Peselnick, L.; Robie, R.A.
1962-01-01
The recent measurements of the elastic constants of calcite by Reddy and Subrahmanyam (1960) disagree with the values obtained independently by Voigt (1910) and Bhimasenachar (1945). The present authors, using an ultrasonic pulse technique at 3 Mc and 25??C, determined the elastic constants of calcite using the exact equations governing the wave velocities in the single crystal. The results are C11=13.7, C33=8.11, C44=3.50, C12=4.82, C13=5.68, and C14=-2.00, in units of 1011 dyncm2. Independent checks of several of the elastic constants were made employing other directions and polarizations of the wave velocities. With the exception of C13, these values substantially agree with the data of Voigt and Bhimasenachar. ?? 1962 The American Institute of Physics.
Renormalization of curvature elastic constants for elastic and fluid membranes
NASA Astrophysics Data System (ADS)
Ami, S.; Kleinert, H.
1987-02-01
We study the fluctuations of membranes with area and curvature elasticity and calculate the renormalization of the curvature elastic constants due to thermal fluctuations. For the mean curvature elastic constant the result is the same as obtained previously for “ideal membranes” which resist only to curvature deformations. The renormalization of the gaussian curvature, on the other hand, depends on the elastic contants. In an incompressible membrane, it is five times weaker than in an ideal membrane.
Elastic constants of layers in isotropic laminates.
Heyliger, Paul R; Ledbetter, Hassel; Kim, Sudook; Reimanis, Ivar
2003-11-01
The individual laminae elastic constants in multilayer laminates composed of dissimilar isotropic layers were determined using ultrasonic-resonance spectroscopy and the linear theory of elasticity. Ultrasonic resonance allows one to measure the free-vibration response spectrum of a traction-free solid under periodic vibration. These frequencies depend on pointwise density, laminate dimensions, layer thickness, and layer elastic constants. Given a material with known mass but unknown constitution, this method allows one to extract the elastic constants and density of the constituent layers. This is accomplished by measuring the frequencies and then minimizing the differences between these and those calculated using the theory of elasticity for layered media to select the constants that best replicate the frequency-response spectrum. This approach is applied to a three-layer, unsymmetric laminate of WpCu, and very good agreement is found with the elastic constants of the two constituent materials. PMID:14649998
Athermal nonlinear elastic constants of amorphous solids.
Karmakar, Smarajit; Lerner, Edan; Procaccia, Itamar
2010-08-01
We derive expressions for the lowest nonlinear elastic constants of amorphous solids in athermal conditions (up to third order), in terms of the interaction potential between the constituent particles. The effect of these constants cannot be disregarded when amorphous solids undergo instabilities such as plastic flow or fracture in the athermal limit; in such situations the elastic response increases enormously, bringing the system much beyond the linear regime. We demonstrate that the existing theory of thermal nonlinear elastic constants converges to our expressions in the limit of zero temperature. We motivate the calculation by discussing two examples in which these nonlinear elastic constants play a crucial role in the context of elastoplasticity of amorphous solids. The first example is the plasticity-induced memory that is typical to amorphous solids (giving rise to the Bauschinger effect). The second example is how to predict the next plastic event from knowledge of the nonlinear elastic constants. Using the results of our calculations we derive a simple differential equation for the lowest eigenvalue of the Hessian matrix in the external strain near mechanical instabilities; this equation predicts how the eigenvalue vanishes at the mechanical instability and the value of the strain where the mechanical instability takes place. PMID:20866874
Athermal nonlinear elastic constants of amorphous solids
NASA Astrophysics Data System (ADS)
Karmakar, Smarajit; Lerner, Edan; Procaccia, Itamar
2010-08-01
We derive expressions for the lowest nonlinear elastic constants of amorphous solids in athermal conditions (up to third order), in terms of the interaction potential between the constituent particles. The effect of these constants cannot be disregarded when amorphous solids undergo instabilities such as plastic flow or fracture in the athermal limit; in such situations the elastic response increases enormously, bringing the system much beyond the linear regime. We demonstrate that the existing theory of thermal nonlinear elastic constants converges to our expressions in the limit of zero temperature. We motivate the calculation by discussing two examples in which these nonlinear elastic constants play a crucial role in the context of elastoplasticity of amorphous solids. The first example is the plasticity-induced memory that is typical to amorphous solids (giving rise to the Bauschinger effect). The second example is how to predict the next plastic event from knowledge of the nonlinear elastic constants. Using the results of our calculations we derive a simple differential equation for the lowest eigenvalue of the Hessian matrix in the external strain near mechanical instabilities; this equation predicts how the eigenvalue vanishes at the mechanical instability and the value of the strain where the mechanical instability takes place.
Stresses and elastic constants of crystalline sodium, from molecular dynamics
Schiferl, S.K.
1985-02-01
The stresses and the elastic constants of bcc sodium are calculated by molecular dynamics (MD) for temperatures to T = 340K. The total adiabatic potential of a system of sodium atoms is represented by pseudopotential model. The resulting expression has two terms: a large, strictly volume-dependent potential, plus a sum over ion pairs of a small, volume-dependent two-body potential. The stresses and the elastic constants are given as strain derivatives of the Helmholtz free energy. The resulting expressions involve canonical ensemble averages (and fluctuation averages) of the position and volume derivatives of the potential. An ensemble correction relates the results to MD equilibrium averages. Evaluation of the potential and its derivatives requires the calculation of integrals with infinite upper limits of integration, and integrand singularities. Methods for calculating these integrals and estimating the effects of integration errors are developed. A method is given for choosing initial conditions that relax quickly to a desired equilibrium state. Statistical methods developed earlier for MD data are extended to evaluate uncertainties in fluctuation averages, and to test for symmetry. 45 refs., 10 figs., 4 tabs.
Elastic constants at low temperatures - Recent measurements on technological materials at NBS
NASA Technical Reports Server (NTRS)
Ledbetter, H. M.
1978-01-01
Solid-state low-temperature elastic properties have been experimentally studied at the NBS Cryogenic Division for four years. Most studies were between room temperature and liquid-helium temperature; some were only to liquid-nitrogen temperature. Two dynamic (high-frequency) experimental methods were used, pulse-echo and resonance, resulting in adiabatic elastic constants. The present paper reviews these studies for 47 technological materials - metals, alloys, and composites. The elastic constants primarily discussed are Young's modulus, the shear modulus, the bulk modulus (reciprocal compressibility), and Poisson's ratio. A summary table is presented to show which base metals tend to exhibit regular, irregular, or anomalous behavior in their elastic constant/temperature curves.
The elastic constants of the human lens
Fisher, R. F.
1971-01-01
1. When the lens is spun around its antero-posterior polar axis in an apparatus designed for the purpose, high speed photography can be used to record its changing profile. By this method a variable radial centrifugal force can be applied to the lens which mimics the pull of the zonule. 2. If the lens is not stressed at its centre beyond 100 Nm-2 it behaves as a truly elastic body. When stressed beyond this limit visco-elastic strain is produced at its poles. 3. The human lens has isotropic elastic properties at the extremes of life, but at the other times Young's Modulus of Elasticity varies with the direction in which it is measured. 4. Young's Modulus of Elasticity of the lens varies with age, polar elasticity and equatorial elasticity, at birth being 0·75 × 103 and 0·85 × 103 Nm-2 respectively, while at 63 years of age both are equal to 3 × 103 Nm-2. 5. A comparison of Young's Modulus of the young human lens with that of the rabbit and cat shows that the polar elasticity of the lenses of these animals was 5 times greater in the young rabbit, and 21 times greater in the adult cat. Equatorial elasticities of the rabbit and human lens were equal, while in the cat the equatorial elasticity was four times greater. 6. A mathematical model showing the lens substance possessing a nucleus of lower isotropic elasticity than that of the isotropic elastic cortex surrounding it, accounts for the difference between polar and equatorial elasticity of the intact adult lens. 7. The implications of these findings are discussed in relation to: (i) accommodation and the rheological properties of the lens; (ii) possible differences in the physical state of the lenticular proteins in the cortex and nucleus which may account for the senile variations in Young's Modulus of Elasticity in these regions of the lens; (iii) the loss of accommodation due solely to an increase in Young's Modulus of Elasticity of the lens between the ages of 15 and 60. This would amount to 44% of the
Measuring liquid crystal elastic constants with free energy perturbations.
Joshi, Abhijeet A; Whitmer, Jonathan K; Guzmán, Orlando; Abbott, Nicholas L; de Pablo, Juan J
2014-02-14
A first principles method is proposed to calculate the Frank elastic constants of nematic liquid crystals. These include the constants corresponding to standard splay, twist and bend deformations, and an often-ignored surface-like contribution known as saddle-splay. The proposed approach is implemented on the widely studied Gay-Berne (3, 5, 2, 1) model [J. G. Gay and B. J. Berne, J. Chem. Phys., 1981, 74, 3316], and the effects of temperature and system size on the elastic constants are examined in the nematic phase. The results of simulations for splay, twist, and bend elastic constants are consistent with those from previous literature reports. The method is subsequently applied to the saddle-splay elastic constant k24 which is found to exist at the limits of the Ericksen inequalities governing positive definite free energy. Finally, extensions of the method are discussed that present a new paradigm for in silico measurements of elastic constants. PMID:24837037
Elastic constant versus temperature behavior of three hardened maraging steels
NASA Technical Reports Server (NTRS)
Ledbetter, H. M.; Austin, M. W.
1985-01-01
Elastic constants of three maraging steels were determined by measuring ultrasonic velocities. Annealed steels show slightly lower bulk moduli and considerably lower shear moduli than hardened steels. All the elastic constants (Young's modulus, shear modulus, bulk modulus and Poisson's ratio) show regular temperature behavior between 76 and 400 K. Young's modulus and the shear modulus increase with increasing yield strength, but the bulk modulus and Poisson's ratio are relatively unchanged. Elastic anisotropy is quite small.
Extended temperature dependence of elastic constants in cubic crystals.
Telichko, A V; Sorokin, B P
2015-08-01
To extend the theory of the temperature dependence of the elastic constants in cubic crystals beyond the second- and third-order elastic constants, the fourth-order elastic constants, as well as the non-linearity in the thermal expansion temperature dependence, have been taken into account. Theoretical results were represented as temperature functions of the effective elastic constants and compared with experimental data for a number of cubic crystals, such as alkali metal halides, and elements gold and silver. The relations obtained give a more accurate description of the experimental temperature dependences of second-order elastic constants for a number of cubic crystals, including deviations from linear behavior. A good agreement between theoretical estimates and experimental data has been observed. PMID:25819879
The elastic constants of San Carlos olivine to 17 GPa
Abramson, E.H.; Brown, J.M.; Slutsky, L.J.; Zaug, J.
1997-06-01
All elastic constants, the average bulk and shear moduli, and the lattice parameters of San Carlos olivine (Fo{sub 90}) (initial density 3.355gm/cm{sup 3}) have been determined to a pressure of 12 GPa at room temperature. Measurements of c{sub 11}, c{sub 33}, c{sub 13}, and c{sub 55} have been extended to 17 GPa. The pressure dependence of the adiabatic, isotropic (Hashin-Shtrikman bounds) bulk modulus, and shear modulus may be expressed as K{sub HS}=129.4+4.29P and by G{sub HS}=78+1.71P{minus}0.027P{sup 2}, where both the pressure and the moduli are in gigapascals. The isothermal compression of olivine is described by a bulk modulus given as K{sub T}=126.3+4.28P. Elastic constants other than c{sub 55} can be adequately represented by a linear relationship in pressure. In the order (c{sub 11},c{sub 12},c{sub 13},c{sub 22},c{sub 23},c{sub 33},c{sub 44},c{sub 55},c{sub 66}) the 1 bar intercepts (gigapascal units) are (320.5, 68.1, 71.6, 196.5, 76.8, 233.5, 64.0, 77.0, 78.7). The first derivatives are (6.54, 3.86, 3.57, 5.38, 3.37, 5.51, 1.67, 1.81, 1.93). The second derivative for c{sub 55} is {minus}0.070GPa{sup {minus}1}. Incompressibilities for the three axes may also be expressed as linear relationships with pressure. In the order of {bold a, b}, and {bold c} axes the intercepts in gigapascals are (547.8, 285.8, 381.8) and the first derivatives are (20.1, 12.3, 14.0).{copyright} 1997 American Geophysical Union
Resonant ultrasound spectroscopy for elastic constant measurements
Dixon, R.D.; Migliori, A.; Roe, L.H.
1993-12-31
All objects exhibit vibrational resonances when mechanically excited. These resonant frequencies are determined by density, geometry, and elastic moduli. Resonant ultrasound spectroscopy (RUS) takes advantage of the known relationship between the parameters. In particular, for a freely suspended object, with three of the four parameters (vibrational spectra, density, geometry, or elastic moduli) known the remaining one can be calculated. From a materials characterization standpoint it is straight-forward to measure density and geometry but less so to measure all the elastic moduli. It has recently become possible to quickly and accurately measure vibrational spectra, and using code written at Los Alamos, calculate all the elastic moduli simultaneously. This is done to an accuracy of better than one percent for compression and 0.1 percent for shear. RUS provides rapid acquisition of materials information here-to-fore obtainable only with difficulty. It will greatly facilitate the use of real materials properties in models and thus make possible more realistic modeling results. The technique is sensitive to phase changes and microstructure. This offers a change to input real data into microstructure and phase change models. It will also enable measurement of moduli at locations in and about a weld thus providing information for a validating coupled thermomechanical calculations.
The calculation of elastic constants from displacement fluctuations
NASA Astrophysics Data System (ADS)
Meyers, M. T.; Rickman, J. M.; Delph, T. J.
2005-09-01
We present a methodology for the accurate and efficient extraction of elastic constants in homogeneous solids via the calculation of the atomic displacement correlation function. This approach is validated for cubic solids parametrized by both Lennard-Jones and embedded-atom method potentials. Finally, we also discuss the extension of this method to obtain the elastic properties of inhomogeneous solids.
Elastic Constants of the β1-AgCd Alloy
NASA Astrophysics Data System (ADS)
Matsuo, Yoshie; Makita, Tomoko; Suzuki, Toshiharu; Nagasawa, Akira
1981-04-01
The elastic constants of single crystal of β1-AgCd alloy with 47.9± 0.1 at.%Cd have been measured in a temperature range between 180 K and 360 K, using a ultrasonic pulse-cho overlapping method. It is found that with increasing temperature, the elastic constants CL{=}(C11+C12+2C44)/2 and C44 decrease linearly but C'{=}(C11-C12)/2 increases. In addition, this alloy shows a high elastic anisotropy in comparison with other Ag-based β1-phase alloys such as AgMg and AgZn.
Elastic constants of Ultrasonic Additive Manufactured Al 3003-H18.
Foster, D R; Dapino, M J; Babu, S S
2013-01-01
Ultrasonic Additive Manufacturing (UAM), also known as Ultrasonic Consolidation (UC), is a layered manufacturing process in which thin metal foils are ultrasonically bonded to a previously bonded foil substrate to create a net part. Optimization of process variables (amplitude, normal load and velocity) is done to minimize voids along the bonded interfaces. This work pertains to the evaluation of bonds in UAM builds through ultrasonic testing of a build's elastic constants. Results from ultrasonic testing on UAM parts indicate orthotropic material symmetry and a reduction of up to 48% in elastic constant values compared to a control sample. The reduction in elastic constant values is attributed to interfacial voids. In addition, the elastic constants in the plane of the Al foils have nearly the same value, while the constants normal to the foil direction have much different values. In contrast, measurements from builds made with Very High Power Ultrasonic Additive Manufacturing (VHP UAM) show a drastic improvement in elastic properties, approaching values similar to that of bulk aluminum. PMID:22939821
Effect of molecular orientation on the elastic constants of polypropylene.
Kumar, S. R.; Renusch, D. P.; Grimsditch, M.; Materials Science Division; Amoco Polymers Research & Development
2000-03-07
The Brillouin spectroscopic measurements of elastic properties of polypropylene films fabricated by different processing techniques are described. We find that the elastic symmetry and the associated elastic constants are dependent on the molecular orientation brought about by the processing conditions used to produce the films. We have shown that Brillouin scattering techniques can successfully be used to track the molecular orientation induced by uniaxial stretching. We find a direct correspondence between the Brillouin measurements and optical birefringence measurements, illustrating that molecular orientation plays a dominant role in determining the mechanical anisotropy in these materials.
Distribution of local elastic constants in nanofilms of metals
NASA Astrophysics Data System (ADS)
Meng, Dong-Yuan; Lin, Ping; Yan, Xue-Song; Qi, Xin; Yang, Lei
2012-07-01
The distribution of local elastic constants of nanofilms was studied by the stress-fluctuation approach. The Lennard-Jones (L-J) and the second-moment approximation of tight-binding (TB-SMA) potential are used as models to investigate the differences between the pair-wise and many-body atomic interaction. Firstly the configurations of the nanofilm are obtained by the simulations, and then with the configurations, elastic constants are calculated. The behaviors of C11(n) and C12(n) are different for L-J films. Inner layers have larger C11(n) and smaller C12(n). For TB-SMA films, the distributions are different from L-J films'. The outmost layers have the smallest value, while the secondary outer layers have the largest and the behaviors of C11(n) and C12(n) are similar. This distribution can be explained by the competition between electron redistribution and lower coordination near the free surfaces. Compared to L-J model TB-SMA is better to describe the system. Furthermore, as the temperature increases, the elastic constants get larger while the distributions of the local elastic constants almost remain the same.
The estimated elastic constants for a single bone osteonal lamella.
Yoon, Young June; Cowin, Stephen C
2008-02-01
Micromechanical estimates of the elastic constants for a single bone osteonal lamella and its substructures are reported. These estimates of elastic constants are accomplished at three distinct and organized hierarchical levels, that of a mineralized collagen fibril, a collagen fiber, and a single lamella. The smallest collagen structure is the collagen fibril whose diameter is the order of 20 nm. The next structural level is the collagen fiber with a diameter of the order of 80 nm. A lamella is a laminate structure, composed of multiple collagen fibers with embedded minerals and consists of several laminates. The thickness of one laminate in the lamella is approximately 130 nm. All collagen fibers in a laminate in the lamella are oriented in one direction. However, the laminates rotate relative to the adjacent laminates. In this work, all collagen fibers in a lamella are assumed to be aligned in the longitudinal direction. This kind of bone with all collagen fibers aligned in one direction is called a parallel fibered bone. The effective elastic constants for a parallel fibered bone are estimated by assuming periodic substructures. These results provide a database for estimating the anisotropic poroelastic constants of an osteon and also provide a database for building mathematical or computational models in bone micromechanics, such as bone damage mechanics and bone poroelasticity. PMID:17297631
Elastic constants of cubic and wurtzite boron nitrides
NASA Astrophysics Data System (ADS)
Nagakubo, A.; Ogi, H.; Sumiya, H.; Kusakabe, K.; Hirao, M.
2013-06-01
We synthesized pure polycrystalline cubic boron nitride (cBN) and wurtzite boron nitride (wBN) by the direct conversion method from hexagonal boron nitride, and measured their longitudinal-wave elastic constants CL between 20 and 300 K using picosecond ultrasound spectroscopy. Their room-temperature values are 945 ± 3 GPa and 930 ± 18 GPa for cBN and wBN, respectively. The shear modulus G of cBN was also determined by combining resonance ultrasound spectroscopy and micromechanics calculation as G = 410 GPa. We performed ab-initio calculations and confirmed that the generalized gradient approximation potential fails to yield correct elastic constants, which indicated the necessity of a hybrid-functional method.
Elastic constants of beryllium: a first-principles investigation.
Dal Corso, Andrea
2016-02-24
We apply several recently introduced projector-augmented wave, ultrasoft, and norm-conserving pseudopotentials (PPs) to the calculation of the elastic constants of beryllium and compare the results with previous theory and experiments. We discuss how the elastic constants depend on the Brillouin zone integration, the PP type, and the exchange and correlation functional. We find that although in percentage terms the elastic constants of beryllium depend on the PPs more than the crystal parameters or the bulk moduli, the differences between the local density approximation (LDA) and the Perdew, Burke, and Ernzerhof (PBE) generalized-gradient approximation are larger than the PP differences. The LDA overestimates compared to experiments, while the PBE values are higher than those of experiments but show a much better agreement. The PBEsol functional gives values that are slightly higher than those from PBE, with differences comparable to the PP uncertainty. We propose a simple formula to rationalize the internal relaxations in hexagonal close-packed crystals and show that Be relaxations are in reasonable agreement with this formula. The effects of internal relaxations on the values of C11 and C12 amount to a few per cent of C11, but up to 50% of C12. PMID:26809146
Elastic constants of beryllium: a first-principles investigation
NASA Astrophysics Data System (ADS)
Dal Corso, Andrea
2016-02-01
We apply several recently introduced projector-augmented wave, ultrasoft, and norm-conserving pseudopotentials (PPs) to the calculation of the elastic constants of beryllium and compare the results with previous theory and experiments. We discuss how the elastic constants depend on the Brillouin zone integration, the PP type, and the exchange and correlation functional. We find that although in percentage terms the elastic constants of beryllium depend on the PPs more than the crystal parameters or the bulk moduli, the differences between the local density approximation (LDA) and the Perdew, Burke, and Ernzerhof (PBE) generalized-gradient approximation are larger than the PP differences. The LDA overestimates compared to experiments, while the PBE values are higher than those of experiments but show a much better agreement. The PBEsol functional gives values that are slightly higher than those from PBE, with differences comparable to the PP uncertainty. We propose a simple formula to rationalize the internal relaxations in hexagonal close-packed crystals and show that Be relaxations are in reasonable agreement with this formula. The effects of internal relaxations on the values of C 11 and C 12 amount to a few per cent of C 11, but up to 50% of C 12.
NASA Astrophysics Data System (ADS)
Andronesi, Ovidiu C.; Ramadan, Saadallah; Ratai, Eva-Maria; Jennings, Dominique; Mountford, Carolyn E.; Sorensen, A. Gregory
2010-04-01
The purpose of this work was to design and implement constant adiabaticity gradient modulated pulses that have improved slice profiles and reduced artifacts for spectroscopic imaging on 3 T clinical scanners equipped with standard hardware. The newly proposed pulses were designed using the gradient offset independent adiabaticity (GOIA, Tannus and Garwood [13]) method using WURST modulation for RF and gradient waveforms. The GOIA-WURST pulses were compared with GOIA-HS n (GOIA based on nth-order hyperbolic secant) and FOCI (frequency offset corrected inversion) pulses of the same bandwidth and duration. Numerical simulations and experimental measurements in phantoms and healthy volunteers are presented. GOIA-WURST pulses provide improved slice profile that have less slice smearing for off-resonance frequencies compared to GOIA-HS n pulses. The peak RF amplitude of GOIA-WURST is much lower (40% less) than FOCI but slightly higher (14.9% more) to GOIA-HS n. The quality of spectra as shown by the analysis of lineshapes, eddy currents artifacts, subcutaneous lipid contamination and SNR is improved for GOIA-WURST. GOIA-WURST pulse tested in this work shows that reliable spectroscopic imaging could be obtained in routine clinical setup and might facilitate the use of clinical spectroscopy.
Elastic constants and dynamics in nematic liquid crystals
NASA Astrophysics Data System (ADS)
Humpert, Anja; Allen, Michael P.
2015-09-01
In this paper, we present molecular dynamics calculations of the Frank elastic constants, and associated time correlation functions, in nematic liquid crystals. We study two variants of the Gay-Berne potential, and use system sizes of half a million molecules, significantly larger than in previous studies of elastic behaviour. Equilibrium orientational fluctuations in reciprocal (k-) space were calculated, to determine the elastic constants by fitting at low |k|; our results indicate that small system size may be a source of inaccuracy in previous work. Furthermore, the dynamics of the Gay-Berne nematic were studied by calculating time correlation functions of components of the order tensor, together with associated components of the velocity field, for a set of wave vectors k. Confirming our earlier work, we found exponential decay for splay and twist correlations, and oscillatory exponential decay for the bend correlation. In this work, we confirm similar behaviour for the corresponding velocity components. In all cases, the decay rates, and oscillation frequencies, were found to be accurately proportional to k2 for small k, as predicted by the equations of nematodynamics. However, the observation of oscillatory bend fluctuations, and corresponding oscillatory shear flow decay, is in contradiction to the usual assumptions appearing in the literature, and in standard texts. We discuss the advantages and drawbacks of using large systems in these calculations.
Unified dark fluid with constant adiabatic sound speed and cosmic constraints
NASA Astrophysics Data System (ADS)
Xu, Lixin; Wang, Yuting; Noh, Hyerim
2012-02-01
As is known, more than 90% of the energy content in the Universe is made of unknown dark component. Usually this dark fluid is separated into two parts: dark matter and dark energy. However, it may be a mixture of these two energy components, or just one exotic unknown fluid. This property is dubbed as dark degeneracy. With this motivation, in this paper, a unified dark fluid having constant adiabatic sound speed cs2=α, which is in the range [0,1], is studied. At first, via the energy conservation equation, its energy density, ρd/ρd0=(1-Bs)+Bsa-3(1+α) where Bs is related to integration constant from energy conservation equation as another model parameter, is presented. Then by using the Markov Chain Monte Carlo method with currently available cosmic observational data sets which include type Ia supernova Union 2, baryon acoustic oscillation, and WMAP 7-year data of cosmic background radiation, we show that small values of α are favored in this unified dark fluid model. Furthermore, we show that smaller values of α<10-5 are required to match matter (baryon) power spectrum from SDSS DR7.
Unstable slippage across a fault that separates elastic media of different elastic constants
Weertman, J.
1980-03-10
In this study it is demonstrated that relatively slow, quasi-static slippage on a fault that separates 2 half-spaces of different elastic constants can become unstable if the slippage is governed by the Amontons-Coulomb friction law.(The shear stress across a fault required for slipping motion is proportional to the normal compressive stress across the fault.) If the 2 half-spaces have identical properties, unstable slippage is not possible under this friction law. The unstable slippage that is investigated in this work is a consequences of the existence of a short-range normal traction stress that gliding edge dislocations produce across an interface between 2 half-spaces of different elastic constants. This normal traction stress does not exist if the 2 half-spaces have identical properties. (Recent work of Dundurs, Comninous et al. has revealed the importance of the short-range traction stress components to crack problems.) 30 references.
NASA Astrophysics Data System (ADS)
Vaidya, B.; Mignone, A.; Bodo, G.; Massaglia, S.
2015-08-01
Context. An equation of state (EoS) is a relation between thermodynamic state variables and it is essential for closing the set of equations describing a fluid system. Although an ideal EoS with a constant adiabatic index Γ is the preferred choice owing to its simplistic implementation, many astrophysical fluid simulations may benefit from a more sophisticated treatment that can account for diverse chemical processes. Aims: In the present work we first review the basic thermodynamic principles of a gas mixture in terms of its thermal and caloric EoS by including effects like ionization, dissociation, and temperature dependent degrees of freedom such as molecular vibrations and rotations. The formulation is revisited in the context of plasmas that are either in equilibrium conditions (local thermodynamic- or collisional excitation-equilibria) or described by non-equilibrium chemistry coupled to optically thin radiative cooling. We then present a numerical implementation of thermally ideal gases obeying a more general caloric EoS with non-constant adiabatic index in Godunov-type numerical schemes. Methods: We discuss the necessary modifications to the Riemann solver and to the conversion between total energy and pressure (or vice versa) routinely invoked in Godunov-type schemes. We then present two different approaches for computing the EoS. The first employs root-finder methods and it is best suited for EoS in analytical form. The second is based on lookup tables and interpolation and results in a more computationally efficient approach, although care must be taken to ensure thermodynamic consistency. Results: A number of selected benchmarks demonstrate that the employment of a non-ideal EoS can lead to important differences in the solution when the temperature range is 500-104 K where dissociation and ionization occur. The implementation of selected EoS introduces additional computational costs although the employment of lookup table methods (when possible) can
Elastic constants and velocity surfaces of indurated anisotropic shales
Johnston, J.E.; Christensen, N.I.
1994-09-01
The velocities of two Devonian-Mississippian shales have been measured to confining pressures of 200 MPa in a laboratory study of anisotropy and wave propagation. Both samples were found to be transversely isotropic at elevated pressures with the main symmetry axis perpendicular to bedding. The elastic constants of the shales were used to calculate phase and group velocity surfaces as a function of angle to the bedding normal. Multiple velocity measurements in non-symmetry directions, not undertaken in previously published studies of shales, have been used to confirm features observed on calculated velocity surfaces. It is demonstrated that velocities measured in non-symmetry directions are phase velocities. Group velocities were found to be significantly lower than the corresponding phase velocities of the shales due to their high anisotropies. Shear wave splitting was found to be negligible for propagation directions within approximately 30{degrees} of the bedding normals.
Ab Initio Simulation Beryllium in Solid Molecular Hydrogen: Elastic Constant
NASA Astrophysics Data System (ADS)
Guerrero, Carlo L.; Perlado, Jose M.
2016-03-01
In systems of inertial confinement fusion targets Deuterium-Tritium are manufactured with a solid layer, it must have specific properties to increase the efficiency of ignition. Currently there have been some proposals to model the phases of hydrogen isotopes and hence their high pressure, but these works do not allow explaining some of the structures present at the solid phase change effect of increased pressure. By means of simulation with first principles methods and Quantum Molecular Dynamics, we compare the structural difference of solid molecular hydrogen pure and solid molecular hydrogen with beryllium, watching beryllium inclusion in solid hydrogen matrix, we obtain several differences in mechanical properties, in particular elastic constants. For C11 the difference between hydrogen and hydrogen with beryllium is 37.56%. This may produce a non-uniform initial compression and decreased efficiency of ignition.
Mangia, Silvia; Liimatainen, Timo; Garwood, Michael; Tkac, Ivan; Henry, Pierre-Gilles; Deelchand, Dinesh; Michaeli, Shalom
2011-08-01
In this work, we investigated the frequency-offset dependence of the rotating frame longitudinal (R(1ρ)) and transverse (R(2ρ)) relaxation rate constants when using hyperbolic-secant adiabatic full passage pulses or continuous-wave spin-lock irradiation. Phantom and in vivo measurements were performed to validate theoretical predictions of the dominant relaxation mechanisms existing during adiabatic full passage pulses when using different settings of the frequency offset relative to the carrier. In addition, adiabatic R(1ρ) and R(2ρ) values of total creatine and N-acetylaspartate were measured in vivo from the human brain at 4 T. When the continuous-wave pulse power was limited to safe specific absorption rates for humans, simulations revealed a strong dependence of R(1ρ) and R(2ρ) values on the frequency offset for both dipolar interactions and anisochronous exchange mechanisms. By contrast, theoretical and experimental results showed adiabatic R(1ρ) and R(2ρ) values to be practically invariant within the large subregion of the bandwidth of the hyperbolic-secant pulse where complete inversion was achieved. However, adiabatic R(1ρ) and R(2ρ) values of the methyl protons of total creatine (at 3.03 ppm) were almost doubled when compared with those of the methyl protons of N-acetylaspartate (at 2.01 ppm) in spite of the fact that these resonances were in the flat region of the inversion band of the adiabatic full passage pulses. We conclude that differences in adiabatic R(1ρ) and R(2ρ) values of human brain metabolites are not a result of their chemical shifts, but instead reflect differences in dynamics. PMID:21264976
Mangia, Silvia; Liimatainen, Timo; Garwood, Michael; Tkac, Ivan; Henry, Pierre-Gilles; Deelchand, Dinesh; Michaeli, Shalom
2011-01-01
In this work, we investigated the frequency-offset dependence of the rotating frame longitudinal (R1ρ) and transverse (R2ρ) relaxation rate constants when using hyperbolic-secant adiabatic full passage pulses or continuous-wave spin-lock irradiation. Phantom and in vivo measurements were performed to validate theoretical predictions of the dominant relaxation mechanisms existing during adiabatic full passage pulses when using different settings of the frequency offset relative to the carrier. In addition, adiabatic R1ρ and R2ρ values of total creatine and N-acetylaspartate were measured in vivo from the human brain at 4 T. When the continuous-wave pulse power was limited to safe specific absorption rates for humans, simulations revealed a strong dependence of R1ρ and R2ρ values on the frequency offset for both dipolar interactions and anisochronous exchange mechanisms. By contrast, theoretical and experimental results showed adiabatic R1ρ and R2ρ values to be practically invariant within the large subregion of the bandwidth of the hyperbolic-secant pulse where complete inversion was achieved. However, adiabatic R1ρ and R2ρ values of the methyl protons of total creatine (at 3.03 ppm) were almost doubled when compared with those of the methyl protons of N-acetylaspartate (at 2.01 ppm) in spite of the fact that these resonances were in the flat region of the inversion band of the adiabatic full passage pulses. We conclude that differences in adiabatic R1ρ and R2ρ values of human brain metabolites are not a result of their chemical shifts, but instead reflect differences in dynamics. PMID:21264976
Nondestructive characterization of the elastic constants of fiber reinforced composites
NASA Technical Reports Server (NTRS)
Mal, Ajit K.; Lih, Shyh-Shiuh; Bar-Cohen, Yoseph
1993-01-01
Composite structural components may be subjected to a variety of defects resulting in a sharp reduction in their load carrying capacity or even catastrophic failure. Thus, it is extremely important to have the means to monitor the degradation suffered by critical components of a structure for safe operation during its service life. A nondestructive method based on ultrasonics has recently been developed for the quantitative evaluation of composite structural components during service. The experimental part of the technique uses a two-transducer, pitch-catch type arrangement to generate a variety of elastic waves within the specimen immersed in water. The recorded reflection data are then analyzed by means of a theoretical model to back out the relevant properties. In this paper the method is applied to determine the stiffness constants of unidirectional graphite/epoxy materials. The measurements are shown to be efficient and sufficiently accurate so that it can be used for early detection of material degradation in composite structural elements during service.
Measuring elastic constants using non-contact ultrasonic techniques
NASA Astrophysics Data System (ADS)
Edwards, R. S.; Perry, R.; Cleanthous, D.; Backhouse, D. J.; Moore, I. J.; Clough, A. R.; Stone, D. I.
2012-05-01
The use of ultrasound for measuring elastic constants and phase transitions is well established. Standard measurements use piezoelectric transducers requiring couplant and contact with the sample. Recently, non-destructive testing (NDT) has seen an increase in the use of non-contact ultrasonic techniques, for example electromagnetic acoustic transducers (EMATs) and laser ultrasound, due to their many benefits. For measurements of single crystals over a range of temperatures non-contact techniques could also bring many benefits. These techniques do not require couplant, and hence do not suffer from breaking of the bond between transducer and sample during thermal cycling, and will potentially lead to a simpler and more adaptable measurement system with lower risk of sample damage. We present recent work adapting EMAT advances from NDT to measurements of single crystals at cryogenic temperatures and illustrate this with measurements of magnetic phase transitions in Gd64Sc36 using both contact and non-contact transducers. We discuss the measurement techniques implemented to overcome noise problems, and a digital pulse-echo-overlap technique, using data analysis in the frequency domain to measure the velocity.
Theoretical prediction of Debye temperature & elastic constants of geophysical mineral
NASA Astrophysics Data System (ADS)
Singh, Chandra K.; Pandey, Anjani K.; Pandey, Brijesh K.
2016-05-01
Technological applications of the materials can be explored upto the desired limit of accuracy with the better knowledge of its mechanical and thermal properties such as ductility brittleness and Debye temperature. For the resistance to fracture (K) and plastic deformation (G) the ratio K/G is treated as an indication of ductile or brittle character of solids. In the present work we have tested the condition of ductility and brittleness with the calculated values of K/G for the geophysical minerals MgO and CaO, which are in good agreement with the corresponding experimental values. We have also computed the Debye temperature (θD) for the selected samples using average sound velocity obtained by using the values of resistance to fracture (K) and plastic deformation (G). It is observed that both the minerals are Brittle in nature and the calculated values of Debye temperature is in good agreement with the corresponding experimental values. Thus it is concluded that the nature and Debye temperature of geophysical minerals can be predicted upto high temperature simply with the knowledge of its elastic stiffness constant only.
Venkata Sai, D; Mirri, G; Kouwer, P H J; Sahoo, R; Musevic, I; Dhara, Surajit
2016-03-01
We report the first experimental studies on the temperature dependence of viscoelastic properties of a room temperature discotic nematic liquid crystal. The splay elastic constant is greater than the bend elastic constant and both show unusual temperature and order parameter dependence. The rotational viscosity is remarkably larger than conventional calamitic liquid crystals. We provide a simple physical explanation based on the columnar short-range order to account for the the unusual temperature dependence of the elastic constants. PMID:26883494
On the reduction of elastic constants for multiphase composites
Markenscoff, X.; Jasiuk, I.
1995-12-31
The reduction in the number of elastic parameters in a multiphase multiply connected composite with body forces is examined on the basis of the invariance of stress under a change in elastic compliances. The conditions obtained are the generalization of the Michell conditions for domains containing inclusions of a different material. Several cases and examples are presented. The conditions allowing for linear (in space) transformation of the elastic compliances are also examined.
Third-order elastic constants of the alloy Fe 72Pt 28
NASA Astrophysics Data System (ADS)
Vinu, T. P.; Menon, C. S.
2004-09-01
The complete sets of second- and third-order elastic constants of the cubic Fe72Pt28 have been obtained using the strain energy density derived from interactions up to three nearest neighbours of each atom in the unit cell. The finite strain elasticity theory has been used to get the strain energy density of Fe72Pt28. The strain energy density is compared with the strain-dependent lattice energy density obtained from the continuum model approximation and the expressions for the second- and third-order elastic constants of Fe72Pt28 are given. The second-order potential parameter is deduced from the measured second-order elastic constants of Fe72Pt28 and the third-order potential parameter is estimated from the Lennard-Jones inter-atomic potential for Fe72Pt28. The inter-lattice displacements; the three independent second-order elastic constants and the six independent third-order elastic constants of Fe72Pt28 are also determined. The second-order elastic constants are compared with the experimental elastic constants of Fe72Pt28. We also study the effect of pressure on the second-order elastic constants of Fe72Pt28.
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Kalluri, Sreeramesh
1991-01-01
The temperature-dependent engineering elastic constants of a directionally solidified nickel-base superalloy were estimated from the single-crystal elastic constants of nickel and MAR-MOO2 superalloy by using Wells' method. In this method, the directionally solidified (columnar-grained) nickel-base superalloy was modeled as a transversely isotropic material, and the five independent elastic constants of the transversely isotropic material were determined from the three independent elastic constants of a cubic single crystal. Solidification for both the single crystals and the directionally solidified superalloy was assumed to be along the (001) direction. Temperature-dependent Young's moduli in longitudinal and transverse directions, shear moduli, and Poisson's ratios were tabulated for the directionally solidified nickel-base superalloy. These engineering elastic constants could be used as input for performing finite element structural analysis of directionally solidified turbine engine components.
Elastic constants of α Ti-7Al measured using resonant ultrasound spectroscopy
NASA Astrophysics Data System (ADS)
Adebisi, R. A.; Sathish, S.; Pilchak, A. L.; Shade, P. A.
2016-02-01
The five independent elastic constants of a single-phase (α, HCP crystal structure) titanium alloy, Ti-7Al, have been measured for the first time using resonant ultrasound spectroscopy (RUS). RUS is a nondestructive evaluation method that mea-sures the mechanical resonance of solids and uses the resonance frequencies to extract a complete set of elastic constants of the solid material. The elastic constants of titanium alloys vary substantially depending on manufacturing history and composition. In addition, available data on the elastic constants of titanium alloys is limited. The elastic constants data for Ti-7Al are presented in this paper and the results are compared to the available data for other titanium alloys that are similar in composition.
Quick and accurate estimation of the elastic constants using the minimum image method
NASA Astrophysics Data System (ADS)
Tretiakov, Konstantin V.; Wojciechowski, Krzysztof W.
2015-04-01
A method for determining the elastic properties using the minimum image method (MIM) is proposed and tested on a model system of particles interacting by the Lennard-Jones (LJ) potential. The elastic constants of the LJ system are determined in the thermodynamic limit, N → ∞, using the Monte Carlo (MC) method in the NVT and NPT ensembles. The simulation results show that when determining the elastic constants, the contribution of long-range interactions cannot be ignored, because that would lead to erroneous results. In addition, the simulations have revealed that the inclusion of further interactions of each particle with all its minimum image neighbors even in case of small systems leads to results which are very close to the values of elastic constants in the thermodynamic limit. This enables one for a quick and accurate estimation of the elastic constants using very small samples.
NASA Astrophysics Data System (ADS)
Mirzaev, Sirojiddin Z.; Kaatze, Udo
2016-09-01
Ultrasonic spectra of mixtures of nitrobenzene with n-alkanes, from n-hexane to n-nonane, are analyzed. They feature up to two Debye-type relaxation terms with discrete relaxation times and, near the critical point, an additional relaxation term due to the fluctuations in the local concentration. The latter can be well represented by the dynamic scaling theory. Its amplitude parameter reveals the adiabatic coupling constant of the mixtures of critical composition. The dependence of this thermodynamic parameter upon the length of the n-alkanes corresponds to that of the slope in the pressure dependence of the critical temperature and is thus taken another confirmation of the dynamic scaling model. The change in the variation of the coupling constant and of several other mixture parameters with alkane length probably reflects a structural change in the nitrobenzene- n-alkane mixtures when the number of carbon atoms per alkane exceeds eight.
Free energy perturbation method for measuring elastic constants of liquid crystals
NASA Astrophysics Data System (ADS)
Joshi, Abhijeet
There is considerable interest in designing liquid crystals capable of yielding specific morphological responses in confined environments, including capillaries and droplets. The morphology of a liquid crystal is largely dictated by the elastic constants, which are difficult to measure and are only available for a handful of substances. In this work, a first-principles based method is proposed to calculate the Frank elastic constants of nematic liquid crystals directly from atomistic models. These include the standard splay, twist and bend deformations, and the often-ignored but important saddle-splay constant. The proposed method is validated using a well-studied Gay-Berne(3,5,2,1) model; we examine the effects of temperature and system size on the elastic constants in the nematic and smectic phases. We find that our measurements of splay, twist, and bend elastic constants are consistent with previous estimates for the nematic phase. We further outline the implementation of our approach for the saddle-splay elastic constant, and find it to have a value at the limits of the Ericksen inequalities. We then proceed to report results for the elastic constants commonly known liquid crystals namely 4-pentyl-4'-cynobiphenyl (5CB) using atomistic model, and show that the values predicted by our approach are consistent with a subset of the available but limited experimental literature.
Elastic constants of GaN between 10 and 305 K
NASA Astrophysics Data System (ADS)
Adachi, K.; Ogi, H.; Nagakubo, A.; Nakamura, N.; Hirao, M.; Imade, M.; Yoshimura, M.; Mori, Y.
2016-06-01
Using the antenna-transmission resonant ultrasound spectroscopy, we measured the elastic constants of GaN between 10 and 305 K using 72 resonance frequencies. The mode Grüneisen parameter is determined from temperature dependence of each elastic constant, which is larger along the c axis than along the a axis, showing anisotropy in lattice anharmonicity. The zero-temperature elastic constants, determined using the Einstein-oscillator model, yield the Debye characteristic temperature of 636 K. The ab-initio calculation is carried out for deducing the elastic constants, and comparison between calculations and measurements at 0 K reveals that the local-density-approximation potential is preferable for theoretically evaluating characteristics of GaN. The theoretical calculation also supports the anisotropy in lattice anharmonicity.
Phonon frequencies and elastic constants of cubic Pu from electronic structure theory
Straub, G.K.
1996-11-01
The phonon frequencies and elastic constants of plutonium are calculated using a model for the electronic structure that treats the valance electrons as a pseudopotential and the f-electrons in tight-binding theory. An effective interaction between ions is presented with electron screening treated in the Thomas-Fermi approximation and the f-electrons contributing bonding and repulsive terms to the potential. The phonon frequencies and elastic constants are calculated using the face-centered cubic lattice structure for both the {alpha}-, and {delta}-phases of Pu. The electronic structure predicts the qualitative behavior of the elastic constants and the transverse branches of the phonon dispersion curves in agreement with experimental values of the elastic constants for B-phase Pu.
NASA Astrophysics Data System (ADS)
Yang, Jing; Cheng, Jianchun; Berthelot, Yves H.
2002-03-01
An inverse method based on a combination of the wavelet transform and artificial neural networks is presented. The method is used to recover the elastic constants of a fiber-reinforced composite plate from experimental measurements of ultrasonic Lamb waves generated and detected with lasers. In this method, the elastic constants are not recovered from the dispersion curves but rather directly from the measured waveforms. Transient waveforms obtained by numerical simulations for different elastic constants are used as input to train the neural network. The wavelet transform is used to extract the eigenvectors from the Lamb wave signals to simplify the structure of the neutral network. The eigenvectors are then introduced into a multilayer internally recurrent neural network with a back-propagation algorithm. Finally, experimental waveforms recoded on a titanium-graphite composite plate are used as input to recover the elastic constants of the material.
NASA Technical Reports Server (NTRS)
Marques, E. R. C.; Williams, J. H., Jr.
1986-01-01
The elastic constants of a fiberglass epoxy unidirectional composite are determined by measuring the phase velocities of longitudinal and shear stress waves via the through transmission ultrasonic technique. The waves introduced into the composite specimens were generated by piezoceramic transducers. Geometric lengths and the times required to travel those lengths were used to calculate the phase velocities. The model of the transversely isotropic medium was adopted to relate the velocities and elastic constants.
Bounds on Elastic Constants for Random Polycrystals of Laminates
Berryman, J G
2004-04-30
A well-known result due to Hill provides an exact expression for the bulk modulus of any multicomponent elastic composite whenever the constituents are isotropic and the shear modulus is uniform throughout. Although no precise analog of Hill's result is available for the opposite case of uniform bulk modulus and varying shear modulus, it is shown here that some similar statements can be made for shear behavior of random polycrystals composed of laminates of isotropic materials. In particular, the Hashin-Shtrikman-type bounds of Peselnick, Meister, and Watt for random polycrystals composed of hexagonal (transversely isotropic) grains are applied to the problem of polycrystals of laminates. An exact product formula relating the Reuss estimate of bulk modulus and an effective shear modulus (of laminated grains composing the system) to products of the eigenvalues for quasi-compressional and quasi-uniaxial shear eigenvectors also plays an important role in the analysis of the overall shear behavior of the random polycrystal. When the bulk modulus is uniform in such a system, the equations are shown to reduce to a simple form that depends prominently on the uniaxial shear eigenvalue - as expected from physical arguments concerning the importance of uniaxial shear in these systems. One application of the analytical results presented here is for benchmarking numerical procedures used for estimating elastic behavior of complex composites.
Determination of the dynamic elastic constants of recycled aggregate concrete
NASA Astrophysics Data System (ADS)
Tsoumani, A. A.; Barkoula, N.-M.; Matikas, T. E.
2015-03-01
Nowadays, construction and demolition waste constitutes a major portion of the total solid waste production in the world. Due to both environmental and economical reasons, an increasing interest concerning the use of recycled aggregate to replace aggregate from natural sources is generated. This paper presents an investigation on the properties of recycled aggregate concrete. Concrete mixes are prepared using recycled aggregates at a substitution level between 0 and 100% of the total coarse aggregate. The influence of this replacement on strengthened concrete's properties is being investigated. The properties estimated are: density and dynamic modulus of elasticity at the age of both 7 and 28 days. Also, flexural strength of 28 days specimens is estimated. The determination of the dynamic elastic modulus was made using the ultrasonic pulse velocity method. The results reveal that the existence of recycled aggregates affects the properties of concrete negatively; however, in low levels of substitution the influence of using recycled aggregates is almost negligible. Concluding, the controlled use of recycled aggregates in concrete production may help solve a vital environmental issue apart from being a solution to the problem of inadequate concrete aggregates.
Adlem, K; Čopič, M; Luckhurst, G R; Mertelj, A; Parri, O; Richardson, R M; Snow, B D; Timimi, B A; Tuffin, R P; Wilkes, D
2013-08-01
Here we report the chemical induction of the twist-bend nematic phase in a nematic mixture of ether-linked liquid crystal dimers by the addition of a dimer with methylene links; all dimers have an odd number of groups in the spacer connecting the two mesogenic groups. The twist-bend phase has been identified from its optical texture and x-ray scattering pattern as well as NMR spectroscopy, which demonstrates the phase chirality. Theory predicts that the key macroscopic property required for the stability of this chiral phase formed from achiral molecules is for the bend elastic constant to tend to be negative; in addition the twist elastic constant should be smaller than half the splay elastic constant. To test these important aspects of the prediction we have measured the bend and splay elastic constants in the nematic phase preceding the twist-bend nematic using the classic Frederiks methodology and all three elastic constants employing the dynamic light scattering approach. Our results show that, unlike the splay, the bend elastic constant is small and decreases significantly as the transition to the induced twist-bend nematic phase is approached, but then exhibits unexpected behavior prior to the phase transition. PMID:24032852
Specimen-specific multi-scale model for the anisotropic elastic constants of human cortical bone
Deuerling, Justin M.; Yue, Weimin; Espinoza Orías, Alejandro A.; Roeder, Ryan K.
2009-01-01
The anisotropic elastic constants of human cortical bone were predicted using a specimen-specific micromechanical model that accounted for structural parameters across multiple length scales. At the nano-scale, the elastic constants of the mineralized collagen fibril were estimated from measured volume fractions of the constituent phases, namely apatite crystals and Type I collagen. The elastic constants of the extracellular matrix (ECM) were predicted using the measured orientation distribution function (ODF) for the apatite crystals to average the contribution of misoriented mineralized collagen fibrils. Finally, the elastic constants of cortical bone tissue were determined by accounting for the measured volume fraction of Haversian porosity within the ECM. Model predictions using the measured apatite crystal ODF were not statistically different from experimental measurements for both the magnitude and anisotropy of elastic constants. In contrast, model predictions using common idealized assumptions of perfectly aligned or randomly oriented apatite crystals were significantly different from the experimental measurements. A sensitivity analysis indicated that the apatite crystal volume fraction and ODF were the most influential structural parameters affecting model predictions of the magnitude and anisotropy, respectively, of elastic constants. PMID:19664772
Bowing effect in elastic constants of dilute Ga(As,N) alloys
NASA Astrophysics Data System (ADS)
Berggren, Jonas; Hanke, Michael; Trampert, Achim
2016-05-01
We study the elastic properties of dilute Ga(As,N) thin films grown on GaAs(001) by means of nano-indentation and complementary dynamic finite element calculations. The experimental results of indentation modulus are compared with simulations in order to extract the cubic elastic constants cij as a function of nitrogen content of the Ga(As,N) alloys. Both, indentation modulus and elastic constants decrease with increasing nitrogen content, which proves a strong negative bowing effect in this system in contrast to Vegard's law.
Third-order elastic constants of diamond determined from experimental data
NASA Astrophysics Data System (ADS)
Winey, J. M.; Hmiel, A.; Gupta, Y. M.
2016-06-01
The pressure derivatives of the second-order elastic constants (SOECs) of diamond were determined by analyzing previous sound velocity measurements under hydrostatic stress [McSkimin and Andreatch, J. Appl. Phys., vol. 43, 1972, pp. 2944] [4]. Our analysis corrects an error in the previously reported results. Using the corrected pressure derivatives, together with published data for the nonlinear elastic response of shock-compressed diamond [Lang and Gupta, Phys. Rev. Lett., vol. 106, 2011, pp. 125502] [3], a complete and corrected set of third-order elastic constants (TOECs) is presented that differs significantly from TOECs published previously.
Elastic constants of a Laves phase compound: C15 NbCr{sub 2}
Ormeci, A. |; Chu, F.; Wills, J.M.; Chen, S.P.; Albers, R.C.; Thoma, D.J.; Mitchell, T.E.
1997-04-01
The single-crystal elastic constants of C15 NbCr{sub 2} have been computed by using a first-principles, self-consistent, full-potential total energy method. From these single-crystal elastic constants the isotropic elastic moduli are calculated using the Voigt and Reuss averages. The calculated values are in fair agreement with the experimental values. The implications of the results are discussed with regards to Poisson`s ratio and the direction dependence of Young`s modulus.
Experimental Determination of High-Order Bending Elastic Constants of Lipid Bilayers.
Toscano-Flores, Liliana G; Jacinto-Méndez, Damián; Carbajal-Tinoco, Mauricio D
2016-06-30
We present a method to describe the formation of small lipid vesicles in terms of three bending elastic constants that can be experimentally measured. Our method combines a general expression of the elastic free energy of the bilayer and the thermodynamic description of molecular aggregation. The resulting model requires the size distribution of liposomes, which is determined from the X-ray scattered intensity spectra of vesicular dispersions. By using two different preparation methods, we studied a series of vesicular solutions made of distinct lipids and we obtained their corresponding bending elastic constants that are consistent with known bending rigidities. PMID:27267752
The modified Black-Scholes model via constant elasticity of variance for stock options valuation
NASA Astrophysics Data System (ADS)
Edeki, S. O.; Owoloko, E. A.; Ugbebor, O. O.
2016-02-01
In this paper, the classical Black-Scholes option pricing model is visited. We present a modified version of the Black-Scholes model via the application of the constant elasticity of variance model (CEVM); in this case, the volatility of the stock price is shown to be a non-constant function unlike the assumption of the classical Black-Scholes model.
Formulas for the elastic constants of plates with integral waffle-like stiffening
NASA Technical Reports Server (NTRS)
Dow, Norris R; Libove, Charles; Hubka, Ralph E
1954-01-01
Formulas are derived for the fifteen elastic constants associated with bending, stretching, twisting, and shearing of plates with closely spaced integral ribbing in a variety of configurations and proportions. In the derivation the plates are considered, conceptually, as more uniform orthotropic plates somewhat on the order of plywood. The constants, which include the effectiveness of the ribs for resisting deformations other than bending and stretching in their longitudinal directions, are defined in terms of four coefficients, and theoretical and experimental methods for the evaluation of these coefficients are discussed. Four of the more important elastic constants are predicted by these formulas and are compared with test results. Good correlation is obtained. (author)
High Temperature Elastic Constants of Langatate from RUS Measurements up to 1100?C
Shyam, Amit; Lara-Curzio, Edgar
2008-01-01
This paper reports on the langatate (LGT) elastic constants and their temperature coefficients measured from room temperature (25degC) to 1100degC using resonant ultrasound spectroscopy (RUS). The constants were extracted by iteratively fitting the resonant peaks with those calculated by Lagrangian mechanics at each temperature where the RUS measurements were taken. In addition, the RUS technique was used to extract the elastic and piezoelectric constants in the 25degC to 120degC temperature range. The extraction of LGT elastic constants up to 1100degC presented in this paper represents a critical step towards the design and fabrication of LGT acoustic wave devices for high temperature and harsh environment applications.
NASA Astrophysics Data System (ADS)
Hmiel, A.; Winey, J. M.; Gupta, Y. M.; Desjarlais, M. P.
2016-05-01
Accurate theoretical calculations of the nonlinear elastic response of strong solids (e.g., diamond) constitute a fundamental and important scientific need for understanding the response of such materials and for exploring the potential synthesis and design of novel solids. However, without corresponding experimental data, it is difficult to select between predictions from different theoretical methods. Recently the complete set of third-order elastic constants (TOECs) for diamond was determined experimentally, and the validity of various theoretical approaches to calculate the same may now be assessed. We report on the use of density functional theory (DFT) methods to calculate the six third-order elastic constants of diamond. Two different approaches based on homogeneous deformations were used: (1) an energy-strain fitting approach using a prescribed set of deformations, and (2) a longitudinal stress-strain fitting approach using uniaxial compressive strains along the [100], [110], and [111] directions, together with calculated pressure derivatives of the second-order elastic constants. The latter approach provides a direct comparison to the experimental results. The TOECs calculated using the energy-strain approach differ significantly from the measured TOECs. In contrast, calculations using the longitudinal stress-uniaxial strain approach show good agreement with the measured TOECs and match the experimental values significantly better than the TOECs reported in previous theoretical studies. Our results on diamond have demonstrated that, with proper analysis procedures, first-principles calculations can indeed be used to accurately calculate the TOECs of strong solids.
Equation of state in relativistic magnetohydrodynamics: variable versus constant adiabatic index
NASA Astrophysics Data System (ADS)
Mignone, A.; McKinney, Jonathan C.
2007-07-01
The role of the equation of state (EoS) for a perfectly conducting, relativistic magnetized fluid is the main subject of this work. The ideal constant Γ-law EoS, commonly adopted in a wide range of astrophysical applications, is compared with a more realistic EoS that better approximates the single-specie relativistic gas. The paper focuses on three different topics. First, the influence of a more realistic EoS on the propagation of fast magnetosonic shocks is investigated. This calls into question the validity of the constant Γ-law EoS in problems where the temperature of the gas substantially changes across hydromagnetic waves. Secondly, we present a new inversion scheme to recover primitive variables (such as rest-mass density and pressure) from conservative ones that allows for a general EoS and avoids catastrophic numerical cancellations in the non-relativistic and ultrarelativistic limits. Finally, selected numerical tests of astrophysical relevance (including magnetized accretion flows around Kerr black holes) are compared using different equations of state. Our main conclusion is that the choice of a realistic EoS can considerably bear upon the solution when transitions from cold to hot gas (or vice versa) are present. Under these circumstances, a polytropic EoS can significantly endanger the solution.
Every, A G; Sumanya, C; Mathe, B A; Zhang, X; Comins, J D
2016-07-01
Surface Brillouin scattering of light allows the angular-dependent velocities of Rayleigh surface acoustic waves (SAW), pseudo-SAW and longitudinal lateral waves (L) on the surface of an opaque crystal to be measured, and the elastic constants thereby determined. Closed form expressions exist for the surface wave velocities in high symmetry directions on crystallographic symmetry planes, and these have been exploited in the past for obtaining the values of the elastic constants. This paper describes a procedure for obtaining an optimized set of elastic constants from SAW, pseudo-SAW and L velocities measured in arbitrary directions in the (001) and (110) surfaces of cubic crystals. It does so by affecting a linearization of the numerically determined angular-dependent SAW and pseudo-SAW velocities near the best fit, and using analytic expressions for the L velocity. The method also generates covariance ellipsoids, from which the uncertainties in the determined values of the elastic constants can be read off. The method is illustrated using surface Brillouin scattering data to obtain the room-temperature elastic constants C11, C12 and C44 of the cubic crystals VC0.75 and Rh3Nb. PMID:26899728
Accurate calculations of the high-pressure elastic constants based on the first-principles
NASA Astrophysics Data System (ADS)
Wang, Chen-Ju; Gu, Jian-Bing; Kuang, Xiao-Yu; Yang, Xiang-Dong
2015-08-01
The energy term corresponding to the first order of the strain in Taylor series expansion of the energy with respect to strain is always ignored when high-pressure elastic constants are calculated. Whether the modus operandi would affect the results of the high-pressure elastic constants is still unsolved. To clarify this query, we calculate the high-pressure elastic constants of tantalum and rhenium when the energy term mentioned above is considered and neglected, respectively. Results show that the neglect of the energy term corresponding to the first order of the strain indeed would influence the veracity of the high-pressure elastic constants, and this influence becomes larger with pressure increasing. Therefore, the energy term corresponding to the first-order of the strain should be considered when the high-pressure elastic constants are calculated. Project supported by the National Natural Science Foundation of China (Grant No. 11274235), the Young Scientist Fund of the National Natural Science Foundation of China (Grant No. 11104190), and the Doctoral Education Fund of Education Ministry of China (Grant Nos. 20100181110086 and 20110181120112).
Apparatus for measuring elastic constants of single crystals by a resonance technique up to 1825 K
Goto, T.; Anderson, O.L.
1988-08-01
By holding the rectangular parallelepiped specimen between long, thinalumina buffer rods, we can detect the resonance vibration of a specimen even attemperatures above 1800 K. This new technique, in combination with the theoryfor the calculation of the resonance frequency spectrum of a rectangularparallelepiped specimen, enables us to determine the high-temperature elastic properties of single-crystal materials. The first application of this new device was to determine the elastic stiffness constants of single-crystal corundum up to 1825 K.
Roh, Yongrae; Varadan, Vasundara V; Varadan, Vijay K
2002-06-01
Polyvinylidene fluoride (PVDF), a piezoelectric material, has many useful applications, for example, as sensors, transducers, and surface acoustic wave (SAW) devices. Models of performance of these devices would be useful engineering tools. However, the benefit of the model is only as accurate as the material properties used in the model. The purpose of this investigation is to measure the elastic, dielectric and piezoelectric properties over a frequency range, including the imaginary part (loss) of these properties. Measurements are difficult because poled material is available as thin films, and not all quantities can be measured in that form. All components of the elastic stiffness, dielectric tensor, and electromechanical coupling tensor are needed in the models. The material studied here is uniaxially oriented poled PVDF that has orthorhombic mm2 symmetry. Presented are the frequency dependence of all nine complex elastic constants, three complex dielectric constants, and five complex piezoelectric constants. The PVDF was produced at Raytheon Research Division, Lexington, MA. Measurements were made on thin films and on stacked, cubical samples. The elastic constants c44D and C55D, the dielectric constants epsilon11T and epsilon22T, as well as the piezoelectric constants g15 and g24 reported here have not been published before. The values were determined by ultrasonic measurements using an impedance analyzer and a least square data-fitting technique. PMID:12075977
Room-temperature elastic constants of Sc and ScD[sub 0. 18
Leisure, R.G. ); Schwarz, R.B.; Migliori, A.; Lei, M. )
1993-07-01
The complete set of elastic constants for Sc and ScD[sub 0.18] has been measured at room temperature. The results show that the addition of hydrogen to this rare-earth metal has a qualitatively different effect than the addition of hydrogen to transition metals such as palladium, vanadium, niobium, and tantalum. In the case of Sc all five elastic constants increase with the addition of hydrogen. The bulk modulus for ScD[sub 0.18] is 9.5% higher than that for Sc. The Debye temperature computed from the room-temperature elastic constants is 355 K for Sc and 371 K for ScD[sub 0.18].
Colloidal interactions in a homeotropic nematic cell with different elastic constants.
Tovkach, O M; Chernyshuk, S B; Lev, B I
2015-10-01
We propose a theoretical description of the interaction mediated by a nematic-liquid-crystal host with different Frank elastic constants. A general expression for the energy of such an interaction between colloidal particles of arbitrary size and shape suspended in a homeotropic cell is obtained. In the cells of large thickness, the presented potential converges to that found previously for small particles in the nematic bulk. In general, our results confirm the validity of the one-constant approximation for weakly elastically anisotropic nematic liquid crystals. For nematics with a high splay-to-bend ratio we predict a larger range of the interaction. Using the dependence of this range on the elastic constants, we show that there exists a qualitative similarity between the interactions in a nematic and in a smectic-A phase. It manifests itself, in particular, in a decrease of the angle between a chain of quadrupole particles and the uniform far-field director across a nematic-smectic-A phase transition. We also demonstrate that the anisotropy of the elastic constants can lead to the formation of thermodynamically stable linear superstructures of asymmetric particles (elastic monopoles) with large, compared to usual dipole chains, interparticle distances. PMID:26565263
Non-contact ultrasonic spectroscopy measurement of elastic constants and ultrasonic attenuation
Schwarz, R.B.; Kuokkala, V.T.; Srinivasan, S.; Visscher, W.M.
1991-01-01
We have developed an ultrasonic spectroscopy method for measuring the elastic constants of solids in hostile environments and over a broad temperature regime. The sample is cut as a rectangular parallelepiped, approximately 1 mm{sup 3} in volume. One or two of the sample surfaces are coated with a thin film of a magnetostrictive material such as nickel. The sample is placed coaxially with two solenoids. One solenoid is used to generate an AC magnetic field of small amplitude which stretches the films. By sweeping the frequency of this field, the sample is excited successively into its various mechanical resonance modes. The second solenoid detects the mechanical resonances. The elastic constants are then deduced from the spectrum of mechanical resonances measured at constant temperature. The internal friction is deduced from the width of the resonance peaks. Because the technique is strictly non-contact (the sample may be encapsulated in a fused silica tube), it is deal for measuring elastic constants in hostile environments or under controlled atmospheres. In its present version the system allows us to measure the elastic constants and ultrasonic attenuation of a given sample between 80 and 100 K. The operation of the system is exemplified by measurements on amorphous Ni{sub 80}P{sub 20} and crystalline Ti{sub 60}Cr{sub 40}. 17 refs., 6 figs.
NASA Astrophysics Data System (ADS)
Derby, B.
2007-08-01
A correlation is presented for the single-crystal elastic constants (Cij) of elemental (and IV-IV), III-V, and II-VI semiconductors with the diamond cubic, sphalerite, and wurtzite crystal structures. Both experimental data and theoretical calculations based on density functional theory follow the correlation. The elastic constants can be represented by an empirical linear relation that is a simple function of melting temperature TM and mean atomic volume Ω with Cij=Aij+Bij(kBTM/Ω) , where kB is Boltzmann’s constant. The empirical constants Aij and Bij are different for each of the groupings of semiconductors considered, which are identified as isomechanical groups. This correlation is similar in form to other correlations in the literature for diffusion data of materials that indicate the significance of the melting temperature as a scaling for lattice dynamic properties of materials.
NASA Astrophysics Data System (ADS)
Pestka, K. A.; Maynard, J. D.; Soukiassian, A.; Xi, X. X.; Schlom, D. G.; Le Page, Y.; Bernhagen, M.; Reiche, P.; Uecker, R.
2008-03-01
The complete elastic tensor of single crystal GdScO3 was determined using resonant ultrasound spectroscopy (RUS) in combination with ab initio calculations. The experimental determination of all nine elastic constants also provides a method for probing the dynamic lattice properties for this recently developed orthorhombic material. The experimentally determined elastic constants differed from theoretical values on average by 10%, and all but three of the nine elastic constants varied by less than 10%. These results indicate that ab initio calculations are now sufficiently accurate for the precise determination of the elastic tensor using RUS as the sole experimental source.
Johnson, W L; Kim, S A; Geiss, R; Flannery, C M; Soles, C L; Wang, C; Stafford, C M; Wu, W-L; Torres, J M; Vogt, B D; Heyliger, P R
2010-02-19
Elastic constants and cross-sectional dimensions of imprinted nanolines of poly(methyl methacrylate) (PMMA) on silicon substrates are determined nondestructively from finite-element inversion analysis of dispersion curves of hypersonic acoustic modes of these nanolines measured with Brillouin light scattering. The results for the cross-sectional dimensions, under the simplifying assumption of vertical sides and a semicircular top, are found to be consistent with dimensions determined from critical-dimension small-angle x-ray scattering measurements. The elastic constants C(11) and C(44) are found to be, respectively, 11.6% and 3.1% lower than their corresponding values for bulk PMMA. This result is consistent with the dimensional dependence of the quasi-static Young's modulus determined from buckling measurements on PMMA films with lower molecular weights. This study provides the first evidence of size-dependent effects on hypersonic elastic properties of polymers. PMID:20081293
Stebner, A. P.; Brown, D. W.; Brinson, L. C.
2013-05-27
Polycrystalline, monoclinic nickel-titanium specimens were subjected to tensile and compressive deformations while neutron diffraction spectra were recorded in situ. Using these data, orientation-specific and macroscopic Young's moduli are determined from analysis of linear-elastic deformation exhibited by 13 unique orientations of monoclinic lattices and their relationships to each macroscopic stress and strain. Five of 13 elastic compliance constants are also identified: s{sub 11} = 1.15, s{sub 15} = -1.10, s{sub 22} = 1.34, s{sub 33} = 1.06, s{sub 35} = -1.54, all Multiplication-Sign 10{sup -2} GPa{sup -1}. Through these results, recent atomistic calculations of monoclinic nickel-titanium elastic constants are validated.
Ultrasonic Determination of the Elastic Constants of Epoxy-natural Fiber Composites
NASA Astrophysics Data System (ADS)
Valencia, C. A. Meza; Pazos-Ospina, J. F.; Franco, E. E.; Ealo, Joao L.; Collazos-Burbano, D. A.; Garcia, G. F. Casanova
This paper shows the applications ultrasonic through-transmission technique to determine the elastic constants of two polymer-natural fiber composite materials with potential industrial application and economic and environmental advantages. The transversely isotropic coconut-epoxy and fique-epoxy samples were analyzed using an experimental setup which allows the sample to be rotated with respect to transducers faces and measures the time-of-flight at different angles of incidence. Then, the elastic properties of the material were obtained by fitting the experimental data to the Christoffel equation. Results show a good agreement between the measured elastic constants and the values predicted by an analytical model. The velocities as a function of the incidence angle are reported and the effect of the natural fiber on the stiffness of the composite is discussed.
Crowhurst, J C; Zaug, J M; Abramson, E H; Brown, J M; Ahre, D W
2002-08-22
Impulsive stimulated light scattering has been used to measure interfacial wave propagation speeds and elastic constants under conditions of high pressure. Data obtained from single-crystal Ge and Fe, and from polycrystalline Ta is presented. The method is complementary to other techniques for obtaining this type of information. There appears no fundamental reason why it cannot be extended to the 1 Mbar regime.
Using the spring constant method to analyze arterial elasticity in type 2 diabetic patients
2012-01-01
Background This study tests the validity of a newly-proposed spring constant method to analyze arterial elasticity in type 2 diabetic patients. Methods The experimental group comprised 66 participants (36 men and 30 women) ranging between 46 and 86 years of age, all with diabetes mellitus. In the experimental group, 21 participants suffered from atherosclerosis. All were subjected to the measurements of both the carotid-femoral pulse wave velocity (cfPWV) and the spring constant method. The comparison (control) group comprised 66 normal participants (37 men and 29 women) with an age range of 40 to 80 years who did not have diabetes mellitus. All control group members were subjected to measurement by the spring constant method. Results Statistical analysis of the experimental and control groups indicated a significant negative correlation between the spring constant and the cfPWV (P < .001; r = - 0.824 and – 0.71). Multivariate analysis similarly indicated a close relationship. The Student’s t test was used to examine the difference in the spring constant parameter between the experimental and control groups. A P-value less than .05 confirmed that the difference between the 2 groups was statistically significant. In receiver operating characteristic curve (ROC), the Area Under Curve (AUC, = 0.85) indicates good discrimination. These findings imply that the spring constant method can effectively identify normal versus abnormal characteristics of elasticity in normal and diabetic participants. Conclusions This study verifies the use of the spring constant method to assess arterial elasticity, and found it to be efficient and simple to use. The spring constant method should prove useful not only for improving clinical diagnoses, but also for screening diabetic patients who display early evidence of vascular disease. PMID:22531211
Allred, Clark L.; Yuan Xianglong; Hobbs, Linn W.; Bazant, Martin Z.
2004-10-01
The elastic constants of a wide range of models of defected crystalline and amorphous silicon are calculated, using the environment-dependent interatomic potential (EDIP). The defected crystalline simulation cells contain randomly generated defect distributions. An extensive characterization of point defects is performed, including structure, energy and influence on elastic constants. Three important conclusions are drawn. (1) Defects have independent effects on the elastic constants of silicon up to (at least) a defect concentration of 0.3%. (2) The linear effect of Frenkel pairs on the <110> Young's modulus of silicon is -1653 GPa per defect fraction. (3) 17 different point defect types cause a very similar decrease in the <110> Young's modulus: -(0.28{+-}0.05)% when calculated in isolation using a 1728-atom cell. These principles will be very useful for predicting the effect of radiation damage on the elastic modulus of silicon in the typical case in which point-defect concentrations can be estimated, but the exact distribution and species of defects is unknown. We also study amorphous samples generated in quenching the liquid with EDIP, including an ideal structure of perfect fourfold coordination, samples with threefold and fivefold coordinated defects, one with a nanovoid, and one with an amorphous inclusion in a crystalline matrix. In the last case, a useful finding is that the change in the Young's modulus is simply related to the volume fraction of amorphous material, as has also been observed by experiment.
Laoulache, R.N.; Maeder, P.F.; DiPippo, R.
1987-05-01
A Scheme is developed to describe the upward flow of a two-phase mixture of a single substance in a vertical adiabatic constant area pipe. The scheme is based on dividing the mixture into a homogeneous core surrounded by a liquid film. This core may be a mixture of bubbles in a contiguous liquid phase, or a mixture of droplets in a contiguous vapor phase. Emphasis is placed upon the latter case since the range of experimental measurements of pressure, temperature, and void fraction collected in this study fall in the slug-churn''- annular'' flow regimes. The core is turbulent, whereas the liquid film may be laminar or turbulent. Turbulent stresses are modeled by using Prandtl's mixing-length theory. The working fluid is Dichlorotetrafluoroethane CCIF{sub 2}-CCIF{sub 2} known as refrigerant 114 (R-114); the two-phase mixture is generated from the single phase substance by the process of flashing. In this study, the effect of the Froude and Reynolds numbers on the liquid film characteristics is examined. The compressibility is accounted for through the acceleration pressure gradient of the core and not directly through the Mach number. An expression for an interfacial friction coefficient between the turbulent core and the liquid film is developed; it is similar to Darcy's friction coefficient for a single phase flow in a rough pipe. Finally, an actual steam-water geothermal well is simulated; it is based on actual field data from New Zealand. A similarity theory is used to predict the steam-water mixture pressure and temperature starting with laboratory measurements on the flow of R-114.
Laoulache, R.N.; Maeder, P.F.; DiPippo, R.
1987-05-01
A scheme is developed to describe the upward flow of a two-phase mixture of a single substance in a vertical adiabatic constant area pipe. The scheme is based on dividing the mixture into a homogeneous core surrounded by a liquid film. This core may be a mixture of bubbles in a contiguous liquid phase, or a mixture of droplets in a contiguous vapor phase. The core is turbulent, whereas the liquid film may be laminar or turbulent. The working fluid is Dichlorotetrafluoroethane CClF/sub 2/-CClF/sub 2/ known as refrigerant 114 (R-114); the two-phase mixture is generated from the single phase substance by the process of flashing. In this study, the effect of the Froude and Reynolds numbers on the liquid film characteristics is examined. An expression for an interfacial friction coefficient between the turbulent core and the liquid film is developed; it is similar to Darcy's friction coefficient for a single phase flow in a rough pipe. Results indicate that for the range of Reynolds and Froude numbers considered, the liquid film is likely to be turbulent rather than laminar. The study also shows that two-dimensional effects are important, and the flow is never fully developed either in the film or the core. In addition, the new approach for the turbulent film is capable of predicting a local net flow rate that may be upward, downward, stationary, or stalled. An actual steam-water geothermal well is simulated. A similarity theory is used to predict the steam-water mixture pressure and temperature starting with laboratory measurements on the flow of R-114. Results indicate that the theory can be used to predict the pressure gradient in the two-phase region based on laboratory measurements.
NASA Technical Reports Server (NTRS)
Lyons, L. R.; Williams, D. J.
1976-01-01
Explorer 45 observations of ring current protons mirroring near the equator, 1-800 keV, are presented at constant first adiabatic invariant mu throughout the period of the December 17, 1971, geomagnetic storm. The parameter mu is obtained from simultaneous magnetic field and particle observations. Particle deceleration in response to the storm time magnetic field decrease causes ring current measurements viewed at constant energy to underestimate the storm time increase in proton intensities at energies not exceeding 200 keV. This adiabatic deceleration also accounts for the large flux decreases observed at energies above 200 keV during the storm, in contradiction with previous results (Soraas and Davis, 1968) obtained using a model for the storm time magnetic field.
NASA Astrophysics Data System (ADS)
Tanigaki, Kenichi; Kusumoto, Tatsuya; Ogi, Hirotsugu; Nakamura, Nobutomo; Hirao, Masahiko
2010-07-01
In this paper, a picosecond ultrasound measurement is conducted to evaluate the low-temperature elastic and optical properties of thin films and semiconductors. Specimens are cooled with liquid He through a heat exchanger in a cryostat, and an ultrahigh-frequency acoustic pulse is generated using a femtosecond light pulse, which propagates in the film-thickness direction. Pulse echoes of the longitudinal wave and Brillouin oscillation are observed by the changes in reflectivity of the time-delayed probe light, which depend on the material, and give the longitudinal-wave out-of-plane elastic constant. When the stiffness is known, the Brillouin oscillation provides the refractive index. We determined the stiffness of a Pt thin film and the refractive index of Si at 5 K. The methodology developed in this paper is useful for studing the elastic and optical properties of metallic thin films and transparent materials at cryogenic temperatures.
Taylor, DeCarlos E.
2014-08-07
The elastic constants of the α and γ polymorphs of cyclotrimethylene trinitramine (RDX) have been computed using dispersion corrected density functional theory (DFT). The DFT results validate the values obtained in several experiments using ultrasonic and impulsive stimulated thermal scattering techniques and disagree with those obtained using Brillouin scattering which, in general, exceed the other experimental and theoretical results. Compressibility diagrams at zero pressure are presented for the ab, ac, and bc crystallographic planes, and the anisotropic linear compressibility within the ac plane of α-RDX at 0 GPa, observed using ultrasonic and impulsive stimulated thermal scattering measurements, is verified using DFT. The pressure dependence of the elastic constants of α-RDX (0–4 GPa) and γ-RDX (4–8 GPa) is also presented.
Elastic Constants of Superconducting MgB2 from Molecular Dynamics Simulations with Shell Model
NASA Astrophysics Data System (ADS)
Guo, Yun-Dong; Chen, Xiang-Rong; Yang, Xiang-Dong; Gou, Qing-Quan
2005-11-01
The elastic constants of superconducting MgB2 are calculated using a molecular dynamics method (MD) with shell model. The lattice parameters, five independent elastic constants, equations of state (EOS), Debye temperature, and bulk modulus of MgB2 are obtained. Meanwhile, the dependence of the bulk modulus B, the lattice parameters a and c, and the unit cell volume V on the applied pressure are presented. It is demonstrated that the method introduced here can well reproduce the experimental results with a reasonable accuracy. The project supported by National Natural Science Foundation of China under Grant No. 60436010 and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the Ministry of Education of China under Grant No. 2004176-6-4
All-optical measurement of elastic constants in nematic liquid crystals.
Klus, Bartłomiej; Laudyn, Urszula A; Karpierz, Mirosław A; Sahraoui, Bouchta
2014-12-01
In this article we present a new all-optical method to measure elastic constants connected with twist and bend deformations. The method is based on the optical Freedericksz threshold effect induced by the linearly polarized electro-magnetic wave. In the experiment elastic constants are measured of commonly used liquid crystals 6CHBT and E7 and two new nematic mixtures with low birefringence. The proposed method is neither very sensitive on the variation of cell thickness, beam waist or the power of a light beam nor does it need any special design of a liquid crystal cell. The experimental results are in good agreement with the values obtain by other methods based on an electro-optical effect. PMID:25606956
The temperature dependence of second and higher order elastic constants of NH4Cl
NASA Astrophysics Data System (ADS)
Tiwari, Alpana; Gaur, N. K.
2016-05-01
We have incorporated the translational rotational (TR) coupling effects in the framework of three body force shell model (TSM) to develop an extended TSM (ETSM). This ETSM has been applied to reveal the second order elastic constants (C11, C12 and C44) of NH4Cl as a function of temperature for temperature range 240K≤T≤440K. An abrupt decrease in C44 is observed due to disorder present in the crystal as a result of random orientations of tetrahedral ammonium molecule. Our calculated results show similar trend as revealed by experimental data. Besides third order elastic constants have also been studied and discussed as a function of temperature for 240K≤T≤440K.
NASA Astrophysics Data System (ADS)
Mohapatra, Himansu; Eckhardt, Craig J.
2007-03-01
Polymorphism is the property of a compound to crystallize in two or more crystalline phases containing different arrangements and/or conformations of the molecules in the crystal lattice. The Phenomenon of polymorphism is a major issue in the pharmaceutical industry especially in relation to drug uptake in the body, tablet processing and growth. This has led to considerable interest in predicting and understanding properties of drug polymorphs, and more recently the mechanical properties of the polymorphs. In this work, Brillouin scattering is used to probe the acoustic phonons of the monoclinic (P21/c) polymorph of the drug, carbamazepine (CBZ). By sampling a variety of acoustic phonons, the complete elastic constant tensor has been determined for this CBZ polymorph. The observed trend in the elastic constants: C11< C22˜C33 is qualitatively associated with the crystal growth pattern seen in CBZ. Investigation into the anisotropy of the intermolecular interactions has been investigated further by calculation of linear compressibilities.
Ultrasonic measurement of the elastic constants of potassium hydrogen phthalate single crystals
NASA Astrophysics Data System (ADS)
Alex, A. V.; Philip, J.
2000-09-01
Many organic crystals with orthorhombic symmetry exhibit electro-optic, ferroelectric, and triboluminescence properties. The potassium salt of phthalic acid (KAP), with the formula C8H5O4K, finds application in soft x-ray spectroscopy due to its large d spacing and has been reported to be piezoelectric as well. KAP crystallizes into orthorhombic structure with space group Pca21 All nine elastic constants of KAP have been determined by measuring the velocity of longitudinal and transverse ultrasonic waves propagating along different symmetry directions. Velocities have been measured by the ultrasonic pulse echo overlap technique by injecting waves generated by quartz transducers through a suitable bonding medium into the crystal. The McSkimin Δt correction has been applied to determine the velocities accurately. The temperature variation of selected elastic constants over the range 300-420 K has also been measured and reported.
Elastic constant C11 of 12C diamond between 10 and 613 K
NASA Astrophysics Data System (ADS)
Nagakubo, A.; Arita, M.; Ogi, H.; Sumiya, H.; Nakamura, N.; Hirao, M.
2016-05-01
We measured the temperature dependence of the elastic constant C11 of a 12C diamond monocrystal using picosecond ultrasonics between 10 and 613 K. We found that C11 is almost temperature independent below room temperature; the temperature coefficient around 300 K is -6.6 MPa/K. Our results show a significantly higher Einstein temperature than reported values by ˜30%, indicating that diamond has a larger zero-point energy, which remains dominant around ambient temperature. We also calculated the temperature dependence of the elastic constants using ab-initio methods, resulting in good agreement with measurements. Our study shows that below-ambient-temperature measurements are not sufficient to extract the Debye temperature and the Grüneisen parameter of high-Debye-temperature materials.
NASA Astrophysics Data System (ADS)
Kluge, M. D.; Wolf, D.; Lutsko, J. F.; Phillpot, S. R.
1990-03-01
A new formalism for use in atomistic simulations to calculate the full local elastic-constant tensor in terms of local stresses and strains is presented. Results of simulations on a high-angle (001) twist grain boundary are illustrated, using both a Lennard-Jones potential for Cu and an embedded-atom potential for Au. The two conceptionally rather different potentials show similar anomalies in all elastic constants, confined to within a few lattice planes of the grain boundary, with an especially dramatic reduction in the resistance to shear parallel to the grain-boundary plane. It is found that the primary cause of the anomalies is the atomic disorder near the grain boundary, as evidenced by the slice-by-slice radial distribution functions for the inhomogeneous interface system.
Elastic Constants of Indium Arsenide at Room Temperature by Resonant Ultrasound Spectroscopy
NASA Astrophysics Data System (ADS)
Arammash, Fouzi; Yin, Ming
2013-03-01
The three independent elastic constants, C11, C12, and C44 of indium arsenide (InAs) single crystal were determined at room temperature using resonant ultrasound spectroscopy (RUS) technique. We will present and compare our results with those obtained from more conventional measurement techniques. We also compare our results to those of other III-V compound semiconductors such as gallium arsenide (GaAs).
Surface acoustic wave velocity and elastic constants of cubic GaN
NASA Astrophysics Data System (ADS)
Jiménez Riobóo, Rafael J.; Cuscó, Ramon; Prieto, Carlos; Kopittke, Caroline; Novikov, Sergei V.; Artús, Luis
2016-06-01
We present high-resolution surface Brillouin scattering measurements on cubic GaN layers grown on GaAs substrate. By using a suitable scattering geometry, scattering by surface acoustic waves is recorded for different azimuthal angles, and the surface acoustic wave velocities are determined. A comparison of experimental results with numerical simulations of the azimuthal dependence of the surface wave velocity shows good agreement and allows a consistent set of elastic constants for c-GaN to be determined.
A fluctuation method to calculate the third order elastic constants in crystalline solids
Chen, Zimu; Qu, Jianmin
2015-05-28
This paper derives exact expressions of the isothermal third order elastic constants (TOE) in crystalline solids in terms of the kinetic and potential energies of the system. These expressions reveal that the TOE constants consist of a Born component and a relaxation component. The Born component is simply the third derivative of the system's potential energy with respect to the deformation, while the relaxation component is related to the non-uniform rearrangements of the atoms when the system is subject to a macroscopic deformation. Further, based on the general expressions derived here, a direct (fluctuation) method of computing the isothermal TOE constants is developed. Numerical examples of using this fluctuation method are given to compute the TOE constants of single crystal iron.
Mining for elastic constants of intermetallics from the charge density landscape
NASA Astrophysics Data System (ADS)
Kong, Chang Sun; Broderick, Scott R.; Jones, Travis E.; Loyola, Claudia; Eberhart, Mark E.; Rajan, Krishna
2015-02-01
There is a significant challenge in designing new materials for targeted properties based on their electronic structure. While in principle this goal can be met using knowledge of the electron charge density, the relationships between the density and properties are largely unknown. To help overcome this problem we develop a quantitative structure-property relationship (QSPR) between the charge density and the elastic constants for B2 intermetallics. Using a combination of informatics techniques for screening all the potentially relevant charge density descriptors, we find that C11 and C44 are determined solely from the magnitude of the charge density at its critical points, while C12 is determined by the shape of the charge density at its critical points. From this reduced charge density selection space, we develop models for predicting the elastic constants of an expanded number of intermetallic systems, which we then use to predict the mechanical stability of new systems. Having reduced the descriptors necessary for modeling elastic constants, statistical learning approaches may then be used to predict the reduced knowledge-based required as a function of the constituent characteristics.
NASA Astrophysics Data System (ADS)
Haldipur, P.; Margetan, F. J.; Thompson, R. B.
2004-02-01
In past work we reported on measurements of ultrasonic velocity, attenuation and backscattering in nickel-alloy materials used in the fabrication of rotating jet-engine components. Attenuation and backscattering were shown to be correlated to the average grain diameter, which varied with position in the billet specimens studied. The ultrasonic measurements and associated metallographic studies found the local microstructures to be approximately equiaxed and free of texture in these cubic-phase metals. In this paper we explore a method for deducing the single-crystal elastic constants of a metal using the combined ultrasonic and metallographic data for a polycrystalline specimen. We specifically consider the case seen in the jet-engine alloys: polycrystalline cubic microstructures having equiaxed, randomly oriented grains. We demonstrate how the three independent elastic constants {C11, C12, C44} can be deduced from the density, the mean grain diameter, the ultrasonic attenuation at one or more frequencies, and the longitudinal and shear wave speeds. The method makes use of the attenuation theory of Stanke and Kino, and the Hill averaging procedure for estimating the sonic velocity through a polycrystalline material. Elastic constant inputs to the velocity and attenuation models are adjusted to optimize the agreement with experiment. The method is demonstrated using several specimens of Inconel 718 and Waspaloy, and further tested using four specimens of pure Nickel.
Haldipur, P.; Margetan, F.J.; Thompson, R.B.
2004-02-26
In past work we reported on measurements of ultrasonic velocity, attenuation and backscattering in nickel-alloy materials used in the fabrication of rotating jet-engine components. Attenuation and backscattering were shown to be correlated to the average grain diameter, which varied with position in the billet specimens studied. The ultrasonic measurements and associated metallographic studies found the local microstructures to be approximately equiaxed and free of texture in these cubic-phase metals. In this paper we explore a method for deducing the single-crystal elastic constants of a metal using the combined ultrasonic and metallographic data for a polycrystalline specimen. We specifically consider the case seen in the jet-engine alloys: polycrystalline cubic microstructures having equiaxed, randomly oriented grains. We demonstrate how the three independent elastic constants {l_brace}C11, C12, C44{r_brace} can be deduced from the density, the mean grain diameter, the ultrasonic attenuation at one or more frequencies, and the longitudinal and shear wave speeds. The method makes use of the attenuation theory of Stanke and Kino, and the Hill averaging procedure for estimating the sonic velocity through a polycrystalline material. Elastic constant inputs to the velocity and attenuation models are adjusted to optimize the agreement with experiment. The method is demonstrated using several specimens of Inconel 718 and Waspaloy, and further tested using four specimens of pure Nickel.
Local Elastic Constants for Epoxy-Nanotube Composites from Molecular Dynamics Simulation
NASA Technical Reports Server (NTRS)
Frankland, S. J. V.; Gates, T. S.
2007-01-01
A method from molecular dynamics simulation is developed for determining local elastic constants of an epoxy/nanotube composite. The local values of C11, C33, K12, and K13 elastic constants are calculated for an epoxy/nanotube composite as a function of radial distance from the nanotube. While the results possess a significant amount of statistical uncertainty resulting from both the numerical analysis and the molecular fluctuations during the simulation, the following observations can be made. If the size of the region around the nanotube is increased from shells of 1 to 6 in thickness, then the scatter in the data reduces enough to observe trends. All the elastic constants determined are at a minimum 20 from the center of the nanotube. The C11, C33, and K12 follow similar trends as a function of radial distance from the nanotube. The K13 decreases greater distances from the nanotube and becomes negative which may be a symptom of the statistical averaging.
Temperature dependence of elastic constants of embedded-atom models of palladium
Wolf, R.J.; Mansour, K.A.; Lee, M.W. ); Ray, J.R. )
1992-10-01
The elastic constants of fcc palladium are calculated as a function of temperature for four different embedded-atom-method (EAM) models and compared to experimental values. Two of these EAM models have been derived by other workers whereas two of the models are new. Because of the elastic anomaly near 120 K, in the shear constant [ital C][sub 44] of Pd, the use of this zero-temperature elastic constant to determine the Pd EAM potential leads to errors in the calculated [ital C][sub 44] above the Debye temperature of 280 K where the potentials are to be used. To correct this behavior we determine the EAM potential in the two new EAM models so that [ital C][sub 44] is in much better agreement with the experimental value above the Debye temperature. Interestingly in both of these new models the melting temperature is significantly higher and in better agreement with the experimental value of 1825 K. One of our models uses a conventional EAM third-neighbor interaction model whereas our other model is a fifth-neighbor interaction model.
NASA Astrophysics Data System (ADS)
Ghosh, G.
2015-08-01
A comprehensive computational study of elastic properties of cementite (Fe3C) and its alloyed counterparts (M3C (M = Al, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Si, Ta, Ti, V, W, Zr, Cr2FeC and CrFe2C) having the crystal structure of Fe3C is carried out employing electronic density-functional theory (DFT), all-electron PAW pseudopotentials and the generalized gradient approximation for the exchange-correlation energy (GGA). Specifically, as a part of our systematic study of cohesive properties of solids and in the spirit of materials genome, following properties are calculated: (i) single-crystal elastic constants, Cij, of above M3Cs; (ii) anisotropies of bulk, Young's and shear moduli, and Poisson's ratio based on calculated Cijs, demonstrating their extreme anisotropies; (iii) isotropic (polycrystalline) elastic moduli (bulk, shear, Young's moduli and Poisson's ratio) of M3Cs by homogenization of calculated Cijs; and (iv) acoustic Debye temperature, θD, of M3Cs based on calculated Cijs. We provide a critical appraisal of available data of polycrystalline elastic properties of alloyed cementite. Calculated single crystal properties may be incorporated in anisotropic constitutive models to develop and test microstructure-processing-property-performance links in multi-phase materials where cementite is a constituent phase.
Single-Crystal Elastic Constants of Yttria (Y2O3) Measured to High Temperatures
NASA Technical Reports Server (NTRS)
Sayir, Ali; Palko, James W.; Kriven, Waltraud M.; Sinogeikin, Sergey V.; Bass, Jay D.
2001-01-01
Yttria, or yttrium sesquioxide (Y2O3), has been considered for use in nuclear applications and has gained interest relatively recently for use in infrared optics. Single crystals of yttria have been grown successfully at the NASA Glenn Research Center using a laser-heated float zone technique in a fiber and rod. Such samples allow measurement of the single-crystal elastic properties, and these measurements provide useful property data for the design of components using single crystals. They also yield information as to what degree the elastic properties of yttria ceramics are a result of the intrinsic properties of the yttria crystal in comparison to characteristics that may depend on processing, such as microstructure and intergranular phases, which are common in sintered yttria. The single-crystal elastic moduli are valuable for designing such optical components. In particular, the temperature derivatives of elastic moduli allow the dimensional changes due to heating under physical constraints, as well as acoustic excitation, to be determined. The single-crystal elastic moduli of yttria were measured by Brillouin spectroscopy up to 1200 C. The room-temperature values obtained were C(sub 11) = 223.6 + 0.6 GPa, C(sub 44) = 74.6 + 0.5 GPa, and C(sub 12) = 112.4 + 1.0 GPa. The resulting bulk and (Voigt-Reuss-Hill) shear moduli were K = 149.5 + 1.0 GPa and G(sub VRH) = 66.3 + 0.8 GPa, respectively. Linear least-squares regressions to the variation of bulk and shear moduli with temperature resulted in derivatives of dK/dT = -17 + 2 MPa/C and dG(sub VRH)/dT = -8 + 2 MPa/ C. Elastic anisotropy was found to remain essentially constant over the temperature range studied.
Elastic constants of bcc shape-memory binary alloys: Effect of the configurational ordering
NASA Astrophysics Data System (ADS)
Castán, T.; Planes, A.
1988-10-01
The relationship between the elastic shear modulus C'=1/2(C11-C12) and the atomic order state in a shape-memory binary alloy AxB1-x above its martensitic transition temperature is analyzed. We first present a simple method to evaluate the elastic constants in binary alloys, assuming the atoms interact via a two-body Morse potential. For CuZn and AgZn alloys, the potential parameters corresponding to the different A-A, B-B, and A-B pairs are determined from experimental data of the elastic constant C' for different alloy compositions. We next calculate C' at 0 K as a function of the ordering state. To do this, we use atomic configurations obtained with a Monte Carlo simulation of the Ising model for a bcc binary alloy, at each temperature Ti. We obtain a linear relationship between C' and the short-range-order parameter η. We also show that the deviations from the linear behavior observed when C' is represented against the square of the long-rang-order parameter come mainly from the critical behavior of the system near the order-disorder temperature Tc.
Strickland, Daniel J; Huang, Yun-Ru; Lee, Daeyeon; Gianola, Daniel S
2014-12-23
We study the uniaxial compressive behavior of disordered colloidal free-standing micropillars composed of a bidisperse mixture of 3- and 6-μm polystyrene particles. Mechanical annealing of confined pillars enables variation of the packing fraction across the phase space of colloidal glasses. The measured normalized strengths and elastic moduli of the annealed freestanding micropillars span almost three orders of magnitude despite similar plastic morphology governed by shear banding. We measure a robust correlation between ultimate strengths and elastic constants that is invariant to relative humidity, implying a critical strain of ∼0.01 that is strikingly similar to that observed in metallic glasses (MGs) [Johnson WL, Samwer K (2005) Phys Rev Lett 95:195501] and suggestive of a universal mode of cooperative plastic deformation. We estimate the characteristic strain of the underlying cooperative plastic event by considering the energy necessary to create an Eshelby-like ellipsoidal inclusion in an elastic matrix. We find that the characteristic strain is similar to that found in experiments and simulations of other disordered solids with distinct bonding and particle sizes, suggesting a universal criterion for the elastic to plastic transition in glassy materials with the capacity for finite plastic flow. PMID:25489098
NASA Technical Reports Server (NTRS)
Vidal, C. R.; Stwalley, W. C.
1982-01-01
The molecular constants and their adiabatic corrections have been determined for the (A 1 Sigma +) - (X 1 Sigma +) system of the isotopic lithium hydrides: (Li-6)H, (Li-7)H, (Li-6)D, and (Li-7)D. Using a fully quantum mechanical variational method, the potential energy curves (IPA potentials) are determined. Extending the variational method, we have obtained for the first time adiabatic corrections of potential energy curves from isotopic spectroscopic data. A significant difference between the potential energy curves of the lithium hydrides and the lithium deuterides has been observed. When Li-6 was replaced by Li-7, a significant difference was only observed for the (A 1 Sigma +) state, but not for the (X 1 Sigma +) state.
NASA Astrophysics Data System (ADS)
Gascón, F.; Salazar, F.
1996-02-01
The displacement suffered by the points located on one face of a parallelepipedic specimen made of isotropic elastic material is studied, while subject to simple compression, which generates not only strain but also both a translational and a rotation effect. The displacement is measured by double-exposure speckle photography. The elastic constants of a material are computed by measuring the in-plane displacement of three points. The effect of the in-plane and out-of-plane displacements due to translation and rotation are analyzed. Extreme values for the tilt angle are estimated, as well as the maximum diameter of the read-out beam. The systematic uncertainty of the method is also studied. Both Young's modulus and Poisson's ratio are experimentally measured in aluminum.
Local elastic constants of LacI and implications for allostery.
Ribeiro, Andre A S T; Ortiz, Vanessa
2015-04-01
Allostery connects subtle changes in a protein's potential energy surface, induced by perturbations like ligand-binding, to significant changes in its function. Understanding this phenomenon and predicting its occurrence are major goals of current research in biophysics and molecular biology. In this paper we introduce a novel approach for studying complex structural transformations such as those typical for allostery. We show that the calculation and analysis of atomic elastic constants of a known allosterically regulated protein, lac repressor, highlights regions that are particularly prone to suffer structural deformation and are experimentally linked to allosteric function. The calculations are based on a high resolution, all-atom description of the protein. We also show that, for the present system, modifying the description of the system from an all-atom forcefield to an elastic network model yields qualitatively different results, indicating the importance of adequately describing the local environment surrounding the different parts of the protein. PMID:25700189
Berryman, J. G.
2012-03-01
While the well-known Voigt and Reuss (VR) bounds, and the Voigt-Reuss-Hill (VRH) elastic constant estimators for random polycrystals are all straightforwardly calculated once the elastic constants of anisotropic crystals are known, the Hashin-Shtrikman (HS) bounds and related self-consistent (SC) estimators for the same constants are, by comparison, more difficult to compute. Recent work has shown how to simplify (to some extent) these harder to compute HS bounds and SC estimators. An overview and analysis of a subsampling of these results is presented here with the main point being to show whether or not this extra work (i.e., in calculating both the HS bounds and the SC estimates) does provide added value since, in particular, the VRH estimators often do not fall within the HS bounds, while the SC estimators (for good reasons) have always been found to do so. The quantitative differences between the SC and the VRH estimators in the eight cases considered are often quite small however, being on the order of ±1%. These quantitative results hold true even though these polycrystal Voigt-Reuss-Hill estimators more typically (but not always) fall outside the Hashin-Shtrikman bounds, while the self-consistent estimators always fall inside (or on the boundaries of) these same bounds.
Ghosh, G.
2015-08-15
A comprehensive computational study of elastic properties of cementite (Fe{sub 3}C) and its alloyed counterparts (M{sub 3}C (M = Al, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Si, Ta, Ti, V, W, Zr, Cr{sub 2}FeC and CrFe{sub 2}C) having the crystal structure of Fe{sub 3}C is carried out employing electronic density-functional theory (DFT), all-electron PAW pseudopotentials and the generalized gradient approximation for the exchange-correlation energy (GGA). Specifically, as a part of our systematic study of cohesive properties of solids and in the spirit of materials genome, following properties are calculated: (i) single-crystal elastic constants, C{sub ij}, of above M{sub 3}Cs; (ii) anisotropies of bulk, Young’s and shear moduli, and Poisson’s ratio based on calculated C{sub ij}s, demonstrating their extreme anisotropies; (iii) isotropic (polycrystalline) elastic moduli (bulk, shear, Young’s moduli and Poisson’s ratio) of M{sub 3}Cs by homogenization of calculated C{sub ij}s; and (iv) acoustic Debye temperature, θ{sub D}, of M{sub 3}Cs based on calculated C{sub ij}s. We provide a critical appraisal of available data of polycrystalline elastic properties of alloyed cementite. Calculated single crystal properties may be incorporated in anisotropic constitutive models to develop and test microstructure-processing-property-performance links in multi-phase materials where cementite is a constituent phase.
Determination of the plane specific elastic constants of Waspaloy using neutron diffraction
Stone, H.J.; Reed, R.C.; Holden, T.M.
1999-01-08
In the present paper, the plane specific elastic constants for Waspaloy, a high strength nickel-base superalloy, have been determined with a considerable degree of precision. For this purpose, in-situ tensile tests have been carried out in a neutron diffractometer. The data which are reported are of considerable significance, since they allow an accurate determination of the residual stress slate from an estimate of the local d-spacing from the hkl lattice reflection. Thus, the data should be of interest to those interested in the determination of the residual stress state in components which are fabricated from Waspaloy, and nickel-base superalloys in general.
Elastic constants for superplastically formed/diffusion-bonded corrugated sandwich core
NASA Technical Reports Server (NTRS)
Ko, W. L.
1980-01-01
Formulas and associated graphs for evaluating the effective elastic constants for a superplastically formed/diffusion bonded (SPF/DB) corrugated sandwich core, are presented. A comparison of structural stiffnesses of the sandwich core and a honeycomb core under conditions of equal sandwich core density was made. The stiffness in the thickness direction of the optimum SPF/DB corrugated core (that is, triangular truss core) is lower than that of the honeycomb core, and that the former has higher transverse shear stiffness than the latter.
NASA Astrophysics Data System (ADS)
Yoneda, A.; Cooray, T.; Shatskiy, A.; Sohag, H.
2010-12-01
Elastic properties of minerals plays an indispensable role in the studies of Earth's interior as it is essential for interpretation of seismic velocity structure of the Earth, due to its feasibility of comparison with the seismological observations. And it also provides information on structure, bonding, and the nature of phase transitions in minerals. Resonant Ultrasound Spectroscopy (RUS) has been one of the leading methods of determining elastic constants of materials by measuring number of natural vibration modes. Owing to developments of high frequency RUS up to 50 MHz (HRUS), it emerge as a powerful technique in study of high pressure phases of mantel minerals in which samples are restricted to be sub millimeter size. In this study stishovite was selected due to exceptional interest on it as a prototype phase of the lower mantle silicates, because it exhibits silicon in six-fold coordination. Large single crystals (up to 0.8x0.8x1.5mm) of stishovite were synthesized at 12 GPa from single crystal quartz and water (SiO2+15wt% H2O) by slow cooling method (from 1450 C to 800 C) in Kawai-type uniaxial split sphere apparatus (USSA5000). Quality of the crystals was confirmed by polarized microscope study, micro focus x-ray diffractometry and precision x-ray diffractometry. From FTIR measurements water content in synthesized crystals was confirmed to be less than 7 wt. ppm. Crystal was grind and polished into a rectangle, parallel to crystallographic axis having edges of 230x290x500 micron meter. Then it was measured with HRUS for ~20 resonance peaks between 6-20 MHz range. From these peaks, six independent elastic constants C11 = 449 GPa, C33 = 775 GPa, C12 = 200 GPa, C13 = 198 GPa, C44 = 254 GPa and C66 = 318 GPa were determined through a kind of inversion analysis . Although the present C11 value is slightly smaller than previous Brillouin scattering data, other five elastic constants are within the scatter among Brillouin scattering data.
Polynomial Expressions for Estimating Elastic Constants From the Resonance of Circular Plates
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Singh, Abhishek
2005-01-01
Two approaches were taken to make convenient spread sheet calculations of elastic constants from resonance data and the tables in ASTM C1259 and E1876: polynomials were fit to the tables; and an automated spread sheet interpolation routine was generated. To compare the approaches, the resonant frequencies of circular plates made of glass, hardened maraging steel, alpha silicon carbide, silicon nitride, tungsten carbide, tape cast NiO-YSZ, and zinc selenide were measured. The elastic constants, as calculated via the polynomials and linear interpolation of the tabular data in ASTM C1259 and E1876, were found comparable for engineering purposes, with the differences typically being less than 0.5 percent. Calculation of additional v values at t/R between 0 and 0.2 would allow better curve fits. This is not necessary for common engineering purposes, however, it might benefit the testing of emerging thin structures such as fuel cell electrolytes, gas conversion membranes, and coatings when Poisson s ratio is less than 0.15 and high precision is needed.
NASA Astrophysics Data System (ADS)
Râsander, M.; Moram, M. A.
2015-10-01
We have performed density functional calculations using a range of local and semi-local as well as hybrid density functional approximations of the structure and elastic constants of 18 semiconductors and insulators. We find that most of the approximations have a very small error in the lattice constants, of the order of 1%, while the errors in the elastic constants and bulk modulus are much larger, at about 10% or better. When comparing experimental and theoretical lattice constants and bulk modulus we have included zero-point phonon effects. These effects make the experimental reference lattice constants 0.019 Å smaller on average while making the bulk modulus 4.3 GPa stiffer on average. According to our study, the overall best performing density functional approximations for determining the structure and elastic properties are the PBEsol functional, the two hybrid density functionals PBE0 and HSE (Heyd, Scuseria, and Ernzerhof), as well as the AM05 functional.
Haycraft, James J
2009-12-01
The acoustic phonons of the epsilon polymorph of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo [5.5.0.0(5,9).0(3,11)] dodecane (epsilon-CL-20) have been studied using Brillouin scattering spectroscopy. Analysis of the acoustic phonon velocities allowed determination of the complete stiffness tensor for this energetic material. The results are compared to a theoretical determination of the epsilon-CL-20 elastic constants, bulk moduli, and shear moduli. The observed ordering of elastic constants, C(22)>C(33)>C(11), is noted to be different from other nitramine energetic materials. Finally, the elasticity of epsilon-CL-20 is compared to recently published reports on cyclotrimethylene trinitramine's (RDX) elasticity and the beta polymorph of cyclotetramethylene tetranitramine's (beta-HMX) elasticity. PMID:19968345
NASA Astrophysics Data System (ADS)
Mei, A. B.; Wilson, R. B.; Li, D.; Cahill, David G.; Rockett, A.; Birch, J.; Hultman, L.; Greene, J. E.; Petrov, I.
2014-06-01
Elastic constants are determined for single-crystal stoichiometric NaCl-structure VN(001), VN(011), and VN(111) epitaxial layers grown by magnetically unbalanced reactive magnetron sputter deposition on 001-, 011-, and 111-oriented MgO substrates at 430 °C. The relaxed lattice parameter ao = 0.4134 ± 0.0004 nm, obtained from high-resolution reciprocal space maps, and the mass density ρ = 6.1 g/cm3, determined from the combination of Rutherford backscattering spectroscopy and film thickness measurements, of the VN layers are both in good agreement with reported values for bulk crystals. Sub-picosecond ultrasonic optical pump/probe techniques are used to generate and detect VN longitudinal sound waves with measured velocities v001 = 9.8 ± 0.3, v011 = 9.1 ± 0.3, and v111 = 9.1 ± 0.3 km/s. The VN c11 elastic constant is determined from the sound wave velocity measurements as 585 ± 30 GPa; the c44 elastic constant, 126 ± 3 GPa, is obtained from surface acoustic wave measurements. From the combination of c11, c44, vhkl, and ρ we obtain the VN c12 elastic constant 178 ± 33 GPa, the VN elastic anisotropy A = 0.62, the isotropic Poisson ratio ν = 0.29, and the anisotropic Poisson ratios ν001 = 0.23, ν011 = 0.30, and ν111 = 0.29.
NASA Astrophysics Data System (ADS)
Lunt, A. J. G.; Xie, M. Y.; Baimpas, N.; Zhang, S. Y.; Kabra, S.; Kelleher, J.; Neo, T. K.; Korsunsky, A. M.
2014-08-01
Yttria Stabilised Zirconia (YSZ) is a tough, phase-transforming ceramic that finds use in a wide range of commercial applications from dental prostheses to thermal barrier coatings. Micromechanical modelling of phase transformation can deliver reliable predictions in terms of the influence of temperature and stress. However, models must rely on the accurate knowledge of single crystal elastic stiffness constants. Some techniques for elastic stiffness determination are well-established. The most popular of these involve exploiting frequency shifts and phase velocities of acoustic waves. However, the application of these techniques to YSZ can be problematic due to the micro-twinning observed in larger crystals. Here, we propose an alternative approach based on selective elastic strain sampling (e.g., by diffraction) of grain ensembles sharing certain orientation, and the prediction of the same quantities by polycrystalline modelling, for example, the Reuss or Voigt average. The inverse problem arises consisting of adjusting the single crystal stiffness matrix to match the polycrystal predictions to observations. In the present model-matching study, we sought to determine the single crystal stiffness matrix of tetragonal YSZ using the results of time-of-flight neutron diffraction obtained from an in situ compression experiment and Finite Element modelling of the deformation of polycrystalline tetragonal YSZ. The best match between the model predictions and observations was obtained for the optimized stiffness values of C11 = 451, C33 = 302, C44 = 39, C66 = 82, C12 = 240, and C13 = 50 (units: GPa). Considering the significant amount of scatter in the published literature data, our result appears reasonably consistent.
Lunt, A. J. G. Xie, M. Y.; Baimpas, N.; Korsunsky, A. M.; Zhang, S. Y.; Kabra, S.; Kelleher, J.; Neo, T. K.
2014-08-07
Yttria Stabilised Zirconia (YSZ) is a tough, phase-transforming ceramic that finds use in a wide range of commercial applications from dental prostheses to thermal barrier coatings. Micromechanical modelling of phase transformation can deliver reliable predictions in terms of the influence of temperature and stress. However, models must rely on the accurate knowledge of single crystal elastic stiffness constants. Some techniques for elastic stiffness determination are well-established. The most popular of these involve exploiting frequency shifts and phase velocities of acoustic waves. However, the application of these techniques to YSZ can be problematic due to the micro-twinning observed in larger crystals. Here, we propose an alternative approach based on selective elastic strain sampling (e.g., by diffraction) of grain ensembles sharing certain orientation, and the prediction of the same quantities by polycrystalline modelling, for example, the Reuss or Voigt average. The inverse problem arises consisting of adjusting the single crystal stiffness matrix to match the polycrystal predictions to observations. In the present model-matching study, we sought to determine the single crystal stiffness matrix of tetragonal YSZ using the results of time-of-flight neutron diffraction obtained from an in situ compression experiment and Finite Element modelling of the deformation of polycrystalline tetragonal YSZ. The best match between the model predictions and observations was obtained for the optimized stiffness values of C11 = 451, C33 = 302, C44 = 39, C66 = 82, C12 = 240, and C13 = 50 (units: GPa). Considering the significant amount of scatter in the published literature data, our result appears reasonably consistent.
NASA Astrophysics Data System (ADS)
Mozafari, E.; Shulumba, N.; Steneteg, P.; Alling, B.; Abrikosov, Igor A.
2016-08-01
We present a theoretical scheme to calculate the elastic constants of magnetic materials in the high-temperature paramagnetic state. Our approach is based on a combination of disordered local moments picture and ab initio molecular dynamics (DLM-MD). Moreover, we investigate a possibility to enhance the efficiency of the simulations of elastic properties using the recently introduced method: symmetry imposed force constant temperature-dependent effective potential (SIFC-TDEP). We have chosen cubic paramagnetic CrN as a model system. This is done due to its technological importance and its demonstrated strong coupling between magnetic and lattice degrees of freedom. We have studied the temperature-dependent single-crystal and polycrystalline elastic constants of paramagentic CrN up to 1200 K. The obtained results at T = 300 K agree well with the experimental values of polycrystalline elastic constants as well as the Poisson ratio at room temperature. We observe that the Young's modulus is strongly dependent on temperature, decreasing by ˜14 % from T = 300 K to 1200 K. In addition we have studied the elastic anisotropy of CrN as a function of temperature and we observe that CrN becomes substantially more isotropic as the temperature increases. We demonstrate that the use of Birch law may lead to substantial errors for calculations of temperature induced changes of elastic moduli. The proposed methodology can be used for accurate predictions of mechanical properties of magnetic materials at temperatures above their magnetic order-disorder phase transition.
First-principles elastic constants of α- and θ-Al2O3
NASA Astrophysics Data System (ADS)
Shang, Shunli; Wang, Yi; Liu, Zi-Kui
2007-03-01
Using an efficient strain-stress method, the first-principles elastic constants cij's of α-Al2O3 and θ-Al2O3 have been predicted within the local density approximation and the generalized gradient approximation. It is indicated that more accurate calculations of cij's can be accomplished by the local density approximation. The predicted cij's of θ-Al2O3 provide helpful guidance for future measurements, especially the predicted negative c15. The present results make the stress estimation in thermally grown oxides containing of α- and θ-Al2O3 possible, which in turn provide helpful insights for preventing the failure of thermal barrier coatings on components in gas-turbine engines.
Bounds and Estimates for Elastic Constants of Random Polycrystals of Laminates
Berryman, J G
2004-08-25
In order to obtain formulas providing estimates for elastic constants of random polycrystals of laminates, some known rigorous bounds of Peselnick, Meister, and Watt are first simplified. Then, some new self-consistent estimates are formulated based on the resulting analytical structure of these bounds. A numerical study is made, assuming first that the internal structure (i.e., the laminated grain structure) is not known, and then that it is known. The purpose of this aspect of the study is to attempt to quantify the differences in the predictions of properties of the same system being modeled when such internal structure of the composite medium and spatial correlation information is and is not available.
NASA Astrophysics Data System (ADS)
Madhuri, P. Lakshmi; Hiremath, Uma S.; Yelamaggad, C. V.; Madhuri, K. Priya; Prasad, S. Krishna
2016-04-01
Effect of a polymer network on the threshold voltage of the Fréedericksz transition, Frank elastic constants, switching speed, and the rotational viscosity are investigated in a polymer-stabilized bent-core nematic liquid crystal with different polymer concentrations. These polymer networks form virtual surfaces with a finite anchoring energy. The studies bring out several differences in comparison to similar studies with a calamitic liquid crystal as the nematic host. For example, on varying the polymer content the threshold voltage decreases initially, but exhibits a drastic increase above a critical concentration. A similar feature—reaching a minimum before rising—is seen for the bend elastic constant, which gets enhanced by an order of magnitude for a polymer content of 2.5 wt %. In contrast, the splay elastic constant has a monotonic variation although the overall enhancement is comparable to that of the bend elastic constant. The behavior changing at a critical concentration is also seen for the switching time and the associated rotational viscosity. The presence of the polymer also induces a shape change in the thermal dependence of the bend elastic constant. We explain the features observed here on the basis of images obtained from the optical and atomic force microscopy.
NASA Astrophysics Data System (ADS)
Hwang, Seho; Shin, Jehyun; Kim, Jongman; Won, Byeongho; Song, Wonkyoung; Kim, Changryol; Ki, Jungseok
2014-05-01
One of the most important physical properties is the measurement of the elastic constants of the formation in the evaluation of shale gas. Normally the elastic constants by geophysical well logging and the laboratory test are used in the design of hydraulic fracturing . The three inches diameter borehole of the depth of 505 m for the evaluation of shale gas drilled and was fully cored at the Haenan Basin, southwestern part of Korea Peninsula. We performed a various laboratory tests and geophysical well logging using slime hole logging system. Geophysical well logs include the radioactive logs such as natural gamma log, density log and neutron log, and monopole and dipole sonic log, and image logs. Laboratory tests are the axial compression test, elastic wave velocities and density, and static elastic constants measurements for 21 shale and sandstone cores. We analyzed the relationships between the physical properties by well logs and laboratory test as well as static elastic constants by laboratory tests. In the case of an sonic log using a monopole source of main frequency 23 kHz, measuring P-wave velocity was performed reliably. When using the dipole excitation of low frequency, the signal to noise ratio of the measured shear wave was very low. But when measuring using time mode in a predetermined depth, the signal to noise ratio of measured data relatively improved to discriminate the shear wave. P-wave velocities by laboratory test and sonic logging agreed well overall, but S-wave velocities didn't. The reason for the discrepancy between the laboratory test and sonic log is mainly the low signal to noise ratio of sonic log data by low frequency dipole source, and measuring S-wave in the small diameter borehole is still challenge. The relationship between the P-wave velocity and two dynamic elastic constants, Young's modulus and Poisson's ratio, shows a good correlation. And the relationship between the static elastic constants and dynamic elastic constants also
Elastic properties of solids at high pressure
NASA Astrophysics Data System (ADS)
Vekilov, Yu Kh; Krasilnikov, O. M.; Lugovskoy, A. V.
2015-11-01
This review examines the elastic response of solids under load. The definitions of isothermal and adiabatic elastic constants of ( n≥2) for a loaded crystal are given. For the case of hydrostatic pressure, two techniques are proposed for calculating the second-, third-, and fourth-order elastic constants from the energy-strain and stress-strain relations. As an example, using the proposed approach within the framework of the density functional theory, the second- to fourth-order elastic constants of bcc tungsten are calculated for the pressure range of 0-600 GPa.
NASA Astrophysics Data System (ADS)
Navarrete, M.; Mejía-Uriarte, E. V.; Villagrán-Muniz, M.
2013-09-01
Mixtures of black rubber (natural rubber) vulcanizates containing various concentrations of sand particles, as hard fillers, were prepared to determine their elastic constants at low and high frequency using the photoacoustic technique. These parameters are related with the degree of sand filler dispersion which determines the changes in stiffness, as well as its potential as reinforcement material for treads in tires. The constants are recovered through measurements of the longitudinal wave and complemented with the predictions from the Kerner model to obtain the Poisson’s ratio. Some results are corroborated with tension and compression tests. The acoustic waves are acquired by two piezoelectric transducers, one centered at 3 kHz and the other at 240 kHz. The results show a slight increase in Young’s modulus at low frequencies; meanwhile at high frequencies, it increases by two orders of magnitude. In addition, we found that on adding small amounts of prepared sand, the stiffness increases and this is particularly convenient to reduce the energy losses by the rolling resistance in automotive vehicles.
Elastic Constants and Phonons of Tungsten-Nitride from First Principles
NASA Astrophysics Data System (ADS)
Dane, Christian; Finkenstadt, Daniel; Mehl, Michael; Curtarolo, Stefano
2013-03-01
Certain Tungsten Nitride (WN) crystal structures have been found to exhibit tendencies for exceptional hardness. Some researchers [S. Aydin et al., J. Mater. Res. 27, 1705 (2012)] have made the claim that these structures have hardness qualities that rival diamond. There are three specific structures with unique compositions that are of interest. By calculating the bulk and shear moduli as well as analyzing phonon dispersion plots, the properties of these structures can be compared to known structures like diamond. We used VASP density-functional methods implemented within the MedeA software package to strain each structure in a series of directions in increasing amounts. A simple linear fit of stress vs. strain found that the leading structure in terms of thermodynamic stability has elastic constants of C11 = 753 GPa, C12 = 126 GPa, and C44 = 172 GPa. These constants, while high, are significantly lower than diamond's. This indicates that previous calculations may have been mistaken in predicting the qualities of the WN system. Some of the difference between our results is due to the exchange-correlation functional chosen, namely, LDA vs. GGA.
NASA Astrophysics Data System (ADS)
Gogu, C.; Yin, W.; Haftka, R.; Ifju, P.; Molimard, J.; Le Riche, R.; Vautrin, A.
2010-06-01
A major challenge in the identification of material properties is handling different sources of uncertainty in the experiment and the modelling of the experiment for estimating the resulting uncertainty in the identified properties. Numerous improvements in identification methods have provided increasingly accurate estimates of various material properties. However, characterizing the uncertainty in the identified properties is still relatively crude. Different material properties obtained from a single test are not obtained with the same confidence. Typically the highest uncertainty is associated with respect to properties to which the experiment is the most insensitive. In addition, the uncertainty in different properties can be strongly correlated, so that obtaining only variance estimates may be misleading. A possible approach for handling the different sources of uncertainty and estimating the uncertainty in the identified properties is the Bayesian method. This method was introduced in the late 1970s in the context of identification [1] and has been applied since to different problems, notably identification of elastic constants from plate vibration experiments [2]-[4]. The applications of the method to these classical pointwise tests involved only a small number of measurements (typically ten natural frequencies in the previously cited vibration test) which facilitated the application of the Bayesian approach. For identifying elastic constants, full field strain or displacement measurements provide a high number of measured quantities (one measurement per image pixel) and hence a promise of smaller uncertainties in the properties. However, the high number of measurements represents also a major computational challenge in applying the Bayesian approach to full field measurements. To address this challenge we propose an approach based on the proper orthogonal decomposition (POD) of the full fields in order to drastically reduce their dimensionality. POD is
Elastic constants of Si from HtN Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Yates, Henry; Karimi, M.; Matolyak, J.; Kaplan, T.; Mostoller, M.
1997-03-01
A simple and efficient way of calculating the elastic constants (C_ij) of silicon as a function of temperature is still lacking. A method that has proven to be useful in the calculation of C_ij is EhN molecular dynamics (MD). EhN MD was successfully applied by Ray et al.(J. Ray, Comput. Phys. Rep. 8, 109 (1988).) to the Stillinger-Weber (SW) Si potential at three temperatures. However, the calculation of C_ij using EhN MD requires a knowledge of the second derivatives of the potential, which can be difficult to evaluate for some potential models. Another technique is HtN MD, where H is the enthalpy, t is the tension, and N is the number of particles, which has been applied with less success to Si by Ray et al.. The appeal of the HtN ensemble is that the strain fluctuations are related to the C_ij through a very simple relationship and that the second derivatives are not needed. A recent study of C_ij for a Lennard-Jones potential using HtN MC and HtN MD indicated a much faster covergence rate for HtN MC over its MD counterpart. We calculate C_ij for the SW Si potential using HtN MC with the same conditions as those used by Ray et al. in doing EhN MD and compare the convergence of the two methods.
Gudelli, Vijay Kumar Kanchana, V.
2014-04-24
Structural, elastic, electronic and Fermi surface studies of AuTe{sub 2} have been carried out by means of first principles calculations based on density functional theory. The calculated ground state properties agree well with the experiment. Fermi surface and elastic constants are predicted for the first time and from the calculated elastic constants we find the compound to be mechanically stable satisfying the stability criteria of monoclinic structure. In addition, we also find the c-axis to be more compressible than the other two which is also speculated from the present work. The metallic behaviour of this compound is confirmed from the electronic band structure calculation as we find the bands to cross the Fermi level (E{sub F}). In addition, we also observe a FS topology change under pressure which is also explained in the present work.
Elastic constants determined by nanoindentation for p-type thermoelectric half-Heusler
Gahlawat, S.; Wheeler, L.; White, K. W. E-mail: kwwhite@uh.edu; He, R.; Chen, S.; Ren, Z. F. E-mail: kwwhite@uh.edu
2014-08-28
This paper presents a study of the elastic properties of the p-type thermoelectric half-Heusler material, Hf{sub 0.44}Zr{sub 0.44}Ti{sub 0.12}CoSb{sub 0.8}Sn{sub 0.2}, using nanoindentation. Large grain-sized polycrystalline specimens were fabricated for these measurements, providing sufficient indentation targets within single grains. Electron Backscatter Diffraction methods indexed the target grains for the correlation needed for our elastic analysis of individual single crystals for this cubic thermoelectric material. Elastic properties, including the Zener ratio and the Poisson ratio, obtained from the elasticity tensor are also reported.
Hajlaoui, C. Pedesseau, L.; Raouafi, F.; Ben Cheikh Larbi, F.; Even, J.; Jancu, J.-M.
2015-08-15
We report first-principle density functional calculations of the spontaneous polarization, piezoelectric stress constants, and elastic constants for the III–V wurtzite structure semiconductors InAs and InP. Using the density functional theory implemented in the VASP code, we obtain polarization values–0.011 and–0.013 C/m{sup 2}, and piezoelectric constants e{sub 33} (e{sub 31}) equal to 0.091 (–0.026) and 0.012 (–0.081) C/m{sup 2} for structurally relaxed InP and InAs respectively. These values are consistently smaller than those of nitrides. Therefore, we predict a smaller built-in electric field in such structures.
Cantrell, John H
2014-07-01
The second and third-order Brugger elastic constants are obtained for liquids and ideal gases having an initial hydrostatic pressure p1. For liquids the second-order elastic constants are C₁₁=A+p₁, C₁₂=A-p₁, and the third-order constants are C₁₁₁=-(B+5A+3p₁), C₁₁₂=-(B+A-p₁), and C₁₂₃=A-B-p₁, where A and B are the Beyer expansion coefficients in the liquid equation of state. For ideal gases the second-order constants are C₁₁=p₁γ+p₁, C₁₂=p₁γ-p₁, and the third-order constants are C₁₁₁=-p₁(γ(2)+4γ+3), C₁₁₂=-p₁(γ(2)-1), and C₁₂₃=-p₁ (γ(2)-2γ+1), where γ is the ratio of specific heats. The inequality of C₁₁ and C₁₂ results in a nonzero shear constant C₄₄=(1/2)(C₁₁-C₁₂)=p₁ for both liquids and gases. For water at standard temperature and pressure the ratio of terms p₁/A contributing to the second-order constants is approximately 4.3×10(-5). For atmospheric gases the ratio of corresponding terms is approximately 0.7. Analytical expressions that include initial stresses are derived for the material 'nonlinearity parameters' associated with harmonic generation and acoustoelasticity for fluids and solids of arbitrary crystal symmetry. The expressions are used to validate the relationships for the elastic constants of fluids. PMID:24502870
NASA Technical Reports Server (NTRS)
Cantrell, John H.
2014-01-01
The second and third-order Brugger elastic constants are obtained for liquids and ideal gases having an initial hydrostatic pressure p(sub 1). For liquids the second-order elastic constants are C(sub 11) = A + p(sub 1), C(sub 12) = A -- p(sub 1), and the third-order constants are C(sub 111) = --(B + 5A + 3p(sub 1)), C(sub 112) = --(B + A -- p(sub 1)), and C(sub 123) = A -- B -- p1, where A and B are the Beyer expansion coefficients in the liquid equation of state. For ideal gases the second order constants are C(sub 11) = p(sub 1)gamma + p9sub 1), C(sub 12) = p(sub 1)gamma -- p(sub 1), and the third-order constants are C(sub 111) = p(sub 1)(gamma(2) + 4gamma + 3), C(sub 112) = --p(sub 1)(gamma(2) -- 1), and C(sub 123) = --p(sub 1) (gamma(2) -- 2gamma + 1), where gamma is the ratio of specific heats. The inequality of C(sub 11) and C(sub 12) results in a nonzero shear constant C(sub 44) = (1/2)(C(sub 11) C(sub 12)) = p(sub 1) for both liquids and gases. For water at standard temperature and pressure the ratio of terms p1/A contributing to the second-order constants is approximately 4.3 x 10(-5). For atmospheric gases the ratio of corresponding terms is approximately 0.7. Analytical expressions that include initial stresses are derived for the material 'nonlinearity parameters' associated with harmonic generation and acoustoelasticity for fluids and solids of arbitrary crystal symmetry. The expressions are used to validate the relationships for the elastic constants of fluids.
Barkaoui, Abdelwahed; Chamekh, Abdessalem; Merzouki, Tarek; Hambli, Ridha; Mkaddem, Ali
2014-03-01
The complexity and heterogeneity of bone tissue require a multiscale modeling to understand its mechanical behavior and its remodeling mechanisms. In this paper, a novel multiscale hierarchical approach including microfibril scale based on hybrid neural network (NN) computation and homogenization equations was developed to link nanoscopic and macroscopic scales to estimate the elastic properties of human cortical bone. The multiscale model is divided into three main phases: (i) in step 0, the elastic constants of collagen-water and mineral-water composites are calculated by averaging the upper and lower Hill bounds; (ii) in step 1, the elastic properties of the collagen microfibril are computed using a trained NN simulation. Finite element calculation is performed at nanoscopic levels to provide a database to train an in-house NN program; and (iii) in steps 2-10 from fibril to continuum cortical bone tissue, homogenization equations are used to perform the computation at the higher scales. The NN outputs (elastic properties of the microfibril) are used as inputs for the homogenization computation to determine the properties of mineralized collagen fibril. The mechanical and geometrical properties of bone constituents (mineral, collagen, and cross-links) as well as the porosity were taken in consideration. This paper aims to predict analytically the effective elastic constants of cortical bone by modeling its elastic response at these different scales, ranging from the nanostructural to mesostructural levels. Our findings of the lowest scale's output were well integrated with the other higher levels and serve as inputs for the next higher scale modeling. Good agreement was obtained between our predicted results and literature data. PMID:24123969
NASA Astrophysics Data System (ADS)
Shang, Shun-Li; Zhang, Hui; Wang, Yi; Liu, Zi-Kui
2010-09-01
Temperature-dependent elastic stiffness constants (cijs), including both the isothermal and isoentropic ones, have been predicted for rhombohedral α-Al2O3 and monoclinic θ-Al2O3 in terms of a quasistatic approach, i.e., a combination of volume-dependent cijs determined by a first-principles strain versus stress method and direction-dependent thermal expansions obtained by first-principles phonon calculations. A good agreement is observed between the predictions and the available experiments for α-Al2O3, especially for the off-diagonal elastic constants. In addition, the temperature-dependent cijs predicted herein, in particular the ones for metastable θ-Al2O3, enable the stress analysis at elevated temperatures in thermally grown oxides containing α- and θ-Al2O3, which are crucial to understand the failure of thermal barrier coatings in gas-turbine engines.
Yu, Meina; Zhou, Xiaochen; Jiang, Jinghua; Yang, Huai; Yang, Deng-Ke
2016-05-11
Chiral nematic liquid crystals possess a self-assembled helical structure and exhibit unique selective reflection in visible and infrared light regions. Their optical properties can be electrically tuned. The tuning involves the unwinding and restoring of the helical structure. We carried out an experimental study on the mechanism of the restoration of the helical structure. We constructed chiral nematic liquid crystals with variable elastic constants by doping bent-dimers and studied their impact on the restoration. With matched twist and bend elastic constants, the helical structure can be restored dramatically fast from the field-induced homeotropic state. Furthermore, defects can be eliminated to produce a perfect planar state which exhibits high selective reflection. PMID:27116620
Fumeron, Sébastien; Moraes, Fernando; Pereira, Erms
2016-09-01
The physics of light interference experiments is well established for nematic liquid crystals. Using well-known techniques, it is possible to obtain important quantities, such as the differential scattering cross section and the saddl-splay elastic constant K24. However, the usual methods to retrieve the latter involve adjusting of computational parameters through visual comparisons between the experimental light interference pattern or a (2) H-NMR spectral pattern produced by an escaped-radial disclination, and their computational simulation counterparts. To avoid such comparisons, we develop an algebraic method for obtaining of saddle-splay elastic constant K24. Considering an escaped-radial disclination inside a capillary tube with radius R0 of tens of micrometers, we use a metric approach to study the propagation of the light (in the scalar wave approximation), near the surface of the tube and to determine the light interference pattern due to the defect. The latter is responsible for the existence of a well-defined interference peak associated to a unique angle [Formula: see text] . Since this angle depends on factors such as refractive indexes, curvature elastic constants, anchoring regime, surface anchoring strength and radius R0, the measurement of [Formula: see text] from the interference experiments involving two different radii allows us to algebraically retrieve K24. Our method allowed us to give the first reported estimation of K24 for the lyotropic chromonic liquid crystal Sunset Yellow FCF: K 24 = 2.1 pN. PMID:27589980
Aya, Satoshi; Ogino, Shohei; Hayashi, Yoshihiro; Okano, Kunihiko; Pociecha, Damian; Le, Khoa V; Araoka, Fumito; Kawauchi, Susumu; Gorecka, Ewa; Vaupotič, Nataša; Takezoe, Hideo; Ishikawa, Ken
2014-10-01
Elastic constants in liquid crystals are known to be in the range of pico- and several-tens piconewton (pN). We report herein that a bend elastic constant, K33, remarkably varies depending on a slight modification of the chemical structure in an analogous series of calamitic liquid crystals. In contrast to the record-high bend elastic constants (hundreds pN or sub-nN) reported previously in a compound with an azo linkage, analogous compounds with tolan and ester linkages show several-tens pN and pN, respectively. X-ray diffraction studies of these compounds reveal that smectic-like layer structures (cybotacticclusters) are formed in the nematic phase of only the homologous compounds with an azo linkage, certifying the idea that the existence of cybotactic clusters strongly enhances K33. Two theoretical considerations were made: (1) Based on molecular conformation calculation, flat molecules that have high torsional potential energy, such as the one with an azo linkage, easily pack to form cybotactic clusters. (2) Theoretical estimation was made of how much cluster volume ratio is necessary to give about 100-times-larger K33s. PMID:25375514
NASA Astrophysics Data System (ADS)
Sinogeikin, S. V.; Reichmann, H. J.; Bass, J. D.; Mackwell, S. J.; Jacobsen, S. D.
2001-12-01
Magnesiowustite is a major mineral in the lower mantle of the Earth. While the effect of temperature and pressure on the elasticity of MgO is well constrained, the effect of Fe on the elastic constants and their pressure derivatives is still uncertain, especially for compositions close to the Mg end-member. Here we present the Brillouin spectroscopy measurements of the single-crystal elastic constants of magnesiowustite at ambient conditions ( ~5.8 mol.% Fe) and to high pressures up to about 10 GPa ( ~1.3 mol.% Fe). The single-crystal samples were prepared by Mg:Fe interdiffusion between periclase single crystals and magnesiowustite powders with carefully controlled oxygen fugacity. The Brillouin scattering measurements were performed in platelet symmetric geometry, which significantly increases the accuracy, and is calibrated with respect to standard periclase sample. High-pressure measurements were performed in a large optical opening Merrill-Basset type diamond anvil cell with Methanol-Ethanol-Water mixture as a pressure-transmitting medium. The new results confirm earlier single-crystal ultrasonic measurements (gigahertz interferometry) which indicated that the behavior of the elastic moduli of magnesiowustite are highly nonlinear in Mg-rich end. A pronounced decrease in acoustic velocities with increasing Fe content is especially obvious in samples with Fe contents of <10 mol. %. The pressure derivatives of the elastic moduli of the sample with XFe = 1.3 mol % are equal to those of periclase within the experimental uncertainties, although the Fe content of the sample may be too small to allow compositional trends to be clearly identified.
A Simple Experiment for Determining the Elastic Constant of a Fine Wire
ERIC Educational Resources Information Center
Freeman, W. Larry; Freda, Ronald F.
2007-01-01
Many general physics laboratories involve the use of springs to demonstrate Hooke's law, and much ado is made about how this can be used as a model for describing the elastic characteristics of materials at the molecular or atomic level. In recent years, the proliferation of computers, and appropriate sensors, have made it possible to demonstrate…
NASA Astrophysics Data System (ADS)
Lee, Ji-Hoon; Yoon, Tae-Hoon; Choi, E.-Joon
2013-12-01
We report an unusual temperature dependence of the elastic constants of a rodlike nematic liquid crystal (RLC) mixed with a highly kinked bent-core liquid crystal (BLC). On cooling through the nematic phase, the splay elastic constant (K11) of the RLC-BLC mixture increased below the nematic-isotropic phase transition temperature, but started to decrease midway through the nematic phase. The decrease of K11 was more prominent with a greater concentration of BLC. On the other hand, the bend elastic constant (K33) of the RLC-BLC mixture monotonically increased through the nematic phase with decreasing temperature.
Zhan, Yu; Liu, Changsheng; Zhang, Fengpeng; Qiu, Zhaoguo
2016-07-01
The laser ultrasonic generation of Rayleigh surface wave and longitudinal wave in an elastic plate is studied by experiment and finite element method. In order to eliminate the measurement error and the time delay of the experimental system, the linear fitting method of experimental data is applied. The finite element analysis software ABAQUS is used to simulate the propagation of Rayleigh surface wave and longitudinal wave caused by laser excitation on a sheet metal sample surface. The equivalent load method is proposed and applied. The pulsed laser is equivalent to the surface load in time and space domain to meet the Gaussian profile. The relationship between the physical parameters of the laser and the load is established by the correction factor. The numerical solution is in good agreement with the experimental result. The simple and effective numerical and experimental methods for laser ultrasonic measurement of the elastic constants are demonstrated. PMID:27079489
NASA Astrophysics Data System (ADS)
Nayek, Prasenjit; Karan, Santanu; Kundu, Sudarshan; Lee, Seung Hee; Das Gupta, Sudeshna; Roy, Soumen Kumar; Roy, Subir Kumar
2012-06-01
This report describes how doping liquid crystals (LC) with rod-like hexagonal semiconductor nanoprisms alters the dielectric and elastic properties of the composites as compared with a pristine nematic liquid crystal (NLC). Cadmium sulfide nanorods were synthesized via the solvothermal process and blended with a NLC. Nanorods were highly miscible with NLC and produced a topological defect-free texture up to a certain limit. A good dark state was achieved during the homeotropic configuration of the cell within that limit. Appreciable changes in splay and bend elastic constants of the LCs were observed after blending with nanorods. Long-range order was established in the hybrid system, and consequently the anisotropy was increased. The threshold voltage decreased dramatically by ˜31%. Dielectric study revealed a high-frequency mode, which might be due to anchoring of the LC with nanorods.
Two-vortex interactions and elastic constants in type II superconductors
Miesenboeck, H.M.
1984-07-01
The elastic energy of a distorted flux-line lattice is calculated on the basis of a two-vortex interaction. Such a description is completely sufficient throughout the whole induction range between the upper and lower critical fields H/sub c//sub 1/ and H/sub c//sub 2/. Therefore it is possible to calculate all elastic moduli from a common potential consisting of two parts, one of a combined ''electromagnetic London type,'' the other based on the core overlap of the flux lines. The results are highly nonlocal and are in agreement with previous calculations of Brandt, but are modified near H/sub c//sub 1/ for small k (the ratio between the penetration depth and the coherence length).
Determination of Constant Strain Gradients of Elastically Bent Crystal Using X-ray Mirage Fringes
NASA Astrophysics Data System (ADS)
Jongsukswat, Sukswat; Fukamachi, Tomoe; Hirano, Kenji; Ju, Dongying; Negishi, Riichirou; Shimojo, Masayuki; Hirano, Keiichi; Kawamura, Takaaki
2012-07-01
Two experimental approaches are studied to determine a parameter of the strain gradient in an elastically bent crystal. In one approach, the parameter is determined by measuring the third peak of the X-ray mirage interference fringes and in the other, by measuring the region where no mirage diffraction beam reaches on the lateral surface of the crystal. Using the X-rays from synchrotron radiation, the mirage fringes have been observed in the 220 reflection of the Si crystal whose strain is controlled in cantilever bending. These two approaches both give accurate values of the parameter of the strain gradient, showing good agreement with the values calculated using elastic theory. In addition, the residual strain due to gravity is observed by measuring mirage fringes when the bending force becomes zero.
NASA Astrophysics Data System (ADS)
Fivez, J.
2016-01-01
Starting from the coupled thermoelastic equations, an analytic formula is obtained for the surface deformation of a semi-infinite homogeneous and isotropic solid in an impulsive stimulated scattering (ISS) experiment. The surface ripple consists of a transient diffusive grating and a standing Rayleigh wave. The time evolution of the diffusive part directly reveals the thermal diffusivity. The oscillatory part then reveals the elastic properties, and explicit formulae are presented for retrieving the elastic moduli as a function of the frequency and amplitude of the standing Rayleigh wave. The analytic formulae not only allow to avoid time-consuming and delicate numerical integration but they also demonstrate the uniqueness of the inversion from signal to material parameters and offer direct insight into the error propagation. The formulae are applied to real experimental data, illustrating the strength and the limitations of the ISS technique.
NASA Astrophysics Data System (ADS)
Panov, V. P.; Nagaraj, M.; Vij, J. K.; Panarin, Yu. P.; Kohlmeier, A.; Tamba, M. G.; Lewis, R. A.; Mehl, G. H.
2010-10-01
Hydrocarbon linked mesogenic dimers are found to exhibit an additional nematic phase below the conventional uniaxial nematic phase as confirmed by x-ray diffraction. The phase produces unusual periodic stripe domains in planar cells. The stripes are found to be parallel to the rubbing direction (in rubbed cells) with a well-defined period equal to double the cell gap. The stripes appear without external electromagnetic field, temperature or thickness gradients, rubbing or hybrid alignment treatments. Simple modeling proposes a negative sign for at least one of the two elastic constants: splay and twist, as a necessary condition for the observed pattern.
NASA Astrophysics Data System (ADS)
Eggert, Th.; Geilenkeuser, R.; Jäckel, M.
2000-07-01
We have measured the dielectric response ε( ω) and the thermal conductivity κ of polystyrene (PS) and of polycarbonate (PC) under high hydrostatic pressure (0.1 MPa
constant Ci can be determined. These results show that the product P¯γ l,t2 of the standard tunnelling model (STM) scales with the pressure-dependent elastic constants c11 and c44.
Wang, Xing; Zhang, Ligang; Guo, Ziyi; Jiang, Yun; Tao, Xiaoma; Liu, Libin
2016-09-01
CALPHAD-type modeling was used to describe the single-crystal elastic constants of the bcc solution phase in the ternary Ti-Nb-Zr system. The parameters in the model were evaluated based on the available experimental data and first-principle calculations. The composition-elastic properties of the full compositions were predicted and the results were in good agreement with the experimental data. It is found that the β phase can be divided into two regions which are separated by a critical dynamical stability composition line. The corresponding valence electron number per atom and the polycrystalline Young׳s modulus of the critical compositions are 4.04-4.17 and 30-40GPa respectively. Orientation dependencies of single-crystal Young׳s modulus show strong elastic anisotropy on the Ti-rich side. Alloys compositions with a Young׳s modulus along the <100> direction matching that of bone were found. The current results present an effective strategy for designing low modulus biomedical alloys using computational modeling. PMID:27235781
Shang, Shun-Li; Zhang, Hui; Wang, Yi; Liu, Zi-Kui
2010-09-22
Temperature-dependent elastic stiffness constants (c(ij)s), including both the isothermal and isoentropic ones, have been predicted for rhombohedral α-Al(2)O(3) and monoclinic θ-Al(2)O(3) in terms of a quasistatic approach, i.e., a combination of volume-dependent c(ij)s determined by a first-principles strain versus stress method and direction-dependent thermal expansions obtained by first-principles phonon calculations. A good agreement is observed between the predictions and the available experiments for α-Al(2)O(3), especially for the off-diagonal elastic constants. In addition, the temperature-dependent c(ij)s predicted herein, in particular the ones for metastable θ-Al(2)O(3), enable the stress analysis at elevated temperatures in thermally grown oxides containing α- and θ-Al(2)O(3), which are crucial to understand the failure of thermal barrier coatings in gas-turbine engines. PMID:21403195
Seung-Kyu Park; Sung-Hoon Baik; Hyung-Ki Cha; Stephen J. Reese; David H. Hurley
2010-08-01
Resonant ultrasound spectroscopy (RUS) is a useful technique for measuring the elastic properties of materials. In this study, two experimental approaches for performing RUS are experimentally analyzed and compared: 1) contact transduction using piezoelectric transducers (PZT) and 2) laser transduction using pulse laser excitation and laser interferometric detection. A single Zircaloy sample cut from a nuclear pressure tube was used for this study. By virtue of the non-contact nature, the quality factor, Q, for laser RUS is shown to be higher than the contact RUS. In addition, the probe beam for laser-RUS can be scanned to form a 2D image of each vibrational mode, which in turn enables unique mode identification. These defining characteristics of laser-RUS enable straightforward discrimination of closely spaced resonant modes and provide key advantages for improving the resolution of resonant ultrasound spectroscopy.
Osipov, M A; Pajak, G
2016-04-01
A molecular theory of both elastic constants and the flexoelectric coefficients of bent-core nematic liquid crystals has been developed taking into account dipole-dipole interactions as well as polar interactions determined by the bent molecular shape. It has been shown that if polar interactions are neglected, the elastic constants are increasing monotonically with the decreasing temperature. On the other hand, dipolar interactions between bent-core molecules may result in a dramatic increase of the bend flexocoefficient. As a result, the flexoelectric contribution to the bend elastic constant increases significantly, and the bend elastic constant appears to be very small throughout the nematic range and may vanish at a certain temperature. This temperature may then be identified as a temperature of the elastic instability of the bent-core nematic phase which induces a transition into the modulated phases with bend deformations like recently reported twist-bend phase. The temperature variation of the elastic constants is qualitatively similar to the typical experimental data for bent-core nematics. PMID:27118535
Core-Shell Microgels with Switchable Elasticity at Constant Interfacial Interaction.
Seuss, Maximilian; Schmolke, Willi; Drechsler, Astrid; Fery, Andreas; Seiffert, Sebastian
2016-06-29
Hydrogels based on poly(N-isopropylacrylamide) (pNIPAAm) exhibit a thermo-reversible volume phase transition from swollen to deswollen states. This change of the hydrogel volume is accompanied by changes of the hydrogel elastic and Young's moduli and of the hydrogel interfacial interactions. To decouple these parameters from one another, we present a class of submillimeter sized hydrogel particles that consist of a thermosensitive pNIPAAm core wrapped by a nonthermosensitive polyacrylamide (pAAm) shell, each templated by droplet-based microfluidics. When the microgel core deswells upon increase of the temperature to above 34 °C, the shell is stretched and dragged to follow this deswelling into the microgel interior, resulting in an increase of the microgel surficial Young's modulus. However, as the surface interactions of the pAAm shell are independent of temperature at around 34 °C, they do not considerably change during the pNIPAAm-core volume phase transition. This feature makes these core-shell microgels a promising platform to be used as building blocks to assemble soft materials with rationally and independently tunable mechanics. PMID:27276500
Dutta, Biswanath; Ghosh, Subhradip
2009-03-01
Understanding the role of the inter-atomic force constants in lattice dynamics of random binary alloys is a challenging problem. Addressing these inter-atomic interactions accurately is a necessity to obtain an accurate phonon spectrum and to calculate properties from them. Using a combination of ab initio density functional perturbation theory (DFPT) and the itinerant coherent potential approximation (ICPA), an analytic, self-consistent method for performing configuration averaging in random alloys, we model the inter-atomic force constants for Pd(0.96)Fe(0.04) and Pd(0.9)Fe(0.1) alloys based upon the ab initio results and intuitive arguments. The calculated phonon dispersion curves and elastic constants agree very well with the experimental results. Comparison of our results with those obtained in a model potential scheme is also done. The modeling of inter-atomic interactions in random alloys and their roles regarding the phonon-related properties are also discussed in light of these results. PMID:21817397
NASA Astrophysics Data System (ADS)
Palchik, V.
2013-03-01
The stress [crack damage stress ( σ cd) and uniaxial compressive strength ( σ c)] and strain characteristics [maximum total volumetric strain ( ɛ cd), axial failure strain ( ɛ af)], porosity ( n) and elastic constants [elastic modulus ( E) and Poisson's ratio ( ν)] and their ratios were coordinated with the existence of two different types (type 1 and type 2) of volumetric strain curve. Type 1 volumetric strain curve has a reversal point and, therefore, σ cd is less than the uniaxial compressive strength ( σ c). Type 2 has no reversal point, and the bulk volume of rock decreases until its failure occurs (i.e., σ cd = σ c). It is confirmed that the ratio between the elastic modulus ( E) and the parameter λ = n/ ɛ cd strongly affects the crack damage stress ( σ cd) for both type 1 and type 2 volumetric strain curves. It is revealed that heterogeneous carbonate rock samples exhibit different types of the volumetric strain curve even within the same rock formation, and the range of σ cd/ σ c = 0.54-1 for carbonate rocks is wider than the range (0.71 < σ cd/ σ c < 0.84) obtained by other researchers for granites, sandstones and quartzite. It is established that there is no connection between the type of the volumetric strain curve and values of n, E, σ cd, ν, E/(1 - 2 ν), M R = E/ σ c and E/ λ. On the other hand, the type of volumetric strain curve is connected with the values of λ and the ratio between the axial failure strain ( ɛ af) and the maximum total volumetric strain ( ɛ cd). It is argued that in case of small ɛ af/ ɛ cd-small λ, volumetric strain curve follows the type 2.
Elastic constants and ultrasound attenuation in the spin-liquid phase of Cs2CuCl4
NASA Astrophysics Data System (ADS)
Streib, Simon; Kopietz, Peter; Cong, Pham Thanh; Wolf, Bernd; Lang, Michael; van Well, Natalija; Ritter, Franz; Assmus, Wolf
2015-03-01
The spin excitations in the spin-liquid phase of the anisotropic triangular lattice quantum antiferromagnet Cs2CuCl4 have been shown to propagate dominantly along the crystallographic b-axis. To test this dimensional reduction scenario, we have performed ultrasound experiments in the spin-liquid phase of Cs2CuCl4 probing the elastic constant c22 and the sound attenuation along the b-axis as a function of an external magnetic field along the a-axis. We show that our data can be quantitatively explained within the framework of a nearest neighbor spin- 1 / 2 Heisenberg chain, where fermions are introduced via the Jordan-Wigner transformation and the spin-phonon interaction arises from the usual exchange-striction mechanism. Financial support by the DFG via SFB/TRR49 is gratefully acknowledged.
Diffraction Profiles of Elasticity Bent Single Crystals with Constant Strain Gradients
Yan,H.; Kalenci, O.; Noyan, I.
2007-01-01
This work presents a set of equations that can be used to predict the dynamical diffraction profile from a non-transparent single crystal with a constant strain gradient examined in Bragg reflection geometry with a spherical incident X-ray beam. In agreement with previous work, the present analysis predicts two peaks: a primary diffraction peak, which would have still been observed in the absence of the strain gradient and which exits the specimen surface at the intersection point of the incident beam with the sample surface, and a secondary (mirage) peak, caused by the deflection of the wavefield within the material, which exits the specimen surface further from this intersection point. The integrated intensity of the mirage peak increases with increasing strain gradient, while its separation from the primary reflection peak decreases. The directions of the rays forming the mirage peak are parallel to those forming the primary diffraction peak. However, their spatial displacement might cause (fictitious) angular shifts in diffractometers equipped with area detectors or slit optics. The analysis results are compared with experimental data from an Si single-crystal strip bent in cantilever configuration, and the implications of the mirage peak for Laue analysis and high-precision diffraction measurements are discussed.
NASA Astrophysics Data System (ADS)
Yang, Jing; Cheng, Jian-Chun
2001-12-01
A new inverse method based on the wavelet transform and artificial neural networks (ANN) is presented to recover elastic constants of a fibre-reinforced composite plate from laser-based ultrasonic Lamb waves. The transient waveforms obtained by numerical simulations under different elastic constants are taken as the input of the ANN for training and learning. The wavelet transform is employed for extracting the eigenvectors from the raw Lamb wave signals so as to simplify the structure of the ANN. Then these eigenvectors are input to a multi-layer internally recurrent neural network with a back-propagation algorithm. Finally, the experimental waveforms are used as the input in the whole system to inverse elastic constants of the experimental material.
Mazel, Vincent; Busignies, Virginie; Diarra, Harona; Tchoreloff, Pierre
2013-11-01
The elastic properties of pharmaceutical powders and compacts are of great interest to understand the complex phenomena that occur during and after the tableting process. The elastic recovery after compression is known to be linked with adverse phenomena such as capping or delamination of tablets. Classically, the elastic behavior is modeled using linear elasticity and is characterized using only Young's modulus (E), often by using a value extrapolated at zero porosity. In this work, four pharmaceutical products were studied. The elastic behavior of compacts obtained using a large range of applied pressure was characterized. First, it was found more suitable to use apparent elastic moduli than extrapolations at zero porosity. Then, the results indicate that there was not always a good correlation between the values of Young's modulus and the actual elastic recovery of the compacts. Poisson's ratio (v), which differs from one product to another and is porosity-dependent, must be taken into account. Finally, the bulk modulus (K), which combines E and v, was shown to be well correlated with the elastic recovery of the compacts and can be considered as a relevant parameter to characterize the elastic behavior of pharmaceutical compacts. PMID:23963744
Preedy, Emily Callard; Perni, Stefano
2015-01-01
Periprosthetic osteolysis and implant loosening are the outcomes of wear debris generation in total joint replacements. Wear debris formed from the implanted materials consisting of metals, polymers, ceramic and bone cement initiate the immune system response. Often osteoblasts, the principal cell type in bone tissue adjacent to the prostheses, are directly impacted. In this study, the influence of cobalt, titanium and PMMA bone cement particles of different sizes, charges and compositions on mouse osteoblast adhesion, nanomechanics (elasticity and spring constant) and metabolic activity were investigated. These studies were accompanied by osteoblast mineralisation experiments and cell uptake after exposure to particles at defined time points. Our results demonstrate that alteration of the nanomechanical properties are mainly dependent on the metal type rather than nanoparticles size and concentration. Moreover, despite uptake increasing over exposure time, the cell characteristics exhibit changes predominately after the first 24 hours, highlighting that the cell responses to nanoparticle exposure are not cumulative. Understanding these processes is critical to expanding our knowledge of implant loosening and elucidating the nature of prosthetic joint failure. PMID:27019701
Stassis, C.
1993-10-01
The physical properties of the various phases of iron have been the subject of numerous of numerous theoretical and experimental investigations. Of particular interest is the appearance of the fcc {gamma}-phase between approximately 1,200 K and 1,670 K. The authors were able to growth in situ single crystals of fcc iron of sufficient size to perform an inelastic neutron scattering study of the lattice dynamics of this phase of iron. The phonon dispersion curves along the [00{xi}],[{xi}{xi}0] and [{xi}{xi}{xi}] symmetry directions were measured at 1,428 K. A limited number of phonons were also measured at 1,227 K and 1,640 K to assess the temperature dependence of the phonon frequencies. The data collected at 1,428 K were used to evaluate the elastic constants, the phonon density of states and the lattice contribution to the specific heat. The measured dispersion curves of {gamma}-Fe are qualitatively similar to those of Ni (measured at 296 K) and Ni{sub 0.3}Fe{sub 0.7} (measured at 296 and 573 K).
Adiabatic topological quantum computing
NASA Astrophysics Data System (ADS)
Cesare, Chris; Landahl, Andrew J.; Bacon, Dave; Flammia, Steven T.; Neels, Alice
2015-07-01
Topological quantum computing promises error-resistant quantum computation without active error correction. However, there is a worry that during the process of executing quantum gates by braiding anyons around each other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here, we explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological codes, notably Kitaev's surface codes and the more recently discovered color codes. We develop protocols that enable universal quantum computing by adiabatic evolution in a way that keeps the energy gap of the system constant with respect to the computation size and introduces only simple local Hamiltonian interactions. This allows one to perform holonomic quantum computing with these topological quantum computing systems. The tools we develop allow one to go beyond numerical simulations and understand these processes analytically.
NASA Astrophysics Data System (ADS)
Pfeiffer, Jonathan B.; Kaufman, Yaniv; Wagner, Kelvin H.; Ledbetter, Hassel
2014-05-01
We utilized both resonant ultrasound spectroscopy (RUS) and Schaefer-Bergmann diffraction patterns (SBDP) to measure the elastic stiffness coefficients of the trigonal, non-piezo-electric crystal α-BaB2O4. RUS determines the elastic coefficients of a sample by matching measured resonant frequencies to a model of resonances. SBDP deduces the elastic coefficients by fitting the measured shape of the acousto-optic diffraction pattern to an acoustic slowness surface cross-section. We present our measured elastic coefficients of α-BaB2O4 from both RUS and SBDP experiments.
Andrushchak, A. S.; Laba, H. P.; Yurkevych, O. V.; Mytsyk, B. G.; Solskii, I. M.; Kityk, A. V.; Sahraoui, B.
2009-10-01
This paper presents the results of ultrasonic measurements of LiNbO{sub 3} and LiNbO{sub 3}:MgO crystals. The tensors of piezoelectric coefficients, elastic stiffness constants, and elastic compliances are determined for both crystals at room temperature. Combining these data with the results of piezo-optical measurements, a complete set of photoelastic tensor coefficients is also calculated. Doping of LiNbO{sub 3} crystals by MgO does not lead to a considerable modification of their elastic and photoelastic properties. However, LiNbO{sub 3}:MgO is characterized by a considerably higher resistance with respect to powerful light radiation, making it promising for future application in acousto-optic devices that deal with superpowerful laser radiation. Presented here are the complete tensor sets of elastic constants and photoelastic coefficients of LiNbO{sub 3} and LiNbO{sub 3}:MgO crystals that may be used for a geometry optimization of acousto-optical interaction providing the best diffraction efficiency of acousto-optical cells made of these materials.
Elastic constants and the structural phase transition in La sub 2-x Sr sub x CuO sub 4
Sarrao, J.L.; Lei, Ming; Stekel, A.; Bell, T.M.; Leisure, R.G.; Sham, L.J.; Visscher, W.M.; Migliori, A. ); Bussmann-Holder, A. Bayreuth Univ. ); Tanaka, I.; Kojima, H. . Faculty of Engineering)
1991-01-01
Resonant ultrasound spectroscopy is used to measure the temperature dependence of all six elastic moduli of La{sub 2-x}Sr{sub x}CuO{sub 4}. A giant softening (> 50% reduction) in the in-plane shear modulus, c{sub 66}, is observed and is attributed to the tetragonal-orthorhombic structural phase transition in this material. This phase transition and the corresponding softening is examined with a simple anharmonic mechanical model and a macroscopic Ginsburg-Landau formalism exploiting the full symmetry of the crystal. 16 refs., 5 figs.
The elastic constants of MgSiO3 perovskite at pressures and temperatures of the Earth's mantle.
Oganov, A R; Brodholt, J P; Price, G D
2001-06-21
The temperature anomalies in the Earth's mantle associated with thermal convection can be inferred from seismic tomography, provided that the elastic properties of mantle minerals are known as a function of temperature at mantle pressures. At present, however, such information is difficult to obtain directly through laboratory experiments. We have therefore taken advantage of recent advances in computer technology, and have performed finite-temperature ab initio molecular dynamics simulations of the elastic properties of MgSiO3 perovskite, the major mineral of the lower mantle, at relevant thermodynamic conditions. When combined with the results from tomographic images of the mantle, our results indicate that the lower mantle is either significantly anelastic or compositionally heterogeneous on large scales. We found the temperature contrast between the coldest and hottest regions of the mantle, at a given depth, to be about 800 K at 1,000 km, 1,500 K at 2,000 km, and possibly over 2,000 K at the core-mantle boundary. PMID:11418854
Zaug, J M
1998-08-21
Ultrasonic sound speed measurements via Impulsive Stimulated Light Scattering (ISLS) were made in single crystals of b-HMX and tantalum over an extended range of temperatures. Elastic constants are consequently determined for b-HMX. Sound speeds are calculated for tantalum, from known elastic constants, and compare favorably with the results presented here. ISLS time-domain fits of tantalum records allowed for thermal diffusion determinations and, correspondingly, thermal conductivity. Measurements of the speed of sound and of the thermal diffusivities of fluid oxygen up to pressures of 13 GPa and at several temperatures are presented. Between 0.1 and 13 GPa the fluid's density increases by a factor of three. Thermal diffusivities rise slowly over this range, and are substantially smaller than those previously measured for the solid b-phase. Additional sound speed measurements were made along the 250 C isotherm in a 1:1 molar ratio mixture of liquid oxygen and nitrogen. These experiments demonstrate the versatility and potential application of a new laboratory within the U. S. DOD and DOE complex. 1
NASA Astrophysics Data System (ADS)
Hayes, Dennis
1999-06-01
Prior accurate measurements of sound speed on the Hugoniot for copper and 316-SS are used to construct complete equations of state for solid and liquid phases. Differences between calculated bulk and observed elastic sound-speed in the solid are used to infer high-pressure elastic constants. At higher pressures, where the shocked state is entirely liquid, data are sufficient to construct the EOS including an accurate estimate for Grüneisen's ratio. The liquid EOS also reasonably describes some low-pressure, high-temperature properties, including density, sound speed, variation of sound speed with temperature, and thermal expansion, lending confidence to its accuracy. Results are comparable for each metal: the shear modulus increases along the Hugoniot and then drops precipitously toward zero as the pressure nears the liquid-phase boundary. In the liquid, Grüneisen's ratio is observed to be constant and agrees with the value measured for the liquid at zero pressure. The state below which this constancy holds is identified as the smallest pressure on the Hugoniot at which melting is complete. The gap between pure solid and pure liquid is identified as the mixed-phase region and in the case of copper, its size and location are in reasonable agreement with published ab initio calculations of Moriarty. Confidence in calculated temperature and entropy is less then that in pressure, volume and energy owing to uncertainties in specific heats.
Adiabatic Compression of Oxygen: Real Fluid Temperatures
NASA Technical Reports Server (NTRS)
Barragan, Michelle; Wilson, D. Bruce; Stoltzfus, Joel M.
2000-01-01
The adiabatic compression of oxygen has been identified as an ignition source for systems operating in enriched oxygen atmospheres. Current practice is to evaluate the temperature rise on compression by treating oxygen as an ideal gas with constant heat capacity. This paper establishes the appropriate thermodynamic analysis for the common occurrence of adiabatic compression of oxygen and in the process defines a satisfactory equation of state (EOS) for oxygen. It uses that EOS to model adiabatic compression as isentropic compression and calculates final temperatures for this system using current approaches for comparison.
Bounds and self-consistent estimates for elastic constants of polycrystals of hcp solid He ${}^{4}$
Berryman, James G.
2012-03-01
Recent advances in methods for computing both Hashin-Shtrikman bounds and related selfconsistent (or CPA) estimates of elastic constants for polycrystals composed of randomly oriented crystals can be applied successfully to hexagonal close packed solid He{sup 4}. In particular, since the shear modulus C{sub 44} of hexagonal close-packed solid He is known to undergo large temperature variations when 20 mK {<=} T {<=} 200 mK, bounds and estimates computed with this class of effective medium methods, while using C{sub 44} {r_arrow} 0 as a proxy for melting, are found to be both qualitatively and quantitatively very similar to prior results obtained using Monte Carlo methods. Hashin- Shtrikman bounds provide significantly tighter constraints on the polycrystal behavior than do the traditional Voigt and Reuss bounds.
Adiabatic approximation for nucleus-nucleus scattering
Johnson, R.C.
2005-10-14
Adiabatic approximations to few-body models of nuclear scattering are described with emphasis on reactions with deuterons and halo nuclei (frozen halo approximation) as projectiles. The different ways the approximation should be implemented in a consistent theory of elastic scattering, stripping and break-up are explained and the conditions for the theory's validity are briefly discussed. A formalism which links few-body models and the underlying many-body system is outlined and the connection between the adiabatic and CDCC methods is reviewed.
Yang, X X; Li, J W; Zhou, Z F; Wang, Y; Yang, L W; Zheng, W T; Sun, Chang Q
2012-01-21
From the perspective of bond relaxation and bond vibration, we have formulated the Raman phonon relaxation of graphene, under the stimuli of the number-of-layers, the uni-axial strain, the pressure, and the temperature, in terms of the response of the length and strength of the representative bond of the entire specimen to the applied stimuli. Theoretical unification of the measurements clarifies that: (i) the opposite trends of the Raman shifts, which are due to the number-of-layers reduction, of the G-peak shift and arises from the vibration of a pair of atoms, while the D- and the 2D-peak shifts involve the z-neighbor of a specific atom; (ii) the tensile strain-induced phonon softening and phonon-band splitting arise from the asymmetric response of the C(3v) bond geometry to the C(2v) uni-axial bond elongation; (iii) the thermal softening of the phonons originates from bond expansion and weakening; and (iv) the pressure stiffening of the phonons results from bond compression and work hardening. Reproduction of the measurements has led to quantitative information about the referential frequencies from which the Raman frequencies shift as well as the length, energy, force constant, Debye temperature, compressibility and elastic modulus of the C-C bond in graphene, which is of instrumental importance in the understanding of the unusual behavior of graphene. PMID:22105904
Lucchinetti, E; Stüssi, E
2004-01-01
Measuring the elasticity constants of biological materials often sets important constraints, such as the limited size or the irregular geometry of the samples. In this paper, the identification approach as applied to the specific problem of accurately retrieving the material properties of small bone samples from a measured displacement field is discussed. The identification procedure can be formulated as an optimization problem with the goal of minimizing the difference between computed and measured displacements by searching for an appropriate set of material parameters using dedicated algorithms. Alternatively, the backcalculation of the material properties from displacement maps can be implemented using artificial neural networks. In a practical situation, however, measurement errors strongly affect the identification results, calling for robust optimization approaches in order accurately to retrieve the material properties from error-polluted sample deformation maps. Using a simple model problem, the performances of both classical and neural network driven optimization are compared. When performed before the collection of experimental data, this evaluation can be very helpful in pinpointing potential problems with the envisaged experiments such as the need for a sufficient signal-to-noise ratio, particularly important when working with small tissue samples such as specimens cut from rodent bones or single bone trabeculae. PMID:15648663
NASA Astrophysics Data System (ADS)
Tarumi, Ryuichi; Matsuhisa, Tomohiro; Shibutani, Yoji
2012-07-01
The complete sets of elastic constants Cij and piezoelectric coefficients eij for LiNbO3 and LiTaO3 single crystals have been determined by resonant ultrasound spectroscopy (RUS) from ambient temperature to 6 K. Both Cij(T) and eij(T) of the two crystals monotonically increased as the temperature decreased. The Einstein temperature estimated from Varshni's equation revealed that e15 and e22 of LiNbO3 have remarkably low values compared with the acoustic Debye temperature. In addition, the lattice anharmonicity of these piezoelectric coefficients was also extraordinarily low. An analysis based on the group theory and lattice dynamics revealed that both LiNbO3 and LiTaO3 crystals have three types of internal displacement modes: A1, A2, and E, and only the E mode affects e15 and e22. Therefore, it is reasonable to suppose that the E mode internal displacement is responsible for the unusual behaviors of the tow piezoelectric coefficients.
Wireless adiabatic power transfer
Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.
2011-03-15
Research Highlights: > Efficient and robust mid-range wireless energy transfer between two coils. > The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. > Wireless energy transfer is insensitive to any resonant constraints. > Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.
Adiabatically driven Brownian pumps.
Rozenbaum, Viktor M; Makhnovskii, Yurii A; Shapochkina, Irina V; Sheu, Sheh-Yi; Yang, Dah-Yen; Lin, Sheng Hsien
2013-07-01
We investigate a Brownian pump which, being powered by a flashing ratchet mechanism, produces net particle transport through a membrane. The extension of the Parrondo's approach developed for reversible Brownian motors [Parrondo, Phys. Rev. E 57, 7297 (1998)] to adiabatically driven pumps is given. We demonstrate that the pumping mechanism becomes especially efficient when the time variation of the potential occurs adiabatically fast or adiabatically slow, in perfect analogy with adiabatically driven Brownian motors which exhibit high efficiency [Rozenbaum et al., Phys. Rev. E 85, 041116 (2012)]. At the same time, the efficiency of the pumping mechanism is shown to be less than that of Brownian motors due to fluctuations of the number of particles in the membrane. PMID:23944411
Pfeiffer, Jonathan B.; Kaufman, Yaniv; Wagner, Kelvin H.; Ledbetter, Hassel
2014-05-27
We utilized both resonant ultrasound spectroscopy (RUS) and Schaefer-Bergmann diffraction patterns (SBDP) to measure the elastic stiffness coefficients of the trigonal, non-piezo-electric crystal α−BaB{sub 2}O{sub 4}. RUS determines the elastic coefficients of a sample by matching measured resonant frequencies to a model of resonances. SBDP deduces the elastic coefficients by fitting the measured shape of the acousto-optic diffraction pattern to an acoustic slowness surface cross-section. We present our measured elastic coefficients of α−BaB{sub 2}O{sub 4} from both RUS and SBDP experiments.
Parallelizable adiabatic gate teleportation
NASA Astrophysics Data System (ADS)
Nakago, Kosuke; Hajdušek, Michal; Nakayama, Shojun; Murao, Mio
2015-12-01
To investigate how a temporally ordered gate sequence can be parallelized in adiabatic implementations of quantum computation, we modify adiabatic gate teleportation, a model of quantum computation proposed by Bacon and Flammia [Phys. Rev. Lett. 103, 120504 (2009), 10.1103/PhysRevLett.103.120504], to a form deterministically simulating parallelized gate teleportation, which is achievable only by postselection. We introduce a twisted Heisenberg-type interaction Hamiltonian, a Heisenberg-type spin interaction where the coordinates of the second qubit are twisted according to a unitary gate. We develop parallelizable adiabatic gate teleportation (PAGT) where a sequence of unitary gates is performed in a single step of the adiabatic process. In PAGT, numeric calculations suggest the necessary time for the adiabatic evolution implementing a sequence of L unitary gates increases at most as O (L5) . However, we show that it has the interesting property that it can map the temporal order of gates to the spatial order of interactions specified by the final Hamiltonian. Using this property, we present a controlled-PAGT scheme to manipulate the order of gates by a control qubit. In the controlled-PAGT scheme, two differently ordered sequential unitary gates F G and G F are coherently performed depending on the state of a control qubit by simultaneously applying the twisted Heisenberg-type interaction Hamiltonians implementing unitary gates F and G . We investigate why the twisted Heisenberg-type interaction Hamiltonian allows PAGT. We show that the twisted Heisenberg-type interaction Hamiltonian has an ability to perform a transposed unitary gate by just modifying the space ordering of the final Hamiltonian implementing a unitary gate in adiabatic gate teleportation. The dynamics generated by the time-reversed Hamiltonian represented by the transposed unitary gate enables deterministic simulation of a postselected event of parallelized gate teleportation in adiabatic
Nonadiabatic exchange dynamics during adiabatic frequency sweeps
NASA Astrophysics Data System (ADS)
Barbara, Thomas M.
2016-04-01
A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging.
Adiabatic cooling of antiprotons.
Gabrielse, G; Kolthammer, W S; McConnell, R; Richerme, P; Kalra, R; Novitski, E; Grzonka, D; Oelert, W; Sefzick, T; Zielinski, M; Fitzakerley, D; George, M C; Hessels, E A; Storry, C H; Weel, M; Müllers, A; Walz, J
2011-02-18
Adiabatic cooling is shown to be a simple and effective method to cool many charged particles in a trap to very low temperatures. Up to 3×10(6) p are cooled to 3.5 K-10(3) times more cold p and a 3 times lower p temperature than previously reported. A second cooling method cools p plasmas via the synchrotron radiation of embedded e(-) (with many fewer e(-) than p in preparation for adiabatic cooling. No p are lost during either process-a significant advantage for rare particles. PMID:21405511
Adiabatic Cooling of Antiprotons
Gabrielse, G.; Kolthammer, W. S.; McConnell, R.; Richerme, P.; Kalra, R.; Novitski, E.; Oelert, W.; Grzonka, D.; Sefzick, T.; Zielinski, M.; Fitzakerley, D.; George, M. C.; Hessels, E. A.; Storry, C. H.; Weel, M.; Muellers, A.; Walz, J.
2011-02-18
Adiabatic cooling is shown to be a simple and effective method to cool many charged particles in a trap to very low temperatures. Up to 3x10{sup 6} p are cooled to 3.5 K--10{sup 3} times more cold p and a 3 times lower p temperature than previously reported. A second cooling method cools p plasmas via the synchrotron radiation of embedded e{sup -} (with many fewer e{sup -} than p) in preparation for adiabatic cooling. No p are lost during either process--a significant advantage for rare particles.
Adiabatically implementing quantum gates
Sun, Jie; Lu, Songfeng Liu, Fang
2014-06-14
We show that, through the approach of quantum adiabatic evolution, all of the usual quantum gates can be implemented efficiently, yielding running time of order O(1). This may be considered as a useful alternative to the standard quantum computing approach, which involves quantum gates transforming quantum states during the computing process.
Entanglement and adiabatic quantum computation
NASA Astrophysics Data System (ADS)
Ahrensmeier, D.
2006-06-01
Adiabatic quantum computation provides an alternative approach to quantum computation using a time-dependent Hamiltonian. The time evolution of entanglement during the adiabatic quantum search algorithm is studied, and its relevance as a resource is discussed.
Necessary and sufficient condition for quantum adiabatic evolution by unitary control fields
NASA Astrophysics Data System (ADS)
Wang, Zhen-Yu; Plenio, Martin B.
2016-05-01
We decompose the quantum adiabatic evolution as the products of gauge invariant unitary operators and obtain the exact nonadiabatic correction in the adiabatic approximation. A necessary and sufficient condition that leads to adiabatic evolution with geometric phases is provided, and we determine that in the adiabatic evolution, while the eigenstates are slowly varying, the eigenenergies and degeneracy of the Hamiltonian can change rapidly. We exemplify this result by the example of the adiabatic evolution driven by parametrized pulse sequences. For driving fields that are rotating slowly with the same average energy and evolution path, fast modulation fields can have smaller nonadiabatic errors than obtained under the traditional approach with a constant amplitude.
Equations for Adiabatic but Rotational Steady Gas Flows without Friction
NASA Technical Reports Server (NTRS)
Schaefer, Manfred
1947-01-01
This paper makes the following assumptions: 1) The flowing gases are assumed to have uniform energy distribution. ("Isoenergetic gas flows," that is valid with the same constants for the the energy equation entire flow.) This is correct, for example, for gas flows issuing from a region of constant pressure, density, temperature, end velocity. This property is not destroyed by compression shocks because of the universal validity of the energy law. 2) The gas behaves adiabatically, not during the compression shock itself but both before and after the shock. However, the adiabatic equation (p/rho(sup kappa) = C) is not valid for the entire gas flow with the same constant C but rather with an appropriate individual constant for each portion of the gas. For steady flows, this means that the constant C of the adiabatic equation is a function of the stream function. Consequently, a gas that has been flowing "isentropically",that is, with the same constant C of the adiabatic equation throughout (for example, in origination from a region of constant density, temperature, and velocity) no longer remains isentropic after a compression shock if the compression shock is not extremely simple (wedge shaped in a two-dimensional flow or cone shaped in a rotationally symmetrical flow). The solution of nonisentropic flows is therefore an urgent necessity.
The dynamic instability of adiabatic blast waves
NASA Technical Reports Server (NTRS)
Ryu, Dongsu; Vishniac, Ethan T.
1991-01-01
Adiabatic blastwaves, which have a total energy injected from the center E varies as t(sup q) and propagate through a preshock medium with a density rho(sub E) varies as r(sup -omega) are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.
The dynamic instability of adiabatic blast waves
NASA Astrophysics Data System (ADS)
Ryu, Dongsu; Vishniac, Ethan T.
1991-02-01
Adiabatic blastwaves, which have a total energy injected from the center E varies as tq and propagate through a preshock medium with a density rhoE varies as r-omega are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.
The dynamic instability of adiabatic blastwaves
NASA Astrophysics Data System (ADS)
Ryu, Dongsu; Vishniac, Ethan T.
1990-05-01
Adiabatic blastwaves, which have a total energy injected from the center E varies as t(sup q) and propagate through a preshock medium with a density rho(sub E) varies as r(sup -omega) are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.
Bazzani, A.; Turchetti, G.; Benedetti, C.; Rambaldi, S.; Servizi, G.
2005-06-08
In a high intensity circular accelerator the synchrotron dynamics introduces a slow modulation in the betatronic tune due to the space-charge tune depression. When the transverse motion is non-linear due to the presence of multipolar effects, resonance islands move in the phase space and change their amplitude. This effect introduces the trapping and detrapping phenomenon and a slow diffusion in the phase space. We apply the neo-adiabatic theory to describe this diffusion mechanism that can contribute to halo formation.
Arbitrary qudit gates by adiabatic passage
NASA Astrophysics Data System (ADS)
Rousseaux, B.; Guérin, S.; Vitanov, N. V.
2013-03-01
We derive an adiabatic technique that implements the most general SU(d) transformation in a quantum system of d degenerate states, featuring a qudit. This technique is based on the factorization of the SU(d) transformation into d generalized quantum Householder reflections, each of which is implemented by a two-shot stimulated Raman adiabatic passage with appropriate static phases. The energy of the lasers needed to synthesize a single Householder reflection is shown to be remarkably constant as a function of d. This technique is directly applicable to a linear trapped ion system with d+1 ions. We implement the quantum Fourier transform numerically in a qudit with d=4 (defined as a quartit) as an example.
NASA Astrophysics Data System (ADS)
Landahl, Andrew
2012-10-01
Quantum computers promise to exploit counterintuitive quantum physics principles like superposition, entanglement, and uncertainty to solve problems using fundamentally fewer steps than any conventional computer ever could. The mere possibility of such a device has sharpened our understanding of quantum coherent information, just as lasers did for our understanding of coherent light. The chief obstacle to developing quantum computer technology is decoherence--one of the fastest phenomena in all of physics. In principle, decoherence can be overcome by using clever entangled redundancies in a process called fault-tolerant quantum error correction. However, the quality and scale of technology required to realize this solution appears distant. An exciting alternative is a proposal called ``adiabatic'' quantum computing (AQC), in which adiabatic quantum physics keeps the computer in its lowest-energy configuration throughout its operation, rendering it immune to many decoherence sources. The Adiabatic Quantum Architectures In Ultracold Systems (AQUARIUS) Grand Challenge Project at Sandia seeks to demonstrate this robustness in the laboratory and point a path forward for future hardware development. We are building devices in AQUARIUS that realize the AQC architecture on up to three quantum bits (``qubits'') in two platforms: Cs atoms laser-cooled to below 5 microkelvin and Si quantum dots cryo-cooled to below 100 millikelvin. We are also expanding theoretical frontiers by developing methods for scalable universal AQC in these platforms. We have successfully demonstrated operational qubits in both platforms and have even run modest one-qubit calculations using our Cs device. In the course of reaching our primary proof-of-principle demonstrations, we have developed multiple spinoff technologies including nanofabricated diffractive optical elements that define optical-tweezer trap arrays and atomic-scale Si lithography commensurate with placing individual donor atoms with
Geometry of the Adiabatic Theorem
ERIC Educational Resources Information Center
Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas
2012-01-01
We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…
Peng, Qing; De, Suvranu
2014-10-21
Silicane is a fully hydrogenated silicene-a counterpart of graphene-having promising applications in hydrogen storage with capacities larger than 6 wt%. Knowledge of its elastic limit is critical in its applications as well as tailoring its electronic properties by strain. Here we investigate the mechanical response of silicane to various strains using first-principles calculations based on density functional theory. We illustrate that non-linear elastic behavior is prominent in two-dimensional nanomaterials as opposed to bulk materials. The elastic limits defined by ultimate tensile strains are 0.22, 0.28, and 0.25 along armchair, zigzag, and biaxial directions, respectively, an increase of 29%, 33%, and 24% respectively in reference to silicene. The in-plane stiffness and Poisson ratio are reduced by a factor of 16% and 26%, respectively. However, hydrogenation/dehydrogenation has little effect on its ultimate tensile strengths. We obtained high order elastic constants for a rigorous continuum description of the nonlinear elastic response. The limitation of second, third, fourth, and fifth order elastic constants are in the strain range of 0.02, 0.08, and 0.13, and 0.21, respectively. The pressure effect on the second order elastic constants and Poisson's ratio were predicted from the third order elastic constants. Our results could provide a safe guide for promising applications and strain-engineering the functions and properties of silicane monolayers. PMID:25190587
Erba, Alessandro
2016-05-18
Symmetry features of the internal-strain tensor of crystals (whose components are mixed second-energy derivatives with respect to atomic displacements and lattice strains) are formally presented, which originate from translational-invariance, atomic equivalences, and atomic invariances. A general computational scheme is devised, and implemented into the public Crystal program, for the quantum-mechanical evaluation of the internal-strain tensor of crystals belonging to any space-group, which takes full-advantage of the exploitation of these symmetry-features. The gain in computing time due to the full symmetry exploitation is documented to be rather significant not just for high-symmetry crystalline systems such as cubic, hexagonal or trigonal, but also for low-symmetry ones such as monoclinic and orthorhombic. The internal-strain tensor is used for the evaluation of the nuclear relaxation term of the fourth-rank elastic and third-rank piezoelectric tensors of crystals, where, apart from a reduction of the computing time, the exploitation of symmetry is documented to remarkably increase the numerical precision of computed coefficients. PMID:27150599
Liu, Xiaozhou; Zhang, Shujun; Luo, Jun; Shrout, Thomas R.; Cao, Wenwu
2010-01-01
Through second harmonic measurements, the ultrasonic nonlinearity parameters of [001]c and [111]c polarized 0.70Pb(Mg1∕3Nb2∕3)O3–0.30PbTiO3(PMN–0.3PT) single crystals have been measured as a function of bias electric field. It was found that the nonlinearity parameter increases almost linearly with field at low field but shows a drastic increase near the coercive field. The [111]c polarized single domain crystal has much smaller nonlinearity parameter than that of the [001]c polarized multidomain crystal. Based on effective symmetries of these crystals, we were able to derive the field dependence of several third order elastic constants, which are important parameters for high field applications. PMID:20198132
Adiabatic evolution of plasma equilibrium
Grad, H.; Hu, P. N.; Stevens, D. C.
1975-01-01
A new theory of plasma equilibrium is introduced in which adiabatic constraints are specified. This leads to a mathematically nonstandard structure, as compared to the usual equilibrium theory, in which prescription of pressure and current profiles leads to an elliptic partial differential equation. Topologically complex configurations require further generalization of the concept of adiabaticity to allow irreversible mixing of plasma and magnetic flux among islands. Matching conditions across a boundary layer at the separatrix are obtained from appropriate conservation laws. Applications are made to configurations with planned islands (as in Doublet) and accidental islands (as in Tokamaks). Two-dimensional, axially symmetric, helically symmetric, and closed line equilibria are included. PMID:16578729
Geometric Adiabatic Transport in Quantum Hall States
NASA Astrophysics Data System (ADS)
Klevtsov, S.; Wiegmann, P.
2015-08-01
We argue that in addition to the Hall conductance and the nondissipative component of the viscous tensor, there exists a third independent transport coefficient, which is precisely quantized. It takes constant values along quantum Hall plateaus. We show that the new coefficient is the Chern number of a vector bundle over moduli space of surfaces of genus 2 or higher and therefore cannot change continuously along the plateau. As such, it does not transpire on a sphere or a torus. In the linear response theory, this coefficient determines intensive forces exerted on electronic fluid by adiabatic deformations of geometry and represents the effect of the gravitational anomaly. We also present the method of computing the transport coefficients for quantum Hall states.
Geometric Adiabatic Transport in Quantum Hall States.
Klevtsov, S; Wiegmann, P
2015-08-21
We argue that in addition to the Hall conductance and the nondissipative component of the viscous tensor, there exists a third independent transport coefficient, which is precisely quantized. It takes constant values along quantum Hall plateaus. We show that the new coefficient is the Chern number of a vector bundle over moduli space of surfaces of genus 2 or higher and therefore cannot change continuously along the plateau. As such, it does not transpire on a sphere or a torus. In the linear response theory, this coefficient determines intensive forces exerted on electronic fluid by adiabatic deformations of geometry and represents the effect of the gravitational anomaly. We also present the method of computing the transport coefficients for quantum Hall states. PMID:26340197
Pressure Oscillations in Adiabatic Compression
ERIC Educational Resources Information Center
Stout, Roland
2011-01-01
After finding Moloney and McGarvey's modified adiabatic compression apparatus, I decided to insert this experiment into my physical chemistry laboratory at the last minute, replacing a problematic experiment. With insufficient time to build the apparatus, we placed a bottle between two thick textbooks and compressed it with a third textbook forced…
Adiabatic dynamics of magnetic vortices
NASA Astrophysics Data System (ADS)
Papanicolaou, N.
1994-03-01
We formulate a reasonably detailed adiabatic conjecture concerning the dynamics of skew deflection of magnetic vortices in a field gradient, which is expected to be valid at sufficiently large values of the winding number. The conjecture is consistent with the golden rule used to describe the dynamics of realistic magnetic bubbles and is verified here numerically within the 2-D isotropic Heisenberg model.
Transitionless driving on adiabatic search algorithm
Oh, Sangchul; Kais, Sabre
2014-12-14
We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.
Transitionless driving on adiabatic search algorithm
NASA Astrophysics Data System (ADS)
Oh, Sangchul; Kais, Sabre
2014-12-01
We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.
Transitionless driving on adiabatic search algorithm.
Oh, Sangchul; Kais, Sabre
2014-12-14
We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics. PMID:25494733
Studies in Chaotic adiabatic dynamics
Jarzynski, C.
1994-01-01
Chaotic adiabatic dynamics refers to the study of systems exhibiting chaotic evolution under slowly time-dependent equations of motion. In this dissertation the author restricts his attention to Hamiltonian chaotic adiabatic systems. The results presented are organized around a central theme, namely, that the energies of such systems evolve diffusively. He begins with a general analysis, in which he motivates and derives a Fokker-Planck equation governing this process of energy diffusion. He applies this equation to study the {open_quotes}goodness{close_quotes} of an adiabatic invariant associated with chaotic motion. This formalism is then applied to two specific examples. The first is that of a gas of noninteracting point particles inside a hard container that deforms slowly with time. Both the two- and three-dimensional cases are considered. The results are discussed in the context of the Wall Formula for one-body dissipation in nuclear physics, and it is shown that such a gas approaches, asymptotically with time, an exponential velocity distribution. The second example involves the Fermi mechanism for the acceleration of cosmic rays. Explicit evolution equations are obtained for the distribution of cosmic ray energies within this model, and the steady-state energy distribution that arises when this equation is modified to account for the injection and removal of cosmic rays is discussed. Finally, the author re-examines the multiple-time-scale approach as applied to the study of phase space evolution under a chaotic adiabatic Hamiltonian. This leads to a more rigorous derivation of the above-mentioned Fokker-Planck equation, and also to a new term which has relevance to the problem of chaotic adiabatic reaction forces (the forces acting on slow, heavy degrees of freedom due to their coupling to light, fast chaotic degrees).
On the anisotropic elastic properties of hydroxyapatite.
NASA Technical Reports Server (NTRS)
Katz, J. L.; Ukraincik, K.
1971-01-01
Experimental measurements of the isotropic elastic moduli on polycrystalline specimens of hydroxyapatite and fluorapatite are compared with elastic constants measured directly from single crystals of fluorapatite in order to derive a set of pseudo single crystal elastic constants for hydroxyapatite. The stiffness coefficients thus derived are given. The anisotropic and isotropic elastic properties are then computed and compared with similar properties derived from experimental observations of the anisotropic behavior of bone.
Robust adiabatic sum frequency conversion.
Suchowski, Haim; Prabhudesai, Vaibhav; Oron, Dan; Arie, Ady; Silberberg, Yaron
2009-07-20
We discuss theoretically and demonstrate experimentally the robustness of the adiabatic sum frequency conversion method. This technique, borrowed from an analogous scheme of robust population transfer in atomic physics and nuclear magnetic resonance, enables the achievement of nearly full frequency conversion in a sum frequency generation process for a bandwidth up to two orders of magnitude wider than in conventional conversion schemes. We show that this scheme is robust to variations in the parameters of both the nonlinear crystal and of the incoming light. These include the crystal temperature, the frequency of the incoming field, the pump intensity, the crystal length and the angle of incidence. Also, we show that this extremely broad bandwidth can be tuned to higher or lower central wavelengths by changing either the pump frequency or the crystal temperature. The detailed study of the properties of this converter is done using the Landau-Zener theory dealing with the adiabatic transitions in two level systems. PMID:19654679
Adiabaticity in open quantum systems
NASA Astrophysics Data System (ADS)
Venuti, Lorenzo Campos; Albash, Tameem; Lidar, Daniel A.; Zanardi, Paolo
2016-03-01
We provide a rigorous generalization of the quantum adiabatic theorem for open systems described by a Markovian master equation with time-dependent Liouvillian L (t ) . We focus on the finite system case relevant for adiabatic quantum computing and quantum annealing. Adiabaticity is defined in terms of closeness to the instantaneous steady state. While the general result is conceptually similar to the closed-system case, there are important differences. Namely, a system initialized in the zero-eigenvalue eigenspace of L (t ) will remain in this eigenspace with a deviation that is inversely proportional to the total evolution time T . In the case of a finite number of level crossings, the scaling becomes T-η with an exponent η that we relate to the rate of the gap closing. For master equations that describe relaxation to thermal equilibrium, we show that the evolution time T should be long compared to the corresponding minimum inverse gap squared of L (t ) . Our results are illustrated with several examples.
Does temperature increase or decrease in adiabatic decompression of magma?
NASA Astrophysics Data System (ADS)
Kilinc, A. I.; Ghiorso, M. S.; Khan, T.
2011-12-01
We have modeled adiabatic decompression of an andesitic and a basaltic magma as an isentropic process using the Melts algorithm. Our modeling shows that during adiabatic decompression temperature of andesitic magma increases but temperature of basaltic magma decreases. In an isentropic process entropy is constant so change of temperature with pressure can be written as dT/dP=T (dV/dT)/Cp where T (dV/dT)/Cp is generally positive. If delta P is negative so is delta T. In general, in the absence of phase change, we expect the temperature to decrease with adiabatic decompression. The effect of crystallization is to turn a more entropic phase (liquid) into a less entropic phase (solid), which must be compensated by raising the temperature. If during adiabatic decompression there is small amount or no crystallization, T (dV/dT)/Cp effect which lowers the temperature overwhelms the small amount of crystallization, which raises the temperature, and overall system temperature decreases.
Andronesi, Ovidiu C.; Ramadan, Saadallah; Mountford, Carolyn E.; Sorensen, A. Gregory
2011-01-01
Novel low-power adiabatic sequences are demonstrated for in-vivo localized two-dimensional (2D) correlated MR spectroscopy, such as COSY (Correlated Spectroscopy) and TOCSY (Total Correlated Spectroscopy). The design is based on three new elements for in-vivo 2D MRS: the use of gradient modulated constant adiabaticity GOIA-W(16,4) pulses for i) localization (COSY and TOCSY) and ii) mixing (TOCSY), and iii) the use of longitudinal mixing (z-filter) for magnetization transfer during TOCSY. GOIA-W(16,4) provides accurate signal localization, and more importantly, lowers the SAR for both TOCSY mixing and localization. Longitudinal mixing improves considerably (five-folds) the efficiency of TOCSY transfer. These are markedly different from previous 1D editing TOCSY sequences using spatially non-selective pulses and transverse mixing. Fully adiabatic (adiabatic mixing with adiabatic localization) and semi-adiabatic (adiabatic mixing with non-adiabatic localization) methods for 2D TOCSY are compared. Results are presented for simulations, phantoms, and in-vivo 2D spectra from healthy volunteers and patients with brain tumors obtained on 3T clinical platforms equipped with standard hardware. To the best of our knowledge this is the first demonstration of in-vivo adiabatic 2D TOCSY and fully adiabatic 2D COSY. It is expected that these methodological developments will advance the in-vivo applicability of multi(spectrally)dimensional MRS to reliably identify metabolic biomarkers. PMID:20890988
NASA Astrophysics Data System (ADS)
Li, Dafa
2016-05-01
The adiabatic theorem was proposed about 90 years ago and has played an important role in quantum physics. The quantitative adiabatic condition constructed from eigenstates and eigenvalues of a Hamiltonian is a traditional tool to estimate adiabaticity and has proven to be the necessary and sufficient condition for adiabaticity. However, recently the condition has become a controversial subject. In this paper, we list some expressions to estimate the validity of the adiabatic approximation. We show that the quantitative adiabatic condition is invalid for the adiabatic approximation via the Euclidean distance between the adiabatic state and the evolution state. Furthermore, we deduce general necessary and sufficient conditions for the validity of the adiabatic approximation by different definitions.
Adiabatic Wankel type rotary engine
NASA Technical Reports Server (NTRS)
Kamo, R.; Badgley, P.; Doup, D.
1988-01-01
This SBIR Phase program accomplished the objective of advancing the technology of the Wankel type rotary engine for aircraft applications through the use of adiabatic engine technology. Based on the results of this program, technology is in place to provide a rotor and side and intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Injection Stratified Charge (DISC) rotary engine was performed which concluded that applying thermal barrier coatings to the rotor should be successful and that it was unlikely that the rotor housing could be successfully run with thermal barrier coatings as the thermal stresses were extensive.
Ghaderi, Nima
2016-03-28
Expressions for a K-adiabatic master equation for a bimolecular recombination rate constant krec are derived for a bimolecular reaction forming a complex with a single well or complexes with multiple well, where K is the component of the total angular momentum along the axis of least moment of inertia of the recombination product. The K-active master equation is also considered. The exact analytic solutions, i.e., the K-adiabatic and K-active steady-state population distribution function of reactive complexes, g(EJK) and g(EJ), respectively, are derived for the K-adiabatic and K-active master equation cases using properties of inhomogeneous integral equations (Fredholm type). The solutions accommodate arbitrary intermolecular energy transfer models, e.g., the single exponential, double exponential, Gaussian, step-ladder, and near-singularity models. At the high pressure limit, the krec for both the K-adiabatic and K-active master equations reduce, respectively, to the K-adiabatic and K-active bimolecular Rice-Ramsperger-Kassel-Marcus theory (high pressure limit expressions). Ozone and its formation from O + O2 are known to exhibit an adiabatic K. The ratio of the K-adiabatic to the K-active recombination rate constants for ozone formation at the high pressure limit is calculated to be ∼0.9 at 300 K. Results on the temperature and pressure dependence of the recombination rate constants and populations of O3 will be presented elsewhere. PMID:27036434
NASA Astrophysics Data System (ADS)
Ghaderi, Nima
2016-03-01
Expressions for a K-adiabatic master equation for a bimolecular recombination rate constant krec are derived for a bimolecular reaction forming a complex with a single well or complexes with multiple well, where K is the component of the total angular momentum along the axis of least moment of inertia of the recombination product. The K-active master equation is also considered. The exact analytic solutions, i.e., the K-adiabatic and K-active steady-state population distribution function of reactive complexes, g(EJK) and g(EJ), respectively, are derived for the K-adiabatic and K-active master equation cases using properties of inhomogeneous integral equations (Fredholm type). The solutions accommodate arbitrary intermolecular energy transfer models, e.g., the single exponential, double exponential, Gaussian, step-ladder, and near-singularity models. At the high pressure limit, the krec for both the K-adiabatic and K-active master equations reduce, respectively, to the K-adiabatic and K-active bimolecular Rice-Ramsperger-Kassel-Marcus theory (high pressure limit expressions). Ozone and its formation from O + O2 are known to exhibit an adiabatic K. The ratio of the K-adiabatic to the K-active recombination rate constants for ozone formation at the high pressure limit is calculated to be ˜0.9 at 300 K. Results on the temperature and pressure dependence of the recombination rate constants and populations of O3 will be presented elsewhere.
NASA Astrophysics Data System (ADS)
Saadaoui, Fatiha; Driss Khodja, Fatima Zohra; Kadoun, Abd-Ed-Daïm; Driss Khodja, Mohammed; Elias, Abdelkader; Boudali, Abdelkader
2015-12-01
We have performed first-principles calculations of structural, elastic, thermodynamic, and electronic properties of anti-perovskites AIIICNi3 (AIII = Al, Ga, In), by using the full-potential linearized augmented plane wave (FP-LAPW) method combined with the quasi-harmonic Debye model. We carried out our calculations within the local density approximation (LDA) and the generalized gradient approximation (GGA-PBE and GGA-PBEsol functionals). Our results constitute interesting first predictions in the case of many elastic parameters of the anti-perovskites AIIICNi3, among them elastic parameters of AlCNi3 and GaCNi3 and some polycrystalline elastic parameters of InCNi3. We also report for the first time calculated values, at ambient conditions, of Grüneisen parameter, thermal expansion coefficient, specific heat at constant pressure, specific heat at constant volume, isothermal bulk modulus, and adiabatic bulk modulus for AlCNi3, GaCNi3, and InCNi3. Band structure, total and partial densities of states, and charge density have been obtained and analyzed. Electronic structure results show metallic behavior for the three compounds. Ni 3 d states play dominant role near the Fermi level and there is a strong hybridization between Ni 3 d and C 2 p states. In addition, as AIIICNi3 synthesized samples are expected to be carbon-deficient, we calculated structural, elastic, and thermodynamic properties of sub-stoichiometric AlC x Ni3 materials.
Degenerate adiabatic perturbation theory: Foundations and applications
NASA Astrophysics Data System (ADS)
Rigolin, Gustavo; Ortiz, Gerardo
2014-08-01
We present details and expand on the framework leading to the recently introduced degenerate adiabatic perturbation theory [Phys. Rev. Lett. 104, 170406 (2010), 10.1103/PhysRevLett.104.170406], and on the formulation of the degenerate adiabatic theorem, along with its necessary and sufficient conditions [given in Phys. Rev. A 85, 062111 (2012), 10.1103/PhysRevA.85.062111]. We start with the adiabatic approximation for degenerate Hamiltonians that paves the way to a clear and rigorous statement of the associated degenerate adiabatic theorem, where the non-Abelian geometric phase (Wilczek-Zee phase) plays a central role to its quantitative formulation. We then describe the degenerate adiabatic perturbation theory, whose zeroth-order term is the degenerate adiabatic approximation, in its full generality. The parameter in the perturbative power-series expansion of the time-dependent wave function is directly associated to the inverse of the time it takes to drive the system from its initial to its final state. With the aid of the degenerate adiabatic perturbation theory we obtain rigorous necessary and sufficient conditions for the validity of the adiabatic theorem of quantum mechanics. Finally, to illustrate the power and wide scope of the methodology, we apply the framework to a degenerate Hamiltonian, whose closed-form time-dependent wave function is derived exactly, and also to other nonexactly solvable Hamiltonians whose solutions are numerically computed.
Shortcut to adiabatic gate teleportation
NASA Astrophysics Data System (ADS)
Santos, Alan C.; Silva, Raphael D.; Sarandy, Marcelo S.
2016-01-01
We introduce a shortcut to the adiabatic gate teleportation model of quantum computation. More specifically, we determine fast local counterdiabatic Hamiltonians able to implement teleportation as a universal computational primitive. In this scenario, we provide the counterdiabatic driving for arbitrary n -qubit gates, which allows to achieve universality through a variety of gate sets. Remarkably, our approach maps the superadiabatic Hamiltonian HSA for an arbitrary n -qubit gate teleportation into the implementation of a rotated superadiabatic dynamics of an n -qubit state teleportation. This result is rather general, with the speed of the evolution only dictated by the quantum speed limit. In particular, we analyze the energetic cost for different Hamiltonian interpolations in the context of the energy-time complementarity.
Quantum gates with controlled adiabatic evolutions
NASA Astrophysics Data System (ADS)
Hen, Itay
2015-02-01
We introduce a class of quantum adiabatic evolutions that we claim may be interpreted as the equivalents of the unitary gates of the quantum gate model. We argue that these gates form a universal set and may therefore be used as building blocks in the construction of arbitrary "adiabatic circuits," analogously to the manner in which gates are used in the circuit model. One implication of the above construction is that arbitrary classical boolean circuits as well as gate model circuits may be directly translated to adiabatic algorithms with no additional resources or complexities. We show that while these adiabatic algorithms fail to exhibit certain aspects of the inherent fault tolerance of traditional quantum adiabatic algorithms, they may have certain other experimental advantages acting as quantum gates.
On a Nonlinear Model in Adiabatic Evolutions
NASA Astrophysics Data System (ADS)
Sun, Jie; Lu, Song-Feng
2016-08-01
In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully solve the problem, while the linear model can not. Also in the same setting, when the overlap between the initial state and the final stare is sufficiently large, a simple linear adiabatic evolution can achieve O(1) time efficiency, but infinite time complexity for the nonlinear model of adiabatic evolution is needed. This tells us, it is not always a wise choice to use nonlinear interpolations in adiabatic algorithms. Sometimes, simple linear adiabatic evolutions may be sufficient for using. Supported by the National Natural Science Foundation of China under Grant Nos. 61402188 and 61173050. The first author also gratefully acknowledges the support from the China Postdoctoral Science Foundation under Grant No. 2014M552041
Norris, Andrew N.
2014-01-01
We consider a periodic lattice structure in d=2 or 3 dimensions with unit cell comprising Z thin elastic members emanating from a similarly situated central node. A general theoretical approach provides an algebraic formula for the effective elasticity of such frameworks. The method yields the effective cubic elastic constants for three-dimensional space-filling lattices with Z=4, 6, 8, 12 and 14, the last being the ‘stiffest’ lattice proposed by Gurtner & Durand (Gurtner & Durand 2014 Proc. R. Soc. A 470, 20130611. (doi:10.1098/rspa.2013.0611)). The analytical expressions provide explicit formulae for the effective properties of pentamode materials, both isotropic and anisotropic, obtained from the general formulation in the stretch-dominated limit for Z=d+1. PMID:25484608
Plasma heating via adiabatic magnetic compression-expansion cycle
NASA Astrophysics Data System (ADS)
Avinash, K.; Sengupta, M.; Ganesh, R.
2016-06-01
Heating of collisionless plasmas in closed adiabatic magnetic cycle comprising of a quasi static compression followed by a non quasi static constrained expansion against a constant external pressure is proposed. Thermodynamic constraints are derived to show that the plasma always gains heat in cycles having at least one non quasi static process. The turbulent relaxation of the plasma to the equilibrium state at the end of the non quasi static expansion is discussed and verified via 1D Particle in Cell (PIC) simulations. Applications of this scheme to heating plasmas in open configurations (mirror machines) and closed configurations (tokamak, reverse field pinche) are discussed.
Heating and cooling in adiabatic mixing process
NASA Astrophysics Data System (ADS)
Zhou, Jing; Cai, Zi; Zou, Xu-Bo; Guo, Guang-Can
2010-12-01
We study the effect of interaction on the temperature change in the process of adiabatic mixing of two components of Fermi gases using the real-space Bogoliubov-de Gennes method. We find that in the process of adiabatic mixing, the competition between the adiabatic expansion and the attractive interaction makes it possible to cool or heat the system depending on the strength of the interaction and the initial temperature of the system. The changes of the temperature in a bulk system and in a trapped system are investigated.
Multisurface Adiabatic Reactive Molecular Dynamics.
Nagy, Tibor; Yosa Reyes, Juvenal; Meuwly, Markus
2014-04-01
Adiabatic reactive molecular dynamics (ARMD) simulation method is a surface-crossing algorithm for modeling chemical reactions in classical molecular dynamics simulations using empirical force fields. As the ARMD Hamiltonian is time dependent during crossing, it allows only approximate energy conservation. In the current work, the range of applicability of conventional ARMD is explored, and a new multisurface ARMD (MS-ARMD) method is presented, implemented in CHARMM and applied to the vibrationally induced photodissociation of sulfuric acid (H2SO4) in the gas phase. For this, an accurate global potential energy surface (PES) involving 12 H2SO4 and 4 H2O + SO3 force fields fitted to MP2/6-311G++(2d,2p) reference energies is employed. The MS-ARMD simulations conserve total energy and feature both intramolecular H-transfer reactions and water elimination. An analytical treatment of the dynamics in the crossing region finds that conventional ARMD can approximately conserve total energy for limiting cases. In one of them, the reduced mass of the system is large, which often occurs for simulations of solvated biomolecular systems. On the other hand, MS-ARMD is a general approach for modeling chemical reactions including gas-phase, homogeneous, heterogeneous, and enzymatic catalytic reactions while conserving total energy in atomistic simulations. PMID:26580356
Adiabatic limits on Riemannian Heisenberg manifolds
Yakovlev, A A
2008-02-28
An asymptotic formula is obtained for the distribution function of the spectrum of the Laplace operator, in the adiabatic limit for the foliation defined by the orbits of an invariant flow on a compact Riemannian Heisenberg manifold. Bibliography: 21 titles.
Experimental demonstration of composite adiabatic passage
NASA Astrophysics Data System (ADS)
Schraft, Daniel; Halfmann, Thomas; Genov, Genko T.; Vitanov, Nikolay V.
2013-12-01
We report an experimental demonstration of composite adiabatic passage (CAP) for robust and efficient manipulation of two-level systems. The technique represents a altered version of rapid adiabatic passage (RAP), driven by composite sequences of radiation pulses with appropriately chosen phases. We implement CAP with radio-frequency pulses to invert (i.e., to rephase) optically prepared spin coherences in a Pr3+:Y2SiO5 crystal. We perform systematic investigations of the efficiency of CAP and compare the results with conventional π pulses and RAP. The data clearly demonstrate the superior features of CAP with regard to robustness and efficiency, even under conditions of weakly fulfilled adiabaticity. The experimental demonstration of composite sequences to support adiabatic passage is of significant relevance whenever a high efficiency or robustness of coherent excitation processes need to be maintained, e.g., as required in quantum information technology.
An Adiabatic Architecture for Linear Signal Processing
NASA Astrophysics Data System (ADS)
Vollmer, M.; Götze, J.
2005-05-01
Using adiabatic CMOS logic instead of the more traditional static CMOS logic can lower the power consumption of a hardware design. However, the characteristic differences between adiabatic and static logic, such as a four-phase clock, have a far reaching influence on the design itself. These influences are investigated in this paper by adapting a systolic array of CORDIC devices to be implemented adiabatically. We present a means to describe adiabatic logic in VHDL and use it to define the systolic array with precise timing and bit-true calculations. The large pipeline bubbles that occur in a naive version of this array are identified and removed to a large degree. As an example, we demonstrate a parameterization of the CORDIC array that carries out adaptive RLS filtering.
General conditions for quantum adiabatic evolution
Comparat, Daniel
2009-07-15
Adiabaticity occurs when, during its evolution, a physical system remains in the instantaneous eigenstate of the Hamiltonian. Unfortunately, existing results, such as the quantum adiabatic theorem based on a slow down evolution [H({epsilon}t),{epsilon}{yields}0], are insufficient to describe an evolution driven by the Hamiltonian H(t) itself. Here we derive general criteria and exact bounds, for the state and its phase, ensuring an adiabatic evolution for any Hamiltonian H(t). As a corollary, we demonstrate that the commonly used condition of a slow Hamiltonian variation rate, compared to the spectral gap, is indeed sufficient to ensure adiabaticity but only when the Hamiltonian is real and nonoscillating (for instance, containing exponential or polynomial but no sinusoidal functions)
Adiabatic invariance of oscillons/I -balls
NASA Astrophysics Data System (ADS)
Kawasaki, Masahiro; Takahashi, Fuminobu; Takeda, Naoyuki
2015-11-01
Real scalar fields are known to fragment into spatially localized and long-lived solitons called oscillons or I -balls. We prove the adiabatic invariance of the oscillons/I -balls for a potential that allows periodic motion even in the presence of non-negligible spatial gradient energy. We show that such a potential is uniquely determined to be the quadratic one with a logarithmic correction, for which the oscillons/I -balls are absolutely stable. For slightly different forms of the scalar potential dominated by the quadratic one, the oscillons/I -balls are only quasistable, because the adiabatic charge is only approximately conserved. We check the conservation of the adiabatic charge of the I -balls in numerical simulation by slowly varying the coefficient of logarithmic corrections. This unambiguously shows that the longevity of oscillons/I -balls is due to the adiabatic invariance.
Improved Indentation Test for Measuring Nonlinear Elasticity
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.
2004-01-01
A cylindrical-punch indentation technique has been developed as a means of measuring the nonlinear elastic responses of materials -- more specifically, for measuring the moduli of elasticity of materials in cases in which these moduli vary with applied loads. This technique offers no advantage for characterizing materials that exhibit purely linear elastic responses (constant moduli of elasticity, independent of applied loads). However, the technique offers a significant advantage for characterizing such important materials as plasma-sprayed thermal-barrier coatings, which, in cyclic loading, exhibit nonlinear elasticity with hysteresis related to compaction and sliding within their microstructures.
Symmetry of the Adiabatic Condition in the Piston Problem
ERIC Educational Resources Information Center
Anacleto, Joaquim; Ferreira, J. M.
2011-01-01
This study addresses a controversial issue in the adiabatic piston problem, namely that of the piston being adiabatic when it is fixed but no longer so when it can move freely. It is shown that this apparent contradiction arises from the usual definition of adiabatic condition. The issue is addressed here by requiring the adiabatic condition to be…
NASA Astrophysics Data System (ADS)
Moraru, Gheorghe; Mursa, Condrat
2006-12-01
In this book we present the basic concepts of the theory of elasticity: stress and deformation states (plane and three-dimensional) and generalized Hooke's law. We present a number of problems which have applications in strength analysis. The book includes a synthesis of the theory of elasticity and modern methods of applied mathematics. This book is designed for students, post graduate students and specialists in strength analysis. the book contains a number of appendixes which includes: elements of matrix-calculation, concepts of tensorial calculation, the Fourier transform, the notion of improper integrals,singular and hypersingular integrals, generalized functions, the Dirac Delta function
Graph isomorphism and adiabatic quantum computing
NASA Astrophysics Data System (ADS)
Gaitan, Frank; Clark, Lane
2014-02-01
In the graph isomorphism (GI) problem two N-vertex graphs G and G' are given and the task is to determine whether there exists a permutation of the vertices of G that preserves adjacency and transforms G →G'. If yes, then G and G' are said to be isomorphic; otherwise they are nonisomorphic. The GI problem is an important problem in computer science and is thought to be of comparable difficulty to integer factorization. In this paper we present a quantum algorithm that solves arbitrary instances of GI and which also provides an approach to determining all automorphisms of a given graph. We show how the GI problem can be converted to a combinatorial optimization problem that can be solved using adiabatic quantum evolution. We numerically simulate the algorithm's quantum dynamics and show that it correctly (i) distinguishes nonisomorphic graphs; (ii) recognizes isomorphic graphs and determines the permutation(s) that connect them; and (iii) finds the automorphism group of a given graph G. We then discuss the GI quantum algorithm's experimental implementation, and close by showing how it can be leveraged to give a quantum algorithm that solves arbitrary instances of the NP-complete subgraph isomorphism problem. The computational complexity of an adiabatic quantum algorithm is largely determined by the minimum energy gap Δ (N) separating the ground and first-excited states in the limit of large problem size N ≫1. Calculating Δ (N) in this limit is a fundamental open problem in adiabatic quantum computing, and so it is not possible to determine the computational complexity of adiabatic quantum algorithms in general, nor consequently, of the specific adiabatic quantum algorithms presented here. Adiabatic quantum computing has been shown to be equivalent to the circuit model of quantum computing, and so development of adiabatic quantum algorithms continues to be of great interest.
Accurate adiabatic correction in the hydrogen molecule
Pachucki, Krzysztof; Komasa, Jacek
2014-12-14
A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10{sup −12} at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H{sub 2}, HD, HT, D{sub 2}, DT, and T{sub 2} has been determined. For the ground state of H{sub 2} the estimated precision is 3 × 10{sup −7} cm{sup −1}, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.
Accurate adiabatic correction in the hydrogen molecule
NASA Astrophysics Data System (ADS)
Pachucki, Krzysztof; Komasa, Jacek
2014-12-01
A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10-12 at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H2, HD, HT, D2, DT, and T2 has been determined. For the ground state of H2 the estimated precision is 3 × 10-7 cm-1, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.
Symmetry-Protected Quantum Adiabatic Transistors
NASA Astrophysics Data System (ADS)
Williamson, Dominic J.; Bartlett, Stephen D.
2014-03-01
An essential development in the history of computing was the invention of the transistor as it allowed logic circuits to be implemented in a robust and modular way. The physical characteristics of semiconductor materials were the key to building these devices. We aim to present an analogous development for quantum computing by showing that quantum adiabatic transistors (as defined by Flammia et al.) are built upon the essential qualities of symmetry-protected (SP) quantum ordered phases in one dimension. Flammia et al. and Renes et al. have demonstrated schemes for universal adiabatic quantum computation using quantum adiabatic transistors described by interacting spin chain models with specifically chosen Hamiltonian terms. We show that these models can be understood as specific examples of the generic situation in which all SP phases lead to quantum computation on encoded edge degrees of freedom by adiabatically traversing a symmetric phase transition into a trivial symmetric phase. This point of view is advantageous as it allows us to readily see that the computational properties of a quantum adiabatic transistor arise from a phase of matter rather than due to carefully tuned interactions.
Influence of viscosity and the adiabatic index on planetary migration
NASA Astrophysics Data System (ADS)
Bitsch, B.; Boley, A.; Kley, W.
2013-02-01
Context. The strength and direction of migration of low mass embedded planets depends on the disk's thermodynamic state. It has been shown that in active disks, where the internal dissipation is balanced by radiative transport, migration can be directed outwards, a process which extends the lifetime of growing embryos. Very important parameters determining the structure of disks, and hence the direction of migration, are the viscosity and the adiabatic index. Aims: In this paper we investigate the influence of different viscosity prescriptions (α-type and constant) and adiabatic indices on disk structures. We then determine how this affects the migration rate of planets embedded in such disks. Methods: We perform three-dimensional numerical simulations of accretion disks with embedded planets. We use the explicit/implicit hydrodynamical code NIRVANA that includes full tensor viscosity and radiation transport in the flux-limited diffusion approximation, as well as a proper equation of state for molecular hydrogen. The migration of embedded 20 MEarth planets is studied. Results: Low-viscosity disks have cooler temperatures and the migration rates of embedded planets tend toward the isothermal limit. Hence, in these disks, planets migrate inwards even in the fully radiative case. The effect of outward migration can only be sustained if the viscosity in the disk is large. Overall, the differences between the treatments for the equation of state seem to play a more important role in disks with higher viscosity. A change in the adiabatic index and in the viscosity changes the zero-torque radius that separates inward from outward migration. Conclusions: For larger viscosities, temperatures in the disk become higher and the zero-torque radius moves to larger radii, allowing outward migration of a 20-MEarth planet to persist over an extended radial range. In combination with large disk masses, this may allow for an extended period of the outward migration of growing
Elasticity of crystalline molecular explosives
Hooks, Daniel E.; Ramos, Kyle J.; Bolme, C. A.; Cawkwell, Marc J.
2015-04-14
Crystalline molecular explosives are key components of engineered explosive formulations. In precision applications a high degree of consistency and predictability is desired under a range of conditions to a variety of stimuli. Prediction of behaviors from mechanical response and failure to detonation initiation and detonation performance of the material is linked to accurate knowledge of the material structure and first stage of deformation: elasticity. The elastic response of pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX), and cyclotetramethylene tetranitramine (HMX), including aspects of material and measurement variability, and computational methods are described in detail. Experimental determinations of elastic tensors are compared, andmore » an evaluation of sources of error is presented. Furthermore, computed elastic constants are also compared for these materials and for triaminotrinitrobenzene (TATB), for which there are no measurements.« less
Elasticity of crystalline molecular explosives
Hooks, Daniel E.; Ramos, Kyle J.; Bolme, C. A.; Cawkwell, Marc J.
2015-04-14
Crystalline molecular explosives are key components of engineered explosive formulations. In precision applications a high degree of consistency and predictability is desired under a range of conditions to a variety of stimuli. Prediction of behaviors from mechanical response and failure to detonation initiation and detonation performance of the material is linked to accurate knowledge of the material structure and first stage of deformation: elasticity. The elastic response of pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX), and cyclotetramethylene tetranitramine (HMX), including aspects of material and measurement variability, and computational methods are described in detail. Experimental determinations of elastic tensors are compared, and an evaluation of sources of error is presented. Furthermore, computed elastic constants are also compared for these materials and for triaminotrinitrobenzene (TATB), for which there are no measurements.
Adiabatic approximation for the density matrix
NASA Astrophysics Data System (ADS)
Band, Yehuda B.
1992-05-01
An adiabatic approximation for the Liouville density-matrix equation which includes decay terms is developed. The adiabatic approximation employs the eigenvectors of the non-normal Liouville operator. The approximation is valid when there exists a complete set of eigenvectors of the non-normal Liouville operator (i.e., the eigenvectors span the density-matrix space), the time rate of change of the Liouville operator is small, and an auxiliary matrix is nonsingular. Numerical examples are presented involving efficient population transfer in a molecule by stimulated Raman scattering, with the intermediate level of the molecule decaying on a time scale that is fast compared with the pulse durations of the pump and Stokes fields. The adiabatic density-matrix approximation can be simply used to determine the density matrix for atomic or molecular systems interacting with cw electromagnetic fields when spontaneous emission or other decay mechanisms prevail.
Extensive Adiabatic Invariants for Nonlinear Chains
NASA Astrophysics Data System (ADS)
Giorgilli, Antonio; Paleari, Simone; Penati, Tiziano
2012-09-01
We look for extensive adiabatic invariants in nonlinear chains in the thermodynamic limit. Considering the quadratic part of the Klein-Gordon Hamiltonian, by a linear change of variables we transform it into a sum of two parts in involution. At variance with the usual method of introducing normal modes, our constructive procedure allows us to exploit the complete resonance, while keeping the extensive nature of the system. Next we construct a nonlinear approximation of an extensive adiabatic invariant for a perturbation of the discrete nonlinear Schrödinger model. The fluctuations of this quantity are controlled via Gibbs measure estimates independent of the system size, for a large set of initial data at low specific energy. Finally, by numerical calculations we show that our adiabatic invariant is well conserved for times much longer than predicted by our first order theory, with fluctuation much smaller than expected according to standard statistical estimates.
Anderson localization makes adiabatic quantum optimization fail
Altshuler, Boris; Krovi, Hari; Roland, Jérémie
2010-01-01
Understanding NP-complete problems is a central topic in computer science (NP stands for nondeterministic polynomial time). This is why adiabatic quantum optimization has attracted so much attention, as it provided a new approach to tackle NP-complete problems using a quantum computer. The efficiency of this approach is limited by small spectral gaps between the ground and excited states of the quantum computer’s Hamiltonian. We show that the statistics of the gaps can be analyzed in a novel way, borrowed from the study of quantum disordered systems in statistical mechanics. It turns out that due to a phenomenon similar to Anderson localization, exponentially small gaps appear close to the end of the adiabatic algorithm for large random instances of NP-complete problems. This implies that unfortunately, adiabatic quantum optimization fails: The system gets trapped in one of the numerous local minima. PMID:20616043
The elastic properties of woven polymeric fabric
Warren, W.E. )
1989-01-01
The in-plane linear elastic constants of woven fabric are determined in terms of the specific fabric microstructure. The fabric is assumed to be a spatially periodic interlaced network of orthogonal yarns and the individual yarns are modeled as extensible elastica. These results indicate that a significant coupling of bending and stretching effects occurs during deformation. Results of this theoretical analysis compare favorable with measured in-plane elastic constants for Vincel yarn fabrics. 17 refs., 2 figs., 1 tab.
Petrova, A. E.; Krasnorussky, V. N.; Stishov, S. M.
2010-09-15
Measurements of the sound velocities in a single crystal of FeSi were performed in the temperature range 4-300 K. Elastic constants C{sub 11} and C{sub 44} deviate from a quasiharmonic behavior at high temperature; on the other hand, elastic constants C{sub 12} increases anomalously in the entire temperature range, indicating a change in the electron structure of this material.
Spontaneous emission in stimulated Raman adiabatic passage
Ivanov, P. A.; Vitanov, N. V.; Bergmann, K.
2005-11-15
This work explores the effect of spontaneous emission on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The approach uses adiabatic elimination of weakly coupled density matrix elements in the Liouville equation, from which a very accurate analytic approximation is derived. The loss of population transfer efficiency is found to decrease exponentially with the factor {omega}{sub 0}{sup 2}/{gamma}, where {gamma} is the spontaneous emission rate and {omega}{sub 0} is the peak Rabi frequency. The transfer efficiency increases with the pulse delay and reaches a steady value. For large pulse delay and large spontaneous emission rate STIRAP degenerates into optical pumping.
Adiabatic Hyperspherical Analysis of Realistic Nuclear Potentials
NASA Astrophysics Data System (ADS)
Daily, K. M.; Kievsky, Alejandro; Greene, Chris H.
2015-12-01
Using the hyperspherical adiabatic method with the realistic nuclear potentials Argonne V14, Argonne V18, and Argonne V18 with the Urbana IX three-body potential, we calculate the adiabatic potentials and the triton bound state energies. We find that a discrete variable representation with the slow variable discretization method along the hyperradial degree of freedom results in energies consistent with the literature. However, using a Laguerre basis results in missing energy, even when extrapolated to an infinite number of basis functions and channels. We do not include the isospin T = 3/2 contribution in our analysis.
On black hole spectroscopy via adiabatic invariance
NASA Astrophysics Data System (ADS)
Jiang, Qing-Quan; Han, Yan
2012-12-01
In this Letter, we obtain the black hole spectroscopy by combining the black hole property of adiabaticity and the oscillating velocity of the black hole horizon. This velocity is obtained in the tunneling framework. In particular, we declare, if requiring canonical invariance, the adiabatic invariant quantity should be of the covariant form Iadia = ∮pi dqi. Using it, the horizon area of a Schwarzschild black hole is quantized independently of the choice of coordinates, with an equally spaced spectroscopy always given by ΔA = 8 π lp2 in the Schwarzschild and Painlevé coordinates.
Complexity of the Quantum Adiabatic Algorithm
NASA Technical Reports Server (NTRS)
Hen, Itay
2013-01-01
The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorithms.
AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT
French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Redmer, Ronald; Wicht, Johannes
2012-09-15
We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grueneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.
The effect of adiabaticity on strongly quenched Bose Einstein Condensates
NASA Astrophysics Data System (ADS)
Ling, Hong; Kain, Ben
2015-05-01
We study the properties of a Bose-Einstein condensate following a deep quench to a large scattering length during which the condensate fraction nc changes with time. We construct a closed set of equations that highlight the role of the adiabaticity or equivalently, dnc/dt, the rate change of nc, which is to induce an (imaginary) effective interaction between quasiparticles. We show analytically that such a system supports a steady state characterized by a constant condensate density and a steady but periodically changing momentum distribution, whose time average is described exactly by the generalized Gibbs ensemble. We discuss how the nc -induced effective interaction, which cannot be ignored on the grounds of the adiabatic approximation for modes near the gapless Goldstone mode, can significantly affect condensate populations and Tan's contact for a Bose gas that has undergone a deep quench. In particular, we find that even when the Bose gas is quenched to unitarity, nc(t) does not completely deplete, approaching, instead, to a steady state with a finite condensate fraction. ITAMP, Harvard-Smithsonian Center for Astrophysics; KITP, University of Santa Barbara.
NASA Astrophysics Data System (ADS)
Merk, D.; Deneke, H.; Pospichal, B.; Seifert, P.
2016-01-01
Cloud properties from both ground-based as well as from geostationary passive satellite observations have been used previously for diagnosing aerosol-cloud interactions. In this investigation, a 2-year data set together with four selected case studies are analyzed with the aim of evaluating the consistency and limitations of current ground-based and satellite-retrieved cloud property data sets. The typically applied adiabatic cloud profile is modified using a sub-adiabatic factor to account for entrainment within the cloud. Based on the adiabatic factor obtained from the combination of ground-based cloud radar, ceilometer and microwave radiometer, we demonstrate that neither the assumption of a completely adiabatic cloud nor the assumption of a constant sub-adiabatic factor is fulfilled (mean adiabatic factor 0.63 ± 0.22). As cloud adiabaticity is required to estimate the cloud droplet number concentration but is not available from passive satellite observations, an independent method to estimate the adiabatic factor, and thus the influence of mixing, would be highly desirable for global-scale analyses. Considering the radiative effect of a cloud described by the sub-adiabatic model, we focus on cloud optical depth and its sensitivities. Ground-based estimates are here compared vs. cloud optical depth retrieved from the Meteosat SEVIRI satellite instrument resulting in a bias of -4 and a root mean square difference of 16. While a synergistic approach based on the combination of ceilometer, cloud radar and microwave radiometer enables an estimate of the cloud droplet concentration, it is highly sensitive to radar calibration and to assumptions about the moments of the droplet size distribution. Similarly, satellite-based estimates of cloud droplet concentration are uncertain. We conclude that neither the ground-based nor satellite-based cloud retrievals applied here allow a robust estimate of cloud droplet concentration, which complicates its use for the study of
Romero-Redondo, C.; Garrido, E.; Barletta, P.; Kievsky, A.; Viviani, M.
2011-02-15
In this work we investigate 1+2 reactions within the framework of the hyperspherical adiabatic expansion method. With this aim two integral relations, derived from the Kohn variational principle, are used. A detailed derivation of these relations is shown. The expressions derived are general, not restricted to relative s partial waves, and with applicability in multichannel reactions. The convergence of the K matrix in terms of the adiabatic potentials is investigated. Together with a simple model case used as a test for the method, we show results for the collision of a {sup 4}He atom on a {sup 4}He{sub 2} dimer (only the elastic channel open), and for collisions involving a {sup 6}Li and two {sup 4}He atoms (two channels open).
Adiabatic quantum-flux-parametron cell library adopting minimalist design
NASA Astrophysics Data System (ADS)
Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki
2015-05-01
We herein build an adiabatic quantum-flux-parametron (AQFP) cell library adopting minimalist design and a symmetric layout. In the proposed minimalist design, every logic cell is designed by arraying four types of building block cells: buffer, NOT, constant, and branch cells. Therefore, minimalist design enables us to effectively build and customize an AQFP cell library. The symmetric layout reduces unwanted parasitic magnetic coupling and ensures a large mutual inductance in an output transformer, which enables very long wiring between logic cells. We design and fabricate several logic circuits using the minimal AQFP cell library so as to test logic cells in the library. Moreover, we experimentally investigate the maximum wiring length between logic cells. Finally, we present an experimental demonstration of an 8-bit carry look-ahead adder designed using the minimal AQFP cell library and demonstrate that the proposed cell library is sufficiently robust to realize large-scale digital circuits.
Multiphoton Raman Atom Optics with Frequency-Swept Adiabatic Passage
NASA Astrophysics Data System (ADS)
Kotru, Krish; Butts, David; Kinast, Joseph; Stoner, Richard
2016-05-01
Light-pulse atom interferometry is a promising candidate for future inertial navigators, gravitational wave detectors, and measurements of fundamental physical constants. The sensitivity of this technique, however, is often limited by the small momentum separations created between interfering atom wave packets (typically ~ 2 ℏk) . We address this issue using light-pulse atom optics derived from stimulated Raman transitions and frequency-swept adiabatic rapid passage (ARP). In experiments, these Raman ARP atom optics have generated up to 30 ℏk photon recoil momenta in an acceleration-sensitive atom interferometer, thereby enhancing the phase shift per unit acceleration by a factor of 15. Since this approach forgoes evaporative cooling and velocity selection, it could enable large-area atom interferometry at higher data rates, while also lowering the atom shot-noise-limited measurement uncertainty.
Adiabatic entanglement in two-atom cavity QED
Lazarou, C.; Garraway, B. M.
2008-02-15
We analyze the problem of a single mode field interacting with a pair of two level atoms. The atoms enter and exit the cavity at different times. Instead of using constant coupling, we use time-dependent couplings which represent the spatial dependence of the mode. Although the system evolution is adiabatic for most of the time, a previously unstudied energy crossing plays a key role in the system dynamics when the atoms have a time delay. We show that conditional atom-cavity entanglement can be generated, while for large photon numbers the entangled system has a behavior which can be mapped onto the single atom Jaynes-Cummings model. Exploring the main features of this system we propose simple and fairly robust methods for entangling atoms independently of the cavity, for quantum state mapping, and for implementing SWAP and controlled-NOT (CNOT) gates with atomic qubits.
Adiabatic quantum-flux-parametron cell library adopting minimalist design
Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki
2015-05-07
We herein build an adiabatic quantum-flux-parametron (AQFP) cell library adopting minimalist design and a symmetric layout. In the proposed minimalist design, every logic cell is designed by arraying four types of building block cells: buffer, NOT, constant, and branch cells. Therefore, minimalist design enables us to effectively build and customize an AQFP cell library. The symmetric layout reduces unwanted parasitic magnetic coupling and ensures a large mutual inductance in an output transformer, which enables very long wiring between logic cells. We design and fabricate several logic circuits using the minimal AQFP cell library so as to test logic cells in the library. Moreover, we experimentally investigate the maximum wiring length between logic cells. Finally, we present an experimental demonstration of an 8-bit carry look-ahead adder designed using the minimal AQFP cell library and demonstrate that the proposed cell library is sufficiently robust to realize large-scale digital circuits.
Adiabatic Compression in a Fire Syringe.
ERIC Educational Resources Information Center
Hayn, Carl H.; Baird, Scott C.
1985-01-01
Suggests using better materials in fire syringes to obtain more effective results during demonstrations which show the elevation in temperature upon a very rapid (adiabatic) compression of air. Also describes an experiment (using ignition temperatures) which introduces students to the use of thermocouples for high temperature measurements. (DH)
Apparatus to Measure Adiabatic and Isothermal Processes.
ERIC Educational Resources Information Center
Lamb, D. W.; White, G. M.
1996-01-01
Describes a simple manual apparatus designed to serve as an effective demonstration of the differences between isothermal and adiabatic processes for the general or elementary physics student. Enables students to verify Boyle's law for slow processes and identify the departure from this law for rapid processes and can also be used to give a clear…
Elastic anomalies in Fe-Cr alloys.
Zhang, Hualei; Wang, Guisheng; Punkkinen, Marko P J; Hertzman, Staffan; Johansson, Börje; Vitos, Levente
2013-05-15
Using ab initio alloy theory, we determine the elastic parameters of ferromagnetic and paramagnetic Fe(1-c)Cr(c) (0 ≤ c ≤ 1) alloys in the body centered cubic crystallographic phase. Comparison with the experimental data demonstrates that the employed theoretical approach accurately describes the observed composition dependence of the polycrystalline elastic moduli. The predicted single-crystal elastic constants follow complex anomalous trends, which are shown to originate from the interplay between magnetic and chemical effects. The nonmonotonic composition dependence of the elastic parameters has marked implications on the micro-mechanical properties of ferrite stainless steels. PMID:23604218
Communication: Adiabatic and non-adiabatic electron-nuclear motion: Quantum and classical dynamics
NASA Astrophysics Data System (ADS)
Albert, Julian; Kaiser, Dustin; Engel, Volker
2016-05-01
Using a model for coupled electronic-nuclear motion we investigate the range from negligible to strong non-adiabatic coupling. In the adiabatic case, the quantum dynamics proceeds in a single electronic state, whereas for strong coupling a complete transition between two adiabatic electronic states takes place. It is shown that in all coupling regimes the short-time wave-packet dynamics can be described using ensembles of classical trajectories in the phase space spanned by electronic and nuclear degrees of freedom. We thus provide an example which documents that the quantum concept of non-adiabatic transitions is not necessarily needed if electronic and nuclear motion is treated on the same footing.
Adiabatic circuits: converter for static CMOS signals
NASA Astrophysics Data System (ADS)
Fischer, J.; Amirante, E.; Bargagli-Stoffi, A.; Schmitt-Landsiedel, D.
2003-05-01
Ultra low power applications can take great advantages from adiabatic circuitry. In this technique a multiphase system is used which consists ideally of trapezoidal voltage signals. The input signals to be processed will often come from a function block realized in static CMOS. The static rectangular signals must be converted for the oscillating multiphase system of the adiabatic circuitry. This work shows how to convert the input signals to the proposed pulse form which is synchronized to the appropriate supply voltage. By means of adder structures designed for a 0.13µm technology in a 4-phase system there will be demonstrated, which additional circuits are necessary for the conversion. It must be taken into account whether the data arrive in parallel or serial form. Parallel data are all in one phase and therefore it is advantageous to use an adder structure with a proper input stage, e.g. a Carry Lookahead Adder (CLA). With a serial input stage it is possible to read and to process four signals during one cycle due to the adiabatic 4-phase system. Therefore input signals with a frequency four times higher than the adiabatic clock frequency can be used. This reduces the disadvantage of the slow clock period typical for adiabatic circuits. By means of an 8 bit Ripple Carry Adder (8 bit RCA) the serial reading will be introduced. If the word width is larger than 4 bits the word can be divided in 4 bit words which are processed in parallel. This is the most efficient way to minimize the number of input lines and pads. At the same time a high throughput is achieved.
Adiabatic burst evaporation from bicontinuous nanoporous membranes
Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk
2015-01-01
Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406
Explosive helium burning at constant pressures
NASA Astrophysics Data System (ADS)
Hashimoto, M.-A.; Hanawa, T.; Sugimoto, D.
The results of numerical calculations of nucleosynthesis under adiabatic conditions, i.e., when the only heat exchange with the external regions takes place through neutrinos, are reported. Attention is focused on explosive burning associated with shell flashes, assuming that nuclear energy is deposited in a mass element, followed by expansion and density decrease. Consideration is given to three cases, the shell flash near the surface of a degenerate star, to nuclear burning concentrated in a small region of a star, and to the heat energy being deposited in intermediate layers. A reaction network of 181 nuclear species was constructed and the thermodynamic evolution was calculated assuming constant pressure and adiabatic conditions. The final products of the reactions of H-1 to Cu-62 were projected to by O-16, Mg-24, Si-28, S-32, Ca-40, Ti-44, Cr-48, and Fe-52.
Adiabatic evolution of an irreversible two level system
Kvitsinsky, A.; Putterman, S. )
1991-05-01
The adiabatic dynamics of a two level atom with spontaneous decay is studied. The existence of a complex adiabatic phase shift is established: The real part being the usual Berry's phase. A closed-form expression for this phase and the adiabatic transition amplitudes is obtained. Incorporation of a finite preparation time for the initial state yields a new asymptotic form for the adiabatic transition amplitudes which is significantly different from the standard Landau--Zener--Dykhne formula.
NASA Astrophysics Data System (ADS)
Chang, Yun-Yuan; Jacobsen, Steven D.; Kimura, Masaki; Irifune, Tetsuo; Ohno, Ichiro
2014-03-01
The sound velocities and elastic moduli of transparent nano-polycrystalline diamond (NPD) have been determined by GHz-ultrasonic interferometry on three different bulk samples, and by resonant spectroscopy on a spherically fabricated NPD sample. We employ a newly-developed optical contact micrometer to measure the thickness of ultrasonic samples to ±0.05 μm with a spatial resolution of ∼50 μm in the same position of the GHz-ultrasonic measurements, resulting in acoustic-wave sound velocity measurements with uncertainties of 0.005-0.02%. The isotropic and adiabatic bulk and shear moduli of NPD measured by GHz-ultrasonic interferometry are KS0 = 442.5 (±0.5) GPa and G0 = 532.4 (±0.5) GPa. By rotating the shear-wave polarization direction, we observe no transverse anisotropy in this NPD. Using resonant sphere spectroscopy, we obtain KS0 = 440.3 (±0.5) GPa and G0 = 532.7 (±0.4) GPa. For comparison, we also measured by GHz-ultrasonic interferometry the elastic constants of a natural single-crystal type-IA diamond with about one-half the experimental uncertainty of previous measurements. The resulting Voigt-Reuss-Hill averaged bulk and shear moduli of natural diamond are KS0 = 441.8 (±0.8) GPa and G0 = 532.6 (±0.5) GPa, demonstrating that the bulk-elastic properties of transparent NPD are equivalent to natural single-crystal diamond as calculated from polycrystalline averaging of its elastic constants.
Non-adiabatic perturbations in multi-component perfect fluids
Koshelev, N.A.
2011-04-01
The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.
Adiabatic Far Field Sub-Diffraction Imaging
Cang, Hu; Salandrino, Alessandro; Wang, Yuan; Zhang, Xiang
2015-01-01
The limited resolution of a conventional optical imaging system stems from the fact that the fine feature information of an object is carried by evanescent waves, which exponentially decay in space thus cannot reach the imaging plane. We introduce here a new concept of adiabatic lens, which utilizes a geometrically conformal surface to mediate the interference of slowly decompressed electromagnetic waves at far field to form images. The decompression is satisfying an adiabatic condition, and by bridging the gap between far field and near field, it allows far field optical systems to project an image of the near field features directly. Using these designs, we demonstrated the magnification can be up to 20 times and it is possible to achieve sub-50nm imaging resolution in visible. Our approach provides a means to extend the domain of geometrical optics to a deep sub-wavelength scale. PMID:26258769
Shortcuts to adiabaticity from linear response theory.
Acconcia, Thiago V; Bonança, Marcus V S; Deffner, Sebastian
2015-10-01
A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. With the help of phenomenological response functions, a simple expression for the excess work is found-quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. Finally, we propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times. PMID:26565209
Trapped Ion Quantum Computation by Adiabatic Passage
Feng Xuni; Wu Chunfeng; Lai, C. H.; Oh, C. H.
2008-11-07
We propose a new universal quantum computation scheme for trapped ions in thermal motion via the technique of adiabatic passage, which incorporates the advantages of both the adiabatic passage and the model of trapped ions in thermal motion. Our scheme is immune from the decoherence due to spontaneous emission from excited states as the system in our scheme evolves along a dark state. In our scheme the vibrational degrees of freedom are not required to be cooled to their ground states because they are only virtually excited. It is shown that the fidelity of the resultant gate operation is still high even when the magnitude of the effective Rabi frequency moderately deviates from the desired value.
Adiabatic Quantum Optimization for Associative Memory Recall
NASA Astrophysics Data System (ADS)
Seddiqi, Hadayat; Humble, Travis
2014-12-01
Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.
Quantum adiabatic evolution with energy degeneracy levels
NASA Astrophysics Data System (ADS)
Zhang, Qi
2016-01-01
A classical-kind phase-space formalism is developed to address the tiny intrinsic dynamical deviation from what is predicted by Wilczek-Zee theorem during quantum adiabatic evolution on degeneracy levels. In this formalism, the Hilbert space and the aggregate of degenerate eigenstates become the classical-kind phase space and a high-dimensional subspace in the phase space, respectively. Compared with the previous analogous study by a different method, the current result is qualitatively different in that the first-order deviation derived here is always perpendicular to the degeneracy subspace. A tripod-scheme Hamiltonian with two degenerate dark states is employed to illustrate the adiabatic deviation with degeneracy levels.
Shortcuts to adiabaticity from linear response theory
NASA Astrophysics Data System (ADS)
Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian
2015-10-01
A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. With the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. Finally, we propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times.
Adiabatic quantum optimization for associative memory recall
Seddiqi, Hadayat; Humble, Travis S.
2014-12-22
Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are storedmore » in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.« less
Adiabatic quantum optimization for associative memory recall
Seddiqi, Hadayat; Humble, Travis S.
2014-12-22
Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.
Shortcuts to adiabaticity from linear response theory
Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian
2015-10-23
A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times.
Shortcuts to adiabaticity from linear response theory
Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian
2015-10-23
A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts tomore » adiabaticity for specific and very short driving times.« less
Adiabatic Quantization of Andreev Quantum Billiard Levels
NASA Astrophysics Data System (ADS)
Silvestrov, P. G.; Goorden, M. C.; Beenakker, C. W.
2003-03-01
We identify the time T between Andreev reflections as a classical adiabatic invariant in a ballistic chaotic cavity (Lyapunov exponent λ), coupled to a superconductor by an N-mode constriction. Quantization of the adiabatically invariant torus in phase space gives a discrete set of periods Tn, which in turn generate a ladder of excited states ɛnm=(m+1/2)πℏ/Tn. The largest quantized period is the Ehrenfest time T0=λ-1ln(N. Projection of the invariant torus onto the coordinate plane shows that the wave functions inside the cavity are squeezed to a transverse dimension W/(N), much below the width W of the constriction.
Adiabatic state preparation study of methylene
Veis, Libor Pittner, Jiří
2014-06-07
Quantum computers attract much attention as they promise to outperform their classical counterparts in solving certain type of problems. One of them with practical applications in quantum chemistry is simulation of complex quantum systems. An essential ingredient of efficient quantum simulation algorithms are initial guesses of the exact wave functions with high enough fidelity. As was proposed in Aspuru-Guzik et al. [Science 309, 1704 (2005)], the exact ground states can in principle be prepared by the adiabatic state preparation method. Here, we apply this approach to preparation of the lowest lying multireference singlet electronic state of methylene and numerically investigate preparation of this state at different molecular geometries. We then propose modifications that lead to speeding up the preparation process. Finally, we decompose the minimal adiabatic state preparation employing the direct mapping in terms of two-qubit interactions.
Adiabatic Quantum Simulation of Quantum Chemistry
Babbush, Ryan; Love, Peter J.; Aspuru-Guzik, Alán
2014-01-01
We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions. PMID:25308187
Pulse sequences in photoassociation via adiabatic passage
NASA Astrophysics Data System (ADS)
Li, Xuan; Dupre, William; Parker, Gregory A.
2012-07-01
We perform a detailed study of pulse sequences in a photoassociation via adiabatic passage (PAP) process to transfer population from an ensemble of ultracold atomic clouds to a vibrationally cold molecular state. We show that an appreciable final population of ultracold NaCs molecules can be achieved with optimized pulses in either the ‘counter-intuitive’ (tP > tS) or ‘intuitive’ (tP < tS) PAP pulse sequences, with tP and tS denoting the temporal centers of the pump and Stokes pulses, respectively. By investigating the dependence of the reactive yield on pulse sequences, in a wide range of tP-tS, we show that there is not a fundamental preference to either pulse sequence in a PAP process. We explain this no-sequence-preference phenomenon by analyzing a multi-bound model so that an analogy can be drawn to the conventional stimulated Raman adiabatic passage.
Reduced warp in torsion of reticulated foam due to Cosserat elasticity: experiment
NASA Astrophysics Data System (ADS)
Lakes, Roderic S.
2016-06-01
Warp of cross sections of square section bars in torsion is reduced in Cosserat elasticity in comparison with classical elasticity. Warp is observed experimentally to be substantially reduced, by about a factor of four compared with classical elasticity, in an open-cell polymer foam for which Cosserat elastic constants were previously determined. The observed warp in the foam is consistent with a prediction based on Cosserat elasticity. Concentration of strain in the foam is therefore reduced in comparison with classical elasticity.
Adiabatic charging of nickel-hydrogen batteries
NASA Technical Reports Server (NTRS)
Lurie, Chuck; Foroozan, S.; Brewer, Jeff; Jackson, Lorna
1995-01-01
Battery management during prelaunch activities has always required special attention and careful planning. The transition from nickel-cadium to nickel-hydrogen batteries, with their high self discharge rate and lower charge efficiency, as well as longer prelaunch scenarios, has made this aspect of spacecraft battery management even more challenging. The AXAF-I Program requires high battery state of charge at launch. The use of active cooling, to ensure efficient charging, was considered and proved to be difficult and expensive. Alternative approaches were evaluated. Optimized charging, in the absence of cooling, appeared promising and was investigated. Initial testing was conducted to demonstrate the feasibility of the 'Adiabatic Charging' approach. Feasibility was demonstrated and additional testing performed to provide a quantitative, parametric data base. The assumption that the battery is in an adiabatic environment during prelaunch charging is a conservative approximation because the battery will transfer some heat to its surroundings by convective air cooling. The amount is small compared to the heat dissipated during battery overcharge. Because the battery has a large thermal mass, substantial overcharge can occur before the cells get too hot to charge efficiently. The testing presented here simulates a true adiabatic environment. Accordingly the data base may be slightly conservative. The adiabatic charge methodology used in this investigation begins with stabilizing the cell at a given starting temperature. The cell is then fully insulated on all sides. Battery temperature is carefully monitored and the charge terminated when the cell temperature reaches 85 F. Charging has been evaluated with starting temperatures from 55 to 75 F.
Advanced Adiabatic Demagnetization Refrigerators for Continuous Cooling
NASA Technical Reports Server (NTRS)
Chu, Paul C. W.
2004-01-01
The research at Houston was focused on optimizing the design of superconducting magnets for advanced adiabatic demagnetization refrigerators (ADRs), assessing the feasibility of using high temperature superconducting (HTS) magnets in ADRs in the future, and developing techniques to deposit HTS thin and thick films on high strength, low thermal conductivity substrates for HTS magnet leads. Several approaches have been tested for the suggested superconducting magnets.
Computer Code For Turbocompounded Adiabatic Diesel Engine
NASA Technical Reports Server (NTRS)
Assanis, D. N.; Heywood, J. B.
1988-01-01
Computer simulation developed to study advantages of increased exhaust enthalpy in adiabatic turbocompounded diesel engine. Subsytems of conceptual engine include compressor, reciprocator, turbocharger turbine, compounded turbine, ducting, and heat exchangers. Focus of simulation of total system is to define transfers of mass and energy, including release and transfer of heat and transfer of work in each subsystem, and relationship among subsystems. Written in FORTRAN IV.
Siphon flows in isolated magnetic flux tubes. II - Adiabatic flows
NASA Technical Reports Server (NTRS)
Montesinos, Benjamin; Thomas, John H.
1989-01-01
This paper extends the study of steady siphon flows in isolated magnetic flux tubes surrounded by field-free gas to the case of adiabatic flows. The basic equations governing steady adiabatic siphon flows in a thin, isolated magnetic flux tube are summarized, and qualitative features of adiabatic flows in elevated, arched flux tubes are discussed. The equations are then cast in nondimensional form and the results of numerical computations of adiabatic siphon flows in arched flux tubes are presented along with comparisons between isothermal and adiabatic flows. The effects of making the interior of the flux tube hotter or colder than the surrounding atmosphere at the upstream footpoint of the arch is considered. In this case, is it found that the adiabatic flows are qualitatively similar to the isothermal flows, with adiabatic cooling producing quantitative differences. Critical flows can produce a bulge point in the rising part of the arch and a concentration of magnetic flux above the bulge point.
Random matrix model of adiabatic quantum computing
Mitchell, David R.; Adami, Christoph; Lue, Waynn; Williams, Colin P.
2005-05-15
We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SAT (an NP-complete problem) in terms of random matrix theory (RMT). We determine the global regularity of the spectral fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest. At each interpolation point, we quantify the degree of regularity of the average spectral distribution via its Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor spacings. We find that for hard problem instances - i.e., those having a critical ratio of clauses to variables - the spectral fluctuations typically become irregular across a contiguous region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region, RMT may be applied to obtain a mathematical model of the probability of avoided level crossings and concomitant failure rate of the adiabatic algorithm due to nonadiabatic Landau-Zener-type transitions. Our model predicts that if the interpolation is performed at a uniform rate, the average failure rate of the quantum adiabatic algorithm, when averaged over hard problem instances, scales exponentially with increasing problem size.
Adiabatic heating in impulsive solar flares
NASA Technical Reports Server (NTRS)
Maetzler, C.; Bai, T.; Crannell, C. J.; Frost, K. J.
1978-01-01
A study is made of adiabatic heating in two impulsive solar flares on the basis of dynamic X-ray spectra in the 28-254 keV range, H-alpha, microwave, and meter-wave radio observations. It is found that the X-ray spectra of the events are like those of thermal bremsstrahlung from single-temperature plasmas in the 10-60 keV range if photospheric albedo is taken into account. The temperature-emission correlation indicates adiabatic compression followed by adiabatic expansion and that the electron distribution remains isotropic. H-alpha data suggest compressive energy transfer. The projected areas and volumes of the flares are estimated assuming that X-ray and microwave emissions are produced in a single thermal plasma. Electron densities of about 10 to the 9th/cu cm are found for homogeneous, spherically symmetric sources. It is noted that the strong self-absorption of hot-plasma gyrosynchrotron radiation reveals low magnetic field strengths.
Aspects of adiabatic population transfer and control
NASA Astrophysics Data System (ADS)
Demirplak, Mustafa
This thesis explores two different questions. The first question we answer is how to restore a given population transfer scenario given that it works efficiently in the adiabatic limit but fails because of lack of intensity and/or short duration. We derive a very simple algorithm to do this and apply it to both toy and realistic models. Two results emerge from this study. While the mathematical existence of the programme is certain it might not always be physically desirable. The restoration of adiabaticity is phase sensitive. The second question that is answered in this thesis is not how to invent new control paradigms, but rather what would happen to them in the presence of stochastic perturbers. We first use a phenomenological model to study the effect of stochastic dephasing on population transfer by stimulated Raman adiabatic passage. The results of this Monte Carlo calculation are qualitatively explained with a perturbation theoretical result in the dressed state basis. The reliability of our phenomenological model is questioned through a more rigorous hybrid quantal-classical simulation of controlled population transfer in HCl in Ar.
Non-adiabatic effect on quantum pumping
NASA Astrophysics Data System (ADS)
Uchiyama, Chikako
2014-03-01
We study quantum pumping for an anharmonic junction model which interacts with two kinds of bosonic environments. We provide an expression for the quantum pumping under a piecewise modulation of environmental temperatures with including non-adiabatic effect under Markovian approximation. The obtained formula is an extension of the one expressed with the geometrical phase(Phys. Rev. Lett. 104,170601 (2010)). This extension shows that the quantum pumping depends on the initial condition of the anharmonic junction just before the modulation, as well as the characteristic environmental parameters such as interaction strength and cut-off frequencies of spectral density other than the conditions of modulation. We clarify that the pumping current including non-adiabatic effect can be larger than that under the adiabatic condition. This means that we can find the optimal condition of the current by adjusting these parameters. (The article has been submitted as http://arxiv.org/submit/848201 and will be appeared soon.) This work is supported by a Grant-in-Aid for Scientific Research (B) (KAKENHI 25287098).
An adiabatic approximation for grain alignment theory
NASA Astrophysics Data System (ADS)
Roberge, W. G.
1997-10-01
The alignment of interstellar dust grains is described by the joint distribution function for certain `internal' and `external' variables, where the former describe the orientation of the axes of a grain with respect to its angular momentum, J, and the latter describe the orientation of J relative to the interstellar magnetic field. I show how the large disparity between the dynamical time-scales of the internal and external variables - which is typically 2-3 orders of magnitude - can be exploited to simplify calculations of the required distribution greatly. The method is based on an `adiabatic approximation' which closely resembles the Born-Oppenheimer approximation in quantum mechanics. The adiabatic approximation prescribes an analytic distribution function for the `fast' dynamical variables and a simplified Fokker-Planck equation for the `slow' variables which can be solved straightforwardly using various techniques. These solutions are accurate to O(epsilon), where epsilon is the ratio of the fast and slow dynamical time-scales. As a simple illustration of the method, I derive an analytic solution for the joint distribution established when Barnett relaxation acts in concert with gas damping. The statistics of the analytic solution agree with the results of laborious numerical calculations which do not exploit the adiabatic approximation.
An Adiabatic Approximation for Grain Alignment Theory
NASA Astrophysics Data System (ADS)
Roberge, W. G.
1997-12-01
The alignment of interstellar dust grains is described by the joint distribution function for certain ``internal'' and ``external'' variables, where the former describe the orientation of a grain's axes with respect to its angular momentum, J, and the latter describe the orientation of J relative to the interstellar magnetic field. I show how the large disparity between the dynamical timescales of the internal and external variables--- which is typically 2--3 orders of magnitude--- can be exploited to greatly simplify calculations of the required distribution. The method is based on an ``adiabatic approximation'' which closely resembles the Born-Oppenheimer approximation in quantum mechanics. The adiabatic approximation prescribes an analytic distribution function for the ``fast'' dynamical variables and a simplified Fokker-Planck equation for the ``slow'' variables which can be solved straightforwardly using various techniques. These solutions are accurate to cal {O}(epsilon ), where epsilon is the ratio of the fast and slow dynamical timescales. As a simple illustration of the method, I derive an analytic solution for the joint distribution established when Barnett relaxation acts in concert with gas damping. The statistics of the analytic solution agree with the results of laborious numerical calculations which do not exploit the adiabatic approximation.
Wigner phase space distribution via classical adiabatic switching.
Bose, Amartya; Makri, Nancy
2015-09-21
Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations. PMID:26395694
Wigner phase space distribution via classical adiabatic switching
Bose, Amartya; Makri, Nancy
2015-09-21
Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations.
Observational tests of non-adiabatic Chaplygin gas
Carneiro, S.; Pigozzo, C. E-mail: cpigozzo@ufba.br
2014-10-01
In a previous paper [1] it was shown that any dark sector model can be mapped into a non-adiabatic fluid formed by two interacting components, one with zero pressure and the other with equation-of-state parameter ω = -1. It was also shown that the latter does not cluster and, hence, the former is identified as the observed clustering matter. This guarantees that the dark matter power spectrum does not suffer from oscillations or instabilities. It applies in particular to the generalised Chaplygin gas, which was shown to be equivalent to interacting models at both background and perturbation levels. In the present paper we test the non-adiabatic Chaplygin gas against the Hubble diagram of type Ia supernovae, the position of the first acoustic peak in the anisotropy spectrum of the cosmic microwave background and the linear power spectrum of large scale structures. We consider two different compilations of SNe Ia, namely the Constitution and SDSS samples, both calibrated with the MLCS2k2 fitter, and for the power spectrum we use the 2dFGRS catalogue. The model parameters to be adjusted are the present Hubble parameter, the present matter density and the Chaplygin gas parameter α. The joint analysis best fit gives α ≈ - 0.5, which corresponds to a constant-rate energy flux from dark energy to dark matter, with the dark energy density decaying linearly with the Hubble parameter. The ΛCDM model, equivalent to α = 0, stands outside the 3σ confidence interval.
Wigner phase space distribution via classical adiabatic switching
NASA Astrophysics Data System (ADS)
Bose, Amartya; Makri, Nancy
2015-09-01
Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations.
Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition
NASA Astrophysics Data System (ADS)
Alavi, Saman; Ripmeester, J. A.
2010-04-01
Nonequilibrium, constant energy, constant volume (NVE) molecular dynamics simulations are used to study the decomposition of methane clathrate hydrate in contact with water. Under adiabatic conditions, the rate of methane clathrate decomposition is affected by heat and mass transfer arising from the breakup of the clathrate hydrate framework and release of the methane gas at the solid-liquid interface and diffusion of methane through water. We observe that temperature gradients are established between the clathrate and solution phases as a result of the endothermic clathrate decomposition process and this factor must be considered when modeling the decomposition process. Additionally we observe that clathrate decomposition does not occur gradually with breakup of individual cages, but rather in a concerted fashion with rows of structure I cages parallel to the interface decomposing simultaneously. Due to the concerted breakup of layers of the hydrate, large amounts of methane gas are released near the surface which can form bubbles that will greatly affect the rate of mass transfer near the surface of the clathrate phase. The effects of these phenomena on the rate of methane hydrate decomposition are determined and implications on hydrate dissociation in natural methane hydrate reservoirs are discussed.
Adiabatic spin-transfer-torque-induced domain wall creep in a magnetic metal
NASA Astrophysics Data System (ADS)
Duttagupta, S.; Fukami, S.; Zhang, C.; Sato, H.; Yamanouchi, M.; Matsukura, F.; Ohno, H.
2016-04-01
The dynamics of elastic interfaces is a general field of interest in statistical physics, where magnetic domain wall has served as a prototypical example. Domain wall `creep’ under the action of sub-threshold driving forces with thermal activation is known to be described by a scaling law with a certain universality class, which represents the mechanism of the interaction of domain walls with the applied forces over the disorder of the system. Here we show different universality classes depending on the driving forces, magnetic field or spin-polarized current, in a metallic system, which have hitherto been seen only in a magnetic semiconductor. We reveal that an adiabatic spin-transfer torque plays a major role in determining the universality class of current-induced creep, which does not depend on the intricacies of material disorder. Our results shed light on the physics of the creep motion of domain walls and other elastic systems.
Hydrodynamic repulsion of elastic dumbbells
NASA Astrophysics Data System (ADS)
Ekiel-Jezewska, Maria L.; Bukowicki, Marek; Gruca, Marta
2015-11-01
Dynamics of two identical elastic dumbbells, settling under gravity in a viscous fluid at low Reynolds number are analyzed within the point-particle model. Initially, the dumbbells are vertical, their centers are aligned horizontally, and the springs which connect the dumbbell's beads are at the equilibrium. The motion of the beads is determined numerically with the use of the Runge-Kutta method. After an initial relaxation phase, the system converges to a universal time-dependent solution. The elastic dumbbells tumble while falling, but their relative motion is not periodic (as in case of rigid dumbbells or pairs of separated beads). The elastic constraints break the time-reversal symmetry of the motion. As the result, the horizontal distance between the dumbbells slowly increases - they are hydrodynamically repelled from each other. This effect can be very large even though the elastic forces are always much smaller than gravity. The dynamics described above are equivalent to the motion of a single elastic dumbbell under a constant external force which is parallel to a flat free surface. The dumbbell migrates away from the interface and its tumbling time increases.
Beneficial Role of the Industrial Wastes to Combat Adiabatic Temperature Rise in Massive Concrete
NASA Astrophysics Data System (ADS)
Ashraf, M.; Goyal, A.; Anwar, A. M.; Hattori, K.; Ogata, H.; Guo, S.
An evaluation was made on the mutual beneficial role of fly ash and ground granulated blast furnace slag in combating adiabatic temperature rise. The experimental program was designed in two stages; the main experiment consisted of two massive concrete specimens with dimensions (50x50x50) cm. In first stage of experiment, an adiabatic rise in temperature of specimens was measured. In second stage, the mechanical properties of massive concrete specimens were measured at the ages of 8, 14, 28, 56 and 91 days. At the age of 91 days, surface core and central cores were extracted from the surface and the central part of massive concrete specimens to determine compressive strength and dynamic modulus of elasticity. In the massive concrete specimen without any additive, the peak temperature noted was 64.5°C at 7th h after casting. While in mineral substituted concrete the maximum adiabatic temperature was 49.6°C at 19th h after casting. Lower rate of temperature rise in mineral substituted concrete has resulted in higher value of ultrasonic pulse velocity and ultimate compressive strength of concrete.
Dynamical instability of fluid spheres in the presence of a cosmological constant
Boehmer, C.G.; Harko, T.
2005-04-15
The equations describing the adiabatic, small radial oscillations of general relativistic stars are generalized to include the effects of a cosmological constant. The generalized eigenvalue equation for the normal modes is used to study the changes in the stability of the homogeneous sphere induced by the presence of the cosmological constant. The variation of the critical adiabatic index as a function of the central pressure is studied numerically for different trial functions. The presence of a large cosmological constant significantly increases the value of the critical adiabatic index. The dynamical stability condition of the homogeneous star in the Schwarzschild-de Sitter geometry is obtained and several bounds on the maximum allowable value for a cosmological constant are derived from stability considerations.
Theory for electron-transfer reactions involving two Marcus surfaces with a different force constant
Tang, Jau
1994-02-01
Theory for electron-transfer reactions at high temperature involving two Marcus parabolic surfaces with a different force constant is presented. The dynamic solvent effects are also considered using the stochastic Liouville equation, assuming an overdamped Debye solvent. An analytical expression for the adiabatic/nonadiabatic electron-transfer rate constant is derived.
Bond selective chemistry beyond the adiabatic approximation
Butler, L.J.
1993-12-01
One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.
Phase avalanches in near-adiabatic evolutions
Vertesi, T.; Englman, R.
2006-02-15
In the course of slow, nearly adiabatic motion of a system, relative changes in the slowness can cause abrupt and high magnitude phase changes, ''phase avalanches,'' superimposed on the ordinary geometric phases. The generality of this effect is examined for arbitrary Hamiltonians and multicomponent (>2) wave packets and is found to be connected (through the Blaschke term in the theory of analytic signals) to amplitude zeros in the lower half of the complex time plane. Motion on a nonmaximal circle on the Poincare-sphere suppresses the effect. A spectroscopic transition experiment can independently verify the phase-avalanche magnitudes.
Adiabatic chaos in the spin orbit problem
NASA Astrophysics Data System (ADS)
Benettin, Giancarlo; Guzzo, Massimiliano; Marini, Valerio
2008-05-01
We provide evidences that the angular momentum of a symmetric rigid body in a spin orbit resonance can perform large scale chaotic motions on time scales which increase polynomially with the inverse of the oblateness of the body. This kind of irregular precession appears as soon as the orbit of the center of mass is non-circular and the angular momentum of the body is far from the principal directions with minimum (maximum) moment of inertia. We also provide a quantitative explanation of these facts by using the theory of adiabatic invariants, and we provide numerical applications to the cases of the 1:1 and 1:2 spin orbit resonances.
Experimental breaking of an adiabatic invariant
NASA Astrophysics Data System (ADS)
Notte, J.; Fajans, J.; Chu, R.; Wurtele, J. S.
1993-06-01
When a cylindrical pure electron plasma is displaced from the center of the trap, it performs a bulk circular orbital motion known as the l=1 diocotron mode. The slow application of a perturbing potential to a patch on the trap wall distorts the orbit into a noncircular closed path. Experiments and a simple theoretical model indicate that the area by the loop is an adiabatic invariant. Detailed studies are made of the breaking of the invariant when perturbations are rapidly applied. When the perturbation is applied with discontinuous time derivatives, the invariant breaking greatly exceeds the predictions of the standard theory for smooth perturbations.
[Bond selective chemistry beyond the adiabatic approximation
Butler, L.J.
1993-02-28
The adiabatic Born-Oppenheimer potential energy surface approximation is not valid for reaction of a wide variety of energetic materials and organic fuels; coupling between electronic states of reacting species plays a key role in determining the selectivity of the chemical reactions induced. This research program initially studies this coupling in (1) selective C-Br bond fission in 1,3- bromoiodopropane, (2) C-S:S-H bond fission branching in CH[sub 3]SH, and (3) competition between bond fission channels and H[sub 2] elimination in CH[sub 3]NH[sub 2].
Adiabatic passage in the presence of noise
NASA Astrophysics Data System (ADS)
Noel, T.; Dietrich, M. R.; Kurz, N.; Shu, G.; Wright, J.; Blinov, B. B.
2012-02-01
We report on an experimental investigation of rapid adiabatic passage (RAP) in a trapped barium ion system. RAP is implemented on the transition from the 6S1/2 ground state to the metastable 5D5/2 level by applying a laser at 1.76 μm. We focus on the interplay of laser frequency noise and laser power in shaping the effectiveness of RAP, which is commonly assumed to be a robust tool for high-efficiency population transfer. However, we note that reaching high state transfer fidelity requires a combination of small laser linewidth and large Rabi frequency.
Adiabatic demagnetization refrigerator for space use
NASA Technical Reports Server (NTRS)
Serlemitsos, A. T.; Warner, B. A.; Castles, S.; Breon, S. R.; San Sebastian, M.; Hait, T.
1990-01-01
An Adiabatic Demagnetization Refrigerator (ADR) for space use is under development at NASA's Goddard Space Flight Center (GSFC). The breadboard ADR operated at 100 mK for 400 minutes. Some significant changes to that ADR, designed to eliminate shortcomings revealed during tests, are reported. To increase thermal contact, the ferric ammonium sulfate crystals were grown directly on gold-plated copper wires which serve as the thermal bus. The thermal link to the X-ray sensors was also markedly improved. To speed up the testing required to determine the best design parameters for the gas gap heat switch, the new heat switch has a modular design and is easy to disassemble.
An adiabatic demagnetization refrigerator for infrared bolometers
NASA Technical Reports Server (NTRS)
Britt, R. D.; Richards, P. L.
1981-01-01
Adiabatic demagnetization refrigerators have been built and installed in small portable liquid helium cryostats to test the feasibility of this method of cooling infrared bolometric detectors to temperatures below 0.3 K. Performance has been achieved which suggests that bolometer temperatures of 0.2 K can be maintained for periods of approximately 60 hours. Applications to sensitive infrared detection from ground-based telescopes and space satellites are discussed. Design data are given which permit the evaluation of refrigerator performance for a variety of design parameters.
Generalized Ramsey numbers through adiabatic quantum optimization
NASA Astrophysics Data System (ADS)
Ranjbar, Mani; Macready, William G.; Clark, Lane; Gaitan, Frank
2016-06-01
Ramsey theory is an active research area in combinatorics whose central theme is the emergence of order in large disordered structures, with Ramsey numbers marking the threshold at which this order first appears. For generalized Ramsey numbers r(G, H), the emergent order is characterized by graphs G and H. In this paper we: (i) present a quantum algorithm for computing generalized Ramsey numbers by reformulating the computation as a combinatorial optimization problem which is solved using adiabatic quantum optimization; and (ii) determine the Ramsey numbers r({{T}}m,{{T}}n) for trees of order m,n = 6,7,8 , most of which were previously unknown.
Decoherence in a scalable adiabatic quantum computer
Ashhab, S.; Johansson, J. R.; Nori, Franco
2006-11-15
We consider the effects of decoherence on Landau-Zener crossings encountered in a large-scale adiabatic-quantum-computing setup. We analyze the dependence of the success probability--i.e., the probability for the system to end up in its new ground state--on the noise amplitude and correlation time. We determine the optimal sweep rate that is required to maximize the success probability. We then discuss the scaling of decoherence effects with increasing system size. We find that those effects can be important for large systems, even if they are small for each of the small building blocks.
Local entanglement generation in the adiabatic regime
Cliche, M.; Veitia, Andrzej
2010-09-15
We study entanglement generation in a pair of qubits interacting with an initially correlated system. Using time-independent perturbation theory and the adiabatic theorem, we show conditions under which the qubits become entangled as the joint system evolves into the ground state of the interacting theory. We then apply these results to the case of qubits interacting with a scalar quantum field. We study three different variations of this setup; a quantum field subject to Dirichlet boundary conditions, a quantum field interacting with a classical potential, and a quantum field that starts in a thermal state.
Adiabatic and diabatic invariants in ion-molecule reactions.
Lorquet, J C
2009-12-28
A point charge interacting with a dipole (either induced or permanent) constitutes a completely integrable dynamical subsystem characterized by three first integrals of the motion (E, p(phi), and either l(2) or a Hamilton-Jacobi separation constant beta). An ion-molecule reaction (capture or fragmentation) can be seen as an interaction between such a subsystem and a bath of oscillators. This interaction is a perturbation that destroys some of the first integrals. However, the perturbation depends on the separation between the fragments and the destruction is gradual. The mathematical simplicity of the long-range electrostatic interaction potential leads to useful simplifications. A first-order perturbation treatment based on the structured and regular nature of the multipole expansion is presented. The separating integrals valid in the asymptotic limit are found to subsist at intermediate distances, although in a weaker form. As the reaction coordinate decreases, i.e., as the fragments approach, the asymptotic range is followed by an outer region where (i) the azimuthal momentum p(phi) remains a constant of the motion; (ii) the square angular momentum l(2) or the separation constant beta transform into a diabatic invariant in regions of phase space characterized by a high value of the translational momentum p(r); (iii) for low values of p(r), it is advantageous to use the action integral contour integral(p(theta)d theta), which is an adiabatic invariant. The conditions under which an effective potential obtained by adding centrifugal repulsion to an electrostatic attractive term can be validly constructed are specified. In short, the dynamics of ion-molecule interactions is still regular in parts of phase space corresponding to a range of the reaction coordinate where the interaction potential deviates from its asymptotic shape. PMID:20059072
Geroux, Chris M.; Deupree, Robert G.
2011-04-10
We are developing a three-dimensional radiation hydrodynamics code to simulate the interaction of convection and pulsation in classical variable stars. One key goal is the ability to carry these simulations to full amplitude in order to compare them with observed light and velocity curves. Previous two-dimensional calculations were prevented from doing this because of drift in the radial coordinate system, due to the algorithm defining radial movement of the coordinate system during the pulsation cycle. We remove this difficulty by defining our coordinate system flow algorithm to require that the mass in a spherical shell remains constant throughout the pulsation cycle. We perform adiabatic test calculations to show that large amplitude solutions repeat over more than 150 pulsation periods. We also verify that the computational method conserves the peak kinetic energy per period, as must be true for adiabatic pulsation models.
Bendall; Skinner
1998-10-01
To provide the most efficient conditions for spin decoupling with least RF power, master calibration curves are provided for the maximum centerband amplitude, and the minimum amplitude for the largest cycling sideband, resulting from STUD+ adiabatic decoupling applied during a single free induction decay. The principal curve is defined as a function of the four most critical experimental input parameters: the maximum amplitude of the RF field, RFmax, the length of the sech/tanh pulse, Tp, the extent of the frequency sweep, bwdth, and the coupling constant, Jo. Less critical parameters, the effective (or actual) decoupled bandwidth, bweff, and the sech/tanh truncation factor, beta, which become more important as bwdth is decreased, are calibrated in separate curves. The relative importance of nine additional factors in determining optimal decoupling performance in a single transient are considered. Specific parameters for efficient adiabatic decoupling can be determined via a set of four equations which will be most useful for 13C decoupling, covering the range of one-bond 13C1H coupling constants from 125 to 225 Hz, and decoupled bandwidths of 7 to 100 kHz, with a bandwidth of 100 kHz being the requirement for a 2 GHz spectrometer. The four equations are derived from a recent vector model of adiabatic decoupling, and experiment, supported by computer simulations. The vector model predicts an inverse linear relation between the centerband and maximum sideband amplitudes, and it predicts a simple parabolic relationship between maximum sideband amplitude and the product JoTp. The ratio bwdth/(RFmax)2 can be viewed as a characteristic time scale, tauc, affecting sideband levels, with tauc approximately Tp giving the most efficient STUD+ decoupling, as suggested by the adiabatic condition. Functional relationships between bwdth and less critical parameters, bweff and beta, for efficient decoupling can be derived from Bloch-equation calculations of the inversion profile
Geometry of an adiabatic passage at a level crossing
Cholascinski, Mateusz
2005-06-15
We discuss adiabatic quantum phenomena at a level crossing. Given a path in the parameter space which passes through a degeneracy point, we find a criterion which determines whether the adiabaticity condition can be satisfied. For paths that can be traversed adiabatically we also derive a differential equation which specifies the time dependence of the system parameters, for which transitions between distinct energy levels can be neglected. We also generalize the well-known geometric connections to the case of adiabatic paths containing arbitrarily many level-crossing points and degenerate levels.
Geometrical representation of sum frequency generation and adiabatic frequency conversion
NASA Astrophysics Data System (ADS)
Suchowski, Haim; Oron, Dan; Arie, Ady; Silberberg, Yaron
2008-12-01
We present a geometrical representation of the process of sum frequency generation in the undepleted pump approximation, in analogy with the known optical Bloch equations. We use this analogy to propose a technique for achieving both high efficiency and large bandwidth in sum frequency conversion using the adiabatic inversion scheme. The process is analogous with rapid adiabatic passage in NMR, and adiabatic constraints are derived in this context. This adiabatic frequency conversion scheme is realized experimentally using an aperiodically poled potassium titanyl phosphate (KTP) device, where we achieved high efficiency signal-to-idler conversion over a bandwidth of 140nm .
On the Role of Prior Probability in Adiabatic Quantum Algorithms
NASA Astrophysics Data System (ADS)
Sun, Jie; Lu, Songfeng; Yang, Liping
2016-03-01
In this paper, we study the role of prior probability on the efficiency of quantum local adiabatic search algorithm. The following aspects for prior probability are found here: firstly, only the probabilities of marked states affect the running time of the adiabatic evolution; secondly, the prior probability can be used for improving the efficiency of the adiabatic algorithm; thirdly, like the usual quantum adiabatic evolution, the running time for the case of multiple solution states where the number of marked elements are smaller enough than the size of the set assigned that contains them can be significantly bigger than that of the case where the assigned set only contains all the marked states.
Quantum Adiabatic Algorithms and Large Spin Tunnelling
NASA Technical Reports Server (NTRS)
Boulatov, A.; Smelyanskiy, V. N.
2003-01-01
We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in this paper. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H (r) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H (r) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.
Nonadiabatic Transitions in Adiabatic Rapid Passage
NASA Astrophysics Data System (ADS)
Lu, T.; Miao, X.; Metcalf, H.
2006-05-01
Optical forces much larger than the ordinary radiative force can be achieved on a two-level atom by multiple repetitions of adiabatic rapid passage sweeps with counterpropagating light beams. Chirped light pulses drive the atom-laser system up a ladder of dressed state energy sheets on sequential trajectories, thereby decreasing the atomic kinetic energy. Nonadiabatic transitions between the energy sheets must be avoided for this process to be effective. We have calculated the nonadiabatic transition probability for various chirped light pulses numerically. These results were compared to the first Demkov-Kunike model and the well-known Landau-Zener model. In addition, an analytical form of the nonadiabatic transition probability has been found for linearly chirped pulses and an approximate form for generic symmetric finite-time pulses has been found for the entire parameter space using the technique of unitary integration. From this, the asymptotic transition probability in the adiabatic limit was derived. T. Lu, X. Miao, and H. Metcalf, Phys., Rev. A 71 061405(R) (2005). Yu. Demkov and M. Kunike, Vestn. Leningr. Univ. Fis. Khim., 16, 39 (1969); K.-A. Suominen and B. Garraway, Phys. Rev. A45, 374 (1992)
Effect of the Heat Pipe Adiabatic Region.
Brahim, Taoufik; Jemni, Abdelmajid
2014-04-01
The main motivation of conducting this work is to present a rigorous analysis and investigation of the potential effect of the heat pipe adiabatic region on the flow and heat transfer performance of a heat pipe under varying evaporator and condenser conditions. A two-dimensional steady-state model for a cylindrical heat pipe coupling, for both regions, is presented, where the flow of the fluid in the porous structure is described by Darcy-Brinkman-Forchheimer model which accounts for the boundary and inertial effects. The model is solved numerically by using the finite volumes method, and a fortran code was developed to solve the system of equations obtained. The results show that a phase change can occur in the adiabatic region due to temperature gradient created in the porous structure as the heat input increases and the heat pipe boundary conditions change. A recirculation zone may be created at the condenser end section. The effect of the heat transfer rate on the vapor radial velocities and the performance of the heat pipe are discussed. PMID:24895467
Adiabatic cooling of solar wind electrons
NASA Technical Reports Server (NTRS)
Sandbaek, Ornulf; Leer, Egil
1992-01-01
In thermally driven winds emanating from regions in the solar corona with base electron densities of n0 not less than 10 exp 8/cu cm, a substantial fraction of the heat conductive flux from the base is transfered into flow energy by the pressure gradient force. The adiabatic cooling of the electrons causes the electron temperature profile to fall off more rapidly than in heat conduction dominated flows. Alfven waves of solar origin, accelerating the basically thermally driven solar wind, lead to an increased mass flux and enhanced adiabatic cooling. The reduction in electron temperature may be significant also in the subsonic region of the flow and lead to a moderate increase of solar wind mass flux with increasing Alfven wave amplitude. In the solar wind model presented here the Alfven wave energy flux per unit mass is larger than that in models where the temperature in the subsonic flow is not reduced by the wave, and consequently the asymptotic flow speed is higher.
Inertial effects in adiabatically driven flashing ratchets
NASA Astrophysics Data System (ADS)
Rozenbaum, Viktor M.; Makhnovskii, Yurii A.; Shapochkina, Irina V.; Sheu, Sheh-Yi; Yang, Dah-Yen; Lin, Sheng Hsien
2014-05-01
We study analytically the effect of a small inertial correction on the properties of adiabatically driven flashing ratchets. Parrondo's lemma [J. M. R. Parrondo, Phys. Rev. E 57, 7297 (1998), 10.1103/PhysRevE.57.7297] is generalized to include the inertial term so as to establish the symmetry conditions allowing directed motion (other than in the overdamped massless case) and to obtain a high-temperature expansion of the motion velocity for arbitrary potential profiles. The inertial correction is thus shown to enhance the ratchet effect at all temperatures for sawtooth potentials and at high temperatures for simple potentials described by the first two harmonics. With the special choice of potentials represented by at least the first three harmonics, the correction gives rise to the motion reversal in the high-temperature region. In the low-temperature region, inertia weakens the ratchet effect, with the exception of the on-off model, where diffusion is important. The directed motion adiabatically driven by potential sign fluctuations, though forbidden in the overdamped limit, becomes possible due to purely inertial effects in neither symmetric nor antisymmetric potentials, i.e., not for commonly used sawtooth and two-sinusoid profiles.
Adiabatic Mass Loss Model in Binary Stars
NASA Astrophysics Data System (ADS)
Ge, H. W.
2012-07-01
Rapid mass transfer process in the interacting binary systems is very complicated. It relates to two basic problems in the binary star evolution, i.e., the dynamically unstable Roche-lobe overflow and the common envelope evolution. Both of the problems are very important and difficult to be modeled. In this PhD thesis, we focus on the rapid mass loss process of the donor in interacting binary systems. The application to the criterion of dynamically unstable mass transfer and the common envelope evolution are also included. Our results based on the adiabatic mass loss model could be used to improve the binary evolution theory, the binary population synthetic method, and other related aspects. We build up the adiabatic mass loss model. In this model, two approximations are included. The first one is that the energy generation and heat flow through the stellar interior can be neglected, hence the restructuring is adiabatic. The second one is that he stellar interior remains in hydrostatic equilibrium. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed. These approximations are validated by the comparison with the time-dependent binary mass transfer calculations and the polytropic model for low mass zero-age main-sequence stars. In the dynamical time scale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal time scale mass transfer, so-called delayed dynamical instability. We identify the critical binary mass ratio for the
Bailey, Nicholas P.; Bøhling, Lasse; Veldhorst, Arno A.; Schrøder, Thomas B.; Dyre, Jeppe C.
2013-11-14
We derive exact results for the rate of change of thermodynamic quantities, in particular, the configurational specific heat at constant volume, C{sub V}, along configurational adiabats (curves of constant excess entropy S{sub ex}). Such curves are designated isomorphs for so-called Roskilde liquids, in view of the invariance of various structural and dynamical quantities along them. The slope of the isomorphs in a double logarithmic representation of the density-temperature phase diagram, γ, can be interpreted as one third of an effective inverse power-law potential exponent. We show that in liquids where γ increases (decreases) with density, the contours of C{sub V} have smaller (larger) slope than configurational adiabats. We clarify also the connection between γ and the pair potential. A fluctuation formula for the slope of the C{sub V}-contours is derived. The theoretical results are supported with data from computer simulations of two systems, the Lennard-Jones fluid, and the Girifalco fluid. The sign of dγ/dρ is thus a third key parameter in characterizing Roskilde liquids, after γ and the virial-potential energy correlation coefficient R. To go beyond isomorph theory we compare invariance of a dynamical quantity, the self-diffusion coefficient, along adiabats and C{sub V}-contours, finding it more invariant along adiabats.
Non-Adiabatic MHD Modes in Periodic Magnetic Medium
NASA Astrophysics Data System (ADS)
Kumar, Nagendra; Kumar, Anil
High-resolution satellite observations reveal that many solar features such as penumbra and plume regions possess the structures with alternating properties. So we study the joint effect of periodic alternation of magnetic slabs and thermal mechanisms on the propagation of MHD waves. We consider a perfectly conducting fluid permeated by a magnetic field having the peri-odicity along x-axis and constant direction along z-axis. We suppose that the medium consists of alternating slabs of strong and weak homogeneous magnetic field with a sharp discontinuity at the boundary. The inclusion of non-adiabatic effects modifies the energy equation in which the thermal mechanisms (radiation, heating and thermal conduction) are added. The gravi-tational effects are negligible because wavelengths are assumed to be much smaller than the gravitational scale height. The dispersion relations for the surface and body modes are derived and analyzed in the limiting cases of thin and thick slabs. The dispersion curves depend upon the Bloch's wavenumber due to the periodicity in magnetic field. We have examined the be-havior of dispersion curves for different values of slab width ratio and Bloch's wavenumber as a function of dimensionless wavelength. It is shown that the width of structures influences the propagation speed of waves. Our results might be useful in understanding the wave propagation in plume regions, photosphere and spaghetti structures in solar wind.
Cosmological consequences of an adiabatic matter creation process
NASA Astrophysics Data System (ADS)
Nunes, Rafael C.; Pan, Supriya
2016-06-01
In this paper, we investigate the cosmological consequences of a continuous matter creation associated with the production of particles by the gravitational field acting on the quantum vacuum. To illustrate this, three phenomenological models are considered. An equivalent scalar field description is presented for each models. The effects on the cosmic microwave background power spectrum are analysed for the first time in the context of adiabatic matter creation cosmology. Further, we introduce a model independent treatment, Om, which depends only on the Hubble expansion rate and the cosmological redshift to distinguish any cosmological model from Λ cold dark matter by providing a null test for the cosmological constant, meaning that, for any two redshifts z1, z2, Om(z) is same, i.e. Om(z1) - Om(z2) = 0. Also, this diagnostic can differentiate between several cosmological models by indicating their quintessential/phantom behaviour without knowing the accurate value of the matter density, and the present value of the Hubble parameter. For our models, we find that particle production rate is inversely proportional to Om. Finally, the validity of the generalized second law of thermodynamics bounded by the apparent horizon has been examined.
Adiabat-shaping in indirect drive inertial confinement fusion
NASA Astrophysics Data System (ADS)
Baker, K. L.; Robey, H. F.; Milovich, J. L.; Jones, O. S.; Smalyuk, V. A.; Casey, D. T.; MacPhee, A. G.; Pak, A.; Celliers, P. M.; Clark, D. S.; Landen, O. L.; Peterson, J. L.; Berzak-Hopkins, L. F.; Weber, C. R.; Haan, S. W.; Döppner, T. D.; Dixit, S.; Giraldez, E.; Hamza, A. V.; Jancaitis, K. S.; Kroll, J. J.; Lafortune, K. N.; MacGowan, B. J.; Moody, J. D.; Nikroo, A.; Widmayer, C. C.
2015-05-01
Adiabat-shaping techniques were investigated in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform for both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. This approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures.
Quantum adiabatic algorithm for factorization and its experimental implementation.
Peng, Xinhua; Liao, Zeyang; Xu, Nanyang; Qin, Gan; Zhou, Xianyi; Suter, Dieter; Du, Jiangfeng
2008-11-28
We propose an adiabatic quantum algorithm capable of factorizing numbers, using fewer qubits than Shor's algorithm. We implement the algorithm in a NMR quantum information processor and experimentally factorize the number 21. In the range that our classical computer could simulate, the quantum adiabatic algorithm works well, providing evidence that the running time of this algorithm scales polynomially with the problem size. PMID:19113467
Adiabat-shaping in indirect drive inertial confinement fusion
Baker, K. L.; Robey, H. F.; Milovich, J. L.; Jones, O. S.; Smalyuk, V. A.; Casey, D. T.; MacPhee, A. G.; Pak, A.; Celliers, P. M.; Clark, D. S.; Landen, O. L.; Peterson, J. L.; Berzak-Hopkins, L. F.; Weber, C. R.; Haan, S. W.; Döppner, T. D.; Dixit, S.; Hamza, A. V.; Jancaitis, K. S.; Kroll, J. J.; and others
2015-05-15
Adiabat-shaping techniques were investigated in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform for both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. This approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures.
Kinetic Theory Derivation of the Adiabatic Law for Ideal Gases.
ERIC Educational Resources Information Center
Sobel, Michael I.
1980-01-01
Discusses how the adiabatic law for ideal gases can be derived from the assumption of a Maxwell-Boltzmann (or any other) distribution of velocities--in contrast to the usual derivations from thermodynamics alone, and the higher-order effect that leads to one-body viscosity. An elementary derivation of the adiabatic law is given. (Author/DS)
The Adiabatic Invariance of the Action Variable in Classical Dynamics
ERIC Educational Resources Information Center
Wells, Clive G.; Siklos, Stephen T. C.
2007-01-01
We consider one-dimensional classical time-dependent Hamiltonian systems with quasi-periodic orbits. It is well known that such systems possess an adiabatic invariant which coincides with the action variable of the Hamiltonian formalism. We present a new proof of the adiabatic invariance of this quantity and illustrate our arguments by means of…
Elastic properties of iron-bearing wadsleyite to 17.7 GPa: Implications for mantle mineral models
NASA Astrophysics Data System (ADS)
Wang, Jingyun; Bass, Jay D.; Kastura, Tomoo
2014-03-01
The sound velocities and single-crystal elastic moduli of iron-bearing wadsleyite with [Fe]/[Fe + Mg] molar ratio of 0.075 have been measured by Brillouin scattering experiments at high pressures up to 17.7 GPa. Pressure derivatives for the adiabatic bulk modulus (KS0) and shear modulus (μ0) are 4.1(1) and 1.45(4), respectively. A comparison of our results with previous Brillouin scattering results on the Mg end-member wadsleyite shows that incorporating 7.5 mol% iron in wadsleyite at high-pressure conditions decreases the shear moduli by ∼4-5%, but does not have a discernable effect on the bulk modulus. The effects of iron on the elastic moduli of wadsleyite at ambient pressure persist to high-pressure conditions at a relatively constant level. Using our results on iron-bearing wadsleyite at high pressure, we conclude that less olivine than in the pyrolite model of mantle composition provides a satisfactory explanation for 410 km seismic discontinuity at the top of the transition zone.
NASA Technical Reports Server (NTRS)
Brunelle, Eugene J.
1994-01-01
The first few viewgraphs describe the general solution properties of linear elasticity theory which are given by the following two statements: (1) for stress B.C. on S(sub sigma) and zero displacement B.C. on S(sub u) the altered displacements u(sub i)(*) and the actual stresses tau(sub ij) are elastically dependent on Poisson's ratio nu alone: thus the actual displacements are given by u(sub i) = mu(exp -1)u(sub i)(*); and (2) for zero stress B.C. on S(sub sigma) and displacement B.C. on S(sub u) the actual displacements u(sub i) and the altered stresses tau(sub ij)(*) are elastically dependent on Poisson's ratio nu alone: thus the actual stresses are given by tau(sub ij) = E tau(sub ij)(*). The remaining viewgraphs describe the minimum parameter formulation of the general classical laminate theory plate problem as follows: The general CLT plate problem is expressed as a 3 x 3 system of differential equations in the displacements u, v, and w. The eighteen (six each) A(sub ij), B(sub ij), and D(sub ij) system coefficients are ply-weighted sums of the transformed reduced stiffnesses (bar-Q(sub ij))(sub k); the (bar-Q(sub ij))(sub k) in turn depend on six reduced stiffnesses (Q(sub ij))(sub k) and the material and geometry properties of the k(sup th) layer. This paper develops a method for redefining the system coefficients, the displacement components (u,v,w), and the position components (x,y) such that a minimum parameter formulation is possible. The pivotal steps in this method are (1) the reduction of (bar-Q(sub ij))(sub k) dependencies to just two constants Q(*) = (Q(12) + 2Q(66))/(Q(11)Q(22))(exp 1/2) and F(*) - (Q(22)/Q(11))(exp 1/2) in terms of ply-independent reference values Q(sub ij); (2) the reduction of the remaining portions of the A, B, and D coefficients to nondimensional ply-weighted sums (with 0 to 1 ranges) that are independent of Q(*) and F(*); and (3) the introduction of simple coordinate stretchings for u, v, w and x,y such that the process is
Adiabatic theory for anisotropic cold molecule collisions
Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod
2015-08-21
We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment {sup 4}He(1s2s {sup 3}S) + HD(1s{sup 2}) → {sup 4}He(1s{sup 2}) + HD{sup +}(1s) + e{sup −} [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.
Quantum Adiabatic Optimization and Combinatorial Landscapes
NASA Technical Reports Server (NTRS)
Smelyanskiy, V. N.; Knysh, S.; Morris, R. D.
2003-01-01
In this paper we analyze the performance of the Quantum Adiabatic Evolution (QAE) algorithm on a variant of Satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables, gamma = M / N. We introduce a set of macroscopic parameters (landscapes) and put forward an ansatz of universality for random bit flips. We then formulate the problem of finding the smallest eigenvalue and the excitation gap as a statistical mechanics problem. We use the so-called annealing approximation with a refinement that a finite set of macroscopic variables (verses only energy) is used, and are able to show the existence of a dynamic threshold gamma = gammad, beyond which QAE should take an exponentially long time to find a solution. We compare the results for extended and simplified sets of landscapes and provide numerical evidence in support of our universality ansatz.
An adiabatic demagnetization refrigerator for SIRTF
NASA Technical Reports Server (NTRS)
Timbie, P. T.; Bernstein, G. M.; Richards, P. L.
1989-01-01
An adiabatic demagnetization refrigerator (ADR) has been proposed to cool bolometric infrared detectors on the multiband imaging photometer of the Space Infrared Telescope Facility (SIRTF). One such refrigerator has been built which uses a ferric ammonium alum salt pill suspended by nylon threads in a 3-T solenoid. The resonant modes of this suspension are above 100 Hz. The heat leak to the salt pill is less than 0.5 microW. The system has a hold time at 0.1K of more than 12 h. The cold stage temperature is regulated with a feedback loop that controls the magnetic field. A second, similar refrigerator is being built at a SIRTF prototype to fly on a ballon-borne telescope. It will use a ferromagnetic shield. The possibility of using a high-Tc solenoid-actuated heat switch is also discussed.
Design of a spaceworthy adiabatic demagnetization refrigerator
NASA Technical Reports Server (NTRS)
Serlemitsos, A. T.; Kunes, E.; Sansebastian, M.
1992-01-01
A spaceworthy adiabatic demagnetization refrigerator (ADR) under development at NASA-Goddard is presented. A baseline model heat switch was tested extensively with an on/off ratio of about 10,000 and a parasitic heat leak of 10 micro-W. Data obtained from the breadboard models were used to design an ADR with improved structural integrity. The core of the ADR is the salt pill which consists of the paramagnetic salt crystal and the thermal bus. When a magnetic field is applied to the salt it forces the alignment of the magnetic moments, thereby decreasing the entropy of the salt. Preliminary tests results showed a net crystal mass of 680 g instead of the expected 740 g, which indicate that there are gaps in the salt pill. A partial fix was accomplished by sealing helium gas in the salt pill at a pressure of 2 bar, which improved the thermal contact during salt magnetization, at about 2 K.
Differential topology of adiabatically controlled quantum processes
NASA Astrophysics Data System (ADS)
Jonckheere, Edmond A.; Rezakhani, Ali T.; Ahmad, Farooq
2013-03-01
It is shown that in a controlled adiabatic homotopy between two Hamiltonians, H 0 and H 1, the gap or "anti-crossing" phenomenon can be viewed as the development of cusps and swallow tails in the region of the complex plane where two critical value curves of the quadratic map associated with the numerical range of H 0 + i H 1 come close. The "near crossing" in the energy level plots happens to be a generic situation, in the sense that a crossing is a manifestation of the quadratic numerical range map being unstable in the sense of differential topology. The stable singularities that can develop are identified and it is shown that they could occur near the gap, making those singularities of paramount importance. Various applications, including the quantum random walk, are provided to illustrate this theory.
Reversible logic gate using adiabatic superconducting devices
Takeuchi, N.; Yamanashi, Y.; Yoshikawa, N.
2014-01-01
Reversible computing has been studied since Rolf Landauer advanced the argument that has come to be known as Landauer's principle. This principle states that there is no minimum energy dissipation for logic operations in reversible computing, because it is not accompanied by reductions in information entropy. However, until now, no practical reversible logic gates have been demonstrated. One of the problems is that reversible logic gates must be built by using extremely energy-efficient logic devices. Another difficulty is that reversible logic gates must be both logically and physically reversible. Here we propose the first practical reversible logic gate using adiabatic superconducting devices and experimentally demonstrate the logical and physical reversibility of the gate. Additionally, we estimate the energy dissipation of the gate, and discuss the minimum energy dissipation required for reversible logic operations. It is expected that the results of this study will enable reversible computing to move from the theoretical stage into practical usage. PMID:25220698
Entropy in Adiabatic Regions of Convection Simulations
NASA Astrophysics Data System (ADS)
Tanner, Joel D.; Basu, Sarbani; Demarque, Pierre
2016-05-01
One of the largest sources of uncertainty in stellar models is caused by the treatment of convection in stellar envelopes. One-dimensional stellar models often make use of the mixing length or equivalent approximations to describe convection, all of which depend on various free parameters. There have been attempts to rectify this by using 3D radiative-hydrodynamic simulations of stellar convection, and in trying to extract an equivalent mixing length from the simulations. In this Letter, we show that the entropy of the deeper, adiabatic layers in these simulations can be expressed as a simple function of {log}g and {log}{T}{{eff}}, which holds potential for calibrating stellar models in a simple and more general manner.
Symmetry-protected adiabatic quantum transistors
NASA Astrophysics Data System (ADS)
Williamson, Dominic J.; Bartlett, Stephen D.
2015-05-01
Adiabatic quantum transistors (AQT) allow quantum logic gates to be performed by applying a large field to a quantum many-body system prepared in its ground state, without the need for local control. The basic operation of such a device can be viewed as driving a spin chain from a symmetry-protected (SP) phase to a trivial phase. This perspective offers an avenue to generalize the AQT and to design several improvements. The performance of quantum logic gates is shown to depend only on universal symmetry properties of a SP phase rather than any fine tuning of the Hamiltonian, and it is possible to implement a universal set of logic gates in this way by combining several different types of SP matter. Such SP AQTs are argued to be robust to a range of relevant noise processes.
Number Partitioning via Quantum Adiabatic Computation
NASA Technical Reports Server (NTRS)
Smelyanskiy, Vadim N.; Toussaint, Udo; Clancy, Daniel (Technical Monitor)
2002-01-01
We study both analytically and numerically the complexity of the adiabatic quantum evolution algorithm applied to random instances of combinatorial optimization problems. We use as an example the NP-complete set partition problem and obtain an asymptotic expression for the minimal gap separating the ground and exited states of a system during the execution of the algorithm. We show that for computationally hard problem instances the size of the minimal gap scales exponentially with the problem size. This result is in qualitative agreement with the direct numerical simulation of the algorithm for small instances of the set partition problem. We describe the statistical properties of the optimization problem that are responsible for the exponential behavior of the algorithm.
Adiabatic connection at negative coupling strengths
Seidl, Michael; Gori-Giorgi, Paola
2010-01-15
The adiabatic connection of density functional theory (DFT) for electronic systems is generalized here to negative values of the coupling strength alpha (with attractive electrons). In the extreme limit alpha->-infinity a simple physical solution is presented and its implications for DFT (as well as its limitations) are discussed. For two-electron systems (a case in which the present solution can be calculated exactly), we find that an interpolation between the limit alpha->-infinity and the opposite limit of infinitely strong repulsion (alpha->+infinity) yields a rather accurate estimate of the second-order correlation energy E{sub c}{sup GL2}[rho] for several different densities rho, without using virtual orbitals. The same procedure is also applied to the Be isoelectronic series, analyzing the effects of near degeneracy.
Adiabatic theory for anisotropic cold molecule collisions.
Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod
2015-08-21
We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment (4)He(1s2s (3)S) + HD(1s(2)) → (4)He(1s(2)) + HD(+)(1s) + e(-) [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings. PMID:26298122
Sliding seal materials for adiabatic engines
NASA Technical Reports Server (NTRS)
Lankford, J.
1985-01-01
The sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, loading conditions that are representative of the adiabatic engine environment. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Microhardness tests were performed on the candidate materials at elevated temperatures, and in atmospheres relevant to the piston seal application, and optical and electron microscopy were used to elucidate the micromechanisms of wear following wear testing. X-ray spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Electrical effects in the friction and wear processes were explored in order to evaluate the potential usefulness of such effects in modifying the friction and wear rates in service. However, this factor was found to be of negligible significance in controlling friction and wear.
Adiabatically-tapered fiber mode multiplexers.
Yerolatsitis, S; Gris-Sánchez, I; Birks, T A
2014-01-13
Simple all-fiber three-mode multiplexers were made by adiabatically merging three dissimilar single-mode cores into one multimode core. This was achieved by collapsing air holes in a photonic crystal fiber and (in a separate device) by fusing and tapering separate telecom fibers in a fluorine-doped silica capillary. In each case the LP01 mode and both LP11 modes were individually excited from three separate input cores, with losses below 0.3 and 0.7 dB respectively and mode purities exceeding 10 dB. Scaling to more modes is challenging, but would be assisted by using single-mode fibers with a smaller ratio of cladding to core diameter. PMID:24515021
The HAWC and SAFIRE Adiabatic Demagnetization Refrigerators
NASA Technical Reports Server (NTRS)
Tuttle, Jim; Shirron, Peter; DiPirro, Michael; Jackson, Michael; Behr, Jason; Kunes, Evan; Hait, Tom; Krebs, Carolyn (Technical Monitor)
2001-01-01
The High-Resolution Airborne Wide-band Camera (HAWC) and Submillimeter and Far Infrared Experiment (SAFIRE) are far-infrared experiments which will fly on the Stratospheric Observatory for Infrared Astronomy (SOFIA) aircraft. HAWC's detectors will operate at 0.2 Kelvin, while those of SAFIRE will be at 0.1 Kelvin. Each instrument will include an adiabatic demagnetization refrigerator (ADR) to cool its detector stage from the liquid helium bath temperature (HAWC's at 4.2 Kelvin and SAFIRE's pumped to about 1.3 Kelvin) to its operating temperature. Except for the magnets used to achieve the cooling and a slight difference in the heat switch design, the two ADRs are nearly identical. We describe the ADR design and present the results of performance testing.
An integrated programming and development environment for adiabatic quantum optimization
NASA Astrophysics Data System (ADS)
Humble, T. S.; McCaskey, A. J.; Bennink, R. S.; Billings, J. J.; DʼAzevedo, E. F.; Sullivan, B. D.; Klymko, C. F.; Seddiqi, H.
2014-01-01
Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware has raised challenging questions about how to evaluate adiabatic quantum optimization (AQO) programs. Processor behavior depends on multiple steps to synthesize an adiabatic quantum program, which are each highly tunable. We present an integrated programming and development environment for AQO called Jade Adiabatic Development Environment (JADE) that provides control over all the steps taken during program synthesis. JADE captures the workflow needed to rigorously specify the AQO algorithm while allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its potential use for benchmarking AQO programs by the quantum computer science community.
An Integrated Development Environment for Adiabatic Quantum Programming
Humble, Travis S; McCaskey, Alex; Bennink, Ryan S; Billings, Jay Jay; D'Azevedo, Eduardo; Sullivan, Blair D; Klymko, Christine F; Seddiqi, Hadayat
2014-01-01
Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware raises the question of how well quantum programs perform. Benchmarking behavior is challenging since the multiple steps to synthesize an adiabatic quantum program are highly tunable. We present an adiabatic quantum programming environment called JADE that provides control over all the steps taken during program development. JADE captures the workflow needed to rigorously benchmark performance while also allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its use for benchmarking adiabatic quantum programs.
Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation
NASA Astrophysics Data System (ADS)
Zamstein, Noa; Tannor, David J.
2012-12-01
We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schrödinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)], 10.1063/1.4739845. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], 10.1063/1.459170, and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.
Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation
Zamstein, Noa; Tannor, David J.
2012-12-14
We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schroedinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)]. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.
Single-crystal elasticity of the deep-mantle magnesite at high pressure and temperature
NASA Astrophysics Data System (ADS)
Yang, Jing; Mao, Zhu; Lin, Jung-Fu; Prakapenka, Vitali B.
2014-04-01
Magnesite (MgCO3) is considered to be a major candidate carbon host in the Earth's mantle, and has been found to exist as an accessory mineral in carbonated peridotite and eclogite. Studying the thermal elastic properties of magnesite under relevant pressure-temperature conditions of the upper mantle is thus important for our understanding of the deep-carbon storage in the Earth's interior. Here we have measured the single-crystal elasticity of a natural magnesite using in situ Brillouin spectroscopy and X-ray diffraction in a diamond anvil cell up to 14 GPa at room temperature and up to 750 K at ambient pressure, respectively. Using the third-order Eulerian finite-strain equations to model the elasticity data, we have derived the aggregate adiabatic bulk, KS0, and shear moduli, G0, at ambient conditions: KS0=114.7 (±1.3) GPa and G0=69.9 (±0.6) GPa. The pressure derivatives of the bulk and shear moduli at 300 K are (∂KS/∂P)T=4.82 (±0.10) and (∂G/∂P)T=1.75 (±0.10), respectively, while their temperature derivatives at ambient pressure are (∂Ks/∂T)P=-24.0 (±0.2) MPa/K and (∂G/∂T)P=-14.8 (±0.7) MPa/K. Based on the thermal elastic modeling of the measured elastic constants along an expected normal upper-mantle geotherm and a cold subducting slab, magnesite exhibits compressional wave (VP) anisotropy of approximately 46-49% and shear wave (VS) splitting of 37-41% that are much larger than those of major constituent minerals in the Earth's upper mantle including olivine, pyroxene, and garnet. The modeled aggregate VP and VS velocity in moderately carbonated peridotite and eclogite containing approximately 10 wt.% magnesite (approximately 5 wt.% CO2) show minimal effects of magnesite on the seismic profiles of these rock assemblages at upper mantle conditions, suggesting that the presence of magnesite is likely difficult to be detected seismically. However, due to its unusually high VP and VS anisotropies, magnesite with strong preferred orientations
Fowler-Nordheim emission modified by laser pulses in the adiabatic regime
NASA Astrophysics Data System (ADS)
Rokhlenko, A.; Lebowitz, J. L.
2016-06-01
We investigate enhanced field emission due to a continuous or pulsed oscillating field added to a constant electric field E at the emitter surface. When the frequency of oscillation, field strength, and property of the emitter material satisfy the Keldysh condition γ<1 /2 , one can use the adiabatic approximation for treating the oscillating field, i.e., consider the tunneling through the instantaneous Fowler-Nordheim barrier created by both fields. Due to the great sensitivity of the emission to the field strength, the average tunneling current can be much larger than the current produced by only the constant field. We carry out the computations for arbitrary strong constant electric fields, beyond the commonly used Fowler-Nordheim approximation which exhibit, in particular, an important property of the wave function inside the potential barrier where it is found to be monotonically decreasing without oscillations.
NASA Astrophysics Data System (ADS)
Oh, Yun-Tak; Higashi, Yoichi; Chan, Ching-Kit; Han, Jung Hoon
2016-08-01
The Lang-Firsov Hamiltonian, a well-known solvable model of interacting fermion-boson system with sideband features in the fermion spectral weight, is generalized to have the time-dependent fermion-boson coupling constant. We show how to derive the two-time Green's function for the time-dependent problem in the adiabatic limit, defined as the slow temporal variation of the coupling over the characteristic oscillator period. The idea we use in deriving the Green's function is akin to the use of instantaneous basis states in solving the adiabatic evolution problem in quantum mechanics. With such "adiabatic Green's function" at hand we analyze the transient behavior of the spectral weight as the coupling is gradually tuned to zero. Time-dependent generalization of a related model, the spin-boson Hamiltonian, is analyzed in the same way. In both cases the sidebands arising from the fermion-boson coupling can be seen to gradually lose their spectral weights over time. Connections of our solution to the two-dimensional Dirac electrons coupled to quantized photons are discussed.
Ab initio adiabatic and diabatic energies and dipole moments of the KH molecule
NASA Astrophysics Data System (ADS)
Khelifi, Neji; Oujia, Brahim; Gadea, Florent Xavier
2002-02-01
An ab initio adiabatic and diabatic study of the KH molecule is performed for all states below the ionic limit [i.e., K (4s, 4p, 5s, 3d, 5p, 4d, 6s, and 4f)+H(1s)] in 1Σ+ and 3Σ+ symmetries. Adiabatic results are also reported for 1Π, 3Π, 1Δ, and 3Δ symmetries. The ab initio calculations rely on pseudopotential, operatorial core valence correlation, and full valence CI approaches, combined to an efficient diabatization procedure. For the low-lying states, our vibrational level spacings and spectroscopic constants are in very good agreement with the available experimental data. Diabatic potentials and dipoles moments are analyzed, revealing the strong imprint of the ionic state in the 1Σ+ adiabatic states while improving the results. The undulations of the diabatic curves and of the triplet-singlet diabatic energy difference which we found positive, as in Hund's rule, are related to the Rydberg functions. As for LiH, the vibrational spacing of the A state is bracketed by our results with and without the improvement taking into account the diabatic representation. Experimental suggestions are also given.
Adiabatic Landau-Zener transitions at avoided level crossings with fast noise
NASA Astrophysics Data System (ADS)
Kenmoe, M. B.; Fai, L. C.
2015-11-01
Effects of a fast classical noise on adiabatic Landau-Zener (LZ) transitions between the (2 S + 1) Zeeman multiplets (diabatic states) of an arbitrary spin S at an avoided level crossing are investigated. The spin system is simultaneously coupled to a slow regular magnetic field and a fast random field with Gaussian realizations. In the longitudinal direction, the magnetic field changes its sign at the degeneracy point (and is unbounded at large positive and negative times t = ± ∞ far from the degeneracy point) while in its single transverse direction, it remains of constant amplitude. The noise is considered in the limit where its characteristic correlation time (decay time) is small enough compared to the characteristic time of adiabatic LZ transitions. With these considerations, the condition for adiabatic evolution allows us to analytically evaluate the populations of diabatic levels and coherence factors. The study is first implemented for two- (S = 1 / 2) and three- (S = 1) state systems and finally extended to arbitrary S. A numerical study is implemented allowing us to check/confirm the range of validity of our analytical solutions. We found a satisfactory quantitative agreement between numerical and analytical data.
Identification of material constants for a composite shell structure
Carne, T.G.; Martinez, D.R.
1987-01-01
A finite element model of a composite shell was created. The model includes uncertain orthotropic elastic constants. To identify these constants, a modal survey was performed on an actual shell. The resulting modal data along with the finite element model of the shell were used in a Bayes estimation algorithm. Values of the elastic constants were estimated which minimized the differences between the test results and the finite element predictions. The estimation procedure employed the concept of successive linearization to obtain an approximate solution to the original nonlinear estimation problem.
Estimation of In vivo Cancellous Bone Elasticity
NASA Astrophysics Data System (ADS)
Otani, Takahiko; Mano, Isao; Tsujimoto, Toshiyuki; Yamamoto, Tadahito; Teshima, Ryota; Naka, Hiroshi
2009-07-01
The effect of decreasing bone density (a symptom of osteoporosis) is greater for cancellous bone than for dense cortical bone, because cancellous bone is metabolically more active. Therefore, the bone density or bone mineral density of cancellous bone is generally used to estimate the onset of osteoporosis. Elasticity or elastic constant is a fundamental mechanical parameter and is directly related to the mechanical strength of bone. Accordingly, elasticity is a preferable parameter for assessing fracture risk. A novel ultrasonic bone densitometer LD-100 has been developed to determine the mass density and elasticity of cancellous bone with a spatial resolution comparable to that of peripheral quantitative computed tomography. Bone density and bone elasticity are evaluated using ultrasonic parameters based on fast and slow waves in cancellous bone by modeling the ultrasonic wave propagation path. Elasticity is deduced from the measured bone density and the propagation speed of the fast wave. Thus, the elasticity of cancellous bone is approximately expressed by a cubic equation of bone density.
Non-adiabatic perturbations in Ricci dark energy model
Karwan, Khamphee; Thitapura, Thiti E-mail: nanodsci2523@hotmail.com
2012-01-01
We show that the non-adiabatic perturbations between Ricci dark energy and matter can grow both on superhorizon and subhorizon scales, and these non-adiabatic perturbations on subhorizon scales can lead to instability in this dark energy model. The rapidly growing non-adiabatic modes on subhorizon scales always occur when the equation of state parameter of dark energy starts to drop towards -1 near the end of matter era, except that the parameter α of Ricci dark energy equals to 1/2. In the case where α = 1/2, the rapidly growing non-adiabatic modes disappear when the perturbations in dark energy and matter are adiabatic initially. However, an adiabaticity between dark energy and matter perturbations at early time implies a non-adiabaticity between matter and radiation, this can influence the ordinary Sachs-Wolfe (OSW) effect. Since the amount of Ricci dark energy is not small during matter domination, the integrated Sachs-Wolfe (ISW) effect is greatly modified by density perturbations of dark energy, leading to a wrong shape of CMB power spectrum. The instability in Ricci dark energy is difficult to be alleviated if the effects of coupling between baryon and photon on dark energy perturbations are included.
Bouncing models with a cosmological constant
NASA Astrophysics Data System (ADS)
Maier, Rodrigo; Pereira, Stella; Pinto-Neto, Nelson; Siffert, Beatriz B.
2012-01-01
Bouncing models have been proposed by many authors as a completion of, or even as an alternative to, inflation for the description of the very early and dense Universe. However, most bouncing models contain a contracting phase from a very large and rarefied state, where dark energy might have had an important role as it has today in accelerating our large Universe. In that case, its presence can modify the initial conditions and evolution of cosmological perturbations, changing the known results already obtained in the literature concerning their amplitude and spectrum. In this paper, we assume the simplest and most appealing candidate for dark energy, the cosmological constant, and evaluate its influence on the evolution of cosmological perturbations during the contracting phase of a bouncing model, which also contains a scalar field with a potential allowing background solutions with pressure and energy density satisfying p=wɛ, w being a constant. An initial adiabatic vacuum state can be set at the end of domination by the cosmological constant, and an almost scale-invariant spectrum of perturbations is obtained for w≈0, which is the usual result for bouncing models. However, the presence of the cosmological constant induces oscillations and a running towards a tiny red-tilted spectrum for long-wavelength perturbations.
Dynamics of Charged Particles in an Adiabatic Thermal Beam Equilibrium
NASA Astrophysics Data System (ADS)
Chen, Chiping; Wei, Haofei
2010-11-01
Charged-particle motion is studied in the self-electric and self-magnetic fields of a well-matched, intense charged-particle beam and an applied periodic solenoidal magnetic focusing field. The beam is assumed to be in a state of adiabatic thermal equilibrium. The phase space is analyzed and compared with that of the well-known Kapchinskij-Vladimirskij (KV)-type beam equilibrium. It is found that the widths of nonlinear resonances in the adiabatic thermal beam equilibrium are narrower than those in the KV-type beam equilibrium. Numerical evidence is presented, indicating almost complete elimination of chaotic particle motion in the adiabatic thermal beam equilibrium.
Complete population inversion of Bose particles by an adiabatic cycle
NASA Astrophysics Data System (ADS)
Tanaka, Atushi; Cheon, Taksu
2016-04-01
We show that an adiabatic cycle excites Bose particles confined in a one-dimensional box. During the adiabatic cycle, a wall described by a δ-shaped potential is applied and its strength and position are slowly varied. When the system is initially prepared in the ground state, namely, in the zero-temperature equilibrium state, the adiabatic cycle brings all Bosons into the first excited one-particle state, leaving the system in a nonequilibrium state. The absorbed energy during the cycle is proportional to the number of Bosons.
Dephasing effects on stimulated Raman adiabatic passage in tripod configurations
Lazarou, C.; Vitanov, N. V.
2010-09-15
We present an analytic description of the effects of dephasing processes on stimulated Raman adiabatic passage in a tripod quantum system. To this end, we develop an effective two-level model. Our analysis makes use of the adiabatic approximation in the weak dephasing regime. An effective master equation for a two-level system formed by two dark states is derived, where analytic solutions are obtained by utilizing the Demkov-Kunike model. From these, it is found that the fidelity for the final coherent superposition state decreases exponentially for increasing dephasing rates. Depending on the pulse ordering and for adiabatic evolution, the pulse delay can have an inverse effect.
Design of the PIXIE Adiabatic Demagnetization Refrigerators
NASA Technical Reports Server (NTRS)
Shirron, Peter J.; Kimball, Mark Oliver; Fixsen, Dale J.; Kogut, Alan J.; Li, Xiaoyi; DiPirro, Michael
2012-01-01
The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a teslescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: 1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and 2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 millwatts, while maintaining a peak heat reject rate of less than 12 milliwatts. The detector heat load at 0.1 K is comparatively small at 1-2 microwatts. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope.
Design of the PIXIE adiabatic demagnetization refrigerators
NASA Astrophysics Data System (ADS)
Shirron, Peter J.; Kimball, Mark O.; Fixsen, Dale J.; Kogut, Alan J.; Li, Xiaoyi; DiPirro, Michael J.
2012-04-01
The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a telescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: (1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and (2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 mW, while maintaining a peak heat reject rate of less than 12 mW. The detector heat load at 0.1 K is comparatively small at 1-2 μW. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope.
Graph isomorphism and adiabatic quantum computing
NASA Astrophysics Data System (ADS)
Gaitan, Frank; Clark, Lane
2014-03-01
In the Graph Isomorphism (GI) problem two N-vertex graphs G and G' are given and the task is to determine whether there exists a permutation of the vertices of G that preserves adjacency and maps G --> G'. If yes (no), then G and G' are said to be isomorphic (non-isomorphic). The GI problem is an important problem in computer science and is thought to be of comparable difficulty to integer factorization. We present a quantum algorithm that solves arbitrary instances of GI, and which provides a novel approach to determining all automorphisms of a graph. The algorithm converts a GI instance to a combinatorial optimization problem that can be solved using adiabatic quantum evolution. Numerical simulation of the algorithm's quantum dynamics shows that it correctly distinguishes non-isomorphic graphs; recognizes isomorphic graphs; and finds the automorphism group of a graph. We also discuss the algorithm's experimental implementation and show how it can be leveraged to solve arbitrary instances of the NP-Complete Sub-Graph Isomorphism problem.
Adiabatic Quantum Computation with Neutral Atoms
NASA Astrophysics Data System (ADS)
Biedermann, Grant
2013-03-01
We are implementing a new platform for adiabatic quantum computation (AQC)[2] based on trapped neutral atoms whose coupling is mediated by the dipole-dipole interactions of Rydberg states. Ground state cesium atoms are dressed by laser fields in a manner conditional on the Rydberg blockade mechanism,[3,4] thereby providing the requisite entangling interactions. As a benchmark we study a Quadratic Unconstrained Binary Optimization (QUBO) problem whose solution is found in the ground state spin configuration of an Ising-like model. In collaboration with Lambert Parazzoli, Sandia National Laboratories; Aaron Hankin, Center for Quantum Information and Control (CQuIC), University of New Mexico; James Chin-Wen Chou, Yuan-Yu Jau, Peter Schwindt, Cort Johnson, and George Burns, Sandia National Laboratories; Tyler Keating, Krittika Goyal, and Ivan Deutsch, Center for Quantum Information and Control (CQuIC), University of New Mexico; and Andrew Landahl, Sandia National Laboratories. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories
Adiabatic Quantum Algorithm for Search Engine Ranking
NASA Astrophysics Data System (ADS)
Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A.
2012-06-01
We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in “q-sampling” protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.
The method of Gaussian weighted trajectories. III. An adiabaticity correction proposal
Bonnet, L.
2008-01-28
The addition of an adiabaticity correction (AC) to the Gaussian weighted trajectory (GWT) method and its normalized version (GWT-N) is suggested. This correction simply consists in omitting vibrationally adiabatic nonreactive trajectories in the calculations of final attributes. For triatomic exchange reactions, these trajectories satisfy the criterion {omega} not much larger than ({Dirac_h}/2{pi}), where {omega} is a vibrational action defined by {omega}={integral}{sup []}-[]dt(pr-p{sub 0}r{sub 0}), r being the reagent diatom bond length, p its conjugate momentum, and r{sub 0} and p{sub 0} the corresponding variables for the unperturbed diatom ({omega}/({Dirac_h}/2{pi}) bears some analogy with the semiclassical elastic scattering phase shift). The resulting GWT-AC and GWT-ACN methods are applied to the recently studied H{sup +}+H{sub 2} and H{sup +}+D{sub 2} reactions and the agreement between their predictions and those of exact quantum scattering calculations is found to be much better than for the initial GWT and GWT-N methods. The GWT-AC method, however, appears to be the most accurate one for the processes considered, in particular, the H{sup +}+D{sub 2} reaction.
Nanoscale elastic properties of montmorillonite upon water adsorption.
Ebrahimi, Davoud; Pellenq, Roland J-M; Whittle, Andrew J
2012-12-11
Smectites are an important group of clay minerals that experience swelling upon water adsorption. This paper uses molecular dynamics with the CLAYFF force field to simulate isothermal isobaric water adsorption of interlayer Wyoming Na-montmorillonite, a member of the smectite group. Nanoscale elastic properties of the clay-interlayer water system are calculated from the potential energy of the model system. The transverse isotropic symmetry of the elastic constant matrix was assessed by calculating Euclidean and Riemannian distance metrics. Simulated elastic constants of the clay mineral are compared with available results from acoustic and nanoindentation measurements. PMID:23181550
Adiabatic formation of high-Q modes by suppression of chaotic diffusion in deformed microdiscs
NASA Astrophysics Data System (ADS)
Shim, Jeong-Bo; Eberspächer, Alexander; Wiersig, Jan
2013-11-01
Resonant modes with high-Q factors in a two-dimensional deformed microdisc cavity are analyzed by using a dynamical and semiclassical approach. The analysis focuses particularly on the ultra-small cavity regime, where the scale of a resonant free-space wavelength is comparable with that of the microdisc size. Although the deformed microcavity has strongly chaotic internal ray dynamics, modes with high-Q factors in this regime show unexpectedly regular distributions in configuration space and adiabatic features in phase space. By tracing the evolution process of such high-Q modes through the deformation from a circular cavity, it is uncovered that the high-Q modes are formed adiabatically on cantori. Due to the openness of microcavities, such adiabatic formation of high-Q modes around cantori is enabled, in spite of strong chaos in ray dynamics. Since the cantori are in close contact with short periodic orbits, their influence on the modes, such as localization patterns in phase space, can be also clarified. In order to quantitatively analyze the spectral range where high-Q modes appear, the phase space section of the deformed microcavity is partitioned by partial barriers of short periodic orbits, and the semiclassical quantization scheme is applied to the partitioned areas and their action fluxes. The derived spectral ranges for the high-Q modes show a good agreement with a numerically observed spectrum. In the course of semiclassical quantization, it is shown that the chaotic diffusion in the system that we investigate can be resolved by the scale of a quarter effective Planck's constant, and the topological structure of the manifolds in phase space allows for this resolution higher than a Planck constant scale. By analyzing flux Farey trees, the role of short periodic orbits in chaotic diffusion and their connection to cantori are verified.
NASA Astrophysics Data System (ADS)
Traaseth, Nathaniel J.; Chao, Fa-An; Masterson, Larry R.; Mangia, Silvia; Garwood, Michael; Michaeli, Shalom; Seelig, Burckhard; Veglia, Gianluigi
2012-06-01
NMR relaxation methods probe biomolecular motions over a wide range of timescales. In particular, the rotating frame spin-lock R1ρ and Carr-Purcell-Meiboom-Gill (CPMG) R2 experiments are commonly used to characterize μs to ms dynamics, which play a critical role in enzyme folding and catalysis. In an effort to complement these approaches, we introduced the Heteronuclear Adiabatic Relaxation Dispersion (HARD) method, where dispersion in rotating frame relaxation rate constants (longitudinal R1ρ and transverse R2ρ) is created by modulating the shape and duration of adiabatic full passage (AFP) pulses. Previously, we showed the ability of the HARD method to detect chemical exchange dynamics in the fast exchange regime (kex ˜ 104-105 s-1). In this article, we show the sensitivity of the HARD method to slower exchange processes by measuring R1ρ and R2ρ relaxation rates for two soluble proteins (ubiquitin and 10C RNA ligase). One advantage of the HARD method is its nominal dependence on the applied radio frequency field, which can be leveraged to modulate the dispersion in the relaxation rate constants. In addition, we also include product operator simulations to define the dynamic range of adiabatic R1ρ and R2ρ that is valid under all exchange regimes. We conclude from both experimental observations and simulations that this method is complementary to CPMG-based and rotating frame spin-lock R1ρ experiments to probe conformational exchange dynamics for biomolecules. Finally, this approach is germane to several NMR-active nuclei, where relaxation rates are frequency-offset independent.
Yielding Elastic Tethers Stabilize Robust Cell Adhesion
Whitfield, Matt J.; Luo, Jonathon P.; Thomas, Wendy E.
2014-01-01
Many bacteria and eukaryotic cells express adhesive proteins at the end of tethers that elongate reversibly at constant or near constant force, which we refer to as yielding elasticity. Here we address the function of yielding elastic adhesive tethers with Escherichia coli bacteria as a model for cell adhesion, using a combination of experiments and simulations. The adhesive bond kinetics and tether elasticity was modeled in the simulations with realistic biophysical models that were fit to new and previously published single molecule force spectroscopy data. The simulations were validated by comparison to experiments measuring the adhesive behavior of E. coli in flowing fluid. Analysis of the simulations demonstrated that yielding elasticity is required for the bacteria to remain bound in high and variable flow conditions, because it allows the force to be distributed evenly between multiple bonds. In contrast, strain-hardening and linear elastic tethers concentrate force on the most vulnerable bonds, which leads to failure of the entire adhesive contact. Load distribution is especially important to noncovalent receptor-ligand bonds, because they become exponentially shorter lived at higher force above a critical force, even if they form catch bonds. The advantage of yielding is likely to extend to any blood cells or pathogens adhering in flow, or to any situation where bonds are stretched unequally due to surface roughness, unequal native bond lengths, or conditions that act to unzip the bonds. PMID:25473833
Adiabaticity and spectral splits in collective neutrino transformations
Raffelt, Georg G.; Smirnov, Alexei Yu.
2007-12-15
Neutrinos streaming off a supernova core transform collectively by neutrino-neutrino interactions, leading to 'spectral splits' where an energy E{sub split} divides the transformed spectrum sharply into parts of almost pure but different flavors. We present a detailed description of the spectral-split phenomenon which is conceptually and quantitatively understood in an adiabatic treatment of neutrino-neutrino effects. Central to this theory is a self-consistency condition in the form of two sum rules (integrals over the neutrino spectra that must equal certain conserved quantities). We provide explicit analytic and numerical solutions for various neutrino spectra. We introduce the concept of the adiabatic reference frame and elaborate on the relative adiabatic evolution. Violating adiabaticity leads to the spectral split being 'washed out'. The sharpness of the split appears to be represented by a surprisingly universal function.
Acceleration of adiabatic quantum dynamics in electromagnetic fields
Masuda, Shumpei; Nakamura, Katsuhiro
2011-10-15
We show a method to accelerate quantum adiabatic dynamics of wave functions under electromagnetic field (EMF) by developing the preceding theory [Masuda and Nakamura, Proc. R. Soc. London Ser. A 466, 1135 (2010)]. Treating the orbital dynamics of a charged particle in EMF, we derive the driving field which accelerates quantum adiabatic dynamics in order to obtain the final adiabatic states in any desired short time. The scheme is consolidated by describing a way to overcome possible singularities in both the additional phase and driving potential due to nodes proper to wave functions under EMF. As explicit examples, we exhibit the fast forward of adiabatic squeezing and transport of excited Landau states with nonzero angular momentum, obtaining the result consistent with the transitionless quantum driving applied to the orbital dynamics in EMF.
Adiabatic and isocurvature perturbation projections in multi-field inflation
NASA Astrophysics Data System (ADS)
Gordon, Chris; Saffin, Paul M.
2013-08-01
Current data are in good agreement with the predictions of single field inflation. However, the hemispherical asymmetry, seen in the cosmic microwave background data, may hint at a potential problem. Generalizing to multi-field models may provide one possible explanation. A useful way of modeling perturbations in multi-field inflation is to investigate the projection of the perturbation along and perpendicular to the background fields' trajectory. These correspond to the adiabatic and isocurvature perturbations. However, it is important to note that in general there are no corresponding adiabatic and isocurvature fields. The purpose of this article is to highlight the distinction between a field redefinition and a perturbation projection. We provide a detailed derivation of the evolution of the isocurvature perturbation to show that no assumption of an adiabatic or isocurvature field is needed. We also show how this evolution equation is consistent with the field covariant evolution equations for the adiabatic perturbation in the flat field space limit.
Startup of the RFP in a quasi-adiabatic mode
Caramana, E.J.
1980-01-01
The equations describing the purely adiabatic formation of the reversed-field pinch are solved. This method of formation in principle remedies the problem of flux consumption during the startup phase of this device.
Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses
Dridi, G.; Guerin, S.; Hakobyan, V.; Jauslin, H. R.; Eleuch, H.
2009-10-15
We present a general and versatile technique of population transfer based on parallel adiabatic passage by femtosecond shaped pulses. Their amplitude and phase are specifically designed to optimize the adiabatic passage corresponding to parallel eigenvalues at all times. We show that this technique allows the robust adiabatic population transfer in a Raman system with the total pulse area as low as 3{pi}, corresponding to a fluence of one order of magnitude below the conventional stimulated Raman adiabatic passage process. This process of short duration, typically picosecond and subpicosecond, is easily implementable with the modern pulse shaper technology and opens the possibility of ultrafast robust population transfer with interesting applications in quantum information processing.
Quantum Monte Carlo simulations of tunneling in quantum adiabatic optimization
NASA Astrophysics Data System (ADS)
Brady, Lucas T.; van Dam, Wim
2016-03-01
We explore to what extent path-integral quantum Monte Carlo methods can efficiently simulate quantum adiabatic optimization algorithms during a quantum tunneling process. Specifically we look at symmetric cost functions defined over n bits with a single potential barrier that a successful quantum adiabatic optimization algorithm will have to tunnel through. The height and width of this barrier depend on n , and by tuning these dependencies, we can make the optimization algorithm succeed or fail in polynomial time. In this article we compare the strength of quantum adiabatic tunneling with that of path-integral quantum Monte Carlo methods. We find numerical evidence that quantum Monte Carlo algorithms will succeed in the same regimes where quantum adiabatic optimization succeeds.
Nonadiabatic transitions in finite-time adiabatic rapid passage
NASA Astrophysics Data System (ADS)
Lu, T.; Miao, X.; Metcalf, H.
2007-06-01
To apply the adiabatic rapid passage process repetitively [T. Lu, X. Miao, and H. Metcalf, Phys. Rev. A 71, 061405(R) (2005)], the nonadiabatic transition probability of a two-level atom subject to chirped light pulses over a finite period of time needs to be calculated. Using a unitary first-order perturbation method in the rotating adiabatic frame, an approximate formula has been derived for such transition probabilities in the entire parameter space of the pulses.
Realization of adiabatic Aharonov-Bohm scattering with neutrons
NASA Astrophysics Data System (ADS)
Sjöqvist, Erik; Almquist, Martin; Mattsson, Ken; Gürkan, Zeynep Nilhan; Hessmo, Björn
2015-11-01
The adiabatic Aharonov-Bohm (AB) effect is a manifestation of the Berry phase acquired when some slow variables take a planar spin around a loop. While the effect has been observed in molecular spectroscopy, direct measurement of the topological phase shift in a scattering experiment has been elusive in the past. Here, we demonstrate an adiabatic AB effect by explicit simulation of the dynamics of unpolarized very slow neutrons that scatter on a long straight current-carrying wire.
Shortcuts to adiabaticity for non-Hermitian systems
Ibanez, S.; Martinez-Garaot, S.; Torrontegui, E.; Muga, J. G.; Chen Xi
2011-08-15
Adiabatic processes driven by non-Hermitian, time-dependent Hamiltonians may be sped up by generalizing inverse engineering techniques based on counter-diabatic (transitionless driving) algorithms or on dynamical invariants. We work out the basic theory and examples described by two-level Hamiltonians: the acceleration of rapid adiabatic passage with a decaying excited level and of the dynamics of a classical particle on an expanding harmonic oscillator.
Membrane Elastic Properties and Cell Function
Pontes, Bruno; Ayala, Yareni; Fonseca, Anna Carolina C.; Romão, Luciana F.; Amaral, Racκele F.; Salgado, Leonardo T.; Lima, Flavia R.; Farina, Marcos; Viana, Nathan B.; Moura-Neto, Vivaldo; Nussenzveig, H. Moysés
2013-01-01
Recent studies indicate that the cell membrane, interacting with its attached cytoskeleton, is an important regulator of cell function, exerting and responding to forces. We investigate this relationship by looking for connections between cell membrane elastic properties, especially surface tension and bending modulus, and cell function. Those properties are measured by pulling tethers from the cell membrane with optical tweezers. Their values are determined for all major cell types of the central nervous system, as well as for macrophage. Astrocytes and glioblastoma cells, which are considerably more dynamic than neurons, have substantially larger surface tensions. Resting microglia, which continually scan their environment through motility and protrusions, have the highest elastic constants, with values similar to those for resting macrophage. For both microglia and macrophage, we find a sharp softening of bending modulus between their resting and activated forms, which is very advantageous for their acquisition of phagocytic functions upon activation. We also determine the elastic constants of pure cell membrane, with no attached cytoskeleton. For all cell types, the presence of F-actin within tethers, contrary to conventional wisdom, is confirmed. Our findings suggest the existence of a close connection between membrane elastic constants and cell function. PMID:23844071
Elastically Decoupling Dark Matter
NASA Astrophysics Data System (ADS)
Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai
2016-06-01
We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10-3- 1 fb range.
Elastically Decoupling Dark Matter.
Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai
2016-06-01
We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1 fb range. PMID:27314712
NASA Technical Reports Server (NTRS)
Bailey, David H.; Borwein, Jonathan M.; Crandall, Richard E.; Craw, James M. (Technical Monitor)
1995-01-01
We prove known identities for the Khinchin constant and develop new identities for the more general Hoelder mean limits of continued fractions. Any of these constants can be developed as a rapidly converging series involving values of the Riemann zeta function and rational coefficients. Such identities allow for efficient numerical evaluation of the relevant constants. We present free-parameter, optimizable versions of the identities, and report numerical results.
Solar constant secular changes
NASA Technical Reports Server (NTRS)
Schatten, Kenneth H.; Orosz, Jerome A.
1990-01-01
A recent model for solar constant secular changes is used to calculate a 'proxy' solar constant for: (1) the past four centuries, based upon the sunspot record, (2) the past nine centuries, based upon C-14 observations and their relation to solar activity, and (3) the next decade, based upon a dynamo theory model for the solar cycle. The proxy solar constant data is tabulated as it may be useful for climate modelers studying global climate changes.
Elastic internal flywheel gimbal
Rabenhorst, D.W.
1981-01-13
An elastic joint mounting and rotatably coupling a rotary inertial energy storage device or flywheel, to a shaft, the present gimbal structure reduces vibration and shock while allowing precession of the flywheel without the need for external gimbal mounts. The present elastic joint usually takes the form of an annular elastic member either integrally formed into the flywheel as a centermost segment thereof or attached to the flywheel or flywheel hub member at the center thereof, the rotary shaft then being mounted centrally to the elastic member.
Dark energy with non-adiabatic sound speed: initial conditions and detectability
Ballesteros, Guillermo; Lesgourgues, Julien E-mail: julien.lesgourgues@cern.ch
2010-10-01
Assuming that the universe contains a dark energy fluid with a constant linear equation of state and a constant sound speed, we study the prospects of detecting dark energy perturbations using CMB data from Planck, cross-correlated with galaxy distribution maps from a survey like LSST. We update previous estimates by carrying a full exploration of the mock data likelihood for key fiducial models. We find that it will only be possible to exclude values of the sound speed very close to zero, while Planck data alone is not powerful enough for achieving any detection, even with lensing extraction. We also discuss the issue of initial conditions for dark energy perturbations in the radiation and matter epochs, generalizing the usual adiabatic conditions to include the sound speed effect. However, for most purposes, the existence of attractor solutions renders the perturbation evolution nearly independent of these initial conditions.
Gravity driven instability in elastic solid layers.
Mora, Serge; Phou, Ty; Fromental, Jean-Marc; Pomeau, Yves
2014-10-24
We demonstrate the instability of the free surface of a soft elastic solid facing downwards. Experiments are carried out using a gel of constant density ρ, shear modulus μ, put in a rigid cylindrical dish of depth h. When turned upside down, the free surface of the gel undergoes a normal outgoing acceleration g. It remains perfectly flat for ρgh/μ<α* with α*≃6, whereas a steady pattern spontaneously appears in the opposite case. This phenomenon results from the interplay between the gravitational energy and the elastic energy of deformation, which reduces the Rayleigh waves celerity and vanishes it at the threshold. PMID:25379940
Three-dimensional treatment of nonequilibrium dynamics and higher order elasticity
NASA Astrophysics Data System (ADS)
Lott, Martin; Payan, Cédric; Garnier, Vincent; Vu, Quang A.; Eiras, Jesús N.; Remillieux, Marcel C.; Le Bas, Pierre-Yves; Ulrich, T. J.
2016-04-01
This letter presents a three-dimensional model to describe the complex behavior of nonlinear mesoscopic elastic materials such as rocks and concrete. Assuming isotropy and geometric contraction of principal stress axes under dynamic loading, the expression of elastic wave velocity is derived, based on the second-order elastic constants ( λ , μ ) , third-order elastic constants (l, m, n), and a parameter α of nonclassical nonlinear elasticity resulting from conditioning. We demonstrate that both softening and recovering of the elastic properties under dynamic loading is an isotropic effect related to the strain tensor. The measurement of the conditioning is achieved using three polarized waves. The model allows the evaluation of the third-order elastic constants uncoupled from conditioning and viscoelastic effects. The values obtained are similar to those reported in the literature using quasi-static loading.
Structural and elastic properties of fcc/fcc metallic multilayers: A molecular-dynamics study
NASA Astrophysics Data System (ADS)
Tȩcza, Grzegorz W.
1992-12-01
Interplanar and intraplanar spacings as well as the elastic constants of fcc/fcc metallic multilayers stacked along [001] were determined via variable-cell molecular-dynamics simulation in (HtN) and (EhN) ensembles at room temperature. Qualitative differences in the structural and elastic properties of the multilayers, simulated using various 12-6 Lennard-Jones potentials, were observed. The anomalous behavior of the elastic constants and the biaxial modulus was linked to the modulation wavelength dependence of various structural parameters. The importance of the fluctuation contributions for the calculation of the full elastic constants is demonstrated.
Measurement of the nonlinear elasticity of red blood cell membranes
NASA Astrophysics Data System (ADS)
Park, Yongkeun; Best, Catherine A.; Kuriabova, Tatiana; Henle, Mark L.; Feld, Michael S.; Levine, Alex J.; Popescu, Gabriel
2011-05-01
The membranes of human red blood cells (RBCs) are a composite of a fluid lipid bilayer and a triangular network of semiflexible filaments (spectrin). We perform cellular microrheology using the dynamic membrane fluctuations of the RBCs to extract the elastic moduli of this composite membrane. By applying known osmotic stresses, we measure the changes in the elastic constants under imposed strain and thereby determine the nonlinear elastic properties of the membrane. We find that the elastic nonlinearities of the shear modulus in tensed RBC membranes can be well understood in terms of a simple wormlike chain model. Our results show that the elasticity of the spectrin network can mostly account for the area compression modulus at physiological osmolality, suggesting that the lipid bilayer has significant excess area. As the cell swells, the elastic contribution from the now tensed lipid membrane becomes dominant.
Fundamental Physical Constants
National Institute of Standards and Technology Data Gateway
SRD 121 CODATA Fundamental Physical Constants (Web, free access) This site, developed in the Physics Laboratory at NIST, addresses three topics: fundamental physical constants, the International System of Units (SI), which is the modern metric system, and expressing the uncertainty of measurement results.
Elastic properties of minerals
Aleksandrov, K.S.; Prodaivoda, G.T.
1993-09-01
Investigations of the elastic properties of the main rock-forming minerals were begun by T.V. Ryzhova and K.S. Aleksandrov over 30 years ago on the initiative of B.P. Belikov. At the time, information on the elasticity of single crystals in general, and especially of minerals, was very scanty. In the surveys of that time there was information on the elasticity of 20 or 30 minerals. These, as a rule, did not include the main rock-forming minerals; silicates were represented only by garnets, quartz, topaz, tourmaline, zircon, beryl, and staurolite, which are often found in nature in the form of large and fairly high-quality crystals. Then and even much later it was still necessary to prove a supposition which now seems obvious: The elastic properties of rocks, and hence the velocities of elastic (seismic) waves in the earth`s crust, are primarily determined by the elastic characteristics of the minerals composing these rocks. Proof of this assertion, with rare exceptions of mono-mineralic rocks (marble, quartzite, etc.) cannot be obtained without information on the elasticities of a sufficiently large number of minerals, primarily framework, layer, and chain silicates which constitute the basis of most rocks. This also served as the starting point and main problem of the undertakings of Aleksandrov, Ryzhova, and Belikov - systematic investigations of the elastic properties of minerals and then of various rocks. 108 refs., 7 tabs.
Postinstability models in elasticity
NASA Technical Reports Server (NTRS)
Zak, M.
1984-01-01
It is demonstrated that the instability caused by the failure of hyperbolicity in elasticity and associated with the problem of unpredictability in classical mechanics expresses the incompleteness of the original model of an elastic medium. The instability as well as the ill-posedness of the Cauchy problem are eliminated by reformulating the original model.
Autoignition of adiabatically compressed combustible gas mixtures
Hu, H.; Keck, J.
1987-01-01
Measurements of explosion limits for fuel/air/diluent mixtures compressed by an expanding laminar flame have been made in a constant volume spherical bomb. The fuels studied to date range from butane to octane at fuel/air equivalence ratios from 0.8 to 1.3. The explosion pressures and temperatures range from 10 to 100 atm and 650 to 850 K. The pressure versus time curves show the behavior typical of the two-stage ignition process observed in rapid compression machines. A branched chain kinetic model has been developed to correlate the data. The model has been used to predict both the explosion limits measured in the current bomb experiments and ignition delays measured in prior rapid compression machine experiments. Good agreement between experiment and theory can be achieved with minor adjustment in published rate constants.
Proton Nucleus Elastic Scattering Data.
1993-08-18
Version 00 The Proton Nucleus Elastic Scattering Data file PNESD contains the numerical data and the related bibliography for the differential elastic cross sections, polarization and integral nonelastic cross sections for elastic proton-nucleus scattering.
Adiabatic condition and the quantum hitting time of Markov chains
Krovi, Hari; Ozols, Maris; Roland, Jeremie
2010-08-15
We present an adiabatic quantum algorithm for the abstract problem of searching marked vertices in a graph, or spatial search. Given a random walk (or Markov chain) P on a graph with a set of unknown marked vertices, one can define a related absorbing walk P{sup '} where outgoing transitions from marked vertices are replaced by self-loops. We build a Hamiltonian H(s) from the interpolated Markov chain P(s)=(1-s)P+sP{sup '} and use it in an adiabatic quantum algorithm to drive an initial superposition over all vertices to a superposition over marked vertices. The adiabatic condition implies that, for any reversible Markov chain and any set of marked vertices, the running time of the adiabatic algorithm is given by the square root of the classical hitting time. This algorithm therefore demonstrates a novel connection between the adiabatic condition and the classical notion of hitting time of a random walk. It also significantly extends the scope of previous quantum algorithms for this problem, which could only obtain a full quadratic speedup for state-transitive reversible Markov chains with a unique marked vertex.
Elastic properties of nanostructured materials with layered grain boundary structure
NASA Astrophysics Data System (ADS)
Karakasidis, T. E.; Charitidis, C. A.; Skarakis, D.; Chouliaras, F.
2007-08-01
Atomistic calculations of the elastic constants for a bulk nanostructured material that consists of a layered structure where alternating layers meet along high angle grain boundaries and where atoms interact via a Lennard-Jones potential are presented. The calculations of the elastic constants were performed in the frame of homogeneous deformations for a wide range of layer widths ranging from 2.24 up to 74.62 nm. The results showed that the relaxation of the atomic structure affects the elastic constants for the cases where more than 5% of atoms are located in the GB region. Also it was found that the way that external stresses are applied on the system affects the values of the obtained elastic properties, with the elastic constants related to the characteristic directions of the grain boundary being the most affected ones. The findings of this work are of interest for the fabrication methods of nanostructured materials, the measurement methods of their elastic properties as well as multiscale modeling schemes of nanostructured materials.
The cosmological constant problem
Dolgov, A.D.
1989-05-01
A review of the cosmological term problem is presented. Baby universe model and the compensating field model are discussed. The importance of more accurate data on the Hubble constant and the Universe age is stressed. 18 refs.
Space Shuttle astrodynamical constants
NASA Technical Reports Server (NTRS)
Cockrell, B. F.; Williamson, B.
1978-01-01
Basic space shuttle astrodynamic constants are reported for use in mission planning and construction of ground and onboard software input loads. The data included here are provided to facilitate the use of consistent numerical values throughout the project.
Sun, Qicheng; Jin, Feng; Wang, Guangqian; Song, Shixiong; Zhang, Guohua
2015-01-01
Mesoscopic structures form in dense granular materials due to the self-organisation of the constituent particles. These structures have internal structural degrees of freedom in addition to the translational degree of freedom. The resultant granular elasticity, which exhibits intrinsic variations and inevitable relaxation, is a key quantity that accounts for macroscopic solid- or fluid-like properties and the transitions between them. In this work, we propose a potential energy landscape (PEL) with local stable basins and low elastic energy barriers to analyse the nature of granular elasticity. A function for the elastic energy density is proposed for stable states and is further calibrated with ultrasonic measurements. Fluctuations in the elastic energy due to the evolution of internal structures are proposed to describe a so-called configuration temperature Tc as a counterpart of the classical kinetic granular temperature Tk that is attributed to the translational degrees of freedom. The two granular temperatures are chosen as the state variables, and a fundamental equation is established to develop non-equilibrium thermodynamics for granular materials. Due to the relatively low elastic energy barrier in the PEL, granular elasticity relaxes more under common mechanical loadings, and a simple model based on mean-field theory is developed to account for this behaviour. PMID:25951049
Model-based estimation of adiabatic flame temperature during coal gasification
NASA Astrophysics Data System (ADS)
Sarigul, Ihsan Mert
Coal gasification temperature distribution in the gasifier is one of the important issues. High temperature may increase the risk of corrosion of the gasifier wall or it may cause an increase in the amount of volatile compounds. At the same time, gasification temperature is a dominant factor for high conversion of products and completing the reactions during coal gasification in a short time. In the light of this information it can be said that temperature is one of key parameters of coal gasification to enhance the production of high heating value syngas and maximize refractory longevity. This study aims to predict the adiabatic flame temperatures of Australian bituminous coal and Indonesian roto coal in an entrained flow gasifier using different operating conditions with the ChemCAD simulation and design program. To achieve these objectives, two types of gasification parameters were carried out using simulation of a vertical entrained flow reactor: oxygen-to-coal feed ratio by kg/kg and pressure and steam-to-coal feed ratio by kg/kg and pressure. In the first part of study the adiabatic flame temperatures, coal gasification products and other coal characteristics of two types of coals were determined using ChemCAD software. During all simulations, coal feed rate, coal particle size, initial temperature of coal, water and oxygen were kept constant. The relationships between flame temperature, coal gasification products and operating parameters were fundamentally investigated. The second part of this study addresses the modeling of the flame temperature relation to methane production and other input parameters used previous chapter. The scope of this work was to establish a reasonable model in order to estimate flame temperature without any theoretical calculation. Finally, sensitivity analysis was performed after getting some basic correlations between temperature and input variables. According to the results, oxygen-to-coal feed ratio has the most influential
Constant potential pulse polarography
Christie, J.H.; Jackson, L.L.; Osteryoung, R.A.
1976-01-01
The new technique of constant potential pulse polarography, In which all pulses are to be the same potential, is presented theoretically and evaluated experimentally. The response obtained is in the form of a faradaic current wave superimposed on a constant capacitative component. Results obtained with a computer-controlled system exhibit a capillary response current similar to that observed In normal pulse polarography. Calibration curves for Pb obtained using a modified commercial pulse polarographic instrument are in good accord with theoretical predictions.
Elastic membranes in confinement
NASA Astrophysics Data System (ADS)
Bostwick, Joshua; Miksis, Michael; Davis, Stephen
2014-11-01
An elastic membrane stretched between two walls takes a shape defined by its length and the volume of fluid it encloses. Many biological structures, such as cells, mitochondria and DNA, have finer internal structure in which a membrane (or elastic member) is geometrically ``confined'' by another object. We study the shape stability of elastic membranes in a ``confining'' box and introduce repulsive van der Waals forces to prevent the membrane from intersecting the wall. We aim to define the parameter space associated with mitochondria-like deformations. We compare the confined to `unconfined' solutions and show how the structure and stability of the membrane shapes changes with the system parameters.
Solano-Altamirano, J M; Goldman, Saul
2015-12-01
We determined the total system elastic Helmholtz free energy, under the constraints of constant temperature and volume, for systems comprised of one or more perfectly bonded hard spherical inclusions (i.e. "hard spheres") embedded in a finite spherical elastic solid. Dirichlet boundary conditions were applied both at the surface(s) of the hard spheres, and at the outer surface of the elastic solid. The boundary conditions at the surface of the spheres were used to describe the rigid displacements of the spheres, relative to their initial location(s) in the unstressed initial state. These displacements, together with the initial positions, provided the final shape of the strained elastic solid. The boundary conditions at the outer surface of the elastic medium were used to ensure constancy of the system volume. We determined the strain and stress tensors numerically, using a method that combines the Neuber-Papkovich spherical harmonic decomposition, the Schwartz alternating method, and Least-squares for determining the spherical harmonic expansion coefficients. The total system elastic Helmholtz free energy was determined by numerically integrating the elastic Helmholtz free energy density over the volume of the elastic solid, either by a quadrature, or a Monte Carlo method, or both. Depending on the initial position of the hard sphere(s) (or equivalently, the shape of the un-deformed stress-free elastic solid), and the displacements, either stationary or non-stationary Helmholtz free energy minima were found. The non-stationary minima, which involved the hard spheres nearly in contact with one another, corresponded to lower Helmholtz free energies, than did the stationary minima, for which the hard spheres were further away from one another. PMID:26701708
Structure and elasticity of phlogopite under compression: Geophysical implications
NASA Astrophysics Data System (ADS)
Chheda, Tanvi D.; Mookherjee, Mainak; Mainprice, David; dos Santos, Antonio M.; Molaison, Jamie J.; Chantel, Julien; Manthilake, Geeth; Bassett, William A.
2014-08-01
We investigated the response of the crystal structure, lattice parameters, and unit-cell volume of hydrous layered silicate phlogopite at conditions relevant to subduction zone settings. We have used first principles simulation based on density functional theory to calculate the equation of state and full elastic constant tensor. Based on the generalized gradient approximation, the full single crystal elastic constant tensor with monoclinic symmetry shows significant anisotropy with the compressional elastic constants: c11 = 181 GPa, c22 = 185 GPa, c33 = 62 GPa, the shear elastic constants c44 = 14 GPa, c55 = 20 GPa, c66 = 68 Ga, and c46 = -6 GPa; the off diagonal elastic constants c12 = 48 GPa, c13 = 12 GPa, c23 = 12 GPa, c15 = -16 GPa, c25 = -5 GPa and c35 = -1 GPa at zero pressure. The elastic anisotropy of phlogopite is larger than most of the layered hydrous phases relevant in the subduction zone conditions. The shear anisotropy, AVS for phlogopite is ∼77% at zero pressure condition and although it decreases upon compression it remains relatively high compared to other hydrous phases relevant in the subduction zone settings. We also note that the shear elastic constants for phlogopite are relatively low. Phlogopite also has a high isotropic bulk VP/VS ratio ∼2.0. However, the VP/VS ratio also exhibits significant anisotropy with values as low as 1.49. Thus, phlogopite bearing metasomatized mantle could readily explain unusual VP/VS ratio as observed from seismological studies from the mantle wedge regions of the subduction zone.
Integrated polarization rotator/converter by stimulated Raman adiabatic passage.
Xiong, Xiao; Zou, Chang-Ling; Ren, Xi-Feng; Guo, Guang-Can
2013-07-15
We proposed a polarization rotator inspired by stimulated Raman adiabatic passage model from quantum optics, which is composed of a signal waveguide and an ancillary waveguide. The two orthogonal modes in signal waveguide and the oblique mode in ancillary waveguide form a Λ-type three-level system. By controlling the width of signal waveguide and the gap between two waveguides, adiabatic conversion between two orthogonal modes can be realized in the signal waveguide. With such adiabatic passage, polarization conversion is completed within 150 μm length, with the efficiencies over 99% for both conversions between horizontal polarization and vertical polarization. In addition, such a polarization rotator is quite robust against fabrication error, allowing a wide range of tolerances for the rotator geometric parameters. Our work is not only significative to photonic simulations of coherent quantum phenomena with engineered photonic waveguides, but also enlightens the practical applications of these phenomena in optical device designs. PMID:23938558
Adiabatic compressibility of myoglobin. Effect of axial ligand and denaturation.
Leung, W P; Cho, K C; Lo, Y M; Choy, C L
1986-03-01
An ultrasonic technique has been employed to study the adiabatic compressibility of three metmyoglobin derivatives (aquomet-, fluoromet- and azidometmyoglobin) at neutral pH, and aquometmyoglobin as a function of pH in the frequency range of 1-10 MHz at 20 degrees C. No difference was observed in the adiabatic compressibility of the various derivatives. This indicates that the binding of different axial ligands to myoglobin does not affect significantly the conformational fluctuations of the protein. The finding is consistent with the results of the hydrogen exchange rate experiment, indicating that both types of measurements are useful for the study of protein dynamics. Upon acid-induced denaturation, the adiabatic compressibility of myoglobin drops from 5.3 X 10(-12) cm2/dyn to 0.5 X 10(-12) cm2/dyn. Plausible reasons for such a decrease are discussed. PMID:3947645
Effect of dephasing on stimulated Raman adiabatic passage
Ivanov, P.A.; Vitanov, N.V.; Bergmann, K.
2004-12-01
This work explores the effect of phase relaxation on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The study is based on the Liouville equation, which is solved analytically in the adiabatic limit. The transfer efficiency of STIRAP is found to decrease exponentially with the dephasing rate; this effect is stronger for shorter pulse delays and weaker for larger delays, since the transition time is found to be inversely proportional to the pulse delay. Moreover, it is found that the transfer efficiency of STIRAP in the presence of dephasing does not depend on the peak Rabi frequencies at all, as long as they are sufficiently large to enforce adiabatic evolution; hence increasing the field intensity cannot reduce the dephasing losses. It is shown also that for any dephasing rate, the final populations of the initial state and the intermediate state are equal. For strong dephasing all three populations tend to (1/3)
Interaction-induced adiabatic cooling for antiferromagnetism in optical lattices
Dare, A.-M.; Raymond, L.; Albinet, G.; Tremblay, A.-M. S.
2007-08-01
In the experimental context of cold-fermion optical lattices, we discuss the possibilities to approach the pseudogap or ordered phases by manipulating the scattering length or the strength of the laser-induced lattice potential. Using the two-particle self-consistent approach, as well as quantum Monte Carlo simulations, we provide isentropic curves for the two- and three-dimensional Hubbard models at half-filling. These quantitative results are important for practical attempts to reach the ordered antiferromagnetic phase in experiments on optical lattices of two-component fermions. We find that adiabatically turning on the interaction in two dimensions to cool the system is not very effective. In three dimensions, adiabatic cooling to the antiferromagnetic phase can be achieved in such a manner, although the cooling efficiency is not as high as initially suggested by dynamical mean-field theory. Adiabatic cooling by turning off the repulsion beginning at strong coupling is possible in certain cases.
Adiabatic Quantum Programming: Minor Embedding With Hard Faults
Klymko, Christine F; Sullivan, Blair D; Humble, Travis S
2013-01-01
Adiabatic quantum programming defines the time-dependent mapping of a quantum algorithm into the hardware or logical fabric. An essential programming step is the embedding of problem-specific information into the logical fabric to define the quantum computational transformation. We present algorithms for embedding arbitrary instances of the adiabatic quantum optimization algorithm into a square lattice of specialized unit cells. Our methods are shown to be extensible in fabric growth, linear in time, and quadratic in logical footprint. In addition, we provide methods for accommodating hard faults in the logical fabric without invoking approximations to the original problem. These hard fault-tolerant embedding algorithms are expected to prove useful for benchmarking the adiabatic quantum optimization algorithm on existing quantum logical hardware. We illustrate this versatility through numerical studies of embeddabilty versus hard fault rates in square lattices of complete bipartite unit cells.
Shortcuts to adiabaticity in a time-dependent box
Campo, A. del; Boshier, M. G.
2012-01-01
A method is proposed to drive an ultrafast non-adiabatic dynamics of an ultracold gas trapped in a time-dependent box potential. The resulting state is free from spurious excitations associated with the breakdown of adiabaticity, and preserves the quantum correlations of the initial state up to a scaling factor. The process relies on the existence of an adiabatic invariant and the inversion of the dynamical self-similar scaling law dictated by it. Its physical implementation generally requires the use of an auxiliary expulsive potential. The method is extended to a broad family of interacting many-body systems. As illustrative examples we consider the ultrafast expansion of a Tonks-Girardeau gas and of Bose-Einstein condensates in different dimensions, where the method exhibits an excellent robustness against different regimes of interactions and the features of an experimentally realizable box potential. PMID:22970340
Pressure sensitivity of adiabatic shear banding in metals
NASA Astrophysics Data System (ADS)
Hanina, E.; Rittel, D.; Rosenberg, Z.
2007-01-01
Adiabatic shear banding (ASB) is a dynamic failure mode characterized by large plastic strains in a narrow localized band. ASB occurs at high strain rates (ɛ˙⩾103s-1), under adiabatic conditions leading to a significant temperature rise inside the band [H. Tresca, Annales du Conservatoire des Arts et Métiers 4, (1879); Y. L. Bai and B. Dodd, Adiabatic Shear Localization-Occurrence, Theories, and Applications (Pergamon, Oxford, 1992); M. A. Meyers, Dynamic Behavior of Materials (Wiley, New York, 1994).; and J. J. Lewandowski and L. M. Greer, Nat. Mater. 5, 15 (2006)]. Large hydrostatic pressures are experienced in many dynamic applications involving ASB formation (e.g., ballistic penetration, impact, and machining). The relationship between hydrostatic pressure and ASB development remains an open question, although its importance has been often noted. This letter reports original experimental results indicating a linear relationship between the (normalized) dynamic deformation energy and the (normalized) hydrostatic pressure.
Adiabatic quantum programming: minor embedding with hard faults
NASA Astrophysics Data System (ADS)
Klymko, Christine; Sullivan, Blair D.; Humble, Travis S.
2013-11-01
Adiabatic quantum programming defines the time-dependent mapping of a quantum algorithm into an underlying hardware or logical fabric. An essential step is embedding problem-specific information into the quantum logical fabric. We present algorithms for embedding arbitrary instances of the adiabatic quantum optimization algorithm into a square lattice of specialized unit cells. These methods extend with fabric growth while scaling linearly in time and quadratically in footprint. We also provide methods for handling hard faults in the logical fabric without invoking approximations to the original problem and illustrate their versatility through numerical studies of embeddability versus fault rates in square lattices of complete bipartite unit cells. The studies show that these algorithms are more resilient to faulty fabrics than naive embedding approaches, a feature which should prove useful in benchmarking the adiabatic quantum optimization algorithm on existing faulty hardware.
Elasticity Imaging of Polymeric Media
Sridhar, Mallika; Liu, Jie; Insana, Michael F.
2009-01-01
Viscoelastic properties of soft tissues and hydropolymers depend on the strength of molecular bonding forces connecting the polymer matrix and surrounding fluids. The basis for diagnostic imaging is that disease processes alter molecular-scale bonding in ways that vary the measurable stiffness and viscosity of the tissues. This paper reviews linear viscoelastic theory as applied to gelatin hydrogels for the purpose of formulating approaches to molecular-scale interpretation of elasticity imaging in soft biological tissues. Comparing measurements acquired under different geometries, we investigate the limitations of viscoelastic parameters acquired under various imaging conditions. Quasistatic (step-and-hold and low-frequency harmonic) stimuli applied to gels during creep and stress relaxation experiments in confined and unconfined geometries reveal continuous, bimodal distributions of respondance times. Within the linear range of responses, gelatin will behave more like a solid or fluid depending on the stimulus magnitude. Gelatin can be described statistically from a few parameters of low-order rheological models that form the basis of viscoelastic imaging. Unbiased estimates of imaging parameters are obtained only if creep data are acquired for greater than twice the highest retardance time constant and any steady-state viscous response has been eliminated. Elastic strain and retardance time images are found to provide the best combination of contrast and signal strength in gelatin. Retardance times indicate average behavior of fast (1–10 s) fluid flows and slow (50–400 s) matrix restructuring in response to the mechanical stimulus. Insofar as gelatin mimics other polymers, such as soft biological tissues, elasticity imaging can provide unique insights into complex structural and biochemical features of connectives tissues affected by disease. PMID:17408331
Elastic fiber-mediated enthesis in the human middle ear
Kawase, Tetsuaki; Shibata, Shunichi; Katori, Yukio; Ohtsuka, Aiji; Murakami, Gen; Fujimiya, Mineko
2012-01-01
Adaptation to constant vibration (acoustic oscillation) is likely to confer a specific morphology at the bone–tendon and bone–ligament interfaces at the ear ossicles, which therefore represent an exciting target of enthesis research. We histologically examined (i) the bone attachments of the tensor tympani and stapedius muscles and (ii) the annular ligament of the incudostapedial joint obtained from seven elderly donated cadavers. Notably, both aldehyde-fuchsin and elastic-Masson staining demonstrated that the major fibrous component of the entheses was not collagen fibers but mature elastic fibers. The positive controls for elastic fiber staining were the arterial wall elastic laminae included in the temporal bone materials. The elastic fibers were inserted deeply into the type II collagen-poor fibrocartilage covering the ear ossicles. The muscle tendons were composed of an outer thin layer of collagen fibers and an inner thick core of elastic fibers near the malleus or stapes. In the unique elastic fiber-mediated entheses, hyaluronan, versican and fibronectin were expressed strongly along the elastic fibers. The hyaluronan seemed to act as a friction-reducing lubricant for the elastic fibers. Aggrecan was labeled strongly in a disk- or plica-like fibrous mass on the inner side of the elastic fiber-rich ligament, possibly due to compression stress from the ligament. Tenascin-c was not evident in the entheses. The elastic fiber-mediated entheses appeared resistant to tissue destruction in an environment exposed to constant vibration. The morphology was unlikely to be the result of age-related degeneration. PMID:22803514
Curvature-Controlled Defect Localization in Elastic Surface Crystals
NASA Astrophysics Data System (ADS)
Jiménez, Francisco López; Stoop, Norbert; Lagrange, Romain; Dunkel, Jörn; Reis, Pedro M.
2016-03-01
We investigate the influence of curvature and topology on crystalline dimpled patterns on the surface of generic elastic bilayers. Our numerical analysis predicts that the total number of defects created by adiabatic compression exhibits universal quadratic scaling for spherical, ellipsoidal, and toroidal surfaces over a wide range of system sizes. However, both the localization of individual defects and the orientation of defect chains depend strongly on the local Gaussian curvature and its gradients across a surface. Our results imply that curvature and topology can be utilized to pattern defects in elastic materials, thus promising improved control over hierarchical bending, buckling, or folding processes. Generally, this study suggests that bilayer systems provide an inexpensive yet valuable experimental test bed for exploring the effects of geometrically induced forces on assemblies of topological charges.
Non Adiabatic Evolution of Elliptical Galaxies by Dynamical Friction
NASA Astrophysics Data System (ADS)
Arena, S. E.; Bertin, G.; Liseikina, T.; Pegoraro, F.
2007-05-01
Many astrophysical problems, ranging from structure formation in cosmology to dynamics of elliptical galaxies, refer to slow processes of evolution of essentially collisionless self-gravitating systems. In order to determine the relevant quasi-equilibrium configuration at time t from given initial conditions, it is often argued that such slow evolution may be approximated in terms of adiabatic evolution, for the calculation of which efficient semi--analytical techniques are available. Here we focus on the slow process of evolution, induced by dynamical friction of a host stellar system on a minority component of "satellites", to determine to what extent an adiabatic description might be applied. The study is realized by means of N--body simulations of the evolution of the total system (the stellar system plus the minority component), in a controlled numerical environment. In particular, we compare the evolution from initial to final configurations of the system subject to dynamical friction with that of the same system evolved adiabatically (in the absence of dynamical friction). We consider two classes of galaxy models characterized by significantly different density and pressure anisotropy profiles. We demonstrate that, for the examined process, the evolution driven by dynamical friction is significantly different from the adiabatic case, not only quantitatively, but also qualitatively. The two classes of galaxy models considered in this investigation exhibit generally similar trends in evolution, with one exception: concentrated models reach a final total density profile, in the internal region, shallower than the initial one, while galaxy models with a broad core show the opposite behaviour. The evolution of elliptical galaxies induced by dynamical friction is a slow process but it is not adiabatic. The results of our investigation should be taken as a warning against the indiscriminate use of adiabatic growth prescriptions in studies of the structure of
Magnetite Nucleation in Mantle Xenoliths During Quasi-Adiabatic Ascent
NASA Astrophysics Data System (ADS)
Walsh, K. B., Jr.; Filiberto, J.; Friedman, S. A.; Knafelc, J.; Conder, J. A.; Ferre, E. C.; Khakhalova, E.; Feinberg, J. M.; Neal, C. R.; Ionov, D. A.; Hernandez, F. M.
2014-12-01
Can magnetite be a stable phase in the lithospheric mantle? Equilibrium-based thermodynamic calculations and petrologic models predict that it should not be stable. Studies of mantle xenoliths during the 1980s concluded that even though there were rare exceptions, mantle rocks do not host sufficient concentrations of ferromagnetic minerals and are too hot to allow any magnetic remanence. Thus, conventional wisdom dictates that the Moho constitutes a fundamental magnetic boundary. Yet, growing evidence from a more complete global mantle xenolith survey indicates the presence of ferromagnetic minerals in mantle materials. Examination of mantle xenoliths devoid of serpentinization and meteoric alteration show the presence of ferromagnetic minerals within primary silicate mineral phases, including olivine, pyroxene, and spinel. Nucleation of these magnetic minerals could occur at three different stages: in-situ in the mantle, upon ascent, and at the surface. This study reports the results of laboratory-based quasi-adiabatic decompression experiments that aim to simulate the ascent of mantle xenoliths through the lithosphere and test if magnetite growth is promoted during the process. The starting material for these experiments is San Carlos olivine, which holds a magnetic remanence of less than ~10-10 A/m2-1kg2 (the detection limit of the vibrating sample magnetometer). This low starting remanence will allow us to identify whether new magnetic minerals are formed during the decompression experiments using either vibrating sample magnetometry or SQUID-based rock magnetometers. All olivine grains in these experiments were hand-picked under a light microscope in an effort to avoid the inclusion of grains with spurious magnetic minerals. Olivine powders from these carefully selected grains will be used to represent average mantle olivine compositions (Fo90-Fo92). Experiments will start at 1 GPa and be decompressed to 0.3 GPa over 60 hrs at constant temperature (1200° C
Measurement of Local Peltier Constant at a Microcontact
NASA Astrophysics Data System (ADS)
Koyano, Mikio; Akashi, Naoya
2009-07-01
Our novel apparatus measures the local Peltier constant at a thermoelectric material microregion. A narrow metal needle probe contacts a sample mounted into a small adiabatic vacuum chamber with a pressure of about 10-4 Pa. A␣stepping-motor-type nano-actuator controls the probe’s contact pressure. We measured DC and AC I- V characteristics at the microcontact to determine thermoelectric properties. We measured I- V characteristics between the probe and a commercial (Bi,Sb)2Te3 surface. Measured values of local Peltier constants are of the same order as the bulk Peltier constant π: ca. 55 mV. They increase with increased contact resistance, suggesting that contact size affects thermoelectricity.
Wheeler-DeWitt Equation with Variable Constants
NASA Astrophysics Data System (ADS)
Belinchón, José Antonio; Dolgov, A.
In this paper we study how all the physical ``constants'' vary in the framework described by a model in which we have taken into account the generalize conservation principle for its stress-energy tensor. This possibility enable us to take into account the adiabatic matter creation in order to get rid of the entropy problem. We try to generalize this situation by contemplating multi-fluid components. To validate all the obtained results we explore the possibility of considering the variation of the ``constants'' in the quantum cosmological scenario described by the Wheeler-DeWitt equation. For this purpose we explore the Wheeler-DeWitt equation in different contexts but from a dimensional point of view. We end by presenting the Wheeler-DeWitt equation in the case of considering all the constants varying. The quantum potential is obtained and the tunneling probability is studied.
Mechanism of Resilin Elasticity
Qin, Guokui; Hu, Xiao; Cebe, Peggy; Kaplan, David L.
2012-01-01
Resilin is critical in the flight and jumping systems of insects as a polymeric rubber-like protein with outstanding elasticity. However, insight into the underlying molecular mechanisms responsible for resilin elasticity remains undefined. Here we report the structure and function of resilin from Drosophila CG15920. A reversible beta-turn transition was identified in the peptide encoded by exon III and for full length resilin during energy input and release, features that correlate to the rapid deformation of resilin during functions in vivo. Micellar structures and nano-porous patterns formed after beta-turn structures were present via changes in either the thermal or mechanical inputs. A model is proposed to explain the super elasticity and energy conversion mechanisms of resilin, providing important insight into structure-function relationships for this protein. Further, this model offers a view of elastomeric proteins in general where beta-turn related structures serve as fundamental units of the structure and elasticity. PMID:22893127
Adiabatic invariants, diffusion and acceleration in rigid body dynamics
NASA Astrophysics Data System (ADS)
Borisov, Alexey V.; Mamaev, Ivan S.
2016-03-01
The onset of adiabatic chaos in rigid body dynamics is considered. A comparison of the analytically calculated diffusion coefficient describing probabilistic effects in the zone of chaos with a numerical experiment is made. An analysis of the splitting of asymptotic surfaces is performed and uncertainty curves are constructed in the Poincaré-Zhukovsky problem. The application of Hamiltonian methods to nonholonomic systems is discussed. New problem statements are given which are related to the destruction of an adiabatic invariant and to the acceleration of the system (Fermi's acceleration).
Adiabatic Rosen-Zener interferometry with ultracold atoms
Fu Libin; Ye Defa; Lee Chaohong; Zhang Weiping; Liu Jie
2009-07-15
We propose a time-domain 'interferometer' based on double-well ultracold atoms through a so-called adiabatic Rosen-Zener process, that is, the barrier between two wells is ramped down slowly, held for a while, and then ramped back. After the adiabatic Rosen-Zener process, we count the particle population in each well. We find that the final occupation probability shows nice interference fringes. The fringe pattern is sensitive to the initial state as well as the intrinsic parameters of the system such as interatomic interaction or energy bias between two wells. The underlying mechanism is revealed and possible applications are discussed.
Quantum dynamics by the constrained adiabatic trajectory method
Leclerc, A.; Jolicard, G.; Guerin, S.; Killingbeck, J. P.
2011-03-15
We develop the constrained adiabatic trajectory method (CATM), which allows one to solve the time-dependent Schroedinger equation constraining the dynamics to a single Floquet eigenstate, as if it were adiabatic. This constrained Floquet state (CFS) is determined from the Hamiltonian modified by an artificial time-dependent absorbing potential whose forms are derived according to the initial conditions. The main advantage of this technique for practical implementation is that the CFS is easy to determine even for large systems since its corresponding eigenvalue is well isolated from the others through its imaginary part. The properties and limitations of the CATM are explored through simple examples.
Speeding up Adiabatic Quantum State Transfer by Using Dressed States
NASA Astrophysics Data System (ADS)
Baksic, Alexandre; Ribeiro, Hugo; Clerk, Aashish A.
2016-06-01
We develop new pulse schemes to significantly speed up adiabatic state transfer protocols. Our general strategy involves adding corrections to an initial control Hamiltonian that harness nonadiabatic transitions. These corrections define a set of dressed states that the system follows exactly during the state transfer. We apply this approach to stimulated Raman adiabatic passage protocols and show that a suitable choice of dressed states allows one to design fast protocols that do not require additional couplings, while simultaneously minimizing the occupancy of the "intermediate" level.
Gravitational Chern-Simons and the adiabatic limit
McLellan, Brendan
2010-12-15
We compute the gravitational Chern-Simons term explicitly for an adiabatic family of metrics using standard methods in general relativity. We use the fact that our base three-manifold is a quasiregular K-contact manifold heavily in this computation. Our key observation is that this geometric assumption corresponds exactly to a Kaluza-Klein Ansatz for the metric tensor on our three-manifold, which allows us to translate our problem into the language of general relativity. Similar computations have been performed by Guralnik et al.[Ann. Phys. 308, 222 (2008)], although not in the adiabatic context.
Spatial adiabatic passage: a review of recent progress
NASA Astrophysics Data System (ADS)
Menchon-Enrich, R.; Benseny, A.; Ahufinger, V.; Greentree, A. D.; Busch, Th; Mompart, J.
2016-07-01
Adiabatic techniques are known to allow for engineering quantum states with high fidelity. This requirement is currently of large interest, as applications in quantum information require the preparation and manipulation of quantum states with minimal errors. Here we review recent progress on developing techniques for the preparation of spatial states through adiabatic passage, particularly focusing on three state systems. These techniques can be applied to matter waves in external potentials, such as cold atoms or electrons, and to classical waves in waveguides, such as light or sound.
Spatial adiabatic passage: a review of recent progress.
Menchon-Enrich, R; Benseny, A; Ahufinger, V; Greentree, A D; Busch, Th; Mompart, J
2016-07-01
Adiabatic techniques are known to allow for engineering quantum states with high fidelity. This requirement is currently of large interest, as applications in quantum information require the preparation and manipulation of quantum states with minimal errors. Here we review recent progress on developing techniques for the preparation of spatial states through adiabatic passage, particularly focusing on three state systems. These techniques can be applied to matter waves in external potentials, such as cold atoms or electrons, and to classical waves in waveguides, such as light or sound. PMID:27245462
Adiabatic fluctuations from cosmic strings in a contracting universe
Brandenberger, Robert H.; Takahashi, Tomo; Yamaguchi, Masahide E-mail: tomot@cc.saga-u.ac.jp
2009-07-01
We show that adiabatic, super-Hubble, and almost scale invariant density fluctuations are produced by cosmic strings in a contracting universe. An essential point is that isocurvature perturbations produced by topological defects such as cosmic strings on super-Hubble scales lead to a source term which seeds the growth of curvature fluctuations on these scales. Once the symmetry has been restored at high temperatures, the isocurvature seeds disappear, and the fluctuations evolve as adiabatic ones in the expanding phase. Thus, cosmic strings may be resurrected as a mechanism for generating the primordial density fluctuations observed today.
Quantum Adiabatic Pumping by Modulating Tunnel Phase in Quantum Dots
NASA Astrophysics Data System (ADS)
Taguchi, Masahiko; Nakajima, Satoshi; Kubo, Toshihiro; Tokura, Yasuhiro
2016-08-01
In a mesoscopic system, under zero bias voltage, a finite charge is transferred by quantum adiabatic pumping by adiabatically and periodically changing two or more control parameters. We obtained expressions for the pumped charge for a ring of three quantum dots (QDs) by choosing the magnetic flux penetrating the ring as one of the control parameters. We found that the pumped charge shows a steplike behavior with respect to the variance of the flux. The value of the step heights is not universal but depends on the trajectory of the control parameters. We discuss the physical origin of this behavior on the basis of the Fano resonant condition of the ring.
Classical nuclear motion coupled to electronic non-adiabatic transitions
NASA Astrophysics Data System (ADS)
Agostini, Federica; Abedi, Ali; Gross, E. K. U.
2014-12-01
Based on the exact factorization of the electron-nuclear wave function, we have recently proposed a mixed quantum-classical scheme [A. Abedi, F. Agostini, and E. K. U. Gross, Europhys. Lett. 106, 33001 (2014)] to deal with non-adiabatic processes. Here we present a comprehensive description of the formalism, including the full derivation of the equations of motion. Numerical results are presented for a model system for non-adiabatic charge transfer in order to test the performance of the method and to validate the underlying approximations.
Classical nuclear motion coupled to electronic non-adiabatic transitions
Agostini, Federica; Abedi, Ali; Gross, E. K. U.
2014-12-07
Based on the exact factorization of the electron-nuclear wave function, we have recently proposed a mixed quantum-classical scheme [A. Abedi, F. Agostini, and E. K. U. Gross, Europhys. Lett. 106, 33001 (2014)] to deal with non-adiabatic processes. Here we present a comprehensive description of the formalism, including the full derivation of the equations of motion. Numerical results are presented for a model system for non-adiabatic charge transfer in order to test the performance of the method and to validate the underlying approximations.
Iwata, Yusaku; Koseki, Hiroshi
2008-11-15
An automatic pressure tracking adiabatic calorimeter (APTAC) had been employed to obtain the thermokinetic and the vapor pressure data during runaway reactions. The APTAC is an adiabatic calorimeter with a large-scale sample mass and low thermal inertia, and is an extremely useful tool for assessing thermal hazards of reactive chemicals. The data obtained by the APTAC are important information for the design of the safe industrial process. The thermodynamics parameters and the gas production were discussed on the basis of the experimental data of various concentrations and weights of di-tert-butyl peroxide (DTBP)/toluene solution for the purpose of investigating the properties of the APTAC data. The thermal decomposition of DTBP was studied on the basis of the temperature data and the pressure data obtained by the APTAC. The activation energy and the frequency factor of DTBP are nearly constant and the same as the literature values in the concentrations between 20 and 60 wt.%. The pressure rise due to gas production is important data for designing the relief vent of a reactor. The time history of the gas production was investigated with various weights and concentrations. The total gas production index, which had the vapor pressure correction, was 1.0 in the decomposition of DTBP. PMID:18313846
Volume crossover in deeply supercooled water adiabatically freezing under isobaric conditions.
Aliotta, Francesco; Giaquinta, Paolo V; Pochylski, Mikolaj; Ponterio, Rosina C; Prestipino, Santi; Saija, Franz; Vasi, Cirino
2013-05-14
The irreversible return of a supercooled liquid to stable thermodynamic equilibrium often begins as a fast process which adiabatically drives the system to solid-liquid coexistence. Only at a later stage will solidification proceed with the expected exchange of thermal energy with the external bath. In this paper we discuss some aspects of the adiabatic freezing of metastable water at constant pressure. In particular, we investigated the thermal behavior of the isobaric gap between the molar volume of supercooled water and that of the warmer ice-water mixture which eventually forms at equilibrium. The available experimental data at ambient pressure, extrapolated into the metastable region within the scheme provided by the reference IAPWS-95 formulation, show that water ordinarily expands upon (partially) freezing under isenthalpic conditions. However, the same scheme also suggests that, for increasing undercoolings, the volume gap is gradually reduced and eventually vanishes at a temperature close to the currently estimated homogeneous ice nucleation temperature. This behavior is contrasted with that of substances which do not display a volumetric anomaly. The effect of increasing pressures on the alleged volume crossover from an expanded to a contracted ice-water mixture is also discussed. PMID:23676053
Volume crossover in deeply supercooled water adiabatically freezing under isobaric conditions
NASA Astrophysics Data System (ADS)
Aliotta, Francesco; Giaquinta, Paolo V.; Pochylski, Mikolaj; Ponterio, Rosina C.; Prestipino, Santi; Saija, Franz; Vasi, Cirino
2013-05-01
The irreversible return of a supercooled liquid to stable thermodynamic equilibrium often begins as a fast process which adiabatically drives the system to solid-liquid coexistence. Only at a later stage will solidification proceed with the expected exchange of thermal energy with the external bath. In this paper we discuss some aspects of the adiabatic freezing of metastable water at constant pressure. In particular, we investigated the thermal behavior of the isobaric gap between the molar volume of supercooled water and that of the warmer ice-water mixture which eventually forms at equilibrium. The available experimental data at ambient pressure, extrapolated into the metastable region within the scheme provided by the reference IAPWS-95 formulation, show that water ordinarily expands upon (partially) freezing under isenthalpic conditions. However, the same scheme also suggests that, for increasing undercoolings, the volume gap is gradually reduced and eventually vanishes at a temperature close to the currently estimated homogeneous ice nucleation temperature. This behavior is contrasted with that of substances which do not display a volumetric anomaly. The effect of increasing pressures on the alleged volume crossover from an expanded to a contracted ice-water mixture is also discussed.
Universal fault-tolerant adiabatic quantum computing with quantum dots or donors
NASA Astrophysics Data System (ADS)
Landahl, Andrew
I will present a conceptual design for an adiabatic quantum computer that can achieve arbitrarily accurate universal fault-tolerant quantum computations with a constant energy gap and nearest-neighbor interactions. This machine can run any quantum algorithm known today or discovered in the future, in principle. The key theoretical idea is adiabatic deformation of degenerate ground spaces formed by topological quantum error-correcting codes. An open problem with the design is making the four-body interactions and measurements it uses more technologically accessible. I will present some partial solutions, including one in which interactions between quantum dots or donors in a two-dimensional array can emulate the desired interactions in second-order perturbation theory. I will conclude with some open problems, including the challenge of reformulating Kitaev's gadget perturbation theory technique so that it preserves fault tolerance. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Zero-point energy, tunneling, and vibrational adiabaticity in the Mu + H2 reaction
Mielke, Steven L.; Garrett, Bruce C.; Fleming, Donald G.; Truhlar, Donald G.
2015-01-09
Abstract: Isotopic substitution of muonium for hydrogen provides an unparalleled opportunity to deepen our understanding of quantum mass effects on chemical reactions. A recent topical review [Aldegunde et al., Mol. Phys. 111, 3169 (2013)] of the thermal and vibrationally-stateselected reaction of Mu with H2 raises a number of issues that are addressed here. We show that some earlier quantum mechanical calculations of the Mu + H2 reaction, which are highlighted in this review and which have been used to benchmark approximate methods, are in error by as much as 19% in the low-temperature limit. We demonstrate that an approximate treatment of the Born–Oppenheimer diagonal correction that was used in some recent studies is not valid for treating the vibrationally-state-selected reaction. We also discuss why vibrationally adiabatic potentials that neglect bend zero-point energy are not a useful analytical tool for understanding reaction rates and why vibrationally nonadiabatic transitions cannot be understood by considering tunneling through vibrationally adiabatic potentials. Finally, we present calculations on a hierarchical family of potential energy surfaces to assess the sensitivity of rate constants to the quality of the potential surface.
Boehler, R.
1983-05-01
The pressure dependence of the melting temperatures of Li, Na, and K were measured to 32 kbar with accuracies in pressure and temperature of +- 0.4 percent and +- 0.25/sup 0/C, respectively. The measurements were made in a piston cylinder apparatus with a fluid pressure medium. The adiabatic pressure derivatives of temperature, (par. delta T/par. delta P)/sub s/, were measured to 32 kbar and 400/sup 0/C by a pressure pulse method. The logarithm of (par. delta T/par. delta P)/sub s/ decreases linearly with volume. The changes of (par. delta T/par. delta P)/sub s/ at the liquid-solid transitions fall within the data scatter. The Grueneisen parameter was calculated from ..gamma.. = B/sub s//T (par. delta T/par. delta P)/sub s/, where B/sub s/ is the adiabatic bulk modulus. For all three alkali metals, ..gamma.. decreases with compression in both the solid and the liquid states, and at constant volume, ..gamma.. decreases with temperature.
NASA Astrophysics Data System (ADS)
Quilliet, Catherine; Quemeneur, François; Marmottant, Philippe; Imhof, Arnout; Pépin-Donat, Brigitte; van Blaaderen, Alfons
2010-03-01
The deflation of elastic spherical surfaces has been numerically investigated, and show very different types of deformations according the range of elastic parameters, some of them being quantitatively explained through simple calculations. This allows to retrieve various shapes observed on hollow shells (from colloidal to centimeter scale), on lipid vesicles, or on some biological objects. The extension of this process to other geometries allows to modelize vegetal objects such as the ultrafast trap of carnivorous plants.
Elastic Collisions and Gravity
NASA Astrophysics Data System (ADS)
Ball, Steven
2009-04-01
Elastic collisions are fascinating demonstrations of conservation principles. The mediating force must be conservative in an elastic collision. Truly elastic collisions take place only when the objects in collision do not touch, e.g. magnetic bumpers on low friction carts. This requires that we define a collision as a momentum transfer. Elastic collisions in 1-D can be solved in general and the implications are quite remarkable. For example, a heavy object moving initially towards a light object followed by an elastic collision results in a final velocity of the light object greater than either initial velocity. This is easily demonstrated with low friction carts. Gravitational elastic collisions involving a light spacecraft and an extremely massive body like a moon or planet can be approximated as 1-D collisions, such as the ``free return'' trajectory of Apollo 13 around the moon. The most fascinating gravitational collisions involve the gravitational slingshot effect used to boost spacecraft velocities. The maximum gravitational slingshot effect occurs when approaching a nearly 1-D collision, revealing that the spacecraft can be boosted to greater than twice the planet velocity, enabling the spacecraft to travel much further away from the Sun.
Non-adiabatic and adiabatic transitions at level crossing with decay: two- and three-level systems
NASA Astrophysics Data System (ADS)
Kenmoe, M. B.; Mkam Tchouobiap, S. E.; Kenfack Sadem, C.; Tchapda, A. B.; Fai, L. C.
2015-03-01
We investigate the Landau-Zener (LZ) like dynamics of decaying two- and three-level systems with decay rates {{Γ }1} and {{Γ }2} for levels with minimum and maximum spin projection. Non-adiabatic and adiabatic transition probabilities are calculated from diabatic and adiabatic bases for two- and three-level systems. We extend the familiar two-level model of atoms with decay from the excited state out of the system into the hierarchy of three-level models which can be solved analytically or computationally in a non-perturbative manner. Exact analytical solutions are obtained within the framework of an extended form of the proposed procedure which enables to take into account all possible initial moments rather than large negative time {{t}0}=-∞ as in standard LZ problems. We elucidate the applications of our results from a unified theoretical basis that numerically analyzes the dynamics of a system as probed by experiments.
Dielectric Constant of Suspensions
NASA Astrophysics Data System (ADS)
Mendelson, Kenneth S.; Ackmann, James J.
1997-03-01
We have used a finite element method to calculate the dielectric constant of a cubic array of spheres. Extensive calculations support preliminary conclusions reported previously (K. Mendelson and J. Ackmann, Bull. Am. Phys. Soc. 41), 657 (1996).. At frequencies below 100 kHz the real part of the dielectric constant (ɛ') shows oscillations as a function of the volume fraction of suspension. These oscillations disappear at low conductivities of the suspending fluid. Measurements of the dielectric constant (J. Ackmann, et al., Ann. Biomed. Eng. 24), 58 (1996). (H. Fricke and H. Curtis, J. Phys. Chem. 41), 729 (1937). are not sufficiently sensitive to show oscillations but appear to be consistent with the theoretical results.
NASA Astrophysics Data System (ADS)
Kimura, Jun-Ichi; Kawabata, Hiroshi
2014-06-01
numerical mass balance calculation model for the adiabatic melting of a dry to hydrous peridotite has been programmed in order to simulate the trace element compositions of basalts from mid-ocean ridges, back-arc basins, ocean islands, and large igneous provinces. The Excel spreadsheet-based calculator, Hydrous Adiabatic Mantle Melting Simulator version 1 (HAMMS1) uses (1) a thermodynamic model of fractional adiabatic melting of mantle peridotite, with (2) the parameterized experimental melting relationships of primitive to depleted mantle sources in terms of pressure, temperature, water content, and degree of partial melting. The trace element composition of the model basalt is calculated from the accumulated incremental melts within the adiabatic melting regime, with consideration for source depletion. The mineralogic mode in the primitive to depleted source mantle in adiabat is calculated using parameterized experimental results. Partition coefficients of the trace elements of mantle minerals are parameterized to melt temperature mostly from a lattice strain model and are tested using the latest compilations of experimental results. The parameters that control the composition of trace elements in the model are as follows: (1) mantle potential temperature, (2) water content in the source mantle, (3) depth of termination of adiabatic melting, and (4) source mantle depletion. HAMMS1 enables us to obtain the above controlling parameters using Monte Carlo fitting calculations and by comparing the calculated basalt compositions to primary basalt compositions. Additionally, HAMMS1 compares melting parameters with a major element model, which uses petrogenetic grids formulated from experimental results, thus providing better constraints on the source conditions.
Hydrogen, deuterium and tritium in palladium: An eleastic constants study
Bach, H. T.; Schwarz, R. B.; Tuggle, D. G.
2004-01-01
We have used resonant ultrasound spectroscopy to measure the three independent elastic constants of Pd-H, Pd-D, and Pd-T single crystal at 300K as a junction of hydrogen, deuterium, and tritium concentration, respectively. The addition of interstitial H (D, or T) atoms, located at (0, 1/2, 0) in the fcc Pd lattice, affects all three elastic constants C, C{sub 44}, and B. In the mixed (a+{beta}) phase, and with increasing H isotope, the shear modulus C' shows an abnormal softening whereas C{sub 44} and B do not. This is explained in terms of Zener-type anelastic relaxations affecting the shape of the hydride phases in the coherent ({alpha}+{beta}) two-phase mixture In the single {beta}-phase, C' shows a strong isotope dependence whereas C{sub 44} and B show none. This behavior is explained in terms of differences in the excitation of optical phonons. In Pd-T, {sup 3}He is produced by the radioactive decay of tritium. We have measured in situ the swelling and the change in the elastic constants in Pd-T as a function of aging time. Aging ({sup 3}He formation) affects all three elastic constants. These measurements are being used to understand the early stages of {sup 3}H-{sup 3}He clusterformation in aged Pd-T crystal.
2005-06-20
This application (XrayOpticsConstants) is a tool for displaying X-ray and Optical properties for a given material, x-ray photon energy, and in the case of a gas, pressure. The display includes fields such as the photo-electric absorption attenuation length, density, material composition, index of refraction, and emission properties (for scintillator materials).
Elasticity of plagioclase feldspars
NASA Astrophysics Data System (ADS)
Brown, J. Michael; Angel, Ross J.; Ross, Nancy L.
2016-02-01
Elastic properties are reported for eight plagioclase feldspars that span compositions from albite (NaSi3AlO8) to anorthite (CaSi2Al2O8). Surface acoustic wave velocities measured using Impulsive Stimulated Light Scattering and compliance sums from high-pressure X-ray compression studies accurately determine all 21 components of the elasticity tensor for these triclinic minerals. The overall pattern of elasticity and the changes in individual elastic components with composition can be rationalized on the basis of the evolution of crystal structures and chemistry across this solid-solution join. All plagioclase feldspars have high elastic anisotropy; a* (the direction perpendicular to the b and c axes) is the softest direction by a factor of 3 in albite. From albite to anorthite the stiffness of this direction undergoes the greatest change, increasing twofold. Small discontinuities in the elastic components, inferred to occur between the three plagioclase phases with distinct symmetry (C1>¯, I1>¯, and P1>¯), appear consistent with the nature of the underlying conformation of the framework-linked tetrahedra and the associated structural changes. Measured body wave velocities of plagioclase-rich rocks, reported over the last five decades, are consistent with calculated Hill-averaged velocities using the current moduli. This confirms long-standing speculation that previously reported elastic moduli for plagioclase feldspars are systematically in error. The current results provide greater assurance that the seismic structure of the middle and lower crusts can be accurately estimated on the basis of specified mineral modes, chemistry, and fabric.
Elasticity of methane hydrate phases at high pressure
NASA Astrophysics Data System (ADS)
Beam, Jennifer; Yang, Jing; Liu, Jin; Liu, Chujie; Lin, Jung-Fu
2016-04-01
Determination of the full elastic constants (cij) of methane hydrates (MHs) at extreme pressure-temperature environments is essential to our understanding of the elastic, thermodynamic, and mechanical properties of methane in MH reservoirs on Earth and icy satellites in the solar system. Here, we have investigated the elastic properties of singe-crystal cubic MH-sI, hexagonal MH-II, and orthorhombic MH-III phases at high pressures in a diamond anvil cell. Brillouin light scattering measurements, together with complimentary equation of state (pressure-density) results from X-ray diffraction and methane site occupancies in MH from Raman spectroscopy, were used to derive elastic constants of MH-sI, MH-II, and MH-III phases at high pressures. Analysis of the elastic constants for MH-sI and MH-II showed intriguing similarities and differences between the phases' compressional wave velocity anisotropy and shear wave velocity anisotropy. Our results show that these high-pressure MH phases can exhibit distinct elastic, thermodynamic, and mechanical properties at relevant environments of their respective natural reservoirs. These results provide new insight into the determination of how much methane exists in MH reservoirs on Earth and on icy satellites elsewhere in the solar system and put constraints on the pressure and temperature conditions of their environment.
Elasticity of methane hydrate phases at high pressure.
Beam, Jennifer; Yang, Jing; Liu, Jin; Liu, Chujie; Lin, Jung-Fu
2016-04-21
Determination of the full elastic constants (cij) of methane hydrates (MHs) at extreme pressure-temperature environments is essential to our understanding of the elastic, thermodynamic, and mechanical properties of methane in MH reservoirs on Earth and icy satellites in the solar system. Here, we have investigated the elastic properties of singe-crystal cubic MH-sI, hexagonal MH-II, and orthorhombic MH-III phases at high pressures in a diamond anvil cell. Brillouin light scattering measurements, together with complimentary equation of state (pressure-density) results from X-ray diffraction and methane site occupancies in MH from Raman spectroscopy, were used to derive elastic constants of MH-sI, MH-II, and MH-III phases at high pressures. Analysis of the elastic constants for MH-sI and MH-II showed intriguing similarities and differences between the phases' compressional wave velocity anisotropy and shear wave velocity anisotropy. Our results show that these high-pressure MH phases can exhibit distinct elastic, thermodynamic, and mechanical properties at relevant environments of their respective natural reservoirs. These results provide new insight into the determination of how much methane exists in MH reservoirs on Earth and on icy satellites elsewhere in the solar system and put constraints on the pressure and temperature conditions of their environment. PMID:27389226
Regular and Irregular Correspondences ---Adiabatic Invariants in Classical and Quantum Mechanics---
NASA Astrophysics Data System (ADS)
Reinhardt, W. P.
We outline a rather extraordinary series of similarities between classical and quantal behavior in the limit of adiabatic time changes. These include the power laws for the goodness of the respective invariants for isolated eigenstates and invariant tori for integrable systems, the nature of the breakdown of the invariances--level crossing in quantum systems and the role of ever present non-linear resonances is examined in the case of generically non-integrable classical dynamics--and the perhaps surprising relationship for fully chaotic systems where sufficiently slow switching in either classical or quantal systems precisely preserves the number of energy levels up to a given energy. For suitably small values of Planck's constant these similarities yield clear examples of the Bohr correspondence principle linking classical and quantum mechanics; for larger values the details in the classical picture are quenched in the quantum.
Thermal behavior, specific heat capacity and adiabatic time-to-explosion of G(FOX-7).
Xu, Kangzhen; Song, Jirong; Zhao, Fengqi; Ma, Haixia; Gao, Hongxu; Chang, Chunran; Ren, Yinghui; Hu, Rongzu
2008-10-30
[H(2)N=C(NH(2))(2)](+)(FOX-7)(-)-G(FOX-7) was prepared by mixing FOX-7 and guanidinium chloride solution in potassium hydroxide solution. Its thermal decomposition was studied under the non-isothermal conditions with DSC and TG/DTG methods. The apparent activation energy (E) and pre-exponential constant (A) of the two exothermic decomposition stages were obtained by Kissinger's method and Ozawa's method, respectively. The critical temperature of thermal explosion (T(b)) was obtained as 201.72 degrees C. The specific heat capacity of G(FOX-7) was determined with Micro-DSC method and theoretical calculation method and the standard molar specific heat capacity is 282.025 J mol(-1) K(-1) at 298.15 K. Adiabatic time-to-explosion of G(FOX-7) was also calculated to be a certain value between 13.95 and 15.66 s. PMID:18336998
Ab initio adiabatic and diabatic potential-energy curves of the LiH molecule
NASA Astrophysics Data System (ADS)
Boutalib, A.; Gadéa, F. X.
1992-07-01
For nearly all states below the ionic limit [i.e., Li(2s, 2p, 3s, 3p, 3d, 4s, and 4p)+H] we perform the first adiabatic and diabatic studies. This treatment involves a nonempirical pseudopotential for Li and a full configuration-interaction treatment of the valence-electron system. Core-valence correlation is taken into account according to a core-polarization-potential method. We present an analysis of the diabatic curves and introduce appropriate small corrections accounting for basis-set limitations. For the low-lying states, our vibrational level spacings and spectroscopic constants are in excellent agreement with the available experimental data and with the best all-electron results. Experimental suggestions are given for the higher states.
Adiabatic quantum computing with phase modulated laser pulses
Goswami, Debabrata
2005-01-01
Implementation of quantum logical gates for multilevel systems is demonstrated through decoherence control under the quantum adiabatic method using simple phase modulated laser pulses. We make use of selective population inversion and Hamiltonian evolution with time to achieve such goals robustly instead of the standard unitary transformation language. PMID:17195865
A Kinetic Study of the Adiabatic Polymerization of Acrylamide.
ERIC Educational Resources Information Center
Thomson, R. A. M.
1986-01-01
Discusses theory, procedures, and results for an experiment which demonstrates the application of basic physics to chemical problems. The experiment involves the adiabatic process, in which polymerization carried out in a vacuum flask is compared to the theoretical prediction of the model with the temperature-time curve obtained in practice. (JN)
The flat Grothendieck-Riemann-Roch theorem without adiabatic techniques
NASA Astrophysics Data System (ADS)
Ho, Man-Ho
2016-09-01
In this paper we give a simplified proof of the flat Grothendieck-Riemann-Roch theorem. The proof makes use of the local family index theorem and basic computations of the Chern-Simons form. In particular, it does not involve any adiabatic limit computation of the reduced eta-invariant.
Fast Quasi-Adiabatic Gas Cooling: An Experiment Revisited
ERIC Educational Resources Information Center
Oss, S.; Gratton, L. M.; Calza, G.; Lopez-Arias, T.
2012-01-01
The well-known experiment of the rapid expansion and cooling of the air contained in a bottle is performed with a rapidly responsive, yet very cheap thermometer. The adiabatic, low temperature limit is approached quite closely and measured with our apparatus. A straightforward theoretical model for this process is also presented and discussed.…
Failure of geometric electromagnetism in the adiabatic vector Kepler problem
Anglin, J.R.; Schmiedmayer, J.
2004-02-01
The magnetic moment of a particle orbiting a straight current-carrying wire may precess rapidly enough in the wire's magnetic field to justify an adiabatic approximation, eliminating the rapid time dependence of the magnetic moment and leaving only the particle position as a slow degree of freedom. To zeroth order in the adiabatic expansion, the orbits of the particle in the plane perpendicular to the wire are Keplerian ellipses. Higher-order postadiabatic corrections make the orbits precess, but recent analysis of this 'vector Kepler problem' has shown that the effective Hamiltonian incorporating a postadiabatic scalar potential ('geometric electromagnetism') fails to predict the precession correctly, while a heuristic alternative succeeds. In this paper we resolve the apparent failure of the postadiabatic approximation, by pointing out that the correct second-order analysis produces a third Hamiltonian, in which geometric electromagnetism is supplemented by a tensor potential. The heuristic Hamiltonian of Schmiedmayer and Scrinzi is then shown to be a canonical transformation of the correct adiabatic Hamiltonian, to second order. The transformation has the important advantage of removing a 1/r{sup 3} singularity which is an artifact of the adiabatic approximation.
When an Adiabatic Irreversible Expansion or Compression Becomes Reversible
ERIC Educational Resources Information Center
Anacleto, Joaquim; Ferreira, J. M.; Soares, A. A.
2009-01-01
This paper aims to contribute to a better understanding of the concepts of a "reversible process" and "entropy". For this purpose, an adiabatic irreversible expansion or compression is analysed, by considering that an ideal gas is expanded (compressed), from an initial pressure P[subscript i] to a final pressure P[subscript f], by being placed in…
Digitized adiabatic quantum computing with a superconducting circuit.
Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M
2016-06-01
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable. PMID:27279216
Digitized adiabatic quantum computing with a superconducting circuit
NASA Astrophysics Data System (ADS)
Barends, R.; Shabani, A.; Lamata, L.; Kelly, J.; Mezzacapo, A.; Heras, U. Las; Babbush, R.; Fowler, A. G.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; O’Malley, P. J. J.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Solano, E.; Neven, H.; Martinis, John M.
2016-06-01
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.
Nonadiabatic quantum Liouville and master equations in the adiabatic basis
Jang, Seogjoo
2012-12-14
A compact form of nonadiabatic molecular Hamiltonian in the basis of adiabatic electronic states and nuclear position states is presented. The Hamiltonian, which includes both the first and the second derivative couplings, is Hermitian and thus leads to a standard expression for the quantum Liouville equation for the density operator. With the application of a projection operator technique, a quantum master equation for the diagonal components of the density operator is derived. Under the assumption that nuclear states are much more short ranged compared to electronic states and assuming no singularity, a semi-adiabatic approximation is invoked, which results in expressions for the nonadiabatic molecular Hamiltonian and the quantum Liouville equation that are much more amenable to advanced quantum dynamics calculation. The semi-adiabatic approximation is also applied to a resonance energy transfer system consisting of a donor and an acceptor interacting via Coulomb terms, and explicit detailed expressions for exciton-bath Hamiltonian including all the non-adiabatic terms are derived.
The density temperature and the dry and wet virtual adiabats
NASA Technical Reports Server (NTRS)
Bartlo, J.; Betts, Alan K.
1991-01-01
A density temperature is introduced to represent virtual temperature and potential temperature on thermodynamic diagrams. This study reviews how the dry and wet virtual adiabats can be used to represent stability and air parcel density for unsaturated and cloudy air, and present formula and tabulations.
Adiabatic single scan two-dimensional NMR spectrocopy.
Pelupessy, Philippe
2003-10-01
New excitation schemes, based on the use adiabatic pulses, for single scan two-dimensional NMR experiments (Frydman et al., Proc. Nat. Acad. Sci. 2002, 99, 15 858-15 862) are introduced. The advantages are discussed. Applications in homo- and heteronuclear experiments are presented. PMID:14519020
SIMULATION OF CONTINUOUS-CONTACT SEPARATION PROCESSES: MULTICOMPONENT, ADIABATIC ABSORPTION
A new algorithm has been developed for the steady-state simulation of multicomponent, adiabatic absorption in packed columns. The system of differential model equations that describe the physical absorption process is reduced to algebraic equations by using a finite difference me...
Anisotropic elasticity of DyScO3 substrates
NASA Astrophysics Data System (ADS)
Janovská, Michaela; Sedlák, Petr; Seiner, Hanuš; Landa, Michal; Marton, Pavel; Ondrejkovič, Petr; Hlinka, Jiří
2012-09-01
The full elastic tensor of orthorhombic dysprosium scandate (DyScO3) at room temperature was determined by resonant ultrasound spectroscopy (RUS). Measurements were performed on three 500 μm thick substrates with orientations (110), (100) and (001) in the Pbnm (a < b < c) setting. For this purpose, a modification of the RUS method was developed, enabling simultaneous processing of the resonant spectra of several platelet-shaped samples with different crystallographic orientations. The obtained results are compared with ab initio calculations and with elastic constants of other rare-earth scandates, and are used for discussion of the in-plane elasticity of the (110)-oriented substrate.
Non-adiabatic response of relativistic radiation belt electrons to GEM magnetic storms
NASA Astrophysics Data System (ADS)
McAdams, K. L.; Reeves, G. D.
The importance of fully adiabatic effects in the relativistic radiation belt electron response to magnetic storms is poorly characterized due to many difficulties in calculating adiabatic flux response. Using the adiabatic flux model of Kim and Chan [1997a] and Los Alamos National Laboratory geosynchronous satellite data, we examine the relative timing of the adiabatic and non-adiabatic flux responses. In the three storms identified by the GEM community for in depth study, the non-adiabatic energization occurs hours earlier than the adiabatic re-energization. The adiabatic energization can account for only 10-20% of the flux increases in the first recovery stages, and only 1% of the flux increase if there is continuing activity.
Moll, Jochen
2016-09-01
This work is based on the experimental observation that the phase and group velocity of the fundamental antisymmetric wave mode in a composite structure with linearly varying thickness changes as it propagates along the nonuniform waveguide (Moll et al., 2015). This adiabatic wave motion leads to systematic damage localization errors of conventional algorithms because a constant wave velocity is assumed in the reconstruction process. This paper presents a generalized beamforming approach for composite structures with nonuniform cross section that eliminates this systematic error. Damage localization results will be presented and discussed in comparison to existing techniques. PMID:27317966
Model for the elastic behavior near intermartensitic transitions
NASA Astrophysics Data System (ADS)
Dai, Liyang; Cullen, James; Wuttig, Manfred
2005-05-01
Transitions between different martensitic states have been observed in Ni0.50Mn0.284Ga0.216 using elastic constant measurements. In this paper, we develop a model to explain the reentrant behavior based on a Landau expansion of the free energy in strain space. Here, we assume that the coefficient of the third-order term as well as the second-order term has significant temperature dependence. This assumption results in a C' versus temperature in good agreement with observation. The model and possible modifications to it are discussed and compared to the elastic constant data.
High pressure phase transition and elastic properties of americium telluride
NASA Astrophysics Data System (ADS)
Aynyas, Mahendra; Rukmangad, Aditi; Arya, B. S.; Sanyal, S. P.
2013-06-01
The structural and elastic properties of Americium Telluride (AmTe) have been investigated by using a modified inter-ionic potential theory (MIPT). This theory is capable of explaining first order phase transition with a crystallographic change NaCl to CsCl structure for this compound. The values of optimized lattice constant, phase transition pressure, zero pressure bulk modulus and second order elastic constants (C11, C44) agree well with their corresponding experimental data. Debye temperature (θD) is also calculated for this compound for the first time.
Olive, Keith A.; Peloso, Marco; Uzan, Jean-Philippe
2011-02-15
We consider the signatures of a domain wall produced in the spontaneous symmetry breaking involving a dilatonlike scalar field coupled to electromagnetism. Domains on either side of the wall exhibit slight differences in their respective values of the fine-structure constant, {alpha}. If such a wall is present within our Hubble volume, absorption spectra at large redshifts may or may not provide a variation in {alpha} relative to the terrestrial value, depending on our relative position with respect to the wall. This wall could resolve the contradiction between claims of a variation of {alpha} based on Keck/Hires data and of the constancy of {alpha} based on Very Large Telescope data. We derive the properties of the wall and the parameters of the underlying microscopic model required to reproduce the possible spatial variation of {alpha}. We discuss the constraints on the existence of the low-energy domain wall and describe its observational implications concerning the variation of the fundamental constants.
Renormalization of Newton's constant
NASA Astrophysics Data System (ADS)
Falls, Kevin
2015-12-01
The problem of obtaining a gauge independent beta function for Newton's constant is addressed. By a specific parametrization of metric fluctuations a gauge independent functional integral is constructed for the semiclassical theory around an arbitrary Einstein space. The effective action then has the property that only physical polarizations of the graviton contribute, while all other modes cancel with the functional measure. We are then able to compute a gauge independent beta function for Newton's constant in d dimensions to one-loop order. No Landau pole is present provided Ng<18 , where Ng=d (d -3 )/2 is the number of polarizations of the graviton. While adding a large number of matter fields can change this picture, the absence of a pole persists for the particle content of the standard model in four spacetime dimensions.
NASA Astrophysics Data System (ADS)
Zacharias, Mario; Paul, Indranil; Garst, Markus
2015-07-01
We discuss elastic instabilities of the atomic crystal lattice at zero temperature. Because of long-range shear forces of the solid, at such transitions the phonon velocities vanish, if at all, only along certain crystallographic directions, and, consequently, the critical phonon fluctuations are suppressed to a lower dimensional manifold and governed by a Gaussian fixed point. In the case of symmetry-breaking elastic transitions, a characteristic critical phonon thermodynamics arises that is found, e.g., to violate Debye's T3 law for the specific heat. We point out that quantum critical elasticity is triggered whenever a critical soft mode couples linearly to the strain tensor. In particular, this is relevant for the electronic Ising-nematic quantum phase transition in a tetragonal crystal as discussed in the context of certain cuprates, ruthenates, and iron-based superconductors.
Sewell, T. D.; Bedrov, D.; Menikoff, Ralph; Smith, G. D.
2001-01-01
Atomistic molecular dynamics simulations have been used to calculate isothermal elastic properties for {beta}-, {alpha}-, and {delta}-HMX. The complete elastic tensor for each polymorph was determined at room temperature and pressure via analysis of microscopic strain fluctuations using formalism due to Rahman and Parrinello [J. Chem. Phys. 76,2662 (1982)]. Additionally, the isothermal compression curve was computed for {beta}-HMX for 0 {le} p {le} 10.6 GPa; the bulk modulus K and its pressure derivative K{prime} were obtained from two fitting forms employed previously in experimental studies of the {beta}-HMX equation of state. Overall, the results indicate good agreement between the bulk modulus predicted from the measured and calculated compression curves. The bulk modulus determined directly from the elastic tensor of {beta}-HMX is in significant disagreement with the compression curve-based results. The explanation for this discrepancy is an area of current research.
Yu, Betty; Kang, Soo-Young; Akthakul, Ariya; Ramadurai, Nithin; Pilkenton, Morgan; Patel, Alpesh; Nashat, Amir; Anderson, Daniel G; Sakamoto, Fernanda H; Gilchrest, Barbara A; Anderson, R Rox; Langer, Robert
2016-08-01
We report the synthesis and application of an elastic, wearable crosslinked polymer layer (XPL) that mimics the properties of normal, youthful skin. XPL is made of a tunable polysiloxane-based material that can be engineered with specific elasticity, contractility, adhesion, tensile strength and occlusivity. XPL can be topically applied, rapidly curing at the skin interface without the need for heat- or light-mediated activation. In a pilot human study, we examined the performance of a prototype XPL that has a tensile modulus matching normal skin responses at low strain (<40%), and that withstands elongations exceeding 250%, elastically recoiling with minimal strain-energy loss on repeated deformation. The application of XPL to the herniated lower eyelid fat pads of 12 subjects resulted in an average 2-grade decrease in herniation appearance in a 5-point severity scale. The XPL platform may offer advanced solutions to compromised skin barrier function, pharmaceutical delivery and wound dressings. PMID:27159017
Elastic membranes in confinement.
Bostwick, J B; Miksis, M J; Davis, S H
2016-07-01
An elastic membrane stretched between two walls takes a shape defined by its length and the volume of fluid it encloses. Many biological structures, such as cells, mitochondria and coiled DNA, have fine internal structure in which a membrane (or elastic member) is geometrically 'confined' by another object. Here, the two-dimensional shape of an elastic membrane in a 'confining' box is studied by introducing a repulsive confinement pressure that prevents the membrane from intersecting the wall. The stage is set by contrasting confined and unconfined solutions. Continuation methods are then used to compute response diagrams, from which we identify the particular membrane mechanics that generate mitochondria-like shapes. Large confinement pressures yield complex response diagrams with secondary bifurcations and multiple turning points where modal identities may change. Regions in parameter space where such behaviour occurs are then mapped. PMID:27440257
Zacharias, Mario; Paul, Indranil; Garst, Markus
2015-07-10
We discuss elastic instabilities of the atomic crystal lattice at zero temperature. Because of long-range shear forces of the solid, at such transitions the phonon velocities vanish, if at all, only along certain crystallographic directions, and, consequently, the critical phonon fluctuations are suppressed to a lower dimensional manifold and governed by a Gaussian fixed point. In the case of symmetry-breaking elastic transitions, a characteristic critical phonon thermodynamics arises that is found, e.g., to violate Debye's T(3) law for the specific heat. We point out that quantum critical elasticity is triggered whenever a critical soft mode couples linearly to the strain tensor. In particular, this is relevant for the electronic Ising-nematic quantum phase transition in a tetragonal crystal as discussed in the context of certain cuprates, ruthenates, and iron-based superconductors. PMID:26207483
NASA Astrophysics Data System (ADS)
Yu, Betty; Kang, Soo-Young; Akthakul, Ariya; Ramadurai, Nithin; Pilkenton, Morgan; Patel, Alpesh; Nashat, Amir; Anderson, Daniel G.; Sakamoto, Fernanda H.; Gilchrest, Barbara A.; Anderson, R. Rox; Langer, Robert
2016-08-01
We report the synthesis and application of an elastic, wearable crosslinked polymer layer (XPL) that mimics the properties of normal, youthful skin. XPL is made of a tunable polysiloxane-based material that can be engineered with specific elasticity, contractility, adhesion, tensile strength and occlusivity. XPL can be topically applied, rapidly curing at the skin interface without the need for heat- or light-mediated activation. In a pilot human study, we examined the performance of a prototype XPL that has a tensile modulus matching normal skin responses at low strain (<40%), and that withstands elongations exceeding 250%, elastically recoiling with minimal strain-energy loss on repeated deformation. The application of XPL to the herniated lower eyelid fat pads of 12 subjects resulted in an average 2-grade decrease in herniation appearance in a 5-point severity scale. The XPL platform may offer advanced solutions to compromised skin barrier function, pharmaceutical delivery and wound dressings.
Non-adiabatic resonant conversion of solar neutrinos in three generations
NASA Astrophysics Data System (ADS)
Kim, C. W.; Nussinov, S.; Sze, W. K.
1987-02-01
The survival probability of solar electron neutrinos after non-adiabatic passage through the resonance-oscillation region in the Sun is discussed for the case of three generations. A method to calculate three-generation Landau-Zener transition probabilities between adiabatic states is described. We also discuss how the Landua-Zener probability is modified in the extreme non-adiabatic case.
Varying constants quantum cosmology
Leszczyńska, Katarzyna; Balcerzak, Adam; Dabrowski, Mariusz P. E-mail: abalcerz@wmf.univ.szczecin.pl
2015-02-01
We discuss minisuperspace models within the framework of varying physical constants theories including Λ-term. In particular, we consider the varying speed of light (VSL) theory and varying gravitational constant theory (VG) using the specific ansätze for the variability of constants: c(a) = c{sub 0} a{sup n} and G(a)=G{sub 0} a{sup q}. We find that most of the varying c and G minisuperspace potentials are of the tunneling type which allows to use WKB approximation of quantum mechanics. Using this method we show that the probability of tunneling of the universe ''from nothing'' (a=0) to a Friedmann geometry with the scale factor a{sub t} is large for growing c models and is strongly suppressed for diminishing c models. As for G varying, the probability of tunneling is large for G diminishing, while it is small for G increasing. In general, both varying c and G change the probability of tunneling in comparison to the standard matter content (cosmological term, dust, radiation) universe models.
Connecting Fundamental Constants
Di Mario, D.
2008-05-29
A model for a black hole electron is built from three basic constants only: h, c and G. The result is a description of the electron with its mass and charge. The nature of this black hole seems to fit the properties of the Planck particle and new relationships among basic constants are possible. The time dilation factor in a black hole associated with a variable gravitational field would appear to us as a charge; on the other hand the Planck time is acting as a time gap drastically limiting what we are able to measure and its dimension will appear in some quantities. This is why the Planck time is numerically very close to the gravitational/electric force ratio in an electron: its difference, disregarding a {pi}{radical}(2) factor, is only 0.2%. This is not a coincidence, it is always the same particle and the small difference is between a rotating and a non-rotating particle. The determination of its rotational speed yields accurate numbers for many quantities, including the fine structure constant and the electron magnetic moment.
NASA Astrophysics Data System (ADS)
Jackson, Neal
2015-09-01
I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H_0 values of around 72-74 km s^-1 Mpc^-1, with typical errors of 2-3 km s^-1 Mpc^-1. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67-68 km s^-1 Mpc^-1 and typical errors of 1-2 km s^-1 Mpc^-1. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.
NASA Astrophysics Data System (ADS)
Habibi, M.; Ribe, N. M.; Bonn, Daniel
2007-10-01
A rope falling onto a solid surface typically forms a series of regular coils. Here, we study this phenomenon using laboratory experiments (with cotton threads and softened spaghetti) and an asymptotic “slender-rope” numerical model. The excellent agreement between the two with no adjustable parameters allows us to determine a complete phase diagram for elastic coiling comprising three basic regimes involving different force balances (elastic, gravitational, and inertial) together with resonant “whirling string” and “whirling shaft” eigenmodes in the inertial regime.
Elastic response and wrinkling onset of curved elastic membranes subjected to indentation test.
Bernal, R; Tassius, Ch; Melo, F; Géminard, J-Ch
2011-02-01
Starting from a polymeric-fluid droplet, by vulcanization of the fluid free surface, curved elastic membranes, several nanometers thick and a few millimeters in diameter, which enclose a constant fluid volume, are produced. In an indentation-type test, carried out by pushing the membrane along its normal by means of a micro-needle, under some conditions, wrinkles are likely to appear around the contact region. Interestingly, we observe that the instability does not significantly alter the force-displacement relation: the relation between the force and the displacement remains linear and the associated stiffness is simply proportional to the tension of the membrane. In addition, we determine that the wrinkles develop when the stretching modulus of the membrane compares with its tension, which provides a useful method to estimate the elastic constant. PMID:21337016
The efficiency of combustion turbines with constant-pressure combustion
NASA Technical Reports Server (NTRS)
Piening, Werner
1941-01-01
Of the two fundamental cycles employed in combustion turbines, namely, the explosion (or constant-volume) cycle and the constant-pressure cycle, the latter is considered more in detail and its efficiency is derived with the aid of the cycle diagrams for the several cases with adiabatic and isothermal compression and expansion strokes and with and without utilization of the exhaust heat. Account is also taken of the separate efficiencies of the turbine and compressor and of the pressure losses and heat transfer in the piping. The results show that without the utilization of the exhaust heat the efficiencies for the two cases of adiabatic and isothermal compression is offset by the increase in the heat supplied. It may be seen from the curves that it is necessary to attain separate efficiencies of at least 80 percent in order for useful results to be obtained. There is further shown the considerable effect on the efficiency of pressure losses in piping or heat exchangers.
Finite-temperature elasticity of fcc Al: Atomistic simulations and ultrasonic measurements
NASA Astrophysics Data System (ADS)
Pham, Hieu H.; Williams, Michael E.; Mahaffey, Patrick; Radovic, Miladin; Arroyave, Raymundo; Cagin, Tahir
2011-08-01
Though not very often, there are some cases in the literature where discrepancies exist in the temperature dependence of elastic constants of materials. A particular example of this case is the behavior of C12 coefficient of a simple metal, aluminum. In this paper we attempt to provide insight into various contributions to temperature dependence in elastic properties by investigating the thermoelastic properties of fcc aluminum as a function of temperature through the use of two computational techniques and experiments. First, ab initio calculations based on density functional theory (DFT) are used in combination with quasiharmonic theory to calculate the elastic constants at finite temperatures through a strain-free energy approach. Molecular dynamics (MD) calculations using tight-binding potentials are then used to extract the elastic constants through a fluctuation-based formalism. Through this dynamic approach, the different contributions (Born, kinetic, and stress fluctuations) to the elastic constants are isolated and the underlying physical basis for the observed thermally induced softening is elucidated. The two approaches are then used to shed light on the relatively large discrepancies in the reported temperature dependence of the elastic constants of fcc aluminum. Finally, the polycrystalline elastic constants (and their temperature dependence) of fcc aluminum are determined using resonant ultrasound spectroscopy (RUS) and compared to previously published data as well as the atomistic calculations performed in this work.
Elastic and Inelastic Collisions
ERIC Educational Resources Information Center
Gluck, Paul
2010-01-01
There have been two articles in this journal that described a pair of collision carts used to demonstrate vividly the difference between elastic and inelastic collisions. One cart had a series of washers that were mounted rigidly on a rigid wooden framework, the other had washers mounted on rubber bands stretched across a framework. The rigidly…
ERIC Educational Resources Information Center
Gordon, Warren B.
2006-01-01
This paper examines the elasticity of demand, and shows that geometrically, it may be interpreted as the ratio of two simple distances along the tangent line: the distance from the point on the curve to the x-intercept to the distance from the point on the curve to the y-intercept. It also shows that total revenue is maximized at the transition…
ERIC Educational Resources Information Center
Cocco, Alberto; Masin, Sergio Cesare
2010-01-01
Participants estimated the imagined elongation of a spring while they were imagining that a load was stretching the spring. This elongation turned out to be a multiplicative function of spring length and load weight--a cognitive law analogous to Hooke's law of elasticity. Participants also estimated the total imagined elongation of springs joined…
Elastically tailored composite structures
NASA Technical Reports Server (NTRS)
2000-01-01
Elastically tailored composite structures using out-of-autoclave processes. Several unsymetric autoclave-cured and electron-beam-cured composite laminates are compared. Cantilevered beam (unbalanced/asymetric laminate) used to demonstrate bend-twist coupling effects. Photographed in building 1145, photographic studio.
Hydrodynamic Elastic Magneto Plastic
1985-02-01
The HEMP code solves the conservation equations of two-dimensional elastic-plastic flow, in plane x-y coordinates or in cylindrical symmetry around the x-axis. Provisions for calculation of fixed boundaries, free surfaces, pistons, and boundary slide planes have been included, along with other special conditions.
Dynamic Acousto-Elasticity: Pressure and Frequency Dependences in Berea Sandstone.
NASA Astrophysics Data System (ADS)
Riviere, J. V.; Pimienta, L.; Latour, S.; Fortin, J.; Schubnel, A.; Johnson, P. A.
2014-12-01
Nonlinear elasticity is studied at the laboratory scale with the goal of understanding observations at earth scales, for instance during strong ground motion, tidal forcing and earthquake slip processes. Here we report frequency and pressure dependences on elasticity when applying dynamic acousto-elasticity (DAE) of rock samples, analogous to quasi-static acousto-elasticity. DAE allows one to obtain the elastic behavior over the entire dynamic cycle, detailing the full nonlinear behavior under tension and compression, including hysteresis and memory effects. We perform DAE on a sample of Berea sandstone subject to 0.5MPa uniaxial load, with sinusoidal oscillating strain amplitudes ranging from 10-6 to 10-5 and at frequencies from 0.1 to 260Hz. In addition, the confining pressure is increased stepwise from 0 to 30MPa. We compare results to previous measurements made at lower (mHz) and higher (kHz) frequencies. Nonlinear elastic parameters corresponding to conditioning effects, third order elastic constants and fourth order elastic constants are quantitatively compared over the pressure and frequency ranges. We observe that the decrease in modulus due to conditioning increases with frequency, suggesting a frequency and/or strain-rate dependence that should be included in nonlinear elastic models of rocks. In agreement with previous measurements, nonlinear elastic effects also decrease with confining pressure, suggesting that nonlinear elastic sources such as micro-cracks, soft bonds and dislocations are turned off as the pressure increases.
NASA Astrophysics Data System (ADS)
Awodola, T. O.; Omolofe, B.
2014-09-01
The dynamic response to moving concentrated masses of elastically supported rectangular plates resting on Winkler elastic foundation is investigated in this work. This problem, involving non-classical boundary conditions, is solved and illustrated with two common examples often encountered in engineering practice. Analysis of the closed form solutions shows that, for the same natural frequency (i) the response amplitude for the moving mass problem is greater than that one of the moving force problem for fixed Rotatory inertia correction factor R0 and foundation modulus F0, (ii) The critical speed for the moving mass problem is smaller than that for the moving force problem and so resonance is reached earlier in the former. The numerical results in plotted curves show that, for the elastically supported plate, as the value of R0 increases, the response amplitudes of the plate decrease and that, for fixed value of R0, the displacements of the plate decrease as F0 increases. The results also show that for fixed R0 and F0, the transverse deflections of the plates under the actions of moving masses are higher than those when only the force effects of the moving load are considered. Hence, the moving force solution is not a save approximation to the moving mass problem. Also, as the mass ratio Γ approaches zero, the response amplitude of the moving mass problem approaches that one of the moving force problem of the elastically supported rectangular plate resting on constant Winkler elastic foundation.
Frequency dependent elastic impedance inversion for interstratified dispersive elastic parameters
NASA Astrophysics Data System (ADS)
Zong, Zhaoyun; Yin, Xingyao; Wu, Guochen
2016-08-01
The elastic impedance equation is extended to frequency dependent elastic impedance equation by taking partial derivative to frequency. With this equation as the forward solver, a practical frequency dependent elastic impedance inversion approach is presented to implement the estimation of the interstratified dispersive elastic parameters which makes full use of the frequency information of elastic impedances. Three main steps are included in this approach. Firstly, the elastic Bayesian inversion is implemented for the estimation of elastic impedances from different incident angle. Secondly, with those estimated elastic impedances, their variations are used to estimate P-wave velocity and S-wave velocity. Finally, with the prior elastic impedance and P-wave and S-wave velocity information, the frequency dependent elastic variation with incident angle inversion is presented for the estimation of the interstratified elastic parameters. With this approach, the interstratified elastic parameters rather than the interface information can be estimated, making easier the interpretation of frequency dependent seismic attributes. The model examples illustrate the feasibility and stability of the proposed method in P-wave velocity dispersion and S-wave velocity dispersion estimation. The field data example validates the possibility and efficiency in hydrocarbon indication of the estimated P-wave velocity dispersion and S-wave velocity dispersion.
Experimental implementation of adiabatic passage between different topological orders.
Peng, Xinhua; Luo, Zhihuang; Zheng, Wenqiang; Kou, Supeng; Suter, Dieter; Du, Jiangfeng
2014-08-22
Topological orders are exotic phases of matter existing in strongly correlated quantum systems, which are beyond the usual symmetry description and cannot be distinguished by local order parameters. Here we report an experimental quantum simulation of the Wen-plaquette spin model with different topological orders in a nuclear magnetic resonance system, and observe the adiabatic transition between two Z(2) topological orders through a spin-polarized phase by measuring the nonlocal closed-string (Wilson loop) operator. Moreover, we also measure the entanglement properties of the topological orders. This work confirms the adiabatic method for preparing topologically ordered states and provides an experimental tool for further studies of complex quantum systems. PMID:25192080
Adiabatic and diabatic process of sum frequency conversion.
Liqing, Ren; Yongfang, Li; Baihong, Li; Lei, Wang; Zhaohua, Wang
2010-09-13
Based on the dressed state formalism, we obtain the adiabatic criterion of the sum frequency conversion. We show that this constraint restricts the energy conversion between the two dressed fields, which are superpositions of the signal field and the sum frequency field. We also show that the evolution of the populations of the dressed fields, which in turn describes the conversion of light photons from the seed frequency to the sum frequency during propagation through the nonlinear crystal. Take the quasiphased matched (QPM) scheme as an example, we calculate the expected bandwidth of the frequency conversion process, and its dependence on the length of the crystal. We demonstrate that the evolutionary patterns of the sum frequency field's energy are similar to the Fresnel diffraction of a light field. We finally show that the expected bandwidth can be also deduced from the evolution of the adiabaticity of the dressed fileds. PMID:20940935
On the off-stoichiometric peaking of adiabatic flame temperature
Law, C.K.; Lu, T.F.; Makino, A.
2006-06-15
The characteristic rich shifting of the maximum adiabatic flame temperature from the stoichiometric value for mixtures of hydrocarbon and air is demonstrated to be caused by product dissociation and hence reduced amount of heat release. Since the extent of dissociation is greater on the lean side as a result of the stoichiometry of dissociated products, the peaking occurs on the rich side. The specific heat per unit mass of the mixture is shown to increase monotonically with increasing fuel concentration, and as such tends to shift the peak toward the lean side. It is further shown that this is the cause for the lean shifting of the adiabatic flame temperature of oxidizer-enriched mixtures of N{sub m}H{sub n} and F{sub 2} and of NH{sub 3} and O{sub 2}, with various amounts of inert dilution, even though their maximum heat release still peaks on the rich side. (author)
Microscopic expression for heat in the adiabatic basis.
Polkovnikov, Anatoli
2008-11-28
We derive a microscopic expression for the instantaneous diagonal elements of the density matrix rho(nn)(t) in the adiabatic basis for an arbitrary time-dependent process in a closed Hamiltonian system. If the initial density matrix is stationary (diagonal) then this expression contains only squares of absolute values of matrix elements of the evolution operator, which can be interpreted as transition probabilities. We then derive the microscopic expression for the heat defined as the energy generated due to transitions between instantaneous energy levels. If the initial density matrix is passive [diagonal with rho(nn)(0) monotonically decreasing with energy] then the heat is non-negative in agreement with basic expectations of thermodynamics. Our findings also can be used for systematic expansion of various observables around the adiabatic limit. PMID:19113464
Non-adiabatic dynamics of molecules in optical cavities
NASA Astrophysics Data System (ADS)
Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul
2016-02-01
Strong coupling of molecules to the vacuum field of micro cavities can modify the potential energy surfaces thereby opening new photophysical and photochemical reaction pathways. While the influence of laser fields is usually described in terms of classical field, coupling to the vacuum state of a cavity has to be described in terms of dressed photon-matter states (polaritons) which require quantized fields. We present a derivation of the non-adiabatic couplings for single molecules in the strong coupling regime suitable for the calculation of the dressed state dynamics. The formalism allows to use quantities readily accessible from quantum chemistry codes like the adiabatic potential energy surfaces and dipole moments to carry out wave packet simulations in the dressed basis. The implications for photochemistry are demonstrated for a set of model systems representing typical situations found in molecules.
Fastest Effectively Adiabatic Transitions for a Collection of Harmonic Oscillators.
Boldt, Frank; Salamon, Peter; Hoffmann, Karl Heinz
2016-05-19
We discuss fastest effectively adiabatic transitions (FEATs) for a collection of noninteracting harmonic oscillators with shared controllable real frequencies. The construction of such transitions is presented for given initial and final equilibrium states, and the dependence of the minimum time control on the interval of achievable frequencies is discussed. While the FEAT times and associated FEAT processes are important in their own right as optimal controls, the FEAT time is an added feature which provides a measure of the quality of a shortcut to adiabaticity (STA). The FEAT time is evaluated for a previously reported experiment, wherein a cloud of Rb atoms is cooled following a STA recipe that took about twice as long as the FEAT speed limit, a time efficiency of 50%. PMID:26811863
Ultrafast adiabatic manipulation of slow light in a photonic crystal
Kampfrath, T.; Kuipers, L.; Beggs, D. M.; White, T. P.; Krauss, T. F.; Melloni, A.
2010-04-15
We demonstrate by experiment and theory that a light pulse propagating through a Si-based photonic-crystal waveguide is adiabatically blueshifted when the refractive index of the Si is reduced on a femtosecond time scale. Thanks to the use of slow-light modes, we are able to shift a 1.3-ps pulse at telecom frequencies by 0.3 THz with an efficiency as high as 80% in a waveguide as short as 19{mu}m. An analytic theory reproduces the experimental data excellently, which shows that adiabatic dynamics are possible even on the femtosecond time scale as long as the external stimulus conserves the spatial symmetry of the system.
Adiabatic tapered optical fiber fabrication in two step etching
NASA Astrophysics Data System (ADS)
Chenari, Z.; Latifi, H.; Ghamari, S.; Hashemi, R. S.; Doroodmand, F.
2016-01-01
A two-step etching method using HF acid and Buffered HF is proposed to fabricate adiabatic biconical optical fiber tapers. Due to the fact that the etching rate in second step is almost 3 times slower than the previous droplet etching method, terminating the fabrication process is controllable enough to achieve a desirable fiber diameter. By monitoring transmitted spectrum, final diameter and adiabaticity of tapers are deduced. Tapers with losses about 0.3 dB in air and 4.2 dB in water are produced. The biconical fiber taper fabricated using this method is used to excite whispering gallery modes (WGMs) on a microsphere surface in an aquatic environment. So that they are suitable to be used in applications like WGM biosensors.
Fluctuations of work in nearly adiabatically driven open quantum systems.
Suomela, S; Salmilehto, J; Savenko, I G; Ala-Nissila, T; Möttönen, M
2015-02-01
We extend the quantum jump method to nearly adiabatically driven open quantum systems in a way that allows for an accurate account of the external driving in the system-environment interaction. Using this framework, we construct the corresponding trajectory-dependent work performed on the system and derive the integral fluctuation theorem and the Jarzynski equality for nearly adiabatic driving. We show that such identities hold as long as the stochastic dynamics and work variable are consistently defined. We numerically study the emerging work statistics for a two-level quantum system and find that the conventional diabatic approximation is unable to capture some prominent features arising from driving, such as the continuity of the probability density of work. Our results reveal the necessity of using accurate expressions for the drive-dressed heat exchange in future experiments probing jump time distributions. PMID:25768477
The adiabatic motion of charged dust grains in rotating magnetospheres
NASA Astrophysics Data System (ADS)
Northrop, T. G.; Hill, J. R.
1983-01-01
Adiabatic equations of motion are derived for the micrometer-sized dust grains detected in the Jovian and Saturn magnetospheres by the Pioneer 10 and 11 spacecraft. The adiabatic theory of charged particle motion is extended to the case of variable grain charge. Attention is focused on the innermost and outermost limits to the grain orbit evolution, with all orbits tending to become circular with time. The parameters such as the center equation of motion, the drift velocity, and the parallel equation of motion are obtained for grains in a rotating magnetosphere. Consideration is given to the effects of periodic grain charge-discharge, which are affected by the ambient plasma properties and the grain plasma velocity. The charge-discharge process at the gyrofrequency is determined to eliminate the invariance of the magnetic moment and cause the grain to exhibit radial movement. The magnetic moment increases or decreases as a function of the gyrophase of the charge variation.
Adiabatic Berry phase in an atom-molecule conversion system
Fu Libin; Liu Jie
2010-11-15
We investigate the Berry phase of adiabatic quantum evolution in the atom-molecule conversion system that is governed by a nonlinear Schroedinger equation. We find that the Berry phase consists of two parts: the usual Berry connection term and a novel term from the nonlinearity brought forth by the atom-molecule coupling. The total geometric phase can be still viewed as the flux of the magnetic field of a monopole through the surface enclosed by a closed path in parameter space. The charge of the monopole, however, is found to be one third of the elementary charge of the usual quantized monopole. We also derive the classical Hannay angle of a geometric nature associated with the adiabatic evolution. It exactly equals minus Berry phase, indicating a novel connection between Berry phase and Hannay angle in contrast to the usual derivative form.
Adiabatic creation of atomic squeezing in dark states versus decoherences
Gong, Z. R.; Sun, C. P.; Wang Xiaoguang
2010-07-15
We study the multipartite correlations of the multiatom dark states, which are characterized by the atomic squeezing beyond the pairwise entanglement. It is shown that, in the photon storage process with atomic ensemble via the electromagnetically induced transparency (EIT) mechanism, the atomic squeezing and the pairwise entanglement can be created by adiabatically manipulating the Rabi frequency of the classical light field on the atomic ensemble. We also consider the sudden death for the atomic squeezing and the pairwise entanglement under various decoherence channels. An optimal time for generating the greatest atomic squeezing and pairwise entanglement is obtained by studying in detail the competition between the adiabatic creation of quantum correlation in the atomic ensemble and the decoherence that we describe with three typical decoherence channels.