen I correlates with the integrin α2 dimorphism E534K, the basis of the human platelet alloantigen (HPA)-5 system

    PubMed Central

    Kunicki, Thomas J.; Williams, Shirley A.; Diaz, Daniel; Farndale, Richard W.; Nugent, Diane J.

    2012-01-01

    A single nucleotide polymorphism in the integrin α2 gene ITGA2 (rs1801106; G1600A) creates the non-conservative amino acid substitution E534K, the basis of the human platelet alloantigen system HPA-5. Yet HPA-5 alleles do not influence binding of α2β1 to its primary ligand collagen I, and the effect of HPA-5 on platelet function has not been determined. We used a direct platelet adhesion assay to evaluate whether differential inheritance of HPA-5 alleles influences platelet adhesion to collagen I or an alternative ligand, decorin. Platelets from donors bearing one or more minor allele HPA-5b showed attenuated adhesion to purified decorin but not collagen I. Adhesion to decorin was significantly inhibited by human alloantibodies specific for HPA-5a but not by the collagen I sequence GFOGER or α2-specific inhibitory monoclonal antibodies. The minor allele 534K attenuates platelet adhesion to decorin but not collagen I, providing the first evidence of a functional effect of HPA-5 alleles. PMID:22133774

  17. A novel transdermal drug delivery system based on self-adhesive Janus nanofibrous film with high breathability and monodirectional water-penetration.

    PubMed

    Shi, Yongli; Li, Yue; Wu, Jianming; Wang, Weiguo; Dong, Anjie; Zhang, Jianhua

    2014-01-01

    Transdermal drug delivery systems (TDDS) had achieved significant success in medical practice, but still suffered from adhesion failure and skin reaction due to the occlusive properties of hydrophobic pressure sensitive adhesives (PSAs). In order to solve these problems, a novel TDDS patch based on self-adhesive Janus nanofibrous film was prepared by a multilayered electrospinning. This multifunctional patch was a bilayer structure. The subjacent layer was a hydrophobic and adhesive fibrous layer electrospun from polyacrylate PSA (HPSA), and the upper backing layer was a hydrophilic cross-linked poly (vinyl alcohol) (c-PVA) nanofibrous film. The structures of the HPSA/c-PVA composite fibrous films were characterized and their application properties, including adherence performance, water vapor permeability, water-penetration, release characteristics, and skin irritation were evaluated. The results indicated that the HPSA/c-PVA composite fibrous films could provide suitable adhesive properties for TDDS application, excellent capacity for drug loading and release, aesthetical appearance and high safety for use on the skin. Especially, due to the nanofibrous network structures and the hydrophobic-hydrophilic wettability gradient from hydrophobic HPSA layer to the hydrophilic c-PVA layer, the Janus films possessed high breathability and monodirectional water-penetration. Water could penetrate from the hydrophobic to the hydrophilic side, but could not permeate through in the opposite direction. This may provide a feasible solution to the problems caused by the water, sweat, or wound exudate on the skin, when the hydrophobic PSAs were used as matrix for TDDS and wound dressing patches.

  18. Wood Composite Adhesives

    NASA Astrophysics Data System (ADS)

    Gomez-Bueso, Jose; Haupt, Robert

    The global environment, in which phenolic resins are being used for wood composite manufacture, has changed significantly during the last decade. This chapter reviews trends that are driving the use and consumption of phenolic resins around the world. The review begins with recent data on volume usage and regional trends, followed by an analysis of factors affecting global markets. In a section on environmental factors, the impact of recent formaldehyde emission regulations is discussed. The section on economics introduces wood composite production as it relates to the available adhesive systems, with special emphasis on the technical requirement to improve phenolic reactivity. Advances in composite process technology are introduced, especially in regard to the increased demands the improvements place upon adhesive system performance. The specific requirements for the various wood composite families are considered in the context of adhesive performance needs. The results of research into current chemistries are discussed, with a review of recent findings regarding the mechanisms of phenolic condensation and acceleration. Also, the work regarding alternate natural materials, such as carbohydrates, lignins, tannins, and proteinaceous materials, is presented. Finally, new developments in alternative adhesive technologies are reported.

  19. Sealing of adhesive systems in ferric sulfate-contaminated dentinal margins in class V composite resin restorations.

    PubMed

    Shadman, Niloofar; Farzin Ebrahimi, Shahram; Mollaie, Najmeh

    2016-01-01

    Background. Hemostatic agents are applied to prepare an isolated bleeding-free condition during dental treatments and can influence adhesive restorations. This study evaluated the effect of a hemostatic agent (ViscoStat) on microleakage of contaminated dentinal margin of class V composite resin restorations with three adhesives. Methods. Sixty freshly extracted human molars were selected and class V cavities (3×3×1.5 mm) were prepared on buccal and lingual surfaces. Gingival margins of the cavities were placed below the cementoenamel junction. The teeth were divided into six groups randomly. The adhesives were Excite, AdheSE and AdheSE One. In three groups, the gingival walls of the cavities were contaminated with ViscoStat and then rinsed. The cavities were restored with composite resin and light-cured. After storage in distilled water (37°C) for 24 hours and polishing, the samples were thermocycled and sealed with nail varnish. Then they were stored in 1% basic fuchsin for 24 hours, rinsed and mounted in self-cured acryl resin, followed by sectioning buccolingually. Dye penetration was observed under a stereomicroscope and scored. Data were statistically analyzed with Kruskal-Wallis and Mann-Whitney U tests. P<0.05 was set as the level of significance. Results. Only in the Excite group, contamination did not have adverse effects on dentin microleakage (P > 0.05). In the contaminated groups, Excite had significantly less microleakage than the others (P = 0.003). AdheSE and AdheSE One did not exhibit significant difference in microleakage (P > 0.05). Conclusion. ViscoStat hemostatic agent increased dentinal microleakage in AdheSE and AdheSE One adhesives with no effect on Excite. PMID:27092210

  20. Sealing of adhesive systems in ferric sulfate-contaminated dentinal margins in class V composite resin restorations

    PubMed Central

    Shadman, Niloofar; Farzin Ebrahimi, Shahram; Mollaie, Najmeh

    2016-01-01

    Background. Hemostatic agents are applied to prepare an isolated bleeding-free condition during dental treatments and can influence adhesive restorations. This study evaluated the effect of a hemostatic agent (ViscoStat) on microleakage of contaminated dentinal margin of class V composite resin restorations with three adhesives. Methods. Sixty freshly extracted human molars were selected and class V cavities (3×3×1.5 mm) were prepared on buccal and lingual surfaces. Gingival margins of the cavities were placed below the cementoenamel junction. The teeth were divided into six groups randomly. The adhesives were Excite, AdheSE and AdheSE One. In three groups, the gingival walls of the cavities were contaminated with ViscoStat and then rinsed. The cavities were restored with composite resin and light-cured. After storage in distilled water (37°C) for 24 hours and polishing, the samples were thermocycled and sealed with nail varnish. Then they were stored in 1% basic fuchsin for 24 hours, rinsed and mounted in self-cured acryl resin, followed by sectioning buccolingually. Dye penetration was observed under a stereomicroscope and scored. Data were statistically analyzed with Kruskal-Wallis and Mann-Whitney U tests. P<0.05 was set as the level of significance. Results. Only in the Excite group, contamination did not have adverse effects on dentin microleakage (P > 0.05). In the contaminated groups, Excite had significantly less microleakage than the others (P = 0.003). AdheSE and AdheSE One did not exhibit significant difference in microleakage (P > 0.05). Conclusion. ViscoStat hemostatic agent increased dentinal microleakage in AdheSE and AdheSE One adhesives with no effect on Excite. PMID:27092210

  1. Bond Strength of a Novel One Bottle Multi-mode Adhesive to Human Dentin After Six Months of Storage

    PubMed Central

    Manfroi, Fernanda Borguetti; Marcondes, Maurem Leitão; Somacal, Deise Caren; Borges, Gilberto Antonio; Júnior, Luiz Henrique Burnett; Spohr, Ana Maria

    2016-01-01

    Objective: The aim of the study was to evaluate the microtensile bond strength (µTBS) of Scotchbond Universal to dentin using the etch-and-rinse or the self-etch technique after 24 h and 6 months of storage. Materials and Methods: Flat dentin surfaces were obtained in 24 third molars. The teeth were divided into four groups: G1 – Scotchbond Universal applied in the etch-and-rinse mode; G2 – Scotchbond Universal applied in the self-etch mode; G3 – Scotchbond Multi-Purpose; G4 – Clearfil SE Bond. A block of composite was built on the adhesive area. The tooth/resin sets were cut parallel to the long axis to obtain 40 beams (~0.8 mm2) for each group. Twenty specimens were immediately submitted to the µTBS test, and the remaining 20 were stored in water for 6 months. Failures and the adhesive interface were analyzed by SEM. Results: According to two-way ANOVA, the interaction between adhesive and storage time was significant (p=0.015).The µTBS (MPa) means were the following: 24 h – G1 (39.37±10.82), G2 (31.02±13.76), G3 (35.09±14.03) and G4 (35.84±11.06); 6 months – G1 (36.99±8.78), G2 (40.58±8.07), G3 (32.44±6.07) and G4 (41.75±8.25). Most failures were mixed. Evidence of hybrid layer and numerous resin tags were noted for Scotchbond Universal applied with the etch-and-rinse mode and Scotchbond Multi-Purpose. A thinner hybrid layer and fewer resin tags were noted for Scotchbond Universal applied in the self-etch mode and Clearfil SE Bond. Conclusion: The results indicate that the µTBS for Scotchbond Universal is comparable to the gold-standard adhesives. Scotchbond Universal applied in the self-etch mode and Clearfil SE Bond revealed higher bond stability compared to the etch-and-rinse mode. PMID:27347230

  2. Modulation of endothelial cell adhesion to synthetic vascular grafts using biotinylated fibronectin in a dual ligand protein system

    NASA Astrophysics Data System (ADS)

    Anamelechi, Charles Chibuzor

    Over half a million coronary artery bypass operations are performed annually in the US yielding an annual health care cost of over 16 billion dollars. Only five percent of bypasses are repeat operations in spite of the procedures prevalence. Patients facing repeat coronary artery bypass operations often lack transplantable autologous arteries or veins, necessitating the use of substitutes. Unfortunately, synthetic small diameter vascular grafts have unacceptable patency rates, primarily due to lumenal thrombus formation and intimal thickening. Endothelial cells (EC) mediate the anti-thrombotic activity in healthy blood vessels, and due to the scarcity of suitable autologous vascular replacement, EC-seeded small diameter synthetic vascular grafts represent a clear, immediate, and practical solution. The fundamental goal of this project was to optimize the dual ligand (DL) system on synthetic vascular graft (SVG) surrogates to show enhanced cell adhesion, retention, and native functionality compared to fibronectin alone. Initially, two SVG surrogates were identified through characterization by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and 125I radiolabeling. The first modification to the DL system involved direct biotinylation of fibronectin (bFN) as a replacement for co-adsorption of FN with biotinylated bovine serum albumin (bBSA). This was analyzed with a Langmuir model using surface plasmon resonance (SPR) spectroscopy to verify the binding affinity of bFN and ELISA to detect the availability of the RGD binding motif post biotinylation. The second major change in this project examined cell binding and formation of focal adhesion after shifting from direct incubation of HUVECs with RGD-SA to sequentially adsorbing bFN(9) and RGD-SA prior to introducing unmodified HUVECs. These experiments were conducted under static seeding conditions. Next, dynamic cell seeding onto the sequentially adsorbed protein surface was examined as a function

  3. Development of high temperature silicone adhesive formulations for thermal protection system applications

    NASA Technical Reports Server (NTRS)

    Hockridge, R. R.

    1973-01-01

    Trade-off studies and screening evaluations were made of commercial polymers and silicone foam sheet stock. A low modulus, low density 0.26 gm/cc modification was developed of the GE-RESD PD-200 system based upon GE RTV-560 silicone polymer. The bond system modification was initially characterized for mechanical and thermal properties, evaluated for application methods, and its capability demonstrated as a strain arrestor bond system.

  4. Coating Reduces Ice Adhesion

    NASA Technical Reports Server (NTRS)

    Smith, Trent; Prince, Michael; DwWeese, Charles; Curtis, Leslie

    2008-01-01

    The Shuttle Ice Liberation Coating (SILC) has been developed to reduce the adhesion of ice to surfaces on the space shuttle. SILC, when coated on a surface (foam, metal, epoxy primer, polymer surfaces), will reduce the adhesion of ice by as much as 90 percent as compared to the corresponding uncoated surface. This innovation is a durable coating that can withstand several cycles of ice growth and removal without loss of anti-adhesion properties. SILC is made of a binder composed of varying weight percents of siloxane(s), ethyl alcohol, ethyl sulfate, isopropyl alcohol, and of fine-particle polytetrafluoroethylene (PTFE). The combination of these components produces a coating with significantly improved weathering characteristics over the siloxane system alone. In some cases, the coating will delay ice formation and can reduce the amount of ice formed. SILC is not an ice prevention coating, but the very high water contact angle (greater than 140 ) causes water to readily run off the surface. This coating was designed for use at temperatures near -170 F (-112 C). Ice adhesion tests performed at temperatures from -170 to 20 F (-112 to -7 C) show that SILC is a very effective ice release coating. SILC can be left as applied (opaque) or buffed off until the surface appears clear. Energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) data show that the coating is still present after buffing to transparency. This means SILC can be used to prevent ice adhesion even when coating windows or other objects, or items that require transmission of optical light. Car windshields are kept cleaner and SILC effectively mitigates rain and snow under driving conditions.

  5. Increased erythrocyte adhesion to VCAM-1 during pulsatile flow: Application of a microfluidic flow adhesion bioassay

    PubMed Central

    White, Jennell; Lancelot, Moira; Sarnaik, Sharada; Hines, Patrick

    2015-01-01

    Abstract Sickle cell disease (SCD) is characterized by microvascular occlusion mediated by adhesive interactions of sickle erythrocytes (SSRBCs) to the endothelium. Most in vitro flow adhesion assays measure SSRBC adhesion during continuous flow, although in vivo SSRBC adhesive interactions occur during pulsatile flow. Using a well-plate microfluidic flow adhesion system, we demonstrate that isolated SSRBCs adhere to vascular cell adhesion molecule (VCAM-1) at greater levels during pulsatile versus continuous flow. A significant increase in adhesive interactions was observed between all pulse frequencies 1 Hz to 2 Hz (60–120 beats/min) when compared to non-pulsatile flow. Adhesion of isolated SSRBCs and whole blood during pulsatile flow was unaffected by protein kinase A (PKA) inhibition, and exposure of SSRBCs to pulsatile flow did not affect the intrinsic adhesive properties of SSRBCs. The cell type responsible for increased adhesion of whole blood varied from patient to patient. We conclude that low flow periods of the pulse cycle allow more adhesive interactions between sickle erythrocytes and VCAM-1, and sickle erythrocyte adhesion in the context of whole blood may better reflect physiologic cellular interactions. The microfluidic flow adhesion bioassay used in this study may have applications for clinical assessment of sickle erythrocyte adhesion during pulsatile flow. PMID:24898561

  6. Effect of Self-adhesive Resin Cement and Tribochemical Treatment on Bond Strength to Zirconia

    PubMed Central

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Shinya, Akiyoshi

    2010-01-01

    Aim To evaluate the interactive effects of different self-adhesive resin cements and tribochemical treatment on bond strength to zirconia. Methodology The following self-adhesive resin cements for bonding two zirconia blocks were evaluated: Maxcem (MA), Smartcem (SM), Rely X Unicem Aplicap (UN), Breeze (BR), Biscem (BI), Set (SE), and Clearfil SA luting (CL). The specimens were grouped according to conditioning as follows: Group 1, polishing with 600 grit polishing paper; Group 2, silica coating with 110 µm Al2O3 particles which modified with silica; and, Group 3, tribochemical treatment - silica coating + silanization. Specimens were stored in distilled water at 37°C for 24 hours before testing shear bond strength. Results Silica coating and tribochemical treatment significantly increased the bond strength of the MA, UN, BR, BI, SE and CL to zirconia compared to #600 polishing. For both #600 polished and silica coating treatments, MDP-containing self-adhesive resin cement CL had the highest bond strengths to zirconia. Conclusion Applying silica coating and tribochemical treatment improved the bond strength of self-adhesive resin cement to zirconia, especially for CL. PMID:20690416

  7. Antibacterial Effect of All-in-one Self-etch Adhesives on Enterococcus faecalis

    PubMed Central

    Ebrahimi Chaharom, Mohammad Esmaeel; Ajami, Amir Ahmad; Abed Kahnamouei, Mehdi; Jafari Navimipour, Elmira; Tehranchi, Pardis; Zand, Vahid; Sadeghi, Mohammad Reza; Sohrabi, Aydin

    2014-01-01

    Background and aims. The aim of this study was to evaluate the antibacterial activity of one-step self-etch adhesives on Enterococcus faecalis on days 1, 7 and 14 with the use of modified direct contact test. Materials and methods. The modified directcontact test was used to evaluate the antibacterial effect of Adper Easy One, Bond Force, Clearfil S3 Bond, Futurabond M, G-Bond, iBond and OptiBond All-in-one adhesives on Enterococcus faecalis after aging the samples in phosphate-buffered saline for one, seven and fourteen days. Data were analyzed using one-way ANOVA and post hoc Tukey tests. Aging effect of each adhesive was evaluated by paired-sample test. In this study, P<0.05 was considered significant. Results. All the tested adhesives exhibited antibacterial activity after one day and had significant differences with the positive control group (P<0.05). After one week, OptiBond All-in-one, iBond and Futurabond M exhibited significant differences in bacterial growth from other groups (P<0.05). There were no significant differences between the groups in two weeks (P>0.05). Conclusion. iBond exhibited the highest antibacterial effect on E. faecalis after one week. Futurabond and OptiBond All-in-one exhibited antibacterial effects against E. faecalis for one week. PMID:25587384

  8. Novel masked mercaptans based on thiolacetic acid/diallyl bisphenol a adducts as hardeners for epoxy adhesive systems

    SciTech Connect

    Lehmann, H.; Zahir, S.A.

    1995-12-01

    Epoxy resin formulations based on these masked mercaptans show adhesive properties equivalent to epoxy resin formulations cured with classical hardeners such as dicyandiamide. In addition the use of the masked mercaptans as an epoxy resin hardener leads to adhesive joints which show outstanding resistance to moisture. Thus Al/Al joints cured with a clinical epoxy formulation based on dicyandiamide as hardener (AV 8) failed in 30 days after exposure to water at (90{degrees}C) for 90 days. We believe that chemi-adsorption at the interface between metal/adhesive/metal plays an important role in giving this outstanding hot water resistance. This paper discusses the synthesis, the mechanism of cure with epoxide resins and the adhesive properties of these novel masked mercaptans.

  9. Effects of the application techniques of self-adhesive resin cements on the interfacial integrity and bond strength of fiber posts to dentin

    PubMed Central

    Pedreira, Ana Paula Ribeiro do Vale; D'Alpino, Paulo Henrique Perlatti; Pereira, Patrícia Nóbrega Rodrigues; Chaves, Sasha Braun; Wang, Linda; Hilgert, Leandro; Garcia, Fernanda Cristina Pimentel

    2016-01-01

    ABSTRACT Objective: To evaluate the influence of an application technique of a glass-fiber post using self-adhesive resin cements on the push-out bond strength and the presence of bubbles in the root thirds. The cements were either applied according to the manufacturer's instruction or using a commercial delivering system (Centrix), at which the cement pastes were collected and applied after manipulation. Material and Methods: Self-adhesive resin cements (RelyX U200/3M ESPE-U200; Maxcem Elite/Kerr-MAX; Clearfil SA Cement/Kuraray-CSA) and a conventional cement (RelyX ARC/3M ESPE-ARC) were used to cement a post and applied either based on the manufacturer's instructions or using a Centrix syringe to deliver the cements directly onto the post of choice, or directly into canal. The roots were scanned with a micro-computed tomography (μCT) and then sectioned into nine 1-mm thick slices for a push-out bond strength test. The μCT images showed the percentage of bubbles in the root thirds (cervical, medium, and apical). Data were analyzed with three-way ANOVA/Tukey (α=0.05). Results: Triple interaction was not significant (p>0.05). The interaction “material” vs “root third” was not significant. A significant interaction was observed between “material” vs “application technique” (p<0.05). For ARC, U200, and MAX, significantly lower percentages of bubbles were observed when the Centrix syringe delivered the cements. Equivalent percentages of voids were observed for CSA, irrespective of the application technique (p>0.05). Significantly higher bond strength was observed when the self-adhesive resin cements were applied using the Centrix delivery system, in comparison with the manufacturer's instructions (p<0.05). Bond strength varied with the root third: cervical>medium>apical (p<0.05). No correlations were found between the bond strength and voids. Conclusions: Bond strength and voids are negatively influenced by the conventional application technique for

  10. Gelation in a model 1-component system with adhesive hard-sphere interactions

    NASA Astrophysics Data System (ADS)

    Kim, Jung Min; Eberle, Aaron; Fang, Jun; Wagner, Norman

    2012-02-01

    Colloidal dispersions can undergo a dynamical arrest of the disperse phase leading to a system with solid-like properties when either the volume fraction or the interparticle potential is varied. Systems that contain low to moderate particulate concentrations form gels whereas higher concentrations lead to glassy states in which caging by nearest neighbors can be a significant contributor to the arrested long-time dynamics. Colloid polymer mixtures have been the prevalent model system for studying the effect of attraction, where attractions are entropically driven by depletion effects, in which gelation has been shown to be a result of phase separation [1]. Using the model 1-component octadecyl coated silica nanoparticle system, Eberle et al. [2] found the gel-line to intersect the spinodal to the left of the critical point, and at higher concentrations extended toward the mode coupling theory attractive driven glass line. . We continue this study by varying the particle diameter and find quantitative differences which we explain by gravity. 1. Lu, P.J., et al., Nature, 2008. 453(7194): p. 499-504.2. Eberle, A.P.R., N.J. Wagner, and R. Castaneda-Priego, Physical Review Letters, 2011. 106(10).

  11. Reversing Adhesion: A Triggered Release Self‐Reporting Adhesive

    PubMed Central

    Schenzel, Alexander M.; Klein, Christopher; Rist, Kai; Moszner, Norbert

    2016-01-01

    Here, the development of an adhesive is reported – generated via free radical polymerization – which can be degraded upon thermal impact within minutes. The degradation is based on a stimuli responsive moiety (SRM) that is incorporated into the network. The selected SRM is a hetero Diels‐Alder (HDA) moiety that features three key properties. First, the adhesive can be degraded at relatively low temperatures (≈80 °C), second the degradation occurs very rapidly (less than 3 min), and third, the degradation of the network can readily be analyzed and quantified due to its self‐reporting nature. The new reversible self‐reporting adhesion system is characterized in detail starting from molecular studies of the retro HDA reaction. Moreover, the mechanical properties of the network, as well as the adhesion forces, are investigated in detail and compared to common methacrylate‐based systems, demonstrating a significant decrease in mechanic stability at elevated temperatures. The current study thus represents a significant advance of the current state of the art for debonding on demand adhesives, making the system interesting for several fields of application including dental adhesives. PMID:27812461

  12. Adhesives for bonding RSI tile to GrPI structure for advanced space transportation systems

    NASA Technical Reports Server (NTRS)

    Smith, K. E.; Hamermesh, C. L.; Hogenson, P. A.

    1979-01-01

    A system was developed for bonding RSI tiles to a graphite/polymide composite substrate which would withstand the full range of environmental conditions. The bonding system, designated RA59, consists of a mixture of glass (sesquisiloxane) resin in RTV 560 silicone. A significant number of data points for the RA59 are in the 65-psi failure range both when tested, and after exposure to 700 F. This is over two times the best shear and tensile values obtained with RV60 at this temperature. It is concluded that with a thorough understanding of the critical parameters involved, the higher values should be obtained consistently with the RA59. This is of particular significance if higher strength tiles were to be used in a hard-bonded configuration.

  13. Gelation and state diagram for a model nanoparticle system with adhesive hard sphere interactions

    NASA Astrophysics Data System (ADS)

    Wagner, Norman; Aaron, Eberle

    2012-02-01

    We provide the first comprehensive state diagram of thermoreversible gelation in a model nanoparticle system from dilute concentrations to the attractive driven glass. We show the temperature dependence of the interparticle potential is related to a surface molecular phase transition of the brush layer using neutron reflectivity (NR) and small-angle neutron scattering (SANS) [1]. We establish the temperature dependence of the interparticle potential using SANS, dynamic light scattering (DLS), and rheology. The potential parameters extracted from SANS suggest that, for this system, gelation is an extension of the Mode Coupling Theory (MCT) attractive driven glass line (ADG) to lower volume fractions and follows the percolation transition. Below the critical concentration, gelation proceeds without competition for phase separation [2]. These results are used to develop a complete state diagram for the sticky hard sphere reference system. [4pt] [1] A.P.R. Eberle, N.J. Wagner, B. Akgun, S.K. Satija, Langmuir 26 3003 (2010).[0pt] [2] A.P.R. Eberle, N.J. Wagner, R. Castaneda-Priego, Phys. Rev. Let. 105704 (2011).

  14. A batch fabricated biomimetic dry adhesive

    NASA Astrophysics Data System (ADS)

    Northen, Michael T.; Turner, Kimberly L.

    2005-08-01

    The fine hair adhesive system found in nature is capable of reversibly adhering to just about any surface. This dry adhesive, best demonstrated in the pad of the gecko, makes use of a multilevel conformal structure to greatly increase inelastic surface contact, enhancing short range interactions and producing significant amounts of attractive forces. Recent work has attempted to reproduce and test the terminal submicrometre 'hairs' of the system. Here we report the first batch fabricated multi-scale conformal system to mimic nature's dry adhesive. The approach makes use of massively parallel MEMS processing technology to produce 20-150 µm platforms, supported by single slender pillars, and coated with ~2 µm long, ~200 nm diameter, organic looking polymer nanorods, or 'organorods'. To characterize the structures a new mesoscale nanoindenter adhesion test technique has been developed. Experiments indicate significantly improved adhesion with the multiscale system. Additional processing caused a hydrophilic to hydrophobic transformation of the surface and testing indicated further improvement in adhesion.

  15. Systems Biology Reveals Cigarette Smoke-Induced Concentration-Dependent Direct and Indirect Mechanisms That Promote Monocyte-Endothelial Cell Adhesion.

    PubMed

    Poussin, Carine; Laurent, Alexandra; Peitsch, Manuel C; Hoeng, Julia; De Leon, Hector

    2015-10-01

    Cigarette smoke (CS) affects the adhesion of monocytes to endothelial cells, a critical step in atherogenesis. Using an in vitro adhesion assay together with innovative computational systems biology approaches to analyze omics data, our study aimed at investigating CS-induced mechanisms by which monocyte-endothelial cell adhesion is promoted. Primary human coronary artery endothelial cells (HCAECs) were treated for 4 h with (1) conditioned media of human monocytic Mono Mac-6 (MM6) cells preincubated with low or high concentrations of aqueous CS extract (sbPBS) from reference cigarette 3R4F for 2 h (indirect treatment, I), (2) unconditioned media similarly prepared without MM6 cells (direct treatment, D), or (3) freshly generated sbPBS (fresh direct treatment, FD). sbPBS promoted MM6 cells-HCAECs adhesion following I and FD, but not D. In I, the effect was mediated at a low concentration through activation of vascular inflammation processes promoted in HCAECs by a paracrine effect of the soluble mediators secreted by sbPBS-treated MM6 cells. Tumor necrosis factor α (TNFα), a major inducer, was actually shed by unstable CS compound-activated TNFα-converting enzyme. In FD, the effect was triggered at a high concentration that also induced some toxicity. This effect was mediated through an yet unknown mechanism associated with a stress damage response promoted in HCAECs by unstable CS compounds present in freshly generated sbPBS, which had decayed in D unconditioned media. Aqueous CS extract directly and indirectly promotes monocytic cell-endothelial cell adhesion in vitro via distinct concentration-dependent mechanisms.

  16. Single macroscopic pillars as model system for bioinspired adhesives: influence of tip dimension, aspect ratio, and tilt angle.

    PubMed

    Micciché, Maurizio; Arzt, Eduard; Kroner, Elmar

    2014-05-28

    The goal of our study is to better understand the design parameters of bioinspired dry adhesives inspired by geckos. For this, we fabricated single macroscopic pillars of 400 μm diameter with different aspect ratios and different tip shapes (i.e., flat tips, spherical tips with different radii, and mushroom tips with different diameters). Tilt-angle-dependent adhesion measurements showed that although the tip shape of the pillars strongly influences the pull-off force, the pull-off strength is similar for flat and mushroom-shaped tips. We found no tilt-angle dependency of adhesion for spherical tip structures and, except for high tilt angle and low preload experiments, no tilt-angle effect for mushroom-tip pillars. For flat-tip pillars, we found a strong influence of tilt angle on adhesion, which decreased linearly with increasing aspect ratio. The experiments show that for the tested aspect ratios between 1 and 5, a linear decrease of tilt-angle dependency is found. The results of our studies will help to design bioinspired adhesives for application on smooth and rough surfaces.

  17. NR-150B2 adhesive development

    NASA Technical Reports Server (NTRS)

    Blatz, P. S.

    1978-01-01

    Adhesive based polyimide solutions which are more easily processed than conventional aromatic polyimide systems and show potential for use for extended times at 589K are discussed. The adhesive system is based on a solution containing diglyme as the solvent and 2,2 bis(3',4'-dicarboxyphenyl)hexafluoropropane, paraphenylenediamine, and oxydianiline. The replacement of N-methylpyrrolidone with diglyme as the solvent was found to improve the adhesive strengths of lap shear samples and simplify the processing conditions for bonding both titanium and graphite fiber/polyimide matrix resin composites. Information was obtained on the effects of various environments including high humidity, immersion in jet fuel and methylethylketone on aluminum filled adhesive bonds. The adhesive was also evaluated in wide area bonds and flatwise tensile specimens using titanium honeycomb and composite face sheets. It was indicated that the developed adhesive system has the potential for use in applications requiring long term exposure to at least 589K (600 F).

  18. Evaluation of sealing ability two self-etching adhesive systems and a glass ionomer lining LC under composite restoration in primary tooth: An in vitro study

    PubMed Central

    Pragasam, Ananda Xavier; Duraisamy, Vinola; Nayak, Ullal Anand; Reddy, Venugopal; Rao, Arun Prasad

    2015-01-01

    Aims and Objectives: To evaluate the sealing ability of two self-etching adhesive systems and glass ionomer cement (GIC) lining Light cure (LC) under composite restorations in primary teeth. Materials and Methods: Class V cavities are prepared on the cervical third of the facial and lingual surfaces of primary molars. The specimens are then assigned into four experimental groups. The restored primary molars are stored in distilled water and subjected to thermocycling. Each section was examined using a stereomicroscope to assess dye penetration at the margin of the restoration and evaluated via pictures. Statistical Analysis Used: The degree of microleakage was analyzed using Kruskal–Wallis test and the intergroup significance by multiple comparison analysis. Results: The mean rank of the groups are Group I (Adper Prompt™ + Z−100) 19.44, Group II (UniFil BOND + Solare) 5.38, Group III (GIC lining LC + Z−100) 20.06, and Group IV (GIC lining LC + Solare) 21.13 with the P < 0.001. Conclusion: Composite resin restorations bonded with two-step self-etching adhesive system (UniFil Bond) exhibited lesser microleakage than one-step self-etching adhesive system (Adperprompt™) in primary teeth. PMID:26538910

  19. Development of phosphorylated adhesives

    NASA Technical Reports Server (NTRS)

    Bilow, N.; Giants, T. W.; Jenkins, R. K.; Campbell, P. L.

    1983-01-01

    The synthesis of epoxy prepolymers containing phosphorus was carried out in such a manner as to provide adhesives containing at least 5 percent of this element. The purpose of this was to impart fire retardant properties to the adhesive. The two epoxy derivatives, bis(4-glycidyl-oxyphenyl)phenylphosphine oxide and bis(4-glycidyl-2-methoxyphenyl)phenylphosphonate, and a curing agent, bis(3-aminophenyl)methylphosphine oxide, were used in conjunction with one another and along with conventional epoxy resins and curing agents to bond Tedlar and Polyphenylethersulfone films to Kerimid-glass syntactic foam-filled honeycomb structures. Elevated temperatures are required to cure the epoxy resins with the phosphorus-contaning diamine; however, when Tedlar is being bonded, lower curing temperatures must be used to avoid shrinkage and the concomitant formation of surface defects. Thus, the phosphorus-containing aromatic amine curing agent cannot be used alone, although it is possible to use it in conjunction with an aliphatic amine which would allow lower cure temperatures to be used. The experimental epoxy resins have not provided adhesive bonds quite as strong as those provided by Epon 828 when compared in peel tests, but the differences are not very significant. It should be noted, if optimum properties are to be realized. In any case the fire retardant characteristics of the neat resin systems obtained are quite pronounced, since in most cases the self-extinguishing properties are evident almost instantly when specimens are removed from a flame.

  20. Understanding Marine Mussel Adhesion

    PubMed Central

    Roberto, Francisco F.

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  1. Understanding Marine Mussel Adhesion

    SciTech Connect

    H. G. Silverman; F. F. Roberto

    2007-12-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are waterimpervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion.

  2. Use of an air-fluid exchange system to promote graft adhesion during Descemet's stripping automated endothelial keratoplasty.

    PubMed

    Meisler, David M; Dupps, William J; Covert, Douglas J; Koenig, Steven B

    2007-05-01

    Dislocation of the graft is a well-recognized complication of Descemet's stripping automated endothelial keratoplasty (DSAEK). We describe a technique to promote adhesion of the graft during DSAEK using an anterior chamber air-fluid infusion and exchange for direct control of the pressure and medium used to tamponade the graft against the host stroma.

  3. Adhesion and wear resistance of materials

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1986-01-01

    Recent studies into the nature of bonding at the interface between two solids in contact or a solid and deposited film have provided a better understanding of those properties important to the adhesive wear resistance of materials. Analytical and experimental progress are reviewed. For simple metal systems the adhesive bond forces are related to electronic wave function overlap. With metals in contact with nonmetals, molecular-orbital energy, and density of states, respectively can provide insight into adhesion and wear. Experimental results are presented which correlate adhesive forces measured between solids and the electronic surface structures. Orientation, surface reconstruction, surface segregation, adsorption are all shown to influence adhesive interfacial strength. The interrelationship between adhesion and the wear of the various materials as well as the life of coatings applied to substrates are discussed. Metallic systems addressed include simple metals and alloys and these materials in contact with themselves, both oxide and nonoxide ceramics, diamond, polymers, and inorganic coating compounds, h as diamondlike carbon.

  4. Effect of cleaning methods on bond strength of self-etching adhesive to dentin

    PubMed Central

    Bronzato, Juliana Delatorre; Cecchin, Doglas; Miyagaki, Daniela Cristina; de Almeida, José Flávio Affonso; Ferraz, Caio Cezar Randi

    2016-01-01

    Aim: The aim of this study was to investigate the influence of cleaning methods to remove zinc oxide-eugenol-based root canal sealer (Endomethasone) on the bond strength of the self-etching adhesive to dentin. Materials and Methods: Twenty crowns of bovine incisors were cut to expose the pulp chamber. A zinc oxide- and eugenol-based sealer was placed for 10 min in contact with the pulp chamber dentin. Specimens were divided into four groups according to the cleaning method of dentin used: G1, no root canal sealer (control); G2, 0.9% sodium chlorite (NaCl); G3, ethanol; and G4, followed by diamond drill. After cleaning, the teeth were restored with composite resin and Clearfil SE Bond. All specimens were sectioned to produce rectangular sticks and dentin/resin interface was submitted to microtensile bond testing. The mean bond strengths were analyzed using ANOVA/Tukey (α = 0.05). Results: G3 and G4 showed bond strengths similar to the G1 (P > 0.05). A significant decrease in the bond strength in the G2 was observed (P < 0.05). G1, G3, and G4, the predominant failure mode was the mixed type. The prevalence of adhesive failure mode was verified in the G2. Conclusion: The cleaning methods affected the bond strength of the self-etching adhesive to dentin differently. PMID:26957789

  5. Effect of adhesive layer thickness and drug loading on estradiol crystallization in a transdermal drug delivery system.

    PubMed

    Imani, Mohammad; Lahooti-Fard, Farzad; Taghizadeh, Seyyed Mojtaba; Takrousta, Mitra

    2010-09-01

    The effects of adhesive layer thickness and drug loading on estradiol crystallization were studied in a drug-in-adhesive patch. Patches containing different estradiol loadings (1.1% and 1.6% w/w) in different thicknesses (45, 60, and 90 μm) were prepared by coating of a homogenous mixture of adhesive solution and the drug on a siliconized release liner by a film applicator. After drying, the film was laminated on a Poly(ethylene terephthalate) backing layer and cut into appropriate size. Release tests were performed using thermostated Chien-type diffusion cells. Cross-section of the patches was observed by optical microscopy. Scanning electron microscopy was done for surface analysis of the patches after drug release test. Crystal formation was not expected in the adhesive layer based on the linear free-energy relationship formalisms however; crystalline regions were observed in different locations through the thickness of the patches. These regions were significantly more discontinuous in 45 μm samples which elucidated the effective role of adhesive layer thickness in drug crystallization. Extensive crystallization observed for thicker patches was attributed to the strong crosslinking capability of estradiol hemihydrate. Drug release study confirmed some of the crystallization results. No significant increase was observed in the burst release with increasing in thickness from 45 to 60 μm which can be attributed to the severe increase in the crystallization extent. Also, formation of a crystalline layer near the releasing surface and more discontinuous pattern of the crystals in some samples was confirmed by investigation of the drug release curves.

  6. Human climbing with efficiently scaled gecko-inspired dry adhesives.

    PubMed

    Hawkes, Elliot W; Eason, Eric V; Christensen, David L; Cutkosky, Mark R

    2015-01-01

    Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for synthetic materials, so can gecko adhesion systems provide a baseline for scaling efficiency. In the tokay gecko (Gekko gecko), a scaling power law has been reported relating the maximum shear stress σmax to the area A: σmax ∝ A(-1/4). We present a mechanical concept which improves upon the gecko's non-uniform load-sharing and results in a nearly even load distribution over multiple patches of gecko-inspired adhesive. We created a synthetic adhesion system incorporating this concept which shows efficient scaling across four orders of magnitude of area, yielding an improved scaling power law: σmax ∝ A(-1/50). Furthermore, we found that the synthetic adhesion system does not fail catastrophically when a simulated failure is induced on a portion of the adhesive. In a practical demonstration, the synthetic adhesion system enabled a 70 kg human to climb vertical glass with 140 cm(2) of adhesive per hand.

  7. Human climbing with efficiently scaled gecko-inspired dry adhesives

    PubMed Central

    Hawkes, Elliot W.; Eason, Eric V.; Christensen, David L.; Cutkosky, Mark R.

    2015-01-01

    Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for synthetic materials, so can gecko adhesion systems provide a baseline for scaling efficiency. In the tokay gecko (Gekko gecko), a scaling power law has been reported relating the maximum shear stress σmax to the area A: σmax ∝ A−1/4. We present a mechanical concept which improves upon the gecko's non-uniform load-sharing and results in a nearly even load distribution over multiple patches of gecko-inspired adhesive. We created a synthetic adhesion system incorporating this concept which shows efficient scaling across four orders of magnitude of area, yielding an improved scaling power law: σmax ∝ A−1/50. Furthermore, we found that the synthetic adhesion system does not fail catastrophically when a simulated failure is induced on a portion of the adhesive. In a practical demonstration, the synthetic adhesion system enabled a 70 kg human to climb vertical glass with 140 cm2 of adhesive per hand. PMID:25411404

  8. Comparison of three work of adhesion measurements

    SciTech Connect

    Emerson, J.A.; O`Toole, E.; Zamora, D.; Poon, B.

    1998-02-01

    Practical work of adhesion measurements are being studied for several types of polymer/metal combinations in order to obtain a better understanding of the adhesive failure mechanisms for systems containing encapsulated and bonded components. The primary question is whether studies of model systems can be extended to systems of technological interest. The authors report on their first attempts to obtain the work of adhesion between a PDMS polymer and stainless steel. The work of adhesion measurements were made using three techniques -- contact angle, adhesive fracture energy at low deformation rates and JKR. Previous work by Whitesides` group show a good correlation between JKR and contact angle measurements for PDMS. Their initial work focused on duplicating the PDMS measurements of Chaudury. In addition, in this paper the authors extend the work of adhesion measurement to third technique -- interfacial failure energy. The ability to determine the reversible work of adhesion for practical adhesive joints allows understanding of several issues that control adhesion: surface preparation, nature of the interphase region, and bond durability.

  9. Control of vascular permeability by adhesion molecules

    PubMed Central

    Sarelius, Ingrid H; Glading, Angela J

    2014-01-01

    Vascular permeability is a vital function of the circulatory system that is regulated in large part by the limited flux of solutes, water, and cells through the endothelial cell layer. One major pathway through this barrier is via the inter-endothelial junction, which is driven by the regulation of cadherin-based adhesions. The endothelium also forms attachments with surrounding proteins and cells via 2 classes of adhesion molecules, the integrins and IgCAMs. Integrins and IgCAMs propagate activation of multiple downstream signals that potentially impact cadherin adhesion. Here we discuss the known contributions of integrin and IgCAM signaling to the regulation of cadherin adhesion stability, endothelial barrier function, and vascular permeability. Emphasis is placed on known and prospective crosstalk signaling mechanisms between integrins, the IgCAMs- ICAM-1 and PECAM-1, and inter-endothelial cadherin adhesions, as potential strategic signaling nodes for multipartite regulation of cadherin adhesion. PMID:25838987

  10. Control of vascular permeability by adhesion molecules.

    PubMed

    Sarelius, Ingrid H; Glading, Angela J

    2015-01-01

    Vascular permeability is a vital function of the circulatory system that is regulated in large part by the limited flux of solutes, water, and cells through the endothelial cell layer. One major pathway through this barrier is via the inter-endothelial junction, which is driven by the regulation of cadherin-based adhesions. The endothelium also forms attachments with surrounding proteins and cells via 2 classes of adhesion molecules, the integrins and IgCAMs. Integrins and IgCAMs propagate activation of multiple downstream signals that potentially impact cadherin adhesion. Here we discuss the known contributions of integrin and IgCAM signaling to the regulation of cadherin adhesion stability, endothelial barrier function, and vascular permeability. Emphasis is placed on known and prospective crosstalk signaling mechanisms between integrins, the IgCAMs- ICAM-1 and PECAM-1, and inter-endothelial cadherin adhesions, as potential strategic signaling nodes for multipartite regulation of cadherin adhesion. PMID:25838987

  11. Adhesion of biocompatible and biodegradable micropatterned surfaces.

    PubMed

    Kaiser, Jessica S; Kamperman, Marleen; de Souza, Emerson J; Schick, Bernhard; Arzt, Eduard

    2011-02-01

    We studied the effects of pillar dimensions and stiffness of biocompatible and biodegradable micropatterned surfaces on adhesion on different compliant substrates. The micropatterned adhesives were based on biocompatible polydimethylsiloxane (PDMS) and biodegradable poly(lactic-co-glycolic) acid (PLGA) polymer systems. Micropatterned and non-patterned compliant PDMS did not show significant differences in adhesion on compliant mice ear skin or on gelatin-glycerin model substrates. However, adhesion measurements for micropatterned stiff PLGA on compliant gelatin-glycerin model substrates showed significant enhancement in pull-off strengths compared to non-patterned controls.

  12. A dual-curable transfer layer for adhesion enhancement of a multilayer UV-curable nanoimprint resist system

    NASA Astrophysics Data System (ADS)

    Xia, Dingfu; Ye, Liang; Guo, Xu; Cui, Yushuang; Zhang, Jizong; Yuan, Changsheng; Ge, Haixiong; Wu, Wei; Chen, Yanfeng

    2012-07-01

    We invented a dual-curable transfer layer to enhance adhesion of the UV-curable nanoimprint resist to the substrate. Based on this transfer layer, we developed bilayer resist and trilayer resist UV-curable nanoimprint lithography processes, which were used for etching and lift-off processes, respectively. The dual-curable transfer layer combined at least two different types of reactive functions based on different polymerization mechanisms. It formed strong chemical bonds with both the underneath material and the nanoimprint resist layer in two curing steps. It helped improve the adhesion of the low surface energy resist film to the substrate substantially, and, more importantly, made high-resolution patterning much more reliable. Moreover, low aspect ratio imprinted patterns were amplified into high aspect ratio patterns through the transfer layer via a selective etching process.

  13. PH dependent adhesive peptides

    DOEpatents

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  14. Design and fabrication of gecko-inspired adhesives.

    PubMed

    Jin, Kejia; Tian, Yu; Erickson, Jeffrey S; Puthoff, Jonathan; Autumn, Kellar; Pesika, Noshir S

    2012-04-01

    Recently, there has been significant interest in developing dry adhesives mimicking the gecko adhesive system, which offers several advantages compared to conventional pressure-sensitive adhesives. Specifically, gecko adhesive pads have anisotropic adhesion properties; the adhesive pads (spatulae) stick strongly when sheared in one direction but are non-adherent when sheared in the opposite direction. This anisotropy property is attributed to the complex topography of the array of fine tilted and curved columnar structures (setae) that bear the spatulae. In this study, we present an easy, scalable method, relying on conventional and unconventional techniques, to incorporate tilt in the fabrication of synthetic polymer-based dry adhesives mimicking the gecko adhesive system, which provides anisotropic adhesion properties. We measured the anisotropic adhesion and friction properties of samples with various tilt angles to test the validity of a nanoscale tape-peeling model of spatular function. Consistent with the peel zone model, samples with lower tilt angles yielded larger adhesion forces. The tribological properties of the synthetic arrays were highly anisotropic, reminiscent of the frictional adhesion behavior of gecko setal arrays. When a 60° tilt sample was actuated in the gripping direction, a static adhesion strength of ~1.4 N/cm(2) and a static friction strength of ~5.4 N/cm(2) were obtained. In contrast, when the dry adhesive was actuated in the releasing direction, we measured an initial repulsive normal force and negligible friction.

  15. Mini-review: barnacle adhesives and adhesion.

    PubMed

    Kamino, Kei

    2013-01-01

    Barnacles are intriguing, not only with respect to their importance as fouling organisms, but also in terms of the mechanism of underwater adhesion, which provides a platform for biomimetic and bioinspired research. These aspects have prompted questions regarding how adult barnacles attach to surfaces under water. The multidisciplinary and interdisciplinary nature of the studies makes an overview covering all aspects challenging. This mini-review, therefore, attempts to bring together aspects of the adhesion of adult barnacles by looking at the achievements of research focused on both fouling and adhesion. Biological and biochemical studies, which have been motivated mainly by understanding the nature of the adhesion, indicate that the molecular characteristics of barnacle adhesive are unique. However, it is apparent from recent advances in molecular techniques that much remains undiscovered regarding the complex event of underwater attachment. Barnacles attached to silicone-based elastomeric coatings have been studied widely, particularly with respect to fouling-release technology. The fact that barnacles fail to attach tenaciously to silicone coatings, combined with the fact that the mode of attachment to these substrata is different to that for most other materials, indicates that knowledge about the natural mechanism of barnacle attachment is still incomplete. Further research on barnacles will enable a more comprehensive understanding of both the process of attachment and the adhesives used. Results from such studies will have a strong impact on technology aimed at fouling prevention as well as adhesion science and engineering.

  16. Polyurethane adhesive with improved high temperature properties

    NASA Technical Reports Server (NTRS)

    Stuckey, J. M.

    1977-01-01

    A polyurethane resin with paste activator, capable of providing useful bond strengths over the temperature range of -184 C to 149 C, is described. The adhesive system has a pot life of over one hour. Tensile shear strength ratings are given for various adhesive formulations.

  17. Systemic endothelial activation occurs in both mild and severe malaria. Correlating dermal microvascular endothelial cell phenotype and soluble cell adhesion molecules with disease severity.

    PubMed

    Turner, G D; Ly, V C; Nguyen, T H; Tran, T H; Nguyen, H P; Bethell, D; Wyllie, S; Louwrier, K; Fox, S B; Gatter, K C; Day, N P; Tran, T H; White, N J; Berendt, A R

    1998-06-01

    Fatal Plasmodium falciparum malaria is accompanied by systemic endothelial activation. To study endothelial activation directly during malaria and sepsis in vivo, the expression of cell adhesion molecules on dermal microvascular endothelium was examined in skin biopsies and correlated with plasma levels of soluble (circulating) ICAM-1, E-selectin, and VCAM-1 and the cytokine tumor necrosis factor (TNF)-alpha. Skin biopsies were obtained from 61 cases of severe malaria, 42 cases of uncomplicated malaria, 10 cases of severe systemic sepsis, and 17 uninfected controls. Systemic endothelial activation, represented by the up-regulation of inducible cell adhesion molecules (CAMs) on endothelium and increased levels of soluble CAMs (sCAMs), were seen in both severe and uncomplicated malaria and sepsis when compared with uninfected controls. Plasma levels of sICAM-1, sVCAM-1, and sE-selectin correlated positively with the severity of malaria whereas TNF-alpha was raised nonspecifically in malaria and sepsis. Immunohistochemical evidence of endothelial activation in skin biopsies did not correlate with sCAM levels or disease severity. This indicates a background of systemic endothelial activation, which occurs in both mild and severe malaria and sepsis. The levels of sCAMs in malaria are thus not an accurate reflection of endothelial cell expression of CAMs in a particular vascular bed, and other factors must influence their levels during disease.

  18. Systemic endothelial activation occurs in both mild and severe malaria. Correlating dermal microvascular endothelial cell phenotype and soluble cell adhesion molecules with disease severity.

    PubMed Central

    Turner, G. D.; Ly, V. C.; Nguyen, T. H.; Tran, T. H.; Nguyen, H. P.; Bethell, D.; Wyllie, S.; Louwrier, K.; Fox, S. B.; Gatter, K. C.; Day, N. P.; Tran, T. H.; White, N. J.; Berendt, A. R.

    1998-01-01

    Fatal Plasmodium falciparum malaria is accompanied by systemic endothelial activation. To study endothelial activation directly during malaria and sepsis in vivo, the expression of cell adhesion molecules on dermal microvascular endothelium was examined in skin biopsies and correlated with plasma levels of soluble (circulating) ICAM-1, E-selectin, and VCAM-1 and the cytokine tumor necrosis factor (TNF)-alpha. Skin biopsies were obtained from 61 cases of severe malaria, 42 cases of uncomplicated malaria, 10 cases of severe systemic sepsis, and 17 uninfected controls. Systemic endothelial activation, represented by the up-regulation of inducible cell adhesion molecules (CAMs) on endothelium and increased levels of soluble CAMs (sCAMs), were seen in both severe and uncomplicated malaria and sepsis when compared with uninfected controls. Plasma levels of sICAM-1, sVCAM-1, and sE-selectin correlated positively with the severity of malaria whereas TNF-alpha was raised nonspecifically in malaria and sepsis. Immunohistochemical evidence of endothelial activation in skin biopsies did not correlate with sCAM levels or disease severity. This indicates a background of systemic endothelial activation, which occurs in both mild and severe malaria and sepsis. The levels of sCAMs in malaria are thus not an accurate reflection of endothelial cell expression of CAMs in a particular vascular bed, and other factors must influence their levels during disease. Images Figure 1 PMID:9626052

  19. Modular glass chip system measuring the electric activity and adhesion of neuronal cells--application and drug testing with sodium valproic acid.

    PubMed

    Koester, Philipp Julian; Buehler, Sebastian Moritz; Stubbe, Marco; Tautorat, Carsten; Niendorf, Mathias; Baumann, Werner; Gimsa, Jan

    2010-06-21

    We developed a modular neurochip system by combining a small (16x16 mm2) glass neurochip (GNC) with a homemade head stage and commercial data acquisition hardware and software. The system is designed for the detection of the electric activity of cultivated nerve or muscle cells by a 52-microelectrode array (MEA). In parallel, cell adhesion can be registered from the electric impedance of an interdigitated electrode structure (IDES). The GNC was tested with various cell lines and primary cells. It is fully autoclavable and re-useable. Murine embryonic primary cells were used as a model system to correlate the electric activity and adhesion of neuronal networks in a drug test with sodium valproic acid. The test showed the advantage of the parallel IDES and MEA measurements, i.e. the parallel detection of cytotoxic and neurotoxic effects. Toxic exposure of the cells during neuronal network formation allows for the characterization of developmental neurotoxic effects even at drug concentrations below the EC50-value for acute neurotoxic effects. At high drug concentrations, the degree of cytotoxic damage can still be assessed from the IDES data in the event that no electric activity develops. The GNC provides optimal cell culture conditions for up to months in combination with full microscopic observability. The 4'' glass wafer technology allows for a high precision of the GNC structures and an economic production of our new system that can be applied in general and developmental toxicity tests as well as in the search for neuro-active compounds.

  20. Capillarity-based switchable adhesion.

    PubMed

    Vogel, Michael J; Steen, Paul H

    2010-02-23

    Drawing inspiration from the adhesion abilities of a leaf beetle found in nature, we have engineered a switchable adhesion device. The device combines two concepts: The surface tension force from a large number of small liquid bridges can be significant (capillarity-based adhesion) and these contacts can be quickly made or broken with electronic control (switchable). The device grabs or releases a substrate in a fraction of a second via a low-voltage pulse that drives electroosmotic flow. Energy consumption is minimal because both the grabbed and released states are stable equilibria that persist with no energy added to the system. Notably, the device maintains the integrity of an array of hundreds to thousands of distinct interfaces during active reconfiguration from droplets to bridges and back, despite the natural tendency of the liquid toward coalescence. We demonstrate the scaling of adhesion strength with the inverse of liquid contact size. This suggests that strengths approaching those of permanent bonding adhesives are possible as feature size is scaled down. In addition, controllability is fast and efficient because the attachment time and required voltage also scale down favorably. The device features compact size, no solid moving parts, and is made of common materials.

  1. Capillarity-based switchable adhesion

    PubMed Central

    Vogel, Michael J.; Steen, Paul H.

    2010-01-01

    Drawing inspiration from the adhesion abilities of a leaf beetle found in nature, we have engineered a switchable adhesion device. The device combines two concepts: The surface tension force from a large number of small liquid bridges can be significant (capillarity-based adhesion) and these contacts can be quickly made or broken with electronic control (switchable). The device grabs or releases a substrate in a fraction of a second via a low-voltage pulse that drives electroosmotic flow. Energy consumption is minimal because both the grabbed and released states are stable equilibria that persist with no energy added to the system. Notably, the device maintains the integrity of an array of hundreds to thousands of distinct interfaces during active reconfiguration from droplets to bridges and back, despite the natural tendency of the liquid toward coalescence. We demonstrate the scaling of adhesion strength with the inverse of liquid contact size. This suggests that strengths approaching those of permanent bonding adhesives are possible as feature size is scaled down. In addition, controllability is fast and efficient because the attachment time and required voltage also scale down favorably. The device features compact size, no solid moving parts, and is made of common materials. PMID:20133725

  2. Urokinase does not prevent abdominal adhesion formation in rats.

    PubMed

    Rivkind, A I; Lieberman, N; Durst, A L

    1985-01-01

    Damage to the fibrinolytic system preventing the resolution of temporary fibrinous adhesions was repeatedly mentioned as an etiological factor in the process of adhesion formation. We experimentally induced abdominal adhesions in rats by gentle scraping of the entire small bowel. Severe adhesions, sometimes accompanied by intestinal obstruction, developed in all of the control animals. Urokinase, a commonly used and potent fibrinolytic agent and a known plasminogen activator, was administered intragastrically, intraperitoneally, or intravenously at various doses ranging from 5,000 to 100,000 U/kg. Urokinase had no effect on the prevention of abdominal adhesions, nor did it reduce the severity or frequency of adhesion formation. PMID:4043158

  3. UV curable pressure sensitive adhesives

    SciTech Connect

    Glotfelter, C.A.

    1995-12-01

    Pressure sensitive adhesives (PSA`s) have become a ubiquitous element in our society, so much so, that the relative status of a society can be determined by the per capita consumption of PSA`s. We discuss new monomers as components of PSA formulations which enable adhesion to be achieved on a variety of substrates. Since solventless coating systems are desirable, the UV PSA market is of utmost importance to meeting the strict environmental guidelines now being imposed worldwide. In addition, highly ethoxylated monomers have shown promise in water dispersed PSA formulations, and a self-emulsifying acrylate monomer has been developed to offer dispersive abilities without using traditional emulsifying agents. This talk will focus on the effects of the materials described on properties of adhesive strength and shear strength in UV PSA formulations.

  4. A novel addition polyimide adhesive

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Progar, D. J.

    1981-01-01

    An addition polyimide adhesive, LARC 13, was developed which shows promise for bonding both titanium and composites for applications which require service temperatures in excess of 533 K. The LARC 13 is based on an oligomeric bis nadimide containing a meta linked aromatic diamine. The adhesive melts prior to polymerization due to its oligomeric nature, thereby allowing it to be processed at 344 kPa or less. Therefore, LARC 13 is ideal for the bonding of honeycomb sandwich structures. After melting, the resin thermosets during the cure of the nadic endcaps to a highly crosslinked system. Few volatiles are evolved, thus allowing large enclosed structures to be bonded. Preparation of the adhesive as well as bonding, aging, and testing of lap shear and honeycomb samples are discussed.

  5. New adhesive withstands temperature extremes

    NASA Technical Reports Server (NTRS)

    Park, J. J.; Seidenberg, B.

    1978-01-01

    Adhesive, developed for high-temperature components aboard satellites, is useful at both high and low temperatures and exhibits low-vacuum volatility and low shrinkage. System uses polyfunctional epoxy with high aromatic content, low equivalent weight, and more compact polymer than conventional bisphenol A tape.

  6. Human platelet glycoprotein V: characterization of the polypeptide and the related Ib-V-IX receptor system of adhesive, leucine-rich glycoproteins.

    PubMed Central

    Hickey, M J; Hagen, F S; Yagi, M; Roth, G J

    1993-01-01

    Human platelet glycoprotein (GP) V (M(r) 83,300), whose primary structure is reported here, is a part of the Ib-V-IX system of surface glycoproteins (GPs Ib alpha, Ib beta, V, IX) that constitute the receptor for von Willebrand factor (vWf) and mediate the adhesion of platelets to injured vascular surfaces in the arterial circulation, a critical initiating event in hemostasis. System members share physical associations, leucine-rich glycoprotein (LRG) structures, and a congenital deficiency state, Bernard-Soulier syndrome. With PCR techniques and platelet cDNA templates, 1.4 kb of GP V cDNA sequence was obtained that encodes 469 GP V amino acids. A genomic 3.5-kb BamHI fragment was then isolated that includes 3.46 kb of GP V cDNA sequence: the 1.7-kb open reading frame plus 2 bases of the 5' and 1.8 kb of the 3' untranslated regions. Northern blot analysis reveals three GP V platelet transcripts of 3.8, 4.2, and 5.2 kb. A 16-amino acid signal peptide is present. Mature GP V is a 544-amino acid transmembrane protein with a 504-amino acid extracellular domain that encompasses a set of 15 tandem LRG repeats in a "flank-LRG center-flank" array [Roth, G. J. (1991) Blood 77, 5-19] along with eight putative N-linked glycosylation sites and cleavage sites for thrombin and calpain. GP V is a transmembrane, adhesive LRG protein that plays an undefined, but potentially critical, role in the expression and/or function of the Ib-V-IX receptor for vWf/shear-dependent platelet adhesion in arteries. Images Fig. 2 PMID:7690959

  7. Effect of green tea extract on bonding durability of an etch-and-rinse adhesive system to caries-affected dentin

    PubMed Central

    CARVALHO, Carolina; FERNANDES, Fernando Pelegrim; FREITAS, Valeria da Penha; FRANÇA, Fabiana Mantovani Gomes; BASTING, Roberta Tarkany; TURSSI, Cecilia Pedroso; AMARAL, Flávia Lucisano Botelho

    2016-01-01

    ABSTRACT Objective Green tea extract has been advocated as a matrix metalloproteinase (MMP) inhibitor; however, its effect on bond durability to caries-affected dentin has never been reported. Thus, the aim of this in vitro study was to evaluate the effect of two MMP inhibitors (2% chlorhexidine and 2% green tea extract), applied after acid etching, on bond durability of an etch-and-rinse adhesive system to caries-affected dentin. Material and Methods Occlusal enamel was removed from third molars to expose the dentin surface, and the molars were submitted to a caries induction protocol for 15 days. After removal of infected dentin, specimens were conditioned with 37% phosphoric acid (15 seconds) and randomly divided into three groups, according to the type of dentin pretreatment (n=10): NT: no treatment; GT: 2% green tea extract; CLX: 2% chlorhexidine. The etch-and-rinse adhesive system (Adper™ Single Bond 2, 3M ESPE, St. Paul, MN, USA) was applied according to the manufacturer's instructions, and composite resin restorations were built on the dentin. After 24 hours, at 37°C, the resin-tooth blocks were sectioned perpendicularly to the adhesive interface in the form of sticks (0.8 mm2 of adhesive area) and randomly subdivided into two groups according to when they were to be submitted to microtensile bond strength (μTBS) testing: immediately or 6 months after storage in distilled water. Data were reported in MPa and submitted to two-way ANOVA for completely randomized blocks, followed by Tukey’s test (α=0.05). Results After 24 hours, there was no significant difference in the μTBS of the groups. After 6 months, the GT group had significantly higher μTBS values. Conclusion It was concluded that the application of 2% green tea extract was able to increase bond durability of the etch-and-rinse system to dentin. Neither the application of chlorhexidine nor non-treatment (NT - control) had any effect on bond strength after water storage. PMID:27383701

  8. Thermal Characterization of Epoxy Adhesive by Hotfire Testing

    NASA Technical Reports Server (NTRS)

    Spomer, Ken A.; Haddock, M. Reed; McCool, Alex (Technical Monitor)

    2001-01-01

    This paper describes subscale solid-rocket motor hot-fire testing of epoxy adhesives in flame surface bondlines to evaluate heat-affected depth, char depth and ablation rate. Hot-fire testing is part of an adhesive down-selection program on the Space Shuttle Solid Rocket Motor Nozzle to provide additional confidence in the down-selected adhesives. The current nozzle structural adhesive bond system is being replaced due to obsolescence. Prior to hot-fire testing, adhesives were tested for chemical, physical and mechanical properties, which resulted in the selection of two potential replacement adhesives, Resin Technology Group's TIGA 321 and 3M's EC2615XLW. Hot-fire testing consisted of four forty-pound charge (FPC) motors fabricated in configurations that would allow side-by-side comparison testing of the candidate replacement adhesives with the current RSRM adhesives. Results of the FPC motor testing show that: 1) the phenolic char depths on radial bondlines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used, 2) the replacement candidate adhesive char depths are equivalent to the char depths of the current adhesives, 3) the heat-affected depths of the candidate and current adhesives are equivalent, and 4) the ablation rates for both replacement adhesives were equivalent to the current adhesives.

  9. High temperature adhesive silicone foam composition, foam generating system and method of generating foam. [For access denial

    DOEpatents

    Mead, J.W.; Montoya, O.J.; Rand, P.B.; Willan, V.O.

    1983-12-21

    Access to a space is impeded by generation of a sticky foam from a silicone polymer and a low boiling solvent such as a halogenated hydrocarbon. In a preferred aspect, the formulation is polydimethylsiloxane gel mixed with F502 Freon as a solvent and blowing agent, and pressurized with CO/sub 2/ in a vessel to about 250 PSI, whereby when the vessel is opened, a sticky and solvent resistant foam is deployed. The foam is deployable, over a wide range of temperatures, adhering to wet surfaces as well as dry, is stable over long periods of time and does not propagate flame or lose adhesive properties during an externally supported burn.

  10. Fatigue behavior of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Mall, S.

    1983-01-01

    The fatigue damage mechanism of composite to composite adhesively bonded joints was characterized. The mechanics of the possible modes of fatigue damage propagation in these joints when subjected to constant amplitude cyclic mechanical loading were investigated. The possible failure modes in composite bonded joints may be cyclic debonding (i.e., progressive separation of the adhesive), interlaminar damage (delamination), adherend fatigue or a combination of these. Two composite systems - graphite/epoxy adhesively bonded to graphite/epoxy and Kevlar 49/epoxy adhesively bonded to Kevlar 49/epoxy were investigated. Both composite systems consisted of quasi-isotropic lay-ups, i.e., 0 deg/-45 deg/+45 deg/90 degs. The two adhesives, employed in the study were (1) EC 3445 with cure temperature of 250 F for secondary bonding and (2) FM 300 with cure temperature of 350 F for co-cure bonding.

  11. Verticillium transcription activator of adhesion Vta2 suppresses microsclerotia formation and is required for systemic infection of plant roots.

    PubMed

    Tran, Van-Tuan; Braus-Stromeyer, Susanna A; Kusch, Harald; Reusche, Michael; Kaever, Alexander; Kühn, Anika; Valerius, Oliver; Landesfeind, Manuel; Aßhauer, Kathrin; Tech, Maike; Hoff, Katharina; Pena-Centeno, Tonatiuh; Stanke, Mario; Lipka, Volker; Braus, Gerhard H

    2014-04-01

    Six transcription regulatory genes of the Verticillium plant pathogen, which reprogrammed nonadherent budding yeasts for adhesion, were isolated by a genetic screen to identify control elements for early plant infection. Verticillium transcription activator of adhesion Vta2 is highly conserved in filamentous fungi but not present in yeasts. The Magnaporthe grisea ortholog conidiation regulator Con7 controls the formation of appressoria which are absent in Verticillium species. Vta2 was analyzed by using genetics, cell biology, transcriptomics, secretome proteomics and plant pathogenicity assays. Nuclear Vta2 activates the expression of the adhesin-encoding yeast flocculin genes FLO1 and FLO11. Vta2 is required for fungal growth of Verticillium where it is a positive regulator of conidiation. Vta2 is mandatory for accurate timing and suppression of microsclerotia as resting structures. Vta2 controls expression of 270 transcripts, including 10 putative genes for adhesins and 57 for secreted proteins. Vta2 controls the level of 125 secreted proteins, including putative adhesins or effector molecules and a secreted catalase-peroxidase. Vta2 is a major regulator of fungal pathogenesis, and controls host-plant root infection and H2 O2 detoxification. Verticillium impaired in Vta2 is unable to colonize plants and induce disease symptoms. Vta2 represents an interesting target for controlling the growth and development of these vascular pathogens.

  12. Verticillium transcription activator of adhesion Vta2 suppresses microsclerotia formation and is required for systemic infection of plant roots.

    PubMed

    Tran, Van-Tuan; Braus-Stromeyer, Susanna A; Kusch, Harald; Reusche, Michael; Kaever, Alexander; Kühn, Anika; Valerius, Oliver; Landesfeind, Manuel; Aßhauer, Kathrin; Tech, Maike; Hoff, Katharina; Pena-Centeno, Tonatiuh; Stanke, Mario; Lipka, Volker; Braus, Gerhard H

    2014-04-01

    Six transcription regulatory genes of the Verticillium plant pathogen, which reprogrammed nonadherent budding yeasts for adhesion, were isolated by a genetic screen to identify control elements for early plant infection. Verticillium transcription activator of adhesion Vta2 is highly conserved in filamentous fungi but not present in yeasts. The Magnaporthe grisea ortholog conidiation regulator Con7 controls the formation of appressoria which are absent in Verticillium species. Vta2 was analyzed by using genetics, cell biology, transcriptomics, secretome proteomics and plant pathogenicity assays. Nuclear Vta2 activates the expression of the adhesin-encoding yeast flocculin genes FLO1 and FLO11. Vta2 is required for fungal growth of Verticillium where it is a positive regulator of conidiation. Vta2 is mandatory for accurate timing and suppression of microsclerotia as resting structures. Vta2 controls expression of 270 transcripts, including 10 putative genes for adhesins and 57 for secreted proteins. Vta2 controls the level of 125 secreted proteins, including putative adhesins or effector molecules and a secreted catalase-peroxidase. Vta2 is a major regulator of fungal pathogenesis, and controls host-plant root infection and H2 O2 detoxification. Verticillium impaired in Vta2 is unable to colonize plants and induce disease symptoms. Vta2 represents an interesting target for controlling the growth and development of these vascular pathogens. PMID:24433459

  13. New modified polyetheretherketone membrane for liver cell culture in biohybrid systems: adhesion and specific functions of isolated hepatocytes.

    PubMed

    De Bartolo, L; Morelli, S; Rende, M; Gordano, A; Drioli, E

    2004-08-01

    There has been growing interest in innovative materials with physico-chemical properties that provide improved blood/cell compatibility. We propose new polymeric membranes made of modified polyetheretherketone (PEEK-WC) as materials with potential for use in biohybrid devices. PEEK-WC exhibits high chemical, thermal stability and mechanical resistance. Owing to its lack of crystallinity this polymer can be used for preparing membranes with cheap and flexible methods. We compared the properties of PEEK-WC membranes to polyurethane membranes prepared using the same phase inverse technique and commercial membranes. The physico-chemical properties of the membranes were characterised by contact angle measurements. The different parameters acid (gamma+), base (gamma-) and Lifshitz-van der Waals (gammaLW) of the surface free energy were calculated according to Good-van Oss's model. We evaluated the cytocompatibility of PEEK-WC membranes by culturing hepatocytes isolated from rat liver. Cell adhesion and metabolic behaviour in terms of ammonia elimination, urea synthesis and protein synthesis were evaluated during the first days of culture. Liver cells adhered and formed three-dimensional aggregates on the most tested membranes. PEEK-WC membranes promoted hepatocyte adhesion most effectively. Urea synthesis, ammonia elimination and protein synthesis improved significantly when cells adhered to PEEK-WC membrane. The considerable metabolic activities of cells cultured on this membrane confirmed the good structural and physico-chemical properties of the PEEK-WC membrane that could be a promising biomaterial for cell culture in biohybrid devices. PMID:15020136

  14. Development of a cryo-SEM system enabling direct observation of the cross sections of an emulsion adhesive in a moist state during the drying process.

    PubMed

    Ito, Yoshiko; Ranner, Robert; Mimietz-Oeckler, Saskia; Nishino, Yuri; Miyazawa, Atsuo

    2015-12-01

    In order to analyse the internal structures of multi-component fluid materials such as emulsions (including the inter-particle spacing) by cryo-electron microscopy, it is necessary to observe their smooth cross-sectional surfaces over wide areas. We have developed a system that involves the following steps: preservation of the structure of an emulsion adhesive using freeze fixation in its normal (moist) state and during the drying process after being coated, preparation of cross sections of the internal structure using a cryo-ultramicrotome and then transferral of the cross sections into a cryo-scanning electron microscope for observation via a cryo-transfer system. This system allows the direct observation of the cross sections of emulsions and of several fluid materials.

  15. Adhesion at metal interfaces

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Ferrante, John; Smith, John R.

    1991-01-01

    A basic adhesion process is defined, the theory of the properties influencing metallic adhesion is outlined, and theoretical approaches to the interface problem are presented, with emphasis on first-principle calculations as well as jellium-model calculations. The computation of the energies of adhesion as a function of the interfacial separation is performed; fully three-dimensional calculations are presented, and universality in the shapes of the binding energy curves is considered. An embedded-atom method and equivalent-crystal theory are covered in the framework of issues involved in practical adhesion.

  16. Gecko adhesion: evolutionary nanotechnology.

    PubMed

    Autumn, Kellar; Gravish, Nick

    2008-05-13

    If geckos had not evolved, it is possible that humans would never have invented adhesive nanostructures. Geckos use millions of adhesive setae on their toes to climb vertical surfaces at speeds of over 1ms-1. Climbing presents a significant challenge for an adhesive in requiring both strong attachment and easy rapid removal. Conventional pressure-sensitive adhesives (PSAs) are either strong and difficult to remove (e.g. duct tape) or weak and easy to remove (e.g. sticky notes). The gecko adhesive differs dramatically from conventional adhesives. Conventional PSAs are soft viscoelastic polymers that degrade, foul, self-adhere and attach accidentally to inappropriate surfaces. In contrast, gecko toes bear angled arrays of branched, hair-like setae formed from stiff, hydrophobic keratin that act as a bed of angled springs with similar effective elastic modulus to that of PSAs. Setae are self-cleaning and maintain function for months during repeated use in dirty conditions. Setae are an anisotropic 'frictional adhesive' in that adhesion requires maintenance of a proximally directed shear load, enabling either a tough bond or spontaneous detachment. Gecko-like synthetic adhesives may become the glue of the future-and perhaps the screw of the future as well.

  17. Electro-dry-adhesion.

    PubMed

    Krahn, Jeffrey; Menon, Carlo

    2012-03-27

    This work presents novel conductive bioinspired dry adhesives with mushroom caps that enable the use of a synergistic combination of electrostatic and van der Waals forces (electro-dry-adhesion). An increase in shear adhesion bond strength of up to 2046% on a wide range of materials is measured when a maximum electrical field of 36.4 V μm(-1) is applied. A suction effect, due to the shape of the dry adhesive fibers, on overall adhesion was not noted for electro-dry-adhesives when testing was performed at both atmospheric and reduced pressure. Utilization of electrostatics to apply a preloading force to dry adhesive fiber arrays allows increased adhesion even after electrostatic force generation has been halted by ensuring the close contact necessary for van der Waals forces to be effective. A comparison is made between self-preloading of the electro-dry-adhesives and the direct application of a normal preloading pressure resulting in nearly the same shear bond strength with an applied voltage of 3.33 kV on the same sample.

  18. Electro-dry-adhesion.

    PubMed

    Krahn, Jeffrey; Menon, Carlo

    2012-03-27

    This work presents novel conductive bioinspired dry adhesives with mushroom caps that enable the use of a synergistic combination of electrostatic and van der Waals forces (electro-dry-adhesion). An increase in shear adhesion bond strength of up to 2046% on a wide range of materials is measured when a maximum electrical field of 36.4 V μm(-1) is applied. A suction effect, due to the shape of the dry adhesive fibers, on overall adhesion was not noted for electro-dry-adhesives when testing was performed at both atmospheric and reduced pressure. Utilization of electrostatics to apply a preloading force to dry adhesive fiber arrays allows increased adhesion even after electrostatic force generation has been halted by ensuring the close contact necessary for van der Waals forces to be effective. A comparison is made between self-preloading of the electro-dry-adhesives and the direct application of a normal preloading pressure resulting in nearly the same shear bond strength with an applied voltage of 3.33 kV on the same sample. PMID:22397643

  19. Reversible Thermoset Adhesives

    NASA Technical Reports Server (NTRS)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  20. Protein adhesion force dynamics and single adhesion events.

    PubMed Central

    Sagvolden, G

    1999-01-01

    Using the manipulation force microscope, a novel atomic force microscope, the adhesion forces of bovine serum albumin, myoglobin, ferritin, and lysozyme proteins to glass and polystyrene substrates were characterized by following the force necessary to displace an adsorbed protein-covered microsphere over several orders of magnitude in time. This force was consistent with a power law with exponent a = 0.37 +/- 0.03 on polystyrene, indicating that there is no typical time scale for adhesion on this substrate. On glass, the rate of adhesion depended strongly on protein charge. Forces corresponding to single protein adhesion events were identified. The typical rupture force of a single lysozyme, ferritin, bovine serum albumin, and myoglobin protein adhering to glass was estimated to be 90 +/- 10 pN, 115 +/- 13 pN, 277 +/- 44 pN, and 277 +/- 44 pN, respectively, using a model of the experimental system. These forces, as well as the force amplitudes on hydrophobic polystyrene, correlate with protein stiffness. PMID:10388777

  1. The bond strength of adhesive resins to AH plus contaminated dentin cleaned by various gutta-percha solvents.

    PubMed

    Topçuoğlu, Hüseyin Sinan; Demirbuga, Sezer; Pala, Kansad; Cayabatmaz, Muhammed; Topçuoğlu, Gamze

    2015-01-01

    The optimal bonding of adhesives to dentin requires the sealer to be completely removed from dentinal walls. The aim of this study was to investigate the effect of different cleaning procedures using gutta-percha solvents on bond strength of adhesive resins to AH Plus contaminated dentin (APCD). The pulp chamber dentin surfaces were contaminated with AH Plus and cleaned with five different techniques (dry cotton, chloroform, orange oil, eucalyptol, and ethanol). Then, Clearfil SE Bond (CSE) (Kuraray), and Tetric N Bond (TNB) (Ivoclar Vivadent) were applied and filled with a composite resin. The serial sticks (1 × 1 mm) were obtained and tested for microtensile bond strength. Scanning electron microscopy (SEM) was used for analysis of debonded surfaces. Ethanol exhibited the highest bond strength to APCD followed by dry cotton. There was no statistically significant difference between ethanol and dry cotton (p > 0.05). Eucalyptol showed the lowest bond strength to APCD and statistically significant differences (p < 0.05) in comparison with other groups. APCD reduced the bond strength of all adhesive resins. Dry cotton, ethanol, and chloroform were the most suitable techniques when used with CSE together, whereas ethanol was best with TNB.

  2. The bond strength of adhesive resins to AH plus contaminated dentin cleaned by various gutta-percha solvents.

    PubMed

    Topçuoğlu, Hüseyin Sinan; Demirbuga, Sezer; Pala, Kansad; Cayabatmaz, Muhammed; Topçuoğlu, Gamze

    2015-01-01

    The optimal bonding of adhesives to dentin requires the sealer to be completely removed from dentinal walls. The aim of this study was to investigate the effect of different cleaning procedures using gutta-percha solvents on bond strength of adhesive resins to AH Plus contaminated dentin (APCD). The pulp chamber dentin surfaces were contaminated with AH Plus and cleaned with five different techniques (dry cotton, chloroform, orange oil, eucalyptol, and ethanol). Then, Clearfil SE Bond (CSE) (Kuraray), and Tetric N Bond (TNB) (Ivoclar Vivadent) were applied and filled with a composite resin. The serial sticks (1 × 1 mm) were obtained and tested for microtensile bond strength. Scanning electron microscopy (SEM) was used for analysis of debonded surfaces. Ethanol exhibited the highest bond strength to APCD followed by dry cotton. There was no statistically significant difference between ethanol and dry cotton (p > 0.05). Eucalyptol showed the lowest bond strength to APCD and statistically significant differences (p < 0.05) in comparison with other groups. APCD reduced the bond strength of all adhesive resins. Dry cotton, ethanol, and chloroform were the most suitable techniques when used with CSE together, whereas ethanol was best with TNB. PMID:25678408

  3. The effect of the presence and presentation mode of co-initiators on the microtensile bond strength of dual-cured adhesive systems used in indirect restorations.

    PubMed

    Cavalcanti, Samantha Cristine Santos Xisto Braga; de Oliveira, Marcelo Tavares; Arrais, Cesar Augusto Galvão; Giannini, Marcelo

    2008-01-01

    This study compared the microtensile bond strength (microTBS) of indirect resin composite restorations to dentin when fifth-generation adhesive systems were either light-activated or left in the uncured state prior to cementation. The systems used in this study were Prime&Bond NT (NT-Dentsply) and Excite (EX-Ivoclar-Vivadent) or their dual-cured versions containing co-initiators with different presentation modes (as solution or salts) Prime&Bond NT Dual-cure (NTD-Dentsply) and Excite DSC (DSC-Ivoclar Vivadent). The bonding agents were applied to the flattened occlusal dentin surfaces of 40 human third molars according to the manufacturers' instructions and were light-activated (XL3000/3M ESPE) for 10 seconds (LP) or left in the uncured state (SP). The respective resin cements Calibra (Dentsply Caulk) and Variolink II (Ivoclar Vivadent) were applied to pre-cured resin composite discs (2 mm thick/Z-250/3M ESPE) that were fixed to the bonded dentin surfaces. The restored teeth were light-activated according to the manufacturers' instructions for five minutes after cementation and water-stored at 37 degrees C for 24 hours. The teeth were then both mesial-distally and buccal-lingually sectioned to obtain bonded specimens (0.8 mm2). Each specimen was tested in tension at a crosshead speed of 0.5 mm/minute until failure. The data (MPa [SD]) were analyzed by 3-way ANOVA and Tukey's post-hoc test (p < .05). The results showed that the presence of a co-initiator decreased microTBS for NT, while no significant difference in microTBS was noted between EX and DSC, regardless of the curing mode. All SP groups exhibited lower microTBS than the LP groups. The results suggest that coinitiators presented as a solution may decrease microTBS to dentin of the evaluated adhesive systems in indirect resin composite restorations. Light-activation of the adhesive layer prior to indirect cementation was crucial for higher microTBS on dentin.

  4. Neuron adhesion and strengthening

    NASA Astrophysics Data System (ADS)

    Rocha, Aracely; Jian, Kuihuan; Ko, Gladys; Liang, Hong

    2010-07-01

    Understanding the neuron/material adhesion is important for neuron stimulation and growth. The current challenges remain in the lack of precision of measuring techniques and understanding the behavior of neuron. Here, we report a fluid shear method to investigate adhesion at the neuron/poly-D-lysine interface. In this study, the adhesion of 12-day-old chick embryo-retina neurons cultured on poly-D-lysine coated glass coverslips was measured via parallel disk rotational flow. The shear stress experienced by the cells increases with the disk radius. There is a critical point along the radius (Rc) where the stress experienced by the neurons equals their adhesion. The measured Rc can be used to calculate the neuron adhesion. Our results demonstrate that neurons adhered to the poly-D-lysine had a strain hardening effect. The adhesive shear stress of the neuron-material increased with applied shear (τa). When the τa reached or exceeded the value of 40 dyn/cm2, the adhesion remained constant at approximately 30 dyn/cm2. The present work allowed us not only to quantify the adhesive strength and force but also to evaluate the value of strain hardening at the neuron/poly-D-lysine interface.

  5. Postoperative Peritoneal Adhesions

    PubMed Central

    Ryan, Graeme B.; Grobéty, Jocelyne; Majno, Guido

    1971-01-01

    This paper describes an experimental model of peritoneal adhesions, in the rat, based on two relatively minor accidents that may occur during abdominal surgery in man: drying of the serosa, and bleeding. Drying alone had little effect; drying plus bleeding consistently produced adhesions to the dried area. Fresh blood alone produced adhesions between the three membranous structures [omentum and pelvic fat bodies (PFBs)]. The formation of persistent adhesions required whole blood. Preformed clots above a critical size induced adhesions even without previous serosal injury; they were usually captured by the omentum and PFBs. If all three membranous structures were excised, the clots caused visceral adhesions. The protective role of the omentum, its structure, and the mechanism of omental adhesions, are discussed. These findings are relevant to the pathogenesis of post-operative adhesions in man. ImagesFig 3Fig 4Fig 5Fig 6Fig 7Fig 12Fig 13Fig 1Fig 2Fig 14Fig 15Fig 8Fig 9Fig 10Fig 11 PMID:5315369

  6. Evaluation of the adhesion of fiber posts cemented using different adhesive approaches.

    PubMed

    Radovic, Ivana; Mazzitelli, Claudia; Chieffi, Nicoletta; Ferrari, Marco

    2008-12-01

    The aim of this study was to investigate the adhesion of fiber posts cemented with luting agents that utilize three currently available adhesive approaches: etch-and-rinse, self-etch, and self-adhesive. Forty-two intact single-rooted human premolars were used in the study. Teeth were divided into six groups. In each group, a different resin cement with its adhesive system (if needed) and a fiber post were used. The groups were classified, according to the adhesive approach, into the following three categories. (i) Etch-and-rinse groups: Calibra resin cement/XPBond adhesive + self-curing activator (SCA)/RadiX Fiber Post (Dentsply Caulk), FluoroCore 2 core build-up material/XPBond + SCA/RadiX Fiber Post (Dentsply Caulk), and MultiCore Flow luting and core build-up material/Excite DSC adhesive/FRC Postec Plus fiber post (Ivoclar Vivadent). (ii) Self-etch group: Panavia F 2.0/ED primer (Kuraray)/RadiX Fiber Post (Dentsply Caulk). (iii) Self-adhesive groups: experimental self-adhesive cement/RadiX Fiber Post (Dentsply Caulk), and RelyX Unicem/RelyX Fiber Post (3M ESPE). The adhesion between the post and the root canal walls was assessed using the 'thin-slice' push-out test. In the test arrangement used, the self-etching approach may offer less favourable adhesion to root canal dentin in comparison with etch-and-rinse and self-adhesive approaches.

  7. Analytical cell adhesion chromatography reveals impaired persistence of metastatic cell rolling adhesion to P-selectin.

    PubMed

    Oh, Jaeho; Edwards, Erin E; McClatchey, P Mason; Thomas, Susan N

    2015-10-15

    Selectins facilitate the recruitment of circulating cells from the bloodstream by mediating rolling adhesion, which initiates the cell-cell signaling that directs extravasation into surrounding tissues. To measure the relative efficiency of cell adhesion in shear flow for in vitro drug screening, we designed and implemented a microfluidic-based analytical cell adhesion chromatography system. The juxtaposition of instantaneous rolling velocities with elution times revealed that human metastatic cancer cells, but not human leukocytes, had a reduced capacity to sustain rolling adhesion with P-selectin. We define a new parameter, termed adhesion persistence, which is conceptually similar to migration persistence in the context of chemotaxis, but instead describes the capacity of cells to resist the influence of shear flow and sustain rolling interactions with an adhesive substrate that might modulate the probability of extravasation. Among cell types assayed, adhesion persistence to P-selectin was specifically reduced in metastatic but not leukocyte-like cells in response to a low dose of heparin. In conclusion, we demonstrate this as an effective methodology to identify selectin adhesion antagonist doses that modulate homing cell adhesion and engraftment in a cell-subtype-selective manner.

  8. Ankyrin-binding proteins related to nervous system cell adhesion molecules: candidates to provide transmembrane and intercellular connections in adult brain.

    PubMed

    Davis, J Q; McLaughlin, T; Bennett, V

    1993-04-01

    A major class of ankyrin-binding glycoproteins have been identified in adult rat brain of 186, 155, and 140 kD that are alternatively spliced products of the same pre-mRNA. Characterization of cDNAs demonstrated that ankyrin-binding glycoproteins (ABGPs) share 72% amino acid sequence identity with chicken neurofascin, a membrane-spanning neural cell adhesion molecule in the Ig super-family expressed in embryonic brain. ABGP polypeptides have the following features consistent with a role as ankyrin-binding proteins in vitro and in vivo: (a) ABGPs and ankyrin associate as pure proteins in a 1:1 molar stoichiometry; (b) the ankyrin-binding site is located in the COOH-terminal 21 kD of ABGP186 which contains the predicted cytoplasmic domain; (c) ABGP186 is expressed at approximately the same levels as ankyrin (15 pmoles/milligram of membrane protein); and (d) ABGP polypeptides are co-expressed with the adult form of ankyrinB late in postnatal development and are colocalized with ankyrinB by immunofluorescence. Similarity in amino acid sequence and conservation of sites of alternative splicing indicate that genes encoding ABGPs and neurofascin share a common ancestor. However, the major differences in developmental expression reported for neurofascin in embryos versus the late postnatal expression of ABGPs suggest that ABGPs and neurofascin represent products of gene duplication events that have subsequently evolved in parallel with distinct roles. The predicted cytoplasmic domains of rat ABGPs and chicken neurofascin are nearly identical to each other and closely related to a group of nervous system cell adhesion molecules with variable extracellular domains, which includes L1, Nr-CAM, and Ng-CAM of vertebrates, and neuroglian of Drosophila. The ankyrin-binding site of rat ABGPs is localized to the C-terminal 200 residues which encompass the cytoplasmic domain, suggesting the hypothesis that ability to associate with ankyrin may be a shared feature of neurofascin and

  9. A three-phase in-vitro system for studying Pseudomonas aeruginosa adhesion and biofilm formation upon hydrogel contact lenses

    PubMed Central

    2010-01-01

    Background Pseudomonas aeruginosa is commonly associated with contact lens (CL) -related eye infections, for which bacterial adhesion and biofilm formation upon hydrogel CLs is a specific risk factor. Whilst P. aeruginosa has been widely used as a model organism for initial biofilm formation on CLs, in-vitro models that closely reproduce in-vivo conditions have rarely been presented. Results In the current investigation, a novel in-vitro biofilm model for studying the adherence of P. aeruginosa to hydrogel CLs was established. Nutritional and interfacial conditions similar to those in the eye of a CL wearer were created through the involvement of a solid:liquid and a solid:air interface, shear forces and a complex artificial tear fluid. Bioburdens varied depending on the CL material and biofilm maturation occurred after 72 h incubation. Whilst a range of biofilm morphologies were visualised including dispersed and adherent bacterial cells, aggregates and colonies embedded in extracellular polymer substances (EPS), EPS fibres, mushroom-like formations, and crystalline structures, a compact and heterogeneous biofilm morphology predominated on all CL materials. Conclusions In order to better understand the process of biofilm formation on CLs and to test the efficacy of CL care solutions, representative in-vitro biofilm models are required. Here, we present a three-phase biofilm model that simulates the environment in the eye of a CL wearer and thus generates biofilms which resemble those commonly observed in-situ. PMID:21062489

  10. Adhesion to root canal dentine using one and two-step adhesives with dual-cure composite core materials.

    PubMed

    Foxton, R M; Nakajima, M; Tagami, J; Miura, H

    2005-02-01

    The regional tensile bond strengths of two dual-cure composite resin core materials to root canal dentine using either a one or two-step self-etching adhesive were evaluated. Extracted premolar teeth were decoronated and their root canals prepared to a depth of 8 mm and a width of 1.4 mm. In one group, a one-step self-etching adhesive (Unifil Self-etching Bond) was applied to the walls of the post-space and light-cured for 10 s. After which, the post-spaces were filled with the a dual-cure composite resin (Unifil Core) and then half the specimens were light-cured for 60 s and the other half placed in darkness for 30 min. In the second group, a self-etching primer (ED Primer II) was applied for 30 s, followed by an adhesive resin (Clearfil Photo Bond), which was light-cured for 10 s. The post-spaces were filled with a dual-cure composite resin (DC Core) and then half the specimens were light-cured for 60 s and the other half placed in darkness for 30 min. Chemical-cure composite resin was placed on the outer surfaces of all the roots, which were then stored in water for 24 h. They were serially sliced perpendicular to the bonded interface into 8, 0.6 mm-thick slabs, and then transversely sectioned into beams, approximately 8 x 0.6 x 0.6 mm, for the microtensile bond strength test (muTBS). Data were divided into two (coronal/apical half of post-space) and analysed using three-way anova and Scheffe's test (P < 0.05). Failure modes were observed under an scanning electron microscope (SEM) and statistically analysed. Specimens for observation of the bonded interfaces were prepared in a similar manner as for bond strength testing, cut in half and embedded in epoxy resin. They were then polished to a high gloss, gold sputter coated, and after argon ion etching, observed under an SEM. For both dual-cure composite resins and curing strategies, there were no significant differences in muTBS between the coronal and apical regions (P > 0.05). In addition, both dual

  11. The development of low temperature curing adhesives

    NASA Technical Reports Server (NTRS)

    Green, H. E.; Sutherland, J. D.; Hom, J. M.; Sheppard, C. H.

    1975-01-01

    An approach for the development of a practical low temperature (293 K-311 K/68 F-100 F) curing adhesive system based on a family of amide/ester resins was studied and demonstrated. The work was conducted on resin optimization and adhesive compounding studies. An improved preparative method was demonstrated which involved the reaction of an amine-alcohol precursor, in a DMF solution with acid chloride. Experimental studies indicated that an adhesive formulation containing aluminum powder provided the best performance when used in conjunction with a commercial primer.

  12. Tensile bond strength of different adhesive systems to primary dentin treated by Er:YAG laser and conventional high-speed drill

    NASA Astrophysics Data System (ADS)

    Marques, Barbara A.; Navarro, Ricardo S.; Silvestre, Fellipe D.; Pinheiro, Sergio L.; Freitas, Patricia M.; Imparato, Jose Carlos P.; Oda, Margareth

    2005-03-01

    The aim of this study was to evaluate the tensile strength of different adhesive systems to primary tooth dentin prepared by high-speed drill and Er:YAG laser (2.94μm). Buccal surfaces of 38 primary canines were ground and flattened with sand paper disks (#120-600 grit) and distributed into five groups (n=15): G1: diamond bur in high-speed drill (HD)+ 35% phosphoric acid (PA)+Single Bond (SB); G2: HD+self-etching One Up Bond F (OUB);G3: Er:YAG laser (KaVo 3- LELO-FOUSP)(4Hz, 80mJ, 25,72J/cm2) (L)+PA+SB, G4: L+SB, G5: L+OUB. The inverted truncated cone samples built with Z-100 composite resin after storage in water (37°C/24h) were submitted to tensile bond strength test on Mini Instron 4442 (0.5mm/min, 500N). The data were analyzed with ANOVA and Tukey Test (p<0.05). The mean (MPa) were: G1-3.18(+/-1.24) G2-1.79(+/-0.73) G3-3.17(+/-0.44) G4-8.29(+/-1.86) G5-7.11(+/-2.07). The data analyzed with ANOVA and Tukey Test showed that Laser associated with PA+SB, SB or OUB lead to increased bonding values when compared to HD+PA+SB and HD+OUB (p=0.000), L+SB showed higher values than L+PA+SB and L+OUB (p=0.0311). Er:YAG laser radiation promoted significant increase of bond strength of different adhesive systems evaluated in the dentin of primary teeth.

  13. Fabrication and characterization of hierarchical nanostructured smart adhesion surfaces.

    PubMed

    Lee, Hyungoo; Bhushan, Bharat

    2012-04-15

    The mechanics of fibrillar adhesive surfaces of biological systems such as a Lotus leaf and a gecko are widely studied due to their unique surface properties. The Lotus leaf is a model for superhydrophobic surfaces, self-cleaning properties, and low adhesion. Gecko feet have high adhesion due to the high micro/nanofibrillar hierarchical structures. A nanostructured surface may exhibit low adhesion or high adhesion depending upon fibrillar density, and it presents the possibility of realizing eco-friendly surface structures with desirable adhesion. The current research, for the first time uses a patterning technique to fabricate smart adhesion surfaces: single- and two-level hierarchical synthetic adhesive structure surfaces with various fibrillar densities and diameters that allows the observation of either the Lotus or gecko adhesion effects. Contact angles of the fabricated structured samples were measured to characterize their wettability, and contamination experiments were performed to study for self-cleaning ability. A conventional and a glass ball attached to an atomic force microscope (AFM) tip were used to obtain the adhesive forces via force-distance curves to study scale effect. A further increase of the adhesive forces on the samples was achieved by applying an adhesive to the surfaces.

  14. Approaching improved adhesive bonding repeatability

    NASA Astrophysics Data System (ADS)

    Schlette, Christian; Müller, Tobias; Roβmann, Jürgen; Brecher, Christian

    2016-03-01

    Today, the precision of micro-optics assembly is mostly limited by the accuracy of the bonding process ― and in the case of adhesive bonding by the prediction and compensation of adhesive shrinkage during curing. In this contribution, we present a novel approach to address adhesive bonding based on hybrid control system theory. In hybrid control, dynamic systems are described as "plants" which produce discrete and/or continuous outputs from given discrete and/or continuous inputs, thus yielding a hybrid state space description of the system. The task of hybrid controllers is to observe the plant and to generate a discrete and/or continuous input sequence that guides or holds the plant in a desired target state region while avoiding invalid or unwanted intermediate states. Our approach is based on a series of experiments carried out in order to analyze, define and decouple the dependencies of adhesive shrinkage on multiple parameters, such as application geometries, fixture forces and UV intensities. As some of the dependencies describe continuous effects (e.g. shrinkage from UV intensity) and other dependencies describe discrete state transitions (e.g. fixture removal during curing), the resulting model of the overall bonding process is a hybrid dynamic system in the general case. For this plant model, we then propose a concept of sampling-based parameter search as a basis to design suitable hybrid controllers, which have the potential to optimize process control for a selection of assembly steps, thus improving the repeatability of related production steps like beam-shaping optics or mounting of turning mirrors for fiber coupling.

  15. Cytotoxicity of denture adhesives.

    PubMed

    de Gomes, Pedro Sousa; Figueiral, Maria Helena; Fernandes, Maria Helena R; Scully, Crispian

    2011-12-01

    Ten commercially available denture adhesives, nine soluble formulations (six creams, three powders) and one insoluble product (pad), were analyzed regarding the cytotoxicity profile in direct and indirect assays using L929 fibroblast cells. In the direct assay, fibroblasts were seeded over the surface of a thick adhesive gel (5%, creams; 2.5%, powders and pad). In the indirect assay, cells were cultured in the presence of adhesive extracts prepared in static and dynamic conditions (0.5-2%, creams; 0.25-1%, powders and pad). Cell toxicity was assessed for cell viability/proliferation (MTT assay) and cell morphology (observation of the F-actin cytoskeleton organization by confocal laser scanning microscopy). Direct contact of the L929 fibroblasts with the thick adhesive gels caused no, or only a slight, decrease in cell viability/proliferation. The adhesive extracts (especially those prepared in dynamic conditions) caused significantly higher growth inhibition of fibroblasts and, in addition, caused dose- and time-dependent effects, throughout the 6-72 h exposure time. Also, dose-dependent effects on cell morphology, with evident disruption of the F-actin cytoskeleton organization, were seen in the presence of most adhesives. In conclusion, the adhesives possessed different degrees of cytotoxicity, but similar dose- and time-dependent biological profiles.

  16. Adhesive switching of membranes: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Bruinsma, Robijn; Behrisch, Almuth; Sackmann, Erich

    2000-04-01

    We report on a study of a model bioadhesion system: giant vesicles in contact with a supported lipid bilayer. Embedded in both membranes are very low concentrations of homophilic recognition molecules (contact site A receptors) competing with higher concentrations of repeller molecules: polyethylene glycol (PEG) lipids. These repellers mimic the inhibiting effect of the cell glycocalyx on adhesion. The effective adhesive interaction between the two membranes is probed by interferometric analysis of thermal fluctuations. We find two competing states of adhesion: initial weak adhesion is followed by slower aggregation of the adhesion molecules into small, tightly bound clusters that coexist with the regions of weak adhesion. We interpret our results in terms of a double-well intermembrane potential, and we present a theoretical analysis of the intermembrane interaction in the presence of mobile repeller molecules at a fixed chemical potential that shows that the interaction potential indeed should have just such a double-well shape. At a fixed repeller concentration we recover a conventional purely repulsive potential. We discuss the implications of our findings in terms of a general amplification mechanism of the action of sparse adhesion molecules by a nonspecific double-well potential. We also discuss the important role of the Helfrich undulation force for the proposed scenario.

  17. [Endothelial cell adhesion molecules].

    PubMed

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  18. Cell adhesion force microscopy

    PubMed Central

    Sagvolden, G.; Giaever, I.; Pettersen, E. O.; Feder, J.

    1999-01-01

    The adhesion forces of cervical carcinoma cells in tissue culture were measured by using the manipulation force microscope, a novel atomic force microscope. The forces were studied as a function of time and temperature for cells cultured on hydrophilic and hydrophobic polystyrene substrates with preadsorbed proteins. The cells attached faster and stronger at 37°C than at 23°C and better on hydrophilic than on hydrophobic substrates, even though proteins adsorb much better to the hydrophobic substrates. Because cell adhesion serves to control several stages in the cell cycle, we anticipate that the manipulation force microscope can help clarify some cell-adhesion related issues. PMID:9892657

  19. Adhesive Contact Sweeper

    NASA Technical Reports Server (NTRS)

    Patterson, Jonathan D.

    1993-01-01

    Adhesive contact sweeper removes hair and particles vacuum cleaner leaves behind, without stirring up dust. Also cleans loose rugs. Sweeper holds commercially available spools of inverted adhesive tape. Suitable for use in environments in which air kept free of dust; optics laboratories, computer rooms, and areas inhabited by people allergic to dust. For carpets, best used in tandem with vacuum cleaner; first pass with vacuum cleaner removes coarse particles, and second pass with sweeper extracts fine particles. This practice extends useful life of adhesive spools.

  20. Bond Assembly FOD Zones - A Procedure for Assuring Acceptable Adhesion

    NASA Technical Reports Server (NTRS)

    Evans, Kurt; Wurth, Laura; Mitchell, Mark

    2009-01-01

    Rocket motor components are primarily assembled by adhesion. a) For example, the RSRM (Reusable Solid Rocket Motor - part of the Space Shuttle Boosters) system contains 10,000 sq ft of bondline area. b) Rocket motors contain a variety of adhesive/substrate bond systems c) Bond system performance requirements also vary. To assemble reliable components, ATK Space Systems and customers invest substantial resources to the study of bond assembly processes. a) Surface and adhesion science; b) Adhesive chemistry; c) Process parameters; d) Contamination effects.

  1. Fit-to-Flow (F2F) interconnects: universal reversible adhesive-free microfluidic adaptors for lab-on-a-chip systems.

    PubMed

    Chen, Arnold; Pan, Tingrui

    2011-02-21

    World-to-chip (macro-to-micro) interface continues to be one of the most complicated, ineffective, and unreliable components in the development of emerging lab-on-a-chip systems involving integrated microfluidic operations. A number of irreversible (e.g., adhesive gluing) and reversible techniques (e.g., press fitting) have attempted to provide dedicated fluidic passage from standard tubing to miniature on-chip devices, none of which completely addresses the above concerns. In this paper, we present standardized adhesive-free microfluidic adaptors, referred to as Fit-to-Flow (F2F) Interconnects, to achieve reliable hermetic seal, high-density tube packing, self-aligned plug-in, reworkable connectivity, straightforward scalability and expandability, and applicability to broad lab-on-a-chip platforms; analogous to the modular plug-and-play USB architecture employed in modern electronics. Specifically, two distinct physical packaging mechanisms are applied, with one utilizing induced tensile stress in elastomeric socket to establish reversible seal and the other using negative pressure to provide on demand vacuum shield, both of which can be adapted to a variety of experimental configurations. The non-leaking performance (up to 336 kPa) along with high tube-packing density (of 1 tube/mm(2)) and accurate self-guided alignment (of 10 μm) have been characterized. In addition, a 3D microfluidic mixer and a 6-level chemical gradient generator paired with the corresponding F2F Interconnects have been devised to illustrate the applicability of the universal fluidic connections to classic lab-on-a-chip operations.

  2. Bond strength of adhesives to dentin contaminated with smoker's saliva.

    PubMed

    Pinzon, Lilliam M; Oguri, Makoto; O'Keefe, Kathy; Dusevish, Vladimir; Spencer, Paulette; Powers, John M; Marshall, Grayson W

    2010-02-01

    The purpose of this study was to determine the effects of contamination with smoker's and non-smoker's saliva on the bond strength of resin composite to superficial dentin using different adhesive systems. The interfacial structure between the resin and dentin was evaluated for each treatment using environmental scanning electron microscopy (ESEM). Freshly extracted human molars were ground with 600-grit SiC paper to expose the superficial dentin. Adhesives [One-Up-Bond-F-Plus (OUFP) and Adper-Prompt-L-Pop (APLP)] and resin composite (TPHSpectrum) were bonded to the dentin (n = 8/group, 180 total specimens) under five surface conditions: control (adhesive applied following manufacturers' instructions); saliva, then 5-s air dry, then adhesive; adhesive, saliva, 5-s air dry; adhesive, saliva, 5-s water rinse, 5-s air dry (ASW group); and adhesive, saliva, 5-s water rinse, 5-s air dry, reapply adhesive (ASWA group). After storage in water at 37 degrees C for 24 h, the specimens were debonded under tension at a speed of 0.5 mm/min. ESEM photomicrographs of the dentin/adhesive interfaces were taken. Mean bond strength ranged from 8.1 to 24.1 MPa. Fisher's protected least significant difference (P = 0.05) intervals for critical adhesive, saliva, and surface condition differences were 1.3, 1.3, and 2.1 MPa, respectively. There were no significant differences in bond strength to dentin between contamination by smoker's and nonsmoker's saliva, but bond strengths were significantly different between adhesive systems, with OUFP twice as strong as APLP under almost all conditions. After adhesive application and contamination with either smoker's or nonsmoker's saliva followed by washing and reapplication of the adhesive (ASWA group), the bond strength of both adhesive systems was the same as that of the control group.

  3. Adhesion of Lunar Dust

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.

    2007-01-01

    This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.

  4. Adhesive evaluation of new polyimides

    NASA Technical Reports Server (NTRS)

    Stclair, Terry L.; Progar, Donald J.

    1987-01-01

    During the past 10 to 15 years, the Materials Division at NASA Langley Research Center (LaRC) has developed several novel high temperature polyimide adhesives for anticipated needs of the aerospace industry. These developments have resulted from fundamental studies of structure-property relationships in polyimides. Recent research at LaRC has involved the synthesis and evaluation of copolyimides which incorporate both flexibilizing bridging groups and meta-linked benzene rings. The purpose was to develop systems based on low cost, readily available monomers. Two of these copolyimides evaluated as adhesives for bonding titanium alloy, Ti(6Al-4V), are identified as LARC-STPI and STPI-LARC-2. Lap shear strength (LSS) measurements were used to determine the strength and durability of the adhesive materials. LSS results are presented for LARC-TPI and LARC-STPI lap shear specimens thermally exposed in air at 232 C for up to 5000 hrs. LARC-TPI was shown to perform better than the copolymer LARC-STPI which exhibited poor thermooxidative performance possibly due to the amines used which would tend to oxidize easier than the benzophenone system in LARC-TPI.

  5. Orientation angle and the adhesion of single gecko setae.

    PubMed

    Hill, Ginel C; Soto, Daniel R; Peattie, Anne M; Full, Robert J; Kenny, T W

    2011-07-01

    We investigated the effects of orientation angle on the adhesion of single gecko setae using dual-axis microelectromechanical systems force sensors to simultaneously detect normal and shear force components. Adhesion was highly sensitive to the pitch angle between the substrate and the seta's stalk. Maximum lateral adhesive force was observed with the stalk parallel to the substrate, and adhesion decreased smoothly with increasing pitch. The roll orientation angle only needed to be roughly correct with the spatular tuft of the seta oriented grossly towards the substrate for high adhesion. Also, detailed measurements were made to control for the effect of normal preload forces. Higher normal preload forces caused modest enhancement of the observed lateral adhesive force, provided that adequate contact was made between the seta and the substrate. These results should be useful in the design and manufacture of gecko-inspired synthetic adhesives with anisotropic properties, an area of substantial recent research efforts.

  6. Orientation angle and the adhesion of single gecko setae

    PubMed Central

    Hill, Ginel C.; Soto, Daniel R.; Peattie, Anne M.; Full, Robert J.; Kenny, T. W.

    2011-01-01

    We investigated the effects of orientation angle on the adhesion of single gecko setae using dual-axis microelectromechanical systems force sensors to simultaneously detect normal and shear force components. Adhesion was highly sensitive to the pitch angle between the substrate and the seta's stalk. Maximum lateral adhesive force was observed with the stalk parallel to the substrate, and adhesion decreased smoothly with increasing pitch. The roll orientation angle only needed to be roughly correct with the spatular tuft of the seta oriented grossly towards the substrate for high adhesion. Also, detailed measurements were made to control for the effect of normal preload forces. Higher normal preload forces caused modest enhancement of the observed lateral adhesive force, provided that adequate contact was made between the seta and the substrate. These results should be useful in the design and manufacture of gecko-inspired synthetic adhesives with anisotropic properties, an area of substantial recent research efforts. PMID:21288955

  7. Quantifying adhesion energy of mechanical coatings at atomistic scale

    NASA Astrophysics Data System (ADS)

    Yin, Deqiang; Peng, Xianghe; Qin, Yi; Feng, Jiling; Wang, Zhongchang

    2011-12-01

    Coatings of transition metal compounds find widespread technological applications where adhesion is known to influence or control functionality. Here, we, by first-principles calculations, propose a new way to assess adhesion in coatings and apply it to analyze the TiN coating. We find that the calculated adhesion energies of both the (1 1 1) and (0 0 1) orientations are small under no residual stress, yet increase linearly once the stress is imposed, suggesting that the residual stress is key to affecting adhesion. The strengthened adhesion is found to be attributed to the stress-induced shrinkage of neighbouring bonds, which results in stronger interactions between bonds in TiN coatings. Further finite elements simulation (FEM) based on calculated adhesion energy reproduces well the initial cracking process observed in nano-indentation experiments, thereby validating the application of this approach in quantifying adhesion energy of surface coating systems.

  8. Supramolecular adhesives to hard surfaces: adhesion between host hydrogels and guest glass substrates through molecular recognition.

    PubMed

    Takashima, Yoshinori; Sahara, Taiga; Sekine, Tomoko; Kakuta, Takahiro; Nakahata, Masaki; Otsubo, Miyuki; Kobayashi, Yuichiro; Harada, Akira

    2014-10-01

    Supramolecular materials based on host-guest interactions should exhibit high selectivity and external stimuli-responsiveness. Among various stimuli, redox and photo stimuli are useful for its wide application. An external stimuli-responsive adhesive system between CD host-gels (CD gels) and guest molecules modified glass substrates (guest Sub) is focused. Here, the selective adhesion between host gels and guest substrates where adhesion depends on molecular complementarity is reported. Initially, it is thought that adhesion of a gel material onto a hard material might be difficult unless many guest molecules modified linear polymers immobilize on the surface of hard materials. However, reversible adhesion of the CD gels is observed by dissociating and re-forming inclusion complex in response to redox and photo stimuli.

  9. Polymer nanocarriers for dentin adhesion.

    PubMed

    Osorio, R; Osorio, E; Medina-Castillo, A L; Toledano, M

    2014-12-01

    To obtain more durable adhesion to dentin, and to protect collagen fibrils of the dentin matrix from degradation, calcium- and phosphate-releasing particles have been incorporated into the dental adhesive procedure. The aim of the present study was to incorporate zinc-loaded polymeric nanocarriers into a dental adhesive system to facilitate inhibition of matrix metalloproteinases (MMPs)-mediated collagen degradation and to provide calcium ions for mineral deposition within the resin-dentin bonded interface. PolymP- N : Active nanoparticles (nanoMyP) were zinc-loaded through 30-minute ZnCl2 immersion and tested for bioactivity by means of 7 days' immersion in simulated body fluid solution (the Kokubo test). Zinc-loading and calcium phosphate depositions were examined by scanning and transmission electron microscopy, elemental analysis, and x-ray diffraction. Nanoparticles in ethanol solution infiltrated into phosphoric-acid-etched human dentin and Single Bond (3M/ESPE) were applied to determine whether the nanoparticles interfered with bonding. Debonded sticks were analyzed by scanning electron microscopy. A metalloproteinase collagen degradation assay was also performed in resin-infiltrated dentin with and without nanoparticles, measuring C-terminal telopeptide of type I collagen (ICTP) concentration in supernatants, after 4 wk of immersion in artificial saliva. Numerical data were analyzed by analysis of variance (ANOVA) and Student-Newman-Keuls multiple comparisons tests (p < .05). Nanoparticles were effectively zinc-loaded and were shown to have a chelating effect, retaining calcium regardless of zinc incorporation. Nanoparticles failed to infiltrate demineralized intertubular dentin and remained on top of the hybrid layer, without altering bond strength. Calcium and phosphorus were found covering nanoparticles at the hybrid layer, after 24 h. Nanoparticle application in etched dentin also reduced MMP-mediated collagen degradation. Tested nanoparticles may be

  10. Proteolysis of neuronal cell adhesion molecule by the tissue plasminogen activator-plasmin system after kainate injection in the mouse hippocampus.

    PubMed

    Endo, A; Nagai, N; Urano, T; Takada, Y; Hashimoto, K; Takada, A

    1999-01-01

    Tissue plasminogen activator (tPA) is a serine protease that converts inactive plasminogen to the active protease plasmin and mediates extracellular metabolism. tPA is transcriptionally induced in the mouse hippocampus by pharmacological or electrical stimulation of neuronal activity and mediates excitotoxin-induced neuronal degeneration. Therefore, we hypothesized that tPA would be induced in the hippocampus after kainic acid (KA) injection into the lateral cerebral ventricle (LCV) and that the activated tPA-plasmin system would degrade the neuronal cell adhesion molecule (NCAM), which is a component of the extracellular matrix. In order to investigate this possibility, we first examined whether NCAM is a substrate for the tPA plasmin system by incubating mouse brain homogenates with tPA and plasminogen at 37 degrees C. Next, we examined the degradation of NCAM and the changes of tPA activity in the mouse hippocampus with immunohistochemical procedures and histological zymography after KA injection into both LCVs. As a result, we observed neuronal atrophy and a decrease of NCAM immunoreactivity along with an increase of tPA activity in the CA3 area of the hippocampus. These results suggest that activation of the tPA plasmin system after KA injection into the LCVs results in the degradation of NCAM in the CA3 area.

  11. Ice adhesions in relation to freeze stress.

    PubMed

    Olien, C R; Smith, M N

    1977-10-01

    In freezing, competitive interaction between ice and hydrophilic plant substances causes an energy of adhesion to develop through the interstitial liquid. The thermodynamic basis for the adhesion energy is discussed, with estimates of the energies involved. In this research, effects of adhesion energy were observed microscopically in conjunction with energies of crystallization and frost desiccation. The complex character of ice in intact crown tissue of winter barley (Hordeum vulgare L.) and the problems of sectioning frozen tissue without producing artifacts led to an alternative study of single barley cells in a mesh of ice and cell wall polymers. Adhesions between ice, cell wall polymers, and the plasmalemma form a complexly interacting system in which the pattern of crystallization is a major factor in determination of stress and injury. PMID:16660124

  12. Dry adhesives with sensing features

    NASA Astrophysics Data System (ADS)

    Krahn, J.; Menon, C.

    2013-08-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm2.

  13. Adhesion in hydrogels and model glassy polymers

    NASA Astrophysics Data System (ADS)

    Guvendiren, Murat

    Two main topics are addressed in this dissertation: (1) adhesion in hydrogels; (2) interfacial interactions between model glassy polymers. A self-assembly technique for the formation of hydrogels from acrylic triblock copolymer solutions was developed, based on vapor phase solvent exchange. Structure formation in the gels was characterized by small angle X-ray scattering, and swelling was measured in controlled pH buffer solutions. Strong gels are formed with polymer weight fractions between 0.01 and 0.15, and with shear moduli between 0.6 kPa and 3.5 kPa. Adhesive functionality, based on 3,4-dihydroxy-L-phenylalanine (DOPA) was also incorporated into the triblock copolymers. The effect of DOPA concentration on gel formation and swelling was investigated in detail. The adhesive properties of DOPA-functionalized hydrogels on TiO2 were investigated with an axisymmetric adhesion method. It was shown that the presence of DOPA enhances the adhesive properties of the hydrogels, but that the effect is minimized at pH values below 10, where the DOPA groups are hydrophobic. Thin film membranes were produced in order to study the specific interactions between DOPA and TiO2 and DOPA and tissue, using a membrane inflation method. The presence of DOPA in the membranes enhances the adhesion on TiO 2 and tissue, although adhesion to tissue requires that the DOPA groups be oxidized while in contact with the tissue of interest. Porous hydrogel scaffolds for tissue engineering applications were formed by adding salt crystals to the triblock copolymer solution prior to solvent exchange. Salt was then leached out by immersing the gel into water. Structures of the porous hydrogels were characterized by confocal laser scanning microscopy. These hydrogels were shown to be suitable for tissue regeneration and drug delivery applications. Diffusion-mediated adhesion between two component miscible polymer systems having very different glassy temperatures was also investigated. Axisymmetric

  14. Effect of different adhesives combined with two resin composite cements on shear bond strength to polymeric CAD/CAM materials.

    PubMed

    Bähr, Nora; Keul, Christine; Edelhoff, Daniel; Eichberger, Marlis; Roos, Malgorzata; Gernet, Wolfgang; Stawarczyk, Bogna

    2013-01-01

    This study tested the impact of different adhesives and resin composite cements on shear bond strength (SBS) to polymethyl methacrylate (PMMA)- and composite-based CAD/CAM materials. SBS specimens were fabricated and divided into five main groups (n=30/group) subject to conditioning: 1. Monobond Plus/Heliobond (MH), 2. Visio.link (VL), 3. Ambarino P60 (AM), 4. exp. VP connect (VP), and 5. no conditioning-control group (CG). All cemented specimens using a. Clearfil SA Cement and b. Variolink II were stored in distilled water for 24 h at 37 °C. Additionally, one half of the specimens were thermocycled for 5,000 cycles (5 °C/55 °C, dwell time 20 s). SBS was measured; data were analyzed using descriptive statistics, four- and one-way ANOVA, unpaired two-sample t-test and Chi(2)-test. CAD/CAM materials without additional adhesives showed no bond to resin composite cements. Highest SBS showed VL with Variolink II on composite-based material, before and after thermocycling.

  15. A novel orally available inhibitor of focal adhesion signaling increases survival in a xenograft model of diffuse large B-cell lymphoma with central nervous system involvement.

    PubMed

    Bosch, Rosa; Moreno, María José; Dieguez-Gonzalez, Rebeca; Céspedes, María Virtudes; Gallardo, Alberto; Trias, Manuel; Grañena, Albert; Sierra, Jorge; Casanova, Isolda; Mangues, Ramon

    2013-08-01

    Central nervous system dissemination is a relatively uncommon but almost always fatal complication in diffuse large B-cell lymphoma patients. Optimal therapy for central nervous involvement in this malignancy has not been established. In this paper, we aimed to evaluate the therapeutic effect of E7123, a celecoxib derivative that inhibits focal adhesion signaling, in a novel xenograft model of diffuse large B-cell lymphoma with central nervous system involvement. Cells obtained after disaggregation of HT subcutaneous tumors (HT-SC cells) were intravenously injected in NOD/SCID mice. These mice received oral vehicle or 75 mg/kg of E7123 daily until they were euthanized for weight loss or signs of sickness. The antitumor effect of E7123 was validated in an independent experiment using a bioluminescent mouse model. Intravenously injected HT-SC cells showed higher take rate and higher central nervous system tropism (associated with increased expression of β1-integrin and p130Cas proteins) than HT cells. The oral administration of E7123 significantly increased survival time in 2 independent experiments using mice injected with unmodified or bioluminescent HT-SC cells. We have developed a new xenograft model of diffuse large B-cell lymphoma with central nervous system involvement that can be used in the pre-clinical evaluation of new drugs for this malignancy. E7123 is a new, well-tolerated and orally available therapeutic agent that merits further investigation since it may improve current management of diffuse large B-cell lymphoma patients with central nervous system involvement.

  16. Nanoscale adhesion interactions in carbon nanotube based systems and experimental study of the mechanical properties of carbon and boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Zheng, Meng

    Part I: Carbon nanotubes (CNTs) are a type of 1D nanostructures, which possess extraordinary mechanical, electrical, thermal, and chemical properties and are promising for a number of applications. For many of their applications, CNTs will be assembled into micro or macro-scale structures (e.g. thin-films and yarns), or integrated with other bulk materials to form heterogeneous material systems and devices (e.g. nanocomposites and solid-state electronics). The interfaces formed among CNTs themselves and between the CNT and other material surfaces play crucial roles in the functioning and performance of CNT-based material systems and devices. Therefore, characterization of the interfacial interaction in CNT-based systems is a critical step to understand the nanoscale interface and tune the system and device design and manufacturing for optimal functioning and performance. In this part of dissertation, a combination of both mechanical and theoretical methods was employed to study the adhesion interactions in CNT-based systems. Part II: Both CNTs and boron nitride nanotubes (BNNTs) possess superb mechanical properties and are promising for a great many applications. They can be used in similar applications, such as reinforcing fibers in polymer composites based on their similar mechanical and thermal properties. CNTs are promising for electronics and sensors while BNNTs can be used as electrical insulators due to the tremendous differences of the electrical property. Furthermore, BNNTs can survive in high temperature and hazardous environments because of their resistant to oxidation and harsh chemicals. In order to optimize their applications, their mechanical properties should be fully understood. In this part of the dissertation research, first, the radial elasticity of single-walled CNTs and BNNTs was investigated by means of atomic force microscopy (AFM); secondly, the engineering radial deformations in single walled CNTs and BNNTs covered by monolayer grapheme

  17. Mechanical behavior of adhesive joints subjected to cyclic thermal loading

    SciTech Connect

    Humfeld, G.R.; Dillard, D.A.

    1996-12-31

    Stresses induced in bimaterial systems due to changing temperature has been the subject of much study since the publication of Timoshenko`s classic paper of 1925. An adhesive bond is one example of a bimaterial system in which thermal stress can play an important role. However, adhesives are viscoelastic in nature, and their mechanical behavior is dictated by the temperature- and time-dependence of their material properties; analytical solutions for elastic materials do not adequately describe their true behavior. The effect of the adhesive`s viscoelasticity on stress in an adhesive bond subjected to changing temperature is therefore of compelling interest and importance for the adhesives industry. The objective of this research is to develop an understanding of the viscoelastic effect in an adhesive bond subjected to cycling temperature, particularly when the temperature range spans a transition temperature of the adhesive. Numerical modeling of a simplified geometry was first undertaken to isolate the influence of viscoelasticity on the stress state from any particular specimen geometry effect. Finite element modeling was then undertaken to examine the mechanical behavior of the adhesive in a layered geometry. Both solution methods predicted development of residual tensile stresses in the adhesive. For the layered geometry this was found to correspond with residual tensile peel stresses, which are thought to be the cause of interfacial debonding.

  18. Biologically Inspired Mushroom-Shaped Adhesive Microstructures

    NASA Astrophysics Data System (ADS)

    Heepe, Lars; Gorb, Stanislav N.

    2014-07-01

    Adhesion is a fundamental phenomenon with great importance in technology, in our everyday life, and in nature. In this article, we review physical interactions that resist the separation of two solids in contact. By using examples of biological attachment systems, we summarize and categorize various principles that contribute to the so-called gecko effect. Emphasis is placed on the contact geometry and in particular on the mushroom-shaped geometry, which is observed in long-term biological adhesive systems. Furthermore, we report on artificial model systems with this bio-inspired geometry and demonstrate that surface microstructures with this geometry are promising candidates for technical applications, in which repeatable, reversible, and residue-free adhesion under different environmental conditions—such as air, fluid, and vacuum—is required. Various applications in robotic systems and in industrial pick-and-place processes are discussed.

  19. Friction and adhesion of hierarchical carbon nanotube structures for biomimetic dry adhesives: multiscale modeling.

    PubMed

    Hu, Shihao; Jiang, Haodan; Xia, Zhenhai; Gao, Xiaosheng

    2010-09-01

    With unique hierarchical fibrillar structures on their feet, gecko lizards can walk on vertical walls or even ceilings. Recent experiments have shown that strong binding along the shear direction and easy lifting in the normal direction can be achieved by forming unidirectional carbon nanotube array with laterally distributed tips similar to gecko's feet. In this study, a multiscale modeling approach was developed to analyze friction and adhesion behaviors of this hierarchical fibrillar system. Vertically aligned carbon nanotube array with laterally distributed segments at the end was simulated by coarse grained molecular dynamics. The effects of the laterally distributed segments on friction and adhesion strengths were analyzed, and further adopted as cohesive laws used in finite element analysis at device scale. The results show that the laterally distributed segments play an essential role in achieving high force anisotropy between normal and shear directions in the adhesives. Finite element analysis reveals a new friction-enhanced adhesion mechanism of the carbon nanotube array, which also exists in gecko adhesive system. The multiscale modeling provides an approach to bridge the microlevel structures of the carbon nanotube array with its macrolevel adhesive behaviors, and the predictions from this modeling give an insight into the mechanisms of gecko-mimicking dry adhesives.

  20. Magnetic field switchable dry adhesives.

    PubMed

    Krahn, Jeffrey; Bovero, Enrico; Menon, Carlo

    2015-02-01

    A magnetic field controllable dry adhesive device is manufactured. The normal adhesion force can be increased or decreased depending on the presence of an applied magnetic field. If the magnetic field is present during the entire normal adhesion test cycle which includes both applying a preloading force and measuring the pulloff pressure, a decrease in adhesion is observed when compared to when there is no applied magnetic field. Similarly, if the magnetic field is present only during the preload portion of the normal adhesion test cycle, a decrease in adhesion is observed because of an increased stiffness of the magnetically controlled dry adhesive device. When the applied magnetic field is present during only the pulloff portion of the normal adhesion test cycle, either an increase or a decrease in normal adhesion is observed depending on the direction of the applied magnetic field.

  1. The Type VI Secretion System Modulates Flagellar Gene Expression and Secretion in Citrobacter freundii and Contributes to Adhesion and Cytotoxicity to Host Cells.

    PubMed

    Liu, Liyun; Hao, Shuai; Lan, Ruiting; Wang, Guangxia; Xiao, Di; Sun, Hui; Xu, Jianguo

    2015-07-01

    The type VI secretion system (T6SS) as a virulence factor-releasing system contributes to virulence development of various pathogens and is often activated upon contact with target cells. Citrobacter freundii strain CF74 has a complete T6SS genomic island (GI) that contains clpV, hcp-2, and vgr T6SS genes. We constructed clpV, hcp-2, vgr, and T6SS GI deletion mutants in CF74 and analyzed their effects on the transcriptome overall and, specifically, on the flagellar system at the levels of transcription and translation. Deletion of the T6SS GI affected the transcription of 84 genes, with 15 and 69 genes exhibiting higher and lower levels of transcription, respectively. Members of the cell motility class of downregulated genes of the CF74ΔT6SS mutant were mainly flagellar genes, including effector proteins, chaperones, and regulators. Moreover, the production and secretion of FliC were also decreased in clpV, hcp-2, vgr, or T6SS GI deletion mutants in CF74 and were restored upon complementation. In swimming motility assays, the mutant strains were found to be less motile than the wild type, and motility was restored by complementation. The mutant strains were defective in adhesion to HEp-2 cells and were restored partially upon complementation. Further, the CF74ΔT6SS, CF74ΔclpV, and CF74Δhcp-2 mutants induced lower cytotoxicity to HEp-2 cells than the wild type. These results suggested that the T6SS GI in CF74 regulates the flagellar system, enhances motility, is involved in adherence to host cells, and induces cytotoxicity to host cells. Thus, the T6SS plays a wide-ranging role in C. freundii.

  2. Comparison of tensile bond strengths of four one-bottle self-etching adhesive systems with Er:YAG laser-irradiated dentin.

    PubMed

    Jiang, Qianzhou; Chen, Minle; Ding, Jiangfeng

    2013-12-01

    This study aimed to investigate the interaction of current one-bottle self-etching adhesives and Er:YAG laser with dentin using a tensile bond strength (TBS) test and scanning electron microscopy (SEM) in vitro. Two hundred and thirteen dentin discs were randomly distributed to the Control Group using bur cutting and to the Laser Group using an Er:YAG laser (200 mJ, VSP, 20 Hz). The following adhesives were investigated: one two-step total-etch adhesive [Prime & Bond NT (Dentsply)] and four one-step self-etch adhesives [G-Bond plus (GC), XENO V (Dentsply), iBond Self Etch (Heraeus) and Adper Easy One (3 M ESPE)]. Samples were restored with composite resin, and after 24-hour storage in distilled water, subjected to the TBS test. For morphological analysis, 12 dentin specimens were prepared for SEM. No significant differences were found between the control group and laser group (p = 0.899); dentin subjected to Prime & Bond NT, XENOV and Adper Easy One produced higher TBS. In conclusion, this study indicates that Er:YAG laser-prepared dentin can perform as well as bur on TBS, and some of the one-step one-bottle adhesives are comparable to the total-etch adhesives in TBS on dentin.

  3. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel

    PubMed Central

    Eshghi, Alireza; Khoroushi, Maryam; Rezvani, Alireza

    2014-01-01

    Objective: Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG) or alumina using etch-and-rinse and self-etch adhesives. Materials and Methods: Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12). Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05). Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation. Results: No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987). There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1). Also, decalcified or intact enamel groups had no significant difference (P=0.918). However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion. Conclusion: Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives. PMID:25628694

  4. Effect of Thermocycling, Degree of Conversion, and Cavity Configuration on the Bonding Effectiveness of All-in-One Adhesives.

    PubMed

    El-Damanhoury, H M; Gaintantzopoulou, M

    2015-01-01

    The aim of this study was to compare five all-in-one bonding agents with respect to microleakage, microtensile bond strength (μTBS), degree of conversion (DC) and the impact of cavity configuration. The materials tested were Adper Easy Bond, Clearfil S3 Bond, iBond, Optibond All-in-One, Xeno IV, and Adper Single Bond Plus as a control. The DC of each adhesive was measured on the surfaces of dentin discs (n=5) by attenuated total reflectance Fourier transform infrared spectroscopy. One hundred and forty-four extracted human molars were randomly divided and assigned to one of the five tested adhesives and the control group. The μTBS to dentin was measured on flat occlusal dentin with and without thermocycling and to the gingival floor dentin of class II cavities (n=8). All specimens were restored with Filtek Z250 resin composite. Class II samples were immersed in a 5% methylene blue dye solution for 24 hours, and microleakage was examined under a stereomicroscope. Micromorphological analysis of demineralized/deproteinized specimens was done using scanning electron microscopy. The DC and microleakage data were statistically analyzed by one-way analysis of variance (ANOVA) and μTBS data by two-way ANOVA followed by a Bonferroni multiple comparison post hoc test (α=0.05) and Weibull-distribution survival analysis. The relation between different variables and μTBS and microleakage was tested by the Pearson correlation coefficient and regression statistics. A moderate direct relation between DC and μTBS durability was found for all the adhesives tested. Significant wide variations exist among the results obtained for single-bottle adhesives tested regarding their μTBS and microleakage. Some of the all-in-one materials tested have shown significantly inferior results under a high C-factor or after aging. The use of these materials should be carefully considered. PMID:25748210

  5. In vitro comparative bond strength of contemporary self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion.

    PubMed

    Blatz, Markus B; Phark, Jin-Ho; Ozer, Fusun; Mante, Francis K; Saleh, Najeed; Bergler, Michael; Sadan, Avishai

    2010-04-01

    This study compared shear bond strengths of six self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion. One hundred twenty zirconia samples were air-abraded (group SB; n = 60) or left untreated (group NO). Composite cylinders were bonded to the zirconia samples with either BisCem (BC), Maxcem (MC), G-Cem (GC), RelyX Unicem Clicker (RUC), RelyX Unicem Applicator (RUA), or Clearfil SA Cement (CSA). Shear bond strength was tested after thermocycling, and data were analyzed with analysis of variance and Holm-Sidak pairwise comparisons. Without abrasion, RUA (8.0 MPa), GC (7.9 MPa), and CSA (7.6 MPa) revealed significantly higher bond strengths than the other cements. Air-particle abrasion increased bond strengths for all test cements (p < 0.001). GC (22.4 MPa) and CSA (18.4 MPa) revealed the highest bond strengths in group SB. Bond strengths of self-adhesive resin cements to zirconia were increased by air-particle abrasion. Cements containing adhesive monomers (MDP/4-META) were superior to other compositions.

  6. Regulation of Cell Adhesion Strength by Peripheral Focal Adhesion Distribution

    PubMed Central

    Elineni, Kranthi Kumar; Gallant, Nathan D.

    2011-01-01

    Cell adhesion to extracellular matrices is a tightly regulated process that involves the complex interplay between biochemical and mechanical events at the cell-adhesive interface. Previous work established the spatiotemporal contributions of adhesive components to adhesion strength and identified a nonlinear dependence on cell spreading. This study was designed to investigate the regulation of cell-adhesion strength by the size and position of focal adhesions (FA). The cell-adhesive interface was engineered to direct FA assembly to the periphery of the cell-spreading area to delineate the cell-adhesive area from the cell-spreading area. It was observed that redistributing the same adhesive area over a larger cell-spreading area significantly enhanced cell-adhesion strength, but only up to a threshold area. Moreover, the size of the peripheral FAs, which was interpreted as an adhesive patch, did not directly govern the adhesion strength. Interestingly, this is in contrast to the previously reported functional role of FAs in regulating cellular traction where sizes of the peripheral FAs play a critical role. These findings demonstrate, to our knowledge for the first time, that two spatial regimes in cell-spreading area exist that uniquely govern the structure-function role of FAs in regulating cell-adhesion strength. PMID:22208188

  7. Evaluation of high temperature structural adhesives for extended service

    NASA Technical Reports Server (NTRS)

    Hill, S. G.; Peters, P. D.; Hendricks, C. L.

    1981-01-01

    The long term thermal aging data initiated in Phase 1 is reported. All candidate adhesive systems have exhibited significant degradation in bond properties after 505K (450 F) 10,000 hour exposure. Failures appear to be adhesive in the oxide layer. Phase 2 chemical characterization, cure cycle studies, baseline data, preliminary specifications, and environmental exposure data generated on polyphenyquinoxaline is presented. Similar but limited data on LARC-13 and NR056X adhesives is reported.

  8. The peel test in experimental adhesive fracture mechanics

    NASA Technical Reports Server (NTRS)

    Anderson, G. P.; Devries, K. L.; Williams, M. L.

    1974-01-01

    Several testing methods have been proposed for obtaining critical energy release rate or adhesive fracture energy in bond systems. These tests include blister, cone, lap shear, and peel tests. Peel tests have been used for many years to compare relative strengths of different adhesives, different surface preparation techniques, etc. The present work demonstrates the potential use of the peel test for obtaining adhesive fracture energy values.

  9. Elastomer toughened polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L. (Inventor)

    1983-01-01

    A rubber-toughened addition-type polyimide composition is disclosed which has excellent high temperature bonding characteristics in the fully cured state, and improved peel strength and adhesive fracture resistance physical property characteristics. The process for making the improved adhesive involves preparing the rubber containing amic acid prepolymer by chemically reacting an amine-terminated elastomer and an aromatic diamine with an aromatic dianhydride with which a reactive chain stopper anhydride was mixed, and utilizing solvent or mixture of solvents for the reaction.

  10. Adhesion in hydrogel contacts

    NASA Astrophysics Data System (ADS)

    Torres, J. R.; Jay, G. D.; Kim, K.-S.; Bothun, G. D.

    2016-05-01

    A generalized thermomechanical model for adhesion was developed to elucidate the mechanisms of dissipation within the viscoelastic bulk of a hyperelastic hydrogel. Results show that in addition to the expected energy release rate of interface formation, as well as the viscous flow dissipation, the bulk composition exhibits dissipation due to phase inhomogeneity morphological changes. The mixing thermodynamics of the matrix and solvent determines the dynamics of the phase inhomogeneities, which can enhance or disrupt adhesion. The model also accounts for the time-dependent behaviour. A parameter is proposed to discern the dominant dissipation mechanism in hydrogel contact detachment.

  11. Contribution from pressure-sensitive adhesives

    NASA Astrophysics Data System (ADS)

    Cunningham, Gilbert

    1996-03-01

    The successful use of many security papers, foils and films depends on the technology of chemical fastening systems -- especially pressure sensitive adhesives. These are adhesives activated not by heat or by the evaporation of water or some other solvent, but simply by the act of application -- by pressure. These adhesives provide the means whereby laminations, substrates and seals are made effective. In addition to their physical properties these adhesives are often required to possess optical properties to allow the security materials to be visibly active and indeed the adhesive system may itself contribute as a carrier for a variety of security materials. Recent advances in adhesives chemistry have made it possible to achieve virtually all the required physical performance characteristics combined with a choice of optical properties ranging from total opacity to invisibility and including controlled translucency and tinting. The implications for security printing and packaging are important. Opacity is easy to achieve, for example by loading the adhesive with aluminum powder, by the selection of totally opaque materials like metallized film or by various printing processes. But achieving transparency is a different matter, and transparency is mandatory for applications involving the protection of documents, photographs, etc. with a clear film over-laminate. Obvious examples would be for passports, visas and other personal identification. But some security devices may themselves require protection; for example holograms or embossings. And transparency in the test laboratory is not enough. The Australian driving licence is stuck to the windshield, so the transparency of the adhesive must be sustained over long periods without deterioration due to prolonged u/v exposure, climatic conditions or aging. The commercial label market has helped to push the technology forward. There is a strong demand for the 'no-label look' for packaging of clear plastic and glass

  12. Underwater Adhesives Retrofit Pipelines with Advanced Sensors

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Houston-based Astro Technology Inc. used a partnership with Johnson Space Center to pioneer an advanced fiber-optic monitoring system for offshore oil pipelines. The company's underwater adhesives allow it to retrofit older deepwater systems in order to measure pressure, temperature, strain, and flow properties, giving energy companies crucial data in real time and significantly decreasing the risk of a catastrophe.

  13. Dual-axis MEMS force sensors for gecko adhesion studies

    NASA Astrophysics Data System (ADS)

    Hill, Ginel Corina

    Dual-axis piezoresistive microelectromechanical systems (MEMS) force sensors were used to investigate the effects of orientation angle on the adhesion of gecko hairs, called setae. These hairs are part of a fantastic, robust dry adhesive. Their adhesion is highly angle-dependent, with both the "pitch" and "roll" orientation angles playing a role. This anisotropy in adhesion properties is critical for locomotion, as it enables detachment of the gecko's foot with limited pull-off force. Many synthetic mimics of the gecko adhesive are isotropic. This work on the anisotropy of natural setae will inform future work on synthetic dry adhesives. A dual-axis microscale force sensor was needed to study single seta adhesive forces, which are stronger parallel to a substrate than perpendicular. Piezoresistive silicon cantilevers that separately detect lateral and normal forces applied at the tip were used. The fabrication process and rigorous characterization of new devices are reported. A novel calibration method was developed that uses resonant frequency measurements in concert with finite element models to correct for the expected variability of critical dimensions. These corrected models were used to predict the stiffnesses of each cantilever, and thus improve the accuracy of force measurements made with these sensors. This calibration technique was also validated by direct measurement of the dual-axis cantilever stiffnesses using a reference cantilever. The adhesion force of a single gecko seta is dramatically enhanced by proper orientation. The dual-axis cantilevers were used to measure two components of force between a substrate and a Gekko gecko seta. Lateral adhesion was highest with the stalk oriented parallel to the surface at 0° pitch. Adhesion decreased smoothly as the pitch angle of the stalk was increased, until detachment or no adhesion occurred at approximately 30°. To display enhanced adhesion, the splayed tuft at the end of the seta needed to be only

  14. Rapid adhesive bonding concepts

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Hodges, W. T.

    1984-01-01

    Adhesive bonding in the aerospace industry typically utilizes autoclaves or presses which have considerable thermal mass. As a consequence, the rates of heatup and cooldown of the bonded parts are limited and the total time and cost of the bonding process is often relatively high. Many of the adhesives themselves do not inherently require long processing times. Bonding could be performed rapidly if the heat was concentrated in the bond lines or at least in the adherends. Rapid adhesive bonding concepts were developed to utilize induction heating techniques to provide heat directly to the bond line and/or adherends without heating the entire structure, supports, and fixtures of a bonding assembly. Bonding times for specimens are cut by a factor of 10 to 100 compared to standard press bonding. The development of rapid adhesive bonding for lap shear specimens (per ASTM D1003 and D3163), for aerospace panel bonding, and for field repair needs of metallic and advanced fiber reinforced polymeric matrix composite structures are reviewed.

  15. Resistance heating releases structural adhesive

    NASA Technical Reports Server (NTRS)

    Glemser, N. N.

    1967-01-01

    Composite adhesive package bonds components together for testing and enables separation when testing is completed. The composite of adhesives, insulation and a heating element separate easily when an electrical current is applied.

  16. 3-D foam adhesive deposition

    NASA Technical Reports Server (NTRS)

    Lemons, C. R.; Salmassy, O. K.

    1976-01-01

    Bonding method, which reduces amount and weight of adhesive, is applicable to foam-filled honeycomb constructions. Novel features of process include temperature-viscosity control and removal of excess adhesive by transfer to cellophane film.

  17. Ice adhesion on lubricant-impregnated textured surfaces.

    PubMed

    Subramanyam, Srinivas Bengaluru; Rykaczewski, Konrad; Varanasi, Kripa K

    2013-11-01

    Ice accretion is an important problem and passive approaches for reducing ice-adhesion are of great interest in various systems such as aircrafts, power lines, wind turbines, and oil platforms. Here, we study the ice-adhesion properties of lubricant-impregnated textured surfaces. Force measurements show ice adhesion strength on textured surfaces impregnated with thermodynamically stable lubricant films to be higher than that on surfaces with excess lubricant. Systematic ice-adhesion measurements indicate that the ice-adhesion strength is dependent on texture and decreases with increasing texture density. Direct cryogenic SEM imaging of the fractured ice surface and the interface between ice and lubricant-impregnated textured surface reveal stress concentrators and crack initiation sites that can increase with texture density and result in lowering adhesion strength. Thus, lubricant-impregnated surfaces have to be optimized to outperform state-of-the-art icephobic treatments.

  18. Implication of intercellular adhesion molecule-1 (ICAM-1) and serum N(G)-hydroxy-L-arginine (L-NHA) in the pathogenesis of systemic sclerosis.

    PubMed

    Zamzam, Mona Lotfy; Yassin, Manal Mohamed; Sallam, Maha Mohamed

    2003-01-01

    In a trial to throw light on the implication of intercellular adhesion molecule-1 (ICAM-1) and N(G)-hydroxy-L-arginine (L-NHA) in the pathogenesis of systemic sclerosis or Scleroderma, (SSc), their serum levels were estimated in twenty SSc patients using ELISA and high performance liquid chromatography respectively. In situ "local" expression of ICAM-1 in lesional skin of these patients was also assessed using biotinstreptavidin amplified detection system. Patients were divided into 3 groups according to the cutaneous extension of sclerosis (Grades I; II & III). A significant (P < 0.001) difference was found between patients (n = 20) and controls (n = 10) regarding soluble ICAM-1 (s ICAM-1) and L-NHA levels. Among patients, a significant difference (P < 0.001, 0.05 respectively) in sICAM-1 & L-NHA serum levels was found between patients who had musculoskeletal manifestations and those who had not. A significant (P < 0.001) difference in L-NHA level was found between patients with grade I, II, III. Among patients, there was a negative correlation (r = -0.413) between serum sICAM-1 and the duration of the disease, and a positive correlation (r = +0.514) between sICAM-1 and L-NHA serum levels. 4 patients (23.6%) showed mild immunostaining, 8 patients (47%) showed moderate staining, and 5 patients (29.4%) showed intense staining, while control specimens showed negative immunostaining. In conclusion, ICAM-1 and serum L-NHA are probably implicated in the pathogenesis of SSc. Elevated sICAM-1 and L-NHA serum could be used as a quantitative marker of tissue sclerosis, allowing better follow up of patients.

  19. Adhesive fracture mechanics. [stress analysis for bond line interface

    NASA Technical Reports Server (NTRS)

    Bennett, S. J.; Devries, K. L.; Williams, M. L.

    1974-01-01

    In studies of fracture mechanics the adhesive fracture energy is regarded as a fundamental property of the adhesive system. It is pointed out that the value of the adhesive fracture energy depends on surface preparation, curing conditions, and absorbed monolayers. A test method reported makes use of a disk whose peripheral part is bonded to a substrate material. Pressure is injected into the unbonded central part of the disk. At a certain critical pressure value adhesive failure can be observed. A numerical stress analysis involving arbitrary geometries is conducted.

  20. Cell Cycle Control and Adhesion Molecule Expression in Cells of the Immune System are Sensitive to Altered Gravity

    NASA Astrophysics Data System (ADS)

    Ullrich, O.; Paulsen, K.; Thiel, C.; Herrmann, K.; Sang, C.; Han, G.; Hemmersbach, R.; von der Wiesche, M.; Kroll, H.; Zhuang, F.; Grote, K. H.; Cogoli, A.; Zipp, F.; Engelmann, F.

    2008-06-01

    Life on earth developed in the presence and under the constant influence of gravity. Thus, it is a fundamental biological question, whether gravity is required for cellular functions and signal transduction in mammalian cells. Since the first Spacelab-Mission 20 years ago, it is known that activation and function of T lymphocytes is severely suppressed in microgravity, but the underlying molecular mechanisms are not elucidated. Experiments have been performed using ground-based facilities such as fast-rotating clinostat and hyper-g-centrifuges, and real microgravity provided by parabolic flights. We found that 1.) cells of the immune system responded cell type specifically to altered gravity, 2.) microgravity induced a multitude of initial alterations in signal transduction, whereas 3.) hypergravity of 1.8g did not induce any changes of the pathways tested, and that 4.) most of the initially altered pathways in microgravity adapted to "normal" levels within 15min. However, some pathways remained altered and could explain cell cycle arrest of T lymphocytes as observed in several long-term space experiments.

  1. Use of an infrared temperature monitoring system to determine optimal temperature for arterial repair using light-activated surgical adhesive

    NASA Astrophysics Data System (ADS)

    Soller, Eric C.; Hoffman, Grant T.; McNally-Heintzelman, Karen M.

    2003-06-01

    The ability to reproduce strong repairs is essential to establishing the reliability of laser-tissue soldering techniques and advancing their use to the clinical setting. While some thermal damage is necessary to achieve a viable solder-tissue bond, excessive thermal damage leads to decreased flexibility and strength of the repair. In addition, if the temperature at the solder/tissue interface is too low, inadequate solder-tissue bonding will occur to provide a strong repair. This suggests the presence of an optimal temperature for laser-tissue repair. The choice of solder material presents another challenge to the reproducibility of strong repairs. The emerging use of chromophore-enhanced solder-doped polymer scaffolds offers numerous advantages over more traditional liquid and solid solders composed of serum albumin and an absorbing chromophore mixed in deionized water. Polymer scaffolds, fabricated from poly(L-lactic-co-glycolic acid) using a solvent casting and particulate leaching technique, are porous enough to absorb serum albumin and can also be doped with various hemostatic and thrombogenic agents to aid in tissue healing. Use of the polymer scaffolds allows one to combine the strength of solid solders and the flexibility of liquid solders without the common "runaway" problems. An in vitro study was performed to correlate tissue temperature with the tensile strength of arterial repairs formed using the chromophore-enhanced solder-doped polymer scaffolds. Laser irradiance was varied and the solder surface and solder/tissue interface temperatures were monitored by an IR temperature monitoring system and a type-K thermocouple, respectively. The solder/tissue interface temperature required for optimized tensile strength was determined to be 67 +/- 5°C. This value was in agreement with previous studies using serum albumin solders alone, where the optimal solder/tissue interface temperature was found to be 65°C.

  2. High-Temperature Adhesive Strain Gage Developed

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Roberts, Gary D.

    1997-01-01

    Researchers at the NASA Lewis Research Center have developed a unique strain gage and adhesive system for measuring the mechanical properties of polymers and polymer composites at elevated temperatures. This system overcomes some of the problems encountered in using commercial strain gages and adhesives. For example, typical commercial strain gage adhesives require a postcure at temperatures substantially higher than the maximum test temperature. The exposure of the specimen to this temperature may affect subsequent results, and in some cases may be higher than the glass-transition temperature of the polymer. In addition, although typical commercial strain gages can be used for short times at temperatures up to 370 C, their long-term use is limited to 230 C. This precludes their use for testing some high-temperature polyimides near their maximum temperature capability. Lewis' strain gage and adhesive system consists of a nonencapsulated, unbacked gage grid that is bonded directly to the polymer after the specimen has been cured but prior to the normal postcure cycle. The gage is applied with an adhesive specially formulated to cure under the specimen postcure conditions. Special handling, mounting, and electrical connection procedures were developed, and a fixture was designed to calibrate each strain gage after it was applied to a specimen. A variety of tests was conducted to determine the performance characteristics of the gages at elevated temperatures on PMR-15 neat resin and titanium specimens. For these tests, which included static tension, thermal exposure, and creep tests, the gage and adhesive system performed within normal strain gage specifications at 315 C. An example of the performance characteristics of the gage can be seen in the figure, which compares the strain gage measurement on a polyimide specimen at 315 C with an extensometer measurement.

  3. Assessment of the Shear Bond Strength between Nanofilled Composite Bonded to Glass-ionomer Cement Using Self-etch Adhesive with Different pHs and Total-Etch Adhesive

    PubMed Central

    Sharafeddin, Farahnaz; Choobineh, Mohammad Mehdi

    2016-01-01

    Statement of the Problem In the sandwich technique, the undesirable bond between the composite resin and glass-ionomer cement (GIc) is one of the most important factors which lead to the failure of restoration. Total-etch and self-etch adhesives may improve the bond strength based on their pH. Purpose The purpose of this study was to evaluate the shear bond strength between the nanofilled composite resin and GIc using different adhesives. Materials and Method In this experimental study, 40 specimens (6×6mm) in 4 groups (n=10) were prepared in acrylic mold. Each specimen contained conventional GI ChemFil Superior with a height of 3mm, bonded to Z350 composite resin with a height measured 3mm. In order to bond the composite to the GI, the following adhesives were used, respectively: A: mild Clearfil SE Bond self-etch (pH=2), B: intermediate OptiBond self-etch (pH=1.4), C: strong Adper Prompt L-Pop (pH=1), and D: Adper Single Bond 2 total-etch (pH=7.2). The shear bond strength was measured by using universal testing machine with a crosshead speed of 1mm/min. One-way ANOVA and Tukey’s test were used to analyze the data (p< 0.05). Results The shear bond strength in group A was significantly higher than group B (p= 0.002), C (p< 0.001), and D (p< 0.001). Moreover, the shear bond strength of groups A and B (self-etch) was significantly different from group D (total-etch) (p< 0.001); and C (self-etch) with D (p= 0.024). Conclusion The results of this study showed that applying the mild self-etch adhesive between the composite and the GIc results in stronger shear bond strength compared to intermediate and strong self-etch adhesives. Moreover, the self-etch adhesive increased the shear bond strength between composite resin and GIc more significantly than total-etch adhesive. PMID:26966701

  4. Adhesive bonding of resin composite to various titanium surfaces using different metal conditioners and a surface modification system

    PubMed Central

    ALMILHATTI, Hercules Jorge; NEPPELENBROEK, Karin Hermana; VERGANI, Carlos Eduardo; MACHADO, Ana Lúcia; PAVARINA, Ana Cláudia; GIAMPAOLO, Eunice Teresinha

    2013-01-01

    Objective This study evaluated the effect of three metal conditioners on the shear bond strength (SBS) of a prosthetic composite material to cpTi grade I having three surface treatments. Material and Methods One hundred sixty eight rivet-shaped specimens (8.0x2.0 mm) were cast and subjected to polishing (P) or sandblasting with either 50 mm (50SB) or 250 mm (250SB) Al2O3. The metal conditioners Metal Photo Primer (MPP), Cesead II Opaque Primer (OP), Targis Link (TL), and one surface modification system Siloc (S), were applied to the specimen surfaces, which were covered with four 1-mm thick layers of resin composite. The resin layers were exposed to curing light for 90 s separately. Seven specimens from each experimental group were stored in water at 37ºC for 24 h while the other 7 specimens were subjected to 5,000 thermal cycles consisting of water baths at 4ºC and 60ºC (n=7). All specimens were subjected to SBS test (0.5 mm/min) until failure occurred, and further 28 specimens were analyzed using scanning electron microscope (SEM) and X-ray energy-dispersive spectroscopy (EDS). Data were analyzed by 3-way ANOVA followed by post-hoc Tukey's test (α=0.05). Results On 50SB surfaces, OP groups showed higher SBS means than MPP (P<0.05), while no significant difference was found among OP, S, and TL groups. On 250SB surfaces, OP and TL groups exhibited higher SBS than MPP and S (P<0.05). No significant difference in SBS was found between OP and TL groups nor between MPP and S groups. The use of conditioners on 250SB surfaces resulted in higher SBS means than the use of the same products on 50SB surfaces (P<0.05). Conclusion Sandblasting associated with the use of metal conditioners improves SBS of resin composites to cpTi. PMID:24473727

  5. A c-di-GMP Effector System Controls Cell Adhesion by Inside-Out Signaling and Surface Protein Cleavage

    PubMed Central

    Newell, Peter D.; Boyd, Chelsea D.; Sondermann, Holger; O'Toole, George A.

    2011-01-01

    In Pseudomonas fluorescens Pf0-1 the availability of inorganic phosphate (Pi) is an environmental signal that controls biofilm formation through a cyclic dimeric GMP (c-di-GMP) signaling pathway. In low Pi conditions, a c-di-GMP phosphodiesterase (PDE) RapA is expressed, depleting cellular c-di-GMP and causing the loss of a critical outer-membrane adhesin LapA from the cell surface. This response involves an inner membrane protein LapD, which binds c-di-GMP in the cytoplasm and exerts a periplasmic output promoting LapA maintenance on the cell surface. Here we report how LapD differentially controls maintenance and release of LapA: c-di-GMP binding to LapD promotes interaction with and inhibition of the periplasmic protease LapG, which targets the N-terminus of LapA. We identify conserved amino acids in LapA required for cleavage by LapG. Mutating these residues in chromosomal lapA inhibits LapG activity in vivo, leading to retention of the adhesin on the cell surface. Mutations with defined effects on LapD's ability to control LapA localization in vivo show concomitant effects on c-di-GMP-dependent LapG inhibition in vitro. To establish the physiological importance of the LapD-LapG effector system, we track cell attachment and LapA protein localization during Pi starvation. Under this condition, the LapA adhesin is released from the surface of cells and biofilms detach from the substratum. This response requires c-di-GMP depletion by RapA, signaling through LapD, and proteolytic cleavage of LapA by LapG. These data, in combination with the companion study by Navarro et al. presenting a structural analysis of LapD's signaling mechanism, give a detailed description of a complete c-di-GMP control circuit—from environmental signal to molecular output. They describe a novel paradigm in bacterial signal transduction: regulation of a periplasmic enzyme by an inner membrane signaling protein that binds a cytoplasmic second messenger. PMID:21304920

  6. Effect of Interfacial Roughness of Bond Coat on the Residual Adhesion Strength of a Plasma Sprayed TBC System after Thermal Cycle Fatigue

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yasuhiro; Fukanuma, Hirotaka; Ohno, Naoyuki

    The effect of the bond coat on residual adhesion strength after thermal cycle fatigue was investigated in plasma-sprayed thermal barrier coatings (TBC). This study used CoNiCrAlY powder with two different particle sizes for spraying bond coat material to examine the effect of interface roughness between the bond coat and top coat. In addition, the bond coat was sprayed on either by a high velocity oxy-fuel (HVOF) or a low pressure plasma spray (LPPS). The residual adhesion strength of the TBC top coat was evaluated as a function of the number of thermal cycles by the modified 4-point bending test. In addition, SEM observations of thermal fatigue cracking morphologies and measurements of the residual stress in the ceramic top coat were carried out. The experimental results indicated that, after thermal cycle fatigue, microcracks were generated in the ceramic top coat; however, they were moderated in a rough interface TBC compared to a smooth interface TBC. In addition, the bond coat sprayed by the HVOF method showed a higher resistance to microcracking than the coat sprayed using the LPPS. Residual stress in the ceramic top coat is almost zero at 0 thermal cycles. After thermal cycle fatigue, it becomes compressional stress; however, it is independent of the bond coat. There was little difference in the adhesion strength by bond coat in as-sprayed conditions. On the other hand, the specimen with a rough interface exhibited higher residual adhesion strength after thermal cycle fatigue compared with the specimens with a relatively smooth interface. In addition, if the bond coat is sprayed by HVOF, the residual adhesion strength increases. It was revealed that the difference in residual adhesion strength by bond coat is related to the distribution morphology of thermal fatigue microcracks.

  7. Evaluation of Endothelial Cell Adhesion Molecules and Anti-C1q Antibody in Discriminating between Active and Non-Active Systemic Lupus Erythematosus

    PubMed Central

    Mahayidin, Hasni; Yahya, Nurul Khaiza; Wan Ghazali, Wan Syamimee; Mohd Ismail, Asmahan; Wan Ab Hamid, Wan Zuraida

    2016-01-01

    Background Detecting the active state of systemic lupus erythematosus (SLE) is important but challenging. This study aimed to determine the diagnostic accuracy of serum endothelial cell adhesion molecules (ICAM-1 and VCAM-1) and anti-C1q antibody in discriminating between active and non-active SLE. Methods Using SELENA-SLE disease activity index (SLEDAI), 95 SLE patients (45 active and 50 non-active) were assessed. A score above five was considered indicative of active SLE. The blood samples were tested for serum ICAM-1, VCAM-1 and anti-C1q antibody using enzyme-linked immunosorbent assay (ELISA). Results The levels of serum VCAM-1 and anti-C1q antibody were significantly higher in active SLE patients. Both VCAM-1 and anti-C1q were able to discriminate between active and non-active SLE (p-value < 0.001 and 0.005, respectively). From the receiver operating characteristic curves (ROCs) constructed, the optimal cut-off values for VCAM-1 and anti-C1q antibody in discriminating between active and non-active SLE were 30.5 ng/mL (69.0% sensitivity, 60.0% specificity, PPV 58.5%, NPV 66.7%) and 7.86 U/mL (75.6% sensitivity, 80% specificity, PPV 77.3%, NPV 78.4%), respectively. However, serum ICAM-1 level was unable to discriminate between the two groups (p-value = 0.193). Conclusion Anti-C1q antibody demonstrated the best diagnostic accuracy in discriminating between active and non-active SLE patients. PMID:27418866

  8. Improved primer for bonding polyurethane adhesives to metals

    NASA Technical Reports Server (NTRS)

    Constanza, L. J.

    1969-01-01

    Primer ensures effective bonding integrity of polyurethane adhesives on metal surfaces at temperatures ranging from minus 423 degrees to plus 120 degrees F. It provides greater metal surface protection and bond strengths over this temperature range than could be attained with other adhesive systems.

  9. Spiders Tune Glue Viscosity to Maximize Adhesion.

    PubMed

    Amarpuri, Gaurav; Zhang, Ci; Diaz, Candido; Opell, Brent D; Blackledge, Todd A; Dhinojwala, Ali

    2015-11-24

    Adhesion in humid conditions is a fundamental challenge to both natural and synthetic adhesives. Yet, glue from most spider species becomes stickier as humidity increases. We find the adhesion of spider glue, from five diverse spider species, maximizes at very different humidities that matches their foraging habitats. By using high-speed imaging and spreading power law, we find that the glue viscosity varies over 5 orders of magnitude with humidity for each species, yet the viscosity at maximal adhesion for each species is nearly identical, 10(5)-10(6) cP. Many natural systems take advantage of viscosity to improve functional response, but spider glue's humidity responsiveness is a novel adaptation that makes the glue stickiest in each species' preferred habitat. This tuning is achieved by a combination of proteins and hygroscopic organic salts that determines water uptake in the glue. We therefore anticipate that manipulation of polymer-salts interaction to control viscosity can provide a simple mechanism to design humidity responsive smart adhesives.

  10. Actin Foci Adhesion of D. discoideum

    NASA Astrophysics Data System (ADS)

    Flanders, Bret; Paneru, Govind

    2014-03-01

    Amoeboid migration is a fast (10 μm min-1) integrin-independent mode of migration that is important with D. discoideum, leukocytes, and breast cancer cells. It is poorly understood, but depends on the establishment of adhesive contacts to the substrate where the cell transmits traction forces. In pre-aggregative D. discoideum, a model system for learning about amoeboid migration, these adhesive contacts are discrete complexes that are known as actin-foci. They have an area of ~ 0.5 μm2 and a lifetime of ~ 20 s. This talk will present measurements of the adhesive character of actin foci that have been obtained using a submicron force transducer that was designed for this purpose. Results on the rupture stresses and lifetimes of individual acting foci under nano-newton level forces will be described in the context of a general theory for cellular adhesion. This theory depends on, essentially, three cellular properties: the membrane-medium surface tension, the number density of adhesion receptors in the membrane, and the receptor-substrate potential energy surface. Therefore, the use of the transducer to determine the surface tension will be presented, as well.

  11. Spiders Tune Glue Viscosity to Maximize Adhesion.

    PubMed

    Amarpuri, Gaurav; Zhang, Ci; Diaz, Candido; Opell, Brent D; Blackledge, Todd A; Dhinojwala, Ali

    2015-11-24

    Adhesion in humid conditions is a fundamental challenge to both natural and synthetic adhesives. Yet, glue from most spider species becomes stickier as humidity increases. We find the adhesion of spider glue, from five diverse spider species, maximizes at very different humidities that matches their foraging habitats. By using high-speed imaging and spreading power law, we find that the glue viscosity varies over 5 orders of magnitude with humidity for each species, yet the viscosity at maximal adhesion for each species is nearly identical, 10(5)-10(6) cP. Many natural systems take advantage of viscosity to improve functional response, but spider glue's humidity responsiveness is a novel adaptation that makes the glue stickiest in each species' preferred habitat. This tuning is achieved by a combination of proteins and hygroscopic organic salts that determines water uptake in the glue. We therefore anticipate that manipulation of polymer-salts interaction to control viscosity can provide a simple mechanism to design humidity responsive smart adhesives. PMID:26513350

  12. Doxycycline-encapsulated nanotube-modified dentin adhesives.

    PubMed

    Feitosa, S A; Palasuk, J; Kamocki, K; Geraldeli, S; Gregory, R L; Platt, J A; Windsor, L J; Bottino, M C

    2014-12-01

    This article presents details of fabrication, biological activity (i.e., anti-matrix metalloproteinase [anti-MMP] inhibition), cytocompatibility, and bonding characteristics to dentin of a unique doxycycline (DOX)-encapsulated halloysite nanotube (HNT)-modified adhesive. We tested the hypothesis that the release of DOX from the DOX-encapsulated nanotube-modified adhesive can effectively inhibit MMP activity. We incorporated nanotubes, encapsulated or not with DOX, into the adhesive resin of a commercially available bonding system (Scotchbond Multi-Purpose [SBMP]). The following groups were tested: unmodified SBMP (control), SBMP with nanotubes (HNT), and DOX-encapsulated nanotube-modified adhesive (HNT+DOX). Changes in degree of conversion (DC) and microtensile bond strength were evaluated. Cytotoxicity was examined on human dental pulp stem cells (hDPSCs). To prove the successful encapsulation of DOX within the adhesives-but, more important, to support the hypothesis that the HNT+DOX adhesive would release DOX at subantimicrobial levels-we tested the antimicrobial activity of synthesized adhesives and the DOX-containing eluates against Streptococcus mutans through agar diffusion assays. Anti-MMP properties were assessed via β-casein cleavage assays. Increasing curing times (10, 20, 40 sec) led to increased DC values. There were no statistically significant differences (p > .05) in DC within each increasing curing time between the modified adhesives compared to SBMP. No statistically significant differences in microtensile bond strength were noted. None of the adhesives eluates were cytotoxic to the human dental pulp stem cells. A significant growth inhibition of S. mutans by direct contact illustrates successful encapsulation of DOX into the experimental adhesive. More important, DOX-containing eluates promoted inhibition of MMP-1 activity when compared to the control. Collectively, our findings provide a solid background for further testing of encapsulated MMP

  13. Adhesion behaviors on superhydrophobic surfaces.

    PubMed

    Zhu, Huan; Guo, Zhiguang; Liu, Weimin

    2014-04-18

    The adhesion behaviors of superhydrophobic surfaces have become an emerging topic to researchers in various fields as a vital step in the interactions between materials and organisms/materials. Controlling the chemical compositions and topological structures via various methods or technologies is essential to fabricate and modulate different adhesion properties, such as low-adhesion, high-adhesion and anisotropic adhesion on superhydrophobic surfaces. We summarize the recent developments in both natural superhydrophobic surfaces and artificial superhydrophobic surfaces with various adhesions and also pay attention to superhydrophobic surfaces switching between low- and high-adhesion. The methods to regulate or translate the adhesion of superhydrophobic surfaces can be considered from two perspectives. One is to control the chemical composition and change the surface geometric structure on the surfaces, respectively or simultaneously. The other is to provide external stimulations to induce transitions, which is the most common method for obtaining switchable adhesions. Additionally, adhesion behaviors on solid-solid interfaces, such as the behaviors of cells, bacteria, biomolecules and icing on superhydrophobic surfaces are also noticeable and controversial. This review is aimed at giving a brief and crucial overview of adhesion behaviors on superhydrophobic surfaces.

  14. Passively stuck: death does not affect gecko adhesion strength

    PubMed Central

    Stewart, William J.; Higham, Timothy E.

    2014-01-01

    Many geckos use adhesive toe pads on the bottom of their digits to attach to surfaces with remarkable strength. Although gecko adhesion has been studied for hundreds of years, gaps exist in our understanding at the whole-animal level. It remains unclear whether the strength and maintenance of adhesion are determined by the animal or are passively intrinsic to the system. Here we show, for the first time, that strong adhesion is produced passively at the whole-animal level. Experiments on both live and recently euthanized tokay geckos (Gekko gecko) revealed that death does not affect the dynamic adhesive force or motion of a gecko foot when pulled along a vertical surface. Using a novel device that applied repeatable and steady-increasing pulling forces to the foot in shear, we found that the adhesive force was similarly high and variable when the animal was alive (mean ± s.d. = 5.4 ± 1.7 N) and within 30 min after death (5.4 ± 2.1 N). However, kinematic analyses showed that live geckos are able to control the degree of toe pad engagement and can rapidly stop strong adhesion by hyperextending the toes. This study offers the first assessment of whole-animal adhesive force under extremely controlled conditions. Our findings reveal that dead geckos maintain the ability to adhere with the same force as living animals, disproving that strong adhesion requires active control. PMID:25472940

  15. Passively stuck: death does not affect gecko adhesion strength.

    PubMed

    Stewart, William J; Higham, Timothy E

    2014-12-01

    Many geckos use adhesive toe pads on the bottom of their digits to attach to surfaces with remarkable strength. Although gecko adhesion has been studied for hundreds of years, gaps exist in our understanding at the whole-animal level. It remains unclear whether the strength and maintenance of adhesion are determined by the animal or are passively intrinsic to the system. Here we show, for the first time, that strong adhesion is produced passively at the whole-animal level. Experiments on both live and recently euthanized tokay geckos (Gekko gecko) revealed that death does not affect the dynamic adhesive force or motion of a gecko foot when pulled along a vertical surface. Using a novel device that applied repeatable and steady-increasing pulling forces to the foot in shear, we found that the adhesive force was similarly high and variable when the animal was alive (mean ± s.d. = 5.4 ± 1.7 N) and within 30 min after death (5.4 ± 2.1 N). However, kinematic analyses showed that live geckos are able to control the degree of toe pad engagement and can rapidly stop strong adhesion by hyperextending the toes. This study offers the first assessment of whole-animal adhesive force under extremely controlled conditions. Our findings reveal that dead geckos maintain the ability to adhere with the same force as living animals, disproving that strong adhesion requires active control.

  16. A microfabricated gecko-inspired controllable and reusable dry adhesive

    NASA Astrophysics Data System (ADS)

    Chary, Sathya; Tamelier, John; Turner, Kimberly

    2013-02-01

    Geckos utilize a robust reversible adhesive to repeatedly attach and detach from a variety of vertical and inverted surfaces, using structurally anisotropic micro- and nano-scale fibrillar structures. These fibers, when suitably articulated, are able to control the real area of contact and thereby generate high-to-low van der Waals forces. Key characteristics of the natural system include highly anisotropic adhesion and shear forces for controllable attachment, a high adhesion to initial preload force ratio (μ‧) of 8-16, lack of inter-fiber self-adhesion, and operation over more than 30 000 cycles without loss of adhesion performance. A highly reusable synthetic adhesive has been developed using tilted polydimethylsiloxane (PDMS) half-cylinder micron-scale fibers, retaining up to 77% of the initial value over 10 000 repeated test cycles against a flat glass puck. In comparison with other gecko-inspired adhesives tested over 10 000 cycles or more thus far, this paper reports the highest value of μ‧, along with a large shear force of ˜78 kPa, approaching the 88-226 kPa range of gecko toes. The anisotropic adhesion forces are close to theoretical estimates from the Kendall peel model, quantitatively showing how lateral shearing articulation in a manner similar to the gecko may be used to obtain adhesion anisotropy with synthetic fibers using a combination of tilt angle and anisotropic fiber geometry.

  17. Free energy landscape of receptor-mediated cell adhesion

    NASA Astrophysics Data System (ADS)

    Yang, Tianyi; Zaman, Muhammad H.

    2007-01-01

    Receptor-mediated cell adhesion plays a critical role in cell migration, proliferation, signaling, and survival. A number of diseases, including cancer, show a strong correlation between integrin activation and metastasis. A better understanding of cell adhesion is highly desirable for not only therapeutic but also a number of tissue engineering applications. While a number of computational models and experimental studies have addressed the issue of cell adhesion to surfaces, no model or theory has adequately addressed cell adhesion at the molecular level. In this paper, the authors present a thermodynamic model that addresses receptor-mediated cell adhesion at the molecular level. By incorporating the entropic, conformational, solvation, and long- and short-range interactive components of receptors and the extracellular matrix molecules, they are able to predict adhesive free energy as a function of a number of key variables such as surface coverage, interaction distance, molecule size, and solvent conditions. Their method allows them to compute the free energy of adhesion in a multicomponent system where they can simultaneously study adhesion receptors and ligands of different sizes, chemical identities, and conformational properties. The authors' results not only provide a fundamental understanding of adhesion at the molecular level but also suggest possible strategies for designing novel biomaterials.

  18. Environmentally compliant adhesive joining technology

    SciTech Connect

    Tira, J.S.

    1996-08-01

    Adhesive joining offers one method of assembling products. Advantages of adhesive joining/assembly include distribution of applied forces, lighter weight, appealing appearance, etc. Selecting environmentally safe adhesive materials and accompanying processes is paramount in today`s business climate if a company wants to be environmentally conscious and stay in business. Four areas of adhesive joining (adhesive formulation and selection, surface preparation, adhesive bonding process, waste and pollution generation/cleanup/management) all need to be carefully evaluated before adhesive joining is selected for commercial as well as military products. Designing for six sigma quality must also be addressed in today`s global economy. This requires material suppliers and product manufacturers to work even closer together.

  19. Ceramic microstructure and adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1985-01-01

    When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  20. Ceramic microstructure and adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1984-01-01

    When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  1. Adhesion barrier reduces postoperative adhesions after cardiac surgery.

    PubMed

    Kaneko, Yukihiro; Hirata, Yasutaka; Achiwa, Ikuya; Morishita, Hiroyuki; Soto, Hajime; Kobayahsi, Jotaro

    2012-06-01

    Reoperation in cardiac surgery is associated with increased risk due to surgical adhesions. Application of a bioresorbable material could theoretically reduce adhesions and allow later development of a free dissection plane for cardiac reoperation. Twenty-one patients in whom a bioresorbable hyaluronic acid-carboxymethylcellulose adhesion barrier had been applied in a preceding surgery underwent reoperations, while 23 patients underwent reoperations during the same period without a prior adhesion barrier. Blinded observers graded the tenacity of the adhesions from surgical video recordings of the reoperations. No excessive bleeding requiring wound reexploration, mediastinal infection, or other complication attributable to the adhesion barrier occurred. Multiple regression analysis showed that shorter duration of the preceding surgery, non-use of cardiopulmonary bypass in the preceding surgery, and use of the adhesion barrier were significantly associated with less tenacious surgical adhesions. The use of a bioresorbable material in cardiac surgery reduced postoperative adhesions, facilitated reoperation, and did not promote complications. The use of adhesion barrier is recommended in planned staged procedures and those in which future reoperation is likely.

  2. Effect of dentin dehydration and composite resin polymerization mode on bond strength of two self-etch adhesives

    PubMed Central

    Samimi, Pooran; Alizadeh, Mehdi; Shirban, Farinaz; Davoodi, Amin; Khoroushi, Maryam

    2016-01-01

    Background: Dual-cured composite resins are similar to self-cured composite resins in some of their clinical applications due to inadequate irradiation, lack of irradiation, or delayed irradiation. Therefore, incompatibility with self-etch adhesives (SEAs) should be taken into account with their use. On the other, the extent of dentin dehydration has a great role in the quality of adhesion of these resin materials to dentin. The aim of this study was to investigate the effect of dentin dehydration and composite resin polymerization mode on bond strength of two SEAs. Materials and Methods: A total of 120 dentinal specimens were prepared from extracted intact third molars. Half of the samples were dehydrated in ethanol with increasing concentrations. Then Clearfil SE Bond (CSEB) and Prompt L-Pop (PLP) adhesives were applied in the two groups. Cylindrical composite resin specimens were cured using three polymerization modes: (1) Immediate light-curing, (2) delayed light-curing after 20 min, and (3) self-curing. Bond strength was measured using universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed with two-way ANOVA and Duncan post hoc tests. Statistical significance was defined at P < 0.05. Results: There were no significant differences for CSEB subgroups with hydrated and dehydrated dentin samples between the three different curing modes (P > 0.05). PLP showed significant differences between subgroups with the lowest bond strength in hydrated dentin with delayed light-curing and self-cured mode of polymerization. Conclusion: Within the limitations of this study, a delay in composite resin light-curing or using chemically cured composite resin had a deleterious effect on dentin bond strength of single-step SEAs used in the study. PMID:27041894

  3. Self-etching zinc-doped adhesives improve the potential of caries-affected dentin to be functionally remineralized.

    PubMed

    Toledano, Manuel; Aguilera, Fátima S; Osorio, Estrella; Cabello, Inmaculada; Toledano-Osorio, Manuel; Osorio, Raquel

    2015-09-15

    The aim of this study was to evaluate if mechanical cycling influences bioactivity at the resin-carious dentin interface after bonding with Zn-doped self-etching adhesives. Caries-affected dentin surfaces were bonded with: Clearfil SE bond (SEB), and 10 wt. % ZnO nanoparticles or 2 wt. % ZnCl2 were added into the SEB primer or bonding components. Bonded interfaces were stored during 24 h and then tested or submitted to mechanical loading. Microtensile bond strength was assessed. Debonded dentin surfaces were studied by field emission scanning electron microscopy. Remineralization of the bonded interfaces was evaluated through nanohardness (Hi) and Young's modulus (Ei), Raman spectroscopy/cluster analysis, and Masson's trichrome staining technique. New precipitation of minerals composed of zinc-base salts and multiple Zn-rich phosphate deposits was observed in samples infiltrated with the Zn-doped adhesives. At the hybrid layer, specimens treated with ZnO incorporated in the primer (SEB·P-ZnO), after load cycling, attained the highest Ei and Hi. Load cycling increased Ei at the bottom of the hybrid layer when both, SEB undoped and SEB with ZnCl2 included in the bonding (SEB·Bd-ZnCl2), were used. ZnO incorporated in the primer promoted an increase in height of the phosphate and carbonate peaks, crystallinity, relative mineral concentration, and lower collagen crosslinking. ZnCl2 included in the bonding attained similar results, but relative mineral concentration decreased, associated to higher crosslinking and restricted collagen maturation. In general, a substantial restoration of the mechanical properties of caries-affected dentin substrata occurred when SEB-Zn doped adhesives were used and load cycled was applied, leading to functional and biochemical remineralization.

  4. Mussel-inspired soft-tissue adhesive based on poly(diol citrate) with catechol functionality.

    PubMed

    Ji, Yali; Ji, Ting; Liang, Kai; Zhu, Lei

    2016-02-01

    Marine mussels tightly adhering to various underwater surfaces inspires human to design adhesives for wet tissue adhesion in surgeries. Characterization of mussel adhesive plaques describes a matrix of proteins containing 3,4-dihydroxyphenylalanine (DOPA), which provides strong adhesion in aquatic conditions. Several synthetic polymer systems have been developed based on this DOPA chemistry. Herein, a citrate-based tissue adhesives (POEC-d) was prepared by a facile one-pot melt polycondensation of two diols including 1,8-octanediol and poly(ethylene oxide) (PEO), citric acid (CA) and dopamine, and the effects of hydrophilic and soft PEO on the properties of adhesives were studied. It was found that the obtained adhesives exhibited water-soluble when the mole ratio of PEO to 1,8-octanediol was 70%, and the equilibrium swelling percentage of cured adhesive was about 144%, and degradation rate was in the range of 1-2 weeks. The cured adhesives demonstrated soft rubber-like behavior. The lap shear adhesion strength measured by bonding wet pig skin was in the range of 21.7-33.7 kPa, which was higher than that of commercial fibrin glue (9-15 kPa). The cytotoxicity tests showed the POEC-d adhesives had a low cytotoxicity. Our results supports that POEC-d adhesives, which combined strong wet adhesion with good biodegradability, acceptable swelling ratio, good elasticity and low cytotoxicity, have potentials in surgeries where surgical tissue adhesives, sealants, and hemostatic agents are used. PMID:26704547

  5. Rapid Development of Wet Adhesion between Carboxymethylcellulose Modified Cellulose Surfaces Laminated with Polyvinylamine Adhesive.

    PubMed

    Gustafsson, Emil; Pelton, Robert; Wågberg, Lars

    2016-09-14

    The surface of regenerated cellulose membranes was modified by irreversible adsorption of carboxymethylcellulose (CMC). Pairs of wet CMC-modified membranes were laminated with polyvinylamine (PVAm) at room temperature, and the delamination force for wet membranes was measured for both dried and never-dried laminates. The wet adhesion was studied as a function of PVAm molecular weight, amine content, and deposition pH of the polyelectrolyte. Surprisingly the PVAm-CMC system gave substantial wet adhesion that exceeded that of TEMPO-oxidized membranes with PVAm for both dried and never-dried laminates. The greatest wet adhesion was achieved for fully hydrolyzed high molecular weight PVAm. Bulk carboxymethylation of cellulose membranes gave inferior wet adhesion combined with PVAm as compared to CMC adsorption which indicates that a CMC layer of the order of 10 nm was necessary. There are no obvious covalent cross-linking reactions between CMC and PVAm at room temperature, and on the basis of our results, we are instead attributing the wet adhesion to complex formation between the PVAm and the irreversibly adsorbed CMC at the cellulose surface. We propose that interdigitation of PVAm chains into the CMC layer is responsible for the high wet adhesion values. PMID:27552256

  6. Cell adhesion in zebrafish myogenesis: distribution of intermediate filaments, microfilaments, intracellular adhesion structures and extracellular matrix.

    PubMed

    Costa, Manoel L; Escaleira, Roberta C; Jazenko, Fernanda; Mermelstein, Claudia S

    2008-10-01

    To overcome the limitations of in vitro studies, we have been studying myogenesis in situ in zebrafish embryos, at a sub-cellular level. While in previous works we focused on myofibrillogenesis and some aspects of adhesion structures, here we describe in more detail cell adhesion structures and interactions among cytoskeletal components, membrane and extracellular matrix during zebrafish muscle development. We studied the intermediate filaments, and we describe the full range of desmin distribution in zebrafish development, from perinuclear to striated, until its deposition around the intersomite septa of older somites. This adhesion structure, positive for desmin and actin, has not been previously observed in myogenesis in vitro. We also show that actin is initially located in the intersomite septum region whereas it is confined to the myofibrils later on. While actin localization changes during development, the adhesion complex proteins vinculin, paxillin, talin, dystrophin, laminin and fibronectin always appear exclusively at the intersomite septa, and appear to be co-distributed, even though the extracellular proteins accumulates before the intracellular ones. Contrary to the adhesion proteins, that are continuously distributed, desmin and sarcomeric actin form triangular aggregates among the septa and the cytoskeleton. We studied the cytoskeletal linker plectin as well, and we show that it has a distribution similar to desmin and not to actin. We conclude that the in situ adhesion structures differ from their in vitro counterparts, and that the actual zebrafish embryo myogenesis is quite different than that which occurs in in vitro systems.

  7. Humidity-enhanced wet adhesion on insect-inspired fibrillar adhesive pads

    PubMed Central

    Xue, Longjian; Kovalev, Alexander; Eichler-Volf, Anna; Steinhart, Martin; Gorb, Stanislav N.

    2015-01-01

    Many insect species reversibly adhere to surfaces by combining contact splitting (contact formation via fibrillar contact elements) and wet adhesion (supply of liquid secretion via pores in the insects’ feet). Here, we fabricate insect-inspired fibrillar pads for wet adhesion containing continuous pore systems through which liquid is supplied to the contact interfaces. Synergistic interaction of capillarity and humidity-induced pad softening increases the pull-off force and the work of adhesion by two orders of magnitude. This increase and the independence of pull-off force on the applied load are caused by the capillarity-supported formation of solid–solid contact between pad and the surface. Solid–solid contact dominates adhesion at high humidity and capillarity at low humidity. At low humidity, the work of adhesion strongly depends on the amount of liquid deposited on the surface and, therefore, on contact duration. These results may pave the way for the design of insect-inspired adhesive pads. PMID:25791574

  8. Evaluation of high temperature structural adhesives for extended service. [supersonic cruise aircraft research

    NASA Technical Reports Server (NTRS)

    Hill, S. G.

    1981-01-01

    Eight different Ti-6Al-4V surface treatments were investigated for each of 10 candidate resins. Primers (two for each resin) were studied for appropriate cure and thickness and initial evaluation of bond joints began using various combinations of the adhesive resins and surface treatments. Surface failure areas of bonded titanium coupons were analyzed by electron microscopy and surface chemical analysis techniques. Results of surface characterization and failure analysis are described for lap shear bond joints occurring with adhesive systems consisting of: (1) LARC-13 adhesive, Pasa jell surface treatment; (2) LARC-13 adhesive, 10 volt CAA treatment; (3) PPQ adhesive, 10 volt CAA treatment; and (4) PPQ adhesive, 5 volt CAA treatment. The failure analysis concentrated on the 10,000 hr 505K (450 F) exposed specimens which exhibited adhesive failure. Environmental exposure data being generated on the PPQ-10 volt CAA and the LARC-TPI-10 volt CAA adhesive systems is included.

  9. Hardness and elasticity of caries-affected and sound primary tooth dentin bonded with 4-META one-step self-etch adhesives

    PubMed Central

    Hosoya, Yumiko; Tay, Franklin R.; Miyakoshi, Shoichi; Pashley, David H.

    2013-01-01

    Purpose This study evaluated the quality of the interface of sound and carious primary tooth dentin bonded with two 4-META one-step self-etch adhesives. Methods Twelve sound and twelve carious primary molars were bonded with AQ Bond Plus (AQBP; Sun Medical) or Hybrid Bond (HB; Sun Medical) and restored with Clearfil Protect Liner F (Kuraray Medical Inc.). After 24 hours of water immersion, the teeth were sectioned and polished. Resin-dentin interfaces were measured with a nano-indentation tester and hardness and Young’s modulus were calculated. Data were analyzed using one-way or two-ways ANOVA and Fisher’s PLSD test with α=0.05. Resin-dentin interfaces were also observed with SEM and TEM. Ammoniacal silver nitrate was used as a tracer for TEM observation. Results Hardness and Young’s modulus of the interfacial dentin were significantly lower than the underlying intact dentin except for the carious-AQBP group. However, there was no significant difference of hardness and Young's moduli of the interfacial dentin among all groups. TEM revealed extensive interfacial nanoleakage in sound dentin bonded with either AQBP or HB. For the carious teeth, nanoleakage was absent in the hybrid layers bonded with the two adhesives. However, extensive silver deposits were identified from the subsurface, porous caries-affected dentin. PMID:18795517

  10. [Adhesive cutaneous pharmaceutical forms].

    PubMed

    Gafiţanu, E; Matei, I; Mungiu, O C; Pavelescu, M; Mîndreci, I; Apostol, I; Ionescu, G

    1989-01-01

    The adhesive cutaneous pharmaceutical forms aimed to local action release the drug substance in view of a dermatological, traumatological, antirheumatic, cosmetic action. Two such preparations were obtained and their stability, consistency and pH were determined. The "in vitro" tests of their bioavailability revealed the dynamics of calcium ions release according to the associations of each preparation. The bioavailability determined by evaluating the pharmacological response demonstrated the antiinflammatory action obtained by the association of calcium ions with the components extracted from poplar muds. The therapeutical efficiency of the studied preparations has proved in the treatment of some sport injuries.

  11. Puerperal endometritis and intrauterine adhesions.

    PubMed

    Polishuk, W Z; Anteby, S O; Weinstein, D

    1975-08-01

    The role of puerperal endometritis in intrauterine adhesion formation was studied by hysterography in 171 women who had cesarean sections. Of 28 patients who developed significant endometritis, only one developed intracervical adhesions. In the control group of 143 cases, there was also only one such case. Endometritis alone apparently does not play a significant role in intrauterine and endocervical adhesion formation. The possible role of placental fibroblasts in preventing endometrial regeneration is discussed. PMID:1158622

  12. Adhesion properties of gecko setae

    NASA Astrophysics Data System (ADS)

    Hill, Ginel; Peattie, Anne; Daniels, Roxanne; Full, Robert; Kenny, Thomas

    2005-03-01

    Millions of keratin hairs on gecko feet, called setae, act as a spectacular dry adhesive. Each seta branches into hundreds of smaller fibers that terminate in spatula-shaped ends. Morphological differences between the setae from different gecko species are suspected to affect both single-seta and whole-animal adhesion properties. Single-seta adhesive force measurements made using a MEMS piezoresistive cantilever capable of two-axis measurements are presented.

  13. The relationship between the adhesion work, the wettability and composition of the surface layer in the systems polymer/aqueous solution of anionic surfactants and alcohol mixtures

    NASA Astrophysics Data System (ADS)

    Zdziennicka, Anna; Jańczuk, Bronisław

    2010-11-01

    Measurements of advancing contact angle ( θ) were carried out on polytetrafluoroethylene (PTFE) and polymethylmethacrylate (PMMA) for aqueous solution of sodium dodecyl sulfate (SDDS) mixtures with methanol, ethanol and propanol in the range of SDDS concentration from 10 -5 to 10 -2 M, and for sodium hexadecyl sulfonate (SHS) with the same alcohols at the SHS concentration ranging from 10 -5 to 8 × 10 -4 M at 293 K. The concentration of methanol, ethanol and propanol used for measurements varied from 0 to 21.1, 11.97 and 6.67 M, respectively. On the basis of the contact angles the critical surface tension of PTFE and PMMA wetting was determined by using for this purpose the relationship between the adhesion and the surface tension and cos θ and surface tension both at constant alcohol and surfactant concentration, respectively. The obtained contact angles were also used in the Young Dupre' equation for calculations of the adhesion work of aqueous solution of mixtures of anionic surfactants and short chain alcohols to PTFE and PMMA surface. The adhesion work calculated in this way was compared to that of the particular components of aqueous solution to these surfaces determined on the basis of the surface tension components and parameters of the surface tension of the surface active agents, water, PTFE and PMMA from van Oss et al. equation. The calculated adhesion work was discussed in the light of the concentration of surface active agents at polymer-water and water-air interface determined from Lucassen-Reynders, Gibbs and Guggenheim-Adam equations.

  14. Composites for Advanced Space Transportation Systems - (CASTS). [graphite fiber/polyimide matrix composites and polyimide adhesives for the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Davis, J. G., Jr.

    1979-01-01

    The CASTS Project initiated to develop graphite fiber/polyimide matrix (GR/PI) composite structures with 589K operational capability for aerospace vehicles is described. Near term tasks include screening composites and adhesives for 589K service, developing fabrication procedures and specifications, developing design allowables test methods and data, design and test of structural elements, and construction of a full scale aft body flap for the space shuttle orbiter vehicle for ground testing. Far term tasks include research efforts directed at new materials, manufacturing procedures and design/analysis methodology. Specific results discussed include: (1) identification of four GR/PI composites and three PI adhesives with 589K service potential for periods ranging from 125 to 500 hours; (2) development of an adhesive formulation suitable for bonding reusable surface insulation (RSI) titles to 589K (GR/PI) substructure; (3) the capability to fabricate and nondestructively inspect laminates, hat section shaped stiffeners, honeycomb sandwich panels, and chopped fiber moldings; and (4) test methods for measuring design allowables at 117K.

  15. Adhesion through single peptide aptamers

    PubMed Central

    Aubin-Tam, Marie-Eve; Appleyard, David C.; Ferrari, Enrico; Garbin, Valeria; Fadiran, Oluwatimilehin O.; Kunkel, Jacquelyn; Lang, Matthew J.

    2014-01-01

    Aptamer and antibody mediated adhesion is central to biological function and valuable in the engineering of “lab on a chip” devices. Single molecule force spectroscopy using optical tweezers enables direct non-equilibrium measurement of these non-covalent interactions for three peptide aptamers selected for glass, polystyrene, and carbon nanotubes. A comprehensive examination of the strong attachment between anti-fluorescein 4-4-20 and fluorescein was also carried out using the same assay. Bond lifetime, barrier width, and free energy of activation are extracted from unbinding histogram data using three single molecule pulling models. The evaluated aptamers appear to adhere stronger than the fluorescein antibody under no- and low-load conditions, yet weaker than antibodies at loads above ~25pN. Comparison to force spectroscopy data of other biological linkages shows the diversity of load dependent binding and provides insight into linkages used in biological processes and those designed for engineered systems. PMID:20795685

  16. Preparation of an adhesive in emulsion for maxillofacial prosthetic.

    PubMed

    Sánchez-García, Judith A; Ortega, Alejandra; Barceló-Santana, Federico H; Palacios-Alquisira, Joaquín

    2010-10-13

    Maxillofacial prostheses is a dental medicine specialty aimed at restoring anatomical facial defects caused by cancer, trauma or congenital malformations through an artificial device, which is commonly attached to the skin with the help of an adhesive. The purpose of our research was to develop a pressure-sensitive adhesive (PSA) based on acrylic monomers, characterizing and determining its drying kinetics, that is to say the time it takes to lose 50 to 90% of its moisture. The adhesive synthesis was realized by means of emulsion polymerization; the composition of formulations was: (AA-MMA-EA) and (AA-MMA-2EHA) with different molar ratios. The formulation based on (AA-MMA-2EHA) with 50 w% of solids, presented good adhesive properties such as tack, bond strength, and short drying time. We propose this formulation as a PSA, because it offers an alternative for systemically compromised patients, by less irritation compared to organic solvent-based adhesives.

  17. Preparation of an Adhesive in Emulsion for Maxillofacial Prosthetic

    PubMed Central

    Sánchez-García, Judith A.; Ortega, Alejandra; Barceló-Santana, Federico H.; Palacios-Alquisira, Joaquín

    2010-01-01

    Maxillofacial prostheses is a dental medicine specialty aimed at restoring anatomical facial defects caused by cancer, trauma or congenital malformations through an artificial device, which is commonly attached to the skin with the help of an adhesive. The purpose of our research was to develop a pressure-sensitive adhesive (PSA) based on acrylic monomers, characterizing and determining its drying kinetics, that is to say the time it takes to lose 50 to 90% of its moisture. The adhesive synthesis was realized by means of emulsion polymerization; the composition of formulations was: (AA-MMA-EA) and (AA-MMA-2EHA) with different molar ratios. The formulation based on (AA-MMA-2EHA) with 50 w% of solids, presented good adhesive properties such as tack, bond strength, and short drying time. We propose this formulation as a PSA, because it offers an alternative for systemically compromised patients, by less irritation compared to organic solvent-based adhesives. PMID:21152308

  18. Adhesion of elastomeric surfaces structured with micro-dimples

    NASA Astrophysics Data System (ADS)

    Nanni, Gabriele; Fragouli, Despina; Ceseracciu, Luca; Athanassiou, Athanassia

    2015-01-01

    Topography has a dominant role in determining the adhesion properties of a surface. In this work we explore how arrays of micron-sized dimples can alter the adhesion performance of elastomeric surfaces. We study the effect of the dimple surface coverage, showing that the dimples act both as passive suction devices, allowing to exceed the adhesion performance of untextured surfaces, and crack-like defects, generating stress concentration at the edge of the contact area between the surface of the sample and a flat surface. Interestingly, our results reveal that the suction effect generated by the negative pressure produced by the dimples can be effectively tuned by adjusting their depth. These findings have significant relevance for the fabrication of adhesive systems in which selective adhesion to objects with small difference in weight is required.

  19. Surface pretreatments for medical application of adhesion

    PubMed Central

    Erli, Hans J; Marx, Rudolf; Paar, Othmar; Niethard, Fritz U; Weber, Michael; Wirtz, Dieter C

    2003-01-01

    Medical implants and prostheses (artificial hips, tendono- and ligament plasties) usually are multi-component systems that may be machined from one of three material classes: metals, plastics and ceramics. Typically, the body-sided bonding element is bone. The purpose of this contribution is to describe developments carried out to optimize the techniques , connecting prosthesis to bone, to be joined by an adhesive bone cement at their interface. Although bonding of organic polymers to inorganic or organic surfaces and to bone has a long history, there remains a serious obstacle in realizing long-term high-bonding strengths in the in vivo body environment of ever present high humidity. Therefore, different pretreatments, individually adapted to the actual combination of materials, are needed to assure long term adhesive strength and stability against hydrolysis. This pretreatment for metal alloys may be silica layering; for PE-plastics, a specific plasma activation; and for bone, amphiphilic layering systems such that the hydrophilic properties of bone become better adapted to the hydrophobic properties of the bone cement. Amphiphilic layering systems are related to those developed in dentistry for dentine bonding. Specific pretreatment can significantly increase bond strengths, particularly after long term immersion in water under conditions similar to those in the human body. The bond strength between bone and plastic for example can be increased by a factor approaching 50 (pealing work increasing from 30 N/m to 1500 N/m). This review article summarizes the multi-disciplined subject of adhesion and adhesives, considering the technology involved in the formation and mechanical performance of adhesives joints inside the human body. PMID:14561228

  20. Analysis of the surface effects on adhesion in MEMS structures

    NASA Astrophysics Data System (ADS)

    Rusu, F.; Pustan, M.; Bîrleanu, C.; Müller, R.; Voicu, R.; Baracu, A.

    2015-12-01

    One of the main failure causes in microelectromechanical systems (MEMS) is stiction. Stiction is the adhesion of contacting surfaces due to surface forces. Adhesion force depends on the operating conditions and is influenced by the contact area. In this study, the adhesion force between MEMS materials and the AFM tips is analyzed using the spectroscopy in point mode of the AFM. The aim is to predict the stiction failure mode in MEMS. The investigated MEMS materials are silicon, polysilicon, platinum, aluminum, and gold. Three types of investigations were conducted. The first one aimed to determine the variation of the adhesion force with respect to the variation of the roughness. The roughness has a strong influence on the adhesion because the contact area between components increases if the roughness decreases. The second type of investigation aimed to determine the adhesion force in multiple points of each considered sample. The values obtained experimentally for the adhesion force were also validated using the JKR and DMT models. The third type of investigation was conducted with the purpose of determining the influence of the temperature on the adhesion force.

  1. Prevention of Pleural Adhesions by Bioactive Polypeptides - A Pilot Study

    PubMed Central

    Åkerberg, D.; Posaric-Bauden, M.; Isaksson, K.; Andersson, R.; Tingstedt, B.

    2013-01-01

    Objective: Postoperative pleural adhesions lead to major problems in repeated thoracic surgery. To date, no antiadhesive product has been proven clinically effective. Previous studies of differently charged polypeptides, poly-L-lysine (PL) and poly-L-glutamate (PG) have shown promising results reducing postoperative abdominal adhesions in experimental settings. This pilot study examined the possible pleural adhesion prevention by using the PL+PG concept after pleural surgery and its possible effect on key parameters; plasmin activator inhibitor-1 (PAI-1) and tissue growth factor beta 1 (TGFb) in the fibrinolytic process. Methods: A total of 22 male rats were used in the study, one control group (n=10) and one experimental group (n=12). All animals underwent primary pleural surgery, the controls receiving saline in the pleural cavity and the experimental group the PL+PG solution administered by spray. The animals were evaluated on day 7. Macroscopic appearance of adhesions was evaluated by a scoring system. Histology slides of the adhesions and pleural biopsies for evaluation of PAI-1 and TGFb1 were taken on day 7. Results: A significant reduction of adhesions in the PL+PG group (p<0.05) was noted at day 7 both regarding the length and severity of adhesions. There were no significant differences in the concentration of PAI-1 and TGFb1 when comparing the two groups. Conclusions: PL+PG may be used to prevent pleural adhesions. The process of fibrinolysis, and fibrosis was though not affected after PLPG administration. PMID:24151443

  2. Factors Affecting the Processing of Epoxy Film Adhesives

    NASA Technical Reports Server (NTRS)

    Pike, R. A.

    1985-01-01

    The increasing awareness that adhesive performance is controlled not only by the condition of the adherend surface but also the condition or state of the adhesive and the process parameters used during fabrication is expected to result in improved reliability, as well as bond performance. The critical process variables which have been found to control adhesive bond formation and ultimate bond strength in 250F and 350F curing epoxy adhesives are described in terms of fabrication parameters and adhesive characteristics. These include the heat-up rate and cure temperature during processing and the adhesive moisture content and age condition (degree of advancement). The diagnostic methods used to delineate the effects of these process variables on adhesive performance are illustrated. These are dielectric, thermomechanical (TMA) and dynamic mechanical (DMA) analyses. Correlation of test results with measured mechanical tensile lap shear strengths of bonded joints is presented and the results briefly discussed in terms of the additives and hardeners used in the adhesive systems.

  3. Tuning the Adhesion of Soft Elastomers with Topographic Patterns

    NASA Astrophysics Data System (ADS)

    Crosby, Alfred; Chan, Edwin

    2006-03-01

    Nature (e.g. gecko and jumping spider) utilizes surface patterns to control adhesion. The primary mechanism of adhesion for these systems can be sufficiently described by linear elastic fracture mechanics theory and material-defined length scales. Based upon these natural inspirations, similar mechanisms can be used to control the adhesion of elastic polymers. For viscoelastic polymers, patterns tune adhesion through additional mechanisms that have not been previously observed. Here, we illustrate the effects of topographic patterns in tuning the adhesion for soft, elastic or viscoelastic, elastomers. Contact adhesion tests based on Johnson, Kendall and Roberts (JKR) theory are used to characterize the adhesion of patterned poly(dimethyl siloxane) as well as poly(n-butyl acrylate) elastomers. We demonstrate that patterns can be utilized to control the adhesion of these polymers by: 1) controlling the balance of initiation and propagation for local separation process, 2) controlling the local crack velocity to alter the global viscoelastic response, and 3) altering the local separation mode through modification of a polymer layer's lateral confinement.

  4. Topographically Tuning Polymer Adhesion

    NASA Astrophysics Data System (ADS)

    Crosby, Alfred

    2003-03-01

    Nature often uses geometry on micro and nano length scales to systematically tailor performance in multivariable environments. A great example, which has received much attention recently, is the foot of a gecko. The gecko's foot is covered with hundreds of thousands of "hair"-like protrusions which dictate a gecko's precise control of adhesion through van der Waals forces.(1) In our research, we fabricate controlled structures ranging from the nano to micro length scales on elastomeric surfaces. Our initial results are based on the topography of spherical caps and high-aspect ratio posts that decorate the surface of polydimethylsiloxane layers. Based on initial calculations, we demonstrate how the aspect ratio and inter-feature spacing greatly affects the near-surface compliance, thus impacting the processes of interface formation. The density and shape of the features are also shown to enhance the prevention of interfacial failure. These results are relevant for the refinement of the soft lithography processing technique, the development of smart adhesives, and the fabrication of bonding sites for biological implants. (1) Autumn, K.; Liang, Y.A.; Hsieh, S.T.; Zesch, W.; Chan, W.P.; Kenny,T.W.; Fearing, R.; Full, R.J. Nature 2000, 405, 681-685.

  5. Principles of adhesion.

    PubMed

    Baier, R E

    1992-01-01

    Understanding interfacial phenomena has been of direct relevance and practical benefit to extending the use of dental adhesives. Both surface physics, which describes properties of the inorganic materials' interfacial zones from their actual phase boundaries toward the bulk phases of the solids, and surface chemistry, which describes phenomena at the solid/biological interface and beyond it into the variable organic environment, have been important. High-energy materials include solids that are very hard, have high melting points, strong intermolecular forces, and basically crystalline structures, such as dental enamel. Low-energy materials, such as dentinal collagen, salivary films, and the organic resins of restorative materials, are softer, lower melting, and have weaker intermolecular forces, poorer crystallinity, and surface energies generally less than 100 ergs/cm. It has been a properly renewed emphasis on wetting of dental surfaces and their modification by primer coats, displacing or mixing with water and adsorbed proteinaceous films, that has promoted the success of many recently developed fourth-generation dentin adhesives. Their improved wettability for biological phases correlates directly with their better infiltration and anchoring of composites.

  6. Analysis and testing of adhesive bonds

    NASA Technical Reports Server (NTRS)

    Anderson, G. P.; Bennett, S. J.; Devries, K. L.

    1977-01-01

    An adhesive fracture mechanics approach is described with reference to the identification and design of the best tests for evaluating a given adhesive, the definition of the most meaningful fundamental parameters by which adhesives might be characterized, and the application of these parameters to the design of joints and to the prediction of their performance. Topics include standard adhesive test techniques, the theory of adhesive fracture, and adhesive fracture energy tests. Analytical methods and computer techniques for adhesive bonding, chemical and physical aspects of adhesive fracture, and specific applications and aspects of adhesive fracture mechanics are discussed.

  7. Geckos as Springs: Mechanics Explain Across-Species Scaling of Adhesion.

    PubMed

    Gilman, Casey A; Imburgia, Michael J; Bartlett, Michael D; King, Daniel R; Crosby, Alfred J; Irschick, Duncan J

    2015-01-01

    One of the central controversies regarding the evolution of adhesion concerns how adhesive force scales as animals change in size, either among or within species. A widely held view is that as animals become larger, the primary mechanism that enables them to climb is increasing pad area. However, prior studies show that much of the variation in maximum adhesive force remains unexplained, even when area is accounted for. We tested the hypothesis that maximum adhesive force among pad-bearing gecko species is not solely dictated by toepad area, but also depends on the ratio of toepad area to gecko adhesive system compliance in the loading direction, where compliance (C) is the change in extension (Δ) relative to a change in force (F) while loading a gecko's adhesive system (C = dΔ/dF). Geckos are well-known for their ability to climb on a range of vertical and overhanging surfaces, and range in mass from several grams to over 300 grams, yet little is understood of the factors that enable adhesion to scale with body size. We examined the maximum adhesive force of six gecko species that vary in body size (~2-100 g). We also examined changes between juveniles and adults within a single species (Phelsuma grandis). We found that maximum adhesive force and toepad area increased with increasing gecko size, and that as gecko species become larger, their adhesive systems become significantly less compliant. Additionally, our hypothesis was supported, as the best predictor of maximum adhesive force was not toepad area or compliance alone, but the ratio of toepad area to compliance. We verified this result using a synthetic "model gecko" system comprised of synthetic adhesive pads attached to a glass substrate and a synthetic tendon (mechanical spring) of finite stiffness. Our data indicate that increases in toepad area as geckos become larger cannot fully account for increased adhesive abilities, and decreased compliance must be included to explain the scaling of adhesion in

  8. Stickiness--some fundamentals of adhesion.

    PubMed

    Gay, Cyprien

    2002-12-01

    We review some adhesion mechanisms that have been understood in the field of synthetic adhesives, and more precisely for adhesives that adhere instantaneously (a property named tackiness) and whose adhesive strength usually depends on the applied pressure (pressure-sensitive adhesives). The discussion includes effects of surface roughness, elasticity, cavitation, viscous and elastic fingering, substrate flexibility. PMID:21680396

  9. Stickiness--some fundamentals of adhesion.

    PubMed

    Gay, Cyprien

    2002-12-01

    We review some adhesion mechanisms that have been understood in the field of synthetic adhesives, and more precisely for adhesives that adhere instantaneously (a property named tackiness) and whose adhesive strength usually depends on the applied pressure (pressure-sensitive adhesives). The discussion includes effects of surface roughness, elasticity, cavitation, viscous and elastic fingering, substrate flexibility.

  10. Effect of adhesive thickness on adhesively bonded T-joint

    NASA Astrophysics Data System (ADS)

    Abdullah, A. R.; Afendi, Mohd; Majid, M. S. Abdul

    2013-12-01

    The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding.

  11. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.

    PubMed

    Li, Yasong; Gates, Byron D; Menon, Carlo

    2015-08-01

    The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate.

  12. Stretchable, adhesion-tunable dry adhesive by surface wrinkling.

    PubMed

    Jeong, Hoon Eui; Kwak, Moon Kyu; Suh, Kahp Y

    2010-02-16

    We introduce a simple yet robust method of fabricating a stretchable, adhesion-tunable dry adhesive by combining replica molding and surface wrinkling. By utilizing a thin, wrinkled polydimethyl siloxane (PDMS) sheet with a thickness of 1 mm with built-in micropillars, active, dynamic control of normal and shear adhesion was achieved. Relatively strong normal (approximately 10.8 N/cm(2)) and shear adhesion (approximately 14.7 N/cm(2)) forces could be obtained for a fully extended (strained) PDMS sheet (prestrain of approximately 3%), whereas the forces could be rapidly reduced to nearly zero once the prestrain was released (prestrain of approximately 0.5%). Moreover, durability tests demonstrated that the adhesion strength in both the normal and shear directions was maintained over more than 100 cycles of attachment and detachment.

  13. Evaluating the shear bond strength of enamel and dentin with or without etching: A comparative study between dimethacrylate-based and silorane-based adhesives

    PubMed Central

    Hajizadeh, Hila; Nasseh, Atefeh; Rahmanpour, Naim

    2015-01-01

    Background Silorane-based composites and their specific self-etch adhesive were introduced to conquest the polymerization shrinkage of methacrylate-based composites. It has been shown that additional etching of enamel and dentin can improve the bond strength of self-etch methacrylate-based adhesives but this claim is not apparent about silorane-based adhesives. Our objective was to compare the shear bond strength (SBS) of enamel and dentin between silorane-based adhesive resin and a methacrylate-based resin with or without additional etching. Material and Methods 40 sound human premolars were prepared and divided into two groups: 1- Filtek P60 composite and Clearfil SE Bond adhesive; 2- Filtek P90 composite and Silorane adhesive. Each group divided into two subgroups: with or without additional etching. For additional etching, 37% acid phosphoric was applied before bonding procedure. A cylinder of the composite was bonded to the surface. After 24 hours storage and 500 thermo cycling between 5-55°C, shear bond strength was assessed with the cross head speed of 0.5 mm/min. Then, bonded surfaces were observed under stereomicroscope to determine the failure mode. Data were analyzed with two-way ANOVA and Fischer exact test. Results Shear bond strength of Filtek P60 composite was significantly higher than Filtek P90 composite both in enamel and dentin surfaces (P<0.05). However, additional etching had no significant effect on shear bond strength in enamel or dentin for each of the composites (P>0.05). There was no interaction between composite type and additional etching (P>0.05). Failure pattern was mainly adhesive and no significant correlation was found between failure and composite type or additional etching (P>0.05). Conclusions Shear bond strength of methacrylate-based composite was significantly higher than silorane-based composite both in enamel and dentin surfaces and additional etching had no significant effect on shear bond strength in enamel or dentin for

  14. Towards a chemistry of cohesion and adhesion

    NASA Astrophysics Data System (ADS)

    Eberhart, M. E.; Donovan, M. M.; MacLaren, J. M.; Clougherty, D. P.

    Modern chemistry frequently describes the structure and reaction dynamics of molecules in terms of the general principle of “competition for bonds”; consequently, bonding forms the basis of the language of chemistry. The actual models used to represent these bonds are frequently system specific. Organic reactions are described in terms of bonds based on pairs of atomic valence electrons. Reactions of inorganic coordination complexes are described in terms of bonds based on a molecular orbital representation. In analogy to those chemistries, a representation for a bond and bond strength, suitable for describing the cohesive and adhesive properties of all classes of materials, is introduced. This representation proves to yield an explanation for the observed cohesive properties of a specific class of materials (cleavage in bcc metals), and it also provides a framework for exploring and analyzing the more complex phenomena of cohesion and adhesion, such as environmentally-induced embrittlement. A complete chemistry of cohesion and adhesion will require the demonstration that the specific bonding model used can form the basis for consistent interpretations for a wealth of experimental phenomena beyond environmentally-induced embrittlement; thus, as presented, this model does not provide a complete chemistry of cohesion and adhesion, but does embody the first steps in that direction.

  15. Fire-Retardant Epoxy Adhesives

    NASA Technical Reports Server (NTRS)

    Bilow, N.; Giants, T. W.

    1982-01-01

    Phosphorus-containing epoxy is fire-retardant and translucent. Intended as adhesive for laminated plastic sheets, new material bonds well to titanium dioxide-filled plastic film, which ordinarily shows little surface interaction with adhesives. Fire retardancy has been demonstrated, and smoke density is low enough to avoid smoke obscuration.

  16. Platelet adhesiveness in diabetes mellitus

    PubMed Central

    Shaw, S.; Pegrum, G. D.; Wolff, Sylvia; Ashton, W. L.

    1967-01-01

    Platelet adhesiveness has been assessed on whole blood from a series of 34 diabetics and 50 control subjects using adenosine diphosphate (A.D.P.) and by adherence to glass microspherules (ballotini). Using both techniques it was possible to demonstrate a significant increase in platelet adhesiveness in the diabetic patients. PMID:5614070

  17. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that...

  18. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that...

  19. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that...

  20. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that...

  1. Epidural Lysis of Adhesions

    PubMed Central

    Lee, Frank; Jamison, David E.; Hurley, Robert W.

    2014-01-01

    As our population ages and the rate of spine surgery continues to rise, the use epidural lysis of adhesions (LOA) has emerged as a popular treatment to treat spinal stenosis and failed back surgery syndrome. There is moderate evidence that percutaneous LOA is more effective than conventional ESI for both failed back surgery syndrome, spinal stenosis, and lumbar radiculopathy. For cervical HNP, cervical stenosis and mechanical pain not associated with nerve root involvement, the evidence is anecdotal. The benefits of LOA stem from a combination of factors to include the high volumes administered and the use of hypertonic saline. Hyaluronidase has been shown in most, but not all studies to improve treatment outcomes. Although infrequent, complications are more likely to occur after epidural LOA than after conventional epidural steroid injections. PMID:24478895

  2. Adhesion testing device

    NASA Technical Reports Server (NTRS)

    LaPeyronnie, Glenn M. (Inventor); Huff, Charles M. (Inventor)

    2010-01-01

    The present invention provides a testing apparatus and method for testing the adhesion of a coating to a surface. The invention also includes an improved testing button or dolly for use with the testing apparatus and a self aligning button hook or dolly interface on the testing apparatus. According to preferred forms, the apparatus and method of the present invention are simple, portable, battery operated rugged, and inexpensive to manufacture and use, are readily adaptable to a wide variety of uses, and provide effective and accurate testing results. The device includes a linear actuator driven by an electric motor coupled to the actuator through a gearbox and a rotatable shaft. The electronics for the device are contained in the head section of the device. At the contact end of the device, is positioned a self aligning button hook, attached below the load cell located on the actuator shaft.

  3. Corrugated pipe adhesive applicator apparatus

    DOEpatents

    Shirey, R.A.

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe with an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough. 4 figs.

  4. Biological adhesives and fastening devices

    NASA Astrophysics Data System (ADS)

    Wolpert, H. D.

    2012-04-01

    Sea creatures are a leading source to some of the more interesting discoveries in adhesives. Because sea water naturally breaks down even the strongest conventional adhesive, an alternative is important that could be used in repairing or fabricating anything that might have regular contact with moisture such as: Repairing broken and shattered bones, developing a surgical adhesive, use in the dental work, repairing and building ships, and manufacturing plywood. Some of nature's prototypes include the common mussel, limpet, some bacteria and abalone. As we learn more about these adhesives we are also developing non adhesive fasteners, such as mimicked after studying the octopus, burdock burrs (i.e. Velcro®) and the gecko.

  5. Corrugated pipe adhesive applicator apparatus

    DOEpatents

    Shirey, Ray A.

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe within an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough.

  6. Robust and tailored wet adhesion in biopolymer thin films.

    PubMed

    Pettersson, Torbjörn; Pendergraph, Samuel A; Utsel, Simon; Marais, Andrew; Gustafsson, Emil; Wågberg, Lars

    2014-12-01

    Model layer-by-layer (LbL) assemblies of poly(allylamine hydrochloride) (PAH) and hyaluronic acid (HA) were fabricated in order to study their wet adhesive behavior. The film characteristics were investigated to understand the inherent structures during the assembly process. Subsequently, the adhesion of these systems was evaluated to understand the correlation between the structure of the film and the energy required to separate these LbL assemblies. We describe how the conditions of the LbL fabrication can be utilized to control the adhesion between films. The characteristics of the film formation are examined in the absence and presence of salt during the film formation. The dependence on contact time and LbL film thickness on the critical pull-off force and work of adhesion are discussed. Specifically, by introducing sodium chloride (NaCl) in the assembly process, the pull-off forces can be increased by a factor of 10 and the work of adhesion by 2 orders of magnitude. Adjusting both the contact time and the film thickness enables control of the adhesive properties within these limits. Based on these results, we discuss how the fabrication procedure can create tailored adhesive interfaces with properties surpassing analogous systems found in nature. PMID:25333327

  7. Neutrophil adhesion in leukocyte adhesion deficiency syndrome type 2.

    PubMed Central

    Phillips, M L; Schwartz, B R; Etzioni, A; Bayer, R; Ochs, H D; Paulson, J C; Harlan, J M

    1995-01-01

    We have previously reported a newly discovered congenital disorder of neutrophil adhesion, leukocyte adhesion deficiency syndrome type 2 (LAD II). The clinical manifestations of this syndrome are similar to those seen in the classic leukocyte adhesion deficiency syndrome, now designated type 1 (LAD I), but the two syndromes differ in the molecular basis of their adhesion defects. LAD I is caused by a deficiency in the CD18 integrin adhesion molecules while LAD II patients are deficient in expression of sialyl-Lewis X (SLeX), a carbohydrate ligand for selectins. In this report we demonstrate that neutrophils from a LAD II patient bind minimally or not at all to recombinant E-selectin, purified platelet P-selectin, or P-selectin expressed on histamine-activated human umbilical vein endothelial cells, but have normal levels of L-selectin and CD11b/CD18 integrin, and adhere to and migrate across endothelium when CD11b/CD18 is activated. We compare LAD I and LAD II patient neutrophil function in vitro, demonstrating that integrin and selectin adhesion molecules have distinct but interdependent roles in neutrophil adhesion during an inflammatory response. Images PMID:8675661

  8. A micro/nano-fabricated gecko-inspired reversible adhesive

    NASA Astrophysics Data System (ADS)

    Northen, Michael Thomas

    The gecko adhesive has been of scientific interest for over two millennia, ever since Aristotle observed a gecko running up and down a tree. Since then, advances in optical and electron microscopy have provided increased information on the structure of the pad of the gecko's foot, for it is the structure that leads to the adhesion and not the chemistry. Each toe contains many ridges, or scansors, displaying arrays of ˜100 mum long, ˜5 mum wide setae, each branching into hundreds of smaller fibers called spatulae, ˜200 nm across and 5 nm thick. The combination of the setal flexibility and the nanoscale compliance of the spatulae creates a large amount of intimate surface contact, enhancing van der Waals interactions, and promoting adhesion. In this work, an adhesive---inspired by the gecko---was micro/nanofabricated. There were two main thrusts in this work. The first was to show the importance of the hierarchical structure on the performance of the gecko adhesive, and the future need to for multiple levels of compliance in synthetic dry adhesives. The second thrust was to create a surface with controllable adhesion. While the adhesion properties of the gecko are of great scientific interest, it is the ability to switch adhesion on and off that provides the technological driving force for mimicking the gecko system. The microscale setae of the gecko have been replicated by microfabricating flexible silicon dioxide freestanding structures ˜100 mum long and ˜10 mum wide. These structures were coated with aligned vertical polymeric nanorods ˜4 mum tall and ˜200 nm in diameter, analogous to the gecko spatulae. Testing of the synthetic structures shows that the multi-scale system provides a 5-fold increase in adhesion over nanorods alone, demonstrating the need for a hierarchical structure. To create a switchable adhesive, the silicon dioxide microstructures were replaced with nickel micro-paddles. When the nickel structures were placed in a magnetic field, a

  9. Assessment of piezoelectric sensor adhesive bonding

    NASA Astrophysics Data System (ADS)

    Wandowski, T.; Moll, J.; Malinowski, P.; Opoka, S.; Ostachowicz, W.

    2015-07-01

    Piezoelectric transducers are widely utilized in Structural Health Monitoring (SHM). They are used both in guided wave-based and electromechanical impedance-based methods. Transducer debonding or unevenly distributed glue underneath the transducer reduce the performance and reliability of the SHM system. Therefore, quality assessment methods for glue layer need to be developed. In this paper, the authors present results obtained from two methods that allow the quality assessment of adhesive bonds of piezoelectric transducers. The electromechanical impedance method is utilized to analyze transducer adhesive bonding. An improperly prepared bonding layer is a source for changes in the electromechanical impedance characteristics in comparison to a perfectly bonded transducer. In the resistance characteristics of the properly bonded transducer the resonance peaks of the structure were clearly visible. In the case when adhesive layer is not equally distributed under sensor, the amplitudes of structural resonance peaks are reduced. In the case of completely detached transducer, the structural resonance peaks disappear and only resonance peaks of the transducer itself are visible. These peaks (peaks of free transducer hanging on wires) are significantly larger than the resonance peaks of the investigated structure in the considered frequency interval. The bonding layer shape is also analyzed using time-domain terahertz spectroscopy in reflection mode. This method allows to visualize the adhesive layer distribution based on C-scan analysis. C-scans of signals or envelope-detected signals can be used to estimate the area of proper adhesion between bonding agent and transducer and hence provides a more quantitative approach towards transducer inspection.

  10. Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives.

    PubMed

    Murphy, Michael P; Kim, Seok; Sitti, Metin

    2009-04-01

    The complex structures that allow geckos to repeatably adhere to surfaces consist of multilevel branching fibers with specialized tips. We present a novel technique for fabricating similar multilevel structures from polymer materials and demonstrate the fabrication of arrays of two- and three-level structures, wherein each level terminates in flat mushroom-type tips. Adhesion experiments are conducted on two-level fiber arrays on a 12-mm-diameter glass hemisphere, which exhibit both increased adhesion and interface toughness over one-level fiber samples and unstructured control samples. These adhesion enhancements are the result of increased surface conformation as well as increased extension during detachment.

  11. Verification of surface preparation for adhesive bonding

    NASA Technical Reports Server (NTRS)

    Myers, Rodney S.

    1995-01-01

    A survey of solid rocket booster (SRB) production operations identified potential contaminants which might adversely affect bonding operations. Lap shear tests quantified these contaminants' effects on adhesive strength. The most potent contaminants were selected for additional studies on SRB thermal protection system (TPS) bonding processes. Test panels were prepared with predetermined levels of contamination, visually inspected using white and black light, then bonded with three different TPS materials over the unremoved contamination. Bond test data showed that white and black light inspections are adequate inspection methods for TPS bonding operations. Extreme levels of contamination (higher than expected on flight hardware) had an insignificant effect on TPS bond strengths because of the apparent insensitivity of the adhesive system to contamination effects, and the comparatively weak cohesive strength of the TPS materials.

  12. Effect of thermal aging on the tensile bond strength at reduced areas of seven current adhesives.

    PubMed

    Baracco, Bruno; Fuentes, M Victoria; Garrido, Miguel A; González-López, Santiago; Ceballos, Laura

    2013-07-01

    The purpose of this study was to determine the micro-tensile bond strength (MTBS) to dentin of seven adhesive systems (total and self-etch adhesives) after 24 h and 5,000 thermocycles. Dentin surfaces of human third molars were exposed and bonded with two total-etch adhesives (Adper Scotchbond 1 XT and XP Bond), two two-step self-etch adhesives (Adper Scotchbond SE and Filtek Silorane Adhesive System) and three one-step self-etch adhesives (G-Bond, Xeno V and Bond Force). All adhesive systems were applied following manufacturers' instructions. Composite buildups were constructed and the bonded teeth were then stored in water (24 h, 37 °C) or thermocycled (5,000 cycles) before being sectioned and submitted to MTBS test. Two-way ANOVA and subsequent comparison tests were applied at α = 0.05. Characteristic de-bonded specimens were analyzed using scanning electron microscopy (SEM). After 24 h water storage, MTBS values were highest with XP Bond, Adper Scotchbond 1 XT, Filtek Silorane Adhesive System and Adper Scotchbond SE and lowest with the one-step self-etch adhesives Bond Force, Xeno V and G-Bond. After thermocycling, MTBS values were highest with XP Bond, followed by Filtek Silorane Adhesive System, Adper Scotchbond SE and Adper Scotchbond 1 XT and lowest with the one-step self-etch adhesives Bond Force, Xeno V and G-Bond. Thermal aging induced a significant decrease in MTBS values with all adhesives tested. The resistance of resin-dentin bonds to thermal-aging degradation was material dependent. One-step self-etch adhesives obtained the lowest MTBS results after both aging treatments, and their adhesive capacity was significantly reduced after thermocycling.

  13. Effect of thermal aging on the tensile bond strength at reduced areas of seven current adhesives.

    PubMed

    Baracco, Bruno; Fuentes, M Victoria; Garrido, Miguel A; González-López, Santiago; Ceballos, Laura

    2013-07-01

    The purpose of this study was to determine the micro-tensile bond strength (MTBS) to dentin of seven adhesive systems (total and self-etch adhesives) after 24 h and 5,000 thermocycles. Dentin surfaces of human third molars were exposed and bonded with two total-etch adhesives (Adper Scotchbond 1 XT and XP Bond), two two-step self-etch adhesives (Adper Scotchbond SE and Filtek Silorane Adhesive System) and three one-step self-etch adhesives (G-Bond, Xeno V and Bond Force). All adhesive systems were applied following manufacturers' instructions. Composite buildups were constructed and the bonded teeth were then stored in water (24 h, 37 °C) or thermocycled (5,000 cycles) before being sectioned and submitted to MTBS test. Two-way ANOVA and subsequent comparison tests were applied at α = 0.05. Characteristic de-bonded specimens were analyzed using scanning electron microscopy (SEM). After 24 h water storage, MTBS values were highest with XP Bond, Adper Scotchbond 1 XT, Filtek Silorane Adhesive System and Adper Scotchbond SE and lowest with the one-step self-etch adhesives Bond Force, Xeno V and G-Bond. After thermocycling, MTBS values were highest with XP Bond, followed by Filtek Silorane Adhesive System, Adper Scotchbond SE and Adper Scotchbond 1 XT and lowest with the one-step self-etch adhesives Bond Force, Xeno V and G-Bond. Thermal aging induced a significant decrease in MTBS values with all adhesives tested. The resistance of resin-dentin bonds to thermal-aging degradation was material dependent. One-step self-etch adhesives obtained the lowest MTBS results after both aging treatments, and their adhesive capacity was significantly reduced after thermocycling. PMID:22790477

  14. A reversible wet/dry adhesive inspired by mussels and geckos.

    PubMed

    Lee, Haeshin; Lee, Bruce P; Messersmith, Phillip B

    2007-07-19

    The adhesive strategy of the gecko relies on foot pads composed of specialized keratinous foot-hairs called setae, which are subdivided into terminal spatulae of approximately 200 nm (ref. 1). Contact between the gecko foot and an opposing surface generates adhesive forces that are sufficient to allow the gecko to cling onto vertical and even inverted surfaces. Although strong, the adhesion is temporary, permitting rapid detachment and reattachment of the gecko foot during locomotion. Researchers have attempted to capture these properties of gecko adhesive in synthetic mimics with nanoscale surface features reminiscent of setae; however, maintenance of adhesive performance over many cycles has been elusive, and gecko adhesion is greatly diminished upon full immersion in water. Here we report a hybrid biologically inspired adhesive consisting of an array of nanofabricated polymer pillars coated with a thin layer of a synthetic polymer that mimics the wet adhesive proteins found in mussel holdfasts. Wet adhesion of the nanostructured polymer pillar arrays increased nearly 15-fold when coated with mussel-mimetic polymer. The system maintains its adhesive performance for over a thousand contact cycles in both dry and wet environments. This hybrid adhesive, which combines the salient design elements of both gecko and mussel adhesives, should be useful for reversible attachment to a variety of surfaces in any environment.

  15. Temperature-Induced Switchable Adhesion using Nickel–Titanium–Polydimethylsiloxane Hybrid Surfaces

    PubMed Central

    Frensemeier, Mareike; Kaiser, Jessica S; Frick, Carl P; Schneider, Andreas S; Arzt, Eduard; Fertig, Ray S; Kroner, Elmar

    2015-01-01

    A switchable dry adhesive based on a nickel–titanium (NiTi) shape-memory alloy with an adhesive silicone rubber surface has been developed. Although several studies investigate micropatterned, bioinspired adhesive surfaces, very few focus on reversible adhesion. The system here is based on the indentation-induced two-way shape-memory effect in NiTi alloys. NiTi is trained by mechanical deformation through indentation and grinding to elicit a temperature-induced switchable topography with protrusions at high temperature and a flat surface at low temperature. The trained surfaces are coated with either a smooth or a patterned adhesive polydimethylsiloxane (PDMS) layer, resulting in a temperature-induced switchable surface, used for dry adhesion. Adhesion tests show that the temperature-induced topographical change of the NiTi influences the adhesive performance of the hybrid system. For samples with a smooth PDMS layer the transition from flat to structured state reduces adhesion by 56%, and for samples with a micropatterned PDMS layer adhesion is switchable by nearly 100%. Both hybrid systems reveal strong reversibility related to the NiTi martensitic phase transformation, allowing repeated switching between an adhesive and a nonadhesive state. These effects have been discussed in terms of reversible changes in contact area and varying tilt angles of the pillars with respect to the substrate surface. PMID:26120295

  16. Shear bond strength of new self-adhesive flowable composite resins.

    PubMed

    Wajdowicz, Michael N; Vandewalle, Kraig S; Means, Mark T

    2012-01-01

    Recently, new self-adhesive flowable composite resin systems have been introduced to the market. These new composite resin systems reportedly bond to dentin and enamel without the application of an adhesive bonding agent. The purpose of this study was to evaluate the shear bond strength to enamel of two new self-adhesive flowable composites with and without the use of an etch-and-rinse bonding agent. The new self-adhesive flowable composites had significantly lower bond strengths to enamel compared to a traditional adhesively bonded flowable composite. Both self-adhesive flowable composites had a significant increase in bond strength to enamel with the use of a phosphoric acid-etch and adhesive bonding agent. PMID:22414513

  17. Wet Adhesion and Adhesive Locomotion of Snails on Anti-Adhesive Non-Wetting Surfaces

    PubMed Central

    Shirtcliffe, Neil J.; McHale, Glen; Newton, Michael I.

    2012-01-01

    Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted), texture (smooth, rough or granular) or wetting property (hydrophilic or hydrophobic) via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and the effectiveness of this adhesive locomotion on modern super-slippy superhydrophobic surfaces are unclear. Here we report that snail adhesion overcomes a wide range of these microscale and nanoscale topographically structured non-stick surfaces. For the one surface which we found to be snail resistant, we show that the effect is correlated with the wetting response of the surface to a weak surfactant. Our results elucidate some critical wetting factors for the design of anti-adhesive and bio-adhesion resistant surfaces. PMID:22693563

  18. Interfacial adhesion for microelectronics and MEMS devices

    NASA Astrophysics Data System (ADS)

    Kennedy, Marian Siobhan

    2007-12-01

    The reliability of thin film systems is important to the continued development of microelectronic and micro-electro-mechanical systems. Most often, reliability of these systems is tied to the ability of the films to remain adhered to its substrate. By measuring the amount of energy to separate the film, interfacial fracture energy, and prediciting trends researchers can predicts film lifetimes. Recent work to measure this energy has resulted in several different testing techniques including spontaneous buckling, indentation induced delamination and four point bending. Literature has shown good agreement between delamination test methods, but only when energy dissipation into the substrate is minimized. Using a W/Si system, the effect of energy dissipation was shown to decrease from 0.6 J/m2 to 0.2 J/m2 between different methods; one where the only fracture was along the interface and the other where cracking also occurred in the film and substrate. For systems where fracture only occurs along the interface, such as Au/Si, the calculated fracture energies are identical if the energy put into the system is kept near the needed strain energy to cause delamination. Overlayers of different stresses and thickness on Au/Si showed that the adhesion energies could change by a factor of three (Chapter 3). This dependence on applied energy is also shown when comparisons of four point bending and stressed overlayer test methods were completed on Pt/Si systems. The fracture energies of Pt/Ti/SiO2 were studied using four-point bending and compressive overlayers. Varying the thickness of the Ti film from 2 to 17 nm in a Pt/Ti/SiO2 system, both test methods showed an increase of adhesion energy until the nominal Ti thickness was 12nm. Then this adhesion energy began to decrease. This decrease was due to an increase in the Pt grain size after a nominal 12nm thickness (Chapter 4 and 5). While the trends in energy release rate are similar, the magnitude of the toughness between the

  19. L1CAM: Cell adhesion and more.

    PubMed

    Samatov, Timur R; Wicklein, Daniel; Tonevitsky, Alexander G

    2016-08-01

    L1CAM is a cell adhesion molecule of the immunoglobulin superfamily which was originally discovered as a major player in the development of the nervous system. L1CAM was demonstrated to have prognostic value in different cancers and to be a promising target for anti-cancer therapy. Here we overview the present data on L1CAM structure and function, regulation of its expression, role in cancer and therapeutic potential. PMID:27267927

  20. Marine Bioinspired Underwater Contact Adhesion.

    PubMed

    Clancy, Sean K; Sodano, Antonio; Cunningham, Dylan J; Huang, Sharon S; Zalicki, Piotr J; Shin, Seunghan; Ahn, B Kollbe

    2016-05-01

    Marine mussels and barnacles are sessile biofouling organisms that adhere to a number of surfaces in wet environments and maintain remarkably strong bonds. Previous synthetic approaches to mimic biological wet adhesive properties have focused mainly on the catechol moiety, present in mussel foot proteins (mfps), and especially rich in the interfacial mfps, for example, mfp-3 and -5, found at the interface between the mussel plaque and substrate. Barnacles, however, do not use Dopa for their wet adhesion, but are instead rich in noncatecholic aromatic residues. Due to this anomaly, we were intrigued to study the initial contact adhesion properties of copolymerized acrylate films containing the key functionalities of barnacle cement proteins and interfacial mfps, for example, aromatic (catecholic or noncatecholic), cationic, anionic, and nonpolar residues. The initial wet contact adhesion of the copolymers was measured using a probe tack testing apparatus with a flat-punch contact geometry. The wet contact adhesion of an optimized, bioinspired copolymer film was ∼15.0 N/cm(2) in deionized water and ∼9.0 N/cm(2) in artificial seawater, up to 150 times greater than commercial pressure-sensitive adhesive (PSA) tapes (∼0.1 N/cm(2)). Furthermore, maximum wet contact adhesion was obtained at ∼pH 7, suggesting viability for biomedical applications. PMID:27046671

  1. Osteoblast adhesion on nanophase ceramics.

    PubMed

    Webster, T J; Siegel, R W; Bizios, R

    1999-07-01

    Osteoblast adhesion on nanophase alumina (Al2O3) and titania (TiO2) was investigated in vitro. Osteoblast adhesion to nanophase alumina and titania in the absence of serum from Dulbecco's modified Eagle medium (DMEM) was significantly (P < 0.01) less than osteoblast adhesion to alumina and titania in the presence of serum. In the presence of 10% fetal bovine serum in DMEM osteoblast adhesion on nanophase alumina (23 nm grain size) and titania (32 nm grain size) was significantly (P < 0.05) greater than on conventional alumina (177 nm grain size) and titania (2.12 microm grain size), respectively, after 1, 2, and 4 h. Further investigation of the dependence of osteoblast adhesion on alumina and titania grain size indicated the presence of a critical grain size for osteoblast adhesion between 49 and 67 nm for alumina and 32 and 56 nm for titania. The present study provides evidence of the ability of nanophase alumina and titania to simulate material characteristics (such as surface grain size) of physiological bone that enhance protein interactions (such as adsorption, configuration, bioactivity, etc.) and subsequent osteoblast adhesion.

  2. Simulation of Cell Adhesion using a Particle Transport Model

    NASA Astrophysics Data System (ADS)

    Chesnutt, Jennifer

    2005-11-01

    An efficient computational method for simulation of cell adhesion through protein binding forces is discussed. In this method, the cells are represented by deformable elastic particles, and the protein binding is represented by a rate equation. The method is first developed for collision and adhesion of two similar cells impacting on each other from opposite directions. The computational method is then applied in a particle-transport model for a cloud of interacting and colliding cells, each of which are represented by particles of finite size. One application might include red blood cells adhering together to form rouleaux, which are chains of red blood cells that are found in different parts of the circulatory system. Other potential applications include adhesion of platelets to a blood vessel wall or mechanical heart valve, which is a precursor of thrombosis formation, or adhesion of cancer cells to organ walls in the lymphatic, circulatory, digestive or pulmonary systems.

  3. A kinetic model for RNA-interference of focal adhesions

    PubMed Central

    2013-01-01

    Background Focal adhesions are integrin-based cell-matrix contacts that transduce and integrate mechanical and biochemical cues from the environment. They develop from smaller and more numerous focal complexes under the influence of mechanical force and are key elements for many physiological and disease-related processes, including wound healing and metastasis. More than 150 different proteins localize to focal adhesions and have been systematically classified in the adhesome project (http://www.adhesome.org). First RNAi-screens have been performed for focal adhesions and the effect of knockdown of many of these components on the number, size, shape and location of focal adhesions has been reported. Results We have developed a kinetic model for RNA interference of focal adhesions which represents some of its main elements: a spatially layered structure, signaling through the small GTPases Rac and Rho, and maturation from focal complexes to focal adhesions under force. The response to force is described by two complementary scenarios corresponding to slip and catch bond behavior, respectively. Using estimated and literature values for the model parameters, three time scales of the dynamics of RNAi-influenced focal adhesions are identified: a sub-minute time scale for the assembly of focal complexes, a sub-hour time scale for the maturation to focal adhesions, and a time scale of days that controls the siRNA-mediated knockdown. Our model shows bistability between states dominated by focal complexes and focal adhesions, respectively. Catch bonding strongly extends the range of stability of the state dominated by focal adhesions. A sensitivity analysis predicts that knockdown of focal adhesion components is more efficient for focal adhesions with slip bonds or if the system is in a state dominated by focal complexes. Knockdown of Rho leads to an increase of focal complexes. Conclusions The suggested model provides a kinetic description of the effect of RNA

  4. Gecko Adhesion on Wet and Dry Patterned Substrates

    PubMed Central

    Stark, Alyssa Y.; Palecek, Amanda M.; Argenbright, Clayton W.; Bernard, Craig; Brennan, Anthony B.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2015-01-01

    Perhaps one of the most astounding characteristics of the gecko adhesive system is its versatility. Geckos can locomote across complex substrates in a variety of conditions with apparent ease. In contrast, many of our synthetic pressure sensitive adhesives fail on substrates that are dirty, wet or rough. Although many studies have investigated the effect of environmental challenges on performance, the interaction of multiple, potentially compromising variables is studied less often. Here we focus on substrate structure and surface water, both of which are highly relevant to the biological system and to synthetic design. To do this we utilized a highly controlled, patterned substrate (Sharklet®, by Sharklet® Technologies Inc.). This allowed us to test independently and jointly the effects of reduced surface area substrates, with a defined pattern, on adhesion in both air and water. Our results show that adhesion is not significantly impaired in air, whereas surface area and pattern significantly affect adhesion in water. These findings highlight the need to study multiple parameters that are relevant to the gecko adhesive system to further improve our understanding of the biological system and to design better, more versatile synthetics. PMID:26696412

  5. Gecko Adhesion on Wet and Dry Patterned Substrates.

    PubMed

    Stark, Alyssa Y; Palecek, Amanda M; Argenbright, Clayton W; Bernard, Craig; Brennan, Anthony B; Niewiarowski, Peter H; Dhinojwala, Ali

    2015-01-01

    Perhaps one of the most astounding characteristics of the gecko adhesive system is its versatility. Geckos can locomote across complex substrates in a variety of conditions with apparent ease. In contrast, many of our synthetic pressure sensitive adhesives fail on substrates that are dirty, wet or rough. Although many studies have investigated the effect of environmental challenges on performance, the interaction of multiple, potentially compromising variables is studied less often. Here we focus on substrate structure and surface water, both of which are highly relevant to the biological system and to synthetic design. To do this we utilized a highly controlled, patterned substrate (Sharklet®, by Sharklet® Technologies Inc.). This allowed us to test independently and jointly the effects of reduced surface area substrates, with a defined pattern, on adhesion in both air and water. Our results show that adhesion is not significantly impaired in air, whereas surface area and pattern significantly affect adhesion in water. These findings highlight the need to study multiple parameters that are relevant to the gecko adhesive system to further improve our understanding of the biological system and to design better, more versatile synthetics. PMID:26696412

  6. Gecko Adhesion on Wet and Dry Patterned Substrates.

    PubMed

    Stark, Alyssa Y; Palecek, Amanda M; Argenbright, Clayton W; Bernard, Craig; Brennan, Anthony B; Niewiarowski, Peter H; Dhinojwala, Ali

    2015-01-01

    Perhaps one of the most astounding characteristics of the gecko adhesive system is its versatility. Geckos can locomote across complex substrates in a variety of conditions with apparent ease. In contrast, many of our synthetic pressure sensitive adhesives fail on substrates that are dirty, wet or rough. Although many studies have investigated the effect of environmental challenges on performance, the interaction of multiple, potentially compromising variables is studied less often. Here we focus on substrate structure and surface water, both of which are highly relevant to the biological system and to synthetic design. To do this we utilized a highly controlled, patterned substrate (Sharklet®, by Sharklet® Technologies Inc.). This allowed us to test independently and jointly the effects of reduced surface area substrates, with a defined pattern, on adhesion in both air and water. Our results show that adhesion is not significantly impaired in air, whereas surface area and pattern significantly affect adhesion in water. These findings highlight the need to study multiple parameters that are relevant to the gecko adhesive system to further improve our understanding of the biological system and to design better, more versatile synthetics.

  7. Adhesion and friction in gecko toe attachment and detachment.

    PubMed

    Tian, Yu; Pesika, Noshir; Zeng, Hongbo; Rosenberg, Kenny; Zhao, Boxin; McGuiggan, Patricia; Autumn, Kellar; Israelachvili, Jacob

    2006-12-19

    Geckos can run rapidly on walls and ceilings, requiring high friction forces (on walls) and adhesion forces (on ceilings), with typical step intervals of approximately 20 ms. The rapid switching between gecko foot attachment and detachment is analyzed theoretically based on a tape model that incorporates the adhesion and friction forces originating from the van der Waals forces between the submicron-sized spatulae and the substrate, which are controlled by the (macroscopic) actions of the gecko toes. The pulling force of a spatula along its shaft with an angle between theta 0 and 90 degrees to the substrate, has a "normal adhesion force" contribution, produced at the spatula-substrate bifurcation zone, and a "lateral friction force" contribution from the part of spatula still in contact with the substrate. High net friction and adhesion forces on the whole gecko are obtained by rolling down and gripping the toes inward to realize small pulling angles between the large number of spatulae in contact with the substrate. To detach, the high adhesion/friction is rapidly reduced to a very low value by rolling the toes upward and backward, which, mediated by the lever function of the setal shaft, peels the spatulae off perpendicularly from the substrates. By these mechanisms, both the adhesion and friction forces of geckos can be changed over three orders of magnitude, allowing for the swift attachment and detachment during gecko motion. The results have obvious implications for the fabrication of dry adhesives and robotic systems inspired by the gecko's locomotion mechanism.

  8. Understanding Adhesion in Aluminum Processing via First Principles Simulation

    NASA Astrophysics Data System (ADS)

    Siegel Hector, Donald, Jr.; Adams, James

    2000-03-01

    One of the most common wear problems is adhesion and related adhesive metal transfer, in which one material transfers to the surface of another material along a heavily loaded interface. It is especially prevalent in the aluminum industry, for example, where thick ingots are subjected to massive loads in numerous hot and cold rolling processes that form the ingot into strip and plate products. One means through which adhesive metal transfer can be reduced is through the application of a ceramic tool coating that protects the tool surface for an extended period of time. The goal of this work is to use Density Functional Theory methods to determine the adhesive energies between aluminum alloys and relevant tool coating materials in order to aid in the selection of optimal coating materials. By analyzing the electronic structure of each interface one can determine the critical factors that control adhesion. Our study will yield the first reliable database on metal-ceramic adhesion energies, including the effects of the most common alloying elements. Along these lines, we discuss our recent calculations of the equilibrium structure, bonding, and adhesion energectics of two interface systems: Al(111)/α-Al_2O_3(0001) and Al(111)/WC(0001).

  9. Adhesives from modified soy protein

    DOEpatents

    Sun, Susan; Wang, Donghai; Zhong, Zhikai; Yang, Guang

    2008-08-26

    The, present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  10. Foreign material in postoperative adhesions.

    PubMed Central

    Luijendijk, R W; de Lange, D C; Wauters, C C; Hop, W C; Duron, J J; Pailler, J L; Camprodon, B R; Holmdahl, L; van Geldorp, H J; Jeekel, J

    1996-01-01

    OBJECTIVE: The authors determined the prevalence of foreign body granulomas in intra-abdominal adhesions in patients with a history of abdominal surgery. PATIENTS AND METHODS: In a cross-sectional, multicenter, multinational study, adult patients with a history of one or more previous abdominal operations and scheduled for laparotomy between 1991 and 1993 were examined during surgery. Patients in whom adhesions were present were selected for study. Quantity, distribution, and quality of adhesions were scored, and adhesion samples were taken for histologic examination. RESULTS: In 448 studied patients, the adhesions were most frequently attached to the omentum (68%) and the small bowel (67%). The amount of adhesions was significantly smaller in patients with a history of only one minor operation or one major operation, compared with those with multiple laparotomies (p < 0.001). Significantly more adhesions were found in patients with a history of adhesions at previous laparotomy (p < 0.001), with presence of abdominal abscess, hematoma, and intestinal leakage as complications after former surgery (p = 0.01, p = 0.002, and p < 0.001, respectively), and with a history of an unoperated inflammatory process (p = 0.04). Granulomas were found in 26% of all patients. Suture granulomas were found in 25% of the patients. Starch granulomas were present in 5% of the operated patients whose surgeons wore starch-containing gloves. When suture granulomas were present, the median interval between the present and the most recent previous laparotomy was 13 months. When suture granulomas were absent, this interval was significantly longer--i.e., 30 months (p = 0.002). The percentage of patients with suture granulomas decreased gradually from 37% if the previous laparotomy had occurred up to 6 months before the present operation, to 18% if the previous laparotomy had occurred more than 2 years ago (p < 0.001). CONCLUSIONS: The number of adhesions found at laparotomy was significantly

  11. Interfacial adhesion of carbon fibers

    NASA Technical Reports Server (NTRS)

    Bascom, Willard D.

    1987-01-01

    Relative adhesion strengths between AS4, AS1, and XAS carbon fibers and thermoplastic polymers were determined using the embedded single filament test. Polymers studied included polycarbonate, polyphenylene oxide, polyetherimide, polysulfone, polyphenylene oxide blends with polystyrene, and polycarbonate blends with a polycarbonate polysiloxane block copolymer. Fiber surface treatments and sizings improved adhesion somewhat, but adhesion remained well below levels obtained with epoxy matrices. An explanation for the differences between the Hercules and Grafil fibers was sought using X ray photon spectroscopy, wetting, scanning electron microscopy and thermal desorption analysis.

  12. Notch-Mediated Cell Adhesion

    PubMed Central

    Murata, Akihiko; Hayashi, Shin-Ichi

    2016-01-01

    Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of Notch family members dating back to metazoan evolution. We hypothesize that Notch family members may have initially emerged as cell adhesion molecules in order to mediate multicellularity in the last common ancestor of metazoan organisms. PMID:26784245

  13. Photovoltaic module with adhesion promoter

    DOEpatents

    Xavier, Grace

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  14. Advances in light curing adhesives

    NASA Astrophysics Data System (ADS)

    Bachmann, Andy

    2001-11-01

    This paper describes the development of a new family of light curing adhesives containing a new reactive additive previously not used in optical grade light curing adhesives are obtained with the addition of functionalized cellulositics. Outgassing as low as 10-6 grams/gram has been observed based on headspace sampling. Other additives have lowered the shrinkage rates of positioning adhesives from near 1 percent to less than 0.1 percent with fractional, percentage movements over thermal range of -40 degrees C to +200 degrees C.

  15. Wear mechanism based on adhesion

    NASA Technical Reports Server (NTRS)

    Yamamoto, T.; Buckley, D. H.

    1982-01-01

    Various concepts concerning wear mechanisms and deformation behavior observed in the sliding wear track are surveyed. The mechanisms for wear fragment formation is discussed on the basis of adhesion. The wear process under unlubricated sliding conditions is explained in relation to the concept of adhesion at the interface during the sliding process. The mechanism for tearing away the surface layer from the contact area and forming the sliding track contour is explained by assuming the simplified process of material removal based on the adhesion theory.

  16. Pressure sensitive microparticle adhesion through biomimicry of the pollen-stigma interaction.

    PubMed

    Lin, Haisheng; Qu, Zihao; Meredith, J Carson

    2016-03-21

    Many soft biomimetic synthetic adhesives, optimized to support macroscopic masses (∼kg), have been inspired by geckos, insects and other animals. Far less work has investigated bioinspired adhesion that is tuned to micro- and nano-scale sizes and forces. However, such adhesive forces are extremely important in the adhesion of micro- and nanoparticles to surfaces, relevant to a wide range of industrial and biological systems. Pollens, whose adhesion is critical to plant reproduction, are an evolutionary-optimized system for biomimicry to engineer tunable adhesion between particles and micro-patterned soft matter surfaces. In addition, the adhesion of pollen particles is relevant to topics as varied as pollinator ecology, transport of allergens, and atmospheric phenomena. We report the first observation of structurally-derived pressure-sensitive adhesion of a microparticle by using the sunflower pollen and stigma surfaces as a model. This strong, pressure-sensitive adhesion results from interlocking between the pollen's conical spines and the stigma's receptive papillae. Inspired by this behavior, we fabricated synthetic polymeric patterned surfaces that mimic the stigma surface's receptivity to pollen. These soft mimics allow the magnitude of the pressure-sensitive response to be tuned by adjusting the size and spacing of surface features. These results provide an important new insight for soft material adhesion based on bio-inspired principles, namely that ornamented microparticles and micro-patterned surfaces can be designed with complementarity that enable a tunable, pressure-sensitive adhesion on the microparticle size and length scale.

  17. Pressure sensitive microparticle adhesion through biomimicry of the pollen-stigma interaction.

    PubMed

    Lin, Haisheng; Qu, Zihao; Meredith, J Carson

    2016-03-21

    Many soft biomimetic synthetic adhesives, optimized to support macroscopic masses (∼kg), have been inspired by geckos, insects and other animals. Far less work has investigated bioinspired adhesion that is tuned to micro- and nano-scale sizes and forces. However, such adhesive forces are extremely important in the adhesion of