Science.gov

Sample records for adhesive system clearfil

  1. Microleakage under orthodontic brackets bonded with different adhesive systems

    PubMed Central

    Alkis, Huseyin; Turkkahraman, Hakan; Adanir, Necdet

    2015-01-01

    Objective: This in vitro study aimed to compare the microleakage of orthodontic brackets between enamel-adhesive and adhesive-bracket interfaces at the occlusal and gingival margins bonded with different adhesive systems. Materials and Methods: A total of 144 human maxillary premolar teeth extracted for orthodontic reasons was randomly divided into four groups. Each group was then further divided into three sub-groups. Three total-etching bonding systems (Transbond XT, Greengloo and Kurasper F), three one-step self-etching bonding systems (Transbond Plus SEP, Bond Force and Clearfil S3), three two-step self-etching bonding systems (Clearfil SE Bond, Clearfil Protectbond and Clearfil Liner Bond), and three self-adhesive resin cements (Maxcem Elite, Relyx U 100 and Clearfil SA Cement) were used to bond the brackets to the teeth. After bonding, all teeth were sealed with nail varnish and stained with 0.5% basic fuchsine for 24 h. All samples were sectioned and examined under a stereomicroscope to score for microleakage at the adhesive–enamel and adhesive–bracket interfaces from both occlusal and gingival margins. Statistical Analysis Used: Statistical analyses were performed with Kruskal–Wallis and Wilcoxon signed-rank tests. Results: The results indicate no statistically significant differences between the microleakage scores of the adhesives; microleakage was detected in all groups. Comparison of the average values of the microleakage scores in the enamel–adhesive and adhesive–bracket interfaces indicated statistically significant differences (P < 0.05). The amount of the microleakage was higher at the enamel–adhesive interface than at the bracket-adhesive interface. Conclusions: All of the brackets exhibited some amount of microleakage. This result means that microleakage does not depend on the type of adhesive used. PMID:25713494

  2. The effect of different adhesive system applications on push-out bond strengths of glass fiber posts

    PubMed Central

    Deniz Arısu, Hacer; Üçtaşlı, Mine Betül; Okay, Tufan Can

    2013-01-01

    PURPOSE Over the past years, the adhesion of fiber posts luted with simplified adhesive systems has been a matter of great interest. The aim of this study was to assess the post retentive potential of a self-adhesive resin cement using different adhesive systems to compare the push-out bond strengths of fiber posts. MATERIALS AND METHODS The post spaces of 56 mandibular premolar roots were prepared and divided into 4 experimental groups and further divided into 2 subgroups according to testing time (n=7). The fiber posts (Rely X Fiber Post) were luted with a self-adhesive resin cement (RelyX Unicem) and one of the following adhesive systems: no adhesive, a total-etch adhesive resin (Single Bond), a two-step self-etch adhesive resin (Clearfil SE Bond) and a one-step self-etch adhesive resin (Clearfil S3 Bond). Each root was cut horizontally, and 1.5 mm thick six root segments were prepared. Push-out tests were performed after one week or three months (0.5 mm/min). Statistical analysis were performed with three-way ANOVA (α=.05). RESULTS Cervical root segments showed higher bond strength values than middle segments. Adhesive application increased the bond strength. For one week group, the total-etch adhesive resin Single Bond showed higher bond strength than the self-adhesive resin cement RelyX Unicem applied without adhesive resin at middle region. For 3 months group, the two-step self-etch adhesive resin Clearfil SE Bond showed the highest bond strength for both regions. Regarding the time considered, Clearfil SE Bond 3 months group showed higher bond strength values than one week group. CONCLUSION Using the adhesive resins in combination with the self-adhesive resin cement improves the bond strengths. The bond strength values of two-step self-etch adhesive resin Clearfil SE Bond improved as time passes. PMID:24049572

  3. Influence of adhesive systems on bond strength between fiber posts and composite resin cores in a pull-out test design.

    PubMed

    Wrbas, Karl-Thomas; Schirrmeister, Jörg Fabian; Altenburger, Markus Jörg; Agrafioti, Anastasia; Kielbassa, Andrej Michael

    2007-05-01

    The aim of this study was to evaluate the effects of post surface conditioning with adhesive systems on tensile bond strength between two composite resin core systems and FRP posts (ER DentinPost). Forty-eight posts were trimmed at the coronal part, and the upper part of 3 mm was covered with a standardized composite resin core build-up. Twenty-four posts were treated with the respective adhesive systems. Four groups were formed: G1 - ClearfilCore; G2 - Clearfil New Bond + ClearfilCore; G3 - MultiCore Flow; and G4 - AdheSE + MultiCore Flow. Mean (SD) bond strengths in MPa were 7.53 (0.89) for ClearfilCore and 8.08 (0.93) for New Bond + ClearfilCore; 5.80 (0.39) for MultiCore Flow and 5.92 (0.43) for AdheSE + MultiCore Flow. ClearfilCore achieved significantly higher bond strengths than MultiCore Flow (two-way ANOVA; p<0.0001). In conclusion, composite resin core materials exerted a significant influence on tensile bond strength, while adhesive systems did not significantly affect the results.

  4. Bonding Durability of Four Adhesive Systems

    PubMed Central

    Seyed Tabai, Elaheh; Mohammadi Basir, Mahshid

    2015-01-01

    Objectives: This study aimed to compare the durability of four adhesive systems by assessing their microtensile bond strength (MTBS) and microleakage during six months of water storage. Materials and Methods: A total of 128 human third molars were used. The adhesives tested were Scotch Bond Multipurpose (SBMP), Single Bond (SB), Clearfil-SE bond (CSEB), and All-Bond SE (ABSE). After sample preparation for MTBS testing, the microspecimens were subjected to microtensile tester after one day and six months of water storage. For microleakage evaluation, facial and lingual class V cavities were prepared and restored with composite. After thermocycling, microleakage was evaluated. Bond strength values were subjected to one-way ANOVA and Tamhane’s test, and the microleakage data were analyzed by the Kruskal-Wallis, Dunn, Mann Whitney and Wilcoxon tests (P<0.05). Results: Single Bond yielded the highest and ABSE yielded the lowest bond strength at one day and six months. Short-term bond strength of SBMP and CSEB was similar. After six months, a significant decrease in bond strength was observed in ABSE and SBMP groups. At one day, ABSE showed the highest microleakage at the occlusal margin; however, at the gingival margin, there was no significant difference among groups. Long-term microleakage of all groups at the occlusal margins was similar, whilst gingival margins of SBMP and SB showed significantly higher microleakage. Conclusion: The highest MTBS and favorable sealability were obtained by Clearfil SE bond. Water storage had no effect on microleakage of self-etch adhesives at the gingival margin or MTBS of CSEB and SB. PMID:27123015

  5. Effect of Fluoride-Releasing Adhesive Systems on the Mechanical Properties of Eroded Dentin.

    PubMed

    Guedes, Ana Paula Albuquerque; Moda, Mariana Dias; Suzuki, Thaís Yumi Umeda; Godas, André Gustavo de Lima; Sundfeld, Renato Herman; Briso, André Luiz Fraga; Santos, Paulo Henrique dos

    2016-01-01

    The aim of the study was to evaluate the effect of erosive pH cycling with solutions that simulate dental erosion on Martens hardness (HMV) and elastic modulus (Eit) of dentin restored with fluoride-releasing adhesive systems. Twenty-seven bovine dentin slabs were restored with three adhesive systems: Adper Single Bond 2 total-etch adhesive system, One Up Bond F and Clearfil SE Protect fluoride-containing self-etching adhesive systems. The restorations were made with Filtek Z250. The HMV and Eit values at distances of 10, 30, 50 and 70 µm from the interface were evaluated using a dynamic ultra microhardness tester before and after immersion in deionized water, citric acid and hydrochloric acid (n=9). Data were submitted to repeated-measures ANOVA and Fisher's PLSD tests (=0.05). After erosive cycling, HMV values of dentin decreased in all groups. For dentin restored with Adper Single Bond 2, the lowest values were found closer to the hybrid layer, while for One Up Bond F and Clearfil SE Protect, the values remained unaltered at all distances. For dentin restored with fluoride-releasing adhesive systems, a decrease in Eit was found, but after 30 µm this difference was not significant. The acid substances were able to alter HMV and Eit of the underlying dentin. For fluoride-releasing adhesives, the greater the distance from bonded interface, the lower the Eit values. The fluoride in One Up Bond F and Clearfil SE Protect was able to protect the underlying dentin closer to the materials. In this way, the fluoride from adhesive systems could have some positive effect in the early stages of erosive lesions.

  6. Two-year clinical performance of Clearfil SE and Clearfil S3 in restoration of unabraded non-carious class V lesions.

    PubMed

    Brackett, Martha Goël; Dib, Alejandro; Franco, Guillermo; Estrada, Blanca E; Brackett, William W

    2010-01-01

    This study was undertaken to evaluate the two-year clinical performance of a self-etching primer and a self-etching adhesive, both of which employ the same acidic monomer. Forty pairs of restorations of AP-X hybrid resin composite (Kuraray Co, Ltd, Osaka, Japan) were placed in caries-free cervical erosion/abfraction lesions. Based on insensitivity to air, the dentin in 62% of these lesions was considered to be sclerotic. The restorations were placed with no abrasion of tooth surfaces, except for cleaning with plain pumice and no use of phosphoric acid etching, which is counter to the manufacturer's instructions that call for etching of unprepared enamel. One restoration from each pair was placed using Clearfil SE Bond, an adhesive employing a self-etching primer, and the other was placed using Clearfil S3 Bond, a self-etching adhesive. To emulate the results likely to occur in a private practice, the restorations were placed by well-educated, experienced clinicians who had no particular expertise in adhesive dentistry research and who placed the restorations according only to their interpretation of the manufacturer's instructions. The restorations were clinically evaluated at baseline and at 6, 12 and 24 months, using modified Ryge/USPHS criteria. For both products, retention of 81%-84% of the restorations was observed over two years, which is lower than has been previously observed with these products and is likely due to limitations in the manufacturer's instructions compounded by inexperience of the operators in adhesive dentistry research. One restoration placed with each adhesive demonstrated secondary caries, which was probably attributable to the study being conducted in a non-fluoridated area and which reduced the percentages of clinically successful restorations to 78%-81%. No statistically significant difference (p = 0.50) between the two adhesives was observed in overall performance.

  7. Two-year clinical evaluation of three adhesive systems in non-carious cervical lesions

    PubMed Central

    ELİGUZELOGLU DALKILİC, Evrim; OMURLU, Huma

    2012-01-01

    Objectives Adhesive systems are continuously being introduced to Dentistry, unfortunately often without sufficient clinical validation. The aim of this study was to evaluate the clinical performance of cervical restorations done with three different adhesive systems. Material and methods 158 non-carious cervical lesions of 23 patients were restored with a nanofilled composite resin (Filtek Supreme, 3M/ESPE) combined with Single Bond (3M/ESPE, group SI), Clearfil SE (Kuraray Medical Inc., group CL) and Xeno III (De Trey Dentsply, group XE). In groups SI-B, CL-B and XE-B, the outer surface of the sclerotic dentin was removed by roughening with a diamond bur before application of the respective adhesive systems. In groups CL-BP and XE-BP, after removal of the outer surface of the sclerotic dentin with the bur, the remaining dentin was etched with 37% phosphoric acid and the self-etch adhesive systems Clearfil SE and Xeno III were applied, respectively. Lesions were evaluated at baseline, and restorations after 3 months, 1 year and 2 years using modified USPHS criteria. Results After 2 years, no significant difference was found between the retention rates of the groups (p >0.05). Although groups CL and SI showed significantly better marginal adaptation than group XE (p<0.05) at 2 years, no significant difference was found between the marginal adaptation of the groups SI-B, CL-B and XE-B (p>0.05). After 2 years no significant difference was observed among the marginal staining results of all groups (p>0.05). Conclusion Although all adhesive systems showed similar retention rates, Clearfil SE and Single Bond showed better marginal adaptation than Xeno III after 2 years of follow-up. PMID:22666836

  8. Microleakage and Resin-to-Dentin Interface Morphology of Pre-Etching versus Self-Etching Adhesive Systems

    PubMed Central

    Waldman, G.L; Vaidyanathan, T.K; Vaidyanathan, J

    2008-01-01

    The purpose of this study was to compare the microleakage and tissue-adhesive interface morphology from Class V restorations using different systems of dentin adhesives. Class V cavities were prepared on buccal surfaces of 27 extracted caries-free molars and premolars. Teeth were randomly assigned to one of three groups: (1) Prime & Bond NT, a 5th generation system using an initial step of total etch followed by a second step of application of a self bonding primer (2) Clearfil SE Bond, a 5th generation adhesive system employing two separate steps of self-etch priming and subsequent bonding (3) One-up Bond F, a 6th generation one step self-etching, self-priming and self-bonding adhesive. Microleakage and interface morphology of teeth restored with these adhesives and a composite resin were evaluated. Kruskal-Wallis Test (p = 0.05) was used to analyze the results. SEM analysis was used to relate interface morphology to microleakage. The mean and (SD) values of microleakage were: Prime and Bond NT: 0.15 (0.33), Clearfil SE Bond: 0.06 (0.17) and One-up Bond F: 2.96 (0.63). The mean microleakage for One-up Bond was significantly higher than for the other groups (p<0.05). Protruding tags in dentin channels were observed in Prime and Bond and Clearfil systems, but not in One-up Bond. The single step adhesive system, although more convenient for the clinician, uses a low viscosity formulation difficult to keep in place on cavity walls. It also tends to be too aggressive and hydrophilic to create an impermeable hybridized tissue-adhesive interfacial layer resistant to microleakage. Two-step adhesive systems, on the other hand, were retained on all segments of the cavosurface during application, and formed a hybridized interfacial layer resistant to microleakage. PMID:19444319

  9. Influence of additional adhesive application on the microtensile bond strength of adhesive systems.

    PubMed

    de Silva, André Luís Faria; Lima, Débora Alves Nunes Leite; de Souza, Grace Mendonça Dias; dos Santos, Carlos Tadeu Dias; Paulillo, Luís Alexandre Maffei Sartini

    2006-01-01

    This study evaluated microtensile bond strength (pTBS) when an additional adhesive layer was applied to the dentin surface. Thirty-five human third molars were flattened to expose the occlusal dentin surface. The teeth were randomly assigned to 7 experimental groups: G1-Single Bond (SB); G2-additional layer of SB; G3--a layer of Scotchbond Multi-purpose (SMP) adhesive applied over SB; G4-Clearfil SE Bond (CE); G5-additional layer of CE; G6-Adper Prompt (AP) and G7-additional layer of AP. For the G2, G3, G5 and G7 groups, the first adhesive layer was light-cured before application of the additional layer. After bonding procedures, 5-mm high composite crowns were incrementally built up. The samples were sectioned to obtain 0.9 x 0.9 beams, which were tested under tension at a crosshead speed of 0.5-mm/minute until failure. The failure mode and adhesive thickness were evaluated under SEM. The pTBS data were analyzed by 1-way ANOVA and post-hoc Ducan's Test (a=0.05). Mean adhesive thickness was analyzed by 1-way ANOVA and post-hoc Tukey's test (a=0.05). The results indicated that G3 presented the highest microTBS and the thickest adhesive layer. G6 and G7 presented the lowest microTBS values. When solvent-free adhesives systems were used, microTBS values were not affected by the thicker layer.

  10. Dentin bond strength of a fluoride-releasing adhesive system submitted to pH-cycling.

    PubMed

    Costa, Ana Rosa; Correr-Sobrinho, Lourenço; Ambrosano, Glaucia Maria Bovi; Sinhoreti, Mario Alexandre Coelho; Borges, Gilberto Antonio; Platt, Jeffrey A; Puppin-Rontani, Regina Maria

    2014-01-01

    To evaluate the microtensile bond strength (µTBS) of a fluoride-containing adhesive system submitted to a pH-cycling and storage time regimen for primary outcomes. As secondary outcomes the fluoride released amount was evaluated. Twelve dentin surfaces from sound third molar were divided into 2 groups according to adhesive systems: Clearfil SE Protect (PB) and Clearfil SE Bond (SE). Sticks obtained (1.0 mm2) from teeth were randomly divided into 3 subgroups according to storage regimen model: immediate (24h); 5-month deionized water (W); and pH-cycling model (C). All sticks were tested for µTBS in a universal testing machine. Fluoride concentration was obtained from 1-4 days and 30-day in W and 1-4 days in demineralization (DE)/remineralization (RE) solutions from C, using a fluoride-specific electrode. µTBS and fluoride released data were, respectively, submitted to ANOVA in a split plot design and Tukey, and Friedman' tests (a=0.05). There was no significant interaction between adhesive system and storage regimen for µTBS. W showed the lowest µTBS values. There was no significant difference between 24 h and C models for µTBS. There was no significant difference between adhesive systems. Failure mode was predominantly cohesive within composite for the 24 h and W, for the C group it was mixed for SE and cohesive within composite for PB adhesive system. Fluoride concentrations in the DE/RE solutions were less than 0.03125 ppm and not detected in W. In conclusion, the fluoride-containing adhesive system performed similarly to the regular one. Hydrolytic degradation is the main problem with both adhesive systems, regardless of fluoride contents.

  11. Effects of solvent evaporation on water sorption/solubility and nanoleakage of adhesive systems

    PubMed Central

    CHIMELI, Talita Baumgratz Cachapuz; D'ALPINO, Paulo Henrique Perlatti; PEREIRA, Patrícia Nóbrega; HILGERT, Leandro Augusto; DI HIPÓLITO, Vinicius; GARCIA, Fernanda Cristina Pimentel

    2014-01-01

    Objective To evaluate the influence of solvent evaporation in the kinetics of water diffusion (water sorption-WS, solubility-SL, and net water uptake) and nanoleakage of adhesive systems. Material and Methods Disk-shaped specimens (5.0 mm in diameter x 0.8 mm in thickness) were produced (N=48) using the adhesives: Clearfil S3 Bond (CS3)/Kuraray, Clearfil SE Bond - control group (CSE)/Kuraray, Optibond Solo Plus (OS)/Kerr and Scotchbond Universal Adhesive (SBU)/3M ESPE. The solvents were either evaporated for 30 s or not evaporated (N=24/per group), and then photoactivated for 80 s (550 mW/cm2). After desiccation, the specimens were weighed and stored in distilled water (N=12) or mineral oil (N=12) to evaluate the water diffusion over a 7-day period. Net water uptake (%) was also calculated as the sum of WS and SL. Data were submitted to 3-way ANOVA/Tukey's test (α=5%). The nanoleakage expression in three additional specimens per group was also evaluated after ammoniacal silver impregnation after 7 days of water storage under SEM. Results Statistical analysis revealed that only the factor "adhesive" was significant (p<0.05). Solvent evaporation had no influence in the WS and SL of the adhesives. CSE (control) presented significantly lower net uptake (5.4%). The nanoleakage was enhanced by the presence of solvent in the adhesives. Conclusions Although the evaporation has no effect in the kinetics of water diffusion, the nanoleakage expression of the adhesives tested increases when the solvents are not evaporated. PMID:25141201

  12. Effect of curing unit and adhesive system on marginal adaptation of composite restorations.

    PubMed

    Casselli, Denise Sa Maia; Faria-e-Silva, Andre Luis; Casselli, Henrique; Martins, Luis Roberto Marcondes

    2012-01-01

    This study sought to evaluate how a curing unit and adhesive system affected the marginal adaptation of resin composite restorations. Class V cavities were prepared in bovine teeth with a gingival margin in dentin and an incisal margin in enamel. The cavities were restored with a micro-hybrid resin composite using one of four adhesives: Single Bond 2, Prime & Bond NT, Clearfil SE Bond, Xeno IV. The light-activations were performed using a quartz-tungsten-halogen (QTH) lamp or a second-generation light-emitting diode (LED). Restorations were finished and polished and epoxy replicas were prepared. Marginal adaptation was analyzed by using scanning electronic microscopy (magnification 500X). The widest gaps in each margin were recorded, and data were submitted to Kruskal-Wallis, Mann-Whitney, and Wilcoxon tests (α = 0.05). Differences between the adhesives were observed only when the dentin margins were evaluated: Clearfil SE Bond demonstrated better marginal adaptation than Prime & Bond NT or Single Bond 2 (which demonstrated the widest gaps in the dentin margin). The type of curing unit only affected the results for Xeno IV when the enamel margin was analyzed; the LED lamp promoted smaller gaps than the QTH lamp.

  13. Instant acting adhesive system

    NASA Technical Reports Server (NTRS)

    Davis, T. R.; Haines, R. C.

    1971-01-01

    Adhesive developes 80 percent of minimum bond strength of 250 psi less than 30 sec after activation is required. Adhesive is stable, handles easily, is a low toxic hazard, and is useful in industrial and domestic prototype bonding and clamping operations.

  14. Initial adhesion of glass-fiber-reinforced composite to the surface of porcine calvarial bone.

    PubMed

    Tuusa, S M R; Lassila, L V J; Matinlinna, J P; Peltola, M J; Vallittu, P K

    2005-11-01

    The aim of this preliminary study was to compare the initial bond strength of the glass-fiber-reinforced composite veil to the surface of the porcine calvarial compact bone using different adhesives. Fiber-reinforced composite (FRC) made of E-glass fiber veil with the BisGMA-PMMA resin system was used in the study. For the shear bond strength test, porcine calvarial bone cubes were mounted into resin matrix. FRC-veil discs were bonded to compact bone with different types of adhesives: (A) BisGMA-HEMA based (3M-ESPE Scotchbond Multi-Purpose Adhesive), (B) 4-META/UDMA/BisGMA based (Unifil Bond Bonding Agent) and MDP based (Clearfil Se Bond adhesive), (C) UDMA/BisGMA/PMMA-based experimental adhesive, and (D) silane-based (APS, ICS, MPS) experimental adhesives. The surface of the bone was mechanically roughened and was either used as such, treated with dental primers (Unifil Bond Self-etching Primer, Clearfil Se Bond Primer), or treated with an experimental silane mixture (APS, ICS, MPS), or with a mixture of the experimental silane liquid and Clearfil Se Bond Primer. The 3M-ESPE Scotchbond Multi-Purpose Adhesive and UDMA/BisGMA/PMMA experimental adhesive gave poor results in the shear bond test (0.58 and 0.40 MPa, respectively). Unifil Bond Bonding Agent and Clearfil Se Bond adhesive with respective primers markedly improved the shear bond strength; with Unifil the result was 3.40 MPa, and with Clearfil it was 6.19 MPa. When the bone surface was primed with a mixture of Clearfil Se Bond Primer and Clearfil Porcelain Bond Activator, the Clearfil Se Bond adhesive-impregnated FRC veil gave the best adhesion to the bone surface in this test: 9.50 MPa. The addition of bioactive glass granules between the veil and the bone lowered the shear bond strength in the test system described above to 6.72 MPa. The test systems with the silane mixture were also promising. In the SEM study, it was found that the mechanical treatment reveals the pores of the bone surface. Chemical

  15. Effect of moisture and drying time on the bond strength of the one-step self-etching adhesive system

    PubMed Central

    Lee, Yoon

    2012-01-01

    Objectives To investigate the effect of dentin moisture degree and air-drying time on dentin-bond strength of two different one-step self-etching adhesive systems. Materials and Methods Twenty-four human third molars were used for microtensile bond strength testing of G-Bond and Clearfil S3 Bond. The dentin surface was either blot-dried or air-dried before applying these adhesive agents. After application of the adhesive agent, three different air drying times were evaluated: 1, 5, and 10 sec. Composite resin was build up to 4 mm thickness and light cured for 40 sec with 2 separate layers. Then the tooth was sectioned and trimmed to measure the microtensile bond strength using a universal testing machine. The measured bond strengths were analyzed with three-way ANOVA and regression analysis was done (p = 0.05). Results All three factors, materials, dentin wetness and air drying time, showed significant effect on the microtensile bond strength. Clearfil S3 Bond, dry dentin surface and 10 sec air drying time showed higher bond strength. Conclusions Within the limitation of this experiment, air drying time after the application of the one-step self-etching adhesive agent was the most significant factor affecting the bond strength, followed by the material difference and dentin moisture before applying the adhesive agent. PMID:23429228

  16. Comparative evaluation of microtensile bond strength of different solvent based one step and two step adhesive systems to dentin. An in-vitro study

    PubMed Central

    Somasundaram, Pavithra; Uthappa, Roshan; Shivgange, Vinay; Shivamurthy, GB; Shivanna, Vasundhara

    2013-01-01

    Aim and Objective: To compare and evaluate the micro tensile bond strength of different solvent based one step and two step adhesive systems to dentin. Materials and Methods: Sixty recently extracted human mandibular premolars were subjected for the study and divided into 4 groups of fifteen each. The adhesive materials Single Bond, Prime and Bond XP, Clearfil S3 Bond and G-Bond were applied to flat dentin surfaces according to the manufacturer's instructions. After resin composite build up, teeth were sectioned to obtain beams with an approximate cross sectional area of 2 mm2 and stressed to failure. Data were analysed statistically by ANOVA and student Neuman Keuls multiple comparison tests. Results: The study demonstrated that Single Bond has better bond strength to dentin compared to the other adhesive systems. Conclusion: Ethanol and water based two-step adhesive Single Bond exhibited significantly higher microtensile bond strength values to dentin among all the adhesive systems tested. PMID:23956544

  17. Silorane adhesive system: a case report.

    PubMed

    Ruschel, Vanessa Carla; Baratieri, Luiz Narciso; Monteiro Júnior, Sylvio; Andrada, Mauro Amaral Caldeira de

    2014-01-01

    Silorane-based composite resin requires a specific adhesive system: a 2-step self-etching adhesive. Clinical protocols are well established and are based on the principles of adhesion to mineralized dental tissues. In this paper, we present a clinical application of the silorane adhesive system in a class-II restoration using silorane-based composite resin.

  18. BOND STRENGTH AND MORPHOLOGY OF ENAMEL USING SELF-ETCHING ADHESIVE SYSTEMS WITH DIFFERENT ACIDITIES

    PubMed Central

    Moura, Sandra Kiss; Reis, Alessandra; Pelizzaro, Arlete; Dal-Bianco, Karen; Loguercio, Alessandro Dourado; Arana-Chavez, Victor Elias; Grande, Rosa Helena Miranda

    2009-01-01

    Objectives: To assess the bond strength and the morphology of enamel after application of self-etching adhesive systems with different acidities. The tested hypothesis was that the performance of the self-etching adhesive systems does not vary for the studied parameters. Material and methods: Composite resin (Filtek Z250) buildups were bonded to untreated (prophylaxis) and treated (burcut or SiC-paper) enamel surfaces of third molars after application of four self-etching and two etch-and-rinse adhesive systems (n=6/condition): Clearfil SE Bond (CSE); OptiBond Solo Plus Self-Etch (OP); AdheSe (AD); Tyrian Self Priming Etching (TY), Adper Scotchbond Multi-Purpose Plus (SBMP) and Adper Single Bond (SB). After storage in water (24 h/37°C), the bonded specimens were sectioned into sticks with 0.8 mm2 cross-sectional area and the microtensile bond strength was tested at a crosshead speed of 0.5 mm/min. The mean bond strength values (MPa) were subjected to two-way ANOVA and Tukey's test (α=0.05). The etching patterns of the adhesive systems were also observed with a scanning electron microscope. Results: The main factor adhesive system was statistically significant (p<0.05). The mean bond strength values (MPa) and standard deviations were: CSE (20.5±3.5), OP (11.3±2.3), AD (11.2±2.8), TY (11.1±3.0), SBMP (21.9±4.0) and SB (24.9±3.0). Different etching patterns were observed for the self-etching primers depending on the enamel treatment and the pH of the adhesive system. Conclusion: Although there is a tendency towards using adhesive systems with simplified application procedures, this may compromise the bonding performance of some systems to enamel, even when the prismless enamel is removed. PMID:19668991

  19. Analysis of interfacial structure and bond strength of self-etch adhesive systems

    PubMed Central

    Pinzon, Lilliam M; Watanabe, Larry G; Reis, Andre F; Powers, John M; Marshall, Sally J; Marshall, Grayson W

    2013-01-01

    Purpose To determine the bond strength, nanoleakage and interfacial morphology of four self-etch adhesives bonded to superficial dentin. Methods Micro-tensile (MT, n=15) and single plane shear (SP, n=8) bond tests were performed using human dentin polished through 320-grit SiC paper. Clearfil Protect Bond (PB), Clearfil S3 Bond (S3), Prompt L-Pop (PLP) and G-BOND (GB) were used according to manufacturers’ instructions. Composite was applied as cylinders with a thickness of 4 mm with a 1-mm diameter and stored in water at 37° C for 24 hours. Specimens were debonded with a testing machine at a cross-head speed of 1 mm/min. Means and standard deviations of bond strength were calculated. Data were analyzed using ANOVA. Fisher’s PLSD intervals were calculated at the 0.05 level of significance. Failure modes were determined at 100X. The hybrid layer was revealed by treatment with 5N HCl/5% NaOCl or fractured perpendicular to the interface and sputter coated with gold. Specimens were viewed at 1000X, 2500X, and 5000X in a field emission SEM at 15 kV. Teeth (n=2) sectioned into 0.9-mm thick slabs were immersed in ammoniacal silver nitrate solution for 24 hours, rinsed and immersed in photo-developing solution for 8h. Specimens were sectioned (90-nm thick) and observed under TEM. Results Means ranged from 25.0 to 73.1 MPa for MT and from 15.5 to 56.4 MPa for SP. MT values were greater than SP, but were highly correlated (R2 = 0.99, p= 0.003) and provided the same order for the systems studied. Fisher’s PLSD intervals (p<0.05) for bond strength techniques and adhesives results were 1.7 and 2.3 MPa, respectively. Failures sites were mixed. TEM showed that hybrid layers were ~0.5 µm for PB, GB and S3 and ~5 µm for PLP. SEM showed morphologic differences among adhesives. Silver nitrate deposits were observed within interfaces for all adhesive systems. Clinical significance Simplification of application procedures appears to induce loss of adhesion capabilities. In this

  20. Microleakage Evaluation of Adhesive Systems Following Pulp Chamber Irrigation with Sodium Hypochlorite

    PubMed Central

    Moghaddas, Mohammad Javad; Moosavi, Horieh; Ghavamnasiri, Marjaneh

    2014-01-01

    Background and aims. This in vitro study evaluated the effect of delaying composite resin restorative procedures bonded with total-etch and self-etch adhesive systems on microleakage following root canal irrigation with sodium hy-pochlorite (NaOCl) solution. Materials and methods. The roofs of pulp chambers and roots (1–2 mm below furcation) of 40 human first molar teeth were cut and pulp tissues completely removed. The teeth were randomly divided into two main groups (n = 20). Group E (experimental) was irrigated with 5% NaOCl and group C (control) was left untreated. For the experimental group, after obturation of root canals with gutta-percha and sealing the cavity with Cavit, the specimens were stored in artificialsaliva for two weeks. Then each group was divided into two subgroups according to the total-etch or self-etch adhesive application protocol: Scotchbond Multi-Purpose and Clearfil SE Bond. The specimens were restored with composite resin using each bonding agent: Z250 and Clearfil Photo Core, respectively. Fluid filtration method was used for evaluation of microleakage. Data was analyzed using two-way ANOVA ( α= 0.05). Results. Two types of dentin adhesive systems showed no statistically significant differences in microleakage (P = 0.77). NaOCl-treated groups demonstrated significantly higher microleakage values compared to the non-NaOCl-treated groups (P= 0.001). The interaction between the two factors was not significant (P = 0.78). Conclusion. Differences in inlay temperature had no effect on microleakage. CAD/CAM inlays had lower cement thick-ness than laboratory-made inlays, but this was not related to their microleakage. PMID:25024835

  1. Gap measurement and bond strength of five selected adhesive systems bonded to tooth structure.

    PubMed

    Arbabzadeh, F; Gage, J P; Young, W G; Shahabi, S; Swenson, S M

    1998-06-01

    The ability of a restorative material to bond and seal the interface with tooth structure is perhaps the most significant factor in determining resistance to marginal caries. Thus, the quality and durability of marginal seal and bond strength are major considerations in the selection of restorative materials. The purpose of this study was to compare the bond strength and marginal discrepancies of five adhesive systems: All-Bond 2, Clearfil Liner Bond, KB 200, ProBond and AELITE Bond. Twenty-five buccal and 25 lingual cavities were prepared in 25 caries-free extracted molar teeth, giving 10 cavities for each of the 5 adhesive systems. All teeth were restored with the resin composite Pertac Hybrid, or PRISMA Total Performance Hybrid with their appropriate adhesive systems. After restoration, the teeth were thermocycled, were stained with a 1.5% aqueous solution of a procion dye (reactive orange 14) and sectioned coronally with a saw microtome. Three sections of 200 microns thickness were prepared from each restoration which were then examined microscopically to measure marginal gap widths using a confocal tandem microscope. Shear bond strength measurements were carried out on the dentine bond using a universal testing machine. The All-Bond 2 adhesive system was found to have higher shear bond strength and to have the least gap width at the cementodentinal margin.

  2. Bond strength of adhesive resin cement with different adhesive systems

    PubMed Central

    Lorenzoni e Silva, Fabrizio; Pamato, Saulo; Kuga, Milton-Carlos; Só, Marcus-Vinicius-Reis

    2017-01-01

    Background To assess the immediate bond strength of a dual-cure adhesive resin cement to the hybridized dentin with different bonding systems. Material and Methods Fifty-six healthy human molars were randomly divided into 7 groups (n=8). After 3 longitudinal sections, the central cuts were included in PVC matrix and were submitted to dentin hybridization according to the groups: G1 - etch & rinse system with 3-step (Apder™ Scotchbond™ Multi-Purpose, 3M ESPE), G2 - etch & rinse system with 3-step (Optibond™ FL, Kerr), G3 - etch & rinse system with 3-step (All-Bond 3®, Bisco), G4 - etch & rinse simplified system (Adper™ Single Bond 2, 3M ESPE), G5 - self-etching system with one step (Bond Force, Tokuyama), G6 - universal system in moist dentin (Single Bond Universal, 3M ESPE), G7 - universal system in dry dentin (Single Bond Universal, 3M ESPE). Then all groups received the cementing of a self-adhesive resin cement cylinder (Duo-link, Bisco) made from a polypropylene matrix. In the evaluation of bond strength, the samples were subjected to the microshear test and evaluated according to the fracture pattern by optical microscopy. Results The Kruskal-Wallis test suggests a statistically significant difference between groups (p=0,039), and Tukey for multiple comparisons, indicating a statistically significant difference between G3 and G4 (p<0.05). It was verified high prevalence of adhesive failures, followed by mixed failure and cohesive in dentin. Conclusions The technique and the system used to dentin hybridization are able to affect the immediate bond strength of resin cement dual adhesive. Key words:Adhesion, adhesive resin cement, adhesive systems, microshear. PMID:28149471

  3. Micro-tensile bond strength of self-etching primer adhesive systems to human coronal carious dentin.

    PubMed

    Doi, J; Itota, T; Torii, Y; Nakabo, S; Yoshiyama, M

    2004-10-01

    The aim of this study was to evaluate the micro-tensile bond strengths of three self-etching primer adhesive systems to normal dentin (ND), caries-affected dentin (CAD) and caries-infected dentin (CID). Human extracted molars with caries were used, and flat dentin surfaces ground by 600-grit SiC paper were prepared. The surfaces were dyed using Caries-Detector solution, treated with Clearfil SE Bond, Mac-Bond II and UniFil Bond, and then covered with resin composites according to manufacturer's instructions. After immersion in 37 degrees C water for 24 h, the teeth were serially sectioned into multiple slices. Each slice was distinguished into ND, CAD and CID groups by the degree of staining, and the bond strength was measured in a universal testing machine. Scanning electron microscopic (SEM) observation was also performed. For statistical analysis, anova and Scheffe's test were used (P < 0.05). The bond strengths of the three adhesive systems to CAD and CID were significantly lower than those to ND. There was significant difference in the bond strength to ND between Clearfil SE Bond and UniFil Bond, but no significant differences to CAD and CID among the three adhesive systems. On SEM, the hybrid layers in CAD and CID showed more porous structures compared with ND. The results indicated that the bond strengths to CAD and CID were not affected by a variety of self-etching primer adhesive systems because of the porous hybrid layer formation in carious dentin.

  4. Current dental adhesives systems. A narrative review.

    PubMed

    Milia, Egle; Cumbo, Enzo; Cardoso, Rielson Jose A; Gallina, Giuseppe

    2012-01-01

    Adhesive dentistry is based on the development of materials which establish an effective bond with the tooth tissues. In this context, adhesive systems have attracted considerable research interest in recent years. Successful adhesive bonding depends on the chemistry of the adhesive, on appropriate clinical handling of the material as well as on the knowledge of the morphological changes caused on dental tissue by different bonding procedures. This paper outlines the status of contemporary adhesive systems, with particular emphasis on chemical characteristics and mode of interaction of the adhesives with enamel and dentinal tissues. Dental adhesives are used for several clinical applications and they can be classified based on the clinical regimen in "etch-and-rinse adhesives" and "self-etch adhesives". Other important considerations concern the different anatomical characteristics of enamel and dentine which are involved in the bonding procedures that have also implications for the technique used as well as for the quality of the bond. Etch-and-rinse adhesive systems generally perform better on enamel than self-etching systems which may be more suitable for bonding to dentine. In order to avoid a possible loss of the restoration, secondary caries or pulp damage due to bacteria penetration or due to cytotoxicity effects of eluted adhesive components, careful consideration of several factors is essential in selecting the suitable bonding procedure and adhesive system for the individual patient situation.

  5. Influence of Etching Mode on Enamel Bond Durability of Universal Adhesive Systems.

    PubMed

    Suzuki, T; Takamizawa, T; Barkmeier, W W; Tsujimoto, A; Endo, H; Erickson, R L; Latta, M A; Miyazaki, M

    2016-01-01

    The purpose of this study was to determine the enamel bond durability of three universal adhesives in different etching modes through fatigue testing. The three universal adhesives used were Scotchbond Universal, Prime&Bond Elect universal dental adhesive, and All-Bond Universal light-cured dental adhesive. A single-step self-etch adhesive, Clearfil S(3) Bond Plus was used as a control. The shear bond strength (SBS) and shear fatigue strength (SFS) to human enamel were evaluated in total-etch mode and self-etch mode. A stainless steel metal ring with an internal diameter of 2.4 mm was used to bond the resin composite to the flat-ground (4000-grit) tooth surfaces for determination of both SBS and SFS. For each enamel surface treatment, 15 specimens were prepared for SBS and 30 specimens for SFS. The staircase method for fatigue testing was then used to determine the SFS of the resin composite bonded to the enamel using 10-Hz frequencies for 50,000 cycles or until failure occurred. Scanning electron microscopy was used to observe representative debonded specimen surfaces and the resin-enamel interfaces. A two-way analysis of variance and the Tukey post hoc test were used for analysis of the SBS data, whereas a modified t-test with Bonferroni correction was used for the SFS data. All adhesives in total-etch mode showed significantly higher SBS and SFS values than those in self-etch mode. Although All-Bond Universal in self-etch mode showed a significantly lower SBS value than the other adhesives, there was no significant difference in SFS values among the adhesives in this mode. All adhesives showed higher SFS:SBS ratios in total-etch mode than in self-etch mode. With regard to the adhesive systems used in this study, universal adhesives showed higher enamel bond strengths in total-etch mode. Although the influence of different etching modes on the enamel-bonding performance of universal adhesives was found to be dependent on the adhesive material, total-etch mode

  6. Marginal integrity of low-shrinking versus methacrylate-based composite: effect of different one-step self-etch adhesives.

    PubMed

    Gregor, Ladislav; Dorien, Lefever; Bortolotto, Tissiana; Feilzer, Albert J; Krejci, Ivo

    2016-11-01

    The aim of the study was to evaluate the influence of composite type and adhesive system on the quality of marginal adaptation in standardized Class V cavities before and after thermo-mechanical loading (TML). The cavities were restored using different combinations of three adhesive systems [(Silorane System Adhesive (SSA), Clearfil S(3) Bond (S3), G-Bond (G-B)] and two resin composite materials (Filtek Silorane, Clearfil AP-X). Six groups (n = 10): Group A (SSA-Primer + SSA-Bond, Filtek Silorane), Group B (SSA-Primer + SSA-Bond, Clearfil AP-X), Group C (S3 + SSA-Bond, Filtek Silorane), Group D (S3 + SSA-Bond, Clearfil AP-X), Group E (G-B + SSA-Bond, Filtek Silorane) and Group F (G-B + SSA-Bond, Clearfil AP-X) were defined. Marginal adaptation was assessed on replicas in the SEM at 200 × magnification before and after TML (3000 × 5-55 °C, 1.2 10(6) × 49 N; 1.7 Hz) under simulated dentinal fluid. The highest scores of continuous margins (%CM) were observed in the group F (G-B + SSA-Bond, Clearfil AP-X: before loading 96.4 (±3.2)/after loading 90.8 (±7.0)). A significant effect of adhesive system, composite type and loading interval was observed on the results (p < 0.05). Significantly lower scores of %CM were observed for silorane-based composite (Filtek Silorane) after TML in comparison with methacrylate-based composite (Clearfil AP-X) considering total marginal length (p < 0.05). For both Filtek Silorane and Clearfil AP-X, G-Bond performed significantly better than SSA-Primer and Clearfil S(3) Bond (p < 0.05). For all combinations of one-step self-etch adhesives and SSA-Bond resin coating, silorane-based low-shrinking composite exhibited inferior marginal adaptation than did the methacrylate-based composite.

  7. Dentin bond strength and degree of conversion evaluation of experimental self-etch adhesive systems

    PubMed Central

    Yazdi, Fatemeh-Maleknejad; Atai, Mohammad; Zeynali, Mahsa

    2015-01-01

    Background The aim of this study was to investigate the effect of different concentrations of 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) monomer in one-step self-etch experimental adhesives on dentinal microshear bond strength (µSBS), their degree of conversion and bonded micro structure. Material and Methods Composite resin cylinders (Clearfil AP-X) were bonded on human sound molar dentinal surfaces by using five experimental one-step self-etching adhesives (1-SEAs) containing 0% (E0), 5% (E5), 10% (E10), 15% (E15), 20% (E20) (by weight) 10-MDP monomer and Clearfil S3 Bond (CS3) as a control. After 24 hours, microshear bond strength was tested. The degree of conversion was also measured using Fourier transform infrared spectroscopy. Interfacial ultrastructure was observed under a scanning electron microscope in all the groups. Results A higher microshear bond strength was observed with adhesives containing 10% and 15% 10-MDP in comparison to study groups (P<.05). Clearfil S3 Bond and 10% MDP had a significantly greater degree of conversion than other groups (P<.05). Conclusions The amount of functional monomer in 1-SEAs influences both the bonding performance and degree of conversion; 10% 10-MDP showed the best combination of bond strength and degree of conversion. Key words:Self-etch adhesives, 10-MDP, bond strength, degree of conversion. PMID:26155340

  8. Effects of Type I Collagen Degradation on the Durability of Three Adhesive Systems in the Early Phase of Dentin Bonding

    PubMed Central

    Hu, Lin; Xiao, Yu-hong; Fang, Ming; Gao, Yu; Huang, Li; Jia, An-qi; Chen, Ji-hua

    2015-01-01

    Objective This study was designed to evaluate the effects of type I collagen degradation on the durability of three adhesive systems in the early phase of dentin bonding. Methods Bonded dentin specimens were prepared using three different types of adhesive systems. Micro-tensile bond strength and degradation of collagen were tested before, and after 1 month or 4 months of aging in artificial saliva. The relationship between micro-tensile bond strength and collagen degradation was analyzed by calculating their Pearson’s correlation coefficient. Results Aging induced time-dependent reduction in micro-tensile bond strengths for all the tested adhesive systems, although such reduction for the single-step self-etching adhesive G-Bond (GB) was not statistically significant. The bond strength of the two-step self-etching primer adhesive system Clearfil SE Bond (SEB) was similar to that of the two-step etch-and-rinse self-priming adhesive system Single Bond 2 (SB), and they were both significantly reduced after one or four months of aging. A negative correlation was found between the degree of collagen degradation and magnitude of micro-tensile bond strength (r = - 0.65, p = 0.003). The Pearson’s correlation coefficient was 0.426, indicating that 42.6% of the aging-induced reduction in bond strength can be explained by the degradation of collagen. Conclusions In the early phase of dentin bonding, there was a negative correlation between the degree of collagen degradation and the magnitude of micro-tensile bond strength. The reduction of bond strength was accompanied by the degradation of collagen. These results provide evidence for the causative relationship between the degradation of collagen and the deterioration of dentin-adhesive interface. PMID:25689141

  9. Hybridization quality and bond strength of adhesive systems according to interaction with dentin

    PubMed Central

    Salvio, Luciana Andrea; Hipólito, Vinicius Di; Martins, Adriano Luis; de Goes, Mario Fernando

    2013-01-01

    Objective: To evaluate the hybridization quality and bond strength of adhesives to dentin. Materials and Methods: Ten human molars were ground to expose the dentin and then sectioned in four tooth-quarters. They were randomly divided into 5 groups according to the adhesive used: Two single-step self-etch adhesives – Adper Prompt (ADP) and Xeno III (XE), two two-step self-etching primer systemsClearfil SE Bond (SE) and Adhe SE (ADSE), and one one-step etch-and-rinse system – Adper Single Bond (SB). Resin composite (Filtek Z250) crown buildups were made on the bonded surfaces and incrementally light-cured for 20 s. The restored tooth-quarters were stored in water at 37°C for 24 h and then sectioned into beams (0.8 mm2 in cross-section). Maximal microtensile bond strength (μ-TBS) was recorded (0.5 mm/min in crosshead speed). The results were submitted to one-way ANOVA and Tukey's test (α = 0.05). Thirty additional teeth were used to investigate the hybridization quality by SEM using silver methenamine or ammoniacal silver nitrate dyes. Results: SE reached significantly higher μ-TBS (P < 0.05); no significance was found between ADSE and XE (P > 0.05), and between SB and ADP (P > 0.05); ADSE and XE were significantly higher than SB and ADP (P < 0.05). The bonding interface of SB showed the most intense silver uptake. SE and ADSE showed more favorable hybridization quality than that observed for ADP and XE. Conclusions: The bond strength and hybridization quality were affected by the interaction form of the adhesives with dentin. The hybridization quality was essential to improve the immediate μ-TBS to dentin. PMID:24926212

  10. Cytotoxicity of universal, self-etching and etch-and-rinse adhesive systems according to the polymerization time.

    PubMed

    Elias, Silvia T; Santos, Andressa F Dos; Garcia, Fernanda C P; Pereira, Patrícia N R; Hilgert, Leandro A; Fonseca-Bazzo, Yris M; Guerra, Eliete N S; Ribeiro, Ana Paula Dias

    2015-01-01

    This in vitro study evaluated in fibroblast cultures the direct cytotoxicity of universal, self-etching and etch-and-rinse adhesive systems according to the polymerization time. Paper discs were impregnated with adhesives and light-cured (10, 20 or 40 s). The discs were then immersed in culture medium to obtain the eluates for the experimental groups (A1-Single Bond 2; A2-Scotchbond Multi-purpose; A3-Clearfil SE Bond; A4 Scotchbond Universal). As a negative control, paper discs were immersed in culture medium only. After 24 h or 7 days, the eluate obtained was applied on fibroblast culture. Cell viability, cell morphology, membrane damage and the presence of residual monomers were evaluated by MTT assay, SEM, flow cytometry and high-performance liquid chromatography (HPLC), respectively. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests (=0.05). All adhesive systems significantly reduced 33-51% cell metabolism when compared to the negative control, regardless of polymerization time, storage period and adhesive system. Moreover, the adhesives caused intense morphological alterations and cell membrane damage. Toxicity was directly related to the presence of residual monomers in the eluates. Residual monomers and additional components are capable of reducing mitochondrial activity, causing morphological alterations and disruption of the cell membrane in fibroblasts, regardless of the polymerization time. This study highlights that despite the more complex composition of the universal adhesive system, its biological response was not more toxic when compared with other systems, even when the shortest polymerization time was tested in cell culture.

  11. Shear Bond Strengths of Methacrylate- and Silorane-based Composite Resins to Feldspathic Porcelain using Different Adhesive Systems

    PubMed Central

    Mohammadi, Narmin; Shakur Shahabi, Maryam; Kimyai, Soodabeh; Pournagi Azar, Fatemeh; Ebrahimi Chaharom, Mohammad Esmaeel

    2015-01-01

    Background and aims. Use of porcelain as inlays, laminates and metal-ceramic and all-ceramic crowns is common in modern dentistry. The high cost of ceramic restorations, time limitations and difficulty of removing these restorations result in delays in replacing fractured restorations; therefore, their repair is indicated. The aim of the present study was to compare the shear bond strengths of two types of composite resins (methacrylate-based and silorane-based) to porcelain, using three adhesive types. Materials and methods. A total of 156 samples of feldspathic porcelain surfaces were prepared with air-abrasion and randomly divided into 6 groups (n=26). In groups 1-3, Z250 composite resin was used to repair porcelain samples with Ad-per Single Bond 2 (ASB), Clearfil SE Bond (CSB) and Silorane Adhesive (SA) as the bonding systems, afterapplication of silane, respectively. In groups 4-6, the same adhesives were used in the same manner with Filtek Silorane composite resin. Finally, the shear bond strengths of the samples were measured. Two-way ANOVA and post hoc Tukey tests were used to compare bond strengths between the groups with different adhesives at P<0.05. Results. There were significant differences in the mean bond strength values in terms of the adhesive type (P<0.001). In addition, the interactive effect of the adhesive type and composite resin type had no significant effect on bond strength (P=0.602). Conclusion. The results of the present study showed the highest repair bond strength values to porcelain with both composite resin types with the application of SA and ASB. PMID:26697151

  12. Effect of Sodium Ascorbate and Delayed Bonding on the Bond Strength of Silorane and Two-step Self-etch Adhesive Systems in Bleached Enamel

    PubMed Central

    Abed Kahnemooyi, Mehdi; Ajami, Amir Ahmad; Kimyai, Soodabeh; Pournaghiazar, Fatemeh; Savadi Oskoee, Siavash; Mhammadi Torkani, Mohammad Ali

    2014-01-01

    Background and aims. Studies have shown decreased bond strength of composite resin to human and bovine bleached enamel. This study evaluated the effect of sodium ascorbate and delayed bonding on the bond strength of two adhesive systems to bleached enamel. Materials and methods. The labial surfaces of 150 sound bovine incisor teeth were abraded with abrasive paper. The teeth were randomly divided into 8 groups: A: control; B: bleached with 35% hydrogen peroxide; C: bleached with 35% hydrogen peroxide + sodium ascorbate gel; and D: bleached with 35% hydrogen peroxide + delayed bonding. In groups A‒D, silorane adhesive system and Filtek silorane composite resin were used. In groups E‒H, the same preparation methods of groups A-D were used. Two-step self-etch Clearfil SE Bond adhesive systems and AP-X composite resin were administered. Shear bond strength of each group was measured. Two samples were prepared for each surface preparation for ultra-structural evaluation. Two-way ANOVA and Tukey test were used for data analysis at P<0.05. Results. The interaction between the adhesive system type and surface preparation protocol was significant (P=0.014), withsignificant differences in shear bond strengths in terms of the adhesive systems (P<0.01). There were significant differences in shear bond strength in terms of surface preparation techniques irrespective of the adhesive system (P<0.01). Conclusion. The results showed that bleaching with 35% hydrogen peroxide decreased the shear bond strength values with both adhesive systems, and a one-week delay in bonding and 10% sodium ascorbate for10 minutes restored the bond strength in both adhesive systems. PMID:25587382

  13. Evaluation of microshear bond strength of resin composites to enamel of dental adhesive systems associated with Er,Cr:YSGG laser

    NASA Astrophysics Data System (ADS)

    Cassimiro-Silva, Patricia F.; Zezell, Denise M.; Monteiro, Gabriela Q. d. M.; Benetti, Carolina; de Paula Eduardo, Carlos; Gomes, Anderson S. L.

    2016-02-01

    The aim of this in vitro study was to evaluate the microshear bond strength (μSBS) of resin composite to enamel etching by Er,Cr:YSGG laser with the use of two differents adhesives systems. Fifty freshly extracted human molars halves were embedded in acrylic resin before preparation for the study, making a total of up to 100 available samples. The specimens were randomly assigned into six groups (η=10) according to substrate pre-treatment and adhesive system on the enamel. A two-step self-etching primer system (Clearfil SE Bond) and a universal adhesive used as an etch-andrinse adhesive (Adper Single Bond Universal) were applied to the nonirradiated enamel surface according to manufacturer's instructions, as control groups (Control CF and Control SB, respectively). For the other groups, enamel surfaces were previously irradiated with the Er,Cr:YSGG laser with 0.5 W, 75 mJ and 66 J/cm2 (CF 5 Hz and SB 5 Hz) and 1.25 W, 50 mJ and 44 J/cm2 (CF 15 Hz and SB 15 Hz). Irradiation was performed under air (50%) and water (50%) cooling. An independent t-test was performed to compare the adhesive systems. Mean μSBS ± sd (MPa) for each group was 16.857 +/- 2.61, 17.87 +/- 5.83, 12.23 +/- 2.02, 9.88 +/- 2.26, 15.94 +/- 1.98, 17.62 +/- 2.10, respectively. The control groups and the 50 mJ laser groups showed no statistically significant differences, regardless of the adhesive system used. The results obtained lead us to affirm that the bonding interaction of adhesives to enamel depends not only on the morphological aspects of the dental surface, but also on the characteristics of the adhesive employed and the parameters of the laser.

  14. Shear Bond Strength of Calcium Enriched Mixture Cement and Mineral Trioxide Aggregate to Composite Resin with Two Different Adhesive Systems

    PubMed Central

    Savadi Oskoee, Siavash; Bahari, Mahmoud; Kimyai, Soodabeh; Motahhari, Paria; Eghbal, Mohammad Jafar; Asgary, Saeed

    2014-01-01

    Objective: Immediate restoration after vital pulp therapy is essential in order to create and maintain effective coronal seal. Purpose of Study: The aim of this study was to evaluate the shear bond strength of recently used pulp capping materials: white mineral trioxide aggregate (MTA), and calcium enriched mixture cement (CEM) to composite resin with the use of etch-and-rinse and self-etch adhesive systems and compare them with the bond strength of commonly used resin modified glass ionomer (RMGI) cement. Materials and Methods: Forty specimens from each test material were fabricated, measuring 4 mm in diameter and 2 mm in depth. The specimens of each material were divided into 2 groups of 20 specimens according to the adhesive system (Single Bond vs. Clearfil SE Bond) used for bonding of resin composite. The shear bond strength values were measured at a crosshead speed of 1.0 mm/min and fractured surfaces were examined. Data were analyzed using two-way ANOVA and a post hoc Tukey’s test (P<0.05). Results: Analysis of data showed a significantly higher bond strength for RMGI compared to MTA and CEM (P<0.001); however, no significant differences were observed in the bond strength values of MTA and CEM (P=0.9). Furthermore, there were no significant differences in relation to the type of the adhesive system irrespective of the type of the material used (P=0.95) All the failures were of cohesive type in RMGI, MTA and CEM. Conclusion: Bond strength of RMGI cement to composite resin was higher than that of MTA or CEM cement irrespective of the type of the adhesive system. PMID:25628696

  15. The role of MDP in a bonding resin of a two-step self-etching adhesive system.

    PubMed

    Matsui, Naoko; Takagaki, Tomohiro; Sadr, Alireza; Ikeda, Masaomi; Ichinose, Shizuko; Nikaido, Toru; Tagami, Junji

    2015-01-01

    The purpose of this study was to evaluate the role of 10-methacryloyloxydecyl dihydrogen phosphate (MDP) contained in the bonding resin of a two-step self-etch adhesive system. An experimental adhesive (M0) containing MDP only in the primer, but not in the bonding resin was prepared. Clearfil SE Bond (MM) and M0 were compared in terms of microtensile bond strength to dentin, ultimate tensile strength of the bonding resin, and dentin-resin bonding interface morphology under SEM and TEM. The immediate µTBS values of MM significantly decreased after thermal cycles while M0 were stable even after 10,000 cycles. In the SEM observations, formation of erosion was observed beneath the acid-base resistant zone only in M0. The results suggested that MDP in the bonding resin of the two-step self-etching system; 1) improved the immediate bond strength, but caused reduction in long-term bond durability; 2) offered the advantages of acid-base resistance at the ABRZ forefront area.

  16. The effect of cavity disinfectants on the micro-shear bond strength of dentin adhesives

    PubMed Central

    Elkassas, Dina Wafik; Fawzi, Elham Mostafa; El Zohairy, Ahmed

    2014-01-01

    Objectives: This study was carried out to examine the effect of application of four different disinfecting agents on the micro-shear bond strength (μ-SBS) of an etch-and-rinse and self-etch adhesive systems. Materials and Methods: One hundred flat dentin surfaces of human molars were produced by wet grinding the buccal surfaces. Specimens were randomly assigned to five groups according to the disinfectant used: Group I: Control (no disinfectant); Group II: 5.25% sodium hypochlorite based; Group III: 2% chlorhexidine based (Consepsis), Group IV: 0.1% benzalkoniumchloride based (Tubulicid red) and Group V: 3% doxycycline based (Biopure, MTAD). Specimens were bonded using either Adper Single Bond 2 or Clearfil S3 Bond, which were employed according to the manufacturer's instructions. Resin composite microcylinders were bonded using Tygon® tubes for μ-SBS testing. The modes of failure were noted after visual examination using a binocular stereomicroscope at ×25 magnification. Failures were classified as adhesive, or mixed. μ-SBS results were analyzed using two-way ANOVA followed by Tukey's post-hoc test. Results: Dentin disinfectants tested significantly negated the bonding of Adper Single bond 2 and the groups were ranked; Group I > Group V = Group IV > Group II = Group III, meanwhile they enhanced significantly the μ-SBS values upon using Clearfil S3 Bond and were ranked; Group II > Group III = Group IV = Group V > Group I. Most failures were adhesive with the Adper single bond adhesive system. Mixed modes of failure were evident with Clearfil S3 bond. Conclusions: The disinfectants tested should not be used with Adper Single Bond 2 when applied before the etching step, However they could be used safely prior to bonding with Clearfil S3 Bond. PMID:24966768

  17. Influence of Diamond Sono-Abrasion, Air-Abrasion and Er:YAG Laser Irradiation on Bonding of Different Adhesive Systems to Dentin

    PubMed Central

    de Oliveira, Marcelo Tavares; de Freitas, Patrícia Moreira; de Paula Eduardo, Carlos; Ambrosano, Glaucia Maria Bovi; Giannini, Marcelo

    2007-01-01

    Objectives Different surface treatments may affect bonding performance of adhesive systems to dentin. This study evaluated the influence of different methods of surface treatment on adhesion of bonding agents to dentin. Methods Dentin surfaces abraded with #600-grit SiC paper were used as control. Three methods of surface treatment (sono-abrasion, air-abrasion and Er:YAG laser irradiation) were used under specific parameters. Four adhesive systems (Tyrian, Clearfil SE Bond, Unifil Bond and Single Bond) were applied to treated surfaces, according to the manufacturers’ instructions. Composite blocks were built on bonded surfaces, then restored teeth were vertically and serially sectioned to obtain bonded slices for interfacial micromorphologic analysis or to produce beam specimens for μ-TBS bond test. Data were analyzed with two-way ANOVA and Tukey test at a significance level of 5%. Results The results indicated that the preparation of dentin with sono-abrasion or laser did not affect the bond strength, while the preparation of dentin with SiC paper and air-abrasion influenced the bond strength for some systems. A clear difference of the preparation of dentin surfaces and formation of hybrid layer and resin tags were noted. Conclusion Bonding effectiveness of both the etch-and-rinse and the self-etch adhesives can be influenced by different methods of dentin preparation. PMID:19212560

  18. A Comparative Study of Microleakage on Dental Surfaces Bonded with Three Self-Etch Adhesive Systems Treated with the Er:YAG Laser and Bur.

    PubMed

    Sanhadji El Haddar, Youssef; Cetik, Sibel; Bahrami, Babak; Atash, Ramin

    2016-01-01

    Aim. This study sought to compare the microleakage of three adhesive systems in the context of Erbium-YAG laser and diamond bur cavity procedures. Cavities were restored with composite resin. Materials and Methods. Standardized Class V cavities were performed in 72 extracted human teeth by means of diamond burs or Er-YAG laser. The samples were randomly divided into six groups of 12, testing three adhesive systems (Clearfil s(3) Bond Plus, Xeno® Select, and Futurabond U) for each method used. Cavities were restored with composite resin before thermocycling (methylene blue 2%, 24 h). The slices were prepared using a microtome. Optical microscope photography was employed to measure the penetration. Results. No statistically significant differences in microleakage were found in the use of bur or laser, nor between adhesive systems. Only statistically significant values were observed comparing enamel with cervical walls (p < 0.001). Conclusion. It can be concluded that the Er:YAG laser is as efficient as diamond bur concerning microleakage values in adhesive restoration procedures, thus constituting an alternative tool for tooth preparation.

  19. A Comparative Study of Microleakage on Dental Surfaces Bonded with Three Self-Etch Adhesive Systems Treated with the Er:YAG Laser and Bur

    PubMed Central

    Sanhadji El Haddar, Youssef; Cetik, Sibel; Bahrami, Babak; Atash, Ramin

    2016-01-01

    Aim. This study sought to compare the microleakage of three adhesive systems in the context of Erbium-YAG laser and diamond bur cavity procedures. Cavities were restored with composite resin. Materials and Methods. Standardized Class V cavities were performed in 72 extracted human teeth by means of diamond burs or Er-YAG laser. The samples were randomly divided into six groups of 12, testing three adhesive systems (Clearfil s3 Bond Plus, Xeno® Select, and Futurabond U) for each method used. Cavities were restored with composite resin before thermocycling (methylene blue 2%, 24 h). The slices were prepared using a microtome. Optical microscope photography was employed to measure the penetration. Results. No statistically significant differences in microleakage were found in the use of bur or laser, nor between adhesive systems. Only statistically significant values were observed comparing enamel with cervical walls (p < 0.001). Conclusion. It can be concluded that the Er:YAG laser is as efficient as diamond bur concerning microleakage values in adhesive restoration procedures, thus constituting an alternative tool for tooth preparation. PMID:27419128

  20. Effect of lining with a flowable composite on internal adaptation of direct composite restorations using all-in-one adhesive systems.

    PubMed

    Yahagi, Chika; Takagaki, Tomohiro; Sadr, Alireza; Ikeda, Masaomi; Nikaido, Toru; Tagami, Junji

    2012-01-01

    The purpose of this study was to evaluate the effect of lining with a flowable composite on internal adaptation of composite restorations using three all-in-one adhesive systems; Bond Force (BF), G-Bond Plus (GP), and OptiBond All-in-one (OP), and a two-step self-etching adhesive system; Clearfil SE Bond (SE). They were applied to each cylindrical cavity prepared on the human dentin. The cavity surface was lined with/without a flowable resin composite prior to filling with a resin composite (FL/NL). After water storage for 24 h, the specimens were sectioned and polished, and internal adaptation of the restorations was assessed using a confocal laser scanning microscopy. For SE, a perfect cavity adaptation was recognized in both FL and NL. For BF, GP and OP, cavity adaptation was material dependent in NL, whereas no gap formation was observed in FL. However, voids formation was observed at the composite-adhesive-dentin interface in every all-in-one adhesive system.

  1. Design and fabrication of polymer based dry adhesives inspired by the gecko adhesive system

    NASA Astrophysics Data System (ADS)

    Jin, Kejia

    There has been significant interest in developing dry adhesives mimicking the gecko adhesive system, which offers several advantages compared to conventional pressure sensitive adhesives. Specifically, gecko adhesive pads have anisotropic adhesion properties: the adhesive pads (spatulae) stick strongly when sheared in one direction but are non-adherent when sheared in the opposite direction. This anisotropy property is attributed to the complex topography of the array of fine tilted and curved columnar structures (setae) that bear the spatulae. In this thesis, easy, scalable methods, relying on conventional and unconventional techniques are presented to incorporate tilt in the fabrication of synthetic polymer-based dry adhesives mimicking the gecko adhesive system, which provide anisotropic adhesion properties. In the first part of the study, the anisotropic adhesion and friction properties of samples with various tilt angles to test the validity of a nanoscale tape-peeling model of spatular function are measured. Consistent with the Peel Zone model, samples with lower tilt angles yielded larger adhesion forces. Contact mechanics of the synthetic array were highly anisotropic, consistent with the frictional adhesion model and gecko-like. Based on the original design, a new design of gecko-like dry adhesives was developed which showed superior tribological properties and furthermore showed anisotropic adhesive properties without the need for tilt in the structures. These adhesives can be used to reversibly suspend weights from vertical surfaces (e.g., walls) and, for the first time to our knowledge, horizontal surfaces (e.g., ceilings) by simultaneously and judiciously activating anisotropic friction and adhesion forces. Furthermore, adhesion properties between artificial gecko-inspired dry adhesives and rough substrates with varying roughness are studied. The results suggest that both adhesion and friction forces on a rough substrate depends significantly on the

  2. Nanoleakage in Hybrid Layer and Acid-Base Resistant Zone at the Adhesive/Dentin Interface.

    PubMed

    Nikaido, Toru; Nurrohman, Hamid; Takagaki, Tomohiro; Sadr, Alireza; Ichinose, Shizuko; Tagami, Junji

    2015-10-01

    The aim of interfacial nanoleakage evaluation is to gain a better understanding of degradation of the adhesive-dentin interface. The acid-base resistant zone (ABRZ) is recognized at the bonded interface under the hybrid layer (HL) in self-etch adhesive systems after an acid-base challenge. The purpose of this study was to evaluate nanoleakage in HL and ABRZ using three self-etch adhesives; Clearfil SE Bond (SEB), Clearfil SE One (SEO), and G-Bond Plus (GBP). One of the three adhesives was applied on the ground dentin surface and light cured. The specimens were longitudinally divided into two halves. One half remained as the control group. The others were immersed in ammoniacal silver nitrate solution, followed by photo developing solution under fluorescent light. Following this, the specimens were subjected to acid-base challenges with an artificial demineralization solution (pH4.5) and sodium hypochlorite, and prepared in accordance with common procedures for transmission electron microscopy (TEM) examination. The TEM images revealed silver depositions in HL and ABRZ due to nanoleakage in all the adhesives; however, the extent of nanoleakage was material dependent. Funnel-shaped erosion beneath the ABRZ was observed only in the all-in-one adhesive systems; SEO and GBP, but not in the two-step self-etch adhesive system; SEB.

  3. Advanced adhesion and friction measurement system

    NASA Astrophysics Data System (ADS)

    Li, Meng; Huang, Wei; Wang, Xiaolei

    2017-03-01

    An advanced micro-force tester for investigating the micromechanical behavior of various patterned surfaces in dry and wet conditions is presented in this paper. The parallel slice-beam configuration of the tester not only eliminates the large load-dependent slope and tangential displacement at the free end that is found in a single beam system, but also performs a trans-scale deflection with high sensitivity and linearity for force sensing. Meanwhile, the simple structure is characterized by low cost, high efficiency, and ease of fabrication. An integrated nano- and micro-stage comprise the mobile table to produce a large stroke with high resolution, which is specifically required in wet adhesion testing because of the formation of a long liquid bridge. Preliminary experiments of adhesion and friction conducted using PDMS pillars with a plano-convex lens validated the feasibility of this setup.

  4. Adhesions

    MedlinePlus

    Adhesions are bands of scar-like tissue. Normally, internal tissues and organs have slippery surfaces so they can shift easily as the body moves. Adhesions cause tissues and organs to stick together. They ...

  5. Adhesion

    MedlinePlus

    ... the intestines, adhesions can cause partial or complete bowel obstruction . Adhesions inside the uterine cavity, called Asherman syndrome , ... 1. Read More Appendicitis Asherman syndrome Glaucoma Infertility Intestinal obstruction Review Date 4/5/2016 Updated by: Irina ...

  6. Effect of Non-Thermal Argon Plasma on Bond Strength of a Self-Etch Adhesive System to NaOCl-Treated Dentin.

    PubMed

    Abreu, João Luiz Bittencourt de; Prado, Maíra; Simão, Renata Antoun; Silva, Eduardo Moreira da; Dias, Katia Regina Hostilio Cervantes

    2016-01-01

    Studies have been showing a decrease of bond strength in dentin treated with sodium hypochlorite (NaOCl). The aim of this study was to evaluate the effect of non-thermal argon plasma on the bond strength of a self-etch adhesive system to dentin exposed to NaOCl. Thirty-two flat dentin surfaces of bovine incisors were immersed in 2.5% NaOCl for 30 min to simulate the irrigation step during endodontic treatment. The specimens were divided into four groups (n=8), according to the surface treatment: Control (without plasma treatment), AR15 (argon plasma for 15 s), AR30 (argon plasma for 30 s) and AR45 (argon plasma for 45 s). For microtensile bond strength test, 5 specimens were used per group. In each group, the specimens were hybridized with a self-etch adhesive system (Clearfil SE Bond) and resin composite buildups were constructed. After 48 h of water storage, specimens were sectioned into sticks (5 per tooth, 25 per group) and subjected to microtensile bond strength test (μTBS) until failure, evaluating failure mode. Three specimens per group were analyzed under FTIR spectroscopy to verify the chemical modifications produced in dentin. μTBS data were analyzed using ANOVA and Tamhane tests (p<0.05). AR30 showed the highest μTBS (20.86±9.0). AR15 (13.81±6.4) and AR45 (11.51±6.8) were statistically similar to control (13.67±8.1). FTIR spectroscopy showed that argon plasma treatment produced chemical modifications in dentin. In conclusion, non-thermal argon plasma treatment for 30 s produced chemical changes in dentin and improved the μTBs of Clearfil SE Bond to NaOCl-treated dentin.

  7. The Effect of Epigallocatechin Gallate on the Dentin Bond Durability of Two Self-etch Adhesives

    PubMed Central

    Khamverdi, Zahra; Rezaei-Soufi, Loghman; Rostamzadeh, Tayebeh

    2015-01-01

    Statement of the Problem Self-etch adhesives can activate matrix metalloproteinase (MMP) which hydrolyzes organic matrix of demineralized dentin. Epigallocatechin gallate (EGCG), especially found in green tea, could inhibit the activation of MMP. Purpose The aim of this study was to evaluate the effect of adding Epigallocatechin gallate (EGCG) into two types of adhesives on dentin bond strength. Materials and Method In this experimental study, 64 extracted third molars were randomly divided into 16 groups. Clearfil SE Bond and Filtek Silorane System with 0 µM, 25µM, 50µM, and 100µM concentration of 95% EGCG were used for bonding. Following the bonding and fabrication of beams (1±0.1 mm2) and storage in distilled water, the specimens were subjected to thermal cycles. Microtensile bond strengths of 8 groups were examined after 24 hours and others were tested after 6 months. The fracture modes of specimens were evaluated by stereomicroscope and SEM. Data were analyzed by three-way ANOVA and t-test (α = 0.05). Results The results of the three- way ANOVA test showed that types of bonding, storage time and interactive effect of EGCG concentration and bonding influenced the bond strength of specimens significantly (p<0.05). The results of the t-test indicated that storage time only had significant effect on bond strength of Clearfil SE Bond with no EGCG (p= 0.017). The most common failure modes in Filtek Silorane System groups and Clearfil SE Bond groups were adhesive and mixed/cohesive, respectively. The results of SEM at different magnifications showed that most fractures have occurred in the hybrid layer. Conclusion Although adding 100 µM volume of EGCG to Clearfil SE Bond can preserve the dentin bond, incorporation of EGCG in the silorane system, especially in high concentrations, decreases the bond strength after 6 months. PMID:26046100

  8. Clinical Effectiveness of Different Polishing Systems and Self-Etch Adhesives in Class V Composite Resin Restorations: Two-Year Randomized Controlled Clinical Trial.

    PubMed

    Jang, J-H; Kim, H-Y; Shin, S-M; Lee, C-O; Kim, D S; Choi, K-K; Kim, S-Y

    The aim of this randomized controlled clinical trial was to compare the clinical effectiveness of different polishing systems and self-etch adhesives in class V composite resin restorations. A total of 164 noncarious cervical lesions (NCCLs) from 35 patients were randomly allocated to one of four experimental groups, each of which used a combination of polishing systems and adhesives. The two polishing systems used were Sof-Lex XT (Sof), a multistep abrasive disc, and Enhance/Pogo (EP), a simplified abrasive-impregnated rubber instrument. The adhesive systems were Clearfil SE bond (CS), a two-step self-etch adhesive, and Xeno V (XE), a one-step self-etch adhesive. All NCCLs were restored with light-cured microhybrid resin composites (Z250). Restorations were evaluated at baseline and at 6, 12, 18, and 24 months by two blinded independent examiners using modified FDI criteria. The Fisher exact test and generalized estimating equation analysis considering repeated measurements were performed to compare the outcomes between the polishing systems and adhesives. Three restorations were dislodged: two in CS/Sof and one in CS/EP. None of the restorations required any repair or retreatment except those showing retention loss. Sof was superior to EP with regard to surface luster, staining, and marginal adaptation (p<0.05). CS and XE did not show differences in any criteria (p>0.05). Sof is clinically superior to EP for polishing performance in class V composite resin restoration. XE demonstrates clinically equivalent bonding performance to CS.

  9. Shear bond strength of one-step self-etch adhesives: pH influence

    PubMed Central

    Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Chiesa, Marco

    2015-01-01

    Background: The aim of this study was to compare the shear bond strength of four one-step self-etch adhesives with different pH values to enamel and dentin. Materials and Methods: In this in vitro study, 200 bovine permanent mandibular incisors were used. Four one-step self-etch adhesives with different pH values were tested both on enamel and on dentin: Adper™ Easy Bond Self-Etch Adhesive (pH = 0.8-1), Futurabond NR (pH=2), G-aenial Bond (pH = 1.5), Clearfil S3 Bond (pH = 2.7). After adhesive systems application, a nanohybrid composite resin was inserted into the bonded surface. The specimens were placed in a universal testing machine. The shear bond strength was performed at a cross-head speed of 1 mm/min until the sample rupture. The shear bond strength values (MPa) of the different groups were compared with analysis of variance after that Kolmogorov and Smirnov tests were applied to assess normality of distributions. P < 0.05 was considered as significant. Results: In enamel shear bond strength, the highest shear bond strength values were reported with Futurabond NR (P < 0.01); however, no significant differences were found with Clearfil S3 Bond. The others adhesive systems showed lower shear bond strength values with significant differences between them (P < 0.05). When comparing the dentin shear bond strength, the lowest shear bond strength values were reported with Clearfil S3 Bond (P < 0.05), while there were no significant differences among the other three products (P > 0.05). Conclusion: The pH values of adhesive systems did not influence significantly their shear bond strength to enamel or dentin. PMID:26005459

  10. Evaluation of the bond strength of different adhesive agents to a resin-modified calcium silicate material (TheraCal LC).

    PubMed

    Karadas, Muhammed; Cantekin, Kenan; Gumus, Husniye; Ateş, Sabit Melih; Duymuş, Zeynep Yesil

    2016-09-01

    This study evaluated the bond strength of different adhesive agents to TheraCal LC and mineral trioxide aggregate (MTA) and examined the morphologic changes of these materials with different surface treatments. A total of 120 specimens, 60 of MTA Angelus (AMTA), and 60 of TheraCal LC, were prepared and divided into six subgroups according to the adhesive agent used; these agents included Scotchbond Multipurpose, Clearfil SE Bond, Clearfil Protect Bond, Clearfil S(3) Bond, OptiBond All-in-One, and G-aenial Bond. After application of adhesive agents, Filtek Z250 composite resin was placed onto the specimens. Shear bond strengths were measured using a universal testing machine, followed by examination of the fractured surfaces. The surface changes of the specimens were observed using scanning electron microscopy. Data were compared by two-way analysis of variance. Although no significant differences were found among the bond strengths of different adhesives to AMTA (p = 0.69), a significant difference was found in terms of bond strengths of different adhesives to the TheraCal LC surface (p < 0.001). The total-etch adhesive system more strongly bonded to TheraCal LC compared to the bond with other adhesives. TheraCal LC bonded significantly more strongly than AMTA regardless of the adhesive agents tested. Resin-modified calcium silicate showed higher bond strength than AMTA in terms of the composite bond to these materials with different bonding systems. On the other hand, the highest shear bond-strength values were found for composite bonds with the combination of TheraCal LC and the total-etch adhesive system. SCANNING 38:403-411, 2016. © 2015 Wiley Periodicals, Inc.

  11. Evaluation of cytotoxic effects of six self-etching adhesives with direct and indirect contact tests.

    PubMed

    Kusdemir, Mahmut; Gunal, Solen; Ozer, Fusun; Imazato, Satoshi; Izutani, Naomi; Ebisu, Shigeyuki; Blatz, Markus B

    2011-01-01

    This study evaluated the cytotoxicity of self-etching primers/adhesives by direct contact and dentin barrier tests. The three two-step self-etching systems Clearfil SE Bond (CSE), Clearfil Protect Bond (CPB), Prime&Bond NT/NRC (PB) and one-step self-etching systems Reactmer Bond (RB), Clearfil Tri-S Bond (CTS), and Adper Prompt L-Pop (AP) were examined. In direct contact tests, L929 cells were cultured in the presence of diluted solutions (50, 20, 10, and 1%) of primer/conditioner of adhesive systems. For dentin barrier tests, each system was applied onto 0.5 or 1.5 mm thick human dentin assembled in a simple pulp chamber device and incubated for 24 h at 37°C to make the diffusive components contact the L929 cells placed at the bottom of the chamber. The cytotoxic effects were assessed by MTT assay. Cell culture without application of any primers/adhesives served as the control for both tests. One-way ANOVA and Tukey HSD tests were used for statistical analyses. The direct contact tests demonstrated that CSE and CPB were less toxic than the other materials at all dilutions. In the dentin barrier tests, toxic effects of materials were reduced with an increase in thickness of intervening dentin. CSE and CPB showed less cytotoxicity than the other adhesives (p<0.05) when applied to 0.5 mm-thick dentin, and CSE was the least toxic in the 1.5 mm-dentin group (p<0.05). Dentin thickness positively affected biocompatibility of the tested bonding systems. Two-step self-etching systems with HEMA-based primers were more biocompatible than other self-etching adhesives.

  12. Development of Capsular Adhesive Systems and Evaluation of Their Stability.

    DTIC Science & Technology

    1985-07-26

    Adhesives; Microencapsulation processes, Epoxy resins, Anaerobic systems, Characterization, Microcapsules properties, Stability, Liquid Chromatography...II. TECHNICAL DISCUSSION ................... 5 A. Complementary microencapsulation stu- dies ............................... 5 1...initial phase of this program (1), studies on microencapsulation of adhesive systems were conducted in which the capsule shells are made from the

  13. Influence of Erosive and Abrasive Cycling on Bonding of Different Adhesive Systems to Enamel: An In situ Study.

    PubMed

    Giacomini, Marina Ciccone; Casas-Apayco, Leslie Caroll; Machado, Camila Moreira; Freitas, Maria Cristina Carvalho de Almendra; Atta, Maria Teresa; Wang, Linda

    2016-01-01

    This study evaluated the impact of orange juice on the bond strength (BS) of dentin bonding systems (DBSs) to enamel surface after simulation with an in situ/ ex vivo erosive cycling. One hundred and ninety two bovine enamel fragments (4x4x2mm) were obtained and randomized regarding superficial microhardness and distributed to palatal devices for 8 volunteers, in three phases (one for each DBS), containing 8 blocks, which were, allocated in 4 pairs. Daily, these pairs were subjected extraorally to the following conditions: CONT- neither erosive nor abrasive challenge; ERO- erosive challenge only; ABR- abrasive challenge only and ERO + ABR- with erosive and abrasive challenges. Erosive cycles (immersion in orange juice, 3 times/day/5 min/5 days) or/and abrasive challenges (electric toothbrush, 3 times/day/1 min/5 days) were performed. After these cycles, all specimens were restored with the adhesive systems Adper Scotchbond Multi Purpose (MP), Adper Single Bond 2 (SB) or Clearfil SE Bond (SE), and the composite resin Filtek Z250. After 7 days, sticks (area ≅1 mm2) were obtained and subjected to the microtensile bond strength test (μTBS) at 0.5 mm/min. Data was statistically analyzed by ANOVA and Tukey tests (a=0.05). Failure modes were determined using a digital microscope (40´). DBS was the only statistical significant factor. SE was the unique DBS not affected in any challenge, whereas MP and SB performed according to the scenario. The adhesive and mixed failures were predominant in all groups. Overall performance suggested that BS to enamel after erosive /abrasive challenged by orange juice was not affected and it was material-dependent.

  14. Interfacial and surface characterization of two self-etching adhesive systems and a total-etch adhesive after bonding to ground and unground bovine enamel--a qualitative study.

    PubMed

    Ibarra, Gabriela; Vargas, Marcos A; Geurtsen, Werner

    2006-12-01

    The purpose of the study was to evaluate the enamel surface and interface morphology of two self-etching adhesive systems (SAS) vs a total-etch control, after bonding to ground and unground enamel using field emission scanning electron microscopy (FESEM). Thirty bovine incisors were used in this study. The buccal enamel surface of 15 teeth was ground flat to resemble freshly cut enamel. The rest of the teeth were left intact. Two SAS, Clearfil SE Bond (CSE, Kuraray) and Prompt L-Pop (3M-ESPE), and a conventional adhesive system, Scotchbond Multipurpose (3M-ESPE, control), were used to condition the surface of unground and ground enamel on 12 teeth. A composite button was bonded to the remaining 18 teeth; a cross-section (1 mm thick) was obtained from each and the bonded interface was polished. All specimens were dehydrated in ascending grades of ethanol, gold-sputter-coated, and observed under FESEM (Hitachi S-4000) to evaluate the ultrastructural morphology of the enamel surface and the enamel-dentin interface. The etching patterns and adhesive penetration varied according to the aggressiveness of the SAS, with CSE being the mildest and H3PO4 being the most aggressive. There were no significant differences on the ultrastructural morphology of the enamel surface between unground and ground specimens. It appears that microporosities within enamel prisms provide sufficient enamel-resin hybridization in unground enamel. The enamel dissolution pattern and depth of infiltration depend on the type of SAS used, with no significant differences in unground and ground enamel.

  15. Rocking adhesion assay system to study adhesion and transendothelial migration of cancer cells.

    PubMed

    Bapu, Deepashree; Khadim, Munira; Brooks, Susan A

    2014-01-01

    Adhesion of metastatic cancer cells to the vascular endothelium of the target organs and their subsequent transendothelial migration is one of the critical, yet poorly understood, steps of the metastatic cascade. Conventionally, the mechanisms of this complex process have been studied using static adhesion systems or flow assay systems. Static assay systems are easy to set up and perform but do not mimic the physiological conditions of blood flow. Flow assays closely mimic physiological conditions of flow but are time consuming and require specialist equipment. In this chapter we describe the rocking adhesion system which incorporates the key advantages of both the static and flow assay systems and not only is easy to set up and perform but also mimics conditions of blood flow.

  16. Effects of Er:YAG laser on bond strength of self-etching adhesives to caries-affected dentin.

    PubMed

    Koyuturk, Alp Erdin; Ozmen, Bilal; Cortcu, Murat; Tokay, Ugur; Tosun, Gul; Erhan Sari, Mustafa

    2014-04-01

    The erbium:yttrium-aluminum-garnet (Er:YAG) laser may be effective the bond strength of adhesive systems on dentine surfaces, the chemical composition and aggressiveness of adhesive systems in clinical practice. The purpose of this study was to evaluate the effects of the Er:YAG laser system with the bonding ability of two different self-etching adhesives to caries-affected dentine in primary molars. Ninety mid-coronal flat dentine surfaces obtained from sound and caries-affected human primary dentine were treated with an Er:YAG laser or a bur. The prepared surfaces were restored with an adhesive system (Xeno V; Clearfil S³) and a compomer (Dyract Extra). The restored teeth were sectioned with a low-speed saw and 162 samples were obtained. The bond strength of the adhesive systems was tested using the micro-tensile test method. The data were statistically analyzed. A restored tooth in each group was processed for scanning electron microscopy evaluation. The values of the highest bond strength were obtained from the Clearfil S³-Er:YAG laser-sound dentine group in all groups. (24.57 ± 7.27 MPa) (P > 0.05). The values of the lowest bond strength were obtained from the Xeno V-Er:YAG laser-sound dentine group in all groups (11.01 ± 3.89 MPa). It was determined that the Clearfil S³ increased the bond strength on the surface applied with Er:YAG laser according to the Xeno V.

  17. Shear bond strength and ultrastructural interface analysis of different adhesive systems to Er:YAG laser-prepared dentin.

    PubMed

    Guven, Yeliz; Aktoren, Oya

    2015-02-01

    The aim of this study was to evaluate the shear bond strength (SBS) of a microhybrid composite resin bonded with three different adhesive systems to Er:YAG laser- (EL) or bur-prepared dentin surfaces and to analyze the quality and ultrastructure of the adhesive-dentin interfaces by scanning electron microscopy (SEM). The specimens prepared for SBS test and SEM analysis were randomly assigned to eight groups (G1-G8): G1, EL (Fidelis PlusIII, Fotona) + Clearfil S3 Bond (C3S); G2, EL + AdperSE Plus (SE); G3, EL + laser etch + Adper Single Bond2 (SB2); G4, EL + acid etch + SB2; G5, EL + SB2 (no etching); G6, bur + acid etch + SB2; G7, bur + S3; G8, bur + SE. Laser was used in very short pulse mode at a setting of 200 mJ/20 Hz for dentin preparation and at 80 mJ/10 Hz for dentin etching. Bond strength test: 3.5 × 2.0 mm cylindrical molds were placed onto adhesives and filled with the composites. After 24 h in distilled water, SBS was tested at a crosshead speed of 0.5 mm/min. SEM analysis: The dentin-adhesive interfaces were evaluated for the ultrastructure of hybrid layer. Data of SBS (MPa) were statistically analyzed by ANOVA and Tukey HSD. ER:YAG laser-prepared dentin has demonstrated significantly more SBS (p < 0.01) for SE when compared to bur-prepared dentin. No significancies (p > 0.05) in SBS have been determined between the total-etch adhesive applied groups with regard to etching types. SEM analysis revealed that hybrid layers obtained in Er:YAG laser-irradiated dentin exhibited more irregular and non-homogeneous pattern than the conventionally prepared dentin. In conclusion, SE Bond demonstrated superior results in Er:YAG laser-ablated dentin compared to bur-prepared dentin.

  18. Scaling Reversible Adhesion in Synthetic and Biological Systems

    NASA Astrophysics Data System (ADS)

    Bartlett, Michael; Irschick, Duncan; Crosby, Alfred

    2013-03-01

    High capacity, easy release polymer adhesives, as demonstrated by a gecko's toe, present unique opportunities for synthetic design. However, without a framework that connects biological and synthetic adhesives from basic nanoscopic features to macroscopic systems, synthetic mimics have failed to perform favorably at large length scales. Starting from an energy balance, we develop a scaling approach to understand unstable interfacial fracture over multiple length scales. The simple theory reveals that reversibly adhesive polymers do not rely upon fibrillar features but require contradicting attributes: maximum compliance normal to the substrate and minimum compliance in the loading direction. We use this counterintuitive criterion to create reversible, easy release adhesives at macroscopic sizes (100 cm2) with unprecedented force capacities on the order of 3000 N. Importantly, we achieve this without fibrillar features, supporting our predictions and emphasizing the importance of subsurface anatomy in biological adhesive systems. Our theory describes adhesive force capacity as a function of material properties and geometry and is supported by over 1000 experiments, spanning both synthetic and biological adhesives, with agreement over 14 orders of magnitude in adhesive force.

  19. The Adhesive System and Anisotropic Shear Force of Guizhou Gastromyzontidae

    NASA Astrophysics Data System (ADS)

    Zou, Jun; Wang, Jinrong; Ji, Chen

    2016-11-01

    The Guizhou gastromyzontidae (Beaufortia kweichowensis) can adhere to slippery and fouled surfaces in torrential streams. A unique adhesive system utilized by the fish was observed by microscope and CLSM as an attachment disc sealed by a round belt of micro bubbles. The system is effective in wet or underwater environments and can resist a normal pulling force up to 1000 times the fish’s weight. Moreover, a mechanism for passive anisotropic shear force was observed. The shear forces of the fish under different conditions were measured, showing that passive shear force plays an important role in wet environments. The adhesive system of the fish was compared with other biological adhesion principles, from which we obtained potential values for the system that refer to the unique micro sealing and enhanced adhesion in a wet environment.

  20. The Adhesive System and Anisotropic Shear Force of Guizhou Gastromyzontidae

    PubMed Central

    Zou, Jun; Wang, Jinrong; Ji, Chen

    2016-01-01

    The Guizhou gastromyzontidae (Beaufortia kweichowensis) can adhere to slippery and fouled surfaces in torrential streams. A unique adhesive system utilized by the fish was observed by microscope and CLSM as an attachment disc sealed by a round belt of micro bubbles. The system is effective in wet or underwater environments and can resist a normal pulling force up to 1000 times the fish’s weight. Moreover, a mechanism for passive anisotropic shear force was observed. The shear forces of the fish under different conditions were measured, showing that passive shear force plays an important role in wet environments. The adhesive system of the fish was compared with other biological adhesion principles, from which we obtained potential values for the system that refer to the unique micro sealing and enhanced adhesion in a wet environment. PMID:27849018

  1. Self-etch adhesive systems: a literature review.

    PubMed

    Giannini, Marcelo; Makishi, Patrícia; Ayres, Ana Paula Almeida; Vermelho, Paulo Moreira; Fronza, Bruna Marin; Nikaido, Toru; Tagami, Junji

    2015-01-01

    This paper presents the state of the art of self-etch adhesive systems. Four topics are shown in this review and included: the historic of this category of bonding agents, bonding mechanism, characteristics/properties and the formation of acid-base resistant zone at enamel/dentin-adhesive interfaces. Also, advantages regarding etch-and-rinse systems and classifications of self-etch adhesive systems according to the number of steps and acidity are addressed. Finally, issues like the potential durability and clinical importance are discussed. Self-etch adhesive systems are promising materials because they are easy to use, bond chemically to tooth structure and maintain the dentin hydroxyapatite, which is important for the durability of the bonding.

  2. Effect of surface roughness on amalgam repair using adhesive systems.

    PubMed

    Giannini, Marcelo; Paulillo, Luis Alexandre Maffei Sartini; Ambrosano, Gláucia Maria Bovi

    2002-01-01

    The objective of this in vitro study was to evaluate the effect of three surface treatments and two adhesive systems on the shear bond strength of old and freshly placed amalgam. The results suggested that the intact amalgam showed a significantly higher strength than repaired groups and the strongest repaired specimens were made when the amalgam surfaces were roughened with a diamond bur or microetcher. The adhesive systems showed no significant differences on bond strength with the same superficial texture.

  3. The effect of water on the gecko adhesive system

    NASA Astrophysics Data System (ADS)

    Stark, Alyssa Yeager

    The gecko adhesive system is a dry, reversible adhesive that is virtually surface-insensitive due to the utilization of intermolecular van der Waals forces. Remarkably, although detailed models of the adhesive mechanism exist and hundreds of gecko-inspired synthetics have been fabricated, our ability to fully replicate the system still falls short. One reason for this is our limited understanding of how the system performs in natural environments. To begin to resolve this I focused on one particular environmental parameter, water. Although thin layers of water can disrupt van der Waals forces, I hypothesized that geckos are able to retain or regain adhesive function on wet surfaces. I was motivated to investigate this hypothesis because many species of gecko are native to the tropics, a climate where we expect surface water to be prevalent, thus it is likely geckos have some mechanism to overcome the challenges associated with surface water and wetting. Despite the challenge water should pose to adhesion, I found that when tested on hydrophobic substrates geckos cling equally well in air and water. Conversely, on wet hydrophilic substrates geckos cannot support their body weight. Investigating these results further, I found that the superhydrophobic nature of the adhesive toe pads allows geckos to form an air bubble around their foot, which when pressed into contact with a hydrophobic substrate likely removes water from the adhesive interface. When the toe pads are no longer superhydrophobic however, geckos cannot support their body weight and fall from substrates. In order to regain adhesion geckos only need to take about ten steps on a dry substrate to self-dry their toe pads. Finally, when measuring a dynamic component of adhesion, running, we found that geckos are able to maintain speed on misted hydrophobic and hydrophilic substrates, contrary to what we would predict based on static shear adhesion measurements. In conclusion, my research provides a detailed

  4. Permeability of Dental Adhesives – A SEM Assessment

    PubMed Central

    Malacarne-Zanon, Juliana; de Andrade e Silva, Safira M.; Wang, Linda; de Goes, Mario F.; Martins, Adriano Luis; Narvaes-Romani, Eliene O.; Anido-Anido, Andrea; Carrilho, Marcela R. O.

    2010-01-01

    Objectives: To morphologically evaluate the permeability of different commercial dental adhesives using scanning electron microscopy. Methods: Seven adhesive systems were evaluated: one three-step system (Scotchbond Multi-Purpose - MP); one two-step self-etching primer system (Clearfil SE Bond – SE); three two-step etch-and-rinse systems (Single Bond 2 – SB; Excite – EX; One-Step – OS); and two single-step self-etching adhesives (Adper Prompt – AP; One-Up Bond F – OU). The mixture of primer and bond agents of the Clearfil SE Bond system (SE-PB) was also tested. The adhesives were poured into a brass mold (5.8 mm x 0.8 mm) and light-cured for 80 s at 650 mW/cm2. After a 24 h desiccation process, the specimens were immersed in a 50% ammoniac silver nitrate solution for tracer permeation. Afterwards, they were sectioned in ultra-fine slices, carbon-coated, and analyzed under backscattered electrons in a scanning electron microscopy. Results: MP and SE showed slight and superficial tracer permeation. In EX, SB, and OS, permeation extended beyond the inner superficies of the specimens. SE-PB did not mix well, and most of the tracer was precipitated into the primer agent. In AP and OU, “water-trees” were observed all over the specimens. Conclusions: Different materials showed distinct permeability in aqueous solution. The extent of tracer permeation varied according to the composition of each material and it was more evident in the more hydrophilic and solvated ones. PMID:20922163

  5. Adhesion Molecules: Master Controllers of the Circulatory System.

    PubMed

    Schmidt, Eric P; Kuebler, Wolfgang M; Lee, Warren L; Downey, Gregory P

    2016-03-15

    This manuscript will review our current understanding of cellular adhesion molecules (CAMs) relevant to the circulatory system, their physiological role in control of vascular homeostasis, innate and adaptive immune responses, and their importance in pathophysiological (disease) processes such as acute lung injury, atherosclerosis, and pulmonary hypertension. This is a complex and rapidly changing area of research that is incompletely understood. By design, we will begin with a brief overview of the structure and classification of the major groups of adhesion molecules and their physiological functions including cellular adhesion and signaling. The role of specific CAMs in the process of platelet aggregation and hemostasis and leukocyte adhesion and transendothelial migration will be reviewed as examples of the complex and cooperative interplay between CAMs during physiological and pathophysiological processes. The role of the endothelial glycocalyx and the glycobiology of this complex system related to inflammatory states such as sepsis will be reviewed. We will then focus on the role of adhesion molecules in the pathogenesis of specific disease processes involving the lungs and cardiovascular system. The potential of targeting adhesion molecules in the treatment of immune and inflammatory diseases will be highlighted in the relevant sections throughout the manuscript.

  6. Selective enamel etching: effect on marginal adaptation of self-etch LED-cured bond systems in aged Class I composite restorations.

    PubMed

    Souza-Junior, E J; Prieto, L T; Araújo, C T P; Paulillo, L A M S

    2012-01-01

    The aim of this study was to evaluate the influence of previous enamel etch and light emitting diode (LED) curing on gap formation of self-etch adhesive systems in Class I composite restorations after thermomechanical aging (TMA). Thus, on 192 human molars, a box-shaped Class I cavity was prepared maintaining enamel margins. Self-etch adhesives (Clearfil SE and Clearfil S3) were used to restore the preparation with a microhybrid composite. Before application of the adhesives, half of the teeth were enamel etched for 15 seconds with 37% phosphoric acid; the other half were not etched. For the photoactivation of the adhesives and composite, three light-curing units (LCUs) were used: one polywave (Ultra-Lume LED 5, UL) and two single-peak (FlashLite 1401, FL and Radii-cal, RD) LEDs. After this, epoxy resin replicas of the occlusal surface were made, and the specimens were submitted to TMA. New replicas were made from the aged specimens for marginal adaptation analysis by scanning electron microscopy. Data were submitted to Kruskal-Wallis and Wilcoxon tests (α=0.05). Before TMA, when enamel was etched before the application of S3, no gap formation was observed; however, there were gaps at the interface for the other tested conditions, with a statistical difference (p≤0.05). After TMA, the selective enamel etching previous to the S3 application, regardless of the LCU, promoted higher marginal adaptation compared to the other tested groups (p≤0.05). Prior to TMA, higher marginal integrity was observed, in comparison with specimens after TMA (p≤0.05). With regard to Clearfil SE and Clearfil Tri-S cured with FL, no differences of gap formation were found between before and after aging (5.3 ± 3.8 and 7.4 ± 7.5, respectively), especially when the Clearfil Tri-S was used in the conventional protocol. When cured with RD or UL and not etched, Clearfil Tri-S presented the higher gap formation. In conclusion, additional enamel etching promoted better marginal integrity

  7. Effect of operator variability on microleakage with different adhesive systems

    PubMed Central

    Karaman, Emel; Yazici, A. Ruya; Aksoy, Burak; Karabulut, Erdem; Ozgunaltay, Gul; Dayangac, Berrin

    2013-01-01

    Objective: The objective of this study was to evaluate the effect of operator variability on microleakage with different adhesive systems. Materials and Methods: A total of 180 standardized Class V cavities were prepared on facial and lingual of 90 extracted human premolar teeth and randomly assigned to five groups according to the adhesive systems used (n = 36): Prime and Bond NT (PB), Single Bond (SB), Futura Bond NR, Xeno III (XE) and Adper Prompt-L-Pop (LP). The adhesive groups were then further subdivided into three operator groups according to level of clinical experience (n = 12): An undergraduate student, a research assistant and a faculty member. All cavities were restored with same composite resin. The restored teeth were thermocycled (500 cycles, 5-55°C) then immersed in 0.5% basic fuchsin and measured for leakage under a stereomicroscope. Statistical analyses were performed with the Kruskal-Wallis and Mann-Whitney U tests. Results: Significant inter-operator variation was found in the enamel margins in the XE group with significantly higher microleakage when used by the undergraduate student (P < 0.05). Although no significant differences in microleakage were found between adhesive systems for the research assistant and faculty member (P > 0.05), significant differences were observed between PB and LP, PB and XE, SB and LP and SB and XE in the enamel margins for the undergraduate student (P < 0.05). Conclusion: Microleakage of adhesive systems is more dependent on interactions between the operator and adhesive material than on the choice of adhesive material. PMID:24966730

  8. The effect of temperature and humidity on adhesion of a gecko-inspired adhesive: implications for the natural system.

    PubMed

    Stark, Alyssa Y; Klittich, Mena R; Sitti, Metin; Niewiarowski, Peter H; Dhinojwala, Ali

    2016-08-02

    The adhesive system of geckos has inspired hundreds of synthetic adhesives. While this system has been used relentlessly as a source of inspiration, less work has been done in reverse, where synthetics are used to test questions and hypotheses about the natural system. Here we take such an approach. We tested shear adhesion of a mushroom-tipped synthetic gecko adhesive under conditions that produced perplexing results in the natural adhesive system. Synthetic samples were tested at two temperatures (12 °C and 32 °C) and four different humidity levels (30%, 55%, 70%, and 80% RH). Surprisingly, adhesive performance of the synthetic samples matched that of living geckos, suggesting that uncontrolled parameters in the natural system, such as surface chemistry and material changes, may not be as influential in whole-animal performance as previously thought. There was one difference, however, when comparing natural and synthetic adhesive performance. At 12 °C and 80% RH, adhesion of the synthetic structures was lower than expected based on the natural system's performance. Our approach highlights a unique opportunity for both biologists and material scientists, where new questions and hypotheses can be fueled by joint comparisons of the natural and synthetic systems, ultimately improving knowledge of both.

  9. The effect of temperature and humidity on adhesion of a gecko-inspired adhesive: implications for the natural system

    PubMed Central

    Stark, Alyssa Y.; Klittich, Mena R.; Sitti, Metin; Niewiarowski, Peter H.; Dhinojwala, Ali

    2016-01-01

    The adhesive system of geckos has inspired hundreds of synthetic adhesives. While this system has been used relentlessly as a source of inspiration, less work has been done in reverse, where synthetics are used to test questions and hypotheses about the natural system. Here we take such an approach. We tested shear adhesion of a mushroom-tipped synthetic gecko adhesive under conditions that produced perplexing results in the natural adhesive system. Synthetic samples were tested at two temperatures (12 °C and 32 °C) and four different humidity levels (30%, 55%, 70%, and 80% RH). Surprisingly, adhesive performance of the synthetic samples matched that of living geckos, suggesting that uncontrolled parameters in the natural system, such as surface chemistry and material changes, may not be as influential in whole-animal performance as previously thought. There was one difference, however, when comparing natural and synthetic adhesive performance. At 12 °C and 80% RH, adhesion of the synthetic structures was lower than expected based on the natural system’s performance. Our approach highlights a unique opportunity for both biologists and material scientists, where new questions and hypotheses can be fueled by joint comparisons of the natural and synthetic systems, ultimately improving knowledge of both. PMID:27480603

  10. Evaluation of a metering, mixing, and dispensing system for mixing polysulfide adhesive

    NASA Technical Reports Server (NTRS)

    Evans, Kurt B.

    1989-01-01

    Tests were performed to evaluate whether a metered mixing system can mix PR-1221 polysulfide adhesive as well as or better than batch-mixed adhesive; also, to evaluate the quality of meter-mixed PR-1860 and PS-875 polysulfide adhesives. These adhesives are candidate replacements for PR-1221 which will not be manufactured in the future. The following material properties were evaluated: peel strength, specific gravity and adhesive components of mixed adhesives, Shore A hardness, tensile adhesion strength, and flow rate. Finally, a visual test called the butterfly test was performed to observe for bubbles and unmixed adhesive. The results of these tests are reported and discussed.

  11. Three-Dimensional Adhesion Map Based on Surface and Interfacial Cutting Analysis System for Predicting Adhesion Properties of Composite Electrodes.

    PubMed

    Kim, Kyuman; Byun, Seoungwoo; Cho, Inseong; Ryou, Myung-Hyun; Lee, Yong Min

    2016-09-14

    Using a surface and interfacial cutting analysis system (SAICAS) that can measure the adhesion strength of a composite electrode at a specific depth from the surface, we can subdivide the adhesion strength of a composite electrode into two classes: (1) the adhesion strength between the Al current collector and the cathode composite electrode (FAl-Ca) and (2) the adhesion strength measured at the mid-depth of the cathode composite electrode (Fmid). Both adhesion strengths, FAl-Ca and Fmid, increase with increasing electrode density and loading level. From the SAICAS measurement, we obtain a mathematical equation that governs the adhesion strength of the composite electrodes. This equation revealed a maximum accuracy of 97.2% and 96.1% for FAl-Ca and Fmid, respectively, for four randomly chosen composite electrodes varying in electrode density and loading level.

  12. Current status of dentin adhesive systems.

    PubMed

    Leinfelder, K F

    1998-12-01

    Undoubtedly, dentin bonding agents have undergone a major evolution during the last several years. The shear bond strength of composite resin to the surface of dentin is actually greater than the inherent strength of the dentin itself under well-controlled conditions. No longer must the clinician depend only upon the bonding to enamel as the sole bonding mechanism. Bonding to both types of dental structure permits even better reinforcement of the tooth itself. Perhaps even more important than the high level of bonding exhibited by the current dentin adhesives is their ability to seal the dentin. So effective is this sealing capability that it is now possible to protect the pulpal tissue from microbial invasion through the dentinal tubules. Further, by enclosing the odontoblastic processes and preventing fluid flow, the potential for postoperative sensitivity is diminished considerably. In fact, so evolutionary is the concept of bonding that the procedures associated with the restoration of teeth has changed dramatically. Undoubtedly, far greater improvements can be anticipated in the future.

  13. Self-etching dental adhesive containing a natural essential oil: anti-biofouling performance and mechanical properties.

    PubMed

    Peralta, S L; Carvalho, P H A; van de Sande, F H; Pereira, C M P; Piva, E; Lund, R G

    2013-01-01

    This study assessed the anti-biofouling performance of an experimental adhesive system containing a naturally occurring essential vegetable oil and examined the following physical and mechanical properties: water sorption (WS) and solubility (SL), microtensile bond strength to dentin (μTBS), and degree of conversion. The following six groups were tested: a self-etching experimental adhesive containing refined essential oil from the seeds of the Butia capitata tree (EAO); an oil-free version of the experimental adhesive (EANO); one group without adhesive as the control (C); and the three following commercial self-etching adhesives: Clearfil Protect Bond (CPB), Clearfil SE Bond, and Adper SE Plus. The antibacterial effect was estimated by microbiological culture on selective/non-selective media, and the results expressed as colony-forming units per unit weight of dry biofilm (CFU mg(-1)). The data were submitted to ANOVA and Tukey's post hoc test (α = 0.05). After 24 h, pH changes were similar in the storage medium of all tested adhesive systems. EAO showed similar levels of antimicrobial activity in a model biofilm microcosm as the commercial self-etching adhesive CPB. Both were effective against total microorganisms, aciduric bacteria, lactobacilli, and Streptococcus mutans. WS and SL were not affected by the presence of the essential oil; the values of EAO were similar to or less than those of commercial equivalents. The incorporation of an essential oil into an experimental adhesive did not influence its monomer conversion result. Immediate μTBS values of EAO and EANO were similar and were greater than those of commercial equivalents. After storage for 6 months, the μTBS of the EAO decreased significantly and became similar to the values of commercial equivalents, while the strength of the EANO was not affected.

  14. Tensile bond strength and SEM evaluation of caries-affected dentin using dentin adhesives.

    PubMed

    Nakajima, M; Sano, H; Burrow, M F; Tagami, J; Yoshiyama, M; Ebisu, S; Ciucchi, B; Russell, C M; Pashley, D H

    1995-10-01

    Tensile bond strength measurements are commonly used for the evaluation of dentin adhesive systems. Most tests are performed using extracted non-carious human or bovine dentin. However, the adhesion of resins to caries-affected dentin is still unclear. The objectives of this study were to test the hypothesis that bonding to caries-affected dentin is inferior to bonding to normal dentin, and that the quality of the hybrid layer plays a major role in creating good adhesion. We used a micro-tensile bond strength test to compare test bond strengths made to either caries-affected dentin or normal dentin, using three commercial adhesive systems (All Bond 2, Scotchbond Multi-Purpose, and Clearfil Liner Bond II). For scanning electron microscopy, the polished interfaces between the adhesive bond and dentin were subjected to brief exposure to 10% phosphoric acid solution and 5% sodium hypochlorite, so that the quality of the hybrid layers could be observed. Bonding to normal dentin with either All Bond 2 (26.9 +/- 8.8 MPa) or Clearfil Liner Bond II (29.5 +/- 10.9 MPa) showed tensile bond strengths higher than those to caries-affected dentin (13.0 +/- 3.6 MPa and 14.0 +/- 4.3 MPa, respectively). The tensile bond strengths obtained with Scotchbond Multi-Purpose were similar in normal and caries-affected dentin (20.3 +/- 5.5 MPa and 18.5 +/- 4.0 MPa, respectively). The hybrid layers created by All Bond 2 in normal dentin and by Clearfil Liner Bond II in normal or caries-affected dentin showed phosphoric acid and sodium hypochlorite resistance, whereas the hybrid layers created by All Bond 2 in caries-affected dentin and those created by Scotchbond Multi-Purpose to normal and caries-affected dentin showed partial susceptibility to the acid and sodium hypochlorite treatment. The results indicate that the strength of adhesion to dentin depends upon both the adhesive system used and the type of dentin. Moreover, the quality of the hybrid layer may not always contribute

  15. Adhesive sealing of the pulp chamber.

    PubMed

    Belli, S; Zhang, Y; Pereira, P N; Pashley, D H

    2001-08-01

    The purpose of this in vitro study was to evaluate quantitatively the ability of four different filling materials to seal the orifices of root canals as a secondary seal after root canal therapy. Forty extracted human molar teeth were used. The top of pulp chambers and distal halves of the roots were removed using an Isomet saw. The canal orifices were temporarily sealed with a gutta-percha master cone without sealer. The pulp chambers were then treated with a self-etching primer adhesive system (Clearfil SE Bond), a wet bonding system (One-Step), a 4-methacryloyloxyethyl trimellitate anhydride adhesive system (C&B Metabond), or a reinforced zinc oxide-eugenol (IRM). The specimens were randomly divided into four groups of 10 each. A fluid filtration method was used for quantitative evaluation of leakage. Measurements of fluid movement were made at 2-min intervals for 8 min. The quality of the seal of each specimen was measured by fluid filtration immediately and after 1 day, 1 wk, and 1 month. Even after 1 month the resins showed an excellent seal. Zinc oxide-eugenol had significantly more leakage when compared with the resin systems (p < 0.05). Adhesive resins should be considered as a secondary seal to prevent intraorifice microleakage.

  16. Cytotoxicity of Dental Adhesives In Vitro

    PubMed Central

    Koulaouzidou, Elisabeth A.; Helvatjoglu-Antoniades, Maria; Palaghias, George; Karanika-Kouma, Artemis; Antoniades, Dimitrios

    2009-01-01

    Objectives The purpose of this study was to evaluate the cytotoxic effect of six dental adhesives (Admira Bond, Clearfil Liner Bond 2V, ED Primer II, Fuji Bond LC, Gluma Comfort Bond, and NanoBond) applied to cell cultures. Methods The experiments were performed on two cell lines, rat pulp cells (RPC-C2A) and human lung fibroblasts (MRC5). Samples of the adhesives were light-cured and placed in culture medium for 24 hours. The extraction media was applied on the RPC-C2A and the MRC5 cells. Complete medium was used as a control. Cytotoxicity was evaluated with a modified sulforhodamine B (SRB) assay after 24 hours of exposure. Results The cell survival of RPC-C2A cells exposed to Fuji Bond LC, NanoBond, Clearfil Liner Bond 2V, ED Primer II, Admira Bond and Gluma Comfort Bond was 73%, 67%, 50%, 20%, 18% and 5% respectively, relative to the cell survival with the control medium. In the MRC5 cell line, the relative survival was 98%, 80%, 72%, 41%, 19% and 7% after exposure to NanoBond, Fuji Bond LC, Clearfil Liner Bond 2V, ED Primer II, Admira Bond and Gluma Comfort Bond, respectively. Conclusions Different types of dental adhesives showed different cytotoxic effects on cells in vitro. The self-etch adhesives were superior in terms of cytotoxicity. The different cytotoxic effects of dental adhesives should be considered when selecting an appropriate adhesive for operative restorations. PMID:19262725

  17. Effect of chlorhexidine on bonding durability of two self-etching adhesives with and without antibacterial agent to dentin

    PubMed Central

    Shafiei, Fereshteh; Alikhani, Armaghan; Alavi, Ali Asghar

    2013-01-01

    Background: Considering the possibility of remaining bacteria in the cavity or invading via microgaps, the use of antibacterial agents in adhesive restoration may be beneficial. This study evaluated the effect of chlorhexidine on immediate and long-term shear bond strength of adhesives with and without antibacterial agent to dentin. Materials and Methods: In this in vitro study, the occlusal surfaces of 80 intact human premolars were removed to expose the flat midcoronal dentin. The teeth were assigned to four groups. Two adhesive systems, Clearfil SE Bond (SE) and Clearfil Protect Bond (PB) were used according to manufacturer's instructions as the control groups. In the experimental groups, 2% chlorhexidine was applied prior to acidic primer of two adhesives. Then, resin composite was applied. Half of the specimens in each group were submitted to shear bond test after 24 h without thermocycling, and the other half were submitted to water storage for 6 months and thermocycling before testing. The data was analyzed using three-way analysis of variance (ANOVA) and t-test (α = 0.05). Results: Chlorhexidine application significantly decreased the initial bond strength (BS) of the two self-etch adhesives to dentin (P < 0.05). There was a significant reduction in BS of SE and PB after aging compared to initial bonding (P < 0.05). However, there was no significant difference between BS of the control and chlorhexidine-treated groups for the tested adhesives after aging. PB showed a lower BS than SE in two time periods (P < 0.05). Conclusion: Chlorhexidine was capable of diminishing the loss of BS of these adhesives over time. However, considering the negative effect of chlorhexidine on the initial BS, the benefits of chlorhexidine associated with these adhesives cannot possibly be used. PMID:24379870

  18. Do adhesive systems leave resin coats on the surfaces of the metal matrix bands? An adhesive remnant characterization.

    PubMed

    Arhun, Neslihan; Cehreli, Sevi Burcak

    2013-01-01

    Reestablishing proximal contacts with composite resins may prove challenging since the applied adhesives may lead to resin coating that produces additional thickness. The aim of this study was to investigate the surface of metal matrix bands after application of adhesive systems and blowing or wiping off the adhesive before polymerization. Seventeen groups of matrix bands were prepared. The remnant particles were characterized by energy dispersive spectrum and scanning electron microscopy. Total etch and two-step self-etch adhesives did not leave any resin residues by wiping and blowing off. All-in-one adhesive revealed resin residues despite wiping off. Prime and Bond NT did not leave any remnant with compomer. Clinicians must be made aware of the consequences of possible adhesive remnants on matrix bands that may lead to a defective definitive restoration. The adhesive resin used for Class II restorations may leave resin coats on metal matrix bands after polymerization, resulting in additional thickness on the metal matrix bands and poor quality of the proximal surface of the definitive restoration when the adhesive system is incorporated in the restoration.

  19. Microleakage in Resin Composite Restoration following Antimicrobial Pre-treatments with 2% Chlorhexidine and Clearfil Protect Bond

    PubMed Central

    Hameed, Hisham; Babu, Biju P; Sagir, V M Mohammed; Chiriyath, Kennet J; Mathias, Jones; Shaji, A P

    2015-01-01

    Aim: To evaluate microleakage in resin composite restorations after antimicrobial pre – treatments Materials and Methods: Forty freshly extracted non carious human premolars were procured. In all forty premolar specimens, class V preparation of standard dimension were prepared and were randomly divided into three experimental and one control group. In all control and experimental groups the class V preparations were restored with FILTEK Z350 composite restorative material. The experimental groups included different self etching primers and 2% Chlorhexidine gluconate. The control group included Xeno III and no antimicrobial pre-treatment was done for the control group. Thereafter these specimens were thermocycled, dried and sealed with nail varnish, leaving 1mm around the restoration and immersed in 0.5% basic fuchsin for 24 hours and then the specimens were subjected for microleakage evaluation. The results were statistically analyzed by Kruskal Wallis Test and Mann Whitney ‘U’ test. Results: Results indicate that group II (2% chlorhexidine gluconate group) had the minimum mean value (15.05) and group III(Clearfil protect Bond group) and IV(control group) had the maximum mean microleakage at the enamel margin (23.00). At the gingival margin the lowest mean microleakage values were obtained with group I (Clearfil SE bond group) and group II (2% chlorhexidine gluconate) (20.25) and highest with group III and group IV (20.85). The difference was not statistically significant both at the enamel margin and the dentin margin (p>0.05). Interpretation & Conclusions: Within the limitations of this in-vitro study, we conclude that: None of the materials tested in this study completely eliminated microleakage at the enamel and at the gingival margin.All of the tested materials provided better sealing at the enamel margin than at the gingival margin. PMID:26229374

  20. Shuttle active thermal control system development testing. Volume 7: Improved radiator coating adhesive tests

    NASA Technical Reports Server (NTRS)

    Reed, M. W.

    1973-01-01

    Silver/Teflon thermal control coatings have been tested on a modular radiator system projected for use on the space shuttle. Seven candidate adhesives have been evaluated in a thermal vacuum test on radiator panels similar to the anticipated flight hardware configuration. Several classes of adhesives based on polyester, silicone, and urethane resin systems were tested. These included contact adhesives, heat cured adhesives, heat and pressure cured adhesives, pressure sensitive adhesives, and two part paint on or spray on adhesives. The coatings attached with four of the adhesives, two silicones and two urethanes, had no changes develop during the thermal vacuum test. The two silicone adhesives, both of which were applied to the silver/Teflon as transfer laminates to form a tape, offered the most promise based on application process and thermal performance. Each of the successful silicone adhesives required a heat and pressure cure to adhere during the cryogenic temperature excursion of the thermal-vacuum test.

  1. Clinical effectiveness of a one-step self-etch adhesive in non-carious cervical lesions at 2 years.

    PubMed

    Ermis, R Banu; Van Landuyt, Kirsten L; Cardoso, Marcio Vivan; De Munck, Jan; Van Meerbeek, Bart; Peumans, Marleen

    2012-06-01

    A 2-year randomized, controlled prospective study evaluated the clinical effectiveness of a one-step self-etch adhesive and a "gold-standard" three-step etch-and-rinse adhesive in non-carious Class-V lesions. The null hypothesis tested was that the one-step self-etch adhesive does perform clinically equally well as the three-step etch-and-rinse adhesive. A total of 161 lesions in 26 patients were restored with Clearfil AP-X (Kuraray). The restorations were bonded either with the "all-in-one" adhesive Clearfil S3 Bond (Kuraray) or with the three-step etch-and-rinse adhesive Optibond FL (Kerr). The restorations were evaluated at baseline and after 6 months, 1 and 2 years, regarding their retention, marginal adapation, marginal discoloration, caries occurrence, preservation of tooth vitality and post-operative sensivity. Retention loss, severe marginal defects and/or discoloration that needed intervention (repair or replacement) and the occurrence of caries were considered as clinical failures. The recall rate at 2 years was 93.8%. Only one Clearfil S3 Bond restoration was lost at the 2-year recall. All other restorations were clinically acceptable. The number of restorations with defect-free margins decreased severely during the 2-year study period (to 6.7% and 25.3% for Clearfil S3 Bond and Optibond FL, respectively). The Clearfil S3 Bond restorations presented significantly more small marginal defects at the enamel side than the Optibond FL restorations (Clearfil S3 Bond: 93.3%; Optibond FL: 73.3%; p = 0.000). Superficial marginal discoloration increased in both groups (to 53.3% and 36% for Clearfil S3 Bond and Optibond FL, respectively) and was also more pronounced in the Clearfil S3 Bond group (p = 0.007). After 2 years, the simplified one-step self-etch adhesive Clearfil S3 Bond and the three-step etch-and-rinse adhesive Optibond FL were clinically equally successful, even though both adhesives were characterized by progressive degradation in marginal

  2. Microtensile bond strength of one- and two-step self-etching adhesives on sclerotic dentin: the effects of thermocycling.

    PubMed

    Xie, Chao; Han, Ying; Zhao, Xin-Yi; Wang, Zhong-Yi; He, Hui-Ming

    2010-01-01

    This study evaluated the effects of thermocycling on the microtensile bond strength (microTBS) of one- and two-step self-etch adhesives (SEAs) to sclerotic dentin. Two adhesives, Clearfil S3 Bond (S3), a one-step self-etch adhesive (1-SEA), and Clearfil SE Bond (SE), a two-step self-etch adhesive (2-SEA), were applied on cervical lesions in human premolars with sclerotic or normal dentin. After adhesive application, the lesions were restored and built up using a resin composite (Clearfil AP-X). After 24 hours in water storage, the restored teeth were sectioned into 0.7 x 0.7 mm composite-dentin beams. The beams were then aged with 0, 5,000 or 10,000 thermocycles. The use of two adhesives, two substrate types and three thermocycling regimens yielded 12 experimental groups of 14-19 beams each. The beams were subsequently subjected to microTBS testing at a crosshead speed of 1 mm/minute and statistical analyses were computed with three-way ANOVA and Tukey's post hoc test at p < 0.05. Three-way ANOVA showed statistically significant effects on bonding effectiveness by lesion type, adhesive system, thermocycling or combinations of the adhesive system and thermocycling (p < 0.05). With sclerotic dentin, although S3 and SE provided comparable microTBS after 24 hours of water storage, S3 showed significantly lower microTBS than SE after thermocycling (p < 0.05). Regardless of lesion type, the microTBS for S3 decreased significantly after 5,000 or 10,000 thermocycles, while the microTBS for SE showed a significant decrease only after 10,000 thermocycles. Regardless of the extent of thermocycling, the microTBS values for either SE or S3 bonded to sclerotic dentin were significantly lower than to normal dentin (p < 0.05). The results suggested that thermocycling had a significant negative effect on the bond strength of the two SEAs tested. In contrast to 2-SEA, 1-SEA might not be a good choice for sclerotic dentin when seeking durability of the resin-dentin bond.

  3. Discrete Particle Dynamics Simulations of Adhesive Systems with Thermostatting

    NASA Astrophysics Data System (ADS)

    Pierce, Flint; Lechman, Jeremy; Hewson, John

    2012-02-01

    Aggregation/coagulation/flocculation processes are ubiquitous in modern industry from fields as diverse as waste water treatment, the food industry, algae biofuel production, and materials processing where control of the size and morphology of aggregates is paramount to the application of interest. Population balance models have historically been used with success in predicting aggregation kinetics and size distributions for these processes. However, even the most robust population balance schemes can lack an exact description of the underlying physical processes governing attractive or adhesive particulate matter suspended in a background medium, including finite aggregate strength and yield stress, restructuring length and time scales, and response to hydrodynamic forces. In order to elucidate these phenomena, We develop and use a JKR type model for simulating adhesive particulate matter in a background medium varying from dilute gas to liquid. We evaluate the time and length scales for restructuring/fragmentation that result from this model as a function of aggregate size and fractal dimension. We additionally introduce a method for pairwise thermostatting of the adhesive potential and discuss the applicability of this model to various adhesive systems.

  4. Effect of sodium ascorbate on the bond strength of all-in-one adhesive systems to NaOCl-treated dentin

    PubMed Central

    Ebrahimi-Chaharom, Mohammad-Esmaeel; Kimyai, Soodabeh; Mohammadi, Narmin; Oskoee, Parnian-Alizadeh; Daneshpuy, Mehdi

    2015-01-01

    Background Ascorbic acid and its salts are low-toxicity products, which are routinely used in food industries as antioxidants. The aim of the present study was to evaluate the effect of 10% sodium ascorbate on the bond strength of two all-in-one adhesive systems to NaOCl-treated dentin. Material and Methods After exposing the dentin on the facial surface of 90 sound human premolars and mounting in an acrylic resin mold, the exposed dentin surfaces were polished with 600-grit SiC paper under running water. Then the samples were randomly divided into 6 groups of 15. Groups 1 and 4 were the controls, in which no surface preparation was carried out. In groups 2 and 5 the dentin surfaces were treated with 5.25% NaOCl alone for 10 minutes and in groups 3 and 6 with 5.25% NaOCl for 10 minutes followed by 10% sodium ascorbate for 10 minutes. Then composite resin cylinders, measuring 2 mm in diameter and 2 mm in height, were bonded on the dentin surfaces in groups 1, 2 and 3 with Clearfil S3 Bond and in groups 4, 5 and 6 with Adper Easy One adhesive systems according to manufacturers’ instructions. The samples were stored in distilled water for 24 hours at 37°C and then thermocycled. Finally, the samples underwent shear bond strength test in a universal testing machine at a strain rate of 1 mm/min. Data were analyzed with two-way ANOVA and post hoc Tukey tests at α=0.05. Results The differences between groups 1 and 2 (P=0.01), 1 and 5 (P=0.003). 1 and 6 (P=0.03) and 4 and 5 (P=0.03) were statistically significant. Two-by-two comparisons did not reveal any significant difference between other groups (P>0.05). Conclusions Use of 10% sodium ascorbate for 10 minutes restored the decreased bond strength of the adhesive systems to that of the control groups. Key words:Sodium ascorbate, adhesive systems, all-in-one, bond strength, sodium hypochlorite. PMID:26644835

  5. Evaluation of Shear Bond Strength of Total- and Self-etching Adhesive Systems after Application of Chlorhexidine to Dentin Contaminated with a Hemostatic Agent

    PubMed Central

    Sharafeddin, Farahnaz; Farhadpour, Hajar

    2015-01-01

    Statement of the Problem Hemostatic agents may influence the bond strength of different bonding agents. Also, chlorhexidine has shown positive effects on bond strength values and their combination effect has not been reported yet. Purpose The aim of this study was to evaluate the effect of contamination with a hemostatic agent on shear bond strength (SBS) of total- and self-etching adhesive systems and the effect of chlorhexidine application after removal of the hemostatic agent. Materials and Method In this experimental study, the occlusal enamel of each sixty caries-free mandibular molars was removed and their midcoronal dentin was exposed. The specimens were then mounted in auto-polymerizing resin 1mm apical to CEJ. Then, the specimens were divided into 6 groups (n=10) based on contamination with a hemostatic agent (H), application of chlorhexidine (CHX) and the adhesive system used; and then were classified as Group 1: Adper Single Bond (ASB); Group 2: H+ASB; Group 3: H+0.2% CHX+ASB; Group 4: Clearfil SE Bond (CSB); Group 5: H+CSB; Group 6: H+0.2% CHX+CSB. Then, composite resin rods (4×2 mm) were built up on the dentin surfaces and after thermocycling, the SBS (MPa) was evaluated. Statistical analysis was performed using two-way ANOVA and post hoc Tukey tests (p< 0.05). Results There were statistically significant differences between bond strength values of group 1 (ASB) and group 2 (H+ASB) (p< 0.001) and group 1 (ASB) and group 3 (H+CHX+ASB) (p< 0.001). Similarly, significant differences were seen between group 4 (CSB) and group 5 (H+CSB) (p< 0.001) and between group 4 (CSB) and group 6 (H+CHX+CSB) (p< 0.001). Conclusion Contamination with hemostatic agent reduced the SBS of both total- and self-etching adhesive systems. In addition, application of chlorhexidine after the removal of hemostatic agent had a negative effect on SBS of total- and self-etching adhesive systems. PMID:26331146

  6. Comparison of enamel and dentin microshear bond strengths of a two-step self-etching priming system with five all-in-one systems.

    PubMed

    Burrow, Michael F; Kitasako, Yuichi; Thomas, C David; Tagami, Junji

    2008-01-01

    Data on the adhesive strength of new all-in-one adhesives are still relatively limited. This study compared the microshear bond strengths of five recent all-in-one self-etching priming systems (G-Bond, One-Up Bond-F Plus, Clearfil S3 Bond, Adper Prompt L-Pop and Go!) with a widely used two-step self-etching priming system (Clearfil SE Bond). Human molars were sectioned and finished with 600-grit SiC paper. Both enamel and dentin were bonded using adhesives with a 0.7 mm bonding diameter. Bond strengths were tested using a microshear bond test method at a crosshead speed of 1 mm/minute. The mean bond strengths and standard deviations were calculated and analyzed using ANOVA and the Tukey's HSD test. Results showed the two-step self-etching system had significantly higher bond strengths to dentin. However, for enamel bond strength, Clearfil SE Bond showed no statistical difference to G-Bond and Go!; however, all of the other materials were statistically lower. It is necessary to examine these new materials clinically to determine their efficacy.

  7. Influence of cement type and thickness on polyfiber post adhesion

    PubMed Central

    Uzunoğlu, Emel; Türker, Sevinç Aktemur; Yilmaz, Zeliha

    2014-01-01

    Introduction: To evaluate the effect of two different post space diameters and related resin cement film thicknesses on the bond strength of a polyfiber post. Materials and Methods: A total of 48 premolars were randomly divided into two according to the post space diameter: 1.1 mm and 1.5 mm. Then each group was divided into three sub-groups according to luting cement used: RelyX U100, Panavia F2.0/ED primer, Clearfil SA cement. Spirapost was then luted into the canal using luting cements. Two slices were obtained from each root specimen. Push-out tests were performed. Data was analyzed with Kruskal-Wallis and Connover post-hoc and Mann-Whitney U-test (P < 0.05). Results: Push-out bond strength was found to vary significantly according to type of adhesive system and post space diameter size (P < 0.05). The self-adhesive resin cement RelyX U100 had significantly higher bond strengths compared with the other adhesive system (P < 0.05). The self-etch adhesive system (Panavia F2.0) showed significantly lower bond strengths compared with the other systems (P < 0.05). There was a significant interaction between the luting systems and post space diameter (P < 0.05). Conclusion: The increases in post space diameter significantly reduced the bond strength of Spirapost to root dentine for both groups. PMID:24944450

  8. Surface-Enhanced Raman Scattering from Model Acrylic Adhesive Systems

    DTIC Science & Technology

    1989-12-01

    temperature by a redox mechanism in the presence of certain metals. The metal ions in the salts are undoubtedly oxidized while the hydroperoxide is... hydroperoxide were similar to SERS spectra of saccharin and to normal Raman spectra of the sodium salt of saccharin. When saccharin was replaced by...spectra of the sodium salt of saccharin. When saccharin was replaced in the curing system by benzoic acid, SERS spectra of the adhesive were similar to

  9. Strategies for precision adhesive bonding of micro-optical systems

    NASA Astrophysics Data System (ADS)

    Müller, Tobias; Kotnur Venu, Vyshak; Haag, Sebastian; Zontar, Daniel; Sauer, Sebastian; Wenzel, Christian; Brecher, Christian

    2015-02-01

    Today's piezo-based micromanipulator technology allows for highly precise manipulation of optical components. A crucial question for the quality of optical assemblies is the misalignment after curing. The challenge of statistical deviations in the curing process requires a sophisticated knowledge on the relevant process parameters. An approach to meet these requirements is the empirical analysis such as characterization of shrinkage. Gaining sophisticated knowledge about the statistical process of adhesive bonding advances the quality of related production steps like beam-shaping optics, mounting of turning mirrors for fiber coupling or building resonators evaluating power, mode characteristics and beam shape. Maximizing the precision of these single assembly steps fosters the scope of improving the overall efficiency of the entire laser system. At Fraunhofer IPT research activities on the identification of relevant parameters for improved adhesive bonding precision have been undertaken and are ongoing. The influence of the volumetric repeatability of different automatic and manual dispensing methods play an important role. Also, the evaluation of UV-light sources and the relating illumination properties have a significant influence on the bonding result. Furthermore, common UV-curing adhesives are being examined on their performance and reliability for both highest precision prototyping, as well as their application as robust bonding medium in automated optics assembly cells. This paper sums up the parameters of most influence. Overall goal of these activities is the development of a prediction model for optimized shrinkage compensation and thus improved assembly quality.

  10. Endoglin regulates mural cell adhesion in the circulatory system.

    PubMed

    Rossi, Elisa; Smadja, David M; Boscolo, Elisa; Langa, Carmen; Arevalo, Miguel A; Pericacho, Miguel; Gamella-Pozuelo, Luis; Kauskot, Alexandre; Botella, Luisa M; Gaussem, Pascale; Bischoff, Joyce; Lopez-Novoa, José M; Bernabeu, Carmelo

    2016-04-01

    The circulatory system is walled off by different cell types, including vascular mural cells and podocytes. The interaction and interplay between endothelial cells (ECs) and mural cells, such as vascular smooth muscle cells or pericytes, play a pivotal role in vascular biology. Endoglin is an RGD-containing counter-receptor for β1 integrins and is highly expressed by ECs during angiogenesis. We find that the adhesion between vascular ECs and mural cells is enhanced by integrin activators and inhibited upon suppression of membrane endoglin or β1-integrin, as well as by addition of soluble endoglin (SolEng), anti-integrin α5β1 antibody or an RGD peptide. Analysis of different endoglin mutants, allowed the mapping of the endoglin RGD motif as involved in the adhesion process. In Eng (+/-) mice, a model for hereditary hemorrhagic telangectasia type 1, endoglin haploinsufficiency induces a pericyte-dependent increase in vascular permeability. Also, transgenic mice overexpressing SolEng, an animal model for preeclampsia, show podocyturia, suggesting that SolEng is responsible for podocytes detachment from glomerular capillaries. These results suggest a critical role for endoglin in integrin-mediated adhesion of mural cells and provide a better understanding on the mechanisms of vessel maturation in normal physiology as well as in pathologies such as preeclampsia or hereditary hemorrhagic telangiectasia.

  11. Adhesion systems in normal breast and in invasive breast carcinoma.

    PubMed Central

    Glukhova, M.; Koteliansky, V.; Sastre, X.; Thiery, J. P.

    1995-01-01

    To analyze the role of various elements of the adhesion system in the organization of the normal mammary gland and in breast carcinoma, we have studied simultaneously the expression of integrins, E- and P-cadherins, and cytoplasmic constituents of adherens junctions. In the normal gland, E-cadherin and alpha-catenin are present in luminal epithelial and myoepithelial cells, whereas integrins are more abundant in acinar epithelial and in myoepithelial cells. We demonstrate here that, in addition, myoepithelial cells express much more vinculin and alpha-actinin than luminal epithelial cells, whereas talin and focal adhesion kinase (pp125FAK) are restricted to the basal cell layer. In invasive carcinoma, E-cadherin is usually present although often in reduced amount; different integrin subunits are expressed either by a fraction or by all of the cells or are absent. However, the cytoplasmic components of adherens junctions, such as alpha-catenin, vinculin, alpha-actinin, talin, and pp125FAK, are expressed at low levels or cannot be detected in the carcinoma cells. Our data suggest that 1), in the normal mammary gland, the myoepithelial cells, being particularly rich in integrins and cytoplasmic components of the adherens junctions, play an important role in the maintenance of tissue integrity; 2), in invasive carcinoma, cell aggregates may be maintained due to varying levels of expression of E-cadherin and/or integrins; and 3), interaction of the transmembrane adhesion molecules with the cytoskeleton in carcinoma may be impaired as revealed by reduced levels of expression of alpha-catenin, vinculin, alpha-actinin, talin, and pp125FAK. Importantly, carcinoma cells, when exposed to stroma during invasion, do not acquire the adhesion apparatus characteristic of normal cells in contact with the extracellular matrix. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7887451

  12. Surface pH and bond strength of a self-etching primer/adhesive system to intracoronal dentin after application of hydrogen peroxide bleach with sodium perborate.

    PubMed

    Elkhatib, Hanadi; Nakajima, Masatoshi; Hiraishi, Noriko; Kitasako, Yuichi; Tagami, Junji; Nomura, Satoshi

    2003-01-01

    This study compared the dentin bond strength of a self-etching primer/adhesive system with dentin surface pH with or without bleaching and observed the morphological changes in bleached dentin treated with a self-etching primer. Dentin disks were prepared from the coronal-labial region of 32 human anterior teeth. The pulpal surfaces of the dentin disks were polished with 600-grit SiC paper under running water. The dentin surfaces on all specimens were bleached with a mixture of 30% hydrogen peroxide and sodium perborate in 100% humidity at 37 degrees C for one week. The bleaching agent was then rinsed off with water for 5, 15 or 30 seconds. All specimens were stored in water at 37 degrees C. Half of the five-second rinsing specimens were stored in water for an additional week. Dentin surface pH with or without bleaching was examined using a pH-imaging microscope (SCHEM-100). A self-etching primer/adhesive system (Clearfil SE Bond) was applied to bleached or unbleached dentin according to the manufacturer's instructions. After 24-hour water storage, the bonded specimens were prepared for microtensile testing. Microtensile bond strength (microTBS) to dentin was measured using a universal-testing machine (EZ test, Shimadzu, Japan) at a crosshead speed of 1.0 mm/minute. Data were analyzed by one-way ANOVA and Scheffe's test (alpha=0.05). The pH values of the dentin surfaces of the 5 and 15 second rinsing groups were significantly higher than the control group (p<0.05), while the 30-second rinsing and one-week water storage groups had similar surface pH values to the control group (p<0.05). The microTBS of 5, 15 and 30 second rinsing specimens after bleaching were significantly lower than the control specimens (p<0.05). However, after one-week of water storage, the microTBS returned to the control group. The application of a bleaching agent increased the pH value of the dentin surface and decreased the bond strength of the self-etching primer/adhesive system. One

  13. Effect of etch-and-rinse and self-etching adhesive systems on hardness uniformity of resin cements after glass fiber post cementation

    PubMed Central

    Grande da Cruz, Fernanda Zander; Grande, Christiana Zander; Roderjan, Douglas Augusto; Galvão Arrais, César Augusto; Bührer Samra, Adriana Postiglione; Calixto, Abraham Lincoln

    2012-01-01

    Objective To evaluate the effects of etch-and-rinse and self-etching adhesive systems on Vickers hardness (VHN) uniformity of dual-cured resin cements after fiber post cementation. Methods: Fifty glass fiber posts were cemented into bovine roots using the following cementing systems: Prime&Bond 2.1 Dual Cure and Enforce with light-activation (PBDC-LCEN); Prime&Bond 2.1 and Enforce with light-activation (PB-CLEN); Prime&Bond 2.1 Dual Cure and Enforce without light exposure (PBDC-SCEN); ED Primer and Panavia 21 (ED-SCPN); and Clearfil SE Bond and Panavia 21 (CF-SCPN). The roots were stored in distilled water for 72 h and transversely sectioned into thirds (coronal, medium, and apical). The VHN values of the resin cement layers were measured close to the post and to the dentin wall on the transversely sectioned flat surfaces. The results were analyzed by three-way repeated measures analysis of variance (ANOVA) and Tukey’s post-hoc test (pre-set alpha of 5%). Results: Most resin cements presented higher VHN values near the post than near the dentin wall. The ED-SCPN group showed the highest VHN values regardless of the root third, while the self-cured group PBDC-SCEN exhibited the lowest values. The resin cements from the light-activated groups PBDC-LCEN and PB-LCEN showed lower VHN values at the apical third than at the coronal third. The VHN values were not influenced by the root third in self-cured groups PBDC-SCEN, ED-SCPN, and ED-SCPN. Conclusion: Depending on the product, bonding agents might promote changes in hardness uniformity of resin cements after post cementation. PMID:22904652

  14. Instantly switchable adhesion of bridged fibrillar adhesive via gecko-inspired detachment mechanism and its application to a transportation system.

    PubMed

    Bae, Won-Gyu; Kim, Doogon; Suh, Kahp-Yang

    2013-12-07

    Inspired by the exceptional climbing ability of gecko lizards, artificial fibrillar adhesives have been extensively studied over the last decade both experimentally and theoretically. Therefore, a new leap towards practical uses beyond the academic horizon is timely and highly anticipated. To this end, we present a fibrillar adhesive in the form of bridged micropillars and its application to a transportation system with the detachment mechanism inspired by the climbing behaviour of gecko lizards. The adhesive shows strong normal attachment (~30 N cm(-2)) as well as easy and fast detachment within 0.5 s without involving complex dynamic mechanisms or specific stimulus-responsive materials. The fabrication of the bridged micropillars consists of replica moulding of polydimethylsiloxane (PDMS) micropillars, transfer of the PDMS precursor to the heads of the micropillars, and inverse placement on an inert Teflon-coated surface. Owing to the spontaneous interconnections of low viscosity PDMS precursor, bridged micropillars with a uniform capping nanomembrane (~800 nm thickness) are formed over a large area. Interestingly, macroscopic adhesion in the normal direction can be immediately switched between on and off states by changing the two detachment modes of pulling and peeling, respectively. To prove the potential of the fibrillar adhesive for practical use, an automated transportation system is demonstrated for lifting and releasing a mass of stacked glass slides over 1000 cycles of attachment and detachment.

  15. Effect of different air-drying time on the microleakage of single-step self-etch adhesives

    PubMed Central

    Moosavi, Horieh; Managhebi, Esmatsadat

    2013-01-01

    Objectives This study evaluated the effect of three different air-drying times on microleakage of three self-etch adhesive systems. Materials and Methods Class I cavities were prepared for 108 extracted sound human premolars. The teeth were divided into three main groups based on three different adhesives: Opti Bond All in One (OBAO), Clearfil S3 Bond (CSB), Bond Force (BF). Each main group divided into three subgroups regarding the air-drying time: without application of air stream, following the manufacturer's instruction, for 10 sec more than manufacturer's instruction. After completion of restorations, specimens were thermocycled and then connected to a fluid filtration system to evaluate microleakage. The data were statistically analyzed using two-way ANOVA and Tukey-test (α = 0.05). Results The microleakage of all adhesives decreased when the air-drying time increased from 0 sec to manufacturer's instruction (p < 0.001). The microleakage of BF reached its lowest values after increasing the drying time to 10 sec more than the manufacturer's instruction (p < 0.001). Microleakage of OBAO and CSB was significantly lower compared to BF in all three drying time (p < 0.001). Conclusions Increasing in air-drying time of adhesive layer in one-step self-etch adhesives caused reduction of microleakage, but the amount of this reduction may be dependent on the adhesive components of self-etch adhesives. PMID:23741709

  16. Instantly switchable adhesion of bridged fibrillar adhesive via gecko-inspired detachment mechanism and its application to a transportation system

    NASA Astrophysics Data System (ADS)

    Bae, Won-Gyu; Kim, Doogon; Suh, Kahp-Yang

    2013-11-01

    Inspired by the exceptional climbing ability of gecko lizards, artificial fibrillar adhesives have been extensively studied over the last decade both experimentally and theoretically. Therefore, a new leap towards practical uses beyond the academic horizon is timely and highly anticipated. To this end, we present a fibrillar adhesive in the form of bridged micropillars and its application to a transportation system with the detachment mechanism inspired by the climbing behaviour of gecko lizards. The adhesive shows strong normal attachment (~30 N cm-2) as well as easy and fast detachment within 0.5 s without involving complex dynamic mechanisms or specific stimulus-responsive materials. The fabrication of the bridged micropillars consists of replica moulding of polydimethylsiloxane (PDMS) micropillars, transfer of the PDMS precursor to the heads of the micropillars, and inverse placement on an inert Teflon-coated surface. Owing to the spontaneous interconnections of low viscosity PDMS precursor, bridged micropillars with a uniform capping nanomembrane (~800 nm thickness) are formed over a large area. Interestingly, macroscopic adhesion in the normal direction can be immediately switched between on and off states by changing the two detachment modes of pulling and peeling, respectively. To prove the potential of the fibrillar adhesive for practical use, an automated transportation system is demonstrated for lifting and releasing a mass of stacked glass slides over 1000 cycles of attachment and detachment.Inspired by the exceptional climbing ability of gecko lizards, artificial fibrillar adhesives have been extensively studied over the last decade both experimentally and theoretically. Therefore, a new leap towards practical uses beyond the academic horizon is timely and highly anticipated. To this end, we present a fibrillar adhesive in the form of bridged micropillars and its application to a transportation system with the detachment mechanism inspired by the

  17. Effect of a plant-based hemostatic agent on microleakage of self-etching adhesives

    PubMed Central

    Arslan, Soley; Ertaş, Hüseyin; Zorba, Yahya O.

    2013-01-01

    Objective: This in vitro study evaluated the effect of Ankaferd Blood Stopper (ABS) contamination on the microleakage of one-step and two-step self-etching adhesives. Study design: Class V cavities were prepared at the cemento-enamel junction on both buccal and lingual surfaces of 60 freshly extracted human molars. Teeth were randomly assigned into three groups according to contamination material applied (Group I, no contamination; Group II, blood contamination; Group III, ABS contamination). In contaminated groups, one drop of blood and ABS solution was applied directly to the dentin surface and air-dried. Each group was further divided into two subgroups according to bonding agent used [Group A, Clearfil SE Bond (two-step self-etching adhesive); Group B, Adper Easy One (one-step self-etching adhesive)]. Adhesive materials were applied according to the manufacturers’ recommendations. The specimens were restored using a universal microhybrid composite (Arabesk). After thermocycling (5000x, 5°C – 55°C) and immersion in a 0.5% basic fuchsin, dye penetration was evaluated under a stereomicroscope. Statistical analysis was performed with Kruskal-Wallis and Mann-Whitney U tests at p < 0.05. Results: Significantly higher microleakage scores were observed when one-step self-etching adhesive was applied to blood- and ABS-contaminated dentin. However, when a two-step self etching adhesive was used, microleakage was observed only following blood contamination, not following ABS contamination. Conclusions: Although, blood contamination before adhesive application resulted in increased microleakage with both one-step and two-step self-etching adhesive systems, ABS contamination did not affect microleakage when a two-step self-ething adhesive system was used. Key words:Ankaferd Blood Stopper, blood, microleakage, self-etching adhesive. PMID:23229238

  18. Pharmacology of Cell Adhesion Molecules of the Nervous System

    PubMed Central

    Kiryushko, Darya; Bock, Elisabeth; Berezin, Vladimir

    2007-01-01

    Cell adhesion molecules (CAMs) play a pivotal role in the development and maintenance of the nervous system under normal conditions. They also are involved in numerous pathological processes such as inflammation, degenerative disorders, and cancer, making them attractive targets for drug development. The majority of CAMs are signal transducing receptors. CAM-induced intracellular signalling is triggered via homophilic (CAM-CAM) and heterophilic (CAM - other counter-receptors) interactions, which both can be targeted pharmacologically. We here describe the progress in the CAM pharmacology focusing on cadherins and CAMs of the immunoglobulin (Ig) superfamily, such as NCAM and L1. Structural basis of CAM-mediated cell adhesion and CAM-induced signalling are outlined. Different pharmacological approaches to study functions of CAMs are presented including the use of specific antibodies, recombinant proteins, and synthetic peptides. We also discuss how unravelling of the 3D structure of CAMs provides novel pharmacological tools for dissection of CAM-induced signalling pathways and offers therapeutic opportunities for a range of neurological disorders. PMID:19305742

  19. Polymerization behavior within adhesive layer of one- and two-step self-etch adhesives: a micro-Raman spectroscopic study.

    PubMed

    Sakano, Wakae; Nakajima, Masatoshi; Prasansuttiporn, Taweesak; Foxton, Richard M; Tagami, Junji

    2013-01-01

    This study investigated the polymerization behavior within the adhesive layer of one- and two-step self-etch adhesives at the dentincomposite interface. Dentin surfaces were applied with Clearfil S(3) Bond (TS), Clearfil S(3) Bond Plus (TSP) and Clearfil SE Bond (SE), and then placed with a light-curing resin composite. After water storage for 24 h, the bonded teeth were sectioned and polished perpendicular to the adhesive interface, and the degree of conversion (DC) of the adhesive layer between the dentin and composite were determined using micro-Raman analysis. For all the adhesives, the DCs of the adhesive layers significantly decreased near the adhesive-composite join (p<0.05). For the maximum DC value (Pmax) and the DC value at the adhesive-composite join (Pitf), TS was significantly lower than TSP and SE (p<0.05). The polymerization of oxygen-inhibited layer at the top of the adhesive could not reach maximum DC even after polymerization of the overlying resin composite.

  20. Marginal permeability of one step self-etch adhesives: Effects of double application or the application of hydrophobic layer

    PubMed Central

    Pushpa, R; Suresh, B S

    2010-01-01

    Aim: The purpose of this in vitro investigation was to evaluate the influence of double application and application of hydrophobic layer on marginal adaptation of four self-etch adhesive systems (XENOIII, ALLBONDSE, CLEARFIL SE TRI BOND, FUTURA BOND). Materials and Methods: One hundred and twenty class V cavities were prepared on intact, extracted human premolars and were divided into three groups of ten teeth each for all four adhesives. Group 1: Application of bonding agents as per manufacturer directions. Group 2: Double application of bonding agents. Group 3: Application of hydrophobic layer. The specimens were restored with composite and light cured. After thermocycling and immersion in 2% Basic Fuchsin dye solution, the teeth were sectioned and dye penetration was observed under a stereomicroscope at 20× magnification. All the samples were scored and results were analyzed using Kruskal-Wallis and Mann-Whitney tests. Results: Group 3, in which the adhesive systems were coated with hydrophobic layer, showed significantly decreased microleakage, followed by Group 1 and Group 2 for all the adhesive systems. And there is no significant different between Group 1 and Group 2. Conclusion: Marginal permeability of one-step adhesives can be minimized by the application of more hydrophobic resin layer, and the double application of one-step self-etch system can be safely performed without jeopardizing the performance of adhesives. PMID:21116389

  1. New adhesive systems based on functionalized block copolymers

    SciTech Connect

    Kent, M.; Saunders, R.; Hurst, M.; Small, J.; Emerson, J.; Zamora, D.

    1997-05-01

    The goal of this work was to evaluate chemically-functionalized block copolymers as adhesion promoters for metal/thermoset resin interfaces. Novel block copolymers were synthesized which contain pendant functional groups reactive toward copper and epoxy resins. In particular, imidazole and triazole functionalities that chelate with copper were incorporated onto one block, while secondary amines were incorporated onto the second block. These copolymers were found to self-assemble from solution onto copper surfaces to form monolayers. The structure of the adsorbed monolayers were studied in detail by neutron reflection and time-of-flight secondary ion mass spectrometry. The monolayer structure was found to vary markedly with the solution conditions and adsorption protocol. Appropriate conditions were found for which the two blocks form separate layers on the surface with the amine functionalized block exposed at the air surface. Adhesion testing of block copolymer-coated copper with epoxy resins was performed in both lap shear and peel modes. Modest enhancements in bond strengths were observed with the block copolymer applied to the native oxide. However, it was discovered that the native oxide is the weak link, and that by simply removing the native oxide, and then applying an epoxy resin before the native oxide can reform, excellent bond strength in the as-prepared state as well as excellent retention of bond strength after exposure to solder in ambient conditions are obtained. It is recommended that long term aging studies be performed with and without the block copolymer. In addition, the functionalized block copolymer method should be evaluated for another system that has inherently poor bonding, such as the nickel/silicone interface, and for systems involving metals and alloys which form oxides very rapidly, such as aluminum and stainless steel, where bonding strategies involve stabilizing the native oxide.

  2. Ultrastructural observation of the acid-base resistant zone of all-in-one adhesives using three different acid-base challenges.

    PubMed

    Tsujimoto, Miho; Nikaido, Toru; Inoue, Go; Sadr, Alireza; Tagami, Junji

    2010-11-01

    The aim of this study was to analyze the ultrastructure of the dentin-adhesive interface using two all-in-one adhesive systems (Clearfil Tri-S Bond, TB; Tokuyama Bond Force, BF) after different acid-base challenges. Three solutions were used as acidic solutions for the acid-base challenges: a demineralizing solution (DS), a phosphoric acid solution (PA), and a hydrochloric acid solution (HCl). After the acid-base challenges, the bonded interfaces were examined by scanning electron microscopy. Thickness of the acid-base resistant zone (ABRZ) created in PA and HCl was thinner than in DS for both adhesive systems. For BF adhesive, an eroded area was observed beneath the ABRZ after immersion in PA and HCl, but not in DS. Conversely for TB adhesive, the eroded area was observed only after immersion in PA. In conclusion, although the ABRZ was observed for both all-in-one adhesive systems, its morphological features were influenced by the ingredients of both the adhesive material and acidic solution.

  3. A new x-ray adhesive system with embedded nanoparticulate silver markers for dental applications

    NASA Astrophysics Data System (ADS)

    Bessudnova, Nadezda O.; Bilenko, David I.; Venig, Sergey B.; Atkin, Vsevolod S.; Zacharevich, Andrey M.

    2013-02-01

    In the present study a new adhesive system with embedded PVP-stabilized nano-particulate silver markers has been designed. Nanosized silver was used as a radio-opaque contrast material in SEM examination of adhesive system in dentine. It was studied the impact of nano-particulate silver fillers on rheological properties of adhesive system and its penetration in dentine volume. A SEM comparative evaluation of resin replicas produced using adhesive system with embedded silver nanoparticles and that without ones was carried out. It was shown that embedding of silver nanoparticles into adhesive system did not make its penetration worse. It was established that embedding of nanosized silver changed adhesive system morphology. The methodology that allows visualizing interfaces and intermediate layers between dentine, adhesive system and restorative material using silver nano-particulate markers was developed and approved. Silver nanoparticles were used to compare the objective depth of penetration of adhesive systems of different generations in root dentine with differently oriented dentinal tubules, bonding resin delivery and gravity.

  4. Effect of Different Bonding Strategies on Adhesion to Deep and Superficial Permanent Dentin

    PubMed Central

    Pegado, Rafael Eduardo Fernandes; do Amaral, Flávia Lucisano Botelho; Flório, Flávia Martão; Basting, Roberta Tarkany

    2010-01-01

    Objectives: To evaluate the effect of different bonding strategies on the microtensile bond strength to deep and superficial permanent dentin. Methods: Forty-eight teeth were randomly flattened according to the dentin depth: superficial dentin (SD) and deep dentin (DD). Subsequently, three adhesive systems were applied (n=8): an etch-and-rinse (Adper Single Bond 2 - SB), a “mild” two-step self-etching (Clearfil SE Bond - SE) and a one-step self-etching adhesive system (Futurabond – FB). Each specimen was restored with a composite resin and sectioned into 1.0-mm2 thick slabs. After 24 hours, resin-dentin sticks were submitted to tensile stress in a universal testing machine (0.5 mm/min). Data were submitted to two-way ANOVA and Tukey’s test at a level of 0.05%. Results: Superficial dentin showed the highest microtensile bond strength values, which differed statistically from those obtained in the deep dentin, irrespective of the adhesive system used. FB yielded the highest bond strength values, which were statistically similar to the bond strength values of SE, but statistically different from those obtained when the SB adhesive was used. Conclusions: Bond strength obtained in superficial dentin was significantly higher than in deep dentin, for all adhesive systems tested. Adhesion was affected by the different bonding strategies: the one-step, low pH, acetone-based self-etching adhesive promoted the higher bond strength values, which were statistically similar to those obtained with the two-step, water-based self-etching adhesive. PMID:20396440

  5. Bond strength of composite to dentin: effect of acid etching and laser irradiation through an uncured self-etch adhesive system

    NASA Astrophysics Data System (ADS)

    Castro, F. L. A.; Carvalho, J. G.; Andrade, M. F.; Saad, J. R. C.; Hebling, J.; Lizarelli, R. F. Z.

    2014-08-01

    This study evaluated the effect on micro-tensile bond strength (µ-TBS) of laser irradiation of etched/unetched dentin through an uncured self-etching adhesive. Dentinal surfaces were treated with Clearfil SE Bond Adhesive (CSE) either according to the manufacturer’s instructions (CSE) or without applying the primer (CSE/NP). The dentin was irradiated through the uncured adhesive, using an Nd:YAG laser at 0.75 or 1 W power settings. The adhesive was cured, composite crowns were built up, and the teeth were sectioned into beams (0.49 mm2) to be stressed under tension. Data were analyzed using one-way ANOVA and Tukey statistics (α = 5%). Dentin of the fractured specimens and the interfaces of untested beams were observed under scanning electron microscopy (SEM). The results showed that non-etched irradiated surfaces presented higher µ-TBS than etched and irradiated surfaces (p < 0.05). Laser irradiation alone did not lead to differences in µ-TBS (p > 0.05). SEM showed solidification globules on the surfaces of the specimens. The interfaces were similar on irradiated and non-irradiated surfaces. Laser irradiation of dentin through the uncured adhesive did not lead to higher µ-TBS when compared to the suggested manufacturer’s technique. However, this treatment brought benefits when performed on unetched dentin, since bond strengths were higher when compared to etched dentin.

  6. Shear Bond Strengths and Morphological Evaluation of Filled and Unfilled Adhesive Interfaces to Enamel and Dentine

    PubMed Central

    Mortazavi, Vajihesadat; Fathi, Mohammadhosein; Ataei, Ebrahim; Khodaeian, Niloufar; Askari, Navid

    2012-01-01

    In this laboratory study shear bond strengths of three filled and one unfilled adhesive systems to enamel and dentine were compared. Forty-eight extracted intact noncarious human mandibular molars were randomly assigned to two groups of 24 one for bonding to enamel and the other for bonding to dentine. Buccal and lingual surfaces of each tooth were randomly assigned for application of each one of filled (Prime & Bond NT (PBNT), Optibond Solo Plus (OBSP), and Clearfil SE Bond (CSEB)) and unfilled (Single Bond (SB)) adhesive systems (n = 12). A universal resin composite was placed into the translucent plastic cylinders (3 mm in diameter and 2 mm in length) and seated against the enamel and dentine surfaces and polymerized for 40 seconds. Shear bond strength was determined using a universal testing machine, and the results were statistically analyzed using two-way ANOVA, one-way ANOVA, t-test, and Tukey HSD post hoc test with a 5% level of significance.There were no statistically significant differences in bond strength between the adhesive systems in enamel, but CSEB and SB exhibited significantly higher and lower bond strength to dentine, respectively, than the other tested adhesive systems while there were no statistically significant differences between PBNT and OBSP. PMID:23209471

  7. Comparison of shear bond strength of two self-etch primer/adhesive systems.

    PubMed

    Bishara, Samir E; Ajlouni, Raed; Laffoon, John F; Warren, John J

    2006-01-01

    Orthodontic brackets adhesive systems use three different agents, an enamel conditioner, a primer solution, and an adhesive resin. A unique characteristic of some new bonding systems is that they combine the conditioning, priming, and adhesive agents into a single application. The purpose of this study was to assess and compare the effects of using one-step and two-step self-etch primer/adhesive systems on the shear bond strength of orthodontic brackets. The brackets were bonded to extracted human molars according to one of two protocols. Group I (control): a two-step self-etch acidic primer/adhesive system was used, Transbond Plus was applied to the enamel surface as suggested by the manufacturer. The brackets were bonded with Transbond XT and light cured for 20 seconds. Group II: a one-step self-etch, self-adhesive resin cement system, Maxcem, was applied directly to the bracket. The self-etch primer/adhesive is made of two components that mix automatically during application. The brackets were then light cured for 20 seconds. The mean shear bond strength of the two-step acid-etch primer/adhesive was 5.9 +/- 2.7 Mpa and the mean for the one-step system was 3.1 +/- 1.7 MPa. The in vitro findings of this study indicated that the shear bond strengths (t = 3.79) of the two adhesive systems were significantly different (P = .001). One-step adhesive systems could potentially be advantageous for orthodontic purposes if their bond strength can be improved.

  8. Bond Strength of Methacrylate-Based Composite to Dentin using a Silorane Adhesive

    DTIC Science & Technology

    2013-06-06

    failures using Clearfil SE Bond were mixed or cohesive in nature suggesting a more stable adhesive interface (Al- Salehi and Burke, 1997). However, the...REFERENCES Al- Salehi SK, Burke FJ. Methods used in dentin bonding tests: An analysis of 50 investigations on bond strength. Quint Inter 1997;28:717–723

  9. Effect of different adhesive strategies on the post-operative sensitivity of class I composite restorations

    PubMed Central

    Sancakli, Hande Sar; Yildiz, Esra; Bayrak, Isil; Ozel, Sevda

    2014-01-01

    Objective: To evaluate the post-operative sensitivity of occlusal restorations using different dentin adhesives performed by an undergraduate and a post-doctorate dentist. Materials and Methods: One hundred and eighty-eight molar occlusal restorations were placed in 39 patients (ages between 18 and 30) using 3 different kind of adhesive systems; Optibond FL (OBF), Clearfil Protect Bond (CPB), and iBond (IB) by a post-doctorate dentist or a fifth-year dental student according to the manufacturers’ instructions. Post-operative sensitivity to cold and air was evaluated using a Visual Analog Scale (VAS) after 24 hours, 30, 90, and 180 days. Data were analyzed using the Mann-Whitney U and Friedman tests (P < 0.05). Results: Post-operative sensitivity scores for OBF and CPB were higher for the dental student (P < 0.05), while IB scores did not differ statistical significantly according to the operator (P > 0.05). Conclusion: Operator skill and experience appears to play a role in determining the outcome of post-operative sensitivity of multi-step adhesive systems although the post-operative sensitivity was low. It is suggested that the less experienced clinicians (rather than experienced clinicians) should better use the self-etching dentin bonding systems with reduced application steps to minimize the potential risk of post-operative sensitivity of dental adhesives. PMID:24966741

  10. Adhesive Bonding for Optical Metrology Systems in Space Applications

    NASA Astrophysics Data System (ADS)

    Gohlke, Martin; Schuldt, Thilo; Döringshoff, Klaus; Peters, Achim; Johann, Ulrich; Weise, Dennis; Braxmaier, Claus

    2015-05-01

    Laser based metrology systems become more and more attractive for space applications and are the core elements of planned missions such as LISA (NGO, eLISA) or NGGM where laser interferometry is used for distance measurements between satellites. The GRACE-FO mission will for the first time demonstrate a Laser Ranging Instrument (LRI) in space, starting 2017. Laser based metrology also includes optical clocks/references, either as ultra-stable light source for high sensitivity interferometry or as scientific payload e.g. proposed in fundamental physics missions such as mSTAR (mini SpaceTime Asymmetry Research), a mission dedicated to perform a Kennedy-Thorndike experiment on a satellite in a low-Earth orbit. To enable the use of existing optical laboratory setups, optimization with respect to power consumption, weight and dimensions is necessary. At the same time the thermal and structural stability must be increased. Over the last few years we investigated adhesive bonding of optical components to thermally highly stable glass ceramics as an easy-to-handle assembly integration technology. Several setups were implemented and tested for potential later use in space applications. We realized a heterodyne LISA related interferometer with demonstrated noise levels in the pm-range for translation measurement and nano-radiant-range for tilt measurements and two iodine frequency references on Elegant Breadboard (EBB) and Engineering Model (EM) level with frequency stabilities in the 10-15 range for longer integration times. The EM setup was thermally cycled and vibration tested.

  11. Self-assembled Nano-layering at the Adhesive interface.

    PubMed

    Yoshida, Y; Yoshihara, K; Nagaoka, N; Hayakawa, S; Torii, Y; Ogawa, T; Osaka, A; Meerbeek, B Van

    2012-04-01

    According to the 'Adhesion-Decalcification' concept, specific functional monomers within dental adhesives can ionically interact with hydroxyapatite (HAp). Such ionic bonding has been demonstrated for 10-methacryloyloxydecyl dihydrogen phosphate (MDP) to manifest in the form of self-assembled 'nano-layering'. However, it remained to be explored if such nano-layering also occurs on tooth tissue when commercial MDP-containing adhesives (Clearfil SE Bond, Kuraray; Scotchbond Universal, 3M ESPE) were applied following common clinical application protocols. We therefore characterized adhesive-dentin interfaces chemically, using x-ray diffraction (XRD) and energy-dispersive x-ray spectroscopy (EDS), and ultrastructurally, using (scanning) transmission electron microscopy (TEM/STEM). Both adhesives revealed nano-layering at the adhesive interface, not only within the hybrid layer but also, particularly for Clearfil SE Bond (Kuraray), extending into the adhesive layer. Since such self-assembled nano-layering of two 10-MDP molecules, joined by stable MDP-Ca salt formation, must make the adhesive interface more resistant to biodegradation, it may well explain the documented favorable clinical longevity of bonds produced by 10-MDP-based adhesives.

  12. Adhesive systems: important aspects related to their composition and clinical use

    PubMed Central

    SILVA E SOUZA JUNIOR, Mario Honorato; CARNEIRO, Karina Gama Kato; LOBATO, Marcelo Figueiredo; SILVA E SOUZA, Patrícia de Almeida Rodrigues; de GÓES, Mário Fernando

    2010-01-01

    This literature review article addresses the types and the main components of different etch-and-rinse and self-etch adhesive systems available in the market, and relates them to their function, possible chemical interactions and influence of handling characteristics. Scanning electron microscopy (SEM) images are presented to characterize the interface between adhesives and dentin. Adhesive systems have been recently classified according to their adhesion approaches in etch-and-rinse, self-etch and glass ionomer. The etch-andrinse systems require a specific acid-etch procedure and may be performed in two or three steps. Self-etch systems employ acidic monomers that demineralize and impregnate dental substrates almost at the same time. These systems are separated in one or two steps. Some advantages and deficiencies were noted for etch-and-rinse and self-etch approaches, mainly for the simplified ones due to some chemical associations and interactions. The SeM micrographs illustrate different relationships between adhesive systems and dental structures, particularly dentin. The knowledge of composition, characteristics and mechanisms of adhesion of each adhesive system is of fundamental importance to permit the adoption of ideal bonding strategies under clinical conditions. PMID:20856995

  13. Integrative systems and synthetic biology of cell-matrix adhesion sites

    PubMed Central

    Zamir, Eli

    2016-01-01

    ABSTRACT The complexity of cell-matrix adhesion convolves its roles in the development and functioning of multicellular organisms and their evolutionary tinkering. Cell-matrix adhesion is mediated by sites along the plasma membrane that anchor the actin cytoskeleton to the matrix via a large number of proteins, collectively called the integrin adhesome. Fundamental challenges for understanding how cell-matrix adhesion sites assemble and function arise from their multi-functionality, rapid dynamics, large number of components and molecular diversity. Systems biology faces these challenges in its strive to understand how the integrin adhesome gives rise to functional adhesion sites. Synthetic biology enables engineering intracellular modules and circuits with properties of interest. In this review I discuss some of the fundamental questions in systems biology of cell-matrix adhesion and how synthetic biology can help addressing them. PMID:26853318

  14. First evidence for temporary and permanent adhesive systems in the stalked barnacle cyprid, Octolasmis angulata

    PubMed Central

    Yap, Fook Choy; Wong, Wey-Lim; Maule, Aaron G.; Brennan, Gerard P.; Chong, Ving Ching; Lim, Lee Hong Susan

    2017-01-01

    Although there have been extensive studies on the larval adhesion of acorn barnacles over the past few decades, little is known about stalked barnacles. For the first time, we describe the larval adhesive systems in the stalked barnacle, Octolasmis angulata and the findings differ from previous reports of the temporary (antennulary) and cement glands in thoracican barnacles. We have found that the temporary adhesives of cyprid are produced by the clustered temporary adhesive glands located within the mantle, instead of the specialised hypodermal glands in the second antennular segment as reported in the acorn barnacles. The temporary adhesive secretory vesicles (TASV) are released from the gland cells into the antennule via the neck extensions of the glands, and surrounded with microtubules in the attachment disc. Cement glands undergo a morphological transition as the cyprid grows. Synthesis of the permanent adhesives only occurs during the early cyprid stage, and is terminated once the cement glands reach maximum size. Evidence of the epithelial invaginations on the cement glands supports the involvement of exocytosis in the secretion of the permanent adhesives. This study provides new insight into the larval adhesives system of thoracican barnacles. PMID:28327603

  15. Resilience and Treatment Adhesion in Patients with Systemic Lupus Erythematosus

    PubMed Central

    Faria, Daniella Antunes Pousa; Revoredo, Luciana Silva; Vilar, Maria José; Eulália Maria Chaves, Maia

    2014-01-01

    Background: Systemic Lupus Erythematosus (SLE) is a chronic autoimmune, rheumatic inflammatory disease that can cause significant morbidity with evident psychological impacts and obvious harm to quality-of-life that require the patient to adapt treatment. Objective: Assessment of resilience and the self-reported treatment adhesion behaviors of patients with SLE, investigating which of these factors are associated to resilience. Method: Cross-sectional study of 40 women with SLE. A questionnaire with social demographic data, health history and the Wagnild Young Resilience Scale were used. Results: 62.5% followed the medical treatment properly but 55% found it difficult. 27.5% of the patients presented low resilience, 57.5% medium and 15% high resilience. Resilience was associated in the chi-square test (p-value < 0.05) with the variables work, understanding SLE, trying to find out about SLE, following the treatment correctly, difficulty in following the treatment and stopping some activity because of the disease. In the correlation analysis, resilience was associated with age (-0.3960), number of working hours (0.5533), specialized treatment duration (-0.8103) and disease duration from diagnosis (-0.8014). Conclusion: Patients with high resilience tended to follow treatment correctly, tried to understand the disease and adhered more to the treatment to avoid risks and promote protection factors. Therefore knowledge of resilience in patients with SLE is necessary. It is important that the state takes necessary actions to facilitate access to treatment, to educational programs and to medical support. Awareness and counselling sessions must be initiated to develop and promote individual capacities to learn how to tackle with the disease for which psychological support of family and doctors can play a significant role. PMID:24665352

  16. A Comparison of an NPG-GMA and Two BIS-GMA Adhesive Resin Systems.

    DTIC Science & Technology

    1978-12-01

    3) The Nuva system, however, had the most favorable surface when viewed by the SEM; (4) Adaptation of the adhesive resin to a rounded cervical defect was more difficult than for an angular lesion. (Author)

  17. Zinc-doped dentin adhesive for collagen protection at the hybrid layer.

    PubMed

    Osorio, Raquel; Yamauti, Monica; Osorio, Estrella; Román, Julio S; Toledano, Manuel

    2011-10-01

    The aim of the study was to ascertain whether the addition of zinc to adhesives may decrease metalloproteinase-mediated collagen degradation without affecting bonding efficacy. Human dentin beams were treated with phosphoric acid, with Clearfil SE Bond Primer or with Clearfil SE Bond Primer plus ZnCl(2) (2 wt%). Acid-etched dentin was infiltrated with Single Bond, Single Bond plus ZnCl(2) (2 wt%), or Single Bond plus ZnO nanoparticles (10 wt%), and Clearfil SE Bond-primed dentin was infiltrated with Clearfil SE Bonding resin, Clearfil SE-Bonding resin with ZnCl(2) (2 wt%), or Clearfil SE-Bonding resin with ZnO nanoparticles (10 wt%). The C-terminal telopeptide concentrations were determined 24 h, and 1 and 4 wk after treatment. Microtensile bond strength to dentin was determined for the tested adhesives. Matrix metalloproteinases-mediated collagen degradation occurred in acid-etched and SE-primed dentin. Resin infiltration decreased collagen degradation. Lower collagen degradation was found for SE Bond than for Single Bond. Zinc-doped Single Bond resin always reduced collagen degradation, the ZnO particles being more effective than ZnCl(2) . Zinc-doped SE Bond reduced the liberation of C-terminal telopeptide only at 24 h. Bond strength to dentin was not decreased when Zn-doped resins were employed, except when ZnCl(2) was added to SE Primer. Zinc-doped resin reduced collagen degradation in Single Bond hybrid layers, but did not affect bond strength. The addition of zinc to SE Bond had no beneficial effects.

  18. Effect of Er:YAG laser energy on the morphology of enamel/adhesive system interface

    NASA Astrophysics Data System (ADS)

    Delfino, Carina Sinclér; Souza-Zaroni, Wanessa Christine; Corona, Silmara Aparecida Milori; Pécora, Jesus Djalma; Palma-Dibb, Regina Guenka

    2006-10-01

    The aim of this study was to evaluate in vitro the influence of Er:YAG laser energy variation to cavity preparation on the morphology of enamel/adhesive system interface, using SEM. Eighteen molars were used and the buccal surfaces were flattened without dentine exposure. The specimens were randomly assigned to two groups, according to the adhesive system (conventional total-etching or self-etching), and each group was divided into three subgroups (bur carbide in turbine of high rotation, Er:YAG laser 250 mJ/4 Hz and Er:YAG laser 300 mJ/4 Hz) containing six teeth each. The enamel/adhesive system interface was serially sectioned and prepared for SEM. The Er:YAG laser, in general, produced a more irregular adhesive interface than the control group. For Er:YAG laser 250 mJ there was formation of a more regular hybrid layer with good tag formation, mainly in the total-etching system. However, Er:YAG laser 300 mJ showed a more irregular interface with amorphous enamel and fused areas, for both adhesive systems. It was concluded that cavity preparation with Er:YAG laser influenced on the morphology of enamel/adhesive system interface and the tissual alterations were more evident when the energy was increased.

  19. Influence of filler existence on microleakage of a self-etch adhesive system

    PubMed Central

    Mirmohammadi, H; Khosravi, K; Kashani, K; Kleverlaan, CJ; Feilzer, AJ

    2014-01-01

    Aim: This study evaluated the effect of filler existence in self-etch adhesive resin on the marginal leakage of a class V restoration. Materials and Methods: Class V cavities were prepared and restored with a resin composite on the buccal surfaces of 48 premolars lined with unfilled or filled adhesives (n = 24). After thermo cycling, teeth in each group were divided to two subgroups (n = 12), specimens of the first subgroup were incubated for 24 h in distilled water at 37°C, and for the second group three months in the same condition. Specimens were placed in 50% silver nitrate for 24 h at 37°C, and then were cut buccolingually 1 mm thick. Dye penetration was measured using a stereomicroscope and scaled from 0 to 5 in a blind method. SEM images were made to evaluate the dentin-adhesive interfaces. Collected data were analyzed using the nonparametric Kruskal-Wallis and Mann-Whitney U-tests at a significant level of P<0.05. Results: There was no significant difference between microleakage of filled and unfilled adhesive at 24 h and 3 months (P<0.05). There was a significant difference in cervical microleakage between 24 h and 3 months, which was independ on filler load of the adhesive (P<0.001). In contrast, there was no significant difference in occlusal microleakage between 24 h and 3 months and the cervical microleakage was significantly higher than occlusal microleakage after 3 months. SEM images reveald that unfilled adhesive infiltrate slightly better than filled adhesive. Conclusion: The application of filler particles in a self etch adhesive system had no influence on marginal leakage at both the enamel and dentin margins. While the unfilled adhesive infiltrate better than the filled adhesive, its long term performance is not promising. PMID:24778517

  20. An experimental study of double-peeling mechanism inspired by biological adhesive systems

    NASA Astrophysics Data System (ADS)

    Heepe, Lars; Raguseo, Saverio; Gorb, Stanislav N.

    2017-02-01

    Double- (or multiple-) peeling systems consist of two (or numerous) tapes adhering to a substrate and having a common hinge, where the pulling force is applied. Biological systems, consisting of tape-like (or spatula-like) contact elements, are widely observed in adhesive pads of flies, beetles, spiders, and geckos. It was previously hypothesized and analytically modeled that the simultaneous use of two or more such tape-like contacts in the opposite movement of contralateral legs during ceiling locomotion leads to enhanced, robust, and stable overall attachment, if compared to independently working contact points. In this paper, this biological solution for smart adhesion is demonstrated in an experiment using elastic adhesive tapes. The obtained results not only aided in explaining the functional mechanism of biological adhesive systems, but also in providing an experimental proof for biological observations and previous theoretical models.

  1. New method of measuring permeability of adhesive resin films

    PubMed Central

    Sword, Rhoda J.; Sword, Jeremy J.; Brackett, William W.; Tay, Franklin R.; Pashley, David H.

    2013-01-01

    Summary Objectives To develop a simple gravimetric method for measuring the permeability of adhesive resin films. Methods Using commercially available permeability cups designed for industrial permeability testing, the loss of mass of water vapour or liquid water from a stainless steel cup sealed with a resin film was measured over 1–2 days. The permeabilities of Parafilm (control), Clearfil SE Bond adhesive, Xeno IV and One-Up Bond F were compared. Results The lowest resin film permeability was obtained with Clearfil SE Bond films. The permeabilities of Xeno IV and One-Up Bond F to liquid water were 2.76 and 3.27-fold higher (p<0.001) than that of Clearfil SE Bond. Liquid water permeability was always 2.8 – 3.8-fold higher (p<0.05) than water vapour transmission rate. Conclusions Quantitative comparisons of the permeability properties of resin films can be made gravimetrically. The large permeability cups that are available commercially may be reduced in size in the future for measuring dentine adhesive films with smaller surface areas that are less liable to contain imperfections. PMID:21469402

  2. Nanoleakage of Class V Resin Restorations Using Two Nanofilled Adhesive Systems

    PubMed Central

    Al-Agha, Ebaa I; Alagha, Mustafa I

    2015-01-01

    Background: This study was carried out to evaluate the nanoleakage of two types of nanofilled adhesive systems in Class V composite resin restorations. Materials and Methods: Totally 60 human premolars were randomly assigned to two groups (n = 30). Standardized round Class V cavities (enamel and dentin margins) were prepared. A total-etch (N-Bond total etch) (Ivoclar Vivadent) and self-etching (N-Bond self-etch) (Ivoclar Vivadent) adhesive system were evaluated. The cavities were restored incrementally with nanohybird composite resin (Tetric N-Ceram). The teeth were sectioned into a series of 1 mm thick beams then they were immersed in the prepared ammoniacal silver nitrate tracer solution for 24 h in a black photo-film container to ensure total darkness. The beams were then rinsed with distilled water, and immersed in photo-developing solution for eight hours then they were subjected to the nanoleakage evaluation. The specimens were analyzed in the environmental scanning electron operated with backscattered electron mode at ×1000 magnification. Results: Self-etch adhesive recorded higher nanoleakage % mean value than the total-etch adhesive. The difference in nanoleakage % mean values between total and self-etch adhesive was statistically significant. Conclusion: The self-etch adhesive had statistically significant higher nanoleakage mean values than the total-etch adhesive. PMID:26229363

  3. Effects of silver nanoparticles on the bonding of three adhesive systems to fluorotic enamel.

    PubMed

    Torres-Méndez, Fernando; Martinez-Castañon, Gabriel-Alejandro; Torres-Gallegos, Iranzihuatl; Zavala-Alonso, Norma-Verónica; Patiño-Marin, Nuria; Niño-Martínez, Nereyda; Ruiz, Facundo

    2017-02-01

    The objective was to evaluate the effect of adding silver nanoparticles into three commercial adhesive systems (Excite™, Adper Prompt L-Pop™ and AdheSE™). Nanoparticles were prepared by a chemical method then mixed with the commercial adhesive systems. This was later applied to the fluorotic enamel, and then micro-tensile bond strength, contact angle measurements and scanning electron microscopy observations were conducted. The commercial adhesive systems achieved the lowest micro-tensile bond strength (Excite™: 11.0±2.1, Adper Prompt L-Pop™: 14.0±5.4 and AdheSE™: 16.0±3.0 MPa) with the highest adhesive failure mode related with the highest contact angle (46.0±0.6º, 30.0±0.5º and 28.0±0.4º respectively). The bond strength achieved in all the experimental adhesive systems (19.0±5.4, 20.0±4.0 and 19.0±3.5 MPa respectively) was statistically higher (p<0.05) than the control and showed the highest cohesive failures related to the lowest contact angle. Adding silver nanoparticles in order to decrease the contact angle improve the adhesive system wetting and its bond strength.

  4. Role of pressure-sensitive adhesives in transdermal drug delivery systems.

    PubMed

    Lobo, Shabbir; Sachdeva, Sameer; Goswami, Tarun

    2016-01-01

    Transdermal drug delivery systems (TDDS) are employed for the delivery of drugs across skin into the systemic circulation. Pressure-sensitive adhesive (PSA) is one of the most critical components used in a TDDS. The primary function of PSA is to help in adhesion of patch to skin, but more importantly it acts as a matrix for the drug and other excipients. Hence, apart from adhesion of the patch, PSA also affects other critical quality attributes of the TDDS such as drug delivery, flux through skin and physical and chemical stability of the finished product. This review article provides a summary of the adhesives used in various types of TDDS. In particular, this review will cover the design types of TDDS, categories of PSAs and their evaluation and regulatory aspects.

  5. Changes in Water Sorption and Solubility of Dental Adhesive Systems after Cigarette Smoke

    PubMed Central

    Vitória, Lívia Andrade; Aguiar, Thaiane Rodrigues; Santos, Poliana Ramos Braga; Cavalcanti, Andrea Nóbrega

    2013-01-01

    Aim. To evaluate the effect of cigarette smoke on water sorption and solubility of four adhesive systems. Materials and Methods. Sixteen disks of each adhesive system were prepared (Adper Scotchbond Multipurpose Adhesive (SA); Adper Scotchbond Multipurpose Adhesive System (Adhesive + Primer) (SAP); Adper Single Bond Plus (SB); Adper Easy One (EO)). Specimens were desiccated until a constant mass was obtained and divided into two groups (n = 8). One-half of the specimens were immersed in deionized water, while the other half were also immersed, but with daily exposure to tobacco smoke. After 21 days, disks were measured again and stored in desiccators until constant mass was achieved. Data were calculated according to ISO specifications and statistically analyzed. Results. The tobacco smoke only significantly affected the water sorption and solubility of EO. There were significant differences in both analyses among materials tested. The SB exhibited the highest water sorption, followed by EO, which demonstrated significantly higher solubility values than SB. The SA and SAP showed low water sorption and solubility, and there were no significant differences between the two. Conclusion. Regardless of smoke exposure, both simplified adhesive systems presented an inferior performance that could be related to the complex mixture of components in such versions. PMID:23984078

  6. Effect of Saliva on the Tensile Bond Strength of Different Generation Adhesive Systems: An In-Vitro Study

    PubMed Central

    Tripathi, Abhay Mani; Saha, Sonali; Dhinsa, Kavita; Garg, Aarti

    2015-01-01

    Background Newer development of bonding agents have gained a better understanding of factors affecting adhesion of interface between composite and dentin surface to improve longevity of restorations. Objective The present study evaluated the influence of salivary contamination on the tensile bond strength of different generation adhesive systems (two-step etch-and-rinse, two-step self-etch and one-step self-etch) during different bonding stages to dentin where isolation is not maintained. Materials and Methods Superficial dentin surfaces of 90 extracted human molars were randomly divided into three study Groups (Group A: Two-step etch-and-rinse adhesive system; Group B: Two-step self-etch adhesive system and Group C: One-step self-etch adhesive system) according to the different generation of adhesives used. According to treatment conditions in different bonding steps, each Group was further divided into three Subgroups containing ten teeth in each. After adhesive application, resin composite blocks were built on dentin and light cured subsequently. The teeth were then stored in water for 24 hours before sending for testing of tensile bond strength by Universal Testing Machine. The collected data were then statistically analysed using one-way ANOVA and Tukey HSD test. Results One-step self-etch adhesive system revealed maximum mean tensile bond strength followed in descending order by Two-step self-etch adhesive system and Two-step etch-and-rinse adhesive system both in uncontaminated and saliva contaminated conditions respectively. Conclusion Unlike One-step self-etch adhesive system, saliva contamination could reduce tensile bond strength of the two-step self-etch and two-step etch-and-rinse adhesive system. Furthermore, the step of bonding procedures and the type of adhesive seems to be effective on the bond strength of adhesives contaminated with saliva. PMID:26393214

  7. Proanthocyanidins Alter Adhesive/Dentin Bonding Strengths when Included in a Bonding System

    PubMed Central

    Hechler, Benjamin; Yao, Xiaomei; Wang, Yong

    2014-01-01

    Purpose To determine the effect of proanthocyanidins (PA) incorporation into a bonding system on dentin/adhesive bond stability following long-term storage in buffer and collagenase. Methods Human dentin surfaces were bonded with no PA (0-PA), PA incorporated in the primer (PA-primer), or PA incorporated in the adhesive (PA-adhesive), and composite build-ups were created. Following sectioning into beams, bonded specimens were stored in buffer or collagenase for 0, 1, 4, 26, or 52 weeks before being tested for microtensile bond strength (μTBS). ANOVA and Tukey’s HSD post-hoc were performed. Fractured surfaces were viewed with scanning electron microscopy (SEM). Results Both bonding system and storage time but not storage medium significantly affected μTBS. Initially, 0-PA and PA-primer were superior to PA-adhesive, and after 1 week both PA groups were inferior to 0-PA. However, after 4 weeks PA-adhesive had significantly increased and 0-PA significantly decreased such that all three groups were equal. Thereafter, both PA-primer/adhesive groups trended with an increase (the 0-PA group remaing consistent) such that at 52 weeks PA-primer samples were significantly stronger (p < 0.001) or nearly so (p = 0.08) when compared to 0-PA samples. SEM revealed that initial fractures tended to occur at the middle/bottom of the hybrid layer for 0-PA and PA-primer groups but at the top of the hybrid layer/in the adhesive for PA-adhesive. After 4 weeks, however, all groups fractured similarly at the middle/bottom of the hybrid layer. Clinical Significance PA incorporation into a bonding system significantly alters interfacial bonding strengths, and its incorporation may stabilize the interface and protect degradation over time under clinical conditions. PMID:23243975

  8. Marginal permeability of self-etch and total-etch adhesive systems.

    PubMed

    Owens, Barry M; Johnson, William W; Harris, Edward F

    2006-01-01

    This study evaluated microleakage in vitro of self-etch and multi-step, total-etch adhesive systems. Ninety-six extracted non-carious human molars were randomly assigned to eight groups (n=12) and restored with different adhesive systems: Optibond Solo Plus, iBond, Adper Prompt L-Pop, Xeno III, Simplicity, Nano-Bond, Adper Scotchbond Multi-Purpose and Touch & Bond. Each group was treated following the manufacturer's instructions. Class V cavities were prepared on the facial or lingual surfaces of each tooth with coronal margins in enamel and apical margins in cementum (dentin). The teeth were restored with Z-100 resin composite. After polishing with Sof-Lex disks, the teeth were thermocycled for 1000 cycles and coated with nail varnish to within 1.0 mm of the restoration. The teeth were stained in 1% methylene blue dye for 24 hours and sectioned from the facial to lingual surface. Dye penetration (microleakage) was examined with a 20x binocular microscope. Enamel and dentin margin leakage was scored on a 0 to 3 ordinal scale. Data were analyzed using Kruskal-Wallis Analysis of Variance and Mann-Whitney U tests. Comparison of the adhesive groups at the enamel margin revealed: 1) Adper Scotchbond Multi-Purpose exhibited significantly less leakage than the other adhesive groups (except iBond); 2) among the self-etch adhesive groups, iBond exhibited significantly less leakage than Nano-Bond and 3) the other adhesive groups clustered intermediately. In contrast, there were no significant differences among the adhesive groups when the dentin margin was evaluated. A Wilcoxin signed rank test showed significantly less leakage at the enamel margins compared to the dentin margins of the eight adhesive systems tested. All data were submitted to statistical analysis at p<0.05 level of significance.

  9. Comparison of Shear Bond Strength of Composite to Stainless Steel Crowns Using Two Mechanical Surface Treatments and Two Bonding Systems

    PubMed Central

    Ghadimi, Sara; Heidari, Alireza

    2016-01-01

    Objectives: This study aimed to compare the shear bond strength (SBS) of composite to stainless steel crowns (SSC) using two mechanical surface treatments (MSTs) and two bonding systems. Materials and Methods: Eighty-four SSCs were divided into six groups of 14; Group1: No MST+Scotchbond Universal adhesive (N+U), Group 2: Surface roughening by a diamond bur+Scotchbond Universal adhesive (R+U), Group 3: Sandblasting+Scotchbond Universal adhesive (S+U), Group 4: No MST+Alloy Primer+Clearfil SE Primer and Bond (N+A), Group 5: Surface roughening by a diamond bur+Alloy Primer+Clearfil SE Primer and Bond (R+A), Group 6: Sandblasting+Alloy Primer+Clearfil SE Primer and Bond (S+A). After MST and bonding procedure, composite cylinders were bonded to the lingual surface of SSCs, then the SBS of composite to SSCs was measured using a universal testing machine following thermocycling. Results: The SBS of groups R+U and S+U was significantly higher than that of group N+U. No significant difference was noted in SBS of groups R+U and S+U. The SBS of group S+A was significantly higher than that of groups N+A and R+A. No significant difference was noted in the SBS of groups N+A and R+A (P>0.05). Conclusions: In Scotchbond Universal adhesive groups, sandblasting and surface roughening by diamond bur significantly increased the SBS of composite to SSCs compared to no MST. In Alloy Primer groups, sandblasting significantly increased the SBS of composite to SSC compared to surface roughening with diamond bur and no MST. PMID:27536330

  10. Adhesive bond strengths to enamel and dentin using recommended and extended treatment times.

    PubMed

    Kimmes, Nicole S; Barkmeier, Wayne W; Erickson, Robert L; Latta, Mark A

    2010-01-01

    This study examined the effect of different enamel and dentin conditioning times on the shear bond strength of a resin composite using etch-and-rinse and self-etch adhesive systems. Shear bond strengths were determined following treatment of flat ground human enamel and dentin surfaces (4000 grit) with 11 adhesive systems: 1) AdheSE One Viva Pen-(ASE), 2) Adper Prompt L-Pop-(PLP), 3) Adper Single Bond Plus-(SBP), 4) Clearfil SE Bond-(CSE), 5) Clearfil S3 Bond-(CS3), 6) OptiBond All-In-One-(OBA), 7) OptiBond Solo Plus-(OBS), 8) Peak SE-(PSE), 9) Xeno IV-(X4), 10) Xeno V-(X5) and 11) XP Bond-(XPB) using recommended treatment times and an extended treatment time of 60 seconds (n = 10/group). Composite (Z100) to enamel and dentin bond strengths (24 hours) were determined using Ultradent fixtures and debonded with a crosshead speed of 1 mm/minute. The data were analyzed with a three-way Analysis of Variance (ANOVA) and Fisher's LSD post hoc test. The highest shear bond strengths (MPa) to enamel were achieved by the three etch-and-rinse systems at both the recommended treatment time (SBP-40.5 +/- 6.1; XPB-38.7 +/- 3.7; OBS- 35.2 +/- 6.2) and the extended treatment time (SBP-44.5 +/- 8.1; XPB-40.9 +/- 5.7; OBS-35.0 +/- 4.5). Extending the enamel treatment time did not produce a significant change (p > 0.05) in bond strength for the 11 adhesive systems tested. OBS generated the highest (46.2 +/- 7.9) bond strengths to dentin at the recommended treatment time. At the extended treatment time X4 (42.2 +/- 11.7), PSE (42.1 +/- 9.7) and OBS (41.4 +/- 8.0) produced the highest bond strengths to dentin. The bond strength change between recommend and extended treatment times was significant (p < 0.05) for PSE, but the other 10 systems did not exhibit any significant change.

  11. Randomized Clinical Trial of Composite Restorations in Primary Teeth: Effect of Adhesive System after Three Years

    PubMed Central

    Donmez, Secil Bektaş; Uysal, Serdar; Ozdemir, Pinar; Tekcicek, Meryem; Zimmerli, Brigitte; Lussi, Adrian

    2016-01-01

    The purpose of this study was to assess the clinical performance of composite restorations placed with different adhesive systems in primary teeth. In 32 patients, 128 composite restorations were placed using a split-mouth design as follows (4 groups/patient): three-step etch-and-rinse (Group 1), two-step etch-and-rinse (Group 2), two-step self-etch (Group 3), and one-step self-etch (Group 4). The restorations were clinically evaluated at baseline and at 6, 18, and 36 months according to the FDI criteria. There was no significant difference between the adhesive systems in retention of the restorations (p > 0.05). Over time, there was a statistically significant decrease in marginal adaptation in all groups, whereas surface and marginal staining significantly increased in Groups 3 and 4 (p < 0.05). The etch-and-rinse adhesive systems resulted in better marginal adaptation than the self-etch adhesive systems (p < 0.05). It was concluded that preetching of the primary enamel might help improve the clinical performance of the self-etch adhesive systems in primary teeth. PMID:27833917

  12. A measurement system analysis with design of experiments: Investigation of the adhesion performance of a pressure sensitive adhesive with the probe tack test.

    PubMed

    Michaelis, Marc; Leopold, Claudia S

    2015-12-30

    The tack of a pressure sensitive adhesive (PSA) is not an inherent material property and strongly depends on the measurement conditions. Following the concept of a measurement system analysis (MSA), influencing factors of the probe tack test were investigated by a design of experiments (DoE) approach. A response surface design with 38 runs was built to evaluate the influence of detachment speed, dwell time, contact force, adhesive film thickness and API content on tack, determined as the maximum of the stress strain curve (σmax). It could be shown that all investigated factors have a significant effect on the response and that the DoE approach allowed to detect two-factorial interactions between the dwell time, the contact force, the adhesive film thickness and the API content. Surprisingly, it was found that tack increases with decreasing and not with increasing adhesive film thickness.

  13. Comparison of the shear bond strength of 2 self-etch primer/adhesive systems.

    PubMed

    Bishara, Samir E; Oonsombat, Charuphan; Ajlouni, Raed; Laffoon, John F

    2004-03-01

    Conventional adhesive systems use 3 different agents-an enamel conditioner, a primer solution, and an adhesive resin for bonding orthodontic brackets to enamel. A unique characteristic of some new bonding systems in operative dentistry is that they combine the conditioning and priming agents into a single application. Combining conditioning and priming saves time and should be more cost-effective to the clinician and indirectly to the patient. The purpose of this study was to assess and compare the effects of mix and no-mix self-etch primers/bonding systems on the shear bond strengths of orthodontic brackets. The brackets were bonded to extracted human molars according to the following protocols. In group I, a self-etch acidic primer/adhesive system, Transbond Plus (3M Unitek, Monrovia, Calif), was applied on the enamel surface as suggested by the manufacturer; it has 2 components that must be mixed before use. The brackets were then bonded with Transbond XT and light-cured for 20 seconds. In group II, a no-mix self-etch bracket adhesive system, Ideal 1 (GAG International, Islandia, NY), was applied to the teeth as suggested by the manufacturer. The self-etch primer has 1 component that does not need to be mixed before use. The brackets were then bonded with the adhesive and light-cured for 20 seconds. The in vitro findings indicated that the shear bond strength comparisons (t = 0.681) of the 2 adhesive systems were not significantly different (P =.501). The mean shear bond strength of the 2-component acid etch primer was 5.9 +/- 2.7 MPa, and the mean for the 1-component system was 6.6 +/- 3.2 MPa. The clinician should consider the bond strength and the ease of application of the various components of the bracket bonding systems available on the market.

  14. Influence of conditioning time on bond strength: evaluation of self-etching adhesive systems.

    PubMed

    Borges, Marciano de Freitas; Skupien, Jovito Adiel; Montagner, Anelise Fernandes; Marchiori, Jeferson da Costa; Bortolotto, Tissiana; Krejci, Ivo; Susin, Alexandre Henrique

    2011-01-01

    The aim of this study was to evaluate the tensile bond strength of self-etching adhesive systems with different dentin conditioning times. Sixty caries-free, extracted third molars were selected, with the occlusal surface removed by a diamond saw disc. The specimens were embedded in epoxy resin and divided randomly into six groups (n = 10), according to the conditioning time and adhesive system used. After restoration, the specimens were stored in distilled water at room temperature for 24 hours; they then were submitted to the tensile bond strength test. The results were measured in MPa, then submitted to ANOVA and Tukey's test (P = 0.05). The adhesive system used and the length of dentin conditioning time were statistically significant (P < 0.05). The application time of the conditioner before photocuring did not have a significant effect on tensile bond strength. These results indicate that the resting time of adhesive above the dentin does not directly affect the bond strength of the adhesive system.

  15. Measurement of Interfacial Adhesion in Glass-Epoxy Systems Using the Indentation Method

    SciTech Connect

    Hutchins, Karen Isabel

    2015-07-01

    The adhesion of coatings often controls the performance of the substrate-coating system. Certain engineering applications require an epoxy coating on a brittle substrate to protect and improve the performance of the substrate. Experimental observations and measurements of interfacial adhesion in glass-epoxy systems are described in this thesis. The Oliver and Pharr method was utilized to calculate the bulk epoxy hardness and elastic modulus. Spherical indentations were used to induce delaminations at the substrate-coating interface. The delamination sizes as a function of load were used to calculate the interfacial toughness. The interfacial fracture energy of my samples is an order of magnitude higher than a previous group who studied a similar glass-epoxy system. A comparison study of how different glass treatments affect adhesion was also conducted: smooth versus rough, clean versus dirty, stressed versus non-stressed.

  16. A single-step lithography system based on an enhanced robotic adhesive dispenser

    NASA Astrophysics Data System (ADS)

    Xing, Jiyao; Rong, Weibin; Sun, Ding; Wang, Lefeng; Sun, Lining

    2016-09-01

    In the paper, we present a single-step lithography system whereby the robotically controlled micro-extrusion of resist adhesive onto a substrate surface to directly create resist adhesive patterns of interest. This system is modified from a robotic adhesive dispenser by shrinking the aperture of the nozzle to a few micrometers aiming to realize patterns at microscale. From experimental investigation, it is found that working factors including writing speed, working time, and applied pressure can be adopted to conveniently regulate the feature size (the width of the line features and the diameter of the dot features). To test its functionality, the system was used to pattern line features on silicon dioxide (SiO2) and generate an array of square-like silicon microstructure by combining with wet etching. It provides a simple and flexible alternative tool to facilitate the development of microfabrication.

  17. Single anterior tooth restoration using a self-etching adhesive system and a reinforced microfill composite.

    PubMed

    Feigenbaum, Norman

    2003-08-01

    Treatment for a single discolored anterior tooth may involve placement of a direct composite veneer to enhance a patient's smile and mask underlying discoloration. Among the challenges clinicians may face in this endeavor are the selection of suitable composite materials, application of an adhesive bonding system, and re-creation of the natural shade variations inherent in natural teeth. This article discusses the characteristics and placement protocol for a recently introduced self-etching adhesive system and a reinforced microfill composite when they are used to restore a single discolored central incisor.

  18. Detection of HEMA in self-etching adhesive systems with high performance liquid chromatography

    NASA Astrophysics Data System (ADS)

    Panduric, V.; Tarle, Z.; Hameršak, Z.; Stipetić, I.; Matosevic, D.; Negovetić-Mandić, V.; Prskalo, K.

    2009-04-01

    One of the factors that can decrease hydrolytic stability of self-etching adhesive systems (SEAS) is 2-hydroxymethylmethacrylate (HEMA). Due to hydrolytic instability of acidic methacrylate monomers in SEAS, HEMA can be present even if the manufacturer did not include it in original composition. The aim of the study was to determine the presence of HEMA because of decomposition by hydrolysis of methacrylates during storage, resulting with loss of adhesion strength to hard dental tissues of the tooth crown. Three most commonly used SEAS were tested: AdheSE ONE, G-Bond and iBond under different storage conditions. High performance liquid chromatography analysis was performed on a Nucleosil C 18-100 5 μm (250 × 4.6 mm) column, Knauer K-501 pumps and Wellchrom DAD K-2700 detector at 215 nm. Data were collected and processed by EuroCrom 2000 HPLC software. Calibration curves were made related eluted peak area to known concentrations of HEMA (purchased from Fluka). The elution time for HEMA is 12.25 min at flow rate 1.0 ml/min. Obtained results indicate that no HEMA was present in AdheSE ONE because methacrylates are substituted with methacrylamides that seem to be more stable under acidic aqueous conditions. In all other adhesive systems HEMA was detected.

  19. Improved Tensile Adhesion Specimens for High Strength Epoxy Systems in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Haddock, M. Reed; McLennan, Michael L.

    2000-01-01

    An improved tensile adhesion button has been designed and tested that results in higher measured tensile adhesion strength while providing increased capability for testing high strength epoxy adhesive systems. The best attributes of two well-established tensile button designs were combined and refined into an optimized tensile button. The most significant design change to the tensile button was to improve alignment of the bonded tensile button specimens during tensile testing by changing the interface between the tensile button and the tensile test machine. The established or old button design uses a test fixture that pulls from a grooved annulus or anvil head while the new button design pulls from a threaded hole in the centerline of the button. Finite element (FE) analysis showed that asymmetric loading of the established anvil head tensile button significantly increases the stress concentration in the adhesive, causing failure at lower tensile test loads. The new tensile button was designed to eliminate asymmetric loading and eliminate misalignment sensitivity. Enhanced alignment resulted in improved tensile adhesion strength measurement up to 13.8 MPa (2000psi) over the established button design. Another design change increased the capability of the button by increasing the threaded hole diameter allowing it to test high strength epoxy systems up to 85 MPa(less than 12,000 psi). The improved tensile button can be used in button- to-button or button-to-panel configurations.

  20. Reducing Seal Adhesion in Low Impact Docking Systems

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K.

    2010-01-01

    Silicone elastomers, used in seals for airlocks or other sealing surfaces in space, are sticky in their as-received condition. Because of the sticking, a greater force may be needed to separate the mating surfaces. If the adhesion is sufficiently high, a sudden unpredicted movement of the spacecraft during undocking, vibration, or uneven release could pull off the seal, resulting in a damage that would have to be repaired before another docking. The damaged seal can result in significant gas leakage and possibly in a catastrophic mishap impacting the safety of the crew. It is also possible that a compromised seal could result in a delayed but sudden gas leak that could put the crew at unexpected risk. This is especially of concern for androgynous seals, which have identical mating surfaces on both sides for interchangeability and redundancy. Such seals typically have elastomer-on-elastomer sealing surfaces. To reduce sticking, one could use release agents such as powders and lubricants, but these can be easily removed and transferred to other surfaces, causing uneven sealing and contamination. Modification of the elastomer surface to make a more slippery and less sticky surface that is integral with the bulk elastomer would be more desirable.

  1. A new angle on clinging in geckos: incline, not substrate, triggers the deployment of the adhesive system.

    PubMed

    Russell, Anthony P; Higham, Timothy E

    2009-10-22

    Lizards commonly climb in complex three-dimensional habitats, and gekkotans are particularly adept at doing this by using an intricate adhesive system involving setae on the ventral surface of their digits. However, it is not clear whether geckos always deploy their adhesive system, given that doing so may result in decreased (i.e. reduction in speed) locomotor performance. Here, we investigate circumstances under which the adhesive apparatus of clinging geckos becomes operative, and examine the potential trade-offs between speed and clinging. We quantify locomotor kinematics of a gecko with adhesive capabilities (Tarentola mauritanica) and one without (Eublepharis macularius). Whereas, somewhat unusually, E. macularius did not suffer a decrease in locomotor performance with an increase in incline, T. mauritanica exhibited a significant decrease in speed between the level and a 10 degrees incline. We demonstrate that this results from the combined influence of slope and the deployment of the adhesive system. All individuals kept their digits hyperextended on the level, but three of the six individuals deployed their adhesive system on the 10 degrees incline, and they exhibited the greatest decrease in velocity. The deployment of the adhesive system was dependent on incline, not surface texture (600 grit sandpaper and Plexiglas), despite slippage occurring on the level Plexiglas substrate. Our results highlight the type of sensory feedback (gravity) necessary for deployment of the adhesive system, and the trade-offs associated with adhesion.

  2. A 12-month clinical evaluation of pit-and-fissure sealants placed with and without etch-and-rinse and self-etch adhesive systems in newly-erupted teeth

    PubMed Central

    NOGOURANI, Maryam Karami; JANGHORBANI, Mohsen; KHADEM, Parvin; JADIDI, Zahra; JALALI, Shahriar

    2012-01-01

    Objectives The objective of this one-year clinical study was to investigate the effect of two adhesive systems (Adper Single Bond, a two-step etch-and-rinse and Clearfil SE Bond, a two-step self-etch system) on pit-and-fissure sealant retention in newly-erupted teeth. This study compared the success of the sealants in mesial and distopalatal grooves with and without these two adhesive systems. Material and Methods In a clinical trial, 35 children aged 6-8 years undergoing sealant placement were recruited. This one-year clinical study scored 70 mesial and 70 distopalatal sealants of newly-erupted permanent maxillary first molar, with a split-mouth design. All children received sealant alone in one permanent maxillary molar tooth. Children were randomized into two groups. One group received Self-Etch (SE) bond plus sealant and the other group received Single Bond plus sealant in another permanent maxillary molar tooth. Clinical evaluation at 3, 6 and 12 months was performed and the retention was studied in terms of the success and failure. Results The success rate of sealant in the distopalatal groove, using SEB at 3, 6 and 12 months was 93.3% (95% CI: 68.0, 99.8), 73.3% (95% CI: 44.9, 92.2) and 66.7% (95% CI: 38.4, 88.2), respectively. It was greater than that of the distopalatal groove in SB group with a success rate of 62.5% (95% CI: 35.4, 84.8), 31.3% (95% CI: 11.8, 58.7) and 31.3% (95% CI: 11.8, 58.7), at the three evaluation periods. The success rate of sealant in the mesial groove using SEB was 86.6% (95% CI: 59.5, 98.3), 53.3% (95% CI: 26.6, 78.7) and 53.3% (95% CI: 26.6, 78.7), while this was 100% (95% CI: 79.4, 100.0), 81.3% (95% CI: 54.4, 96.0) and 81.3% (95% CI: 54.4, 96.0) using SB, at 3, 6 and 12-month evaluation periods. Conclusions These results support the use of these two bonding agents in pit-and-fissure sealants under both isolated and contaminated conditions. Further, SE bond seemed to be less sensitive to moisture contamination. PMID:22858703

  3. Chemical adhesion rather than mechanical retention enhances resin bond durability of a dental glass-ceramic with leucite crystallites.

    PubMed

    Meng, X F; Yoshida, K; Gu, N

    2010-08-01

    This study aims to evaluate the effect of chemical adhesion by a silane coupler and mechanical retention by hydrofluoric acid (HFA) etching on the bond durability of resin to a dental glass ceramic with leucite crystallites. Half of the ceramic plates were etched with 4.8% HFA (HFA group) for 60 s, and the other half were not treated (NoHFA group). The scale of their surface roughness and rough area was measured by a 3D laser scanning microscope. These plates then received one of the following two bond procedures to form four bond test groups: HFA/cement, NoHFA/cement, HFA/silane/cement and NoHFA/silane/cement. The associated micro-shear bond strength and bond failure modes were tested after 0 and 30 000 thermal water bath cycles. Four different silane/cement systems (Monobond S/Variolink II, GC Ceramic Primer/Linkmax HV, Clearfil Ceramic Primer/Clearfil Esthetic Cement and Porcelain Liner M/SuperBond C&B) were used. The data for each silane/cement system were analyzed by three-way ANOVA. HFA treatment significantly increased the surface R(a) and R(y) values and the rough area of the ceramic plates compared with NoHFA treatment. After 30 000 thermal water bath cycles, the bond strength of all the test groups except the HFA/Linkmax HV group was significantly reduced, while the HFA/Linkmax HV group showed only adhesive interface failure. The other HFA/cement groups and all NoHFA/cement groups lost bond strength completely, and all NoHFA/silane/cement groups with chemical adhesion had significantly higher bond strength and more ceramic cohesive failures than the respective HFA/cement groups with mechanical retention. The result of the HFA/silane/cement groups with both chemical adhesion and mechanical retention revealed that HFA treatment could enhance the bond durability of resin/silanized glass ceramics, which might result from the increase of the chemical adhesion area on the ceramic rough surface and subsequently reduced degradation speed of the silane coupler

  4. Modelling and Laboratory Studies on the Adhesion Fatigue Performance for Thin-Film Asphalt and Aggregate System

    PubMed Central

    Wang, Dongsheng; Feng, Decheng

    2014-01-01

    Adhesion between asphalt and aggregate plays an important role in the performance of asphalt mixtures. A low-frequency adhesion fatigue test was proposed in this paper to study the effect of environment on the asphalt-aggregate adhesion system. The stress-based fatigue model had been utilized to describe the fatigue behavior of thin-film asphalt and aggregate system. The factors influencing the adhesion fatigue performance were also investigated. Experiment results show that asphalt has more important effect on the adhesion performance comparing with aggregate. Basalt, which is regarded as hydrophobic aggregates with low silica content, has better adhesion performance to asphalt binder when compared with granite. The effects of aging on the adhesion fatigue performance are different for PG64-22 and rubber asphalt. Long-term aging is found to reduce the adhesion fatigue lives for rubber asphalt and aggregate system, while the effect of long-term aging for aggregate and PG64-22 binder system is positive. Generally the increased stress amplitude and test temperature could induce greater damage and lead to less fatigue lives for adhesion test system. PMID:25054187

  5. Modelling and laboratory studies on the adhesion fatigue performance for thin-film asphalt and aggregate system.

    PubMed

    Wang, Dongsheng; Yi, Junyan; Feng, Decheng

    2014-01-01

    Adhesion between asphalt and aggregate plays an important role in the performance of asphalt mixtures. A low-frequency adhesion fatigue test was proposed in this paper to study the effect of environment on the asphalt-aggregate adhesion system. The stress-based fatigue model had been utilized to describe the fatigue behavior of thin-film asphalt and aggregate system. The factors influencing the adhesion fatigue performance were also investigated. Experiment results show that asphalt has more important effect on the adhesion performance comparing with aggregate. Basalt, which is regarded as hydrophobic aggregates with low silica content, has better adhesion performance to asphalt binder when compared with granite. The effects of aging on the adhesion fatigue performance are different for PG64-22 and rubber asphalt. Long-term aging is found to reduce the adhesion fatigue lives for rubber asphalt and aggregate system, while the effect of long-term aging for aggregate and PG64-22 binder system is positive. Generally the increased stress amplitude and test temperature could induce greater damage and lead to less fatigue lives for adhesion test system.

  6. The effects of wheelset driving system suspension parameters on the re-adhesion performance of locomotives

    NASA Astrophysics Data System (ADS)

    Yao, Yuan; Zhao, Shiyin; Xiao, Feixiong; Liu, Jianxin

    2015-12-01

    In this study, in order to examine the effects of a wheelset driving system suspension parameters on the re-adhesion performance of locomotives, the stick-slip vibration was analysed according to theoretical and simulation analysis. The decrease of the slip rate vibration amplitude improved the stability of the stick-slip vibration and the re-adhesion performance of locomotives. Increasing the longitudinal guide stiffness of the wheelset and the motor suspension stiffness were proposed as effective measures to improve the re-adhesion performance of locomotives. These results showed that the dynamic slip rate was inversely proportional to the series result of the square root of the longitudinal guide and motor suspension stiffness. The larger the motor suspension stiffness was, the smaller the required longitudinal guidance stiffness was at the same re-adhesion time once the wheel slip occurred, and vice versa. The simulation results proved that the re-adhesion time of the locomotive was approximately proportional to amplitude of the dynamic slip rate. When the stick-slip vibration occurred, the rotary and the longitudinal vibrations of the wheelset were coupled, which was confirmed by train's field tests.

  7. Adhesion of Streptococcus mutans to various dental materials in a laminar flow chamber system.

    PubMed

    Rosentritt, Martin; Hahnel, Sebastian; Gröger, Gerhard; Mühlfriedel, Bastian; Bürgers, Ralf; Handel, Gerhard

    2008-07-01

    Newly developed dental materials have to be tested for their susceptibility to adhere bacteria causing caries and periodontitis. The objective of this study was to establish an in vitro laminar flow chamber assay for dental material evaluation with regard to the adhesion of oral bacteria. Test specimens of commonly used dental materials (ceramic (five brands of ceramics, n = 15/brand), composite (eight brands of composites, n = 15/brand), and alloy (two brands of alloys, n = 15/brand) specimens) were inserted in a laminar flow chamber system and rinsed with artificial saliva (2 h) and Streptococcus mutans NCTC 10,449 suspension (4 h) successively. The amount of adhered bacteria was quantified using a Resazurin reduction assay (Alamar Blue). Statistical analysis was performed using the Mann-Whitney U-test (alpha = 0.05). Regarding adhesion of Streptococcus mutans, significant differences between the various material classes were found. Highest fluorescence values (ranging from 973 to 3145), correlating with high bacterial adhesion, were found on composite samples, and lowest values (173-272) were found on the alloys. Ceramic specimens showed an intermediate adhesion of Streptococcus mutans (fluorescence values from 532 to 1326). Streptococcus mutans NCTC 10449 adhered differently to the various classes of dental materials. The established laminar flow chamber device provides a suitable method for evaluating the adhesion of oral bacteria to dental material surfaces.

  8. Studies on adhesion characteristics and corrosion behaviour of vinyltriethoxysilane/epoxy coating protective system on aluminium

    NASA Astrophysics Data System (ADS)

    Bajat, Jelena B.; Milošev, Ingrid; Jovanović, Željka; Mišković-Stanković, Vesna B.

    2010-03-01

    The corrosion stability of vinyltriethoxysilane/epoxy coating protective system on aluminium is strongly related to the strength of bonds forming at the metal/organic coating interface. This article is a study of adhesion, composition, electrochemical and transport properties of epoxy coatings electrodeposited on bare aluminium and aluminium pretreated by vinyltriethoxysilane (VTES) during exposure to 3% NaCl. The VTES film was deposited on aluminium surface from 2% vinyltriethoxysilane solution during 30 s. From the values of adhesion strength (pull-off test), time dependence of pore resistance and coating capacitance of epoxy coating (impedance measurements) and diffusion coefficient of water through epoxy coating (gravimetric liquid sorption measurements), the influence of VTES sublayer on the corrosion stability of the electrodeposited epoxy coating was shown. The work discusses the role of the VTES pretreatment in the enhanced adhesion and corrosion stability of epoxy cataphoretic coating. The electrochemical results showed that the aluminium pretreatment by VTES film improved barrier properties of epoxy coating (greater pore resistance and lower coating capacitance). The lower value of diffusion coefficient of water through epoxy coating indicates the lower porosity, while the smaller adhesion reduction points to better adhesion of epoxy coating on aluminium pretreated by VTES film. The composition of the deposited coatings investigated by XPS enabled the clarification of the bonding mechanism.

  9. Evaluation of micro-shear bond strength of resin modified glass-ionomer to composite resins using various bonding systems

    PubMed Central

    Kasraie, Shahin; Shokripour, Mohadese; Safari, Mahin

    2013-01-01

    Aim: The aim was to compare the micro-shear bond strength between composite and resin-modified glass-ionomer (RMGI) by different adhesive systems. Materials and Methods: A total of 16 discs of RMGI with a diameter of 15 mm and a thickness of 2 mm were randomly divided into four groups (n = 4). Four cylinders of composite resin (z250) were bonded to the RMGI discs with Single Bond, Clearfil SE Bond and Clearfil S3 Bond in Groups 1-3, respectively. The fourth group was the control. Samples were tested by a mechanical testing machine with a strain rate of 0.5 mm/min. Failure mode was assessed under a stereo-microscope. Results: The means of micro-shear bond strength values for Groups 1-4 were 14.45, 23.49, 16.23 and 5.46 MPa, respectively. Using a bonding agent significantly increased micro-shear bond strength (P = 0.0001). Conclusion: Micro-shear bond strength of RMGI to composite increased significantly with the use of adhesive resin. The bond strength of RMGI to composite resin could vary depending upon the type of adhesive system used. PMID:24347892

  10. Adhesive Bonding of Titanium to Carbon-Carbon Composites for Heat Rejection Systems

    NASA Technical Reports Server (NTRS)

    Cerny, Jennifer; Morscher, Gregory

    2006-01-01

    High temperature adhesives with good thermal conductivity, mechanical performance, and long term durability are crucial for the assembly of heat rejection system components for space exploration missions. In the present study, commercially available adhesives were used to bond high conductivity carbon-carbon composites to titanium sheets. Bonded pieces were also exposed to high (530 to 600 Kelvin for 24 hours) and low (liquid nitrogen 77K for 15 minutes) temperatures to evaluate the integrity of the bonds. Results of the microstructural characterization and tensile shear strengths of bonded specimens will be reported. The effect of titanium surface roughness on the interface microstructure will also be discussed.

  11. Micro-tensile bond strength of adhesive systems applied on occlusal primary enamel.

    PubMed

    Ramires-Romito, Ana Cláudia; Reis, Alessandra; Loguercio, Alessandro Dourado; de Góes, Mario Fernando; Grande, Rosa Helena Miranda

    2004-01-01

    The aim of this study was to evaluate the micro-tensile bond strength of adhesive systems (OptiBond Solo, Kerr; Prime & Bond NT, Dentsply) on occlusal surface of primary molars. The adhesives were tested under manufacturers' specifications and after contamination of the bonding site with saliva. Hourglass cylindrical-shaped samples were obtained and subjected to a tensile force. No significant difference was observed among the groups. OptiBond Solo and Prime & Bond NT showed similar values of bond strengths when applied on occlusal enamel of primary molar under either saliva contamination or not.

  12. Friction and Adhesion Forces of Bacillus thuringiensis Spores on Planar Surfaces in Atmospheric Systems

    SciTech Connect

    Kweon, Hyojin; Yiacoumi, Sotira; Tsouris, Costas

    2011-01-01

    The kinetic friction force and the adhesion force of Bacillus thuringiensis spores on planar surfaces in atmospheric systems were studied using atomic force microscopy. The influence of relative humidity (RH) on these forces varied for different surface properties including hydrophobicity, roughness, and surface charge. The friction force of the spore was greater on a rougher surface than on mica, which is atomically flat. As RH increases, the friction force of the spores decreases on mica whereas it increases on rough surfaces. The influence of RH on the interaction forces between hydrophobic surfaces is not as strong as for hydrophilic surfaces. The friction force of the spore is linear to the sum of the adhesion force and normal load on the hydrophobic surface. The poorly defined surface structure of the spore and the adsorption of contaminants from the surrounding atmosphere are believed to cause a discrepancy between the calculated and measured adhesion forces.

  13. [Bond strength to dentin of resin composites associated with filled and unfilled adhesive systems].

    PubMed

    Youssef, J A; Turbino, M L; Youssef, M N; Matson, E

    2001-01-01

    This study analyzed in vitro two brands of one-step adhesive systems of fourth generation (Optisolo--Kerr, filled; and Single Bond--3M, unfilled) and two composite resins (Prodigy--Kerr and Z100--3M), aiming at evaluating their bond strength to dentin. Eighty human extracted molars were embedded in acrylic resin and grounded until dentin was exposed in longitudinal direction. The specimens were divided in 4 groups. Composite resin cones were bonded to the specimens using the mentioned adhesive systems, following the instructions of the manufacturers. The test-specimens were submitted to tensile tests using a 4442 Universal Mini-Instron Machine with the speed of 0.5 mm/min. The results were converted into MPa, according to the area of adhesion, and submitted to statistical analysis with ANOVA. There was significant statistical difference (p < 0.01) between the adhesive systems (F = 7.24). Optisolo (m = 11.03 +/- 4.23) showed better bond strength than Single Bond (m = 8.37 +/- 4.54). There was no significant statistical difference (p > 0.05) between the composites (F = 0.43).

  14. Differential expression of cell adhesion molecules in an ionizing radiation-induced breast cancer model system.

    PubMed

    Calaf, Gloria M; Roy, Debasish; Narayan, Gopeshwar; Balajee, Adayabalam S

    2013-07-01

    Cell-cell adhesion is mediated by members of the cadherin-catenin system and among them E-cadherin and β-catenin are important adhesion molecules for epithelial cell function and preservation of tissue integrity. To investigate the importance of cell adhesion molecules in breast carcinogenesis, we developed an in vitro breast cancer model system wherein immortalized human breast epithelial cell line, MCF-10F, was malignantly transformed by exposure to low doses of high linear energy transfer (LET) α particle radiation (150 keV/µm) and subsequent growth in the presence or absence of 17β-estradiol. This model consisted of human breast epithelial cells in different stages of transformation: i) parental cell line MCF-10F; ii) MCF-l0F continuously grown with estradiol at 10(-8) (Estrogen); iii) a non-malignant cell line (Alpha3); and iv) a malignant and tumorigenic cell line (Alpha5) and the Tumor2 cell line derived from the nude mouse xenograft of the Alpha5 cell line. Expression levels of important cell adhesion molecules such as α-catenin, β-catenin, γ-catenin, E-cadherin and integrin were found to be higher at the protein level in the Alpha5 and Tumor2 cell lines relative to these levels in the non-tumorigenic MCF-10F, Estrogen and Alpha3 cell lines. In corroboration, cDNA expression analysis revealed elevated levels of genes involved in the cell adhesion function [E-cadherin, integrin β6 and desmocollin3 (DSc3)] in the Alpha5 and Tumor2 cell lines relative to the levels in the MCF-10F, Estrogen and Alpha3 cell lines. Collectively, our results suggest that cell adhesion molecules are expressed at higher levels in malignantly transformed breast epithelial cells relative to levels in non-malignant cells. However, reduced levels of adhesion molecules observed in the mouse xenograft-derived Tumor 2 cell line compared to the pre-tumorigenic Alpha5 cell line suggests that the altered expression levels of adhesion molecules depend on the tumor tissue

  15. The improvement of adhesive properties of PEEK through different pre-treatments

    NASA Astrophysics Data System (ADS)

    Hallmann, Lubica; Mehl, Albert; Sereno, Nuno; Hämmerle, Christoph H. F.

    2012-07-01

    The purpose of this in vitro study was the evaluation of the bond strength of the adhesives/composite resin to Poly Ether Ether Ketone (PEEK) based dental polymer after using different surface conditioning methods. PEEK blanks were cut into discs. All disc specimens were polished with 800 grit SiC paper and divided into 6 main groups. Main groups were divided into 2 subgroups. The main groups of 32 specimens each were treated as follow: (1) control specimens (no treatment), (2) piranha solution etching, (3) abraded with 50 μm alumina particles and chemical etching, (4) abraded with 110 μm alumina particles and chemical etching, (5) abraded with 30 μm silica-coated alumina particles and chemical etching, (6) abraded with 110 μm silica-coated alumina particles and chemical etching. Plexiglas tubes filled with a composite resin (RelyX Unicem) were bonded to the specimens. The adhesives used were Heliobond and Clearfil Ceramic Primer. Each specimen was stored in distilled water (37 °C) for 3 days. Tensile bond strength was measured in a universal testing machine and failure methods were evaluated. Abraded surface with 50 μm alumina particles followed by etching with piranha solution lead to the highest bond strength of 21.4 MPa when Heliobond like adhesive was used. Tribochemical silica coated/etched PEEK surfaces did not have an effect on the bond strength. Non-treated PEEK surface was not able to establish a bond with composite resin. The proper choice of adhesive/composite resin system leads to a strong bond. ConclusionAirborne particle abrasion in combination with piranha solution etching improves the adhesive properties of PEEK.

  16. In vitro evaluation of the bonding durability of self-adhesive resin cement to titanium using highly accelerated life test.

    PubMed

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Matinlinna, Jukka Pekka; Shinya, Akiyoshi

    2011-01-01

    The purpose of this in vitro study was to evaluate the bonding durability of three self-adhesive resin cements to titanium using the Highly Accelerated Life Test (HALT). The following self-adhesive resin cements were used to bond pairs of titanium blocks together according to manufacturers' instructions: RelyX Unicem, Breeze, and Clearfil SA Luting. After storage in water at 37°C for 24 h, bonded specimens (n=15) immersed in 37°C water were subjected to cyclic shear load testing regimes of 20, 30, or 40 kg using a fatigue testing machine. Cyclic loading continued until failure occurred, and the number of cycles taken to reach failure was recorded. The bonding durability of a self-adhesive resin cement to titanium was largely influenced by the weight of impact load. HALT showed that Clearfil SA Luting, which contained MDP monomer, yielded the highest median bonding lifetime to titanium.

  17. Effect of collagen removal on shear bond strength of two single-bottle adhesive systems.

    PubMed

    Saboia, V P; Rodrigues, A L; Pimenta, L A

    2000-01-01

    This study evaluated the effect of collagen removal on the shear bond strength for two single-bottle adhesive systems. The ultrastructure of the dentin after treatments and the dentin-resin interface were examined under SEM. The buccal and lingual surfaces of 80 extracted human third molars were ground to expose dentin. Teeth were randomly assigned to four groups and received the following treatments: Group 1(P&B 2.1), Prime & Bond 2.1 adhesive was applied according to the manufacturer's directions and Restorative Z100 composite resin was bonded to the dentin surface; Group 2 (P&B 2.1/NaOCl), the same procedures were followed as for Group 1 except that the surfaces were treated with 10% sodium hypochlorite (NaOCl) for one minute after acid conditioning; Group 3 (SB), Single Bond (3M) was applied according to the manufacturer's recommendations; Group 4 (SB/NaOCl), the same procedure was followed for Group 2, using Single Bond. The specimens were stored in humidity at 37 degrees C for 24 hours and tested in a shear mode at a crosshead speed of 0.5 mm/minute. The Kruskal-Wallis test and Multiple Comparisons were used for statistical analysis of the data. A one-minute exposure of dentin to 10% NaOCl following acid conditioning resulted in a significant increase of the dentin shear bond strength for Prime & Bond 2.1. The same treatment for Single Bond resulted in a significant reduction in bond strength. Groups 1 and 3 were not statistically different from each other. The presence of a collagen layer resulted in the formation of a hybrid layer and similar values of adhesion for both adhesive systems. The results may suggest that collagen removal improves the bond strength for this acetone-based adhesive system but several such systems would need to be investigated.

  18. Control system for maximum use of adhesive forces of a railway vehicle in a tractive mode

    NASA Astrophysics Data System (ADS)

    Spiryagin, Maksym; Lee, Kwan Soo; Yoo, Hong Hee

    2008-04-01

    The realization of maximum adhesive forces for a railway vehicle is a very difficult process, because it involves using tractive efforts and depends on friction characteristics in the contact zone between wheels and rails. Tractive efforts are realized by means of tractive torques of motors, and their maximum values can provide negative effects such as slip and skid. These situations usually happen when information about friction conditions is lacking. The negative processes have a major influence on wearing of contact bodies and tractive units. Therefore, many existing control systems for vehicles use an effect of a prediction of a friction coefficient between wheels and rails because measuring a friction coefficient at the moment of running vehicle movement is very difficult. One of the ways to solve this task is to use noise spectrum analysis for friction coefficient detection. This noise phenomenon has not been clearly studied and analyzed. In this paper, we propose an adhesion control system of railway vehicles based on an observer, which allows one to determine the maximum tractive torque based on the optimal adhesive force between the wheels (wheel pair) of a railway vehicle and rails (rail track) depending on weight load from a wheel to a rail, friction conditions in the contact zone, a lateral displacement of wheel set and wheel sleep. As a result, it allows a railway vehicle to be driven in a tractive mode by the maximum adhesion force for real friction conditions.

  19. Dentin bond strength of an adhesive system irradiated with an Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Ruschel, V. C.; Malta, D. A. M. P.; Monteiro, S., Jr.

    2016-11-01

    The objective of this study was to evaluate the microtensile bond strength of an adhesive system applied to dentin, followed by Nd:YAG laser irradiation. Twenty-two recently extracted third molars were divided into four groups (n  =  5). In the G1 and G2 groups, the adhesive system was applied conventionally, and in groups G3 and G4, the adhesive system was irradiated with an Nd:YAG laser (100 J cm-2). The specimens were stored in distilled water at 37 °C, those in groups G1 and G3 for 24 h, and those in groups G2 and G4 for 3 months. Two teeth from groups G1 and G3 were used for observation of the hybrid layer, using a confocal microscope (n  =  1). The teeth were submitted to a microtensile bond strength test. Analysis of the type of fracture was performed using a stereoscope (40×). The results for microtensile bond strength (MPa) and standard deviation (±SD) were: G1—31.68 (5.14); G2—37.88 (±5.04) G3—35.32 (±8.79) G4—31.53 (±9.01). There were no significant differences among the groups (p  >  0.05). Adhesive failure was predominant in all the groups. The Nd:YAG laser irradiation of the adhesives did not influence dentin bond strength during the periods of 24 h or 3 months of storage in distilled water.

  20. Reliability of materials in MEMS : residual stress and adhesion in a micro power generation system.

    SciTech Connect

    Moody, Neville Reid; Kennedy, Marian S.; Bahr, David F.

    2007-09-01

    The reliability of thin film systems is important to the continued development of microelectronic and micro-electro-mechanical systems (MEMS). The reliability of these systems is often tied to the ability of the films to remain adhered to its substrate. By measuring the amount of energy to separate the film from the substrate, researchers can predicts film lifetimes. Recent work has resulted in several different testing techniques to measure this energy including spontaneous buckling, indentation induced delamination and four point bending. This report focuses on developing quantifiable adhesion measurements for multiple thin film systems used in MEMS and other thin film systems of interest to Sandia programs. First, methods of accurately assessing interfacial toughness using stressed overlayer methods are demonstrated using both the W/Si and Au/Si systems. For systems where fracture only occurs along the interface, such as Au/Si, the calculated fracture energies between different tests are identical if the energy put into the system is kept near the needed strain energy to cause delamination. When the energy in the system is greater than needed to cause delamination, calculated adhesion energies can increase by a factor of three due to plastic deformation. Dependence of calculated adhesion energies on applied energy in the system was also shown when comparisons of four point bending and stressed overlayer test methods were completed on Pt/Si systems. The fracture energies of Pt/Ti/SiO{sub 2} were studied using four-point bending and compressive overlayers. Varying the thickness of the Ti film from 2 to 17 nm in a Pt/Ti/SiO{sub 2} system, both test methods showed an increase of adhesion energy until the nominal Ti thickness was 12nm. Then the adhesion energy began to decrease. While the trends in toughness are similar, the magnitude of the toughness values measured between the test methods is not the same, demonstrating the difficulty in extracting mode I toughness

  1. Endothelin-3 stimulates cell adhesion and cooperates with β1-integrins during enteric nervous system ontogenesis

    PubMed Central

    Gazquez, Elodie; Watanabe, Yuli; Broders-Bondon, Florence; Paul-Gilloteaux, Perrine; Heysch, Julie; Baral, Viviane; Bondurand, Nadège; Dufour, Sylvie

    2016-01-01

    Endothelin-3 (EDN3) and β1-integrins are required for the colonization of the embryonic gut by enteric neural crest cells (ENCCs) to form the enteric nervous system (ENS). β1-integrin-null ENCCs exhibit migratory defects in a region of the gut enriched in EDN3 and in specific extracellular matrix (ECM) proteins. We investigated the putative role of EDN3 on ENCC adhesion properties and its functional interaction with β1-integrins during ENS development. We show that EDN3 stimulates ENCC adhesion to various ECM components in vitro. It induces rapid changes in ENCC shape and protrusion dynamics favouring sustained growth and stabilization of lamellipodia, a process coincident with the increase in the number of focal adhesions and activated β1-integrins. In vivo studies and ex-vivo live imaging revealed that double mutants for Itgb1 and Edn3 displayed a more severe enteric phenotype than either of the single mutants demonstrated by alteration of the ENS network due to severe migratory defects of mutant ENCCs taking place early during the ENS development. Altogether, our results highlight the interplay between the EDN3 and β1-integrin signalling pathways during ENS ontogenesis and the role of EDN3 in ENCC adhesion. PMID:27905407

  2. Bond strength evaluation of three self-adhesive luting systems used for cementing composite and porcelain.

    PubMed

    De Angelis, F; Minnoni, A; Vitalone, L M; Carluccio, F; Vadini, M; Paolantonio, M; D'Arcangelo, C

    2011-01-01

    Self-adhesive resin cements were recently introduced with the purpose of simplifying the cementation technique, as they combine the use of adhesive and cement in a single application, eliminating the need for pretreatment of the tooth. In the present study a microtensile bond strength test (μ-TBS) was used to compare three self-adhesives, an etch-and-rinse and a self-etch luting system, in the cementation of resin-based composite (RBC) and ceramic disks to dentin. Freshly extracted molars were transversally sectioned to expose flat, deep dentin surfaces. Cylindrical specimens (5 mm in diameter and 10 mm in height), consisting of RBC disks and leucite-based glass ceramic disks, were produced. The RBC disks were sandblasted with 50-μm Al2O3. The ceramic disks were conditioned with 9.5% hydrofluoric acid gel and silane application. All of the disks were then bonded to dentin surfaces employing five different luting agents: iCEM Self Adhesive (Heraeus Kulzer), MaxCem (Kerr Corporation), RelyX UniCem (3M ESPE), EnaCem HF (Micerium), and Panavia F2.0 (Kuraray-Dental). The products were applied according to the manufacturers' instructions. The specimens were sectioned perpendicular to the adhesive interface to produce multiple beams measuring approximately 1 mm2 in cross section. For each experimental group 12 beams were tested. The preterm failures were also taken into account. All of the specimen preparations were performed by the same operator. The beams were tested under tension at a crosshead speed of 0.5 mm/min until failure. Mean μ-TBS values were calculated for each group. Data were analyzed by a two-way analysis of variance, and multiple comparisons were performed using a Tukey test (α=0.05). The UniCem group showed the lowest number of preterm failures among the tested self-adhesive systems. When premature debondings were included in the mean value calculation, bond strength values for the UniCem group were statistically equal to or even higher than those

  3. Thermal Characterization of Adhesive

    NASA Technical Reports Server (NTRS)

    Spomer, Ken A.

    1999-01-01

    The current Space Shuttle Reusable Solid Rocket Motor (RSRM) nozzle adhesive bond system is being replaced due to obsolescence. Down-selection and performance testing of the structural adhesives resulted in the selection of two candidate replacement adhesives, Resin Technology Group's Tiga 321 and 3M's EC2615XLW. This paper describes rocket motor testing of these two adhesives. Four forty-pound charge motors were fabricated in configurations that would allow side by side comparison testing of the candidate replacement adhesives and the current RSRM adhesives. The motors provided an environment where the thermal performance of adhesives in flame surface bondlines was compared. Results of the FPC testing show that: 1) The phenolic char depths on radial bond lines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used; 2) The adhesive char depth of the candidate replacement adhesives is less than the char depth of the current adhesives; 3) The heat-affected depth of the candidate replacement adhesives is less than the heat-affected depth of the current adhesives; and 4) The ablation rates for both replacement adhesives are slower than that of the current adhesives.

  4. Shear Bond Strength of Orthodontic Brackets Fixed with Remineralizing Adhesive Systems after Simulating One Year of Orthodontic Treatment.

    PubMed

    Bezerra, Gisele Lima; Torres, Carlos Rocha Gomes; Tonetto, Mateus Rodrigues; Borges, Alvaro Henrique; Kuga, Milton Carlos; Bandeca, Matheus Coelho; Firoozmand, Leily Macedo

    2015-01-01

    The objective of this study is to assess, in vitro, the shear bond strength of orthodontic brackets fixed with remineralizing adhesive systems submitted to thermomechanical cycling, simulating one year of orthodontic treatment. Sixty-four bovine incisor teeth were randomly divided into 4 experimental groups (n = 16): XT: Transbond XT, QC: Quick Cure, OL: Ortholite Color, and SEP: Transbond Plus Self-Etching Primer. The samples were submitted to thermomechanical cycling simulating one year of orthodontic treatment. Shear bond strength tests were carried out using a universal testing machine with a load cell of 50 KgF at 0.5 mm/minute. The samples were examined with a stereomicroscope and a scanning electron microscope (SEM) in order to analyze enamel surface and Adhesive Remnant Index (ARI). Kruskal-Wallis and Mann-Whitney (with Bonferroni correction) tests showed a significant difference between the studied groups (p < 0.05). Groups XT, QC, and SEP presented the highest values of adhesive resistance and no statistical differences were found between them. The highest frequency of failures between enamel and adhesive was observed in groups XT, QC, and OL. Quick Cure (QC) remineralizing adhesive system presented average adhesive resistance values similar to conventional (XT) and self-etching (SEP) adhesives, while remineralizing system (OL) provided the lowest values of adhesive resistance.

  5. Shear Bond Strength of Orthodontic Brackets Fixed with Remineralizing Adhesive Systems after Simulating One Year of Orthodontic Treatment

    PubMed Central

    Bezerra, Gisele Lima; Torres, Carlos Rocha Gomes; Tonetto, Mateus Rodrigues; Borges, Alvaro Henrique; Kuga, Milton Carlos; Bandeca, Matheus Coelho; Firoozmand, Leily Macedo

    2015-01-01

    The objective of this study is to assess, in vitro, the shear bond strength of orthodontic brackets fixed with remineralizing adhesive systems submitted to thermomechanical cycling, simulating one year of orthodontic treatment. Sixty-four bovine incisor teeth were randomly divided into 4 experimental groups (n = 16): XT: Transbond XT, QC: Quick Cure, OL: Ortholite Color, and SEP: Transbond Plus Self-Etching Primer. The samples were submitted to thermomechanical cycling simulating one year of orthodontic treatment. Shear bond strength tests were carried out using a universal testing machine with a load cell of 50 KgF at 0.5 mm/minute. The samples were examined with a stereomicroscope and a scanning electron microscope (SEM) in order to analyze enamel surface and Adhesive Remnant Index (ARI). Kruskal-Wallis and Mann-Whitney (with Bonferroni correction) tests showed a significant difference between the studied groups (p < 0.05). Groups XT, QC, and SEP presented the highest values of adhesive resistance and no statistical differences were found between them. The highest frequency of failures between enamel and adhesive was observed in groups XT, QC, and OL. Quick Cure (QC) remineralizing adhesive system presented average adhesive resistance values similar to conventional (XT) and self-etching (SEP) adhesives, while remineralizing system (OL) provided the lowest values of adhesive resistance. PMID:26380371

  6. Effect of agitation and storage temperature on water sorption and solubility of adhesive systems.

    PubMed

    Argolo, Saryta; Mathias, Paula; Aguiar, Thaiane; Lima, Adriano; Santos, Sara; Foxton, Richard; Cavalcanti, Andrea

    2015-01-01

    The purpose of this study was to evaluate the influence of storage temperature and flask agitation on the water sorption (WS) and solubility (SL) of simplified adhesive systems. Seventy-two disc-shaped specimens were prepared according to the adhesive system (water/ethanol-based: Adper Single Bond 2; and water-based: One Coat Bond SL) and experimental conditions tested (mechanical agitation and storage temperature). Statistical analysis (3-way ANOVA, alpha=5%) found significantly greater WS and SL means for the water/ethanol-based system when compared to the water-based. Irrespective of factors studied, significant differences in WS and SL were noted between cold and room temperatures, with greater values been obtained at 1°C, and lower ones at 20°C. Agitation provided increased WS for both materials at all temperatures, but did not affect their SL. The mechanical agitation of the flask may negatively affect the dynamics of diffusion of simplified adhesive systems, even at extremely cold or warm temperatures.

  7. Ultrastructural evaluation of the hybrid layer after cementation of fiber posts using adhesive systems with different curing modes.

    PubMed

    Abou-Id, Luciana Rigueira; Morgan, Luís Fernando S A; Silva, Gerluza Aparecida Borges; Poletto, Luiz Thadeu de Abreu; Lanza, Lincoln Dias; Albuquerque, Rodrigo de Castro

    2012-01-01

    This in vitro study evaluated the adhesive interface of intraradicular fiber glass posts and root dentin using scanning electron microscopy (SEM). Forty-eight single-rooted premolars were randomly divided into 6 groups consisting of chemical, dual, or light cured adhesive systems combined with either chemical or dual cure resin cements. Scanning electron microscopic analysis showed the best results for continuity, density and morphology of the hybrid layer and resin tags for the combination of a self-cure adhesive with self-cure cement resin, followed by a dual-cure adhesive with self-cure cement resin, and finally a light-cure adhesive with self-cure cement. For the dual-cure resin cement, the same relation may be observed. The apical third was the most critical region for evaluated the criteria for all combinations of materials (Kruskal-Wallis and Friedman tests; p<0.001). Generally, the simplification of steps in the adhesive system and the polymerization reaction of resin adhesives and cements produced a direct effect on the quality of the adhesive post/dentin substrate interface.

  8. Morphological evaluation of new total etching and self etching adhesive system interfaces with dentin

    PubMed Central

    Hegde, Mithra N; Hegde, Priyadarshini; Chandra, C Ravi

    2012-01-01

    Aim: The purpose of this study is to evaluate the resin-dentin interface, quality of the hybrid layer of total-etching and self-etching adhesive systems under scanning electron microscopy (SEM). Materials and Methods: Class V cavities were prepared in 40 extracted human molars. In Group I XP bond (Dentsply), in Group II Adper Single Bond II (3M ESPE), in Group III Adper Easy One (3M ESPE), and in Group IV Xeno V (Dentsply) were applied. Teeth were restored with resin composite, subjected to thermocycling, and sectioned in Buccolingual plane. The samples were demineralized using 6N HCl, for 30 sec, and deproteinized with 2.5% NaOCl for 10 min, gold sputtered, and viewed using a scanning electron microscope. Results: Among the total-etch systems used, the XP Bond showed a clear, thick hybrid layer, with long resin tags and few voids. Among the self-etch adhesive systems, the Xeno V did not show a clearly recognizable hybrid layer, but there were no voids and continuous adaptation was seen with the dentin. Conclusion: The adaptation of self-etch adhesives to the resin-dentin interface was good without voids or separation of phases; showing a thin, continuous hybrid layer. PMID:22557814

  9. Effect of digluconate chlorhexidine on bond strength between dental adhesive systems and dentin: A systematic review

    PubMed Central

    Dionysopoulos, Dimitrios

    2016-01-01

    Aim: This study aimed to systematically review the literature for the effect of digluconate chlorhexidine (CHX) on bond strength between dental adhesive systems and dentin of composite restorations. Materials and Methods: The electronic databases that were searched to identify manuscripts for inclusion were Medline via PubMed and Google search engine. The search strategies were computer search of the database and review of reference lists of the related articles. Search words/terms were as follows: (digluconate chlorhexidine*) AND (dentin* OR adhesive system* OR bond strength*). Results: Bond strength reduction after CHX treatments varied among the studies, ranging 0-84.9%. In most of the studies, pretreatment CHX exhibited lower bond strength reduction than the control experimental groups. Researchers who previously investigated the effect of CHX on the bond strength of dental adhesive systems on dentin have reported contrary results, which may be attributed to different experimental methods, different designs of the experiments, and different materials investigated. Conclusions: Further investigations, in particular clinical studies, would be necessary to clarify the effect of CHX on the longevity of dentin bonds. PMID:26957786

  10. Effect of silorane-based adhesive system on bond strength between composite and dentin substrate

    PubMed Central

    Pereira, Jefferson Ricardo; Júnior, Lindomar Corrêa; de Souza Almeida, Mauro; do Valle, Accácio Lins; Honório, Heitor Marques; Vidotti, Hugo Alberto; De Souza, Grace Mendonca

    2015-01-01

    Context: The complexities of the oral environment, the dentin substrate, and the different bond and composite resin systems represent a challenge to the maintenance of reasonable bond between the composite resin and the tooth structure. Aims: To evaluate the effect of the adhesive system on bond strength between silorane-based composite resin and dentin. Materials and Methods: Fourteen human molars extracted were selected and vertically cut into 3 dentin fragments, randomly divided among the experimental groups and restored with Z250 and P90 composite resin using different adhesive protocols (Adper Single Bond 2, Silorano primer, Adper SE Plus, and Scotchbond Multiuse). Two composite resin cylinders were built up on each dentin surface (n = 10) and subjected to a micro-shear bond strength test. Statistical Analysis Used: Kruskal–Wallis one-way analysis of variance and Tukey test (P = 0.05). Results: According to the results, Kruskal–Wallis test evidenced at least one statistical significant difference (P = 0.001). The Tukey test showed statistically significant differences among the group (P < 0.05). Group PSM8 (P90 + SM) showed statically significant higher results when compared with groups PSP4 (P90 + SP), PSB2 (P90 + SB), and ZSE5 (Z250 + SE). Conclusion: The results evidenced that the monomer of the adhesive system has an effect on bond strength between the composite resin and dentin. PMID:26752846

  11. Influence of laser etching on enamel and dentin bond strength of Silorane System Adhesive.

    PubMed

    Ustunkol, Ildem; Yazici, A Ruya; Gorucu, Jale; Dayangac, Berrin

    2015-02-01

    The aim of this in vitro study was to evaluate the shear bond strength (SBS) of Silorane System Adhesive to enamel and dentin surfaces that had been etched with different procedures. Ninety freshly extracted human third molars were used for the study. After the teeth were embedded with buccal surfaces facing up, they were randomly divided into two groups. In group I, specimens were polished with a 600-grit silicon carbide (SiC) paper to obtain flat exposed enamel. In group II, the overlying enamel layer was removed and exposed dentin surfaces were polished with a 600-grit SiC paper. Then, the teeth in each group were randomly divided into three subgroups according to etching procedures: etched with erbium, chromium:yttrium-scandium-gallium-garnet laser (a), etched with 35% phosphoric acid (b), and non-etched (c, control). Silorane System Adhesive was used to bond silorane restorative to both enamel and dentin. After 24-h storage in distilled water at room temperature, a SBS test was performed using a universal testing machine at a crosshead speed of 1 mm/min. The data were analyzed using two-way ANOVA and Bonferroni tests (p < 0.05). The highest SBS was found after additional phosphoric acid treatment in dentin groups (p < 0.05). There were no statistically significant differences between the laser-etched and non-etched groups in enamel and dentin (p > 0.05). The SBS of self-etch adhesive to dentin was not statistically different from enamel (p > 0.05). Phosphoric acid treatment seems the most promising surface treatment for increasing the enamel and dentin bond strength of Silorane System Adhesive.

  12. Online monitoring of BALB/3T3 metabolism and adhesion with multiparametric chip-based system.

    PubMed

    Ceriotti, L; Kob, A; Drechsler, S; Ponti, J; Thedinga, E; Colpo, P; Ehret, R; Rossi, F

    2007-12-01

    A multiparametric chip-based system was employed to measure cell adhesion, metabolism, and response to metal compounds previously classified as cytotoxic in immortalized mouse fibroblasts (BALB/3T3 cell line). The system measures in parallel, online, and in label-free conditions the extracellular acidification rates (with pH-sensitive field effect transistors [ISFETs]), the cellular oxygen consumption (with amperometric electrode structures [Clark-type sensors]), and cell adhesion (with impedimetric interdigitated electrode structures [IDESs]). The experimental protocol was optimized to monitor metabolism and adhesion of the BALB/3T3 cell line. A total of 70,000 cells and a bicarbonate buffer-free running low-glucose Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal clone serum III and 1mM Hepes were selected to maintain cells in good conditions on the chip during the measurements performed under perfusion conditions. Cells were exposed to sodium arsenite, cadmium chloride, and cis-platinum at concentrations ranging from 1 to 100 microM. The kinetics of cell response to these compounds was analyzed and suggests that the Clark-type sensors can be more sensitive than IDESs and ISFETs in detecting the presence of high chemical concentration when short exposure times (i.e., 2h) are considered. The cytotoxicity data obtained from the online measurements of acidification, respiration, and adhesion at 24h compare well, in terms of half-inhibition concentration values (IC(50)), with the ones obtained using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and colony-forming efficiency (CFE) assay. The results show a good sensitivity of the system combined with the advantages of the online and label-free detection methods that allow following cell status before, during, and after the treatment in the same experiment.

  13. Effect of thermocycling on the durability of etch-and-rinse and self-etch adhesives on dentin.

    PubMed

    Sangwichit, Ketkamon; Kingkaew, Ruksaphon; Pongprueksa, Pong; Senawongse, Pisol

    2016-01-01

    The objective was to compare bond strengths of adhesives with/without thermocycling and to analyze the micromorphology of resindentin interfaces. Flat dentin surfaces were prepared and divided into eight groups to bond with four etch-and-rinse adhesives (Optibond FL, Adper Scotchbond Multi-Purpose, Optibond Solo Plus, and Single Bond 2) and four self-etch adhesives (Clearfil SE Bond, Adper SE Plus, Clearfil S(3) Bond and Adper Easy Bond). Specimens were further divided into two subgroups subjected for with/without thermocycling and then subjected to both micro-tensile test and resin-dentin interface evaluation. The results revealed that there were significant differences in bond strength between the groups with and without thermocycling for all etch-and-rinse groups and for the Adper Easy Bond self-etch group (p<0.01). Clearfil SE Bond demonstrated highly durable bond strengths. Furthermore, more silver ion uptake was observed at the resin-dentin interfaces for all etch-and-rinse adhesives and Adper SE Plus and Adper Easy Bond after thermocycling.

  14. Systems, Apparatuses, and Methods for Using Durable Adhesively Bonded Joints for Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Smeltzer, III, Stanley S. (Inventor); Lundgren, Eric C. (Inventor)

    2014-01-01

    Systems, methods, and apparatus for increasing durability of adhesively bonded joints in a sandwich structure. Such systems, methods, and apparatus includes an first face sheet and an second face sheet as well as an insert structure, the insert structure having a first insert face sheet, a second insert face sheet, and an insert core material. In addition, sandwich core material is arranged between the first face sheet and the second face sheet. A primary bondline may be coupled to the face sheet(s) and the splice. Further, systems, methods, and apparatus of the present disclosure advantageously reduce the load, provide a redundant path, reduce structural fatigue, and/or increase fatigue life.

  15. Effect of prior acid etching on bonding durability of single-step adhesives.

    PubMed

    Watanabe, Takayuki; Tsubota, Keishi; Takamizawa, Toshiki; Kurokawa, Hiroyasu; Rikuta, Akitomo; Ando, Susumu; Miyazaki, Masashi

    2008-01-01

    This study investigated the effect of prior phosphoric acid etching on the enamel bond strength of five single-step self-etch adhesive systems: Absolute, Clearfil tri-S Bond, Fluoro Bond Shake One, G-Bond and One-Up Bond F Plus. Bovine mandibular incisors were mounted in self-curing resin, and the facial surfaces were wet ground with #600 silicon carbide paper. Adhesives were applied to the enamel surfaces with or without prior phosphoric-acid etching and light irradiated. The resin composites were condensed into a mold and light irradiated. In total, 40 specimens were tested per adhesive system with and without prior acid etching and were further divided into two groups: those stored in water at 37 degrees C for 24 hours without cycling and those stored in water at 37 degrees C for 24 hours followed by thermal cycling between 5 degrees C and 55 degrees C with 10,000 repeats. After storage under each set of conditions, the specimens were tested in shear mode at a crosshead speed of 1.0 mm/minute. Two-way analysis of variance, the Student's t-test and the Tukey HSD test were used to analyze the data at a significance level of 0.05. For the specimens without prior acid etching, the mean bond strengths to enamel ranged from 11.0 to 14.6 MPa after 24-hour storage in water, while the corresponding values for specimens with prior acid etching ranged from 15.2 to 19.3 MPa. When these specimens were subjected to thermal cycling, the mean bond strengths ranged from 11.3 to 17.0 MPa without prior acid etching and from 12.3 to 23.2 MPa with prior acid etching. The changes in enamel bond strengths differed among the adhesive systems tested. After 24-hour storage in water, the most common failure modes were adhesive failure and mixed failure for specimens with and without prior acid etching, respectively. Thus, through a careful choice of adhesive system, prior acid etching can increase the bond strengths of single-step self-etch adhesive systems.

  16. Scanning electron microscopy evaluation of the interface of three adhesive systems.

    PubMed

    Macari, Soraia; Gonçalves, Mariane; Nonaka, Tomio; Santos, Jaime Maia dos

    2002-01-01

    The objective of this research was to investigate the resin-dentin interface of three adhesive systems, Scotchbond Multi-Purpose, Optibond and Denthesive Bond II by scanning electron microscopy. The adhesives and their respective composite resins were applied inside the cervical root canal of human incisors and canines according to manufacturer recommendations. The teeth were embedded in acrylic resin and sliced transversally to the root canal and perpendicularly to the resin-dentin interface. The adhesive systems Scotchbond Multi-Purpose and Optibond had a homogenous hybrid layer and similar characteristics, involving resin penetration of peritubular and intertubular dentin matrix. Morphological differences of resin tags were seen; Scotchbond Multi-Purpose had more and longer tags than Optibond. Denthesive Bond II did not have the same consistency of bonding. Tubular orifices were not opened and the smear layer was not removed. This was due to the absence of previous acid conditioning of dentin that damages hybrid layer formation. Analysis of the hybrid layer revealed different patterns, suggesting that the attachment was influenced by many factors and a standardization of dentinal substrate was impossible.

  17. Influence of different tooth types on the bond strength of two orthodontic adhesive systems

    PubMed Central

    Öztürk, Bora; Koyutürk, Alp Erdin; Çatalbaş, Bülent; Özer, Füsun

    2008-01-01

    The aim of this investigation was to evaluate the effects of different tooth types on the shear bond strength (SBS) of two orthodontic resin adhesive systems in vitro. Two hundred extracted sound human teeth were used in the study. Ten teeth of each tooth type were the mounted in acrylic resin leaving the buccal surface of the crowns parallel to the base of the moulds. In each experimental group, the adhesives (Transbond XT™ and Light Bond™) were applied to the etched enamel surfaces. The orthodontic composite resins were then applied to the surface in cylindrical-shaped plastic matrices. For SBS testing, a force transducer (Ultradent™) was applied at a crosshead speed of 1 mm/minute at the interface between the tooth and composite until failure occurred. Data were analysed using two-way analysis of variance (ANOVA), Kruskal–Wallis one-way ANOVA, a Bonferroni adjusted Mann–Whitney U-test, and an independent t-test. Generally, it was found that tooth type had a significant effect on SBS (P < 0.05) with Light Bond™ showing a higher SBS than Transbond XT™ (P < 0.05). The highest bond strengths were observed for the upper central incisor and lower molars with Light Bond™ (P < 0.05) and the lowest mean bond strengths for the upper molars and lower canine with Transbond XT™ (P <0.05). The results demonstrated that enamel SBS was significantly altered by both tooth type and adhesive system. Thus, the findings of this study confirm that enamel bond strength is not uniform for all teeth. These results may also explain the variability in the enamel-bonding efficacy of adhesives. PMID:18678760

  18. Effect of postoperative peroxide bleaching on the marginal seal of composite restorations bonded with self-etch adhesives.

    PubMed

    Roubickova, A; Dudek, M; Comba, L; Housova, D; Bradna, P

    2013-01-01

    The aim of this study was to determine the effect of peroxide bleaching on the marginal seal of composite restorations bonded with several adhesive systems. Combined cylindrical Class V cavities located half in enamel and half in dentin were prepared on the buccal and lingual surfaces of human molars. The cavities were bonded with the self-etch adhesives Clearfil SE-Bond (CLF), Adper Prompt (ADP), and iBond (IBO) and an etch-and-rinse adhesive Gluma Comfort Bond (GLU) and restored with a microhybrid composite Charisma. Experimental groups were treated 25 times for eight hours per day with a peroxide bleaching gel Opalescence PF 20, while the control groups were stored in distilled water for two months and then subjected to a microleakage test using a dye penetration method. Scanning electron microscopy was used to investigate the etching and penetration abilities of the adhesives and morphology of debonded restoration-enamel interfaces after the microleakage tests. Statistical analyses were performed using nonparametric Kruskal-Wallis, Mann-Whitney, and Wilcoxon tests at p=0.05. The microleakage of all GLU groups was low and not significantly affected by peroxide bleaching. Low microleakage was recorded for CLF control groups, but after bleaching, a small but significant increase in microleakage at the enamel margin indicated its sensitivity to peroxide bleaching. For ADP and IBO control groups, the microleakage at the enamel margins was significantly higher than for GLU and CLF and exceeded that at the dentin margins. Bleaching did not induce any significant changes in the microleakage. Electron microscopy analysis indicated that in our experimental setup, decreased adhesion and mechanical resistance of the ADP- and IBO-enamel interfaces could be more important than the chemical degradation effects induced by the peroxide bleaching gel.

  19. On the role of differential adhesion in gangliogenesis in the enteric nervous system.

    PubMed

    Hackett-Jones, Emily J; Landman, Kerry A; Newgreen, Donald F; Zhang, Dongcheng

    2011-10-21

    A defining characteristic of the normal development of the enteric nervous system (ENS) is the existence of mesoscale patterned entities called ganglia. Ganglia are clusters of neurons with associated enteric neural crest (ENC) cells, which form in the simultaneously growing gut wall. At first the precursor ENC cells proliferate and gradually differentiate to produce the enteric neurons; these neurons form clusters with ENC scattered around and later lying on the periphery of neuronal clusters. By immunolabelling neural cell-cell adhesion molecules, we infer that the adhesive capacity of neurons is greater than that of ENC cells. Using a discrete mathematical model, we test the hypothesis that local rules governing differential adhesion of neuronal agents and ENC agents will produce clusters which emulate ganglia. The clusters are relatively stable, relatively uniform and small in size, of fairly uniform spacing, with a balance between the number of neuronal and ENC agents. These features are attained in both fixed and growing domains, reproducing respectively organotypic in vitro and in vivo observations. Various threshold criteria governing ENC agent proliferation and differentiation and neuronal agent inhibition of differentiation are important for sustaining these characteristics. This investigation suggests possible explanations for observations in normal and abnormal ENS development.

  20. Investigating the use of phenolic rich fraction of pyrolysis bio-oils as an adhesive system

    NASA Astrophysics Data System (ADS)

    Sahaf, Amir

    Fast pyrolysis allows converting of up to 75 % of biomass into a crude bio-oil, which can be separated into a phenolic rich fraction (PRF) via ethyl acetate extraction while a sugar rich fraction preferentially concentrates in the aqueous phase. Rheological and thermal characterization of heat treated PRF from pyrolysis of Douglas Fir is performed using cone and plate rheology set up, dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). The results show that this material demonstrates a unique thermoplastic behavior with low Tg and softening point that can be systematically manipulated through changes in thermal history. As these materials are good candidates for development of hot melt adhesives, lap shear tests were also performed using wood stripes to evaluate their mechanical properties as an adhesive. Optimization of properties of the PRF is sought in this study through polymer blending with other bio-degradable thermoplastic poly(epsilon-caprolactone) (PCL) and poly(lactic acid) (PLA). Blends of PRF/PCL and PRF/PLA of different ratios are prepared by solvent casting and melt blending and thermally and thermomechanically characterized for their miscibility and phase behavior. Presence of molecular interactions are furthur investigated using Fourier transform infrared spectoscopy (FTIR). The blends show complete miscibility based on their Tg and melting points and significant improvement in shear strength is observed. Mechanisms leading to changes in properties are described and a physical model is proposed. The blend systems have good potential to be used as a thermoplastic bio degradable adhesives with satisfactoty properies.

  1. LONG-TERM BOND STRENGTH OF ADHESIVE SYSTEMS APPLIED TO ETCHED AND DEPROTEINIZED DENTIN

    PubMed Central

    Uceda-Gómez, Ninoshka; Loguercio, Alessandro Dourado; Moura, Sandra Kiss; Grande, Rosa Helena Miranda; Oda, Margareth; Reis, Alessandra

    2007-01-01

    The aim of this study was to evaluate the early and 12-month bond strength of two adhesive systems (Single Bond-SB and One Step-OS) applied to demineralized dentin (WH) and demineralized/NaOCl-treated dentin (H). Twenty flat dentin surfaces were exposed, etched, rinsed and slightly dried. For the H groups, a solution of 10% NaOCl was applied for 60 s, rinsed (15 s) and slightly dried. The adhesives were applied according to the manufacturer's instructions and composite resin crowns were incrementally constructed. After 24 h (water-37°C), the specimens was sectioned in order to obtain resin-dentin sticks (0.8 mm2). The specimens were tested in microtensile (0.5 mm/min) immediately (IM) or after 12 months of water storage (12M). The data (MPa) were subjected to ANOVA and Tukey's test (α=0.05). Only the main factors adhesive and time were significant (p=0.004 and p=0.003, respectively). SB (42.3±9.1) showed higher bond strengths than OS (33.6±11.6). The mean bond strength for IM-group (42.5±8.7) was statistically superior to 12M (33.3±11.8). The use of 10% NaOCl, after acid etching, did not improve the immediate and the long-term resin-dentin bond strength. PMID:19089183

  2. Initial and long-term bond strengths of one-step self-etch adhesives with silane coupling agent to enamel-dentin-composite in combined situation.

    PubMed

    Mamanee, Teerapong; Takahashi, Masahiro; Nakajima, Masatoshi; Foxton, Richard M; Tagami, Junji

    2015-01-01

    This study evaluated the effect of adding silane coupling agent on initial and long-term bond strengths of one-step self-etch adhesives to enamel-dentin-composite in combined situation. Cervical cavities were prepared on extracted molars and filled with Clearfil AP-X. After water-storage for one-week, the filled teeth were sectioned in halves to expose enamel, dentin and composite surfaces and then enamel-dentin-composite surface was totally applied with one of adhesive treatments (Clearfil SE One, Clearfil SE One with Clearfil Porcelain Bond Activator, Beautibond Multi, Beautibond Multi with Beautibond Multi PR Plus and Scotchbond Universal). After designed period, micro-shear bond strengths (µSBSs) to each substrate were determined. For each period of water-storage, additive silane treatments significantly increased µSBS to composite (p<0.001). On the other hand, they significantly decreased µSBS to dentin (p<0.001), although did not have adverse effect on µSBS to enamel (p>0.05). Moreover, the stability of µSBS was depended on materials and substrates used.

  3. Evaluation of Underwater Adhesives and Friction Coatings for In Situ Attachment of Fiber Optic Sensor System for Subsea Applications

    NASA Technical Reports Server (NTRS)

    Tang, Henry H.; Le, Suy Q.; Orndoff, Evelyne S.; Smith, Frederick D.; Tapia, Alma S.; Brower, David V.

    2012-01-01

    Integrity and performance monitoring of subsea pipelines and structures provides critical information for managing offshore oil and gas production operation and preventing environmentally damaging and costly catastrophic failure. Currently pipeline monitoring devices require ground assembly and installation prior to the underwater deployment of the pipeline. A monitoring device that could be installed in situ on the operating underwater structures could enhance the productivity and improve the safety of current offshore operation. Through a Space Act Agreement (SAA) between the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) and Astro Technology, Inc. (ATI), JSC provides technical expertise and testing facilities to support the development of fiber optic sensor technologies by ATI. This paper details the first collaboration effort between NASA JSC and ATI in evaluating underwater applicable adhesives and friction coatings for attaching fiber optic sensor system to subsea pipeline. A market survey was conducted to examine different commercial ]off ]the ]shelf (COTS) underwater adhesive systems and to select adhesive candidates for testing and evaluation. Four COTS epoxy based underwater adhesives were selected and evaluated. The adhesives were applied and cured in simulated seawater conditions and then evaluated for application characteristics and adhesive strength. The adhesive that demonstrated the best underwater application characteristics and highest adhesive strength were identified for further evaluation in developing an attachment system that could be deployed in the harsh subsea environment. Various friction coatings were also tested in this study to measure their shear strengths for a mechanical clamping design concept for attaching fiber optic sensor system. A COTS carbide alloy coating was found to increase the shear strength of metal to metal clamping interface by up to 46 percent. This study provides valuable data for

  4. Influence of an arginine-containing toothpaste on bond strength of different adhesive systems to eroded dentin.

    PubMed

    Bergamin, Ana Cláudia Pietrobom; Bridi, Enrico Coser; Amaral, Flávia Lucisano Botelho; Turssi, Cecília Pedroso; Basting, Roberta Tarkany; Aguiar, Flávio Henrique Baggio; França, Fabiana Mantovani Gomes

    2016-01-01

    The aim of this study was to evaluate the bond strength of different adhesive systems to eroded dentin following toothbrushing with an arginine-containing toothpaste. Sixty standardized 3 × 3 × 2-mm fragments of root dentin (n = 10) were prepared. After all surfaces except the buccal surfaces were impermeabilized, specimens were subjected to an erosive wear protocol and stored for 24 hours at 37°C. The specimens underwent 1000 toothbrushing cycles with an arginine-containing toothpaste, an arginine-free toothpaste (positive control group), or artificial saliva (negative control group). Following application of a self-etching or an etch-and-rinse adhesive to the buccal surfaces of the specimens, 6-mm-high composite resin blocks were built up in 2-mm increments. After 24 hours' storage in 100% relative humidity, microtensile test specimens with an approximate area of 1 mm² were prepared. The test was performed at a speed of 0.5 mm/min until specimen fracture, and the failure patterns were evaluated using a stereoscopic loupe. Two-way analysis of variance revealed no significant difference between the toothpastes, the adhesive systems, or the interactions between toothpaste and adhesive system in terms of the bond strength to eroded dentin (P > 0.05). The predominant failure pattern was adhesive in all groups. It was concluded that a toothpaste containing arginine did not interfere with the bond between either the self-etching or the etch-and-rinse adhesive system and eroded dentin.

  5. Role of bacterial adhesion in the microbial ecology of biofilms in cooling tower systems

    PubMed Central

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P.; Packman, Aaron

    2009-01-01

    The fate of the three heterotrophic biofilm forming bacteria, Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. in pilot scale cooling towers was evaluated both by observing the persistence of each species in the recirculating water and the formation of biofilms on steel coupons placed in each cooling tower water reservoir. Two different cooling tower experiments were performed: a short-term study (6 days) to observe the initial bacterial colonization of the cooling tower, and a long-term study (3 months) to observe the ecological dynamics with repeated introduction of the test strains. An additional set of batch experiments (6 days) was carried out to evaluate the adhesion of each strain to steel surfaces under similar conditions to those found in the cooling tower experiments. Substantial differences were observed in the microbial communities that developed in the batch systems and cooling towers. P. aeruginosa showed a low degree of adherence to steel surfaces both in batch and in the cooling towers, but grew much faster than K. pneumoniae and Flavobacterium in mixed-species biofilms and ultimately became the dominant organism in the closed batch systems. However, the low degree of adherence caused P. aeruginosa to be rapidly washed out of the open cooling tower systems, and Flavobacterium became the dominant microorganism in the cooling towers in both the short-term and long-term experiments. These results indicate that adhesion, retention and growth on solid surfaces play important roles in the bacterial community that develops in cooling tower systems. PMID:19177226

  6. Role of bacterial adhesion in the microbial ecology of biofilms in cooling tower systems.

    PubMed

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P; Packman, Aaron

    2009-01-01

    The fate of the three heterotrophic biofilm forming bacteria, Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. in pilot scale cooling towers was evaluated both by observing the persistence of each species in the recirculating water and the formation of biofilms on steel coupons placed in each cooling tower water reservoir. Two different cooling tower experiments were performed: a short-term study (6 days) to observe the initial bacterial colonization of the cooling tower, and a long-term study (3 months) to observe the ecological dynamics with repeated introduction of the test strains. An additional set of batch experiments (6 days) was carried out to evaluate the adhesion of each strain to steel surfaces under similar conditions to those found in the cooling tower experiments. Substantial differences were observed in the microbial communities that developed in the batch systems and cooling towers. P. aeruginosa showed a low degree of adherence to steel surfaces both in batch and in the cooling towers, but grew much faster than K. pneumoniae and Flavobacterium in mixed-species biofilms and ultimately became the dominant organism in the closed batch systems. However, the low degree of adherence caused P. aeruginosa to be rapidly washed out of the open cooling tower systems, and Flavobacterium became the dominant microorganism in the cooling towers in both the short-term and long-term experiments. These results indicate that adhesion, retention and growth on solid surfaces play important roles in the bacterial community that develops in cooling tower systems.

  7. Self-etching adhesives increase collagenolytic activity in radicular dentin.

    PubMed

    Tay, Franklin R; Pashley, David H; Loushine, Robert J; Weller, R Norman; Monticelli, Francesca; Osorio, Raquel

    2006-09-01

    Endogenous matrix metalloproteinases (MMPs) release from crown dentin and their activation results in degradation of hybrid layers created by dentin adhesives. This study tested the hypothesis that instrumented intraradicular dentin possesses latent collagenolytic activity that is activated by mild self-etching adhesives. Root dentin shavings were produced from 50 cleaned and shaped, saline-irrigated root canals using Gates Glidden drills and rinsed with sodium azide to prevent bacterial growth. Dried dentin powder aliquots were treated with two clinically-relevant MMP inhibitors, 2% chlorhexidine for 10 minutes and 17% EDTA for 1 minute. Additional dentin powder was mixed with Clearfil Liner Bond 2V or Clearfil Tri-S Bond for 1 minute followed by extracting the adhesives with acetone. Dentin powder was also treated with 2% chlorhexidine for 10 minutes before or after adhesive application. Collagenolytic activities of the nine groups were assayed with a fluorometer in 96-well plates, by recording the changes in fluorescence before and after addition of fluorescein-labeled type I collagen. Epoxy resin-embedded powders were examined with TEM for the extent of demineralization. Instrumented, mineralized intraradicular dentin possessed low but detectable collagenolytic activity that was inhibited by chlorhexidine (p < 0.001) and EDTA (p < 0.001). Both adhesives partially demineralized the dentin powder and activated latent MMPs, with 14- to 15-fold increases in collagenolytic activities (p < 0.001) that were significantly (p < 0.001) but incompletely inactivated after 10 min application of chlorhexidine. Mild self-etching adhesives activate latent MMPs without denaturing these enzymes, and may adversely affect the longevity of bonded root canal fillings and posts.

  8. The role of electrostatic charge in the adhesion of spherical particles onto planar surfaces in atmospheric systems

    SciTech Connect

    Kweon, Hyojin; Yiacoumi, Sotira Z.; Tsouris, Costas

    2015-06-19

    In this study, the influence of electrostatic charge on the adhesive force between spherical particles and planar surfaces in atmospheric systems was studied using atomic force microscopy. Electrical bias was applied to modify the surface charge, and it was found that application of a stronger positive bias to a particle induces a stronger total adhesive force. The sensitivity of the system to changes in the bias depended on the surface charge density. For larger-size particles, the contribution of the electrostatic force decreased, and the capillary force became the major contributor to the total adhesive force. The influence of water adsorption on the total adhesive force and, specifically, on the contribution of the electrostatic force depended on the hydrophobicity of interacting surfaces. For a hydrophilic surface, water adsorption either attenuated the surface charge or screened the effect of surface potential. An excessive amount of adsorbed water provided a path to surface charge leakage, which might cancel out the electrostatic force, leading to a reduction in the adhesive force. Theoretically calculated forces were comparable with measured adhesive forces except for mica which has a highly localized surface potential. The results of this study provide information on the behavior of charged colloidal particles in atmospheric systems.

  9. The role of electrostatic charge in the adhesion of spherical particles onto planar surfaces in atmospheric systems

    DOE PAGES

    Kweon, Hyojin; Yiacoumi, Sotira Z.; Tsouris, Costas

    2015-06-19

    In this study, the influence of electrostatic charge on the adhesive force between spherical particles and planar surfaces in atmospheric systems was studied using atomic force microscopy. Electrical bias was applied to modify the surface charge, and it was found that application of a stronger positive bias to a particle induces a stronger total adhesive force. The sensitivity of the system to changes in the bias depended on the surface charge density. For larger-size particles, the contribution of the electrostatic force decreased, and the capillary force became the major contributor to the total adhesive force. The influence of water adsorptionmore » on the total adhesive force and, specifically, on the contribution of the electrostatic force depended on the hydrophobicity of interacting surfaces. For a hydrophilic surface, water adsorption either attenuated the surface charge or screened the effect of surface potential. An excessive amount of adsorbed water provided a path to surface charge leakage, which might cancel out the electrostatic force, leading to a reduction in the adhesive force. Theoretically calculated forces were comparable with measured adhesive forces except for mica which has a highly localized surface potential. The results of this study provide information on the behavior of charged colloidal particles in atmospheric systems.« less

  10. Biocompatible Adhesives

    DTIC Science & Technology

    1991-03-01

    pressure sensitive elastomer, polyisobutylene. with water soluble adhesives such as carboxy methyl ceiiulose, pectin and gelatin for adhesion to... cellulose and nylon films, were most often used in 180 peel adhesion tests on the adhesives. Films were cast on one substrate and the other was moistened...irritation. 4. Peel adhesion to hydrated cellulose , nylon and cotton cloth substrates was satisfactory. So too was the peel adhesion as a function of

  11. INFLUENCE OF DIFFERENT ADHESIVE SYSTEMS ON THE PULL-OUT BOND STRENGTH OF GLASS FIBER POSTS

    PubMed Central

    da Silva, Luciana Mendonça; de Andrade, Andréa Mello; Machuca, Melissa Fernanda Garcia; da Silva, Paulo Maurício Batista; da Silva, Ricardo Virgolino C.; Veronezi, Maria Cecília

    2008-01-01

    This in vitro study evaluated the tensile bond strength of glass fiber posts (Reforpost – Angelus-Brazil) cemented to root dentin with a resin cement (RelyX ARC – 3M/ESPE) associated with two different adhesive systems (Adper Single Bond - 3M/ESPE and Adper Scotchbond Multi Purpose (MP) Plus – 3M/ESPE), using the pull-out test. Twenty single-rooted human teeth with standardized root canals were randomly assigned to 2 groups (n=10): G1- etching with 37% phosphoric acid gel (3M/ESPE) + Adper Single Bond + #1 post (Reforpost – Angelus) + four #1 accessory posts (Reforpin – Angelus) + resin cement; G2- etching with 37% phosphoric acid gel + Adper Scotchbond MP Plus + #1 post + four #1 accessory posts + resin cement. The specimens were stored in distilled water at 37°C for 7 days and submitted to the pull-out test in a universal testing machine (EMIC) at a crosshead speed of 0.5 mm/min. The mean values of bond strength (kgf) and standard deviation were: G1- 29.163 ± 7.123; G2- 37.752 ±13.054. Statistical analysis (Student's t-test; α=0.05 showed no statistically significant difference (p<0.05) between the groups. Adhesive bonding failures between resin cement and root canal dentin surface were observed in both groups, with non-polymerized resin cement in the apical portion of the post space when Single Bond was used (G1). The type of adhesive system employed on the fiber post cementation did not influence the pull-out bond strength. PMID:19089224

  12. Retention of radicular posts varying the application technique of the adhesive system and luting agent.

    PubMed

    Fonseca, Tabajara Sabbag; Alfredo, Edson; Vansan, Luiz Pascoal; Silva, Ricardo Gariba; Sousa, Yara T Correa Silva; Saquy, Paulo César; Sousa-Neto, Manoel D

    2006-01-01

    This study evaluated in vitro the retention of intracanal cast posts cemented with dual-cure resin varying the application method of the primer/adhesive solution and luting agent in the prosthetic space prepared to receive the posts. Sixty endodontically treated maxillary canines had their crowns discarded, and their roots were embedded in acrylic resin. The prosthetic spaces were prepared with Largo burs mounted on a low-speed handpiece coupled to a parallelometer in order to maintain length and diameter of intraradicular posts constant and to guarantee that the preparations were parallel after casting. Two groups (n = 30) were randomly formed according to the device used to apply the adhesive system: microbrush or standard bristle brush (control). Each group was divided into 3 subgroups (n = 10) according to the technique used to place the luting agent into the root canal: using only a lentulo spiral before setting the post, applying it onto the post surface, or combining both methods. After 72 hours, the tensile force required to dislodge each post was determined by a universal testing machine (Instron 4444) set at a speed of 1 mm/min. The results indicated that the use of the microbrush yielded higher bond strength values (0.1740 +/- 0.04 kN) than those recorded for the bristle brush tip (0.1369 +/- 0.04 kN, p < 0.001). Bonferroni's test demonstrated a higher retention (p < 0.001) in radicular post cemented with the technique that combined both methods (lentulo + post: 0.1787 +/- 0.03 kN) than that obtained with lentulo (0.1461 +/- 0.065 kN) or post (0.1416 +/- 0.03 kN) alone. The interactions between the adhesive system and luting agent application techniques presented statistical difference (p < 0.001). It was concluded that the best performance in terms of tensile strength among the tested conditions was obtained when the adhesive system was applied with a microbrush and the luting agent was taken into the root canal with lentulo spirals alone (0.1961 +/- 0

  13. Bonding durability of single-step adhesives to previously acid-etched dentin.

    PubMed

    Ikeda, Masahiko; Tsubota, Keishi; Takamizawa, Toshiki; Yoshida, Takeshi; Miyazaki, Masashi; Platt, Jeffrey A

    2008-01-01

    This study investigated the effect of phosphoric acid etching on the dentin bond strength of five single-step self-etch adhesive systems; Absolute, Clearfil tri-S Bond, Fluoro Bond Shake One, G-Bond and One-Up Bond F Plus. Bovine mandibular incisors were mounted in self-curing resin and the facial surfaces were wet ground with #600 SiC paper. Adhesives were applied on the prepared dentin surfaces with and without prior phosphoric acid etching and light irradiated. Resin composite was condensed into a mold (ø4x2 mm), light irradiated and stored in water at 37 degrees C. Four groups (n=10) were made per adhesive system: with and without prior acid etching and with and without thermal cycling between 5 degrees C and 55 degrees C for 10,000 cycles. The specimens were tested in a shear mode at a crosshead speed of 1.0 mm/minute. Two-way ANOVA, Student t-test and Tukey HSD test at a level of 0.05 were done. For specimens without prior acid etching, the mean bond strengths to bovine dentin ranged from 12.8 to 17.1 MPa and ranged from 6.7 to 13.3 MPa for specimens with prior acid etching after 24 hours storage in water. When the specimens were subjected to thermal cycling, the mean bond strengths ranged from 10.7 to 24.8 MPa for the specimens without prior acid etching and 4.6 to 13.9 MPa for the specimens with prior acid etching. The changes in dentin bond strength were different among the adhesive systems tested. Failure modes were commonly adhesive failure associated with mixed failure for specimens with prior acid etching. For specimens without prior acid etching, failures in composite and dentin were increased. From the results of this in vitro study, prior acid etching might be not acceptable for increasing the dentin bond strengths of single-step self-etch adhesive systems.

  14. Marginal microleakage of cervical composite resin restorations bonded using etch-and-rinse and self-etch adhesives: two dimensional vs. three dimensional methods

    PubMed Central

    Khoroushi, Maryam

    2016-01-01

    Objectives This study was evaluated the marginal microleakage of two different adhesive systems before and after aging with two different dye penetration techniques. Materials and Methods Class V cavities were prepared on the buccal and lingual surfaces of 48 human molars. Clearfil SE Bond and Single Bond (self-etching and etch-and-rinse systems, respectively) were applied, each to half of the prepared cavities, which were restored with composite resin. Half of the specimens in each group underwent 10,000 cycles of thermocycling. Microleakage was evaluated using two dimensional (2D) and three dimensional (3D) dye penetration techniques separately for each half of each specimen. Data were analyzed with SPSS 11.5 (SPSS Inc.), using the Kruskal-Wallis and Mann-Whitney U tests (α = 0.05). Results The difference between the 2D and 3D microleakage evaluation techniques was significant at the occlusal margins of Single bond groups (p = 0.002). The differences between 2D and 3D microleakage evaluation techniques were significant at both the occlusal and cervical margins of Clearfil SE Bond groups (p = 0.017 and p = 0.002, respectively). The difference between the 2D and 3D techniques was significant at the occlusal margins of non-aged groups (p = 0.003). The difference between these two techniques was significant at the occlusal margins of the aged groups (p = 0.001). The Mann-Whitney test showed significant differences between the two techniques only at the occlusal margins in all specimens. Conclusions Under the limitations of the present study, it can be concluded that the 3D technique has the capacity to detect occlusal microleakage more precisely than the 2D technique. PMID:27200275

  15. Effect of saliva and blood contamination on the bond strength of self-etching adhesive system- An in vitro study

    PubMed Central

    Koppolu, Madhusudhana; Gogala, Dorasani; Mathew, Vinod B; Thangala, Venugopal; Deepthi, Mandava; Sasidhar, Nalluru

    2012-01-01

    Aim: The aims of this study were to determine the effect of saliva and blood contamination on the shear bond strength of self-etching adhesive to enamel and dentin; and, to compare the difference in bond strength due to contamination beforeand after application of the self-etch adhesive. Materials and Methods: 40 human mandibular molars were wet ground on both buccal and lingual surfaces to prepare flat superficial enamel and dentin surfaces. They were randomly divided into two groups (n = 40) based on the substrate (enamel and dentin). Each group was further divided into five subgroups (n = 8) based on the type of contamination it was subjected to, and the step in the bonding sequence when the contamination occurred (before or after adhesive application). Fresh saliva and fresh human blood were applied either before or after the application of Xeno III® self-etching adhesive system (SES). Composite resin was applied as inverted, truncated cured cones that were subjected to shear bond strength test. Statistical Analysis: One-way analysis of variance (ANOVA) and Tukey's Honestly Significant Difference (HSD) test were used. Results: Statistically significant reduction in the bond strength was shown after both saliva and blood contamination before and after Xeno III® application (P< 0.05). Bond strength is significantly reduced after contamination with blood as compared to saliva. Conclusions: When self-etching adhesive systems are used, saliva and blood contamination significantly decrease the bond strength of the adhesive to enamel and dentin of the tooth. PMID:22876017

  16. Bonding between oxide ceramics and adhesive cement systems: a systematic review.

    PubMed

    Papia, Evaggelia; Larsson, Christel; du Toit, Madeleine; Vult von Steyern, Per

    2014-02-01

    The following aims were set for this systematic literature review: (a) to make an inventory of existing methods to achieve bondable surfaces on oxide ceramics and (b) to evaluate which methods might provide sufficient bond strength. Current literature of in vitro studies regarding bond strength achieved using different surface treatments on oxide ceramics in combination with adhesive cement systems was selected from PubMed and systematically analyzed and completed with reference tracking. The total number of publications included for aim a was 127 studies, 23 of which were used for aim b. The surface treatments are divided into seven main groups: as-produced, grinding/polishing, airborne particle abrasion, surface coating, laser treatment, acid treatment, and primer treatment. There are large variations, making comparison of the studies difficult. An as-produced surface of oxide ceramic needs to be surface treated to achieve durable bond strength. Abrasive surface treatment and/or silica-coating treatment with the use of primer treatment can provide sufficient bond strength for bonding oxide ceramics. This conclusion, however, needs to be confirmed by clinical studies. There is no universal surface treatment. Consideration should be given to the specific materials to be cemented and to the adhesive cement system to be used.

  17. The ubiquitin-proteasome system regulates focal adhesions at the leading edge of migrating cells

    PubMed Central

    Teckchandani, Anjali; Cooper, Jonathan A

    2016-01-01

    Cell migration requires the cyclical assembly and disassembly of focal adhesions. Adhesion induces phosphorylation of focal adhesion proteins, including Cas (Crk-associated substrate/p130Cas/BCAR1). However, Cas phosphorylation stimulates adhesion turnover. This raises the question of how adhesion assembly occurs against opposition from phospho-Cas. Here we show that suppressor of cytokine signaling 6 (SOCS6) and Cullin 5, two components of the CRL5SOCS6 ubiquitin ligase, inhibit Cas-dependent focal adhesion turnover at the front but not rear of migrating epithelial cells. The front focal adhesions contain phospho-Cas which recruits SOCS6. If SOCS6 cannot access focal adhesions, or if cullins or the proteasome are inhibited, adhesion disassembly is stimulated. This suggests that the localized targeting of phospho-Cas within adhesions by CRL5SOCS6 and concurrent cullin and proteasome activity provide a negative feedback loop, ensuring that adhesion assembly predominates over disassembly at the leading edge. By this mechanism, ubiquitination provides a new level of spatio-temporal control over cell migration. DOI: http://dx.doi.org/10.7554/eLife.17440.001 PMID:27656905

  18. Evaluation of the single yeast cell's adhesion to ITO substrates with various surface energies via ESEM nanorobotic manipulation system.

    PubMed

    Shen, Yajing; Ahmad, Mohd Ridzuan; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Fukuda, Toshio

    2011-12-01

    Cell-surface adhesion force is important for cell activities and the development of bio materials. In this paper, a method for in situ single cell (W303) adhesion force measurement was proposed based on nanorobotic manipulation system inside an environment scanning electron microscope (ESEM). An end effector was fabricated from a commercial atomic force microscope (AFM) cantilever by focused ion beam (FIB) etching. The spring constant of it was calibrated by nanomanipulation approach. Three kinds of hydrophilic and hydrophobic ITO plates were prepared by using VUV-irradiation and OTS coating techniques. The shear adhesion strength of the single yeast cell to each substrate was measured based on the deflection of the end effector. The results demonstrated that the cell adhesion force was larger under the wet condition in the ESEM environment than in the aqueous condition. It also showed that the cell adhesion force to hydrophilic surface was larger than that to the hydrophobic surface. Studies of single cell's adhesion on various plate surfaces and environments could give new insights into the tissue engineering and biological field.

  19. Small scale contact and adhesion of soft materials in nano- and bio-systems

    NASA Astrophysics Data System (ADS)

    Cao, Yifang

    This dissertation presents the results obtained from recent experimental, theoretical and computational studies of small scale contact and adhesion of soft materials in both the nano- and bio-systems. These include: stamped flexible/organic electronic devices, and polydimethylsiloxane (PDMS) and biological human osteoscarcoma (HOS) cells. Following a presentation of a method for determining the initial contact point and nanoindentation load-indentation depth characteristics for soft materials, adhesion and contact-induced phenomena are discussed for the processing of organic electronics structures. These include experiments and models that provide new insights into metallic electrode cold welding and organic material pattern transfer processes that are being explored for the fabrication of small organic structures that are relevant to flexible bioelectronics and bioMEMS. Subsequently, a shear assay technique and cell spreading study are presented for the characterization of cell viscoelastic properties and cell prestress. These then present new evidence of how contact guidance (alignment of cells) occurs along microgrooved PDMS structures that have the potential to reduce the overall levels of scar tissue formation. The implications of the results are also assessed for cell biophysics, and potential applications in flexible bioMEMS structures.

  20. Preventing Oxide Adhesion of Liquid Metal Alloys to Enable Actuation in Microfluidic Systems

    NASA Astrophysics Data System (ADS)

    Joshipura, Ishan; Johnson, Alexander; Ayers, Hudson; Dickey, Michael

    This work explores the wetting behavior of an oxide-coated liquid metal, eutectic alloy of gallium and indium (`EGaIn'), which remains a liquid at room temperature. Liquid metals uniquely combine fluidity with metallic properties. Combined, these properties enable soft, stretchable, and shape reconfigurable electronics with `softer than skin' interfaces. Ga forms spontaneously a thin surface oxide that alters its wetting behavior and makes it difficult to move across surfaces without leaving residue behind. We examine the effects of surface roughness (i.e., Cassie-Baxter state) and lubrication to minimize adhesion of Ga oxide to surfaces. Lubricated surfaces create a `slip-layer' of liquid between the metal and surface that also inhibits wetting. This slip layer allows the metal to move reversibly through microchannels by preventing adhesion of the oxide. The metal may be pumped or moved by using low voltages or pneumatic actuation. Optical microscopy confirms the importance of the slip-layer, which enables non-stick motion of the metal through capillaries. Finally, electrochemical impedance spectroscopy characterizes the electrohydrodynanic motion of EGaIn in capillary systems.

  1. Pulpal responses to bacterial contamination following dentin bridging beneath hard-setting calcium hydroxide and self-etching adhesive resin system.

    PubMed

    Kitasako, Yuichi; Ikeda, Masaomi; Tagami, Junji

    2008-04-01

    To evaluate the pulp healing to bacterial contamination beneath a hard-setting calcium hydroxide (DY: Dycal, L.D. Caulk Co.) and a self-etching adhesive resin (2V: Clearfil Liner Bond 2V, Kuraray Medical Inc.) following dentin bridge formation. Class V cavities were prepared on 30 monkey teeth, and the pulps were exposed with a carbide bur through the cavity floor. Each exposed pulp was capped with either DY or 2V. The cavities were restored with a hybrid resin composite. The resin composite was removed at 180 days after capping, and then cavities were left open to the oral environment for 2 weeks to obtain bacteria contamination DY (BDY) and 2V (B2V; n = 10). A non-bacterial-contaminated group capped with DY was used as control. After bacterial challenges, inflammatory cell infiltration, incidence and differentiation of dentin bridges were evaluated histologically. There were significant differences in the presence of inflammatory cell infiltration among all groups (P < 0.05). No moderate or severe inflammatory reaction was found in Group DY. Group BDY showed moderate or severe inflammatory cell infiltration in 50%, and showed four necrotic specimens. Although no statistically significant difference was found in the formation and differentiation of dentin bridges among all groups, tunnel defects in dentin bridges were detected in 70% (DY), 80% (BDY), and 50% (B2V). Group B2V showed a significantly lower presence of inflammatory cell infiltration than Group BDY (P < 0.05). Bonding agent is supposed to seal the exposure site, and the remaining bonding agent on the cavities was effective as the barrier in the dentin bridges after bacterial challenges.

  2. Effect of Casein Phosphopeptide-amorphous Calcium Phosphate Treatment on Microtensile Bond Strength to Carious Affected Dentin Using Two Adhesive Strategies

    PubMed Central

    Bahari, Mahmoud; Savadi Oskoee, Siavash; Kimyai, Soodabeh; Pouralibaba, Firoz; Farhadi, Farrokh; Norouzi, Marouf

    2014-01-01

    Background and aims. The aim was to evaluate the effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on microtensile bond strength (μTBS) to carious affected dentin (CAD) using etch-and-rinse and self-etch adhesive systems. Materials and methods. The occlusal surface of 32 human molars with moderate occlusal caries was removed. Infected dentin was removed until reaching CAD and the teeth were randomly divided into two groups based on the Single Bond (SB) and Clearfil SE Bond (CSE) adhesive systems. Before composite resin bonding, each group was subdivided into three subgroups of ND, CAD and CPP-ACP-treated CAD (CAD-CPP) based on the dentin substrate. After dissecting samples to l-mm-thick cross-sections (each subgroup: n = 13), μTBS was measured at a strain rate of 0.5 mm/min. Data was analyzed using two-way ANOVA, independent samples t-test and post-hoc Tukey tests (α=0.05). Results. Bond strength of both adhesive systems to ND was significantly higher than that to CAD (P <0.001) and CAD/CPP (P < 0.001). There were no significant differences between the μTBS of SB to CAD and CAD-CPP (P > 0.05).μTBS of CSE to CAD-CPP was higher than that to CAD; however, the difference was not significant (P > 0.05). Significant differences were found between SB and CSE systems only with CAD substrate (P < 0.001). Conclusion. Regardless of the adhesive system used, surface treatment of CAD with CPP-ACP did not have a significant effect on bond strength. However, bond strength to CAD was higher with SB rather than with CSE. PMID:25346832

  3. Exposed Dentin: Influence of Cleaning Procedures and Simulated Pulpal Pressure on Bond Strength of a Universal Adhesive System

    PubMed Central

    2017-01-01

    Purpose To compare various pre-treatments serving as cleaning procedures of dentin on the bond strength of resin composite promoted by a universal adhesive system applied either in the absence or presence of simulated pulpal pressure. Materials and Methods Prior to application of the adhesive system (Scotchbond Universal) and resin composite (Filtek Z250), ground dentin surfaces were given one of five pre-treatments either without or with simulated pulpal pressure: 1) no pre-treatment, adhesive system in “self-etch” mode, 2) phosphoric acid etching, adhesive system in “total-etch” mode, 3) polishing with pumice on prophylaxis cup, 4) air abrasion with AIR-FLOW PLUS powder, 5) air abrasion with AIR-FLOW PERIO powder; n = 20/group of pre-treatment. After storage (37°C, 100% humidity, 24 h), micro shear bond strength was measured and data analyzed with parametric ANOVA including Bonferroni-Holm correction for multiple testing followed by Student’s t tests (significance level: α = 0.05). Results The ANOVA found type of pre-treatment and simulated pulpal pressure to have no significant effect on dentin bond strength. The explorative post-hoc tests showed a negative effect of simulated pulpal pressure for phosphoric acid etching (adhesive system in “total-etch” mode; p = 0.020), but not for the other four pre-treatments (all p = 1.000). Conclusion Air abrasion with powders containing either erythritol and chlorhexidine (AIR-FLOW PLUS) or glycine (AIR-FLOW PERIO) yielded dentin bond strengths similar to no pre-treatment, phosphoric acid etching, or polishing with pumice. Simulated pulpal pressure reduced the bond strength only when the self-etch adhesive system was used in total-etch mode. PMID:28081572

  4. Degree of conversion of simplified contemporary adhesive systems as influenced by extended air-activated or passive solvent volatilization modes.

    PubMed

    Borges, Boniek C D; Souza-Junior, Eduardo Jose; Brandt, William C; Loguercio, Alessandro D; Montes, Marcos A J R; Puppin-Rontani, Regina M; Sinhoreti, Mario Alexandre Coelho

    2012-01-01

    This study evaluated the effect of five methods of solvent volatilization on the degree of conversion (DC) of nine one-bottle adhesive systems using Fourier transform infrared/attenuated total reflectance (FTIR/ATR) analysis. Nine adhesives were tested: Adper Single Bond 2 (SB), Adper Easy One (EO), One Up Bond F Plus (OUP), One Coat Bond SL (OC), XP Bond (XP), Ambar (AM), Natural Bond (NB), GO, and Stae. The adhesive systems were applied to a zinc-selenide pellet and 1) cured without solvent volatilization, 2) left undisturbed for 10 seconds before curing, 3) left undisturbed for 60 seconds before curing, 4) air-dried with an air stream for 10 seconds before curing, and 5) air-dried with an air stream for 60 seconds before curing. FTIR/ATR spectra were obtained, and the DC was calculated by comparing the aliphatic bonds/reference peaks before and after light activation for 10 seconds (FlashLite 1401). The DC means of each material were analyzed by one-way analysis of variance and post hoc Tukey test (p<0.05). The DC of GO and Stae adhesive systems was not affected by the five evaporation conditions. Air-drying for 60 seconds before curing yielded the highest DC for SB, EO, and OC. Extended solvent volatilization time (60 seconds) either with or without air-drying before curing provided the highest DC for AM, NB, XP, and OUP. Thus, the monomer conversion of adhesive systems was material dependent. In general, the 60-second passive or active air-drying modes to volatilize solvents before curing enhanced the degree of conversion for the one-bottle simplified adhesive systems.

  5. Active Metal Brazing and Adhesive Bonding of Titanium to C/C Composites for Heat Rejection System

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, Tarah; Cerny, Jennifer

    2006-01-01

    Robust assembly and integration technologies are critically needed for the manufacturing of heat rejection system (HRS) components for current and future space exploration missions. Active metal brazing and adhesive bonding technologies are being assessed for the bonding of titanium to high conductivity Carbon-Carbon composite sub components in various shapes and sizes. Currently a number of different silver and copper based active metal brazes and adhesive compositions are being evaluated. The joint microstructures were examined using optical microscopy, and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). Several mechanical tests have been employed to ascertain the effectiveness of different brazing and adhesive approaches in tension and in shear that are both simple and representative of the actual system and relatively straightforward in analysis. The results of these mechanical tests along with the fractographic analysis will be discussed. In addition, advantages, technical issues and concerns in using different bonding approaches will also be presented.

  6. A new concept in hybridization: Bromelain enzyme for deproteinizing dentin before application of adhesive system

    PubMed Central

    Dayem, Raad Niama; Tameesh, Mona Adnan

    2013-01-01

    Objective: The objective of this study is to assess the deproteinizing effect of bromelain enzyme and compare it with neodymium-doped yttrium aluminum garnet (Nd:YAG) laser and 10% sodium hypochlorite (NaOCl) by using scanning electron microscope (SEM) and polarized microscope. Materials and Methods: A total of 60 extracted human upper premolars were selected to be given standardized buccal and lingual class V cavities. The teeth were divided into three groups each one consisted of 20 teeth. Thirty teeth were recruited for SEM study and the other 30 for polarized microscope. Group 1: Teeth were deproteinized with Nd:YAG laser, Group 2: Teeth were deproteinized with bromelain enzyme and Group 3: Teeth were deproteinized with 10% NaOCl. Results and Conclusions: Application of bromelain enzyme has led to removing collagen network and significantly decreased the global leakage scores of the adhesive system. PMID:24403782

  7. The durability of a fluoride-releasing resin adhesive system to dentin.

    PubMed

    Nakajima, Masatoshi; Okuda, Mamiko; Ogata, Miwako; Pereira, Patricia N R; Tagami, Junji; Pashley, David H

    2003-01-01

    The durability of a fluoride-free (SE Bond) and a fluoride-containing (KBF) self-etching primer/ adhesive system were compared by measuring the microtensile bond strengths (microTBS) of these adhesive systems to human dentin in vitro. After bonding, the restored teeth were serially sectioned into multiple slabs that were trimmed to a 1 mm2 cross-sectional area at the bonded interface. For the three and six month specimens, half were fully covered with nail varnish (SE+, KBF+), while the other half were incubated at 37 degrees C in water without any protective varnish (SE-, KBF-). The microTBS of the one-day specimens were 44.6 +/- 11.2 MPa for SE Bond and 39.8 +/- 8.0 MPa for KBF (p > 0.05). When unprotected specimens were incubated in water for three and six months, the microTBS fell to 26.3 +/- 8.8 MPa and 23.6 +/- 10.7 MPa for SE-, respectively, but did not change in the specimens protected with nail varnish (SE+, 41.9 +/- 12.8 MPa and 41.8 +/- 9.8 MPa, respectively). In contrast, in specimens bonded with a fluoride-containing resin, KBF, the bond strengths of the unprotected specimens did not change over three and six months KBF-. Values were 32.4 +/- 6.1 MPa and 36.8 +/- 2.3 MPa, respectively. Similarly, varnish-protected KBF+ specimens did not change over three and six months (39.3 +/- 13.6 MPa and 40.9 +/- 14.7 MPa, respectively). The results indicate that decreases in bond strength over six months' storage are water-dependent but can be prevented by using fluoride-containing resins.

  8. Effect of the application of a casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) paste and adhesive systems on bond durability of a fissure sealant.

    PubMed

    Borges, Boniek Castillo Dutra; Catelan, Anderson; Sasaki, Robson Tetsuo; Ambrosano, Gláucia Maria Bovi; Reis, André Figueiredo; Aguiar, Flávio Henrique Baggio

    2013-01-01

    This study aimed to evaluate the effect of the previous application of a casein phosphopeptide-amorphous calcium phosphate paste (MI Paste, MI) and adhesive systems on the bond durability of a fissure sealant. Ninety-eight enamel blocks were obtained from proximal surfaces of erupted third molars. Specimens were divided into 14 groups (n = 7) according to the previous application of MI (with and without) and the adhesive systems used (no adhesive system; hydrophobic resin of a three-step etch-and-rinse adhesive system; etch-and-rinse single-bottle adhesive system; all-in-one adhesive system; two-step self-etching adhesive system; additional phosphoric acid conditioning and all-in-one adhesive system; additional phosphoric acid conditioning and two-step self-etching adhesive system). A fissure sealant (Fluroshield) was applied and photoactivated for 20 s. Beams (~0.7 mm(2)) were prepared for the microtensile bond strength test, which was executed after 24 h or 6 months of water storage. Fractured specimens were analyzed by scanning electronic microscopy. Data were analyzed by two-way ANOVA with repeated measures/Tukey's test (P < 0.05). Groups that received MI application and adhesive systems presented higher means than those groups where MI was not applied. Higher frequency of cohesive failures was observed for groups with MI. Applying a CPP-ACP containing paste on enamel before adhesive systems was an effective method to increase bond durability of the sealant tested.

  9. Evaluation of Biocompatibility of an Etch-and-Rinse Adhesive System Based in Tertiary Butanol Applied in Deep Cavity

    PubMed Central

    Alves, Gilvanely Cardoso; Sobral, Ana Paula Veras

    2015-01-01

    The aim of this study was to evaluate biocompatibility of an etch-and-rinse adhesive system based in tertiary butanol applied in deep cavity human teeth with approximately 1 mm of remaining dentin by observing histological changes of the pulp tissue of humans at intervals of 01, 07, 14 and 21 days. Twenty third molars with indication for xtraction from patients of both sexes, presenting no systemic alterations were used. Class I cavity was made deeper and then, XP BOND adhesive system and resin Filtek Z250 were applied. The sample was divided into four groups according to the time intervals between the application of adhesive system and extraction. Morphologic criteria analysed considered the presence of hyperemia, type of inflammatory cell response, organization of odontoblast cells layer, organization of pulp tissue and the presence or absence of bacteria. Data were submitted to Fisher Exact Test p> 0.05. We observed mild inflammatory infiltrate, preserved pulp tissue morphology, disorganization of the odontoblast layer in most specimens, as well as absence of bacteria at the intervals of 01, 07, 14 and 21 days. In some cases there was pulp hyperemia. The etchand- rinse adhesive system based in tertiary butanol showed satisfactory behavior in the conditions studied. PMID:26140062

  10. Durability of Ti-6Al-4V/LaRC-PETI-5 adhesive bonded system for HSCT applications

    SciTech Connect

    Parvatareddy, H.; Pasricha, A.; Dillard, D.A.; Dillard, J.G.

    1996-12-31

    Structural adhesive joints are being widely used and studied as alternatives to conventional fasteners in the aerospace, automotive, and other industries. Adhesive bonding offers advantages such as lower weight and lower manufacturing costs. Furthermore, high performance adhesives which are currently being synthesized (e.g. epoxies, phenolics, acrylics, thermoplastic polyimides) offer other useful properties such as higher modulus, higher toughness, and stability at high temperatures. In the present study, the durability of the Ti-6Al-4V/LaRC PETI-5 adhesive bonded system is being evaluated utilizing double cantilever beam (DCB) fracture specimens. These DCB tests have been used extensively to study adhesive joints. The current study is part of a comprehensive study to develop a durable material system for application in the proposed mach 2.4 high speed civil transport (HSCT) aircraft. According to the design criteria, the material system to be used on the aircraft should be durable for over 60,000 hours of flight encountering temperatures during flight in the range of 177{degrees}C. Physical aging and chemical aging of the adhesive material are some of the important issues which have to be evaluated and taken into consideration for predicting the bond durability. In order to simulate the service environment conditions of the HSCT, the Ti-6Al-4V/LaRC PETI-5 bonds were aged in one of three temperatures; 150, 177, and 204{degrees}C, at one of three different environments; atmospheric air, and reduced air pressures of 2 psi air (13.8 KPa) and 0.2 psi air (1.38 KPa).

  11. Evaluation of dental adhesive systems with amalgam and resin composite restorations: comparison of microleakage and bond strength results.

    PubMed

    Neme, A L; Evans, D B; Maxson, B B

    2000-01-01

    A variety of laboratory tests have been developed to assist in predicting the clinical performance of dental restorative materials. Additionally, more than one methodology is in use for many types of tests performed in vitro. This project assessed and compared results derived from two specific laboratory testing methods, one for bond strength and one for microleakage. Seven multi-purpose dental adhesives were tested with the two methodologies in both amalgam and resin composite restorations. Bond strength was determined with a punch-out method in sections of human molar dentin. Microleakage was analyzed with a digital imaging system (Image-Pro Plus, Version 1.3) to determine the extent of dye penetration in Class V preparations centered at the CEJ on both the buccal and lingual surfaces of human molar teeth. There were 32 treatment groups (n = 10); seven experimental (dental adhesives) and one control (copal varnish, 37% phosphoric acid) followed by restoration with either amalgam or resin composite. Specimens were thermocycled 500 times in 5 degrees and 55 degrees C water with a one-minute dwell time. Bond strength and microleakage values were determined for each group. ANOVA and Student-Newman-Keuls tests demonstrated an interaction between restorative material and adhesive system with a significant difference among adhesives (p < 0.05). Using a multi-purpose adhesive system resulted in both a statistically significant increase in bond strength and a statistically significant decrease in extent of microleakage (p < 0.05). The effect of the adhesive upon both microleakage and bond strength was greater in the resin composite restorations than in the amalgam restorations. Bond strength testing was more discriminating than microleakage evaluation in identifying differences among materials.

  12. Long-Term bacterial leakage along obturated roots restored with temporary and adhesive fillings.

    PubMed

    Barthel, C R; Zimmer, S; Wussogk, R; Roulet, J F

    2001-09-01

    The aim of this study was to examine whether obturated roots combined with several adhesive and temporary filling materials can be bypassed by bacteria. Standardized cavities were coronally prepared into 130 straight roots mimicking clinical access cavities. After obturation the roots were assigned to six test and three control groups and coronally sealed with either Clearfil, CoreRestore, IRM, Ketac Fil, or a combination of IRM/wax or Ketac Fil/wax. The roots were then fixed between a top and a bottom chamber each. The top chamber contained soy broth with 108 Staphylococcus epidermidis colony-forming units/ml, and the bottom chamber contained sterile soy broth. For 1 yr the mounts were checked on a regular basis for turbidity in their bottom chambers indicating bacterial growth. After 1 yr only three samples from the CoreRestore group and two samples from the Clearfil group resisted leakage. At termination there was no significant difference in number of leaking samples among the groups. At the beginning of the experiment IRM performed worst. Between months 5 and 10 Clearfil showed the least leaking samples; for some months this was statistically significant compared with IRM or Ketac Fil.

  13. Microscopic evaluation of dentin interface obtained with 10 contemporary self-etching systems: correlation with their pH.

    PubMed

    Grégoire, Geneviéve; Millas, Arlette

    2005-01-01

    This study investigated micromorphological differences in the hybridized complex formed using 10 commercially available self-etch bonding systems. In addition, the influence of the pH of the primer of these adhesives was evaluated. The self-etching systems tested were AdheSE, Adper Prompt L-Pop, Clearfil SE Bond, Etch&Prime 3.0 (Degussa, Germany), Prime & Bond NT Non Rinse Conditioner (Dentsply, Konstanz, Germany), One-Up Bond F, OptiBond Solo Plus Self Etch, Prompt L-Pop and Xeno III. One hundred non-carious human third molars were used. The teeth were divided into two groups of 50 and prepared for evaluation by optical microscopy or scanning electron microscopy. The specimens in each group were further divided into 10 subgroups of five specimens each to evaluate the 10 bonding systems. The pH of the primers of the bonding systems was measured. The results demonstrated morphological differences at the interface, depending on adhesive composition. The differences mainly concerned thickness of the hybrid layer, the absence or presence of microscopic voids at the adhesive-composite interface and whether the dentinal tubuli were completely sealed. The pH was not the determining factor conditioning the action of the self-etching adhesives.

  14. In vitro analysis of bond strength of self-etching adhesives applied on superficial and deep dentin.

    PubMed

    Garcia, Eugenio J; Gomes, Osnara M M; Gomes, João C

    2009-01-01

    The purpose of this study was to evaluate the bond strength of three adhesive systems to superficial and deep dentine using the microtensile bond strength test (microTBS). The occlusal enamel of thirty human third molars was removed to expose a flat surface of superficial or deep dentin. For each type of surface, the test specimens were randomly divided into three groups which underwent the application of a conventional two-step adhesive system [Single Bond (SB)] as the control group (n=10), a two-bottle self-etching system [One Coat SE Bond (OCSE)] (n=10) and a one bottle one-step system [Clearfil S3 Bond (CFS3)] (n=10). Adhesives were applied, a 5-mm high "crown" as built-up with resin composite Z250 (3M) and the specimens with a cross-sectional area of 0.7 +/- 0.1 mm2 were tested in tension (0.5 mm/min). Four fractured sticks from each tooth were randomly selected and the dentin side was gently abraded with a 1200-grit SiC paper etched with 35% phosphoric acid for 15 s and air dried. SEM micrographs at 70X and 2400X magnification were taken using scanning electron microscopy (SEM) to calculate the area of tubular dentin (ATD) and tubular density (TD) with Image Pro Plus 5. Two-way ANOVA (dentin depth-adhesive) showed higher bond strength values for SB. However the values did not depend on dentin depth. Linear regression showed a significant relationship between bond strength and area of intertubular dentin for SB (p = 0.004), and a significant inverse relationship between tubular density and bond strength for CFS3 (p = 0.009). OCSE exhibited a tendency that was similar to SB and opposite to CFS3, but was not statistically significant. The conventional two-step adhesive had higher bond strength values. The use of digital image analysis facilitates the manipulation of data and contributes to the interpretation of the behavior of new adhesive systems.

  15. Effect of bromelain enzyme for dentin deproteinization on bond strength of adhesive system

    PubMed Central

    Chauhan, Kirti; Basavanna, Revaplar Siddaveerappa; Shivanna, Vasundhara

    2015-01-01

    Aims: To assess the deproteinizing effect of bromelain enzyme and compare it with 5% sodium hypochlorite (NaOCl) on shear bond strength before application of the adhesive system. Materials and Methods: A total of 30 extracted human premolars were divided into three groups, each one consisted of 10 teeth. The occlusal surface was wet ground to expose superficial dentin. In Group 1, teeth were etched; in Group 2, teeth were etched and deproteinized with bromelain enzyme; in Group 3, teeth were etched and deproteinized with 5% NaOCl. Upon completion of the adhesive procedures, resin composite was inserted into the plastic tube and light-polymerized. All specimens were stored at 37°C in water for 24 h, and the specimens were transferred to the universal testing machine, and then subjected to shear bond strength analysis at a crosshead speed of 1.0 mm/min. Statistical Analysis Used: Data were statistically analyzed using one-way analysis of variance and unpaired t-test at a significance level of 0.05. The statistical analysis was performed using SPSS version 12.0.1 for Windows (SPSS Inc., Chicago, IL, USA). Results: The bond strength results were significantly influenced by the application of bromelain enzyme. Statistically significant differences were not demonstrated in control group and NaOCl-treated group. The highest bond strength was seen in bromelain enzyme-treated group. Conclusions: Within the limitations of the present study, it was concluded that removal of unsupported collagen fiber with bromelain enzyme after acid etching results in improved bond strength. PMID:26430297

  16. Transdentinal cytotoxicity of experimental adhesive systems of different hydrophilicity applied to ethanol-saturated dentin

    PubMed Central

    Bianchi, Luciana; Ribeiro, Ana Paula Dias; de Oliveira Carrilho, Marcela Rocha; Pashley, David H.; de Souza Costa, Carlos Alberto; Hebling, Josimeri

    2014-01-01

    The aim of this study was to evaluate the transdentinal cytotoxicity of experimental adhesive systems (EASs) with different hydrophilicity and dentin saturation solutions (ethanol and water) on odontoblast-like cells. One hundred 0.4-mm-thick dentin discs were mounted in in vitro pulp chambers and assigned to 10 groups. Odontoblast-like cells MDPC-23 were seeded onto the pulpal side of the discs, incubated for 48h. The EASs with increasing hydrophilicity (R2, R3, R4 and R5) were applied to the occlusal side of the discs after acid etching and saturation of demineralized dentin with water or ethanol. R0 (water and ethanol- no adhesive) served as controls. After 24h, cell metabolism was evaluated by SDH enzyme production (MTT assay; n=8 discs) and cell morphology was examined by SEM (n=2 discs). The type of cell death was identified by flow cytometry and the degree of monomer conversion (%DC) was determined by infrared spectroscopy (FTIR) after two photoactivation times (10 s or 20 s). Data were analyzed statistically by the Kruskal-Wallis and Mann-Whitney tests (α=0.05). Dentin saturation with ethanol resulted in higher necrotic cell death ratios for R3, R4 and R5 compared with water saturation, although R3 and R4 induced higher SDH production. Photoactivation for 20 s significantly improved the %DC of all EASs compared with 10 s. A significant positive correlation was observed between the degree of hydrophilicity and %DC, for both photoactivation times. In conclusion, except for R2, dentin saturation with ethanol increased the cytotoxicity of EASs, as expressed by the induction of necrotic cell death. PMID:23906501

  17. Conditioning of root canals prior to dowel cementation with composite luting cement and two dentine adhesive systems.

    PubMed

    Liberman, R; Ben-Amar, A; Urstein, M; Gontar, G; Fitzig, S

    1989-11-01

    Two hundred and forty root canals of extracted single-rooted teeth were prepared to the same dimension, and Dentatus posts of equal size were cemented without screwing them into the dentine. Five cleansing solutions and two dentine adhesive systems were evaluated prior to post-cementation using chemical-cure composite resin. 'Pull-out' tests were then conducted in order to evaluate the bond strength of these intra-pulpal posts. The use of Conclude (composite luting cement) alone, with or without the cleansing solutions, resulted in significantly lower pull-out forces. Scotchbond Dental Adhesive gave significantly better results, regardless of the cleansing solution used. Gluma Dentine Adhesive significantly increased the pull-out forces only when used with its supplied cleanser or Tubulicid.

  18. Evaluation of thiouracil-based adhesive systems for bonding cast silver-palladium-copper-gold alloy.

    PubMed

    Yamashita, Miyuki; Koizumi, Hiroyasu; Ishii, Takaya; Furuchi, Mika; Matsumura, Hideo

    2010-09-01

    This study aimed to evaluate the effect of adhesive systems based on a thiouracil monomer on bonding to silver-palladium-copper-gold (Ag-Pd-Cu-Au) alloy (Castwell M.C.12). Disk specimens were cast from the alloy and then air-abraded with alumina. The disks were bonded using six bonding systems selected from four primers and three luting materials. Shear bond strengths were determined both before and after thermocycling. Bond strength varied from 2.7 MPa to 32.0 MPa. Three systems based on a thiouracil monomer (MTU-6) showed durable bonding to the alloy, with post-thermocycling bond strengths of 22.4 MPa for the Metaltite (MTU-6) primer and Super-Bond, a tri-n-butylborane (TBB) initiated resin, 9.0 MPa for the Multi-Bond II resin, and 8.1 MPa for the Metaltite and Bistite II system. It can be concluded that a combination of thiouracil-based primer and TBB initiated resin is effective for bonding Ag-Pd-Cu-Au alloy.

  19. Intrauterine Adhesions

    MedlinePlus

    ... adhesion formation are infections of the uterine lining (endometritis), removal of fibroids in the cavity of the ... to prevent adhesions from reforming. Hormonal treatment with estrogen and NSAIDs are frequently prescribed after surgery to ...

  20. A systemic review of randomized controlled studies about prevention with pharmacologic agents of adhesion formation in the rat uterine horn model

    PubMed Central

    Ulug, Pasa

    2015-01-01

    Introduction Evaluation of treatment attempts in postoperative adhesion formation is pivotal for the prevention of several morbidities including infertility, pelvic pain, bowel obstruction, and subsequent intraoperative complications. The purpose of this systemic review was to assess the literature on the rat uterine horn model for adhesion formation and treatment modalities to prevent adhesion in the most frequently used experimental animal model. Material and methods We performed a systemic review of publications from January 1st 2000 to December 31st 2013 via a PubMed search. A high number of agents were evaluated for the prevention of postoperative adhesion formation in the rat uterine horn model. Results According to most of the studies, adjuvants such as antiinflamatuars, antiestrogens, antioxidants were effective to prevent adhesion formation. Conclusions Prevention of adhesion formation is pivotal and numerous types of agents were described in the literature were summarized in this review. PMID:25995741

  1. The shear bond strength of MTA with three different types of adhesive systems: An in vitro study

    PubMed Central

    Tyagi, Nimish; Chaman, Chandrakar; Tyagi, Shashi Prabha; Singh, Udai Pratap; Sharma, Apoorv

    2016-01-01

    Aim: To evaluate the shear bond strength of MTA with three different types of adhesive systems- self-adhering flowable composite, etch and rinse adhesive system and self etch adhesive system. Methodology: MTA specimens (n = 60) were prepared using cylindrical acrylic blocks, having a central cavity with 4 mm diameter and 2 mm depth. MTA was mixed and placed in the prepared cavity, and was covered with a moist cotton pellet and temporary filling material. The specimens were divided into 3 groups which were further divided into 2 sub-groups (45 Minutes and 24 hours). After the application of bonding agents composite resin was placed over the MTA surface. The specimens were tested for shear bond strength and readings were statically analyzed. Result: After 24 hrs the mean value of etch and rinse group was significantly higher than self etch and the self adhering composite groups. Among the 45 minutes groups there were no significant difference. Conclusion: In single visit after 45 minutes self adhering flowable can be used successfully as a final restorative material in place of conventional flowable composite without using any alternative adhesive system over MTA. PMID:27099417

  2. Desulfurization characteristics of rapidly hydrated sorbents with various adhesive carrier particles for a semidry CFB-FGD system.

    PubMed

    You, Changfu; Li, Yuan

    2013-03-19

    Semidry flue gas desulfurization (FGD) experiments were conducted using rapidly hydrated sorbents with four different adhesive carrier particles: circulation ash from a circulating fluidized bed boiler (CFBB circulation ash), fly ash from the first electrical field of the electrostatic precipitator of a circulating fluidized bed boiler (CFBB ESP ash), fly ash from a chain boiler (chain boiler ash), and river sand smaller than 1 mm. The influences of various adhesive carrier particles and operating conditions on the desulfurization characteristics of the sorbents were investigated, including sprayed water, reaction temperature, and the ratio of calcium to sulfur (Ca/S). The experimental results indicated that the rapidly hydrated sorbents had better desulfurization characteristics by using adhesive carrier particles which possessed better pore, adhesion, and fluidization characteristics. The desulfurization efficiency of the system increased as the reaction temperature decreased, it improved from 35% to 90% as the mass flow rate of the sprayed water increased from 0 to 10 kg/h, and it increased from 65.6% to 82.7% as Ca/S increased from 1.0 to 2.0. Based on these findings, a new semidry circulating fluidized bed (CFB)-FGD system using rapidly hydrated sorbent was developed. Using the rapidly hydrated sorbent, this system uses a cyclone separator instead of an ESP or a bag filter to recycle the sorbent particles, thereby decreasing the system flow resistance, saving investment and operating costs of the solids collection equipment.

  3. Influence of Photoinitiator System on Physical-Chemical Properties of Experimental Self-Adhesive Composites.

    PubMed

    Bertolo, Marcus Vinicius Loureiro; Moraes, Rita de Cássia Martins; Pfeifer, Carmem; Salgado, Vinícius Esteves; Correr, Ana Rosa Costa; Schneider, Luis Felipe J

    2017-01-01

    The aim of this study was to determine the influence of photoinitiator systems on physical-chemical properties of flowable composites. Conventional (CFC), composed by bisphenol-glycidyl dimethacrylate (BisGMA)+triethyleneglycol dimethacrylate (TEGDMA), and self-adhesive (SAFC), composed by BisGMA+TEDGMA+bis{2-(methacryloyloxy) ethyl} phosphate (2MP), flowable composites were developed. Five photoinitiator systems were tested: camphorquinone (CQ), ethyl-4-dimethylaminobenzoate (EDMAB), diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO), phenylbis (2,4,6-trimethylbenzoyl)phosphine oxide (BAPO), CQ+EDMAB+TPO and CQ+EDMAB+BAPO. A two-peak LED was used; degree of conversion (DC) and the maximum polymerization rate (RPmax) were determined by near infrared spectroscopy. For the yellowing degree a spectrophotometer was used. Water sorption (Wsp) was obtained after 30 days of water storage (n=5). Data were submitted to two-way analysis of variance and Tukey's test (a=0.05). BAPO presented the highest DC and RPmax values for both series. SAFCs presented lower DC and RPmax for CQ+EDMAB-based materials. Greater yellowing was observed for SAFCs compared with CFCs, except for BAPO. Greater Wsp was observed for SAFCs compared with CFCs. The photoinitiator did not influence Wsp for CFCs, but TPO and BAPO presented the highest Wsp in SAFCs. The photoinitiator system affected differently the physical-chemical properties of CFCs and SAFCs.

  4. Do the origins of primary teeth affect the bond strength of a self-etching adhesive system to dentin?

    PubMed

    Bengtson, Camilla Regina Galvão; Bengtson, Antonio Lucindo; Bengtson, Nadya Galvão; Turbino, Miriam Lacalle

    2010-01-01

    The aim of this in vitro study was to evaluate the tensile bond strength of a self-etching adhesive system to three different dentinal substrates. Primary molar teeth that had been recently exfoliated (RE), with unknown time of exfoliation (UT), and extracted due to prolonged retention (PR) were used for this investigation. Ten primary molar teeth of each group were cut in the middle following the mesio-distal direction, creating a total of twenty specimens per group. The specimens were included in acrylic resin and had a flat dentin surface exposed. The self-etching adhesive system was applied to this surface and a 3-millimeter high cone with diameter of 2 mm in the adhesion area was constructed using composite resin. The specimens were stored in distilled water at 37ºC for 24 hours. Fifteen specimens of each substrate were used for the tensile bond test (n = 15) and 5 had the interface analyzed by scanning electron microscopy (SEM). The data was examined by one-way ANOVA and presented no significant differences between groups (p = 0.5787). The mean values obtained for RE, UT and PR were 18.39 ± 9.70, 19.41 ± 7.80, and 23.30 ± 9.37 MPa, respectively. Any dentinal substrates of primary teeth studied are safe for tensile bond strength tests with adhesive systems.

  5. Kinetics of membrane adhesion mediated by ligand-receptor interaction studied with a biomimetic system.

    PubMed Central

    Boulbitch, A; Guttenberg, Z; Sackmann, E

    2001-01-01

    We report the first measurement of the kinetics of adhesion of a single giant vesicle controlled by the competition between membrane-substrate interaction mediated by ligand-receptor interaction, gravitation, and Helfrich repulsion. To model the cell-tissue interaction, we doped the vesicles with lipid-coupled polymers (mimicking the glycocalix) and the reconstituted ligands selectively recognized by alpha(IIb)beta(3) integrin-mediating specific attraction forces. The integrin was grafted on glass substrates to act as a target cell. The adhesion of the vesicle membrane to the integrin-covered surface starts with the spontaneous formation of a small (approximately 200 nm) domain of tight adhesion, which then gradually grows until the whole adhesion area is in the state of tight adhesion. The time of adhesion varies from few tens of seconds to about one hour depending on the ligand and lipopolymer concentration. At small ligand concentrations, we observed the displacement xi of the front of tight adhesion following the square root law xi approximately t(1/2), whereas, at high concentrations, we found a linear law xi approximately t. We show both experimentally and theoretically that the t(1/2)-regime is dominated by diffusion of ligands, and the xi approximately t-regime by the kinetics of ligands-receptors association. PMID:11606287

  6. Chitosan incorporated in a total-etch adhesive system: antimicrobial activity against Streptococcus mutans and Lactobacillus casei.

    PubMed

    Lobato, Marcelo Figueiredo; Turssi, Cecilia Pedroso; Amaral, Flávia Lucisano Botelho do; França, Fabiana Mantovani Gomes; Basting, Roberta Tarkany

    2017-01-01

    The aim of this study was to investigate the antimicrobial effect of an experimental adhesive system containing chitosan (0.2% and 0.5%) against Streptococcus mutans and Lactobacillus casei. Twenty-four extracted human third molars were used, and 4 cavities were prepared in each tooth. The teeth were contaminated with either S mutans (n = 12 teeth, 48 cavities) or L casei (n = 12 teeth, 48 cavities) microorganisms. One cavity in each tooth received 1 of the following treatments: negative control (no treatment [NC]), positive control (Adper Single Bond 2 [SB]), an experimental adhesive containing chitosan 0.2% (CHI2), or an experimental adhesive containing chitosan 0.5% (CHI5). After sealing of the cavities and an incubation period, dentin scrapings were collected from each cavity for microbiological evaluation. Analysis of variance and Tukey tests revealed no statistically significant differences among the SB, CHI2, and CHI5 groups (P > 0.05), but all 3 differed significantly from the NC group (P ≤ 0.05). The concentrations of chitosan did not influence the antimicrobial effect against S mutans and L casei, presenting a similar effect to that of a conventional 2-step adhesive system.

  7. Repair bond strength of resin composite to a novel CAD/CAM hybrid ceramic using different repair systems.

    PubMed

    Elsaka, Shaymaa E

    2015-01-01

    This study evaluated the repair bond strength of a nanohybrid resin composite to a novel CAD/CAM hybrid ceramic based on four intraoral ceramic repair systems. Vita Enamic (VE) CAD/CAM hybrid ceramic was used in this study. Specimens were divided into five test groups according to the repair method performed on the ceramic surface: Gr C (No treatment; control); Gr CZ (Cimara Zircon); Gr PR (Porcelain Repair); Gr CR (Clearfil Repair); and Gr CS (CoJet system). Nanohybrid resin composite (GrandioSO) was packed onto treated ceramic surfaces for adhesion testing using microtensile bond strength test. Debonded specimens were examined with a stereomicroscope and SEM to determine the fracture mode. Data were analyzed using ANOVA and Tukey's HSD test. PR and CZ repair systems significantly enhanced the bond strength of nanohybrid resin composite to VE CAD/CAM hybrid ceramic when compared with the other tested repair systems.

  8. Effect of a Desensitizing Varnish on Microleakage of Two Self-Etch Adhesives

    PubMed Central

    Saffarpour, Anna; Saffarpour, Aida; Kharazifard, Mohammad Javad; Golmohamadi, Niloofar

    2015-01-01

    Objectives: The aim of this in-vitro experimental study was to assess the effect of application of a desensitizing varnish on the enamel and dentin marginal seal. Materials and Methods: Seventy-two freshly extracted, intact human premolar teeth were divided into four groups (n=18). Class V cavities (3mm in length, 2mm in width and 2mm in depth) were prepared on the buccal surface of each tooth. The following sealing materials were applied in the four groups: One-step Clearfil S3 Bond (S3) self-etch adhesive, two-step Clearfil SE Bond (SE) self-etch adhesive, S3 Bond+ VivaSens desensitizing varnish (VS+S3) and Clearfil SE Bond + VivaSens (VS+SE). The cavities on the teeth were then incrementally filled with Z350 light-cure composite. The teeth were stored in distilled water for 24 hours at 37°C, and were then thermocycled for 1000 cycles. Then, all the specimens were prepared for dye penetration test and were immersed in 2% basic fuchsin dye and incubated at 37°C for 24 hours. The teeth were then sectioned buccolingually along the center of restorations with a diamond disk. Microleakage at the tooth-restoration interface was assessed in the enamel and dentin margins blindly using dye penetration under a stereomicroscope at ×20 magnification. Results: There was significantly greater leakage at the enamel and dentin margins in group VS+SE than in group SE; also, these values were higher in group VS+S3 than in S3. Conclusion: Combined application of desensitizing varnish and self-etch adhesives seems to increase microleakage in composite restorations. Thus, its application is not suggested. PMID:27507991

  9. Influence of Er:YAG and Ti:sapphire laser irradiation on the microtensile bond strength of several adhesives to dentin.

    PubMed

    Portillo, M; Lorenzo, M C; Moreno, P; García, A; Montero, J; Ceballos, L; Fuentes, M V; Albaladejo, A

    2015-02-01

    The aim of the present study was to evaluate the influence of erbium:yttrium-aluminum-garnet (Er:YAG) and Ti:sapphire laser irradiation on the microtensile bond strength (MTBS) of three different adhesive systems to dentin. Flat dentin surfaces from 27 molars were divided into three groups according to laser irradiation: control, Er:YAG (2,940 nm, 100 μs, 2.7 W, 9 Hz) and Ti:sapphire laser (795 nm, 120 fs, 1 W, 1 kHz). Each group was divided into three subgroups according to the adhesive system used: two-step total-etching adhesive (Adper Scotchbond 1 XT, from now on XT), two-step self-etching adhesive (Clearfil SE Bond, from now on CSE), and all-in-one self-etching adhesive (Optibond All-in-One, from now on OAO). After 24 h of water storage, beams of section at 1 mm(2) were longitudinally cut from the samples. Each beam underwent traction test in an Instron machine. Fifteen polished dentin specimens were used for the surface morphology analysis by scanning electron microscopy (SEM). Failure modes of representative debonded microbars were SEM-assessed. Data were analyzed by ANOVA, chi-square test, and multiple linear regression (p < 0.05). In the control group, XT obtained higher MTBS than that of laser groups that performed equally. CSE showed higher MTBS without laser than that with laser groups, where Er:YAG attained higher MTBS than ultrashort laser. When OAO was used, MTBS values were equal in the three treatments. CSE obtained the highest MTBS regardless of the surface treatment applied. The Er:YAG and ultrashort laser irradiation reduce the bonding effectiveness when a two-step total-etching adhesive or a two-step self-etching adhesive are used and do not affect their effectiveness when an all-in-one self-etching adhesive is applied.

  10. Adhesion of 10-MDP containing resin cements to dentin with and without the etch-and-rinse technique

    PubMed Central

    Sen, Deniz; Tuncelli, Betul; Özcan, Mutlu

    2013-01-01

    PURPOSE This study evaluated the adhesion of 10-MDP containing self-etch and self-adhesive resin cements to dentin with and without the use of etch-and-rinse technique. MATERIALS AND METHODS Human third molars (N=180) were randomly divided into 6 groups (n=30 per group). Conventional (Panavia F2.0, Kuraray-PAN) and self-adhesive resin cements (Clearfil SA, Kuraray-CSA) were bonded to dentin surfaces either after application of 3-step etch-and-rinse (35% H3PO4 + ED Primer) or two-step self-etch adhesive resin (Clearfil SE Bond). Specimens were subjected to shear bond strength test using the universal testing machine (0.5 mm/min). The failure types were analyzed using a stereomicroscope and quality of hybrid layer was observed under a scanning electron microscope. The data (MPa) were analyzed using two-way ANOVA and Tukey's tests (α=.05). RESULTS Overall, PAN adhesive cement showed significantly higher mean bond strength (12.5 ± 2.3 - 14.1 ± 2.4 MPa) than CSA cement (9.3 ± 1.4 - 13.9 ± 1.9 MPa) (P<.001). Adhesive failures were more frequent in CSA cement groups when used in conjunction with two-step self-adhesive (68%) or no adhesive at all (66%). Hybrid layer quality was inferior in CSA compared to PAN cement in all conditions. CONCLUSION In clinical situations where bonding to dentin substrate is crucial, both conventional and self-adhesive resin cements based on 10-MDP can benefit from etch-and-rinse technique to achieve better quality of adhesion in the early clinical period. PMID:24049562

  11. LARC-13 adhesive development

    NASA Technical Reports Server (NTRS)

    Hill, S. G.; Sheppard, C. H.; Johnson, J. C.

    1980-01-01

    A LARC-13 type adhesive system was developed and property data obtained that demonstrated improved thermomechanical properties superior to base LARC-13 adhesive. An improved adhesive for 589 K (600 F) use was developed by physical or chemical modification of LARC-13. The adhesive was optimized for titanium and composite bonding, and a compatible surface preparation for titanium and composite substrates was identified. The data obtained with the improved adhesive system indicated it would meet the 589 K (600 F) properties desired for application on space shuttle components. Average titanium lap shear data were: (1) 21.1 MPa (3355 psi) at RT, (2) 13.0 MPa (1881 psi) at 600 F, and (3) 16.4 MPa (2335) after aging 125 hours at 600 F and tested at 600 F.

  12. Polymer adhesion test system: A mechatronic instrument to study the cohesion and adhesion properties of polymers in high-speed squeezing flow

    NASA Astrophysics Data System (ADS)

    Stolfi, Fred R.

    This thesis involves the design, fabrication and use of an instrument to characterize polymeric materials at high speed. The work comprises a study in the field of mechatronics. Mechatronics is the synergistic combination of precision mechanical engineering, electronics, control systems and computers. Each of these components was required for a different aspect of the instrument; it was only through their synergy that the goal of high-speed operation was achieved. Indicative of a mechatronics approach, the mechanical design included a direct drive actuator, a hardy, simple means of obtaining precision motion. Inertia had to be minimized. The structural integrity of the design had to be analyzed and verified. Wideband, low noise, electronics were used in the feedback control loop and for the sensors that measured various mechanical variables. A linear feedback control system gave the instrument, the reference signal tracking, disturbance rejection and robustness to unmodeled dynamics required for its operation. This control system, therefore, provided the system functionality for the mechanical components. Finally, a computer system was used for data acquisition, parameter model determination and reference signal generation. The whole instrument was clearly more than the sum of its component parts. The primary scientific advance from this work comes from the fact that this instrument enables a high-speed characterization of polymers with a precision not previously available. The instrument subjects the polymer to squeezing flow, a type of flow pattern more complex than shearing flow and characteristic of many engineering processes. The instrument measures the viscoelastic rheological properties of the polymer under this flow regime at high system speeds (high rates of strain). Further, the instrument characterizes the cohesive properties of the polymer under high-speed transient extension. Finally, the instrument measures the adhesive properties of the polymer in

  13. Adhesion of a self-etching system to dental substrate prepared by Er:YAG laser or air abrasion.

    PubMed

    Souza-Zaroni, Wanessa C; Chinelatti, Michelle A; Delfino, Carina S; Pécora, Jesus D; Palma-Dibb, Regina G; Corona, Silmara A M

    2008-08-01

    The purpose of this study was to assess the microtensile bond strength of a self-etching adhesive system to enamel and dentin prepared by Er:YAG laser irradiation or air abrasion, as well as to evaluate the adhesive interfaces by scanning electron microscopy (SEM). For microtensile bond strength test, 80 third molars were randomly assigned to five groups: Group I, carbide bur, control (CB); II, air abrasion with standard tip (ST); III, air abrasion with supersonic tip (SP); IV, Er:YAG laser 250 mJ/4 Hz (L250); V, Er:YAG laser 300 mJ/4 Hz (L300). Each group was divided into two subgroups (n = 8) (enamel, E and dentin, D). E and D surfaces were treated with the self-etching system Adper Prompt L-Pop and composite buildups were done with Filtek Z-250. Sticks with a cross-sectional area of 0.8 mm(2) (+/-0.2 mm(2)) were obtained and the bond strength tests were performed. Data were submitted to ANOVA and Tukey's test. For morphological analysis, disks of 30 third molars were restored, sectioned and prepared for SEM. Dentin presented the highest values of adhesion, differing from enamel. Laser and air-abrasion preparations were similar to enamel. Dentin air-abrasion with standard tip group showed higher bond strength results than Er:YAG-laser groups, however, air-abrasion and Er:YAG laser groups were similar to control group. SEM micrographs revealed that, for both enamel and dentin, the air-abrasion and laser preparations presented irregular adhesive interfaces, different from the ones prepared by rotary instrument. It was concluded that cavity preparations accomplished by both Er:YAG laser energies and air abrasion tips did not positively influence the adhesion to enamel and dentin.

  14. Switchable bio-inspired adhesives

    NASA Astrophysics Data System (ADS)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  15. Biotin-conjugated anti-CD44 antibody-avidin binding system for the improvement of chondrocyte adhesion to scaffolds.

    PubMed

    Lin, Hong; Zhou, Jian; Shen, Longxiang; Ruan, Yuhui; Dong, Jian; Guo, Changan; Chen, Zhengrong

    2014-04-01

    The clinical need for improved treatment options for patients with cartilage injuries has motivated tissue-engineering studies aimed at the in vitro generation of cell-based implants with functional properties. The success of tissue-engineered repair of cartilage may depend on the rapid and efficient adhesion of transplanted cells to the scaffold. In the present study, chondrocyte-scaffold constructs were engineered by planting porcine chondrocytes into nonporous chitosan membranes and 3D porous chitosan scaffolds that were treated with or without biotin-conjugated anti-CD44 antibody-avidin binding system and avidin-biotin binding system. The spreading area, cell exfoliation rates, cell proliferation rates, histological analysis, DNA and glycosaminoglycan (GAG) content, and mRNA expression were investigated to evaluate the efficiency of biotin-conjugated anti-CD44 antibody-avidin binding system for the improvement of cell adhesion to scaffolds in the cartilage tissue. The results showed that the biotin-conjugated anti-CD44 antibody-avidin binding system improved cell adhesion to scaffolds effectively. These studies suggest that this binding system has the potential to provide improved tissue-engineered cartilage for clinical applications.

  16. Microleakage of Er:YAG laser and dental bur prepared cavities in primary teeth restored with different adhesive restorative materials.

    PubMed

    Baghalian, Ali; Nakhjavani, Yahya B; Hooshmand, Tabassom; Motahhary, Pouria; Bahramian, Hoda

    2013-11-01

    The purpose of this study was to evaluate and compare the effect of erbium:yttrium-aluminum-garnet (Er:YAG) laser irradiation and conventional dental bur cavity preparation on in vitro microleakage of class V cavities restored with different adhesive restorative materials and two types of self-etching adhesives in primary teeth. Standard class V cavities were prepared on 80 extracted primary, and the teeth were randomly divided into eight subgroups prepared either by dental bur or Er:YAG laser irradiation and then restored with self-cured glass ionomer (GI), resin-modified glass ionomer (RMGI), resin composite and Clearfil SE Bond (two-step self-etching adhesive), and resin composite and Clearfil S3 Bond (one-step self-etching adhesive). Restorations were finished and stored in distilled water at 37 °C for 24 h and then subjected to thermocycling. All the teeth were sealed with nail varnish, placed in a silver nitrate solution, and then vertically cut in a buccolingually direction. Subsequently, the specimens were evaluated for gingival and occlusal microleakage using a stereomicroscope. Data were analyzed using Kruskal-Wallis test followed by Mann-Whitney test. Wilcoxon test was used for comparing occlusal microleakage with gingival microleakage at p < 0.05. A higher degree of occlusal and gingival microleakage values for the teeth restored with GI or RMGI was obtained by both preparation methods compared with that of resin composites and the two self-etching primers. Er:YAG laser irradiation resulted in a significantly higher degree of microleakage only at the gingival margins for teeth restored with GI or RMGI, or composite and Clearfil S3 Bond compared with the bur preparation. The Er:YAG laser-prepared teeth restored with composite and Clearfil SE Bond demonstrated a better marginal seal on occlusal and gingival margins compared with that of bur-prepared cavities. The degree of microleakage in class V cavities was affected by the type of adhesive

  17. Adhesive sealing of dentin surfaces in vitro: A review

    PubMed Central

    Abu-Nawareg, Manar M; Zidan, Ahmed Z; Zhou, Jianfeng; Agee, Kelli; Chiba, Ayaka; Tagami, Jungi; Pashley, David H

    2016-01-01

    Purpose The purpose of this review is to describe the evolution of the use of dental adhesives to form a tight seal of freshly prepared dentin to protect the pulp from bacterial products, during the time between crown preparation and final cementum of full crowns. The evolution of these “immediate dentin sealants” follows the evolution of dental adhesives, in general. That is, they began with multiple-step, etch-and-rinse adhesives, and then switched to the use of simplified adhesives. Methods Literature was reviewed for evidence that bacteria or bacterial products diffusing across dentin can irritate pulpal tissues before and after smear layer removal. Smear layers can be solubilized by plaque organisms within 7–10 days if they are directly exposed to oral fluids. It is likely that smear layers covered by temporary restorations may last more than one month. As long as smear layers remain in place, they can partially seal dentin. Thus, many in vitro studies evaluating the sealing ability of adhesive resins use smear layer-covered dentin as a reference condition. Surprisingly, many adhesives do not seal dentin as well as do smear layers. Results Both in vitro and in vivo studies show that resin-covered dentin allows dentinal fluid to cross polymerized resins. The use of simplified single bottle adhesives to seal dentin was a step backwards. Currently, most authorities use either 3-step adhesives such as Scotchbond Multi-Purposea or OptiBond FLb or two-step self-etching primer adhesives, such as Clearfil SEc, Unifil Bondd or AdheSEe, respectfully. PMID:26846037

  18. System integration and demonstration of adhesive bonded high temperature aluminum alloys for aerospace structure, phase 2

    NASA Technical Reports Server (NTRS)

    Falcone, Anthony; Laakso, John H.

    1993-01-01

    Adhesive bonding materials and processes were evaluated for assembly of future high-temperature aluminum alloy structural components such as may be used in high-speed civil transport aircraft and space launch vehicles. A number of candidate high-temperature adhesives were selected and screening tests were conducted using single lap shear specimens. The selected adhesives were then used to bond sandwich (titanium core) test specimens, adhesive toughness test specimens, and isothermally aged lap shear specimens. Moderate-to-high lap shear strengths were obtained from bonded high-temperature aluminum and silicon carbide particulate-reinforced (SiC(sub p)) aluminum specimens. Shear strengths typically exceeded 3500 to 4000 lb/in(sup 2) and flatwise tensile strengths exceeded 750 lb/in(sup 2) even at elevated temperatures (300 F) using a bismaleimide adhesive. All faceskin-to-core bonds displayed excellent tear strength. The existing production phosphoric acid anodize surface preparation process developed at Boeing was used, and gave good performance with all of the aluminum and silicon carbide particulate-reinforced aluminum alloys investigated. The results of this program support using bonded assemblies of high-temperature aluminum components in applications where bonding is often used (e.g., secondary structures and tear stoppers).

  19. [Comparative studies on the applicability of a new surface conditioning system (Airsonic Mini Sandblaster) in adhesive bridging technic].

    PubMed

    Gbureck, U; Lansnicker, L; Holste, T; Thull, R

    2004-01-01

    The object of this work was to investigate a new surface conditioning system for hydrolysis-stable metal-polymer bonds in dental prosthetics. The application of the adhesive SiO2-interface layer was achieved tribochemically by the use of a miniaturised sand blasting instrument (Airsonic Mini Sandblaster, Co. Hager and Werken, Duisburg, Germany) using the SiO2 coated Rocatec blasting medium. An advantage of this instrument is the possibility of decreasing costs for dentist and patient and also the time of treatment by connecting the device to the dental chair. Evaluation of applicability was based on the composition and morphology of the coatings applied to different dental alloys (titanium, NiCr, CoCr). In addition, the strength of metal-polymer bonds prior to and after physiological ageing was determined by tensile shear testing. In all cases the Airsonic Mini Sandblaster coatings proved to be equivalent to the original Rocatec system in terms of the parameters tested, such as structure and composition of the coating, and adhesivity. Irrespective of the adhesive alloy-dependent adhesive strengths in the region of 24-30 MPa were achieved; no significant decrease in strength caused by degrading of the bonds occurred. Bonding strengths are within the range reported in the literature for the Rocatec system, and are appreciably above clinically required minimum strength of 10 MPa as enamel strength. The results demonstrate the applicability of the Airsonic Mini Sandblaster in practice. By employing the procedure at the dental chair the process of silicating and subsequent silanising can be transferred from the dental laboratory to the dentist's practice. In this way, a reduction in treatment time and costs is achieved, and the reliable handling of the coating system is also improved.

  20. Adhesive nonlinearity in Lamb-wave-based structural health monitoring systems

    NASA Astrophysics Data System (ADS)

    Shan, Shengbo; Cheng, Li; Li, Peng

    2017-02-01

    Structural health monitoring (SHM) techniques with nonlinear Lamb waves have gained wide popularity due to their high sensitivity to microstructural changes for the detection of damage precursors. Despite the significant progress made, various unavoidable nonlinear sources in a practical SHM system, as well as their impact on the detection, have not been fully assessed and understood. For the real-time and online monitoring, transducers are usually permanently bonded on the structure under inspection. In this case, the inherent material nonlinear properties of the bonding layer, referred to as adhesive nonlinearity (AN), may create undesired interference to the SHM system, or even jeopardize the damage diagnosis if they become serious. In this paper, a nonlinear theoretical framework is developed, covering the process of wave generation, propagation and sensing, with the aim of investigating the mechanism and characteristics of AN-induced Lamb waves in plates, which potentially allows for further system optimization to minimize the influence of AN. The model shows that an equivalent nonlinear normal stress is generated in the bonding layer due to its nonlinear material behavior, which, through its coupling with the system, is responsible for the generation of second harmonic Lamb waves in the plate, subsequently resulting in the nonlinear responses in the captured signals. With the aid of the finite element (FE) modeling and a superposition method for nonlinear feature extraction, the theoretical model is validated in terms of generation mechanism of the AN-induced wave components as well as their propagating characteristics. Meanwhile, the influence of the AN is evaluated by comparing the AN-induced nonlinear responses with those caused by the material nonlinearity of the plate, showing that AN should be considered as a non-negligible nonlinear source in a typical nonlinear Lamb-wave-based SHM system. In addition, the theoretical model is also experimentally

  1. Development of a multifunctional adhesive system for prevention of root caries and secondary caries

    PubMed Central

    Zhang, Ning; Melo, Mary A. S.; Chen, Chen; Liu, Jason; Weir, Michael D.; Bai, Yuxing; Xu, Hockin H. K.

    2015-01-01

    Objectives The objectives of this study were to: (1) develop a novel adhesive for prevention of tooth root caries and secondary caries by possessing a combination of protein-repellent, antibacterial, and remineralization capabilities for the first time; and (2) investigate the effects of 2-methacryloyloxyethyl phosphorylcholine (MPC), dimethylaminohexadecyl methacrylate (DMAHDM), and nanoparticles of amorphous calcium phosphate (NACP) on dentine bond strength, protein-repellent properties, and dental plaque microcosm biofilm response. Methods MPC, DMAHDM and NACP were added into Scotchbond Multi-Purpose primer and adhesive. Dentine shear bond strengths were measured. Adhesive coating thickness, surface texture and dentine-adhesive interfacial structure were examined. Protein adsorption onto adhesive resin surface was determined by the micro bicinchoninic acid method. A human saliva microcosm biofilm model was used to investigate biofilm metabolic activity, colony-forming unit (CFU) counts, and lactic acid production. Results The resin with 7.5% MPC + 5% DMAHDM + 30% NACP did not adversely affect dentine shear bond strength (p > 0.1). The resin with 7.5% MPC + 5% DMAHDM + 30% NACP produced a coating on root dentine with a thickness of approximately 70 μm and completely sealed all the dentinal tubules. The resin with 7.5% MPC + 5% DMAHDM + 30% NACP had 95% reduction in protein adsorption, compared to SBMP control (p < 0.05). The resin with 7.5% MPC + 5% DMAHDM + 30% NACP was strongly antibacterial, with biofilm CFU being four orders of magnitude lower than that of SBMP control. Significance The novel multifunctional adhesive with strong protein-repellent, antibacterial and remineralization properties is promising to coat tooth roots to prevent root caries and secondary caries. The combined use of MPC, DMAHDM and NACP may have wide applicability to bonding agents, cements, sealants and composites to inhibit caries. PMID:26187532

  2. Paucity of Nanolayering in Resin-Dentin Interfaces of MDP-based Adhesives.

    PubMed

    Tian, F; Zhou, L; Zhang, Z; Niu, L; Zhang, L; Chen, C; Zhou, J; Yang, H; Wang, X; Fu, B; Huang, C; Pashley, D H; Tay, F R

    2016-04-01

    Self-assembled nanolayering structures have been reported in resin-dentin interfaces created by adhesives that contain 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). These structures have been hypothesized to contribute to bond durability. The objective of the present study was to determine the extent of nanolayering in resin-dentin interfaces after application of commercialized 10-MDP-containing self-etch and universal adhesives to human dentin. Seven commercialized adhesives were examined: Adhese Universal (Ivoclar-Vivadent), All-Bond Universal (Bisco, Inc.), Clearfil SE Bond 2, Clearfil S3 Bond Plus, Clearfil Universal Bond (all from Kuraray Noritake Dental Inc.), G-Premio Bond (GC Corp.), and Scotchbond Universal (3M ESPE). Each adhesive was applied in the self-etch mode on midcoronal dentin according to the respective manufacturer's instructions. Bonded specimens (n = 6) were covered with flowable resin composite, processed for transmission electron microscopy, and examined at 30 random sites without staining. Thin-film glancing angle X-ray diffraction (XRD) was used to detect the characteristic peaks exhibited by nanolayering (n = 4). The control consisted of 15%wt, 10%wt, and 5%wt 10-MDP (DM Healthcare Products, Inc.) dissolved in a mixed solvent (ethanol and water weight ratio 9:8, with photoinitiators). Experimental primers were applied to dentin for 20 s, covered with hydrophobic resin layer, and examined in the same manner. Profuse nanolayering with highly ordered periodicity (~3.7 nm wide) was observed adjacent to partially dissolved apatite crystallites in dentin treated with the 15% 10-MDP primer. Three peaks in the 2θ range of 2.40° (3.68 nm), 4.78° (1.85 nm), and 7.18° (1.23 nm) were identified from thin-film XRD. Reduction in the extent of nanolayering was observed in the 10% and 5% 10-MDP experimental primer-dentin interface along with lower intensity XRD peaks. Nanolayering and characteristic XRD peaks were rarely observed in

  3. Paucity of Nanolayering in Resin-Dentin Interfaces of MDP-based Adhesives

    PubMed Central

    Tian, F.; Zhou, L.; Zhang, Z.; Niu, L.; Zhang, L.; Chen, C.; Zhou, J.; Yang, H.; Wang, X.; Fu, B.; Huang, C.; Pashley, D.H.; Tay, F.R.

    2015-01-01

    Self-assembled nanolayering structures have been reported in resin-dentin interfaces created by adhesives that contain 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). These structures have been hypothesized to contribute to bond durability. The objective of the present study was to determine the extent of nanolayering in resin-dentin interfaces after application of commercialized 10-MDP-containing self-etch and universal adhesives to human dentin. Seven commercialized adhesives were examined: Adhese Universal (Ivoclar-Vivadent), All-Bond Universal (Bisco, Inc.), Clearfil SE Bond 2, Clearfil S3 Bond Plus, Clearfil Universal Bond (all from Kuraray Noritake Dental Inc.), G-Premio Bond (GC Corp.), and Scotchbond Universal (3M ESPE). Each adhesive was applied in the self-etch mode on midcoronal dentin according to the respective manufacturer’s instructions. Bonded specimens (n = 6) were covered with flowable resin composite, processed for transmission electron microscopy, and examined at 30 random sites without staining. Thin-film glancing angle X-ray diffraction (XRD) was used to detect the characteristic peaks exhibited by nanolayering (n = 4). The control consisted of 15%wt, 10%wt, and 5%wt 10-MDP (DM Healthcare Products, Inc.) dissolved in a mixed solvent (ethanol and water weight ratio 9:8, with photoinitiators). Experimental primers were applied to dentin for 20 s, covered with hydrophobic resin layer, and examined in the same manner. Profuse nanolayering with highly ordered periodicity (~3.7 nm wide) was observed adjacent to partially dissolved apatite crystallites in dentin treated with the 15% 10-MDP primer. Three peaks in the 2θ range of 2.40° (3.68 nm), 4.78° (1.85 nm), and 7.18° (1.23 nm) were identified from thin-film XRD. Reduction in the extent of nanolayering was observed in the 10% and 5% 10-MDP experimental primer-dentin interface along with lower intensity XRD peaks. Nanolayering and characteristic XRD peaks were rarely observed in

  4. Abdominal Adhesions

    MedlinePlus

    ... Adhesions 1 Ward BC, Panitch A. Abdominal adhesions: current and novel therapies. Journal of Surgical Research. 2011;165(1):91–111. Seek Help for ... and how to participate, visit the NIH Clinical Research Trials and You website ... Foundation for Functional Gastrointestinal Disorders 700 West Virginia ...

  5. Effect of food and oral simulating fluids on structure of adhesive composite systems.

    PubMed

    Lee, S Y; Greener, E H; Mueller, H J

    1995-02-01

    This work evaluates the degradation of three adhesive/composite systems (Tenure/Marathon One. Scotchbond Multi-Purpose/Z100 and Optibond/Herculite XRV) upon immersion in 75% ethanol solution and in an artificial saliva (Moi-Stir). Shear bond strength (SBS) and diametral tensile strength (DTS) specimens were employed for this study. For the SBS specimens, the bonded interface and composite were exposed to food and oral simulating fluids at 37 degrees C for up to 30 days. A similar control series was stored in air. DTS specimens were stored in 75% ethanol at 37 degrees C for up to 30 days. The SBS specimens were sheared to failure. Small quantities of bonding resin were removed from the tooth side of the fractured surface and from the non-fractured fractured end of the composite for Fourier transform infrared microscopic evaluation. Similar scrapings were taken from DTS specimen surfaces. The infrared absorbance intensity (AI) of the major peaks was measured as a function of storage time and ratioed against the aromatic C = C (1609.4 cm-1) peak. The data were analysed using ANOVA and the Tukey LSD test. The AI of major peaks was similar for the materials stored either in air or in Moi-Stir for all testing periods. Storage in ethanol caused the AI of aliphatic C = C (1638 cm-1) and of O-H (approximately 3500 cm-1) bonds to significantly decrease (30-50%) for specimens of bonding resin while the AI of C = O bonds (1730 cm-1) increased (60-120%).(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    PubMed

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-04

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  7. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives

    PubMed Central

    2015-01-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm2 provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  8. Optical adhesive property study

    SciTech Connect

    Sundvold, P.D.

    1996-01-01

    Tests were performed to characterize the mechanical and thermal properties of selected optical adhesives to identify the most likely candidate which could survive the operating environment of the Direct Optical Initiation (DOI) program. The DOI system consists of a high power laser and an optical module used to split the beam into a number of channels to initiate the system. The DOI requirements are for a high shock environment which current military optical systems do not operate. Five candidate adhesives were selected and evaluated using standardized test methods to determine the adhesives` physical properties. EC2216, manufactured by 3M, was selected as the baseline candidate adhesive based on the test results of the physical properties.

  9. B-LINK: A hemicentin, plakin and integrin-dependent adhesion system that links tissues by connecting adjacent basement membranes

    PubMed Central

    Morrissey, Meghan A.; Keeley, Daniel P.; Hagedorn, Elliott J.; McClatchey, Shelly T. H.; Chi, Qiuyi; Hall, David H.; Sherwood, David R.

    2014-01-01

    Summary Basement membrane (BM), a sheet-like form of extracellular matrix, surrounds most tissues. During organogenesis specific adhesions between adjoining tissues frequently occur, however their molecular basis is unclear. Using live-cell imaging and electron microscopy we identify an adhesion system that connects the uterine and gonadal tissues through their juxtaposed BMs at the site of anchor cell (AC) invasion in C. elegans. We find that the extracellular matrix component hemicentin (HIM-4), found between BMs, forms punctate accumulations under the AC and controls BM linkage to promote rapid invasion. Through targeted screening we identify the integrin-binding cytolinker plakin (VAB-10A) and integrin (INA-1/PAT-3) as key BM-BM linkage regulators: VAB-10A localizes to the AC-BM interface and tethers hemicentin to the AC while integrin promotes hemicentin punctae formation. Together, plakin, integrin and hemicentin are founding components of a cell-directed adhesion system, which we name a B-LINK (Basement membrane-LINKage), that connects adjacent tissues through adjoining BMs. PMID:25443298

  10. The effect of surface roughness on the adhesion of solid surfaces for systems with and without liquid lubricant

    NASA Astrophysics Data System (ADS)

    Samoilov, V. N.; Sivebaek, I. M.; Persson, B. N. J.

    2004-11-01

    We present molecular dynamics results for the interaction between two solid elastic walls during pull-off for systems with and without octane (C8H18) lubricant. We used two types of substrate—flat and corrugated—and varied the lubricant coverage from ˜1/8 to ˜4 ML (monolayers) of octane. For the flat substrate without lubricant the maximum adhesion was found to be approximately three times larger than for the system with the corrugated substrate. As a function of the octane coverage (for the corrugated substrate) the pull-off force first increases as the coverage increases from 0 to ˜1 ML, and then decreases as the coverage is increased beyond monolayer coverage. It is shown that at low octane coverage, the octane molecules located in the substrate corrugation wells during squeezing are pulled out of the wells during pull-off, forming a network of nanocapillary bridges around the substrate nanoasperities, thus increasing the adhesion between two surfaces. For greater lubricant coverages a single capillary bridge is formed. The adhesion force saturates for lubricant coverages greater than 3 ML. For the flat substrate, during pull-off we observe discontinuous, thermally activated changes in the number n of lubricant layers (n-1→n layering transitions), whereas for the corrugated substrate these transitions are "averaged" by the substrate surface roughness.

  11. The effect of surface roughness on the adhesion of solid surfaces for systems with and without liquid lubricant.

    PubMed

    Samoilov, V N; Sivebaek, I M; Persson, B N J

    2004-11-15

    We present molecular dynamics results for the interaction between two solid elastic walls during pull-off for systems with and without octane (C(8)H(18)) lubricant. We used two types of substrate--flat and corrugated--and varied the lubricant coverage from approximately 1/8 to approximately 4 ML (monolayers) of octane. For the flat substrate without lubricant the maximum adhesion was found to be approximately three times larger than for the system with the corrugated substrate. As a function of the octane coverage (for the corrugated substrate) the pull-off force first increases as the coverage increases from 0 to approximately 1 ML, and then decreases as the coverage is increased beyond monolayer coverage. It is shown that at low octane coverage, the octane molecules located in the substrate corrugation wells during squeezing are pulled out of the wells during pull-off, forming a network of nanocapillary bridges around the substrate nanoasperities, thus increasing the adhesion between two surfaces. For greater lubricant coverages a single capillary bridge is formed. The adhesion force saturates for lubricant coverages greater than 3 ML. For the flat substrate, during pull-off we observe discontinuous, thermally activated changes in the number n of lubricant layers (n-1-->n layering transitions), whereas for the corrugated substrate these transitions are "averaged" by the substrate surface roughness.

  12. Thermally responsive polymer systems for self-healing, reversible adhesion and shape memory applications

    NASA Astrophysics Data System (ADS)

    Luo, Xiaofan

    Responsive polymers are "smart" materials that are capable of performing prescribed, dynamic functions under an applied stimulus. In this dissertation, we explore several novel design strategies to develop thermally responsive polymers and polymer composites for self-healing, reversible adhesion and shape memory applications. In the first case described in Chapters 2 and 3, a thermally triggered self-healing material was prepared by blending a high-temperature epoxy resin with a thermoplastic polymer, poly(epsilon-caprolactone) (PCL). The initially miscible system undergoes polymerization induced phase separation (PIPS) during the curing of epoxy and yields a variety of compositionally dependent morphologies. At a particular PCL loading, the cured blend displays a "bricks-and-mortar" morphology in which epoxy exists as interconnected spheres ("bricks") within a continuous PCL matrix ("mortar"). A heat induced "bleeding" phenomenon was observed in the form of spontaneous wetting of all free surfaces by the molten PCL, and is attributed to the volumetric thermal expansion of PCL above its melting point in excess of epoxy brick expansion, which we term differential expansive bleeding (DEB). This DEB is capable of healing damage such as cracks. In controlled self-healing experiments, heating of a cracked specimen led to PCL bleeding from the bulk that yields a liquid layer bridging the crack gap. Upon cooling, a "scar" composed of PCL crystals was formed at the site of the crack, restoring a significant portion of mechanical strength. We further utilized DEB to enable strong and thermally-reversible adhesion of the material to itself and to metallic substrates, without any requirement for macroscopic softening or flow. After that, Chapters 4--6 present a novel composite strategy for the design and fabrication of shape memory polymer composites. The basic approach involves physically combining two or more functional components into an interpenetrating fiber

  13. Focal adhesions in osteoneogenesis

    PubMed Central

    Biggs, M.J.P; Dalby, M.J

    2010-01-01

    As materials technology and the field of tissue engineering advances, the role of cellular adhesive mechanisms, in particular the interactions with implantable devices, becomes more relevant in both research and clinical practice. A key tenet of medical device technology is to use the exquisite ability of biological systems to respond to the material surface or chemical stimuli in order to help develop next-generation biomaterials. The focus of this review is on recent studies and developments concerning focal adhesion formation in osteoneogenesis, with an emphasis on the influence of synthetic constructs on integrin mediated cellular adhesion and function. PMID:21287830

  14. Effect of the application time of phosphoric acid and self-etch adhesive systems to sclerotic dentin

    PubMed Central

    MENA-SERRANO, Alexandra Patricia; GARCIA, Eugenio Jose; PEREZ, Miguel Muñoz; MARTINS, Gislaine Cristine; GRANDE, Rosa Helena Miranda; LOGUERCIO, Alessandro Dourado; REIS, Alessandra

    2013-01-01

    Objectives: To evaluate the effect of application time on the resin-dentin bond strength (µTBS) and etching pattern of adhesive systems applied on sclerotic dentine. Material and Methods: A total of forty-two bovine incisors had their roots removed. The 1-step self-etch GO (SDI), the 2-step self-etch Adper SE Bond (3MESPE) and the 35% phosphoric acid (3MESPE) from the 2-step etch-and-rinse Adper Single Bond 2 (3MESPE) were applied on the bovine incisal surfaces according to the manufacturer's instructions or duplicating the recommended conditioning time. After adhesive application, thirty teeth were restored with composite resin, stored for 24 h in distilled water at 37º C, and sectioned into resin-dentin bonded sticks (0.8 mm2) and tested according to the µTBS at 0.5 mm/min. The etching pattern of the remaining twelve teeth (n=4 for each material) was examined under scanning electron microscopy. Each tooth was divided into a buccal-to-lingual direction into three thirds, and each third randomly assigned to the groups: control (no treatment), according to the manufacturers' instructions and duplicating the recommended application time. The µTBS and the relative percentage of the tubule area opening were evaluated by two-way repeated measures ANOVA and Tukey's tests (α=0.05). Results: The duplication of the conditioning time favored only the GO adhesive (p<0.05). Both application methods significantly increased the tubule area opening (p<0.05) compared to the controls. Conclusions: The efficacy of duplicating the conditioning time was only effective for the 1-step self-etch adhesive system tested. PMID:23739856

  15. Micro-tensile bond strength of different adhesive systems on sound dentin and resin-based composite: An in-vitro study

    PubMed Central

    Mallick, Rashmirekha; Sarangi, Priyanka; Mohanty, Sandhyarani; Behera, Subasish; Nanda, Soumyaranjan; Satapathy, Sukanta Kumar

    2015-01-01

    Aim: To analyze the difference in the micro-tensile bond strength of specimens made with two different adhesive systems and compare them with two homogenous substrates. Materials and Methods: Sixty permanent mandibular molars were mounted in acrylic blocks and sectioned with exposed dentin surfaces. Samples were then divided into four groups. To Group-I Adper Single Bond 2 and to Group-II Adper Self-Etch plus bonding agents were applied. For Group-I and Group-II beams consisted of resin composite in the upper half and dentin in the lower half. In Group-III beams were made of only dentin. In Group-IV beams were made of only composite. Fifteen specimens of each group were taken for the micro-tensile bond strength test. Statistical Analysis: The results are analyzed using one-way analysis of variance and Critical Difference test. Results: The interface bonded with the two adhesive systems had lower micro-tensile bond strength than those of dentin and resin composite and the self-etching adhesive Adper Self-Etch plus had comparable bond strength with total-etch adhesive Adper Single Bond 2. Conclusion: The bond strength values for current adhesive systems cannot be compared to the micro-tensile bond strength of dentin and resin composite, and self-etching adhesives have comparable bond strength with total-etch adhesives. PMID:26430301

  16. Light-curing efficiency of dental adhesives by gallium nitride violet-laser diode determined in terms of ultimate micro-tensile strength.

    PubMed

    Kameyama, Atsushi; Kato, Junji; De Munck, Jan; Hatayama, Hitoshi; Haruyama, Akiko; Yoshinari, Masao; Takase, Yasuaki; Van Meerbeek, Bart; Tsunoda, Masatake

    2011-01-01

    The purpose of this study was to evaluate whether violet-laser diode (VLD) can be used as light-curing source. The ultimate (micro-)tensile strength (μTS) of three adhesives was determined when cured by VLD in comparison with curing by two different types of commercial LED light-curing units. One VLD (VLM 500) and two LED units (Curenos and G-Light Prima) were used to cure the adhesive resin of the two-step self-etch adhesives Clearfil SE Bond, Tokuso Mac Bond II, and FL-Bond II. A 0.6-mm thick acrylic mould was filled with adhesive resin and cured for 60 s. After 24-h water storage, specimens were trimmed into an hourglass shape with a width of 1.2 mm at the narrowest part, after which the μTS was determined (n=10). In addition, the light transmittance of each adhesive was characterized using a UV-vis-NIR spectrometer. No significant difference in curing efficiency between VLD and LED were observed for both Tokuso Mac Bond II and FL-Bond II (p>0.05). For Clearfil SE Bond, the μTS of VLD-cured specimens was higher than that of the specimens cured by the LED Curenos unit (p<0.05). Spectrometry revealed that this marked difference must be attributed to a different light transmittance of Clearfil SE Bond for visible blue light versus for the lower area of UV and visible violet light. In conclusion, A GaN-based violet laser diode can be used as light-curing source to initiate polymerization of dental resins.

  17. Drug migration from the adhesive matrix to the polymer film laminate facestock in a transdermal nitroglycerin system.

    PubMed

    Markovich, R J; Taylor, A K; Rosen, J

    1997-12-01

    The apparent loss of nitroglycerin in a prototype transdermal nitroglycerin system was investigated by attenuated total reflectance infrared (ATR-IR) microspectroscopy and high performance liquid chromatography (HPLC). Several transdermal nitroglycerin lots placed under controlled storage conditions exhibited loss of drug potency (up to 10%) along with the appearance of a defect in the polymer film laminate facestock. A significant loss of nitroglycerin from the transdermal drug/adhesive matrix may reduce the bioavailabilty of nitroglycerin to the patient. ATR-IR analysis confirmed that nitroglycerin migrated from the drug/adhesive matrix to the facestock polyester layer under storage conditions and that nitroglycerin was retained in the facestock polyester layer. An alternate sample extraction solution successfully removed the nitroglycerin from both the adhesive matrix and facestock polyester layer with nearly 100% labeled strength recovered. The relationship between the migration of nitroglycerin into the facestock polyester layer and the appearance of the defect in the facestock aluminum layer is discussed and a nitroglycerin-aluminum metal reaction mechanism is proposed.

  18. Marginal sealing durability of two contemporary self-etch adhesives.

    PubMed

    Khoroushi, Maryam; Mansoori, Mahsa

    2012-01-01

    Introduction. Sealing abilities of two self-etch adhesives were evaluated after two aging processes: storage in water and thermocycling. Materials and Methods. Cl V cavities were prepared on the buccal and lingual aspects of 48 human premolars, with cervical margins 1 mm below the CEJ. Clearfil Protect Bond (CPB) and BeautiBond (BB) (two-step and one-step self-etch adhesives, resp.) were applied, each to half of the cavities and restored with composite resin. Each group was randomly subdivided into 4 subgroups (n = 12) and evaluated for dye penetration after 24 hours, after 3000 thermocycling rounds, after a 6-month water storage, and after 3000 thermocycling rounds plus 6-month water storage, respectively. Data was analyzed using SPSS 11.5 and Kruskal-Wallis and Mann-Whitney U tests (α = 0.05). Results. There were no significant differences in enamel and dentin microleakage between the adhesives (P = 0.683; P = 0.154). Furthermore, no significant differences were observed in enamel microleakage of each one of CPB and BB (P = 0.061 and P = 0.318, resp.). However, significant decrease was observed in subgroups 3 and 4 (P = 0.001) for CPB dentinal margins. Conclusion. In this study, limited aging procedures had no influence on marginal integrity of composite resin restorations bonded with self-etch adhesives of CPB and BB. Furthermore, CPB dentinal sealing improved after aging.

  19. Marginal Sealing Durability of Two Contemporary Self-Etch Adhesives

    PubMed Central

    Khoroushi, Maryam; Mansoori, Mahsa

    2012-01-01

    Introduction. Sealing abilities of two self-etch adhesives were evaluated after two aging processes: storage in water and thermocycling. Materials and Methods. Cl V cavities were prepared on the buccal and lingual aspects of 48 human premolars, with cervical margins 1 mm below the CEJ. Clearfil Protect Bond (CPB) and BeautiBond (BB) (two-step and one-step self-etch adhesives, resp.) were applied, each to half of the cavities and restored with composite resin. Each group was randomly subdivided into 4 subgroups (n = 12) and evaluated for dye penetration after 24 hours, after 3000 thermocycling rounds, after a 6-month water storage, and after 3000 thermocycling rounds plus 6-month water storage, respectively. Data was analyzed using SPSS 11.5 and Kruskal-Wallis and Mann-Whitney U tests (α = 0.05). Results. There were no significant differences in enamel and dentin microleakage between the adhesives (P = 0.683; P = 0.154). Furthermore, no significant differences were observed in enamel microleakage of each one of CPB and BB (P = 0.061 and P = 0.318, resp.). However, significant decrease was observed in subgroups 3 and 4 (P = 0.001) for CPB dentinal margins. Conclusion. In this study, limited aging procedures had no influence on marginal integrity of composite resin restorations bonded with self-etch adhesives of CPB and BB. Furthermore, CPB dentinal sealing improved after aging. PMID:22611501

  20. Biological adhesion of the flatworm Macrostomum lignano relies on a duo-gland system and is mediated by a cell type-specific intermediate filament protein

    PubMed Central

    2014-01-01

    Background Free-living flatworms, in both marine and freshwater environments, are able to adhere to and release from a substrate several times within a second. This reversible adhesion relies on adhesive organs comprised of three cell types: an adhesive gland cell, a releasing gland cell, and an anchor cell, which is a modified epidermal cell responsible for structural support. However, nothing is currently known about the molecules that are involved in this adhesion process. Results In this study we present the detailed morphology of the adhesive organs of the free-living marine flatworm Macrostomum lignano. About 130 adhesive organs are located in a horse-shoe-shaped arc along the ventral side of the tail plate. Each organ consists of exactly three cells, an adhesive gland cell, a releasing gland cell, and an anchor cell. The necks of the two gland cells penetrate the anchor cell through a common pore. Modified microvilli of the anchor cell form a collar surrounding the necks of the adhesive- and releasing glands, jointly forming the papilla, the outer visible part of the adhesive organs. Next, we identified an intermediate filament (IF) gene, macif1, which is expressed in the anchor cells. RNA interference mediated knock-down resulted in the first experimentally induced non-adhesion phenotype in any marine animal. Specifically, the absence of intermediate filaments in the anchor cells led to papillae with open tips, a reduction of the cytoskeleton network, a decline in hemidesmosomal connections, and to shortened microvilli containing less actin. Conclusion Our findings reveal an elaborate biological adhesion system in a free-living flatworm, which permits impressively rapid temporary adhesion-release performance in the marine environment. We demonstrate that the structural integrity of the supportive cell, the anchor cell, is essential for this adhesion process: the knock-down of the anchor cell-specific intermediate filament gene resulted in the inability of

  1. Analysis of marginal adaptation and sealing to enamel and dentin of four self-adhesive resin cements.

    PubMed

    Aschenbrenner, Carina Maria; Lang, Reinhold; Handel, Gerhard; Behr, Michael

    2012-02-01

    This in vitro study compared the marginal adaptation of all-ceramic MOD-inlays luted to human molars with four self-adhesive resin cements. Thirty-two human third molars were randomly assigned to four test groups (n = 8 per group). MOD cavities were prepared with approximal finishing lines in dentin and enamel. All-ceramic Empress 2 inlays were luted with four self-adhesive cements (Clearfil SA, iCEM, Bifix SE, seT). Oral stress was simulated by 90 day storage in water as well as by thermal and mechanical loading (TCML, 1.2 × 10(6) × 50 N, 6,000 × 5°/55°, 1.6 Hz). The marginal fit was evaluated by scanning electron microscopy (SEM) and dye penetration. Data were analyzed with the ANOVA/Tukey's test (α = 0.05). The SEM investigation of the gingival cement margins (cement-tooth interface) showed values of perfect margin [percent] (means ± SD) after simulated aging between 84 ± 9% and 95 ± 5% for enamel and 80 ± 9% and 92 ± 3% for dentin. In enamel, seT showed significantly higher marginal integrity than iCEM after water storage and TCML (post hoc; p = 0.011). Furthermore, the marginal adaptation of iCEM in enamel deteriorated by simulated aging (p = 0.014, ANOVA). Mean values of dye penetration (percentage of dye entry into dentin) at the investigated restorations margins ranged between 3% and 8% for enamel and 12% and 22% for dentin. Clearfil SA, iCEM, and seT showed lower dye penetration in enamel than in dentin (Clearfil SA: p = 0.013, iCEM: p = 0.044, seT: p = 0.003). The results suggest that the four self-adhesive luting agents investigated seem to successfully bond to dentin-restricted as well as to enamel-restricted cavities, predicting good clinical performance.

  2. Adhesives for bonding RSI tile to Gr/Pi structure for advanced space transportation systems

    NASA Technical Reports Server (NTRS)

    Smith, K. E.; Hamermesh, C. L.; Hogenson, P. A.

    1979-01-01

    An adhesive was developed having improved high-temperature capability while retaining the ideal processing characteristics of RTV silicones. After evaluating several possibilities, mixtures of RTV with glass resins were selected as most promising. While results are not conclusive, tests of the final mixture evaluated, designated RA59, indicated capability of performing as a tile bonding agent to temperatures approaching 370C (700F) during repeated cycling.

  3. Evaluation of Adhesive Systems for Bonding 5109S Neoprene-to-Steel and Aluminum Substrates

    DTIC Science & Technology

    1986-12-31

    Cartier , and R. W. Thomas, "Cathodic Delamination of Protective Coatings-Cause and Control," Int’l Symposium on Polymeric Materials for Corrosion...and saturation in the adhesive, which may be due to degradation of the polymer . The resistance to cathodically induced delamination can be elevated by...Corrosion Research Symposium, Houston, 17-19 Mar 1986. S 7. J. S. Thornton and J. F. Cartier , "Prediction of Lifetime Characteristics of Composite

  4. Adhesives for Aerospace

    NASA Technical Reports Server (NTRS)

    Meade, L. E.

    1985-01-01

    The industry is hereby challenged to integrate adhesive technology with the total structure requirements in light of today's drive into automation/mechanization. The state of the art of adhesive technology is fairly well meeting the needs of the structural designers, the processing engineer, and the inspector, each on an individual basis. The total integration of these needs into the factory of the future is the next collective hurdle to be achieved. Improved processing parameters to fit the needs of automation/mechanization will necessitate some changes in the adhesive forms, formulations, and chemistries. Adhesives have, for the most part, kept up with the needs of the aerospace industry, normally leading the rest of the industry in developments. The wants of the aerospace industry still present a challenge to encompass all elements, achieving a totally integrated joined and sealed structural system. Better toughness with hot-wet strength improvements is desired. Lower cure temperatures, longer out times, and improved corrosion inhibition are desired.

  5. The effect of surface roughness on activation of the coagulation system and platelet adhesion in rotary blood pumps.

    PubMed

    Linneweber, Jörg; Dohmen, Pascal Maria; Kertzscher, Ulrich; Kerzscher, Ullrich; Affeld, Klaus; Nosé, Yukihiko; Konertz, Wolfgang

    2007-05-01

    The surface roughness of left ventricular assist devices (LVADs) is important for the biocompatibility of blood pumps. However, little is known about the effect of surface roughness on the antithrombogenicity of the device. The present study investigated the effect of surface roughness on the activation of the coagulation system and platelet adhesion in an impeller-type blood pump. Three identical Baylor Gyro 710 centrifugal blood pumps (Baylor College of Medicine, Houston, TX, USA) were manufactured with impeller surface roughness of 0.05, 0.2, and 0.4 microm, respectively, as determined by a stylus profilometer and by scanning electron microscopy. Whole blood was anticoagulated (1-IU heparin/mL, ACT 250 s) and circulated for 60 min in an artificial circulatory system, simulating LVAD perfusion (5-L/min flow against 100 mm Hg). Enzyme-linked immunosorbent assays were developed to quantify fibrinogen- and von Willebrand factor (vWf) adsorption as well as platelet adhesion directly on the impellers of the pumps. Levels of prothrombin fragment F1.2 and thrombin-antithrombin (TAT) complex were measured in order to quantify activation of coagulation. Compared with the 0.05-microm surface, platelet adhesion was 40 and 76% higher on the 0.2- and 0.4-microm surface, respectively (P < 0.01). The evaluation of adsorbed fibrinogen and vWf showed significant higher protein antigen levels on the rougher surfaces (P < 0.01). Furthermore, nonpulsatile perfusion activated the coagulation system. By contrast, the surface roughness had no significant influence on plasma prothrombin F1.2 fragment- and TAT concentrations. Antithrombogenicity was significantly reduced in pumps with inferior metal-finishing quality.

  6. Microleakage in Class V cavities with self-etching adhesive system and conventional rotatory or laser Er,Cr:YSGG

    PubMed Central

    Arnabat, J; España-Tost, T

    2012-01-01

    Objective: To analyse microleakage in Class V cavity preparation with Er;Cr:YSGG at different parameters using a self-etching adhesive system. Background: Several studies reported microleakage around composite restorations when cavity preparation is done or treated by Er;Cr:YSGG laser. We want to compare different energy densities in order to obtain the best parameters, when using a self-etching adhesive system. Methods: A class V preparations was performed in 120 samples of human teeth were divided in 3 groups: (1) Preparation using the burr. (2) Er;Cr:YSGG laser preparation with high energy 4W, 30 Hz, 50% Water 50% Air and (3) Er;Cr:YSGG laser preparation lower energy 1.5 W, 30 Hz, 30% Water 30% Air. All the samples were restored with self-etching adhesive system and hybrid composite. Thermocycling (5000 cycles) and immersed in 0.5% fuchsin. The restorations were sectioned and evaluated the microleakage with a stereomicroscope. Results: Lower energy laser used for preparation showed significant differences in enamel and dentin. To group 3, the microleakage in the enamel was less, whilst the group 1, treated with the turbine, showed less microleakage at dentin level. Group 2 showed the highest microleakage at dentin/cement level. Conclusion: Burr preparation gives the lowest microleakage at cement/dentin level, whilst Er;Cr:YSGG laser at lower power has the low energy obtains lowest microleakage at enamel. On the contrary high-energy settings produce inferior results in terms of microleakage. PMID:24511195

  7. Effect of polymerization mode of two adhesive systems on push-out bond strength of fiber post to different regions of root canal dentin

    PubMed Central

    Ebrahimi, Shahram Farzin; Shadman, Niloofar; Nasery, Ehsan Baradaran; Sadeghian, Farid

    2014-01-01

    Background: A few studies have investigated the effect of the activation mode of adhesive systems on bond strength of fiber posts to root canal dentin. This study investigated the push-out bond strengths of a glass fiber post to different root canal regions with the use of two adhesives with light- and dual-cure polymerization modes. Materials and Methods: In this in vitro study, 40 maxillary central incisors were decoronated at cement-enamel junction with 15 ± 1 mm root length. After root canal therapy and post space preparations, they were randomly divided into four groups. Post spaces were treated with four different adhesives: Excite, Excite Dual cure Single Component (DSC), self-etch adhesive (AdheSE), and AdheSE dual-cure. Then the fiber-reinforced composite (FRC) post, Postec Plus, was cemented with dual-cure resin cement, Variolink II. The roots were cut into three 2-mm-thick slices. Push-out tests were performed with a universal testing machine at a crosshead speed of 0.5 mm/min. The mode of failures was determined under a stereomicroscope. Data were analyzed by three-way analysis of variance (ANOVA) and Tukey test was conducted to compare post hoc with P < 0.05 as the level of significance. Results: The highest bond strength was obtained for AdheSE dual-cure (15.54 ± 6.90 MPa) and the lowest was obtained for Excite light-cure (10.07 ± 7.45 MPa) and only the bond strength between these two adhesives had significant difference (P = 0.02). Bond strength decreased from the coronal to the apical in all groups and this was significant in Excite (group 1) and AdheSE (group 3) (P < 0.001). In apical regions, bond strength of dual-cure adhesives was significantly higher than light-cure adhesives (P < 0.001). Conclusion: Push-out bond strength of fiber post to different regions of root canal dentin was affected by both adhesive systems and their polymerization modes. PMID:24688557

  8. Inorganic composition and filler particles morphology of conventional and self-adhesive resin cements by SEM/EDX.

    PubMed

    Aguiar, Thaiane Rodrigues; Di Francescantonio, Marina; Bedran-Russo, Ana Karina; Giannini, Marcelo

    2012-10-01

    The purpose of this study was to characterize the inorganic components and morphology of filler particles of conventional and self-adhesive, dual-curing, resin luting cements. The main components were identified by energy dispersive X-ray spectroscopy microanalysis (EDX), and filler particles were morphologically analyzed by scanning electron microscopy (SEM). Four resin cements were used in this study: two conventional resin cements (RelyX ARC/3M ESPE and Clearfil Esthetic Cement/Kuraray Medical) and two self-adhesive resin cements (RelyX Unicem/3M ESPE and Clearfil SA Luting/Kuraray Medical). The materials (n = 5) were manipulated according to manufacturers' instructions, immersed in organic solvents to eliminate the organic phase and observed under SEM/EDX. Although EDX measurements showed high amount of silicon for all cements, differences in elemental composition of materials tested were identified. RelyX ARC showed spherical and irregular particles, whereas other cements presented only irregular filler shape. In general, self-adhesive cements contained higher filler size than conventional resin luting cements. The differences in inorganic components and filler particles were observed between categories of luting material and among them. All resin cements contain silicon, however, other components varied among them.

  9. Effect of pretreatment with mildly acidic hypochlorous acid on adhesion to caries-affected dentin using a self-etch adhesive.

    PubMed

    Kunawarote, Sitthikorn; Nakajima, Masatoshi; Foxton, Richard M; Tagami, Junji

    2011-02-01

    Caries-affected dentin is covered with a thicker and organically enriched smear layer than normal dentin. This may affect the demineralization ability and the infiltration of self-etch adhesives, thus reducing the efficacy of bonding to caries-affected dentin. This study evaluated the adhesion of a two-step self-etching adhesive to normal and caries-affected dentin after pretreatment with mildly acidic hypochlorous acid (HOCl) solutions. We used a microtensile bond strength (μTBS) test to compare the μTBS of Clearfil SE Bond to either caries-affected dentin or to normal dentin, after pretreatment for 5 s with one of three solutions (806 mM NaOCl, or 0.95 or 1.91 mM HOCl). The μTBS of the self-etch adhesive was significantly lower to caries-affected dentin than to normal dentin. Pretreatment with 0.95 mM HOCl improved the μTBS of the self-etch adhesive to caries-affected dentin, but there was no significant difference compared with normal dentin. On the other hand, pretreatment with 806 mM NaOCl or 1.91 mM HOCl did not demonstrate a significant improvement in the μTBS to caries-affected dentin. None of the pretreatments demonstrated a negative effect on adhesion to normal dentin.

  10. Influence of the LED curing source and selective enamel etching on dentin bond strength of self-etch adhesives in class I composite restorations.

    PubMed

    Souza-Junior, Eduardo José; Araújo, Cíntia Tereza Pimenta; Prieto, Lúcia Trazzi; Paulillo, Luís Alexandre Maffei Sartini

    2012-11-01

    The aim of this study was to evaluate the influence of the LED curing unit and selective enamel etching on dentin microtensile bond strength (μTBS) for self-etch adhesives in class I composite restorations. On 96 human molars, box-shaped class I cavities were made maintaining enamel margins. Self-etch adhesives (Clearfil SE - CSE and Clearfil S(3) - S3) were used to bond a microhybrid composite. Before adhesive application, half of the teeth were enamel acid-etched and the other half was not. Adhesives and composites were cured with the following light curing units (LCUs): one polywave (UltraLume 5 - UL) and two single-peak (FlashLite 1401 - FL and Radii Cal - RD) LEDs. The specimens were then submitted to thermomechanical aging and longitudinally sectioned to obtain bonded sticks (0.9 mm(2)) to be tested in tension at 0.5 mm/min. The failure mode was then recorded. The μTBS data were submitted to a three-way ANOVA and Tukey's (α = 0.05). For S3, the selective enamel-etching provided lower μTBS values (20.7 ± 2.7) compared to the non-etched specimens (26.7 ± 2.2). UL yielded higher μTBS values (24.1 ± 3.2) in comparison to the photoactivation approach with FL (18.8 ±3.9) and RD (19.9 ±1.8) for CSE. The two-step CSE was not influenced by the enamel etching (p ≥ 0.05). Enamel acid etching in class I composite restorations affects the dentin μTBS of the one-step self-etch adhesive Clearfil S(3), with no alterations for Clearfil SE bond strength. The polywave LED promoted better bond strength for the two-step adhesive compared to the single-peak ones.

  11. Clinical and Histological Evaluation of Direct Pulp Capping on Human Pulp Tissue Using a Dentin Adhesive System

    PubMed Central

    Parafiniuk, Mirosław; Grocholewicz, Katarzyna; Sobolewska, Ewa; Buczkowska-Radlińska, Jadwiga

    2016-01-01

    Objective. This study presents a clinical and histological evaluation of human pulp tissue responses after direct capping using a new dentin adhesive system. Methods. Twenty-eight caries-free third molar teeth scheduled for extraction were evaluated. The pulps of 22 teeth were mechanically exposed and randomly assigned to 1 of 2 groups: Single Bond Universal or calcium hydroxide. Another group of 6 teeth acted as the intact control group. The periapical response was assayed, and a clinical examination was performed. The teeth were extracted after 6 weeks, and a histological analysis was performed. The pulp status was assessed, and the thickness of the dentin bridge was measured and categorized using a histological scoring system. Results. The clinical phase was asymptomatic for Single Bond Universal patients. Patients in the calcium hydroxide group reported mild symptoms of pain, although the histological examination revealed that dentin bridges with or without limited pulpitis had begun forming in each tooth. The universal adhesive system exhibited nonsignificantly increased histological signs of pulpitis (P > 0.05) and a significantly weaker thin mineralized tissue layer (P < 0.001) compared with the calcium hydroxide group. Conclusion. The results suggest that Single Bond Universal is inappropriate for human pulp capping; however, further long-term studies are needed to determine the biocompatibility of this agent. PMID:27803922

  12. High temperature adhesive silicone foam composition, foam generating system and method of generating foam

    DOEpatents

    Mead, Judith W.; Montoya, Orelio J.; Rand, Peter B.; Willan, Vernon O.

    1984-01-01

    Access to a space is impeded by generation of a sticky foam from a silicone polymer and a low boiling solvent such as a halogenated hydrocarbon. In a preferred aspect, the formulation is polydimethylsiloxane gel mixed with F502 Freon as a solvent and blowing agent, and pressurized with CO.sub.2 in a vessel to about 250 PSI, whereby when the vessel is opened, a sticky and solvent resistant foam is deployed. The foam is deployable, over a wide range of temperatures, adhering to wet surfaces as well as dry, is stable over long periods of time and does not propagate flame or lose adhesive properties during an externally supported burn.

  13. Effect of fiber-reinforced composite at the interface on bonding of resin core system to dentin.

    PubMed

    Cekic-Nagas, Isil; Ergun, Gulfem; Tezvergil, Arzu; Vallittu, Pekka K; Lassila, Lippo V J

    2008-09-01

    The aim of this study was to evaluate the effect of fiber-reinforced composite (FRC) at the interface on bonding of resin core systems to bovine dentin using different adhesive systems. To this end, the labial surfaces of 60 bovine incisors were ground to obtain flat dentin surfaces and then divided into two groups according to the adhesive system used: total-etching (Solobond Plus) versus self-etching (Clearfil SE Bond). Resin core systems were bonded to tooth structure either without or with a FRC layer (everStick Net, StickTech). For groups with FRC layer, a silicon forming aid was used to adapt the latter on the dentin surfaces. After resin core was polymerized with Optilux 501 for 40 seconds, the specimens were tested in a universal testing machine. ANOVA revealed that presence of FRC at the interface had a significantly positive effect on bond strength (p < 0.001). However, differences between groups were not significant for either adhesive system (p = 0.076) or with the use of silicon forming aid (p = 0.348).

  14. Effect of functional monomers in all-in-one adhesive systems on formation of enamel/dentin acid-base resistant zone.

    PubMed

    Nikaido, Toru; Ichikawa, Chiaki; Li, Na; Takagaki, Tomohiro; Sadr, Alireza; Yoshida, Yasuhiro; Suzuki, Kazuomi; Tagami, Junji

    2011-01-01

    This study aimed at evaluating the effect of functional monomers in all-in-one adhesive systems on formation of acid-base resistant zone (ABRZ) in enamel and dentin. Experimental adhesive systems containing one of three functional monomers; MDP, 3D-SR and 4-META were applied to enamel or dentin surface and light-cured. A universal resin composite was then placed. The specimens were subjected to a demineralizing solution (pH 4.5) and 5% NaClO for acid-base challenge and then observed by SEM. The ABRZ was clearly observed in both enamel and dentin interfaces. However, enamel ABRZ was thinner than dentin ABRZ in all adhesives. Morphology of the ABRZ was different between enamel and dentin, and also among the adhesives. Funnel-shaped erosion was observed only in the enamel specimen with the 4-META adhesive. The formation of enamel/dentin ABRZ was confirmed in all adhesives, but the morphology was influenced by the functional monomers.

  15. The Surface Sensor NlpE of Enterohemorrhagic Escherichia coli Contributes to Regulation of the Type III Secretion System and Flagella by the Cpx Response to Adhesion.

    PubMed

    Shimizu, Takeshi; Ichimura, Kimitoshi; Noda, Masatoshi

    2015-12-07

    Although the adhesion of enterohemorrhagic Escherichia coli (EHEC) is central to the EHEC-host interaction during infection, it remains unclear how such adhesion regulates virulence factors. Adhesion to abiotic surfaces by E. coli has been reported to be an outer membrane lipoprotein NlpE-dependent activation cue of the Cpx pathway. Therefore, we investigated the role of NlpE in EHEC on the adhesion-mediated expression of virulence genes. NlpE in EHEC contributed to upregulation of the locus of enterocyte effacement (LEE) genes encoded type III secretion system and to downregulated expression of the flagellin gene by activation of the Cpx pathway during adherence to hydrophobic glass beads and undifferentiated Caco-2 cells. Moreover, LysR homologue A (LrhA) in EHEC was involved in regulating the expression of the LEE genes and flagellin gene in response to adhesion. Gel mobility shift analysis revealed that response regulator CpxR bound to the lrhA promoter region and thereby regulated expressions of the LEE genes and flagellin gene via the transcriptional regulator LrhA in EHEC. Therefore, these results suggest that the sensing of adhesion signals via NlpE is important for regulation of the expression of the type III secretion system and flagella in EHEC during infection.

  16. In vivo bracket bond strength using two adhesive systems applied under wet and dry conditions.

    PubMed

    Ciola, Elida N; Picco, Alicia M; Sois, Ana M; Lucena, Mercedes H; Alonso, Verónica; Valvo, Maela; García, Luis; Geazzi, Ariel

    2006-01-01

    The purpose of this study was to investigate, in vivo, the bond strength of two adhesive materials: a moisture insensitive primer (MIP)* and a one step self etching primer (SEP)*, both used with Transbond XT* on dry and wet enamel and an adhesion time of 10-15 minutes. First or second upper and/or lower bicuspids (n = 124), to be extracted for orthodontic reasons, were used. A comparison of the materials' behavior was conducted under four different situations: 1) MIP on enamel etched and dry; 2) MIP on a surface etched and wetted with patient's saliva; 3) SEP on a dry field, 4) SEP on a saliva-wet enamel. For statistical analysis, Dunn-Sidak's multiple comparison test was applied with a probability of less than 0.05 (before correction). Stainless steel brackets with mesh-backed pads were bonded to the teeth. Bond strength was tested with modified orthodontic pliers on which a strain-gage was fixed to measure handle deformation while debonding. Moisture insensitive primer tested on wet enamel showed the highest mean bond strength outcomes (8.98 MPa) compared to one step etching primer (5.81 MPa). Statistical difference between these groups was significant (p = 0.000). Standard deviation was lower for the one-step technique, under dry and wet conditions. Since the media bond strength of SEP proved sufficient for clinical purposes and its behavior tended to be more homogeneous, this was considered the best choice.

  17. Slippery pores: anti-adhesive effect of nanoporous substrates on the beetle attachment system

    PubMed Central

    Gorb, E. V.; Hosoda, N.; Miksch, C.; Gorb, S. N.

    2010-01-01

    Traction experiments with adult seven-spotted ladybird beetles Coccinella septempunctata (L.) were carried out to study the influence of surface structure on insect attachment. Force measurements were performed with tethered walking insects, both males and females, on five different substrates: (i) smooth glass plate, (ii) smooth solid Al2O3 (sapphire) disc, and (iii–v) porous Al2O3 discs (anodisc membranes) with the same pore diameter but different porosity. The traction force of beetles ranged from 0.16 to 16.59 mN in males and from 0.32 to 8.99 mN in females. In both sexes, the highest force values were obtained on smooth solid surfaces, where males showed higher forces than females. On all three porous substrates, forces were significantly reduced in both males and females, and the only difference within these surfaces was obtained between membranes with the highest and lowest porosity. Males produced essentially lower forces than females on porous samples. The reduction in insect attachment on anodisc membranes may be explained by (i) possible absorption of the secretion fluid from insect adhesive pads by porous media and/or (ii) the effect of surface roughness. Differences in attachment between males and females were probably caused by the sexual dimorphism in the terminal structure of adhesive setae. PMID:20427333

  18. A study of self-adhesive resin cements for bonding to silver-palladium-copper-gold alloy -- effect of including primer components in cement base.

    PubMed

    Muraguchi, Koichi; Minami, Hiroyuki; Minesaki, Yoshito; Suzuki, Shiro; Tanaka, Takuo

    2011-01-01

    This study investigated the efficacies of adhesive resin cements (Clearfil SA Luting, Maxcem, G-CEM, RelyX Unicem Clicker, Vitremer Paste) for bonding to Ag-Pd-Cu-Au alloy not surface-pretreated with metal primer. For control, Panavia F 2.0 -developed for use with a proprietary metal primer, Alloy Primer- was tested with and without metal primer application. Pairs of alloy disks (10.0 and 8.0 mm in diameters, 3.0 mm thickness) were air-abraded with alumina and bonded with one of the cements. Shear bond strengths (SBSs) were measured before and after 50,000 times of thermocycling. Among Maxcem, RelyX Unicem Clicker and the control, there were no statistical differences in SBS before and after thermocycling. After thermocycling, Clearfil SA Luting exhibited the highest SBS among all the cements. Results showed that Clearfil SA Luting, Maxcem, and RelyX Unicem Clicker were efficacious for bonding to Ag-Pd-Cu-Au alloy after air abrasion surface treatment for the latter.

  19. Does inhibition of proteolytic activity improve adhesive luting?

    PubMed

    Lührs, Anne-Katrin; De Munck, Jan; Geurtsen, Werner; Van Meerbeek, Bart

    2013-04-01

    Endogenous enzymes may be involved in the biodegradation of adhesive restoration-tooth interfaces. Inhibitors of matrix metalloproteinases (MMPs) have been suggested to retard the bond-degradation process. Limited data are available on whether composite cements may also benefit from MMP inhibitors. Therefore, the aim of this study was to determine the effect of two MMP inhibitors--chlorhexidine digluconate (CHX) and galardin--on the microtensile bond strength (μTBS) of two self-adhesive composite cements to dentin. Ceramic specimens were cemented to bur-cut dentin surfaces using the self-adhesive composite cements RelyX Unicem 2 (3M ESPE) or Clearfil SA (Kuraray), or the etch-and-rinse composite cement Nexus 3 (Kerr) that served as the control. The surfaces were left untreated or were pretreated with MMP inhibitors (2% CHX or 0.2 mM galardin). The μTBS was determined 'immediately' and upon ageing (water storage for 6 months). Statistical analysis revealed a significant effect of the factors 'composite cement' and 'storage', as well as all interactions, but no effect of the MMP inhibitors. After 6 months of ageing, the μTBS decreased for all cements, except for the multistep etch-and-rinse luting composite when it was applied without MMP inhibitors. The MMP inhibitors could not prevent the decrease in μTBS upon ageing and therefore do not improve the luting durability of the composite cements tested.

  20. Evaluation of the tensile bond strength of an adhesive system self-etching in dentin irradiated with Er:YAG laser

    NASA Astrophysics Data System (ADS)

    de Mello, Andrea M. D.; Mello, Fabiano A. S.; Matson, Edmir; Mattos, Adriana B.; Mello, Guilerme S.

    2001-04-01

    Since Buonocore, several researchers have been seeking for the best adhesive system and treatment for the enamel and dentin surfaces. The use of the acid has been presented as one of the best techniques of dentin conditioning, because this promotes the removal of the 'smear layer' and exhibition of dentinal structure, for a best penetration and micro-retention of the adhesive system. However, some conditioning methods have been appearing in the literature, for the substitution or interaction with the acid substances, as the laser. The objective of this work is to evaluate the tensile bond strength of the adhesive system 'self-etching' associated to a composed resin, in dentin surfaces conditioned with the Er:YAG laser. For this study, freshly extracted human teeth were used and in each one the dentinal surfaces, which were treated with three sandpapers of different granulations to obtain a standard of the smear layer, before the irradiation of the laser and of the restoring procedure. After these procedures the specimens were storage in distilled water at 37 degrees for 24 hours. Soon after, they were submitted to the tensile strength test. After analyzing the results, we can conclude that the use of the Er:YAG laser can substitute the drill without the need of conditioning, when using the adhesive system 'self etching' in the dentinal surfaces because there was a decline in the strength of adhesion in the groups conditioned with the laser.

  1. Influence of salivary contamination on the dentin bond strength of two different seventh generation adhesive systems: In vitro study

    PubMed Central

    Bhatia, Taranjeet Kaur; Asrani, Hemant; Banga, Harpreet; Jain, Aditi; Rawlani, Sudhir S.

    2015-01-01

    Aim: To investigate the effect of salivary contamination on the bond strength of two different seventh generation adhesive systems. Materials and Methods: Sixty caries-free human premolars with flat dentin surfaces were randomly divided into six groups of 10 teeth each and bonding was done using seventh-generation bonding agents Adper Easy One (3M ESPE) and Xeno V (Dentsply). Following the bonding procedure, resin composite was bonded to the surfaces using a plastic mould. The prepared specimen with composite cylinders attached were placed in 37°C distilled water for 24 h and then subjected to shear bond strength (SBS) with 0 h universal testing machine and the data were subjected to one-way analysis of variance and unpaired t-test. Results: Statistical significant difference between the Groups I, II and III in which Adper Easy One was used and similarly for Groups IV, V, and VI in which Xeno V was used. When an intergroup comparison was made using unpaired t-test Group II and Group V showed the nonsignificant difference. Conclusion: Salivary contamination significantly affects the SBS of both the seventh generation dentin bonding agents. However, 2-hydroxyethyl methacryate based adhesive has higher bond strength. PMID:26752841

  2. Effect of fluoride concentration in adhesives on morphology of acid-base resistant zones.

    PubMed

    Kirihara, Masaru; Inoue, Go; Nikaido, Toru; Ikeda, Masaomi; Sadr, Alireza; Tagami, Junji

    2013-01-01

    This study aimed to investigate the effect of fluoride concentration in adhesives on morphology of acid-base resistant zone (ABRZ). Seven experimental adhesives with different concentrations of NaF (0 wt%; F0 to 100 wt%: F100) were prepared based on the formulation of a commercially available adhesive (Clearfil Protect Bond, F100). The resin-dentin interface of the bonded specimen was subjected to demineralizing solution and NaOCl, sectioned, polished and argon-ion etched for SEM observation. Fluoride release from each adhesive was measured using an ion-selective electrode. Fluoride ion release from the adhesive linearly increased with higher NaF concentration. The ABRZ area increased significantly with higher NaF concentration except for F0, F10, and F20 (p<0.05). F100 showed the largest ABRZ, where a slope of acid-resistant dentin was clearly observed at the bottom of the ABRZ. The concentration of NaF in the two-step self-etching adhesive resin influenced the amount of dentin structure remaining after acid-challenge.

  3. A study on the compatibility between one-bottle dentin adhesives and composite resins using micro-shear bond strength

    PubMed Central

    2015-01-01

    Objectives This study was performed to determine whether the combined use of one-bottle self-etch adhesives and composite resins from same manufacturers have better bond strengths than combinations of adhesive and resins from different manufacturers. Materials and Methods 25 experimental micro-shear bond test groups were made from combinations of five dentin adhesives and five composite resins with extracted human molars stored in saline for 24 hr. Testing was performed using the wire-loop method and a universal testing machine. Bond strength data was statistically analyzed using two way analysis of variance (ANOVA) and Tukey's post hoc test. Results Two way ANOVA revealed significant differences for the factors of dentin adhesives and composite resins, and significant interaction effect (p < 0.001). All combinations with Xeno V (Dentsply De Trey) and Clearfil S3 Bond (Kuraray Dental) adhesives showed no significant differences in micro-shear bond strength, but other adhesives showed significant differences depending on the composite resin (p < 0.05). Contrary to the other adhesives, Xeno V and BondForce (Tokuyama Dental) had higher bond strengths with the same manufacturer's composite resin than other manufacturer's composite resin. Conclusions Not all combinations of adhesive and composite resin by same manufacturers failed to show significantly higher bond strengths than mixed manufacturer combinations. PMID:25671210

  4. Five-year clinical evaluation of 300 teeth restored with porcelain laminate veneers using total-etch and a modified self-etch adhesive system.

    PubMed

    Aykor, Arzu; Ozel, Emre

    2009-01-01

    This study evaluated the long-term clinical performance of porcelain laminate veneers luted with hybrid composite in combination with total-etch and self-etch adhesive systems. The study was performed on 30 patients ranging in age between 28 and 54 years. Ten veneers were performed per patient in the maxillary arch. In Group 1, 150 teeth were treated with porcelain veneers, using a total-etch adhesive system (Scotchbond Multi-Purpose Plus, 3M ESPE). In Group 2, 150 teeth were bonded with a self-etch adhesive system (AdheSE, Ivoclar-Vivadent). All the veneers were luted with a light-cured hybrid composite (Z100, 3M ESPE). The patients were recalled after 1, 2 and 5 years. Modified United States Public Health Service (USPHS) criteria were utilized to evaluate the porcelain laminate veneers in terms of marginal adaptation, cavo-surface marginal discoloration, secondary caries, postoperative sensitivity, satisfaction with restoration shade and gingival tissue response. Data were analyzed using the Chi-Square test (p < 0.05). There was no statistically significant difference between the total-etch and self-etch groups in terms of USPHS criteria (p > 0.05). Porcelain veneers exhibited successful clinical performance with both total-etch and two-step self-etch adhesives at the end of five-years.

  5. Durability of enamel bonding using two-step self-etch systems on ground and unground enamel.

    PubMed

    Loguercio, Alessandro Dourado; Moura, Sandra Kiss; Pellizzaro, Arlete; Dal-Bianco, Karen; Patzlaff, Rafael Tiago; Grande, Rosa Helena Miranda; Reis, Alessandra

    2008-01-01

    This study examined the early and long-term microtensile bond strengths (MTBS) and interfacial enamel gap formation (IGW) of two-step self-etch systems to unground and ground enamel. Resin composite (Filtek Z250) buildups were bonded to proximal enamel surfaces (unground, bur-cut or SiC-treated enamel) of third molars after the application of four self-etch adhesives: a mild (Clearfil SE Bond [SE]), two moderate (Optibond Solo Plus Self-Etch Primer [SO] and AdheSE [AD]) and a strong adhesive (Tyrian Self Priming Etchant + One Step Plus [TY]) and two etch-and-rinse adhesive systems (Single Bond [SB] and Scotchbond Multi-Purpose Plus [SBMP]). Ten tooth halves were assigned for each adhesive. After storage in water (24 hours/37 degrees C), the bonded specimens were sectioned into beams (0.9 mm2) and subjected to microTBS (0.5 mm/minute) or interfacial gap width measurement (stereomicroscope at 400x) either immediately (IM) or after 12 months (12M) of water storage. The data were analyzed by three-way repeated measures ANOVA and Tukey's test (alpha=0.05). No gap formation was observed in any experimental condition. The microTBS in the Si-C paper and diamond bur groups were similar and greater than the unground group only for the moderate self-etch systems (SO and AD). No reductions in bond strength values were observed after 12 months of water storage, regardless of the adhesive evaluated.

  6. Universal adhesives: the next evolution in adhesive dentistry?

    PubMed

    Alex, Gary

    2015-01-01

    Every so often a new material, technique, or technological breakthrough spurs a paradigm shift in the way dentistry is practiced. The development and evolution of reliable enamel and dentin bonding agents is one such example. Indeed, the so-called "cosmetic revolution" in dentistry blossomed in large part due to dramatic advances in adhesive technology. It is the ability to bond various materials in a reasonably predictable fashion to both enamel and dentin substrates that enables dentists to routinely place porcelain veneers, direct and indirect composites, and a plethora of other restorative and esthetic materials. In fact, the longevity and predictability of many (if not most) current restorative procedures is wholly predicated on the dentist's ability to bond various materials to tooth tissues. Adhesive systems have progressed from the largely ineffective systems of the 1970s and early 1980s to the relatively successful total- and self-etching systems of today. The latest players in the adhesive marketplace are the so-called "universal adhesives." In theory, these systems have the potential to significantly simplify and expedite adhesive protocols and may indeed represent the next evolution in adhesive dentistry. But what defines a universal system, and are all these new systems truly "universal" and everything they are claimed to be? This article will examine the origin, chemistry, strengths, weaknesses, and clinical relevance of this new genre of dental adhesives.

  7. Effect of Restorative System and Thermal Cycling on the Tooth-Restoration Interface - OCT Evaluation.

    PubMed

    Sampaio, C S; Rodrigues, R V; Souza-Junior, E J; Freitas, A Z; Ambrosano, G M B; Pascon, F M; Puppin-Rontani, R M

    2016-01-01

    The present study evaluated the tooth/noncarious cervical lesion restoration interface when using different adhesive systems and resin composites, submitted to thermal cycling (TC), using optical coherence tomography (OCT). Noncarious cervical lesion (NCCL) preparations (0.7 mm depth × 2 mm diameter) were performed on 60 human third molars and randomly divided into six groups, according to the adhesive system and resin composite used: group 1 = Adper Single Bond 2 (SB2) + Aelite LS Posterior (AP); group 2 = SB2 + Venus Diamond (VD); group = SB2 + Filtek Z250XT (Z250); group 4 = Clearfil SE Bond (CSE) + AP; group 5 = CSE + VD; group 6 = CSE + Z250. Selective enamel etching was performed for 30 seconds on groups 4, 5, and 6, while groups 1, 2, and 3 were etched for 30 seconds in enamel and 15 seconds in dentin. All groups were evaluated using OCT before and after TC (n=10). Images were analyzed using Image J software; enamel and dentin margins were separately evaluated. Data from OCT were submitted to PROC MIXED for repeated measurements and Tukey Kramer test (α = 0.05). No marginal gaps were observed in etched enamel, either before or after TC, for all adhesive and resin composite systems. A significant interaction was found between adhesive system and TC for the dentin groups; after TC, restorations with CSE showed smaller gaps at the dentin/restoration interface compared with SB2 for all resin composites. Increased gap percentages were noticed after TC compared with the gaps before TC for all groups. In conclusion, TC affected marginal integrity only in dentin margins, whereas etched enamel margins remained stable even after TC. Dentin margins restored with CSE adhesive system showed better marginal adaptation than those restored with SB2. Resin composites did not influence marginal integrity of NCCL restorations.

  8. Adhesive particle shielding

    DOEpatents

    Klebanoff, Leonard Elliott; Rader, Daniel John; Walton, Christopher; Folta, James

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  9. Adhesive plasters

    DOEpatents

    Holcombe, Jr., Cressie E.; Swain, Ronald L.; Banker, John G.; Edwards, Charlene C.

    1978-01-01

    Adhesive plaster compositions are provided by treating particles of Y.sub.2 O.sub.3, Eu.sub.2 O.sub.3, Gd.sub.2 O.sub.3 or Nd.sub.2 O.sub.3 with dilute acid solutions. The resulting compositions have been found to spontaneously harden into rigid reticulated masses resembling plaster of Paris. Upon heating, the hardened material is decomposed into the oxide, yet retains the reticulated rigid structure.

  10. Water interaction and bond strength to dentin of dye-labelled adhesive as a function of the addition of rhodamine B

    PubMed Central

    WANG, Linda; BIM, Odair; LOPES, Adolfo Coelho de Oliveira; FRANCISCONI-DOS-RIOS, Luciana Fávaro; MAENOSONO, Rafael Massunari; D’ALPINO, Paulo Henrique Perlatti; HONÓRIO, Heitor Marques; ATTA, Maria Teresa

    2016-01-01

    ABSTRACT Objective This study investigated the effect of the fluorescent dye rhodamine B (RB) for interfacial micromorphology analysis of dental composite restorations on water sorption/solubility (WS/WSL) and microtensile bond strength to dentin (µTBS) of a 3-step total etch and a 2-step self-etch adhesive system. Material and Methods The adhesives Adper Scotchbond Multi-Purpose (MP) and Clearfil SE Bond (SE) were mixed with 0.1 mg/mL of RB. For the WS/WSL tests, cured resin disks (5.0 mm in diameter x 0.8 mm thick) were prepared and assigned into four groups (n=10): MP, MP-RB, SE, and SE-RB. For µTBS assessment, extracted human third molars (n=40) had the flat occlusal dentin prepared and assigned into the same experimental groups (n=10). After the bonding and restoration procedures, specimens were sectioned in rectangular beams, stored in water and tested after seven days or after 12 months. The failure mode of fractured specimens was qualitatively evaluated under optical microscope (x40). Data from WS/WSL and µTBS were assessed by one-way and three-way ANOVA, respectively, and Tukey’s test (α=5%). Results RB increased the WSL of MP and SE. On the other hand, WS of both MP and SE was not affected by the addition of RB. No significance in µTBS between MP and MP-RB for seven days or one year was observed, whereas for SE a decrease in the µTBS means occurred in both storage times. Conclusions RB should be incorporated into non-simplified DBSs with caution, as it can interfere with their physical-mechanical properties, leading to a possible misinterpretation of bonded interface. PMID:27556201

  11. Coexpression of GMP-140 and PAF by endothelium stimulated by histamine or thrombin: a juxtacrine system for adhesion and activation of neutrophils

    PubMed Central

    1991-01-01

    The adhesion of polymorphonuclear leukocytes (PMNs) to vascular endothelial cells (EC) is an early and fundamental event in acute inflammation. This process requires the regulated expression of molecules on both the EC and PMN. EC stimulated with histamine or thrombin coexpress two proadhesive molecules within minutes: granule membrane protein 140 (GMP-140), a member of the selectin family, and platelet-activating factor (PAF), a biologically active phospholipid. Coexpression of GMP-140 and PAF is required for maximal PMN adhesion and the two molecules act in a cooperative fashion. The component of adhesion mediated by EC-associated PAF requires activation of CD11/CD18 integrins on the PMN and binding of these heterodimers to counterreceptors on the EC. GMP-140 also binds to a receptor on the PMN; however, it tethers the PMN to the EC without requiring activation of CD11/CD18 integrins. This component of the adhesive interaction is blocked by antibodies to GMP-140 or by GMP-140 in the fluid phase. Experiments with purified GMP-140 indicate that binding to its receptor on the PMN does not directly induce PMN adhesiveness but that it potentiates the CD11/CD18-dependent adhesive response to PAF by a mechanism that involves events distal to the PAF receptor. Tethering of the PMN to the EC by GMP-140 may also be required for efficient interaction of PAF with its receptor on the PMN. These observations define a complex cell recognition system in which tethering of PMNs by a selectin, GMP-140, facilitates juxtacrine activation of the leukocytes by a signaling molecule, PAF. The latter event recruits the third component of the adhesive interaction, the CD11/CD18 integrins. PMID:1717478

  12. Adhesion of Antireflective Coatings in Multijunction Photovoltaics

    SciTech Connect

    Brock, Ryan; Miller, David C.; Dauskardt, Reinhold H.

    2016-11-21

    The development of a new composite dual cantilever beam (cDCB) thin-film adhesion testing method is reported, which allows the measurement of adhesion on the fragile thin substrates used in multijunction photovoltaics. We address the adhesion of several antireflective coating systems on multijunction cells. By varying interface chemistry and morphology, we demonstrate the ensuing effects on adhesion and help to develop an understanding of how high adhesion can be achieved, as adhesion values ranging from 0.5 J/m2 to 10 J/m2 were measured. Damp Heat (85 degrees C/85% RH) was used to invoke degradation of interfacial adhesion. We show that even with germanium substrates that fracture easily, quantitative measurements of adhesion can still be made at high test yield. The cDCB test is discussed as an important new methodology, which can be broadly applied to any system that makes use of thin, brittle, or otherwise fragile substrates.

  13. Systems toxicology-based assessment of the candidate modified risk tobacco product THS2.2 for the adhesion of monocytic cells to human coronary arterial endothelial cells.

    PubMed

    Poussin, Carine; Laurent, Alexandra; Peitsch, Manuel C; Hoeng, Julia; De Leon, Hector

    2016-01-02

    Alterations of endothelial adhesive properties by cigarette smoke (CS) can progressively favor the development of atherosclerosis which may cause cardiovascular disorders. Modified risk tobacco products (MRTPs) are tobacco products developed to reduce smoking-related risks. A systems biology/toxicology approach combined with a functional in vitro adhesion assay was used to assess the impact of a candidate heat-not-burn technology-based MRTP, Tobacco Heating System (THS) 2.2, on the adhesion of monocytic cells to human coronary arterial endothelial cells (HCAECs) compared with a reference cigarette (3R4F). HCAECs were treated for 4h with conditioned media of human monocytic Mono Mac 6 (MM6) cells preincubated with low or high concentrations of aqueous extracts from THS2.2 aerosol or 3R4F smoke for 2h (indirect treatment), unconditioned media (direct treatment), or fresh aqueous aerosol/smoke extracts (fresh direct treatment). Functional and molecular investigations revealed that aqueous 3R4F smoke extract promoted the adhesion of MM6 cells to HCAECs via distinct direct and indirect concentration-dependent mechanisms. Using the same approach, we identified significantly reduced effects of aqueous THS2.2 aerosol extract on MM6 cell-HCAEC adhesion, and reduced molecular changes in endothelial and monocytic cells. Ten- and 20-fold increased concentrations of aqueous THS2.2 aerosol extract were necessary to elicit similar effects to those measured with 3R4F in both fresh direct and indirect exposure modalities, respectively. Our systems toxicology study demonstrated reduced effects of an aqueous aerosol extract from the candidate MRTP, THS2.2, using the adhesion of monocytic cells to human coronary endothelial cells as a surrogate pathophysiologically relevant event in atherogenesis.

  14. Natural Underwater Adhesives.

    PubMed

    Stewart, Russell J; Ransom, Todd C; Hlady, Vladimir

    2011-06-01

    The general topic of this review is protein-based underwater adhesives produced by aquatic organisms. The focus is on mechanisms of interfacial adhesion to native surfaces and controlled underwater solidification of natural water-borne adhesives. Four genera that exemplify the broad range of function, general mechanistic features, and unique adaptations are discussed in detail: blue mussels, acorn barnacles, sandcastle worms, and freshwater caddisfly larva. Aquatic surfaces in nature are charged and in equilibrium with their environment, populated by an electrical double layer of ions as well as adsorbed natural polyelectrolytes and microbial biofilms. Surface adsorption of underwater bioadhesives likely occurs by exchange of surface bound ligands by amino acid sidechains, driven primarily by relative affinities and effective concentrations of polymeric functional groups. Most aquatic organisms exploit modified amino acid sidechains, in particular phosphorylated serines and hydroxylated tyrosines (dopa), with high-surface affinity that form coordinative surface complexes. After delivery to the surfaces as a fluid, permanent natural adhesives solidify to bear sustained loads. Mussel plaques are assembled in a manner superficially reminiscent of in vitro layer-by-layer strategies, with sequentially delivered layers associated through Fe(dopa)(3) coordination bonds. The adhesives of sandcastle worms, caddisfly larva, and barnacles may be delivered in a form somewhat similar to in vitro complex coacervation. Marine adhesives are secreted, or excreted, into seawater that has a significantly higher pH and ionic strength than the internal environment. Empirical evidence suggests these environment triggers could provide minimalistic, fail-safe timing mechanisms to prevent premature solidification (insolubilization) of the glue within the secretory system, yet allow rapid solidification after secretion. Underwater bioadhesives are further strengthened by secondary covalent

  15. Natural Underwater Adhesives

    PubMed Central

    Stewart, Russell J.; Ransom, Todd C.; Hlady, Vladimir

    2011-01-01

    The general topic of this review is protein-based underwater adhesives produced by aquatic organisms. The focus is on mechanisms of interfacial adhesion to native surfaces and controlled underwater solidification of natural water-borne adhesives. Four genera that exemplify the broad range of function, general mechanistic features, and unique adaptations are discussed in detail: blue mussels, acorn barnacles, sandcastle worms, and freshwater caddisfly larva. Aquatic surfaces in nature are charged and in equilibrium with their environment, populated by an electrical double layer of ions as well as adsorbed natural polyelectrolytes and microbial biofilms. Surface adsorption of underwater bioadhesives likely occurs by exchange of surface bound ligands by amino acid sidechains, driven primarily by relative affinities and effective concentrations of polymeric functional groups. Most aquatic organisms exploit modified amino acid sidechains, in particular phosphorylated serines and hydroxylated tyrosines (dopa), with high-surface affinity that form coordinative surface complexes. After delivery to the surfaces as a fluid, permanent natural adhesives solidify to bear sustained loads. Mussel plaques are assembled in a manner superficially reminiscent of in vitro layer-by-layer strategies, with sequentially delivered layers associated through Fe(dopa)3 coordination bonds. The adhesives of sandcastle worms, caddisfly larva, and barnacles may be delivered in a form somewhat similar to in vitro complex coacervation. Marine adhesives are secreted, or excreted, into seawater that has a significantly higher pH and ionic strength than the internal environment. Empirical evidence suggests these environment triggers could provide minimalistic, fail-safe timing mechanisms to prevent premature solidification (insolubilization) of the glue within the secretory system, yet allow rapid solidification after secretion. Underwater bioadhesives are further strengthened by secondary covalent

  16. Wood Composite Adhesives

    NASA Astrophysics Data System (ADS)

    Gomez-Bueso, Jose; Haupt, Robert

    The global environment, in which phenolic resins are being used for wood composite manufacture, has changed significantly during the last decade. This chapter reviews trends that are driving the use and consumption of phenolic resins around the world. The review begins with recent data on volume usage and regional trends, followed by an analysis of factors affecting global markets. In a section on environmental factors, the impact of recent formaldehyde emission regulations is discussed. The section on economics introduces wood composite production as it relates to the available adhesive systems, with special emphasis on the technical requirement to improve phenolic reactivity. Advances in composite process technology are introduced, especially in regard to the increased demands the improvements place upon adhesive system performance. The specific requirements for the various wood composite families are considered in the context of adhesive performance needs. The results of research into current chemistries are discussed, with a review of recent findings regarding the mechanisms of phenolic condensation and acceleration. Also, the work regarding alternate natural materials, such as carbohydrates, lignins, tannins, and proteinaceous materials, is presented. Finally, new developments in alternative adhesive technologies are reported.

  17. The adhesive properties of coacervated recombinant hybrid mussel adhesive proteins.

    PubMed

    Lim, Seonghye; Choi, Yoo Seong; Kang, Dong Gyun; Song, Young Hoon; Cha, Hyung Joon

    2010-05-01

    Marine mussels attach to substrates using adhesive proteins. It has been suggested that complex coacervation (liquid-liquid phase separation via concentration) might be involved in the highly condensed and non-water dispersed adhesion process of mussel adhesive proteins (MAPs). However, as purified natural MAPs are difficult to obtain, it has not been possible to experimentally validate the coacervation model. In the present work, we demonstrate complex coacervation in a system including recombinant MAPs and hyaluronic acid (HA). Our recombinant hybrid MAPs, fp-151 and fp-131, can be produced in large quantities, and are readily purified. We observed successful complex coacervation using cationic fp-151 or fp-131, and an anionic HA partner. Importantly, we found that highly condensed complex coacervates significantly increased the bulk adhesive strength of MAPs in both dry and wet environments. In addition, oil droplets were successfully engulfed using a MAP-based interfacial coacervation process, to form microencapsulated particles. Collectively, our results indicate that a complex coacervation system based on MAPs shows superior adhesive properties, combined with additional valuable features including liquid/liquid phase separation and appropriate viscoelasticity. Our microencapsulation system could be useful in the development of new adhesive biomaterials, including self-adhesive microencapsulated drug carriers, for use in biotechnological and biomedical applications.

  18. Sealing of adhesive systems in ferric sulfate-contaminated dentinal margins in class V composite resin restorations.

    PubMed

    Shadman, Niloofar; Farzin Ebrahimi, Shahram; Mollaie, Najmeh

    2016-01-01

    Background. Hemostatic agents are applied to prepare an isolated bleeding-free condition during dental treatments and can influence adhesive restorations. This study evaluated the effect of a hemostatic agent (ViscoStat) on microleakage of contaminated dentinal margin of class V composite resin restorations with three adhesives. Methods. Sixty freshly extracted human molars were selected and class V cavities (3×3×1.5 mm) were prepared on buccal and lingual surfaces. Gingival margins of the cavities were placed below the cementoenamel junction. The teeth were divided into six groups randomly. The adhesives were Excite, AdheSE and AdheSE One. In three groups, the gingival walls of the cavities were contaminated with ViscoStat and then rinsed. The cavities were restored with composite resin and light-cured. After storage in distilled water (37°C) for 24 hours and polishing, the samples were thermocycled and sealed with nail varnish. Then they were stored in 1% basic fuchsin for 24 hours, rinsed and mounted in self-cured acryl resin, followed by sectioning buccolingually. Dye penetration was observed under a stereomicroscope and scored. Data were statistically analyzed with Kruskal-Wallis and Mann-Whitney U tests. P<0.05 was set as the level of significance. Results. Only in the Excite group, contamination did not have adverse effects on dentin microleakage (P > 0.05). In the contaminated groups, Excite had significantly less microleakage than the others (P = 0.003). AdheSE and AdheSE One did not exhibit significant difference in microleakage (P > 0.05). Conclusion. ViscoStat hemostatic agent increased dentinal microleakage in AdheSE and AdheSE One adhesives with no effect on Excite.

  19. Sealing of adhesive systems in ferric sulfate-contaminated dentinal margins in class V composite resin restorations

    PubMed Central

    Shadman, Niloofar; Farzin Ebrahimi, Shahram; Mollaie, Najmeh

    2016-01-01

    Background. Hemostatic agents are applied to prepare an isolated bleeding-free condition during dental treatments and can influence adhesive restorations. This study evaluated the effect of a hemostatic agent (ViscoStat) on microleakage of contaminated dentinal margin of class V composite resin restorations with three adhesives. Methods. Sixty freshly extracted human molars were selected and class V cavities (3×3×1.5 mm) were prepared on buccal and lingual surfaces. Gingival margins of the cavities were placed below the cementoenamel junction. The teeth were divided into six groups randomly. The adhesives were Excite, AdheSE and AdheSE One. In three groups, the gingival walls of the cavities were contaminated with ViscoStat and then rinsed. The cavities were restored with composite resin and light-cured. After storage in distilled water (37°C) for 24 hours and polishing, the samples were thermocycled and sealed with nail varnish. Then they were stored in 1% basic fuchsin for 24 hours, rinsed and mounted in self-cured acryl resin, followed by sectioning buccolingually. Dye penetration was observed under a stereomicroscope and scored. Data were statistically analyzed with Kruskal-Wallis and Mann-Whitney U tests. P<0.05 was set as the level of significance. Results. Only in the Excite group, contamination did not have adverse effects on dentin microleakage (P > 0.05). In the contaminated groups, Excite had significantly less microleakage than the others (P = 0.003). AdheSE and AdheSE One did not exhibit significant difference in microleakage (P > 0.05). Conclusion. ViscoStat hemostatic agent increased dentinal microleakage in AdheSE and AdheSE One adhesives with no effect on Excite. PMID:27092210

  20. Adhesive dynamics simulations of sialyl-Lewis(x)/E-selectin-mediated rolling in a cell-free system.

    PubMed

    Chang, K C; Hammer, D A

    2000-10-01

    Selectin-mediated leukocyte rolling is crucial for the proper function of the immune response. Recently, selectin-mediated rolling was recreated in a cell-free system (Biophysical Journal 71:2902-2907 (1996)); it was shown that sialyl Lewis(x) (sLe(x))-coated microspheres roll over E-selectin-coated surfaces under hydrodynamic flow. The cell-free system removes many confounding cellular features, such as cell deformability and signaling, allowing us to focus on the role of carbohydrate/selectin physical chemistry in mediating rolling. In this paper, we use adhesive dynamics, a computational method that allows us to simulate adhesion, to analyze the experimental data produced in the cell-free system. We simulate the effects of shear rate, ligand density, and number of receptors per particle on rolling velocity and compare them with experimental results obtained with the cell-free system. If we assume the population of particles is homogeneous in receptor density, we predict that particle rolling velocity calculated in simulations is more sensitive to shear rate than found in experiments. Also, the calculated rolling velocity is more sensitive to the number of receptors on the microspheres than to the ligand density on the surface, again in contrast to experiment. We argue that heterogeneity in the distribution of receptors throughout the particle population causes these discrepancies. We improve the agreement between experiment and simulation by calculating the average rolling velocity of a population whose receptors follow a normal distribution, suggesting heterogeneity among particles significantly affects the experimental results. Further comparison between theory and experiment yields an estimate of the reactive compliance of sLe(x)/E-selectin interactions of 0.25 A, close to that reported in the literature for E-selectin and its natural ligand (0.3 A). We also provide an estimate of the value of the intrinsic association rate (between 10(4) and 10(5) s(-1)) for

  1. Adhesion and Cohesion

    PubMed Central

    von Fraunhofer, J. Anthony

    2012-01-01

    The phenomena of adhesion and cohesion are reviewed and discussed with particular reference to dentistry. This review considers the forces involved in cohesion and adhesion together with the mechanisms of adhesion and the underlying molecular processes involved in bonding of dissimilar materials. The forces involved in surface tension, surface wetting, chemical adhesion, dispersive adhesion, diffusive adhesion, and mechanical adhesion are reviewed in detail and examples relevant to adhesive dentistry and bonding are given. Substrate surface chemistry and its influence on adhesion, together with the properties of adhesive materials, are evaluated. The underlying mechanisms involved in adhesion failure are covered. The relevance of the adhesion zone and its importance with regard to adhesive dentistry and bonding to enamel and dentin is discussed. PMID:22505913

  2. Nucleation and Growth of Integrin Adhesions

    PubMed Central

    Atilgan, Erdinç; Ovryn, Ben

    2009-01-01

    We present a model that provides a mechanistic understanding of the processes that govern the formation of the earliest integrin adhesions ex novo from an approximately planar plasma membrane. Using an analytic analysis of the free energy of a dynamically deformable membrane containing freely diffusing receptors molecules and long repeller molecules that inhibit integrins from binding with ligands on the extracellular matrix, we predict that a coalescence of polymerizing actin filaments can deform the membrane toward the extracellular matrix and facilitate integrin binding. Monte Carlo simulations of this system show that thermally induced membrane fluctuations can either zip-up and increase the radius of a nucleated adhesion or unzip and shrink an adhesion, but the fluctuations cannot bend the ventral membrane to nucleate an adhesion. To distinguish this integrin adhesion from more mature adhesions, we refer to this early adhesion as a nouveau adhesion. PMID:19413961

  3. Effect of increased dwell times for solvent evaporation on the bond strength and degree of conversion of an ethanol-based adhesive system.

    PubMed

    Argolo, Saryta; Oliveira, Denise C; Fontes, Céres M; Lima, Adriano F; de Freitas, Anderson P; Cavalcanti, Andrea N

    2012-01-01

    This study evaluated the influence of the prolonged setting time of an ethanol-based adhesive system on the dentin bond strength and degree of conversion. Labial and lingual surfaces of fifteen human third molars were flattened until the dentin was exposed and randomly allocated to 3 groups (n = 10), according to the dwell time between the application of two consecutive layers of the adhesive system (Adper Single Bond Plus, 3M ESPE) and light activation: G1--control (no extra dwell time); G2 and G3--dwell time of 30 seconds and 60 seconds, respectively. After light curing, two cylinders (1.4 x 1 mm) of composite resin (Filtek Flow, 3M ESPE) were bonded to each surface and submitted to micro-shear testing, 24 hours after light curing. A similar adhesive procedure was used for the degree of conversion evaluation using Fourier transform infrared spectroscopy (FTIR). Significant differences between bond strength values (p = 0.0003) and degrees of conversion (p = 0.0004) were detected. The bond strength of G3 (60-second dwell time) was statistically higher than that of other groups. G1 (control) and G2 (30-second dwell time) presented similar results. Values of degree of conversion indicated that both the 30-second and 60-second dwell times resulted in similar and greater percentages of conversion. The use of a longer dwell time (60 seconds) might provide better solvent volatilization and monomer infiltration; bringing benefits to dentin bonding using simplified etch & rinse adhesive systems.

  4. Development of high temperature silicone adhesive formulations for thermal protection system applications

    NASA Technical Reports Server (NTRS)

    Hockridge, R. R.

    1973-01-01

    Trade-off studies and screening evaluations were made of commercial polymers and silicone foam sheet stock. A low modulus, low density 0.26 gm/cc modification was developed of the GE-RESD PD-200 system based upon GE RTV-560 silicone polymer. The bond system modification was initially characterized for mechanical and thermal properties, evaluated for application methods, and its capability demonstrated as a strain arrestor bond system.

  5. Influence of substrate modulus on gecko adhesion

    PubMed Central

    Klittich, Mena R.; Wilson, Michael C.; Bernard, Craig; Rodrigo, Rochelle M.; Keith, Austin J.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2017-01-01

    The gecko adhesion system fascinates biologists and materials scientists alike for its strong, reversible, glue-free, dry adhesion. Understanding the adhesion system’s performance on various surfaces can give clues as to gecko behaviour, as well as towards designing synthetic adhesive mimics. Geckos encounter a variety of surfaces in their natural habitats; tropical geckos, such as Gekko gecko, encounter hard, rough tree trunks as well as soft, flexible leaves. While gecko adhesion on hard surfaces has been extensively studied, little work has been done on soft surfaces. Here, we investigate for the first time the influence of macroscale and nanoscale substrate modulus on whole animal adhesion on two different substrates (cellulose acetate and polydimethylsiloxane) in air and find that across 5 orders of magnitude in macroscale modulus, there is no change in adhesion. On the nanoscale, however, gecko adhesion is shown to depend on substrate modulus. This suggests that low surface-layer modulus may inhibit the gecko adhesion system, independent of other influencing factors such as macroscale composite modulus and surface energy. Understanding the limits of gecko adhesion is vital for clarifying adhesive mechanisms and in the design of synthetic adhesives for soft substrates (including for biomedical applications and wearable electronics). PMID:28287647

  6. Influence of substrate modulus on gecko adhesion

    NASA Astrophysics Data System (ADS)

    Klittich, Mena R.; Wilson, Michael C.; Bernard, Craig; Rodrigo, Rochelle M.; Keith, Austin J.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2017-03-01

    The gecko adhesion system fascinates biologists and materials scientists alike for its strong, reversible, glue-free, dry adhesion. Understanding the adhesion system’s performance on various surfaces can give clues as to gecko behaviour, as well as towards designing synthetic adhesive mimics. Geckos encounter a variety of surfaces in their natural habitats; tropical geckos, such as Gekko gecko, encounter hard, rough tree trunks as well as soft, flexible leaves. While gecko adhesion on hard surfaces has been extensively studied, little work has been done on soft surfaces. Here, we investigate for the first time the influence of macroscale and nanoscale substrate modulus on whole animal adhesion on two different substrates (cellulose acetate and polydimethylsiloxane) in air and find that across 5 orders of magnitude in macroscale modulus, there is no change in adhesion. On the nanoscale, however, gecko adhesion is shown to depend on substrate modulus. This suggests that low surface-layer modulus may inhibit the gecko adhesion system, independent of other influencing factors such as macroscale composite modulus and surface energy. Understanding the limits of gecko adhesion is vital for clarifying adhesive mechanisms and in the design of synthetic adhesives for soft substrates (including for biomedical applications and wearable electronics).

  7. Shear Bond Strength of Acidic Primer, Light-Cure Glass Ionomer, Light-Cure and Self Cure Composite Adhesive Systems - An In Vitro Study

    PubMed Central

    D, Krishnakanth Reddy; V, Kishore M S; Safeena, Safeena

    2013-01-01

    Background: The purpose of this study was to determine shear bond strength and the effect on the bracket/ adhesive failure mode when an acidic primer and other etchants were used to condition the enamel surface before bonding. Materials & Methods: Group I: Brackets bonded with Ultimate cure-on-light Light-cure composite adhesive system. Group II: Brackets bonded with Ortho-one no-mix. Self-cure composite adhesive system. Group III: Brackets bonded with Light-cure glass ionomer adhesive system. Group IV: Brackets bonded with Transbond plus self etching primer. Results: The results of this study indicated that the shear bond strength when using Transbond plus self etching primer showed the highest bond strength Group- IV(8.69 2.54 MPa) followed by Ultimate cure-on-light Group-I (8.62 1.84 MPa), Ortho-one no-mix (Bisco Inc. USA)Group-II (8.07 1.72 MPa), and least bond strength was seen in G.C. Fuji Ortho L.C. Group-III (6.01 1.6) MPa Conclusion: Use of self etching primer saves chairside time and satisfactory high bond strength was obtained. Care should be taken during debonding of ceramic brackets How to cite this article: Reddy K D, Kishore M S V, Safeena S. Shear Bond Strength of Acidic Primer, Light-Cure Glass Ionomer, Light-Cure and Self Cure Composite Adhesive Systems - An In Vitro Study. J Int Oral Health 2013; 5(3):73-78. PMID:24155606

  8. Effect of noble metal adhesive systems on bonding between an indirect composite material and a gold alloy.

    PubMed

    Nagano, Kiyoshi; Tanoue, Naomi; Atsuta, Mitsuru; Koizumi, Hiroyasu; Matsumura, Hideo

    2004-12-01

    In this study, the bond strength between an indirect composite and a gold alloy was determined for the purpose of evaluating noble metal bonding systems. A single liquid primer designed for conditioning noble metal alloys (Infis Opaque Primer) and tri-n-butylborane-initiated adhesive resins (Super-Bond C & B), with or without the powder component, were assessed. Cast gold alloy disks (Casting Gold type IV) were air-abraded with alumina, followed by six surface preparations, and were then bonded with a light-activated composite material (New Metacolor Infis). Shear testing was performed both before and after thermocycling for evaluation of bond durability. The results showed that three primed groups improved post-thermocycling bond strengths compared to each of the corresponding unprimed groups (P < 0.01). The bond strength was reduced for all six groups by the application of thermocycling (P < 0.01). After thermocycling, the group primed with the Infis Opaque Primer material and bonded with the Super-Bond C & B resin exhibited the greatest bond strength (23.4 MPa). The Infis Opaque Primer and Super-Bond bonding system increased the post-thermocycling bond strength of the control group by a factor of approximately ten. This simple technique is applicable in the fabrication of composite veneered restorations and cone-telescope dentures.

  9. Echinoderm adhesive secretions: from experimental characterization to biotechnological applications.

    PubMed

    Flammang, P; Santos, R; Haesaerts, D

    2005-01-01

    Adhesion is a way of life in echinoderms. Indeed, all the species belonging to this phylum use adhesive secretions extensively for various vital functions. According to the species or to the developmental stage considered, different adhesive systems may be recognized. (1) The tube feet or podia are organs involved in attachment to the substratum, locomotion, feeding or burrowing. Their temporary adhesion relies on a duo-gland adhesive system resorting to both adhesive and de-adhesive secretions. (2) The larval adhesive organs allow temporary attachment of larvae during settlement and strong fixation during metamorphosis. (3) The Cuvierian tubules are sticky defence organs occurring in some holothuroid species. Their efficacy is based on the instantaneous release of a quick-setting adhesive. All these systems rely on different types of adhesion and therefore differ in the way they operate, in their structure and in the composition of their adhesive. In addition to fundamental interests in echinoderm bioadhesives, a substantial impetus behind understanding these adhesives are the potential technological applications that can be derived from their knowledge. These applications cover two broad fields of applied research: design of water-resistant adhesives and development of new antifouling strategies. In this context, echinoderm adhesives could offer novel features or performance characteristics for biotechnological applications. For example, the rapidly attaching adhesive of Cuvierian tubules, the releasable adhesive of tube feet or the powerful adhesive of asteroid larvae could each be useful to address particular bioadhesion problems.

  10. Novel masked mercaptans based on thiolacetic acid/diallyl bisphenol a adducts as hardeners for epoxy adhesive systems

    SciTech Connect

    Lehmann, H.; Zahir, S.A.

    1995-12-01

    Epoxy resin formulations based on these masked mercaptans show adhesive properties equivalent to epoxy resin formulations cured with classical hardeners such as dicyandiamide. In addition the use of the masked mercaptans as an epoxy resin hardener leads to adhesive joints which show outstanding resistance to moisture. Thus Al/Al joints cured with a clinical epoxy formulation based on dicyandiamide as hardener (AV 8) failed in 30 days after exposure to water at (90{degrees}C) for 90 days. We believe that chemi-adsorption at the interface between metal/adhesive/metal plays an important role in giving this outstanding hot water resistance. This paper discusses the synthesis, the mechanism of cure with epoxide resins and the adhesive properties of these novel masked mercaptans.

  11. Coating Reduces Ice Adhesion

    NASA Technical Reports Server (NTRS)

    Smith, Trent; Prince, Michael; DwWeese, Charles; Curtis, Leslie

    2008-01-01

    The Shuttle Ice Liberation Coating (SILC) has been developed to reduce the adhesion of ice to surfaces on the space shuttle. SILC, when coated on a surface (foam, metal, epoxy primer, polymer surfaces), will reduce the adhesion of ice by as much as 90 percent as compared to the corresponding uncoated surface. This innovation is a durable coating that can withstand several cycles of ice growth and removal without loss of anti-adhesion properties. SILC is made of a binder composed of varying weight percents of siloxane(s), ethyl alcohol, ethyl sulfate, isopropyl alcohol, and of fine-particle polytetrafluoroethylene (PTFE). The combination of these components produces a coating with significantly improved weathering characteristics over the siloxane system alone. In some cases, the coating will delay ice formation and can reduce the amount of ice formed. SILC is not an ice prevention coating, but the very high water contact angle (greater than 140 ) causes water to readily run off the surface. This coating was designed for use at temperatures near -170 F (-112 C). Ice adhesion tests performed at temperatures from -170 to 20 F (-112 to -7 C) show that SILC is a very effective ice release coating. SILC can be left as applied (opaque) or buffed off until the surface appears clear. Energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) data show that the coating is still present after buffing to transparency. This means SILC can be used to prevent ice adhesion even when coating windows or other objects, or items that require transmission of optical light. Car windshields are kept cleaner and SILC effectively mitigates rain and snow under driving conditions.

  12. Tunicate-mimetic nanofibrous hydrogel adhesive with improved wet adhesion.

    PubMed

    Oh, Dongyeop X; Kim, Sangsik; Lee, Dohoon; Hwang, Dong Soo

    2015-07-01

    The main impediment to medical application of biomaterial-based adhesives is their poor wet adhesion strength due to hydration-induced softening and dissolution. To solve this problem, we mimicked the wound healing process found in tunicates, which use a nanofiber structure and pyrogallol group to heal any damage on its tunic under sea water. We fabricated a tunicate-mimetic hydrogel adhesive based on a chitin nanofiber/gallic acid (a pyrogallol acid) composite. The pyrogallol group-mediated cross-linking and the nanofibrous structures improved the dissolution resistance and cohesion strength of the hydrogel compared to the amorphous polymeric hydrogels in wet condition. The tunicate-mimetic adhesives showed higher adhesion strength between fully hydrated skin tissues than did fibrin glue and mussel-mimetic adhesives. The tunicate mimetic hydrogels were produced at low cost from recyclable and abundant raw materials. This tunicate-mimetic adhesive system is an example of how natural materials can be engineered for biomedical applications.

  13. A review of high-temperature adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.

    1981-01-01

    The development of high temperature adhesives and polyphenylquinoxalines (PPQ) is reported. Thermoplastic polyimides and linear PPQ adhesive are shown to have potential for bonding both metals and composite structures. A nadic terminated addition polyimide adhesive, LARC-13, and an acetylene terminated phenylquinoxaline (ATPQ) were developed. Both of the addition type adhesives are shown to be more readily processable than linear materials but less thermooxidatively stable and more brittle. It is found that the addition type adhesives are able to perform, at elevated temperatures up to 595 C where linear systems fail thermoplastically.

  14. Cell Migration in the Immune System: the Evolving Inter-Related Roles of Adhesion Molecules and Proteinases

    PubMed Central

    Graesser, Donnasue

    2000-01-01

    Leukocyte extravasation into perivascular tissue during inflammation and lymphocyte homing to lymphoid organs involve transient adhesion to the vessel endothelium, followed by transmigration through the endothelial cell (EC) layer and establishment of residency at the tissue site for a period of time. In these processes, leukocytes undergo multiple attachments to, and detachments from, the vessel-lining endothelial cells, prior to transendothelial cell migration. Transmigrating leukocytes must traverse a subendothelial basement membrane en route to perivascular tissues and utilize enzymes known as matrix metalloproteinases to make selective clips in the extracellular matrix components of the basement membrane. This review will focus on the evidence for a link between adhesion of leukocytes to endothelial cells, the induction of matrix metalloproteinases mediated by engagement of adhesion receptors on leukocytes, and the ability to utilize these matrix metalloproteinases to facilitate leukocyte invasion of tissues. Leukocytes with invasive phenotypes express high levels of MMPs, and expression of MMPs enhances the migratory and invasive properties of these cells. Furthermore, MMPs may be used by lymphocytes to proteolytically cleave molecules such as adhesion receptors and membrane bound cytokines, increasing their efficiency in the immune response. Engagement of leukocyte adhesion receptors may modulate adhesive (modulation of integrin affinities and expression), synthetic (proteinase induction and activation), and surface organization (clustering of proteolyric complexes) behaviors of invasive leukocytes. Elucidation of these pathways will lead to better understanding of controlling mechanisms in order to develop rational therapeutic approaches in the areas of inflammation and autoimmunity. PMID:11097205

  15. Bonding of self-adhesive resin cements to enamel using different surface treatments: bond strength and etching pattern evaluations.

    PubMed

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Shinya, Akiyoshi

    2010-08-01

    This study evaluated the shear bond strengths and etching patterns of seven self-adhesive resin cements to human enamel specimens which were subjected to one of the following surface treatments: (1) Polishing with #600 polishing paper; (2) Phosphoric acid; (3) G-Bond one-step adhesive; or (4) Phosphoric acid and G-Bond. After surface treatment, the human incisor specimens were bonded to a resin composite using a self-adhesive resin cement [Maxcem (MA), RelyX Unicem (UN), Breeze (BR), BisCem (BI), seT (SE), Clearfil SA Luting (CL)] or a conventional resin cement [ResiCem (RE)]. Representative morphology formed with self-adhesive resin cements showed areas of etched enamel intermingled with areas of featureless enamel. In conclusion, etching efficacy influenced the bonding effectiveness of self-adhesive resin cements to unground enamel, and that a combined use of phosphoric acid and G-Bond for pretreatment of human enamel surfaces improved the bond strength of self-adhesive resin cements.

  16. The N-linking glycosylation system from Actinobacillus pleuropneumoniae is required for adhesion and has potential use in glycoengineering

    PubMed Central

    Bossé, Janine T.; Abouelhadid, Sherif; Li, Yanwen; Lin, Chia-Wei; Vohra, Prerna; Tucker, Alexander W.; Rycroft, Andrew N.; Maskell, Duncan J.; Aebi, Markus; Langford, Paul R.

    2017-01-01

    Actinobacillus pleuropneumoniae is a mucosal respiratory pathogen causing contagious porcine pleuropneumonia. Pathogenesis studies have demonstrated a major role for the capsule, exotoxins and outer membrane proteins. Actinobacillus pleuropneumoniae can also glycosylate proteins, using a cytoplasmic N-linked glycosylating enzyme designated NGT, but its transcriptional arrangement and role in virulence remains unknown. We investigated the NGT locus and demonstrated that the putative transcriptional unit consists of rimO, ngt and a glycosyltransferase termed agt. From this information we used the A. pleuropneumoniae glycosylation locus to decorate an acceptor protein, within Escherichia coli, with a hexose polymer that reacted with an anti-dextran antibody. Mass spectrometry analysis of a truncated protein revealed that this operon could add up to 29 repeat units to the appropriate sequon. We demonstrated the importance of NGT in virulence, by creating deletion mutants and testing them in a novel respiratory cell line adhesion model. This study demonstrates the importance of the NGT glycosylation system for pathogenesis and its potential biotechnological application for glycoengineering. PMID:28077594

  17. Bond Strength of a Novel One Bottle Multi-mode Adhesive to Human Dentin After Six Months of Storage

    PubMed Central

    Manfroi, Fernanda Borguetti; Marcondes, Maurem Leitão; Somacal, Deise Caren; Borges, Gilberto Antonio; Júnior, Luiz Henrique Burnett; Spohr, Ana Maria

    2016-01-01

    Objective: The aim of the study was to evaluate the microtensile bond strength (µTBS) of Scotchbond Universal to dentin using the etch-and-rinse or the self-etch technique after 24 h and 6 months of storage. Materials and Methods: Flat dentin surfaces were obtained in 24 third molars. The teeth were divided into four groups: G1 – Scotchbond Universal applied in the etch-and-rinse mode; G2 – Scotchbond Universal applied in the self-etch mode; G3 – Scotchbond Multi-Purpose; G4 – Clearfil SE Bond. A block of composite was built on the adhesive area. The tooth/resin sets were cut parallel to the long axis to obtain 40 beams (~0.8 mm2) for each group. Twenty specimens were immediately submitted to the µTBS test, and the remaining 20 were stored in water for 6 months. Failures and the adhesive interface were analyzed by SEM. Results: According to two-way ANOVA, the interaction between adhesive and storage time was significant (p=0.015).The µTBS (MPa) means were the following: 24 h – G1 (39.37±10.82), G2 (31.02±13.76), G3 (35.09±14.03) and G4 (35.84±11.06); 6 months – G1 (36.99±8.78), G2 (40.58±8.07), G3 (32.44±6.07) and G4 (41.75±8.25). Most failures were mixed. Evidence of hybrid layer and numerous resin tags were noted for Scotchbond Universal applied with the etch-and-rinse mode and Scotchbond Multi-Purpose. A thinner hybrid layer and fewer resin tags were noted for Scotchbond Universal applied in the self-etch mode and Clearfil SE Bond. Conclusion: The results indicate that the µTBS for Scotchbond Universal is comparable to the gold-standard adhesives. Scotchbond Universal applied in the self-etch mode and Clearfil SE Bond revealed higher bond stability compared to the etch-and-rinse mode. PMID:27347230

  18. Adhesives for bonding RSI tile to GrPI structure for advanced space transportation systems

    NASA Technical Reports Server (NTRS)

    Smith, K. E.; Hamermesh, C. L.; Hogenson, P. A.

    1979-01-01

    A system was developed for bonding RSI tiles to a graphite/polymide composite substrate which would withstand the full range of environmental conditions. The bonding system, designated RA59, consists of a mixture of glass (sesquisiloxane) resin in RTV 560 silicone. A significant number of data points for the RA59 are in the 65-psi failure range both when tested, and after exposure to 700 F. This is over two times the best shear and tensile values obtained with RV60 at this temperature. It is concluded that with a thorough understanding of the critical parameters involved, the higher values should be obtained consistently with the RA59. This is of particular significance if higher strength tiles were to be used in a hard-bonded configuration.

  19. Antibacterial Effect of All-in-one Self-etch Adhesives on Enterococcus faecalis

    PubMed Central

    Ebrahimi Chaharom, Mohammad Esmaeel; Ajami, Amir Ahmad; Abed Kahnamouei, Mehdi; Jafari Navimipour, Elmira; Tehranchi, Pardis; Zand, Vahid; Sadeghi, Mohammad Reza; Sohrabi, Aydin

    2014-01-01

    Background and aims. The aim of this study was to evaluate the antibacterial activity of one-step self-etch adhesives on Enterococcus faecalis on days 1, 7 and 14 with the use of modified direct contact test. Materials and methods. The modified directcontact test was used to evaluate the antibacterial effect of Adper Easy One, Bond Force, Clearfil S3 Bond, Futurabond M, G-Bond, iBond and OptiBond All-in-one adhesives on Enterococcus faecalis after aging the samples in phosphate-buffered saline for one, seven and fourteen days. Data were analyzed using one-way ANOVA and post hoc Tukey tests. Aging effect of each adhesive was evaluated by paired-sample test. In this study, P<0.05 was considered significant. Results. All the tested adhesives exhibited antibacterial activity after one day and had significant differences with the positive control group (P<0.05). After one week, OptiBond All-in-one, iBond and Futurabond M exhibited significant differences in bacterial growth from other groups (P<0.05). There were no significant differences between the groups in two weeks (P>0.05). Conclusion. iBond exhibited the highest antibacterial effect on E. faecalis after one week. Futurabond and OptiBond All-in-one exhibited antibacterial effects against E. faecalis for one week. PMID:25587384

  20. Effect of Self-adhesive Resin Cement and Tribochemical Treatment on Bond Strength to Zirconia

    PubMed Central

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Shinya, Akiyoshi

    2010-01-01

    Aim To evaluate the interactive effects of different self-adhesive resin cements and tribochemical treatment on bond strength to zirconia. Methodology The following self-adhesive resin cements for bonding two zirconia blocks were evaluated: Maxcem (MA), Smartcem (SM), Rely X Unicem Aplicap (UN), Breeze (BR), Biscem (BI), Set (SE), and Clearfil SA luting (CL). The specimens were grouped according to conditioning as follows: Group 1, polishing with 600 grit polishing paper; Group 2, silica coating with 110 µm Al2O3 particles which modified with silica; and, Group 3, tribochemical treatment - silica coating + silanization. Specimens were stored in distilled water at 37°C for 24 hours before testing shear bond strength. Results Silica coating and tribochemical treatment significantly increased the bond strength of the MA, UN, BR, BI, SE and CL to zirconia compared to #600 polishing. For both #600 polished and silica coating treatments, MDP-containing self-adhesive resin cement CL had the highest bond strengths to zirconia. Conclusion Applying silica coating and tribochemical treatment improved the bond strength of self-adhesive resin cement to zirconia, especially for CL. PMID:20690416

  1. Systems Biology Reveals Cigarette Smoke-Induced Concentration-Dependent Direct and Indirect Mechanisms That Promote Monocyte-Endothelial Cell Adhesion.

    PubMed

    Poussin, Carine; Laurent, Alexandra; Peitsch, Manuel C; Hoeng, Julia; De Leon, Hector

    2015-10-01

    Cigarette smoke (CS) affects the adhesion of monocytes to endothelial cells, a critical step in atherogenesis. Using an in vitro adhesion assay together with innovative computational systems biology approaches to analyze omics data, our study aimed at investigating CS-induced mechanisms by which monocyte-endothelial cell adhesion is promoted. Primary human coronary artery endothelial cells (HCAECs) were treated for 4 h with (1) conditioned media of human monocytic Mono Mac-6 (MM6) cells preincubated with low or high concentrations of aqueous CS extract (sbPBS) from reference cigarette 3R4F for 2 h (indirect treatment, I), (2) unconditioned media similarly prepared without MM6 cells (direct treatment, D), or (3) freshly generated sbPBS (fresh direct treatment, FD). sbPBS promoted MM6 cells-HCAECs adhesion following I and FD, but not D. In I, the effect was mediated at a low concentration through activation of vascular inflammation processes promoted in HCAECs by a paracrine effect of the soluble mediators secreted by sbPBS-treated MM6 cells. Tumor necrosis factor α (TNFα), a major inducer, was actually shed by unstable CS compound-activated TNFα-converting enzyme. In FD, the effect was triggered at a high concentration that also induced some toxicity. This effect was mediated through an yet unknown mechanism associated with a stress damage response promoted in HCAECs by unstable CS compounds present in freshly generated sbPBS, which had decayed in D unconditioned media. Aqueous CS extract directly and indirectly promotes monocytic cell-endothelial cell adhesion in vitro via distinct concentration-dependent mechanisms.

  2. Effects of the application techniques of self-adhesive resin cements on the interfacial integrity and bond strength of fiber posts to dentin

    PubMed Central

    Pedreira, Ana Paula Ribeiro do Vale; D'Alpino, Paulo Henrique Perlatti; Pereira, Patrícia Nóbrega Rodrigues; Chaves, Sasha Braun; Wang, Linda; Hilgert, Leandro; Garcia, Fernanda Cristina Pimentel

    2016-01-01

    ABSTRACT Objective: To evaluate the influence of an application technique of a glass-fiber post using self-adhesive resin cements on the push-out bond strength and the presence of bubbles in the root thirds. The cements were either applied according to the manufacturer's instruction or using a commercial delivering system (Centrix), at which the cement pastes were collected and applied after manipulation. Material and Methods: Self-adhesive resin cements (RelyX U200/3M ESPE-U200; Maxcem Elite/Kerr-MAX; Clearfil SA Cement/Kuraray-CSA) and a conventional cement (RelyX ARC/3M ESPE-ARC) were used to cement a post and applied either based on the manufacturer's instructions or using a Centrix syringe to deliver the cements directly onto the post of choice, or directly into canal. The roots were scanned with a micro-computed tomography (μCT) and then sectioned into nine 1-mm thick slices for a push-out bond strength test. The μCT images showed the percentage of bubbles in the root thirds (cervical, medium, and apical). Data were analyzed with three-way ANOVA/Tukey (α=0.05). Results: Triple interaction was not significant (p>0.05). The interaction “material” vs “root third” was not significant. A significant interaction was observed between “material” vs “application technique” (p<0.05). For ARC, U200, and MAX, significantly lower percentages of bubbles were observed when the Centrix syringe delivered the cements. Equivalent percentages of voids were observed for CSA, irrespective of the application technique (p>0.05). Significantly higher bond strength was observed when the self-adhesive resin cements were applied using the Centrix delivery system, in comparison with the manufacturer's instructions (p<0.05). Bond strength varied with the root third: cervical>medium>apical (p<0.05). No correlations were found between the bond strength and voids. Conclusions: Bond strength and voids are negatively influenced by the conventional application technique for

  3. Single macroscopic pillars as model system for bioinspired adhesives: influence of tip dimension, aspect ratio, and tilt angle.

    PubMed

    Micciché, Maurizio; Arzt, Eduard; Kroner, Elmar

    2014-05-28

    The goal of our study is to better understand the design parameters of bioinspired dry adhesives inspired by geckos. For this, we fabricated single macroscopic pillars of 400 μm diameter with different aspect ratios and different tip shapes (i.e., flat tips, spherical tips with different radii, and mushroom tips with different diameters). Tilt-angle-dependent adhesion measurements showed that although the tip shape of the pillars strongly influences the pull-off force, the pull-off strength is similar for flat and mushroom-shaped tips. We found no tilt-angle dependency of adhesion for spherical tip structures and, except for high tilt angle and low preload experiments, no tilt-angle effect for mushroom-tip pillars. For flat-tip pillars, we found a strong influence of tilt angle on adhesion, which decreased linearly with increasing aspect ratio. The experiments show that for the tested aspect ratios between 1 and 5, a linear decrease of tilt-angle dependency is found. The results of our studies will help to design bioinspired adhesives for application on smooth and rough surfaces.

  4. A New Two-Component Regulatory System Involved in Adhesion, Autolysis, and Extracellular Proteolytic Activity of Staphylococcus aureus

    PubMed Central

    Fournier, Bénédicte; Hooper, David C.

    2000-01-01

    A transposition mutant of Staphylococcus aureus was selected from the parent strain MT23142, a derivative of strain 8325. The site of transposition was near the 5′ terminus of the gene arlS. ArlS exhibits strong similarities with histidine protein kinases. Sequence analysis suggested that arlS forms an operon with upstream gene arlR. The predicted product of arlR is a member of the OmpR-PhoB family of response regulators. The arlS mutant formed a biofilm on a polystyrene surface unlike the parent strain and the complemented mutant. Biofilm formation was associated with increased primary adherence to polystyrene, whereas cellular adhesion was only slightly decreased. In addition, the arlS mutant exhibited increased autolysis and altered peptidoglycan hydrolase activity compared to the parental strain and to the complemented mutant. As it has been shown for coagulase-negative staphylococci that some autolysins are able to bind polymer surfaces, these data suggest that the two-component regulatory system ArlS-ArlR may control attachment to polymer surfaces by affecting secreted peptidoglycan hydrolase activity. Finally, the arlS mutant showed a dramatic decrease of extracellular proteolytic activity, including serine protease activity, in comparison to the wild-type strain and the complemented mutant, and cells grown in the presence of phenylmethylsulfonyl fluoride (a serine protease inhibitor) showed an increased autolysin activity. Since the locus arlR-arlS strikingly modifies extracellular proteolytic activity, this locus might also be involved in the virulence of S. aureus. PMID:10869073

  5. Development of phosphorylated adhesives

    NASA Technical Reports Server (NTRS)

    Bilow, N.; Giants, T. W.; Jenkins, R. K.; Campbell, P. L.

    1983-01-01

    The synthesis of epoxy prepolymers containing phosphorus was carried out in such a manner as to provide adhesives containing at least 5 percent of this element. The purpose of this was to impart fire retardant properties to the adhesive. The two epoxy derivatives, bis(4-glycidyl-oxyphenyl)phenylphosphine oxide and bis(4-glycidyl-2-methoxyphenyl)phenylphosphonate, and a curing agent, bis(3-aminophenyl)methylphosphine oxide, were used in conjunction with one another and along with conventional epoxy resins and curing agents to bond Tedlar and Polyphenylethersulfone films to Kerimid-glass syntactic foam-filled honeycomb structures. Elevated temperatures are required to cure the epoxy resins with the phosphorus-contaning diamine; however, when Tedlar is being bonded, lower curing temperatures must be used to avoid shrinkage and the concomitant formation of surface defects. Thus, the phosphorus-containing aromatic amine curing agent cannot be used alone, although it is possible to use it in conjunction with an aliphatic amine which would allow lower cure temperatures to be used. The experimental epoxy resins have not provided adhesive bonds quite as strong as those provided by Epon 828 when compared in peel tests, but the differences are not very significant. It should be noted, if optimum properties are to be realized. In any case the fire retardant characteristics of the neat resin systems obtained are quite pronounced, since in most cases the self-extinguishing properties are evident almost instantly when specimens are removed from a flame.

  6. Restoration interface microleakage using one total-etch and three self-etch adhesives.

    PubMed

    Deliperi, S; Bardwell, D N; Wegley, C

    2007-01-01

    This study evaluated the efficacy of a total-etch and three self-etch adhesives in reducing microleakage after three months water storage and thermocycling. Thirty freshly extracted caries-free human premolars and molars were used. Class V standardized preparations were performed on the facial and lingual surfaces, with the gingival margin placed 1 mm below the CEJ. The teeth were randomly divided into four groups; Group I: Xeno III one-step self-etch adhesive (Dentsply/Caulk), Group II: Prime & Bond NT total-etch adhesive (Dentsply/Caulk), Group III: i-Bond one-step self-etch adhesive (Heraeus Kulzer) and Group IV: Clearfil SE Bond two-step self-etch adhesive (Kuraray Medical). The teeth were restored using 2 mm increments of shade A2 resin composite (Esthet-X, Dentsply/Caulk). Each layer was cured using the Spectrum 800 curing light (Dentsply/Caulk) for 20 seconds at 600mW/cm2. The teeth were stored in distilled water for 90 days. Samples were thermocycled 500x between 5 degrees C and 55 degrees C with a dwell time of 30 seconds, then placed in a 0.5% methylene blue dye solution for 24 hours at 37 degrees C. Samples were sectioned longitudinally and evaluated for microleakage at the occlusal and gingival margins under a stereomicroscope at 20x magnification. Dye penetration was scored: 0 = no penetration; 1 = partial dye penetration along the occlusal or gingival wall; 2 = dye penetration along the occlusal or gingival wall; 3 = dye penetration to and along the axial wall. A Mann-Whitney test was used to demonstrate significantly more dye penetration in Group III than in the other groups at both the occlusal and gingival scores (p < 0.0001). When comparing the occlusal and gingival scores for each group, the Wilcoxon Rank test showed no significant difference in dye penetration for Xeno III (p > 0.05), Prime & Bond NT (p = 0.059) and I Bond (p = 0.083), and Clearfil SE Bond yielded more dye penetration at the occlusal than at the gingival wall (p = 0.001).

  7. Use of an air-fluid exchange system to promote graft adhesion during Descemet's stripping automated endothelial keratoplasty.

    PubMed

    Meisler, David M; Dupps, William J; Covert, Douglas J; Koenig, Steven B

    2007-05-01

    Dislocation of the graft is a well-recognized complication of Descemet's stripping automated endothelial keratoplasty (DSAEK). We describe a technique to promote adhesion of the graft during DSAEK using an anterior chamber air-fluid infusion and exchange for direct control of the pressure and medium used to tamponade the graft against the host stroma.

  8. Integrin-mediated adhesion complex

    PubMed Central

    Sebé-Pedrós, Arnau

    2010-01-01

    The integrin-mediated adhesion machinery is the primary cell-matrix adhesion mechanism in Metazoa. The integrin adhesion complex, which modulates important aspects of the cell physiology, is composed of integrins (alpha and beta subunits) and several scaffolding and signaling proteins. Integrins appeared to be absent in all non-metazoan eukaryotes so-far analyzed, including fungi, plants and choanoflagellates, the sister-group to Metazoa. Thus, integrins and, therefore, the integrin-mediated adhesion and signaling mechanism was considered a metazoan innovation. Recently, a broad comparative genomic analysis including new genome data from several unicellular organisms closely related to fungi and metazoans shattered previous views. The integrin adhesion and signaling complex is not specific to Metazoa, but rather it is present in apusozoans and holozoan protists. Thus, this important signaling and adhesion system predated the origin of Fungi and Metazoa, and was subsequently lost in fungi and choanoflagellates. This finding suggests that cooption played a more important role in the origin of Metazoa than previously believed. Here, we hypothesize that the integrin adhesome was ancestrally involved in signaling. PMID:21057645

  9. Adhesion and wear resistance of materials

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1986-01-01

    Recent studies into the nature of bonding at the interface between two solids in contact or a solid and deposited film have provided a better understanding of those properties important to the adhesive wear resistance of materials. Analytical and experimental progress are reviewed. For simple metal systems the adhesive bond forces are related to electronic wave function overlap. With metals in contact with nonmetals, molecular-orbital energy, and density of states, respectively can provide insight into adhesion and wear. Experimental results are presented which correlate adhesive forces measured between solids and the electronic surface structures. Orientation, surface reconstruction, surface segregation, adsorption are all shown to influence adhesive interfacial strength. The interrelationship between adhesion and the wear of the various materials as well as the life of coatings applied to substrates are discussed. Metallic systems addressed include simple metals and alloys and these materials in contact with themselves, both oxide and nonoxide ceramics, diamond, polymers, and inorganic coating compounds, h as diamondlike carbon.

  10. Understanding Marine Mussel Adhesion

    SciTech Connect

    H. G. Silverman; F. F. Roberto

    2007-12-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are waterimpervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion.

  11. Understanding Marine Mussel Adhesion

    PubMed Central

    Roberto, Francisco F.

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  12. Human climbing with efficiently scaled gecko-inspired dry adhesives.

    PubMed

    Hawkes, Elliot W; Eason, Eric V; Christensen, David L; Cutkosky, Mark R

    2015-01-06

    Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for synthetic materials, so can gecko adhesion systems provide a baseline for scaling efficiency. In the tokay gecko (Gekko gecko), a scaling power law has been reported relating the maximum shear stress σmax to the area A: σmax ∝ A(-1/4). We present a mechanical concept which improves upon the gecko's non-uniform load-sharing and results in a nearly even load distribution over multiple patches of gecko-inspired adhesive. We created a synthetic adhesion system incorporating this concept which shows efficient scaling across four orders of magnitude of area, yielding an improved scaling power law: σmax ∝ A(-1/50). Furthermore, we found that the synthetic adhesion system does not fail catastrophically when a simulated failure is induced on a portion of the adhesive. In a practical demonstration, the synthetic adhesion system enabled a 70 kg human to climb vertical glass with 140 cm(2) of adhesive per hand.

  13. A novel type 3 secretion system effector, YspI of Yersinia enterocolitica, induces cell paralysis by reducing total focal adhesion kinase.

    PubMed

    LeGrand, Karen; Matsumoto, Hiroyuki; Young, Glenn M

    2015-05-01

    Some of the world's most important diseases are caused by bacterial pathogens that deliver toxic effector proteins directly into eukaryotic cells using type III secretion systems. The myriad of pathological outcomes caused by these pathogens is determined, in part, by the manipulation of host cell physiology due to the specific activities of individual effectors among the unique suite each pathogen employs. YspI was found to be an effector, delivered by Yersinia enterocolitica Biovar 1B, that inhibits host cell motility. The action of YspI comes about through its specific interaction with focal adhesion kinase, FAK, which is a fulcrum of focal adhesion complexes for controlling cellular motility. The interaction was defined by a specific domain of YspI that bound to the FAK kinase domain. Further examination revealed that YspI-FAK interaction leads to a reduction of FAK steady-state levels without altering its phosphorylation state. This collection of observations and results showed YspI displays unique functionality by targeting the key regulator of focal adhesion complexes to inhibit cellular movement.

  14. Comparison of three work of adhesion measurements

    SciTech Connect

    Emerson, J.A.; O`Toole, E.; Zamora, D.; Poon, B.

    1998-02-01

    Practical work of adhesion measurements are being studied for several types of polymer/metal combinations in order to obtain a better understanding of the adhesive failure mechanisms for systems containing encapsulated and bonded components. The primary question is whether studies of model systems can be extended to systems of technological interest. The authors report on their first attempts to obtain the work of adhesion between a PDMS polymer and stainless steel. The work of adhesion measurements were made using three techniques -- contact angle, adhesive fracture energy at low deformation rates and JKR. Previous work by Whitesides` group show a good correlation between JKR and contact angle measurements for PDMS. Their initial work focused on duplicating the PDMS measurements of Chaudury. In addition, in this paper the authors extend the work of adhesion measurement to third technique -- interfacial failure energy. The ability to determine the reversible work of adhesion for practical adhesive joints allows understanding of several issues that control adhesion: surface preparation, nature of the interphase region, and bond durability.

  15. Effect of Storage Time, Thermocycling And Resin Coating on Durability of Dentin Bonding Systems

    PubMed Central

    Mousavinasab, Seyed-Mostafa; Farhadi, Azadeh; Shabanian, Mitra

    2009-01-01

    Background: Along with development of different dental adhesives, concerns about hydrolytic deg-radation of the adhesive components have arisen. The purpose of this study was to evaluate the in vitro influence of thermocycling, water storage and resin coating on the microshear bond strength of total etch and self etch adhesive systems to dentin. Methods: The superficial coronal dentin of eighty intact third molars were exposed and divided into 5 equal groups. Dental adhesives including Scotch Bond Multi Purpose (SBMP), Single Bond (SB), Clearfil SE Bond (CSE), Prompt L-Pop (PLP), and Prompt L-Pop plus Margin bond (PLPM) were applied according to the manufacturers’ instructions on prepared surfaces in the study groups, respectively. Then composite cylinders were bonded and specimens were divided into two subgroups. One subgroup was stored in water for 24 hours. The second subgroup was subjected to 3000 thermocycle shocks and then was stored in 37°C water for 3 months. Finally, all teeth were subjected to the microshear bond strength test. Data were analyzed using two-way ANOVA and Tukey HSD tests. One specimen similar to each subgroup was also prepared for SEM evaluation. Results: After one-day storage, the SBMP showed the highest bond strength followed by CSE, PLPM, SB and PLP. After three months storage, the highest bond strength was observed in SBMP followed by PLPM, CSE, SB, and PLP. Conclusion: SBMP showed the best bond strength while CSE represented acceptable bond durability. Resin coating on PLP improved bond strength and durability. PMID:21528027

  16. Effect of cleaning methods on bond strength of self-etching adhesive to dentin

    PubMed Central

    Bronzato, Juliana Delatorre; Cecchin, Doglas; Miyagaki, Daniela Cristina; de Almeida, José Flávio Affonso; Ferraz, Caio Cezar Randi

    2016-01-01

    Aim: The aim of this study was to investigate the influence of cleaning methods to remove zinc oxide-eugenol-based root canal sealer (Endomethasone) on the bond strength of the self-etching adhesive to dentin. Materials and Methods: Twenty crowns of bovine incisors were cut to expose the pulp chamber. A zinc oxide- and eugenol-based sealer was placed for 10 min in contact with the pulp chamber dentin. Specimens were divided into four groups according to the cleaning method of dentin used: G1, no root canal sealer (control); G2, 0.9% sodium chlorite (NaCl); G3, ethanol; and G4, followed by diamond drill. After cleaning, the teeth were restored with composite resin and Clearfil SE Bond. All specimens were sectioned to produce rectangular sticks and dentin/resin interface was submitted to microtensile bond testing. The mean bond strengths were analyzed using ANOVA/Tukey (α = 0.05). Results: G3 and G4 showed bond strengths similar to the G1 (P > 0.05). A significant decrease in the bond strength in the G2 was observed (P < 0.05). G1, G3, and G4, the predominant failure mode was the mixed type. The prevalence of adhesive failure mode was verified in the G2. Conclusion: The cleaning methods affected the bond strength of the self-etching adhesive to dentin differently. PMID:26957789

  17. Development and First Results of the Width-Tapered Beam Method for Adhesion Testing of Photovoltaic Material Systems

    SciTech Connect

    Bosco, Nick; Tracy, Jared; Dauskardt, Reinhold; Kurtz, Sarah

    2016-11-21

    A fracture mechanics based approach for quantifying adhesion at every interface within the PV module laminate is presented. The common requirements of monitoring crack length and specimen compliance are circumvented through development of a width-tapered cantilever beam method. This technique may be applied at both the module and coupon level to yield a similar, quantitative, measurement. Details of module and sample preparation are described and first results on field-exposed modules deployed for over 27 years presented.

  18. Effect of resin coating on adhesion and microleakage of computer-aided design/computer-aided manufacturing fabricated all-ceramic crowns after occlusal loading: a laboratory study.

    PubMed

    Kitayama, Shuzo; Pilecki, Peter; Nasser, Nasser A; Bravis, Theodora; Wilson, Ron F; Nikaido, Toru; Tagami, Junji; Watson, Timothy F; Foxton, Richard M

    2009-08-01

    This study investigated the effect of resin coating and occlusal loading on adhesion and microleakage of all-ceramic crowns. Molars were prepared for an all-ceramic crown and were divided into two groups: non-coated (control) and resin-coated with Clearfil Tri-S Bond. Crowns were fabricated using CEREC 3 and cemented using Clearfil Esthetic Cement. After 24 h of storage in water, the restored teeth in each group were divided into two subgroups: unloaded, or loaded while stored in water. Mechanical loading was achieved with an axial force of 80 N at 2.5 cycles s(-1) for 250,000 cycles. After immersion in Rhodamine B, the specimens were sectioned and processed for microleakage evaluation by confocal microscopy, which was followed by further sectioning for microtensile bond testing. Loading had no significant effect on microleakage in either the resin-coated or non-resin-coated groups. Resin coating did not reduce the microleakage at the dentine interface but increased the microleakage at the enamel interface. All the beams fractured during slicing when non-coated and loaded. The bond strengths of non-coated and unloaded, resin-coated and unloaded, and resin-coated and loaded groups were 15.82 +/- 4.22, 15.17 +/- 5.24, and 12.97 +/- 5.82 MPa, respectively. Resin coating with Clearfil Tri-S Bond improved the bonding of resin cement to dentine for loaded specimens. However, it was not effective in reducing the microleakage, regardless of whether it was loaded or unloaded.

  19. In vitro bonding effectiveness of self-etch adhesives with different application techniques: A microleakage and scanning electron microscopic study

    PubMed Central

    Nagpal, Rajni; Manuja, Naveen; Tyagi, Shashi Prabha; Singh, Udai Pratap

    2011-01-01

    Aim: To evaluate and compare the microleakage of self-etch adhesives placed under different clinical techniques and to analyze the resin–dentin interfacial ultrastructure under scanning electron microscope (SEM). Materials and Methods: 100 extracted human premolars were divided into two groups for different adhesives (Clearfil S3 and Xeno III). Class V cavities were prepared. Each group was further divided into four subgroups (n = 10) according to the placement technique of the adhesive, i.e. according to manufacturer's directions (Group 1), with phosphoric acid etching of enamel margins (Group 2), with hydrophobic resin coat application (Group 3), with techniques of both groups 2 and 3 (Group 4). The cavities were restored with composite. Ten samples from each group were subjected to microleakage study. Five samples each of both the adhesives from groups 1 and 3 were used for SEM examination of the micromorphology of the resin–dentin interface. Results: At enamel margins for both the adhesives tested, groups 2 and 4 showed significantly lesser leakage than groups 1 and 3. At dentin margins, groups 3 and 4 depicted significantly reduced leakage than groups 1 and 2 for Xeno III. SEM observation of the resin–dentin interfaces revealed generalized gap and poor resin tag formation in both the adhesives. Xeno III showed better interfacial adaptation when additional hydrophobic resin coat was applied. Conclusions: In enamel, prior phosphoric acid etching reduces microleakage of self-etch adhesives, while in dentin, hydrophobic resin coating over one-step self-etch adhesives decreases the microleakage. PMID:22025829

  20. Functionally Graded Adhesives

    DTIC Science & Technology

    2009-11-01

    ASTM 907-05. Standard Terminology of Adhesives. West Conshohocken, PA, May 2005. 4. 3M Scotch-Grip Nitrile High Performance Rubber & Gasket Adhesive...distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The goal of this project was to increase rubber to metal adhesion in Army materials using...1 Figure 2. Steel and rubber

  1. PH dependent adhesive peptides

    SciTech Connect

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  2. Design and fabrication of gecko-inspired adhesives.

    PubMed

    Jin, Kejia; Tian, Yu; Erickson, Jeffrey S; Puthoff, Jonathan; Autumn, Kellar; Pesika, Noshir S

    2012-04-03

    Recently, there has been significant interest in developing dry adhesives mimicking the gecko adhesive system, which offers several advantages compared to conventional pressure-sensitive adhesives. Specifically, gecko adhesive pads have anisotropic adhesion properties; the adhesive pads (spatulae) stick strongly when sheared in one direction but are non-adherent when sheared in the opposite direction. This anisotropy property is attributed to the complex topography of the array of fine tilted and curved columnar structures (setae) that bear the spatulae. In this study, we present an easy, scalable method, relying on conventional and unconventional techniques, to incorporate tilt in the fabrication of synthetic polymer-based dry adhesives mimicking the gecko adhesive system, which provides anisotropic adhesion properties. We measured the anisotropic adhesion and friction properties of samples with various tilt angles to test the validity of a nanoscale tape-peeling model of spatular function. Consistent with the peel zone model, samples with lower tilt angles yielded larger adhesion forces. The tribological properties of the synthetic arrays were highly anisotropic, reminiscent of the frictional adhesion behavior of gecko setal arrays. When a 60° tilt sample was actuated in the gripping direction, a static adhesion strength of ~1.4 N/cm(2) and a static friction strength of ~5.4 N/cm(2) were obtained. In contrast, when the dry adhesive was actuated in the releasing direction, we measured an initial repulsive normal force and negligible friction.

  3. Modular glass chip system measuring the electric activity and adhesion of neuronal cells--application and drug testing with sodium valproic acid.

    PubMed

    Koester, Philipp Julian; Buehler, Sebastian Moritz; Stubbe, Marco; Tautorat, Carsten; Niendorf, Mathias; Baumann, Werner; Gimsa, Jan

    2010-06-21

    We developed a modular neurochip system by combining a small (16x16 mm2) glass neurochip (GNC) with a homemade head stage and commercial data acquisition hardware and software. The system is designed for the detection of the electric activity of cultivated nerve or muscle cells by a 52-microelectrode array (MEA). In parallel, cell adhesion can be registered from the electric impedance of an interdigitated electrode structure (IDES). The GNC was tested with various cell lines and primary cells. It is fully autoclavable and re-useable. Murine embryonic primary cells were used as a model system to correlate the electric activity and adhesion of neuronal networks in a drug test with sodium valproic acid. The test showed the advantage of the parallel IDES and MEA measurements, i.e. the parallel detection of cytotoxic and neurotoxic effects. Toxic exposure of the cells during neuronal network formation allows for the characterization of developmental neurotoxic effects even at drug concentrations below the EC50-value for acute neurotoxic effects. At high drug concentrations, the degree of cytotoxic damage can still be assessed from the IDES data in the event that no electric activity develops. The GNC provides optimal cell culture conditions for up to months in combination with full microscopic observability. The 4'' glass wafer technology allows for a high precision of the GNC structures and an economic production of our new system that can be applied in general and developmental toxicity tests as well as in the search for neuro-active compounds.

  4. Mini-review: barnacle adhesives and adhesion.

    PubMed

    Kamino, Kei

    2013-01-01

    Barnacles are intriguing, not only with respect to their importance as fouling organisms, but also in terms of the mechanism of underwater adhesion, which provides a platform for biomimetic and bioinspired research. These aspects have prompted questions regarding how adult barnacles attach to surfaces under water. The multidisciplinary and interdisciplinary nature of the studies makes an overview covering all aspects challenging. This mini-review, therefore, attempts to bring together aspects of the adhesion of adult barnacles by looking at the achievements of research focused on both fouling and adhesion. Biological and biochemical studies, which have been motivated mainly by understanding the nature of the adhesion, indicate that the molecular characteristics of barnacle adhesive are unique. However, it is apparent from recent advances in molecular techniques that much remains undiscovered regarding the complex event of underwater attachment. Barnacles attached to silicone-based elastomeric coatings have been studied widely, particularly with respect to fouling-release technology. The fact that barnacles fail to attach tenaciously to silicone coatings, combined with the fact that the mode of attachment to these substrata is different to that for most other materials, indicates that knowledge about the natural mechanism of barnacle attachment is still incomplete. Further research on barnacles will enable a more comprehensive understanding of both the process of attachment and the adhesives used. Results from such studies will have a strong impact on technology aimed at fouling prevention as well as adhesion science and engineering.

  5. Polyurethane adhesive with improved high temperature properties

    NASA Technical Reports Server (NTRS)

    Stuckey, J. M.

    1977-01-01

    A polyurethane resin with paste activator, capable of providing useful bond strengths over the temperature range of -184 C to 149 C, is described. The adhesive system has a pot life of over one hour. Tensile shear strength ratings are given for various adhesive formulations.

  6. Capillarity-based switchable adhesion.

    PubMed

    Vogel, Michael J; Steen, Paul H

    2010-02-23

    Drawing inspiration from the adhesion abilities of a leaf beetle found in nature, we have engineered a switchable adhesion device. The device combines two concepts: The surface tension force from a large number of small liquid bridges can be significant (capillarity-based adhesion) and these contacts can be quickly made or broken with electronic control (switchable). The device grabs or releases a substrate in a fraction of a second via a low-voltage pulse that drives electroosmotic flow. Energy consumption is minimal because both the grabbed and released states are stable equilibria that persist with no energy added to the system. Notably, the device maintains the integrity of an array of hundreds to thousands of distinct interfaces during active reconfiguration from droplets to bridges and back, despite the natural tendency of the liquid toward coalescence. We demonstrate the scaling of adhesion strength with the inverse of liquid contact size. This suggests that strengths approaching those of permanent bonding adhesives are possible as feature size is scaled down. In addition, controllability is fast and efficient because the attachment time and required voltage also scale down favorably. The device features compact size, no solid moving parts, and is made of common materials.

  7. [Adhesion molecules and diabetes mellitus].

    PubMed

    Urso, C; Hopps, E; Caimi, G

    2010-01-01

    Adhesion molecules play a significant role in leukocyte migration across the endothelium and are also involved in regulating immune system. It is shown that diabetic patients have an increase of soluble adhesion molecules (sICAM-1, sICAM-2, sVCAM-1, sE-selectin, sL-selectin, sP-selectin) considered an integral part of inflammatory state. This inflammation is responsible for the increased cardiovascular risk of these patients. There is a close link between hyperglycemia, oxidative stress, coagulopathy and inflammation and between these factors and the vascular damage. Various studies have showed the potential role of adhesion molecules in the pathogenesis of diabetic vasculopathy. They promote leukocyte recruitment, which is one of the initial steps in the genesis of atherosclerotic plaque. Adhesion molecules are also involved in the pathogenesis of diabetes mellitus type 1; sICAM-1 would have a particular immunomodulatory role in the process of destroying beta-cells and could be used as a subclinical marker of insulitis. Plasma levels of soluble adhesion molecules correlate with hyperglycemia, insulin resistance, dyslipidemia and obesity; they are associated with the development of nephropathy, retinopathy, myocardial infarction, stroke and obliterant peripheral arterial disease in diabetic type 1 and 2. Given the role of these molecules in endothelial dysfunction genesis and tissue damage associated with diabetes, they could constitute a therapeutic target for the prevention of genesis and progression of chronic complications of diabetic disease.

  8. Flexible backbone aromatic polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St. Clair, Terry L.

    1989-01-01

    Continuing research at Langley Research Center on the synthesis and development of new inexpensive flexible aromatic polyimides as adhesives has resulted in a material identified as LARC-F-SO2 with similarities to polyimidesulfone, PISO2, and other flexible backbone polyimides recently reported by Progar and St. Clair. Also prepared and evaluated was an endcapped version of PISO2. These two polymers were compared with LARC-TPI and LARC-STPI, polyimides research in our laboratory and reported in the literature. The adhesive evaluation, primarily based on lap shear strength (LSS) tests at RT, 177 C and 204 C, involved preparing adhesive tapes, conducting bonding studies and exposing lap shear specimens to 204 C air for up to 1000 hrs and to a 72-hour water boil. The type of adhesive failure as well as the Tg was determined for the fractured specimens. The results indicate that LARC-TPI provides the highest LSSs. LARC-F-SO2, LARC-TPI and LARC-STPI all retain their strengths after thermal exposure for 1000 hrs and PISO2 retains greater than 80 percent of its control strengths. After a 72-hr water boil exposure, most of the four adhesive systems showed reduced strengths for all test temperatures although still retaining a high percentage of their original strength (greater than 60 percent) except for one case. The predominant failure type was cohesive with no significant change in the Tgs.

  9. Flexible backbone aromatic polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St.clair, Terry L.

    1988-01-01

    Continuing research at Langley Research Center on the synthesis and development of new inexpensive flexible aromatic polyimides as adhesives has resulted in a material identified as LARC-F-SO2 with similarities to polyimidesulfone, PISO2, and other flexible backbone polyimides recently reported by Progar and St. Clair. Also prepared and evaluated was an endcapped version of PISO2. These two polymers were compared with LARC-TPI and LARC-STPI, polyimides research in our laboratory and reported in the literature. The adhesive evaluation, primarily based on lap shear strength (LSS) tests at RT, 177 C and 204 C, involved preparing adhesive tapes, conducting bonding studies and exposing lap shear specimens to 204 C air for up to 1000 hrs and to a 72-hour water boil. The type of adhesive failure as well as the Tg was determined for the fractured specimens. The results indicate that LARC-TPI provides the highest LSSs. LARC-F-SO2, LARC-TPI and LARC-STPI all retain their strengths after thermal exposure for 1000 hrs and PISO2 retains greater than 80 percent of its control strengths. After a 72-hr water boil exposure, most of the four adhesive systems showed reduced strengths for all test temperatures although still retaining a high percentage of their original strength (greater than 60 percent) except for one case. The predominant failure type was cohesive with no significant change in the Tgs.

  10. Marginal behaviour of self-etch adhesive/composite and combined amalgam-composite restorations.

    PubMed

    Kournetas, Nikos; Kakaboura, Afrodite; Giftopoulos, Dimitrios; Chakmachi, Magdad; Rahiotis, Christos; Geis-Gerstorfer, J

    2010-06-01

    The aim of this study was to compare the marginal and internal adaptation in self-etching adhesive (SEA)/composite restorations with combined amalgam-resin-based composite restorations in the proximal box with and without bonding agent beneath amalgam both before and after load-cycling. Class II restorations, were manufactured as following a) Bonding agent (Clearfil Liner Bond 2V, Kuraray) beneath amalgam (Tytin, SDS Kerr) and resin-based composite (Clearfil APX, Kuraray) with SEA, b) Amalgam without bonding agent and resin-based composite with SEA and c) Resin-based composite with SEA. Each group divided into two equal subgroups (n=8). Marginal and internal adaptation of first subgroup evaluated after 7-day water storage and of the second after load-cycling in chewing simulator for 1.2 x 10(6) cycles. Marginal and internal adaptation at cervical and amalgam-composite sites evaluated by videomicroscope and ranked as "excellent"/"non-excellent". Slices of restorations examined under optical microscope to determine the quality of bonding layer. Defects in cervical adaptation observed in the three restorative techniques examined prior loading. Amalgam-composite combination in proximal surface provided comparable marginal and internal adaptation results at cervical wall, to self-etching-composite combination. Portion (25-37.5%) of amalgam-resin-based composite interfaces in proximal box presented no perfect sealing. The application of bonding agent beneath amalgam resulted in relatively inferior cervical adaptation. Loading resulted in fewer excellent restorations in all three restorative techniques but not in a statistically significant level.

  11. Effect of green tea extract on bonding durability of an etch-and-rinse adhesive system to caries-affected dentin

    PubMed Central

    CARVALHO, Carolina; FERNANDES, Fernando Pelegrim; FREITAS, Valeria da Penha; FRANÇA, Fabiana Mantovani Gomes; BASTING, Roberta Tarkany; TURSSI, Cecilia Pedroso; AMARAL, Flávia Lucisano Botelho

    2016-01-01

    ABSTRACT Objective Green tea extract has been advocated as a matrix metalloproteinase (MMP) inhibitor; however, its effect on bond durability to caries-affected dentin has never been reported. Thus, the aim of this in vitro study was to evaluate the effect of two MMP inhibitors (2% chlorhexidine and 2% green tea extract), applied after acid etching, on bond durability of an etch-and-rinse adhesive system to caries-affected dentin. Material and Methods Occlusal enamel was removed from third molars to expose the dentin surface, and the molars were submitted to a caries induction protocol for 15 days. After removal of infected dentin, specimens were conditioned with 37% phosphoric acid (15 seconds) and randomly divided into three groups, according to the type of dentin pretreatment (n=10): NT: no treatment; GT: 2% green tea extract; CLX: 2% chlorhexidine. The etch-and-rinse adhesive system (Adper™ Single Bond 2, 3M ESPE, St. Paul, MN, USA) was applied according to the manufacturer's instructions, and composite resin restorations were built on the dentin. After 24 hours, at 37°C, the resin-tooth blocks were sectioned perpendicularly to the adhesive interface in the form of sticks (0.8 mm2 of adhesive area) and randomly subdivided into two groups according to when they were to be submitted to microtensile bond strength (μTBS) testing: immediately or 6 months after storage in distilled water. Data were reported in MPa and submitted to two-way ANOVA for completely randomized blocks, followed by Tukey’s test (α=0.05). Results After 24 hours, there was no significant difference in the μTBS of the groups. After 6 months, the GT group had significantly higher μTBS values. Conclusion It was concluded that the application of 2% green tea extract was able to increase bond durability of the etch-and-rinse system to dentin. Neither the application of chlorhexidine nor non-treatment (NT - control) had any effect on bond strength after water storage. PMID:27383701

  12. Correlation between wetting, adhesion and adsorption in the polymer-aqueous solutions of ternary surfactant mixtures-air systems

    NASA Astrophysics Data System (ADS)

    Szymczyk, Katarzyna; Zdziennicka, Anna; Krawczyk, Joanna; Jańczuk, Bronisław

    2014-01-01

    The correlation between the wettability of polymers and adsorption of ternary mixtures including CTAB, TX-100 and TX-114 at the polymer-aqueous solution interface as well as the adhesion of aqueous solution of these mixtures to apolar polytetrafluoroethylene (PTFE), monopolar polymethyl methacrylate (PMMA) and nylon 6 was considered on the basis of the contact angle measurements and the literature data of the solutions surface tension. From these considerations it appeared that the efficiency and effectiveness of the adsorption at the PTFE-water interface are comparable to those at the water-air one, but for the PMMA-water and nylon 6-water interfaces they are lower than those for the water-air one for a given series of solutions. The efficiency and effectiveness are reflected in the composition of the mixed monolayer at the polymer-solution interface which even for the PTFE-solution interface is somewhat different from the water-air interface. The properties of the mixed monolayer at these interfaces influence the critical surface tension of polymer wetting which for PTFE is somewhat higher but for PMMA and nylon 6 considerably lower than their surface tension. From these considerations it also appeared that the work of adhesion of aqueous solutions of ternary mixtures of surfactants to the PTFE surface does not depend on the composition and concentration of solution contrary to PMMA and nylon 6. The adhesion work of these solutions to the PMMA and nylon 6 surface can be determined on the basis of van Oss et al. and Neumann et al. equations.

  13. Structure of a new nervous system glycoprotein, Nr-CAM, and its relationship to subgroups of neural cell adhesion molecules

    PubMed Central

    1991-01-01

    We have identified and characterized a new glycoprotein in the chicken nervous system using immunological and molecular biological methods and we have examined its tissue distribution. Analysis revealed that this protein is very similar in structure to the chicken neuron-glia cell adhesion molecule, Ng-CAM, and to mouse L1. cDNA clones encompassing the entire coding sequence of this Ng-CAM related molecule, called Nr- CAM, have been isolated and sequenced. A glycoprotein containing one major component of Mr 145,000 on SDS-PAGE was purified from brain by lentil lectin affinity chromatography and FPLC, and its amino-terminal sequence was identical to that predicted from the Nr-CAM cDNA. The complete cDNA sequence encodes six Ig-like domains, five fibronectin type III repeats, a predicted transmembrane domain, and a short cytoplasmic domain. On Northern blots, nucleic acid probes for Nr-CAM recognized one major RNA species of approximately 7 kb and much lesser amounts of larger RNAs. Most of the same probes hybridized to single bands on genomic Southern blots, suggesting that Nr-CAM is encoded by a single gene that may be alternatively processed to yield several mRNAs. In support of this notion, two Nr-CAM cDNA clones had a 57-bp sequence located between the second and third Ig-like domains that was not found in two other Nr-CAM cDNA clones, and two other clones were isolated that lacked the 279-bp segment encoding the fifth fibronectin-like type III repeat. Antibodies against the purified protein and synthetic peptides in Nr-CAM both recognized a predominant Mr 145,000 species and a much less prevalent species of Mr 170,000 in neural tissues. Levels of Nr-CAM expression increased in the brain until approximately embryonic day (E) 12, followed by slightly lower levels of expression at E18 and after hatching. Immunofluorescent staining with anti-Nr-CAM antibodies showed that most neurons in the retina were positive at E7 and the pattern of expression became restricted

  14. High temperature adhesive silicone foam composition, foam generating system and method of generating foam. [For access denial

    DOEpatents

    Mead, J.W.; Montoya, O.J.; Rand, P.B.; Willan, V.O.

    1983-12-21

    Access to a space is impeded by generation of a sticky foam from a silicone polymer and a low boiling solvent such as a halogenated hydrocarbon. In a preferred aspect, the formulation is polydimethylsiloxane gel mixed with F502 Freon as a solvent and blowing agent, and pressurized with CO/sub 2/ in a vessel to about 250 PSI, whereby when the vessel is opened, a sticky and solvent resistant foam is deployed. The foam is deployable, over a wide range of temperatures, adhering to wet surfaces as well as dry, is stable over long periods of time and does not propagate flame or lose adhesive properties during an externally supported burn.

  15. Thermal Characterization of Epoxy Adhesive by Hotfire Testing

    NASA Technical Reports Server (NTRS)

    Spomer, Ken A.; Haddock, M. Reed; McCool, Alex (Technical Monitor)

    2001-01-01

    This paper describes subscale solid-rocket motor hot-fire testing of epoxy adhesives in flame surface bondlines to evaluate heat-affected depth, char depth and ablation rate. Hot-fire testing is part of an adhesive down-selection program on the Space Shuttle Solid Rocket Motor Nozzle to provide additional confidence in the down-selected adhesives. The current nozzle structural adhesive bond system is being replaced due to obsolescence. Prior to hot-fire testing, adhesives were tested for chemical, physical and mechanical properties, which resulted in the selection of two potential replacement adhesives, Resin Technology Group's TIGA 321 and 3M's EC2615XLW. Hot-fire testing consisted of four forty-pound charge (FPC) motors fabricated in configurations that would allow side-by-side comparison testing of the candidate replacement adhesives with the current RSRM adhesives. Results of the FPC motor testing show that: 1) the phenolic char depths on radial bondlines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used, 2) the replacement candidate adhesive char depths are equivalent to the char depths of the current adhesives, 3) the heat-affected depths of the candidate and current adhesives are equivalent, and 4) the ablation rates for both replacement adhesives were equivalent to the current adhesives.

  16. Synthetic Polypeptide Mimics of Marine Adhesives.

    PubMed

    Yu; Deming

    1998-07-28

    Water soluble copolypeptides containing l-dihydroxyphenylalanine (DOPA) and l-lysine were prepared by ring-opening polymerization of alpha-amino acid N-carboxyanhydride (NCA) monomers. We have prepared a range of different copolymers to probe the effects of functional group composition on adhesive and cross-linking behavior. Aqueous solutions of these copolymers, when mixed with a suitable oxidizing agent (e.g., O2, mushroom tyrosinase, Fe3+, H2O2, or IO4-), formed cross-linked networks that were found to form moisture-resistant adhesive bonds to a variety of substrates (e.g., aluminum, steel, glass, and plastics). It was found that successful adhesive formation was dependent on oxidation conditions, with chemical oxidants giving the best results. Optimized systems were found to form adhesive bonds that rival in strength those formed by natural marine adhesive proteins. Our synthetic systems are readily prepared in large quantities and require no enzymes or other biological components.

  17. Verticillium transcription activator of adhesion Vta2 suppresses microsclerotia formation and is required for systemic infection of plant roots.

    PubMed

    Tran, Van-Tuan; Braus-Stromeyer, Susanna A; Kusch, Harald; Reusche, Michael; Kaever, Alexander; Kühn, Anika; Valerius, Oliver; Landesfeind, Manuel; Aßhauer, Kathrin; Tech, Maike; Hoff, Katharina; Pena-Centeno, Tonatiuh; Stanke, Mario; Lipka, Volker; Braus, Gerhard H

    2014-04-01

    Six transcription regulatory genes of the Verticillium plant pathogen, which reprogrammed nonadherent budding yeasts for adhesion, were isolated by a genetic screen to identify control elements for early plant infection. Verticillium transcription activator of adhesion Vta2 is highly conserved in filamentous fungi but not present in yeasts. The Magnaporthe grisea ortholog conidiation regulator Con7 controls the formation of appressoria which are absent in Verticillium species. Vta2 was analyzed by using genetics, cell biology, transcriptomics, secretome proteomics and plant pathogenicity assays. Nuclear Vta2 activates the expression of the adhesin-encoding yeast flocculin genes FLO1 and FLO11. Vta2 is required for fungal growth of Verticillium where it is a positive regulator of conidiation. Vta2 is mandatory for accurate timing and suppression of microsclerotia as resting structures. Vta2 controls expression of 270 transcripts, including 10 putative genes for adhesins and 57 for secreted proteins. Vta2 controls the level of 125 secreted proteins, including putative adhesins or effector molecules and a secreted catalase-peroxidase. Vta2 is a major regulator of fungal pathogenesis, and controls host-plant root infection and H2 O2 detoxification. Verticillium impaired in Vta2 is unable to colonize plants and induce disease symptoms. Vta2 represents an interesting target for controlling the growth and development of these vascular pathogens.

  18. Adhesion of Antireflective Coatings in Multijunction Photovoltaics: Preprint

    SciTech Connect

    Brock, Ryan; Dauskardt, Reinhold H.; Miller, David C.

    2016-06-16

    The development of a new composite dual cantilever beam (cDCB) thin-film adhesion testing method is reported, which allows the measurement of adhesion on the fragile thin substrates used in multijunction photovoltaics. We address the adhesion of several antireflective coating systems on multijunction cells. By varying interface chemistry and morphology, we demonstrate the ensuing effects on adhesion and help to develop an understanding of how high adhesion can be achieved, as adhesion values ranging from 0.5 J/m2 to 10 J/m2 were measured. Damp Heat (85 degrees C/85% RH) was used to invoke degradation of interfacial adhesion. We show that even with germanium substrates that fracture easily, quantitative measurements of adhesion can still be made at high test yield. The cDCB test is discussed as an important new methodology, which can be broadly applied to any system that makes use of thin, brittle, or otherwise fragile substrates.

  19. Biodegradable beta-Tri-Calciumphosphate/hydroxyethyl methacrylate enhanced three component bone adhesive demonstrates biocompatibility without evidence of systemic toxicity in a rabbit model.

    PubMed

    Bauer, Natali B; Brinke, Nina; Heiss, Christian; Skorupa, Agnes B; Peters, Fabian; Kraus, Ralf; Schnettler, Reinhard; Moritz, Andreas

    2009-08-01

    Bone gluing is an attractive surgical technique; however, its use in patients is hampered by a variety of side effects. Therefore, it was the aim of this ethically approved study to evaluate a novel biodegradable beta-Tri-Calciumphosphate (beta-TCP, Cerasorb)-enhanced bone adhesive regarding its toxicity and biocompatibility in a rabbit model. Fifty healthy New Zealand White rabbits were assigned in the study (n = 21) and sham-operated control group (n = 29). In the study group, a cylindrical part (4.6 x 10.0 mm) of the proximal tibia and distal femur was removed, reimplanted, and bone adhesive was applied. Blinded physical examination and sampling for hematology, clinical chemistry, and acute phase proteins (haptoglobin, C-reactive protein (CRP)) was performed before surgery and after 12, 24, 48, 72, 240, and 504 h. Significant findings of the physical examination included a slightly higher grading of warmth (p = 0.0019) and pain (p < 0.0001) of the wound 240 h after surgery in the study group. No significant differences between albumin, haptoglobin, CRP, and urea concentrations in both groups were evident, whereas the study group demonstrated significantly lower leukocyte count, total protein, and globulin concentrations (p < 0.0001). As expected, both groups showed a marked transient increase in muscle enzymes (Creatine Kinase and Aspartate Aminotransferase) following the surgery (p < 0.0001). Twelve to 24 h after surgery, a significant decrease in ionized calcium from 1.38 +/- 0.12 mmol/L to 1.06 +/- 0.13 mmol/L was noted in the study group (p < 0.0001). The results clearly indicated that the novel beta-TCP-enhanced bone adhesive showed good biocompatibility without significant evidence of acute or subacute local or systemic toxicity.

  20. Effect of Ethylene diamine tetra acetic acid and sodium hypochlorite solution conditioning on microtensile bond strength of one-step self-etch adhesives

    PubMed Central

    Kasraei, Shahin; Azarsina, Mohadese; Khamverdi, Zahra

    2013-01-01

    Background: Attempts to improve bond strength of self-etch adhesives can enhance the durability of composite restorations. Aims: The aim of the present study was to evaluate the effect of collagen and smear layer removal with sodium hypochlorite solution (NaOCl) and EDTA on micro-tensile bond strength (μTBS) of self-etch adhesives to dentin. Settings and Design: It was an in-vitro study. Materials and Methods: Seventy-two teeth were divided into eight groups and their crowns were ground perpendicular to their long axis to expose dentin. The teeth were polished with silicon-carbide papers. The groups were treated as follows: No conditioning, 0.5-M EDTA conditioning, 2.5% NaOCl conditioning, NaOCl + EDTA conditioning. The surfaces were rinsed and blot-dried. Clearfil S3 and I-Bond were applied according to manufacturers’ instructions and restored with Z100 composite. After 500 cycles of thermo-cycling between 5°C and 55°C, the samples were sectioned and tested for μTBS. Statistical Analysis: Data were analyzed by two-way ANOVA and Tukey-HSD test. Results: The highest μTBS was recorded with Clearfil S3 + NaOCl + EDTA, and the lowest was recorded with I-Bond without conditioning. μTBS in EDTA-and EDTA + NaOCl-treated groups was significantly higher than the control and NaOCl-conditioned groups. Conclusions: Application of EDTA or EDTA + NaOCl before one-step self-etch adhesives increased μTBS. PMID:23833459

  1. Desmosomal adhesion in vivo.

    PubMed

    Berika, Mohamed; Garrod, David

    2014-02-01

    Desmosomes are intercellular junctions that provide strong adhesion or hyper-adhesion in tissues. Here, we discuss the molecular and structural basis of this with particular reference to the desmosomal cadherins (DCs), their isoforms and evolution. We also assess the role of DCs as regulators of epithelial differentiation. New data on the role of desmosomes in development and human disease, especially wound healing and pemphigus, are briefly discussed, and the importance of regulation of the adhesiveness of desmosomes in tissue dynamics is considered.

  2. Reversible Thermoset Adhesives

    NASA Technical Reports Server (NTRS)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  3. Adhesion at metal interfaces

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Ferrante, John; Smith, John R.

    1991-01-01

    A basic adhesion process is defined, the theory of the properties influencing metallic adhesion is outlined, and theoretical approaches to the interface problem are presented, with emphasis on first-principle calculations as well as jellium-model calculations. The computation of the energies of adhesion as a function of the interfacial separation is performed; fully three-dimensional calculations are presented, and universality in the shapes of the binding energy curves is considered. An embedded-atom method and equivalent-crystal theory are covered in the framework of issues involved in practical adhesion.

  4. Adhesives, silver amalgam.

    PubMed

    1995-09-01

    The most recent advancement in silver amalgam is use of resin formulations to bond metal to tooth both chemically &/or physically, Since, historically, amalgam has been used successfully without adhesion to tooth, obvious clinical question is: Why is bonding now desirable? Two major clinical reasons to bond are: (1) Adhesive can increase fracture resistance of amalgam restored teeth & decrease cusp fractures; & (2) Seal provided by adhesive can greatly decrease, & often eliminate post-operative sensitivity. Following report summarizes CRA laboratory study of shear bond strength & sealing capability of 23 commercial adhesives used to bond 2 types of silver amalgam to tooth structure.

  5. A randomized clinical trial evaluating the success rate of ethanol wet bonding technique and two adhesives

    PubMed Central

    Mortazavi, Vajihesadat; Samimi, Pouran; Rafizadeh, Mojgan; Kazemi, Shantia

    2012-01-01

    Background: Composite resin restorations may have a short lifespan due to the degradation of resin–dentin interface. Ethanol wet bonding technique may extend the longevity of resin–dentin bond. The purpose of this one year randomized clinical trial was to compare clinical performance of two adhesives with ethanol wet bonding technique. Materials and Methods: This randomized clinical trial was performed on 36 non-carious cervical lesions in 12 patients restored with composite resin using one of the following approaches: 1. OptiBond FL (Kerr, USA); 2. Clearfil SE Bond (Kuraray, Japan) with enamel etching and 3. Ethanol wet bonding technique with the part of adhesive of OptiBond FL. The clinical success rate was assessed after 24 h, 6, 9 and 12 months according to the United States Public Health Service (USPHS) criteria: Marginal discoloration, marginal defect, retention rate, caries occurrence, and postoperative sensitivity. The tooth vitality was also assessed. Results: The retention rate was 100% at baseline and at 6 months follow up for all types of bonding protocols and was 91.67% at 9 and 12 months follow up for ethanol wet bonding group. None of the restorations in three groups showed marginal defects, marginal discoloration or caries occurrence and were vital after 12 months. There was no statistically significant difference between three groups after 12 months follow up (p value = 0.358). Conclusions: Composite restorations placed using ethanol wet bonding technique presented equal performance to the other groups. PMID:23559924

  6. Acetylene-terminated polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Hanky, A. O.

    1983-01-01

    The nadic-encapped LARC-13 addition polyimide exhibits excellent flow, is easy to process, and can be utilized for short terms at temperatures up to 593 C. It retains good lap shear strength as an adhesive for titanium after aging in air up to 125 hours at 316 C; but lap shear strength degrades with longer exposures at that temperature. Thermid 600, an addition polyimide that is acetylene encapped, exhibits thermomechanical properties even after long term exposure in at air at 316 C. An inherent drawback of this system is that it has a narrow processing window. An acetylene encapped, addition polyimide which is a hybrid of these two systems was developed. It has good retention of strength after long term aging and is easily processed. The synthesis and characterization of various molecular weight oligomers of this system are discussed as well as the bonding, aging, and testing of lap shear adhesive samples.

  7. Effect of MTAD on the shear bond strength of self-etch adhesives to dentin

    PubMed Central

    Mortazavi, Vajihesadat; Khademi, Abbasali; Khosravi, Kazem; Fathi, Mohammadhossein; Ebrahimi–Chaharom, Mohammadesmaeil; Shahnaseri, Shirin; Khalighinejad, Navid; Badrian, Hamid

    2012-01-01

    Background: As the use of different irrigants to eliminate residual debris and smear layer in the field of endodontic is unavoidable, by considering the effect of irrigants on the bond strength of resin composite restorations, this study was designed to evaluate the effect of a mixture of a tetracycline isomer, an acid, and a detergent (MTAD) on the shear bond strength of two self-etch adhesives, Clearfil SE Bond and Adper Prompt L- Pop to dentin. Materials and Methods: The crowns of 80 extracted premolars were transversally sectioned to expose dentin. Flat dentin surfaces were wet abraded with 320-grit abrasive paper and randomly assigned to eight groups according to two self-etch adhesive and four dentin surface treatments: direct application over smear layer (no treatment), etching with 35% phosphoric acid for 15s, 1 min 5.25% NaOCl/1 min MTAD and 20min 1.3% NaOCl/5min MTAD. Shear bond strength was tested 24 h after storage in distilled water at 37°C in incubator. Data were analyzed using one-way ANOVA followed by duncan post-hoc (α=0.05). Results: Phosphoric acid etching prior to SE Bond application significantly decreased the shear bond strength to dentin (P<0.05). Application of MTAD clinical protocol (20min 1.3% NaOCl/5min MTAD) did not significantly decrease the shear bond strength of self-etch adhesives to dentin (P=0.745) Conclusions: Based on the results of present investigation, it seems that the use of clinical protocol of 1.3% NaOCl as a root canal irrigant and a 5-min application of MTAD as a final rinse to remove the smear layer has no adverse effect on the shear bond strength of self-etch adhesives to dentin. PMID:22363359

  8. Biomimetic mushroom-shaped fibrillar adhesive microstructure.

    PubMed

    Gorb, S; Varenberg, M; Peressadko, A; Tuma, J

    2007-04-22

    To improve the adhesive properties of artificial fibrillar contact structures, the attachment systems of beetles from the family Chrysomelidae were chosen to serve as a model. Biomimetic mushroom-shaped fibrillar adhesive microstructure inspired by these systems was characterized using a variety of measurement techniques and compared with a control flat surface made of the same material. Results revealed that pull-off force and peel strength of the structured specimens are more than twice those of the flat specimens. In contrast to the control system, the structured one is found to be very tolerant to contamination and able to recover its adhesive properties after being washed in a soap solution. Based on the combination of several geometrical principles found in biological attachment devices, the presented microstructure exhibits a considerable step towards the development of an industrial dry adhesive.

  9. Adhesion-induced receptor segregation and adhesion plaque formation: A model membrane study.

    PubMed Central

    Kloboucek, A; Behrisch, A; Faix, J; Sackmann, E

    1999-01-01

    A model system to study the control of cell adhesion by receptor-mediated specific forces, universal interactions, and membrane elasticity is established. The plasma membrane is mimicked by reconstitution of homophilic receptor proteins into solid supported membranes and, together with lipopolymers, into giant vesicles with the polymers forming an artificial glycocalix. The homophilic cell adhesion molecule contact site A, a lipid-anchored glycoprotein from cells of the slime mold Dictyostelium discoideum, is used as receptor. The success of the reconstitution, the structure and the dynamics of the model membranes are studied by various techniques including film balance techniques, micro fluorescence, fluorescence recovery after photobleaching, electron microscopy, and phase contrast microscopy. The interaction of the functionalized giant vesicles with the supported bilayer is studied by reflection interference contrast microscopy, and the adhesion strength is evaluated quantitatively by a recently developed technique. At low receptor concentrations adhesion-induced receptor segregation in the membranes leads to decomposition of the contact zone between membranes into domains of strong (receptor-mediated) adhesion and regions of weak adhesion while continuous zones of strong adhesion form at high receptor densities. The adhesion strengths (measured in terms of the spreading pressure S) of the various states of adhesion are obtained locally by analysis of the vesicle contour near the contact line in terms of elastic boundary conditions of adhesion: the balance of tensions and moments. The spreading pressure of the weak adhesion zones is S approximately 10(-9) J/m(2) and is determined by the interplay of gravitation and undulation forces whereas the spreading pressure of the tight adhesion domains is of the order S approximately 10(-6) J/m(2). PMID:10512849

  10. Ankyrin-binding proteins related to nervous system cell adhesion molecules: candidates to provide transmembrane and intercellular connections in adult brain

    PubMed Central

    1993-01-01

    A major class of ankyrin-binding glycoproteins have been identified in adult rat brain of 186, 155, and 140 kD that are alternatively spliced products of the same pre-mRNA. Characterization of cDNAs demonstrated that ankyrin-binding glycoproteins (ABGPs) share 72% amino acid sequence identity with chicken neurofascin, a membrane-spanning neural cell adhesion molecule in the Ig super-family expressed in embryonic brain. ABGP polypeptides have the following features consistent with a role as ankyrin-binding proteins in vitro and in vivo: (a) ABGPs and ankyrin associate as pure proteins in a 1:1 molar stoichiometry; (b) the ankyrin-binding site is located in the COOH-terminal 21 kD of ABGP186 which contains the predicted cytoplasmic domain; (c) ABGP186 is expressed at approximately the same levels as ankyrin (15 pmoles/milligram of membrane protein); and (d) ABGP polypeptides are co- expressed with the adult form of ankyrinB late in postnatal development and are colocalized with ankyrinB by immunofluorescence. Similarity in amino acid sequence and conservation of sites of alternative splicing indicate that genes encoding ABGPs and neurofascin share a common ancestor. However, the major differences in developmental expression reported for neurofascin in embryos versus the late postnatal expression of ABGPs suggest that ABGPs and neurofascin represent products of gene duplication events that have subsequently evolved in parallel with distinct roles. The predicted cytoplasmic domains of rat ABGPs and chicken neurofascin are nearly identical to each other and closely related to a group of nervous system cell adhesion molecules with variable extracellular domains, which includes L1, Nr-CAM, and Ng- CAM of vertebrates, and neuroglian of Drosophila. The ankyrin-binding site of rat ABGPs is localized to the C-terminal 200 residues which encompass the cytoplasmic domain, suggesting the hypothesis that ability to associate with ankyrin may be a shared feature of neurofascin and

  11. Analytical cell adhesion chromatography reveals impaired persistence of metastatic cell rolling adhesion to P-selectin

    PubMed Central

    Oh, Jaeho; Edwards, Erin E.; McClatchey, P. Mason; Thomas, Susan N.

    2015-01-01

    ABSTRACT Selectins facilitate the recruitment of circulating cells from the bloodstream by mediating rolling adhesion, which initiates the cell–cell signaling that directs extravasation into surrounding tissues. To measure the relative efficiency of cell adhesion in shear flow for in vitro drug screening, we designed and implemented a microfluidic-based analytical cell adhesion chromatography system. The juxtaposition of instantaneous rolling velocities with elution times revealed that human metastatic cancer cells, but not human leukocytes, had a reduced capacity to sustain rolling adhesion with P-selectin. We define a new parameter, termed adhesion persistence, which is conceptually similar to migration persistence in the context of chemotaxis, but instead describes the capacity of cells to resist the influence of shear flow and sustain rolling interactions with an adhesive substrate that might modulate the probability of extravasation. Among cell types assayed, adhesion persistence to P-selectin was specifically reduced in metastatic but not leukocyte-like cells in response to a low dose of heparin. In conclusion, we demonstrate this as an effective methodology to identify selectin adhesion antagonist doses that modulate homing cell adhesion and engraftment in a cell-subtype-selective manner. PMID:26349809

  12. A three-phase in-vitro system for studying Pseudomonas aeruginosa adhesion and biofilm formation upon hydrogel contact lenses

    PubMed Central

    2010-01-01

    Background Pseudomonas aeruginosa is commonly associated with contact lens (CL) -related eye infections, for which bacterial adhesion and biofilm formation upon hydrogel CLs is a specific risk factor. Whilst P. aeruginosa has been widely used as a model organism for initial biofilm formation on CLs, in-vitro models that closely reproduce in-vivo conditions have rarely been presented. Results In the current investigation, a novel in-vitro biofilm model for studying the adherence of P. aeruginosa to hydrogel CLs was established. Nutritional and interfacial conditions similar to those in the eye of a CL wearer were created through the involvement of a solid:liquid and a solid:air interface, shear forces and a complex artificial tear fluid. Bioburdens varied depending on the CL material and biofilm maturation occurred after 72 h incubation. Whilst a range of biofilm morphologies were visualised including dispersed and adherent bacterial cells, aggregates and colonies embedded in extracellular polymer substances (EPS), EPS fibres, mushroom-like formations, and crystalline structures, a compact and heterogeneous biofilm morphology predominated on all CL materials. Conclusions In order to better understand the process of biofilm formation on CLs and to test the efficacy of CL care solutions, representative in-vitro biofilm models are required. Here, we present a three-phase biofilm model that simulates the environment in the eye of a CL wearer and thus generates biofilms which resemble those commonly observed in-situ. PMID:21062489

  13. The bond strength of adhesive resins to AH plus contaminated dentin cleaned by various gutta-percha solvents.

    PubMed

    Topçuoğlu, Hüseyin Sinan; Demirbuga, Sezer; Pala, Kansad; Cayabatmaz, Muhammed; Topçuoğlu, Gamze

    2015-01-01

    The optimal bonding of adhesives to dentin requires the sealer to be completely removed from dentinal walls. The aim of this study was to investigate the effect of different cleaning procedures using gutta-percha solvents on bond strength of adhesive resins to AH Plus contaminated dentin (APCD). The pulp chamber dentin surfaces were contaminated with AH Plus and cleaned with five different techniques (dry cotton, chloroform, orange oil, eucalyptol, and ethanol). Then, Clearfil SE Bond (CSE) (Kuraray), and Tetric N Bond (TNB) (Ivoclar Vivadent) were applied and filled with a composite resin. The serial sticks (1 × 1 mm) were obtained and tested for microtensile bond strength. Scanning electron microscopy (SEM) was used for analysis of debonded surfaces. Ethanol exhibited the highest bond strength to APCD followed by dry cotton. There was no statistically significant difference between ethanol and dry cotton (p > 0.05). Eucalyptol showed the lowest bond strength to APCD and statistically significant differences (p < 0.05) in comparison with other groups. APCD reduced the bond strength of all adhesive resins. Dry cotton, ethanol, and chloroform were the most suitable techniques when used with CSE together, whereas ethanol was best with TNB.

  14. Effect of a functional monomer (MDP) on the enamel bond durability of single-step self-etch adhesives.

    PubMed

    Tsuchiya, Kenji; Takamizawa, Toshiki; Barkmeier, Wayne W; Tsubota, Keishi; Tsujimoto, Akimasa; Berry, Thomas P; Erickson, Robert L; Latta, Mark A; Miyazaki, Masashi

    2016-02-01

    The present study aimed to determine the effect of the functional monomer, 10-methacryloxydecyl dihydrogen phosphate (MDP), on the enamel bond durability of single-step self-etch adhesives through integrating fatigue testing and long-term water storage. An MDP-containing self-etch adhesive, Clearfil Bond SE ONE (SE), and an experimental adhesive, MDP-free (MF), which comprised the same ingredients as SE apart from MDP, were used. Shear bond strength (SBS) and shear fatigue strength (SFS) were measured with or without phosphoric acid pre-etching. The specimens were stored in distilled water for 24 h, 6 months, or 1 yr. Although similar SBS and SFS values were obtained for SE with pre-etching and for MF after 24 h of storage in distilled water, SE with pre-etching showed higher SBS and SFS values than MF after storage in water for 6 months or 1 yr. Regardless of the pre-etching procedure, SE showed higher SBS and SFS values after 6 months of storage in distilled water than after 24 h or 1 yr. To conclude, MDP might play an important role in enhancing not only bond strength but also bond durability with respect to repeated subcritical loading after long-term water storage.

  15. The development of low temperature curing adhesives

    NASA Technical Reports Server (NTRS)

    Green, H. E.; Sutherland, J. D.; Hom, J. M.; Sheppard, C. H.

    1975-01-01

    An approach for the development of a practical low temperature (293 K-311 K/68 F-100 F) curing adhesive system based on a family of amide/ester resins was studied and demonstrated. The work was conducted on resin optimization and adhesive compounding studies. An improved preparative method was demonstrated which involved the reaction of an amine-alcohol precursor, in a DMF solution with acid chloride. Experimental studies indicated that an adhesive formulation containing aluminum powder provided the best performance when used in conjunction with a commercial primer.

  16. Cyanoacrylate Adhesives in Eye Wounds.

    DTIC Science & Technology

    EYE, *WOUNDS AND INJURIES), (*ADHESIVES, EYE), (*ACRYLIC RESINS, ADHESIVES), CORNEA , HEALING, TISSUES(BIOLOGY), TOLERANCES(PHYSIOLOGY), NECROSIS, SURGICAL SUPPLIES, STRENGTH(PHYSIOLOGY), SURGERY, THERAPY

  17. Expression of adhesion molecules during tooth resorption in feline teeth: a model system for aggressive osteoclastic activity.

    PubMed

    Shigeyama, Y; Grove, T K; Strayhorn, C; Somerman, M J

    1996-09-01

    Tooth resorption, a common feline dental problem, is often initiated at the cemento-enamel junction and hence is called cat 'neck' lesion. Studies have demonstrated that osteoclasts/odontoclasts are increased and activated at resorption sites, and that areas of resorption are partly repaired by formation of tissues resembling bone, cementum, and possibly dentin. However, the cellular/molecular mechanisms/factors involved in resorption and repair are unknown. In this study of tissues from cats with 'neck' lesions, we used specific antibodies and immunohistochemical analyses to examine adhesion molecules associated with mineralized tissues, bone sialoprotein (BSP) and osteopontin (OPN), and a cell-surface receptor linked with these molecules, alpha v beta 3, for their localization in these lesions. In addition, to determine general cellular activity during repair, we performed in situ hybridization using a type I collagen riboprobe. Results showed OPN localized to resorption fronts and reversal lines, while BSP was localized to reversal lines. However, some osteoclasts and odontoblasts "sat" on mineralized surfaces not associated with OPN. The cell-surface receptor, alpha v beta 3, was localized to surfaces of osteoclasts/odontoclasts. Type I collagen mRNA was expressed where osteoblasts attempted to repair mineralized tissue. In contrast, odontoblasts did not express mRNA for type I collagen. This study suggests that osteoclastic resorption is the predominant activity in 'neck' lesions and that this activity was accompanied, at least in part, by increased concentrations of OPN and an associated integrin, alpha v beta 3, at resorption sites. Lack of collagen expression by odontoblasts indicates that odontoblasts do not play an active role in attempts at repair.

  18. Cytotoxicity of denture adhesives.

    PubMed

    de Gomes, Pedro Sousa; Figueiral, Maria Helena; Fernandes, Maria Helena R; Scully, Crispian

    2011-12-01

    Ten commercially available denture adhesives, nine soluble formulations (six creams, three powders) and one insoluble product (pad), were analyzed regarding the cytotoxicity profile in direct and indirect assays using L929 fibroblast cells. In the direct assay, fibroblasts were seeded over the surface of a thick adhesive gel (5%, creams; 2.5%, powders and pad). In the indirect assay, cells were cultured in the presence of adhesive extracts prepared in static and dynamic conditions (0.5-2%, creams; 0.25-1%, powders and pad). Cell toxicity was assessed for cell viability/proliferation (MTT assay) and cell morphology (observation of the F-actin cytoskeleton organization by confocal laser scanning microscopy). Direct contact of the L929 fibroblasts with the thick adhesive gels caused no, or only a slight, decrease in cell viability/proliferation. The adhesive extracts (especially those prepared in dynamic conditions) caused significantly higher growth inhibition of fibroblasts and, in addition, caused dose- and time-dependent effects, throughout the 6-72 h exposure time. Also, dose-dependent effects on cell morphology, with evident disruption of the F-actin cytoskeleton organization, were seen in the presence of most adhesives. In conclusion, the adhesives possessed different degrees of cytotoxicity, but similar dose- and time-dependent biological profiles.

  19. Bond Assembly FOD Zones - A Procedure for Assuring Acceptable Adhesion

    NASA Technical Reports Server (NTRS)

    Evans, Kurt; Wurth, Laura; Mitchell, Mark

    2009-01-01

    Rocket motor components are primarily assembled by adhesion. a) For example, the RSRM (Reusable Solid Rocket Motor - part of the Space Shuttle Boosters) system contains 10,000 sq ft of bondline area. b) Rocket motors contain a variety of adhesive/substrate bond systems c) Bond system performance requirements also vary. To assemble reliable components, ATK Space Systems and customers invest substantial resources to the study of bond assembly processes. a) Surface and adhesion science; b) Adhesive chemistry; c) Process parameters; d) Contamination effects.

  20. Adhesive Contact Sweeper

    NASA Technical Reports Server (NTRS)

    Patterson, Jonathan D.

    1993-01-01

    Adhesive contact sweeper removes hair and particles vacuum cleaner leaves behind, without stirring up dust. Also cleans loose rugs. Sweeper holds commercially available spools of inverted adhesive tape. Suitable for use in environments in which air kept free of dust; optics laboratories, computer rooms, and areas inhabited by people allergic to dust. For carpets, best used in tandem with vacuum cleaner; first pass with vacuum cleaner removes coarse particles, and second pass with sweeper extracts fine particles. This practice extends useful life of adhesive spools.

  1. [Endothelial cell adhesion molecules].

    PubMed

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  2. Adhesion of Polymer Vesicles

    NASA Astrophysics Data System (ADS)

    Lin, John J.; Bates, Frank S.; Hammer, Daniel A.; Silas, James A.

    2005-07-01

    The adhesion and bending modulus of polybutadiene-poly(ethylene oxide) block copolymer vesicles made from a bidisperse mixture of polymers is measured using micropipette aspiration. The adhesion energy between biotinylated vesicles and avidin beads is modeled by incorporating the extension of the adhesive ligands above the surface brush of the vesicle according to the blob model of bidisperse polymer mixtures of Komura and Safran assuming the polymer brush at the surface of the vesicle is compact. The same model accurately reproduces the scaling of the bending modulus with polymer composition.

  3. Adhesive Bonding for Shelters

    DTIC Science & Technology

    1980-12-01

    weru uvaluated, the type of etch bath " sweetener " and the type of rinse\\water used. The type of etch bath " sweetener " was found to have a dramatic effect...EA9601NW Adhesives on 50521134 Bare Adherenas 39 13 Stress-Durability Behavior Sun-mary 40 14 Effect of Ltch Bath Sweetening Alloy on Interracial Durability...34"’ -,,• , •’• •"• " ,,,,, 9 Adhesive/Primer/Adherend Alloy/Surface Preparation Combinations Adherend OFPL Sweetening Rinse Adhesive:Primer Alloy Alloy

  4. Fit-to-Flow (F2F) interconnects: universal reversible adhesive-free microfluidic adaptors for lab-on-a-chip systems.

    PubMed

    Chen, Arnold; Pan, Tingrui

    2011-02-21

    World-to-chip (macro-to-micro) interface continues to be one of the most complicated, ineffective, and unreliable components in the development of emerging lab-on-a-chip systems involving integrated microfluidic operations. A number of irreversible (e.g., adhesive gluing) and reversible techniques (e.g., press fitting) have attempted to provide dedicated fluidic passage from standard tubing to miniature on-chip devices, none of which completely addresses the above concerns. In this paper, we present standardized adhesive-free microfluidic adaptors, referred to as Fit-to-Flow (F2F) Interconnects, to achieve reliable hermetic seal, high-density tube packing, self-aligned plug-in, reworkable connectivity, straightforward scalability and expandability, and applicability to broad lab-on-a-chip platforms; analogous to the modular plug-and-play USB architecture employed in modern electronics. Specifically, two distinct physical packaging mechanisms are applied, with one utilizing induced tensile stress in elastomeric socket to establish reversible seal and the other using negative pressure to provide on demand vacuum shield, both of which can be adapted to a variety of experimental configurations. The non-leaking performance (up to 336 kPa) along with high tube-packing density (of 1 tube/mm(2)) and accurate self-guided alignment (of 10 μm) have been characterized. In addition, a 3D microfluidic mixer and a 6-level chemical gradient generator paired with the corresponding F2F Interconnects have been devised to illustrate the applicability of the universal fluidic connections to classic lab-on-a-chip operations.

  5. Adhesion to root canal dentine using one and two-step adhesives with dual-cure composite core materials.

    PubMed

    Foxton, R M; Nakajima, M; Tagami, J; Miura, H

    2005-02-01

    The regional tensile bond strengths of two dual-cure composite resin core materials to root canal dentine using either a one or two-step self-etching adhesive were evaluated. Extracted premolar teeth were decoronated and their root canals prepared to a depth of 8 mm and a width of 1.4 mm. In one group, a one-step self-etching adhesive (Unifil Self-etching Bond) was applied to the walls of the post-space and light-cured for 10 s. After which, the post-spaces were filled with the a dual-cure composite resin (Unifil Core) and then half the specimens were light-cured for 60 s and the other half placed in darkness for 30 min. In the second group, a self-etching primer (ED Primer II) was applied for 30 s, followed by an adhesive resin (Clearfil Photo Bond), which was light-cured for 10 s. The post-spaces were filled with a dual-cure composite resin (DC Core) and then half the specimens were light-cured for 60 s and the other half placed in darkness for 30 min. Chemical-cure composite resin was placed on the outer surfaces of all the roots, which were then stored in water for 24 h. They were serially sliced perpendicular to the bonded interface into 8, 0.6 mm-thick slabs, and then transversely sectioned into beams, approximately 8 x 0.6 x 0.6 mm, for the microtensile bond strength test (muTBS). Data were divided into two (coronal/apical half of post-space) and analysed using three-way anova and Scheffe's test (P < 0.05). Failure modes were observed under an scanning electron microscope (SEM) and statistically analysed. Specimens for observation of the bonded interfaces were prepared in a similar manner as for bond strength testing, cut in half and embedded in epoxy resin. They were then polished to a high gloss, gold sputter coated, and after argon ion etching, observed under an SEM. For both dual-cure composite resins and curing strategies, there were no significant differences in muTBS between the coronal and apical regions (P > 0.05). In addition, both dual

  6. Adhesion family of G protein-coupled receptors and cancer.

    PubMed

    Lin, Hsi-Hsien

    2012-01-01

    The adhesion-class G protein-coupled receptors (adhesion-GPCRs) constitute the second largest GPCR sub-family in humans. Adhesion-GPCRs are defined by the chimeric structure of an unusually large extracellular cell-adhesion domain and a GPCR-like seven-pass transmembrane domain. Adhesion-GPCRs are hence expected to display both cellular adhesion and signaling functions in many biological systems. Adhesion-GPCRs are normally expressed in the central nervous, immune, and reproductive systems in a cell type- or tissue-restricted fashion. However, aberrant expression of distinct adhesion-GPCR molecules has been identified in various human cancers with some of the receptors closely associated with cancer development. Tumor-associated adhesion-GPCRs are thought to involve in tumorigenesis by affecting the growth of tumor cells, angiogenesis, tumor cell migration, invasion and metastasis either positively or negatively. Furthermore, some adhesion-GPCRs are considered potential biomarkers for specific types of cancers. In this review article, the expressional characteristics and functional role of cancer-associated adhesion-GPCRs are discussed in depth.

  7. Cryogenic/high temperature structural adhesives. [for space shuttles

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Sheppard, C. H.

    1974-01-01

    Results are described of the work performed to develop a structural adhesive system which possesses useful properties over a 20K (-423 F) to 589 K (600 F) temperature range. Adhesives systems based on polyimide, polyphenylquinoxaline polyquinoxaline, polybenzothiazole and polybenzimidazole polymers first were screened for suitability. Detailed evaluation of two polyimide adhesive sytems, Br34/FM34 and P4/A5F or P4A/A5FA, and one polyphenylquinoxaline adhesive system, PPQ II (IMW), then was performed. Property information was generated over the full temperature range for shear strength, stressed and unstressed thermal aging, thermal shock and coefficient of thermal expansion. Both polyimide adhesive systems were identified as being capable of providing structural adhesive joints for cryogenic/high temperature service.

  8. Adhesion of Lunar Dust

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.

    2007-01-01

    This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.

  9. Single-Phase Photo-Cross-Linkable Bioinspired Adhesive for Precise Control of Adhesion Strength.

    PubMed

    Harper, Tristan; Slegeris, Rimantas; Pramudya, Irawan; Chung, Hoyong

    2017-01-18

    obtained from a 1:1 weight ratio of polymer:solvent in water on a Mylar film surface. As a single-phase system, the synthesized terpolymer is very convenient to use, and its adhesion strength can be easily modified by UV light. Additionally, the terpolymer's high water compatibility makes it ideally suited for application in the biomedical field.

  10. Supramolecular adhesives to hard surfaces: adhesion between host hydrogels and guest glass substrates through molecular recognition.

    PubMed

    Takashima, Yoshinori; Sahara, Taiga; Sekine, Tomoko; Kakuta, Takahiro; Nakahata, Masaki; Otsubo, Miyuki; Kobayashi, Yuichiro; Harada, Akira

    2014-10-01

    Supramolecular materials based on host-guest interactions should exhibit high selectivity and external stimuli-responsiveness. Among various stimuli, redox and photo stimuli are useful for its wide application. An external stimuli-responsive adhesive system between CD host-gels (CD gels) and guest molecules modified glass substrates (guest Sub) is focused. Here, the selective adhesion between host gels and guest substrates where adhesion depends on molecular complementarity is reported. Initially, it is thought that adhesion of a gel material onto a hard material might be difficult unless many guest molecules modified linear polymers immobilize on the surface of hard materials. However, reversible adhesion of the CD gels is observed by dissociating and re-forming inclusion complex in response to redox and photo stimuli.

  11. Epithelial adhesive junctions

    PubMed Central

    Capaldo, Christopher T.; Farkas, Attila E.

    2014-01-01

    Epithelial adhesive cell-to-cell contacts contain large, plasma membrane-spanning multiprotein aggregates that perform vital structural and signaling functions. Three prominent adhesive contacts are the tight junction, adherens junction, and the desmosome. Each junction type has unique cellular functions and a complex molecular composition. In this review, we comment on recent and exciting advances in our understanding of junction composition and function. PMID:24592313

  12. Polymer Nanocarriers for Dentin Adhesion

    PubMed Central

    Osorio, R.; Osorio, E.; Medina-Castillo, A.L.; Toledano, M.

    2014-01-01

    To obtain more durable adhesion to dentin, and to protect collagen fibrils of the dentin matrix from degradation, calcium- and phosphate-releasing particles have been incorporated into the dental adhesive procedure. The aim of the present study was to incorporate zinc-loaded polymeric nanocarriers into a dental adhesive system to facilitate inhibition of matrix metalloproteinases (MMPs)-mediated collagen degradation and to provide calcium ions for mineral deposition within the resin-dentin bonded interface. PolymP-nActive nanoparticles (nanoMyP) were zinc-loaded through 30-minute ZnCl2 immersion and tested for bioactivity by means of 7 days’ immersion in simulated body fluid solution (the Kokubo test). Zinc-loading and calcium phosphate depositions were examined by scanning and transmission electron microscopy, elemental analysis, and x-ray diffraction. Nanoparticles in ethanol solution infiltrated into phosphoric-acid-etched human dentin and Single Bond (3M/ESPE) were applied to determine whether the nanoparticles interfered with bonding. Debonded sticks were analyzed by scanning electron microscopy. A metalloproteinase collagen degradation assay was also performed in resin-infiltrated dentin with and without nanoparticles, measuring C-terminal telopeptide of type I collagen (ICTP) concentration in supernatants, after 4 wk of immersion in artificial saliva. Numerical data were analyzed by analysis of variance (ANOVA) and Student-Newman-Keuls multiple comparisons tests (p < .05). Nanoparticles were effectively zinc-loaded and were shown to have a chelating effect, retaining calcium regardless of zinc incorporation. Nanoparticles failed to infiltrate demineralized intertubular dentin and remained on top of the hybrid layer, without altering bond strength. Calcium and phosphorus were found covering nanoparticles at the hybrid layer, after 24 h. Nanoparticle application in etched dentin also reduced MMP-mediated collagen degradation. Tested nanoparticles may be

  13. Polymer nanocarriers for dentin adhesion.

    PubMed

    Osorio, R; Osorio, E; Medina-Castillo, A L; Toledano, M

    2014-12-01

    To obtain more durable adhesion to dentin, and to protect collagen fibrils of the dentin matrix from degradation, calcium- and phosphate-releasing particles have been incorporated into the dental adhesive procedure. The aim of the present study was to incorporate zinc-loaded polymeric nanocarriers into a dental adhesive system to facilitate inhibition of matrix metalloproteinases (MMPs)-mediated collagen degradation and to provide calcium ions for mineral deposition within the resin-dentin bonded interface. PolymP- N : Active nanoparticles (nanoMyP) were zinc-loaded through 30-minute ZnCl2 immersion and tested for bioactivity by means of 7 days' immersion in simulated body fluid solution (the Kokubo test). Zinc-loading and calcium phosphate depositions were examined by scanning and transmission electron microscopy, elemental analysis, and x-ray diffraction. Nanoparticles in ethanol solution infiltrated into phosphoric-acid-etched human dentin and Single Bond (3M/ESPE) were applied to determine whether the nanoparticles interfered with bonding. Debonded sticks were analyzed by scanning electron microscopy. A metalloproteinase collagen degradation assay was also performed in resin-infiltrated dentin with and without nanoparticles, measuring C-terminal telopeptide of type I collagen (ICTP) concentration in supernatants, after 4 wk of immersion in artificial saliva. Numerical data were analyzed by analysis of variance (ANOVA) and Student-Newman-Keuls multiple comparisons tests (p < .05). Nanoparticles were effectively zinc-loaded and were shown to have a chelating effect, retaining calcium regardless of zinc incorporation. Nanoparticles failed to infiltrate demineralized intertubular dentin and remained on top of the hybrid layer, without altering bond strength. Calcium and phosphorus were found covering nanoparticles at the hybrid layer, after 24 h. Nanoparticle application in etched dentin also reduced MMP-mediated collagen degradation. Tested nanoparticles may be

  14. Adhesion properties of chain-forming ferrofluids.

    PubMed

    Lira, Sérgio A; Miranda, José A

    2009-04-01

    Denser and highly magnetized ferrofluids exhibit several non-Newtonian behaviors attributed to the formation of magnetic particle chains. We investigate the rheological and adhesive properties during tensile deformation of a confined chain-forming ferrofluid subjected to a radial magnetic field. Both the magnetoviscous contribution to the viscosity and the adhesive force are derived analytically. The response of the system to changes in the length of the chains is examined under zero and nonzero shear circumstances. Our results indicate that the existence of chains has a significant impact on the adhesive strength as well as on the viscosity of the ferrofluid, allowing it to display both shear-thinning and shear-thickening regimes. These findings open up the possibility of monitoring complex rheological responses of such fluids with the assistance of applied magnetic fields, allowing a more accurate assessment of their adhesive properties.

  15. Ice adhesions in relation to freeze stress.

    PubMed

    Olien, C R; Smith, M N

    1977-10-01

    In freezing, competitive interaction between ice and hydrophilic plant substances causes an energy of adhesion to develop through the interstitial liquid. The thermodynamic basis for the adhesion energy is discussed, with estimates of the energies involved. In this research, effects of adhesion energy were observed microscopically in conjunction with energies of crystallization and frost desiccation. The complex character of ice in intact crown tissue of winter barley (Hordeum vulgare L.) and the problems of sectioning frozen tissue without producing artifacts led to an alternative study of single barley cells in a mesh of ice and cell wall polymers. Adhesions between ice, cell wall polymers, and the plasmalemma form a complexly interacting system in which the pattern of crystallization is a major factor in determination of stress and injury.

  16. Visualizing and quantifying adhesive signals

    PubMed Central

    Sabouri-Ghomi, Mohsen; Wu, Yi; Hahn, Klaus; Danuser, Gaudenz

    2008-01-01

    Understanding the structural adaptation and signaling of adhesion sites in response to mechanical stimuli requires in situ characterization of the dynamic activation of a large number of adhesion components. Here, we review high resolution live cell imaging approaches to measure forces, assembly and interaction of adhesion components, and the activation of adhesion-mediated signals. We conclude by outlining computational multiplexing as a framework for the integration of these data into comprehensive models of adhesion signaling pathways. PMID:18586481

  17. Crosslinking characteristics of and cell adhesion to an injectable poly(propylene fumarate-co-ethylene glycol) hydrogel using a water-soluble crosslinking system.

    PubMed

    Shung, Albert K; Behravesh, Esfandiar; Jo, Seongbong; Mikos, Antonios G

    2003-04-01

    The crosslinking characteristics of an injectable poly(propylene fumarate-co-ethylene glycol) [P(PF-co-EG)]-based hydrogel were investigated. A water-soluble crosslinking system was used, consisting of poly(ethylene glycol) diacrylate (PEG-DA), ammonium persulfate (APS), and ascorbic acid (AA). The effects of PEG block length of the P(PF-co-EG), APS concentration, AA concentration, and PEG-DA concentration on equilibrium water content, sol fraction, onset of gelation, mechanical properties, and endothelial cell adhesion were studied. The equilibrium water content of the hydrogels ranged from 57.1 +/- 0.3 to 79.7 +/- 0.2% whereas the sol fraction ranged from 2.5 +/- 0.0 to 3.33 +/- 5.4%. The onset of gelation times varied from 1.1 +/- 0.1 to 4.3 +/- 0.2 min. For all hydrogel formulations, the tensile strength fell between 61.7 +/- 18.2 and 401.3 +/- 67.5 kPa and tensile moduli ranged from 0.4 +/- 0.0 to 3.3 +/- 0.3 MPa. Endothelial cells attached to the hydrogels in a range of 3.9 +/- 1.4 to 31.1 +/- 14.1% of cells seeded. These findings suggest that injectable poly(propylene fumarate-co-ethylene glycol) hydrogel formulations in conjunction with a novel water-soluble crosslinking system may be useful for in situ crosslinkable tissue-engineering applications.

  18. Effect of Self-etch Adhesives on Self-sealing Ability of High-Copper Amalgams

    PubMed Central

    Moazzami, Saied Mostafa; Moosavi, Horieh; Moddaber, Maryam; Parvizi, Reza; Moayed, Mohamad Hadi; Mokhber, Nima; Meharry, Michael; B Kazemi, Reza

    2016-01-01

    Statement of the Problem: Similar to conventional amalgam, high-copper amalgam alloy may also undergo corrosion, but it takes longer time for the resulting products to reduce microleakage by sealing the micro-gap at the tooth/amalgam interface. Purpose: The aim of this study was to evaluate the effect of self-etch adhesives with different pH levels on the interfacial corrosion behavior of high-copper amalgam restoration and its induction potential for self-sealing ability of the micro-gap in the early hours after setting by means of Electro-Chemical Tests (ECTs). Materials and Method: Thirty cylindrical cavities of 4.5mm x 4.7mm were prepared on intact bicuspids. The samples were divided into five main groups of application of Adhesive Resin (AR)/ liner/ None (No), on the cavity floor. The first main group was left without an AR/ liner (No). In the other main groups, the types of AR/ liner used were I-Bond (IB), Clearfil S3 (S3), Single Bond (SB) and Varnish (V). Each main group (n=6) was divided into two subgroups (n=3) according to the types of the amalgams used, either admixed ANA 2000 (ANA) or spherical Tytin (Tyt). The ECTs, Open Circuit Potential (OCP), and the Linear Polarization Resistance (LPR) for each sample were performed and measured 48 hours after the completion of the samples. Results: The Tyt-No and Tyt-IB samples showed the highest and lowest OCP values respectively. In LPR tests, the Rp values of ANA-V and Tyt-V were the highest (lowest corrosion rate) and contrarily, the ANA-IB and Tyt-IB samples, with the lowest pH levels, represented the lowest Rp values (highest corrosion rates). Conclusion: Some self-etch adhesives may increase interfacial corrosion potential and self-sealing ability of high-copper amalgams. PMID:27942548

  19. Adhesion in hydrogels and model glassy polymers

    NASA Astrophysics Data System (ADS)

    Guvendiren, Murat

    Two main topics are addressed in this dissertation: (1) adhesion in hydrogels; (2) interfacial interactions between model glassy polymers. A self-assembly technique for the formation of hydrogels from acrylic triblock copolymer solutions was developed, based on vapor phase solvent exchange. Structure formation in the gels was characterized by small angle X-ray scattering, and swelling was measured in controlled pH buffer solutions. Strong gels are formed with polymer weight fractions between 0.01 and 0.15, and with shear moduli between 0.6 kPa and 3.5 kPa. Adhesive functionality, based on 3,4-dihydroxy-L-phenylalanine (DOPA) was also incorporated into the triblock copolymers. The effect of DOPA concentration on gel formation and swelling was investigated in detail. The adhesive properties of DOPA-functionalized hydrogels on TiO2 were investigated with an axisymmetric adhesion method. It was shown that the presence of DOPA enhances the adhesive properties of the hydrogels, but that the effect is minimized at pH values below 10, where the DOPA groups are hydrophobic. Thin film membranes were produced in order to study the specific interactions between DOPA and TiO2 and DOPA and tissue, using a membrane inflation method. The presence of DOPA in the membranes enhances the adhesion on TiO 2 and tissue, although adhesion to tissue requires that the DOPA groups be oxidized while in contact with the tissue of interest. Porous hydrogel scaffolds for tissue engineering applications were formed by adding salt crystals to the triblock copolymer solution prior to solvent exchange. Salt was then leached out by immersing the gel into water. Structures of the porous hydrogels were characterized by confocal laser scanning microscopy. These hydrogels were shown to be suitable for tissue regeneration and drug delivery applications. Diffusion-mediated adhesion between two component miscible polymer systems having very different glassy temperatures was also investigated. Axisymmetric

  20. A novel orally available inhibitor of focal adhesion signaling increases survival in a xenograft model of diffuse large B-cell lymphoma with central nervous system involvement.

    PubMed

    Bosch, Rosa; Moreno, María José; Dieguez-Gonzalez, Rebeca; Céspedes, María Virtudes; Gallardo, Alberto; Trias, Manuel; Grañena, Albert; Sierra, Jorge; Casanova, Isolda; Mangues, Ramon

    2013-08-01

    Central nervous system dissemination is a relatively uncommon but almost always fatal complication in diffuse large B-cell lymphoma patients. Optimal therapy for central nervous involvement in this malignancy has not been established. In this paper, we aimed to evaluate the therapeutic effect of E7123, a celecoxib derivative that inhibits focal adhesion signaling, in a novel xenograft model of diffuse large B-cell lymphoma with central nervous system involvement. Cells obtained after disaggregation of HT subcutaneous tumors (HT-SC cells) were intravenously injected in NOD/SCID mice. These mice received oral vehicle or 75 mg/kg of E7123 daily until they were euthanized for weight loss or signs of sickness. The antitumor effect of E7123 was validated in an independent experiment using a bioluminescent mouse model. Intravenously injected HT-SC cells showed higher take rate and higher central nervous system tropism (associated with increased expression of β1-integrin and p130Cas proteins) than HT cells. The oral administration of E7123 significantly increased survival time in 2 independent experiments using mice injected with unmodified or bioluminescent HT-SC cells. We have developed a new xenograft model of diffuse large B-cell lymphoma with central nervous system involvement that can be used in the pre-clinical evaluation of new drugs for this malignancy. E7123 is a new, well-tolerated and orally available therapeutic agent that merits further investigation since it may improve current management of diffuse large B-cell lymphoma patients with central nervous system involvement.

  1. Adhesion of nonmotile Pseudomonas aeruginosa on "soft" polyelectrolyte layer in a radial stagnation point flow system: measurements and model predictions.

    PubMed

    de Kerchove, Alexis J; Weroński, Paweł; Elimelech, Menachem

    2007-11-20

    Prediction of bacterial deposition rates onto substrates in natural aquatic systems is quite challenging because of the inherent complexity of such systems. In this study, we compare experimental deposition kinetics of nonmotile bacteria (Pseudomonas aeruginosa) on an alginate-coated substrate in a radial stagnation point flow (RSPF) system to predictions based on DLVO theory. The "softness" of the surface layer of the bacteria and alginate-coated substrate was considered in the calculations of their electrokinetic surface properties, and the relevance of both the classical zeta potential and the outer surface potential as surrogates for surface potential was investigated. Independent of the used electrical potentials, we showed that significant discrepancies exist between theory and experiments. Analysis of microscopic images in the RSPF system has demonstrated, for the first time, that irreversible deposition of particles or cells entrapped in the secondary energy minimum can occur on the alginate layer, despite the hydrodynamic forces resulting from the radial flow in the RSPF system. It is suggested that polymeric structures associated with the surface of the particle/cell and the alginate-coated substrate are responsible for the transition between the secondary minimum and primary energy well. This mode of deposition is likely to be important in the deposition of microorganisms in complex aquatic systems.

  2. Mechanical behavior of adhesive joints subjected to cyclic thermal loading

    SciTech Connect

    Humfeld, G.R.; Dillard, D.A.

    1996-12-31

    Stresses induced in bimaterial systems due to changing temperature has been the subject of much study since the publication of Timoshenko`s classic paper of 1925. An adhesive bond is one example of a bimaterial system in which thermal stress can play an important role. However, adhesives are viscoelastic in nature, and their mechanical behavior is dictated by the temperature- and time-dependence of their material properties; analytical solutions for elastic materials do not adequately describe their true behavior. The effect of the adhesive`s viscoelasticity on stress in an adhesive bond subjected to changing temperature is therefore of compelling interest and importance for the adhesives industry. The objective of this research is to develop an understanding of the viscoelastic effect in an adhesive bond subjected to cycling temperature, particularly when the temperature range spans a transition temperature of the adhesive. Numerical modeling of a simplified geometry was first undertaken to isolate the influence of viscoelasticity on the stress state from any particular specimen geometry effect. Finite element modeling was then undertaken to examine the mechanical behavior of the adhesive in a layered geometry. Both solution methods predicted development of residual tensile stresses in the adhesive. For the layered geometry this was found to correspond with residual tensile peel stresses, which are thought to be the cause of interfacial debonding.

  3. Biologically Inspired Mushroom-Shaped Adhesive Microstructures

    NASA Astrophysics Data System (ADS)

    Heepe, Lars; Gorb, Stanislav N.

    2014-07-01

    Adhesion is a fundamental phenomenon with great importance in technology, in our everyday life, and in nature. In this article, we review physical interactions that resist the separation of two solids in contact. By using examples of biological attachment systems, we summarize and categorize various principles that contribute to the so-called gecko effect. Emphasis is placed on the contact geometry and in particular on the mushroom-shaped geometry, which is observed in long-term biological adhesive systems. Furthermore, we report on artificial model systems with this bio-inspired geometry and demonstrate that surface microstructures with this geometry are promising candidates for technical applications, in which repeatable, reversible, and residue-free adhesion under different environmental conditions—such as air, fluid, and vacuum—is required. Various applications in robotic systems and in industrial pick-and-place processes are discussed.

  4. Thermoplastic adhesives based on 4,4'-isophthaloyldiphthalic anhydride (IDPA)

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; Stclair, Terry L.; Pratt, J. Richard

    1988-01-01

    Thermoplastic polyimides were prepared and evaluated as adhesives. These materials are based on 4,4'-isophthaloyldiphathalic anhydride (IDAP) and either metaphenylene diamine (MPD) or 3,3'-diaminobenzophenone (DBAP). Both polymers exhibit excellent adhesive properties; however, the IDPA-MPD is the more attractive system because of a combination of high mechanical and physical properties as well as being made from commercially attractive monomers. The IDPA-MPD is an isomeric form of the commercially available adhesive and matrix resin, LARC-TPI and both systems have the same glass transition temperature and exhibit similar adhesive properties.

  5. Platelet Adhesion under Flow

    PubMed Central

    Ruggeri, Zaverio M.

    2011-01-01

    Platelet adhesive mechanisms play a well-defined role in hemostasis and thrombosis, but evidence continues to emerge for a relevant contribution to other pathophysiological processes including inflammation, immune-mediated responses to microbial and viral pathogens, and cancer metastasis. Hemostasis and thrombosis are related aspects of the response to vascular injury, but the former protects from bleeding after trauma while the latter is a disease mechanism. In either situation, adhesive interactions mediated by specific membrane receptors support the initial attachment of single platelets to cellular and extracellular matrix constituents of the vessel wall and tissues. In the subsequent steps of thrombus growth and stabilization, adhesive interactions mediate platelet to platelet cohesion (aggregation) and anchoring to the fibrin clot. A key functional aspect of platelets is their ability to circulate in a quiescent state surveying the integrity of the inner vascular surface, coupled to a prompt reaction wherever alterations are detected. In many respects, therefore, platelet adhesion to vascular wall structures, to one another or to other blood cells are facets of the same fundamental biological process. The adaptation of platelet adhesive functions to the effects of blood flow is the main focus of this review. PMID:19191170

  6. The Type VI Secretion System Modulates Flagellar Gene Expression and Secretion in Citrobacter freundii and Contributes to Adhesion and Cytotoxicity to Host Cells.

    PubMed

    Liu, Liyun; Hao, Shuai; Lan, Ruiting; Wang, Guangxia; Xiao, Di; Sun, Hui; Xu, Jianguo

    2015-07-01

    The type VI secretion system (T6SS) as a virulence factor-releasing system contributes to virulence development of various pathogens and is often activated upon contact with target cells. Citrobacter freundii strain CF74 has a complete T6SS genomic island (GI) that contains clpV, hcp-2, and vgr T6SS genes. We constructed clpV, hcp-2, vgr, and T6SS GI deletion mutants in CF74 and analyzed their effects on the transcriptome overall and, specifically, on the flagellar system at the levels of transcription and translation. Deletion of the T6SS GI affected the transcription of 84 genes, with 15 and 69 genes exhibiting higher and lower levels of transcription, respectively. Members of the cell motility class of downregulated genes of the CF74ΔT6SS mutant were mainly flagellar genes, including effector proteins, chaperones, and regulators. Moreover, the production and secretion of FliC were also decreased in clpV, hcp-2, vgr, or T6SS GI deletion mutants in CF74 and were restored upon complementation. In swimming motility assays, the mutant strains were found to be less motile than the wild type, and motility was restored by complementation. The mutant strains were defective in adhesion to HEp-2 cells and were restored partially upon complementation. Further, the CF74ΔT6SS, CF74ΔclpV, and CF74Δhcp-2 mutants induced lower cytotoxicity to HEp-2 cells than the wild type. These results suggested that the T6SS GI in CF74 regulates the flagellar system, enhances motility, is involved in adherence to host cells, and induces cytotoxicity to host cells. Thus, the T6SS plays a wide-ranging role in C. freundii.

  7. Bistability of cell adhesion in shear flow.

    PubMed

    Efremov, Artem; Cao, Jianshu

    2011-09-07

    Cell adhesion plays a central role in multicellular organisms helping to maintain their integrity and homeostasis. This complex process involves many different types of adhesion proteins, and synergetic behavior of these proteins during cell adhesion is frequently observed in experiments. A well-known example is the cooperation of rolling and stationary adhesion proteins during the leukocytes extravasation. Despite the fact that such cooperation is vital for proper functioning of the immune system, its origin is not fully understood. In this study we constructed a simple analytic model of the interaction between a leukocyte and the blood vessel wall in shear flow. The model predicts existence of cell adhesion bistability, which results from a tug-of-war between two kinetic processes taking place in the cell-wall contact area-bond formation and rupture. Based on the model results, we suggest an interpretation of several cytoadhesion experiments and propose a simple explanation of the existing synergy between rolling and stationary adhesion proteins, which is vital for effective cell adherence to the blood vessel walls in living organisms.

  8. Comparison of tensile bond strengths of four one-bottle self-etching adhesive systems with Er:YAG laser-irradiated dentin.

    PubMed

    Jiang, Qianzhou; Chen, Minle; Ding, Jiangfeng

    2013-12-01

    This study aimed to investigate the interaction of current one-bottle self-etching adhesives and Er:YAG laser with dentin using a tensile bond strength (TBS) test and scanning electron microscopy (SEM) in vitro. Two hundred and thirteen dentin discs were randomly distributed to the Control Group using bur cutting and to the Laser Group using an Er:YAG laser (200 mJ, VSP, 20 Hz). The following adhesives were investigated: one two-step total-etch adhesive [Prime & Bond NT (Dentsply)] and four one-step self-etch adhesives [G-Bond plus (GC), XENO V (Dentsply), iBond Self Etch (Heraeus) and Adper Easy One (3 M ESPE)]. Samples were restored with composite resin, and after 24-hour storage in distilled water, subjected to the TBS test. For morphological analysis, 12 dentin specimens were prepared for SEM. No significant differences were found between the control group and laser group (p = 0.899); dentin subjected to Prime & Bond NT, XENOV and Adper Easy One produced higher TBS. In conclusion, this study indicates that Er:YAG laser-prepared dentin can perform as well as bur on TBS, and some of the one-step one-bottle adhesives are comparable to the total-etch adhesives in TBS on dentin.

  9. Reduction of postoperative adhesion development.

    PubMed

    Diamond, Michael P

    2016-10-01

    Despite use of meticulous surgical techniques, and regardless of surgical access via laparotomy or laparoscopy, postoperative adhesions develop in the vast majority of women undergoing abdominopelvic surgery. Such adhesions represent not only adhesion reformation at sites of adhesiolysis, but also de novo adhesion formation at sites of surgical procedures. Application of antiadhesion adjuvants compliment the benefits of meticulous surgical techniques, providing an opportunity to further reduce postoperative adhesion development. Improved understanding of the pathophysiology of adhesion development and distinguishing variations in the molecular biologic mechanisms from adhesion-free peritoneal repair represent future opportunities to improve the reduction of postoperative adhesions. Optimization of the reduction of postoperative adhesions will likely require identification of unique, personalized approaches in each individual, representing interindividual variation in peritoneal repair processes.

  10. Magnetic field switchable dry adhesives.

    PubMed

    Krahn, Jeffrey; Bovero, Enrico; Menon, Carlo

    2015-02-04

    A magnetic field controllable dry adhesive device is manufactured. The normal adhesion force can be increased or decreased depending on the presence of an applied magnetic field. If the magnetic field is present during the entire normal adhesion test cycle which includes both applying a preloading force and measuring the pulloff pressure, a decrease in adhesion is observed when compared to when there is no applied magnetic field. Similarly, if the magnetic field is present only during the preload portion of the normal adhesion test cycle, a decrease in adhesion is observed because of an increased stiffness of the magnetically controlled dry adhesive device. When the applied magnetic field is present during only the pulloff portion of the normal adhesion test cycle, either an increase or a decrease in normal adhesion is observed depending on the direction of the applied magnetic field.

  11. Adhesion and wetting: Similarities and differences

    SciTech Connect

    Shanahan, M.E.R. )

    1991-10-01

    This article examines what is understood about adhesion and wetting both from the historical and scientific perspectives. Topics covered include mechanical adhesion, specific adhesion, chemical adhesion, adhesion by diffusion, the adsorption or wetting theory, bulk adhesion, the rheological theory, hysteresis effects in rubber adhesion, and hysteresis of wetting.

  12. Adhesion tilt-tolerance in bio-inspired mushroom-shaped adhesive microstructure

    NASA Astrophysics Data System (ADS)

    Heepe, Lars; Carbone, Giuseppe; Pierro, Elena; Kovalev, Alexander E.; Gorb, Stanislav N.

    2014-01-01

    We studied experimentally and theoretically the effect of different tilt angles on the adhesion of mushroom-shaped adhesive microstructures. The marginal measured influence of tilting on pull-off forces is quantitatively well confirmed by numerical and theoretical calculations and was shown to be a direct consequence of an optimized stress distribution. In addition, the presence of a joint-like narrowing under the contact elements, as found in some biological attachment systems, was shown to further contribute to the tilt-tolerance. The results obtained allow us to explain the advantage of the widely observed mushroom-shaped contact geometry in nature for long-term and permanent adhesion.

  13. Mapping cell surface adhesion by rotation tracking and adhesion footprinting

    NASA Astrophysics Data System (ADS)

    Li, Isaac T. S.; Ha, Taekjip; Chemla, Yann R.

    2017-03-01

    Rolling adhesion, in which cells passively roll along surfaces under shear flow, is a critical process involved in inflammatory responses and cancer metastasis. Surface adhesion properties regulated by adhesion receptors and membrane tethers are critical in understanding cell rolling behavior. Locally, adhesion molecules are distributed at the tips of membrane tethers. However, how functional adhesion properties are globally distributed on the individual cell’s surface is unknown. Here, we developed a label-free technique to determine the spatial distribution of adhesive properties on rolling cell surfaces. Using dark-field imaging and particle tracking, we extract the rotational motion of individual rolling cells. The rotational information allows us to construct an adhesion map along the contact circumference of a single cell. To complement this approach, we also developed a fluorescent adhesion footprint assay to record the molecular adhesion events from cell rolling. Applying the combination of the two methods on human promyelocytic leukemia cells, our results surprisingly reveal that adhesion is non-uniformly distributed in patches on the cell surfaces. Our label-free adhesion mapping methods are applicable to the variety of cell types that undergo rolling adhesion and provide a quantitative picture of cell surface adhesion at the functional and molecular level.

  14. Mapping cell surface adhesion by rotation tracking and adhesion footprinting

    PubMed Central

    Li, Isaac T. S.; Ha, Taekjip; Chemla, Yann R.

    2017-01-01

    Rolling adhesion, in which cells passively roll along surfaces under shear flow, is a critical process involved in inflammatory responses and cancer metastasis. Surface adhesion properties regulated by adhesion receptors and membrane tethers are critical in understanding cell rolling behavior. Locally, adhesion molecules are distributed at the tips of membrane tethers. However, how functional adhesion properties are globally distributed on the individual cell’s surface is unknown. Here, we developed a label-free technique to determine the spatial distribution of adhesive properties on rolling cell surfaces. Using dark-field imaging and particle tracking, we extract the rotational motion of individual rolling cells. The rotational information allows us to construct an adhesion map along the contact circumference of a single cell. To complement this approach, we also developed a fluorescent adhesion footprint assay to record the molecular adhesion events from cell rolling. Applying the combination of the two methods on human promyelocytic leukemia cells, our results surprisingly reveal that adhesion is non-uniformly distributed in patches on the cell surfaces. Our label-free adhesion mapping methods are applicable to the variety of cell types that undergo rolling adhesion and provide a quantitative picture of cell surface adhesion at the functional and molecular level. PMID:28290531

  15. Durability and Intelligent Nondestructive Evaluation of Adhesive Composite Joints

    DTIC Science & Technology

    2007-11-02

    theories used for 195 data reduction, and whether they have to be modified to model the adhesive system properly. Computer modeling of the adhesive joint...analysis of single lap joints with unidirectional and cross-ply adherends 26 2. Modeling of single lap joints with unidirectional and cross-ply...part of the research were to develop a nonlinear finite element model for a cracked single-lap adhesive joint with laminated composite adherends and

  16. Evaluation of high temperature structural adhesives for extended service

    NASA Technical Reports Server (NTRS)

    Hill, S. G.; Peters, P. D.; Hendricks, C. L.

    1981-01-01

    The long term thermal aging data initiated in Phase 1 is reported. All candidate adhesive systems have exhibited significant degradation in bond properties after 505K (450 F) 10,000 hour exposure. Failures appear to be adhesive in the oxide layer. Phase 2 chemical characterization, cure cycle studies, baseline data, preliminary specifications, and environmental exposure data generated on polyphenyquinoxaline is presented. Similar but limited data on LARC-13 and NR056X adhesives is reported.

  17. The peel test in experimental adhesive fracture mechanics

    NASA Technical Reports Server (NTRS)

    Anderson, G. P.; Devries, K. L.; Williams, M. L.

    1974-01-01

    Several testing methods have been proposed for obtaining critical energy release rate or adhesive fracture energy in bond systems. These tests include blister, cone, lap shear, and peel tests. Peel tests have been used for many years to compare relative strengths of different adhesives, different surface preparation techniques, etc. The present work demonstrates the potential use of the peel test for obtaining adhesive fracture energy values.

  18. Erbium, chromium:yttrium scandium gallium garnet laser for caries removal: influence on bonding of a self-etching adhesive system.

    PubMed

    Tachibana, Arlene; Marques, Márcia Martins; Soler, Julia Maria Pavan; Matos, Adriana Bona

    2008-10-01

    This study evaluated the influence of the dental substrates obtained after the use of different caries removal techniques on bonding of a self-etching system. Forty, extracted, carious, human molars were ground to expose flat surfaces containing caries-infected dentine surrounded by sound dentine. The caries lesions of the specimens were removed or not (control--G1) either by round steel burs and water-cooled, low speed, handpiece (G2), or by irradiation with an erbium, chromium:yttrium scandium gallium garnet (Er,Cr:YSGG) laser (2W, 20 Hz, 35.38 J/cm(2), fiber G4 handpiece with 0.2826 mm(2), non-contact mode at a 2 mm distance, 70% air/20% water--G3) or using a chemo-mechanical method (Carisolv--G4). Caries-infected, caries-affected and sound dentines were submitted to a bonding system followed by construction of a resin-based composite crown. Hour-glass shaped samples were obtained and submitted to a micro-tensile bond test. The bond strength data were compared by analysis of variance (ANOVA), complemented by Tukey's test (P adhesion. Moreover, amongst the caries removal methods tested, the Er,Cr:YSGG laser irradiation was the poorest in providing a substrate for bonding with the tested self-etching system.

  19. Elastomer toughened polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L. (Inventor)

    1983-01-01

    A rubber-toughened addition-type polyimide composition is disclosed which has excellent high temperature bonding characteristics in the fully cured state, and improved peel strength and adhesive fracture resistance physical property characteristics. The process for making the improved adhesive involves preparing the rubber containing amic acid prepolymer by chemically reacting an amine-terminated elastomer and an aromatic diamine with an aromatic dianhydride with which a reactive chain stopper anhydride was mixed, and utilizing solvent or mixture of solvents for the reaction.

  20. Adhesion in hydrogel contacts.

    PubMed

    Torres, J R; Jay, G D; Kim, K-S; Bothun, G D

    2016-05-01

    A generalized thermomechanical model for adhesion was developed to elucidate the mechanisms of dissipation within the viscoelastic bulk of a hyperelastic hydrogel. Results show that in addition to the expected energy release rate of interface formation, as well as the viscous flow dissipation, the bulk composition exhibits dissipation due to phase inhomogeneity morphological changes. The mixing thermodynamics of the matrix and solvent determines the dynamics of the phase inhomogeneities, which can enhance or disrupt adhesion. The model also accounts for the time-dependent behaviour. A parameter is proposed to discern the dominant dissipation mechanism in hydrogel contact detachment.

  1. Adhesion in hydrogel contacts

    NASA Astrophysics Data System (ADS)

    Torres, J. R.; Jay, G. D.; Kim, K.-S.; Bothun, G. D.

    2016-05-01

    A generalized thermomechanical model for adhesion was developed to elucidate the mechanisms of dissipation within the viscoelastic bulk of a hyperelastic hydrogel. Results show that in addition to the expected energy release rate of interface formation, as well as the viscous flow dissipation, the bulk composition exhibits dissipation due to phase inhomogeneity morphological changes. The mixing thermodynamics of the matrix and solvent determines the dynamics of the phase inhomogeneities, which can enhance or disrupt adhesion. The model also accounts for the time-dependent behaviour. A parameter is proposed to discern the dominant dissipation mechanism in hydrogel contact detachment.

  2. Metallic Adhesion and Bonding

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. H.

    1984-01-01

    Although metallic adhesion has played a central part in much tribological speculation, few quantitative theoretical calculations are available. This is in part because of the difficulties involved in such calculations and in part because the theoretical physics community is not particularly involved with tribology. The calculations currently involved in metallic adhesion are summarized and shown that these can be generalized into a scaled universal relationship. Relationships exist to other types of covalent bonding, such as cohesive, chemisorptive, and molecular bonding. A simple relationship between surface energy and cohesive energy is offered.

  3. Contribution from pressure-sensitive adhesives

    NASA Astrophysics Data System (ADS)

    Cunningham, Gilbert

    1996-03-01

    The successful use of many security papers, foils and films depends on the technology of chemical fastening systems -- especially pressure sensitive adhesives. These are adhesives activated not by heat or by the evaporation of water or some other solvent, but simply by the act of application -- by pressure. These adhesives provide the means whereby laminations, substrates and seals are made effective. In addition to their physical properties these adhesives are often required to possess optical properties to allow the security materials to be visibly active and indeed the adhesive system may itself contribute as a carrier for a variety of security materials. Recent advances in adhesives chemistry have made it possible to achieve virtually all the required physical performance characteristics combined with a choice of optical properties ranging from total opacity to invisibility and including controlled translucency and tinting. The implications for security printing and packaging are important. Opacity is easy to achieve, for example by loading the adhesive with aluminum powder, by the selection of totally opaque materials like metallized film or by various printing processes. But achieving transparency is a different matter, and transparency is mandatory for applications involving the protection of documents, photographs, etc. with a clear film over-laminate. Obvious examples would be for passports, visas and other personal identification. But some security devices may themselves require protection; for example holograms or embossings. And transparency in the test laboratory is not enough. The Australian driving licence is stuck to the windshield, so the transparency of the adhesive must be sustained over long periods without deterioration due to prolonged u/v exposure, climatic conditions or aging. The commercial label market has helped to push the technology forward. There is a strong demand for the 'no-label look' for packaging of clear plastic and glass

  4. Underwater Adhesives Retrofit Pipelines with Advanced Sensors

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Houston-based Astro Technology Inc. used a partnership with Johnson Space Center to pioneer an advanced fiber-optic monitoring system for offshore oil pipelines. The company's underwater adhesives allow it to retrofit older deepwater systems in order to measure pressure, temperature, strain, and flow properties, giving energy companies crucial data in real time and significantly decreasing the risk of a catastrophe.

  5. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel

    PubMed Central

    Eshghi, Alireza; Khoroushi, Maryam; Rezvani, Alireza

    2014-01-01

    Objective: Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG) or alumina using etch-and-rinse and self-etch adhesives. Materials and Methods: Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12). Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05). Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation. Results: No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987). There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1). Also, decalcified or intact enamel groups had no significant difference (P=0.918). However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion. Conclusion: Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives. PMID:25628694

  6. In vitro comparative bond strength of contemporary self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion.

    PubMed

    Blatz, Markus B; Phark, Jin-Ho; Ozer, Fusun; Mante, Francis K; Saleh, Najeed; Bergler, Michael; Sadan, Avishai

    2010-04-01

    This study compared shear bond strengths of six self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion. One hundred twenty zirconia samples were air-abraded (group SB; n = 60) or left untreated (group NO). Composite cylinders were bonded to the zirconia samples with either BisCem (BC), Maxcem (MC), G-Cem (GC), RelyX Unicem Clicker (RUC), RelyX Unicem Applicator (RUA), or Clearfil SA Cement (CSA). Shear bond strength was tested after thermocycling, and data were analyzed with analysis of variance and Holm-Sidak pairwise comparisons. Without abrasion, RUA (8.0 MPa), GC (7.9 MPa), and CSA (7.6 MPa) revealed significantly higher bond strengths than the other cements. Air-particle abrasion increased bond strengths for all test cements (p < 0.001). GC (22.4 MPa) and CSA (18.4 MPa) revealed the highest bond strengths in group SB. Bond strengths of self-adhesive resin cements to zirconia were increased by air-particle abrasion. Cements containing adhesive monomers (MDP/4-META) were superior to other compositions.

  7. Thermophysical and flammability characterization of phosphorylated epoxy adhesives

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Giants, T. W.; Bilow, N.; Hsu, M.-T.

    1980-01-01

    Some of the thermophysical and flammability properties of a phosphorylated epoxy adhesive, which has potential applications in aircraft interior panels, are described. The adhesive consists of stoichiometric ratios of bis(3-glycidyloxphenyl)methylphosphine oxide and bis(3-aminophenyl)methylphosphine oxide containing approximately 7.5% phosphorus. Preliminary data are presented from adhesive bonding studies conducted utilizing this adhesive with polyvinyl fluoride (PVF) film and phenolic-glass laminates. Limiting oxygen index and smoke density data are presented and compared with those of the tetraglycidyl methylene dianiline epoxy resin-adhesive system currently used in aircraft interiors. Initial results indicate that the phosphorylated epoxy compound has excellent adhesive properties when used with PVF film and that desirable fire-resistant properties are maintained.

  8. Rapid adhesive bonding concepts

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Hodges, W. T.

    1984-01-01

    Adhesive bonding in the aerospace industry typically utilizes autoclaves or presses which have considerable thermal mass. As a consequence, the rates of heatup and cooldown of the bonded parts are limited and the total time and cost of the bonding process is often relatively high. Many of the adhesives themselves do not inherently require long processing times. Bonding could be performed rapidly if the heat was concentrated in the bond lines or at least in the adherends. Rapid adhesive bonding concepts were developed to utilize induction heating techniques to provide heat directly to the bond line and/or adherends without heating the entire structure, supports, and fixtures of a bonding assembly. Bonding times for specimens are cut by a factor of 10 to 100 compared to standard press bonding. The development of rapid adhesive bonding for lap shear specimens (per ASTM D1003 and D3163), for aerospace panel bonding, and for field repair needs of metallic and advanced fiber reinforced polymeric matrix composite structures are reviewed.

  9. 3-D foam adhesive deposition

    NASA Technical Reports Server (NTRS)

    Lemons, C. R.; Salmassy, O. K.

    1976-01-01

    Bonding method, which reduces amount and weight of adhesive, is applicable to foam-filled honeycomb constructions. Novel features of process include temperature-viscosity control and removal of excess adhesive by transfer to cellophane film.

  10. Cell Cycle Control and Adhesion Molecule Expression in Cells of the Immune System are Sensitive to Altered Gravity

    NASA Astrophysics Data System (ADS)

    Ullrich, O.; Paulsen, K.; Thiel, C.; Herrmann, K.; Sang, C.; Han, G.; Hemmersbach, R.; von der Wiesche, M.; Kroll, H.; Zhuang, F.; Grote, K. H.; Cogoli, A.; Zipp, F.; Engelmann, F.

    2008-06-01

    Life on earth developed in the presence and under the constant influence of gravity. Thus, it is a fundamental biological question, whether gravity is required for cellular functions and signal transduction in mammalian cells. Since the first Spacelab-Mission 20 years ago, it is known that activation and function of T lymphocytes is severely suppressed in microgravity, but the underlying molecular mechanisms are not elucidated. Experiments have been performed using ground-based facilities such as fast-rotating clinostat and hyper-g-centrifuges, and real microgravity provided by parabolic flights. We found that 1.) cells of the immune system responded cell type specifically to altered gravity, 2.) microgravity induced a multitude of initial alterations in signal transduction, whereas 3.) hypergravity of 1.8g did not induce any changes of the pathways tested, and that 4.) most of the initially altered pathways in microgravity adapted to "normal" levels within 15min. However, some pathways remained altered and could explain cell cycle arrest of T lymphocytes as observed in several long-term space experiments.

  11. Cell Adhesion in Epidermal Development and Barrier Formation

    PubMed Central

    Sumigray, Kaelyn D.; Lechler, Terry

    2015-01-01

    Cell–cell adhesions are necessary for structural integrity and barrier formation of the epidermis. Here, we discuss insights from genetic and cell biological studies into the roles of individual cell–cell junctions and their composite proteins in regulating epidermal development and function. In addition to individual adhesive functions, we will discuss emerging ideas on mechanosensation/transduction of junctions in the epidermis, noncanonical roles for adhesion proteins, and crosstalk/interdependencies between the junctional systems. These studies have revealed that cell adhesion proteins are connected to many aspects of tissue physiology including growth control, differentiation, and inflammation. PMID:25733147

  12. Use of an infrared temperature monitoring system to determine optimal temperature for arterial repair using light-activated surgical adhesive

    NASA Astrophysics Data System (ADS)

    Soller, Eric C.; Hoffman, Grant T.; McNally-Heintzelman, Karen M.

    2003-06-01

    The ability to reproduce strong repairs is essential to establishing the reliability of laser-tissue soldering techniques and advancing their use to the clinical setting. While some thermal damage is necessary to achieve a viable solder-tissue bond, excessive thermal damage leads to decreased flexibility and strength of the repair. In addition, if the temperature at the solder/tissue interface is too low, inadequate solder-tissue bonding will occur to provide a strong repair. This suggests the presence of an optimal temperature for laser-tissue repair. The choice of solder material presents another challenge to the reproducibility of strong repairs. The emerging use of chromophore-enhanced solder-doped polymer scaffolds offers numerous advantages over more traditional liquid and solid solders composed of serum albumin and an absorbing chromophore mixed in deionized water. Polymer scaffolds, fabricated from poly(L-lactic-co-glycolic acid) using a solvent casting and particulate leaching technique, are porous enough to absorb serum albumin and can also be doped with various hemostatic and thrombogenic agents to aid in tissue healing. Use of the polymer scaffolds allows one to combine the strength of solid solders and the flexibility of liquid solders without the common "runaway" problems. An in vitro study was performed to correlate tissue temperature with the tensile strength of arterial repairs formed using the chromophore-enhanced solder-doped polymer scaffolds. Laser irradiance was varied and the solder surface and solder/tissue interface temperatures were monitored by an IR temperature monitoring system and a type-K thermocouple, respectively. The solder/tissue interface temperature required for optimized tensile strength was determined to be 67 +/- 5°C. This value was in agreement with previous studies using serum albumin solders alone, where the optimal solder/tissue interface temperature was found to be 65°C.

  13. A c-di-GMP Effector System Controls Cell Adhesion by Inside-Out Signaling and Surface Protein Cleavage

    PubMed Central

    Newell, Peter D.; Boyd, Chelsea D.; Sondermann, Holger; O'Toole, George A.

    2011-01-01

    In Pseudomonas fluorescens Pf0-1 the availability of inorganic phosphate (Pi) is an environmental signal that controls biofilm formation through a cyclic dimeric GMP (c-di-GMP) signaling pathway. In low Pi conditions, a c-di-GMP phosphodiesterase (PDE) RapA is expressed, depleting cellular c-di-GMP and causing the loss of a critical outer-membrane adhesin LapA from the cell surface. This response involves an inner membrane protein LapD, which binds c-di-GMP in the cytoplasm and exerts a periplasmic output promoting LapA maintenance on the cell surface. Here we report how LapD differentially controls maintenance and release of LapA: c-di-GMP binding to LapD promotes interaction with and inhibition of the periplasmic protease LapG, which targets the N-terminus of LapA. We identify conserved amino acids in LapA required for cleavage by LapG. Mutating these residues in chromosomal lapA inhibits LapG activity in vivo, leading to retention of the adhesin on the cell surface. Mutations with defined effects on LapD's ability to control LapA localization in vivo show concomitant effects on c-di-GMP-dependent LapG inhibition in vitro. To establish the physiological importance of the LapD-LapG effector system, we track cell attachment and LapA protein localization during Pi starvation. Under this condition, the LapA adhesin is released from the surface of cells and biofilms detach from the substratum. This response requires c-di-GMP depletion by RapA, signaling through LapD, and proteolytic cleavage of LapA by LapG. These data, in combination with the companion study by Navarro et al. presenting a structural analysis of LapD's signaling mechanism, give a detailed description of a complete c-di-GMP control circuit—from environmental signal to molecular output. They describe a novel paradigm in bacterial signal transduction: regulation of a periplasmic enzyme by an inner membrane signaling protein that binds a cytoplasmic second messenger. PMID:21304920

  14. Adhesive bonding of resin composite to various titanium surfaces using different metal conditioners and a surface modification system

    PubMed Central

    ALMILHATTI, Hercules Jorge; NEPPELENBROEK, Karin Hermana; VERGANI, Carlos Eduardo; MACHADO, Ana Lúcia; PAVARINA, Ana Cláudia; GIAMPAOLO, Eunice Teresinha

    2013-01-01

    Objective This study evaluated the effect of three metal conditioners on the shear bond strength (SBS) of a prosthetic composite material to cpTi grade I having three surface treatments. Material and Methods One hundred sixty eight rivet-shaped specimens (8.0x2.0 mm) were cast and subjected to polishing (P) or sandblasting with either 50 mm (50SB) or 250 mm (250SB) Al2O3. The metal conditioners Metal Photo Primer (MPP), Cesead II Opaque Primer (OP), Targis Link (TL), and one surface modification system Siloc (S), were applied to the specimen surfaces, which were covered with four 1-mm thick layers of resin composite. The resin layers were exposed to curing light for 90 s separately. Seven specimens from each experimental group were stored in water at 37ºC for 24 h while the other 7 specimens were subjected to 5,000 thermal cycles consisting of water baths at 4ºC and 60ºC (n=7). All specimens were subjected to SBS test (0.5 mm/min) until failure occurred, and further 28 specimens were analyzed using scanning electron microscope (SEM) and X-ray energy-dispersive spectroscopy (EDS). Data were analyzed by 3-way ANOVA followed by post-hoc Tukey's test (α=0.05). Results On 50SB surfaces, OP groups showed higher SBS means than MPP (P<0.05), while no significant difference was found among OP, S, and TL groups. On 250SB surfaces, OP and TL groups exhibited higher SBS than MPP and S (P<0.05). No significant difference in SBS was found between OP and TL groups nor between MPP and S groups. The use of conditioners on 250SB surfaces resulted in higher SBS means than the use of the same products on 50SB surfaces (P<0.05). Conclusion Sandblasting associated with the use of metal conditioners improves SBS of resin composites to cpTi. PMID:24473727

  15. High-Temperature Adhesive Strain Gage Developed

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Roberts, Gary D.

    1997-01-01

    Researchers at the NASA Lewis Research Center have developed a unique strain gage and adhesive system for measuring the mechanical properties of polymers and polymer composites at elevated temperatures. This system overcomes some of the problems encountered in using commercial strain gages and adhesives. For example, typical commercial strain gage adhesives require a postcure at temperatures substantially higher than the maximum test temperature. The exposure of the specimen to this temperature may affect subsequent results, and in some cases may be higher than the glass-transition temperature of the polymer. In addition, although typical commercial strain gages can be used for short times at temperatures up to 370 C, their long-term use is limited to 230 C. This precludes their use for testing some high-temperature polyimides near their maximum temperature capability. Lewis' strain gage and adhesive system consists of a nonencapsulated, unbacked gage grid that is bonded directly to the polymer after the specimen has been cured but prior to the normal postcure cycle. The gage is applied with an adhesive specially formulated to cure under the specimen postcure conditions. Special handling, mounting, and electrical connection procedures were developed, and a fixture was designed to calibrate each strain gage after it was applied to a specimen. A variety of tests was conducted to determine the performance characteristics of the gages at elevated temperatures on PMR-15 neat resin and titanium specimens. For these tests, which included static tension, thermal exposure, and creep tests, the gage and adhesive system performed within normal strain gage specifications at 315 C. An example of the performance characteristics of the gage can be seen in the figure, which compares the strain gage measurement on a polyimide specimen at 315 C with an extensometer measurement.

  16. Ceramic Adhesive for High Temperatures

    NASA Technical Reports Server (NTRS)

    Stevens, Everett G.

    1987-01-01

    Fused-silica/magnesium-phosphate adhesive resists high temperatures and vibrations. New adhesive unaffected by extreme temperatures and vibrations. Assuring direct bonding of gap filters to tile sidewalls, adhesive obviates expensive and time-consuming task of removal, treatment, and replacement of tiles.

  17. Adhesion Casting In Low Gravity

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Cronise, Raymond J.

    1996-01-01

    Adhesion casting in low gravity proposed as technique for making new and improved materials. Advantages of low-gravity adhesion casting, in comparison with adhesion casting in normal Earth gravity, comes from better control over, and greater uniformity of, thicknesses of liquid films that form on and adhere to solid surfaces during casting.

  18. Gordon Conference on Microbial Adhesion

    DTIC Science & Technology

    1988-07-01

    immunity against certain pathogens, the role of exopolysaccharides in adhesion and the role of lectin-glycolipid interactions in adhesion. Have...pathogenesis? What governs the specificity of p; exopolysaccharides in adhesion to surfaces? This session emphasized the molecular aspects of

  19. Rapid Adhesive Bonding of Composites

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Fox, R. L.; Sterling, S. Elmo, Jr.; Buckley, J. D.; Inge, Spencer V., Jr.; Burcher, L. G.; Wright, Robert E., Jr.

    1986-01-01

    Strong bonds created in less time and with less power than use of conventional bonding methods. Rapid adhesive bonding (RAB) technique for composites uses high-frequency induction heating toroids to quickly heat metallic susceptor impregnated with thermoplastic adhesive or sandwiched between thermoset or thermoplastic adhesive cloths or films. Susceptor steel screen or perforated steel foil.

  20. Vibrio parahaemolyticus ExsE is requisite for initial adhesion and subsequent type III secretion system 1-dependent autophagy in HeLa cells

    PubMed Central

    Erwin, Daniel P.; Nydam, Seth D.

    2012-01-01

    Vibrio parahaemolyticus pandemic serotype O3 : K6 causes acute gastroenteritis, wound infections and septicaemia in humans. This organism encodes two type III secretion systems (T3SS1 and T3SS2); host-cell cytotoxicity has been attributed to T3SS1. Synthesis and secretion of T3SS1 proteins is positively regulated by ExsA, which is presumptively regulated by the ExsCDE pathway, similar to Pseudomonas aeruginosa. Herein we deleted the putative exsE from V. parahaemolyticus and found constitutive expression of the T3SS1 in broth culture as expected. More importantly, however, in a cell culture model, the ΔexsE strain was unable to induce cytotoxicity, as measured by release of lactate dehydrogenase (LDH), or autophagy, as measured by LC3 conversion. This is markedly different from P. aeruginosa, where deletion of exsE has no effect on host-cell cytolysis. Swarming and cytoadhesion were reduced for the deletion mutant and could be recovered along with T3SS1-induced HeLa cell cytotoxicity by in cis expression of exsE in the ΔexsE strain. Loss of adhesion and swarming motility was associated with the loss of flagella biogenesis in the exsE-deficient strain. Mouse mortality was unaffected by the deletion of exsE compared with a wild-type control, suggesting that additional adhesins are important for intoxication in vivo. Based on these data, we conclude that ExsE contributes to the negative regulation of T3SS1 and, in addition, contributes to regulation of an adherence phenotype that is requisite for translocation of effector proteins into HeLa cells. PMID:22767546

  1. Improved primer for bonding polyurethane adhesives to metals

    NASA Technical Reports Server (NTRS)

    Constanza, L. J.

    1969-01-01

    Primer ensures effective bonding integrity of polyurethane adhesives on metal surfaces at temperatures ranging from minus 423 degrees to plus 120 degrees F. It provides greater metal surface protection and bond strengths over this temperature range than could be attained with other adhesive systems.

  2. Actin Foci Adhesion of D. discoideum

    NASA Astrophysics Data System (ADS)

    Flanders, Bret; Paneru, Govind

    2014-03-01

    Amoeboid migration is a fast (10 μm min-1) integrin-independent mode of migration that is important with D. discoideum, leukocytes, and breast cancer cells. It is poorly understood, but depends on the establishment of adhesive contacts to the substrate where the cell transmits traction forces. In pre-aggregative D. discoideum, a model system for learning about amoeboid migration, these adhesive contacts are discrete complexes that are known as actin-foci. They have an area of ~ 0.5 μm2 and a lifetime of ~ 20 s. This talk will present measurements of the adhesive character of actin foci that have been obtained using a submicron force transducer that was designed for this purpose. Results on the rupture stresses and lifetimes of individual acting foci under nano-newton level forces will be described in the context of a general theory for cellular adhesion. This theory depends on, essentially, three cellular properties: the membrane-medium surface tension, the number density of adhesion receptors in the membrane, and the receptor-substrate potential energy surface. Therefore, the use of the transducer to determine the surface tension will be presented, as well.

  3. Pattern formation in cell membrane adhesion

    NASA Astrophysics Data System (ADS)

    Discher, Dennis; Hategan, A.; Sengupta, K.; Sackmann, E.

    2004-03-01

    Strong adhesion of highly active cells often nucleates focal adhesions or related structures that are, over time, reinforced by cytoskeleton (actin, etc.). Red cells lack such complex adhesion systems, but they are shown here to also exhibit complex spatial patterns within an adhesive contact zone. While strong adhesion and spreading of the red cell to a dense poly-L-lysine surface appears complete in < 1 s by reflective interference microscopy, over longer times of 10-15 min or more distinct patterns in fluorescently labeled membrane components emerge. The fluorescent lipid Fl-PE (fluorescein phosphoethanolamine), in particular, is seen to diffuse and reorganize (eg. worm-like domains of <500 nm) within the contact zone, independent of whether the cell is intact or ruptured. Lipid patterns are accompanied by visible perturbations in band 3 distribution and weaker perturbations in membrane skeleton actin. Although fluorescent poly-L-lysine is shown to be uniform under cells, pressing down on the membrane quenches the lipid patterns and reveals the topographical basis for pattern formation. Regions of strong contact are thus separated by regions where the membrane is more distant from the surface.

  4. Thermodynamics of capillary adhesion between rough surfaces.

    PubMed

    de Boer, M P; de Boer, P C T

    2007-07-01

    According to the Dupré equation, the work of adhesion is equal to the surface energy difference in the separated versus the joined materials minus an interfacial energy term. However, if a liquid is at the interface between two solid materials, evaporation or condensation takes place under equilibrium conditions. The resulting matter exchange is accompanied by heat flow, and can reduce or increase the work of adhesion. Accounting for the energies requires an open-system control volume analysis based on the first law of thermodynamics. Depending on whether evaporation or condensation occurs during separation, a work term that is negative or positive must be added to the surface energy term to calculate the work of adhesion. We develop and apply this energy balance to several different interface geometries and compare the work of adhesion to the surface energy created. The model geometries include a sphere on a flat with limiting approximations and also with an exact solution, a circular disc, and a combination of these representing a rough interface. For the sphere on a flat, the work of adhesion is one half the surface energy created if equilibrium is maintained during the pull-off process.

  5. Spiders Tune Glue Viscosity to Maximize Adhesion.

    PubMed

    Amarpuri, Gaurav; Zhang, Ci; Diaz, Candido; Opell, Brent D; Blackledge, Todd A; Dhinojwala, Ali

    2015-11-24

    Adhesion in humid conditions is a fundamental challenge to both natural and synthetic adhesives. Yet, glue from most spider species becomes stickier as humidity increases. We find the adhesion of spider glue, from five diverse spider species, maximizes at very different humidities that matches their foraging habitats. By using high-speed imaging and spreading power law, we find that the glue viscosity varies over 5 orders of magnitude with humidity for each species, yet the viscosity at maximal adhesion for each species is nearly identical, 10(5)-10(6) cP. Many natural systems take advantage of viscosity to improve functional response, but spider glue's humidity responsiveness is a novel adaptation that makes the glue stickiest in each species' preferred habitat. This tuning is achieved by a combination of proteins and hygroscopic organic salts that determines water uptake in the glue. We therefore anticipate that manipulation of polymer-salts interaction to control viscosity can provide a simple mechanism to design humidity responsive smart adhesives.

  6. Doxycycline-encapsulated nanotube-modified dentin adhesives.

    PubMed

    Feitosa, S A; Palasuk, J; Kamocki, K; Geraldeli, S; Gregory, R L; Platt, J A; Windsor, L J; Bottino, M C

    2014-12-01

    This article presents details of fabrication, biological activity (i.e., anti-matrix metalloproteinase [anti-MMP] inhibition), cytocompatibility, and bonding characteristics to dentin of a unique doxycycline (DOX)-encapsulated halloysite nanotube (HNT)-modified adhesive. We tested the hypothesis that the release of DOX from the DOX-encapsulated nanotube-modified adhesive can effectively inhibit MMP activity. We incorporated nanotubes, encapsulated or not with DOX, into the adhesive resin of a commercially available bonding system (Scotchbond Multi-Purpose [SBMP]). The following groups were tested: unmodified SBMP (control), SBMP with nanotubes (HNT), and DOX-encapsulated nanotube-modified adhesive (HNT+DOX). Changes in degree of conversion (DC) and microtensile bond strength were evaluated. Cytotoxicity was examined on human dental pulp stem cells (hDPSCs). To prove the successful encapsulation of DOX within the adhesives-but, more important, to support the hypothesis that the HNT+DOX adhesive would release DOX at subantimicrobial levels-we tested the antimicrobial activity of synthesized adhesives and the DOX-containing eluates against Streptococcus mutans through agar diffusion assays. Anti-MMP properties were assessed via β-casein cleavage assays. Increasing curing times (10, 20, 40 sec) led to increased DC values. There were no statistically significant differences (p > .05) in DC within each increasing curing time between the modified adhesives compared to SBMP. No statistically significant differences in microtensile bond strength were noted. None of the adhesives eluates were cytotoxic to the human dental pulp stem cells. A significant growth inhibition of S. mutans by direct contact illustrates successful encapsulation of DOX into the experimental adhesive. More important, DOX-containing eluates promoted inhibition of MMP-1 activity when compared to the control. Collectively, our findings provide a solid background for further testing of encapsulated MMP

  7. Passively stuck: death does not affect gecko adhesion strength.

    PubMed

    Stewart, William J; Higham, Timothy E

    2014-12-01

    Many geckos use adhesive toe pads on the bottom of their digits to attach to surfaces with remarkable strength. Although gecko adhesion has been studied for hundreds of years, gaps exist in our understanding at the whole-animal level. It remains unclear whether the strength and maintenance of adhesion are determined by the animal or are passively intrinsic to the system. Here we show, for the first time, that strong adhesion is produced passively at the whole-animal level. Experiments on both live and recently euthanized tokay geckos (Gekko gecko) revealed that death does not affect the dynamic adhesive force or motion of a gecko foot when pulled along a vertical surface. Using a novel device that applied repeatable and steady-increasing pulling forces to the foot in shear, we found that the adhesive force was similarly high and variable when the animal was alive (mean ± s.d. = 5.4 ± 1.7 N) and within 30 min after death (5.4 ± 2.1 N). However, kinematic analyses showed that live geckos are able to control the degree of toe pad engagement and can rapidly stop strong adhesion by hyperextending the toes. This study offers the first assessment of whole-animal adhesive force under extremely controlled conditions. Our findings reveal that dead geckos maintain the ability to adhere with the same force as living animals, disproving that strong adhesion requires active control.

  8. A microfabricated gecko-inspired controllable and reusable dry adhesive

    NASA Astrophysics Data System (ADS)

    Chary, Sathya; Tamelier, John; Turner, Kimberly

    2013-02-01

    Geckos utilize a robust reversible adhesive to repeatedly attach and detach from a variety of vertical and inverted surfaces, using structurally anisotropic micro- and nano-scale fibrillar structures. These fibers, when suitably articulated, are able to control the real area of contact and thereby generate high-to-low van der Waals forces. Key characteristics of the natural system include highly anisotropic adhesion and shear forces for controllable attachment, a high adhesion to initial preload force ratio (μ‧) of 8-16, lack of inter-fiber self-adhesion, and operation over more than 30 000 cycles without loss of adhesion performance. A highly reusable synthetic adhesive has been developed using tilted polydimethylsiloxane (PDMS) half-cylinder micron-scale fibers, retaining up to 77% of the initial value over 10 000 repeated test cycles against a flat glass puck. In comparison with other gecko-inspired adhesives tested over 10 000 cycles or more thus far, this paper reports the highest value of μ‧, along with a large shear force of ˜78 kPa, approaching the 88-226 kPa range of gecko toes. The anisotropic adhesion forces are close to theoretical estimates from the Kendall peel model, quantitatively showing how lateral shearing articulation in a manner similar to the gecko may be used to obtain adhesion anisotropy with synthetic fibers using a combination of tilt angle and anisotropic fiber geometry.

  9. Passively stuck: death does not affect gecko adhesion strength

    PubMed Central

    Stewart, William J.; Higham, Timothy E.

    2014-01-01

    Many geckos use adhesive toe pads on the bottom of their digits to attach to surfaces with remarkable strength. Although gecko adhesion has been studied for hundreds of years, gaps exist in our understanding at the whole-animal level. It remains unclear whether the strength and maintenance of adhesion are determined by the animal or are passively intrinsic to the system. Here we show, for the first time, that strong adhesion is produced passively at the whole-animal level. Experiments on both live and recently euthanized tokay geckos (Gekko gecko) revealed that death does not affect the dynamic adhesive force or motion of a gecko foot when pulled along a vertical surface. Using a novel device that applied repeatable and steady-increasing pulling forces to the foot in shear, we found that the adhesive force was similarly high and variable when the animal was alive (mean ± s.d. = 5.4 ± 1.7 N) and within 30 min after death (5.4 ± 2.1 N). However, kinematic analyses showed that live geckos are able to control the degree of toe pad engagement and can rapidly stop strong adhesion by hyperextending the toes. This study offers the first assessment of whole-animal adhesive force under extremely controlled conditions. Our findings reveal that dead geckos maintain the ability to adhere with the same force as living animals, disproving that strong adhesion requires active control. PMID:25472940

  10. Assessment of the Shear Bond Strength between Nanofilled Composite Bonded to Glass-ionomer Cement Using Self-etch Adhesive with Different pHs and Total-Etch Adhesive

    PubMed Central

    Sharafeddin, Farahnaz; Choobineh, Mohammad Mehdi

    2016-01-01

    Statement of the Problem In the sandwich technique, the undesirable bond between the composite resin and glass-ionomer cement (GIc) is one of the most important factors which lead to the failure of restoration. Total-etch and self-etch adhesives may improve the bond strength based on their pH. Purpose The purpose of this study was to evaluate the shear bond strength between the nanofilled composite resin and GIc using different adhesives. Materials and Method In this experimental study, 40 specimens (6×6mm) in 4 groups (n=10) were prepared in acrylic mold. Each specimen contained conventional GI ChemFil Superior with a height of 3mm, bonded to Z350 composite resin with a height measured 3mm. In order to bond the composite to the GI, the following adhesives were used, respectively: A: mild Clearfil SE Bond self-etch (pH=2), B: intermediate OptiBond self-etch (pH=1.4), C: strong Adper Prompt L-Pop (pH=1), and D: Adper Single Bond 2 total-etch (pH=7.2). The shear bond strength was measured by using universal testing machine with a crosshead speed of 1mm/min. One-way ANOVA and Tukey’s test were used to analyze the data (p< 0.05). Results The shear bond strength in group A was significantly higher than group B (p= 0.002), C (p< 0.001), and D (p< 0.001). Moreover, the shear bond strength of groups A and B (self-etch) was significantly different from group D (total-etch) (p< 0.001); and C (self-etch) with D (p= 0.024). Conclusion The results of this study showed that applying the mild self-etch adhesive between the composite and the GIc results in stronger shear bond strength compared to intermediate and strong self-etch adhesives. Moreover, the self-etch adhesive increased the shear bond strength between composite resin and GIc more significantly than total-etch adhesive. PMID:26966701

  11. Effects of military environments on optical adhesives

    NASA Astrophysics Data System (ADS)

    Krevor, David H.; Vazirani, Hargovind N.; Xu, Antai

    1993-09-01

    The military environment imposes harsh conditions on adhesives. These conditions differ both qualitatively and quantitatively from typical civilian environments. Military systems must withstand exposure to moisture, temperature extremes, sunlight/ultraviolet radiation and other climatic stresses that are far in excess of what would be expected for commercial applications. Additionally, civilian products rarely consider issues such as fungus susceptibility, resistance to jet fuels and de-icing solvents, or resistance to chemical warfare agents and their decontaminants. The effect of military environments on both the optical and mechanical properties of optical adhesives are discussed for avionic display applications.

  12. Environmentally compliant adhesive joining technology

    SciTech Connect

    Tira, J.S.

    1996-08-01

    Adhesive joining offers one method of assembling products. Advantages of adhesive joining/assembly include distribution of applied forces, lighter weight, appealing appearance, etc. Selecting environmentally safe adhesive materials and accompanying processes is paramount in today`s business climate if a company wants to be environmentally conscious and stay in business. Four areas of adhesive joining (adhesive formulation and selection, surface preparation, adhesive bonding process, waste and pollution generation/cleanup/management) all need to be carefully evaluated before adhesive joining is selected for commercial as well as military products. Designing for six sigma quality must also be addressed in today`s global economy. This requires material suppliers and product manufacturers to work even closer together.

  13. [Fulminant adhesive arachnoiditis].