Science.gov

Sample records for adhesives clearfil se

  1. Two-year clinical performance of Clearfil SE and Clearfil S3 in restoration of unabraded non-carious class V lesions.

    PubMed

    Brackett, Martha Goël; Dib, Alejandro; Franco, Guillermo; Estrada, Blanca E; Brackett, William W

    2010-01-01

    This study was undertaken to evaluate the two-year clinical performance of a self-etching primer and a self-etching adhesive, both of which employ the same acidic monomer. Forty pairs of restorations of AP-X hybrid resin composite (Kuraray Co, Ltd, Osaka, Japan) were placed in caries-free cervical erosion/abfraction lesions. Based on insensitivity to air, the dentin in 62% of these lesions was considered to be sclerotic. The restorations were placed with no abrasion of tooth surfaces, except for cleaning with plain pumice and no use of phosphoric acid etching, which is counter to the manufacturer's instructions that call for etching of unprepared enamel. One restoration from each pair was placed using Clearfil SE Bond, an adhesive employing a self-etching primer, and the other was placed using Clearfil S3 Bond, a self-etching adhesive. To emulate the results likely to occur in a private practice, the restorations were placed by well-educated, experienced clinicians who had no particular expertise in adhesive dentistry research and who placed the restorations according only to their interpretation of the manufacturer's instructions. The restorations were clinically evaluated at baseline and at 6, 12 and 24 months, using modified Ryge/USPHS criteria. For both products, retention of 81%-84% of the restorations was observed over two years, which is lower than has been previously observed with these products and is likely due to limitations in the manufacturer's instructions compounded by inexperience of the operators in adhesive dentistry research. One restoration placed with each adhesive demonstrated secondary caries, which was probably attributable to the study being conducted in a non-fluoridated area and which reduced the percentages of clinically successful restorations to 78%-81%. No statistically significant difference (p = 0.50) between the two adhesives was observed in overall performance.

  2. The effect of different adhesive system applications on push-out bond strengths of glass fiber posts

    PubMed Central

    Deniz Arısu, Hacer; Üçtaşlı, Mine Betül; Okay, Tufan Can

    2013-01-01

    PURPOSE Over the past years, the adhesion of fiber posts luted with simplified adhesive systems has been a matter of great interest. The aim of this study was to assess the post retentive potential of a self-adhesive resin cement using different adhesive systems to compare the push-out bond strengths of fiber posts. MATERIALS AND METHODS The post spaces of 56 mandibular premolar roots were prepared and divided into 4 experimental groups and further divided into 2 subgroups according to testing time (n=7). The fiber posts (Rely X Fiber Post) were luted with a self-adhesive resin cement (RelyX Unicem) and one of the following adhesive systems: no adhesive, a total-etch adhesive resin (Single Bond), a two-step self-etch adhesive resin (Clearfil SE Bond) and a one-step self-etch adhesive resin (Clearfil S3 Bond). Each root was cut horizontally, and 1.5 mm thick six root segments were prepared. Push-out tests were performed after one week or three months (0.5 mm/min). Statistical analysis were performed with three-way ANOVA (α=.05). RESULTS Cervical root segments showed higher bond strength values than middle segments. Adhesive application increased the bond strength. For one week group, the total-etch adhesive resin Single Bond showed higher bond strength than the self-adhesive resin cement RelyX Unicem applied without adhesive resin at middle region. For 3 months group, the two-step self-etch adhesive resin Clearfil SE Bond showed the highest bond strength for both regions. Regarding the time considered, Clearfil SE Bond 3 months group showed higher bond strength values than one week group. CONCLUSION Using the adhesive resins in combination with the self-adhesive resin cement improves the bond strengths. The bond strength values of two-step self-etch adhesive resin Clearfil SE Bond improved as time passes. PMID:24049572

  3. Initial adhesion of glass-fiber-reinforced composite to the surface of porcine calvarial bone.

    PubMed

    Tuusa, S M R; Lassila, L V J; Matinlinna, J P; Peltola, M J; Vallittu, P K

    2005-11-01

    The aim of this preliminary study was to compare the initial bond strength of the glass-fiber-reinforced composite veil to the surface of the porcine calvarial compact bone using different adhesives. Fiber-reinforced composite (FRC) made of E-glass fiber veil with the BisGMA-PMMA resin system was used in the study. For the shear bond strength test, porcine calvarial bone cubes were mounted into resin matrix. FRC-veil discs were bonded to compact bone with different types of adhesives: (A) BisGMA-HEMA based (3M-ESPE Scotchbond Multi-Purpose Adhesive), (B) 4-META/UDMA/BisGMA based (Unifil Bond Bonding Agent) and MDP based (Clearfil Se Bond adhesive), (C) UDMA/BisGMA/PMMA-based experimental adhesive, and (D) silane-based (APS, ICS, MPS) experimental adhesives. The surface of the bone was mechanically roughened and was either used as such, treated with dental primers (Unifil Bond Self-etching Primer, Clearfil Se Bond Primer), or treated with an experimental silane mixture (APS, ICS, MPS), or with a mixture of the experimental silane liquid and Clearfil Se Bond Primer. The 3M-ESPE Scotchbond Multi-Purpose Adhesive and UDMA/BisGMA/PMMA experimental adhesive gave poor results in the shear bond test (0.58 and 0.40 MPa, respectively). Unifil Bond Bonding Agent and Clearfil Se Bond adhesive with respective primers markedly improved the shear bond strength; with Unifil the result was 3.40 MPa, and with Clearfil it was 6.19 MPa. When the bone surface was primed with a mixture of Clearfil Se Bond Primer and Clearfil Porcelain Bond Activator, the Clearfil Se Bond adhesive-impregnated FRC veil gave the best adhesion to the bone surface in this test: 9.50 MPa. The addition of bioactive glass granules between the veil and the bone lowered the shear bond strength in the test system described above to 6.72 MPa. The test systems with the silane mixture were also promising. In the SEM study, it was found that the mechanical treatment reveals the pores of the bone surface. Chemical

  4. Influence of adhesive systems on bond strength between fiber posts and composite resin cores in a pull-out test design.

    PubMed

    Wrbas, Karl-Thomas; Schirrmeister, Jörg Fabian; Altenburger, Markus Jörg; Agrafioti, Anastasia; Kielbassa, Andrej Michael

    2007-05-01

    The aim of this study was to evaluate the effects of post surface conditioning with adhesive systems on tensile bond strength between two composite resin core systems and FRP posts (ER DentinPost). Forty-eight posts were trimmed at the coronal part, and the upper part of 3 mm was covered with a standardized composite resin core build-up. Twenty-four posts were treated with the respective adhesive systems. Four groups were formed: G1 - ClearfilCore; G2 - Clearfil New Bond + ClearfilCore; G3 - MultiCore Flow; and G4 - AdheSE + MultiCore Flow. Mean (SD) bond strengths in MPa were 7.53 (0.89) for ClearfilCore and 8.08 (0.93) for New Bond + ClearfilCore; 5.80 (0.39) for MultiCore Flow and 5.92 (0.43) for AdheSE + MultiCore Flow. ClearfilCore achieved significantly higher bond strengths than MultiCore Flow (two-way ANOVA; p<0.0001). In conclusion, composite resin core materials exerted a significant influence on tensile bond strength, while adhesive systems did not significantly affect the results.

  5. Microleakage under orthodontic brackets bonded with different adhesive systems

    PubMed Central

    Alkis, Huseyin; Turkkahraman, Hakan; Adanir, Necdet

    2015-01-01

    Objective: This in vitro study aimed to compare the microleakage of orthodontic brackets between enamel-adhesive and adhesive-bracket interfaces at the occlusal and gingival margins bonded with different adhesive systems. Materials and Methods: A total of 144 human maxillary premolar teeth extracted for orthodontic reasons was randomly divided into four groups. Each group was then further divided into three sub-groups. Three total-etching bonding systems (Transbond XT, Greengloo and Kurasper F), three one-step self-etching bonding systems (Transbond Plus SEP, Bond Force and Clearfil S3), three two-step self-etching bonding systems (Clearfil SE Bond, Clearfil Protectbond and Clearfil Liner Bond), and three self-adhesive resin cements (Maxcem Elite, Relyx U 100 and Clearfil SA Cement) were used to bond the brackets to the teeth. After bonding, all teeth were sealed with nail varnish and stained with 0.5% basic fuchsine for 24 h. All samples were sectioned and examined under a stereomicroscope to score for microleakage at the adhesive–enamel and adhesive–bracket interfaces from both occlusal and gingival margins. Statistical Analysis Used: Statistical analyses were performed with Kruskal–Wallis and Wilcoxon signed-rank tests. Results: The results indicate no statistically significant differences between the microleakage scores of the adhesives; microleakage was detected in all groups. Comparison of the average values of the microleakage scores in the enamel–adhesive and adhesive–bracket interfaces indicated statistically significant differences (P < 0.05). The amount of the microleakage was higher at the enamel–adhesive interface than at the bracket-adhesive interface. Conclusions: All of the brackets exhibited some amount of microleakage. This result means that microleakage does not depend on the type of adhesive used. PMID:25713494

  6. Zinc-doped dentin adhesive for collagen protection at the hybrid layer.

    PubMed

    Osorio, Raquel; Yamauti, Monica; Osorio, Estrella; Román, Julio S; Toledano, Manuel

    2011-10-01

    The aim of the study was to ascertain whether the addition of zinc to adhesives may decrease metalloproteinase-mediated collagen degradation without affecting bonding efficacy. Human dentin beams were treated with phosphoric acid, with Clearfil SE Bond Primer or with Clearfil SE Bond Primer plus ZnCl(2) (2 wt%). Acid-etched dentin was infiltrated with Single Bond, Single Bond plus ZnCl(2) (2 wt%), or Single Bond plus ZnO nanoparticles (10 wt%), and Clearfil SE Bond-primed dentin was infiltrated with Clearfil SE Bonding resin, Clearfil SE-Bonding resin with ZnCl(2) (2 wt%), or Clearfil SE-Bonding resin with ZnO nanoparticles (10 wt%). The C-terminal telopeptide concentrations were determined 24 h, and 1 and 4 wk after treatment. Microtensile bond strength to dentin was determined for the tested adhesives. Matrix metalloproteinases-mediated collagen degradation occurred in acid-etched and SE-primed dentin. Resin infiltration decreased collagen degradation. Lower collagen degradation was found for SE Bond than for Single Bond. Zinc-doped Single Bond resin always reduced collagen degradation, the ZnO particles being more effective than ZnCl(2) . Zinc-doped SE Bond reduced the liberation of C-terminal telopeptide only at 24 h. Bond strength to dentin was not decreased when Zn-doped resins were employed, except when ZnCl(2) was added to SE Primer. Zinc-doped resin reduced collagen degradation in Single Bond hybrid layers, but did not affect bond strength. The addition of zinc to SE Bond had no beneficial effects.

  7. Polymerization behavior within adhesive layer of one- and two-step self-etch adhesives: a micro-Raman spectroscopic study.

    PubMed

    Sakano, Wakae; Nakajima, Masatoshi; Prasansuttiporn, Taweesak; Foxton, Richard M; Tagami, Junji

    2013-01-01

    This study investigated the polymerization behavior within the adhesive layer of one- and two-step self-etch adhesives at the dentincomposite interface. Dentin surfaces were applied with Clearfil S(3) Bond (TS), Clearfil S(3) Bond Plus (TSP) and Clearfil SE Bond (SE), and then placed with a light-curing resin composite. After water storage for 24 h, the bonded teeth were sectioned and polished perpendicular to the adhesive interface, and the degree of conversion (DC) of the adhesive layer between the dentin and composite were determined using micro-Raman analysis. For all the adhesives, the DCs of the adhesive layers significantly decreased near the adhesive-composite join (p<0.05). For the maximum DC value (Pmax) and the DC value at the adhesive-composite join (Pitf), TS was significantly lower than TSP and SE (p<0.05). The polymerization of oxygen-inhibited layer at the top of the adhesive could not reach maximum DC even after polymerization of the overlying resin composite.

  8. Bond Strength of Methacrylate-Based Composite to Dentin using a Silorane Adhesive

    DTIC Science & Technology

    2013-06-06

    failures using Clearfil SE Bond were mixed or cohesive in nature suggesting a more stable adhesive interface (Al- Salehi and Burke, 1997). However, the...REFERENCES Al- Salehi SK, Burke FJ. Methods used in dentin bonding tests: An analysis of 50 investigations on bond strength. Quint Inter 1997;28:717–723

  9. Self-assembled Nano-layering at the Adhesive interface.

    PubMed

    Yoshida, Y; Yoshihara, K; Nagaoka, N; Hayakawa, S; Torii, Y; Ogawa, T; Osaka, A; Meerbeek, B Van

    2012-04-01

    According to the 'Adhesion-Decalcification' concept, specific functional monomers within dental adhesives can ionically interact with hydroxyapatite (HAp). Such ionic bonding has been demonstrated for 10-methacryloyloxydecyl dihydrogen phosphate (MDP) to manifest in the form of self-assembled 'nano-layering'. However, it remained to be explored if such nano-layering also occurs on tooth tissue when commercial MDP-containing adhesives (Clearfil SE Bond, Kuraray; Scotchbond Universal, 3M ESPE) were applied following common clinical application protocols. We therefore characterized adhesive-dentin interfaces chemically, using x-ray diffraction (XRD) and energy-dispersive x-ray spectroscopy (EDS), and ultrastructurally, using (scanning) transmission electron microscopy (TEM/STEM). Both adhesives revealed nano-layering at the adhesive interface, not only within the hybrid layer but also, particularly for Clearfil SE Bond (Kuraray), extending into the adhesive layer. Since such self-assembled nano-layering of two 10-MDP molecules, joined by stable MDP-Ca salt formation, must make the adhesive interface more resistant to biodegradation, it may well explain the documented favorable clinical longevity of bonds produced by 10-MDP-based adhesives.

  10. New method of measuring permeability of adhesive resin films

    PubMed Central

    Sword, Rhoda J.; Sword, Jeremy J.; Brackett, William W.; Tay, Franklin R.; Pashley, David H.

    2013-01-01

    Summary Objectives To develop a simple gravimetric method for measuring the permeability of adhesive resin films. Methods Using commercially available permeability cups designed for industrial permeability testing, the loss of mass of water vapour or liquid water from a stainless steel cup sealed with a resin film was measured over 1–2 days. The permeabilities of Parafilm (control), Clearfil SE Bond adhesive, Xeno IV and One-Up Bond F were compared. Results The lowest resin film permeability was obtained with Clearfil SE Bond films. The permeabilities of Xeno IV and One-Up Bond F to liquid water were 2.76 and 3.27-fold higher (p<0.001) than that of Clearfil SE Bond. Liquid water permeability was always 2.8 – 3.8-fold higher (p<0.05) than water vapour transmission rate. Conclusions Quantitative comparisons of the permeability properties of resin films can be made gravimetrically. The large permeability cups that are available commercially may be reduced in size in the future for measuring dentine adhesive films with smaller surface areas that are less liable to contain imperfections. PMID:21469402

  11. Effect of thermocycling on the durability of etch-and-rinse and self-etch adhesives on dentin.

    PubMed

    Sangwichit, Ketkamon; Kingkaew, Ruksaphon; Pongprueksa, Pong; Senawongse, Pisol

    2016-01-01

    The objective was to compare bond strengths of adhesives with/without thermocycling and to analyze the micromorphology of resindentin interfaces. Flat dentin surfaces were prepared and divided into eight groups to bond with four etch-and-rinse adhesives (Optibond FL, Adper Scotchbond Multi-Purpose, Optibond Solo Plus, and Single Bond 2) and four self-etch adhesives (Clearfil SE Bond, Adper SE Plus, Clearfil S(3) Bond and Adper Easy Bond). Specimens were further divided into two subgroups subjected for with/without thermocycling and then subjected to both micro-tensile test and resin-dentin interface evaluation. The results revealed that there were significant differences in bond strength between the groups with and without thermocycling for all etch-and-rinse groups and for the Adper Easy Bond self-etch group (p<0.01). Clearfil SE Bond demonstrated highly durable bond strengths. Furthermore, more silver ion uptake was observed at the resin-dentin interfaces for all etch-and-rinse adhesives and Adper SE Plus and Adper Easy Bond after thermocycling.

  12. The Effect of Epigallocatechin Gallate on the Dentin Bond Durability of Two Self-etch Adhesives

    PubMed Central

    Khamverdi, Zahra; Rezaei-Soufi, Loghman; Rostamzadeh, Tayebeh

    2015-01-01

    Statement of the Problem Self-etch adhesives can activate matrix metalloproteinase (MMP) which hydrolyzes organic matrix of demineralized dentin. Epigallocatechin gallate (EGCG), especially found in green tea, could inhibit the activation of MMP. Purpose The aim of this study was to evaluate the effect of adding Epigallocatechin gallate (EGCG) into two types of adhesives on dentin bond strength. Materials and Method In this experimental study, 64 extracted third molars were randomly divided into 16 groups. Clearfil SE Bond and Filtek Silorane System with 0 µM, 25µM, 50µM, and 100µM concentration of 95% EGCG were used for bonding. Following the bonding and fabrication of beams (1±0.1 mm2) and storage in distilled water, the specimens were subjected to thermal cycles. Microtensile bond strengths of 8 groups were examined after 24 hours and others were tested after 6 months. The fracture modes of specimens were evaluated by stereomicroscope and SEM. Data were analyzed by three-way ANOVA and t-test (α = 0.05). Results The results of the three- way ANOVA test showed that types of bonding, storage time and interactive effect of EGCG concentration and bonding influenced the bond strength of specimens significantly (p<0.05). The results of the t-test indicated that storage time only had significant effect on bond strength of Clearfil SE Bond with no EGCG (p= 0.017). The most common failure modes in Filtek Silorane System groups and Clearfil SE Bond groups were adhesive and mixed/cohesive, respectively. The results of SEM at different magnifications showed that most fractures have occurred in the hybrid layer. Conclusion Although adding 100 µM volume of EGCG to Clearfil SE Bond can preserve the dentin bond, incorporation of EGCG in the silorane system, especially in high concentrations, decreases the bond strength after 6 months. PMID:26046100

  13. Initial and long-term bond strengths of one-step self-etch adhesives with silane coupling agent to enamel-dentin-composite in combined situation.

    PubMed

    Mamanee, Teerapong; Takahashi, Masahiro; Nakajima, Masatoshi; Foxton, Richard M; Tagami, Junji

    2015-01-01

    This study evaluated the effect of adding silane coupling agent on initial and long-term bond strengths of one-step self-etch adhesives to enamel-dentin-composite in combined situation. Cervical cavities were prepared on extracted molars and filled with Clearfil AP-X. After water-storage for one-week, the filled teeth were sectioned in halves to expose enamel, dentin and composite surfaces and then enamel-dentin-composite surface was totally applied with one of adhesive treatments (Clearfil SE One, Clearfil SE One with Clearfil Porcelain Bond Activator, Beautibond Multi, Beautibond Multi with Beautibond Multi PR Plus and Scotchbond Universal). After designed period, micro-shear bond strengths (µSBSs) to each substrate were determined. For each period of water-storage, additive silane treatments significantly increased µSBS to composite (p<0.001). On the other hand, they significantly decreased µSBS to dentin (p<0.001), although did not have adverse effect on µSBS to enamel (p>0.05). Moreover, the stability of µSBS was depended on materials and substrates used.

  14. Effect of Fluoride-Releasing Adhesive Systems on the Mechanical Properties of Eroded Dentin.

    PubMed

    Guedes, Ana Paula Albuquerque; Moda, Mariana Dias; Suzuki, Thaís Yumi Umeda; Godas, André Gustavo de Lima; Sundfeld, Renato Herman; Briso, André Luiz Fraga; Santos, Paulo Henrique dos

    2016-01-01

    The aim of the study was to evaluate the effect of erosive pH cycling with solutions that simulate dental erosion on Martens hardness (HMV) and elastic modulus (Eit) of dentin restored with fluoride-releasing adhesive systems. Twenty-seven bovine dentin slabs were restored with three adhesive systems: Adper Single Bond 2 total-etch adhesive system, One Up Bond F and Clearfil SE Protect fluoride-containing self-etching adhesive systems. The restorations were made with Filtek Z250. The HMV and Eit values at distances of 10, 30, 50 and 70 µm from the interface were evaluated using a dynamic ultra microhardness tester before and after immersion in deionized water, citric acid and hydrochloric acid (n=9). Data were submitted to repeated-measures ANOVA and Fisher's PLSD tests (=0.05). After erosive cycling, HMV values of dentin decreased in all groups. For dentin restored with Adper Single Bond 2, the lowest values were found closer to the hybrid layer, while for One Up Bond F and Clearfil SE Protect, the values remained unaltered at all distances. For dentin restored with fluoride-releasing adhesive systems, a decrease in Eit was found, but after 30 µm this difference was not significant. The acid substances were able to alter HMV and Eit of the underlying dentin. For fluoride-releasing adhesives, the greater the distance from bonded interface, the lower the Eit values. The fluoride in One Up Bond F and Clearfil SE Protect was able to protect the underlying dentin closer to the materials. In this way, the fluoride from adhesive systems could have some positive effect in the early stages of erosive lesions.

  15. Nanoleakage in Hybrid Layer and Acid-Base Resistant Zone at the Adhesive/Dentin Interface.

    PubMed

    Nikaido, Toru; Nurrohman, Hamid; Takagaki, Tomohiro; Sadr, Alireza; Ichinose, Shizuko; Tagami, Junji

    2015-10-01

    The aim of interfacial nanoleakage evaluation is to gain a better understanding of degradation of the adhesive-dentin interface. The acid-base resistant zone (ABRZ) is recognized at the bonded interface under the hybrid layer (HL) in self-etch adhesive systems after an acid-base challenge. The purpose of this study was to evaluate nanoleakage in HL and ABRZ using three self-etch adhesives; Clearfil SE Bond (SEB), Clearfil SE One (SEO), and G-Bond Plus (GBP). One of the three adhesives was applied on the ground dentin surface and light cured. The specimens were longitudinally divided into two halves. One half remained as the control group. The others were immersed in ammoniacal silver nitrate solution, followed by photo developing solution under fluorescent light. Following this, the specimens were subjected to acid-base challenges with an artificial demineralization solution (pH4.5) and sodium hypochlorite, and prepared in accordance with common procedures for transmission electron microscopy (TEM) examination. The TEM images revealed silver depositions in HL and ABRZ due to nanoleakage in all the adhesives; however, the extent of nanoleakage was material dependent. Funnel-shaped erosion beneath the ABRZ was observed only in the all-in-one adhesive systems; SEO and GBP, but not in the two-step self-etch adhesive system; SEB.

  16. Microleakage in Resin Composite Restoration following Antimicrobial Pre-treatments with 2% Chlorhexidine and Clearfil Protect Bond

    PubMed Central

    Hameed, Hisham; Babu, Biju P; Sagir, V M Mohammed; Chiriyath, Kennet J; Mathias, Jones; Shaji, A P

    2015-01-01

    Aim: To evaluate microleakage in resin composite restorations after antimicrobial pre – treatments Materials and Methods: Forty freshly extracted non carious human premolars were procured. In all forty premolar specimens, class V preparation of standard dimension were prepared and were randomly divided into three experimental and one control group. In all control and experimental groups the class V preparations were restored with FILTEK Z350 composite restorative material. The experimental groups included different self etching primers and 2% Chlorhexidine gluconate. The control group included Xeno III and no antimicrobial pre-treatment was done for the control group. Thereafter these specimens were thermocycled, dried and sealed with nail varnish, leaving 1mm around the restoration and immersed in 0.5% basic fuchsin for 24 hours and then the specimens were subjected for microleakage evaluation. The results were statistically analyzed by Kruskal Wallis Test and Mann Whitney ‘U’ test. Results: Results indicate that group II (2% chlorhexidine gluconate group) had the minimum mean value (15.05) and group III(Clearfil protect Bond group) and IV(control group) had the maximum mean microleakage at the enamel margin (23.00). At the gingival margin the lowest mean microleakage values were obtained with group I (Clearfil SE bond group) and group II (2% chlorhexidine gluconate) (20.25) and highest with group III and group IV (20.85). The difference was not statistically significant both at the enamel margin and the dentin margin (p>0.05). Interpretation & Conclusions: Within the limitations of this in-vitro study, we conclude that: None of the materials tested in this study completely eliminated microleakage at the enamel and at the gingival margin.All of the tested materials provided better sealing at the enamel margin than at the gingival margin. PMID:26229374

  17. Microleakage and Resin-to-Dentin Interface Morphology of Pre-Etching versus Self-Etching Adhesive Systems

    PubMed Central

    Waldman, G.L; Vaidyanathan, T.K; Vaidyanathan, J

    2008-01-01

    The purpose of this study was to compare the microleakage and tissue-adhesive interface morphology from Class V restorations using different systems of dentin adhesives. Class V cavities were prepared on buccal surfaces of 27 extracted caries-free molars and premolars. Teeth were randomly assigned to one of three groups: (1) Prime & Bond NT, a 5th generation system using an initial step of total etch followed by a second step of application of a self bonding primer (2) Clearfil SE Bond, a 5th generation adhesive system employing two separate steps of self-etch priming and subsequent bonding (3) One-up Bond F, a 6th generation one step self-etching, self-priming and self-bonding adhesive. Microleakage and interface morphology of teeth restored with these adhesives and a composite resin were evaluated. Kruskal-Wallis Test (p = 0.05) was used to analyze the results. SEM analysis was used to relate interface morphology to microleakage. The mean and (SD) values of microleakage were: Prime and Bond NT: 0.15 (0.33), Clearfil SE Bond: 0.06 (0.17) and One-up Bond F: 2.96 (0.63). The mean microleakage for One-up Bond was significantly higher than for the other groups (p<0.05). Protruding tags in dentin channels were observed in Prime and Bond and Clearfil systems, but not in One-up Bond. The single step adhesive system, although more convenient for the clinician, uses a low viscosity formulation difficult to keep in place on cavity walls. It also tends to be too aggressive and hydrophilic to create an impermeable hybridized tissue-adhesive interfacial layer resistant to microleakage. Two-step adhesive systems, on the other hand, were retained on all segments of the cavosurface during application, and formed a hybridized interfacial layer resistant to microleakage. PMID:19444319

  18. Two-year clinical evaluation of three adhesive systems in non-carious cervical lesions

    PubMed Central

    ELİGUZELOGLU DALKILİC, Evrim; OMURLU, Huma

    2012-01-01

    Objectives Adhesive systems are continuously being introduced to Dentistry, unfortunately often without sufficient clinical validation. The aim of this study was to evaluate the clinical performance of cervical restorations done with three different adhesive systems. Material and methods 158 non-carious cervical lesions of 23 patients were restored with a nanofilled composite resin (Filtek Supreme, 3M/ESPE) combined with Single Bond (3M/ESPE, group SI), Clearfil SE (Kuraray Medical Inc., group CL) and Xeno III (De Trey Dentsply, group XE). In groups SI-B, CL-B and XE-B, the outer surface of the sclerotic dentin was removed by roughening with a diamond bur before application of the respective adhesive systems. In groups CL-BP and XE-BP, after removal of the outer surface of the sclerotic dentin with the bur, the remaining dentin was etched with 37% phosphoric acid and the self-etch adhesive systems Clearfil SE and Xeno III were applied, respectively. Lesions were evaluated at baseline, and restorations after 3 months, 1 year and 2 years using modified USPHS criteria. Results After 2 years, no significant difference was found between the retention rates of the groups (p >0.05). Although groups CL and SI showed significantly better marginal adaptation than group XE (p<0.05) at 2 years, no significant difference was found between the marginal adaptation of the groups SI-B, CL-B and XE-B (p>0.05). After 2 years no significant difference was observed among the marginal staining results of all groups (p>0.05). Conclusion Although all adhesive systems showed similar retention rates, Clearfil SE and Single Bond showed better marginal adaptation than Xeno III after 2 years of follow-up. PMID:22666836

  19. Effect of a Desensitizing Varnish on Microleakage of Two Self-Etch Adhesives

    PubMed Central

    Saffarpour, Anna; Saffarpour, Aida; Kharazifard, Mohammad Javad; Golmohamadi, Niloofar

    2015-01-01

    Objectives: The aim of this in-vitro experimental study was to assess the effect of application of a desensitizing varnish on the enamel and dentin marginal seal. Materials and Methods: Seventy-two freshly extracted, intact human premolar teeth were divided into four groups (n=18). Class V cavities (3mm in length, 2mm in width and 2mm in depth) were prepared on the buccal surface of each tooth. The following sealing materials were applied in the four groups: One-step Clearfil S3 Bond (S3) self-etch adhesive, two-step Clearfil SE Bond (SE) self-etch adhesive, S3 Bond+ VivaSens desensitizing varnish (VS+S3) and Clearfil SE Bond + VivaSens (VS+SE). The cavities on the teeth were then incrementally filled with Z350 light-cure composite. The teeth were stored in distilled water for 24 hours at 37°C, and were then thermocycled for 1000 cycles. Then, all the specimens were prepared for dye penetration test and were immersed in 2% basic fuchsin dye and incubated at 37°C for 24 hours. The teeth were then sectioned buccolingually along the center of restorations with a diamond disk. Microleakage at the tooth-restoration interface was assessed in the enamel and dentin margins blindly using dye penetration under a stereomicroscope at ×20 magnification. Results: There was significantly greater leakage at the enamel and dentin margins in group VS+SE than in group SE; also, these values were higher in group VS+S3 than in S3. Conclusion: Combined application of desensitizing varnish and self-etch adhesives seems to increase microleakage in composite restorations. Thus, its application is not suggested. PMID:27507991

  20. Adhesions

    MedlinePlus

    Adhesions are bands of scar-like tissue. Normally, internal tissues and organs have slippery surfaces so they can shift easily as the body moves. Adhesions cause tissues and organs to stick together. They ...

  1. Adhesion

    MedlinePlus

    ... the intestines, adhesions can cause partial or complete bowel obstruction . Adhesions inside the uterine cavity, called Asherman syndrome , ... 1. Read More Appendicitis Asherman syndrome Glaucoma Infertility Intestinal obstruction Review Date 4/5/2016 Updated by: Irina ...

  2. Evaluation of the bond strength of different adhesive agents to a resin-modified calcium silicate material (TheraCal LC).

    PubMed

    Karadas, Muhammed; Cantekin, Kenan; Gumus, Husniye; Ateş, Sabit Melih; Duymuş, Zeynep Yesil

    2016-09-01

    This study evaluated the bond strength of different adhesive agents to TheraCal LC and mineral trioxide aggregate (MTA) and examined the morphologic changes of these materials with different surface treatments. A total of 120 specimens, 60 of MTA Angelus (AMTA), and 60 of TheraCal LC, were prepared and divided into six subgroups according to the adhesive agent used; these agents included Scotchbond Multipurpose, Clearfil SE Bond, Clearfil Protect Bond, Clearfil S(3) Bond, OptiBond All-in-One, and G-aenial Bond. After application of adhesive agents, Filtek Z250 composite resin was placed onto the specimens. Shear bond strengths were measured using a universal testing machine, followed by examination of the fractured surfaces. The surface changes of the specimens were observed using scanning electron microscopy. Data were compared by two-way analysis of variance. Although no significant differences were found among the bond strengths of different adhesives to AMTA (p = 0.69), a significant difference was found in terms of bond strengths of different adhesives to the TheraCal LC surface (p < 0.001). The total-etch adhesive system more strongly bonded to TheraCal LC compared to the bond with other adhesives. TheraCal LC bonded significantly more strongly than AMTA regardless of the adhesive agents tested. Resin-modified calcium silicate showed higher bond strength than AMTA in terms of the composite bond to these materials with different bonding systems. On the other hand, the highest shear bond-strength values were found for composite bonds with the combination of TheraCal LC and the total-etch adhesive system. SCANNING 38:403-411, 2016. © 2015 Wiley Periodicals, Inc.

  3. Permeability of Dental Adhesives – A SEM Assessment

    PubMed Central

    Malacarne-Zanon, Juliana; de Andrade e Silva, Safira M.; Wang, Linda; de Goes, Mario F.; Martins, Adriano Luis; Narvaes-Romani, Eliene O.; Anido-Anido, Andrea; Carrilho, Marcela R. O.

    2010-01-01

    Objectives: To morphologically evaluate the permeability of different commercial dental adhesives using scanning electron microscopy. Methods: Seven adhesive systems were evaluated: one three-step system (Scotchbond Multi-Purpose - MP); one two-step self-etching primer system (Clearfil SE Bond – SE); three two-step etch-and-rinse systems (Single Bond 2 – SB; Excite – EX; One-Step – OS); and two single-step self-etching adhesives (Adper Prompt – AP; One-Up Bond F – OU). The mixture of primer and bond agents of the Clearfil SE Bond system (SE-PB) was also tested. The adhesives were poured into a brass mold (5.8 mm x 0.8 mm) and light-cured for 80 s at 650 mW/cm2. After a 24 h desiccation process, the specimens were immersed in a 50% ammoniac silver nitrate solution for tracer permeation. Afterwards, they were sectioned in ultra-fine slices, carbon-coated, and analyzed under backscattered electrons in a scanning electron microscopy. Results: MP and SE showed slight and superficial tracer permeation. In EX, SB, and OS, permeation extended beyond the inner superficies of the specimens. SE-PB did not mix well, and most of the tracer was precipitated into the primer agent. In AP and OU, “water-trees” were observed all over the specimens. Conclusions: Different materials showed distinct permeability in aqueous solution. The extent of tracer permeation varied according to the composition of each material and it was more evident in the more hydrophilic and solvated ones. PMID:20922163

  4. Bonding Durability of Four Adhesive Systems

    PubMed Central

    Seyed Tabai, Elaheh; Mohammadi Basir, Mahshid

    2015-01-01

    Objectives: This study aimed to compare the durability of four adhesive systems by assessing their microtensile bond strength (MTBS) and microleakage during six months of water storage. Materials and Methods: A total of 128 human third molars were used. The adhesives tested were Scotch Bond Multipurpose (SBMP), Single Bond (SB), Clearfil-SE bond (CSEB), and All-Bond SE (ABSE). After sample preparation for MTBS testing, the microspecimens were subjected to microtensile tester after one day and six months of water storage. For microleakage evaluation, facial and lingual class V cavities were prepared and restored with composite. After thermocycling, microleakage was evaluated. Bond strength values were subjected to one-way ANOVA and Tamhane’s test, and the microleakage data were analyzed by the Kruskal-Wallis, Dunn, Mann Whitney and Wilcoxon tests (P<0.05). Results: Single Bond yielded the highest and ABSE yielded the lowest bond strength at one day and six months. Short-term bond strength of SBMP and CSEB was similar. After six months, a significant decrease in bond strength was observed in ABSE and SBMP groups. At one day, ABSE showed the highest microleakage at the occlusal margin; however, at the gingival margin, there was no significant difference among groups. Long-term microleakage of all groups at the occlusal margins was similar, whilst gingival margins of SBMP and SB showed significantly higher microleakage. Conclusion: The highest MTBS and favorable sealability were obtained by Clearfil SE bond. Water storage had no effect on microleakage of self-etch adhesives at the gingival margin or MTBS of CSEB and SB. PMID:27123015

  5. Evaluation of cytotoxic effects of six self-etching adhesives with direct and indirect contact tests.

    PubMed

    Kusdemir, Mahmut; Gunal, Solen; Ozer, Fusun; Imazato, Satoshi; Izutani, Naomi; Ebisu, Shigeyuki; Blatz, Markus B

    2011-01-01

    This study evaluated the cytotoxicity of self-etching primers/adhesives by direct contact and dentin barrier tests. The three two-step self-etching systems Clearfil SE Bond (CSE), Clearfil Protect Bond (CPB), Prime&Bond NT/NRC (PB) and one-step self-etching systems Reactmer Bond (RB), Clearfil Tri-S Bond (CTS), and Adper Prompt L-Pop (AP) were examined. In direct contact tests, L929 cells were cultured in the presence of diluted solutions (50, 20, 10, and 1%) of primer/conditioner of adhesive systems. For dentin barrier tests, each system was applied onto 0.5 or 1.5 mm thick human dentin assembled in a simple pulp chamber device and incubated for 24 h at 37°C to make the diffusive components contact the L929 cells placed at the bottom of the chamber. The cytotoxic effects were assessed by MTT assay. Cell culture without application of any primers/adhesives served as the control for both tests. One-way ANOVA and Tukey HSD tests were used for statistical analyses. The direct contact tests demonstrated that CSE and CPB were less toxic than the other materials at all dilutions. In the dentin barrier tests, toxic effects of materials were reduced with an increase in thickness of intervening dentin. CSE and CPB showed less cytotoxicity than the other adhesives (p<0.05) when applied to 0.5 mm-thick dentin, and CSE was the least toxic in the 1.5 mm-dentin group (p<0.05). Dentin thickness positively affected biocompatibility of the tested bonding systems. Two-step self-etching systems with HEMA-based primers were more biocompatible than other self-etching adhesives.

  6. Dentin bond strength of a fluoride-releasing adhesive system submitted to pH-cycling.

    PubMed

    Costa, Ana Rosa; Correr-Sobrinho, Lourenço; Ambrosano, Glaucia Maria Bovi; Sinhoreti, Mario Alexandre Coelho; Borges, Gilberto Antonio; Platt, Jeffrey A; Puppin-Rontani, Regina Maria

    2014-01-01

    To evaluate the microtensile bond strength (µTBS) of a fluoride-containing adhesive system submitted to a pH-cycling and storage time regimen for primary outcomes. As secondary outcomes the fluoride released amount was evaluated. Twelve dentin surfaces from sound third molar were divided into 2 groups according to adhesive systems: Clearfil SE Protect (PB) and Clearfil SE Bond (SE). Sticks obtained (1.0 mm2) from teeth were randomly divided into 3 subgroups according to storage regimen model: immediate (24h); 5-month deionized water (W); and pH-cycling model (C). All sticks were tested for µTBS in a universal testing machine. Fluoride concentration was obtained from 1-4 days and 30-day in W and 1-4 days in demineralization (DE)/remineralization (RE) solutions from C, using a fluoride-specific electrode. µTBS and fluoride released data were, respectively, submitted to ANOVA in a split plot design and Tukey, and Friedman' tests (a=0.05). There was no significant interaction between adhesive system and storage regimen for µTBS. W showed the lowest µTBS values. There was no significant difference between 24 h and C models for µTBS. There was no significant difference between adhesive systems. Failure mode was predominantly cohesive within composite for the 24 h and W, for the C group it was mixed for SE and cohesive within composite for PB adhesive system. Fluoride concentrations in the DE/RE solutions were less than 0.03125 ppm and not detected in W. In conclusion, the fluoride-containing adhesive system performed similarly to the regular one. Hydrolytic degradation is the main problem with both adhesive systems, regardless of fluoride contents.

  7. Analysis of marginal adaptation and sealing to enamel and dentin of four self-adhesive resin cements.

    PubMed

    Aschenbrenner, Carina Maria; Lang, Reinhold; Handel, Gerhard; Behr, Michael

    2012-02-01

    This in vitro study compared the marginal adaptation of all-ceramic MOD-inlays luted to human molars with four self-adhesive resin cements. Thirty-two human third molars were randomly assigned to four test groups (n = 8 per group). MOD cavities were prepared with approximal finishing lines in dentin and enamel. All-ceramic Empress 2 inlays were luted with four self-adhesive cements (Clearfil SA, iCEM, Bifix SE, seT). Oral stress was simulated by 90 day storage in water as well as by thermal and mechanical loading (TCML, 1.2 × 10(6) × 50 N, 6,000 × 5°/55°, 1.6 Hz). The marginal fit was evaluated by scanning electron microscopy (SEM) and dye penetration. Data were analyzed with the ANOVA/Tukey's test (α = 0.05). The SEM investigation of the gingival cement margins (cement-tooth interface) showed values of perfect margin [percent] (means ± SD) after simulated aging between 84 ± 9% and 95 ± 5% for enamel and 80 ± 9% and 92 ± 3% for dentin. In enamel, seT showed significantly higher marginal integrity than iCEM after water storage and TCML (post hoc; p = 0.011). Furthermore, the marginal adaptation of iCEM in enamel deteriorated by simulated aging (p = 0.014, ANOVA). Mean values of dye penetration (percentage of dye entry into dentin) at the investigated restorations margins ranged between 3% and 8% for enamel and 12% and 22% for dentin. Clearfil SA, iCEM, and seT showed lower dye penetration in enamel than in dentin (Clearfil SA: p = 0.013, iCEM: p = 0.044, seT: p = 0.003). The results suggest that the four self-adhesive luting agents investigated seem to successfully bond to dentin-restricted as well as to enamel-restricted cavities, predicting good clinical performance.

  8. Effect of chlorhexidine on bonding durability of two self-etching adhesives with and without antibacterial agent to dentin

    PubMed Central

    Shafiei, Fereshteh; Alikhani, Armaghan; Alavi, Ali Asghar

    2013-01-01

    Background: Considering the possibility of remaining bacteria in the cavity or invading via microgaps, the use of antibacterial agents in adhesive restoration may be beneficial. This study evaluated the effect of chlorhexidine on immediate and long-term shear bond strength of adhesives with and without antibacterial agent to dentin. Materials and Methods: In this in vitro study, the occlusal surfaces of 80 intact human premolars were removed to expose the flat midcoronal dentin. The teeth were assigned to four groups. Two adhesive systems, Clearfil SE Bond (SE) and Clearfil Protect Bond (PB) were used according to manufacturer's instructions as the control groups. In the experimental groups, 2% chlorhexidine was applied prior to acidic primer of two adhesives. Then, resin composite was applied. Half of the specimens in each group were submitted to shear bond test after 24 h without thermocycling, and the other half were submitted to water storage for 6 months and thermocycling before testing. The data was analyzed using three-way analysis of variance (ANOVA) and t-test (α = 0.05). Results: Chlorhexidine application significantly decreased the initial bond strength (BS) of the two self-etch adhesives to dentin (P < 0.05). There was a significant reduction in BS of SE and PB after aging compared to initial bonding (P < 0.05). However, there was no significant difference between BS of the control and chlorhexidine-treated groups for the tested adhesives after aging. PB showed a lower BS than SE in two time periods (P < 0.05). Conclusion: Chlorhexidine was capable of diminishing the loss of BS of these adhesives over time. However, considering the negative effect of chlorhexidine on the initial BS, the benefits of chlorhexidine associated with these adhesives cannot possibly be used. PMID:24379870

  9. Light-curing efficiency of dental adhesives by gallium nitride violet-laser diode determined in terms of ultimate micro-tensile strength.

    PubMed

    Kameyama, Atsushi; Kato, Junji; De Munck, Jan; Hatayama, Hitoshi; Haruyama, Akiko; Yoshinari, Masao; Takase, Yasuaki; Van Meerbeek, Bart; Tsunoda, Masatake

    2011-01-01

    The purpose of this study was to evaluate whether violet-laser diode (VLD) can be used as light-curing source. The ultimate (micro-)tensile strength (μTS) of three adhesives was determined when cured by VLD in comparison with curing by two different types of commercial LED light-curing units. One VLD (VLM 500) and two LED units (Curenos and G-Light Prima) were used to cure the adhesive resin of the two-step self-etch adhesives Clearfil SE Bond, Tokuso Mac Bond II, and FL-Bond II. A 0.6-mm thick acrylic mould was filled with adhesive resin and cured for 60 s. After 24-h water storage, specimens were trimmed into an hourglass shape with a width of 1.2 mm at the narrowest part, after which the μTS was determined (n=10). In addition, the light transmittance of each adhesive was characterized using a UV-vis-NIR spectrometer. No significant difference in curing efficiency between VLD and LED were observed for both Tokuso Mac Bond II and FL-Bond II (p>0.05). For Clearfil SE Bond, the μTS of VLD-cured specimens was higher than that of the specimens cured by the LED Curenos unit (p<0.05). Spectrometry revealed that this marked difference must be attributed to a different light transmittance of Clearfil SE Bond for visible blue light versus for the lower area of UV and visible violet light. In conclusion, A GaN-based violet laser diode can be used as light-curing source to initiate polymerization of dental resins.

  10. Effect of curing unit and adhesive system on marginal adaptation of composite restorations.

    PubMed

    Casselli, Denise Sa Maia; Faria-e-Silva, Andre Luis; Casselli, Henrique; Martins, Luis Roberto Marcondes

    2012-01-01

    This study sought to evaluate how a curing unit and adhesive system affected the marginal adaptation of resin composite restorations. Class V cavities were prepared in bovine teeth with a gingival margin in dentin and an incisal margin in enamel. The cavities were restored with a micro-hybrid resin composite using one of four adhesives: Single Bond 2, Prime & Bond NT, Clearfil SE Bond, Xeno IV. The light-activations were performed using a quartz-tungsten-halogen (QTH) lamp or a second-generation light-emitting diode (LED). Restorations were finished and polished and epoxy replicas were prepared. Marginal adaptation was analyzed by using scanning electronic microscopy (magnification 500X). The widest gaps in each margin were recorded, and data were submitted to Kruskal-Wallis, Mann-Whitney, and Wilcoxon tests (α = 0.05). Differences between the adhesives were observed only when the dentin margins were evaluated: Clearfil SE Bond demonstrated better marginal adaptation than Prime & Bond NT or Single Bond 2 (which demonstrated the widest gaps in the dentin margin). The type of curing unit only affected the results for Xeno IV when the enamel margin was analyzed; the LED lamp promoted smaller gaps than the QTH lamp.

  11. Microtensile bond strength of one- and two-step self-etching adhesives on sclerotic dentin: the effects of thermocycling.

    PubMed

    Xie, Chao; Han, Ying; Zhao, Xin-Yi; Wang, Zhong-Yi; He, Hui-Ming

    2010-01-01

    This study evaluated the effects of thermocycling on the microtensile bond strength (microTBS) of one- and two-step self-etch adhesives (SEAs) to sclerotic dentin. Two adhesives, Clearfil S3 Bond (S3), a one-step self-etch adhesive (1-SEA), and Clearfil SE Bond (SE), a two-step self-etch adhesive (2-SEA), were applied on cervical lesions in human premolars with sclerotic or normal dentin. After adhesive application, the lesions were restored and built up using a resin composite (Clearfil AP-X). After 24 hours in water storage, the restored teeth were sectioned into 0.7 x 0.7 mm composite-dentin beams. The beams were then aged with 0, 5,000 or 10,000 thermocycles. The use of two adhesives, two substrate types and three thermocycling regimens yielded 12 experimental groups of 14-19 beams each. The beams were subsequently subjected to microTBS testing at a crosshead speed of 1 mm/minute and statistical analyses were computed with three-way ANOVA and Tukey's post hoc test at p < 0.05. Three-way ANOVA showed statistically significant effects on bonding effectiveness by lesion type, adhesive system, thermocycling or combinations of the adhesive system and thermocycling (p < 0.05). With sclerotic dentin, although S3 and SE provided comparable microTBS after 24 hours of water storage, S3 showed significantly lower microTBS than SE after thermocycling (p < 0.05). Regardless of lesion type, the microTBS for S3 decreased significantly after 5,000 or 10,000 thermocycles, while the microTBS for SE showed a significant decrease only after 10,000 thermocycles. Regardless of the extent of thermocycling, the microTBS values for either SE or S3 bonded to sclerotic dentin were significantly lower than to normal dentin (p < 0.05). The results suggested that thermocycling had a significant negative effect on the bond strength of the two SEAs tested. In contrast to 2-SEA, 1-SEA might not be a good choice for sclerotic dentin when seeking durability of the resin-dentin bond.

  12. Adhesion of 10-MDP containing resin cements to dentin with and without the etch-and-rinse technique

    PubMed Central

    Sen, Deniz; Tuncelli, Betul; Özcan, Mutlu

    2013-01-01

    PURPOSE This study evaluated the adhesion of 10-MDP containing self-etch and self-adhesive resin cements to dentin with and without the use of etch-and-rinse technique. MATERIALS AND METHODS Human third molars (N=180) were randomly divided into 6 groups (n=30 per group). Conventional (Panavia F2.0, Kuraray-PAN) and self-adhesive resin cements (Clearfil SA, Kuraray-CSA) were bonded to dentin surfaces either after application of 3-step etch-and-rinse (35% H3PO4 + ED Primer) or two-step self-etch adhesive resin (Clearfil SE Bond). Specimens were subjected to shear bond strength test using the universal testing machine (0.5 mm/min). The failure types were analyzed using a stereomicroscope and quality of hybrid layer was observed under a scanning electron microscope. The data (MPa) were analyzed using two-way ANOVA and Tukey's tests (α=.05). RESULTS Overall, PAN adhesive cement showed significantly higher mean bond strength (12.5 ± 2.3 - 14.1 ± 2.4 MPa) than CSA cement (9.3 ± 1.4 - 13.9 ± 1.9 MPa) (P<.001). Adhesive failures were more frequent in CSA cement groups when used in conjunction with two-step self-adhesive (68%) or no adhesive at all (66%). Hybrid layer quality was inferior in CSA compared to PAN cement in all conditions. CONCLUSION In clinical situations where bonding to dentin substrate is crucial, both conventional and self-adhesive resin cements based on 10-MDP can benefit from etch-and-rinse technique to achieve better quality of adhesion in the early clinical period. PMID:24049562

  13. Microleakage of Er:YAG laser and dental bur prepared cavities in primary teeth restored with different adhesive restorative materials.

    PubMed

    Baghalian, Ali; Nakhjavani, Yahya B; Hooshmand, Tabassom; Motahhary, Pouria; Bahramian, Hoda

    2013-11-01

    The purpose of this study was to evaluate and compare the effect of erbium:yttrium-aluminum-garnet (Er:YAG) laser irradiation and conventional dental bur cavity preparation on in vitro microleakage of class V cavities restored with different adhesive restorative materials and two types of self-etching adhesives in primary teeth. Standard class V cavities were prepared on 80 extracted primary, and the teeth were randomly divided into eight subgroups prepared either by dental bur or Er:YAG laser irradiation and then restored with self-cured glass ionomer (GI), resin-modified glass ionomer (RMGI), resin composite and Clearfil SE Bond (two-step self-etching adhesive), and resin composite and Clearfil S3 Bond (one-step self-etching adhesive). Restorations were finished and stored in distilled water at 37 °C for 24 h and then subjected to thermocycling. All the teeth were sealed with nail varnish, placed in a silver nitrate solution, and then vertically cut in a buccolingually direction. Subsequently, the specimens were evaluated for gingival and occlusal microleakage using a stereomicroscope. Data were analyzed using Kruskal-Wallis test followed by Mann-Whitney test. Wilcoxon test was used for comparing occlusal microleakage with gingival microleakage at p < 0.05. A higher degree of occlusal and gingival microleakage values for the teeth restored with GI or RMGI was obtained by both preparation methods compared with that of resin composites and the two self-etching primers. Er:YAG laser irradiation resulted in a significantly higher degree of microleakage only at the gingival margins for teeth restored with GI or RMGI, or composite and Clearfil S3 Bond compared with the bur preparation. The Er:YAG laser-prepared teeth restored with composite and Clearfil SE Bond demonstrated a better marginal seal on occlusal and gingival margins compared with that of bur-prepared cavities. The degree of microleakage in class V cavities was affected by the type of adhesive

  14. Self-etching dental adhesive containing a natural essential oil: anti-biofouling performance and mechanical properties.

    PubMed

    Peralta, S L; Carvalho, P H A; van de Sande, F H; Pereira, C M P; Piva, E; Lund, R G

    2013-01-01

    This study assessed the anti-biofouling performance of an experimental adhesive system containing a naturally occurring essential vegetable oil and examined the following physical and mechanical properties: water sorption (WS) and solubility (SL), microtensile bond strength to dentin (μTBS), and degree of conversion. The following six groups were tested: a self-etching experimental adhesive containing refined essential oil from the seeds of the Butia capitata tree (EAO); an oil-free version of the experimental adhesive (EANO); one group without adhesive as the control (C); and the three following commercial self-etching adhesives: Clearfil Protect Bond (CPB), Clearfil SE Bond, and Adper SE Plus. The antibacterial effect was estimated by microbiological culture on selective/non-selective media, and the results expressed as colony-forming units per unit weight of dry biofilm (CFU mg(-1)). The data were submitted to ANOVA and Tukey's post hoc test (α = 0.05). After 24 h, pH changes were similar in the storage medium of all tested adhesive systems. EAO showed similar levels of antimicrobial activity in a model biofilm microcosm as the commercial self-etching adhesive CPB. Both were effective against total microorganisms, aciduric bacteria, lactobacilli, and Streptococcus mutans. WS and SL were not affected by the presence of the essential oil; the values of EAO were similar to or less than those of commercial equivalents. The incorporation of an essential oil into an experimental adhesive did not influence its monomer conversion result. Immediate μTBS values of EAO and EANO were similar and were greater than those of commercial equivalents. After storage for 6 months, the μTBS of the EAO decreased significantly and became similar to the values of commercial equivalents, while the strength of the EANO was not affected.

  15. Effects of solvent evaporation on water sorption/solubility and nanoleakage of adhesive systems

    PubMed Central

    CHIMELI, Talita Baumgratz Cachapuz; D'ALPINO, Paulo Henrique Perlatti; PEREIRA, Patrícia Nóbrega; HILGERT, Leandro Augusto; DI HIPÓLITO, Vinicius; GARCIA, Fernanda Cristina Pimentel

    2014-01-01

    Objective To evaluate the influence of solvent evaporation in the kinetics of water diffusion (water sorption-WS, solubility-SL, and net water uptake) and nanoleakage of adhesive systems. Material and Methods Disk-shaped specimens (5.0 mm in diameter x 0.8 mm in thickness) were produced (N=48) using the adhesives: Clearfil S3 Bond (CS3)/Kuraray, Clearfil SE Bond - control group (CSE)/Kuraray, Optibond Solo Plus (OS)/Kerr and Scotchbond Universal Adhesive (SBU)/3M ESPE. The solvents were either evaporated for 30 s or not evaporated (N=24/per group), and then photoactivated for 80 s (550 mW/cm2). After desiccation, the specimens were weighed and stored in distilled water (N=12) or mineral oil (N=12) to evaluate the water diffusion over a 7-day period. Net water uptake (%) was also calculated as the sum of WS and SL. Data were submitted to 3-way ANOVA/Tukey's test (α=5%). The nanoleakage expression in three additional specimens per group was also evaluated after ammoniacal silver impregnation after 7 days of water storage under SEM. Results Statistical analysis revealed that only the factor "adhesive" was significant (p<0.05). Solvent evaporation had no influence in the WS and SL of the adhesives. CSE (control) presented significantly lower net uptake (5.4%). The nanoleakage was enhanced by the presence of solvent in the adhesives. Conclusions Although the evaporation has no effect in the kinetics of water diffusion, the nanoleakage expression of the adhesives tested increases when the solvents are not evaporated. PMID:25141201

  16. Zwitterionic Ligands Bound to CdSe/ZnS Quantum Dots Prevent Adhesion to Mammalian Cells

    PubMed Central

    Landis, Ryan F.; Tang, Rui; Hou, Singyuk; Yazdani, Mahdieh; Lee, Yiwei; Rotello, Vincent M.

    2015-01-01

    Zwitterionic materials are useful tools in material science and biology as they provide high water solubility while preventing non-specific interactions. Quantum dots (QDs) functionalized with zwitterionic and quaternary ammonium ligands were synthesized to investigate their interactions with the outer membrane of HeLa cells. Quaternary ammonium functionalized quantum dots adhered strongly to the cell surface while zwitterionic QDs had no cell adhesion. These results demonstrate that future non-interacting nanoparticles based on this design are possible. PMID:26929589

  17. Influence of the LED curing source and selective enamel etching on dentin bond strength of self-etch adhesives in class I composite restorations.

    PubMed

    Souza-Junior, Eduardo José; Araújo, Cíntia Tereza Pimenta; Prieto, Lúcia Trazzi; Paulillo, Luís Alexandre Maffei Sartini

    2012-11-01

    The aim of this study was to evaluate the influence of the LED curing unit and selective enamel etching on dentin microtensile bond strength (μTBS) for self-etch adhesives in class I composite restorations. On 96 human molars, box-shaped class I cavities were made maintaining enamel margins. Self-etch adhesives (Clearfil SE - CSE and Clearfil S(3) - S3) were used to bond a microhybrid composite. Before adhesive application, half of the teeth were enamel acid-etched and the other half was not. Adhesives and composites were cured with the following light curing units (LCUs): one polywave (UltraLume 5 - UL) and two single-peak (FlashLite 1401 - FL and Radii Cal - RD) LEDs. The specimens were then submitted to thermomechanical aging and longitudinally sectioned to obtain bonded sticks (0.9 mm(2)) to be tested in tension at 0.5 mm/min. The failure mode was then recorded. The μTBS data were submitted to a three-way ANOVA and Tukey's (α = 0.05). For S3, the selective enamel-etching provided lower μTBS values (20.7 ± 2.7) compared to the non-etched specimens (26.7 ± 2.2). UL yielded higher μTBS values (24.1 ± 3.2) in comparison to the photoactivation approach with FL (18.8 ±3.9) and RD (19.9 ±1.8) for CSE. The two-step CSE was not influenced by the enamel etching (p ≥ 0.05). Enamel acid etching in class I composite restorations affects the dentin μTBS of the one-step self-etch adhesive Clearfil S(3), with no alterations for Clearfil SE bond strength. The polywave LED promoted better bond strength for the two-step adhesive compared to the single-peak ones.

  18. Paucity of Nanolayering in Resin-Dentin Interfaces of MDP-based Adhesives.

    PubMed

    Tian, F; Zhou, L; Zhang, Z; Niu, L; Zhang, L; Chen, C; Zhou, J; Yang, H; Wang, X; Fu, B; Huang, C; Pashley, D H; Tay, F R

    2016-04-01

    Self-assembled nanolayering structures have been reported in resin-dentin interfaces created by adhesives that contain 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). These structures have been hypothesized to contribute to bond durability. The objective of the present study was to determine the extent of nanolayering in resin-dentin interfaces after application of commercialized 10-MDP-containing self-etch and universal adhesives to human dentin. Seven commercialized adhesives were examined: Adhese Universal (Ivoclar-Vivadent), All-Bond Universal (Bisco, Inc.), Clearfil SE Bond 2, Clearfil S3 Bond Plus, Clearfil Universal Bond (all from Kuraray Noritake Dental Inc.), G-Premio Bond (GC Corp.), and Scotchbond Universal (3M ESPE). Each adhesive was applied in the self-etch mode on midcoronal dentin according to the respective manufacturer's instructions. Bonded specimens (n = 6) were covered with flowable resin composite, processed for transmission electron microscopy, and examined at 30 random sites without staining. Thin-film glancing angle X-ray diffraction (XRD) was used to detect the characteristic peaks exhibited by nanolayering (n = 4). The control consisted of 15%wt, 10%wt, and 5%wt 10-MDP (DM Healthcare Products, Inc.) dissolved in a mixed solvent (ethanol and water weight ratio 9:8, with photoinitiators). Experimental primers were applied to dentin for 20 s, covered with hydrophobic resin layer, and examined in the same manner. Profuse nanolayering with highly ordered periodicity (~3.7 nm wide) was observed adjacent to partially dissolved apatite crystallites in dentin treated with the 15% 10-MDP primer. Three peaks in the 2θ range of 2.40° (3.68 nm), 4.78° (1.85 nm), and 7.18° (1.23 nm) were identified from thin-film XRD. Reduction in the extent of nanolayering was observed in the 10% and 5% 10-MDP experimental primer-dentin interface along with lower intensity XRD peaks. Nanolayering and characteristic XRD peaks were rarely observed in

  19. Paucity of Nanolayering in Resin-Dentin Interfaces of MDP-based Adhesives

    PubMed Central

    Tian, F.; Zhou, L.; Zhang, Z.; Niu, L.; Zhang, L.; Chen, C.; Zhou, J.; Yang, H.; Wang, X.; Fu, B.; Huang, C.; Pashley, D.H.; Tay, F.R.

    2015-01-01

    Self-assembled nanolayering structures have been reported in resin-dentin interfaces created by adhesives that contain 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). These structures have been hypothesized to contribute to bond durability. The objective of the present study was to determine the extent of nanolayering in resin-dentin interfaces after application of commercialized 10-MDP-containing self-etch and universal adhesives to human dentin. Seven commercialized adhesives were examined: Adhese Universal (Ivoclar-Vivadent), All-Bond Universal (Bisco, Inc.), Clearfil SE Bond 2, Clearfil S3 Bond Plus, Clearfil Universal Bond (all from Kuraray Noritake Dental Inc.), G-Premio Bond (GC Corp.), and Scotchbond Universal (3M ESPE). Each adhesive was applied in the self-etch mode on midcoronal dentin according to the respective manufacturer’s instructions. Bonded specimens (n = 6) were covered with flowable resin composite, processed for transmission electron microscopy, and examined at 30 random sites without staining. Thin-film glancing angle X-ray diffraction (XRD) was used to detect the characteristic peaks exhibited by nanolayering (n = 4). The control consisted of 15%wt, 10%wt, and 5%wt 10-MDP (DM Healthcare Products, Inc.) dissolved in a mixed solvent (ethanol and water weight ratio 9:8, with photoinitiators). Experimental primers were applied to dentin for 20 s, covered with hydrophobic resin layer, and examined in the same manner. Profuse nanolayering with highly ordered periodicity (~3.7 nm wide) was observed adjacent to partially dissolved apatite crystallites in dentin treated with the 15% 10-MDP primer. Three peaks in the 2θ range of 2.40° (3.68 nm), 4.78° (1.85 nm), and 7.18° (1.23 nm) were identified from thin-film XRD. Reduction in the extent of nanolayering was observed in the 10% and 5% 10-MDP experimental primer-dentin interface along with lower intensity XRD peaks. Nanolayering and characteristic XRD peaks were rarely observed in

  20. Adhesive sealing of the pulp chamber.

    PubMed

    Belli, S; Zhang, Y; Pereira, P N; Pashley, D H

    2001-08-01

    The purpose of this in vitro study was to evaluate quantitatively the ability of four different filling materials to seal the orifices of root canals as a secondary seal after root canal therapy. Forty extracted human molar teeth were used. The top of pulp chambers and distal halves of the roots were removed using an Isomet saw. The canal orifices were temporarily sealed with a gutta-percha master cone without sealer. The pulp chambers were then treated with a self-etching primer adhesive system (Clearfil SE Bond), a wet bonding system (One-Step), a 4-methacryloyloxyethyl trimellitate anhydride adhesive system (C&B Metabond), or a reinforced zinc oxide-eugenol (IRM). The specimens were randomly divided into four groups of 10 each. A fluid filtration method was used for quantitative evaluation of leakage. Measurements of fluid movement were made at 2-min intervals for 8 min. The quality of the seal of each specimen was measured by fluid filtration immediately and after 1 day, 1 wk, and 1 month. Even after 1 month the resins showed an excellent seal. Zinc oxide-eugenol had significantly more leakage when compared with the resin systems (p < 0.05). Adhesive resins should be considered as a secondary seal to prevent intraorifice microleakage.

  1. Influence of additional adhesive application on the microtensile bond strength of adhesive systems.

    PubMed

    de Silva, André Luís Faria; Lima, Débora Alves Nunes Leite; de Souza, Grace Mendonça Dias; dos Santos, Carlos Tadeu Dias; Paulillo, Luís Alexandre Maffei Sartini

    2006-01-01

    This study evaluated microtensile bond strength (pTBS) when an additional adhesive layer was applied to the dentin surface. Thirty-five human third molars were flattened to expose the occlusal dentin surface. The teeth were randomly assigned to 7 experimental groups: G1-Single Bond (SB); G2-additional layer of SB; G3--a layer of Scotchbond Multi-purpose (SMP) adhesive applied over SB; G4-Clearfil SE Bond (CE); G5-additional layer of CE; G6-Adper Prompt (AP) and G7-additional layer of AP. For the G2, G3, G5 and G7 groups, the first adhesive layer was light-cured before application of the additional layer. After bonding procedures, 5-mm high composite crowns were incrementally built up. The samples were sectioned to obtain 0.9 x 0.9 beams, which were tested under tension at a crosshead speed of 0.5-mm/minute until failure. The failure mode and adhesive thickness were evaluated under SEM. The pTBS data were analyzed by 1-way ANOVA and post-hoc Ducan's Test (a=0.05). Mean adhesive thickness was analyzed by 1-way ANOVA and post-hoc Tukey's test (a=0.05). The results indicated that G3 presented the highest microTBS and the thickest adhesive layer. G6 and G7 presented the lowest microTBS values. When solvent-free adhesives systems were used, microTBS values were not affected by the thicker layer.

  2. Cytotoxicity of Dental Adhesives In Vitro

    PubMed Central

    Koulaouzidou, Elisabeth A.; Helvatjoglu-Antoniades, Maria; Palaghias, George; Karanika-Kouma, Artemis; Antoniades, Dimitrios

    2009-01-01

    Objectives The purpose of this study was to evaluate the cytotoxic effect of six dental adhesives (Admira Bond, Clearfil Liner Bond 2V, ED Primer II, Fuji Bond LC, Gluma Comfort Bond, and NanoBond) applied to cell cultures. Methods The experiments were performed on two cell lines, rat pulp cells (RPC-C2A) and human lung fibroblasts (MRC5). Samples of the adhesives were light-cured and placed in culture medium for 24 hours. The extraction media was applied on the RPC-C2A and the MRC5 cells. Complete medium was used as a control. Cytotoxicity was evaluated with a modified sulforhodamine B (SRB) assay after 24 hours of exposure. Results The cell survival of RPC-C2A cells exposed to Fuji Bond LC, NanoBond, Clearfil Liner Bond 2V, ED Primer II, Admira Bond and Gluma Comfort Bond was 73%, 67%, 50%, 20%, 18% and 5% respectively, relative to the cell survival with the control medium. In the MRC5 cell line, the relative survival was 98%, 80%, 72%, 41%, 19% and 7% after exposure to NanoBond, Fuji Bond LC, Clearfil Liner Bond 2V, ED Primer II, Admira Bond and Gluma Comfort Bond, respectively. Conclusions Different types of dental adhesives showed different cytotoxic effects on cells in vitro. The self-etch adhesives were superior in terms of cytotoxicity. The different cytotoxic effects of dental adhesives should be considered when selecting an appropriate adhesive for operative restorations. PMID:19262725

  3. Effect of pretreatment with mildly acidic hypochlorous acid on adhesion to caries-affected dentin using a self-etch adhesive.

    PubMed

    Kunawarote, Sitthikorn; Nakajima, Masatoshi; Foxton, Richard M; Tagami, Junji

    2011-02-01

    Caries-affected dentin is covered with a thicker and organically enriched smear layer than normal dentin. This may affect the demineralization ability and the infiltration of self-etch adhesives, thus reducing the efficacy of bonding to caries-affected dentin. This study evaluated the adhesion of a two-step self-etching adhesive to normal and caries-affected dentin after pretreatment with mildly acidic hypochlorous acid (HOCl) solutions. We used a microtensile bond strength (μTBS) test to compare the μTBS of Clearfil SE Bond to either caries-affected dentin or to normal dentin, after pretreatment for 5 s with one of three solutions (806 mM NaOCl, or 0.95 or 1.91 mM HOCl). The μTBS of the self-etch adhesive was significantly lower to caries-affected dentin than to normal dentin. Pretreatment with 0.95 mM HOCl improved the μTBS of the self-etch adhesive to caries-affected dentin, but there was no significant difference compared with normal dentin. On the other hand, pretreatment with 806 mM NaOCl or 1.91 mM HOCl did not demonstrate a significant improvement in the μTBS to caries-affected dentin. None of the pretreatments demonstrated a negative effect on adhesion to normal dentin.

  4. Clinical effectiveness of a one-step self-etch adhesive in non-carious cervical lesions at 2 years.

    PubMed

    Ermis, R Banu; Van Landuyt, Kirsten L; Cardoso, Marcio Vivan; De Munck, Jan; Van Meerbeek, Bart; Peumans, Marleen

    2012-06-01

    A 2-year randomized, controlled prospective study evaluated the clinical effectiveness of a one-step self-etch adhesive and a "gold-standard" three-step etch-and-rinse adhesive in non-carious Class-V lesions. The null hypothesis tested was that the one-step self-etch adhesive does perform clinically equally well as the three-step etch-and-rinse adhesive. A total of 161 lesions in 26 patients were restored with Clearfil AP-X (Kuraray). The restorations were bonded either with the "all-in-one" adhesive Clearfil S3 Bond (Kuraray) or with the three-step etch-and-rinse adhesive Optibond FL (Kerr). The restorations were evaluated at baseline and after 6 months, 1 and 2 years, regarding their retention, marginal adapation, marginal discoloration, caries occurrence, preservation of tooth vitality and post-operative sensivity. Retention loss, severe marginal defects and/or discoloration that needed intervention (repair or replacement) and the occurrence of caries were considered as clinical failures. The recall rate at 2 years was 93.8%. Only one Clearfil S3 Bond restoration was lost at the 2-year recall. All other restorations were clinically acceptable. The number of restorations with defect-free margins decreased severely during the 2-year study period (to 6.7% and 25.3% for Clearfil S3 Bond and Optibond FL, respectively). The Clearfil S3 Bond restorations presented significantly more small marginal defects at the enamel side than the Optibond FL restorations (Clearfil S3 Bond: 93.3%; Optibond FL: 73.3%; p = 0.000). Superficial marginal discoloration increased in both groups (to 53.3% and 36% for Clearfil S3 Bond and Optibond FL, respectively) and was also more pronounced in the Clearfil S3 Bond group (p = 0.007). After 2 years, the simplified one-step self-etch adhesive Clearfil S3 Bond and the three-step etch-and-rinse adhesive Optibond FL were clinically equally successful, even though both adhesives were characterized by progressive degradation in marginal

  5. Bonding of self-adhesive resin cements to enamel using different surface treatments: bond strength and etching pattern evaluations.

    PubMed

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Shinya, Akiyoshi

    2010-08-01

    This study evaluated the shear bond strengths and etching patterns of seven self-adhesive resin cements to human enamel specimens which were subjected to one of the following surface treatments: (1) Polishing with #600 polishing paper; (2) Phosphoric acid; (3) G-Bond one-step adhesive; or (4) Phosphoric acid and G-Bond. After surface treatment, the human incisor specimens were bonded to a resin composite using a self-adhesive resin cement [Maxcem (MA), RelyX Unicem (UN), Breeze (BR), BisCem (BI), seT (SE), Clearfil SA Luting (CL)] or a conventional resin cement [ResiCem (RE)]. Representative morphology formed with self-adhesive resin cements showed areas of etched enamel intermingled with areas of featureless enamel. In conclusion, etching efficacy influenced the bonding effectiveness of self-adhesive resin cements to unground enamel, and that a combined use of phosphoric acid and G-Bond for pretreatment of human enamel surfaces improved the bond strength of self-adhesive resin cements.

  6. Micro-tensile bond strength of self-etching primer adhesive systems to human coronal carious dentin.

    PubMed

    Doi, J; Itota, T; Torii, Y; Nakabo, S; Yoshiyama, M

    2004-10-01

    The aim of this study was to evaluate the micro-tensile bond strengths of three self-etching primer adhesive systems to normal dentin (ND), caries-affected dentin (CAD) and caries-infected dentin (CID). Human extracted molars with caries were used, and flat dentin surfaces ground by 600-grit SiC paper were prepared. The surfaces were dyed using Caries-Detector solution, treated with Clearfil SE Bond, Mac-Bond II and UniFil Bond, and then covered with resin composites according to manufacturer's instructions. After immersion in 37 degrees C water for 24 h, the teeth were serially sectioned into multiple slices. Each slice was distinguished into ND, CAD and CID groups by the degree of staining, and the bond strength was measured in a universal testing machine. Scanning electron microscopic (SEM) observation was also performed. For statistical analysis, anova and Scheffe's test were used (P < 0.05). The bond strengths of the three adhesive systems to CAD and CID were significantly lower than those to ND. There was significant difference in the bond strength to ND between Clearfil SE Bond and UniFil Bond, but no significant differences to CAD and CID among the three adhesive systems. On SEM, the hybrid layers in CAD and CID showed more porous structures compared with ND. The results indicated that the bond strengths to CAD and CID were not affected by a variety of self-etching primer adhesive systems because of the porous hybrid layer formation in carious dentin.

  7. Effect of Different Bonding Strategies on Adhesion to Deep and Superficial Permanent Dentin

    PubMed Central

    Pegado, Rafael Eduardo Fernandes; do Amaral, Flávia Lucisano Botelho; Flório, Flávia Martão; Basting, Roberta Tarkany

    2010-01-01

    Objectives: To evaluate the effect of different bonding strategies on the microtensile bond strength to deep and superficial permanent dentin. Methods: Forty-eight teeth were randomly flattened according to the dentin depth: superficial dentin (SD) and deep dentin (DD). Subsequently, three adhesive systems were applied (n=8): an etch-and-rinse (Adper Single Bond 2 - SB), a “mild” two-step self-etching (Clearfil SE Bond - SE) and a one-step self-etching adhesive system (Futurabond – FB). Each specimen was restored with a composite resin and sectioned into 1.0-mm2 thick slabs. After 24 hours, resin-dentin sticks were submitted to tensile stress in a universal testing machine (0.5 mm/min). Data were submitted to two-way ANOVA and Tukey’s test at a level of 0.05%. Results: Superficial dentin showed the highest microtensile bond strength values, which differed statistically from those obtained in the deep dentin, irrespective of the adhesive system used. FB yielded the highest bond strength values, which were statistically similar to the bond strength values of SE, but statistically different from those obtained when the SB adhesive was used. Conclusions: Bond strength obtained in superficial dentin was significantly higher than in deep dentin, for all adhesive systems tested. Adhesion was affected by the different bonding strategies: the one-step, low pH, acetone-based self-etching adhesive promoted the higher bond strength values, which were statistically similar to those obtained with the two-step, water-based self-etching adhesive. PMID:20396440

  8. Bond Strength of a Novel One Bottle Multi-mode Adhesive to Human Dentin After Six Months of Storage

    PubMed Central

    Manfroi, Fernanda Borguetti; Marcondes, Maurem Leitão; Somacal, Deise Caren; Borges, Gilberto Antonio; Júnior, Luiz Henrique Burnett; Spohr, Ana Maria

    2016-01-01

    Objective: The aim of the study was to evaluate the microtensile bond strength (µTBS) of Scotchbond Universal to dentin using the etch-and-rinse or the self-etch technique after 24 h and 6 months of storage. Materials and Methods: Flat dentin surfaces were obtained in 24 third molars. The teeth were divided into four groups: G1 – Scotchbond Universal applied in the etch-and-rinse mode; G2 – Scotchbond Universal applied in the self-etch mode; G3 – Scotchbond Multi-Purpose; G4 – Clearfil SE Bond. A block of composite was built on the adhesive area. The tooth/resin sets were cut parallel to the long axis to obtain 40 beams (~0.8 mm2) for each group. Twenty specimens were immediately submitted to the µTBS test, and the remaining 20 were stored in water for 6 months. Failures and the adhesive interface were analyzed by SEM. Results: According to two-way ANOVA, the interaction between adhesive and storage time was significant (p=0.015).The µTBS (MPa) means were the following: 24 h – G1 (39.37±10.82), G2 (31.02±13.76), G3 (35.09±14.03) and G4 (35.84±11.06); 6 months – G1 (36.99±8.78), G2 (40.58±8.07), G3 (32.44±6.07) and G4 (41.75±8.25). Most failures were mixed. Evidence of hybrid layer and numerous resin tags were noted for Scotchbond Universal applied with the etch-and-rinse mode and Scotchbond Multi-Purpose. A thinner hybrid layer and fewer resin tags were noted for Scotchbond Universal applied in the self-etch mode and Clearfil SE Bond. Conclusion: The results indicate that the µTBS for Scotchbond Universal is comparable to the gold-standard adhesives. Scotchbond Universal applied in the self-etch mode and Clearfil SE Bond revealed higher bond stability compared to the etch-and-rinse mode. PMID:27347230

  9. Effect of a plant-based hemostatic agent on microleakage of self-etching adhesives

    PubMed Central

    Arslan, Soley; Ertaş, Hüseyin; Zorba, Yahya O.

    2013-01-01

    Objective: This in vitro study evaluated the effect of Ankaferd Blood Stopper (ABS) contamination on the microleakage of one-step and two-step self-etching adhesives. Study design: Class V cavities were prepared at the cemento-enamel junction on both buccal and lingual surfaces of 60 freshly extracted human molars. Teeth were randomly assigned into three groups according to contamination material applied (Group I, no contamination; Group II, blood contamination; Group III, ABS contamination). In contaminated groups, one drop of blood and ABS solution was applied directly to the dentin surface and air-dried. Each group was further divided into two subgroups according to bonding agent used [Group A, Clearfil SE Bond (two-step self-etching adhesive); Group B, Adper Easy One (one-step self-etching adhesive)]. Adhesive materials were applied according to the manufacturers’ recommendations. The specimens were restored using a universal microhybrid composite (Arabesk). After thermocycling (5000x, 5°C – 55°C) and immersion in a 0.5% basic fuchsin, dye penetration was evaluated under a stereomicroscope. Statistical analysis was performed with Kruskal-Wallis and Mann-Whitney U tests at p < 0.05. Results: Significantly higher microleakage scores were observed when one-step self-etching adhesive was applied to blood- and ABS-contaminated dentin. However, when a two-step self etching adhesive was used, microleakage was observed only following blood contamination, not following ABS contamination. Conclusions: Although, blood contamination before adhesive application resulted in increased microleakage with both one-step and two-step self-etching adhesive systems, ABS contamination did not affect microleakage when a two-step self-ething adhesive system was used. Key words:Ankaferd Blood Stopper, blood, microleakage, self-etching adhesive. PMID:23229238

  10. Effect of a functional monomer (MDP) on the enamel bond durability of single-step self-etch adhesives.

    PubMed

    Tsuchiya, Kenji; Takamizawa, Toshiki; Barkmeier, Wayne W; Tsubota, Keishi; Tsujimoto, Akimasa; Berry, Thomas P; Erickson, Robert L; Latta, Mark A; Miyazaki, Masashi

    2016-02-01

    The present study aimed to determine the effect of the functional monomer, 10-methacryloxydecyl dihydrogen phosphate (MDP), on the enamel bond durability of single-step self-etch adhesives through integrating fatigue testing and long-term water storage. An MDP-containing self-etch adhesive, Clearfil Bond SE ONE (SE), and an experimental adhesive, MDP-free (MF), which comprised the same ingredients as SE apart from MDP, were used. Shear bond strength (SBS) and shear fatigue strength (SFS) were measured with or without phosphoric acid pre-etching. The specimens were stored in distilled water for 24 h, 6 months, or 1 yr. Although similar SBS and SFS values were obtained for SE with pre-etching and for MF after 24 h of storage in distilled water, SE with pre-etching showed higher SBS and SFS values than MF after storage in water for 6 months or 1 yr. Regardless of the pre-etching procedure, SE showed higher SBS and SFS values after 6 months of storage in distilled water than after 24 h or 1 yr. To conclude, MDP might play an important role in enhancing not only bond strength but also bond durability with respect to repeated subcritical loading after long-term water storage.

  11. Effect of Self-adhesive Resin Cement and Tribochemical Treatment on Bond Strength to Zirconia

    PubMed Central

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Shinya, Akiyoshi

    2010-01-01

    Aim To evaluate the interactive effects of different self-adhesive resin cements and tribochemical treatment on bond strength to zirconia. Methodology The following self-adhesive resin cements for bonding two zirconia blocks were evaluated: Maxcem (MA), Smartcem (SM), Rely X Unicem Aplicap (UN), Breeze (BR), Biscem (BI), Set (SE), and Clearfil SA luting (CL). The specimens were grouped according to conditioning as follows: Group 1, polishing with 600 grit polishing paper; Group 2, silica coating with 110 µm Al2O3 particles which modified with silica; and, Group 3, tribochemical treatment - silica coating + silanization. Specimens were stored in distilled water at 37°C for 24 hours before testing shear bond strength. Results Silica coating and tribochemical treatment significantly increased the bond strength of the MA, UN, BR, BI, SE and CL to zirconia compared to #600 polishing. For both #600 polished and silica coating treatments, MDP-containing self-adhesive resin cement CL had the highest bond strengths to zirconia. Conclusion Applying silica coating and tribochemical treatment improved the bond strength of self-adhesive resin cement to zirconia, especially for CL. PMID:20690416

  12. BOND STRENGTH AND MORPHOLOGY OF ENAMEL USING SELF-ETCHING ADHESIVE SYSTEMS WITH DIFFERENT ACIDITIES

    PubMed Central

    Moura, Sandra Kiss; Reis, Alessandra; Pelizzaro, Arlete; Dal-Bianco, Karen; Loguercio, Alessandro Dourado; Arana-Chavez, Victor Elias; Grande, Rosa Helena Miranda

    2009-01-01

    Objectives: To assess the bond strength and the morphology of enamel after application of self-etching adhesive systems with different acidities. The tested hypothesis was that the performance of the self-etching adhesive systems does not vary for the studied parameters. Material and methods: Composite resin (Filtek Z250) buildups were bonded to untreated (prophylaxis) and treated (burcut or SiC-paper) enamel surfaces of third molars after application of four self-etching and two etch-and-rinse adhesive systems (n=6/condition): Clearfil SE Bond (CSE); OptiBond Solo Plus Self-Etch (OP); AdheSe (AD); Tyrian Self Priming Etching (TY), Adper Scotchbond Multi-Purpose Plus (SBMP) and Adper Single Bond (SB). After storage in water (24 h/37°C), the bonded specimens were sectioned into sticks with 0.8 mm2 cross-sectional area and the microtensile bond strength was tested at a crosshead speed of 0.5 mm/min. The mean bond strength values (MPa) were subjected to two-way ANOVA and Tukey's test (α=0.05). The etching patterns of the adhesive systems were also observed with a scanning electron microscope. Results: The main factor adhesive system was statistically significant (p<0.05). The mean bond strength values (MPa) and standard deviations were: CSE (20.5±3.5), OP (11.3±2.3), AD (11.2±2.8), TY (11.1±3.0), SBMP (21.9±4.0) and SB (24.9±3.0). Different etching patterns were observed for the self-etching primers depending on the enamel treatment and the pH of the adhesive system. Conclusion: Although there is a tendency towards using adhesive systems with simplified application procedures, this may compromise the bonding performance of some systems to enamel, even when the prismless enamel is removed. PMID:19668991

  13. Microleakage Evaluation of Adhesive Systems Following Pulp Chamber Irrigation with Sodium Hypochlorite

    PubMed Central

    Moghaddas, Mohammad Javad; Moosavi, Horieh; Ghavamnasiri, Marjaneh

    2014-01-01

    Background and aims. This in vitro study evaluated the effect of delaying composite resin restorative procedures bonded with total-etch and self-etch adhesive systems on microleakage following root canal irrigation with sodium hy-pochlorite (NaOCl) solution. Materials and methods. The roofs of pulp chambers and roots (1–2 mm below furcation) of 40 human first molar teeth were cut and pulp tissues completely removed. The teeth were randomly divided into two main groups (n = 20). Group E (experimental) was irrigated with 5% NaOCl and group C (control) was left untreated. For the experimental group, after obturation of root canals with gutta-percha and sealing the cavity with Cavit, the specimens were stored in artificialsaliva for two weeks. Then each group was divided into two subgroups according to the total-etch or self-etch adhesive application protocol: Scotchbond Multi-Purpose and Clearfil SE Bond. The specimens were restored with composite resin using each bonding agent: Z250 and Clearfil Photo Core, respectively. Fluid filtration method was used for evaluation of microleakage. Data was analyzed using two-way ANOVA ( α= 0.05). Results. Two types of dentin adhesive systems showed no statistically significant differences in microleakage (P = 0.77). NaOCl-treated groups demonstrated significantly higher microleakage values compared to the non-NaOCl-treated groups (P= 0.001). The interaction between the two factors was not significant (P = 0.78). Conclusion. Differences in inlay temperature had no effect on microleakage. CAD/CAM inlays had lower cement thick-ness than laboratory-made inlays, but this was not related to their microleakage. PMID:25024835

  14. Marginal permeability of one step self-etch adhesives: Effects of double application or the application of hydrophobic layer

    PubMed Central

    Pushpa, R; Suresh, B S

    2010-01-01

    Aim: The purpose of this in vitro investigation was to evaluate the influence of double application and application of hydrophobic layer on marginal adaptation of four self-etch adhesive systems (XENOIII, ALLBONDSE, CLEARFIL SE TRI BOND, FUTURA BOND). Materials and Methods: One hundred and twenty class V cavities were prepared on intact, extracted human premolars and were divided into three groups of ten teeth each for all four adhesives. Group 1: Application of bonding agents as per manufacturer directions. Group 2: Double application of bonding agents. Group 3: Application of hydrophobic layer. The specimens were restored with composite and light cured. After thermocycling and immersion in 2% Basic Fuchsin dye solution, the teeth were sectioned and dye penetration was observed under a stereomicroscope at 20× magnification. All the samples were scored and results were analyzed using Kruskal-Wallis and Mann-Whitney tests. Results: Group 3, in which the adhesive systems were coated with hydrophobic layer, showed significantly decreased microleakage, followed by Group 1 and Group 2 for all the adhesive systems. And there is no significant different between Group 1 and Group 2. Conclusion: Marginal permeability of one-step adhesives can be minimized by the application of more hydrophobic resin layer, and the double application of one-step self-etch system can be safely performed without jeopardizing the performance of adhesives. PMID:21116389

  15. Shear Bond Strengths and Morphological Evaluation of Filled and Unfilled Adhesive Interfaces to Enamel and Dentine

    PubMed Central

    Mortazavi, Vajihesadat; Fathi, Mohammadhosein; Ataei, Ebrahim; Khodaeian, Niloufar; Askari, Navid

    2012-01-01

    In this laboratory study shear bond strengths of three filled and one unfilled adhesive systems to enamel and dentine were compared. Forty-eight extracted intact noncarious human mandibular molars were randomly assigned to two groups of 24 one for bonding to enamel and the other for bonding to dentine. Buccal and lingual surfaces of each tooth were randomly assigned for application of each one of filled (Prime & Bond NT (PBNT), Optibond Solo Plus (OBSP), and Clearfil SE Bond (CSEB)) and unfilled (Single Bond (SB)) adhesive systems (n = 12). A universal resin composite was placed into the translucent plastic cylinders (3 mm in diameter and 2 mm in length) and seated against the enamel and dentine surfaces and polymerized for 40 seconds. Shear bond strength was determined using a universal testing machine, and the results were statistically analyzed using two-way ANOVA, one-way ANOVA, t-test, and Tukey HSD post hoc test with a 5% level of significance.There were no statistically significant differences in bond strength between the adhesive systems in enamel, but CSEB and SB exhibited significantly higher and lower bond strength to dentine, respectively, than the other tested adhesive systems while there were no statistically significant differences between PBNT and OBSP. PMID:23209471

  16. Restoration interface microleakage using one total-etch and three self-etch adhesives.

    PubMed

    Deliperi, S; Bardwell, D N; Wegley, C

    2007-01-01

    This study evaluated the efficacy of a total-etch and three self-etch adhesives in reducing microleakage after three months water storage and thermocycling. Thirty freshly extracted caries-free human premolars and molars were used. Class V standardized preparations were performed on the facial and lingual surfaces, with the gingival margin placed 1 mm below the CEJ. The teeth were randomly divided into four groups; Group I: Xeno III one-step self-etch adhesive (Dentsply/Caulk), Group II: Prime & Bond NT total-etch adhesive (Dentsply/Caulk), Group III: i-Bond one-step self-etch adhesive (Heraeus Kulzer) and Group IV: Clearfil SE Bond two-step self-etch adhesive (Kuraray Medical). The teeth were restored using 2 mm increments of shade A2 resin composite (Esthet-X, Dentsply/Caulk). Each layer was cured using the Spectrum 800 curing light (Dentsply/Caulk) for 20 seconds at 600mW/cm2. The teeth were stored in distilled water for 90 days. Samples were thermocycled 500x between 5 degrees C and 55 degrees C with a dwell time of 30 seconds, then placed in a 0.5% methylene blue dye solution for 24 hours at 37 degrees C. Samples were sectioned longitudinally and evaluated for microleakage at the occlusal and gingival margins under a stereomicroscope at 20x magnification. Dye penetration was scored: 0 = no penetration; 1 = partial dye penetration along the occlusal or gingival wall; 2 = dye penetration along the occlusal or gingival wall; 3 = dye penetration to and along the axial wall. A Mann-Whitney test was used to demonstrate significantly more dye penetration in Group III than in the other groups at both the occlusal and gingival scores (p < 0.0001). When comparing the occlusal and gingival scores for each group, the Wilcoxon Rank test showed no significant difference in dye penetration for Xeno III (p > 0.05), Prime & Bond NT (p = 0.059) and I Bond (p = 0.083), and Clearfil SE Bond yielded more dye penetration at the occlusal than at the gingival wall (p = 0.001).

  17. Effect of lining with a flowable composite on internal adaptation of direct composite restorations using all-in-one adhesive systems.

    PubMed

    Yahagi, Chika; Takagaki, Tomohiro; Sadr, Alireza; Ikeda, Masaomi; Nikaido, Toru; Tagami, Junji

    2012-01-01

    The purpose of this study was to evaluate the effect of lining with a flowable composite on internal adaptation of composite restorations using three all-in-one adhesive systems; Bond Force (BF), G-Bond Plus (GP), and OptiBond All-in-one (OP), and a two-step self-etching adhesive system; Clearfil SE Bond (SE). They were applied to each cylindrical cavity prepared on the human dentin. The cavity surface was lined with/without a flowable resin composite prior to filling with a resin composite (FL/NL). After water storage for 24 h, the specimens were sectioned and polished, and internal adaptation of the restorations was assessed using a confocal laser scanning microscopy. For SE, a perfect cavity adaptation was recognized in both FL and NL. For BF, GP and OP, cavity adaptation was material dependent in NL, whereas no gap formation was observed in FL. However, voids formation was observed at the composite-adhesive-dentin interface in every all-in-one adhesive system.

  18. Hybridization quality and bond strength of adhesive systems according to interaction with dentin

    PubMed Central

    Salvio, Luciana Andrea; Hipólito, Vinicius Di; Martins, Adriano Luis; de Goes, Mario Fernando

    2013-01-01

    Objective: To evaluate the hybridization quality and bond strength of adhesives to dentin. Materials and Methods: Ten human molars were ground to expose the dentin and then sectioned in four tooth-quarters. They were randomly divided into 5 groups according to the adhesive used: Two single-step self-etch adhesives – Adper Prompt (ADP) and Xeno III (XE), two two-step self-etching primer systems – Clearfil SE Bond (SE) and Adhe SE (ADSE), and one one-step etch-and-rinse system – Adper Single Bond (SB). Resin composite (Filtek Z250) crown buildups were made on the bonded surfaces and incrementally light-cured for 20 s. The restored tooth-quarters were stored in water at 37°C for 24 h and then sectioned into beams (0.8 mm2 in cross-section). Maximal microtensile bond strength (μ-TBS) was recorded (0.5 mm/min in crosshead speed). The results were submitted to one-way ANOVA and Tukey's test (α = 0.05). Thirty additional teeth were used to investigate the hybridization quality by SEM using silver methenamine or ammoniacal silver nitrate dyes. Results: SE reached significantly higher μ-TBS (P < 0.05); no significance was found between ADSE and XE (P > 0.05), and between SB and ADP (P > 0.05); ADSE and XE were significantly higher than SB and ADP (P < 0.05). The bonding interface of SB showed the most intense silver uptake. SE and ADSE showed more favorable hybridization quality than that observed for ADP and XE. Conclusions: The bond strength and hybridization quality were affected by the interaction form of the adhesives with dentin. The hybridization quality was essential to improve the immediate μ-TBS to dentin. PMID:24926212

  19. Adhesive bond strengths to enamel and dentin using recommended and extended treatment times.

    PubMed

    Kimmes, Nicole S; Barkmeier, Wayne W; Erickson, Robert L; Latta, Mark A

    2010-01-01

    This study examined the effect of different enamel and dentin conditioning times on the shear bond strength of a resin composite using etch-and-rinse and self-etch adhesive systems. Shear bond strengths were determined following treatment of flat ground human enamel and dentin surfaces (4000 grit) with 11 adhesive systems: 1) AdheSE One Viva Pen-(ASE), 2) Adper Prompt L-Pop-(PLP), 3) Adper Single Bond Plus-(SBP), 4) Clearfil SE Bond-(CSE), 5) Clearfil S3 Bond-(CS3), 6) OptiBond All-In-One-(OBA), 7) OptiBond Solo Plus-(OBS), 8) Peak SE-(PSE), 9) Xeno IV-(X4), 10) Xeno V-(X5) and 11) XP Bond-(XPB) using recommended treatment times and an extended treatment time of 60 seconds (n = 10/group). Composite (Z100) to enamel and dentin bond strengths (24 hours) were determined using Ultradent fixtures and debonded with a crosshead speed of 1 mm/minute. The data were analyzed with a three-way Analysis of Variance (ANOVA) and Fisher's LSD post hoc test. The highest shear bond strengths (MPa) to enamel were achieved by the three etch-and-rinse systems at both the recommended treatment time (SBP-40.5 +/- 6.1; XPB-38.7 +/- 3.7; OBS- 35.2 +/- 6.2) and the extended treatment time (SBP-44.5 +/- 8.1; XPB-40.9 +/- 5.7; OBS-35.0 +/- 4.5). Extending the enamel treatment time did not produce a significant change (p > 0.05) in bond strength for the 11 adhesive systems tested. OBS generated the highest (46.2 +/- 7.9) bond strengths to dentin at the recommended treatment time. At the extended treatment time X4 (42.2 +/- 11.7), PSE (42.1 +/- 9.7) and OBS (41.4 +/- 8.0) produced the highest bond strengths to dentin. The bond strength change between recommend and extended treatment times was significant (p < 0.05) for PSE, but the other 10 systems did not exhibit any significant change.

  20. Effect of cleaning methods on bond strength of self-etching adhesive to dentin

    PubMed Central

    Bronzato, Juliana Delatorre; Cecchin, Doglas; Miyagaki, Daniela Cristina; de Almeida, José Flávio Affonso; Ferraz, Caio Cezar Randi

    2016-01-01

    Aim: The aim of this study was to investigate the influence of cleaning methods to remove zinc oxide-eugenol-based root canal sealer (Endomethasone) on the bond strength of the self-etching adhesive to dentin. Materials and Methods: Twenty crowns of bovine incisors were cut to expose the pulp chamber. A zinc oxide- and eugenol-based sealer was placed for 10 min in contact with the pulp chamber dentin. Specimens were divided into four groups according to the cleaning method of dentin used: G1, no root canal sealer (control); G2, 0.9% sodium chlorite (NaCl); G3, ethanol; and G4, followed by diamond drill. After cleaning, the teeth were restored with composite resin and Clearfil SE Bond. All specimens were sectioned to produce rectangular sticks and dentin/resin interface was submitted to microtensile bond testing. The mean bond strengths were analyzed using ANOVA/Tukey (α = 0.05). Results: G3 and G4 showed bond strengths similar to the G1 (P > 0.05). A significant decrease in the bond strength in the G2 was observed (P < 0.05). G1, G3, and G4, the predominant failure mode was the mixed type. The prevalence of adhesive failure mode was verified in the G2. Conclusion: The cleaning methods affected the bond strength of the self-etching adhesive to dentin differently. PMID:26957789

  1. Bond strength of composite to dentin: effect of acid etching and laser irradiation through an uncured self-etch adhesive system

    NASA Astrophysics Data System (ADS)

    Castro, F. L. A.; Carvalho, J. G.; Andrade, M. F.; Saad, J. R. C.; Hebling, J.; Lizarelli, R. F. Z.

    2014-08-01

    This study evaluated the effect on micro-tensile bond strength (µ-TBS) of laser irradiation of etched/unetched dentin through an uncured self-etching adhesive. Dentinal surfaces were treated with Clearfil SE Bond Adhesive (CSE) either according to the manufacturer’s instructions (CSE) or without applying the primer (CSE/NP). The dentin was irradiated through the uncured adhesive, using an Nd:YAG laser at 0.75 or 1 W power settings. The adhesive was cured, composite crowns were built up, and the teeth were sectioned into beams (0.49 mm2) to be stressed under tension. Data were analyzed using one-way ANOVA and Tukey statistics (α = 5%). Dentin of the fractured specimens and the interfaces of untested beams were observed under scanning electron microscopy (SEM). The results showed that non-etched irradiated surfaces presented higher µ-TBS than etched and irradiated surfaces (p < 0.05). Laser irradiation alone did not lead to differences in µ-TBS (p > 0.05). SEM showed solidification globules on the surfaces of the specimens. The interfaces were similar on irradiated and non-irradiated surfaces. Laser irradiation of dentin through the uncured adhesive did not lead to higher µ-TBS when compared to the suggested manufacturer’s technique. However, this treatment brought benefits when performed on unetched dentin, since bond strengths were higher when compared to etched dentin.

  2. Marginal integrity of low-shrinking versus methacrylate-based composite: effect of different one-step self-etch adhesives.

    PubMed

    Gregor, Ladislav; Dorien, Lefever; Bortolotto, Tissiana; Feilzer, Albert J; Krejci, Ivo

    2016-11-01

    The aim of the study was to evaluate the influence of composite type and adhesive system on the quality of marginal adaptation in standardized Class V cavities before and after thermo-mechanical loading (TML). The cavities were restored using different combinations of three adhesive systems [(Silorane System Adhesive (SSA), Clearfil S(3) Bond (S3), G-Bond (G-B)] and two resin composite materials (Filtek Silorane, Clearfil AP-X). Six groups (n = 10): Group A (SSA-Primer + SSA-Bond, Filtek Silorane), Group B (SSA-Primer + SSA-Bond, Clearfil AP-X), Group C (S3 + SSA-Bond, Filtek Silorane), Group D (S3 + SSA-Bond, Clearfil AP-X), Group E (G-B + SSA-Bond, Filtek Silorane) and Group F (G-B + SSA-Bond, Clearfil AP-X) were defined. Marginal adaptation was assessed on replicas in the SEM at 200 × magnification before and after TML (3000 × 5-55 °C, 1.2 10(6) × 49 N; 1.7 Hz) under simulated dentinal fluid. The highest scores of continuous margins (%CM) were observed in the group F (G-B + SSA-Bond, Clearfil AP-X: before loading 96.4 (±3.2)/after loading 90.8 (±7.0)). A significant effect of adhesive system, composite type and loading interval was observed on the results (p < 0.05). Significantly lower scores of %CM were observed for silorane-based composite (Filtek Silorane) after TML in comparison with methacrylate-based composite (Clearfil AP-X) considering total marginal length (p < 0.05). For both Filtek Silorane and Clearfil AP-X, G-Bond performed significantly better than SSA-Primer and Clearfil S(3) Bond (p < 0.05). For all combinations of one-step self-etch adhesives and SSA-Bond resin coating, silorane-based low-shrinking composite exhibited inferior marginal adaptation than did the methacrylate-based composite.

  3. Effects of Type I Collagen Degradation on the Durability of Three Adhesive Systems in the Early Phase of Dentin Bonding

    PubMed Central

    Hu, Lin; Xiao, Yu-hong; Fang, Ming; Gao, Yu; Huang, Li; Jia, An-qi; Chen, Ji-hua

    2015-01-01

    Objective This study was designed to evaluate the effects of type I collagen degradation on the durability of three adhesive systems in the early phase of dentin bonding. Methods Bonded dentin specimens were prepared using three different types of adhesive systems. Micro-tensile bond strength and degradation of collagen were tested before, and after 1 month or 4 months of aging in artificial saliva. The relationship between micro-tensile bond strength and collagen degradation was analyzed by calculating their Pearson’s correlation coefficient. Results Aging induced time-dependent reduction in micro-tensile bond strengths for all the tested adhesive systems, although such reduction for the single-step self-etching adhesive G-Bond (GB) was not statistically significant. The bond strength of the two-step self-etching primer adhesive system Clearfil SE Bond (SEB) was similar to that of the two-step etch-and-rinse self-priming adhesive system Single Bond 2 (SB), and they were both significantly reduced after one or four months of aging. A negative correlation was found between the degree of collagen degradation and magnitude of micro-tensile bond strength (r = - 0.65, p = 0.003). The Pearson’s correlation coefficient was 0.426, indicating that 42.6% of the aging-induced reduction in bond strength can be explained by the degradation of collagen. Conclusions In the early phase of dentin bonding, there was a negative correlation between the degree of collagen degradation and the magnitude of micro-tensile bond strength. The reduction of bond strength was accompanied by the degradation of collagen. These results provide evidence for the causative relationship between the degradation of collagen and the deterioration of dentin-adhesive interface. PMID:25689141

  4. Effect of Non-Thermal Argon Plasma on Bond Strength of a Self-Etch Adhesive System to NaOCl-Treated Dentin.

    PubMed

    Abreu, João Luiz Bittencourt de; Prado, Maíra; Simão, Renata Antoun; Silva, Eduardo Moreira da; Dias, Katia Regina Hostilio Cervantes

    2016-01-01

    Studies have been showing a decrease of bond strength in dentin treated with sodium hypochlorite (NaOCl). The aim of this study was to evaluate the effect of non-thermal argon plasma on the bond strength of a self-etch adhesive system to dentin exposed to NaOCl. Thirty-two flat dentin surfaces of bovine incisors were immersed in 2.5% NaOCl for 30 min to simulate the irrigation step during endodontic treatment. The specimens were divided into four groups (n=8), according to the surface treatment: Control (without plasma treatment), AR15 (argon plasma for 15 s), AR30 (argon plasma for 30 s) and AR45 (argon plasma for 45 s). For microtensile bond strength test, 5 specimens were used per group. In each group, the specimens were hybridized with a self-etch adhesive system (Clearfil SE Bond) and resin composite buildups were constructed. After 48 h of water storage, specimens were sectioned into sticks (5 per tooth, 25 per group) and subjected to microtensile bond strength test (μTBS) until failure, evaluating failure mode. Three specimens per group were analyzed under FTIR spectroscopy to verify the chemical modifications produced in dentin. μTBS data were analyzed using ANOVA and Tamhane tests (p<0.05). AR30 showed the highest μTBS (20.86±9.0). AR15 (13.81±6.4) and AR45 (11.51±6.8) were statistically similar to control (13.67±8.1). FTIR spectroscopy showed that argon plasma treatment produced chemical modifications in dentin. In conclusion, non-thermal argon plasma treatment for 30 s produced chemical changes in dentin and improved the μTBs of Clearfil SE Bond to NaOCl-treated dentin.

  5. Evaluation of microshear bond strength of resin composites to enamel of dental adhesive systems associated with Er,Cr:YSGG laser

    NASA Astrophysics Data System (ADS)

    Cassimiro-Silva, Patricia F.; Zezell, Denise M.; Monteiro, Gabriela Q. d. M.; Benetti, Carolina; de Paula Eduardo, Carlos; Gomes, Anderson S. L.

    2016-02-01

    The aim of this in vitro study was to evaluate the microshear bond strength (μSBS) of resin composite to enamel etching by Er,Cr:YSGG laser with the use of two differents adhesives systems. Fifty freshly extracted human molars halves were embedded in acrylic resin before preparation for the study, making a total of up to 100 available samples. The specimens were randomly assigned into six groups (η=10) according to substrate pre-treatment and adhesive system on the enamel. A two-step self-etching primer system (Clearfil SE Bond) and a universal adhesive used as an etch-andrinse adhesive (Adper Single Bond Universal) were applied to the nonirradiated enamel surface according to manufacturer's instructions, as control groups (Control CF and Control SB, respectively). For the other groups, enamel surfaces were previously irradiated with the Er,Cr:YSGG laser with 0.5 W, 75 mJ and 66 J/cm2 (CF 5 Hz and SB 5 Hz) and 1.25 W, 50 mJ and 44 J/cm2 (CF 15 Hz and SB 15 Hz). Irradiation was performed under air (50%) and water (50%) cooling. An independent t-test was performed to compare the adhesive systems. Mean μSBS ± sd (MPa) for each group was 16.857 +/- 2.61, 17.87 +/- 5.83, 12.23 +/- 2.02, 9.88 +/- 2.26, 15.94 +/- 1.98, 17.62 +/- 2.10, respectively. The control groups and the 50 mJ laser groups showed no statistically significant differences, regardless of the adhesive system used. The results obtained lead us to affirm that the bonding interaction of adhesives to enamel depends not only on the morphological aspects of the dental surface, but also on the characteristics of the adhesive employed and the parameters of the laser.

  6. Effect of Sodium Ascorbate and Delayed Bonding on the Bond Strength of Silorane and Two-step Self-etch Adhesive Systems in Bleached Enamel

    PubMed Central

    Abed Kahnemooyi, Mehdi; Ajami, Amir Ahmad; Kimyai, Soodabeh; Pournaghiazar, Fatemeh; Savadi Oskoee, Siavash; Mhammadi Torkani, Mohammad Ali

    2014-01-01

    Background and aims. Studies have shown decreased bond strength of composite resin to human and bovine bleached enamel. This study evaluated the effect of sodium ascorbate and delayed bonding on the bond strength of two adhesive systems to bleached enamel. Materials and methods. The labial surfaces of 150 sound bovine incisor teeth were abraded with abrasive paper. The teeth were randomly divided into 8 groups: A: control; B: bleached with 35% hydrogen peroxide; C: bleached with 35% hydrogen peroxide + sodium ascorbate gel; and D: bleached with 35% hydrogen peroxide + delayed bonding. In groups A‒D, silorane adhesive system and Filtek silorane composite resin were used. In groups E‒H, the same preparation methods of groups A-D were used. Two-step self-etch Clearfil SE Bond adhesive systems and AP-X composite resin were administered. Shear bond strength of each group was measured. Two samples were prepared for each surface preparation for ultra-structural evaluation. Two-way ANOVA and Tukey test were used for data analysis at P<0.05. Results. The interaction between the adhesive system type and surface preparation protocol was significant (P=0.014), withsignificant differences in shear bond strengths in terms of the adhesive systems (P<0.01). There were significant differences in shear bond strength in terms of surface preparation techniques irrespective of the adhesive system (P<0.01). Conclusion. The results showed that bleaching with 35% hydrogen peroxide decreased the shear bond strength values with both adhesive systems, and a one-week delay in bonding and 10% sodium ascorbate for10 minutes restored the bond strength in both adhesive systems. PMID:25587382

  7. Effect of MTAD on the shear bond strength of self-etch adhesives to dentin

    PubMed Central

    Mortazavi, Vajihesadat; Khademi, Abbasali; Khosravi, Kazem; Fathi, Mohammadhossein; Ebrahimi–Chaharom, Mohammadesmaeil; Shahnaseri, Shirin; Khalighinejad, Navid; Badrian, Hamid

    2012-01-01

    Background: As the use of different irrigants to eliminate residual debris and smear layer in the field of endodontic is unavoidable, by considering the effect of irrigants on the bond strength of resin composite restorations, this study was designed to evaluate the effect of a mixture of a tetracycline isomer, an acid, and a detergent (MTAD) on the shear bond strength of two self-etch adhesives, Clearfil SE Bond and Adper Prompt L- Pop to dentin. Materials and Methods: The crowns of 80 extracted premolars were transversally sectioned to expose dentin. Flat dentin surfaces were wet abraded with 320-grit abrasive paper and randomly assigned to eight groups according to two self-etch adhesive and four dentin surface treatments: direct application over smear layer (no treatment), etching with 35% phosphoric acid for 15s, 1 min 5.25% NaOCl/1 min MTAD and 20min 1.3% NaOCl/5min MTAD. Shear bond strength was tested 24 h after storage in distilled water at 37°C in incubator. Data were analyzed using one-way ANOVA followed by duncan post-hoc (α=0.05). Results: Phosphoric acid etching prior to SE Bond application significantly decreased the shear bond strength to dentin (P<0.05). Application of MTAD clinical protocol (20min 1.3% NaOCl/5min MTAD) did not significantly decrease the shear bond strength of self-etch adhesives to dentin (P=0.745) Conclusions: Based on the results of present investigation, it seems that the use of clinical protocol of 1.3% NaOCl as a root canal irrigant and a 5-min application of MTAD as a final rinse to remove the smear layer has no adverse effect on the shear bond strength of self-etch adhesives to dentin. PMID:22363359

  8. Influence of Diamond Sono-Abrasion, Air-Abrasion and Er:YAG Laser Irradiation on Bonding of Different Adhesive Systems to Dentin

    PubMed Central

    de Oliveira, Marcelo Tavares; de Freitas, Patrícia Moreira; de Paula Eduardo, Carlos; Ambrosano, Glaucia Maria Bovi; Giannini, Marcelo

    2007-01-01

    Objectives Different surface treatments may affect bonding performance of adhesive systems to dentin. This study evaluated the influence of different methods of surface treatment on adhesion of bonding agents to dentin. Methods Dentin surfaces abraded with #600-grit SiC paper were used as control. Three methods of surface treatment (sono-abrasion, air-abrasion and Er:YAG laser irradiation) were used under specific parameters. Four adhesive systems (Tyrian, Clearfil SE Bond, Unifil Bond and Single Bond) were applied to treated surfaces, according to the manufacturers’ instructions. Composite blocks were built on bonded surfaces, then restored teeth were vertically and serially sectioned to obtain bonded slices for interfacial micromorphologic analysis or to produce beam specimens for μ-TBS bond test. Data were analyzed with two-way ANOVA and Tukey test at a significance level of 5%. Results The results indicated that the preparation of dentin with sono-abrasion or laser did not affect the bond strength, while the preparation of dentin with SiC paper and air-abrasion influenced the bond strength for some systems. A clear difference of the preparation of dentin surfaces and formation of hybrid layer and resin tags were noted. Conclusion Bonding effectiveness of both the etch-and-rinse and the self-etch adhesives can be influenced by different methods of dentin preparation. PMID:19212560

  9. The bond strength of adhesive resins to AH plus contaminated dentin cleaned by various gutta-percha solvents.

    PubMed

    Topçuoğlu, Hüseyin Sinan; Demirbuga, Sezer; Pala, Kansad; Cayabatmaz, Muhammed; Topçuoğlu, Gamze

    2015-01-01

    The optimal bonding of adhesives to dentin requires the sealer to be completely removed from dentinal walls. The aim of this study was to investigate the effect of different cleaning procedures using gutta-percha solvents on bond strength of adhesive resins to AH Plus contaminated dentin (APCD). The pulp chamber dentin surfaces were contaminated with AH Plus and cleaned with five different techniques (dry cotton, chloroform, orange oil, eucalyptol, and ethanol). Then, Clearfil SE Bond (CSE) (Kuraray), and Tetric N Bond (TNB) (Ivoclar Vivadent) were applied and filled with a composite resin. The serial sticks (1 × 1 mm) were obtained and tested for microtensile bond strength. Scanning electron microscopy (SEM) was used for analysis of debonded surfaces. Ethanol exhibited the highest bond strength to APCD followed by dry cotton. There was no statistically significant difference between ethanol and dry cotton (p > 0.05). Eucalyptol showed the lowest bond strength to APCD and statistically significant differences (p < 0.05) in comparison with other groups. APCD reduced the bond strength of all adhesive resins. Dry cotton, ethanol, and chloroform were the most suitable techniques when used with CSE together, whereas ethanol was best with TNB.

  10. Shear Bond Strengths of Methacrylate- and Silorane-based Composite Resins to Feldspathic Porcelain using Different Adhesive Systems

    PubMed Central

    Mohammadi, Narmin; Shakur Shahabi, Maryam; Kimyai, Soodabeh; Pournagi Azar, Fatemeh; Ebrahimi Chaharom, Mohammad Esmaeel

    2015-01-01

    Background and aims. Use of porcelain as inlays, laminates and metal-ceramic and all-ceramic crowns is common in modern dentistry. The high cost of ceramic restorations, time limitations and difficulty of removing these restorations result in delays in replacing fractured restorations; therefore, their repair is indicated. The aim of the present study was to compare the shear bond strengths of two types of composite resins (methacrylate-based and silorane-based) to porcelain, using three adhesive types. Materials and methods. A total of 156 samples of feldspathic porcelain surfaces were prepared with air-abrasion and randomly divided into 6 groups (n=26). In groups 1-3, Z250 composite resin was used to repair porcelain samples with Ad-per Single Bond 2 (ASB), Clearfil SE Bond (CSB) and Silorane Adhesive (SA) as the bonding systems, afterapplication of silane, respectively. In groups 4-6, the same adhesives were used in the same manner with Filtek Silorane composite resin. Finally, the shear bond strengths of the samples were measured. Two-way ANOVA and post hoc Tukey tests were used to compare bond strengths between the groups with different adhesives at P<0.05. Results. There were significant differences in the mean bond strength values in terms of the adhesive type (P<0.001). In addition, the interactive effect of the adhesive type and composite resin type had no significant effect on bond strength (P=0.602). Conclusion. The results of the present study showed the highest repair bond strength values to porcelain with both composite resin types with the application of SA and ASB. PMID:26697151

  11. Cytotoxicity of universal, self-etching and etch-and-rinse adhesive systems according to the polymerization time.

    PubMed

    Elias, Silvia T; Santos, Andressa F Dos; Garcia, Fernanda C P; Pereira, Patrícia N R; Hilgert, Leandro A; Fonseca-Bazzo, Yris M; Guerra, Eliete N S; Ribeiro, Ana Paula Dias

    2015-01-01

    This in vitro study evaluated in fibroblast cultures the direct cytotoxicity of universal, self-etching and etch-and-rinse adhesive systems according to the polymerization time. Paper discs were impregnated with adhesives and light-cured (10, 20 or 40 s). The discs were then immersed in culture medium to obtain the eluates for the experimental groups (A1-Single Bond 2; A2-Scotchbond Multi-purpose; A3-Clearfil SE Bond; A4 Scotchbond Universal). As a negative control, paper discs were immersed in culture medium only. After 24 h or 7 days, the eluate obtained was applied on fibroblast culture. Cell viability, cell morphology, membrane damage and the presence of residual monomers were evaluated by MTT assay, SEM, flow cytometry and high-performance liquid chromatography (HPLC), respectively. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests (=0.05). All adhesive systems significantly reduced 33-51% cell metabolism when compared to the negative control, regardless of polymerization time, storage period and adhesive system. Moreover, the adhesives caused intense morphological alterations and cell membrane damage. Toxicity was directly related to the presence of residual monomers in the eluates. Residual monomers and additional components are capable of reducing mitochondrial activity, causing morphological alterations and disruption of the cell membrane in fibroblasts, regardless of the polymerization time. This study highlights that despite the more complex composition of the universal adhesive system, its biological response was not more toxic when compared with other systems, even when the shortest polymerization time was tested in cell culture.

  12. A randomized clinical trial evaluating the success rate of ethanol wet bonding technique and two adhesives

    PubMed Central

    Mortazavi, Vajihesadat; Samimi, Pouran; Rafizadeh, Mojgan; Kazemi, Shantia

    2012-01-01

    Background: Composite resin restorations may have a short lifespan due to the degradation of resin–dentin interface. Ethanol wet bonding technique may extend the longevity of resin–dentin bond. The purpose of this one year randomized clinical trial was to compare clinical performance of two adhesives with ethanol wet bonding technique. Materials and Methods: This randomized clinical trial was performed on 36 non-carious cervical lesions in 12 patients restored with composite resin using one of the following approaches: 1. OptiBond FL (Kerr, USA); 2. Clearfil SE Bond (Kuraray, Japan) with enamel etching and 3. Ethanol wet bonding technique with the part of adhesive of OptiBond FL. The clinical success rate was assessed after 24 h, 6, 9 and 12 months according to the United States Public Health Service (USPHS) criteria: Marginal discoloration, marginal defect, retention rate, caries occurrence, and postoperative sensitivity. The tooth vitality was also assessed. Results: The retention rate was 100% at baseline and at 6 months follow up for all types of bonding protocols and was 91.67% at 9 and 12 months follow up for ethanol wet bonding group. None of the restorations in three groups showed marginal defects, marginal discoloration or caries occurrence and were vital after 12 months. There was no statistically significant difference between three groups after 12 months follow up (p value = 0.358). Conclusions: Composite restorations placed using ethanol wet bonding technique presented equal performance to the other groups. PMID:23559924

  13. Dentin bond strength and degree of conversion evaluation of experimental self-etch adhesive systems

    PubMed Central

    Yazdi, Fatemeh-Maleknejad; Atai, Mohammad; Zeynali, Mahsa

    2015-01-01

    Background The aim of this study was to investigate the effect of different concentrations of 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) monomer in one-step self-etch experimental adhesives on dentinal microshear bond strength (µSBS), their degree of conversion and bonded micro structure. Material and Methods Composite resin cylinders (Clearfil AP-X) were bonded on human sound molar dentinal surfaces by using five experimental one-step self-etching adhesives (1-SEAs) containing 0% (E0), 5% (E5), 10% (E10), 15% (E15), 20% (E20) (by weight) 10-MDP monomer and Clearfil S3 Bond (CS3) as a control. After 24 hours, microshear bond strength was tested. The degree of conversion was also measured using Fourier transform infrared spectroscopy. Interfacial ultrastructure was observed under a scanning electron microscope in all the groups. Results A higher microshear bond strength was observed with adhesives containing 10% and 15% 10-MDP in comparison to study groups (P<.05). Clearfil S3 Bond and 10% MDP had a significantly greater degree of conversion than other groups (P<.05). Conclusions The amount of functional monomer in 1-SEAs influences both the bonding performance and degree of conversion; 10% 10-MDP showed the best combination of bond strength and degree of conversion. Key words:Self-etch adhesives, 10-MDP, bond strength, degree of conversion. PMID:26155340

  14. Effect of postoperative peroxide bleaching on the marginal seal of composite restorations bonded with self-etch adhesives.

    PubMed

    Roubickova, A; Dudek, M; Comba, L; Housova, D; Bradna, P

    2013-01-01

    The aim of this study was to determine the effect of peroxide bleaching on the marginal seal of composite restorations bonded with several adhesive systems. Combined cylindrical Class V cavities located half in enamel and half in dentin were prepared on the buccal and lingual surfaces of human molars. The cavities were bonded with the self-etch adhesives Clearfil SE-Bond (CLF), Adper Prompt (ADP), and iBond (IBO) and an etch-and-rinse adhesive Gluma Comfort Bond (GLU) and restored with a microhybrid composite Charisma. Experimental groups were treated 25 times for eight hours per day with a peroxide bleaching gel Opalescence PF 20, while the control groups were stored in distilled water for two months and then subjected to a microleakage test using a dye penetration method. Scanning electron microscopy was used to investigate the etching and penetration abilities of the adhesives and morphology of debonded restoration-enamel interfaces after the microleakage tests. Statistical analyses were performed using nonparametric Kruskal-Wallis, Mann-Whitney, and Wilcoxon tests at p=0.05. The microleakage of all GLU groups was low and not significantly affected by peroxide bleaching. Low microleakage was recorded for CLF control groups, but after bleaching, a small but significant increase in microleakage at the enamel margin indicated its sensitivity to peroxide bleaching. For ADP and IBO control groups, the microleakage at the enamel margins was significantly higher than for GLU and CLF and exceeded that at the dentin margins. Bleaching did not induce any significant changes in the microleakage. Electron microscopy analysis indicated that in our experimental setup, decreased adhesion and mechanical resistance of the ADP- and IBO-enamel interfaces could be more important than the chemical degradation effects induced by the peroxide bleaching gel.

  15. Marginal microleakage of cervical composite resin restorations bonded using etch-and-rinse and self-etch adhesives: two dimensional vs. three dimensional methods

    PubMed Central

    Khoroushi, Maryam

    2016-01-01

    Objectives This study was evaluated the marginal microleakage of two different adhesive systems before and after aging with two different dye penetration techniques. Materials and Methods Class V cavities were prepared on the buccal and lingual surfaces of 48 human molars. Clearfil SE Bond and Single Bond (self-etching and etch-and-rinse systems, respectively) were applied, each to half of the prepared cavities, which were restored with composite resin. Half of the specimens in each group underwent 10,000 cycles of thermocycling. Microleakage was evaluated using two dimensional (2D) and three dimensional (3D) dye penetration techniques separately for each half of each specimen. Data were analyzed with SPSS 11.5 (SPSS Inc.), using the Kruskal-Wallis and Mann-Whitney U tests (α = 0.05). Results The difference between the 2D and 3D microleakage evaluation techniques was significant at the occlusal margins of Single bond groups (p = 0.002). The differences between 2D and 3D microleakage evaluation techniques were significant at both the occlusal and cervical margins of Clearfil SE Bond groups (p = 0.017 and p = 0.002, respectively). The difference between the 2D and 3D techniques was significant at the occlusal margins of non-aged groups (p = 0.003). The difference between these two techniques was significant at the occlusal margins of the aged groups (p = 0.001). The Mann-Whitney test showed significant differences between the two techniques only at the occlusal margins in all specimens. Conclusions Under the limitations of the present study, it can be concluded that the 3D technique has the capacity to detect occlusal microleakage more precisely than the 2D technique. PMID:27200275

  16. In vitro evaluation of the bonding durability of self-adhesive resin cement to titanium using highly accelerated life test.

    PubMed

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Matinlinna, Jukka Pekka; Shinya, Akiyoshi

    2011-01-01

    The purpose of this in vitro study was to evaluate the bonding durability of three self-adhesive resin cements to titanium using the Highly Accelerated Life Test (HALT). The following self-adhesive resin cements were used to bond pairs of titanium blocks together according to manufacturers' instructions: RelyX Unicem, Breeze, and Clearfil SA Luting. After storage in water at 37°C for 24 h, bonded specimens (n=15) immersed in 37°C water were subjected to cyclic shear load testing regimes of 20, 30, or 40 kg using a fatigue testing machine. Cyclic loading continued until failure occurred, and the number of cycles taken to reach failure was recorded. The bonding durability of a self-adhesive resin cement to titanium was largely influenced by the weight of impact load. HALT showed that Clearfil SA Luting, which contained MDP monomer, yielded the highest median bonding lifetime to titanium.

  17. Clinical Effectiveness of Different Polishing Systems and Self-Etch Adhesives in Class V Composite Resin Restorations: Two-Year Randomized Controlled Clinical Trial.

    PubMed

    Jang, J-H; Kim, H-Y; Shin, S-M; Lee, C-O; Kim, D S; Choi, K-K; Kim, S-Y

    The aim of this randomized controlled clinical trial was to compare the clinical effectiveness of different polishing systems and self-etch adhesives in class V composite resin restorations. A total of 164 noncarious cervical lesions (NCCLs) from 35 patients were randomly allocated to one of four experimental groups, each of which used a combination of polishing systems and adhesives. The two polishing systems used were Sof-Lex XT (Sof), a multistep abrasive disc, and Enhance/Pogo (EP), a simplified abrasive-impregnated rubber instrument. The adhesive systems were Clearfil SE bond (CS), a two-step self-etch adhesive, and Xeno V (XE), a one-step self-etch adhesive. All NCCLs were restored with light-cured microhybrid resin composites (Z250). Restorations were evaluated at baseline and at 6, 12, 18, and 24 months by two blinded independent examiners using modified FDI criteria. The Fisher exact test and generalized estimating equation analysis considering repeated measurements were performed to compare the outcomes between the polishing systems and adhesives. Three restorations were dislodged: two in CS/Sof and one in CS/EP. None of the restorations required any repair or retreatment except those showing retention loss. Sof was superior to EP with regard to surface luster, staining, and marginal adaptation (p<0.05). CS and XE did not show differences in any criteria (p>0.05). Sof is clinically superior to EP for polishing performance in class V composite resin restoration. XE demonstrates clinically equivalent bonding performance to CS.

  18. The role of MDP in a bonding resin of a two-step self-etching adhesive system.

    PubMed

    Matsui, Naoko; Takagaki, Tomohiro; Sadr, Alireza; Ikeda, Masaomi; Ichinose, Shizuko; Nikaido, Toru; Tagami, Junji

    2015-01-01

    The purpose of this study was to evaluate the role of 10-methacryloyloxydecyl dihydrogen phosphate (MDP) contained in the bonding resin of a two-step self-etch adhesive system. An experimental adhesive (M0) containing MDP only in the primer, but not in the bonding resin was prepared. Clearfil SE Bond (MM) and M0 were compared in terms of microtensile bond strength to dentin, ultimate tensile strength of the bonding resin, and dentin-resin bonding interface morphology under SEM and TEM. The immediate µTBS values of MM significantly decreased after thermal cycles while M0 were stable even after 10,000 cycles. In the SEM observations, formation of erosion was observed beneath the acid-base resistant zone only in M0. The results suggested that MDP in the bonding resin of the two-step self-etching system; 1) improved the immediate bond strength, but caused reduction in long-term bond durability; 2) offered the advantages of acid-base resistance at the ABRZ forefront area.

  19. The effect of cavity disinfectants on the micro-shear bond strength of dentin adhesives

    PubMed Central

    Elkassas, Dina Wafik; Fawzi, Elham Mostafa; El Zohairy, Ahmed

    2014-01-01

    Objectives: This study was carried out to examine the effect of application of four different disinfecting agents on the micro-shear bond strength (μ-SBS) of an etch-and-rinse and self-etch adhesive systems. Materials and Methods: One hundred flat dentin surfaces of human molars were produced by wet grinding the buccal surfaces. Specimens were randomly assigned to five groups according to the disinfectant used: Group I: Control (no disinfectant); Group II: 5.25% sodium hypochlorite based; Group III: 2% chlorhexidine based (Consepsis), Group IV: 0.1% benzalkoniumchloride based (Tubulicid red) and Group V: 3% doxycycline based (Biopure, MTAD). Specimens were bonded using either Adper Single Bond 2 or Clearfil S3 Bond, which were employed according to the manufacturer's instructions. Resin composite microcylinders were bonded using Tygon® tubes for μ-SBS testing. The modes of failure were noted after visual examination using a binocular stereomicroscope at ×25 magnification. Failures were classified as adhesive, or mixed. μ-SBS results were analyzed using two-way ANOVA followed by Tukey's post-hoc test. Results: Dentin disinfectants tested significantly negated the bonding of Adper Single bond 2 and the groups were ranked; Group I > Group V = Group IV > Group II = Group III, meanwhile they enhanced significantly the μ-SBS values upon using Clearfil S3 Bond and were ranked; Group II > Group III = Group IV = Group V > Group I. Most failures were adhesive with the Adper single bond adhesive system. Mixed modes of failure were evident with Clearfil S3 bond. Conclusions: The disinfectants tested should not be used with Adper Single Bond 2 when applied before the etching step, However they could be used safely prior to bonding with Clearfil S3 Bond. PMID:24966768

  20. Water interaction and bond strength to dentin of dye-labelled adhesive as a function of the addition of rhodamine B

    PubMed Central

    WANG, Linda; BIM, Odair; LOPES, Adolfo Coelho de Oliveira; FRANCISCONI-DOS-RIOS, Luciana Fávaro; MAENOSONO, Rafael Massunari; D’ALPINO, Paulo Henrique Perlatti; HONÓRIO, Heitor Marques; ATTA, Maria Teresa

    2016-01-01

    ABSTRACT Objective This study investigated the effect of the fluorescent dye rhodamine B (RB) for interfacial micromorphology analysis of dental composite restorations on water sorption/solubility (WS/WSL) and microtensile bond strength to dentin (µTBS) of a 3-step total etch and a 2-step self-etch adhesive system. Material and Methods The adhesives Adper Scotchbond Multi-Purpose (MP) and Clearfil SE Bond (SE) were mixed with 0.1 mg/mL of RB. For the WS/WSL tests, cured resin disks (5.0 mm in diameter x 0.8 mm thick) were prepared and assigned into four groups (n=10): MP, MP-RB, SE, and SE-RB. For µTBS assessment, extracted human third molars (n=40) had the flat occlusal dentin prepared and assigned into the same experimental groups (n=10). After the bonding and restoration procedures, specimens were sectioned in rectangular beams, stored in water and tested after seven days or after 12 months. The failure mode of fractured specimens was qualitatively evaluated under optical microscope (x40). Data from WS/WSL and µTBS were assessed by one-way and three-way ANOVA, respectively, and Tukey’s test (α=5%). Results RB increased the WSL of MP and SE. On the other hand, WS of both MP and SE was not affected by the addition of RB. No significance in µTBS between MP and MP-RB for seven days or one year was observed, whereas for SE a decrease in the µTBS means occurred in both storage times. Conclusions RB should be incorporated into non-simplified DBSs with caution, as it can interfere with their physical-mechanical properties, leading to a possible misinterpretation of bonded interface. PMID:27556201

  1. Shear Bond Strength of Calcium Enriched Mixture Cement and Mineral Trioxide Aggregate to Composite Resin with Two Different Adhesive Systems

    PubMed Central

    Savadi Oskoee, Siavash; Bahari, Mahmoud; Kimyai, Soodabeh; Motahhari, Paria; Eghbal, Mohammad Jafar; Asgary, Saeed

    2014-01-01

    Objective: Immediate restoration after vital pulp therapy is essential in order to create and maintain effective coronal seal. Purpose of Study: The aim of this study was to evaluate the shear bond strength of recently used pulp capping materials: white mineral trioxide aggregate (MTA), and calcium enriched mixture cement (CEM) to composite resin with the use of etch-and-rinse and self-etch adhesive systems and compare them with the bond strength of commonly used resin modified glass ionomer (RMGI) cement. Materials and Methods: Forty specimens from each test material were fabricated, measuring 4 mm in diameter and 2 mm in depth. The specimens of each material were divided into 2 groups of 20 specimens according to the adhesive system (Single Bond vs. Clearfil SE Bond) used for bonding of resin composite. The shear bond strength values were measured at a crosshead speed of 1.0 mm/min and fractured surfaces were examined. Data were analyzed using two-way ANOVA and a post hoc Tukey’s test (P<0.05). Results: Analysis of data showed a significantly higher bond strength for RMGI compared to MTA and CEM (P<0.001); however, no significant differences were observed in the bond strength values of MTA and CEM (P=0.9). Furthermore, there were no significant differences in relation to the type of the adhesive system irrespective of the type of the material used (P=0.95) All the failures were of cohesive type in RMGI, MTA and CEM. Conclusion: Bond strength of RMGI cement to composite resin was higher than that of MTA or CEM cement irrespective of the type of the adhesive system. PMID:25628696

  2. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel

    PubMed Central

    Eshghi, Alireza; Khoroushi, Maryam; Rezvani, Alireza

    2014-01-01

    Objective: Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG) or alumina using etch-and-rinse and self-etch adhesives. Materials and Methods: Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12). Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05). Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation. Results: No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987). There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1). Also, decalcified or intact enamel groups had no significant difference (P=0.918). However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion. Conclusion: Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives. PMID:25628694

  3. Shear bond strength and ultrastructural interface analysis of different adhesive systems to Er:YAG laser-prepared dentin.

    PubMed

    Guven, Yeliz; Aktoren, Oya

    2015-02-01

    The aim of this study was to evaluate the shear bond strength (SBS) of a microhybrid composite resin bonded with three different adhesive systems to Er:YAG laser- (EL) or bur-prepared dentin surfaces and to analyze the quality and ultrastructure of the adhesive-dentin interfaces by scanning electron microscopy (SEM). The specimens prepared for SBS test and SEM analysis were randomly assigned to eight groups (G1-G8): G1, EL (Fidelis PlusIII, Fotona) + Clearfil S3 Bond (C3S); G2, EL + AdperSE Plus (SE); G3, EL + laser etch + Adper Single Bond2 (SB2); G4, EL + acid etch + SB2; G5, EL + SB2 (no etching); G6, bur + acid etch + SB2; G7, bur + S3; G8, bur + SE. Laser was used in very short pulse mode at a setting of 200 mJ/20 Hz for dentin preparation and at 80 mJ/10 Hz for dentin etching. Bond strength test: 3.5 × 2.0 mm cylindrical molds were placed onto adhesives and filled with the composites. After 24 h in distilled water, SBS was tested at a crosshead speed of 0.5 mm/min. SEM analysis: The dentin-adhesive interfaces were evaluated for the ultrastructure of hybrid layer. Data of SBS (MPa) were statistically analyzed by ANOVA and Tukey HSD. ER:YAG laser-prepared dentin has demonstrated significantly more SBS (p < 0.01) for SE when compared to bur-prepared dentin. No significancies (p > 0.05) in SBS have been determined between the total-etch adhesive applied groups with regard to etching types. SEM analysis revealed that hybrid layers obtained in Er:YAG laser-irradiated dentin exhibited more irregular and non-homogeneous pattern than the conventionally prepared dentin. In conclusion, SE Bond demonstrated superior results in Er:YAG laser-ablated dentin compared to bur-prepared dentin.

  4. Shear bond strength of one-step self-etch adhesives: pH influence

    PubMed Central

    Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Chiesa, Marco

    2015-01-01

    Background: The aim of this study was to compare the shear bond strength of four one-step self-etch adhesives with different pH values to enamel and dentin. Materials and Methods: In this in vitro study, 200 bovine permanent mandibular incisors were used. Four one-step self-etch adhesives with different pH values were tested both on enamel and on dentin: Adper™ Easy Bond Self-Etch Adhesive (pH = 0.8-1), Futurabond NR (pH=2), G-aenial Bond (pH = 1.5), Clearfil S3 Bond (pH = 2.7). After adhesive systems application, a nanohybrid composite resin was inserted into the bonded surface. The specimens were placed in a universal testing machine. The shear bond strength was performed at a cross-head speed of 1 mm/min until the sample rupture. The shear bond strength values (MPa) of the different groups were compared with analysis of variance after that Kolmogorov and Smirnov tests were applied to assess normality of distributions. P < 0.05 was considered as significant. Results: In enamel shear bond strength, the highest shear bond strength values were reported with Futurabond NR (P < 0.01); however, no significant differences were found with Clearfil S3 Bond. The others adhesive systems showed lower shear bond strength values with significant differences between them (P < 0.05). When comparing the dentin shear bond strength, the lowest shear bond strength values were reported with Clearfil S3 Bond (P < 0.05), while there were no significant differences among the other three products (P > 0.05). Conclusion: The pH values of adhesive systems did not influence significantly their shear bond strength to enamel or dentin. PMID:26005459

  5. Influence of Erosive and Abrasive Cycling on Bonding of Different Adhesive Systems to Enamel: An In situ Study.

    PubMed

    Giacomini, Marina Ciccone; Casas-Apayco, Leslie Caroll; Machado, Camila Moreira; Freitas, Maria Cristina Carvalho de Almendra; Atta, Maria Teresa; Wang, Linda

    2016-01-01

    This study evaluated the impact of orange juice on the bond strength (BS) of dentin bonding systems (DBSs) to enamel surface after simulation with an in situ/ ex vivo erosive cycling. One hundred and ninety two bovine enamel fragments (4x4x2mm) were obtained and randomized regarding superficial microhardness and distributed to palatal devices for 8 volunteers, in three phases (one for each DBS), containing 8 blocks, which were, allocated in 4 pairs. Daily, these pairs were subjected extraorally to the following conditions: CONT- neither erosive nor abrasive challenge; ERO- erosive challenge only; ABR- abrasive challenge only and ERO + ABR- with erosive and abrasive challenges. Erosive cycles (immersion in orange juice, 3 times/day/5 min/5 days) or/and abrasive challenges (electric toothbrush, 3 times/day/1 min/5 days) were performed. After these cycles, all specimens were restored with the adhesive systems Adper Scotchbond Multi Purpose (MP), Adper Single Bond 2 (SB) or Clearfil SE Bond (SE), and the composite resin Filtek Z250. After 7 days, sticks (area ≅1 mm2) were obtained and subjected to the microtensile bond strength test (μTBS) at 0.5 mm/min. Data was statistically analyzed by ANOVA and Tukey tests (a=0.05). Failure modes were determined using a digital microscope (40´). DBS was the only statistical significant factor. SE was the unique DBS not affected in any challenge, whereas MP and SB performed according to the scenario. The adhesive and mixed failures were predominant in all groups. Overall performance suggested that BS to enamel after erosive /abrasive challenged by orange juice was not affected and it was material-dependent.

  6. Self-etching adhesives increase collagenolytic activity in radicular dentin.

    PubMed

    Tay, Franklin R; Pashley, David H; Loushine, Robert J; Weller, R Norman; Monticelli, Francesca; Osorio, Raquel

    2006-09-01

    Endogenous matrix metalloproteinases (MMPs) release from crown dentin and their activation results in degradation of hybrid layers created by dentin adhesives. This study tested the hypothesis that instrumented intraradicular dentin possesses latent collagenolytic activity that is activated by mild self-etching adhesives. Root dentin shavings were produced from 50 cleaned and shaped, saline-irrigated root canals using Gates Glidden drills and rinsed with sodium azide to prevent bacterial growth. Dried dentin powder aliquots were treated with two clinically-relevant MMP inhibitors, 2% chlorhexidine for 10 minutes and 17% EDTA for 1 minute. Additional dentin powder was mixed with Clearfil Liner Bond 2V or Clearfil Tri-S Bond for 1 minute followed by extracting the adhesives with acetone. Dentin powder was also treated with 2% chlorhexidine for 10 minutes before or after adhesive application. Collagenolytic activities of the nine groups were assayed with a fluorometer in 96-well plates, by recording the changes in fluorescence before and after addition of fluorescein-labeled type I collagen. Epoxy resin-embedded powders were examined with TEM for the extent of demineralization. Instrumented, mineralized intraradicular dentin possessed low but detectable collagenolytic activity that was inhibited by chlorhexidine (p < 0.001) and EDTA (p < 0.001). Both adhesives partially demineralized the dentin powder and activated latent MMPs, with 14- to 15-fold increases in collagenolytic activities (p < 0.001) that were significantly (p < 0.001) but incompletely inactivated after 10 min application of chlorhexidine. Mild self-etching adhesives activate latent MMPs without denaturing these enzymes, and may adversely affect the longevity of bonded root canal fillings and posts.

  7. Soluble adhesion molecules (sICAM-1, sVCAM-1) and selectins (sE selectin, sP selectin, sL selectin) levels in children and adolescents with obesity, hypertension, and diabetes.

    PubMed

    Glowinska, Barbara; Urban, Miroslawa; Peczynska, Jadwiga; Florys, Bozena

    2005-08-01

    The attachment of monocytes and lymphocytes to endothelial cells, which initiates atherosclerosis, arises under the influence of adhesion molecules. The preclinical phase of this disease lasts many decades, and this provides an opportunity for the presymptomatic detection of high-risk subjects. We evaluated levels of the adhesion molecules: sICAM-1 (soluble intercellular adhesion molecule 1), sVCAM-1 (soluble vascular adhesion molecule 1), sE selectin, sP selectin, and sL selectin in children with atherosclerosis risk factors (n = 123, mean age 15.1 years) (obese [n = 17], hypertensive [n = 25], obese with hypertension [n = 30], type 1 diabetic [n = 51]). Twenty-seven healthy children formed the control group, mean age 15.2 years. sICAM-1 was higher in the study group compared with control (314.1 +/- 61 vs 264.9 +/- 55 ng/mL, P < .01). The same was found for sVCAM-1 (513.7 +/- 187 vs 407.9 +/- 76 ng/mL, P < .05) and E selectin (86.04 +/- 33.6 vs 62.1 +/- 20.3 ng/mL, P < .01). sP-selectin and sL-selectin levels were not different compared with controls. E selectin correlated with body mass index (BMI; r = 0.18, P = .03), total cholesterol (r = 0.2, P = .016), and triglycerides (r = 0.22, P = .008). sICAM-1 correlated with BMI (r = 0.19, P = .019) and systolic blood pressure (r = 0.13, P = .045). In multiple linear regression analysis, sE selectin was found to be associated with triglycerides (R2 = 0.29, P = .045), sICAM-1 dependent on BMI (R2 = 0.58, P = .047), and sVCAM-1 dependent on total cholesterol (R2 = 0.51, P = .006). Elevated concentrations of sICAM-1, sVCAM-1, and E selectin were found in obese, hypertensive, and diabetic children. We conclude that endothelial activation appears in these children, and adhesion molecules are related to the earliest stages of atherosclerosis.

  8. Biocompatible Adhesives

    DTIC Science & Technology

    1991-03-01

    pressure sensitive elastomer, polyisobutylene. with water soluble adhesives such as carboxy methyl ceiiulose, pectin and gelatin for adhesion to... cellulose and nylon films, were most often used in 180 peel adhesion tests on the adhesives. Films were cast on one substrate and the other was moistened...irritation. 4. Peel adhesion to hydrated cellulose , nylon and cotton cloth substrates was satisfactory. So too was the peel adhesion as a function of

  9. Assessment of the Shear Bond Strength between Nanofilled Composite Bonded to Glass-ionomer Cement Using Self-etch Adhesive with Different pHs and Total-Etch Adhesive

    PubMed Central

    Sharafeddin, Farahnaz; Choobineh, Mohammad Mehdi

    2016-01-01

    Statement of the Problem In the sandwich technique, the undesirable bond between the composite resin and glass-ionomer cement (GIc) is one of the most important factors which lead to the failure of restoration. Total-etch and self-etch adhesives may improve the bond strength based on their pH. Purpose The purpose of this study was to evaluate the shear bond strength between the nanofilled composite resin and GIc using different adhesives. Materials and Method In this experimental study, 40 specimens (6×6mm) in 4 groups (n=10) were prepared in acrylic mold. Each specimen contained conventional GI ChemFil Superior with a height of 3mm, bonded to Z350 composite resin with a height measured 3mm. In order to bond the composite to the GI, the following adhesives were used, respectively: A: mild Clearfil SE Bond self-etch (pH=2), B: intermediate OptiBond self-etch (pH=1.4), C: strong Adper Prompt L-Pop (pH=1), and D: Adper Single Bond 2 total-etch (pH=7.2). The shear bond strength was measured by using universal testing machine with a crosshead speed of 1mm/min. One-way ANOVA and Tukey’s test were used to analyze the data (p< 0.05). Results The shear bond strength in group A was significantly higher than group B (p= 0.002), C (p< 0.001), and D (p< 0.001). Moreover, the shear bond strength of groups A and B (self-etch) was significantly different from group D (total-etch) (p< 0.001); and C (self-etch) with D (p= 0.024). Conclusion The results of this study showed that applying the mild self-etch adhesive between the composite and the GIc results in stronger shear bond strength compared to intermediate and strong self-etch adhesives. Moreover, the self-etch adhesive increased the shear bond strength between composite resin and GIc more significantly than total-etch adhesive. PMID:26966701

  10. Interfacial and surface characterization of two self-etching adhesive systems and a total-etch adhesive after bonding to ground and unground bovine enamel--a qualitative study.

    PubMed

    Ibarra, Gabriela; Vargas, Marcos A; Geurtsen, Werner

    2006-12-01

    The purpose of the study was to evaluate the enamel surface and interface morphology of two self-etching adhesive systems (SAS) vs a total-etch control, after bonding to ground and unground enamel using field emission scanning electron microscopy (FESEM). Thirty bovine incisors were used in this study. The buccal enamel surface of 15 teeth was ground flat to resemble freshly cut enamel. The rest of the teeth were left intact. Two SAS, Clearfil SE Bond (CSE, Kuraray) and Prompt L-Pop (3M-ESPE), and a conventional adhesive system, Scotchbond Multipurpose (3M-ESPE, control), were used to condition the surface of unground and ground enamel on 12 teeth. A composite button was bonded to the remaining 18 teeth; a cross-section (1 mm thick) was obtained from each and the bonded interface was polished. All specimens were dehydrated in ascending grades of ethanol, gold-sputter-coated, and observed under FESEM (Hitachi S-4000) to evaluate the ultrastructural morphology of the enamel surface and the enamel-dentin interface. The etching patterns and adhesive penetration varied according to the aggressiveness of the SAS, with CSE being the mildest and H3PO4 being the most aggressive. There were no significant differences on the ultrastructural morphology of the enamel surface between unground and ground specimens. It appears that microporosities within enamel prisms provide sufficient enamel-resin hybridization in unground enamel. The enamel dissolution pattern and depth of infiltration depend on the type of SAS used, with no significant differences in unground and ground enamel.

  11. Effect of dentin dehydration and composite resin polymerization mode on bond strength of two self-etch adhesives

    PubMed Central

    Samimi, Pooran; Alizadeh, Mehdi; Shirban, Farinaz; Davoodi, Amin; Khoroushi, Maryam

    2016-01-01

    Background: Dual-cured composite resins are similar to self-cured composite resins in some of their clinical applications due to inadequate irradiation, lack of irradiation, or delayed irradiation. Therefore, incompatibility with self-etch adhesives (SEAs) should be taken into account with their use. On the other, the extent of dentin dehydration has a great role in the quality of adhesion of these resin materials to dentin. The aim of this study was to investigate the effect of dentin dehydration and composite resin polymerization mode on bond strength of two SEAs. Materials and Methods: A total of 120 dentinal specimens were prepared from extracted intact third molars. Half of the samples were dehydrated in ethanol with increasing concentrations. Then Clearfil SE Bond (CSEB) and Prompt L-Pop (PLP) adhesives were applied in the two groups. Cylindrical composite resin specimens were cured using three polymerization modes: (1) Immediate light-curing, (2) delayed light-curing after 20 min, and (3) self-curing. Bond strength was measured using universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed with two-way ANOVA and Duncan post hoc tests. Statistical significance was defined at P < 0.05. Results: There were no significant differences for CSEB subgroups with hydrated and dehydrated dentin samples between the three different curing modes (P > 0.05). PLP showed significant differences between subgroups with the lowest bond strength in hydrated dentin with delayed light-curing and self-cured mode of polymerization. Conclusion: Within the limitations of this study, a delay in composite resin light-curing or using chemically cured composite resin had a deleterious effect on dentin bond strength of single-step SEAs used in the study. PMID:27041894

  12. Effect of Casein Phosphopeptide-amorphous Calcium Phosphate Treatment on Microtensile Bond Strength to Carious Affected Dentin Using Two Adhesive Strategies

    PubMed Central

    Bahari, Mahmoud; Savadi Oskoee, Siavash; Kimyai, Soodabeh; Pouralibaba, Firoz; Farhadi, Farrokh; Norouzi, Marouf

    2014-01-01

    Background and aims. The aim was to evaluate the effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on microtensile bond strength (μTBS) to carious affected dentin (CAD) using etch-and-rinse and self-etch adhesive systems. Materials and methods. The occlusal surface of 32 human molars with moderate occlusal caries was removed. Infected dentin was removed until reaching CAD and the teeth were randomly divided into two groups based on the Single Bond (SB) and Clearfil SE Bond (CSE) adhesive systems. Before composite resin bonding, each group was subdivided into three subgroups of ND, CAD and CPP-ACP-treated CAD (CAD-CPP) based on the dentin substrate. After dissecting samples to l-mm-thick cross-sections (each subgroup: n = 13), μTBS was measured at a strain rate of 0.5 mm/min. Data was analyzed using two-way ANOVA, independent samples t-test and post-hoc Tukey tests (α=0.05). Results. Bond strength of both adhesive systems to ND was significantly higher than that to CAD (P <0.001) and CAD/CPP (P < 0.001). There were no significant differences between the μTBS of SB to CAD and CAD-CPP (P > 0.05).μTBS of CSE to CAD-CPP was higher than that to CAD; however, the difference was not significant (P > 0.05). Significant differences were found between SB and CSE systems only with CAD substrate (P < 0.001). Conclusion. Regardless of the adhesive system used, surface treatment of CAD with CPP-ACP did not have a significant effect on bond strength. However, bond strength to CAD was higher with SB rather than with CSE. PMID:25346832

  13. Influence of Er:YAG and Ti:sapphire laser irradiation on the microtensile bond strength of several adhesives to dentin.

    PubMed

    Portillo, M; Lorenzo, M C; Moreno, P; García, A; Montero, J; Ceballos, L; Fuentes, M V; Albaladejo, A

    2015-02-01

    The aim of the present study was to evaluate the influence of erbium:yttrium-aluminum-garnet (Er:YAG) and Ti:sapphire laser irradiation on the microtensile bond strength (MTBS) of three different adhesive systems to dentin. Flat dentin surfaces from 27 molars were divided into three groups according to laser irradiation: control, Er:YAG (2,940 nm, 100 μs, 2.7 W, 9 Hz) and Ti:sapphire laser (795 nm, 120 fs, 1 W, 1 kHz). Each group was divided into three subgroups according to the adhesive system used: two-step total-etching adhesive (Adper Scotchbond 1 XT, from now on XT), two-step self-etching adhesive (Clearfil SE Bond, from now on CSE), and all-in-one self-etching adhesive (Optibond All-in-One, from now on OAO). After 24 h of water storage, beams of section at 1 mm(2) were longitudinally cut from the samples. Each beam underwent traction test in an Instron machine. Fifteen polished dentin specimens were used for the surface morphology analysis by scanning electron microscopy (SEM). Failure modes of representative debonded microbars were SEM-assessed. Data were analyzed by ANOVA, chi-square test, and multiple linear regression (p < 0.05). In the control group, XT obtained higher MTBS than that of laser groups that performed equally. CSE showed higher MTBS without laser than that with laser groups, where Er:YAG attained higher MTBS than ultrashort laser. When OAO was used, MTBS values were equal in the three treatments. CSE obtained the highest MTBS regardless of the surface treatment applied. The Er:YAG and ultrashort laser irradiation reduce the bonding effectiveness when a two-step total-etching adhesive or a two-step self-etching adhesive are used and do not affect their effectiveness when an all-in-one self-etching adhesive is applied.

  14. Evaluating the shear bond strength of enamel and dentin with or without etching: A comparative study between dimethacrylate-based and silorane-based adhesives

    PubMed Central

    Hajizadeh, Hila; Nasseh, Atefeh; Rahmanpour, Naim

    2015-01-01

    Background Silorane-based composites and their specific self-etch adhesive were introduced to conquest the polymerization shrinkage of methacrylate-based composites. It has been shown that additional etching of enamel and dentin can improve the bond strength of self-etch methacrylate-based adhesives but this claim is not apparent about silorane-based adhesives. Our objective was to compare the shear bond strength (SBS) of enamel and dentin between silorane-based adhesive resin and a methacrylate-based resin with or without additional etching. Material and Methods 40 sound human premolars were prepared and divided into two groups: 1- Filtek P60 composite and Clearfil SE Bond adhesive; 2- Filtek P90 composite and Silorane adhesive. Each group divided into two subgroups: with or without additional etching. For additional etching, 37% acid phosphoric was applied before bonding procedure. A cylinder of the composite was bonded to the surface. After 24 hours storage and 500 thermo cycling between 5-55°C, shear bond strength was assessed with the cross head speed of 0.5 mm/min. Then, bonded surfaces were observed under stereomicroscope to determine the failure mode. Data were analyzed with two-way ANOVA and Fischer exact test. Results Shear bond strength of Filtek P60 composite was significantly higher than Filtek P90 composite both in enamel and dentin surfaces (P<0.05). However, additional etching had no significant effect on shear bond strength in enamel or dentin for each of the composites (P>0.05). There was no interaction between composite type and additional etching (P>0.05). Failure pattern was mainly adhesive and no significant correlation was found between failure and composite type or additional etching (P>0.05). Conclusions Shear bond strength of methacrylate-based composite was significantly higher than silorane-based composite both in enamel and dentin surfaces and additional etching had no significant effect on shear bond strength in enamel or dentin for

  15. In vitro analysis of bond strength of self-etching adhesives applied on superficial and deep dentin.

    PubMed

    Garcia, Eugenio J; Gomes, Osnara M M; Gomes, João C

    2009-01-01

    The purpose of this study was to evaluate the bond strength of three adhesive systems to superficial and deep dentine using the microtensile bond strength test (microTBS). The occlusal enamel of thirty human third molars was removed to expose a flat surface of superficial or deep dentin. For each type of surface, the test specimens were randomly divided into three groups which underwent the application of a conventional two-step adhesive system [Single Bond (SB)] as the control group (n=10), a two-bottle self-etching system [One Coat SE Bond (OCSE)] (n=10) and a one bottle one-step system [Clearfil S3 Bond (CFS3)] (n=10). Adhesives were applied, a 5-mm high "crown" as built-up with resin composite Z250 (3M) and the specimens with a cross-sectional area of 0.7 +/- 0.1 mm2 were tested in tension (0.5 mm/min). Four fractured sticks from each tooth were randomly selected and the dentin side was gently abraded with a 1200-grit SiC paper etched with 35% phosphoric acid for 15 s and air dried. SEM micrographs at 70X and 2400X magnification were taken using scanning electron microscopy (SEM) to calculate the area of tubular dentin (ATD) and tubular density (TD) with Image Pro Plus 5. Two-way ANOVA (dentin depth-adhesive) showed higher bond strength values for SB. However the values did not depend on dentin depth. Linear regression showed a significant relationship between bond strength and area of intertubular dentin for SB (p = 0.004), and a significant inverse relationship between tubular density and bond strength for CFS3 (p = 0.009). OCSE exhibited a tendency that was similar to SB and opposite to CFS3, but was not statistically significant. The conventional two-step adhesive had higher bond strength values. The use of digital image analysis facilitates the manipulation of data and contributes to the interpretation of the behavior of new adhesive systems.

  16. Long-Term bacterial leakage along obturated roots restored with temporary and adhesive fillings.

    PubMed

    Barthel, C R; Zimmer, S; Wussogk, R; Roulet, J F

    2001-09-01

    The aim of this study was to examine whether obturated roots combined with several adhesive and temporary filling materials can be bypassed by bacteria. Standardized cavities were coronally prepared into 130 straight roots mimicking clinical access cavities. After obturation the roots were assigned to six test and three control groups and coronally sealed with either Clearfil, CoreRestore, IRM, Ketac Fil, or a combination of IRM/wax or Ketac Fil/wax. The roots were then fixed between a top and a bottom chamber each. The top chamber contained soy broth with 108 Staphylococcus epidermidis colony-forming units/ml, and the bottom chamber contained sterile soy broth. For 1 yr the mounts were checked on a regular basis for turbidity in their bottom chambers indicating bacterial growth. After 1 yr only three samples from the CoreRestore group and two samples from the Clearfil group resisted leakage. At termination there was no significant difference in number of leaking samples among the groups. At the beginning of the experiment IRM performed worst. Between months 5 and 10 Clearfil showed the least leaking samples; for some months this was statistically significant compared with IRM or Ketac Fil.

  17. Intrauterine Adhesions

    MedlinePlus

    ... adhesion formation are infections of the uterine lining (endometritis), removal of fibroids in the cavity of the ... to prevent adhesions from reforming. Hormonal treatment with estrogen and NSAIDs are frequently prescribed after surgery to ...

  18. Effects of Er:YAG laser on bond strength of self-etching adhesives to caries-affected dentin.

    PubMed

    Koyuturk, Alp Erdin; Ozmen, Bilal; Cortcu, Murat; Tokay, Ugur; Tosun, Gul; Erhan Sari, Mustafa

    2014-04-01

    The erbium:yttrium-aluminum-garnet (Er:YAG) laser may be effective the bond strength of adhesive systems on dentine surfaces, the chemical composition and aggressiveness of adhesive systems in clinical practice. The purpose of this study was to evaluate the effects of the Er:YAG laser system with the bonding ability of two different self-etching adhesives to caries-affected dentine in primary molars. Ninety mid-coronal flat dentine surfaces obtained from sound and caries-affected human primary dentine were treated with an Er:YAG laser or a bur. The prepared surfaces were restored with an adhesive system (Xeno V; Clearfil S³) and a compomer (Dyract Extra). The restored teeth were sectioned with a low-speed saw and 162 samples were obtained. The bond strength of the adhesive systems was tested using the micro-tensile test method. The data were statistically analyzed. A restored tooth in each group was processed for scanning electron microscopy evaluation. The values of the highest bond strength were obtained from the Clearfil S³-Er:YAG laser-sound dentine group in all groups. (24.57 ± 7.27 MPa) (P > 0.05). The values of the lowest bond strength were obtained from the Xeno V-Er:YAG laser-sound dentine group in all groups (11.01 ± 3.89 MPa). It was determined that the Clearfil S³ increased the bond strength on the surface applied with Er:YAG laser according to the Xeno V.

  19. Effect of moisture and drying time on the bond strength of the one-step self-etching adhesive system

    PubMed Central

    Lee, Yoon

    2012-01-01

    Objectives To investigate the effect of dentin moisture degree and air-drying time on dentin-bond strength of two different one-step self-etching adhesive systems. Materials and Methods Twenty-four human third molars were used for microtensile bond strength testing of G-Bond and Clearfil S3 Bond. The dentin surface was either blot-dried or air-dried before applying these adhesive agents. After application of the adhesive agent, three different air drying times were evaluated: 1, 5, and 10 sec. Composite resin was build up to 4 mm thickness and light cured for 40 sec with 2 separate layers. Then the tooth was sectioned and trimmed to measure the microtensile bond strength using a universal testing machine. The measured bond strengths were analyzed with three-way ANOVA and regression analysis was done (p = 0.05). Results All three factors, materials, dentin wetness and air drying time, showed significant effect on the microtensile bond strength. Clearfil S3 Bond, dry dentin surface and 10 sec air drying time showed higher bond strength. Conclusions Within the limitation of this experiment, air drying time after the application of the one-step self-etching adhesive agent was the most significant factor affecting the bond strength, followed by the material difference and dentin moisture before applying the adhesive agent. PMID:23429228

  20. Adhesive sealing of dentin surfaces in vitro: A review

    PubMed Central

    Abu-Nawareg, Manar M; Zidan, Ahmed Z; Zhou, Jianfeng; Agee, Kelli; Chiba, Ayaka; Tagami, Jungi; Pashley, David H

    2016-01-01

    Purpose The purpose of this review is to describe the evolution of the use of dental adhesives to form a tight seal of freshly prepared dentin to protect the pulp from bacterial products, during the time between crown preparation and final cementum of full crowns. The evolution of these “immediate dentin sealants” follows the evolution of dental adhesives, in general. That is, they began with multiple-step, etch-and-rinse adhesives, and then switched to the use of simplified adhesives. Methods Literature was reviewed for evidence that bacteria or bacterial products diffusing across dentin can irritate pulpal tissues before and after smear layer removal. Smear layers can be solubilized by plaque organisms within 7–10 days if they are directly exposed to oral fluids. It is likely that smear layers covered by temporary restorations may last more than one month. As long as smear layers remain in place, they can partially seal dentin. Thus, many in vitro studies evaluating the sealing ability of adhesive resins use smear layer-covered dentin as a reference condition. Surprisingly, many adhesives do not seal dentin as well as do smear layers. Results Both in vitro and in vivo studies show that resin-covered dentin allows dentinal fluid to cross polymerized resins. The use of simplified single bottle adhesives to seal dentin was a step backwards. Currently, most authorities use either 3-step adhesives such as Scotchbond Multi-Purposea or OptiBond FLb or two-step self-etching primer adhesives, such as Clearfil SEc, Unifil Bondd or AdheSEe, respectfully. PMID:26846037

  1. Tensile bond strength and SEM evaluation of caries-affected dentin using dentin adhesives.

    PubMed

    Nakajima, M; Sano, H; Burrow, M F; Tagami, J; Yoshiyama, M; Ebisu, S; Ciucchi, B; Russell, C M; Pashley, D H

    1995-10-01

    Tensile bond strength measurements are commonly used for the evaluation of dentin adhesive systems. Most tests are performed using extracted non-carious human or bovine dentin. However, the adhesion of resins to caries-affected dentin is still unclear. The objectives of this study were to test the hypothesis that bonding to caries-affected dentin is inferior to bonding to normal dentin, and that the quality of the hybrid layer plays a major role in creating good adhesion. We used a micro-tensile bond strength test to compare test bond strengths made to either caries-affected dentin or normal dentin, using three commercial adhesive systems (All Bond 2, Scotchbond Multi-Purpose, and Clearfil Liner Bond II). For scanning electron microscopy, the polished interfaces between the adhesive bond and dentin were subjected to brief exposure to 10% phosphoric acid solution and 5% sodium hypochlorite, so that the quality of the hybrid layers could be observed. Bonding to normal dentin with either All Bond 2 (26.9 +/- 8.8 MPa) or Clearfil Liner Bond II (29.5 +/- 10.9 MPa) showed tensile bond strengths higher than those to caries-affected dentin (13.0 +/- 3.6 MPa and 14.0 +/- 4.3 MPa, respectively). The tensile bond strengths obtained with Scotchbond Multi-Purpose were similar in normal and caries-affected dentin (20.3 +/- 5.5 MPa and 18.5 +/- 4.0 MPa, respectively). The hybrid layers created by All Bond 2 in normal dentin and by Clearfil Liner Bond II in normal or caries-affected dentin showed phosphoric acid and sodium hypochlorite resistance, whereas the hybrid layers created by All Bond 2 in caries-affected dentin and those created by Scotchbond Multi-Purpose to normal and caries-affected dentin showed partial susceptibility to the acid and sodium hypochlorite treatment. The results indicate that the strength of adhesion to dentin depends upon both the adhesive system used and the type of dentin. Moreover, the quality of the hybrid layer may not always contribute

  2. Abdominal Adhesions

    MedlinePlus

    ... Adhesions 1 Ward BC, Panitch A. Abdominal adhesions: current and novel therapies. Journal of Surgical Research. 2011;165(1):91–111. Seek Help for ... and how to participate, visit the NIH Clinical Research Trials and You website ... Foundation for Functional Gastrointestinal Disorders 700 West Virginia ...

  3. Comparative evaluation of microtensile bond strength of different solvent based one step and two step adhesive systems to dentin. An in-vitro study

    PubMed Central

    Somasundaram, Pavithra; Uthappa, Roshan; Shivgange, Vinay; Shivamurthy, GB; Shivanna, Vasundhara

    2013-01-01

    Aim and Objective: To compare and evaluate the micro tensile bond strength of different solvent based one step and two step adhesive systems to dentin. Materials and Methods: Sixty recently extracted human mandibular premolars were subjected for the study and divided into 4 groups of fifteen each. The adhesive materials Single Bond, Prime and Bond XP, Clearfil S3 Bond and G-Bond were applied to flat dentin surfaces according to the manufacturer's instructions. After resin composite build up, teeth were sectioned to obtain beams with an approximate cross sectional area of 2 mm2 and stressed to failure. Data were analysed statistically by ANOVA and student Neuman Keuls multiple comparison tests. Results: The study demonstrated that Single Bond has better bond strength to dentin compared to the other adhesive systems. Conclusion: Ethanol and water based two-step adhesive Single Bond exhibited significantly higher microtensile bond strength values to dentin among all the adhesive systems tested. PMID:23956544

  4. Marginal sealing durability of two contemporary self-etch adhesives.

    PubMed

    Khoroushi, Maryam; Mansoori, Mahsa

    2012-01-01

    Introduction. Sealing abilities of two self-etch adhesives were evaluated after two aging processes: storage in water and thermocycling. Materials and Methods. Cl V cavities were prepared on the buccal and lingual aspects of 48 human premolars, with cervical margins 1 mm below the CEJ. Clearfil Protect Bond (CPB) and BeautiBond (BB) (two-step and one-step self-etch adhesives, resp.) were applied, each to half of the cavities and restored with composite resin. Each group was randomly subdivided into 4 subgroups (n = 12) and evaluated for dye penetration after 24 hours, after 3000 thermocycling rounds, after a 6-month water storage, and after 3000 thermocycling rounds plus 6-month water storage, respectively. Data was analyzed using SPSS 11.5 and Kruskal-Wallis and Mann-Whitney U tests (α = 0.05). Results. There were no significant differences in enamel and dentin microleakage between the adhesives (P = 0.683; P = 0.154). Furthermore, no significant differences were observed in enamel microleakage of each one of CPB and BB (P = 0.061 and P = 0.318, resp.). However, significant decrease was observed in subgroups 3 and 4 (P = 0.001) for CPB dentinal margins. Conclusion. In this study, limited aging procedures had no influence on marginal integrity of composite resin restorations bonded with self-etch adhesives of CPB and BB. Furthermore, CPB dentinal sealing improved after aging.

  5. Marginal Sealing Durability of Two Contemporary Self-Etch Adhesives

    PubMed Central

    Khoroushi, Maryam; Mansoori, Mahsa

    2012-01-01

    Introduction. Sealing abilities of two self-etch adhesives were evaluated after two aging processes: storage in water and thermocycling. Materials and Methods. Cl V cavities were prepared on the buccal and lingual aspects of 48 human premolars, with cervical margins 1 mm below the CEJ. Clearfil Protect Bond (CPB) and BeautiBond (BB) (two-step and one-step self-etch adhesives, resp.) were applied, each to half of the cavities and restored with composite resin. Each group was randomly subdivided into 4 subgroups (n = 12) and evaluated for dye penetration after 24 hours, after 3000 thermocycling rounds, after a 6-month water storage, and after 3000 thermocycling rounds plus 6-month water storage, respectively. Data was analyzed using SPSS 11.5 and Kruskal-Wallis and Mann-Whitney U tests (α = 0.05). Results. There were no significant differences in enamel and dentin microleakage between the adhesives (P = 0.683; P = 0.154). Furthermore, no significant differences were observed in enamel microleakage of each one of CPB and BB (P = 0.061 and P = 0.318, resp.). However, significant decrease was observed in subgroups 3 and 4 (P = 0.001) for CPB dentinal margins. Conclusion. In this study, limited aging procedures had no influence on marginal integrity of composite resin restorations bonded with self-etch adhesives of CPB and BB. Furthermore, CPB dentinal sealing improved after aging. PMID:22611501

  6. Influence of cement type and thickness on polyfiber post adhesion

    PubMed Central

    Uzunoğlu, Emel; Türker, Sevinç Aktemur; Yilmaz, Zeliha

    2014-01-01

    Introduction: To evaluate the effect of two different post space diameters and related resin cement film thicknesses on the bond strength of a polyfiber post. Materials and Methods: A total of 48 premolars were randomly divided into two according to the post space diameter: 1.1 mm and 1.5 mm. Then each group was divided into three sub-groups according to luting cement used: RelyX U100, Panavia F2.0/ED primer, Clearfil SA cement. Spirapost was then luted into the canal using luting cements. Two slices were obtained from each root specimen. Push-out tests were performed. Data was analyzed with Kruskal-Wallis and Connover post-hoc and Mann-Whitney U-test (P < 0.05). Results: Push-out bond strength was found to vary significantly according to type of adhesive system and post space diameter size (P < 0.05). The self-adhesive resin cement RelyX U100 had significantly higher bond strengths compared with the other adhesive system (P < 0.05). The self-etch adhesive system (Panavia F2.0) showed significantly lower bond strengths compared with the other systems (P < 0.05). There was a significant interaction between the luting systems and post space diameter (P < 0.05). Conclusion: The increases in post space diameter significantly reduced the bond strength of Spirapost to root dentine for both groups. PMID:24944450

  7. Inorganic composition and filler particles morphology of conventional and self-adhesive resin cements by SEM/EDX.

    PubMed

    Aguiar, Thaiane Rodrigues; Di Francescantonio, Marina; Bedran-Russo, Ana Karina; Giannini, Marcelo

    2012-10-01

    The purpose of this study was to characterize the inorganic components and morphology of filler particles of conventional and self-adhesive, dual-curing, resin luting cements. The main components were identified by energy dispersive X-ray spectroscopy microanalysis (EDX), and filler particles were morphologically analyzed by scanning electron microscopy (SEM). Four resin cements were used in this study: two conventional resin cements (RelyX ARC/3M ESPE and Clearfil Esthetic Cement/Kuraray Medical) and two self-adhesive resin cements (RelyX Unicem/3M ESPE and Clearfil SA Luting/Kuraray Medical). The materials (n = 5) were manipulated according to manufacturers' instructions, immersed in organic solvents to eliminate the organic phase and observed under SEM/EDX. Although EDX measurements showed high amount of silicon for all cements, differences in elemental composition of materials tested were identified. RelyX ARC showed spherical and irregular particles, whereas other cements presented only irregular filler shape. In general, self-adhesive cements contained higher filler size than conventional resin luting cements. The differences in inorganic components and filler particles were observed between categories of luting material and among them. All resin cements contain silicon, however, other components varied among them.

  8. A study of self-adhesive resin cements for bonding to silver-palladium-copper-gold alloy -- effect of including primer components in cement base.

    PubMed

    Muraguchi, Koichi; Minami, Hiroyuki; Minesaki, Yoshito; Suzuki, Shiro; Tanaka, Takuo

    2011-01-01

    This study investigated the efficacies of adhesive resin cements (Clearfil SA Luting, Maxcem, G-CEM, RelyX Unicem Clicker, Vitremer Paste) for bonding to Ag-Pd-Cu-Au alloy not surface-pretreated with metal primer. For control, Panavia F 2.0 -developed for use with a proprietary metal primer, Alloy Primer- was tested with and without metal primer application. Pairs of alloy disks (10.0 and 8.0 mm in diameters, 3.0 mm thickness) were air-abraded with alumina and bonded with one of the cements. Shear bond strengths (SBSs) were measured before and after 50,000 times of thermocycling. Among Maxcem, RelyX Unicem Clicker and the control, there were no statistical differences in SBS before and after thermocycling. After thermocycling, Clearfil SA Luting exhibited the highest SBS among all the cements. Results showed that Clearfil SA Luting, Maxcem, and RelyX Unicem Clicker were efficacious for bonding to Ag-Pd-Cu-Au alloy after air abrasion surface treatment for the latter.

  9. Does inhibition of proteolytic activity improve adhesive luting?

    PubMed

    Lührs, Anne-Katrin; De Munck, Jan; Geurtsen, Werner; Van Meerbeek, Bart

    2013-04-01

    Endogenous enzymes may be involved in the biodegradation of adhesive restoration-tooth interfaces. Inhibitors of matrix metalloproteinases (MMPs) have been suggested to retard the bond-degradation process. Limited data are available on whether composite cements may also benefit from MMP inhibitors. Therefore, the aim of this study was to determine the effect of two MMP inhibitors--chlorhexidine digluconate (CHX) and galardin--on the microtensile bond strength (μTBS) of two self-adhesive composite cements to dentin. Ceramic specimens were cemented to bur-cut dentin surfaces using the self-adhesive composite cements RelyX Unicem 2 (3M ESPE) or Clearfil SA (Kuraray), or the etch-and-rinse composite cement Nexus 3 (Kerr) that served as the control. The surfaces were left untreated or were pretreated with MMP inhibitors (2% CHX or 0.2 mM galardin). The μTBS was determined 'immediately' and upon ageing (water storage for 6 months). Statistical analysis revealed a significant effect of the factors 'composite cement' and 'storage', as well as all interactions, but no effect of the MMP inhibitors. After 6 months of ageing, the μTBS decreased for all cements, except for the multistep etch-and-rinse luting composite when it was applied without MMP inhibitors. The MMP inhibitors could not prevent the decrease in μTBS upon ageing and therefore do not improve the luting durability of the composite cements tested.

  10. Evaluation of Shear Bond Strength of Total- and Self-etching Adhesive Systems after Application of Chlorhexidine to Dentin Contaminated with a Hemostatic Agent

    PubMed Central

    Sharafeddin, Farahnaz; Farhadpour, Hajar

    2015-01-01

    Statement of the Problem Hemostatic agents may influence the bond strength of different bonding agents. Also, chlorhexidine has shown positive effects on bond strength values and their combination effect has not been reported yet. Purpose The aim of this study was to evaluate the effect of contamination with a hemostatic agent on shear bond strength (SBS) of total- and self-etching adhesive systems and the effect of chlorhexidine application after removal of the hemostatic agent. Materials and Method In this experimental study, the occlusal enamel of each sixty caries-free mandibular molars was removed and their midcoronal dentin was exposed. The specimens were then mounted in auto-polymerizing resin 1mm apical to CEJ. Then, the specimens were divided into 6 groups (n=10) based on contamination with a hemostatic agent (H), application of chlorhexidine (CHX) and the adhesive system used; and then were classified as Group 1: Adper Single Bond (ASB); Group 2: H+ASB; Group 3: H+0.2% CHX+ASB; Group 4: Clearfil SE Bond (CSB); Group 5: H+CSB; Group 6: H+0.2% CHX+CSB. Then, composite resin rods (4×2 mm) were built up on the dentin surfaces and after thermocycling, the SBS (MPa) was evaluated. Statistical analysis was performed using two-way ANOVA and post hoc Tukey tests (p< 0.05). Results There were statistically significant differences between bond strength values of group 1 (ASB) and group 2 (H+ASB) (p< 0.001) and group 1 (ASB) and group 3 (H+CHX+ASB) (p< 0.001). Similarly, significant differences were seen between group 4 (CSB) and group 5 (H+CSB) (p< 0.001) and between group 4 (CSB) and group 6 (H+CHX+CSB) (p< 0.001). Conclusion Contamination with hemostatic agent reduced the SBS of both total- and self-etching adhesive systems. In addition, application of chlorhexidine after the removal of hemostatic agent had a negative effect on SBS of total- and self-etching adhesive systems. PMID:26331146

  11. Effect of fluoride concentration in adhesives on morphology of acid-base resistant zones.

    PubMed

    Kirihara, Masaru; Inoue, Go; Nikaido, Toru; Ikeda, Masaomi; Sadr, Alireza; Tagami, Junji

    2013-01-01

    This study aimed to investigate the effect of fluoride concentration in adhesives on morphology of acid-base resistant zone (ABRZ). Seven experimental adhesives with different concentrations of NaF (0 wt%; F0 to 100 wt%: F100) were prepared based on the formulation of a commercially available adhesive (Clearfil Protect Bond, F100). The resin-dentin interface of the bonded specimen was subjected to demineralizing solution and NaOCl, sectioned, polished and argon-ion etched for SEM observation. Fluoride release from each adhesive was measured using an ion-selective electrode. Fluoride ion release from the adhesive linearly increased with higher NaF concentration. The ABRZ area increased significantly with higher NaF concentration except for F0, F10, and F20 (p<0.05). F100 showed the largest ABRZ, where a slope of acid-resistant dentin was clearly observed at the bottom of the ABRZ. The concentration of NaF in the two-step self-etching adhesive resin influenced the amount of dentin structure remaining after acid-challenge.

  12. A study on the compatibility between one-bottle dentin adhesives and composite resins using micro-shear bond strength

    PubMed Central

    2015-01-01

    Objectives This study was performed to determine whether the combined use of one-bottle self-etch adhesives and composite resins from same manufacturers have better bond strengths than combinations of adhesive and resins from different manufacturers. Materials and Methods 25 experimental micro-shear bond test groups were made from combinations of five dentin adhesives and five composite resins with extracted human molars stored in saline for 24 hr. Testing was performed using the wire-loop method and a universal testing machine. Bond strength data was statistically analyzed using two way analysis of variance (ANOVA) and Tukey's post hoc test. Results Two way ANOVA revealed significant differences for the factors of dentin adhesives and composite resins, and significant interaction effect (p < 0.001). All combinations with Xeno V (Dentsply De Trey) and Clearfil S3 Bond (Kuraray Dental) adhesives showed no significant differences in micro-shear bond strength, but other adhesives showed significant differences depending on the composite resin (p < 0.05). Contrary to the other adhesives, Xeno V and BondForce (Tokuyama Dental) had higher bond strengths with the same manufacturer's composite resin than other manufacturer's composite resin. Conclusions Not all combinations of adhesive and composite resin by same manufacturers failed to show significantly higher bond strengths than mixed manufacturer combinations. PMID:25671210

  13. Adhesive plasters

    DOEpatents

    Holcombe, Jr., Cressie E.; Swain, Ronald L.; Banker, John G.; Edwards, Charlene C.

    1978-01-01

    Adhesive plaster compositions are provided by treating particles of Y.sub.2 O.sub.3, Eu.sub.2 O.sub.3, Gd.sub.2 O.sub.3 or Nd.sub.2 O.sub.3 with dilute acid solutions. The resulting compositions have been found to spontaneously harden into rigid reticulated masses resembling plaster of Paris. Upon heating, the hardened material is decomposed into the oxide, yet retains the reticulated rigid structure.

  14. Effect of different air-drying time on the microleakage of single-step self-etch adhesives

    PubMed Central

    Moosavi, Horieh; Managhebi, Esmatsadat

    2013-01-01

    Objectives This study evaluated the effect of three different air-drying times on microleakage of three self-etch adhesive systems. Materials and Methods Class I cavities were prepared for 108 extracted sound human premolars. The teeth were divided into three main groups based on three different adhesives: Opti Bond All in One (OBAO), Clearfil S3 Bond (CSB), Bond Force (BF). Each main group divided into three subgroups regarding the air-drying time: without application of air stream, following the manufacturer's instruction, for 10 sec more than manufacturer's instruction. After completion of restorations, specimens were thermocycled and then connected to a fluid filtration system to evaluate microleakage. The data were statistically analyzed using two-way ANOVA and Tukey-test (α = 0.05). Results The microleakage of all adhesives decreased when the air-drying time increased from 0 sec to manufacturer's instruction (p < 0.001). The microleakage of BF reached its lowest values after increasing the drying time to 10 sec more than the manufacturer's instruction (p < 0.001). Microleakage of OBAO and CSB was significantly lower compared to BF in all three drying time (p < 0.001). Conclusions Increasing in air-drying time of adhesive layer in one-step self-etch adhesives caused reduction of microleakage, but the amount of this reduction may be dependent on the adhesive components of self-etch adhesives. PMID:23741709

  15. Effect of etch-and-rinse and self-etching adhesive systems on hardness uniformity of resin cements after glass fiber post cementation

    PubMed Central

    Grande da Cruz, Fernanda Zander; Grande, Christiana Zander; Roderjan, Douglas Augusto; Galvão Arrais, César Augusto; Bührer Samra, Adriana Postiglione; Calixto, Abraham Lincoln

    2012-01-01

    Objective To evaluate the effects of etch-and-rinse and self-etching adhesive systems on Vickers hardness (VHN) uniformity of dual-cured resin cements after fiber post cementation. Methods: Fifty glass fiber posts were cemented into bovine roots using the following cementing systems: Prime&Bond 2.1 Dual Cure and Enforce with light-activation (PBDC-LCEN); Prime&Bond 2.1 and Enforce with light-activation (PB-CLEN); Prime&Bond 2.1 Dual Cure and Enforce without light exposure (PBDC-SCEN); ED Primer and Panavia 21 (ED-SCPN); and Clearfil SE Bond and Panavia 21 (CF-SCPN). The roots were stored in distilled water for 72 h and transversely sectioned into thirds (coronal, medium, and apical). The VHN values of the resin cement layers were measured close to the post and to the dentin wall on the transversely sectioned flat surfaces. The results were analyzed by three-way repeated measures analysis of variance (ANOVA) and Tukey’s post-hoc test (pre-set alpha of 5%). Results: Most resin cements presented higher VHN values near the post than near the dentin wall. The ED-SCPN group showed the highest VHN values regardless of the root third, while the self-cured group PBDC-SCEN exhibited the lowest values. The resin cements from the light-activated groups PBDC-LCEN and PB-LCEN showed lower VHN values at the apical third than at the coronal third. The VHN values were not influenced by the root third in self-cured groups PBDC-SCEN, ED-SCPN, and ED-SCPN. Conclusion: Depending on the product, bonding agents might promote changes in hardness uniformity of resin cements after post cementation. PMID:22904652

  16. Adhesion and Cohesion

    PubMed Central

    von Fraunhofer, J. Anthony

    2012-01-01

    The phenomena of adhesion and cohesion are reviewed and discussed with particular reference to dentistry. This review considers the forces involved in cohesion and adhesion together with the mechanisms of adhesion and the underlying molecular processes involved in bonding of dissimilar materials. The forces involved in surface tension, surface wetting, chemical adhesion, dispersive adhesion, diffusive adhesion, and mechanical adhesion are reviewed in detail and examples relevant to adhesive dentistry and bonding are given. Substrate surface chemistry and its influence on adhesion, together with the properties of adhesive materials, are evaluated. The underlying mechanisms involved in adhesion failure are covered. The relevance of the adhesion zone and its importance with regard to adhesive dentistry and bonding to enamel and dentin is discussed. PMID:22505913

  17. Analysis of interfacial structure and bond strength of self-etch adhesive systems

    PubMed Central

    Pinzon, Lilliam M; Watanabe, Larry G; Reis, Andre F; Powers, John M; Marshall, Sally J; Marshall, Grayson W

    2013-01-01

    Purpose To determine the bond strength, nanoleakage and interfacial morphology of four self-etch adhesives bonded to superficial dentin. Methods Micro-tensile (MT, n=15) and single plane shear (SP, n=8) bond tests were performed using human dentin polished through 320-grit SiC paper. Clearfil Protect Bond (PB), Clearfil S3 Bond (S3), Prompt L-Pop (PLP) and G-BOND (GB) were used according to manufacturers’ instructions. Composite was applied as cylinders with a thickness of 4 mm with a 1-mm diameter and stored in water at 37° C for 24 hours. Specimens were debonded with a testing machine at a cross-head speed of 1 mm/min. Means and standard deviations of bond strength were calculated. Data were analyzed using ANOVA. Fisher’s PLSD intervals were calculated at the 0.05 level of significance. Failure modes were determined at 100X. The hybrid layer was revealed by treatment with 5N HCl/5% NaOCl or fractured perpendicular to the interface and sputter coated with gold. Specimens were viewed at 1000X, 2500X, and 5000X in a field emission SEM at 15 kV. Teeth (n=2) sectioned into 0.9-mm thick slabs were immersed in ammoniacal silver nitrate solution for 24 hours, rinsed and immersed in photo-developing solution for 8h. Specimens were sectioned (90-nm thick) and observed under TEM. Results Means ranged from 25.0 to 73.1 MPa for MT and from 15.5 to 56.4 MPa for SP. MT values were greater than SP, but were highly correlated (R2 = 0.99, p= 0.003) and provided the same order for the systems studied. Fisher’s PLSD intervals (p<0.05) for bond strength techniques and adhesives results were 1.7 and 2.3 MPa, respectively. Failures sites were mixed. TEM showed that hybrid layers were ~0.5 µm for PB, GB and S3 and ~5 µm for PLP. SEM showed morphologic differences among adhesives. Silver nitrate deposits were observed within interfaces for all adhesive systems. Clinical significance Simplification of application procedures appears to induce loss of adhesion capabilities. In this

  18. Surface pH and bond strength of a self-etching primer/adhesive system to intracoronal dentin after application of hydrogen peroxide bleach with sodium perborate.

    PubMed

    Elkhatib, Hanadi; Nakajima, Masatoshi; Hiraishi, Noriko; Kitasako, Yuichi; Tagami, Junji; Nomura, Satoshi

    2003-01-01

    This study compared the dentin bond strength of a self-etching primer/adhesive system with dentin surface pH with or without bleaching and observed the morphological changes in bleached dentin treated with a self-etching primer. Dentin disks were prepared from the coronal-labial region of 32 human anterior teeth. The pulpal surfaces of the dentin disks were polished with 600-grit SiC paper under running water. The dentin surfaces on all specimens were bleached with a mixture of 30% hydrogen peroxide and sodium perborate in 100% humidity at 37 degrees C for one week. The bleaching agent was then rinsed off with water for 5, 15 or 30 seconds. All specimens were stored in water at 37 degrees C. Half of the five-second rinsing specimens were stored in water for an additional week. Dentin surface pH with or without bleaching was examined using a pH-imaging microscope (SCHEM-100). A self-etching primer/adhesive system (Clearfil SE Bond) was applied to bleached or unbleached dentin according to the manufacturer's instructions. After 24-hour water storage, the bonded specimens were prepared for microtensile testing. Microtensile bond strength (microTBS) to dentin was measured using a universal-testing machine (EZ test, Shimadzu, Japan) at a crosshead speed of 1.0 mm/minute. Data were analyzed by one-way ANOVA and Scheffe's test (alpha=0.05). The pH values of the dentin surfaces of the 5 and 15 second rinsing groups were significantly higher than the control group (p<0.05), while the 30-second rinsing and one-week water storage groups had similar surface pH values to the control group (p<0.05). The microTBS of 5, 15 and 30 second rinsing specimens after bleaching were significantly lower than the control specimens (p<0.05). However, after one-week of water storage, the microTBS returned to the control group. The application of a bleaching agent increased the pH value of the dentin surface and decreased the bond strength of the self-etching primer/adhesive system. One

  19. Effect of different adhesive strategies on the post-operative sensitivity of class I composite restorations

    PubMed Central

    Sancakli, Hande Sar; Yildiz, Esra; Bayrak, Isil; Ozel, Sevda

    2014-01-01

    Objective: To evaluate the post-operative sensitivity of occlusal restorations using different dentin adhesives performed by an undergraduate and a post-doctorate dentist. Materials and Methods: One hundred and eighty-eight molar occlusal restorations were placed in 39 patients (ages between 18 and 30) using 3 different kind of adhesive systems; Optibond FL (OBF), Clearfil Protect Bond (CPB), and iBond (IB) by a post-doctorate dentist or a fifth-year dental student according to the manufacturers’ instructions. Post-operative sensitivity to cold and air was evaluated using a Visual Analog Scale (VAS) after 24 hours, 30, 90, and 180 days. Data were analyzed using the Mann-Whitney U and Friedman tests (P < 0.05). Results: Post-operative sensitivity scores for OBF and CPB were higher for the dental student (P < 0.05), while IB scores did not differ statistical significantly according to the operator (P > 0.05). Conclusion: Operator skill and experience appears to play a role in determining the outcome of post-operative sensitivity of multi-step adhesive systems although the post-operative sensitivity was low. It is suggested that the less experienced clinicians (rather than experienced clinicians) should better use the self-etching dentin bonding systems with reduced application steps to minimize the potential risk of post-operative sensitivity of dental adhesives. PMID:24966741

  20. Antibacterial Effect of All-in-one Self-etch Adhesives on Enterococcus faecalis

    PubMed Central

    Ebrahimi Chaharom, Mohammad Esmaeel; Ajami, Amir Ahmad; Abed Kahnamouei, Mehdi; Jafari Navimipour, Elmira; Tehranchi, Pardis; Zand, Vahid; Sadeghi, Mohammad Reza; Sohrabi, Aydin

    2014-01-01

    Background and aims. The aim of this study was to evaluate the antibacterial activity of one-step self-etch adhesives on Enterococcus faecalis on days 1, 7 and 14 with the use of modified direct contact test. Materials and methods. The modified directcontact test was used to evaluate the antibacterial effect of Adper Easy One, Bond Force, Clearfil S3 Bond, Futurabond M, G-Bond, iBond and OptiBond All-in-one adhesives on Enterococcus faecalis after aging the samples in phosphate-buffered saline for one, seven and fourteen days. Data were analyzed using one-way ANOVA and post hoc Tukey tests. Aging effect of each adhesive was evaluated by paired-sample test. In this study, P<0.05 was considered significant. Results. All the tested adhesives exhibited antibacterial activity after one day and had significant differences with the positive control group (P<0.05). After one week, OptiBond All-in-one, iBond and Futurabond M exhibited significant differences in bacterial growth from other groups (P<0.05). There were no significant differences between the groups in two weeks (P>0.05). Conclusion. iBond exhibited the highest antibacterial effect on E. faecalis after one week. Futurabond and OptiBond All-in-one exhibited antibacterial effects against E. faecalis for one week. PMID:25587384

  1. Gap measurement and bond strength of five selected adhesive systems bonded to tooth structure.

    PubMed

    Arbabzadeh, F; Gage, J P; Young, W G; Shahabi, S; Swenson, S M

    1998-06-01

    The ability of a restorative material to bond and seal the interface with tooth structure is perhaps the most significant factor in determining resistance to marginal caries. Thus, the quality and durability of marginal seal and bond strength are major considerations in the selection of restorative materials. The purpose of this study was to compare the bond strength and marginal discrepancies of five adhesive systems: All-Bond 2, Clearfil Liner Bond, KB 200, ProBond and AELITE Bond. Twenty-five buccal and 25 lingual cavities were prepared in 25 caries-free extracted molar teeth, giving 10 cavities for each of the 5 adhesive systems. All teeth were restored with the resin composite Pertac Hybrid, or PRISMA Total Performance Hybrid with their appropriate adhesive systems. After restoration, the teeth were thermocycled, were stained with a 1.5% aqueous solution of a procion dye (reactive orange 14) and sectioned coronally with a saw microtome. Three sections of 200 microns thickness were prepared from each restoration which were then examined microscopically to measure marginal gap widths using a confocal tandem microscope. Shear bond strength measurements were carried out on the dentine bond using a universal testing machine. The All-Bond 2 adhesive system was found to have higher shear bond strength and to have the least gap width at the cementodentinal margin.

  2. Influence of Etching Mode on Enamel Bond Durability of Universal Adhesive Systems.

    PubMed

    Suzuki, T; Takamizawa, T; Barkmeier, W W; Tsujimoto, A; Endo, H; Erickson, R L; Latta, M A; Miyazaki, M

    2016-01-01

    The purpose of this study was to determine the enamel bond durability of three universal adhesives in different etching modes through fatigue testing. The three universal adhesives used were Scotchbond Universal, Prime&Bond Elect universal dental adhesive, and All-Bond Universal light-cured dental adhesive. A single-step self-etch adhesive, Clearfil S(3) Bond Plus was used as a control. The shear bond strength (SBS) and shear fatigue strength (SFS) to human enamel were evaluated in total-etch mode and self-etch mode. A stainless steel metal ring with an internal diameter of 2.4 mm was used to bond the resin composite to the flat-ground (4000-grit) tooth surfaces for determination of both SBS and SFS. For each enamel surface treatment, 15 specimens were prepared for SBS and 30 specimens for SFS. The staircase method for fatigue testing was then used to determine the SFS of the resin composite bonded to the enamel using 10-Hz frequencies for 50,000 cycles or until failure occurred. Scanning electron microscopy was used to observe representative debonded specimen surfaces and the resin-enamel interfaces. A two-way analysis of variance and the Tukey post hoc test were used for analysis of the SBS data, whereas a modified t-test with Bonferroni correction was used for the SFS data. All adhesives in total-etch mode showed significantly higher SBS and SFS values than those in self-etch mode. Although All-Bond Universal in self-etch mode showed a significantly lower SBS value than the other adhesives, there was no significant difference in SFS values among the adhesives in this mode. All adhesives showed higher SFS:SBS ratios in total-etch mode than in self-etch mode. With regard to the adhesive systems used in this study, universal adhesives showed higher enamel bond strengths in total-etch mode. Although the influence of different etching modes on the enamel-bonding performance of universal adhesives was found to be dependent on the adhesive material, total-etch mode

  3. Thermal Characterization of Adhesive

    NASA Technical Reports Server (NTRS)

    Spomer, Ken A.

    1999-01-01

    The current Space Shuttle Reusable Solid Rocket Motor (RSRM) nozzle adhesive bond system is being replaced due to obsolescence. Down-selection and performance testing of the structural adhesives resulted in the selection of two candidate replacement adhesives, Resin Technology Group's Tiga 321 and 3M's EC2615XLW. This paper describes rocket motor testing of these two adhesives. Four forty-pound charge motors were fabricated in configurations that would allow side by side comparison testing of the candidate replacement adhesives and the current RSRM adhesives. The motors provided an environment where the thermal performance of adhesives in flame surface bondlines was compared. Results of the FPC testing show that: 1) The phenolic char depths on radial bond lines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used; 2) The adhesive char depth of the candidate replacement adhesives is less than the char depth of the current adhesives; 3) The heat-affected depth of the candidate replacement adhesives is less than the heat-affected depth of the current adhesives; and 4) The ablation rates for both replacement adhesives are slower than that of the current adhesives.

  4. Ultrastructural observation of the acid-base resistant zone of all-in-one adhesives using three different acid-base challenges.

    PubMed

    Tsujimoto, Miho; Nikaido, Toru; Inoue, Go; Sadr, Alireza; Tagami, Junji

    2010-11-01

    The aim of this study was to analyze the ultrastructure of the dentin-adhesive interface using two all-in-one adhesive systems (Clearfil Tri-S Bond, TB; Tokuyama Bond Force, BF) after different acid-base challenges. Three solutions were used as acidic solutions for the acid-base challenges: a demineralizing solution (DS), a phosphoric acid solution (PA), and a hydrochloric acid solution (HCl). After the acid-base challenges, the bonded interfaces were examined by scanning electron microscopy. Thickness of the acid-base resistant zone (ABRZ) created in PA and HCl was thinner than in DS for both adhesive systems. For BF adhesive, an eroded area was observed beneath the ABRZ after immersion in PA and HCl, but not in DS. Conversely for TB adhesive, the eroded area was observed only after immersion in PA. In conclusion, although the ABRZ was observed for both all-in-one adhesive systems, its morphological features were influenced by the ingredients of both the adhesive material and acidic solution.

  5. A 12-month clinical evaluation of pit-and-fissure sealants placed with and without etch-and-rinse and self-etch adhesive systems in newly-erupted teeth

    PubMed Central

    NOGOURANI, Maryam Karami; JANGHORBANI, Mohsen; KHADEM, Parvin; JADIDI, Zahra; JALALI, Shahriar

    2012-01-01

    Objectives The objective of this one-year clinical study was to investigate the effect of two adhesive systems (Adper Single Bond, a two-step etch-and-rinse and Clearfil SE Bond, a two-step self-etch system) on pit-and-fissure sealant retention in newly-erupted teeth. This study compared the success of the sealants in mesial and distopalatal grooves with and without these two adhesive systems. Material and Methods In a clinical trial, 35 children aged 6-8 years undergoing sealant placement were recruited. This one-year clinical study scored 70 mesial and 70 distopalatal sealants of newly-erupted permanent maxillary first molar, with a split-mouth design. All children received sealant alone in one permanent maxillary molar tooth. Children were randomized into two groups. One group received Self-Etch (SE) bond plus sealant and the other group received Single Bond plus sealant in another permanent maxillary molar tooth. Clinical evaluation at 3, 6 and 12 months was performed and the retention was studied in terms of the success and failure. Results The success rate of sealant in the distopalatal groove, using SEB at 3, 6 and 12 months was 93.3% (95% CI: 68.0, 99.8), 73.3% (95% CI: 44.9, 92.2) and 66.7% (95% CI: 38.4, 88.2), respectively. It was greater than that of the distopalatal groove in SB group with a success rate of 62.5% (95% CI: 35.4, 84.8), 31.3% (95% CI: 11.8, 58.7) and 31.3% (95% CI: 11.8, 58.7), at the three evaluation periods. The success rate of sealant in the mesial groove using SEB was 86.6% (95% CI: 59.5, 98.3), 53.3% (95% CI: 26.6, 78.7) and 53.3% (95% CI: 26.6, 78.7), while this was 100% (95% CI: 79.4, 100.0), 81.3% (95% CI: 54.4, 96.0) and 81.3% (95% CI: 54.4, 96.0) using SB, at 3, 6 and 12-month evaluation periods. Conclusions These results support the use of these two bonding agents in pit-and-fissure sealants under both isolated and contaminated conditions. Further, SE bond seemed to be less sensitive to moisture contamination. PMID:22858703

  6. Understanding Marine Mussel Adhesion

    SciTech Connect

    H. G. Silverman; F. F. Roberto

    2007-12-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are waterimpervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion.

  7. Understanding Marine Mussel Adhesion

    PubMed Central

    Roberto, Francisco F.

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  8. Effect of resin coating on adhesion and microleakage of computer-aided design/computer-aided manufacturing fabricated all-ceramic crowns after occlusal loading: a laboratory study.

    PubMed

    Kitayama, Shuzo; Pilecki, Peter; Nasser, Nasser A; Bravis, Theodora; Wilson, Ron F; Nikaido, Toru; Tagami, Junji; Watson, Timothy F; Foxton, Richard M

    2009-08-01

    This study investigated the effect of resin coating and occlusal loading on adhesion and microleakage of all-ceramic crowns. Molars were prepared for an all-ceramic crown and were divided into two groups: non-coated (control) and resin-coated with Clearfil Tri-S Bond. Crowns were fabricated using CEREC 3 and cemented using Clearfil Esthetic Cement. After 24 h of storage in water, the restored teeth in each group were divided into two subgroups: unloaded, or loaded while stored in water. Mechanical loading was achieved with an axial force of 80 N at 2.5 cycles s(-1) for 250,000 cycles. After immersion in Rhodamine B, the specimens were sectioned and processed for microleakage evaluation by confocal microscopy, which was followed by further sectioning for microtensile bond testing. Loading had no significant effect on microleakage in either the resin-coated or non-resin-coated groups. Resin coating did not reduce the microleakage at the dentine interface but increased the microleakage at the enamel interface. All the beams fractured during slicing when non-coated and loaded. The bond strengths of non-coated and unloaded, resin-coated and unloaded, and resin-coated and loaded groups were 15.82 +/- 4.22, 15.17 +/- 5.24, and 12.97 +/- 5.82 MPa, respectively. Resin coating with Clearfil Tri-S Bond improved the bonding of resin cement to dentine for loaded specimens. However, it was not effective in reducing the microleakage, regardless of whether it was loaded or unloaded.

  9. In vitro bonding effectiveness of self-etch adhesives with different application techniques: A microleakage and scanning electron microscopic study

    PubMed Central

    Nagpal, Rajni; Manuja, Naveen; Tyagi, Shashi Prabha; Singh, Udai Pratap

    2011-01-01

    Aim: To evaluate and compare the microleakage of self-etch adhesives placed under different clinical techniques and to analyze the resin–dentin interfacial ultrastructure under scanning electron microscope (SEM). Materials and Methods: 100 extracted human premolars were divided into two groups for different adhesives (Clearfil S3 and Xeno III). Class V cavities were prepared. Each group was further divided into four subgroups (n = 10) according to the placement technique of the adhesive, i.e. according to manufacturer's directions (Group 1), with phosphoric acid etching of enamel margins (Group 2), with hydrophobic resin coat application (Group 3), with techniques of both groups 2 and 3 (Group 4). The cavities were restored with composite. Ten samples from each group were subjected to microleakage study. Five samples each of both the adhesives from groups 1 and 3 were used for SEM examination of the micromorphology of the resin–dentin interface. Results: At enamel margins for both the adhesives tested, groups 2 and 4 showed significantly lesser leakage than groups 1 and 3. At dentin margins, groups 3 and 4 depicted significantly reduced leakage than groups 1 and 2 for Xeno III. SEM observation of the resin–dentin interfaces revealed generalized gap and poor resin tag formation in both the adhesives. Xeno III showed better interfacial adaptation when additional hydrophobic resin coat was applied. Conclusions: In enamel, prior phosphoric acid etching reduces microleakage of self-etch adhesives, while in dentin, hydrophobic resin coating over one-step self-etch adhesives decreases the microleakage. PMID:22025829

  10. Functionally Graded Adhesives

    DTIC Science & Technology

    2009-11-01

    ASTM 907-05. Standard Terminology of Adhesives. West Conshohocken, PA, May 2005. 4. 3M Scotch-Grip Nitrile High Performance Rubber & Gasket Adhesive...distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The goal of this project was to increase rubber to metal adhesion in Army materials using...1 Figure 2. Steel and rubber

  11. PH dependent adhesive peptides

    SciTech Connect

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  12. Mini-review: barnacle adhesives and adhesion.

    PubMed

    Kamino, Kei

    2013-01-01

    Barnacles are intriguing, not only with respect to their importance as fouling organisms, but also in terms of the mechanism of underwater adhesion, which provides a platform for biomimetic and bioinspired research. These aspects have prompted questions regarding how adult barnacles attach to surfaces under water. The multidisciplinary and interdisciplinary nature of the studies makes an overview covering all aspects challenging. This mini-review, therefore, attempts to bring together aspects of the adhesion of adult barnacles by looking at the achievements of research focused on both fouling and adhesion. Biological and biochemical studies, which have been motivated mainly by understanding the nature of the adhesion, indicate that the molecular characteristics of barnacle adhesive are unique. However, it is apparent from recent advances in molecular techniques that much remains undiscovered regarding the complex event of underwater attachment. Barnacles attached to silicone-based elastomeric coatings have been studied widely, particularly with respect to fouling-release technology. The fact that barnacles fail to attach tenaciously to silicone coatings, combined with the fact that the mode of attachment to these substrata is different to that for most other materials, indicates that knowledge about the natural mechanism of barnacle attachment is still incomplete. Further research on barnacles will enable a more comprehensive understanding of both the process of attachment and the adhesives used. Results from such studies will have a strong impact on technology aimed at fouling prevention as well as adhesion science and engineering.

  13. Marginal behaviour of self-etch adhesive/composite and combined amalgam-composite restorations.

    PubMed

    Kournetas, Nikos; Kakaboura, Afrodite; Giftopoulos, Dimitrios; Chakmachi, Magdad; Rahiotis, Christos; Geis-Gerstorfer, J

    2010-06-01

    The aim of this study was to compare the marginal and internal adaptation in self-etching adhesive (SEA)/composite restorations with combined amalgam-resin-based composite restorations in the proximal box with and without bonding agent beneath amalgam both before and after load-cycling. Class II restorations, were manufactured as following a) Bonding agent (Clearfil Liner Bond 2V, Kuraray) beneath amalgam (Tytin, SDS Kerr) and resin-based composite (Clearfil APX, Kuraray) with SEA, b) Amalgam without bonding agent and resin-based composite with SEA and c) Resin-based composite with SEA. Each group divided into two equal subgroups (n=8). Marginal and internal adaptation of first subgroup evaluated after 7-day water storage and of the second after load-cycling in chewing simulator for 1.2 x 10(6) cycles. Marginal and internal adaptation at cervical and amalgam-composite sites evaluated by videomicroscope and ranked as "excellent"/"non-excellent". Slices of restorations examined under optical microscope to determine the quality of bonding layer. Defects in cervical adaptation observed in the three restorative techniques examined prior loading. Amalgam-composite combination in proximal surface provided comparable marginal and internal adaptation results at cervical wall, to self-etching-composite combination. Portion (25-37.5%) of amalgam-resin-based composite interfaces in proximal box presented no perfect sealing. The application of bonding agent beneath amalgam resulted in relatively inferior cervical adaptation. Loading resulted in fewer excellent restorations in all three restorative techniques but not in a statistically significant level.

  14. The improvement of adhesive properties of PEEK through different pre-treatments

    NASA Astrophysics Data System (ADS)

    Hallmann, Lubica; Mehl, Albert; Sereno, Nuno; Hämmerle, Christoph H. F.

    2012-07-01

    The purpose of this in vitro study was the evaluation of the bond strength of the adhesives/composite resin to Poly Ether Ether Ketone (PEEK) based dental polymer after using different surface conditioning methods. PEEK blanks were cut into discs. All disc specimens were polished with 800 grit SiC paper and divided into 6 main groups. Main groups were divided into 2 subgroups. The main groups of 32 specimens each were treated as follow: (1) control specimens (no treatment), (2) piranha solution etching, (3) abraded with 50 μm alumina particles and chemical etching, (4) abraded with 110 μm alumina particles and chemical etching, (5) abraded with 30 μm silica-coated alumina particles and chemical etching, (6) abraded with 110 μm silica-coated alumina particles and chemical etching. Plexiglas tubes filled with a composite resin (RelyX Unicem) were bonded to the specimens. The adhesives used were Heliobond and Clearfil Ceramic Primer. Each specimen was stored in distilled water (37 °C) for 3 days. Tensile bond strength was measured in a universal testing machine and failure methods were evaluated. Abraded surface with 50 μm alumina particles followed by etching with piranha solution lead to the highest bond strength of 21.4 MPa when Heliobond like adhesive was used. Tribochemical silica coated/etched PEEK surfaces did not have an effect on the bond strength. Non-treated PEEK surface was not able to establish a bond with composite resin. The proper choice of adhesive/composite resin system leads to a strong bond. ConclusionAirborne particle abrasion in combination with piranha solution etching improves the adhesive properties of PEEK.

  15. Effect of Ethylene diamine tetra acetic acid and sodium hypochlorite solution conditioning on microtensile bond strength of one-step self-etch adhesives

    PubMed Central

    Kasraei, Shahin; Azarsina, Mohadese; Khamverdi, Zahra

    2013-01-01

    Background: Attempts to improve bond strength of self-etch adhesives can enhance the durability of composite restorations. Aims: The aim of the present study was to evaluate the effect of collagen and smear layer removal with sodium hypochlorite solution (NaOCl) and EDTA on micro-tensile bond strength (μTBS) of self-etch adhesives to dentin. Settings and Design: It was an in-vitro study. Materials and Methods: Seventy-two teeth were divided into eight groups and their crowns were ground perpendicular to their long axis to expose dentin. The teeth were polished with silicon-carbide papers. The groups were treated as follows: No conditioning, 0.5-M EDTA conditioning, 2.5% NaOCl conditioning, NaOCl + EDTA conditioning. The surfaces were rinsed and blot-dried. Clearfil S3 and I-Bond were applied according to manufacturers’ instructions and restored with Z100 composite. After 500 cycles of thermo-cycling between 5°C and 55°C, the samples were sectioned and tested for μTBS. Statistical Analysis: Data were analyzed by two-way ANOVA and Tukey-HSD test. Results: The highest μTBS was recorded with Clearfil S3 + NaOCl + EDTA, and the lowest was recorded with I-Bond without conditioning. μTBS in EDTA-and EDTA + NaOCl-treated groups was significantly higher than the control and NaOCl-conditioned groups. Conclusions: Application of EDTA or EDTA + NaOCl before one-step self-etch adhesives increased μTBS. PMID:23833459

  16. Chemical adhesion rather than mechanical retention enhances resin bond durability of a dental glass-ceramic with leucite crystallites.

    PubMed

    Meng, X F; Yoshida, K; Gu, N

    2010-08-01

    This study aims to evaluate the effect of chemical adhesion by a silane coupler and mechanical retention by hydrofluoric acid (HFA) etching on the bond durability of resin to a dental glass ceramic with leucite crystallites. Half of the ceramic plates were etched with 4.8% HFA (HFA group) for 60 s, and the other half were not treated (NoHFA group). The scale of their surface roughness and rough area was measured by a 3D laser scanning microscope. These plates then received one of the following two bond procedures to form four bond test groups: HFA/cement, NoHFA/cement, HFA/silane/cement and NoHFA/silane/cement. The associated micro-shear bond strength and bond failure modes were tested after 0 and 30 000 thermal water bath cycles. Four different silane/cement systems (Monobond S/Variolink II, GC Ceramic Primer/Linkmax HV, Clearfil Ceramic Primer/Clearfil Esthetic Cement and Porcelain Liner M/SuperBond C&B) were used. The data for each silane/cement system were analyzed by three-way ANOVA. HFA treatment significantly increased the surface R(a) and R(y) values and the rough area of the ceramic plates compared with NoHFA treatment. After 30 000 thermal water bath cycles, the bond strength of all the test groups except the HFA/Linkmax HV group was significantly reduced, while the HFA/Linkmax HV group showed only adhesive interface failure. The other HFA/cement groups and all NoHFA/cement groups lost bond strength completely, and all NoHFA/silane/cement groups with chemical adhesion had significantly higher bond strength and more ceramic cohesive failures than the respective HFA/cement groups with mechanical retention. The result of the HFA/silane/cement groups with both chemical adhesion and mechanical retention revealed that HFA treatment could enhance the bond durability of resin/silanized glass ceramics, which might result from the increase of the chemical adhesion area on the ceramic rough surface and subsequently reduced degradation speed of the silane coupler

  17. Desmosomal adhesion in vivo.

    PubMed

    Berika, Mohamed; Garrod, David

    2014-02-01

    Desmosomes are intercellular junctions that provide strong adhesion or hyper-adhesion in tissues. Here, we discuss the molecular and structural basis of this with particular reference to the desmosomal cadherins (DCs), their isoforms and evolution. We also assess the role of DCs as regulators of epithelial differentiation. New data on the role of desmosomes in development and human disease, especially wound healing and pemphigus, are briefly discussed, and the importance of regulation of the adhesiveness of desmosomes in tissue dynamics is considered.

  18. Reversible Thermoset Adhesives

    NASA Technical Reports Server (NTRS)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  19. Adhesion at metal interfaces

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Ferrante, John; Smith, John R.

    1991-01-01

    A basic adhesion process is defined, the theory of the properties influencing metallic adhesion is outlined, and theoretical approaches to the interface problem are presented, with emphasis on first-principle calculations as well as jellium-model calculations. The computation of the energies of adhesion as a function of the interfacial separation is performed; fully three-dimensional calculations are presented, and universality in the shapes of the binding energy curves is considered. An embedded-atom method and equivalent-crystal theory are covered in the framework of issues involved in practical adhesion.

  20. Adhesives, silver amalgam.

    PubMed

    1995-09-01

    The most recent advancement in silver amalgam is use of resin formulations to bond metal to tooth both chemically &/or physically, Since, historically, amalgam has been used successfully without adhesion to tooth, obvious clinical question is: Why is bonding now desirable? Two major clinical reasons to bond are: (1) Adhesive can increase fracture resistance of amalgam restored teeth & decrease cusp fractures; & (2) Seal provided by adhesive can greatly decrease, & often eliminate post-operative sensitivity. Following report summarizes CRA laboratory study of shear bond strength & sealing capability of 23 commercial adhesives used to bond 2 types of silver amalgam to tooth structure.

  1. Instant acting adhesive system

    NASA Technical Reports Server (NTRS)

    Davis, T. R.; Haines, R. C.

    1971-01-01

    Adhesive developes 80 percent of minimum bond strength of 250 psi less than 30 sec after activation is required. Adhesive is stable, handles easily, is a low toxic hazard, and is useful in industrial and domestic prototype bonding and clamping operations.

  2. LARC-13 adhesive development

    NASA Technical Reports Server (NTRS)

    Hill, S. G.; Sheppard, C. H.; Johnson, J. C.

    1980-01-01

    A LARC-13 type adhesive system was developed and property data obtained that demonstrated improved thermomechanical properties superior to base LARC-13 adhesive. An improved adhesive for 589 K (600 F) use was developed by physical or chemical modification of LARC-13. The adhesive was optimized for titanium and composite bonding, and a compatible surface preparation for titanium and composite substrates was identified. The data obtained with the improved adhesive system indicated it would meet the 589 K (600 F) properties desired for application on space shuttle components. Average titanium lap shear data were: (1) 21.1 MPa (3355 psi) at RT, (2) 13.0 MPa (1881 psi) at 600 F, and (3) 16.4 MPa (2335) after aging 125 hours at 600 F and tested at 600 F.

  3. Beetle adhesive hairs differ in stiffness and stickiness: in vivo adhesion measurements on individual setae

    NASA Astrophysics Data System (ADS)

    Bullock, James M. R.; Federle, Walter

    2011-05-01

    Leaf beetles are able to climb on smooth and rough surfaces using arrays of micron-sized adhesive hairs (setae) of varying morphology. We report the first in vivo adhesive force measurements of individual setae in the beetle Gastrophysa viridula, using a smooth polystyrene substrate attached to a glass capillary micro-cantilever. The beetles possess three distinct adhesive pads on each leg which differ in function and setal morphology. Visualisation of pull-offs allowed forces to be measured for each tarsal hair type. Male discoidal hairs adhered with the highest forces (919 ± 104 nN, mean ± SE), followed by spatulate (582 ± 59 nN) and pointed (127 ± 19 nN) hairs. Discoidal hairs were stiffer in the normal direction (0.693 ± 0.111 N m-1) than spatulate (0.364 ± 0.039 N m-1) or pointed (0.192 ± 0.044 N m-1) hairs. The greater adhesion on smooth surfaces and the higher stability of discoidal hairs help male beetles to achieve strong adhesion on the elytra of females during copulation. A comparison of pull-off forces measured for single setae and whole pads (arrays) revealed comparable levels of adhesive stress. This suggests that beetles are able to achieve equal load sharing across their adhesive pads so that detachment through peeling is prevented.

  4. Cyanoacrylate Adhesives in Eye Wounds.

    DTIC Science & Technology

    EYE, *WOUNDS AND INJURIES), (*ADHESIVES, EYE), (*ACRYLIC RESINS, ADHESIVES), CORNEA , HEALING, TISSUES(BIOLOGY), TOLERANCES(PHYSIOLOGY), NECROSIS, SURGICAL SUPPLIES, STRENGTH(PHYSIOLOGY), SURGERY, THERAPY

  5. Shear bond strength of partial coverage restorations to dentin

    PubMed Central

    Agustín-Panadero, Rubén; Alonso-Pérez-Barquero, Jorge; Fons-Font, Antonio; Solá-Ruíz, María-Fernanda

    2015-01-01

    Background When partial coverage restorations (veneers, inlays, onlays…) must be cemented to dentin, bond strength may not reach the same predictable values as to enamel. The purpose of this study was: 1. To compare, with a shear bond test, the bond strength to dentin of a total-etch and a self-etching bonding agent. 2. To determine whether creating microretention improves the bond strength to dentin. Material and Methods Two bonding agents were assayed, Optibond FL® (Kerr), two-bottle adhesive requiring acid etching, and Clearfil SE Bond® (Kuraray), two-bottle self-etching adhesive. The vestibular, lingual, distal and mesial surfaces of ten molars (n=10) were ground to remove all enamel and 40 ceramic samples were cemented with Variolink II® (Ivoclar Vivadent). Half the molar surfaces were treated to create round microretention (pits) to determine whether these could influence bond strength to dentin. The 40 molar surfaces were divided into four groups (n=10): Optibond FL (O); Clearfil SE (C); Optibond FL + microretention (OM); Clearfil SE + micro retention (CM). A shear bond test was performed and the bond failures provoked examined under an optical microscope. Results O=35.27±8.02 MPa; C=36.23±11.23 MPa; OM=28.61±6.27 MPa; CM=27.01±7.57 MPa. No statistically significant differences were found between the adhesives. Optibond FL showed less statistical dispersion than Clearfil SE. The presence of microretentions reduced bond strength values regardless of the adhesive used. Conclusions 1. Clearfil SE self-etching adhesive and Optibond FL acid-etch showed adequate bond strengths and can be recommended for bonding ceramic restorations to dentin. 2. The creation of round microretention pits compromises these adhesives’ bond strength to dentin. Key words:Adhesion to dentin, bonding agent, Optibond FL, Clearfil SE, microretention, shear bond test. PMID:26330937

  6. Cytotoxicity of denture adhesives.

    PubMed

    de Gomes, Pedro Sousa; Figueiral, Maria Helena; Fernandes, Maria Helena R; Scully, Crispian

    2011-12-01

    Ten commercially available denture adhesives, nine soluble formulations (six creams, three powders) and one insoluble product (pad), were analyzed regarding the cytotoxicity profile in direct and indirect assays using L929 fibroblast cells. In the direct assay, fibroblasts were seeded over the surface of a thick adhesive gel (5%, creams; 2.5%, powders and pad). In the indirect assay, cells were cultured in the presence of adhesive extracts prepared in static and dynamic conditions (0.5-2%, creams; 0.25-1%, powders and pad). Cell toxicity was assessed for cell viability/proliferation (MTT assay) and cell morphology (observation of the F-actin cytoskeleton organization by confocal laser scanning microscopy). Direct contact of the L929 fibroblasts with the thick adhesive gels caused no, or only a slight, decrease in cell viability/proliferation. The adhesive extracts (especially those prepared in dynamic conditions) caused significantly higher growth inhibition of fibroblasts and, in addition, caused dose- and time-dependent effects, throughout the 6-72 h exposure time. Also, dose-dependent effects on cell morphology, with evident disruption of the F-actin cytoskeleton organization, were seen in the presence of most adhesives. In conclusion, the adhesives possessed different degrees of cytotoxicity, but similar dose- and time-dependent biological profiles.

  7. Adhesive Contact Sweeper

    NASA Technical Reports Server (NTRS)

    Patterson, Jonathan D.

    1993-01-01

    Adhesive contact sweeper removes hair and particles vacuum cleaner leaves behind, without stirring up dust. Also cleans loose rugs. Sweeper holds commercially available spools of inverted adhesive tape. Suitable for use in environments in which air kept free of dust; optics laboratories, computer rooms, and areas inhabited by people allergic to dust. For carpets, best used in tandem with vacuum cleaner; first pass with vacuum cleaner removes coarse particles, and second pass with sweeper extracts fine particles. This practice extends useful life of adhesive spools.

  8. Focal adhesions in osteoneogenesis

    PubMed Central

    Biggs, M.J.P; Dalby, M.J

    2010-01-01

    As materials technology and the field of tissue engineering advances, the role of cellular adhesive mechanisms, in particular the interactions with implantable devices, becomes more relevant in both research and clinical practice. A key tenet of medical device technology is to use the exquisite ability of biological systems to respond to the material surface or chemical stimuli in order to help develop next-generation biomaterials. The focus of this review is on recent studies and developments concerning focal adhesion formation in osteoneogenesis, with an emphasis on the influence of synthetic constructs on integrin mediated cellular adhesion and function. PMID:21287830

  9. [Endothelial cell adhesion molecules].

    PubMed

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  10. Adhesion of Polymer Vesicles

    NASA Astrophysics Data System (ADS)

    Lin, John J.; Bates, Frank S.; Hammer, Daniel A.; Silas, James A.

    2005-07-01

    The adhesion and bending modulus of polybutadiene-poly(ethylene oxide) block copolymer vesicles made from a bidisperse mixture of polymers is measured using micropipette aspiration. The adhesion energy between biotinylated vesicles and avidin beads is modeled by incorporating the extension of the adhesive ligands above the surface brush of the vesicle according to the blob model of bidisperse polymer mixtures of Komura and Safran assuming the polymer brush at the surface of the vesicle is compact. The same model accurately reproduces the scaling of the bending modulus with polymer composition.

  11. Adhesive Bonding for Shelters

    DTIC Science & Technology

    1980-12-01

    weru uvaluated, the type of etch bath " sweetener " and the type of rinse\\water used. The type of etch bath " sweetener " was found to have a dramatic effect...EA9601NW Adhesives on 50521134 Bare Adherenas 39 13 Stress-Durability Behavior Sun-mary 40 14 Effect of Ltch Bath Sweetening Alloy on Interracial Durability...34"’ -,,• , •’• •"• " ,,,,, 9 Adhesive/Primer/Adherend Alloy/Surface Preparation Combinations Adherend OFPL Sweetening Rinse Adhesive:Primer Alloy Alloy

  12. Adhesion to root canal dentine using one and two-step adhesives with dual-cure composite core materials.

    PubMed

    Foxton, R M; Nakajima, M; Tagami, J; Miura, H

    2005-02-01

    The regional tensile bond strengths of two dual-cure composite resin core materials to root canal dentine using either a one or two-step self-etching adhesive were evaluated. Extracted premolar teeth were decoronated and their root canals prepared to a depth of 8 mm and a width of 1.4 mm. In one group, a one-step self-etching adhesive (Unifil Self-etching Bond) was applied to the walls of the post-space and light-cured for 10 s. After which, the post-spaces were filled with the a dual-cure composite resin (Unifil Core) and then half the specimens were light-cured for 60 s and the other half placed in darkness for 30 min. In the second group, a self-etching primer (ED Primer II) was applied for 30 s, followed by an adhesive resin (Clearfil Photo Bond), which was light-cured for 10 s. The post-spaces were filled with a dual-cure composite resin (DC Core) and then half the specimens were light-cured for 60 s and the other half placed in darkness for 30 min. Chemical-cure composite resin was placed on the outer surfaces of all the roots, which were then stored in water for 24 h. They were serially sliced perpendicular to the bonded interface into 8, 0.6 mm-thick slabs, and then transversely sectioned into beams, approximately 8 x 0.6 x 0.6 mm, for the microtensile bond strength test (muTBS). Data were divided into two (coronal/apical half of post-space) and analysed using three-way anova and Scheffe's test (P < 0.05). Failure modes were observed under an scanning electron microscope (SEM) and statistically analysed. Specimens for observation of the bonded interfaces were prepared in a similar manner as for bond strength testing, cut in half and embedded in epoxy resin. They were then polished to a high gloss, gold sputter coated, and after argon ion etching, observed under an SEM. For both dual-cure composite resins and curing strategies, there were no significant differences in muTBS between the coronal and apical regions (P > 0.05). In addition, both dual

  13. A Comparative Study of Microleakage on Dental Surfaces Bonded with Three Self-Etch Adhesive Systems Treated with the Er:YAG Laser and Bur.

    PubMed

    Sanhadji El Haddar, Youssef; Cetik, Sibel; Bahrami, Babak; Atash, Ramin

    2016-01-01

    Aim. This study sought to compare the microleakage of three adhesive systems in the context of Erbium-YAG laser and diamond bur cavity procedures. Cavities were restored with composite resin. Materials and Methods. Standardized Class V cavities were performed in 72 extracted human teeth by means of diamond burs or Er-YAG laser. The samples were randomly divided into six groups of 12, testing three adhesive systems (Clearfil s(3) Bond Plus, Xeno® Select, and Futurabond U) for each method used. Cavities were restored with composite resin before thermocycling (methylene blue 2%, 24 h). The slices were prepared using a microtome. Optical microscope photography was employed to measure the penetration. Results. No statistically significant differences in microleakage were found in the use of bur or laser, nor between adhesive systems. Only statistically significant values were observed comparing enamel with cervical walls (p < 0.001). Conclusion. It can be concluded that the Er:YAG laser is as efficient as diamond bur concerning microleakage values in adhesive restoration procedures, thus constituting an alternative tool for tooth preparation.

  14. A Comparative Study of Microleakage on Dental Surfaces Bonded with Three Self-Etch Adhesive Systems Treated with the Er:YAG Laser and Bur

    PubMed Central

    Sanhadji El Haddar, Youssef; Cetik, Sibel; Bahrami, Babak; Atash, Ramin

    2016-01-01

    Aim. This study sought to compare the microleakage of three adhesive systems in the context of Erbium-YAG laser and diamond bur cavity procedures. Cavities were restored with composite resin. Materials and Methods. Standardized Class V cavities were performed in 72 extracted human teeth by means of diamond burs or Er-YAG laser. The samples were randomly divided into six groups of 12, testing three adhesive systems (Clearfil s3 Bond Plus, Xeno® Select, and Futurabond U) for each method used. Cavities were restored with composite resin before thermocycling (methylene blue 2%, 24 h). The slices were prepared using a microtome. Optical microscope photography was employed to measure the penetration. Results. No statistically significant differences in microleakage were found in the use of bur or laser, nor between adhesive systems. Only statistically significant values were observed comparing enamel with cervical walls (p < 0.001). Conclusion. It can be concluded that the Er:YAG laser is as efficient as diamond bur concerning microleakage values in adhesive restoration procedures, thus constituting an alternative tool for tooth preparation. PMID:27419128

  15. Adhesives for Aerospace

    NASA Technical Reports Server (NTRS)

    Meade, L. E.

    1985-01-01

    The industry is hereby challenged to integrate adhesive technology with the total structure requirements in light of today's drive into automation/mechanization. The state of the art of adhesive technology is fairly well meeting the needs of the structural designers, the processing engineer, and the inspector, each on an individual basis. The total integration of these needs into the factory of the future is the next collective hurdle to be achieved. Improved processing parameters to fit the needs of automation/mechanization will necessitate some changes in the adhesive forms, formulations, and chemistries. Adhesives have, for the most part, kept up with the needs of the aerospace industry, normally leading the rest of the industry in developments. The wants of the aerospace industry still present a challenge to encompass all elements, achieving a totally integrated joined and sealed structural system. Better toughness with hot-wet strength improvements is desired. Lower cure temperatures, longer out times, and improved corrosion inhibition are desired.

  16. Optical adhesive property study

    SciTech Connect

    Sundvold, P.D.

    1996-01-01

    Tests were performed to characterize the mechanical and thermal properties of selected optical adhesives to identify the most likely candidate which could survive the operating environment of the Direct Optical Initiation (DOI) program. The DOI system consists of a high power laser and an optical module used to split the beam into a number of channels to initiate the system. The DOI requirements are for a high shock environment which current military optical systems do not operate. Five candidate adhesives were selected and evaluated using standardized test methods to determine the adhesives` physical properties. EC2216, manufactured by 3M, was selected as the baseline candidate adhesive based on the test results of the physical properties.

  17. Adhesion of Lunar Dust

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.

    2007-01-01

    This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.

  18. Effect of prior acid etching on bonding durability of single-step adhesives.

    PubMed

    Watanabe, Takayuki; Tsubota, Keishi; Takamizawa, Toshiki; Kurokawa, Hiroyasu; Rikuta, Akitomo; Ando, Susumu; Miyazaki, Masashi

    2008-01-01

    This study investigated the effect of prior phosphoric acid etching on the enamel bond strength of five single-step self-etch adhesive systems: Absolute, Clearfil tri-S Bond, Fluoro Bond Shake One, G-Bond and One-Up Bond F Plus. Bovine mandibular incisors were mounted in self-curing resin, and the facial surfaces were wet ground with #600 silicon carbide paper. Adhesives were applied to the enamel surfaces with or without prior phosphoric-acid etching and light irradiated. The resin composites were condensed into a mold and light irradiated. In total, 40 specimens were tested per adhesive system with and without prior acid etching and were further divided into two groups: those stored in water at 37 degrees C for 24 hours without cycling and those stored in water at 37 degrees C for 24 hours followed by thermal cycling between 5 degrees C and 55 degrees C with 10,000 repeats. After storage under each set of conditions, the specimens were tested in shear mode at a crosshead speed of 1.0 mm/minute. Two-way analysis of variance, the Student's t-test and the Tukey HSD test were used to analyze the data at a significance level of 0.05. For the specimens without prior acid etching, the mean bond strengths to enamel ranged from 11.0 to 14.6 MPa after 24-hour storage in water, while the corresponding values for specimens with prior acid etching ranged from 15.2 to 19.3 MPa. When these specimens were subjected to thermal cycling, the mean bond strengths ranged from 11.3 to 17.0 MPa without prior acid etching and from 12.3 to 23.2 MPa with prior acid etching. The changes in enamel bond strengths differed among the adhesive systems tested. After 24-hour storage in water, the most common failure modes were adhesive failure and mixed failure for specimens with and without prior acid etching, respectively. Thus, through a careful choice of adhesive system, prior acid etching can increase the bond strengths of single-step self-etch adhesive systems.

  19. Epithelial adhesive junctions

    PubMed Central

    Capaldo, Christopher T.; Farkas, Attila E.

    2014-01-01

    Epithelial adhesive cell-to-cell contacts contain large, plasma membrane-spanning multiprotein aggregates that perform vital structural and signaling functions. Three prominent adhesive contacts are the tight junction, adherens junction, and the desmosome. Each junction type has unique cellular functions and a complex molecular composition. In this review, we comment on recent and exciting advances in our understanding of junction composition and function. PMID:24592313

  20. Visualizing and quantifying adhesive signals

    PubMed Central

    Sabouri-Ghomi, Mohsen; Wu, Yi; Hahn, Klaus; Danuser, Gaudenz

    2008-01-01

    Understanding the structural adaptation and signaling of adhesion sites in response to mechanical stimuli requires in situ characterization of the dynamic activation of a large number of adhesion components. Here, we review high resolution live cell imaging approaches to measure forces, assembly and interaction of adhesion components, and the activation of adhesion-mediated signals. We conclude by outlining computational multiplexing as a framework for the integration of these data into comprehensive models of adhesion signaling pathways. PMID:18586481

  1. Effect of Self-etch Adhesives on Self-sealing Ability of High-Copper Amalgams

    PubMed Central

    Moazzami, Saied Mostafa; Moosavi, Horieh; Moddaber, Maryam; Parvizi, Reza; Moayed, Mohamad Hadi; Mokhber, Nima; Meharry, Michael; B Kazemi, Reza

    2016-01-01

    Statement of the Problem: Similar to conventional amalgam, high-copper amalgam alloy may also undergo corrosion, but it takes longer time for the resulting products to reduce microleakage by sealing the micro-gap at the tooth/amalgam interface. Purpose: The aim of this study was to evaluate the effect of self-etch adhesives with different pH levels on the interfacial corrosion behavior of high-copper amalgam restoration and its induction potential for self-sealing ability of the micro-gap in the early hours after setting by means of Electro-Chemical Tests (ECTs). Materials and Method: Thirty cylindrical cavities of 4.5mm x 4.7mm were prepared on intact bicuspids. The samples were divided into five main groups of application of Adhesive Resin (AR)/ liner/ None (No), on the cavity floor. The first main group was left without an AR/ liner (No). In the other main groups, the types of AR/ liner used were I-Bond (IB), Clearfil S3 (S3), Single Bond (SB) and Varnish (V). Each main group (n=6) was divided into two subgroups (n=3) according to the types of the amalgams used, either admixed ANA 2000 (ANA) or spherical Tytin (Tyt). The ECTs, Open Circuit Potential (OCP), and the Linear Polarization Resistance (LPR) for each sample were performed and measured 48 hours after the completion of the samples. Results: The Tyt-No and Tyt-IB samples showed the highest and lowest OCP values respectively. In LPR tests, the Rp values of ANA-V and Tyt-V were the highest (lowest corrosion rate) and contrarily, the ANA-IB and Tyt-IB samples, with the lowest pH levels, represented the lowest Rp values (highest corrosion rates). Conclusion: Some self-etch adhesives may increase interfacial corrosion potential and self-sealing ability of high-copper amalgams. PMID:27942548

  2. Platelet Adhesion under Flow

    PubMed Central

    Ruggeri, Zaverio M.

    2011-01-01

    Platelet adhesive mechanisms play a well-defined role in hemostasis and thrombosis, but evidence continues to emerge for a relevant contribution to other pathophysiological processes including inflammation, immune-mediated responses to microbial and viral pathogens, and cancer metastasis. Hemostasis and thrombosis are related aspects of the response to vascular injury, but the former protects from bleeding after trauma while the latter is a disease mechanism. In either situation, adhesive interactions mediated by specific membrane receptors support the initial attachment of single platelets to cellular and extracellular matrix constituents of the vessel wall and tissues. In the subsequent steps of thrombus growth and stabilization, adhesive interactions mediate platelet to platelet cohesion (aggregation) and anchoring to the fibrin clot. A key functional aspect of platelets is their ability to circulate in a quiescent state surveying the integrity of the inner vascular surface, coupled to a prompt reaction wherever alterations are detected. In many respects, therefore, platelet adhesion to vascular wall structures, to one another or to other blood cells are facets of the same fundamental biological process. The adaptation of platelet adhesive functions to the effects of blood flow is the main focus of this review. PMID:19191170

  3. Reduction of postoperative adhesion development.

    PubMed

    Diamond, Michael P

    2016-10-01

    Despite use of meticulous surgical techniques, and regardless of surgical access via laparotomy or laparoscopy, postoperative adhesions develop in the vast majority of women undergoing abdominopelvic surgery. Such adhesions represent not only adhesion reformation at sites of adhesiolysis, but also de novo adhesion formation at sites of surgical procedures. Application of antiadhesion adjuvants compliment the benefits of meticulous surgical techniques, providing an opportunity to further reduce postoperative adhesion development. Improved understanding of the pathophysiology of adhesion development and distinguishing variations in the molecular biologic mechanisms from adhesion-free peritoneal repair represent future opportunities to improve the reduction of postoperative adhesions. Optimization of the reduction of postoperative adhesions will likely require identification of unique, personalized approaches in each individual, representing interindividual variation in peritoneal repair processes.

  4. Magnetic field switchable dry adhesives.

    PubMed

    Krahn, Jeffrey; Bovero, Enrico; Menon, Carlo

    2015-02-04

    A magnetic field controllable dry adhesive device is manufactured. The normal adhesion force can be increased or decreased depending on the presence of an applied magnetic field. If the magnetic field is present during the entire normal adhesion test cycle which includes both applying a preloading force and measuring the pulloff pressure, a decrease in adhesion is observed when compared to when there is no applied magnetic field. Similarly, if the magnetic field is present only during the preload portion of the normal adhesion test cycle, a decrease in adhesion is observed because of an increased stiffness of the magnetically controlled dry adhesive device. When the applied magnetic field is present during only the pulloff portion of the normal adhesion test cycle, either an increase or a decrease in normal adhesion is observed depending on the direction of the applied magnetic field.

  5. Adhesion and wetting: Similarities and differences

    SciTech Connect

    Shanahan, M.E.R. )

    1991-10-01

    This article examines what is understood about adhesion and wetting both from the historical and scientific perspectives. Topics covered include mechanical adhesion, specific adhesion, chemical adhesion, adhesion by diffusion, the adsorption or wetting theory, bulk adhesion, the rheological theory, hysteresis effects in rubber adhesion, and hysteresis of wetting.

  6. Bonding durability of single-step adhesives to previously acid-etched dentin.

    PubMed

    Ikeda, Masahiko; Tsubota, Keishi; Takamizawa, Toshiki; Yoshida, Takeshi; Miyazaki, Masashi; Platt, Jeffrey A

    2008-01-01

    This study investigated the effect of phosphoric acid etching on the dentin bond strength of five single-step self-etch adhesive systems; Absolute, Clearfil tri-S Bond, Fluoro Bond Shake One, G-Bond and One-Up Bond F Plus. Bovine mandibular incisors were mounted in self-curing resin and the facial surfaces were wet ground with #600 SiC paper. Adhesives were applied on the prepared dentin surfaces with and without prior phosphoric acid etching and light irradiated. Resin composite was condensed into a mold (ø4x2 mm), light irradiated and stored in water at 37 degrees C. Four groups (n=10) were made per adhesive system: with and without prior acid etching and with and without thermal cycling between 5 degrees C and 55 degrees C for 10,000 cycles. The specimens were tested in a shear mode at a crosshead speed of 1.0 mm/minute. Two-way ANOVA, Student t-test and Tukey HSD test at a level of 0.05 were done. For specimens without prior acid etching, the mean bond strengths to bovine dentin ranged from 12.8 to 17.1 MPa and ranged from 6.7 to 13.3 MPa for specimens with prior acid etching after 24 hours storage in water. When the specimens were subjected to thermal cycling, the mean bond strengths ranged from 10.7 to 24.8 MPa for the specimens without prior acid etching and 4.6 to 13.9 MPa for the specimens with prior acid etching. The changes in dentin bond strength were different among the adhesive systems tested. Failure modes were commonly adhesive failure associated with mixed failure for specimens with prior acid etching. For specimens without prior acid etching, failures in composite and dentin were increased. From the results of this in vitro study, prior acid etching might be not acceptable for increasing the dentin bond strengths of single-step self-etch adhesive systems.

  7. Mapping cell surface adhesion by rotation tracking and adhesion footprinting

    NASA Astrophysics Data System (ADS)

    Li, Isaac T. S.; Ha, Taekjip; Chemla, Yann R.

    2017-03-01

    Rolling adhesion, in which cells passively roll along surfaces under shear flow, is a critical process involved in inflammatory responses and cancer metastasis. Surface adhesion properties regulated by adhesion receptors and membrane tethers are critical in understanding cell rolling behavior. Locally, adhesion molecules are distributed at the tips of membrane tethers. However, how functional adhesion properties are globally distributed on the individual cell’s surface is unknown. Here, we developed a label-free technique to determine the spatial distribution of adhesive properties on rolling cell surfaces. Using dark-field imaging and particle tracking, we extract the rotational motion of individual rolling cells. The rotational information allows us to construct an adhesion map along the contact circumference of a single cell. To complement this approach, we also developed a fluorescent adhesion footprint assay to record the molecular adhesion events from cell rolling. Applying the combination of the two methods on human promyelocytic leukemia cells, our results surprisingly reveal that adhesion is non-uniformly distributed in patches on the cell surfaces. Our label-free adhesion mapping methods are applicable to the variety of cell types that undergo rolling adhesion and provide a quantitative picture of cell surface adhesion at the functional and molecular level.

  8. Mapping cell surface adhesion by rotation tracking and adhesion footprinting

    PubMed Central

    Li, Isaac T. S.; Ha, Taekjip; Chemla, Yann R.

    2017-01-01

    Rolling adhesion, in which cells passively roll along surfaces under shear flow, is a critical process involved in inflammatory responses and cancer metastasis. Surface adhesion properties regulated by adhesion receptors and membrane tethers are critical in understanding cell rolling behavior. Locally, adhesion molecules are distributed at the tips of membrane tethers. However, how functional adhesion properties are globally distributed on the individual cell’s surface is unknown. Here, we developed a label-free technique to determine the spatial distribution of adhesive properties on rolling cell surfaces. Using dark-field imaging and particle tracking, we extract the rotational motion of individual rolling cells. The rotational information allows us to construct an adhesion map along the contact circumference of a single cell. To complement this approach, we also developed a fluorescent adhesion footprint assay to record the molecular adhesion events from cell rolling. Applying the combination of the two methods on human promyelocytic leukemia cells, our results surprisingly reveal that adhesion is non-uniformly distributed in patches on the cell surfaces. Our label-free adhesion mapping methods are applicable to the variety of cell types that undergo rolling adhesion and provide a quantitative picture of cell surface adhesion at the functional and molecular level. PMID:28290531

  9. Adhesive particle shielding

    DOEpatents

    Klebanoff, Leonard Elliott; Rader, Daniel John; Walton, Christopher; Folta, James

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  10. Natural Underwater Adhesives.

    PubMed

    Stewart, Russell J; Ransom, Todd C; Hlady, Vladimir

    2011-06-01

    The general topic of this review is protein-based underwater adhesives produced by aquatic organisms. The focus is on mechanisms of interfacial adhesion to native surfaces and controlled underwater solidification of natural water-borne adhesives. Four genera that exemplify the broad range of function, general mechanistic features, and unique adaptations are discussed in detail: blue mussels, acorn barnacles, sandcastle worms, and freshwater caddisfly larva. Aquatic surfaces in nature are charged and in equilibrium with their environment, populated by an electrical double layer of ions as well as adsorbed natural polyelectrolytes and microbial biofilms. Surface adsorption of underwater bioadhesives likely occurs by exchange of surface bound ligands by amino acid sidechains, driven primarily by relative affinities and effective concentrations of polymeric functional groups. Most aquatic organisms exploit modified amino acid sidechains, in particular phosphorylated serines and hydroxylated tyrosines (dopa), with high-surface affinity that form coordinative surface complexes. After delivery to the surfaces as a fluid, permanent natural adhesives solidify to bear sustained loads. Mussel plaques are assembled in a manner superficially reminiscent of in vitro layer-by-layer strategies, with sequentially delivered layers associated through Fe(dopa)(3) coordination bonds. The adhesives of sandcastle worms, caddisfly larva, and barnacles may be delivered in a form somewhat similar to in vitro complex coacervation. Marine adhesives are secreted, or excreted, into seawater that has a significantly higher pH and ionic strength than the internal environment. Empirical evidence suggests these environment triggers could provide minimalistic, fail-safe timing mechanisms to prevent premature solidification (insolubilization) of the glue within the secretory system, yet allow rapid solidification after secretion. Underwater bioadhesives are further strengthened by secondary covalent

  11. Natural Underwater Adhesives

    PubMed Central

    Stewart, Russell J.; Ransom, Todd C.; Hlady, Vladimir

    2011-01-01

    The general topic of this review is protein-based underwater adhesives produced by aquatic organisms. The focus is on mechanisms of interfacial adhesion to native surfaces and controlled underwater solidification of natural water-borne adhesives. Four genera that exemplify the broad range of function, general mechanistic features, and unique adaptations are discussed in detail: blue mussels, acorn barnacles, sandcastle worms, and freshwater caddisfly larva. Aquatic surfaces in nature are charged and in equilibrium with their environment, populated by an electrical double layer of ions as well as adsorbed natural polyelectrolytes and microbial biofilms. Surface adsorption of underwater bioadhesives likely occurs by exchange of surface bound ligands by amino acid sidechains, driven primarily by relative affinities and effective concentrations of polymeric functional groups. Most aquatic organisms exploit modified amino acid sidechains, in particular phosphorylated serines and hydroxylated tyrosines (dopa), with high-surface affinity that form coordinative surface complexes. After delivery to the surfaces as a fluid, permanent natural adhesives solidify to bear sustained loads. Mussel plaques are assembled in a manner superficially reminiscent of in vitro layer-by-layer strategies, with sequentially delivered layers associated through Fe(dopa)3 coordination bonds. The adhesives of sandcastle worms, caddisfly larva, and barnacles may be delivered in a form somewhat similar to in vitro complex coacervation. Marine adhesives are secreted, or excreted, into seawater that has a significantly higher pH and ionic strength than the internal environment. Empirical evidence suggests these environment triggers could provide minimalistic, fail-safe timing mechanisms to prevent premature solidification (insolubilization) of the glue within the secretory system, yet allow rapid solidification after secretion. Underwater bioadhesives are further strengthened by secondary covalent

  12. Elastomer toughened polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L. (Inventor)

    1983-01-01

    A rubber-toughened addition-type polyimide composition is disclosed which has excellent high temperature bonding characteristics in the fully cured state, and improved peel strength and adhesive fracture resistance physical property characteristics. The process for making the improved adhesive involves preparing the rubber containing amic acid prepolymer by chemically reacting an amine-terminated elastomer and an aromatic diamine with an aromatic dianhydride with which a reactive chain stopper anhydride was mixed, and utilizing solvent or mixture of solvents for the reaction.

  13. Adhesion in hydrogel contacts.

    PubMed

    Torres, J R; Jay, G D; Kim, K-S; Bothun, G D

    2016-05-01

    A generalized thermomechanical model for adhesion was developed to elucidate the mechanisms of dissipation within the viscoelastic bulk of a hyperelastic hydrogel. Results show that in addition to the expected energy release rate of interface formation, as well as the viscous flow dissipation, the bulk composition exhibits dissipation due to phase inhomogeneity morphological changes. The mixing thermodynamics of the matrix and solvent determines the dynamics of the phase inhomogeneities, which can enhance or disrupt adhesion. The model also accounts for the time-dependent behaviour. A parameter is proposed to discern the dominant dissipation mechanism in hydrogel contact detachment.

  14. Adhesion in hydrogel contacts

    NASA Astrophysics Data System (ADS)

    Torres, J. R.; Jay, G. D.; Kim, K.-S.; Bothun, G. D.

    2016-05-01

    A generalized thermomechanical model for adhesion was developed to elucidate the mechanisms of dissipation within the viscoelastic bulk of a hyperelastic hydrogel. Results show that in addition to the expected energy release rate of interface formation, as well as the viscous flow dissipation, the bulk composition exhibits dissipation due to phase inhomogeneity morphological changes. The mixing thermodynamics of the matrix and solvent determines the dynamics of the phase inhomogeneities, which can enhance or disrupt adhesion. The model also accounts for the time-dependent behaviour. A parameter is proposed to discern the dominant dissipation mechanism in hydrogel contact detachment.

  15. Metallic Adhesion and Bonding

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. H.

    1984-01-01

    Although metallic adhesion has played a central part in much tribological speculation, few quantitative theoretical calculations are available. This is in part because of the difficulties involved in such calculations and in part because the theoretical physics community is not particularly involved with tribology. The calculations currently involved in metallic adhesion are summarized and shown that these can be generalized into a scaled universal relationship. Relationships exist to other types of covalent bonding, such as cohesive, chemisorptive, and molecular bonding. A simple relationship between surface energy and cohesive energy is offered.

  16. Switchable bio-inspired adhesives

    NASA Astrophysics Data System (ADS)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  17. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    PubMed

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-04

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  18. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives

    PubMed Central

    2015-01-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm2 provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  19. In vitro comparative bond strength of contemporary self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion.

    PubMed

    Blatz, Markus B; Phark, Jin-Ho; Ozer, Fusun; Mante, Francis K; Saleh, Najeed; Bergler, Michael; Sadan, Avishai

    2010-04-01

    This study compared shear bond strengths of six self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion. One hundred twenty zirconia samples were air-abraded (group SB; n = 60) or left untreated (group NO). Composite cylinders were bonded to the zirconia samples with either BisCem (BC), Maxcem (MC), G-Cem (GC), RelyX Unicem Clicker (RUC), RelyX Unicem Applicator (RUA), or Clearfil SA Cement (CSA). Shear bond strength was tested after thermocycling, and data were analyzed with analysis of variance and Holm-Sidak pairwise comparisons. Without abrasion, RUA (8.0 MPa), GC (7.9 MPa), and CSA (7.6 MPa) revealed significantly higher bond strengths than the other cements. Air-particle abrasion increased bond strengths for all test cements (p < 0.001). GC (22.4 MPa) and CSA (18.4 MPa) revealed the highest bond strengths in group SB. Bond strengths of self-adhesive resin cements to zirconia were increased by air-particle abrasion. Cements containing adhesive monomers (MDP/4-META) were superior to other compositions.

  20. Wood Composite Adhesives

    NASA Astrophysics Data System (ADS)

    Gomez-Bueso, Jose; Haupt, Robert

    The global environment, in which phenolic resins are being used for wood composite manufacture, has changed significantly during the last decade. This chapter reviews trends that are driving the use and consumption of phenolic resins around the world. The review begins with recent data on volume usage and regional trends, followed by an analysis of factors affecting global markets. In a section on environmental factors, the impact of recent formaldehyde emission regulations is discussed. The section on economics introduces wood composite production as it relates to the available adhesive systems, with special emphasis on the technical requirement to improve phenolic reactivity. Advances in composite process technology are introduced, especially in regard to the increased demands the improvements place upon adhesive system performance. The specific requirements for the various wood composite families are considered in the context of adhesive performance needs. The results of research into current chemistries are discussed, with a review of recent findings regarding the mechanisms of phenolic condensation and acceleration. Also, the work regarding alternate natural materials, such as carbohydrates, lignins, tannins, and proteinaceous materials, is presented. Finally, new developments in alternative adhesive technologies are reported.

  1. Rapid adhesive bonding concepts

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Hodges, W. T.

    1984-01-01

    Adhesive bonding in the aerospace industry typically utilizes autoclaves or presses which have considerable thermal mass. As a consequence, the rates of heatup and cooldown of the bonded parts are limited and the total time and cost of the bonding process is often relatively high. Many of the adhesives themselves do not inherently require long processing times. Bonding could be performed rapidly if the heat was concentrated in the bond lines or at least in the adherends. Rapid adhesive bonding concepts were developed to utilize induction heating techniques to provide heat directly to the bond line and/or adherends without heating the entire structure, supports, and fixtures of a bonding assembly. Bonding times for specimens are cut by a factor of 10 to 100 compared to standard press bonding. The development of rapid adhesive bonding for lap shear specimens (per ASTM D1003 and D3163), for aerospace panel bonding, and for field repair needs of metallic and advanced fiber reinforced polymeric matrix composite structures are reviewed.

  2. Effect of thermal aging on the tensile bond strength at reduced areas of seven current adhesives.

    PubMed

    Baracco, Bruno; Fuentes, M Victoria; Garrido, Miguel A; González-López, Santiago; Ceballos, Laura

    2013-07-01

    The purpose of this study was to determine the micro-tensile bond strength (MTBS) to dentin of seven adhesive systems (total and self-etch adhesives) after 24 h and 5,000 thermocycles. Dentin surfaces of human third molars were exposed and bonded with two total-etch adhesives (Adper Scotchbond 1 XT and XP Bond), two two-step self-etch adhesives (Adper Scotchbond SE and Filtek Silorane Adhesive System) and three one-step self-etch adhesives (G-Bond, Xeno V and Bond Force). All adhesive systems were applied following manufacturers' instructions. Composite buildups were constructed and the bonded teeth were then stored in water (24 h, 37 °C) or thermocycled (5,000 cycles) before being sectioned and submitted to MTBS test. Two-way ANOVA and subsequent comparison tests were applied at α = 0.05. Characteristic de-bonded specimens were analyzed using scanning electron microscopy (SEM). After 24 h water storage, MTBS values were highest with XP Bond, Adper Scotchbond 1 XT, Filtek Silorane Adhesive System and Adper Scotchbond SE and lowest with the one-step self-etch adhesives Bond Force, Xeno V and G-Bond. After thermocycling, MTBS values were highest with XP Bond, followed by Filtek Silorane Adhesive System, Adper Scotchbond SE and Adper Scotchbond 1 XT and lowest with the one-step self-etch adhesives Bond Force, Xeno V and G-Bond. Thermal aging induced a significant decrease in MTBS values with all adhesives tested. The resistance of resin-dentin bonds to thermal-aging degradation was material dependent. One-step self-etch adhesives obtained the lowest MTBS results after both aging treatments, and their adhesive capacity was significantly reduced after thermocycling.

  3. 3-D foam adhesive deposition

    NASA Technical Reports Server (NTRS)

    Lemons, C. R.; Salmassy, O. K.

    1976-01-01

    Bonding method, which reduces amount and weight of adhesive, is applicable to foam-filled honeycomb constructions. Novel features of process include temperature-viscosity control and removal of excess adhesive by transfer to cellophane film.

  4. Coating Reduces Ice Adhesion

    NASA Technical Reports Server (NTRS)

    Smith, Trent; Prince, Michael; DwWeese, Charles; Curtis, Leslie

    2008-01-01

    The Shuttle Ice Liberation Coating (SILC) has been developed to reduce the adhesion of ice to surfaces on the space shuttle. SILC, when coated on a surface (foam, metal, epoxy primer, polymer surfaces), will reduce the adhesion of ice by as much as 90 percent as compared to the corresponding uncoated surface. This innovation is a durable coating that can withstand several cycles of ice growth and removal without loss of anti-adhesion properties. SILC is made of a binder composed of varying weight percents of siloxane(s), ethyl alcohol, ethyl sulfate, isopropyl alcohol, and of fine-particle polytetrafluoroethylene (PTFE). The combination of these components produces a coating with significantly improved weathering characteristics over the siloxane system alone. In some cases, the coating will delay ice formation and can reduce the amount of ice formed. SILC is not an ice prevention coating, but the very high water contact angle (greater than 140 ) causes water to readily run off the surface. This coating was designed for use at temperatures near -170 F (-112 C). Ice adhesion tests performed at temperatures from -170 to 20 F (-112 to -7 C) show that SILC is a very effective ice release coating. SILC can be left as applied (opaque) or buffed off until the surface appears clear. Energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) data show that the coating is still present after buffing to transparency. This means SILC can be used to prevent ice adhesion even when coating windows or other objects, or items that require transmission of optical light. Car windshields are kept cleaner and SILC effectively mitigates rain and snow under driving conditions.

  5. Ceramic Adhesive for High Temperatures

    NASA Technical Reports Server (NTRS)

    Stevens, Everett G.

    1987-01-01

    Fused-silica/magnesium-phosphate adhesive resists high temperatures and vibrations. New adhesive unaffected by extreme temperatures and vibrations. Assuring direct bonding of gap filters to tile sidewalls, adhesive obviates expensive and time-consuming task of removal, treatment, and replacement of tiles.

  6. Adhesion Casting In Low Gravity

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Cronise, Raymond J.

    1996-01-01

    Adhesion casting in low gravity proposed as technique for making new and improved materials. Advantages of low-gravity adhesion casting, in comparison with adhesion casting in normal Earth gravity, comes from better control over, and greater uniformity of, thicknesses of liquid films that form on and adhere to solid surfaces during casting.

  7. Gordon Conference on Microbial Adhesion

    DTIC Science & Technology

    1988-07-01

    immunity against certain pathogens, the role of exopolysaccharides in adhesion and the role of lectin-glycolipid interactions in adhesion. Have...pathogenesis? What governs the specificity of p; exopolysaccharides in adhesion to surfaces? This session emphasized the molecular aspects of

  8. Rapid Adhesive Bonding of Composites

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Fox, R. L.; Sterling, S. Elmo, Jr.; Buckley, J. D.; Inge, Spencer V., Jr.; Burcher, L. G.; Wright, Robert E., Jr.

    1986-01-01

    Strong bonds created in less time and with less power than use of conventional bonding methods. Rapid adhesive bonding (RAB) technique for composites uses high-frequency induction heating toroids to quickly heat metallic susceptor impregnated with thermoplastic adhesive or sandwiched between thermoset or thermoplastic adhesive cloths or films. Susceptor steel screen or perforated steel foil.

  9. Environmentally compliant adhesive joining technology

    SciTech Connect

    Tira, J.S.

    1996-08-01

    Adhesive joining offers one method of assembling products. Advantages of adhesive joining/assembly include distribution of applied forces, lighter weight, appealing appearance, etc. Selecting environmentally safe adhesive materials and accompanying processes is paramount in today`s business climate if a company wants to be environmentally conscious and stay in business. Four areas of adhesive joining (adhesive formulation and selection, surface preparation, adhesive bonding process, waste and pollution generation/cleanup/management) all need to be carefully evaluated before adhesive joining is selected for commercial as well as military products. Designing for six sigma quality must also be addressed in today`s global economy. This requires material suppliers and product manufacturers to work even closer together.

  10. [Fulminant adhesive arachnoiditis].

    PubMed

    Tomczykiewicz, Kazimierz; Stępień, Adam; Staszewski, Jacek; Sadowska, Marta; Bogusławska-Walecka, Romana

    2012-01-01

    Adhesive arachnoiditis is a rare disease with insidious course. It causes damage of the spinal cord and nerve roots. The causes of adhesive arachnoiditis include earlier traumatic injury of the spinal cord, surgery, intrathecal administration of therapeutic substances (e.g. anaesthetics, chemotherapy) or contrast media, bleeding, and inflammation. It can also be idiopathic or iatrogenic. We present the case of a 42-year-old patient with fulminant adhesive arachnoiditis which was provoked by spinal surgery and caused severe neurological disability with profound, progressive, flaccid paraparesis and bladder dysfunction. The electromyography (EMG) showed serious damage of nerves of both lower limbs at the level of motor roots L2-S2 and damage of the motor neuron at the level of Th11-Th12 on the right side. Magnetic resonance imaging of the lumbosacral and thoracic part of the spinal cord demonstrated cystic liquid spaces in the lumen of the dural sac in the bottom part of the cervical spine and at the Th2-Th10 level, modelling the lateral and anterior surface of the cord. Because of the vast lesions, surgery could not be performed. Conservative treatment and rehabilitation brought only a small clinical improvement.

  11. Development of phosphorylated adhesives

    NASA Technical Reports Server (NTRS)

    Bilow, N.; Giants, T. W.; Jenkins, R. K.; Campbell, P. L.

    1983-01-01

    The synthesis of epoxy prepolymers containing phosphorus was carried out in such a manner as to provide adhesives containing at least 5 percent of this element. The purpose of this was to impart fire retardant properties to the adhesive. The two epoxy derivatives, bis(4-glycidyl-oxyphenyl)phenylphosphine oxide and bis(4-glycidyl-2-methoxyphenyl)phenylphosphonate, and a curing agent, bis(3-aminophenyl)methylphosphine oxide, were used in conjunction with one another and along with conventional epoxy resins and curing agents to bond Tedlar and Polyphenylethersulfone films to Kerimid-glass syntactic foam-filled honeycomb structures. Elevated temperatures are required to cure the epoxy resins with the phosphorus-contaning diamine; however, when Tedlar is being bonded, lower curing temperatures must be used to avoid shrinkage and the concomitant formation of surface defects. Thus, the phosphorus-containing aromatic amine curing agent cannot be used alone, although it is possible to use it in conjunction with an aliphatic amine which would allow lower cure temperatures to be used. The experimental epoxy resins have not provided adhesive bonds quite as strong as those provided by Epon 828 when compared in peel tests, but the differences are not very significant. It should be noted, if optimum properties are to be realized. In any case the fire retardant characteristics of the neat resin systems obtained are quite pronounced, since in most cases the self-extinguishing properties are evident almost instantly when specimens are removed from a flame.

  12. Ceramic microstructure and adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1984-01-01

    When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  13. Adhesion barrier reduces postoperative adhesions after cardiac surgery.

    PubMed

    Kaneko, Yukihiro; Hirata, Yasutaka; Achiwa, Ikuya; Morishita, Hiroyuki; Soto, Hajime; Kobayahsi, Jotaro

    2012-06-01

    Reoperation in cardiac surgery is associated with increased risk due to surgical adhesions. Application of a bioresorbable material could theoretically reduce adhesions and allow later development of a free dissection plane for cardiac reoperation. Twenty-one patients in whom a bioresorbable hyaluronic acid-carboxymethylcellulose adhesion barrier had been applied in a preceding surgery underwent reoperations, while 23 patients underwent reoperations during the same period without a prior adhesion barrier. Blinded observers graded the tenacity of the adhesions from surgical video recordings of the reoperations. No excessive bleeding requiring wound reexploration, mediastinal infection, or other complication attributable to the adhesion barrier occurred. Multiple regression analysis showed that shorter duration of the preceding surgery, non-use of cardiopulmonary bypass in the preceding surgery, and use of the adhesion barrier were significantly associated with less tenacious surgical adhesions. The use of a bioresorbable material in cardiac surgery reduced postoperative adhesions, facilitated reoperation, and did not promote complications. The use of adhesion barrier is recommended in planned staged procedures and those in which future reoperation is likely.

  14. Focal Adhesion Kinase Modulates Cell Adhesion Strengthening via Integrin Activation

    PubMed Central

    Michael, Kristin E.; Dumbauld, David W.; Burns, Kellie L.; Hanks, Steven K.

    2009-01-01

    Focal adhesion kinase (FAK) is an essential nonreceptor tyrosine kinase regulating cell migration, adhesive signaling, and mechanosensing. Using FAK-null cells expressing FAK under an inducible promoter, we demonstrate that FAK regulates the time-dependent generation of adhesive forces. During the early stages of adhesion, FAK expression in FAK-null cells enhances integrin activation to promote integrin binding and, hence, the adhesion strengthening rate. Importantly, FAK expression regulated integrin activation, and talin was required for the FAK-dependent effects. A role for FAK in integrin activation was confirmed in human fibroblasts with knocked-down FAK expression. The FAK autophosphorylation Y397 site was required for the enhancements in adhesion strengthening and integrin-binding responses. This work demonstrates a novel role for FAK in integrin activation and the time-dependent generation of cell–ECM forces. PMID:19297531

  15. Spinal adhesive arachnoiditis.

    PubMed

    Dolan, R A

    1993-06-01

    Forty-one cases of spinal adhesive arachnoiditis are presented. The key points are, first, that lumbar disc lesions, their investigations and surgical treatment and the use of nonabsorbable contrast materials are the most common etiological factors and, secondly, that operation is the best treatment. It is our contention that the majority of patients so treated do experience some improvement in what otherwise can be an unbearable amount of pain and disability. The use of adsorbable, nonirritative contrast materials such as Iohexol Parenteral will result in a marked reduction in the frequency of occurrence of arachnoiditis.

  16. CYANOACRYLATE ADHESIVES IN EYE WOUNDS.

    DTIC Science & Technology

    adhesives. The following adhesives were tested: methyl, isobutyl, n-butyl, n-hexyl, n-heptyl, n-octyl, n-decyl, -trifluoroisopropyl 2- cyanoacrylate , and...Biobond. Of these, methyl and -trifluoroisopropyl cyanoacrylates are not well tolerated by eye tissues. Biobond sets too slowly, and does not seem... cyanoacrylate is the best adhesive found so far when tissue tolerance, tensile strength, and ability to seal eye perforations (alone and with silicone rubber patches) are the criteria. (Author)

  17. Durability of Adhesively Bonded Structure

    DTIC Science & Technology

    1992-08-11

    frequently. Significant technology improvements have occurred In surface treatment, primers, joint analyses, adhesives and process controls. These have...clearly established the Initial cost savings potential for adhesive bonding. While this approach addresses the adequacy of joints early in service, there...processes with those changes which occur as a result of residual stress or cyclic loading in the adhesive joint 074-2R-bh 1 To fill a small part of this

  18. Hot melt adhesive attachment pad

    NASA Technical Reports Server (NTRS)

    Fox, R. L.; Frizzill, A. W.; Little, B. D.; Progar, D. J.; Coultrip, R. H.; Couch, R. H.; Gleason, J. R.; Stein, B. A.; Buckley, J. D.; St.clair, T. L. (Inventor)

    1984-01-01

    A hot melt adhesive attachment pad for releasably securing distinct elements together is described which is particularly useful in the construction industry or a spatial vacuum environment. The attachment pad consists primarily of a cloth selectively impregnated with a charge of hot melt adhesive, a thermo-foil heater, and a thermo-cooler. These components are securely mounted in a mounting assembly. In operation, the operator activates the heating cycle transforming the hot melt adhesive to a substantially liquid state, positions the pad against the attachment surface, and activates the cooling cycle solidifying the adhesive and forming a strong, releasable bond.

  19. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.

    PubMed

    Li, Yasong; Gates, Byron D; Menon, Carlo

    2015-08-05

    The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate.

  20. Effect of adhesive thickness on adhesively bonded T-joint

    NASA Astrophysics Data System (ADS)

    Abdullah, A. R.; Afendi, Mohd; Majid, M. S. Abdul

    2013-12-01

    The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding.

  1. Fire-Retardant Epoxy Adhesives

    NASA Technical Reports Server (NTRS)

    Bilow, N.; Giants, T. W.

    1982-01-01

    Phosphorus-containing epoxy is fire-retardant and translucent. Intended as adhesive for laminated plastic sheets, new material bonds well to titanium dioxide-filled plastic film, which ordinarily shows little surface interaction with adhesives. Fire retardancy has been demonstrated, and smoke density is low enough to avoid smoke obscuration.

  2. Measuring Adhesion And Friction Forces

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1991-01-01

    Cavendish balance adapted to new purpose. Apparatus developed which measures forces of adhesion and friction between specimens of solid materials in vacuum at temperatures from ambient to 900 degrees C. Intended primarily for use in studying adhesion properties of ceramics and metals, including silicon carbide, aluminum oxide, and iron-base amorphous alloys.

  3. Polymer Claw: Instant Underwater Adhesive

    DTIC Science & Technology

    2012-10-23

    pressure-activated adhesive is nearly complete. A 2:1 ratio of microcapsules:gorilla glue and a 1.5% dibutyltin diacetate concentration produced adhesion...Table I below. The best performers generally had between 1% and 1.5% dibutyltin diacetate (DBTDA). They also had a 2:1 ratio (vol/wt) of microcapsules

  4. Severe adhesive small bowel obstruction.

    PubMed

    Di Saverio, Salomone; Catena, Fausto; Kelly, Michael D; Tugnoli, Gregorio; Ansaloni, Luca

    2012-12-01

    Adhesive small bowel obstruction is a frequent cause of hospital admission. Water soluble contrast studies may have diagnostic and therapeutic value and avoid challenging demanding surgical operations, but if bowel ischemia is suspected, prompt surgical intervention is mandatory. A 58-year-old patient was operated for extensive adhesive small bowel obstruction after having had two previous laparotomies for colorectal surgery, and had a complex clinical course with multiple operations and several complications. Different strategies of management have been adopted, including non-operative management with the use of hyperosmolar water soluble contrast medium, multiple surgical procedures, total parenteral nutrition (TPN) support, and finally use of antiadherences icodextrin solution. After 2 years follow-up the patient was doing well without presenting recurrent episodes of adhesive small bowel obstruction. For patients admitted several times for adhesive small bowel obstruction, the relative risk of recurring obstruction increases in relation to the number of prior episodes. Several strategies for non-operative conservative management of adhesive small bowel obstruction have already addressed diagnostic and therapeutic value of hyperosmolar water soluble contrast. According to the most recent evidence-based guidelines, open surgery is the preferred method for surgical treatment of strangulating adhesive small bowel obstruction as well as after failed conservative management. Research interest and clinical evidence are increasing in adhesions prevention. Hyaluronic acid-carboxycellulose membrane and icodextrin may reduce incidence of adhesions.

  5. Adhesive capsulitis of the shoulder.

    PubMed

    Neviaser, Andrew S; Neviaser, Robert J

    2011-09-01

    Adhesive capsulitis is characterized by painful, gradual loss of active and passive shoulder motion resulting from fibrosis and contracture of the joint capsule. Other shoulder pathology can produce a similar clinical picture, however, and must be considered. Management is based on the underlying cause of pain and stiffness, and determination of the etiology is essential. Subtle clues in the history and physical examination can help differentiate adhesive capsulitis from other conditions that cause a stiff, painful shoulder. The natural history of adhesive capsulitis is a matter of controversy. Management of true capsular restriction of motion (ie, true adhesive capsulitis) begins with gentle, progressive stretching exercises. Most patients improve with nonsurgical treatment. Indications for surgery should be individualized. Failure to obtain symptomatic improvement and continued functional disability following ≥6 months of physical therapy is a general guideline for surgical intervention. Diligent postoperative therapy to maintain motion is required to minimize recurrence of adhesive capsulitis.

  6. Hyaluronan-mediated cellular adhesion

    NASA Astrophysics Data System (ADS)

    Curtis, Jennifer

    2005-03-01

    Many cells surround themselves with a cushioning halo of polysaccharides that is further strengthened and organized by proteins. In fibroblasts and chrondrocytes, the primary component of this pericellular matrix is hyaluronan, a large linear polyanion. Hyaluronan production is linked to a variety of disease, developmental, and physiological processes. Cells manipulate the concentration of hyaluronan and hyaluronan receptors for numerous activities including modulation of cell adhesion, cell motility, and differentiation. Recent investigations by identify hyaluronan's role in mediating early-stage cell adhesion. An open question is how the cell removes the 0.5-10 micron thick pericellular matrix to allow for further mature adhesion events requiring nanometer scale separations. In this investigation, holographic optical tweezers are used to study the adhesion and viscoelastic properties of chondrocytes' pericellular matrix. Ultimately, we aim to shed further light on the spatial and temporal details of the dramatic transition from micron to nanometer gaps between the cell and its adhesive substrate.

  7. Corrugated pipe adhesive applicator apparatus

    DOEpatents

    Shirey, R.A.

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe with an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough. 4 figs.

  8. Corrugated pipe adhesive applicator apparatus

    DOEpatents

    Shirey, Ray A.

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe within an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough.

  9. Biological adhesives and fastening devices

    NASA Astrophysics Data System (ADS)

    Wolpert, H. D.

    2012-04-01

    Sea creatures are a leading source to some of the more interesting discoveries in adhesives. Because sea water naturally breaks down even the strongest conventional adhesive, an alternative is important that could be used in repairing or fabricating anything that might have regular contact with moisture such as: Repairing broken and shattered bones, developing a surgical adhesive, use in the dental work, repairing and building ships, and manufacturing plywood. Some of nature's prototypes include the common mussel, limpet, some bacteria and abalone. As we learn more about these adhesives we are also developing non adhesive fasteners, such as mimicked after studying the octopus, burdock burrs (i.e. Velcro®) and the gecko.

  10. Adhesion testing device

    NASA Technical Reports Server (NTRS)

    LaPeyronnie, Glenn M. (Inventor); Huff, Charles M. (Inventor)

    2010-01-01

    The present invention provides a testing apparatus and method for testing the adhesion of a coating to a surface. The invention also includes an improved testing button or dolly for use with the testing apparatus and a self aligning button hook or dolly interface on the testing apparatus. According to preferred forms, the apparatus and method of the present invention are simple, portable, battery operated rugged, and inexpensive to manufacture and use, are readily adaptable to a wide variety of uses, and provide effective and accurate testing results. The device includes a linear actuator driven by an electric motor coupled to the actuator through a gearbox and a rotatable shaft. The electronics for the device are contained in the head section of the device. At the contact end of the device, is positioned a self aligning button hook, attached below the load cell located on the actuator shaft.

  11. Propulsion by directional adhesion

    NASA Astrophysics Data System (ADS)

    Bush, John; Prakash, Manu

    2008-03-01

    The rough, hairy integument of water-walking arthropods is well known to be responsible for their water-repellency; we here consider its additional propulsive role. We demonstrate that the tilted flexible leg hairs of water-walking arthropods render the leg cuticle directionally anisotropic: contact lines advance most readily towards the leg tips. The dynamical role of the resulting unidirectional adhesion is explored, and yields new insight into the manner in which water-walking arthropods generate thrust, glide and leap from the free surface. We thus provide new rationale for the fundamental topological difference in the roughness on plants and insects, and suggest novel directions for biomimetic design of smart, hydrophobic surfaces.

  12. The adhesive properties of coacervated recombinant hybrid mussel adhesive proteins.

    PubMed

    Lim, Seonghye; Choi, Yoo Seong; Kang, Dong Gyun; Song, Young Hoon; Cha, Hyung Joon

    2010-05-01

    Marine mussels attach to substrates using adhesive proteins. It has been suggested that complex coacervation (liquid-liquid phase separation via concentration) might be involved in the highly condensed and non-water dispersed adhesion process of mussel adhesive proteins (MAPs). However, as purified natural MAPs are difficult to obtain, it has not been possible to experimentally validate the coacervation model. In the present work, we demonstrate complex coacervation in a system including recombinant MAPs and hyaluronic acid (HA). Our recombinant hybrid MAPs, fp-151 and fp-131, can be produced in large quantities, and are readily purified. We observed successful complex coacervation using cationic fp-151 or fp-131, and an anionic HA partner. Importantly, we found that highly condensed complex coacervates significantly increased the bulk adhesive strength of MAPs in both dry and wet environments. In addition, oil droplets were successfully engulfed using a MAP-based interfacial coacervation process, to form microencapsulated particles. Collectively, our results indicate that a complex coacervation system based on MAPs shows superior adhesive properties, combined with additional valuable features including liquid/liquid phase separation and appropriate viscoelasticity. Our microencapsulation system could be useful in the development of new adhesive biomaterials, including self-adhesive microencapsulated drug carriers, for use in biotechnological and biomedical applications.

  13. Tunicate-mimetic nanofibrous hydrogel adhesive with improved wet adhesion.

    PubMed

    Oh, Dongyeop X; Kim, Sangsik; Lee, Dohoon; Hwang, Dong Soo

    2015-07-01

    The main impediment to medical application of biomaterial-based adhesives is their poor wet adhesion strength due to hydration-induced softening and dissolution. To solve this problem, we mimicked the wound healing process found in tunicates, which use a nanofiber structure and pyrogallol group to heal any damage on its tunic under sea water. We fabricated a tunicate-mimetic hydrogel adhesive based on a chitin nanofiber/gallic acid (a pyrogallol acid) composite. The pyrogallol group-mediated cross-linking and the nanofibrous structures improved the dissolution resistance and cohesion strength of the hydrogel compared to the amorphous polymeric hydrogels in wet condition. The tunicate-mimetic adhesives showed higher adhesion strength between fully hydrated skin tissues than did fibrin glue and mussel-mimetic adhesives. The tunicate mimetic hydrogels were produced at low cost from recyclable and abundant raw materials. This tunicate-mimetic adhesive system is an example of how natural materials can be engineered for biomedical applications.

  14. Universal adhesives: the next evolution in adhesive dentistry?

    PubMed

    Alex, Gary

    2015-01-01

    Every so often a new material, technique, or technological breakthrough spurs a paradigm shift in the way dentistry is practiced. The development and evolution of reliable enamel and dentin bonding agents is one such example. Indeed, the so-called "cosmetic revolution" in dentistry blossomed in large part due to dramatic advances in adhesive technology. It is the ability to bond various materials in a reasonably predictable fashion to both enamel and dentin substrates that enables dentists to routinely place porcelain veneers, direct and indirect composites, and a plethora of other restorative and esthetic materials. In fact, the longevity and predictability of many (if not most) current restorative procedures is wholly predicated on the dentist's ability to bond various materials to tooth tissues. Adhesive systems have progressed from the largely ineffective systems of the 1970s and early 1980s to the relatively successful total- and self-etching systems of today. The latest players in the adhesive marketplace are the so-called "universal adhesives." In theory, these systems have the potential to significantly simplify and expedite adhesive protocols and may indeed represent the next evolution in adhesive dentistry. But what defines a universal system, and are all these new systems truly "universal" and everything they are claimed to be? This article will examine the origin, chemistry, strengths, weaknesses, and clinical relevance of this new genre of dental adhesives.

  15. Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives.

    PubMed

    Murphy, Michael P; Kim, Seok; Sitti, Metin

    2009-04-01

    The complex structures that allow geckos to repeatably adhere to surfaces consist of multilevel branching fibers with specialized tips. We present a novel technique for fabricating similar multilevel structures from polymer materials and demonstrate the fabrication of arrays of two- and three-level structures, wherein each level terminates in flat mushroom-type tips. Adhesion experiments are conducted on two-level fiber arrays on a 12-mm-diameter glass hemisphere, which exhibit both increased adhesion and interface toughness over one-level fiber samples and unstructured control samples. These adhesion enhancements are the result of increased surface conformation as well as increased extension during detachment.

  16. In vitro biofilm formation on the surface of resin-based dentine adhesives.

    PubMed

    Rolland, Sarah L; McCabe, John F; Robinson, Colin; Walls, Angus W G

    2006-06-01

    Prevention of root caries on exposed root surfaces in the aging population is a significant challenge. Bonding resins can be applied to exposed root surfaces as sealants; however, minimal data exists regarding biofilm formation on the surface of these resins. We hypothesized that an antibacterial dentine-bonding resin containing methacryloxydodecyl-pyridiniumbromide (MDPB) may reduce biofilm formation. Biofilms were produced in pooled stimulated natural whole saliva, supplemented with 1% sucrose, on the surface of 5 dentine-bonding resins (Clearfil SE, OptiBond Solo, Protect Bond, Protect Bond Primer, and Xeno III) using untreated root surfaces as controls. Biofilms were stained using the Live:Dead Baclight bacterial viability stain, viewed with confocal microscopy, and analyzed using ImageJ image-analysis software. Resin surfaces encouraged attachment of live bacteria compared with root surfaces. All resins showed similar bacterial colonization in sections adjacent to the resin surface, but in the central and outer portions of biofilms, Xeno III and Protect Bond Primer showed a viable bacterial load similar to that of the root surface. Fluoride-releasing resins (OptiBond Solo/Protect Bond) did not show reduced biofilm formation. Thus, antibacterial agents within the resins have a minimal effect on biofilm formation, particularly when directly adjacent to the root surface.

  17. Wet Adhesion and Adhesive Locomotion of Snails on Anti-Adhesive Non-Wetting Surfaces

    PubMed Central

    Shirtcliffe, Neil J.; McHale, Glen; Newton, Michael I.

    2012-01-01

    Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted), texture (smooth, rough or granular) or wetting property (hydrophilic or hydrophobic) via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and the effectiveness of this adhesive locomotion on modern super-slippy superhydrophobic surfaces are unclear. Here we report that snail adhesion overcomes a wide range of these microscale and nanoscale topographically structured non-stick surfaces. For the one surface which we found to be snail resistant, we show that the effect is correlated with the wetting response of the surface to a weak surfactant. Our results elucidate some critical wetting factors for the design of anti-adhesive and bio-adhesion resistant surfaces. PMID:22693563

  18. Contractility Modulates Cell Adhesion Strengthening Through Focal Adhesion Kinase and Assembly of Vinculin-Containing Focal Adhesions

    PubMed Central

    Dumbauld, David W.; Shin, Heungsoo; Gallant, Nathan D.; Michael, Kristin E.; Radhakrishna, Harish; García, Andrés J.

    2010-01-01

    Actin-myosin contractility modulates focal adhesion assembly, stress fiber formation, and cell migration. We analyzed the contributions of contractility to fibroblast adhesion strengthening using a hydrodynamic adhesion assay and micropatterned substrates to control cell shape and adhesive area. Serum addition resulted in adhesion strengthening to levels 30–40% higher than serum-free cultures. Inhibition of myosin light chain kinase or Rho-kinase blocked phosphorylation of myosin light chain to similar extents and eliminated the serum-induced enhancements in strengthening. Blebbistatin-induced inhibition of myosin II reduced serum-induced adhesion strength to similar levels as those obtained by blocking myosin light chain phosphorylation. Reductions in adhesion strengthening by inhibitors of contractility correlated with loss of vinculin and talin from focal adhesions without changes in integrin binding. In vinculin-null cells, inhibition of contractility did not alter adhesive force, whereas controls displayed a 20% reduction in adhesion strength, indicating that the effects of contractility on adhesive force are vinculin-dependent. Furthermore, in cells expressing FAK, inhibitors of contractility reduced serum-induced adhesion strengthening as well as eliminated focal adhesion assembly. In contrast, in the absence of FAK, these inhibitors did not alter adhesion strength or focal adhesion assembly. These results indicate that contractility modulates adhesion strengthening via FAK-dependent, vinculin-containing focal adhesion assembly. PMID:20205236

  19. Marine Bioinspired Underwater Contact Adhesion.

    PubMed

    Clancy, Sean K; Sodano, Antonio; Cunningham, Dylan J; Huang, Sharon S; Zalicki, Piotr J; Shin, Seunghan; Ahn, B Kollbe

    2016-05-09

    Marine mussels and barnacles are sessile biofouling organisms that adhere to a number of surfaces in wet environments and maintain remarkably strong bonds. Previous synthetic approaches to mimic biological wet adhesive properties have focused mainly on the catechol moiety, present in mussel foot proteins (mfps), and especially rich in the interfacial mfps, for example, mfp-3 and -5, found at the interface between the mussel plaque and substrate. Barnacles, however, do not use Dopa for their wet adhesion, but are instead rich in noncatecholic aromatic residues. Due to this anomaly, we were intrigued to study the initial contact adhesion properties of copolymerized acrylate films containing the key functionalities of barnacle cement proteins and interfacial mfps, for example, aromatic (catecholic or noncatecholic), cationic, anionic, and nonpolar residues. The initial wet contact adhesion of the copolymers was measured using a probe tack testing apparatus with a flat-punch contact geometry. The wet contact adhesion of an optimized, bioinspired copolymer film was ∼15.0 N/cm(2) in deionized water and ∼9.0 N/cm(2) in artificial seawater, up to 150 times greater than commercial pressure-sensitive adhesive (PSA) tapes (∼0.1 N/cm(2)). Furthermore, maximum wet contact adhesion was obtained at ∼pH 7, suggesting viability for biomedical applications.

  20. Adhesion molecules in vernal keratoconjunctivitis

    PubMed Central

    El-Asrar, A.; Geboes, K.; Al-Kharashi, S.; Tabbara, K.; Missotten, L.; Desmet, V.

    1997-01-01

    AIMS/BACKGROUND—Adhesion molecules play a key role in the selective recruitment of different leucocyte population to inflammatory sites. The purpose of the present study was to investigate the presence and distribution of adhesion molecules in the conjunctiva of patients with vernal keratoconjunctivitis (VKC).
METHODS—The presence and distribution of adhesion molecules were studied in 14 conjunctival biopsy specimens from seven patients with active VKC and in four normal conjunctival biopsy specimens. We used a panel of specific monoclonal antibodies (mAbs) directed against intercellular adhesion molecule-1 (ICAM-1), intercellular adhesion molecule-3 (ICAM-3), lymphocyte function associated antigen-1 (LFA-1), very late activation antigen-4 (VLA-4), vascular cell adhesion molecule-1 (VCAM-1), and endothelial leucocyte adhesion molecule-1 (ELAM-1). In addition, a panel of mAbs were used to characterise the composition of the inflammatory infiltrate.
RESULTS—In the normal conjunctiva, ICAM-1 was expressed on the vascular endothelium only, LFA-1 and ICAM-3 on epithelial and stromal mononuclear cells , and VLA-4 on stromal mononuclear cells. The expression of VCAM-1 and ELAM-1 was absent. The number of cells expressing adhesion molecules was found to be markedly increased in all VKC specimens. This was concurrent with a heavy inflammatory infiltrate. Strong ICAM-1 expression was induced on the basal epithelial cells, and vascular endothelial cells. Furthermore, ICAM-1 was expressed on stromal mononuclear cells. LFA-1 and ICAM-3 were expressed on the majority of epithelial and stromal infiltrating mononuclear cells. VLA-4 expression was noted on stromal mononuclear cells. Compared with controls, VKC specimens showed significantly more ICAM-3+, LFA-1+, and VLA-4+ cells. VCAM-1 and ELAM-1 were induced on the vascular endothelial cells.
CONCLUSIONS—Increased expression of adhesion molecules may play an important role in the pathogenesis of VKC.

 PMID

  1. Adhesive Performance of Biomimetic Adhesive-Coated Biologic Scaffolds

    PubMed Central

    Murphy, John L.; Vollenweider, Laura; Xu, Fangmin; Lee, Bruce P.

    2010-01-01

    Surgical repair of a discontinuity in traumatized or degenerated soft tissues is traditionally accomplished using sutures. A current trend is to reinforce this primary repair with surgical grafts, meshes, or patches secured with perforating mechanical devices (i.e., sutures, staples, or tacks). These fixation methods frequently lead to chronic pain and mesh detachment. We developed a series of biodegradable adhesive polymers that are synthetic mimics of mussel adhesive proteins (MAPs), composed of 3,4-dihydroxyphenylalanine (DOPA)-derivatives, polyethylene glycol (PEG), and polycaprolactone (PCL). These polymers can be cast into films, and their mechanical properties, extent of swelling, and degradation rate can be tailored through the composition of the polymers as well as blending with additives. When coated onto a biologic mesh used for hernia repair, these adhesive constructs demonstrated adhesive strengths significantly higher than fibrin glue. With further development, a pre-coated bioadhesive mesh may represent a new surgical option for soft tissue repair. PMID:20919699

  2. Green waxes, adhesives and lubricants.

    PubMed

    Li, W; Kong, X H; Ruan, M; Ma, F M; Jiang, Y F; Liu, M Z; Chen, Y; Zuo, X H

    2010-10-28

    General characteristics of waxes, adhesives and lubricants as well as the recent fundamental investigations on their physical and mechanical behaviour are introduced. The current R&D status for new type/generation of waxes, adhesives and lubricants from natural products is reviewed, with an emphasis on their tribological applications. In particular, some crucial issues and challenges relating to technological improvement and materials development are discussed. Based on the current predicted shortage of energy resources and environmental concerns, prospective research on the development of green waxes, adhesives and lubricants is suggested.

  3. Interfacial adhesion of carbon fibers

    NASA Technical Reports Server (NTRS)

    Bascom, Willard D.

    1987-01-01

    Relative adhesion strengths between AS4, AS1, and XAS carbon fibers and thermoplastic polymers were determined using the embedded single filament test. Polymers studied included polycarbonate, polyphenylene oxide, polyetherimide, polysulfone, polyphenylene oxide blends with polystyrene, and polycarbonate blends with a polycarbonate polysiloxane block copolymer. Fiber surface treatments and sizings improved adhesion somewhat, but adhesion remained well below levels obtained with epoxy matrices. An explanation for the differences between the Hercules and Grafil fibers was sought using X ray photon spectroscopy, wetting, scanning electron microscopy and thermal desorption analysis.

  4. Adhesives from modified soy protein

    DOEpatents

    Sun, Susan; Wang, Donghai; Zhong, Zhikai; Yang, Guang

    2008-08-26

    The, present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  5. Notch-Mediated Cell Adhesion

    PubMed Central

    Murata, Akihiko; Hayashi, Shin-Ichi

    2016-01-01

    Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of Notch family members dating back to metazoan evolution. We hypothesize that Notch family members may have initially emerged as cell adhesion molecules in order to mediate multicellularity in the last common ancestor of metazoan organisms. PMID:26784245

  6. Photovoltaic module with adhesion promoter

    SciTech Connect

    Xavier, Grace

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  7. SE-FIT

    NASA Technical Reports Server (NTRS)

    Chen, Yongkang; Weislogel, Mark; Schaeffer, Ben; Semerjian, Ben; Yang, Lihong; Zimmerli, Gregory

    2012-01-01

    The mathematical theory of capillary surfaces has developed steadily over the centuries, but it was not until the last few decades that new technologies have put a more urgent demand on a substantially more qualitative and quantitative understanding of phenomena relating to capillarity in general. So far, the new theory development successfully predicts the behavior of capillary surfaces for special cases. However, an efficient quantitative mathematical prediction of capillary phenomena related to the shape and stability of geometrically complex equilibrium capillary surfaces remains a significant challenge. As one of many numerical tools, the open-source Surface Evolver (SE) algorithm has played an important role over the last two decades. The current effort was undertaken to provide a front-end to enhance the accessibility of SE for the purposes of design and analysis. Like SE, the new code is open-source and will remain under development for the foreseeable future. The ultimate goal of the current Surface Evolver Fluid Interface Tool (SEFIT) development is to build a fully integrated front-end with a set of graphical user interface (GUI) elements. Such a front-end enables the access to functionalities that are developed along with the GUIs to deal with pre-processing, convergence computation operation, and post-processing. In other words, SE-FIT is not just a GUI front-end, but an integrated environment that can perform sophisticated computational tasks, e.g. importing industry standard file formats and employing parameter sweep functions, which are both lacking in SE, and require minimal interaction by the user. These functions are created using a mixture of Visual Basic and the SE script language. These form the foundation for a high-performance front-end that substantially simplifies use without sacrificing the proven capabilities of SE. The real power of SE-FIT lies in its automated pre-processing, pre-defined geometries, convergence computation operation

  8. Testing Adhesive Bonds to Cloths

    NASA Technical Reports Server (NTRS)

    Thomann, David G.

    1987-01-01

    Nondestructive tool simple and inexpensive. Easy-to-use tool nondestructively tests strength of adhesive bond between cloth and straight rigid edge. Developed for testing advanced flexible reusable surface insulation.

  9. Seafood delicacy makes great adhesive

    ScienceCinema

    Idaho National Laboratory - Frank Roberto, Heather Silverman

    2016-07-12

    Technology from Mother Nature is often hard to beat, so Idaho National Laboratory scientistsgenetically analyzed the adhesive proteins produced by blue mussels, a seafood delicacy. Afterobtaining full-length DNA sequences encoding these proteins, reprod

  10. Seafood delicacy makes great adhesive

    SciTech Connect

    Idaho National Laboratory - Frank Roberto, Heather Silverman

    2008-03-26

    Technology from Mother Nature is often hard to beat, so Idaho National Laboratory scientistsgenetically analyzed the adhesive proteins produced by blue mussels, a seafood delicacy. Afterobtaining full-length DNA sequences encoding these proteins, reprod

  11. Adhesive interactions between vesicles in the strong adhesion limit

    PubMed Central

    Ramachandran, Arun; Anderson, Travers H.; Leal, L. Gary; Israelachvili, Jacob N.

    2010-01-01

    We consider the adhesive interaction energy between a pair of vesicles in the strong adhesion limit, in which bending forces play a negligible role in determining vesicle shape compared to forces due to membrane stretching. Although force-distance or energy distance relationships characterizing adhesive interactions between fluid bilayers are routinely measured using the surface forces apparatus, the atomic force microscope and the biomembrane force probe, the interacting bilayers in these methods are supported on surfaces (e.g. mica sheet) and cannot be deformed. However, it is known that in a suspension, vesicles composed of the same bilayer can deform by stretching or bending, and can also undergo changes in volume. Adhesively interacting vesicles can thus form flat regions in the contact zone, which will result in an enhanced interaction energy as compared to rigid vesicles. The focus of this paper is to examine the magnitude of the interaction energy between adhesively interacting, deformed vesicles relative to free, undeformed vesicles as a function of the intervesicle separation. The modification of the intervesicle interaction energy due to vesicle deformability can be calculated knowing the undeformed radius of the vesicles, R0, the bending modulus kb, the area expansion modulus Ka, and the adhesive minimum WP(0) and separation DP(0) in the energy of interaction between two flat bilayers, which can be obtained from the force-distance measurements made using the above supported-bilayer methods. For vesicles with constant volumes, we show that adhesive potentials between non-deforming bilayers such as ∣WP(0)∣∼5×10−4mJ/m2, which are ordinarily considered weak in colloidal physics literature, can result in significantly deep (>10×) energy minima due to increase in vesicle area and flattening in the contact region. If the osmotic expulsion of water across the vesicles driven by the tense, stretched membrane in the presence of an osmotically active

  12. Effect of a novel quaternary ammonium methacrylate polymer (QAMP) on adhesion and antibacterial properties of dental adhesives.

    PubMed

    Pupo, Yasmine M; Farago, Paulo Vitor; Nadal, Jessica M; Simão, Luzia C; Esmerino, Luís Antônio; Gomes, Osnara M M; Gomes, João Carlos

    2014-05-20

    This study investigated the resin-dentin bond strength (μTBS), degree of conversion (DC), and antibacterial potential of an innovative adhesive system containing a quaternary ammonium methacrylate polymer (QAMP) using in situ and in vitro assays. Forty-two human third molars were flattened until the dentin was exposed and were randomly distributed into three groups of self-etching adhesive systems: Clearfil™ SE Bond containing 5% QAMP (experimental group), Clearfil™ Protect Bond (positive control) and Clearfil™ SE Bond (negative control). After light curing, three 1 mm-increments of composite resin were bonded to each dentin surface. A total of thirty of these bonded teeth (10 teeth per group) was sectioned to obtain stick-shaped specimens and tested under tensile stress immediately, and after 6 and 12 months of storage in distilled water. Twelve bonded teeth (4 teeth per group) were longitudinally sectioned in a mesio-to-distal direction to obtain resin-bonded dentin slabs. In situ DC was evaluated by micro-Raman spectroscopy. In vitro DC of thin films of each adhesive system was measured using Fourier transform infrared spectroscopy. In vitro susceptibility tests of these three adhesive systems were performed by the minimum inhibitory/minimum bactericidal concentration (MIC/MBC) assays against Streptococcus mutans, Lactobacillus casei, and Actinomyces naeslundii. No statistically significant difference in μTBS was observed between Clearfil™ SE Bond containing 5% QAMP and Clearfil™ SE Bond (p>0.05) immediately, and after 6 and 12 months of water storage. However Clearfil™ Protect Bond showed a significant reduction of μTBS after 12 months of storage (p=0.039). In addition, QAMP provided no significant change in DC after incorporating into Clearfil™ SE Bond (p>0.05). Clearfil™ SE Bond containing 5% QAMP demonstrated MIC/MBC values similar to the positive control against L. casei and A. naeslundii and higher than the negative control for all

  13. Effect of a Novel Quaternary Ammonium Methacrylate Polymer (QAMP) on Adhesion and Antibacterial Properties of Dental Adhesives

    PubMed Central

    Pupo, Yasmine M.; Farago, Paulo Vitor; Nadal, Jessica M.; Simão, Luzia C.; Esmerino, Luís Antônio; Gomes, Osnara M. M.; Gomes, João Carlos

    2014-01-01

    This study investigated the resin–dentin bond strength (μTBS), degree of conversion (DC), and antibacterial potential of an innovative adhesive system containing a quaternary ammonium methacrylate polymer (QAMP) using in situ and in vitro assays. Forty-two human third molars were flattened until the dentin was exposed and were randomly distributed into three groups of self-etching adhesive systems: Clearfil™ SE Bond containing 5% QAMP (experimental group), Clearfil™ Protect Bond (positive control) and Clearfil™ SE Bond (negative control). After light curing, three 1 mm-increments of composite resin were bonded to each dentin surface. A total of thirty of these bonded teeth (10 teeth per group) was sectioned to obtain stick-shaped specimens and tested under tensile stress immediately, and after 6 and 12 months of storage in distilled water. Twelve bonded teeth (4 teeth per group) were longitudinally sectioned in a mesio-to-distal direction to obtain resin-bonded dentin slabs. In situ DC was evaluated by micro-Raman spectroscopy. In vitro DC of thin films of each adhesive system was measured using Fourier transform infrared spectroscopy. In vitro susceptibility tests of these three adhesive systems were performed by the minimum inhibitory/minimum bactericidal concentration (MIC/MBC) assays against Streptococcus mutans, Lactobacillus casei, and Actinomyces naeslundii. No statistically significant difference in μTBS was observed between Clearfil™ SE Bond containing 5% QAMP and Clearfil™ SE Bond (p > 0.05) immediately, and after 6 and 12 months of water storage. However Clearfil™ Protect Bond showed a significant reduction of μTBS after 12 months of storage (p = 0.039). In addition, QAMP provided no significant change in DC after incorporating into Clearfil™ SE Bond (p > 0.05). Clearfil™ SE Bond containing 5% QAMP demonstrated MIC/MBC values similar to the positive control against L. casei and A. naeslundii and higher than the negative control for

  14. Polymer Claw: Instant Underwater Adhesive

    DTIC Science & Technology

    2012-08-27

    technology is the use of pressure sensitive microcapsules , which release reactive amine crosslinkers into an adhesive putty when pressed against the surface...CLEANING AGENT RHEOLOGY 3 3.3 PRESSURE-ACTIVATED ADHESIVE 5 3.3.1 PROCESSING IMPROVEMENTS 5 3.3.2 MICROCAPSULE DIAMETER 5 3.3.3 MICROCAPSULE /RESIN...to attain a reasonable shelf life (- l wk.). The microcapsule diameter has been halved in order to improve mixing in the pressure-activated

  15. Multi-Scale Biomimetic Adhesives

    DTIC Science & Technology

    2009-02-10

    Objectives: Same as originally stated 3. Status of Effort: Over the life of this grant, significant technical contributions have been made. When this...department of Defense as well, broadening our goals. 4. Accomplishments/New Findings (over the life of the grant): The mechanism of adhesion in the gecko...enabling microrobotics to explore extraterrestrial surfaces or harsh climates otherwise not accessible to man. In contrast to the adhesion seen in a rest

  16. Silorane adhesive system: a case report.

    PubMed

    Ruschel, Vanessa Carla; Baratieri, Luiz Narciso; Monteiro Júnior, Sylvio; Andrada, Mauro Amaral Caldeira de

    2014-01-01

    Silorane-based composite resin requires a specific adhesive system: a 2-step self-etching adhesive. Clinical protocols are well established and are based on the principles of adhesion to mineralized dental tissues. In this paper, we present a clinical application of the silorane adhesive system in a class-II restoration using silorane-based composite resin.

  17. Fibrillar Adhesive for Climbing Robots

    NASA Technical Reports Server (NTRS)

    Pamess, Aaron; White, Victor E.

    2013-01-01

    A climbing robot needs to use its adhesive patches over and over again as it scales a slope. Replacing the adhesive at each step is generally impractical. If the adhesive or attachment mechanism cannot be used repeatedly, then the robot must carry an extra load of this adhesive to apply a fresh layer with each move. Common failure modes include tearing, contamination by dirt, plastic deformation of fibers, and damage from loading/ unloading. A gecko-like fibrillar adhesive has been developed that has been shown useful for climbing robots, and may later prove useful for grasping, anchoring, and medical applications. The material consists of a hierarchical fibrillar structure that currently contains two levels, but may be extended to three or four levels in continuing work. The contacting level has tens of thousands of microscopic fibers made from a rubberlike material that bend over and create intimate contact with a surface to achieve maximum van der Waals forces. By maximizing the real area of contact that these fibers make and minimizing the bending energy necessary to achieve that contact, the net amount of adhesion has been improved dramatically.

  18. Integrin-mediated adhesion complex

    PubMed Central

    Sebé-Pedrós, Arnau

    2010-01-01

    The integrin-mediated adhesion machinery is the primary cell-matrix adhesion mechanism in Metazoa. The integrin adhesion complex, which modulates important aspects of the cell physiology, is composed of integrins (alpha and beta subunits) and several scaffolding and signaling proteins. Integrins appeared to be absent in all non-metazoan eukaryotes so-far analyzed, including fungi, plants and choanoflagellates, the sister-group to Metazoa. Thus, integrins and, therefore, the integrin-mediated adhesion and signaling mechanism was considered a metazoan innovation. Recently, a broad comparative genomic analysis including new genome data from several unicellular organisms closely related to fungi and metazoans shattered previous views. The integrin adhesion and signaling complex is not specific to Metazoa, but rather it is present in apusozoans and holozoan protists. Thus, this important signaling and adhesion system predated the origin of Fungi and Metazoa, and was subsequently lost in fungi and choanoflagellates. This finding suggests that cooption played a more important role in the origin of Metazoa than previously believed. Here, we hypothesize that the integrin adhesome was ancestrally involved in signaling. PMID:21057645

  19. Bond strength of adhesive resin cement with different adhesive systems

    PubMed Central

    Lorenzoni e Silva, Fabrizio; Pamato, Saulo; Kuga, Milton-Carlos; Só, Marcus-Vinicius-Reis

    2017-01-01

    Background To assess the immediate bond strength of a dual-cure adhesive resin cement to the hybridized dentin with different bonding systems. Material and Methods Fifty-six healthy human molars were randomly divided into 7 groups (n=8). After 3 longitudinal sections, the central cuts were included in PVC matrix and were submitted to dentin hybridization according to the groups: G1 - etch & rinse system with 3-step (Apder™ Scotchbond™ Multi-Purpose, 3M ESPE), G2 - etch & rinse system with 3-step (Optibond™ FL, Kerr), G3 - etch & rinse system with 3-step (All-Bond 3®, Bisco), G4 - etch & rinse simplified system (Adper™ Single Bond 2, 3M ESPE), G5 - self-etching system with one step (Bond Force, Tokuyama), G6 - universal system in moist dentin (Single Bond Universal, 3M ESPE), G7 - universal system in dry dentin (Single Bond Universal, 3M ESPE). Then all groups received the cementing of a self-adhesive resin cement cylinder (Duo-link, Bisco) made from a polypropylene matrix. In the evaluation of bond strength, the samples were subjected to the microshear test and evaluated according to the fracture pattern by optical microscopy. Results The Kruskal-Wallis test suggests a statistically significant difference between groups (p=0,039), and Tukey for multiple comparisons, indicating a statistically significant difference between G3 and G4 (p<0.05). It was verified high prevalence of adhesive failures, followed by mixed failure and cohesive in dentin. Conclusions The technique and the system used to dentin hybridization are able to affect the immediate bond strength of resin cement dual adhesive. Key words:Adhesion, adhesive resin cement, adhesive systems, microshear. PMID:28149471

  20. Sealing of adhesive systems in ferric sulfate-contaminated dentinal margins in class V composite resin restorations.

    PubMed

    Shadman, Niloofar; Farzin Ebrahimi, Shahram; Mollaie, Najmeh

    2016-01-01

    Background. Hemostatic agents are applied to prepare an isolated bleeding-free condition during dental treatments and can influence adhesive restorations. This study evaluated the effect of a hemostatic agent (ViscoStat) on microleakage of contaminated dentinal margin of class V composite resin restorations with three adhesives. Methods. Sixty freshly extracted human molars were selected and class V cavities (3×3×1.5 mm) were prepared on buccal and lingual surfaces. Gingival margins of the cavities were placed below the cementoenamel junction. The teeth were divided into six groups randomly. The adhesives were Excite, AdheSE and AdheSE One. In three groups, the gingival walls of the cavities were contaminated with ViscoStat and then rinsed. The cavities were restored with composite resin and light-cured. After storage in distilled water (37°C) for 24 hours and polishing, the samples were thermocycled and sealed with nail varnish. Then they were stored in 1% basic fuchsin for 24 hours, rinsed and mounted in self-cured acryl resin, followed by sectioning buccolingually. Dye penetration was observed under a stereomicroscope and scored. Data were statistically analyzed with Kruskal-Wallis and Mann-Whitney U tests. P<0.05 was set as the level of significance. Results. Only in the Excite group, contamination did not have adverse effects on dentin microleakage (P > 0.05). In the contaminated groups, Excite had significantly less microleakage than the others (P = 0.003). AdheSE and AdheSE One did not exhibit significant difference in microleakage (P > 0.05). Conclusion. ViscoStat hemostatic agent increased dentinal microleakage in AdheSE and AdheSE One adhesives with no effect on Excite.

  1. Sealing of adhesive systems in ferric sulfate-contaminated dentinal margins in class V composite resin restorations

    PubMed Central

    Shadman, Niloofar; Farzin Ebrahimi, Shahram; Mollaie, Najmeh

    2016-01-01

    Background. Hemostatic agents are applied to prepare an isolated bleeding-free condition during dental treatments and can influence adhesive restorations. This study evaluated the effect of a hemostatic agent (ViscoStat) on microleakage of contaminated dentinal margin of class V composite resin restorations with three adhesives. Methods. Sixty freshly extracted human molars were selected and class V cavities (3×3×1.5 mm) were prepared on buccal and lingual surfaces. Gingival margins of the cavities were placed below the cementoenamel junction. The teeth were divided into six groups randomly. The adhesives were Excite, AdheSE and AdheSE One. In three groups, the gingival walls of the cavities were contaminated with ViscoStat and then rinsed. The cavities were restored with composite resin and light-cured. After storage in distilled water (37°C) for 24 hours and polishing, the samples were thermocycled and sealed with nail varnish. Then they were stored in 1% basic fuchsin for 24 hours, rinsed and mounted in self-cured acryl resin, followed by sectioning buccolingually. Dye penetration was observed under a stereomicroscope and scored. Data were statistically analyzed with Kruskal-Wallis and Mann-Whitney U tests. P<0.05 was set as the level of significance. Results. Only in the Excite group, contamination did not have adverse effects on dentin microleakage (P > 0.05). In the contaminated groups, Excite had significantly less microleakage than the others (P = 0.003). AdheSE and AdheSE One did not exhibit significant difference in microleakage (P > 0.05). Conclusion. ViscoStat hemostatic agent increased dentinal microleakage in AdheSE and AdheSE One adhesives with no effect on Excite. PMID:27092210

  2. [Adhesive lumbar arachnoiditis].

    PubMed

    Ribeiro, C; Reis, F C

    1998-01-01

    Spinal arachnoiditis, an inflammatory process involving all three meningeal layers as well as the nerve roots, is a cause of persistent symptoms in 6% to 16% of postoperative patients. Although spinal surgery is the most common antecedent associated with arachnoiditis, multiple causes have been reported, including infection, intrathecal steroids or anesthetic agents, trauma, subarachnoid hemorrhage and ionic myelographic contrast material--both oil soluble and water soluble. In the past, oil-based intrathecal contrast agents (Pantopaque) were associated with arachnoiditis especially when this material was introduced into the thecal sac and mixed with blood. Arachnoiditis is apparently rarely idiopathic. The pathogenesis of spinal arachnoiditis is similar to the repair process of serous membranes, such as the peritoneum, with a negligible inflammatory cellular exudate and a prominent fibrinous exudate. Chronic adhesive arachnoiditis of the lower spine is a myelographic diagnosis. The myelographic findings of arachnoiditis were divided into two types by Jorgensen et al. In type 1, "the empty thecal sac" appearance, there is homogeneous filling of the thecal sac with either absence of or defects involving nerve root sleeve filling. In type 2 arachnoiditis, there are localized or diffuse filling defects within the contrast column. MRI has demonstrated a sensitivity of 92% and a specificity of 100% in the diagnosis of arachnoiditis. The appearance of arachnoiditis on MRI can be assigned to three main groups. The MRI findings in group I are a conglomeration of adherent roots positioned centrally in the thecal sac. Patients in group II show roots peripherally adherent to the meninges--the so called empty sac. MRI findings in group III are a soft tissue mass within the subarachnoid space. It corresponds to the type 2 categorization defined by Jorgensen et al, where as the MRI imaging types I and II correspond to the myelographic type 1.

  3. Investigation of organic adhesives for hybrid microcircuits

    NASA Technical Reports Server (NTRS)

    Perkins, K. L.; Licari, J. J.

    1975-01-01

    The properties of organic adhesives were investigated to acquire information for a guideline document regarding the selection of adhesives for use in high reliability hybrid microcircuits. Specifically, investigations were made of (1) alternate methods for determining the outgassing of cured adhesives, (2) effects of long term aging at 150 C on the electrical properties of conductive adhesives, (3) effects of shelf life age on adhesive characteristics, (4) bond strengths of electrically conductive adhesives on thick film gold metallization, (5) a copper filled adhesive, (6) effects of products outgassed from cured adhesives on device electrical parameters, (7) metal migration from electrically conductive adhesives, and (8) ionic content of electrically insulative adhesives. The tests performed during these investigations are described, and the results obtained are discussed.

  4. Plasma polymerization for cell adhesive/anti-adhesive implant coating

    NASA Astrophysics Data System (ADS)

    Meichsner, Juergen; Testrich, Holger; Rebl, Henrike; Nebe, Barbara

    2015-09-01

    Plasma polymerization of ethylenediamine (C2H8N2, EDA) and perfluoropropane (C3F8, PFP) with admixture of argon and hydrogen, respectively, was studied using an asymmetric 13.56 MHz CCP. The analysis of the plasma chemical gas phase processes for stable molecules revealed consecutive reactions: C2H8N2 consumption, intermediate product NH3, and main final product HCN. In C3F8- H2 plasma the precursor molecule C3F8 and molecular hydrogen are consumed and HF as well as CF4 and C2F6 are found as main gaseous reaction products. The deposited plasma polymer films on the powered electrode are strongly cross-linked due to ion bombardment. The stable plasma polymerized films from EDA are characterized by high content of nitrogen with N/C ratio of about 0.35. The plasma polymerized fluorocarbon film exhibit a reduced F/C ratio of about 1.2. Adhesion tests with human osteoblast cell line MG-63 on coated Ti6Al4V samples (polished) compared with uncoated reference sample yielded both, the enhanced cell adhesion for plasma polymerized EDA and significantly reduced cell adhesion for fluorocarbon coating, respectively. Aging of the plasma polymerized EDA film, in particular due to the reactions with oxygen from air, showed no significant change in the cell adhesion. The fluorocarbon coating with low cell adhesion is of interest for temporary implants. Funded by the Campus PlasmaMed.

  5. Photosensitive anisotype n-ZnSe/ p-InSe and n-ZnSe/ p-GaSe heterojunctions

    NASA Astrophysics Data System (ADS)

    Kudrynskyi, Z. R.; Kovalyuk, Z. D.

    2014-08-01

    Anisotype n-ZnSe/ p-InSe and n-ZnSe/ p-GaSe heterojunctions are obtained for the first time. They are grown on layered crystalline GaSe and InSe substrates by annealing in Zn vapor. It is found that these heterojunctions are sensitive to light in the near-infrared and visible spectral ranges.

  6. Innovative Electrostatic Adhesion Technologies

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry; Williams, Scott; McCoy, Brian

    2015-01-01

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA gripper pad surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and

  7. Innovative Electrostatic Adhesion Technologies

    NASA Astrophysics Data System (ADS)

    Gagliano, L.; Bryan, T.; Williams, S.; McCoy, B.; MacLeod, T.

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and development

  8. Capillarity-based switchable adhesion.

    PubMed

    Vogel, Michael J; Steen, Paul H

    2010-02-23

    Drawing inspiration from the adhesion abilities of a leaf beetle found in nature, we have engineered a switchable adhesion device. The device combines two concepts: The surface tension force from a large number of small liquid bridges can be significant (capillarity-based adhesion) and these contacts can be quickly made or broken with electronic control (switchable). The device grabs or releases a substrate in a fraction of a second via a low-voltage pulse that drives electroosmotic flow. Energy consumption is minimal because both the grabbed and released states are stable equilibria that persist with no energy added to the system. Notably, the device maintains the integrity of an array of hundreds to thousands of distinct interfaces during active reconfiguration from droplets to bridges and back, despite the natural tendency of the liquid toward coalescence. We demonstrate the scaling of adhesion strength with the inverse of liquid contact size. This suggests that strengths approaching those of permanent bonding adhesives are possible as feature size is scaled down. In addition, controllability is fast and efficient because the attachment time and required voltage also scale down favorably. The device features compact size, no solid moving parts, and is made of common materials.

  9. [Adhesion molecules and diabetes mellitus].

    PubMed

    Urso, C; Hopps, E; Caimi, G

    2010-01-01

    Adhesion molecules play a significant role in leukocyte migration across the endothelium and are also involved in regulating immune system. It is shown that diabetic patients have an increase of soluble adhesion molecules (sICAM-1, sICAM-2, sVCAM-1, sE-selectin, sL-selectin, sP-selectin) considered an integral part of inflammatory state. This inflammation is responsible for the increased cardiovascular risk of these patients. There is a close link between hyperglycemia, oxidative stress, coagulopathy and inflammation and between these factors and the vascular damage. Various studies have showed the potential role of adhesion molecules in the pathogenesis of diabetic vasculopathy. They promote leukocyte recruitment, which is one of the initial steps in the genesis of atherosclerotic plaque. Adhesion molecules are also involved in the pathogenesis of diabetes mellitus type 1; sICAM-1 would have a particular immunomodulatory role in the process of destroying beta-cells and could be used as a subclinical marker of insulitis. Plasma levels of soluble adhesion molecules correlate with hyperglycemia, insulin resistance, dyslipidemia and obesity; they are associated with the development of nephropathy, retinopathy, myocardial infarction, stroke and obliterant peripheral arterial disease in diabetic type 1 and 2. Given the role of these molecules in endothelial dysfunction genesis and tissue damage associated with diabetes, they could constitute a therapeutic target for the prevention of genesis and progression of chronic complications of diabetic disease.

  10. High performance Cu adhesion coating

    SciTech Connect

    Lee, K.W.; Viehbeck, A.; Chen, W.R.; Ree, M.

    1996-12-31

    Poly(arylene ether benzimidazole) (PAEBI) is a high performance thermoplastic polymer with imidazole functional groups forming the polymer backbone structure. It is proposed that upon coating PAEBI onto a copper surface the imidazole groups of PAEBI form a bond with or chelate to the copper surface resulting in strong adhesion between the copper and polymer. Adhesion of PAEBI to other polymers such as poly(biphenyl dianhydride-p-phenylene diamine) (BPDA-PDA) polyimide is also quite good and stable. The resulting locus of failure as studied by XPS and IR indicates that PAEBI gives strong cohesive adhesion to copper. Due to its good adhesion and mechanical properties, PAEBI can be used in fabricating thin film semiconductor packages such as multichip module dielectric (MCM-D) structures. In these applications, a thin PAEBI coating is applied directly to a wiring layer for enhancing adhesion to both the copper wiring and the polymer dielectric surface. In addition, a thin layer of PAEBI can also function as a protection layer for the copper wiring, eliminating the need for Cr or Ni barrier metallurgies and thus significantly reducing the number of process steps.

  11. Flexible backbone aromatic polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St. Clair, Terry L.

    1989-01-01

    Continuing research at Langley Research Center on the synthesis and development of new inexpensive flexible aromatic polyimides as adhesives has resulted in a material identified as LARC-F-SO2 with similarities to polyimidesulfone, PISO2, and other flexible backbone polyimides recently reported by Progar and St. Clair. Also prepared and evaluated was an endcapped version of PISO2. These two polymers were compared with LARC-TPI and LARC-STPI, polyimides research in our laboratory and reported in the literature. The adhesive evaluation, primarily based on lap shear strength (LSS) tests at RT, 177 C and 204 C, involved preparing adhesive tapes, conducting bonding studies and exposing lap shear specimens to 204 C air for up to 1000 hrs and to a 72-hour water boil. The type of adhesive failure as well as the Tg was determined for the fractured specimens. The results indicate that LARC-TPI provides the highest LSSs. LARC-F-SO2, LARC-TPI and LARC-STPI all retain their strengths after thermal exposure for 1000 hrs and PISO2 retains greater than 80 percent of its control strengths. After a 72-hr water boil exposure, most of the four adhesive systems showed reduced strengths for all test temperatures although still retaining a high percentage of their original strength (greater than 60 percent) except for one case. The predominant failure type was cohesive with no significant change in the Tgs.

  12. Flexible backbone aromatic polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St.clair, Terry L.

    1988-01-01

    Continuing research at Langley Research Center on the synthesis and development of new inexpensive flexible aromatic polyimides as adhesives has resulted in a material identified as LARC-F-SO2 with similarities to polyimidesulfone, PISO2, and other flexible backbone polyimides recently reported by Progar and St. Clair. Also prepared and evaluated was an endcapped version of PISO2. These two polymers were compared with LARC-TPI and LARC-STPI, polyimides research in our laboratory and reported in the literature. The adhesive evaluation, primarily based on lap shear strength (LSS) tests at RT, 177 C and 204 C, involved preparing adhesive tapes, conducting bonding studies and exposing lap shear specimens to 204 C air for up to 1000 hrs and to a 72-hour water boil. The type of adhesive failure as well as the Tg was determined for the fractured specimens. The results indicate that LARC-TPI provides the highest LSSs. LARC-F-SO2, LARC-TPI and LARC-STPI all retain their strengths after thermal exposure for 1000 hrs and PISO2 retains greater than 80 percent of its control strengths. After a 72-hr water boil exposure, most of the four adhesive systems showed reduced strengths for all test temperatures although still retaining a high percentage of their original strength (greater than 60 percent) except for one case. The predominant failure type was cohesive with no significant change in the Tgs.

  13. Interfacial adhesion - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Banerjea, Amitava; Bozzolo, Guillermo H.; Finley, Clarence W.

    1988-01-01

    Adhesion, the binding of different materials at an interface, is of general interest to many branches of technology, e.g., microelectronics, tribology, manufacturing, construction, etc. However, there is a lack of fundamental understanding of such diverse interfaces. In addition, experimental techniques generally have practical objectives, such as the achievement of sufficient strength to sustain mechanical or thermal effects and/or have the proper electronic properties. In addition, the theoretical description of binding at interfaces is quite limited, and a proper data base for such theoretical analysis does not exist. This presentation will review both experimental and theoretical aspects of adhesion in nonpolymer materials. The objective will be to delineate the critical parameters needed, governing adhesion testing along with an outline of testing objectives. A distinction will be made between practical and fundamental objectives. Examples are given where interfacial bonding may govern experimental consideration. The present status of theory is presented along with recommendations for future progress and needs.

  14. Interfacial adhesion: Theory and experiment

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Bozzolo, Guillermo H.; Finley, Clarence W.; Banerjea, Amitava

    1988-01-01

    Adhesion, the binding of different materials at an interface, is of general interest to many branches of technology, e.g., microelectronics, tribology, manufacturing, construction, etc. However, there is a lack of fundamental understanding of such diverse interfaces. In addition, experimental techniques generally have practical objectives, such as the achievement of sufficient strength to sustain mechanical or thermal effects and/or have the proper electronic properties. In addition, the theoretical description of binding at interfaces is quite limited, and a proper data base for such theoretical analysis does not exist. This presentation will review both experimental and theoretical aspects of adhesion in nonpolymer materials. The objective will be to delineate the critical parameters needed, governing adhesion testing along with an outline of testing objectives. A distinction will be made between practical and fundamental objectives. Examples are given where interfacial bonding may govern experimental consideration. The present status of theory is presented along wiith recommendations for future progress and needs.

  15. Adhesive arachnoiditis following lumbar myelography.

    PubMed

    Skalpe, I O

    1978-03-01

    Late sequelae (adhesive arachnoiditis) have been reported following myelography with the oily contrast medium (Pantopaque) and with the ionic water-soluble contrast media methiodal sodium (Abrodil, Conturex, Kontrast U) meglumine iothalamate (Conray Meglumine) and meglumine iocarmate (Bis-Conray, Dimer-X). Adhesive arachnoiditis has not yet been reported after the use of the nonionic water-soluble contrast medium metrizamide (Amipaque). Thus, this is considered the contrast medium of choice for lumbar myelography. Using the recommended dose of 10 ml with an iodine concentration of 170 mg/ml for this examination, adhesive arachnoiditis is unlikely to occur. Increased osmolality of spinal fluid after injection of contrast medium is related to increased frequency of arachnoiditis.

  16. Mechanics of Nascent Cell Adhesions

    NASA Astrophysics Data System (ADS)

    Mejean, Cecile O.; Schaefer, Andrew W.; Forscher, Paul; Dufresne, Eric R.

    2009-03-01

    Cells have the ability to sense and respond to mechanical and biochemical cues from their environment. In neurons, the binding and restraint of transmembrane cell adhesion molecules (CAMs) can trigger acute periods of axon growth. Preceding growth, the cell must create a stiff mechanical linkage between the CAM and the cytoskeleton. Using holographic optical tweezers, we manipulate CAM-coated beads on the membrane of the cell. We investigate the dynamics of the mechanical properties of this linkage as a function of time, applied force, and CAM density. We find that CAM-coated beads exhibit stochastic intermittent binding to the cytoskeleton. In time, we observed that the adhesions stiffen and their mechanical properties depend on the applied force. Treatment of cells with small molecules that alter cytoskeletal dynamics are used to probe the roles of actin filament assembly and myosin motor activity in adhesion formation.

  17. Adhesive, elastomeric gel impregnating composition

    DOEpatents

    Shaw, David Glenn; Pollard, John Randolph; Brooks, Robert Aubrey

    2002-01-01

    An improved capacitor roll with alternating film and foil layers is impregnated with an adhesive, elastomeric gel composition. The gel composition is a blend of a plasticizer, a polyol, a maleic anhydride that reacts with the polyol to form a polyester, and a catalyst for the reaction. The impregnant composition is introduced to the film and foil layers while still in a liquid form and then pressure is applied to aid with impregnation. The impregnant composition is cured to form the adhesive, elastomeric gel. Pressure is maintained during curing.

  18. Dual-Mode Adhesive Pad

    NASA Technical Reports Server (NTRS)

    Hartz, Leslie

    1994-01-01

    Tool helps worker grip and move along large, smooth structure with no handgrips or footholds. Adheres to surface but easily released by actuating simple mechanism. Includes handle and segmented contact-adhesive pad. Bulk of pad made of soft plastic foam conforming to surface of structure. Each segment reinforced with rib. In sticking mode, ribs braced by side catches. In peeling mode, side catches retracted, and segmented adhesive pad loses its stiffness. Modified versions useful in inspecting hulls of ships and scaling walls in rescue operations.

  19. Photoresist substrate having robust adhesion

    DOEpatents

    Dentinger, Paul M.

    2005-07-26

    A substrate material for LIGA applications w hose general composition is Ti/Cu/Ti/SiO.sub.2. The SiO.sub.2 is preferably applied to the Ti/Cu/Ti wafer as a sputtered coating, typically about 100 nm thick. This substrate composition provides improved adhesion for epoxy-based photoresist materials, and particularly the photoresist material SU-8.

  20. Fluorescence Reveals Contamination From Adhesives

    NASA Technical Reports Server (NTRS)

    Nikolia, William

    1992-01-01

    Contamination of nearby surfaces from ingredients in some adhesive materials detected by ultraviolet illumination and observation of resulting fluorescence. Identification of contaminants via telltale fluorescence not new; rather, significance lies in method of implementation and potential extension to wider variety of materials and applications.

  1. Shelf Stable Epoxy Repair Adhesive

    DTIC Science & Technology

    2015-02-01

    Epoxy Resin Adhesive WP-1763 viii FINAL REPORT List of Acronyms ACN Acetonitrile ASTM American Society for Testing and Materials BPA Bisphenol...the oven and immediately cooled to room temperature. Approximately 1.0 mL of acetonitrile ( ACN ) was added to each vial using a glass syringe. The

  2. Computational Chemistry of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Phillips, Donald H.

    1999-01-01

    This investigation is intended to determine the electrical mechanical, and chemical properties of adhesive bonds at the molecular level. The initial determinations will be followed by investigations of the effects of environmental effects on the chemistry and properties of the bond layer.

  3. Nucleation and Growth of Integrin Adhesions

    PubMed Central

    Atilgan, Erdinç; Ovryn, Ben

    2009-01-01

    We present a model that provides a mechanistic understanding of the processes that govern the formation of the earliest integrin adhesions ex novo from an approximately planar plasma membrane. Using an analytic analysis of the free energy of a dynamically deformable membrane containing freely diffusing receptors molecules and long repeller molecules that inhibit integrins from binding with ligands on the extracellular matrix, we predict that a coalescence of polymerizing actin filaments can deform the membrane toward the extracellular matrix and facilitate integrin binding. Monte Carlo simulations of this system show that thermally induced membrane fluctuations can either zip-up and increase the radius of a nucleated adhesion or unzip and shrink an adhesion, but the fluctuations cannot bend the ventral membrane to nucleate an adhesion. To distinguish this integrin adhesion from more mature adhesions, we refer to this early adhesion as a nouveau adhesion. PMID:19413961

  4. Tape-Smoothing Tool For Adhesion Tests

    NASA Technical Reports Server (NTRS)

    Allen, Peter B.

    1992-01-01

    Small tool smoothes adhesive tape uniformly to ensure consistency and repeatability of tape-peel tests of adhesion of paint to substrate. Includes resilient pad covered with tough, smooth fabric. Internal spring regulates force applied to tape.

  5. Tackifier Dispersions to Make Pressure Sensitive Adhesives

    SciTech Connect

    2003-02-01

    Development of new processes for tackifier dispersion could improve the production of pressure sensitive adhesives. Pressure sensitive adhesives (PSAs) have the ability to adhere to different surfaces with manual or finger pressure.

  6. Microfluidic adhesion induced by subsurface microstructures.

    PubMed

    Majumder, Abhijit; Ghatak, Animangsu; Sharma, Ashutosh

    2007-10-12

    Natural adhesives in the feet of different arthropods and vertebrates show strong adhesion as well as excellent reusability. Whereas the hierarchical structures on the surface are known to have a substantial effect on adhesion, the role of subsurface structures such as the network of microchannels has not been studied. Inspired by these bioadhesives, we generated elastomeric layers with embedded air- or oil-filled microchannels. These adhesives showed remarkable enhancement of adhesion ( approximately 30 times), which results from the crack-arresting properties of the microchannels, together with the surface stresses caused by the capillary force. The importance of the thickness of the adhesive layer, channel diameter, interchannel spacing, and vertical position within the adhesive has been examined for developing an optimal design of this microfluidic adhesive.

  7. Adhesion of Antireflective Coatings in Multijunction Photovoltaics

    SciTech Connect

    Brock, Ryan; Miller, David C.; Dauskardt, Reinhold H.

    2016-11-21

    The development of a new composite dual cantilever beam (cDCB) thin-film adhesion testing method is reported, which allows the measurement of adhesion on the fragile thin substrates used in multijunction photovoltaics. We address the adhesion of several antireflective coating systems on multijunction cells. By varying interface chemistry and morphology, we demonstrate the ensuing effects on adhesion and help to develop an understanding of how high adhesion can be achieved, as adhesion values ranging from 0.5 J/m2 to 10 J/m2 were measured. Damp Heat (85 degrees C/85% RH) was used to invoke degradation of interfacial adhesion. We show that even with germanium substrates that fracture easily, quantitative measurements of adhesion can still be made at high test yield. The cDCB test is discussed as an important new methodology, which can be broadly applied to any system that makes use of thin, brittle, or otherwise fragile substrates.

  8. Surface half-metallicity of half-Heusler compound FeCrSe and interface half-metallicity of FeCrSe/GaP

    NASA Astrophysics Data System (ADS)

    Khalaf Al-zyadi, Jabbar M.; Jolan, Mudhahir H.; Yao, Kai-Lun

    2016-04-01

    Recent studies showed that half-Heusler FeCrSe exhibits half-metallic ferromagnetism (Huang et al. [20]). In this paper, we investigate extensively the electronic, magnetic, and half-metallic properties of the half-Heusler alloy FeCrSe (111) and (001) surfaces and the interface with GaP (111) substrate by using the first-principles calculations within the density functional theory. The atomic density of states demonstrates that the half-me tallicity verified in the bulk FeCrSe is maintained at the CrSe-terminated (001) and Se-terminated (111) surfaces, but lost at both Cr- and Fe-terminated (111) surfaces and the Fe-terminated (001) surface. Alternatively, for the interface of FeCrSe/GaP (111), the bulk half-metallicity is destroyed at Se-P configuration while Se-Ga interface and subinterface show nearly 100% spin polarization. Moreover, the calculated interfacial adhesion energies exhibit that Se-Ga shape is more stable than the Se-P one. The calculated magnetic moments of Se, Ga at the Se-Ga (111) interface and P at the Se-P (111) interface increase with respect to the corresponding bulk values while the atomic magnetic moment of Se atom at the Se-P (111) interface decreases. We also notice that the magnetic moments of subinterface Fe at both Se-Ga and Se-P (111) interfaces decrease compared to the bulk values.

  9. Transverse Reinforcement of Adhesive Joints

    NASA Astrophysics Data System (ADS)

    Sapozhnikov, S.; Shakirov, A.

    2015-05-01

    The shear of single-lap adhesive joints causes significant peel stresses in the adhesive layer, which is a particularly urgent problem for low-modulus polyurethane compositions. An experimental and computational analysis of various methods for increasing the load-bearing capacity of the joints by their strengthening with metallic z-elements was carried out. This strengthening hinders their delamination by the action of peel stresses, which allows one to reduce the overall dimensions and weight of adhesive joints. Two main strengthening methods were considered: with steel tapping screws (of diameter 2.5 mm) and blind aluminum rivets (of diameter 4.0 mm). The peculiarity of the strengthening lies in the fact that z-elements of minimum available diameter were used for reducing the effect of stress concentrations on the strength of the joints. The test of specimens for each type of strengthening showed an average increase in the ultimate load by 40% for the threaded reinforcements and by 10% for the rivets. During an analysis of stress state of the joints by the FEM, the nonlinear behavior of constituent materials and stress concentration in the region of reinforcing elements were taken into account. The mechanical properties of the adhesive layer and the GFRP covering were determined in separate experiments. The analysis showed that the weight of the reinforced adhesive joints could be lowered by 20-25% relative to that of unreinforced ones without reducing their load-bearing capacity. An additional effect caused by using the threaded reinforcing elements was a more than threefold increase in their rigidity as compared with that of analogous nonreinforced ones.

  10. Self-Adjustable Adhesion of Polyampholyte Hydrogels.

    PubMed

    Roy, Chanchal Kumar; Guo, Hong Lei; Sun, Tao Lin; Ihsan, Abu Bin; Kurokawa, Takayuki; Takahata, Masakazu; Nonoyama, Takayuki; Nakajima, Tasuku; Gong, Jian Ping

    2015-12-02

    Developing nonspecific, fast, and strong adhesives that can glue hydrogels and biotissues substantially promotes the application of hydrogels as biomaterials. Inspired by the ubiquitous adhesiveness of bacteria, it is reported that neutral polyampholyte hydrogels, through their self-adjustable surface, can show rapid, strong, and reversible adhesion to charged hydrogels and biological tissues through the Coulombic interaction.

  11. Current dental adhesives systems. A narrative review.

    PubMed

    Milia, Egle; Cumbo, Enzo; Cardoso, Rielson Jose A; Gallina, Giuseppe

    2012-01-01

    Adhesive dentistry is based on the development of materials which establish an effective bond with the tooth tissues. In this context, adhesive systems have attracted considerable research interest in recent years. Successful adhesive bonding depends on the chemistry of the adhesive, on appropriate clinical handling of the material as well as on the knowledge of the morphological changes caused on dental tissue by different bonding procedures. This paper outlines the status of contemporary adhesive systems, with particular emphasis on chemical characteristics and mode of interaction of the adhesives with enamel and dentinal tissues. Dental adhesives are used for several clinical applications and they can be classified based on the clinical regimen in "etch-and-rinse adhesives" and "self-etch adhesives". Other important considerations concern the different anatomical characteristics of enamel and dentine which are involved in the bonding procedures that have also implications for the technique used as well as for the quality of the bond. Etch-and-rinse adhesive systems generally perform better on enamel than self-etching systems which may be more suitable for bonding to dentine. In order to avoid a possible loss of the restoration, secondary caries or pulp damage due to bacteria penetration or due to cytotoxicity effects of eluted adhesive components, careful consideration of several factors is essential in selecting the suitable bonding procedure and adhesive system for the individual patient situation.

  12. 21 CFR 878.4010 - Tissue adhesive.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... adhesive for the topical approximation of skin—(1) Identification. A tissue adhesive for the topical approximation of skin is a device intended for topical closure of surgical incisions, including laparoscopic incisions, and simple traumatic lacerations that have easily approximated skin edges. Tissue adhesives...

  13. Nonwoven glass fiber mat reinforces polyurethane adhesive

    NASA Technical Reports Server (NTRS)

    Roseland, L. M.

    1967-01-01

    Nonwoven glass fiber mat reinforces the adhesive properties of a polyurethane adhesive that fastens hardware to exterior surfaces of aluminum tanks. The mat is embedded in the uncured adhesive. It ensures good control of the bond line and increases the peel strength.

  14. Influence of substrate modulus on gecko adhesion

    PubMed Central

    Klittich, Mena R.; Wilson, Michael C.; Bernard, Craig; Rodrigo, Rochelle M.; Keith, Austin J.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2017-01-01

    The gecko adhesion system fascinates biologists and materials scientists alike for its strong, reversible, glue-free, dry adhesion. Understanding the adhesion system’s performance on various surfaces can give clues as to gecko behaviour, as well as towards designing synthetic adhesive mimics. Geckos encounter a variety of surfaces in their natural habitats; tropical geckos, such as Gekko gecko, encounter hard, rough tree trunks as well as soft, flexible leaves. While gecko adhesion on hard surfaces has been extensively studied, little work has been done on soft surfaces. Here, we investigate for the first time the influence of macroscale and nanoscale substrate modulus on whole animal adhesion on two different substrates (cellulose acetate and polydimethylsiloxane) in air and find that across 5 orders of magnitude in macroscale modulus, there is no change in adhesion. On the nanoscale, however, gecko adhesion is shown to depend on substrate modulus. This suggests that low surface-layer modulus may inhibit the gecko adhesion system, independent of other influencing factors such as macroscale composite modulus and surface energy. Understanding the limits of gecko adhesion is vital for clarifying adhesive mechanisms and in the design of synthetic adhesives for soft substrates (including for biomedical applications and wearable electronics). PMID:28287647

  15. Influence of substrate modulus on gecko adhesion

    NASA Astrophysics Data System (ADS)

    Klittich, Mena R.; Wilson, Michael C.; Bernard, Craig; Rodrigo, Rochelle M.; Keith, Austin J.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2017-03-01

    The gecko adhesion system fascinates biologists and materials scientists alike for its strong, reversible, glue-free, dry adhesion. Understanding the adhesion system’s performance on various surfaces can give clues as to gecko behaviour, as well as towards designing synthetic adhesive mimics. Geckos encounter a variety of surfaces in their natural habitats; tropical geckos, such as Gekko gecko, encounter hard, rough tree trunks as well as soft, flexible leaves. While gecko adhesion on hard surfaces has been extensively studied, little work has been done on soft surfaces. Here, we investigate for the first time the influence of macroscale and nanoscale substrate modulus on whole animal adhesion on two different substrates (cellulose acetate and polydimethylsiloxane) in air and find that across 5 orders of magnitude in macroscale modulus, there is no change in adhesion. On the nanoscale, however, gecko adhesion is shown to depend on substrate modulus. This suggests that low surface-layer modulus may inhibit the gecko adhesion system, independent of other influencing factors such as macroscale composite modulus and surface energy. Understanding the limits of gecko adhesion is vital for clarifying adhesive mechanisms and in the design of synthetic adhesives for soft substrates (including for biomedical applications and wearable electronics).

  16. Selective enamel etching: effect on marginal adaptation of self-etch LED-cured bond systems in aged Class I composite restorations.

    PubMed

    Souza-Junior, E J; Prieto, L T; Araújo, C T P; Paulillo, L A M S

    2012-01-01

    The aim of this study was to evaluate the influence of previous enamel etch and light emitting diode (LED) curing on gap formation of self-etch adhesive systems in Class I composite restorations after thermomechanical aging (TMA). Thus, on 192 human molars, a box-shaped Class I cavity was prepared maintaining enamel margins. Self-etch adhesives (Clearfil SE and Clearfil S3) were used to restore the preparation with a microhybrid composite. Before application of the adhesives, half of the teeth were enamel etched for 15 seconds with 37% phosphoric acid; the other half were not etched. For the photoactivation of the adhesives and composite, three light-curing units (LCUs) were used: one polywave (Ultra-Lume LED 5, UL) and two single-peak (FlashLite 1401, FL and Radii-cal, RD) LEDs. After this, epoxy resin replicas of the occlusal surface were made, and the specimens were submitted to TMA. New replicas were made from the aged specimens for marginal adaptation analysis by scanning electron microscopy. Data were submitted to Kruskal-Wallis and Wilcoxon tests (α=0.05). Before TMA, when enamel was etched before the application of S3, no gap formation was observed; however, there were gaps at the interface for the other tested conditions, with a statistical difference (p≤0.05). After TMA, the selective enamel etching previous to the S3 application, regardless of the LCU, promoted higher marginal adaptation compared to the other tested groups (p≤0.05). Prior to TMA, higher marginal integrity was observed, in comparison with specimens after TMA (p≤0.05). With regard to Clearfil SE and Clearfil Tri-S cured with FL, no differences of gap formation were found between before and after aging (5.3 ± 3.8 and 7.4 ± 7.5, respectively), especially when the Clearfil Tri-S was used in the conventional protocol. When cured with RD or UL and not etched, Clearfil Tri-S presented the higher gap formation. In conclusion, additional enamel etching promoted better marginal integrity

  17. Absorption and optical conduction in InSe/ZnSe/InSe thin film transistors

    NASA Astrophysics Data System (ADS)

    Al Garni, S. E.; Qasrawi, A. F.

    2016-01-01

    In this work, (n)InSe/(p)ZnSe and (n)InSe/(p)ZnSe/(n)InSe heterojunction thin film transistor (TFT) devices are produced by the thermal evaporation technique. They are characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersion X-ray spectroscopy and optical spectroscopy techniques. While the InSe films are found to be amorphous, the ZnSe and InSe/ZnSe films exhibited polycrystalline nature of crystallization. The optical analysis has shown that these devices exhibit a conduction band offsets of 0.47 and valence band offsets of 0.67 and 0.74eV, respectively. In addition, while the dielectric spectra of the InSe and ZnSe displayed resonance peaks at 416 and 528THz, the dielectric spectra of InSe/ZnSe and InSe/ZnSe/InSe layers indicated two additional peaks at 305 and 350THz, respectively. On the other hand, the optical conductivity analysis and modeling in the light of free carrier absorption theory reflected low values of drift mobilities associated with incident alternating electric fields at terahertz frequencies. The drift mobility of the charge carrier particles at femtoseconds scattering times increased as a result of the ZnSe sandwiching between two InSe layers. The valence band offsets, the dielectric resonance at 305 and 350THz and the optical conductivity values nominate TFT devices for use in optoelectronics.

  18. Bio-inspired adhesion: local chemical environments impact adhesive stability

    NASA Astrophysics Data System (ADS)

    Gebbie, Matthew A.; Rapp, Michael V.; Yu, Jing; Wei, Wei; Waite, J. Herbert; Israelachvili, Jacob N.

    2014-03-01

    3,4-dihydroxyphenylalanine (Dopa) is an amino acid that is naturally synthesized by marine mussels and exhibits the unique ability to strongly bind to surfaces in aqueous environments. However, the Dopa functional group undergoes auto-oxidation to a non-adhesive quinone form in neutral to basic pH conditions, limiting the utilization of Dopa in biomedical applications. In this work, we performed direct surface force measurements with in situ electrochemical control across a Dopa-rich native mussel foot protein (mfp-5), as well as three simplified model peptide sequences. We find that the neighboring peptide residues can significantly impact the redox stability of Dopa functional groups, with lysine residues imparting a substantial degree of Dopa redox stabilization. Surprisingly, the local chemical environments only minimally impact the magnitude of the adhesion forces measured between molecularly-smooth mica and gold surfaces. Our results provide molecular level insight into approaches that can be used to mitigate the detrimental impact of Dopa auto-oxidation, thus suggesting new molecular design strategies for improving the performance of Dopa-based underwater adhesives.

  19. A review of high-temperature adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.

    1981-01-01

    The development of high temperature adhesives and polyphenylquinoxalines (PPQ) is reported. Thermoplastic polyimides and linear PPQ adhesive are shown to have potential for bonding both metals and composite structures. A nadic terminated addition polyimide adhesive, LARC-13, and an acetylene terminated phenylquinoxaline (ATPQ) were developed. Both of the addition type adhesives are shown to be more readily processable than linear materials but less thermooxidatively stable and more brittle. It is found that the addition type adhesives are able to perform, at elevated temperatures up to 595 C where linear systems fail thermoplastically.

  20. Single Adhesive Nanofibers from a Live Diatom Have the Signature Fingerprint of Modular Proteins

    PubMed Central

    Dugdale, T. M.; Dagastine, R.; Chiovitti, A.; Mulvaney, P.; Wetherbee, R.

    2005-01-01

    The adhesive and mechanical properties of a cell-substratum adhesive secreted by live diatom cells were examined in situ using atomic force microscopy. The resulting force curves have a regular saw-tooth pattern, the characteristic fingerprint of modular proteins, and when bridged between tip and surface can repeatedly be stretched and relaxed resulting in precisely overlaying saw-tooth curves (up to ∼600 successive cycles). The average rupture force of the peaks is 0.794 ± 0.007 (mean ± SE) nN at a loading rate of 0.8 μm/s and the average persistence length is 0.026 ± <0.001 (mean ± SE) nm (fit using the worm-like chain model). We propose that we are pulling on single adhesive nanofibers, each a cohesive unit composed of a set number of modular proteins aligned in register. Furthermore, we can observe and differentiate when up to three adhesive nanofibers are pulled based upon multimodal distributions of force and persistence length. The high force required for bond rupture, high extensibility (∼1.2 μm), and the accurate and rapid refolding upon relaxation, together provide strong and flexible properties ideally suited for the cell-substratum adhesion of this fouling diatom and allow us to understand the mechanism responsible for the strength of adhesion. PMID:16169972

  1. Ocular surface sealants and adhesives.

    PubMed

    Bhatia, Subir Singh

    2006-07-01

    Tissue adhesives, both synthetic and biologic, have a long history of use in ophthalmology. Cyanoacrylate-based glues have traditionally been the most widely used glues for various purposes. They have been specially useful for treating corneal perforations and have had significantly improved long-term outcomes. More recently, fibrin-based glues have gained a major role as a suture substitute for attaching biologic tissues and as surface sealants. The literature supports expanded use of fibrin glue in this fashion. Other new agents, such as polyethyelene glycols, have been underutilized and hold promise, especially as surface protectants. Numerous other glues are being developed and show promise as ocular surface sealants and protective membranes. Advances in knowledge about tissue adhesives are leading to more effective and efficient ophthalmic care.

  2. Particle adhesion in powder coating

    SciTech Connect

    Mazumder, M.K.; Wankum, D.L.; Knutson, M.; Williams, S.; Banerjee, S.

    1996-12-31

    Electrostatic powder coating is a widely used industrial painting process. It has three major advantages: (1) it provides high quality durable finish, (2) the process is environmentally friendly and does not require the use of organic solvents, and (3) it is economically competitive. The adhesion of electrostatically deposited polymer paint particles on the grounded conducting substrate depends upon many parameters: (a) particle size and shape distributions, (b) electrostatic charge distributions, (c) electrical resistivity, (d) dielectric strength of the particles, (e) thickness of the powder film, (f) presence and severity of the back corona, and (g) the conductivity and surface properties of the substrate. The authors present a model on the forces of deposition and adhesion of corona charged particles on conducting substrates.

  3. Acetylene-terminated polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Hanky, A. O.

    1983-01-01

    The nadic-encapped LARC-13 addition polyimide exhibits excellent flow, is easy to process, and can be utilized for short terms at temperatures up to 593 C. It retains good lap shear strength as an adhesive for titanium after aging in air up to 125 hours at 316 C; but lap shear strength degrades with longer exposures at that temperature. Thermid 600, an addition polyimide that is acetylene encapped, exhibits thermomechanical properties even after long term exposure in at air at 316 C. An inherent drawback of this system is that it has a narrow processing window. An acetylene encapped, addition polyimide which is a hybrid of these two systems was developed. It has good retention of strength after long term aging and is easily processed. The synthesis and characterization of various molecular weight oligomers of this system are discussed as well as the bonding, aging, and testing of lap shear adhesive samples.

  4. Dental adhesion: mechanism, techniques and durability.

    PubMed

    Manuja, N; Nagpal, R; Pandit, I K

    2012-01-01

    Contemporary dental adhesives show favorable immediate results in terms of bonding effectiveness. However, the durability of resin-dentin bonds is their major problem. It appears that simplification of adhesive techniques is rather detrimental to the long-term stability of resin-tooth interface. The hydrostatic pulpal pressure, the dentinal fluid flow and the increased dentinal wetness in vital dentin can affect the intimate interaction of certain dentin adhesives with dentinal tissue. Bond degradation occurs via water sorption, hydrolysis of ester linkages of methacrylate resins, and activation of endogenous dentin matrix metalloproteinases. The three-step etch-and-rinse adhesives still remain the gold standard in terms of durability. This review discusses the fundamental process of adhesion to enamel and dentin with different adhesive techniques, factors affecting the long-term bonding performance of modern adhesives and addresses the current perspectives for improving bond durability.

  5. High-Frequency Mechanostimulation of Cell Adhesion.

    PubMed

    Kadem, Laith F; Suana, K Grace; Holz, Michelle; Wang, Wei; Westerhaus, Hannes; Herges, Rainer; Selhuber-Unkel, Christine

    2017-01-02

    Cell adhesion is regulated by molecularly defined protein interactions and by mechanical forces, which can activate a dynamic restructuring of adhesion sites. Previous attempts to explore the response of cell adhesion to forces have been limited to applying mechanical stimuli that involve the cytoskeleton. In contrast, we here apply a new, oscillatory type of stimulus through push-pull azobenzenes. Push-pull azobenzenes perform a high-frequency, molecular oscillation upon irradiation with visible light that has frequently been applied in polymer surface relief grating. We here use these oscillations to address single adhesion receptors. The effect of molecular oscillatory forces on cell adhesion has been analyzed using single-cell force spectroscopy and gene expression studies. Our experiments demonstrate a reinforcement of cell adhesion as well as upregulated expression levels of adhesion-associated genes as a result of the nanoscale "tickling" of integrins. This novel type of mechanical stimulus provides a previously unprecedented molecular control of cellular mechanosensing.

  6. Theory of adhesion: role of surface roughness.

    PubMed

    Persson, B N J; Scaraggi, M

    2014-09-28

    We discuss how surface roughness influences the adhesion between elastic solids. We introduce a Tabor number which depends on the length scale or magnification, and which gives information about the nature of the adhesion at different length scales. We consider two limiting cases relevant for (a) elastically hard solids with weak (or long ranged) adhesive interaction (DMT-limit) and (b) elastically soft solids with strong (or short ranged) adhesive interaction (JKR-limit). For the former cases we study the nature of the adhesion using different adhesive force laws (F ∼ u(-n), n = 1.5-4, where u is the wall-wall separation). In general, adhesion may switch from DMT-like at short length scales to JKR-like at large (macroscopic) length scale. We compare the theory predictions to results of exact numerical simulations and find good agreement between theory and simulation results.

  7. Theory of adhesion: Role of surface roughness

    NASA Astrophysics Data System (ADS)

    Persson, B. N. J.; Scaraggi, M.

    2014-09-01

    We discuss how surface roughness influences the adhesion between elastic solids. We introduce a Tabor number which depends on the length scale or magnification, and which gives information about the nature of the adhesion at different length scales. We consider two limiting cases relevant for (a) elastically hard solids with weak (or long ranged) adhesive interaction (DMT-limit) and (b) elastically soft solids with strong (or short ranged) adhesive interaction (JKR-limit). For the former cases we study the nature of the adhesion using different adhesive force laws (F ˜ u-n, n = 1.5-4, where u is the wall-wall separation). In general, adhesion may switch from DMT-like at short length scales to JKR-like at large (macroscopic) length scale. We compare the theory predictions to results of exact numerical simulations and find good agreement between theory and simulation results.

  8. Adhesive mechanisms in cephalopods: a review.

    PubMed

    von Byern, Janek; Klepal, Waltraud

    2006-01-01

    Several genera of cephalopods (Nautilus, Sepia, Euprymna and Idiosepius) produce adhesive secretions, which are used for attachment to the substratum, for mating and to capture prey. These adhesive structures are located in different parts of the body, viz. in the digital tentacles (Nautilus), in the ventral surface of the mantle and fourth arm pair (Sepia), in the dorsal epidermis (Euprymna), or in the dorsal mantle side and partly on the fins (Idiosepius). Adhesion in Sepia is induced by suction of dermal structures on the mantle, while for Nautilus, Euprymna and Idiosepius adhesion is probably achieved by chemical substances. Histochemical studies indicate that in Nautilus and Idiosepius secretory cells that appear to be involved in adhesion stain for carbohydrates and protein, whilst in Euprymna only carbohydrates are detectable. De-adhesion is either achieved by muscle contraction of the tentacles and mantle (Nautilus and Sepia) or by secretion of substances (Euprymna). The de-adhesive mechanism used by Idiosepius remains unknown.

  9. Adhesion effects in contact interaction of solids

    NASA Astrophysics Data System (ADS)

    Goryacheva, Irina; Makhovskaya, Yulya

    2008-01-01

    An approach to solving problems of the interaction of axisymmetric elastic bodies in the presence of adhesion is developed. The different natures of adhesion, i.e. capillary adhesion, or molecular adhesion described by the Lennard-Jones potential are examined. The effect of additional loading of the interacting bodies outside the contact zone is also investigated. The approach is based on the representation of the pressure outside the contact zone arising from adhesion by a step function. The analytical solution is obtained and is used to analyze the influence of the form of the adhesion interaction potential, of the surface energy of interacting bodies or the films covering the bodies, their shapes (parabolic, higher power exponential function), volume of liquid in the meniscus, density of contact spots, of elastic modulus and the Poisson ratio on the characteristics of the interaction of the bodies in the presence of adhesion. To cite this article: I. Goryacheva, Y. Makhovskaya, C. R. Mecanique 336 (2008).

  10. Polymer Claw: Instant Underwater Adhesive

    DTIC Science & Technology

    2012-03-23

    technology is the use of pressure sensitive microcapsules , which release reactive amine crosslinkers into an adhesive putty when pressed against the...PROIECT GOALS AND OBIECTIVES 2 2 KEY ACCOMPLISHMENTS 2 3.1 KICKOFF MEETING 3 3.2 AMINE MICROENCAPSULATION 3 3.3 CAUSTIC CLEANING AGENT 5 3.4...caustic, and the abrasive brush. We successfully synthesized amine-filled microcapsules and a dry mixture of caustic ingredients that only activate when

  11. Polymer Nanocarriers for Dentin Adhesion

    PubMed Central

    Osorio, R.; Osorio, E.; Medina-Castillo, A.L.; Toledano, M.

    2014-01-01

    To obtain more durable adhesion to dentin, and to protect collagen fibrils of the dentin matrix from degradation, calcium- and phosphate-releasing particles have been incorporated into the dental adhesive procedure. The aim of the present study was to incorporate zinc-loaded polymeric nanocarriers into a dental adhesive system to facilitate inhibition of matrix metalloproteinases (MMPs)-mediated collagen degradation and to provide calcium ions for mineral deposition within the resin-dentin bonded interface. PolymP-nActive nanoparticles (nanoMyP) were zinc-loaded through 30-minute ZnCl2 immersion and tested for bioactivity by means of 7 days’ immersion in simulated body fluid solution (the Kokubo test). Zinc-loading and calcium phosphate depositions were examined by scanning and transmission electron microscopy, elemental analysis, and x-ray diffraction. Nanoparticles in ethanol solution infiltrated into phosphoric-acid-etched human dentin and Single Bond (3M/ESPE) were applied to determine whether the nanoparticles interfered with bonding. Debonded sticks were analyzed by scanning electron microscopy. A metalloproteinase collagen degradation assay was also performed in resin-infiltrated dentin with and without nanoparticles, measuring C-terminal telopeptide of type I collagen (ICTP) concentration in supernatants, after 4 wk of immersion in artificial saliva. Numerical data were analyzed by analysis of variance (ANOVA) and Student-Newman-Keuls multiple comparisons tests (p < .05). Nanoparticles were effectively zinc-loaded and were shown to have a chelating effect, retaining calcium regardless of zinc incorporation. Nanoparticles failed to infiltrate demineralized intertubular dentin and remained on top of the hybrid layer, without altering bond strength. Calcium and phosphorus were found covering nanoparticles at the hybrid layer, after 24 h. Nanoparticle application in etched dentin also reduced MMP-mediated collagen degradation. Tested nanoparticles may be

  12. Polymer nanocarriers for dentin adhesion.

    PubMed

    Osorio, R; Osorio, E; Medina-Castillo, A L; Toledano, M

    2014-12-01

    To obtain more durable adhesion to dentin, and to protect collagen fibrils of the dentin matrix from degradation, calcium- and phosphate-releasing particles have been incorporated into the dental adhesive procedure. The aim of the present study was to incorporate zinc-loaded polymeric nanocarriers into a dental adhesive system to facilitate inhibition of matrix metalloproteinases (MMPs)-mediated collagen degradation and to provide calcium ions for mineral deposition within the resin-dentin bonded interface. PolymP- N : Active nanoparticles (nanoMyP) were zinc-loaded through 30-minute ZnCl2 immersion and tested for bioactivity by means of 7 days' immersion in simulated body fluid solution (the Kokubo test). Zinc-loading and calcium phosphate depositions were examined by scanning and transmission electron microscopy, elemental analysis, and x-ray diffraction. Nanoparticles in ethanol solution infiltrated into phosphoric-acid-etched human dentin and Single Bond (3M/ESPE) were applied to determine whether the nanoparticles interfered with bonding. Debonded sticks were analyzed by scanning electron microscopy. A metalloproteinase collagen degradation assay was also performed in resin-infiltrated dentin with and without nanoparticles, measuring C-terminal telopeptide of type I collagen (ICTP) concentration in supernatants, after 4 wk of immersion in artificial saliva. Numerical data were analyzed by analysis of variance (ANOVA) and Student-Newman-Keuls multiple comparisons tests (p < .05). Nanoparticles were effectively zinc-loaded and were shown to have a chelating effect, retaining calcium regardless of zinc incorporation. Nanoparticles failed to infiltrate demineralized intertubular dentin and remained on top of the hybrid layer, without altering bond strength. Calcium and phosphorus were found covering nanoparticles at the hybrid layer, after 24 h. Nanoparticle application in etched dentin also reduced MMP-mediated collagen degradation. Tested nanoparticles may be

  13. Modeling of Sylgard Adhesive Strength

    SciTech Connect

    Stevens, Ralph Robert

    2015-02-03

    Sylgard is the name of a silicone elastomeric potting material manufactured by Dow Corning Corporation.1 Although the manufacturer cites its low adhesive strength as a feature of this product, thin layers of Sylgard do in fact have a non-negligible strength, which has been measured in recent tensile and shear debonding tests. The adhesive strength of thin layers of Sylgard potting material can be important in applications in which components having signi cantly di erent thermal expansion properties are potted together, and the potted assembly is subjected to temperature changes. The tensile and shear tractions developed on the potted surfaces of the components can cause signi cant internal stresses, particularly for components made of low-strength materials with a high area-to-volume ratio. This report is organized as follows: recent Sylgard debonding tests are rst brie y summarized, with particular attention to the adhesion between Sylgard and PBX 9501, and also between Sylgard and aluminum. Next, the type of numerical model that will be used to simulate the debonding behavior exhibited in these tests is described. Then the calibration of the debonding model will be illustrated. Finally, the method by which the model parameters are adjusted (scaled) to be applicable to other, non- tested bond thicknesses is summarized, and all parameters of the model (scaled and unscaled) are presented so that other investigators can reproduce all of the simulations described in this report as well as simulations of the application of interest.

  14. Culinary Medicine-Jalebi Adhesions.

    PubMed

    Kapoor, Vinay K

    2016-02-01

    Culinary terms have been used to describe anatomy (bean-shaped kidneys), pathology (strawberry gall bladder), clinical signs (café-au-lait spots), radiological images (sausage-shaped pancreas), etc. While Indian cuisine is popular all over the world, no Indian dish finds mention in medical terminology. In intra-abdominal adhesions, sometimes, the intestinal loops are so densely adherent that it is difficult to make out proximal from distal and it is impossible to separate them without injuring the bowel resulting in spill of contents-resection is the only option (Fig. 1). Jalebi, an Indian dessert, has a single long tubular strip of fried batter filled with sugary syrup so intertwined that it is impossible to discern its ends; if broken, the syrup spills out-the best way to relish it is to chew the whole piece (Fig. 2). Because of these similarities between them, I propose to name dense intra-abdominal adhesions as 'jalebi adhesions.'

  15. Adhesive systems: important aspects related to their composition and clinical use

    PubMed Central

    SILVA E SOUZA JUNIOR, Mario Honorato; CARNEIRO, Karina Gama Kato; LOBATO, Marcelo Figueiredo; SILVA E SOUZA, Patrícia de Almeida Rodrigues; de GÓES, Mário Fernando

    2010-01-01

    This literature review article addresses the types and the main components of different etch-and-rinse and self-etch adhesive systems available in the market, and relates them to their function, possible chemical interactions and influence of handling characteristics. Scanning electron microscopy (SEM) images are presented to characterize the interface between adhesives and dentin. Adhesive systems have been recently classified according to their adhesion approaches in etch-and-rinse, self-etch and glass ionomer. The etch-andrinse systems require a specific acid-etch procedure and may be performed in two or three steps. Self-etch systems employ acidic monomers that demineralize and impregnate dental substrates almost at the same time. These systems are separated in one or two steps. Some advantages and deficiencies were noted for etch-and-rinse and self-etch approaches, mainly for the simplified ones due to some chemical associations and interactions. The SeM micrographs illustrate different relationships between adhesive systems and dental structures, particularly dentin. The knowledge of composition, characteristics and mechanisms of adhesion of each adhesive system is of fundamental importance to permit the adoption of ideal bonding strategies under clinical conditions. PMID:20856995

  16. Electronic states of InSe/GaSe superlattice

    NASA Astrophysics Data System (ADS)

    Erkoç, Ş.; Allahverdi, K.; Ibrahim, Z.

    1994-06-01

    Analysis of recent publications revealed an increasing interest in epitaxial growth of InSe/GaSe superlattice. Within the effective mass theory we carried out self-consistent calculations of the confined and itinerant electronic states, potential profile and charge density distribution of InSe/GaSe superlattice, where the InSe layers are the well and the GaSe layers the barrier. Calculations were performed for three types of doping: uniform, modulated in the well, and modulated in the barrier. It has been found that the Coulomb interaction in the well and barrier forces the formation of localized states in the barrier region. The possibility of an insulator-metal transition in InSe/GaSe superlattice is predicted for modulation doping in the barrier and for a doping level n = 10 19cm-3. A decrease of the barrier height has been found for modulation doping in the well.

  17. A review of our development of dental adhesives--effects of radical polymerization initiators and adhesive monomers on adhesion.

    PubMed

    Ikemura, Kunio; Endo, Takeshi

    2010-03-01

    This paper reviews the development of dental adhesives by collating information of related studies from original scientific papers, reviews, and patent literatures. Through our development, novel radical polymerization initiators, adhesive monomers, and microcapsules were synthesized, and their effects on adhesion were investigated. It was found that 5-monosubstituted barbituric acid (5-MSBA)-containing ternary initiators in conjunction with adhesive monomers contributed to effective adhesion with good polymerization reactivity. Several kinds of novel adhesive monomers bearing carboxyl group, phosphonic acid group or sulfur-containing group were synthesized, and investigated their multi-purpose bonding functions. It was suggested that the flexible methylene chain in the structure of adhesive monomers played a pivotal role in their enhanced bonding durability. It was found that the combination of acidic monomers with sulfur-containing monomer markedly improved adhesion to enamel, dentin, porcelain, alumina, zirconia, non-precious metals and precious metals. A new poly(methyl methacrylate) (PMMA)-type adhesive resin comprising microencapsulated polymerization initiators was also found to exhibit both good formulation stability and excellent adhesive property.

  18. Effect of ferric sulfate contamination on the bonding effectiveness of etch-and-rinse and self-etch adhesives to superficial dentin

    PubMed Central

    Ebrahimi, Shahram Farzin; Shadman, Niloofar; Abrishami, Arezoo

    2013-01-01

    Aim: This study investigated the effect of one hemostatic agent on the shear bond strength of self-etch and etch-and-rinse adhesive systems. Materials and Methods: Sixty extracted third molars were selected. After preparing a flat surface of superficial dentin, they were randomly divided into six groups. Adhesives were Tetric N-Bond, AdheSE, and AdheSE One F. Before applying adhesives, surfaces were contaminated with ViscoStat for 60 s in three groups and rinsed. Then composite were attached to surfaces and light cured. After thermocycling, the bond strength was calculated and failure modes were determined by stereomicroscope. The data were analyzed by t-test and one-way ANOVA with P < 0.05 as the level of significance. Results: ViscoStat had significantly decreased the shear bond strength of AdheSE (P < 0.0001) to dentin. Modes of failures in all groups were mainly adhesive. Conclusion: Contamination had an adverse effect on the shear bond strength of AdheSE and reduced it. PMID:23716963

  19. Intraband Spectroscopy of GaSe Nanoparticles and InSe/GaSe Nanoparticle Heterojunctions

    NASA Astrophysics Data System (ADS)

    Kelley, David F.; Tu, Haohua; Chen, Xiang-Bai

    The spectroscopic and dynamical characteristics of electron and hole intraband transitions in several sizes of GaSe nanoparticles have been studied using polarized femtosecond transient absorption spectroscopy. Assignments of the observed absorptions are made in terms of the known GaSe band structure and a model in which the electron and hole states are described by particle-in-a-cylinder states. The results indicate that the transient absorption spectrum is due to a size-independent, z-polarized hole intraband transition, and in the smaller particles, an x,y-polarized electron transition. In InSe/GaSe mixed aggregates, direct electron transfer from InSe to GaSe nanoparticles occurs upon photoexcitation of a charge transfer band. An exciton on GaSe nanoparticles can undergo diffusion and charge separation the an InSe/GaSe heterojunction.

  20. Chitosan Adhesive Films for Photochemical Tissue Bonding

    NASA Astrophysics Data System (ADS)

    Lauto, Antonio; Mawad, Damia; Barton, Matthew; Piller, Sabine C.; Longo, Leonardo

    2011-08-01

    Photochemical tissue bonding (PTB) is a promising sutureless technique for tissue repair. PTB is often achieved by applying a solution of rose bengal (RB) between two tissue edges, which are irradiated by a green laser to crosslink collagen fibers with minimal heat production. In this study, RB has been incorporated in chitosan films to create a novel tissue adhesive that is laser-activated. Materials and Methods. Adhesive films, based on chitosan and containing ˜0.1wt% RB were manufactured and bonded to calf intestine by a solid state laser (wavelength = 532 nm, Fluence ˜110 J/cm2, spot size ˜5 mm). A single-column tensiometer, interfaced with a personal computer, tested the bonding strength. K-type thermocouples recorded the temperature (T) at the adhesive-tissue interface during laser irradiation. Human fibroblasts were also seeded on the adhesive and cultured for 48 hours to assess cell growth. Results and Conclusion. The RB-chitosan adhesive bonded firmly to the intestine (15±2 kPa, n = 31). The adhesion strength dropped to 0.5±0.1 kPa (n = 8) when the laser was not applied to the adhesive. The average temperature of the adhesive increased from 26 °C to 32 °C during laser exposure. Fibroblasts grew confluent on the adhesive without morphological changes. A new biocompatible chitosan adhesive has been developed that bonds photochemically to tissue with minimal temperature increase.

  1. Study of the heterointerfaces InSe on GaSe and GaSe on InSe

    NASA Astrophysics Data System (ADS)

    Fargues, D.; Brahim-Otsmane, L.; Eddrief, M.; Sébenne, C.; Balkanski, M.

    1993-03-01

    InSe and GaSe thin films are grown on freshly cleaved (00.1) substrates of GaSe and InSe, respectively, by molecular beam epitaxy. They are studied in situ by X-ray photoelectron spectroscopy (XPS) and reflection high energy electron diffraction (RHEED). From the attenuation curves of the XPS substrate core level peaks, the quasi layer-by-layer growth is shown during the first stages of deposition in agreement with RHEED results. But both interfaces are not totally symmetrical. For InSe on GaSe(00.1), the sharpness of the interface is shown and the conditions of growth are well established. For GaSe on InSe(00.1), the sharpness of the interface can also be suggested although it is less clear; this is related to the growth conditions.

  2. Sundew adhesive: a naturally occurring hydrogel

    PubMed Central

    Huang, Yujian; Wang, Yongzhong; Sun, Leming; Agrawal, Richa; Zhang, Mingjun

    2015-01-01

    Bioadhesives have drawn increasing interest in recent years, owing to their eco-friendly, biocompatible and biodegradable nature. As a typical bioadhesive, sticky exudate observed on the stalked glands of sundew plants aids in the capture of insects and this viscoelastic adhesive has triggered extensive interests in revealing the implied adhesion mechanisms. Despite the significant progress that has been made, the structural traits of the sundew adhesive, especially the morphological characteristics in nanoscale, which may give rise to the viscous and elastic properties of this mucilage, remain unclear. Here, we show that the sundew adhesive is a naturally occurring hydrogel, consisting of nano-network architectures assembled with polysaccharides. The assembly process of the polysaccharides in this hydrogel is proposed to be driven by electrostatic interactions mediated with divalent cations. Negatively charged nanoparticles, with an average diameter of 231.9 ± 14.8 nm, are also obtained from this hydrogel and these nanoparticles are presumed to exert vital roles in the assembly of the nano-networks. Further characterization via atomic force microscopy indicates that the stretching deformation of the sundew adhesive is associated with the flexibility of its fibrous architectures. It is also observed that the adhesion strength of the sundew adhesive is susceptible to low temperatures. Both elasticity and adhesion strength of the sundew adhesive reduce in response to lowering the ambient temperature. The feasibility of applying sundew adhesive for tissue engineering is subsequently explored in this study. Results show that the fibrous scaffolds obtained from sundew adhesive are capable of increasing the adhesion of multiple types of cells, including fibroblast cells and smooth muscle cells, a property that results from the enhanced adsorption of serum proteins. In addition, in light of the weak cytotoxic activity exhibited by these scaffolds towards a variety of

  3. Adhesion enhancement of biomimetic dry adhesives by nanoparticle in situ synthesis

    NASA Astrophysics Data System (ADS)

    Díaz Téllez, J. P.; Harirchian-Saei, S.; Li, Y.; Menon, C.

    2013-10-01

    A novel method to increase the adhesion strength of a gecko-inspired dry adhesive is presented. Gold nanoparticles are synthesized on the tips of the microfibrils of a polymeric dry adhesive to increase its Hamaker constant. Formation of the gold nanoparticles is qualitatively studied through a colour change in the originally transparent substance and quantitatively analysed using ultraviolet-visible spectrophotometry. A pull-off force test is employed to quantify the adhesion enhancement. Specifically, adhesion forces of samples with and without embedded gold nanoparticles are measured and compared. The experimental results indicate that an adhesion improvement of 135% can be achieved.

  4. TEST CELLS SE-5 - SE-8 - SE-10 IN THE ENGINE RESEARCH BUILDING ERB AND 117 HIGH ENERGY FUELS LABORAT

    NASA Technical Reports Server (NTRS)

    1963-01-01

    TEST CELLS SE-5 - SE-8 - SE-10 IN THE ENGINE RESEARCH BUILDING ERB AND 117 HIGH ENERGY FUELS LABORATORY HEFL - TRANSDUCER INSTRUMENTATION CONSOLE SE-10 - TEMPERATURE INSTRUMENTATION CONSOLE SE-10 - MODULE FUEL CELL EXPERIMENT SE-8 -

  5. TEST CELLS SE-5 - SE-8 - SE-10 IN THE ENGINE RESEARCH BUILDING ERB AND 117 HIGH ENERGY FUELS LABORAT

    NASA Technical Reports Server (NTRS)

    1963-01-01

    TEST CELLS SE-5 - SE-8 - SE-10 IN THE ENGINE RESEARCH BUILDING ERB AND 117 HIGH ENERGY FUELS LABORATORY HEFL - TRANSDUCER INSTRUMENTATION CONSOLE SE-10 - TEMPERATURE INSTRUMENTATION CONSOLE SE-10 - MODULE FUEL CELL EXPERIMENT SE-8

  6. TEST CELLS SE-5 - SE-8 - SE-10 IN THE ENGINE RESEARCH BUILDING ERB AND 117 HIGH ENERGY FUELS LABORAT

    NASA Technical Reports Server (NTRS)

    1963-01-01

    TEST CELLS SE-5 - SE-8 - SE-10 IN THE ENGINE RESEARCH BUILDING ERB AND 117 HIGH ENERGY FUELS LABORATORY HEFL - TRANSDUCER INSTRUMENTATION CONSOLE SE-10 - TEMPERATURE INSTRUMENTATION CONSOLE SE-10 - MODUEL FUEL CELL EXPERIMENT SE-8

  7. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive

    PubMed Central

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G.; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J.R.; Santos, Romana

    2016-01-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article “Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach” (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives. PMID:27182547

  8. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive.

    PubMed

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-06-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article "Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach" (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives.

  9. Effect of sodium ascorbate on the bond strength of all-in-one adhesive systems to NaOCl-treated dentin

    PubMed Central

    Ebrahimi-Chaharom, Mohammad-Esmaeel; Kimyai, Soodabeh; Mohammadi, Narmin; Oskoee, Parnian-Alizadeh; Daneshpuy, Mehdi

    2015-01-01

    Background Ascorbic acid and its salts are low-toxicity products, which are routinely used in food industries as antioxidants. The aim of the present study was to evaluate the effect of 10% sodium ascorbate on the bond strength of two all-in-one adhesive systems to NaOCl-treated dentin. Material and Methods After exposing the dentin on the facial surface of 90 sound human premolars and mounting in an acrylic resin mold, the exposed dentin surfaces were polished with 600-grit SiC paper under running water. Then the samples were randomly divided into 6 groups of 15. Groups 1 and 4 were the controls, in which no surface preparation was carried out. In groups 2 and 5 the dentin surfaces were treated with 5.25% NaOCl alone for 10 minutes and in groups 3 and 6 with 5.25% NaOCl for 10 minutes followed by 10% sodium ascorbate for 10 minutes. Then composite resin cylinders, measuring 2 mm in diameter and 2 mm in height, were bonded on the dentin surfaces in groups 1, 2 and 3 with Clearfil S3 Bond and in groups 4, 5 and 6 with Adper Easy One adhesive systems according to manufacturers’ instructions. The samples were stored in distilled water for 24 hours at 37°C and then thermocycled. Finally, the samples underwent shear bond strength test in a universal testing machine at a strain rate of 1 mm/min. Data were analyzed with two-way ANOVA and post hoc Tukey tests at α=0.05. Results The differences between groups 1 and 2 (P=0.01), 1 and 5 (P=0.003). 1 and 6 (P=0.03) and 4 and 5 (P=0.03) were statistically significant. Two-by-two comparisons did not reveal any significant difference between other groups (P>0.05). Conclusions Use of 10% sodium ascorbate for 10 minutes restored the decreased bond strength of the adhesive systems to that of the control groups. Key words:Sodium ascorbate, adhesive systems, all-in-one, bond strength, sodium hypochlorite. PMID:26644835

  10. Synaptic Cell Adhesion Molecules in Alzheimer's Disease

    PubMed Central

    Leshchyns'ka, Iryna

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative brain disorder associated with the loss of synapses between neurons in the brain. Synaptic cell adhesion molecules are cell surface glycoproteins which are expressed at the synaptic plasma membranes of neurons. These proteins play key roles in formation and maintenance of synapses and regulation of synaptic plasticity. Genetic studies and biochemical analysis of the human brain tissue, cerebrospinal fluid, and sera from AD patients indicate that levels and function of synaptic cell adhesion molecules are affected in AD. Synaptic cell adhesion molecules interact with Aβ, a peptide accumulating in AD brains, which affects their expression and synaptic localization. Synaptic cell adhesion molecules also regulate the production of Aβ via interaction with the key enzymes involved in Aβ formation. Aβ-dependent changes in synaptic adhesion affect the function and integrity of synapses suggesting that alterations in synaptic adhesion play key roles in the disruption of neuronal networks in AD. PMID:27242933

  11. Mussel-Inspired Adhesives and Coatings

    NASA Astrophysics Data System (ADS)

    Lee, Bruce P.; Messersmith, P. B.; Israelachvili, J. N.; Waite, J. H.

    2011-08-01

    Mussels attach to solid surfaces in the sea. Their adhesion must be rapid, strong, and tough, or else they will be dislodged and dashed to pieces by the next incoming wave. Given the dearth of synthetic adhesives for wet polar surfaces, much effort has been directed to characterizing and mimicking essential features of the adhesive chemistry practiced by mussels. Studies of these organisms have uncovered important adaptive strategies that help to circumvent the high dielectric and solvation properties of water that typically frustrate adhesion. In a chemical vein, the adhesive proteins of mussels are heavily decorated with Dopa, a catecholic functionality. Various synthetic polymers have been functionalized with catechols to provide diverse adhesive, sealant, coating, and anchoring properties, particularly for critical biomedical applications.

  12. Mussel-Inspired Adhesives and Coatings

    PubMed Central

    Lee, Bruce P.; Messersmith, P.B.; Israelachvili, J.N.; Waite, J.H.

    2011-01-01

    Mussels attach to solid surfaces in the sea. Their adhesion must be rapid, strong, and tough, or else they will be dislodged and dashed to pieces by the next incoming wave. Given the dearth of synthetic adhesives for wet polar surfaces, much effort has been directed to characterizing and mimicking essential features of the adhesive chemistry practiced by mussels. Studies of these organisms have uncovered important adaptive strategies that help to circumvent the high dielectric and solvation properties of water that typically frustrate adhesion. In a chemical vein, the adhesive proteins of mussels are heavily decorated with Dopa, a catecholic functionality. Various synthetic polymers have been functionalized with catechols to provide diverse adhesive, sealant, coating, and anchoring properties, particularly for critical biomedical applications. PMID:22058660

  13. Functionally Graded Adhesives for Composite Joints

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.; Arnold, Steven M.

    2012-01-01

    Adhesives with functionally graded material properties are being considered for use in adhesively bonded joints to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. An enhanced joint finite element, which uses an analytical formulation to obtain exact shape functions, is used to model the joint. Furthermore, proof of concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint.

  14. Adhesion and wear resistance of materials

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1986-01-01

    Recent studies into the nature of bonding at the interface between two solids in contact or a solid and deposited film have provided a better understanding of those properties important to the adhesive wear resistance of materials. Analytical and experimental progress are reviewed. For simple metal systems the adhesive bond forces are related to electronic wave function overlap. With metals in contact with nonmetals, molecular-orbital energy, and density of states, respectively can provide insight into adhesion and wear. Experimental results are presented which correlate adhesive forces measured between solids and the electronic surface structures. Orientation, surface reconstruction, surface segregation, adsorption are all shown to influence adhesive interfacial strength. The interrelationship between adhesion and the wear of the various materials as well as the life of coatings applied to substrates are discussed. Metallic systems addressed include simple metals and alloys and these materials in contact with themselves, both oxide and nonoxide ceramics, diamond, polymers, and inorganic coating compounds, h as diamondlike carbon.

  15. Casein Phosphopeptide-Amorphous Calcium Phosphate and Shear Bond Strength of Adhesives to Primary Teeth Enamel

    PubMed Central

    Farokh Gisovar, Elham; Hedayati, Nassim; Shadman, Niloofar; Shafiee, Leila

    2015-01-01

    Background: CPP-ACP (Phosphopeptide-Amorphous Calcium Phosphate) has an important role in caries prevention in pediatric patients. This study was done, because of the great use of CPP-ACP and the need for restoration for teeth treated with CPP-ACP as well as the importance of shear bond strength of adhesives in the success of restorations. Objectives: This study aimed to evaluate the effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on shear bond strength of dental adhesives to enamel of primary teeth molars. Materials and Methods: This in vitro study was conducted on 180 extracted primary molars. They were randomly divided into 6 groups and each group was divided into 2 subgroups (treated with CPP-ACP and untreated). In subgroups with CPP-ACP, enamel was treated with CPP-ACP paste 1 h/d for 5 days. Types of adhesives that were evaluated in this study were Tetric N-Bond, AdheSE, AdheSE One F, single Bond 2, SE Bond, and Adper Prompt L-Pop. Shear bond strength was tested with a universal testing machine and mode of failure was evaluated under stereomicroscope. Data were analyzed by T test, 2-way analysis of variance (ANOVA), Tukey and Fisher exact test using SPSS18. P < 0.05 was considered as significance level. Results: Shear bond strengths of different adhesive systems to enamel of primary teeth treated and untreated with CPP-ACP showed no significant difference (P > 0.05). Mode of failure in all groups regardless of CPP-ACP administration was mainly adhesive type. Our results indicated that CPP-ACP did not affect shear bond strength of studied adhesives to primary teeth enamel. Conclusions: To have a successful and durable composite restoration, having a high strength bonding is essential. Considering the wide use of CPP-ACP in preventing tooth decay and the role of adhesive shear bond strength (SBS) in success of composite restoration, we conducted the present study to evaluate the effect of CPP-ACP on the SBS of adhesives to primary teeth

  16. Improved Cure-in-Place Silicone Adhesives

    NASA Technical Reports Server (NTRS)

    Blevins, C. E.; Sweet, J.; Gonzalez, R.

    1982-01-01

    Two improved cure-in-place silicone-elastomer-based adhesives have low thermal expansion and low thermal conductivity. Adhesives are flexible at low temperature and withstand high temperatures without disintegrating. New ablative compounds were initially developed for in-flight repair of insulating tile on Space Shuttle orbiter. Could find use in other applications requiring high-performance adhesives, such as sealants for solar collectors.

  17. Influence of composition on the adhesive strength and initial viscosity of denture adhesives.

    PubMed

    Han, Jian-min; Hong, Guang; Hayashida, Kentaro; Maeda, Takeshi; Murata, Hiroshi; Sasaki, Keiichi

    2014-01-01

    To investigate the effect of composition on the initial viscosity and adhesive strength between denture adhesives and the denture base. Two types of water-soluble polymers (methoxy ethylene maleic anhydride copolymer [PVM-MA] and sodium carboxymethyl cellulose [CMC]) were used. Samples were divided into three groups. Group 1 contained only PVM-MA; Group 2 contained only CMC; and Group 3 contained PVM-MA and CMC. The initial viscosity and adhesive strength were measured. For Group 1, the initial viscosity increased significantly as PVM-MA content increased. The adhesive strength of Group 1 lasted longer than Group 2. The adhesive strength of Group 3 varied greatly. The ratio of CMC and PVM-MA has a significant effect on the initial viscosity and adhesive strength of denture adhesives. Our results suggest that it is possible to improve the durability of a denture adhesive by combining different water-soluble polymers.

  18. The development of aerospace polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.

    1983-01-01

    Few materials are available which can be used as aerospace adhesives at temperatures in the range of 300 C. The Materials Division at NASA-Langley Research Center developed several high temperature polyimide adhesives to fulfill the stringent needs of current aerospace programs. These adhesives are the result of a decade of basic research studies on the structure property relationships of both linear and addition aromatic polyimides. The development of both in house and commercially available polyimides is reviewed with regards to their potential for use as aerospace adhesives.

  19. The development of aerospace polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St. Clair, A. K.; St. Clair, T. L.

    1984-01-01

    Few materials are available which can be used as aerospace adhesives at temperatures in the range of 300 C. The Materials Division at NASA-Langley Research Center developed several high temperature polyimide adhesives to fulfill the stringent needs of current aerospace programs. These adhesives are the result of a decade of basic research studies on the structure property relationships of both linear and addition aromatic polyimides. The development of both in house and commercially available polyimides is reviewed with regards to their potential for use as aerospace adhesives.

  20. Comparison of three work of adhesion measurements

    SciTech Connect

    Emerson, J.A.; O`Toole, E.; Zamora, D.; Poon, B.

    1998-02-01

    Practical work of adhesion measurements are being studied for several types of polymer/metal combinations in order to obtain a better understanding of the adhesive failure mechanisms for systems containing encapsulated and bonded components. The primary question is whether studies of model systems can be extended to systems of technological interest. The authors report on their first attempts to obtain the work of adhesion between a PDMS polymer and stainless steel. The work of adhesion measurements were made using three techniques -- contact angle, adhesive fracture energy at low deformation rates and JKR. Previous work by Whitesides` group show a good correlation between JKR and contact angle measurements for PDMS. Their initial work focused on duplicating the PDMS measurements of Chaudury. In addition, in this paper the authors extend the work of adhesion measurement to third technique -- interfacial failure energy. The ability to determine the reversible work of adhesion for practical adhesive joints allows understanding of several issues that control adhesion: surface preparation, nature of the interphase region, and bond durability.

  1. Investigation of package sealing using organic adhesives

    NASA Technical Reports Server (NTRS)

    Perkins, K. L.; Licari, J. J.

    1977-01-01

    A systematic study was performed to evaluate the suitability of adhesives for sealing hybrid packages. Selected adhesives were screened on the basis of their ability to seal gold-plated Kovar butterfly-type packages that retain their seal integrity after individual exposures to increasingly severe temperature-humidity environments. Tests were also run using thermal shock, temperature cycling, mechanical shock and temperature aging. The four best adhesives were determined and further tested in a 60 C/98% RH environment and continuously monitored in regard to moisture content. Results are given, however, none of the tested adhesives passed all the tests.

  2. Adhesive strength of autologous fibrin glue.

    PubMed

    Yoshida, H; Hirozane, K; Kamiya, A

    2000-03-01

    To establish an easy and rapid method for measuring the adhesive strength of fibrin glue and to clarify the factor(s) most affecting the strength, a study was made on the effect of the concentration of plasma components on the strength of cryoprecipitate (Cryo) prepared from a subject's own autologous plasma to be used as fibrin glue. The adhesive strength of the Cryo was measured with various supporting materials instead of animal skin using a tester of tension and compression. The results were as follows: (1) the strength of Cryo applied to ground flat glass (4 cm2) was significantly greater than that applied to clear glass, clear plastic, or smooth and flat wood chips; (2) the adhesive strength of Cryo depended on the concentration of thrombin with the optimal concentration being 50 units/ml; (3) the concentration of CaCl2 did not affect the adhesive strength of Cryo; (4) the adhesive reaction was dependent on the temperature and the adhesive strength more quickly reached a steady state at 37 degrees C than at lower temperature; (5) the adhesive strength was correlated well with the total concentration of fibrinogen and fibronectin. These results indicate that the adhesive strength of Cryo can be easily and quickly evaluated using a tester and ground glass with thrombin at 50 units/ml, and that the adhesive strength of Cryo can be predicted from the total concentration of fibrinogen and fibronectin.

  3. Acceptance Criteria for Aerospace Structural Adhesives.

    DTIC Science & Technology

    ADHESIVES, *AIRFRAMES, PRIMERS, STRUCTURAL ENGINEERING, CHEMICAL COMPOSITION, MECHANICAL PROPERTIES, INDUSTRIAL PRODUCTION , DATA ACQUISITION , PARTICLE SIZE, ACCEPTANCE TESTS, ELASTOMERS, BONDING, QUALITY CONTROL, .

  4. Effect of water absorption on pollen adhesion.

    PubMed

    Lin, Haisheng; Lizarraga, Leonardo; Bottomley, Lawrence A; Carson Meredith, J

    2015-03-15

    Pollens possess a thin liquid coating, pollenkitt, which plays a major role in adhesion by forming capillary menisci at interfaces. Unfortunately, the influence of humidity on pollenkitt properties and capillary adhesion is unknown. Because humidity varies widely in the environment, the answers have important implications for better understanding plant reproduction, allergy and asthma, and pollen as atmospheric condensation nuclei. Here, pollenkitt-mediated adhesion of sunflower pollen to hydrophilic and hydrophobic surfaces was measured as a function of humidity. The results quantify for the first time the significant water absorption of pollenkitt and the resulting complex dependence of adhesion on humidity. On hydrophilic Si, adhesion increased with increasing RH for pollens with or without pollenkitt, up to 200nN at 70% RH. In contrast, on hydrophobic PS, adhesion of pollenkitt-free pollen is independent of RH. Surprisingly, when pollenkitt was present adhesion forces on hydrophobic PS first increased with RH up to a maximum value at 35% RH (∼160nN), and then decreased with further increases in RH. Independent measurement of pollenkitt properties is used with models of capillary adhesion to show that humidity-dependent changes in pollenkitt wetting and viscosity are responsible for this complex adhesion behavior.

  5. Strength distributions of adhesive bonded and adhesive/rivet combined joints

    NASA Astrophysics Data System (ADS)

    Imanaka, Makoto; Haraga, Kosuke; Nishikawa, Tetsuya

    1992-11-01

    The tensile and shear strengths of adhesive and adhesive/rivet combined joints are statistically evaluated, and the probability of failure is calculated for these two types of joints. Attention is given to the effects of the adhesive/rivet combination on mean tensile shear strength and coefficient of variation. The adhesive joint's strength distribution was well approximated by Weibull or doubly-exponential distribution function; tensile shear strength is significantly improved by the combination with rivets.

  6. 21 CFR 175.125 - Pressure-sensitive adhesives.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Pressure-sensitive adhesives. 175.125 Section 175... Adhesives § 175.125 Pressure-sensitive adhesives. Pressure-sensitive adhesives may be safely used as the... prescribed conditions: (a) Pressure-sensitive adhesives prepared from one or a mixture of two or more of...

  7. Design and fabrication of polymer based dry adhesives inspired by the gecko adhesive system

    NASA Astrophysics Data System (ADS)

    Jin, Kejia

    There has been significant interest in developing dry adhesives mimicking the gecko adhesive system, which offers several advantages compared to conventional pressure sensitive adhesives. Specifically, gecko adhesive pads have anisotropic adhesion properties: the adhesive pads (spatulae) stick strongly when sheared in one direction but are non-adherent when sheared in the opposite direction. This anisotropy property is attributed to the complex topography of the array of fine tilted and curved columnar structures (setae) that bear the spatulae. In this thesis, easy, scalable methods, relying on conventional and unconventional techniques are presented to incorporate tilt in the fabrication of synthetic polymer-based dry adhesives mimicking the gecko adhesive system, which provide anisotropic adhesion properties. In the first part of the study, the anisotropic adhesion and friction properties of samples with various tilt angles to test the validity of a nanoscale tape-peeling model of spatular function are measured. Consistent with the Peel Zone model, samples with lower tilt angles yielded larger adhesion forces. Contact mechanics of the synthetic array were highly anisotropic, consistent with the frictional adhesion model and gecko-like. Based on the original design, a new design of gecko-like dry adhesives was developed which showed superior tribological properties and furthermore showed anisotropic adhesive properties without the need for tilt in the structures. These adhesives can be used to reversibly suspend weights from vertical surfaces (e.g., walls) and, for the first time to our knowledge, horizontal surfaces (e.g., ceilings) by simultaneously and judiciously activating anisotropic friction and adhesion forces. Furthermore, adhesion properties between artificial gecko-inspired dry adhesives and rough substrates with varying roughness are studied. The results suggest that both adhesion and friction forces on a rough substrate depends significantly on the

  8. Detection of HEMA in self-etching adhesive systems with high performance liquid chromatography

    NASA Astrophysics Data System (ADS)

    Panduric, V.; Tarle, Z.; Hameršak, Z.; Stipetić, I.; Matosevic, D.; Negovetić-Mandić, V.; Prskalo, K.

    2009-04-01

    One of the factors that can decrease hydrolytic stability of self-etching adhesive systems (SEAS) is 2-hydroxymethylmethacrylate (HEMA). Due to hydrolytic instability of acidic methacrylate monomers in SEAS, HEMA can be present even if the manufacturer did not include it in original composition. The aim of the study was to determine the presence of HEMA because of decomposition by hydrolysis of methacrylates during storage, resulting with loss of adhesion strength to hard dental tissues of the tooth crown. Three most commonly used SEAS were tested: AdheSE ONE, G-Bond and iBond under different storage conditions. High performance liquid chromatography analysis was performed on a Nucleosil C 18-100 5 μm (250 × 4.6 mm) column, Knauer K-501 pumps and Wellchrom DAD K-2700 detector at 215 nm. Data were collected and processed by EuroCrom 2000 HPLC software. Calibration curves were made related eluted peak area to known concentrations of HEMA (purchased from Fluka). The elution time for HEMA is 12.25 min at flow rate 1.0 ml/min. Obtained results indicate that no HEMA was present in AdheSE ONE because methacrylates are substituted with methacrylamides that seem to be more stable under acidic aqueous conditions. In all other adhesive systems HEMA was detected.

  9. Polyimide adhesives for titanium and composite bonding

    NASA Technical Reports Server (NTRS)

    St. Clair, A. K.; St. Clair, T. L.

    1978-01-01

    Approach results in synthesis of addition polyimide adhesives with exceptional high temperature capabilities that show excellent potential for bonding titanium metal, polyimide/graphite composites, and combinations of these materials. Adhesives compatible with materials used in high performance aircraft and spacecraft structures also prove highly desirable in many other applications involving similar adherents.

  10. Sticky fingers: Adhesive properties of human fingertips.

    PubMed

    Spinner, Marlene; Wiechert, Anke B; Gorb, Stanislav N

    2016-02-29

    Fingertip friction is a rather well studied subject. Although the phenomenon of finger stickiness is known as well, the pull-off force and the adhesive strength of human finger tips have never been previously quantified. For the first time, we provided here characterization of adhesive properties of human fingers under natural conditions. Human fingers can generate a maximum adhesive force of 15mN on a smooth surface of epoxy resin. A weak correlation of the adhesive force and the normal force was found on all test surfaces. Up to 300mN load, an increase of the normal force leads to an increase of the adhesive force. On rough surfaces, the adhesive strength is significantly reduced. Our data collected from untreated hands give also an impression of an enormous scattering of digital adhesion depending on a large set of inter-subject variability and time-dependent individual factors (skin texture, moisture level, perspiration). The wide inter- and intra-individual range of digital adhesion should be considered in developing of technical and medical products.

  11. Recurrent spinal adhesive arachnoiditis. A case report.

    PubMed

    de Mattos, J P; André, C; Couto, B A

    1988-03-01

    Spinal adhesive arachnoiditis is not an uncommon disease, usually having a monophasic course. We studied an atypical patient with recurrent spinal adhesive arachnoiditis nine years after intrathecal anesthesia and the first attack of the disease. Also noteworthy was the favorable evolution after surgery.

  12. Polyurethane adhesive with improved high temperature properties

    NASA Technical Reports Server (NTRS)

    Stuckey, J. M.

    1977-01-01

    A polyurethane resin with paste activator, capable of providing useful bond strengths over the temperature range of -184 C to 149 C, is described. The adhesive system has a pot life of over one hour. Tensile shear strength ratings are given for various adhesive formulations.

  13. Predicting Failure Initiation in Structural Adhesive Joints

    DTIC Science & Technology

    2012-08-15

    Elastoplástico de Adhesivos – Modeling, characterization and simulation of the elastoplastic behavior of adhesives. Maestría en Ciencia de Materiales...adhesive and a 1018 steel”. Maestría en Ciencia de Materiales. Centro de Investigación en Materiales Avanzados S.C. May 2012.  Abstract: In the

  14. Cell-Cell Adhesion and Breast Cancer.

    DTIC Science & Technology

    1998-01-01

    Staging of breast cancer. In: K.I. Bland and E.M. Copeland (eds.), The breast: Comprehensive management of benign and malignant diseases , pp. 313-330... desmosomes . The physical strength of adhesion between two cells is likely to be dependent upon a number of factors, including the number of adhesion

  15. 21 CFR 878.4380 - Drape adhesive.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Drape adhesive. 878.4380 Section 878.4380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4380 Drape adhesive. (a) Identification....

  16. 21 CFR 878.4380 - Drape adhesive.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Drape adhesive. 878.4380 Section 878.4380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4380 Drape adhesive. (a) Identification....

  17. 21 CFR 878.4380 - Drape adhesive.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Drape adhesive. 878.4380 Section 878.4380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4380 Drape adhesive. (a) Identification....

  18. 21 CFR 878.4380 - Drape adhesive.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Drape adhesive. 878.4380 Section 878.4380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4380 Drape adhesive. (a) Identification....

  19. 21 CFR 878.4380 - Drape adhesive.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Drape adhesive. 878.4380 Section 878.4380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4380 Drape adhesive. (a) Identification....

  20. Adhesion mechanism of a gecko-inspired oblique structure with an adhesive tip for asymmetric detachment

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Yu; Takahashi, Kunio; Sato, Chiaki

    2015-12-01

    An adhesion model of an oblique structure with an adhesive tip is proposed by considering a limiting stress for adhesion to describe the detachment mechanism of gecko foot hairs. When a force is applied to the root of the oblique structure, normal and shear stresses are generated at contact and the adhesive tip is detached from the surface when reaching the limiting stress. An adhesion criterion that considers both the normal and shear stresses is introduced, and the asymmetric detachment of the oblique structure is theoretically investigated. In addition, oblique beam array structures are manufactured, and an inclination effect of the structure on the asymmetric detachment is experimentally verified.

  1. Durability of solvent-free one-step self-etch adhesive under simulated intrapulpal pressure

    PubMed Central

    2015-01-01

    Background There are different solvents presented in simplified adhesives. Bond-1 SF has been developed, which contains neither water nor organic solvents, in order to eliminate technical issues in terms of evaporation of solvents and concerns for the durability of resin-dentin bond. Thus this study was conducted to evaluate the microtensile bond strength (?TBS) of solvent-free and ethanol-based one-step self-etch adhesives to dentin under simulated intrapulpal pressure (IPP). Material and Methods Occlusal surfaces of human molars were prepared to expose mid-dentin depth. Bond-1SF Solvent-Free SE [SF] and AdperTM easy one adhesives [AE] were applied on dentin specimens. Resin composite build up was done in increments. Then specimens were stored under simulated IPP 20 mmHg, immersed in artificial saliva at 37 ºC for 24 hours (24h) and 6 months (6m). Specimens were sectioned into sticks of (1 mm²) to be tested for (?TBS) using a universal testing machine. Both fractured sections of each stick were inspected using a stereomicroscope at 40× magnification to determine the mode of failure. Data were statistically analyzed by Two-way ANOVA of Variance. Results There was no statistically significant difference between the mean ?TBS of both [SF] and [AE] adhesives at both aging periods, 24h and 6m (p< 0.1103) and (p< 0.7148) respectively. Only for [AE] there was statistical significance for aging periods (p< 0.0057*). The most represented modes of failure were adhesive failure at tooth side. Conclusions Under simulated IPP solvent-free adhesive [SF] had comparable performance as ethanol-based adhesive [AE] when bonded to dentin substrate. Key words:Bond strength, dentin, simulated intrapulpal pressure, self-etch adhesives, solvents. PMID:26535091

  2. Focal Adhesion-Independent Cell Migration.

    PubMed

    Paluch, Ewa K; Aspalter, Irene M; Sixt, Michael

    2016-10-06

    Cell migration is central to a multitude of physiological processes, including embryonic development, immune surveillance, and wound healing, and deregulated migration is key to cancer dissemination. Decades of investigations have uncovered many of the molecular and physical mechanisms underlying cell migration. Together with protrusion extension and cell body retraction, adhesion to the substrate via specific focal adhesion points has long been considered an essential step in cell migration. Although this is true for cells moving on two-dimensional substrates, recent studies have demonstrated that focal adhesions are not required for cells moving in three dimensions, in which confinement is sufficient to maintain a cell in contact with its substrate. Here, we review the investigations that have led to challenging the requirement of specific adhesions for migration, discuss the physical mechanisms proposed for cell body translocation during focal adhesion-independent migration, and highlight the remaining open questions for the future.

  3. Coating to enhance metal-polymer adhesion

    SciTech Connect

    Parthasarathi, A.; Mahulikar, D.

    1996-12-31

    An ultra-thin electroplated coating has been developed to enhance adhesion of metals to polymers. The coating was developed for microelectronic packaging applications where it greatly improves adhesion of metal leadframes to plastic molding compounds. Recent tests show that the coating enhances adhesion of different metals to other types of adhesives as well and may thus have wider applicability. Results of adhesion tests with this coating, as well as its other characteristics such as corrosion resistance, are discussed. The coating is a very thin transparent electroplated coating containing zinc and chromium. It has been found to be effective on a variety of metal surfaces including copper alloys, Fe-Ni alloys, Al alloys, stainless steel, silver, nickel, Pd/Ni and Ni-Sn. Contact resistance measurements show that the coating has little or no effect on electrical resistivity.

  4. Synthetic Polypeptide Mimics of Marine Adhesives.

    PubMed

    Yu; Deming

    1998-07-28

    Water soluble copolypeptides containing l-dihydroxyphenylalanine (DOPA) and l-lysine were prepared by ring-opening polymerization of alpha-amino acid N-carboxyanhydride (NCA) monomers. We have prepared a range of different copolymers to probe the effects of functional group composition on adhesive and cross-linking behavior. Aqueous solutions of these copolymers, when mixed with a suitable oxidizing agent (e.g., O2, mushroom tyrosinase, Fe3+, H2O2, or IO4-), formed cross-linked networks that were found to form moisture-resistant adhesive bonds to a variety of substrates (e.g., aluminum, steel, glass, and plastics). It was found that successful adhesive formation was dependent on oxidation conditions, with chemical oxidants giving the best results. Optimized systems were found to form adhesive bonds that rival in strength those formed by natural marine adhesive proteins. Our synthetic systems are readily prepared in large quantities and require no enzymes or other biological components.

  5. Critical length scale controls adhesive wear mechanisms

    PubMed Central

    Aghababaei, Ramin; Warner, Derek H.; Molinari, Jean-Francois

    2016-01-01

    The adhesive wear process remains one of the least understood areas of mechanics. While it has long been established that adhesive wear is a direct result of contacting surface asperities, an agreed upon understanding of how contacting asperities lead to wear debris particle has remained elusive. This has restricted adhesive wear prediction to empirical models with limited transferability. Here we show that discrepant observations and predictions of two distinct adhesive wear mechanisms can be reconciled into a unified framework. Using atomistic simulations with model interatomic potentials, we reveal a transition in the asperity wear mechanism when contact junctions fall below a critical length scale. A simple analytic model is formulated to predict the transition in both the simulation results and experiments. This new understanding may help expand use of computer modelling to explore adhesive wear processes and to advance physics-based wear laws without empirical coefficients. PMID:27264270

  6. Two distinct mechanisms of fibroblast adhesion

    NASA Astrophysics Data System (ADS)

    Harper, P. A.; Juliano, R. L.

    1981-03-01

    The adhesion of cells to the connective tissue matrix is commonly thought to be governed by fibronectin, a pericellular glycoprotein with binding sites for cell surfaces, collagen and glycosaminoglycans. Here we report evidence that Chinese hamster ovary (CHO) cells possess an alternative mechanism for adhesion which is independent of fibronectin. Cells of a variant CHO clone called ADVF11 are defective in their ability to adhere to fibronectin-coated substrata, but can adhere to a substratum coated with SAM (substrate-attached material), a pericellular material produced by fibroblasts. The adhesion of wild-type CHO cells to fibronectin-coated substrata and adhesion of ADVF11 cells to SAM-coated substrata are differentially sensitive to proteolytic treatment. This suggests that there are two distinct adhesion mechanisms for CHO cells, only one of which is dependent on fibronectin.

  7. Adhesion of microchannel-based complementary surfaces.

    PubMed

    Singh, Arun K; Bai, Ying; Nadermann, Nichole; Jagota, Anand; Hui, Chung-Yuen

    2012-03-06

    We show that highly enhanced and selective adhesion can be achieved between surfaces patterned with complementary microchannel structures. An elastic material, poly(dimethylsiloxane) (PDMS), was used to fabricate such surfaces by molding into a silicon master with microchannel profiles patterned by photolithography. We carried out adhesion tests on both complementary and mismatched microchannel/micropillar surfaces. Adhesion, as measured by the energy release rate required to propagate an interfacial crack, can be enhanced by up to 40 times by complementary interfaces, compared to a flat control, and slightly enhanced for some special noncomplementary samples, despite the nearly negligible adhesion for other mismatched surfaces. For each complementary surface, we observe defects in the form of visible striations, where pillars fail to insert fully into the channels. The adhesion between complementary microchannel surfaces is enhanced by a combination of a crack-trapping mechanism and friction between a pillar and channel and is attenuated by the presence of defects.

  8. Adhesive arachnoiditis after lumbar myelography.

    PubMed

    Suolanen, J

    1977-08-01

    Of 1500 myelographies, 99 patients had subsequent myelographies from which the prevalence of adhesive arachnoiditis caused by the initial investigation could be calculated. Three different water-soluble contrast agents had been used in the initial study: Kontrast U (800 patients), Dimer-X (400 patients), and Conray (300 patients) and the subsets of patients restudied represented 6%, 8% and 8% respectively of the whole series. After the first myelography 68 patients had no operation, 31 patients had hemilaminectomy. Conray produced arachnoid changes in 71% of the nonoperated patients. This differed significantly from the 43% caused by Kontrast U, and the 27% evoked by Dimer-X. The same trend was evident in the operated subset. The severity of the arachnoid changes was greater after Conray. Analysis of the iodine content of the different contrast media and comparison with similar series suggested that hyperosmolarity of the agent was responsible for the changes.

  9. Carbon nanotube dry adhesives with temperature-enhanced adhesion over a large temperature range

    NASA Astrophysics Data System (ADS)

    Xu, Ming; Du, Feng; Ganguli, Sabyasachi; Roy, Ajit; Dai, Liming

    2016-11-01

    Conventional adhesives show a decrease in the adhesion force with increasing temperature due to thermally induced viscoelastic thinning and/or structural decomposition. Here, we report the counter-intuitive behaviour of carbon nanotube (CNT) dry adhesives that show a temperature-enhanced adhesion strength by over six-fold up to 143 N cm-2 (4 mm × 4 mm), among the strongest pure CNT dry adhesives, over a temperature range from -196 to 1,000 °C. This unusual adhesion behaviour leads to temperature-enhanced electrical and thermal transports, enabling the CNT dry adhesive for efficient electrical and thermal management when being used as a conductive double-sided sticky tape. With its intrinsic thermal stability, our CNT adhesive sustains many temperature transition cycles over a wide operation temperature range. We discover that a `nano-interlock' adhesion mechanism is responsible for the adhesion behaviour, which could be applied to the development of various dry CNT adhesives with novel features.

  10. Carbon nanotube dry adhesives with temperature-enhanced adhesion over a large temperature range

    PubMed Central

    Xu, Ming; Du, Feng; Ganguli, Sabyasachi; Roy, Ajit; Dai, Liming

    2016-01-01

    Conventional adhesives show a decrease in the adhesion force with increasing temperature due to thermally induced viscoelastic thinning and/or structural decomposition. Here, we report the counter-intuitive behaviour of carbon nanotube (CNT) dry adhesives that show a temperature-enhanced adhesion strength by over six-fold up to 143 N cm−2 (4 mm × 4 mm), among the strongest pure CNT dry adhesives, over a temperature range from −196 to 1,000 °C. This unusual adhesion behaviour leads to temperature-enhanced electrical and thermal transports, enabling the CNT dry adhesive for efficient electrical and thermal management when being used as a conductive double-sided sticky tape. With its intrinsic thermal stability, our CNT adhesive sustains many temperature transition cycles over a wide operation temperature range. We discover that a ‘nano-interlock' adhesion mechanism is responsible for the adhesion behaviour, which could be applied to the development of various dry CNT adhesives with novel features. PMID:27849052

  11. In vitro evaluation of casein phosphopeptide-amorphous calcium phosphate effect on the shear bond strength of dental adhesives to enamel

    PubMed Central

    Shadman, Niloofar; Ebrahimi, Shahram Farzin; Shoul, Maryam Azizi; Sattari, Hasti

    2015-01-01

    Background: Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) is applied for remineralization of early caries lesions or tooth sensitivity conditions and may affect subsequent resin bonding. This in vitro study investigated the effect of CPP-ACP on the shear bond strength of dental adhesives to enamel. Materials and Methods: Sixty extracted human molar teeth were selected and randomly divided into three groups and six subgroups. Buccal or lingual surfaces of teeth were prepared to create a flat enamel surface. Adhesives used were Tetric N-Bond, AdheSE and AdheSE One F. In three subgroups, before applying adhesives, enamel surfaces were treated with Tooth Mousse CPP-ACP for one hour, rinsed and stored in 37°C temperature with 100% humidity. This procedure was repeated for 5 days and then adhesives were applied and Tetric N-Ceram composite was adhered to the enamel. This procedure was also fulfilled for the other three subgroups without CPP-ACP treatment. After 24 hour water storage, samples were tested for shear bond strength test in a universal testing machine. Failure modes were determined by stereomicroscope. Data were analyzed by t-test and one-way analysis of variance with P < 0.05 as the level of significance. Results: In comparison between applied and non-applied CPP-ACP subgroups, there was no significant decrease in the shear bond strength to enamel only in Tetric N-Bond (P > 0.05). In non-applied CPP-ACP subgroups, there were statistically significant differences among all subgroups. Tetric N-Bond had the highest and AdheSE One F had the lowest shear bond strength. Conclusion: CPP-ACP application reduces the shear bond strength of AdheSE and AdheSE One F to enamel but not Tetric N-Bond. PMID:25878683

  12. Effect of fluoride in phosphate buffer solution on bonding to artificially carious enamel.

    PubMed

    Wang, Hao; Shimada, Yasushi; Tagami, Junji

    2007-09-01

    The purpose of the present study was to evaluate the effect of fluoride on resin bonding to artificially carious enamel. Specimens from demineralized human enamel sections were prepared using two commercially available adhesives (Clearfil SE Bond, Kuraray; Single Bond, 3M) and a composite resin (Clearfil AP-X, Kuraray) according to manufacturers' instructions. They were then immersed in phosphate buffered saline solution with varied fluoride concentrations at 0, 0.1, 0.5, 1, and 10 ppm. After immersion in each solution for one, three, or seven days, microshear bond strength was measured. The bond strengths of both adhesive systems to artificially carious enamel significantly increased after immersion in fluoride-phosphate buffer solution. Based on the findings obtained, we thus proposed not to remove the white enamel lesions for bonding in the clinic. They might be preserved and treated using fluoride applications.

  13. Photophysics of GaSe/InSe nanoparticle heterojunctions.

    PubMed

    Chen, Xiang-Bai; Kelley, David F

    2006-12-21

    The photophysics of mixed aggregates of GaSe/InSe nanoparticles have been studied using static and time-resolved absorption and emission spectroscopies. The results indicate that the GaSe/InSe interfaces form heterojunctions and exhibit photoinduced direct charge transfer from the GaSe valence band to the InSe conduction band. This results in the electrons and holes being localized separately in these two types of nanoparticles. The energy diagram of the nanoparticle heterojunction can be constructed from the static spectra, known bulk band offsets, and quantum confinement effects. These considerations accurately predict the energy of the observed charge-transfer band. Photoexcitation also produces excitons in the aggregates, away from the heterojunctions. These excitons can undergo diffusion and quench upon reaching a heterojunction. Time-resolved fluorescence kinetics can be modeled to extract an exciton diffusion coefficient. A value of 2.0 nm2/ns is obtained, which is in good agreement with values obtained from previous fluorescence anisotropy decay measurements.

  14. Effects of the application techniques of self-adhesive resin cements on the interfacial integrity and bond strength of fiber posts to dentin

    PubMed Central

    Pedreira, Ana Paula Ribeiro do Vale; D'Alpino, Paulo Henrique Perlatti; Pereira, Patrícia Nóbrega Rodrigues; Chaves, Sasha Braun; Wang, Linda; Hilgert, Leandro; Garcia, Fernanda Cristina Pimentel

    2016-01-01

    ABSTRACT Objective: To evaluate the influence of an application technique of a glass-fiber post using self-adhesive resin cements on the push-out bond strength and the presence of bubbles in the root thirds. The cements were either applied according to the manufacturer's instruction or using a commercial delivering system (Centrix), at which the cement pastes were collected and applied after manipulation. Material and Methods: Self-adhesive resin cements (RelyX U200/3M ESPE-U200; Maxcem Elite/Kerr-MAX; Clearfil SA Cement/Kuraray-CSA) and a conventional cement (RelyX ARC/3M ESPE-ARC) were used to cement a post and applied either based on the manufacturer's instructions or using a Centrix syringe to deliver the cements directly onto the post of choice, or directly into canal. The roots were scanned with a micro-computed tomography (μCT) and then sectioned into nine 1-mm thick slices for a push-out bond strength test. The μCT images showed the percentage of bubbles in the root thirds (cervical, medium, and apical). Data were analyzed with three-way ANOVA/Tukey (α=0.05). Results: Triple interaction was not significant (p>0.05). The interaction “material” vs “root third” was not significant. A significant interaction was observed between “material” vs “application technique” (p<0.05). For ARC, U200, and MAX, significantly lower percentages of bubbles were observed when the Centrix syringe delivered the cements. Equivalent percentages of voids were observed for CSA, irrespective of the application technique (p>0.05). Significantly higher bond strength was observed when the self-adhesive resin cements were applied using the Centrix delivery system, in comparison with the manufacturer's instructions (p<0.05). Bond strength varied with the root third: cervical>medium>apical (p<0.05). No correlations were found between the bond strength and voids. Conclusions: Bond strength and voids are negatively influenced by the conventional application technique for

  15. Adhesion Control between Resist and Photomask Blank

    NASA Astrophysics Data System (ADS)

    Kurihara, Masaaki; Hatakeyama, Sho; Yoshida, Kouji; Abe, Makoto; Totsukawa, Daisuke; Morikawa, Yasutaka; Mohri, Hiroshi; Hoga, Morihisa; Hayashi, Naoya; Ohtani, Hiroyuki; Fujihira, Masamichi

    2009-06-01

    Most problems in photomask fabrication such as pattern collapse, haze, and cleaning damage are related to the behavior of surfaces and interfaces of resists, opaque layers, and quartz substrates. Therefore, it is important to control the corresponding surface and interface energies in photomask fabrication processes. In particular, adhesion analysis in microscopic regions is strongly desirable to optimize material and process designs in photomask fabrication. We applied the direct peeling (DP) method with a scanning probe microscope (SPM) tip and measured the adhesion of resist patterns on Cr and quartz surfaces for photomask process optimization. We also studied the effect of tip shape on the reproducibility of adhesion measurements and the dependence of collapse behavior on the resist profile. We measured lateral forces between the resulting collapsed resist pillar and the Cr or the quartz surface before and after the sliding and related these observed lateral forces to the static and kinetic frictional forces, respectively. We also studied the effect of surface modification of the Cr and quartz surfaces with silanization reagents on adhesion measured with the DP method. Resist adhesion could be controlled by surface modification using silanes. We also discuss the relationship between the adhesion observed with the DP method and the properties of the modified surfaces including water contact angles and local adhesive forces measured from force-distance curves with an SPM.

  16. Strategies to Minimize Adhesion Formation After Surgery

    PubMed Central

    Lazarou, George; Mondesir, Carlene; Wei, Kai; Khullar, Poonan; Ogden, Lorna

    2011-01-01

    Objectives: To compare the potential for postoperative laparoscopic adhesion formation utilizing either monopolar cautery or ultrasonic energy and to determine whether there is added benefit with the addition of a suspension of hyaluronate/carboxymethylcellulose in saline versus saline alone. Methods: Injuries were induced in rabbits by using monopolar cautery on 1 uterine horn and adjacent sidewall and ultrasonic energy on the opposite. Hyaluronate/ carboxymethylcellulose or saline was added to every other animal. Autopsies were performed after 3 weeks. Clinical and pathologic scoring of adhesions was performed by blinded investigators. Results: A very significant difference occurred in pathologic adhesion scores favoring the ultrasonic scalpel when the animals were treated with saline. However, a borderline significant difference was found in pathologic scores favoring the ultrasonic scalpel compared to the monopolar cautery. There was no significant difference in clinical adhesion scores between the 2 modalities. No significant difference in either score was found with the addition of hyaluronate/carboxymethylcellulose or saline with either instrument. Conclusion: No benefit was found for adhesion prevention with hyaluronate/carboxymethylcellulose. Although no reduction was achieved in clinical adhesions, the ultrasonic scalpel resulted in fewer histologic signs of tissue inflammation in the early postoperative period, suggesting that further clinical adhesions might develop over time with cautery. PMID:21985723

  17. Adhesion in ceramics and magnetic media

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1989-01-01

    When a ceramic is brought into contact with a metal or a polymeric material such as a magnetic medium, strong bonds form between the materials. For ceramic-to-metal contacts, adhesion and friction are strongly dependent on the ductility of the metals. Hardness of metals plays a much more important role in adhesion and friction than does the surface energy of metals. Adhesion, friction, surface energy, and hardness of a metal are all related to its Young's modulus and shear modulus, which have a marked dependence on the electron configuration of the metal. An increase in shear modulus results in a decrease in area of contact that is greater than the corresponding increase in surface energy (the fond energy) with shear modulus. Consequently, the adhesion and friction decrease with increasing shear modulus. For ceramics in contact with polymeric magnetic tapes, environment is extremely important. For example, a nitrogen environment reduces adhesion and friction when ferrite contacts polymeric tape, whereas a vacuum environment strengthens the ferrite-to-tape adhesion and increases friction. Adhesion and friction are strongly dependent on the particle loading of the tape. An increase in magnetic particle concentration increases the complex modulus of the tape, and a lower real area of contact and lower friction result.

  18. Capillary adhesion forces between flexible fibers

    NASA Astrophysics Data System (ADS)

    Duprat, Camille; Protière, Suzie

    2016-11-01

    We consider the capillary adhesion produced by a drop placed between two elastic fibers. We measure the force exerted by the drop as we vary the inter-fiber distance, and report two types of wet adhesion: a weak capillary adhesion, where a liquid drop bridges the fibers, and a strong elastocapillary adhesion where the liquid is spread between two collapsed fibers. The weak adhesion is characterized by a force that increases linearly with the liquid length. With flexible fibers, the force exerted by the drop can induce deformation and rapid collapse, or zipping, of the fibers. This zipping results in a sudden increase of the wetted length and a force that departs from the linear evolution. As the inter-fiber distance is subsequently increased, the liquid length decreases while the fibers deformation increases, and the force actually reaches a plateau, i.e. remains constant until unzipping, or detachment of the fibers occurs. We measure the value of this plateau, i.e. the maximal adhesion force, as we vary the drop volume and the fibers elasticity. We also show that flexibility extends capillary adhesion to inter-fiber distances impossible to reach with rigid fibers, while keeping a constant pull-out force characteristic of the elastocapillary coupling.

  19. Thrombospondin-induced adhesion of human platelets.

    PubMed Central

    Tuszynski, G P; Kowalska, M A

    1991-01-01

    Washed human unactivated platelets attached and spread on thrombospondin (TSP)-coated microtiter plates. Platelet adhesion was promoted by divalent cations Mn2+, Mg2+, and Ca2+ as compared to buffer having all divalent cations complexed with EDTA. TSP-dependent adhesion was inhibited by anti-TSP fab fragments, an anti-TSP monoclonal antibody, an RGD-containing peptide, complex-specific anti-glycoprotein (GP)IIb-IIIa monoclonal antibodies (A2A9 or AP-2) and anti-VLA-2 monoclonal antibodies (6F1 and Gi9), but not by rabbit preimmune fab fragments, mouse IgG, an anti-GPIIIa monoclonal antibody, or monoclonal antibodies against either the human vitronectin receptor, glycocalicin, or GPIV. At saturating concentrations, anti-GPIIb-IIIa inhibited adhesion by 40-60%. Glanzman's thrombasthenic platelets, which lack GPIIb-IIIa, adhered to TSP to the same extent as anti-GPIIb-IIIa-treated normal platelets or 40-60% as well as untreated normal platelets. Antibody 6F1 (5-10 micrograms/ml) inhibited platelet adhesion of both normal and thrombasthenic platelets by 84-100%. Both VLA-2 antibodies also inhibited collagen-induced platelet adhesion, but had no effect on fibronectin-induced adhesion of normal platelets. These data indicate that platelets specifically adhere to TSP and that this adhesion is mediated through GPIIb-IIIa and/or VLA-2. Images PMID:2010551

  20. Morphology and genesis of asymmetric adhesion warts—a new adhesion surface structure

    NASA Astrophysics Data System (ADS)

    Olsen, Henrik; Due, Poul H.; Clemmensen, Lars B.

    1989-02-01

    Adhesion surface structures have been studied during their formation on a fluvial bar in East Greenland. Two main types occurred: adhesion ripples and asymmetric adhesion warts. Adhesion ripples formed on moist surfaces; their crests lay transverse to the wind direction and they migrated by trapping dry wind-blown sand on their steep fronts. Asymmetric adhesion warts (new structure) formed because of falling moisture content by preferred upwind migration of small protuberances on the adhesion ripples. The protuberances were apparently inherited from an initial rain sculpturing of the bar surface. The asymmetric adhesion warts, here described for the first time, were elongate parallel to the wind, associated with steep upwind-facing fronts and commonly displayed sand-shadow tails tapering in a downwind direction. A study of Devonian flood-basin deposits (Hornelen Basin, Norway) revealed the existence of adhesion surface structures very similar to their modern analogues. The Devonian examples were associated with rain-sculptured surfaces which are believed to have controlled the morphology of the adhesion surface structures as in the modern example. The orientation of the ancient adhesion surface structures is here used for determination of the palaeowind, which blew from the ENE.

  1. Adhesion of Dental Materials to Tooth Structure

    NASA Astrophysics Data System (ADS)

    Mitra, Sumita B.

    2000-03-01

    The understanding and proper application of the principles of adhesion has brought forth a new paradigm in the realm of esthetic dentistry. Modern restorative tooth procedures can now conserve the remaining tooth-structure and also provide for the strengthening of the tooth. Adhesive restorative techniques call for the application and curing of the dental adhesive at the interface between the tooth tissue and the filling material. Hence the success of the restoration depends largely on the integrity of this interface. The mechanism of adhesion of the bonding materials to the dental hard tissue will be discussed in this paper. There are four main steps that occur during the application of the dental adhesive to the oral hard tissues: 1) The first step is the creation of a microstructure in the tooth enamel or dentin by means of an acidic material. This can be through the application of a separate etchant or can be accomplished in situ by the adhesive/primer. This agent has to be effective in removing or modifying the proteinaceous “smear” layer, which would otherwise act as a weak boundary layer on the surface to be bonded. 2) The primer/adhesive must then be able to wet and penetrate the microstructure created in the tooth. Since the surface energies of etched enamel and that of etched dentin are different finding one material to prime both types of dental tissues can be quite challenging. 3) The ionomer types of materials, particularly those that are carboxylate ion-containing, can chemically bond with the calcium ions of the hydroxyapatite mineral. 4) Polymerization in situ allows for micromechanical interlocking of the adhesive. The importance of having the right mechanical properties of the cured adhesive layer and its role in absorbing and dissipating stresses encountered by a restored tooth will also be discussed.

  2. Improving controllable adhesion on both rough and smooth surfaces with a hybrid electrostatic/gecko-like adhesive

    PubMed Central

    Ruffatto, Donald; Parness, Aaron; Spenko, Matthew

    2014-01-01

    This paper describes a novel, controllable adhesive that combines the benefits of electrostatic adhesives with gecko-like directional dry adhesives. When working in combination, the two technologies create a positive feedback cycle whose adhesion, depending on the surface type, is often greater than the sum of its parts. The directional dry adhesive brings the electrostatic adhesive closer to the surface, increasing its effect. Similarly, the electrostatic adhesion helps engage more of the directional dry adhesive fibrillar structures, particularly on rough surfaces. This paper presents the new hybrid adhesive's manufacturing process and compares its performance to three other adhesive technologies manufactured using a similar process: reinforced PDMS, electrostatic and directional dry adhesion. Tests were performed on a set of ceramic tiles with varying roughness to quantify its effect on shear adhesive force. The relative effectiveness of the hybrid adhesive increases as the surface roughness is increased. Experimental data are also presented for different substrate materials to demonstrate the enhanced performance achieved with the hybrid adhesive. Results show that the hybrid adhesive provides up to 5.1× greater adhesion than the electrostatic adhesive or directional dry adhesive technologies alone. PMID:24451392

  3. Comparison of enamel and dentin microshear bond strengths of a two-step self-etching priming system with five all-in-one systems.

    PubMed

    Burrow, Michael F; Kitasako, Yuichi; Thomas, C David; Tagami, Junji

    2008-01-01

    Data on the adhesive strength of new all-in-one adhesives are still relatively limited. This study compared the microshear bond strengths of five recent all-in-one self-etching priming systems (G-Bond, One-Up Bond-F Plus, Clearfil S3 Bond, Adper Prompt L-Pop and Go!) with a widely used two-step self-etching priming system (Clearfil SE Bond). Human molars were sectioned and finished with 600-grit SiC paper. Both enamel and dentin were bonded using adhesives with a 0.7 mm bonding diameter. Bond strengths were tested using a microshear bond test method at a crosshead speed of 1 mm/minute. The mean bond strengths and standard deviations were calculated and analyzed using ANOVA and the Tukey's HSD test. Results showed the two-step self-etching system had significantly higher bond strengths to dentin. However, for enamel bond strength, Clearfil SE Bond showed no statistical difference to G-Bond and Go!; however, all of the other materials were statistically lower. It is necessary to examine these new materials clinically to determine their efficacy.

  4. Pulpal responses to bacterial contamination following dentin bridging beneath hard-setting calcium hydroxide and self-etching adhesive resin system.

    PubMed

    Kitasako, Yuichi; Ikeda, Masaomi; Tagami, Junji

    2008-04-01

    To evaluate the pulp healing to bacterial contamination beneath a hard-setting calcium hydroxide (DY: Dycal, L.D. Caulk Co.) and a self-etching adhesive resin (2V: Clearfil Liner Bond 2V, Kuraray Medical Inc.) following dentin bridge formation. Class V cavities were prepared on 30 monkey teeth, and the pulps were exposed with a carbide bur through the cavity floor. Each exposed pulp was capped with either DY or 2V. The cavities were restored with a hybrid resin composite. The resin composite was removed at 180 days after capping, and then cavities were left open to the oral environment for 2 weeks to obtain bacteria contamination DY (BDY) and 2V (B2V; n = 10). A non-bacterial-contaminated group capped with DY was used as control. After bacterial challenges, inflammatory cell infiltration, incidence and differentiation of dentin bridges were evaluated histologically. There were significant differences in the presence of inflammatory cell infiltration among all groups (P < 0.05). No moderate or severe inflammatory reaction was found in Group DY. Group BDY showed moderate or severe inflammatory cell infiltration in 50%, and showed four necrotic specimens. Although no statistically significant difference was found in the formation and differentiation of dentin bridges among all groups, tunnel defects in dentin bridges were detected in 70% (DY), 80% (BDY), and 50% (B2V). Group B2V showed a significantly lower presence of inflammatory cell infiltration than Group BDY (P < 0.05). Bonding agent is supposed to seal the exposure site, and the remaining bonding agent on the cavities was effective as the barrier in the dentin bridges after bacterial challenges.

  5. The development of low temperature curing adhesives

    NASA Technical Reports Server (NTRS)

    Green, H. E.; Sutherland, J. D.; Hom, J. M.; Sheppard, C. H.

    1975-01-01

    An approach for the development of a practical low temperature (293 K-311 K/68 F-100 F) curing adhesive system based on a family of amide/ester resins was studied and demonstrated. The work was conducted on resin optimization and adhesive compounding studies. An improved preparative method was demonstrated which involved the reaction of an amine-alcohol precursor, in a DMF solution with acid chloride. Experimental studies indicated that an adhesive formulation containing aluminum powder provided the best performance when used in conjunction with a commercial primer.

  6. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, Robert J.; McMillan, April D.; Paulauskas, Felix L.; Fathi, Zakaryae; Wei, Jianghua

    1998-01-01

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy.

  7. Method of making thermally removable adhesives

    DOEpatents

    Aubert, James H.

    2004-11-30

    A method of making a thermally-removable adhesive is provided where a bismaleimide compound, a monomeric furan compound, containing an oxirane group an amine curative are mixed together at an elevated temperature of greater than approximately 90.degree. C. to form a homogeneous solution, which, when cooled to less than approximately 70.degree. C., simultaneously initiates a Diels-Alder reaction between the furan and the bismaleimide and a epoxy curing reaction between the amine curative and the oxirane group to form a thermally-removable adhesive. Subsequent heating to a temperature greater than approximately 100.degree. C. causes the adhesive to melt and allows separation of adhered pieces.

  8. Ice adhesion on super-hydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Kulinich, S. A.; Farzaneh, M.

    2009-06-01

    In this study, ice adhesion strength on flat hydrophobic and rough super-hydrophobic coatings with similar surface chemistry (based on same fluoropolymer) is compared. Glaze ice, similar to naturally accreted, was prepared on the surfaces by spraying super-cooled water microdroplets at subzero temperature. Ice adhesion was evaluated by spinning the samples at constantly increasing speed until ice delamination occurred. Super-hydrophobic surfaces with different contact angle hysteresis were tested, clearly showing that the latter, along with the contact angle, also influences the ice-solid adhesion strength.

  9. Weld bonding of titanium with polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Sheppard, C. H.; Orell, M. K.

    1975-01-01

    A conductive adhesive primer and a capillary flow adhesive were developed for weld bonding titanium alloy joints. Both formulations contained ingredients considered to be non-carcinogenic. Lap-shear joint test specimens and stringer-stiffened panels were weld bonded using a capillary flow process to apply the adhesive. Static property information was generated for weld bonded joints over the temperature range of 219K (-65 F) to 561K (550 F). The capillary flow process was demonstrated to produce weld bonded joints of equal strength to the weld through weld bonding process developed previously.

  10. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-08-25

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  11. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-09-08

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  12. Echinoderm adhesive secretions: from experimental characterization to biotechnological applications.

    PubMed

    Flammang, P; Santos, R; Haesaerts, D

    2005-01-01

    Adhesion is a way of life in echinoderms. Indeed, all the species belonging to this phylum use adhesive secretions extensively for various vital functions. According to the species or to the developmental stage considered, different adhesive systems may be recognized. (1) The tube feet or podia are organs involved in attachment to the substratum, locomotion, feeding or burrowing. Their temporary adhesion relies on a duo-gland adhesive system resorting to both adhesive and de-adhesive secretions. (2) The larval adhesive organs allow temporary attachment of larvae during settlement and strong fixation during metamorphosis. (3) The Cuvierian tubules are sticky defence organs occurring in some holothuroid species. Their efficacy is based on the instantaneous release of a quick-setting adhesive. All these systems rely on different types of adhesion and therefore differ in the way they operate, in their structure and in the composition of their adhesive. In addition to fundamental interests in echinoderm bioadhesives, a substantial impetus behind understanding these adhesives are the potential technological applications that can be derived from their knowledge. These applications cover two broad fields of applied research: design of water-resistant adhesives and development of new antifouling strategies. In this context, echinoderm adhesives could offer novel features or performance characteristics for biotechnological applications. For example, the rapidly attaching adhesive of Cuvierian tubules, the releasable adhesive of tube feet or the powerful adhesive of asteroid larvae could each be useful to address particular bioadhesion problems.

  13. Spin-polarized transport through ZnMnSe/ZnSe/ZnBeSe heterostructures

    NASA Astrophysics Data System (ADS)

    Ming, Y.; Gong, J.; Zhang, R. Q.

    2011-11-01

    Using the transfer matrix method and Airy function, the spin-dependent tunneling through the ZnMnSe/ZnSe/ZnBeSe structure was investigated theoretically. The electron tunneling determined by the applied bias, external magnetic field, and spin orientations exhibited some interesting and complex features. It was found that the magnetic field could suppress the spin-up current, but enhance the spin-down current. Furthermore the spin-flip of current could be realized by changing the applied bias slightly. Therefore, it can be believed that our structure could behave as a good spin-filter.

  14. Adhesion-induced receptor segregation and adhesion plaque formation: A model membrane study.

    PubMed Central

    Kloboucek, A; Behrisch, A; Faix, J; Sackmann, E

    1999-01-01

    A model system to study the control of cell adhesion by receptor-mediated specific forces, universal interactions, and membrane elasticity is established. The plasma membrane is mimicked by reconstitution of homophilic receptor proteins into solid supported membranes and, together with lipopolymers, into giant vesicles with the polymers forming an artificial glycocalix. The homophilic cell adhesion molecule contact site A, a lipid-anchored glycoprotein from cells of the slime mold Dictyostelium discoideum, is used as receptor. The success of the reconstitution, the structure and the dynamics of the model membranes are studied by various techniques including film balance techniques, micro fluorescence, fluorescence recovery after photobleaching, electron microscopy, and phase contrast microscopy. The interaction of the functionalized giant vesicles with the supported bilayer is studied by reflection interference contrast microscopy, and the adhesion strength is evaluated quantitatively by a recently developed technique. At low receptor concentrations adhesion-induced receptor segregation in the membranes leads to decomposition of the contact zone between membranes into domains of strong (receptor-mediated) adhesion and regions of weak adhesion while continuous zones of strong adhesion form at high receptor densities. The adhesion strengths (measured in terms of the spreading pressure S) of the various states of adhesion are obtained locally by analysis of the vesicle contour near the contact line in terms of elastic boundary conditions of adhesion: the balance of tensions and moments. The spreading pressure of the weak adhesion zones is S approximately 10(-9) J/m(2) and is determined by the interplay of gravitation and undulation forces whereas the spreading pressure of the tight adhesion domains is of the order S approximately 10(-6) J/m(2). PMID:10512849

  15. Heat-shrinkable film improves adhesive bonds

    NASA Technical Reports Server (NTRS)

    Johns, J. M.; Reed, M. W.

    1980-01-01

    Pressure is applied during adhesive bonding by wrapping parts in heat-shrinkable plastic film. Film eliminates need to vacuum bag or heat parts in expensive autoclave. With procedure, operators are trained quickly, and no special skills are required.

  16. Chemistry technology: Adhesives and plastics: A compilation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Technical information on chemical formulations for improving and/or producing adhesives is presented. Data are also reported on polymeric plastics with special characteristics or those plastics that were produced by innovative means.

  17. Adhesion of gels by silica particle.

    PubMed

    Abe, Hidekazu; Hara, Yusuke; Maeda, Shingo; Hashimoto, Shuji

    2014-03-06

    In this study, a method for achieving adhesion between two positively charged gels with high mechanical strength was developed. By utilizing a silica particle dispersion as a binder, the gels easily adhered to each other and remained stable for up to 11 days when immersed in aqueous solution. The adhesion force between the two positively charged semi-interpenetrating network gels with the silica particle was measured to be up to approximately 20 kPa, which is around 10 times larger than that with a charged polymer-rich liquid as a cross-linker (approximately 1.5 kPa). It was demonstrated that the adhesion force was a result of two types of interactions: an electrostatic attractive force between the cationic gel surface and hydrogen bonding among the silica particles. In addition, it was shown that the adhesion force was dependent on solution pH, which was attributed to changes in the charge of the silica particles.

  18. Adhesion properties of chain-forming ferrofluids.

    PubMed

    Lira, Sérgio A; Miranda, José A

    2009-04-01

    Denser and highly magnetized ferrofluids exhibit several non-Newtonian behaviors attributed to the formation of magnetic particle chains. We investigate the rheological and adhesive properties during tensile deformation of a confined chain-forming ferrofluid subjected to a radial magnetic field. Both the magnetoviscous contribution to the viscosity and the adhesive force are derived analytically. The response of the system to changes in the length of the chains is examined under zero and nonzero shear circumstances. Our results indicate that the existence of chains has a significant impact on the adhesive strength as well as on the viscosity of the ferrofluid, allowing it to display both shear-thinning and shear-thickening regimes. These findings open up the possibility of monitoring complex rheological responses of such fluids with the assistance of applied magnetic fields, allowing a more accurate assessment of their adhesive properties.

  19. Regulation of integrin-mediated adhesions

    PubMed Central

    Iwamoto, Daniel V.; Calderwood, David A.

    2015-01-01

    Integrins are heterodimeric transmembrane adhesion receptors that couple the actin cytoskeleton to the extracellular environment and bidirectionally relay signals across the cell membrane. These processes are critical for cell attachment, migration, differentiation, and survival, and therefore play essential roles in metazoan development, physiology, and pathology. Integrin-mediated adhesions are regulated by diverse factors, including the conformation-specific affinities of integrin receptors for their extracellular ligands, the clustering of integrins and their intracellular binding partners into discrete adhesive structures, mechanical forces exerted on the adhesion, and the intracellular trafficking of integrins themselves. Recent advances shed light onto how the interaction of specific intracellular proteins with the short cytoplasmic tails of integrins controls each of these activities. PMID:26189062

  20. Biomimetic mushroom-shaped fibrillar adhesive microstructure.

    PubMed

    Gorb, S; Varenberg, M; Peressadko, A; Tuma, J

    2007-04-22

    To improve the adhesive properties of artificial fibrillar contact structures, the attachment systems of beetles from the family Chrysomelidae were chosen to serve as a model. Biomimetic mushroom-shaped fibrillar adhesive microstructure inspired by these systems was characterized using a variety of measurement techniques and compared with a control flat surface made of the same material. Results revealed that pull-off force and peel strength of the structured specimens are more than twice those of the flat specimens. In contrast to the control system, the structured one is found to be very tolerant to contamination and able to recover its adhesive properties after being washed in a soap solution. Based on the combination of several geometrical principles found in biological attachment devices, the presented microstructure exhibits a considerable step towards the development of an industrial dry adhesive.

  1. Advances in the Pathogenesis of Adhesion Development

    PubMed Central

    Awonuga, Awoniyi O.; Belotte, Jimmy; Abuanzeh, Suleiman; Fletcher, Nicole M.; Diamond, Michael P.

    2014-01-01

    Over the past several years, there has been increasing recognition that pathogenesis of adhesion development includes significant contributions of hypoxia induced at the site of surgery, the resulting oxidative stress, and the subsequent free radical production. Mitochondrial dysfunction generated by surgically induced tissue hypoxia and inflammation can lead to the production of reactive oxygen and nitrogen species as well as antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase which when optimal have the potential to abrogate mitochondrial dysfunction and oxidative stress, preventing the cascade of events leading to the development of adhesions in injured peritoneum. There is a significant cross talk between the several processes leading to whether or not adhesions would eventually develop. Several of these processes present avenues for the development of measures that can help in abrogating adhesion formation or reformation after intraabdominal surgery. PMID:24520085

  2. Viscoelastic study of an adhesively bonded joint

    NASA Technical Reports Server (NTRS)

    Joseph, P. F.

    1983-01-01

    The plane strain problem of two dissimilar orthotropic plates bonded with an isotropic, linearly viscoelastic adhesive is considered. Both the shear and the normal stresses in the adhesive are calculated for various geometries and loading conditions. Transverse shear deformations of the adherends are taken into account, and their effect on the solution is shown in the results. All three inplane strains of the adhesive are included. Attention is given to the effect of temperature, both in the adhesive joint problem and to the heat generation in a viscoelastic material under cyclic loading. This separate study is included because heat generation and or spatially varying temperature are at present too difficult to account for in the analytical solution of the bonded joint, but whose effect can not be ignored in design.

  3. Molecular dynamics simulation of interfacial adhesion

    SciTech Connect

    Yarovsky, I.; Chaffee, A.L.

    1996-12-31

    Chromium salts are often used in the pretreatment stages of steel painting processes in order to improve adhesion at the metal oxide/primer interface. Although well established empirically, the chemical basis for the improved adhesion conferred by chromia is not well understood. A molecular level understanding of this behaviour should provide a foundation for the design of materials offering improved adhesion control. Molecular modelling of adhesion involves simulation and analysis of molecular behaviour at the interface between two interacting phases. The present study concerns behaviour at the boundary between the metal coated steel surface (with or without chromium pretreatment) and an organic primer based on a solid epoxide resin produced from bisphenol A and epichlorohydrin. An epoxy resin oligomer of molecular weight 3750 was used as the model for the primer.

  4. Bacterial contamination of cucumber fruit through adhesion.

    PubMed

    Reina, Laura D; Fleming, Henry P; Breidt, Frederick

    2002-12-01

    In this study, the adhesion of bacteria to fresh cucumber surfaces in aqueous suspension was shown to be dependent on time of incubation, inoculum species and concentration, and temperature. The adhesion of bacteria to the fruit in wash water was less extensive at lower temperatures and shorter exposure times. Various species of bacteria were adsorbed to cucumber surfaces in the following relative order: Salmonella Typhimurium > Staphylococcus aureus > Lactobacillus plantarum > Listeria monocytogenes. Cells were adsorbed at all temperatures tested (5, 15, 25, and 35 degrees C) at levels that depended on incubation time, but the numbers of cells adsorbed were larger at higher incubation temperatures. Levels of adhesion of bacteria to dewaxed fruit were higher for L. monocytogenes and lower for Salmonella Typhimurium, L. plantarum, and S. aureus than were levels of adhesion to waxed fruit.

  5. Ice adhesions in relation to freeze stress.

    PubMed

    Olien, C R; Smith, M N

    1977-10-01

    In freezing, competitive interaction between ice and hydrophilic plant substances causes an energy of adhesion to develop through the interstitial liquid. The thermodynamic basis for the adhesion energy is discussed, with estimates of the energies involved. In this research, effects of adhesion energy were observed microscopically in conjunction with energies of crystallization and frost desiccation. The complex character of ice in intact crown tissue of winter barley (Hordeum vulgare L.) and the problems of sectioning frozen tissue without producing artifacts led to an alternative study of single barley cells in a mesh of ice and cell wall polymers. Adhesions between ice, cell wall polymers, and the plasmalemma form a complexly interacting system in which the pattern of crystallization is a major factor in determination of stress and injury.

  6. Adhesion in hydrogels and model glassy polymers

    NASA Astrophysics Data System (ADS)

    Guvendiren, Murat

    Two main topics are addressed in this dissertation: (1) adhesion in hydrogels; (2) interfacial interactions between model glassy polymers. A self-assembly technique for the formation of hydrogels from acrylic triblock copolymer solutions was developed, based on vapor phase solvent exchange. Structure formation in the gels was characterized by small angle X-ray scattering, and swelling was measured in controlled pH buffer solutions. Strong gels are formed with polymer weight fractions between 0.01 and 0.15, and with shear moduli between 0.6 kPa and 3.5 kPa. Adhesive functionality, based on 3,4-dihydroxy-L-phenylalanine (DOPA) was also incorporated into the triblock copolymers. The effect of DOPA concentration on gel formation and swelling was investigated in detail. The adhesive properties of DOPA-functionalized hydrogels on TiO2 were investigated with an axisymmetric adhesion method. It was shown that the presence of DOPA enhances the adhesive properties of the hydrogels, but that the effect is minimized at pH values below 10, where the DOPA groups are hydrophobic. Thin film membranes were produced in order to study the specific interactions between DOPA and TiO2 and DOPA and tissue, using a membrane inflation method. The presence of DOPA in the membranes enhances the adhesion on TiO 2 and tissue, although adhesion to tissue requires that the DOPA groups be oxidized while in contact with the tissue of interest. Porous hydrogel scaffolds for tissue engineering applications were formed by adding salt crystals to the triblock copolymer solution prior to solvent exchange. Salt was then leached out by immersing the gel into water. Structures of the porous hydrogels were characterized by confocal laser scanning microscopy. These hydrogels were shown to be suitable for tissue regeneration and drug delivery applications. Diffusion-mediated adhesion between two component miscible polymer systems having very different glassy temperatures was also investigated. Axisymmetric

  7. Strengthening of dental adhesives via particle reinforcement.

    PubMed

    Belli, Renan; Kreppel, Stefan; Petschelt, Anselm; Hornberger, Helga; Boccaccini, Aldo R; Lohbauer, Ulrich

    2014-09-01

    The bond between methacrylic polymer adhesives and dental restoratives is not perfect and may fail either in the short or in the long term. This study aims to evaluate the effects of particle incorporation in a self-etch model adhesive on mechanical and physical properties that are relevant during application and service. Filled adhesives containing 5, 10, 15 or 25wt% glass fillers were compared to their unfilled counterpart in terms of water sorption and solubility; viscosity and dynamic viscosity during polymerization were recorded using rheological measurements and compared to FTIR analysis of the real-time degree of cure. Elastic modulus and ultimate tensile strength measurements were performed in uniaxial tension; the energy to fracture was used to calculate the fracture toughness of the adhesives. Finally, the experimental adhesives were applied on dentin substrate to test the bond strength using the microtensile test. Results showed that the incorporation of 5-10wt% nanofiller to self-etching dental adhesives is efficient in accelerating the polymerization reaction and increasing the degree of cure without compromising the film viscosity for good wettability or water sorption and solubility. Fillers increased the elastic modulus, tensile strength and fracture toughness to a plateau between 5 and 15wt% filler concentration, and despite the tendency to form agglomerations, active crack pinning/deflection toughening mechanisms have been observed. The bond strength between resin composite and dentin was also improved when adhesives with up to 10wt% fillers were used, with no additional improvements with further packing. The use of fillers to reinforce dental adhesives may therefore be of great practical benefit by improving curing and mechanical properties.

  8. New pressure-sensitive silicone adhesive

    NASA Technical Reports Server (NTRS)

    Leiffer, J. L.; Stoops, W. E., Jr.; St. Clair, T. L.; Watkins, V. E., Jr.; Kelly, T. P.

    1981-01-01

    Adhesive for high or low temperatures does not stretch severely under load. It is produced by combining intermediate-molecular-weight pressure sensitive adhesive which does not cure with silicone resin that cures with catalyst to rubbery tack-free state. Blend of silicone tackifier and cured rubbery silicone requires no solvents in either atmospheric or vacuum environments. Ratio of ingredients varies for different degrees of tack, creep resistance, and tensile strength.

  9. Surface Contamination of Adhesive Bonding Materials.

    DTIC Science & Technology

    1979-12-01

    test is illustrated in Figure 19. The specimen is then exposed to some environment such as high temperature and humidity and monitored for crack growth...bonded and subsequently failed at high humidity and elevated temperatures indicate early crack propagation at the adhesive-oxide interface. Large...Adhesive Tape (A) and a Point Not Exposed to the Tape (B) 21 Positive Secondary Ion Mass Spectra from 44 6AI-4V-Ti at Room Temperature (156-1) and after

  10. Cryogenic adhesives and sealants: Abstracted publications

    NASA Technical Reports Server (NTRS)

    Williamson, F. R.; Olien, N. A.

    1977-01-01

    Abstracts of primary documents containing original experimental data on the properties of adhesives and sealants at cryogenic temperatures are presented. The most important references mentioned in each document are cited. In addition, a brief annotation is given for documents considered secondary in nature, such as republications or variations of original reports, progress reports leading to final reports included as primary documents, and experimental data on adhesive properties at temperatures between about 130 K and room temperature.

  11. Tensiometer for Band-Wound Adhesion Studies

    DTIC Science & Technology

    2016-04-08

    Box 12211 Research Triangle Park, NC 27709-2211 hemostasis, hemorrhage, bandage, liver , adhesion REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S...that are of interest to the DoD. 15. SUBJECT TERMS Trauma, hemorrhage, hemostasis, exsanguination, coagulopathy, hemodilution, liver injury...Proposal title: Tensiometer for bandage-wound adhesion studies List of Appendices A. Figure of liver peel test. B. Description of ex vivo

  12. Analytical cell adhesion chromatography reveals impaired persistence of metastatic cell rolling adhesion to P-selectin

    PubMed Central

    Oh, Jaeho; Edwards, Erin E.; McClatchey, P. Mason; Thomas, Susan N.

    2015-01-01

    ABSTRACT Selectins facilitate the recruitment of circulating cells from the bloodstream by mediating rolling adhesion, which initiates the cell–cell signaling that directs extravasation into surrounding tissues. To measure the relative efficiency of cell adhesion in shear flow for in vitro drug screening, we designed and implemented a microfluidic-based analytical cell adhesion chromatography system. The juxtaposition of instantaneous rolling velocities with elution times revealed that human metastatic cancer cells, but not human leukocytes, had a reduced capacity to sustain rolling adhesion with P-selectin. We define a new parameter, termed adhesion persistence, which is conceptually similar to migration persistence in the context of chemotaxis, but instead describes the capacity of cells to resist the influence of shear flow and sustain rolling interactions with an adhesive substrate that might modulate the probability of extravasation. Among cell types assayed, adhesion persistence to P-selectin was specifically reduced in metastatic but not leukocyte-like cells in response to a low dose of heparin. In conclusion, we demonstrate this as an effective methodology to identify selectin adhesion antagonist doses that modulate homing cell adhesion and engraftment in a cell-subtype-selective manner. PMID:26349809

  13. 21 CFR 175.125 - Pressure-sensitive adhesives.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Pressure-sensitive adhesives. 175.125 Section 175... Substances for Use Only as Components of Adhesives § 175.125 Pressure-sensitive adhesives. Pressure-sensitive... accordance with the following prescribed conditions: (a) Pressure-sensitive adhesives prepared from one or...

  14. 21 CFR 175.125 - Pressure-sensitive adhesives.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Pressure-sensitive adhesives. 175.125 Section 175... Substances for Use Only as Components of Adhesives § 175.125 Pressure-sensitive adhesives. Pressure-sensitive... accordance with the following prescribed conditions: (a) Pressure-sensitive adhesives prepared from one or...

  15. Hyper-adhesion: a unique property of desmosomes.

    PubMed

    Garrod, David; Tabernero, Lydia

    2014-10-01

    Hyper-adhesion is a unique, strongly adhesive form of desmosomal adhesion that functions to maintain tissue integrity. In this short review, we define hyper-adhesion, summarise the evidence for it in culture and in vivo, discuss its role in development, wound healing, and skin disease, and speculate about its molecular and cellular basis.

  16. Diatom Adhesive Mucilage Contains Distinct Supramolecular Assemblies of a Single Modular Protein

    PubMed Central

    Dugdale, T. M.; Dagastine, R.; Chiovitti, A.; Wetherbee, R.

    2006-01-01

    A previous study used atomic force microscopy saw-tooth retraction curves to characterize the adhesive mucilage pads of the diatom Toxarium undulatum. The major mucilage component consisted of adhesive nanofibers (ANFs) made up of modular proteins arranged into cohesive units, each containing a set number of modular proteins aligned in parallel. This study shows that T. undulatum adhesive mucilage is a biocomposite containing four additional adhesive components, including single modular proteins that are likely to be the structural units from which the ANFs are assembled. Two further distinct supramolecular assemblies were observed to coexist with ANFs (ANFs II and III), along with a continuum of single modular proteins through oligomers made up of varying numbers of modular proteins arranged in parallel. All components of the adhesive biocomposite produce a characteristic force spectrum with the same interpeak distance (35.3 ± 0.3 (mean ± SE) nm), suggesting they are derived from discrete supramolecular assemblies of the same modular protein, but they are distinguishable from one another based on the rupture force, persistence length, and interpeak force measured from their saw-tooth curves. PMID:16443662

  17. Bond strength of self-adhesive resin cements to tooth structure

    PubMed Central

    Hattar, Susan; Hatamleh, Muhanad M.; Sawair, Faleh; Al-Rabab’ah, Mohammad

    2015-01-01

    Objectives The aim of this study was to evaluate the strength of the bond between newly introduced self-adhesive resin cements and tooth structures (i.e., enamel and dentin). Methods Three self-adhesive cements (SmartCem2, RelyX Unicem, seT SDI) were tested. Cylindrical-shaped cement specimens (diameter, 3 mm; height, 3 mm) were bonded to enamel and dentin. Test specimens were incubated at 37 °C for 24 h. The shear bond strength (SBS) was tested in a Zwick Roll testing machine. Results were analyzed by one-way ANOVA and t-test. Statistically significant differences were defined at the α = 0.05 level. Bond failures were categorized as adhesive, cohesive, or mixed. Results The SBS values ranged from 3.76 to 6.81 MPa for cements bonded to enamel and from 4.48 to 5.94 MPa for cements bonded to dentin (p > 0.05 between surfaces). There were no statistically significant differences between the SBS values to enamel versus dentin for any given cement type. All cements exhibited adhesive failure at the resin/tooth interface. Conclusions Regardless of their clinical simplicity, the self-adhesive resin cements examined in this study exhibit limited bond performance to tooth structures; therefore, these cements must be used with caution. PMID:26082572

  18. Cell-Substrate Adhesion by Amoeboid Cells

    NASA Astrophysics Data System (ADS)

    Flanders, Bret; Panta, Krishna

    Amoeboid migration is a rapid (10 μm min-1) mode of migration that some tumor cells exhibit. To permit such rapid movement, the adhesive contacts between the cell and the substrate must be relatively short-lived and weak. In this study, we investigate the basic adhesive character of amoeboid cells (D. discoideum) in contact with silanized glass substrates. We observe the initiation and spreading of the adhesive contacts that these cells establish as they settle under gravity onto the substrate and relax towards mechanical equilibrium. The use of interference reflection microscopy and cellular tethering measurements have allowed us to determine the basic adhesive properties of the cell: the membrane-medium interfacial energy; the bending modulus; the equilibrium contact angle; and the work of adhesion. We find the time scale on which settling occurs to be longer than expected. Implications of these results on adhesion and migration will be discussed. The authors are grateful for support from NSF (CBET-1451903) and NIH (1R21EY026392).

  19. Contact angle hysteresis, adhesion, and marine biofouling.

    PubMed

    Schmidt, Donald L; Brady, Robert F; Lam, Karen; Schmidt, Dale C; Chaudhury, Manoj K

    2004-03-30

    Adhesive and marine biofouling release properties of coatings containing surface-oriented perfluoroalkyl groups were investigated. These coatings were prepared by cross-linking a copolymer of 1H,1H,2H,2H-heptadecafluorodecyl acrylate and acrylic acid with a copolymer of poly(2-isopropenyl-2-oxazoline) and methyl methacrylate at different molar ratios. The relationships between contact angle, contact angle hysteresis, adhesion, and marine biofouling were studied. Adhesion was determined by peel tests using pressure-sensitive adhesives. The chemical nature of the surfaces was studied by using X-ray photoelectron spectroscopy. Resistance to marine biofouling of an optimized coating was studied by immersion in seawater and compared to previous, less optimized coatings. The adhesive release properties of the coatings did not correlate well with the surface energies of the coatings estimated from the static and advancing contact angles nor with the amount of fluorine present on the surface. The adhesive properties of the surfaces, however, show a correlation with water receding contact angles and contact angle hysteresis (or wetting hysteresis) resulting from surface penetration and surface reconstruction. Coatings having the best release properties had both the highest cross-link density and the lowest contact angle hysteresis. An optimized coating exhibited unprecedented resistance to marine biofouling. Water contact angle hysteresis appears to correlate with marine biofouling resistance.

  20. Yielding Elastic Tethers Stabilize Robust Cell Adhesion

    PubMed Central

    Whitfield, Matt J.; Luo, Jonathon P.; Thomas, Wendy E.

    2014-01-01

    Many bacteria and eukaryotic cells express adhesive proteins at the end of tethers that elongate reversibly at constant or near constant force, which we refer to as yielding elasticity. Here we address the function of yielding elastic adhesive tethers with Escherichia coli bacteria as a model for cell adhesion, using a combination of experiments and simulations. The adhesive bond kinetics and tether elasticity was modeled in the simulations with realistic biophysical models that were fit to new and previously published single molecule force spectroscopy data. The simulations were validated by comparison to experiments measuring the adhesive behavior of E. coli in flowing fluid. Analysis of the simulations demonstrated that yielding elasticity is required for the bacteria to remain bound in high and variable flow conditions, because it allows the force to be distributed evenly between multiple bonds. In contrast, strain-hardening and linear elastic tethers concentrate force on the most vulnerable bonds, which leads to failure of the entire adhesive contact. Load distribution is especially important to noncovalent receptor-ligand bonds, because they become exponentially shorter lived at higher force above a critical force, even if they form catch bonds. The advantage of yielding is likely to extend to any blood cells or pathogens adhering in flow, or to any situation where bonds are stretched unequally due to surface roughness, unequal native bond lengths, or conditions that act to unzip the bonds. PMID:25473833

  1. Adhesion of oil to kaolinite in water.

    PubMed

    Lebedeva, Evgenia V; Fogden, Andrew

    2010-12-15

    Uniform coats of kaolinite particles on a flat glass substrate were prepared to be sufficiently smooth and thin to allow reliable measurement of contact angles of captive crude oil drops in a range of salt solutions, without any particle removal. The contact angle hysteresis was used to infer the extent of oil adhesion via rupture of the intervening water film and anchoring of charged groups to kaolinite. For sodium chloride solutions, adhesion decreases monotonically with pH and/or salinity, with strong adhesion only manifested under acidic conditions with salinity at most 0.1 M. Calcium chloride solutions at pH around 6 switch from strong adhesion in the range 0.001-0.01 M to weak adhesion at higher concentrations. For all mixtures of sodium and calcium chlorides investigated, a total ionic strength above 0.1 M guarantees a weak adhesion of oil to kaolinite. Results are qualitatively consistent with theoretical expectations of electrostatic interactions, with H(+) and Ca(2+) being potential-determining ions for both interfaces.

  2. Controlled Adhesion of Silicone Elastomer Surfaces

    NASA Astrophysics Data System (ADS)

    Owen, Michael

    2000-03-01

    Opportunities exist for controllably enhancing the adhesion of silicone surfaces, ranging from modest enhancement of release force levels of pressure-sensitive adhesive (PSA) release liners by incorporation of adhesion promoters known as high release additives (HRA), to permanent bonding of silicone elastomers using surface modification techniques such as plasma or corona treatment. Although only a part of the complex interaction of factors contributing to adhesion, surface properties such as wettability are a critical component in the understanding and control of release and adhesion phenomena. Surface characterization studies of low-surface-energy silicones before and after various adhesion modification strategies are reviewed. The silicones include polydimethylsiloxane (PDMS) and fluorosiloxane elastomers and coatings. Techniques used include contact angle, the Johnson, Kendall and Roberts (JKR) contact mechanics approach, scanning electron microscopy (SEM), atomic force microscopy (AFM), and x-ray photoelectron spectroscopy (XPS). Topics addressed are: use of HRA in PDMS release liners, the interaction of PDMS PSAs with polytetrafluoroethylene (PTFE), and the effect of plasma treatment on PDMS and fluorosiloxane surfaces.

  3. Single-molecule mechanics of mussel adhesion

    NASA Astrophysics Data System (ADS)

    Lee, Haeshin; Scherer, Norbert F.; Messersmith, Phillip B.

    2006-08-01

    The glue proteins secreted by marine mussels bind strongly to virtually all inorganic and organic surfaces in aqueous environments in which most adhesives function poorly. Studies of these functionally unique proteins have revealed the presence of the unusual amino acid 3,4-dihydroxy-L-phenylalanine (dopa), which is formed by posttranslational modification of tyrosine. However, the detailed binding mechanisms of dopa remain unknown, and the chemical basis for mussels' ability to adhere to both inorganic and organic surfaces has never been fully explained. Herein, we report a single-molecule study of the substrate and oxidation-dependent adhesive properties of dopa. Atomic force microscopy (AFM) measurements of a single dopa residue contacting a wet metal oxide surface reveal a surprisingly high strength yet fully reversible, noncovalent interaction. The magnitude of the bond dissociation energy as well as the inability to observe this interaction with tyrosine suggests that dopa is critical to adhesion and that the binding mechanism is not hydrogen bond formation. Oxidation of dopa, as occurs during curing of the secreted mussel glue, dramatically reduces the strength of the interaction to metal oxide but results in high strength irreversible covalent bond formation to an organic surface. A new picture of the interfacial adhesive role of dopa emerges from these studies, in which dopa exploits a remarkable combination of high strength and chemical multifunctionality to accomplish adhesion to substrates of widely varying composition from organic to metallic. 3,4-dihydroxylphenylalanine | atomic force microscopy | mussel adhesive protein

  4. Creation of Abdominal Adhesions in Mice.

    PubMed

    Marshall, Clement D; Hu, Michael S; Leavitt, Tripp; Barnes, Leandra A; Cheung, Alexander T M; Malhotra, Samir; Lorenz, H Peter; Longaker, Michael T

    2016-08-27

    Abdominal adhesions consist of fibrotic tissue that forms in the peritoneal space in response to an inflammatory insult, typically surgery or intraabdominal infection. The precise mechanisms underlying adhesion formation are poorly understood. Many compounds and physical barriers have been tested for their ability to prevent adhesions after surgery with varying levels of success. The mouse and rat are important models for the study of abdominal adhesions. Several different techniques for the creation of adhesions in the mouse and rat exist in the literature. Here we describe a protocol utilizing abrasion of the cecum with sandpaper and sutures placed in the right abdominal sidewall. The mouse is anesthetized and the abdomen is prepped. A midline laparotomy is created and the cecum is identified. Sandpaper is used to gently abrade the surface of the cecum. Next, several figure-of-eight sutures are placed into the peritoneum of the right abdominal sidewall. The abdominal cavity is irrigated, a small amount of starch is applied, and the incision is closed. We have found that this technique produces the most consistent adhesions with the lowest mortality rate.

  5. Bistability of cell adhesion in shear flow.

    PubMed

    Efremov, Artem; Cao, Jianshu

    2011-09-07

    Cell adhesion plays a central role in multicellular organisms helping to maintain their integrity and homeostasis. This complex process involves many different types of adhesion proteins, and synergetic behavior of these proteins during cell adhesion is frequently observed in experiments. A well-known example is the cooperation of rolling and stationary adhesion proteins during the leukocytes extravasation. Despite the fact that such cooperation is vital for proper functioning of the immune system, its origin is not fully understood. In this study we constructed a simple analytic model of the interaction between a leukocyte and the blood vessel wall in shear flow. The model predicts existence of cell adhesion bistability, which results from a tug-of-war between two kinetic processes taking place in the cell-wall contact area-bond formation and rupture. Based on the model results, we suggest an interpretation of several cytoadhesion experiments and propose a simple explanation of the existing synergy between rolling and stationary adhesion proteins, which is vital for effective cell adherence to the blood vessel walls in living organisms.

  6. Validation of NOViSE.

    PubMed

    Korzeniowski, Przemyslaw; Brown, Daniel C; Sodergren, Mikael H; Barrow, Alastair; Bello, Fernando

    2017-02-01

    The goal of this study was to establish face, content, and construct validity of NOViSE-the first force-feedback enabled virtual reality (VR) simulator for natural orifice transluminal endoscopic surgery (NOTES). Fourteen surgeons and surgical trainees performed 3 simulated hybrid transgastric cholecystectomies using a flexible endoscope on NOViSE. Four of them were classified as "NOTES experts" who had independently performed 10 or more simulated or human NOTES procedures. Seven participants were classified as "Novices" and 3 as "Gastroenterologists" with no or minimal NOTES experience. A standardized 5-point Likert-type scale questionnaire was administered to assess the face and content validity. NOViSE showed good overall face and content validity. In 14 out of 15 statements pertaining to face validity (graphical appearance, endoscope and tissue behavior, overall realism), ≥50% of responses were "agree" or "strongly agree." In terms of content validity, 85.7% of participants agreed or strongly agreed that NOViSE is a useful training tool for NOTES and 71.4% that they would recommend it to others. Construct validity was established by comparing a number of performance metrics such as task completion times, path lengths, applied forces, and so on. NOViSE demonstrated early signs of construct validity. Experts were faster and used a shorter endoscopic path length than novices in all but one task. The results indicate that NOViSE authentically recreates a transgastric hybrid cholecystectomy and sets promising foundations for the further development of a VR training curriculum for NOTES without compromising patient safety or requiring expensive animal facilities.

  7. Design guidelines for hybrid microcircuits; organic adhesives for hybrid microcircuits

    NASA Technical Reports Server (NTRS)

    Perkins, K. L.; Licari, J. J.

    1975-01-01

    The properties of organic adhesives were studied to acquire an adequate information base to generate a guideline document for the selection of adhesives for use in high reliability hybrid microcircuits. Specific areas covered include: (1) alternate methods for determining the outgassing of cured adhesives; (2) effects of long term aging at 150C on the electrical properties of conductive adhesives; (3) effects of shelf life age on adhesive characteristics; (4) bond strengths of electrically conductive adhesives on thick film gold metallization, (5) a copper filled adhesive; (6) effects of products outgassed from cured adhesives on device electrical parameters; (7) metal migration from electrically conductive adhesives; and (8) ionic content of electrically insulative adhesives. The tests performed during these investigations are described, and the results obtained are discussed in detail.

  8. Bond dissociation energies of diatomic transition metal selenides: TiSe, ZrSe, HfSe, VSe, NbSe, and TaSe

    NASA Astrophysics Data System (ADS)

    Sorensen, Jason J.; Persinger, Thomas D.; Sevy, Andrew; Franchina, Jordan A.; Johnson, Eric L.; Morse, Michael D.

    2016-12-01

    Predissociation thresholds have been observed in the resonant two-photon ionization spectra of TiSe, ZrSe, HfSe, VSe, NbSe, and TaSe. It is argued that the sharp onset of predissociation corresponds to the bond dissociation energy in each of these molecules due to their high density of states as the ground separated atom limit is approached. The bond dissociation energies obtained are D0(TiSe) = 3.998(6) eV, D0(ZrSe) = 4.902(3) eV, D0(HfSe) = 5.154(4) eV, D0(VSe) = 3.884(3) eV, D0(NbSe) = 4.834(3) eV, and D0(TaSe) = 4.705(3) eV. Using these dissociation energies, the enthalpies of formation were found to be Δf,0 KHo(TiSe(g)) = 320.6 ± 16.8 kJ mol-1, Δf,0 KHo(ZrSe(g)) = 371.1 ± 8.5 kJ mol-1, Δf,0 KHo(HfSe(g)) = 356.1 ± 6.5 kJ mol-1, Δf,0 KHo(VSe(g)) = 372.9 ± 8.1 kJ mol-1, Δf,0 KHo(NbSe(g)) = 498.9 ± 8.1 kJ mol-1, and Δf,0 KHo(TaSe(g) ) = 562.9 ± 1.5 kJ mol-1. Comparisons are made to previous work, when available. Also reported are calculated ground state electronic configurations and terms, dipole moments, vibrational frequencies, bond lengths, and bond dissociation energies for each molecule. A strong correlation of the measured bond dissociation energy with the radial expectation value, ⟨r⟩nd, for the metal atom is found.

  9. Single-Phase Photo-Cross-Linkable Bioinspired Adhesive for Precise Control of Adhesion Strength.

    PubMed

    Harper, Tristan; Slegeris, Rimantas; Pramudya, Irawan; Chung, Hoyong

    2017-01-18

    A bioinspired, modular terpolymer adhesive, poly(N-methacryloyl-3,4-dihydroxyl-l-phenylalanine-co-9-(acryloyloxy)butyl anthracene-9-carboxylate-co-acrylic acid), has been synthesized containing three different functionalities: a photo-cross-linking segment, a wet interfacial adhesion segment, and a water-soluble segment. The synthesized adhesive polymer is the first example of a single-phase, photo-cross-linkable adhesive which does not require additional photoinitiator or other cross-linking agents. The terpolymer demonstrates strong adhesion when it swells in water and/or ethanol. The terpolymer is composed of three repeating units: N-methacryloyl-3,4-dihydroxyl-l-phenylalanine (MDOPA), which has been known to generate strong adhesion under wet conditions, poly(acrylic acid), which has been known to increase water solubility of polymers, and a photo-cross-linking segment consisting of an anthracene-based monomer used for enhancement of cohesion properties via UV irradiation (352 nm). A photomediated [4 + 4] cycloaddition reaction of anthracene results in the cross-linking of individual polymer chains after interfacial adhesion between substrates and adhesive polymers. Chemically, the covalent photo-cross-linking was confirmed by UV-vis, (1)H NMR, and gel permeation chromatography (GPC). The cross-linking-fortified cohesion of the adhesive polymer network yields strengthened cohesion properties of the bulk material. The photoreaction was conveniently controlled via the duration of UV-irradiation. The adhesion properties of new adhesives were characterized by lap shear strength on transparent Mylar film and glasses after the adhesive was swollen in biologically friendly solvents including water and ethanol. The adhesion strength (J/m(2)) was enhanced by 850% under 352 nm UV-irradiation. Multiple application variables were tested to determine the optimal conditions, such as solvent, concentration, polymer composition, and substrate. The best adhesion properties were

  10. Adhesive characterization in prestressed piezoelectric laminates

    NASA Astrophysics Data System (ADS)

    Hodges, Charles A.; Mossi, Karla M.; Scott, Lisa A.

    2003-08-01

    Pre-stressed piezoelectric laminates, consisting of one or more metal layers and a piezoelectric material bonded together with an adhesive, have been widely studied over the past few years, both numerically and experimentally. Most of the current research has concentrated on the effect of the metal layers, types and geometry, along with variations in the active layer of the laminate. Historically, the adhesive layer has been neglected as a contributing factor in the overall performance of the final device. This paper attempts to address the effect of the adhesive line thickness and its influence on the performance of pre-stressed piezoelectric laminates under specific boundary conditions. All laminates tested were constructed with the following lay-up: 0.354 mm thick stainless steel, adhesive, 0.381 mm PZT ceramic, adhesive, and a 0.0254 mm aluminum layer. The devices having an adhesive line thickness of 0.169 mm were classified as group A, and group B were the devices with an adhesive line thickness of 0.036 mm. The adhesive line thickness for group A was approximately 21% more than the line thickness of group B. The devices were tested in a simply supported, free-free condition under a series of loads at a constant frequency of 5 Hz over a voltage range from 400 to 800 Volts peak-to-peak. Displacement was measured using loads of 25, 50, 75, 100, and 200 grams for each actuator. The data from each group was averaged and compared. The results showed group B generated more displacement at the same "arm weight" applied as compared to group A. However, only three samples for group B were measured since the rest of the samples failed during testing. Failure of the devices of group B may be due to the ultimate stress of the devices and their ability to lift a load under those conditions. The study demonstrated that adhesive layer thickness, along with the manufacturing process, has to be taken into account when developing an application that requires load

  11. Contribution from pressure-sensitive adhesives

    NASA Astrophysics Data System (ADS)

    Cunningham, Gilbert

    1996-03-01

    The successful use of many security papers, foils and films depends on the technology of chemical fastening systems -- especially pressure sensitive adhesives. These are adhesives activated not by heat or by the evaporation of water or some other solvent, but simply by the act of application -- by pressure. These adhesives provide the means whereby laminations, substrates and seals are made effective. In addition to their physical properties these adhesives are often required to possess optical properties to allow the security materials to be visibly active and indeed the adhesive system may itself contribute as a carrier for a variety of security materials. Recent advances in adhesives chemistry have made it possible to achieve virtually all the required physical performance characteristics combined with a choice of optical properties ranging from total opacity to invisibility and including controlled translucency and tinting. The implications for security printing and packaging are important. Opacity is easy to achieve, for example by loading the adhesive with aluminum powder, by the selection of totally opaque materials like metallized film or by various printing processes. But achieving transparency is a different matter, and transparency is mandatory for applications involving the protection of documents, photographs, etc. with a clear film over-laminate. Obvious examples would be for passports, visas and other personal identification. But some security devices may themselves require protection; for example holograms or embossings. And transparency in the test laboratory is not enough. The Australian driving licence is stuck to the windshield, so the transparency of the adhesive must be sustained over long periods without deterioration due to prolonged u/v exposure, climatic conditions or aging. The commercial label market has helped to push the technology forward. There is a strong demand for the 'no-label look' for packaging of clear plastic and glass

  12. Effect of reacted acidic monomer with calcium on bonding performance.

    PubMed

    Fujita, K; Ma, S; Aida, M; Maeda, T; Ikemi, T; Hirata, M; Nishiyama, N

    2011-05-01

    We determined the number of reacted and unreacted 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) molecules with calcium during the demineralization process of hydroxyapatite or dentin by 10-MDP-based one-step (Clearfil Tri-S Bond, TS) or two-step self-etch adhesive (Clearfil SE Bond Primer, SE). We then examined the effects of the number of reacted and/or unreacted 10-MDP molecules on the initial bond strength and bond durability of the resultant adhesive layer. The null hypotheses were that (1) the etching efficacy of tooth apatite by 10-MDP used in TS was the same as that in SE, and (2) the unreacted 10-MDP polymer included within the adhesive layer does not affect bond durability. Addition of hydroxyapatite or dentin to the TS and SE resulted in decreases in the NMR peak intensities for 10-MDP. The peak intensity for 10-MDP showed a greater reduction in SE than in TS, consistent with the observation that SE provided significantly higher initial mean bond strengths than TS. Further, the unreacted 10-MDP polymer within the adhesive layer did not decrease the mean bond strength, despite the application of 20,000x thermo-cycling.

  13. Effect of EDTA and Phosphoric Acid Pretreatment on the Bonding Effectiveness of Self-Etch Adhesives to Ground Enamel

    PubMed Central

    Ibrahim, Ihab M.; Elkassas, Dina W.; Yousry, Mai M.

    2010-01-01

    Objectives: This in vitro study determined the effect of enamel pretreatment with phosphoric acid and ethylenediaminetetraacetic acid (EDTA) on the bond strength of strong, intermediary strong, and mild self-etching adhesive systems. Methods: Ninety sound human premolars were used. Resin composite cylinders were bonded to flat ground enamel surfaces using three self-etching adhesive systems: strong Adper Prompt L-Pop (pH=0.9–1.0), intermediary strong AdheSE (pH=1.6–1.7), and mild Frog (pH=2). Adhesive systems were applied either according to manufacturer instructions (control) or after pretreatment with either phosphoric acid or EDTA (n=10). After 24 hours, shear bond strength was tested using a universal testing machine at a cross-head speed of 0.5 mm/minute. Ultra-morphological characterization of the surface topography and resin/enamel interfaces as well as representative fractured enamel specimens were examined using scanning electron microscopy (SEM). Results: Neither surface pretreatment statistically increased the mean shear bond strength values of either the strong or the intermediary strong self-etching adhesive systems. However, phosphoric acid pretreatment significantly increased the mean shear bond strength values of the mild self-etching adhesive system. SEM examination of enamel surface topography showed that phosphoric acid pretreatment deepened the same etching pattern of the strong and intermediary strong adhesive systems but converted the irregular etching pattern of the mild self-etching adhesive system to a regular etching pattern. SEM examination of the resin/enamel interface revealed that deepening of the etching pattern was consistent with increase in the length of resin tags. EDTA pretreatment had a negligible effect on ultra-morphological features. Conclusions: Use of phosphoric acid pretreatment can be beneficial with mild self-etching adhesive systems for bonding to enamel. PMID:20922162

  14. Adhesion of latex films. Influence of surfactants

    SciTech Connect

    Charmeau, J.Y.; Kientz, E.; Holl, Y.

    1996-12-31

    In the applications of film forming latexes in paint, paper, coating, adhesive, textile industries, one of the most important property of latex films is adhesion onto a support. From the point of view of adhesion, latex films have two specificities. The first one arises from the particular structure of the film which is usually not homogeneous but retains to a certain extent the memory of the particles it was made from. These structure effects are clearly apparent when one compares mechanical or adhesion properties of pure latex films and of films of the same polymers but prepared from a solution. Latex films show higher Young`s moduli and lower adhesion properties than solution films. The second specificity of latex films comes from the presence of the surfactant which was used in the synthesis and as stabilizer for the latex. Most industrial latexes contain low amounts of surfactant, typically in the range 0.1 to 2-3 wt%. However, being usually incompatible with the polymer, the surfactant is not homogeneously distributed in the film. It tends to segregate towards the film-air or film-support interfaces or to form domains in the bulk of the film. Distribution of surfactants in latex films has been studied by several authors. The influence of the surfactant on adhesion, as well as on other properties, is thus potentially very important. This article presents the results of the authors investigation of surfactant effects on adhesion properties of latex films. To the authors knowledge, there is no other example, in the open literature, of this kind of study.

  15. Validation of NOViSE

    PubMed Central

    Korzeniowski, Przemyslaw; Brown, Daniel C.; Sodergren, Mikael H.; Barrow, Alastair; Bello, Fernando

    2016-01-01

    The goal of this study was to establish face, content, and construct validity of NOViSE—the first force-feedback enabled virtual reality (VR) simulator for natural orifice transluminal endoscopic surgery (NOTES). Fourteen surgeons and surgical trainees performed 3 simulated hybrid transgastric cholecystectomies using a flexible endoscope on NOViSE. Four of them were classified as “NOTES experts” who had independently performed 10 or more simulated or human NOTES procedures. Seven participants were classified as “Novices” and 3 as “Gastroenterologists” with no or minimal NOTES experience. A standardized 5-point Likert-type scale questionnaire was administered to assess the face and content validity. NOViSE showed good overall face and content validity. In 14 out of 15 statements pertaining to face validity (graphical appearance, endoscope and tissue behavior, overall realism), ≥50% of responses were “agree” or “strongly agree.” In terms of content validity, 85.7% of participants agreed or strongly agreed that NOViSE is a useful training tool for NOTES and 71.4% that they would recommend it to others. Construct validity was established by comparing a number of performance metrics such as task completion times, path lengths, applied forces, and so on. NOViSE demonstrated early signs of construct validity. Experts were faster and used a shorter endoscopic path length than novices in all but one task. The results indicate that NOViSE authentically recreates a transgastric hybrid cholecystectomy and sets promising foundations for the further development of a VR training curriculum for NOTES without compromising patient safety or requiring expensive animal facilities. PMID:27671036

  16. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins.

    PubMed

    Petrone, Luigi; Kumar, Akshita; Sutanto, Clarinda N; Patil, Navinkumar J; Kannan, Srinivasaraghavan; Palaniappan, Alagappan; Amini, Shahrouz; Zappone, Bruno; Verma, Chandra; Miserez, Ali

    2015-10-28

    Interfacial water constitutes a formidable barrier to strong surface bonding, hampering the development of water-resistant synthetic adhesives. Notwithstanding this obstacle, the Asian green mussel Perna viridis attaches firmly to underwater surfaces via a proteinaceous secretion (byssus). Extending beyond the currently known design principles of mussel adhesion, here we elucidate the precise time-regulated secretion of P. viridis mussel adhesive proteins. The vanguard 3,4-dihydroxy-L-phenylalanine (Dopa)-rich protein Pvfp-5 acts as an adhesive primer, overcoming repulsive hydration forces by displacing surface-bound water and generating strong surface adhesion. Using homology modelling and molecular dynamics simulations, we find that all mussel adhesive proteins are largely unordered, with Pvfp-5 adopting a disordered structure and elongated conformation whereby all Dopa residues reside on the protein surface. Time-regulated secretion and structural disorder of mussel adhesive proteins appear essential for optimizing extended nonspecific surface interactions and byssus' assembly. Our findings reveal molecular-scale principles to help the development of wet-resistant adhesives.

  17. Inhibition of Adhesion Molecule Gene Expression and Cell Adhesion by the Metabolic Regulator PGC-1α.

    PubMed

    Minsky, Neri; Roeder, Robert G

    2016-01-01

    Cell adhesion plays an important role in determining cell shape and function in a variety of physiological and pathophysiological conditions. While links between metabolism and cell adhesion were previously suggested, the exact context and molecular details of such a cross-talk remain incompletely understood. Here we show that PGC-1α, a pivotal transcriptional co-activator of metabolic gene expression, acts to inhibit expression of cell adhesion genes. Using cell lines, primary cells and mice, we show that both endogenous and exogenous PGC-1α down-regulate expression of a variety of cell adhesion molecules. Furthermore, results obtained using mRNA stability measurements as well as intronic RNA expression are consistent with a transcriptional effect of PGC-1α on cell adhesion gene expression. Interestingly, the L2/L3 motifs of PGC-1α, necessary for nuclear hormone receptor activation, are only partly required for inhibition of several cell adhesion genes by PGC-1α. Finally, PGC-1α is able to modulate adhesion of primary fibroblasts and hepatic stellate cells to extracellular matrix proteins. Our results delineate a cross talk between a central pathway controlling metabolic regulation and cell adhesion, and identify PGC-1α as a molecular link between these two major cellular networks.

  18. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins

    NASA Astrophysics Data System (ADS)

    Petrone, Luigi; Kumar, Akshita; Sutanto, Clarinda N.; Patil, Navinkumar J.; Kannan, Srinivasaraghavan; Palaniappan, Alagappan; Amini, Shahrouz; Zappone, Bruno; Verma, Chandra; Miserez, Ali

    2015-10-01

    Interfacial water constitutes a formidable barrier to strong surface bonding, hampering the development of water-resistant synthetic adhesives. Notwithstanding this obstacle, the Asian green mussel Perna viridis attaches firmly to underwater surfaces via a proteinaceous secretion (byssus). Extending beyond the currently known design principles of mussel adhesion, here we elucidate the precise time-regulated secretion of P. viridis mussel adhesive proteins. The vanguard 3,4-dihydroxy-L-phenylalanine (Dopa)-rich protein Pvfp-5 acts as an adhesive primer, overcoming repulsive hydration forces by displacing surface-bound water and generating strong surface adhesion. Using homology modelling and molecular dynamics simulations, we find that all mussel adhesive proteins are largely unordered, with Pvfp-5 adopting a disordered structure and elongated conformation whereby all Dopa residues reside on the protein surface. Time-regulated secretion and structural disorder of mussel adhesive proteins appear essential for optimizing extended nonspecific surface interactions and byssus' assembly. Our findings reveal molecular-scale principles to help the development of wet-resistant adhesives.

  19. Focal adhesion kinase maintains, but not increases the adhesion of dental pulp cells.

    PubMed

    Qian, Yuyan; Shao, Meiying; Zou, Wenlin; Wang, Linyan; Cheng, Ran; Hu, Tao

    2017-02-25

    Focal adhesion kinase (FAK) functions as a key enzyme in the integrin-mediated adhesion-signalling pathway. Here, we aimed to investigate the effects of FAK on adhesion of human dental pulp (HDP) cells. We transfected lentiviral vectors to silence or overexpress FAK in HDP cells ex vivo. Early cell adhesion, cell survival and focal contacts (FCs)-related proteins (FAK and paxillin) were examined. By using immunofluorescence, the formation of FCs and cytoskeleton was detected, respectively. We found that both adhesion and survival of HDP cells were suppressed by FAK inhibition. However, FAK overexpression slightly inhibited cell adhesion and exhibited no change in cell survival compared with the control. A thick rim of cytoskeleton accumulated and smaller dot-shaped FCs appeared in FAK knockdown cells. Phosphorylation of paxillin (p-paxillin) was inhibited in FAK knockdown cells, verifying that the adhesion was inhibited. Less cytoskeleton and elongated FCs were observed in FAK-overexpressed cells. However, p-paxillin had no significant difference compared with the control. In conclusion, the data suggest that FAK maintains cell adhesion, survival and cytoskeleton formation, but excessive FAK has no positive effects on these aspects.

  20. Enzymatic degradation of adhesive-dentin interfaces produced by mild self-etch adhesives.

    PubMed

    De Munck, Jan; Mine, Atsushi; Van den Steen, Philippe E; Van Landuyt, Kirsten L; Poitevin, André; Opdenakker, Ghislain; Van Meerbeek, Bart

    2010-10-01

    Endogenous matrix metalloproteinases (MMPs) released by adhesive procedures may degrade collagen in the hybrid layer and so compromise the bonding effectiveness of etch-and-rinse adhesives. In this study, endogenous enzymatic degradation was evaluated for several simplified self-etch adhesives. In addition, primers were modified by adding two MMP inhibitors: chlorhexidine, a commonly used disinfectant, but also a non-specific MMP inhibitor; and SB-3CT, a specific inhibitor of MMP-2 and MMP-9. Gelatin zymography of fresh human dentin powder was used to identify the enzymes released by the adhesives. Micro-tensile bond strength (μTBS) testing was used to assess the mechanical properties of resin-dentin interfaces over time. In none of the experimental groups treated with the mild self-etch adhesives was MMP-2 and/or MMP-9 identified. Also, no difference in the μTBS was measured for the inhibitor-modified and the control inhibitor-free adhesives after 6 months of water storage. It is concluded that in contrast to etch-and-rinse adhesives, the involvement of endogenous MMP-2 and MMP-9 in the bond-degradation process is minimal for mild self-etch adhesives.

  1. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins

    PubMed Central

    Petrone, Luigi; Kumar, Akshita; Sutanto, Clarinda N.; Patil, Navinkumar J.; Kannan, Srinivasaraghavan; Palaniappan, Alagappan; Amini, Shahrouz; Zappone, Bruno; Verma, Chandra; Miserez, Ali

    2015-01-01

    Interfacial water constitutes a formidable barrier to strong surface bonding, hampering the development of water-resistant synthetic adhesives. Notwithstanding this obstacle, the Asian green mussel Perna viridis attaches firmly to underwater surfaces via a proteinaceous secretion (byssus). Extending beyond the currently known design principles of mussel adhesion, here we elucidate the precise time-regulated secretion of P. viridis mussel adhesive proteins. The vanguard 3,4-dihydroxy-L-phenylalanine (Dopa)-rich protein Pvfp-5 acts as an adhesive primer, overcoming repulsive hydration forces by displacing surface-bound water and generating strong surface adhesion. Using homology modelling and molecular dynamics simulations, we find that all mussel adhesive proteins are largely unordered, with Pvfp-5 adopting a disordered structure and elongated conformation whereby all Dopa residues reside on the protein surface. Time-regulated secretion and structural disorder of mussel adhesive proteins appear essential for optimizing extended nonspecific surface interactions and byssus' assembly. Our findings reveal molecular-scale principles to help the development of wet-resistant adhesives. PMID:26508080

  2. Nanorough titanium surfaces reduce adhesion of Escherichia coli and Staphylococcus aureus via nano adhesion points.

    PubMed

    Lüdecke, Claudia; Roth, Martin; Yu, Wenqi; Horn, Uwe; Bossert, Jörg; Jandt, Klaus D

    2016-09-01

    Microbial adhesion to natural and synthetic materials surfaces is a key issue e.g. in food industry, sewage treatment and most importantly in the biomedical field. The current development and progress in nanoscale structuring of materials surfaces to control microbial adhesion requires an advanced understanding of the microbe-material-interaction. This study aimed to investigate the nanostructure of the microbe-material-interface and link it to microbial adhesion kinetics as function of titanium surface nanoroughness to gain new insight into controlling microbial adhesion via materials' surface nanoroughness. Adhesion of Escherichia coli and Staphylococcus aureus was statistically significantly reduced (p≤0.05) by 55.6 % and 40.5 %, respectively, on physical vapor deposited titanium thin films with a nanoroughness of 6nm and the lowest surface peak density compared to 2nm with the highest surface peak density. Cross-sectioning of the microbial cells with a focused ion beam (FIB) and SEM imaging provided for the first time direct insight into the titanium-microbe-interface. High resolution SEM micrographs gave evidence that the surface peaks are the loci of initial contact between the microbial cells and the material's surface. In a qualitative model we propose that the initial microbial adhesion on nanorough surfaces is controlled by the titanium surface peak density via nano adhesion points. This new understanding will help towards the design of materials surfaces for controlling microbial adhesion.

  3. Cadherin-11 localizes to focal adhesions and promotes cell–substrate adhesion

    PubMed Central

    Langhe, Rahul P.; Gudzenko, Tetyana; Bachmann, Michael; Becker, Sarah F.; Gonnermann, Carina; Winter, Claudia; Abbruzzese, Genevieve; Alfandari, Dominique; Kratzer, Marie-Claire; Franz, Clemens M.; Kashef, Jubin

    2016-01-01

    Cadherin receptors have a well-established role in cell–cell adhesion, cell polarization and differentiation. However, some cadherins also promote cell and tissue movement during embryonic development and tumour progression. In particular, cadherin-11 is upregulated during tumour and inflammatory cell invasion, but the mechanisms underlying cadherin-11 stimulated cell migration are still incompletely understood. Here, we show that cadherin-11 localizes to focal adhesions and promotes adhesion to fibronectin in Xenopus neural crest, a highly migratory embryonic cell population. Transfected cadherin-11 also localizes to focal adhesions in different mammalian cell lines, while endogenous cadherin-11 shows focal adhesion localization in primary human fibroblasts. In focal adhesions, cadherin-11 co-localizes with β1-integrin and paxillin and physically interacts with the fibronectin-binding proteoglycan syndecan-4. Adhesion to fibronectin mediated by cadherin-11/syndecan-4 complexes requires both the extracellular domain of syndecan-4, and the transmembrane and cytoplasmic domains of cadherin-11. These results reveal an unexpected role of a classical cadherin in cell–matrix adhesion during cell migration. PMID:26952325

  4. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification... together the skin edges of a wound, to support an injured part of the body, or to secure objects to the skin. (b) Classification. Class I (general controls). The device is exempt from the...

  5. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification... together the skin edges of a wound, to support an injured part of the body, or to secure objects to the skin. (b) Classification. Class I (general controls). The device is exempt from the...

  6. Inhibition of Adhesion Molecule Gene Expression and Cell Adhesion by the Metabolic Regulator PGC-1α

    PubMed Central

    Minsky, Neri; Roeder, Robert G.

    2016-01-01

    Cell adhesion plays an important role in determining cell shape and function in a variety of physiological and pathophysiological conditions. While links between metabolism and cell adhesion were previously suggested, the exact context and molecular details of such a cross-talk remain incompletely understood. Here we show that PGC-1α, a pivotal transcriptional co-activator of metabolic gene expression, acts to inhibit expression of cell adhesion genes. Using cell lines, primary cells and mice, we show that both endogenous and exogenous PGC-1α down-regulate expression of a variety of cell adhesion molecules. Furthermore, results obtained using mRNA stability measurements as well as intronic RNA expression are consistent with a transcriptional effect of PGC-1α on cell adhesion gene expression. Interestingly, the L2/L3 motifs of PGC-1α, necessary for nuclear hormone receptor activation, are only partly required for inhibition of several cell adhesion genes by PGC-1α. Finally, PGC-1α is able to modulate adhesion of primary fibroblasts and hepatic stellate cells to extracellular matrix proteins. Our results delineate a cross talk between a central pathway controlling metabolic regulation and cell adhesion, and identify PGC-1α as a molecular link between these two major cellular networks. PMID:27984584

  7. Connexin 43 expressed in endothelial cells modulates monocyte‑endothelial adhesion by regulating cell adhesion proteins.

    PubMed

    Yuan, Dongdong; Sun, Guoliang; Zhang, Rui; Luo, Chenfang; Ge, Mian; Luo, Gangjian; Hei, Ziqing

    2015-11-01

    Adhesion between circulating monocytes and vascular endothelial cells is a key initiator of atherosclerosis. In our previous studies, it was demonstrated that the expression of connexin (Cx)43 in monocytes modulates cell adhesion, however, the effects of the expression of Cx43 in endothelial cells remains to be elucidated. Therefore, the present study investigated the role of the expression of Cx43 in endothelial cells in the process of cell adhesion. A total of four different methods with distinct mechanisms were used to change the function and expression of Cx43 channels in human umbilical vein endothelial cells: Cx43 channel inhibitor (oleamide), enhancer (retinoic acid), overexpression of Cx43 by transfection with pcDNA‑Cx43 and knock‑down of the expression of Cx43 by small interfering RNA against Cx43. The results indicated that the upregulation of the expression of Cx43 enhanced monocyte‑endothelial adhesion and this was markedly decreased by downregulation of Cx43. This mechanism was associated with Cx43‑induced expression of vascular cell adhesion molecule‑1 and intercellular cell adhesion molecule‑1. The effects of Cx43 in endothelial cells was independent of Cx37 or Cx40. These experiments suggested that local regulation of endothelial Cx43 expression within the vasculature regulates monocyte‑endothelial adhesion, a critical event in the development of atherosclerosis and other inflammatory pathologies, with baseline adhesion set by the expression of Cx43. This balance may be crucial in controlling leukocyte involvement in inflammatory cascades.

  8. Comparative Evaluation of Microshear Bond Strength of 5th, 6th and 7th Generation Bonding Agents to Coronal Dentin Versus Dentin at Floor of Pulp Chamber: An In vitro Study

    PubMed Central

    Deepa, Velagala Lakshmi; Damaraju, Bhargavi; Priyadharsini, Bollu Indira; Subbarao, Vummidisetti V; Raju, K Rama Krishna

    2014-01-01

    Background: Lack of seal and adhesion between the final restoration and tooth structure adversely affects the results of root canal treatment. Lots of adhesive bonding agents are marketed to overcome this deficiency and achieve successful restoration. So the study compares and evaluates the micro shear bond strength of coronal dentin and pulp chamber dentin using three different generation dentin bonding systems and to know clinical efficiency for clinical use. Materials and Methods: Different generation dentin bonding systems used were: (1) One bottle total etch system (XP Bond-5th generation), (2) Two-step self-etch system (Clearfil SE Bond-6th generation) and (3) All-in-one system (G Bond-7th generation). Thirty human mandibular molars were collected out of which sixty samples were prepared by sectioning each tooth into coronal dentin and pulpal floor dentin. They were divided into two major groups. Group I: 30 Coronal dentin samples. Group II:30 Pulpal floor dentin samples. Both the groups were further subdivided depending on the bonding agent used. Subgroup Ia:XP Bond, Subgroup Ib:Clearfil SE Bond, Subgroup Ic:G Bond, Subgroup IIa:XP Bond, Subgroup IIb:Clearfil SE Bond, Subgroup IIc:G Bond. Resin composite was bonded to these samples and tested for micro-shear bond strength. The mean bond strengths and standard deviations were calculated and analyzed using one-way ANOVA test and Student’s t-test (unpaired) and honestly significant difference post-hoc tests. Results: Coronal dentin showed higher values of micro shear bond strength than the pulpal floor dentin. All-in-one system (G Bond) showed least bond strength values to both the regions coronal dentin and pulpal floor dentin. Conclusion: Factors affecting the shear bond strength are dependent on material (adhesive system), substrate depth and adhesive/depth interaction. Hence composition and substrate treatment should be considered for good adhesive. Chemical composition of adhesive system determines

  9. Dietary Selenium Supplementation Modulates Growth of Brain Metastatic Tumors and Changes the Expression of Adhesion Molecules in Brain Microvessels.

    PubMed

    Wrobel, Jagoda K; Wolff, Gretchen; Xiao, Rijin; Power, Ronan F; Toborek, Michal

    2016-08-01

    Various dietary agents can modulate tumor invasiveness. The current study explored whether selenoglycoproteins (SeGPs) extracted from selenium-enriched yeast affect tumor cell homing and growth in the brain. Mice were fed diets enriched with specific SeGPs (SeGP40 or SeGP65, 1 mg/kg Se each), glycoproteins (GP40 or GP65, 0.2-0.3 mg/kg Se each) or a control diet (0.2-0.3 mg/kg Se) for 12 weeks. Then, murine Lewis lung carcinoma cells were infused into the brain circulation. Analyses were performed at early (48 h) and late stages (3 weeks) post tumor cell infusion. Imaging of tumor progression in the brain revealed that mice fed SeGP65-enriched diet displayed diminished metastatic tumor growth, fewer extravasating tumor cells and smaller metastatic lesions. While administration of tumor cells resulted in a significant upregulation of adhesion molecules in the early stage of tumor progression, overexpression of VCAM-1 (vascular call adhesion molecule-1) and ALCAM (activated leukocyte cell adhesion molecule) messenger RNA (mRNA) was diminished in SeGP65 supplemented mice. Additionally, mice fed SeGP65 showed decreased expression of acetylated NF-κB p65, 48 h post tumor cell infusion. The results indicate that tumor progression in the brain can be modulated by specific SeGPs. Selenium-containing compounds were more effective than their glycoprotein controls, implicating selenium as a potential negative regulator of metastatic process.

  10. Supramolecular adhesives to hard surfaces: adhesion between host hydrogels and guest glass substrates through molecular recognition.

    PubMed

    Takashima, Yoshinori; Sahara, Taiga; Sekine, Tomoko; Kakuta, Takahiro; Nakahata, Masaki; Otsubo, Miyuki; Kobayashi, Yuichiro; Harada, Akira

    2014-10-01

    Supramolecular materials based on host-guest interactions should exhibit high selectivity and external stimuli-responsiveness. Among various stimuli, redox and photo stimuli are useful for its wide application. An external stimuli-responsive adhesive system between CD host-gels (CD gels) and guest molecules modified glass substrates (guest Sub) is focused. Here, the selective adhesion between host gels and guest substrates where adhesion depends on molecular complementarity is reported. Initially, it is thought that adhesion of a gel material onto a hard material might be difficult unless many guest molecules modified linear polymers immobilize on the surface of hard materials. However, reversible adhesion of the CD gels is observed by dissociating and re-forming inclusion complex in response to redox and photo stimuli.

  11. The effect of polyethylene glycol adhesion barrier (Spray Gel) on preventing peritoneal adhesions.

    PubMed

    Dasiran, F; Eryilmaz, R; Isik, A; Okan, I; Somay, A; Sahin, M

    2015-01-01

    The prominent cells in the late phase of wound healing during proliferation and matrix deposition are fibroblasts. Foreign materials in the operation site like prosthesis prolong the inflammation and induce fibroblast proliferation (8). 3 different prostheses used in this study induced chronic inflammation and fibrosis and provided an effective repair. Dense and thick adhesions due to fibrosis also induced strong adhesions to omentum and small intestine if only polypropylene mesh used for hernia repair. However, there was no difference between SprayGel treated polypropylene mesh and Sepramesh when compared for fibrosis. It also prevents the intraabdominal adhesion formation. It is nontoxic, sticky adherent, non- immigrant and easy to use both in open and laparoscopic surgeries. This experimental study revealed that polyethyleneglycol applied polypropylene mesh accomplishes hernia repair with significantly less adhesion formation than polypropylene mesh alone while securing a remarkable economy than adhesion barrier coated dual meshes (Tab. 6, Fig. 7, Ref. 23). Text in PDF www.elis.sk.

  12. Shear Strength of Conductive Adhesive Joints on Rigid and Flexible Substrates Depending on Adhesive Quantity

    NASA Astrophysics Data System (ADS)

    Hirman, Martin; Steiner, Frantisek

    2016-05-01

    This article deals with the impact of electrically conductive adhesive quantity on the shear strength of joints glued by adhesives "EPO-TEKⓇ H20S" and "MG8331S" on three types of substrates (FR-4, MELINEXⓇST504, DuPont™ PyraluxⓇAC). These joints were made by gluing chip resistors 1206, 0805 and 0603, with two curing profiles for each adhesive. Different thicknesses of stencil and reductions in the size of the hole in stencils were used for this experiment. These differences have an effect on the quantity of conductive adhesives which must be used on the samples. Samples were measured after the curing process by using a shear strength test applied by the device LabTest 3.030. This article presents the effects of different curing profiles, various types of substrates, and different quantities of adhesives on the mechanical strength of the joint.

  13. BIOLOGICAL ADHESIVES. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement.

    PubMed

    Maier, Greg P; Rapp, Michael V; Waite, J Herbert; Israelachvili, Jacob N; Butler, Alison

    2015-08-07

    In physiological fluids and seawater, adhesion of synthetic polymers to solid surfaces is severely limited by high salt, pH, and hydration, yet these conditions have not deterred the evolution of effective adhesion by mussels. Mussel foot proteins provide insights about adhesive adaptations: Notably, the abundance and proximity of catecholic Dopa (3,4-dihydroxyphenylalanine) and lysine residues hint at a synergistic interplay in adhesion. Certain siderophores—bacterial iron chelators—consist of paired catechol and lysine functionalities, thereby providing a convenient experimental platform to explore molecular synergies in bioadhesion. These siderophores and synthetic analogs exhibit robust adhesion energies (E(ad) ≥-15 millijoules per square meter) to mica in saline pH 3.5 to 7.5 and resist oxidation. The adjacent catechol-lysine placement provides a "one-two punch," whereby lysine evicts hydrated cations from the mineral surface, allowing catechol binding to underlying oxides.

  14. Ultrasonic Nondestructive Characterization of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Qu, Jianmin

    1999-01-01

    Adhesives and adhesive joints are widely used in various industrial applications to reduce weight and costs, and to increase reliability. For example, advances in aerospace technology have been made possible, in part, through the use of lightweight materials and weight-saving structural designs. Joints, in particular, have been and continue to be areas in which weight can be trimmed from an airframe through the use of novel attachment techniques. In order to save weight over traditional riveted designs, to avoid the introduction of stress concentrations associated with rivet holes, and to take full advantage of advanced composite materials, engineers and designers have been specifying an ever-increasing number of adhesively bonded joints for use on airframes. Nondestructive characterization for quality control and remaining life prediction has been a key enabling technology for the effective use of adhesive joints. Conventional linear ultrasonic techniques generally can only detect flaws (delamination, cracks, voids, etc) in the joint assembly. However, more important to structural reliability is the bond strength. Although strength, in principle, cannot be measured nondestructively, a slight change in material nonlinearity may indicate the onset of failure. Furthermore, microstructural variations due to aging or under-curing may also cause changes in the third order elastic constants, which are related to the ultrasonic nonlinear parameter of the polymer adhesive. It is therefore reasonable to anticipate a correlation between changes in the ultrasonic nonlinear acoustic parameter and the remaining bond strength. It has been observed that higher harmonics of the fundamental frequency are generated when an ultrasonic wave passes through a nonlinear material. It seems that such nonlinearity can be effectively used to characterize bond strength. Several theories have been developed to model this nonlinear effect. Based on a microscopic description of the nonlinear

  15. Actin Foci Adhesion of D. discoideum

    NASA Astrophysics Data System (ADS)

    Flanders, Bret; Paneru, Govind

    2014-03-01

    Amoeboid migration is a fast (10 μm min-1) integrin-independent mode of migration that is important with D. discoideum, leukocytes, and breast cancer cells. It is poorly understood, but depends on the establishment of adhesive contacts to the substrate where the cell transmits traction forces. In pre-aggregative D. discoideum, a model system for learning about amoeboid migration, these adhesive contacts are discrete complexes that are known as actin-foci. They have an area of ~ 0.5 μm2 and a lifetime of ~ 20 s. This talk will present measurements of the adhesive character of actin foci that have been obtained using a submicron force transducer that was designed for this purpose. Results on the rupture stresses and lifetimes of individual acting foci under nano-newton level forces will be described in the context of a general theory for cellular adhesion. This theory depends on, essentially, three cellular properties: the membrane-medium surface tension, the number density of adhesion receptors in the membrane, and the receptor-substrate potential energy surface. Therefore, the use of the transducer to determine the surface tension will be presented, as well.

  16. Environmental durability of adhesively bonded joints

    NASA Astrophysics Data System (ADS)

    Butkus, Lawrence Michael

    The goal of this project was to evaluate the environmental durability of adhesively bonded aircraft joints using fracture mechanics. Three aerospace adhesives, two epoxies and one polyimide, were investigated. Adhesive specimens were tested for tensile and toughness behavior. Bonded joint specimens were subject to Mode I, Mode II, and mixed mode fracture and fatigue tests. Prior to testing, selected specimens were exposed for up to 10,000 hours to isothermal and thermally cyclic conditions similar to aircraft service environments. Analysis was accomplished using finite element programs and closed-form solutions. Environmental exposure caused reductions in the failure strain, strength, and toughness, of the adhesive specimens and in the toughness and fatigue threshold of the bonded joint specimens. Specimens exposed to high temperature and humidity prior to testing and those tested at low temperatures indicative of high altitude operations experienced the most significant toughness losses. Results are discussed in terms of their relationship to bonded joint design and should prove valuable to efforts aimed at extending the lives of aging aircraft using bonded repairs as well as to efforts focused on using adhesive bonding for future aerospace structures.

  17. Irrigant divalent cation concentrations influence bacterial adhesion

    PubMed Central

    Dass, Clarissa L.; Walsh, Mary F.; Seo, Sue; Shiratsuchi, Hiroe; Craig, David H.; Basson, Marc D.

    2009-01-01

    Background Surgical wounds are frequently contaminated by microbes, but rarely become infected if the bacterial burden is low, and irrigation is used to reduce contamination. Wound fluids are low in calcium and high in magnesium. We hypothesized that manipulating irrigant divalent cation concentrations might influence bacterial adhesion. Methods Staphylococcus aureus, E. coli, and Pseudomonas aeruginosa were stained with fluorescent Calcein AM before plating onto fibroblast monolayers, collagen I, or uncoated bacteriologic plastic. After one hour, wells were washed with HEPES-buffered pH-balanced sterile water without or with 5mM CaCl2, 5mM MgCl2 or 1mM EDTA+EGTA, and the remaining adherent bacteria were assayed fluorometrically. Results Supplementing the irrigation with magnesium or chelators increased but calcium-supplemented irrigation reduced bacterial adhesion to collagen or fibroblasts. Non-specific electrostatic bacterial adhesion to uncoated plastic was unaffected by calcium. Conclusion Bacterial adhesion to mammalian cells and matrix proteins is influenced by divalent cations, and pathogenic bacteria may be adapted to adhere under the low calcium high magnesium conditions in wounds. Although these results await confirmation for other bacteria, and in vivo validation and safety-testing, they suggest that supplementing wound irrigation with 5mM CaCl2 may reduce bacterial adhesion and subsequent wound infection. PMID:19577252

  18. Probing adhesion forces at the molecular scale

    SciTech Connect

    Thomas, R.C.; Houston, J.E.; Michalske, T.A.

    1996-12-31

    Measurements of adhesion forces at the molecular scale, such as those discussed here, are necessary to understand macroscopic boundary-layer behavior such as adhesion, friction, wear, lubrication, and many other important phenomena. The authors` recent interfacial force microscopy (IFM) studies have provided detailed information about the mechanical response of both self-assembled monolayer (SAM) films and the underlying substrates. In addition, they recently demonstrated that the IFM is useful for studying the chemical nature of such films. In this talk, the authors discuss a new method for studying surface interactions and chemical reactions using the IFM. To quantitatively measure the work of adhesion and bond energies between two organic thin films, they modify both a Au substrate and a Au probe with self-assembling organomercaptan molecules having either the same or different end groups (-CH{sub 3}, -NH{sub 2}, and -COOH), and then analyze the force-versus-displacement curves (force profiles) that result from the approach to contact of the two surfaces. Their results show that the magnitude of the adhesive forces measured between methyl-methyl interactions are in excellent agreement with van der Waals calculations using Lifshitz theory and previous experimentally determined values. Moreover, the measured peak adhesive forces scale as expected for van der Waals, hydrogen-bonding, and acid-base interactions.

  19. Pattern formation in cell membrane adhesion

    NASA Astrophysics Data System (ADS)

    Discher, Dennis; Hategan, A.; Sengupta, K.; Sackmann, E.

    2004-03-01

    Strong adhesion of highly active cells often nucleates focal adhesions or related structures that are, over time, reinforced by cytoskeleton (actin, etc.). Red cells lack such complex adhesion systems, but they are shown here to also exhibit complex spatial patterns within an adhesive contact zone. While strong adhesion and spreading of the red cell to a dense poly-L-lysine surface appears complete in < 1 s by reflective interference microscopy, over longer times of 10-15 min or more distinct patterns in fluorescently labeled membrane components emerge. The fluorescent lipid Fl-PE (fluorescein phosphoethanolamine), in particular, is seen to diffuse and reorganize (eg. worm-like domains of <500 nm) within the contact zone, independent of whether the cell is intact or ruptured. Lipid patterns are accompanied by visible perturbations in band 3 distribution and weaker perturbations in membrane skeleton actin. Although fluorescent poly-L-lysine is shown to be uniform under cells, pressing down on the membrane quenches the lipid patterns and reveals the topographical basis for pattern formation. Regions of strong contact are thus separated by regions where the membrane is more distant from the surface.

  20. Signaling during platelet adhesion and activation

    PubMed Central

    Li, Zhenyu; Delaney, M. Keegan; O’Brien, Kelly A.; Du, Xiaoping

    2011-01-01

    Upon vascular injury, platelets are activated by adhesion to adhesive proteins like von Willebrand factor and collagen, or by soluble platelet agonists like ADP, thrombin, and thromboxane A2. These adhesive proteins and soluble agonists induce signal transduction via their respective receptors. The various receptor-specific platelet activation signaling pathways converge into common signaling events, which stimulate platelet shape change, granule secretion, and ultimately induce the “inside-out” signaling process leading to activation of the ligand binding function of integrin αIIbβ3. Ligand binding to integrin αIIbβ3 mediates platelet adhesion and aggregation and triggers “outside-in” signaling, resulting in platelet spreading, additional granule secretion, stabilization of platelet adhesion and aggregation, and clot retraction. It has become increasingly evident that agonist-induced platelet activation signals also crosstalk with integrin “outside-in” signals to regulate platelet responses. Platelet activation involves a series of rapid positive feedback loops that greatly amplify initial activation signals, and enable robust platelet recruitment and thrombus stabilization. Recent studies have provided novel insight into the molecular mechanisms of these processes. PMID:21071698

  1. Thermodynamics of capillary adhesion between rough surfaces.

    PubMed

    de Boer, M P; de Boer, P C T

    2007-07-01

    According to the Dupré equation, the work of adhesion is equal to the surface energy difference in the separated versus the joined materials minus an interfacial energy term. However, if a liquid is at the interface between two solid materials, evaporation or condensation takes place under equilibrium conditions. The resulting matter exchange is accompanied by heat flow, and can reduce or increase the work of adhesion. Accounting for the energies requires an open-system control volume analysis based on the first law of thermodynamics. Depending on whether evaporation or condensation occurs during separation, a work term that is negative or positive must be added to the surface energy term to calculate the work of adhesion. We develop and apply this energy balance to several different interface geometries and compare the work of adhesion to the surface energy created. The model geometries include a sphere on a flat with limiting approximations and also with an exact solution, a circular disc, and a combination of these representing a rough interface. For the sphere on a flat, the work of adhesion is one half the surface energy created if equilibrium is maintained during the pull-off process.

  2. Raman Imaging of Dental Adhesive Diffusion

    NASA Astrophysics Data System (ADS)

    Wieliczka, D. M.; Kruger, M. B.; Spencer, P.

    1997-03-01

    In this project the dentin/adhesive interface was studied using micro-Raman spectroscopy in conjunction with laser light that is optimized to minimize the sample fluorescence. The commercial dentin adhesives Scotchbond Multi-Purpose Plus(3M) and Superbond (Sun Medical) were placed on coronal dentin substrates that were cut from extracted, unerupted third molars. The Raman spectra were obtained using a Dilor spectrometer with a resolution of 4 cm-1 over the spectral range of 100 to 2000 cm-1. All data were obtained using a Kr+ laser operating at 647 nm, a microscope with a 100x objective and with the sample mounted on a precision linear stage allowing for 0.5 (m positioning. Data were obtained from successive positions on the sample providing a spectral record of the interface from the pure adhesive to the pure dentin. Adhesive penetration into the dentin was determined by comparing the relative intensities of spectral bands attributable to the dentin versus the adhesive.

  3. Elasto-capillarity in insect fibrillar adhesion.

    PubMed

    Gernay, Sophie; Federle, Walter; Lambert, Pierre; Gilet, Tristan

    2016-08-01

    The manipulation of microscopic objects is challenging because of high adhesion forces, which render macroscopic gripping strategies unsuitable. Adhesive footpads of climbing insects could reveal principles relevant for micro-grippers, as they are able to attach and detach rapidly during locomotion. However, the underlying mechanisms are still not fully understood. In this work, we characterize the geometry and contact formation of the adhesive setae of dock beetles (Gastrophysa viridula) by interference reflection microscopy. We compare our experimental results to the model of an elastic beam loaded with capillary forces. Fitting the model to experimental data yielded not only estimates for seta adhesion and compliance in agreement with previous direct measurements, but also previously unknown parameters such as the volume of the fluid meniscus and the bending stiffness of the tip. In addition to confirming the primary role of surface tension for insect adhesion, our investigation reveals marked differences in geometry and compliance between the three main kinds of seta tips in leaf beetles.

  4. Spiders Tune Glue Viscosity to Maximize Adhesion.

    PubMed

    Amarpuri, Gaurav; Zhang, Ci; Diaz, Candido; Opell, Brent D; Blackledge, Todd A; Dhinojwala, Ali

    2015-11-24

    Adhesion in humid conditions is a fundamental challenge to both natural and synthetic adhesives. Yet, glue from most spider species becomes stickier as humidity increases. We find the adhesion of spider glue, from five diverse spider species, maximizes at very different humidities that matches their foraging habitats. By using high-speed imaging and spreading power law, we find that the glue viscosity varies over 5 orders of magnitude with humidity for each species, yet the viscosity at maximal adhesion for each species is nearly identical, 10(5)-10(6) cP. Many natural systems take advantage of viscosity to improve functional response, but spider glue's humidity responsiveness is a novel adaptation that makes the glue stickiest in each species' preferred habitat. This tuning is achieved by a combination of proteins and hygroscopic organic salts that determines water uptake in the glue. We therefore anticipate that manipulation of polymer-salts interaction to control viscosity can provide a simple mechanism to design humidity responsive smart adhesives.

  5. Advanced Precursor Reaction Processing for Cu(InGa)(SeS)2 Solar Cells

    SciTech Connect

    Shafarman, William N.

    2015-10-12

    This project “Advanced Precursor Reaction Processing for Cu(InGa)(SeS)2 Solar Cells”, completed by the Institute of Energy Conversion (IEC) at the University of Delaware in collaboration with the Department of Chemical Engineering at the University of Florida, developed the fundamental understanding and technology to increase module efficiency and improve the manufacturability of Cu(InGa)(SeS)2 films using the precursor reaction approach currently being developed by a number of companies. Key results included: (1) development of a three-step H2Se/Ar/H2S reaction process to control Ga distribution through the film and minimizes back contact MoSe2 formation; (2) Ag-alloying to improve precursor homogeneity by avoiding In phase agglomeration, faster reaction and improved adhesion to allow wider reaction process window; (3) addition of Sb, Bi, and Te interlayers at the Mo/precursor junction to produce more uniform precursor morphology and improve adhesion with reduced void formation in reacted films; (4) a precursor structure containing Se and a reaction process to reduce processing time to 5 minutes and eliminate H2Se usage, thereby increasing throughput and reducing costs. All these results were supported by detailed characterization of the film growth, reaction pathways, thermodynamic assessment and device behavior.

  6. Characteristics of the adhesive determinants of Lactobacillus fermentum 104.

    PubMed Central

    Henriksson, A; Szewzyk, R; Conway, P L

    1991-01-01

    The adhesion of Lactobacillus fermentum 104-R and the variant strain 104-S to porcine gastric squamous epithelium was investigated. An epithelium-specific adhesion was detected for strain 104-S; however, strain 104-R expressed enhanced adhesion capacity to the control surfaces of polystyrene and bovine serum albumin. To characterize the adhesive determinants, the bacterial cells were exposed to various treatments. The adhesion pattern of bacterial cells in buffers of pH values ranging from 2 to 7 was determined. The adhesion of strain 104-S to epithelium was greater in a buffer with a higher pH value. On the other hand, adhesion of strain 104-R to the epithelium was rather unaffected by a change in pH. To the control surfaces of polystyrene or bovine serum albumin, the adhesion of both strains was greatest at pH 2 to 4. Treatment of strain 104-S with metaperiodate did not affect the adhesion to epithelium or polystyrene; however, protease treatment dramatically decreased the adhesion of both strains, thus suggesting that the determinants responsible for the adhesion were proteinaceous. Carbohydrates may be partially involved in the adhesion of 104-R because metaperiodate-treated cells adhered more poorly than control, iodate-treated cells. The adhesion-promoting components are most probably tightly bound to the cell wall, because washing with low-pH buffer (pH 1.2) or sodium dodecyl sulfate had no major effect on the adhesion. PMID:1849714

  7. Thermal Characterization of Epoxy Adhesive by Hotfire Testing

    NASA Technical Reports Server (NTRS)

    Spomer, Ken A.; Haddock, M. Reed; McCool, Alex (Technical Monitor)

    2001-01-01

    This paper describes subscale solid-rocket motor hot-fire testing of epoxy adhesives in flame surface bondlines to evaluate heat-affected depth, char depth and ablation rate. Hot-fire testing is part of an adhesive down-selection program on the Space Shuttle Solid Rocket Motor Nozzle to provide additional confidence in the down-selected adhesives. The current nozzle structural adhesive bond system is being replaced due to obsolescence. Prior to hot-fire testing, adhesives were tested for chemical, physical and mechanical properties, which resulted in the selection of two potential replacement adhesives, Resin Technology Group's TIGA 321 and 3M's EC2615XLW. Hot-fire testing consisted of four forty-pound charge (FPC) motors fabricated in configurations that would allow side-by-side comparison testing of the candidate replacement adhesives with the current RSRM adhesives. Results of the FPC motor testing show that: 1) the phenolic char depths on radial bondlines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used, 2) the replacement candidate adhesive char depths are equivalent to the char depths of the current adhesives, 3) the heat-affected depths of the candidate and current adhesives are equivalent, and 4) the ablation rates for both replacement adhesives were equivalent to the current adhesives.

  8. Human climbing with efficiently scaled gecko-inspired dry adhesives.

    PubMed

    Hawkes, Elliot W; Eason, Eric V; Christensen, David L; Cutkosky, Mark R

    2015-01-06

    Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for synthetic materials, so can gecko adhesion systems provide a baseline for scaling efficiency. In the tokay gecko (Gekko gecko), a scaling power law has been reported relating the maximum shear stress σmax to the area A: σmax ∝ A(-1/4). We present a mechanical concept which improves upon the gecko's non-uniform load-sharing and results in a nearly even load distribution over multiple patches of gecko-inspired adhesive. We created a synthetic adhesion system incorporating this concept which shows efficient scaling across four orders of magnitude of area, yielding an improved scaling power law: σmax ∝ A(-1/50). Furthermore, we found that the synthetic adhesion system does not fail catastrophically when a simulated failure is induced on a portion of the adhesive. In a practical demonstration, the synthetic adhesion system enabled a 70 kg human to climb vertical glass with 140 cm(2) of adhesive per hand.

  9. Design and fabrication of gecko-inspired adhesives.

    PubMed

    Jin, Kejia; Tian, Yu; Erickson, Jeffrey S; Puthoff, Jonathan; Autumn, Kellar; Pesika, Noshir S

    2012-04-03

    Recently, there has been significant interest in developing dry adhesives mimicking the gecko adhesive system, which offers several advantages compared to conventional pressure-sensitive adhesives. Specifically, gecko adhesive pads have anisotropic adhesion properties; the adhesive pads (spatulae) stick strongly when sheared in one direction but are non-adherent when sheared in the opposite direction. This anisotropy property is attributed to the complex topography of the array of fine tilted and curved columnar structures (setae) that bear the spatulae. In this study, we present an easy, scalable method, relying on conventional and unconventional techniques, to incorporate tilt in the fabrication of synthetic polymer-based dry adhesives mimicking the gecko adhesive system, which provides anisotropic adhesion properties. We measured the anisotropic adhesion and friction properties of samples with various tilt angles to test the validity of a nanoscale tape-peeling model of spatular function. Consistent with the peel zone model, samples with lower tilt angles yielded larger adhesion forces. The tribological properties of the synthetic arrays were highly anisotropic, reminiscent of the frictional adhesion behavior of gecko setal arrays. When a 60° tilt sample was actuated in the gripping direction, a static adhesion strength of ~1.4 N/cm(2) and a static friction strength of ~5.4 N/cm(2) were obtained. In contrast, when the dry adhesive was actuated in the releasing direction, we measured an initial repulsive normal force and negligible friction.

  10. Effect of polymerization mode of two adhesive systems on push-out bond strength of fiber post to different regions of root canal dentin

    PubMed Central

    Ebrahimi, Shahram Farzin; Shadman, Niloofar; Nasery, Ehsan Baradaran; Sadeghian, Farid

    2014-01-01

    Background: A few studies have investigated the effect of the activation mode of adhesive systems on bond strength of fiber posts to root canal dentin. This study investigated the push-out bond strengths of a glass fiber post to different root canal regions with the use of two adhesives with light- and dual-cure polymerization modes. Materials and Methods: In this in vitro study, 40 maxillary central incisors were decoronated at cement-enamel junction with 15 ± 1 mm root length. After root canal therapy and post space preparations, they were randomly divided into four groups. Post spaces were treated with four different adhesives: Excite, Excite Dual cure Single Component (DSC), self-etch adhesive (AdheSE), and AdheSE dual-cure. Then the fiber-reinforced composite (FRC) post, Postec Plus, was cemented with dual-cure resin cement, Variolink II. The roots were cut into three 2-mm-thick slices. Push-out tests were performed with a universal testing machine at a crosshead speed of 0.5 mm/min. The mode of failures was determined under a stereomicroscope. Data were analyzed by three-way analysis of variance (ANOVA) and Tukey test was conducted to compare post hoc with P < 0.05 as the level of significance. Results: The highest bond strength was obtained for AdheSE dual-cure (15.54 ± 6.90 MPa) and the lowest was obtained for Excite light-cure (10.07 ± 7.45 MPa) and only the bond strength between these two adhesives had significant difference (P = 0.02). Bond strength decreased from the coronal to the apical in all groups and this was significant in Excite (group 1) and AdheSE (group 3) (P < 0.001). In apical regions, bond strength of dual-cure adhesives was significantly higher than light-cure adhesives (P < 0.001). Conclusion: Push-out bond strength of fiber post to different regions of root canal dentin was affected by both adhesive systems and their polymerization modes. PMID:24688557

  11. Biologically Inspired Mushroom-Shaped Adhesive Microstructures

    NASA Astrophysics Data System (ADS)

    Heepe, Lars; Gorb, Stanislav N.

    2014-07-01

    Adhesion is a fundamental phenomenon with great importance in technology, in our everyday life, and in nature. In this article, we review physical interactions that resist the separation of two solids in contact. By using examples of biological attachment systems, we summarize and categorize various principles that contribute to the so-called gecko effect. Emphasis is placed on the contact geometry and in particular on the mushroom-shaped geometry, which is observed in long-term biological adhesive systems. Furthermore, we report on artificial model systems with this bio-inspired geometry and demonstrate that surface microstructures with this geometry are promising candidates for technical applications, in which repeatable, reversible, and residue-free adhesion under different environmental conditions—such as air, fluid, and vacuum—is required. Various applications in robotic systems and in industrial pick-and-place processes are discussed.

  12. Water based adhesive primers on aluminum substrates

    SciTech Connect

    Wightman, J.P.; Mori, S.

    1996-12-31

    The number of aluminum alloy bonding applications has been increasing recently in the automobile industry. Primer coating of aluminum substrates is one of the main processes used to promote bond performance. Solvent based organic primers have been used for a long time but environmental regulations now require the substitution of volatile organic compounds (VOC) by alternate materials such as water based adhesive primers. However, the bond strengths obtained with many water based primers are generally lower than for solvent based ones. Water based primers which have some reactive functional groups have been proposed recently but such primers require special treatment. This paper describes a study conducted to optimize bond strength using a water based adhesive as a primer in the adhesive bonding of anodized aluminum.

  13. Optimizing ultrasonic imaging for adhesively bonded plates

    SciTech Connect

    Conboy, Mike; Hart, Scot; Harris-Weiel, David; Meyer, R. L.; Claytor, T. N.

    2004-01-01

    Bonded materials are used in many critical applications, making it important to determine the state of the adhesive during service or aging. It is also of importance, in many cases, to determine if the adhesive has uniformly and completely covered the area to be joined. Through dual transducer scanning, focused and unfocused transducers, and immersion scanning, the uniformity and adherence of a visco-elastic material can be evaluated. In this report, ultrasonic scanning parameters will be optimized experimentally with guidance from simulation tools including Wave 2000 pro and Imagine 3D. We explored optimizing the contrast ratio by varying the interrogation frequency and also by adjusting the distance between the transducer and bond line. An improvement in contrast should also increase the ability to detect differences in compositions and viscosity of the bonded layer. By maximizing the contrast the quality of the visco-elastic bond can be determined, and imperfections detected before adhesive failure.

  14. Adhesion assessment of copper thin films

    SciTech Connect

    Kriese, M.D.; Gerberich, W.W.; Moody, N.R.

    1997-06-01

    Nano-indentation testing has been used to quantitatively assess the adhesion of thin copper films, sputtered to thicknesses of 150 nm to 1500 nm. Copper films of low residual stress were deposited via RF diode cathode sputtering onto SiO{sub 2}/Si substrates. Overlayers of DC magnetron sputtered tungsten, 850 nm thick with high residual stress, were additionally used to provide a driving force for delamination. All films tested exhibited buckle-driven delamination, from which the interfacial toughness was estimated to be 0.2 - 2 J/m{sup 2}, which is comparable to the thermodynamic work of adhesion. The use of an overlayer requires extensions of existing models, but otherwise does not change the interfacial adhesion, allowing measurements of films that would not otherwise delaminate.

  15. Laparoscopic Management of Adhesive Small Bowel Obstruction

    PubMed Central

    Konjic, Ferid; Idrizovic, Enes; Hasukic, Ismar; Jahic, Alen

    2016-01-01

    Introduction: Adhesions are the reason for bowel obstruction in 80% of the cases. In well selected patients the adhesive ileus laparoscopic treatment has multiple advantages which include the shorter hospitalization period, earlier food taking, and less postoperative morbidity rate. Case report: Here we have a patient in the age of 35 hospitalized at the clinic due to occlusive symptoms. Two years before an opened appendectomy had been performed on him. He underwent the treatment of exploration laparoscopy and laparoscopic adhesiolysis. Dilated small bowel loops connected with the anterior abdominal wall in the ileocecal region by adhesions were found intraoperatively and then resected harmonically with scalpel. One strangulation around which a small bowel loop was wrapped around was found and dissected. Postoperative course was normal. PMID:27041815

  16. Optimizing Scale Adhesion on Single Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Pint, Bruce A.

    2000-01-01

    To improve scale adhesion, single crystal superalloys have been desulfurized to levels below 1 ppmw by hydrogen annealing. A transition to fully adherent behavior has been shown to occur at a sulfur level of about 0.2 ppmw, as demonstrated for PWA 1480, PWA 1484, and Rene N5 single crystal superalloys in 1100-1150 C cyclic oxidation tests up to 2000 h. Small additions of yttrium (15 ppmw) also have been effective in producing adhesion for sulfur contents of about 5 ppmw. Thus the critical Y/S ratio required for adhesion was on the order of 3-to-1 by weight (1-to-1 atomic), in agreement with values estimated from solubility products for yttrium sulfides. While hydrogen annealing greatly improved an undoped alloy, yielding <= 0.01 ppmw S, it also produced benefits for Y-doped alloys without measurably reducing the sulfur content.

  17. Adhesive capsulitis of the hip: a review.

    PubMed

    Looney, Colin G; Raynor, Brett; Lowe, Rebecca

    2013-12-01

    Adhesive capsulitis of the hip (ACH) is a rare clinical entity. Similar to adhesive capsulitis of the shoulder, ACH is characterized by a painful decrease in active and passive range of motion as synovial inflammation in the acute stages of the disease progresses to capsular fibrosis in the chronic stages. Once other diagnoses have been ruled out, management of ACH is tailored to reduce inflammation in the acute stages with NSAIDs, intra-articular steroid injections, and targeted physical therapy while biomechanical dysfunction in the spine, hip, sacroiliac joint, or lower limb joints is addressed. In chronic stages of the disease, intervention should focus on decreasing the progression of fibrotic changes and regaining range of motion through aggressive physical therapy. Interventions described for chronic ACH include manipulation under anesthesia; pressure dilatation; and open or arthroscopic synovectomy, lysis of adhesions, and capsular release. Surgical intervention should be considered only after failure of a minimum 3-month course of nonsurgical treatment.

  18. New insights into the Mo/Cu(In,Ga)Se2 interface in thin film solar cells: Formation and properties of the MoSe2 interfacial layer

    NASA Astrophysics Data System (ADS)

    Klinkert, T.; Theys, B.; Patriarche, G.; Jubault, M.; Donsanti, F.; Guillemoles, J.-F.; Lincot, D.

    2016-10-01

    Being at the origin of an ohmic contact, the MoSe2 interfacial layer at the Mo/Cu(In,Ga)Se2 interface in CIGS (Cu(In,Ga)Se2 and related compounds) based solar cells has allowed for very high light-to-electricity conversion efficiencies up to 22.3%. This article gives new insights into the formation and the structural properties of this interfacial layer. Different selenization-steps of a Mo covered glass substrate prior to the CIGS deposition by co-evaporation led to MoSe2 interfacial layers with varying thickness and orientation, as observed by x-ray diffraction and atomic resolution transmission electron microscopy. A novel model based on the anisotropy of the Se diffusion coefficient in MoSe2 is proposed to explain the results. While the series resistance of finished CIGS solar cells is found to correlate with the MoSe2 orientation, the adhesion forces between the CIGS absorber layer and the Mo substrate stay constant. Their counter-intuitive non-correlation with the configuration of the MoSe2 interfacial layer is discussed and related to work from the literature.

  19. New insights into the Mo/Cu(In,Ga)Se2 interface in thin film solar cells: Formation and properties of the MoSe2 interfacial layer.

    PubMed

    Klinkert, T; Theys, B; Patriarche, G; Jubault, M; Donsanti, F; Guillemoles, J-F; Lincot, D

    2016-10-21

    Being at the origin of an ohmic contact, the MoSe2 interfacial layer at the Mo/Cu(In,Ga)Se2 interface in CIGS (Cu(In,Ga)Se2 and related compounds) based solar cells has allowed for very high light-to-electricity conversion efficiencies up to 22.3%. This article gives new insights into the formation and the structural properties of this interfacial layer. Different selenization-steps of a Mo covered glass substrate prior to the CIGS deposition by co-evaporation led to MoSe2 interfacial layers with varying thickness and orientation, as observed by x-ray diffraction and atomic resolution transmission electron microscopy. A novel model based on the anisotropy of the Se diffusion coefficient in MoSe2 is proposed to explain the results. While the series resistance of finished CIGS solar cells is found to correlate with the MoSe2 orientation, the adhesion forces between the CIGS absorber layer and the Mo substrate stay constant. Their counter-intuitive non-correlation with the configuration of the MoSe2 interfacial layer is discussed and related to work from the literature.

  20. High-Temperature Adhesive Strain Gage Developed

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Roberts, Gary D.

    1997-01-01

    Researchers at the NASA Lewis Research Center have developed a unique strain gage and adhesive system for measuring the mechanical properties of polymers and polymer composites at elevated temperatures. This system overcomes some of the problems encountered in using commercial strain gages and adhesives. For example, typical commercial strain gage adhesives require a postcure at temperatures substantially higher than the maximum test temperature. The exposure of the specimen to this temperature may affect subsequent results, and in some cases may be higher than the glass-transition temperature of the polymer. In addition, although typical commercial strain gages can be used for short times at temperatures up to 370 C, their long-term use is limited to 230 C. This precludes their use for testing some high-temperature polyimides near their maximum temperature capability. Lewis' strain gage and adhesive system consists of a nonencapsulated, unbacked gage grid that is bonded directly to the polymer after the specimen has been cured but prior to the normal postcure cycle. The gage is applied with an adhesive specially formulated to cure under the specimen postcure conditions. Special handling, mounting, and electrical connection procedures were developed, and a fixture was designed to calibrate each strain gage after it was applied to a specimen. A variety of tests was conducted to determine the performance characteristics of the gages at elevated temperatures on PMR-15 neat resin and titanium specimens. For these tests, which included static tension, thermal exposure, and creep tests, the gage and adhesive system performed within normal strain gage specifications at 315 C. An example of the performance characteristics of the gage can be seen in the figure, which compares the strain gage measurement on a polyimide specimen at 315 C with an extensometer measurement.

  1. Molecular mechanics of mussel adhesion proteins

    NASA Astrophysics Data System (ADS)

    Qin, Zhao; Buehler, Markus J.

    2014-01-01

    Mussel foot protein (mfp), a natural glue produced by marine mussel, is an intriguing material because of its superior ability for adhesion in various environments. For example, a very small amount of this material is sufficient to affix a mussel to a substrate in water, providing structural support under extreme forces caused by the dynamic effects of waves. Towards a more complete understanding of its strength and underwater workability, it is necessary to understand the microscropic mechanisms by which the protein structure interacts with various substrates. However, none of the mussel proteins' structure is known, preventing us from directly using atomistic modeling to probe their structural and mechanical properties. Here we use an advanced molecular sampling technique to identify the molecular structures of two mussel foot proteins (mfp-3 and mfp-5) and use those structures to study their mechanics of adhesion, which is then incorporated into a continuum model. We calculate the adhesion energy of the mussel foot protein on a silica substrate, compute the adhesion strength based on results obtained from molecular modeling, and compare with experimental data. Our results show good agreement with experimental measurements, which validates the multiscale model. We find that the molecular structure of the folded mussel foot protein (ultimately defined by its genetic sequence) favors strong adhesion to substrates, where L-3,4-dihydroxyphenylalanine (or DOPA) protein subunits work in a cooperative manner to enhance adhesion. Our experimental data suggests a peak attachment force of 0.4±0.1 N, which compares favorably with the prediction from the multiscale model of Fc=0.21-0.33 N. The principles learnt from those results could guide the fabrication of new interfacial materials (e.g. composites) to integrate organic with inorganic surfaces in an effective manner.

  2. Method of measuring metal coating adhesion

    DOEpatents

    Roper, John R.

    1985-01-01

    A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.

  3. Addition polyimide adhesives containing various end groups

    NASA Technical Reports Server (NTRS)

    Saint Clair, A. K.; Saint Clair, T. L.

    1982-01-01

    Addition polyimode oligomers have been synthesized from 3,3 prime, 4,4 prime-benzophenone tetracarboxylic acid dianhydride and 3,3 prime-methylenedianiline using a variety of latent crosslinking groups as end-caps. The nominal 1300 molecular weight imide prepolymers were isolated and characterized for solubility in amide, chlorinated and ether solvents, melt-flow and cure properties, glass transition temperature, and thermal stability on heating in an air atmosphere. Adhesive strengths of the polyimides were obtained both at ambient and elevated temperatures before and after aging at 232 C. Properties of the novel addition polyimides were compared to a known nadic end-capped adhesive, LARC-13.

  4. Effects of military environments on optical adhesives

    NASA Astrophysics Data System (ADS)

    Krevor, David H.; Vazirani, Hargovind N.; Xu, Antai

    1993-09-01

    The military environment imposes harsh conditions on adhesives. These conditions differ both qualitatively and quantitatively from typical civilian environments. Military systems must withstand exposure to moisture, temperature extremes, sunlight/ultraviolet radiation and other climatic stresses that are far in excess of what would be expected for commercial applications. Additionally, civilian products rarely consider issues such as fungus susceptibility, resistance to jet fuels and de-icing solvents, or resistance to chemical warfare agents and their decontaminants. The effect of military environments on both the optical and mechanical properties of optical adhesives are discussed for avionic display applications.

  5. The Mechanisms of Adhesion of Enteromorpha Clathrata.

    DTIC Science & Technology

    1982-08-24

    the mobilities at different values of pH: pH 2-3 Glycine hydrochloride -glycine pH 4-5 Acetic acid-sodium acetate ,. . .. .,:,.o.-,-. -o...wall, while glucose was much higher in the cell wall. Glucosamine was found only in the cell wall. The chemical analysis of the cell wall of E...Adhesive Material. Fucose Galactose Glucose Glucosamine Total • pg pg pg ,pg pg Adhesive 13.78 1.597 87.741 103.1 Cell Wall 7.5 0.73 95.7 7.5 110.7 ’ .4

  6. Familial adhesive arachnoiditis associated with syringomyelia.

    PubMed

    Pasoglou, V; Janin, N; Tebache, M; Tegos, T J; Born, J D; Collignon, L

    2014-06-01

    Adhesive arachnoiditis is a rare condition, often complicated by syringomyelia. This pathologic entity is usually associated with prior spinal surgery, spinal inflammation or infection, and hemorrhage. The usual symptoms of arachnoiditis are pain, paresthesia, and weakness of the low extremities due to the nerve entrapment. A few cases have had no obvious etiology. Previous studies have reported one family with multiple cases of adhesive arachnoiditis. We report a second family of Belgian origin with multiple cases of arachnoiditis and secondary syringomyelia in the affected individuals.

  7. Method of measuring metal coating adhesion

    DOEpatents

    Roper, J.R.

    A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.

  8. Biologically Inspired Polymer Micro-Patterned Adhesives

    DTIC Science & Technology

    2008-11-01

    SEM image showing smooth adhesion pad at end of tibia in aphid Megoura viciae 12 2. Droplets left on glass slide from tarsal footprint of beetle...or they can be just a smooth pad as in cockroaches, aphids , and ants (see Figure 1b).3 •*,««, -«" Figure 1a. Scanning electron microscope (SEM...image showing smooth adhesion pad (p) at end of tibia in aphid Megoura viciae. [ta = tarsus, ti = tibia. Scale bar = 20 microns (adapted from Lees

  9. Use of fibrin adhesive to reduce post-surgical adhesion reformation in rabbits.

    PubMed

    Osada, H; Minai, M; Yoshida, T; Satoh, K

    1999-01-01

    Following surgery on fallopian tubes, the development of adhesions is a natural consequence of wound healing and may result in infertility. Using a rabbit model, we evaluated the anti-adhesive properties of a sponge-like equine collagen sheet (TachoComb), which is coated on one side with human fibrinogen and bovine thrombin. TachoComb is applied by affixing the sheet over the area of perforation or bleeding and acts as a haemostatic agent, capable of sealing perforations to prevent leakage. In our rabbit model, adhesions were induced by mechanical and chemical irritants during laparotomy. After a 1-month recovery period, adhesions were lysed using microsurgical techniques and TachoComb, or physiological saline applied. Evaluation of adhesion reformation was determined after a minimum of 10 days. TachoComb significantly reduced the area of adhesion reformation compared with rabbits treated using physiological saline only. Our study demonstrated that TachoComb is effective not only as a haemostatic agent, but is also capable of reducing adhesion reformation.

  10. Rheological studies on pressure-sensitive silicone adhesives and drug-in-adhesive layers as a means to characterise adhesive performance.

    PubMed

    Ho, Kwong Yat; Dodou, Kalliopi

    2007-03-21

    Pressure-sensitive adhesives are viscoelastic polymers used in the formulation of transdermal patches that allow attachment of a patch onto the skin. Established criteria exist that correlate viscoelastic parameters with adhesive performance. In this study, fulfillment of the adhesive performance criteria was examined using two silicone adhesives with different tack properties. The viscoelastic parameters of high and low tack silicone adhesives (BIO-PSA High Tack 7-4302 and BIO-PSA Low Tack 7-4102) were determined and compared with the criteria described by Chu and Dahlquist. Drug-in-adhesive layers were prepared using the high tack adhesive combined with nortriptyline HCl or paracetamol. The effect of drug addition on the viscoelastic properties of the adhesive was examined. The high tack adhesive showed congruence with the established criteria although with a modified range of viscoelastic moduli to that described by Chu. Examination of the low tack adhesive showed that it did not possess the appropriate viscoelastic properties for bonding onto the skin. The addition of the drugs into the high tack adhesive caused a concentration-dependent increase in its cohesive strength. This effect was independent of the physicochemical properties of the drugs tested.

  11. Adhesion tilt-tolerance in bio-inspired mushroom-shaped adhesive microstructure

    NASA Astrophysics Data System (ADS)

    Heepe, Lars; Carbone, Giuseppe; Pierro, Elena; Kovalev, Alexander E.; Gorb, Stanislav N.

    2014-01-01

    We studied experimentally and theoretically the effect of different tilt angles on the adhesion of mushroom-shaped adhesive microstructures. The marginal measured influence of tilting on pull-off forces is quantitatively well confirmed by numerical and theoretical calculations and was shown to be a direct consequence of an optimized stress distribution. In addition, the presence of a joint-like narrowing under the contact elements, as found in some biological attachment systems, was shown to further contribute to the tilt-tolerance. The results obtained allow us to explain the advantage of the widely observed mushroom-shaped contact geometry in nature for long-term and permanent adhesion.

  12. Superhydrophobic (low adhesion) and parahydrophobic (high adhesion) surfaces with micro/nanostructures or nanofilaments.

    PubMed

    Diouf, Alioune; Darmanin, Thierry; Dieng, Samba Yandé; Guittard, Frédéric

    2015-09-01

    Controlling the water adhesion is extremely important for various applications such as for water harvesting. Here, superhydrophobic (low adhesion) and parahydrophobic (high adhesion) substrates are both obtained from hydrophilic polymers. We show in the work that a judicious choice in the monomer structure used for electropolymerization can lead to these two properties. Using a phenyl group, parahydrophobic properties are reached due to the formation of nanofilaments. By contrast, using a naphthalene or a biphenyl group, superhydrophobic properties are obtained due the formation of both micro- and nanostructures.

  13. Guest editorial, special issue on biobased adhesives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article is a preface for a special issue that showcases significant developments on adhesives made with biorenewable materials, such as agricultural crops (soybean, corn), plant extractives (bark, tannins), and marine sources (mussels). This collection of pioneering studies and reviews on bioba...

  14. Clinical experience with cyanoacrylate tissue adhesive.

    PubMed

    Moschos, M; Droutsas, D; Boussalis, P; Tsioulias, G

    In this paper 385 cases treated with cyanoacrylate tissue adhesive during the years 1980-1995 are studied. The indications, outcomes and complications of cyanoacrylate adhesive are investigated and the results are analysed. It is encouraging that except for three cases of ocular hypotony and two cases of microbial infection no other complications occurred. Even in desperate cases with corneal perforation greater than 3 mm and ocular infection, enucleation was avoided. The early use of a bandage contact lens, inserted just after the glue application and the coverage with topical antibiotics switched every 15 days until the removal of the glue, may explain the small incidence of infection. Our experience from the use of cyanoacrylate tissue adhesive in cases with corneal perforation greater than 3 mm is very encouraging. In these cases a running 10.0 nylon suture was used to create a reticulum over the space of the corneal perforation upon which the glue was applied. The use of cyanoacrylate tissue adhesive offers to the clinician a safe technique for healing corneal wounds that avoids tectonic penetrating keratoplasty with its associated complications.

  15. Adhesion of D. discoideum on Hydrophobic Substrate

    NASA Astrophysics Data System (ADS)

    Flanders, Bret; Ploscariu, Nicoleta

    2015-03-01

    Adhesion by amoeboid cells, such as D. discoideum, is poorly understood but critical for other behaviors such as phagocytosis and migration. Furthermore, both leucocytes and breast cancer cells employ the amoeboid mode of movement at various points in their life-cycles. Hence, improved knowledge of amoeboid adhesion may lead to be new strategies for controlling other important cellular processes. This study regards adhesion by D. discoideum on silanized glass substrates. Reflection interference contrast microscopy is used in conjunction with other methods to determine the contact angle, cell-medium interfacial energy, and adhesion energy of these cells. The contact angle of individual cells settling under gravity onto a substrate is observed to increase as the size of the contact patch increases. This behavior occurs on slower time-scales than expected for the settling of inert vesicles. The implications of this observation on the nature of the underlying forces will be discussed. This work was supported in part by NSF Grant PHY-646966.

  16. 21 CFR 878.4010 - Tissue adhesive.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tissue adhesive. 878.4010 Section 878.4010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... intended for use in the embolization of brain arteriovenous malformation or for use in ophthalmic...

  17. 21 CFR 878.4010 - Tissue adhesive.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tissue adhesive. 878.4010 Section 878.4010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... intended for use in the embolization of brain arteriovenous malformation or for use in ophthalmic...

  18. 21 CFR 878.4010 - Tissue adhesive.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tissue adhesive. 878.4010 Section 878.4010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... intended for use in the embolization of brain arteriovenous malformation or for use in ophthalmic...

  19. 21 CFR 878.4010 - Tissue adhesive.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tissue adhesive. 878.4010 Section 878.4010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... intended for use in the embolization of brain arteriovenous malformation or for use in ophthalmic...

  20. Performance of thermal adhesives in forced convection

    NASA Technical Reports Server (NTRS)

    Kundu, Nikhil K.

    1993-01-01

    Cooling is critical for the life and performance of electronic equipment. In most cases cooling may be achieved by natural convection but forced convection may be necessary for high wattage applications. Use of conventional type heat sinks may not be feasible from the viewpoint of specific applications and the costs involved. In a heat sink, fins can be attached to the well by ultrasonic welding, by soldering, or with a number of industrially available thermal adhesives. In this paper, the author investigates the heat transfer characteristics of several adhesives and compares them with ultrasonic welding and theoretically calculated values. This experiment was conducted in an air flow chamber. Heat was generated by using heaters mounted on the well. Thermstrate foil, Uniset A401, and Aremco 571 adhesives were tested along with an ultrasonically welded sample. Ultrasonic welding performed far better than the adhesives and Thermstrate foil. This type of experiment can be adapted for a laboratory exercise in an upper level heat transfer course. It gives students an exposure to industrial applications that help them appreciate the importance of the course material.

  1. An oxidase road to platelet adhesion.

    PubMed

    Krause, Diane S

    2016-03-17

    Platelet adhesion to collagen via collagen receptors is an important part of thrombosis. In this issue of Blood, Matsuura et al identify collagen receptors as previously unrecognized targets of the extracellular enzyme lysyl oxidase (LOX), the level of which is increased in myeloproliferative neoplasms (MPNs) and other conditions associated with pathological thromboses.

  2. Nondestructive Evaluation of Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Nayeb-Hashemi, Hamid; Rossettos, J. N.

    1997-01-01

    The final report consists of 5 published papers in referred journals and a technical letter to the technical monitor. These papers include the following: (1) Comparison of the effects of debonds and voids in adhesive; (2) On the peak shear stresses in adhesive joints with voids; (3) Nondestructive evaluation of adhesively bonded joints by acousto-ultrasonic technique and acoustic emission; (4) Multiaxial fatigue life evaluation of tubular adhesively bonded joints; (5) Theoretical and experimental evaluation of the bond strength under peeling loads. The letter outlines the progress of the research. Also included is preliminary information on the study of nondestructive evaluation of composite materials subjected to localized heat damage. The investigators studied the effects of localized heat on unidirectional fiber glass epoxy composite panels. Specimens of the fiber glass epoxy composites were subjected to 400 C heat for varying lengths of time. The specimens were subjected to nondestructive tests. The specimens were then pulled to their failure and acoustic emission of these specimens were measured. The analysis of the data was continuing as of the writing of the letter, and includes a finite element stress analysis of the problem.

  3. Advanced Fast Curing Adhesives for Adverse Conditions

    DTIC Science & Technology

    2007-07-01

    set of battle damage repair adhesives include Belzona 2311 elastomer , Belzona 1221 super metal, and Belzona metal plug, which are very fast curing...resin, and dinonylphenol (10). Marine use A-788 Splash Zone epoxy- polyamide mastic from Z Spar, Los Angeles, CA was used for testing (11). The

  4. The role of material properties in adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1984-01-01

    When two solid surfaces are brought into contact strong adhesive bond forces can develop between the materials. The magnitude of the forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between solids is addressed from a theoretical consideration of the electronic nature of the surfaces and experimentally relating bond forces to the nature of the interface resulting from solid state contact. Surface properties correlated with adhesion include, atomic or molecular orientation, reconstruction and segregation as well as the chemistry of the surface specie. Where dissimilar solids are in contact the contribution of each is considered as is the role of their interactive chemistry on bond strength. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structure, crystallographic orientation and state. Materials examined with respect to interfacial adhesive interactions include metals, alloys, ceramics, polymers and diamond. They are reviewed both in single and polycrystalline form. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  5. Method for making adhesive from biomass

    DOEpatents

    Russell, Janet A.; Riemath, William F.

    1985-01-01

    A method is described for making adhesive from biomass. A liquefaction oil is prepared from lignin-bearing plant material and a phenolic fraction is extracted therefrom. The phenolic fraction is reacted with formaldehyde to yield a phenol-formaldehyde resin.

  6. Inhibition of bacterial adhesion on medical devices.

    PubMed

    Rodrigues, Lígia R

    2011-01-01

    Microbial infections resulting from bacterial adhesion to biomaterial surfaces have been observed on almost all medical devices. Biofilm infections pose a number of clinical challenges due to their resistance to immune defence mechanisms and antimicrobials, and, regardless of the sophistication of the implant, all medical devices are susceptible to microbial colonisation and infection. Research efforts are currently directed towards eliminating or reducing infection of medical devices. Strategies to prevent biofilm formation include physiochemical modification of the biomaterial surface to create anti-adhesive surfaces, incorporation of antimicrobial agents into medical device polymers, mechanical design alternatives, and release of antibiotics. Nevertheless, the success of these alternatives has been modest, mainly due to the various environments into which devices are placed and the diversity of ways in which organisms can colonise surfaces. Biosurfactants have been reported as a promising strategy as they effectively inhibit bacterial adhesion and retard biofilm formation, and are thus potentially useful as a new generation of anti-adhesive and antimicrobial coatings for medical devices.

  7. Discovery of Low Mucus Adhesion Surfaces

    PubMed Central

    Gu, Minghao; Yildiz, Hasan; Carrier, Rebecca; Belfort, Georges

    2014-01-01

    Mucus secretion from the body is ubiquitous and finding materials that resist mucus adhesion is a major technological challenge of medical and consumer import. Here, using a high throughput platform (HTP) with photo-induced graft polymerization, we first rapidly synthesized, screened and tested a library of 55 different surfaces from six functional monomer classes to discover porcine intestinal low mucus adhesion surfaces using a 1 hr static mucus adsorption protocol. From this preliminary screen, two chemistries, a zwitterionic ([2-(acryloyloxy)ethyl] trimethylammonium chloride) and a multiple hydroxyl (N-[tris(hydroxymethyl)methyl]acrylamide) surface, exhibited the significantly low mucus adhesion from a Langmuir-type isotherm when exposed to increasing concentrations of mucus for 24 hr. Apolar or hydrophobic interactions were likely the dominant attractive forces during mucus binding since many polar or hydrophilic monomers reduced mucus adhesion. Hansen solubility parameters were used to illustrate the importance of monomer polarity and hydrogen-bonding in reducing mucus adsorption. For a series of PEG monomers with changing molecular weight from 144 g/mol to 1100 g/mol, we observed an excellent linear correlation (R2 = 0.998) between relative amount adsorbed and the distance from a water point in a specialized HSP plot, emphasizing the role of surface-water interactions for PEG modified surfaces. PMID:23072828

  8. Adhesive contact of randomly rough surfaces

    NASA Astrophysics Data System (ADS)

    Pastewka, Lars; Robbins, Mark

    2012-02-01

    The contact area, stiffness and adhesion between rigid, randomly rough surfaces and elastic substrates is studied using molecular statics and continuum simulations. The surfaces are self-affine with Hurst exponent 0.3 to 0.8 and different short λs and long λL wavelength cutoffs. The rms surface slope and the range and strength of the adhesive potential are also varied. For parameters typical of most solids, the effect of adhesion decreases as the ratio λL/λs increases. In particular, the pull-off force decreases to zero and the area of contact Ac becomes linear in the applied load L. A simple scaling argument is developed that describes the increase in the ratio Ac/L with increasing adhesion and a corresponding increase in the contact stiffness [1]. The argument also predicts a crossover to finite contact area at zero load when surfaces are exceptionally smooth or the ratio of surface tension to bulk modulus is unusually large, as for elastomers. Results that test this prediction will be presented and related to the Maugis-Dugdale [2] theories for individual asperities and the more recent scaling theory of Persson [3]. [1] Akarapu, Sharp, Robbins, Phys. Rev. Lett. 106, 204301 (2011) [2] Maugis, J. Colloid Interface Sci. 150, 243 (1992) [3] Persson, Phys. Rev. Lett. 74, 75420 (2006)

  9. High-temperature adhesives for polyimide films

    NASA Technical Reports Server (NTRS)

    St. Clair, A. K.; St. Clair, T. L.; Slemp, W. S.

    1979-01-01

    Linear condensation polyimides which are high-temperature polymers show promise as adhesives which form flexible film coatings compatible with polyimide films. Materials are advantageous since they can be supplied as flexible tape, already B-staged and ready for bonding.

  10. Wood adhesives containing proteins and carbohydrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years there has been resurgent interest in using biopolymers as sustainable and environmentally friendly ingredients in wood adhesive formulations. Among them, proteins and carbohydrates are the most commonly used. In this chapter, an overview is given of protein-based and carbohydrate-...

  11. Method for making adhesive from biomass

    DOEpatents

    Russell, J.A.; Riemath, W.F.

    1984-03-30

    A method is described for making adhesive from biomass. A liquefaction oil is prepared from lignin-bearing plant material and a phenolic fraction is extracted therefrom. The phenolic fraction is reacted with formaldehyde to yield a phenol-formaldehyde resin. 2 figures.

  12. Reactive Nanocomposites for Controllable Adhesive Debonding

    DTIC Science & Technology

    2011-08-01

    noncontact debond initiations. It is also noted that the RNC provides the quickest debond found in published literature. 2. Nanocomposite Debond...With paste adhesives, the pressure is applied uniformly, and excess resin in the bond line is forced out of the interfacial area to the thickness

  13. Nitrogen starvation affects bacterial adhesion to soil

    PubMed Central

    Borges, Maria Tereza; Nascimento, Antônio Galvão; Rocha, Ulisses Nunes; Tótola, Marcos Rogério

    2008-01-01

    One of the main factors limiting the bioremediation of subsoil environments based on bioaugmentation is the transport of selected microorganisms to the contaminated zones. The characterization of the physiological responses of the inoculated microorganisms to starvation, especially the evaluation of characteristics that affect the adhesion of the cells to soil particles, is fundamental to anticipate the success or failure of bioaugmentation. The objective of this study was to investigate the effect of nitrogen starvation on cell surface hydrophobicity and cell adhesion to soil particles by bacterial strains previously characterized as able to use benzene, toluene or xilenes as carbon and energy sources. The strains LBBMA 18-T (non-identified), Arthrobacter aurescens LBBMA 98, Arthrobacter oxydans LBBMA 201, and Klebsiella sp. LBBMA 204–1 were used in the experiments. Cultivation of the cells in nitrogen-deficient medium caused a significant reduction of the adhesion to soil particles by all the four strains. Nitrogen starvation also reduced significantly the strength of cell adhesion to the soil particles, except for Klebsiella sp. LBBMA 204–1. Two of the four strains showed significant reduction in cell surface hydrophobicity. It is inferred that the efficiency of bacterial transport through soils might be potentially increased by nitrogen starvation. PMID:24031246

  14. High Temperature Adhesives for Bonding Kapton

    NASA Technical Reports Server (NTRS)

    Stclair, A. K.; Slemp, W. S.; Stclair, T. L.

    1978-01-01

    Experimental polyimide resins were developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of Kapton/Kapton bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575K (575 F) in vacuum. Glass transition temperatures of the polyimide/Kapton bondlines were monitored by thermomechanical analysis.

  15. Underwater Adhesives Retrofit Pipelines with Advanced Sensors

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Houston-based Astro Technology Inc. used a partnership with Johnson Space Center to pioneer an advanced fiber-optic monitoring system for offshore oil pipelines. The company's underwater adhesives allow it to retrofit older deepwater systems in order to measure pressure, temperature, strain, and flow properties, giving energy companies crucial data in real time and significantly decreasing the risk of a catastrophe.

  16. Discovery of low mucus adhesion surfaces.

    PubMed

    Gu, Minghao; Yildiz, Hasan; Carrier, Rebecca; Belfort, Georges

    2013-02-01

    Mucus secretion from the body is ubiquitous, and finding materials that resist mucus adhesion is a major technological challenge. Here, using a high throughput platform with photo-induced graft polymerization, we first rapidly synthesized, screened and tested a library of 55 different surfaces from six functional monomer classes to discover porcine intestinal low mucus adhesion surfaces using a 1h static mucus adsorption protocol. From this preliminary screen, two chemistries, a zwitterionic ([2-(acryloyloxy)ethyl] trimethylammonium chloride) and a multiple hydroxyl (N-[tris(hydroxymethyl)methyl]acrylamide) surface, exhibited significantly low mucus adhesion from a Langmuir-type isotherm when exposed to increasing concentrations of mucus for 24 h. Apolar or hydrophobic interactions were likely the dominant attractive forces during mucus binding since many polar or hydrophilic monomers reduced mucus adhesion. Hansen solubility parameters were used to illustrate the importance of monomer polarity and hydrogen bonding in reducing mucus adsorption. For a series of polyethylene glycol (PEG) monomers with changing molecular weight from 144 g mol⁻¹ to 1100 g mol⁻¹, we observed an excellent linear correlation (R²=0.998) between relative amount adsorbed and the distance from a water point in a specialized Hansen solubility parameter plot, emphasizing the role of surface-water interactions for PEG modified surfaces.

  17. Flowmeter determines mix ratio for viscous adhesives

    NASA Technical Reports Server (NTRS)

    Lemons, C. R.

    1967-01-01

    Flowmeter determines mix ratio for continuous flow mixing machine used to produce an adhesive from a high viscosity resin and aliphatic amine hardener pumped through separate lines to a rotary blender. The flowmeter uses strain gages in the two flow paths and monitors their outputs with appropriate instrumentation.

  18. Si/Cu Interface Structure and Adhesion

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Smith, John

    2006-03-01

    An ab initio investigation of the Si(111)/Cu(111) interfacial atomic structure and adhesion is reported [1]. Misfit dislocations appear naturally, as do hcp interfacial silicide phases that vary with temperature. The silicides form in the interface even at relatively low temperatures. These results are consistent with available experimental data. [1] Xiao-Gang Wang, John Smith, Physical Review Letters 95, 156102 (2005).

  19. Adhesion of Antireflective Coatings in Multijunction Photovoltaics: Preprint

    SciTech Connect

    Brock, Ryan; Dauskardt, Reinhold H.; Miller, David C.

    2016-06-16

    The development of a new composite dual cantilever beam (cDCB) thin-film adhesion testing method is reported, which allows the measurement of adhesion on the fragile thin substrates used in multijunction photovoltaics. We address the adhesion of several antireflective coating systems on multijunction cells. By varying interface chemistry and morphology, we demonstrate the ensuing effects on adhesion and help to develop an understanding of how high adhesion can be achieved, as adhesion values ranging from 0.5 J/m2 to 10 J/m2 were measured. Damp Heat (85 degrees C/85% RH) was used to invoke degradation of interfacial adhesion. We show that even with germanium substrates that fracture easily, quantitative measurements of adhesion can still be made at high test yield. The cDCB test is discussed as an important new methodology, which can be broadly applied to any system that makes use of thin, brittle, or otherwise fragile substrates.

  20. Piezoelectric inkjet printing of medical adhesives and sealants

    NASA Astrophysics Data System (ADS)

    Boehm, Ryan D.; Gittard, Shaun D.; Byrne, Jacqueline M. H.; Doraiswamy, Anand; Wilker, Jonathan J.; Dunaway, Timothy M.; Crombez, Rene; Shen, Weidian; Lee, Yuan-Shin; Narayan, Roger J.

    2010-07-01

    Piezoelectric inkjet printing is a noncontact process that enables microscale processing of biological materials. In this research summary, the use of piezoelectric inkjet printing for patterning medical adhesives and sealants, including a two-component polyethylene glycol hydrogel-based medical sealant, an N-butyl cyanoacrylate tissue adhesive, and a mussel adhesive protein biological adhesive, is described The effect of Fe(III) on mussel adhesive protein structure was evaluated by means of atomic force microscopy. The ability to process microscale patterns of medical sealants and adhesives will provide an improvement in tissue joining, including enhanced tissue integrity, reduced bond lines, and decreased adhesive toxicity. Piezoelectric inkjet deposition of medical adhesives and sealants may be used in wound closure, fracture fixation, and microscale vascular surgery.