Science.gov

Sample records for adiabatic electron affinities

  1. Band gaps, ionization potentials, and electron affinities of periodic electron systems via the adiabatic-connection fluctuation-dissipation theorem

    NASA Astrophysics Data System (ADS)

    Trushin, Egor; Betzinger, Markus; Blügel, Stefan; Görling, Andreas

    2016-08-01

    An approach to calculate fundamental band gaps, ionization energies, and electron affinities of periodic electron systems is explored. Starting from total energies obtained with the help of the adiabatic-connection fluctuation-dissipation (ACFD) theorem, these physical observables are calculated according to their basic definition by differences of the total energies of the N -, (N -1 ) -, and (N +1 ) -electron system. The response functions entering the ACFD theorem are approximated here by the direct random phase approximation (dRPA). For a set of prototypical semiconductors and insulators it is shown that even with this quite drastic approximation the resulting band gaps are very close to experiment and of a similar quality to those from the computationally more involved G W approximation. By going beyond the dRPA in the future the accuracy of the calculated band gaps may be significantly improved further.

  2. Application of a convergent, composite coupled cluster approach to bound state, adiabatic electron affinities in atoms and small molecules

    NASA Astrophysics Data System (ADS)

    Feller, David

    2016-01-01

    Benchmark quality adiabatic electron affinities for a collection of atoms and small molecules were obtained with the Feller-Peterson-Dixon composite coupled cluster theory method. Prior applications of this method demonstrated its ability to accurately predict atomization energies/heats of formation for more than 170 molecules. In the current work, the 1-particle expansion involved very large correlation consistent basis sets, ranging up to aug-cc-pV9Z (aug-cc-pV10Z for H and H2), with the goal of minimizing the residual basis set truncation error that must otherwise be approximated with extrapolation formulas. The n-particle expansion begins with coupled cluster calculations through iterative single and double excitations plus a quasiperturbative treatment of "connected" triple excitations (CCSD(T)) pushed to the complete basis set limit followed by CCSDT, CCSDTQ, or CCSDTQ5 corrections. Due to the small size of the systems examined here, it was possible in many cases to extend the n-particle expansion to the full configuration interaction wave function limit. Additional, smaller corrections associated with core/valence correlation, scalar relativity, anharmonic zero point vibrational energies, and non-adiabatic effects were also included. The overall root mean square (RMS) deviation was 0.005 eV (0.12 kcal/mol). This level of agreement was comparable to what was found with molecular heats of formation. A 95% confidence level corresponds to roughly twice the RMS value or 0.01 eV. While the atomic electron affinities are known experimentally to high accuracy, the molecular values are less certain. This contributes to the difficulty of gauging the accuracy of the theoretical results. A limited number of electron affinities were determined with the explicitly correlated CCSD(T)-F12b method. After extending the VnZ-F12 orbital basis sets with additional diffuse functions, the F12b method was found to accurately reproduce the best F/F- value obtained with standard

  3. Application of a convergent, composite coupled cluster approach to bound state, adiabatic electron affinities in atoms and small molecules.

    PubMed

    Feller, David

    2016-01-01

    Benchmark quality adiabatic electron affinities for a collection of atoms and small molecules were obtained with the Feller-Peterson-Dixon composite coupled cluster theory method. Prior applications of this method demonstrated its ability to accurately predict atomization energies/heats of formation for more than 170 molecules. In the current work, the 1-particle expansion involved very large correlation consistent basis sets, ranging up to aug-cc-pV9Z (aug-cc-pV10Z for H and H2), with the goal of minimizing the residual basis set truncation error that must otherwise be approximated with extrapolation formulas. The n-particle expansion begins with coupled cluster calculations through iterative single and double excitations plus a quasiperturbative treatment of "connected" triple excitations (CCSD(T)) pushed to the complete basis set limit followed by CCSDT, CCSDTQ, or CCSDTQ5 corrections. Due to the small size of the systems examined here, it was possible in many cases to extend the n-particle expansion to the full configuration interaction wave function limit. Additional, smaller corrections associated with core/valence correlation, scalar relativity, anharmonic zero point vibrational energies, and non-adiabatic effects were also included. The overall root mean square (RMS) deviation was 0.005 eV (0.12 kcal/mol). This level of agreement was comparable to what was found with molecular heats of formation. A 95% confidence level corresponds to roughly twice the RMS value or 0.01 eV. While the atomic electron affinities are known experimentally to high accuracy, the molecular values are less certain. This contributes to the difficulty of gauging the accuracy of the theoretical results. A limited number of electron affinities were determined with the explicitly correlated CCSD(T)-F12b method. After extending the VnZ-F12 orbital basis sets with additional diffuse functions, the F12b method was found to accurately reproduce the best F/F(-) value obtained with standard

  4. Application of a convergent, composite coupled cluster approach to bound state, adiabatic electron affinities in atoms and small molecules.

    PubMed

    Feller, David

    2016-01-01

    Benchmark quality adiabatic electron affinities for a collection of atoms and small molecules were obtained with the Feller-Peterson-Dixon composite coupled cluster theory method. Prior applications of this method demonstrated its ability to accurately predict atomization energies/heats of formation for more than 170 molecules. In the current work, the 1-particle expansion involved very large correlation consistent basis sets, ranging up to aug-cc-pV9Z (aug-cc-pV10Z for H and H2), with the goal of minimizing the residual basis set truncation error that must otherwise be approximated with extrapolation formulas. The n-particle expansion begins with coupled cluster calculations through iterative single and double excitations plus a quasiperturbative treatment of "connected" triple excitations (CCSD(T)) pushed to the complete basis set limit followed by CCSDT, CCSDTQ, or CCSDTQ5 corrections. Due to the small size of the systems examined here, it was possible in many cases to extend the n-particle expansion to the full configuration interaction wave function limit. Additional, smaller corrections associated with core/valence correlation, scalar relativity, anharmonic zero point vibrational energies, and non-adiabatic effects were also included. The overall root mean square (RMS) deviation was 0.005 eV (0.12 kcal/mol). This level of agreement was comparable to what was found with molecular heats of formation. A 95% confidence level corresponds to roughly twice the RMS value or 0.01 eV. While the atomic electron affinities are known experimentally to high accuracy, the molecular values are less certain. This contributes to the difficulty of gauging the accuracy of the theoretical results. A limited number of electron affinities were determined with the explicitly correlated CCSD(T)-F12b method. After extending the VnZ-F12 orbital basis sets with additional diffuse functions, the F12b method was found to accurately reproduce the best F/F(-) value obtained with standard

  5. Formal redox potentials of organic molecules in ionic liquids on the basis of quaternary nitrogen cations as adiabatic electron affinities.

    PubMed

    Seto, Kunimasa; Nakayama, Tatsushi; Uno, Bunji

    2013-09-19

    Formal redox potentials E°' involving neutral species R and radical anions R(•-) in ionic liquids (ILs) composed of ammonium, pyridinium, and imidazolium cations are discussed from the point of view of the adiabatic electron affinity as a molecular property. The dependence of the 1,4-benzoquinone (BQ)/BQ(•-) redox process in CH2Cl2 and CH3CN is primarily investigated over a wide concentration range of ILs as the supporting electrolyte. A logarithmic relationship involving a positive shift of E°' with increasing concentration is obtained when the concentration is changed from 0.01 to 1.0 M. The relationship of E°' at IL concentrations greater than 1.0 M gradually reaches a plateau and remains there even for the neat ILs. It is found that the E°' values in the neat ILs are not influenced by the measurement conditions, and that they remain considerably dependent on the nature and concentration of the electrolyte when measured using the traditional method involving molecular solvents combined with a supporting electrolyte (0.1-0.5 M). The difference in the E°' values observed in the ammonium and pyridinium ILs is only several millivolts. In addition, ESR and self-consistent isodensity polarized continuum model calculation results reveal that the potential shift toward positive values upon the transition from molecular solvents containing ILs to neat ILs is adequately accounted for by changes in the electrostatic interaction of R(•-) taken into the cavity composed of the solvent and IL. On the other hand, the first reduction waves of quinones, electron-accepting molecules, and polynuclear aromatic hydrocarbons are reversibly or quasi-reversibly observed in the ILs. The electrochemical stability of the ILs is exploited in the facile measurement of these quasi-reversible waves at quite negative potentials, such as for the naphthalene (NP)/NP(•-) couple. Notably, the E°' values obtained in the ammonium ILs correlate well with the calculated standard redox

  6. Formal redox potentials of organic molecules in ionic liquids on the basis of quaternary nitrogen cations as adiabatic electron affinities.

    PubMed

    Seto, Kunimasa; Nakayama, Tatsushi; Uno, Bunji

    2013-09-19

    Formal redox potentials E°' involving neutral species R and radical anions R(•-) in ionic liquids (ILs) composed of ammonium, pyridinium, and imidazolium cations are discussed from the point of view of the adiabatic electron affinity as a molecular property. The dependence of the 1,4-benzoquinone (BQ)/BQ(•-) redox process in CH2Cl2 and CH3CN is primarily investigated over a wide concentration range of ILs as the supporting electrolyte. A logarithmic relationship involving a positive shift of E°' with increasing concentration is obtained when the concentration is changed from 0.01 to 1.0 M. The relationship of E°' at IL concentrations greater than 1.0 M gradually reaches a plateau and remains there even for the neat ILs. It is found that the E°' values in the neat ILs are not influenced by the measurement conditions, and that they remain considerably dependent on the nature and concentration of the electrolyte when measured using the traditional method involving molecular solvents combined with a supporting electrolyte (0.1-0.5 M). The difference in the E°' values observed in the ammonium and pyridinium ILs is only several millivolts. In addition, ESR and self-consistent isodensity polarized continuum model calculation results reveal that the potential shift toward positive values upon the transition from molecular solvents containing ILs to neat ILs is adequately accounted for by changes in the electrostatic interaction of R(•-) taken into the cavity composed of the solvent and IL. On the other hand, the first reduction waves of quinones, electron-accepting molecules, and polynuclear aromatic hydrocarbons are reversibly or quasi-reversibly observed in the ILs. The electrochemical stability of the ILs is exploited in the facile measurement of these quasi-reversible waves at quite negative potentials, such as for the naphthalene (NP)/NP(•-) couple. Notably, the E°' values obtained in the ammonium ILs correlate well with the calculated standard redox

  7. Adiabatic cooling of solar wind electrons

    NASA Technical Reports Server (NTRS)

    Sandbaek, Ornulf; Leer, Egil

    1992-01-01

    In thermally driven winds emanating from regions in the solar corona with base electron densities of n0 not less than 10 exp 8/cu cm, a substantial fraction of the heat conductive flux from the base is transfered into flow energy by the pressure gradient force. The adiabatic cooling of the electrons causes the electron temperature profile to fall off more rapidly than in heat conduction dominated flows. Alfven waves of solar origin, accelerating the basically thermally driven solar wind, lead to an increased mass flux and enhanced adiabatic cooling. The reduction in electron temperature may be significant also in the subsonic region of the flow and lead to a moderate increase of solar wind mass flux with increasing Alfven wave amplitude. In the solar wind model presented here the Alfven wave energy flux per unit mass is larger than that in models where the temperature in the subsonic flow is not reduced by the wave, and consequently the asymptotic flow speed is higher.

  8. Communication: Adiabatic and non-adiabatic electron-nuclear motion: Quantum and classical dynamics

    NASA Astrophysics Data System (ADS)

    Albert, Julian; Kaiser, Dustin; Engel, Volker

    2016-05-01

    Using a model for coupled electronic-nuclear motion we investigate the range from negligible to strong non-adiabatic coupling. In the adiabatic case, the quantum dynamics proceeds in a single electronic state, whereas for strong coupling a complete transition between two adiabatic electronic states takes place. It is shown that in all coupling regimes the short-time wave-packet dynamics can be described using ensembles of classical trajectories in the phase space spanned by electronic and nuclear degrees of freedom. We thus provide an example which documents that the quantum concept of non-adiabatic transitions is not necessarily needed if electronic and nuclear motion is treated on the same footing.

  9. Communication: Adiabatic and non-adiabatic electron-nuclear motion: Quantum and classical dynamics.

    PubMed

    Albert, Julian; Kaiser, Dustin; Engel, Volker

    2016-05-01

    Using a model for coupled electronic-nuclear motion we investigate the range from negligible to strong non-adiabatic coupling. In the adiabatic case, the quantum dynamics proceeds in a single electronic state, whereas for strong coupling a complete transition between two adiabatic electronic states takes place. It is shown that in all coupling regimes the short-time wave-packet dynamics can be described using ensembles of classical trajectories in the phase space spanned by electronic and nuclear degrees of freedom. We thus provide an example which documents that the quantum concept of non-adiabatic transitions is not necessarily needed if electronic and nuclear motion is treated on the same footing.

  10. Classical nuclear motion coupled to electronic non-adiabatic transitions

    SciTech Connect

    Agostini, Federica; Abedi, Ali; Gross, E. K. U.

    2014-12-07

    Based on the exact factorization of the electron-nuclear wave function, we have recently proposed a mixed quantum-classical scheme [A. Abedi, F. Agostini, and E. K. U. Gross, Europhys. Lett. 106, 33001 (2014)] to deal with non-adiabatic processes. Here we present a comprehensive description of the formalism, including the full derivation of the equations of motion. Numerical results are presented for a model system for non-adiabatic charge transfer in order to test the performance of the method and to validate the underlying approximations.

  11. Adiabatic expansion of a strongly correlated pure electron plasma

    SciTech Connect

    Dubin, D.H.E.; O'Neil, T.M.

    1986-02-17

    Adiabatic expansion is proposed as a method of increasing the degree of correlation of a magnetically confined pure electron plasma. Quantum mechanical effects and correlation effects make the physics of the expansion quite different from that for a classical ideal gas. The proposed expansion may be useful in a current experimental effort to cool a pure electron plasma to the liquid and solid (crystalline) states.

  12. Adiabatic expansion of a strongly correlated pure electron plasma

    NASA Astrophysics Data System (ADS)

    Dubin, D. H. E.; Oneil, T. M.

    1986-02-01

    Adiabatic expansion is proposed as a method of increasing the degree of correlation of a magnetically confined pure electron plasma. Quantum mechanical effects and correlation effects make the physics of the expansion quite different from that for a classical ideal gas. The proposed expansion may be useful in a current experimental effort to cool a pure electron plasma to the liquid and solid (crystalline) states.

  13. Negative Electron Affinity Mechanism for Diamond Surfaces

    NASA Technical Reports Server (NTRS)

    Krainsky, I. L.; Asnin, V. M.

    1998-01-01

    The energy distribution of the secondary electrons for chemical vacuum deposited diamond films with Negative Electron Affinity (NEA) was investigated. It was found that while for completely hydrogenated diamond surfaces the negative electron affinity peak in the energy spectrum of the secondary electrons is present for any energy of the primary electrons, for partially hydrogenated diamond surfaces there is a critical energy above which the peak is present in the spectrum. This critical energy increases sharply when hydrogen coverage of the diamond surface diminishes. This effect was explained by the change of the NEA from the true type for the completely hydrogenated surface to the effective type for the partially hydrogenated surfaces.

  14. Temperature dependence of electronic eigenenergies in the adiabatic harmonic approximation

    NASA Astrophysics Data System (ADS)

    Poncé, S.; Antonius, G.; Gillet, Y.; Boulanger, P.; Laflamme Janssen, J.; Marini, A.; Côté, M.; Gonze, X.

    2014-12-01

    The renormalization of electronic eigenenergies due to electron-phonon interactions (temperature dependence and zero-point motion effect) is important in many materials. We address it in the adiabatic harmonic approximation, based on first principles (e.g., density-functional theory), from different points of view: directly from atomic position fluctuations or, alternatively, from Janak's theorem generalized to the case where the Helmholtz free energy, including the vibrational entropy, is used. We prove their equivalence, based on the usual form of Janak's theorem and on the dynamical equation. We then also place the Allen-Heine-Cardona (AHC) theory of the renormalization in a first-principles context. The AHC theory relies on the rigid-ion approximation, and naturally leads to a self-energy (Fan) contribution and a Debye-Waller contribution. Such a splitting can also be done for the complete harmonic adiabatic expression, in which the rigid-ion approximation is not required. A numerical study within the density-functional perturbation theory framework allows us to compare the AHC theory with frozen-phonon calculations, with or without the rigid-ion approximation. For the two different numerical approaches without non-rigid-ion terms, the agreement is better than 7 μ eV in the case of diamond, which represent an agreement to five significant digits. The magnitude of the non-rigid-ion terms in this case is also presented, distinguishing specific phonon modes contributions to different electronic eigenenergies.

  15. Breakdown of adiabatic electron behavior in expanding magnetic fields

    NASA Astrophysics Data System (ADS)

    Lichko, Emily; Egedal, Jan; Daughton, William

    2015-11-01

    During magnetic reconnection the incoming magnetic flux tubes expand in the inflow region. If this expansion is sufficiently slow the results are well described by a previously developed adiabatic model. Using kinetic simulations in a simple geometry and applying rapid magnetic perturbations, this study investigates the point at which the adiabatic assumption fails. To this end a 2D VPIC simulation was constructed, where the magnetic field in a uniform plasma is perturbed by externally driven currents. By varying the onset speed of the magnetic perturbation and the electron thermal speed, we found a sharp threshold at which this model breaks down. We believe that this point is determined by the time of the magnetic pumping compared to the electron transit time through the region, i.e. ω ~ Ḃ / B ~vthe / L . This threshold was also characterized by the launching of Whistler waves and with time domain structures, such as electron holes and double layers, which agree with those seen during magnetic reconnection and may relate to similar structures in the Van Allen Belts. NSF GEM award 1405166 and NASA grant NNX14AC68G.

  16. Electron affinities of the alkali dimers - Na2, K2, and Rb2

    NASA Technical Reports Server (NTRS)

    Partridge, H.; Dixon, D. A.; Walch, S. P.; Bauschlicher, C. W., Jr.; Gole, J. L.

    1983-01-01

    Ab initio calculations on the ground states of the alkali dimers, Na2, K2, and Rb2, and their anions are reported. The calculations employ large Gaussian basis sets and account for nearly all of the valence correlation energy. The calculated atomic electron affinities are within 0.02 eV of experiment and the calculated adiabatic electron affinities for Na2, K2, and Rb2 are, respectively, 0.470, 0.512, and 0.513 eV.

  17. Adiabatic perturbation theory of electronic stopping in insulators

    NASA Astrophysics Data System (ADS)

    Horsfield, Andrew P.; Lim, Anthony; Foulkes, W. M. C.; Correa, Alfredo A.

    2016-06-01

    A model able to explain the complicated structure of electronic stopping at low velocities in insulating materials is presented. It is shown to be in good agreement with results obtained from time-dependent density-functional theory for the stopping of a channeling Si atom in a Si crystal. If we define the repeat frequency f =v /λ , where λ is the periodic repeat length of the crystal along the direction the channeling atom is traveling, and v is the velocity of the channeling atom, we find that electrons experience a perturbing force that varies in time at integer multiples l of f . This enables electronic excitations at low atom velocity, but their contributions diminish rapidly with increasing values of l . The expressions for stopping power are derived using adiabatic perturbation theory for many-electron systems, and they are then specialized to the case of independent electrons. A simple model for the nonadiabatic matrix elements is described, along with the procedure for determining its parameters.

  18. Quasi-classical theory of electronic flux density in electronically adiabatic molecular processes.

    PubMed

    Diestler, D J

    2012-11-26

    The standard Born-Oppenheimer (BO) description of electronically adiabatic molecular processes predicts a vanishing electronic flux density (EFD). A previously proposed "coupled-channels" theory permits the extraction of the EFD from the BO wave function for one-electron diatomic systems, but attempts at generalization to many-electron polyatomic systems are frustrated by technical barriers. An alternative "quasi-classical" approach, which eliminates the explicit quantum dynamics of the electrons within a classical framework, yet retains the quantum character of the nuclear motion, appears capable of yielding EFDs for arbitrarily complex systems. Quasi-classical formulas for the EFD in simple systems agree with corresponding coupled-channels formulas. Results of the application of the new quasi-classical formula for the EFD to a model triatomic system indicate the potential of the quasi-classical scheme to elucidate the dynamical role of electrons in electronically adiabatic processes in more complex multiparticle systems.

  19. Evaluation system of negative electron affinity photocathode

    NASA Astrophysics Data System (ADS)

    Fu, Rongguo; Chang, Benkang; Qian, Yunsheng; Wang, Guihua; Zong, Zhiyuan

    2001-10-01

    This article first describes the background of the research and manufacture of evaluation system of Negative Electron Affinity photocathode. This article designs a set of super high vacuum system for activating NEA photocathode on the base of activation theory, the process of design and debugging is given. The system is composed of three parts: super high vacuum system for GaAs material activation, multi-meter testing system, surface analysis system. The system is used for on-line evaluation of activating of NEA photocathode. The technical parameters and structure of the evaluation system of NEA photocathode are given in the paper. The system is finished and experiments are made. At last the picture of the system is given.

  20. Coupled-channels quantum theory of electronic flux density in electronically adiabatic processes: fundamentals.

    PubMed

    Diestler, D J

    2012-03-22

    The Born-Oppenheimer (BO) description of electronically adiabatic molecular processes predicts a vanishing electronic flux density (j(e)), =1/2∫dR[Δ(b) (x;R) - Δ(a) (x;R)] even though the electrons certainly move in response to the movement of the nuclei. This article, the first of a pair, proposes a quantum-mechanical "coupled-channels" (CC) theory that allows the approximate extraction of j(e) from the electronically adiabatic BO wave function . The CC theory is detailed for H(2)(+), in which case j(e) can be resolved into components associated with two channels α (=a,b), each of which corresponds to the "collision" of an "internal" atom α (proton a or b plus electron) with the other nucleus β (proton b or a). The dynamical role of the electron, which accommodates itself instantaneously to the motion of the nuclei, is submerged in effective electronic probability (population) densities, Δ(α), associated with each channel (α). The Δ(α) densities are determined by the (time-independent) BO electronic energy eigenfunction, which depends parametrically on the configuration of the nuclei, the motion of which is governed by the usual BO nuclear Schrödinger equation. Intuitively appealing formal expressions for the electronic flux density are derived for H(2)(+).

  1. The adiabatic limit of the exact factorization of the electron-nuclear wave function.

    PubMed

    Eich, F G; Agostini, Federica

    2016-08-01

    We propose a procedure to analyze the relation between the exact factorization of the electron-nuclear wave function and the Born-Oppenheimer approximation. We define the adiabatic limit as the limit of infinite nuclear mass. To this end, we introduce a unit system that singles out the dependence on the electron-nuclear mass ratio of each term appearing in the equations of the exact factorization. We observe how non-adiabatic effects induced by the coupling to the nuclear motion affect electronic properties and we analyze the leading term, connecting it to the classical nuclear momentum. Its dependence on the mass ratio is tested numerically on a model of proton-coupled electron transfer in different non-adiabatic regimes. PMID:27497542

  2. The adiabatic limit of the exact factorization of the electron-nuclear wave function

    NASA Astrophysics Data System (ADS)

    Eich, F. G.; Agostini, Federica

    2016-08-01

    We propose a procedure to analyze the relation between the exact factorization of the electron-nuclear wave function and the Born-Oppenheimer approximation. We define the adiabatic limit as the limit of infinite nuclear mass. To this end, we introduce a unit system that singles out the dependence on the electron-nuclear mass ratio of each term appearing in the equations of the exact factorization. We observe how non-adiabatic effects induced by the coupling to the nuclear motion affect electronic properties and we analyze the leading term, connecting it to the classical nuclear momentum. Its dependence on the mass ratio is tested numerically on a model of proton-coupled electron transfer in different non-adiabatic regimes.

  3. Vertical and adiabatic electronic excitations in biphenylene: A theoretical study

    NASA Astrophysics Data System (ADS)

    Beck, M. E.; Rebentisch, R.; Hohlneicher, G.; Fülscher, M. P.; Serrano-Andrés, L.; Roos, B. O.

    1997-12-01

    The low-lying singlet states of biphenylene have been studied using ab initio methods. Vertical excitation energies were calculated by multiconfigurational perturbation theory (CASPT2), starting from a complete active space self-consistent field (CASSCF) reference. The geometries of the most important low-lying excited states were individually optimized at the CASSCF level to study the difference between vertical and adiabatic excitations. Extended atomic natural orbital (ANO)-type basis sets were used to calculate state energies. Geometry optimizations were done with smaller ANO-type basis sets. Excitations from the ground state to the 1 1B3g and 1 1B2u excited singlet states lead to pronounced geometry changes which alter the bond alternation pattern. The theoretical results provide a solid basis for the assignment and interpretation of experimental spectra.

  4. Density Functional Study of Structures and Electron Affinities of BrO4F/BrO4F−

    PubMed Central

    Gong, Liangfa; Xiong, Jieming; Wu, Xinmin; Qi, Chuansong; Li, Wei; Guo, Wenli

    2009-01-01

    The structures, electron affinities and bond dissociation energies of BrO4F/BrO4F− species have been investigated with five density functional theory (DFT) methods with DZP++ basis sets. The planar F-Br…O2…O2 complexes possess 3A′ electronic state for neutral molecule and 4A′ state for the corresponding anion. Three types of the neutral-anion energy separations are the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). The EAad value predicted by B3LYP method is 4.52 eV. The bond dissociation energies De (BrO4F → BrO4-mF + Om) (m = 1–4) and De− (BrO4F− → BrO4-mF− + Om and BrO4F− → BrO4-mF + Om−) are predicted. The adiabatic electron affinities (EAad) were predicted to be 4.52 eV for F-Br…O2…O2 (3A′←4A′) (B3LYP method). PMID:19742128

  5. On the electron affinity of the oxygen atom

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Langhoff, S. R.; Partridge, H.; Taylor, P. R.

    1986-01-01

    The electron affinity of oxygen is computed to be 1.287 eV, at the full CI level using a 6s5p3d 2f Slater-type orbital basis and correlating only the 2p electrons. The best CASSCF-MRCI result including only 2p correlation is 1.263 eV. However, inclusion of 2s intrashell and 2s2p intershell coorelation increases the computed EA to 1.290 eV at the CASSCF-MRCI level. At the full CI basis set limit, the 2s contribution to the electron affinity is estimated to be as large as 0.1 eV. The higher excitation contribution to the electron affinity is found to increase substantially with basis set completeness, especially when the 2s electrons are correlated. Relativistic effects are shown to make a small (less than 0.01 eV) change in the EA.

  6. On the electron affinity of the oxygen atom

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Langhoff, S. R.; Partridge, H.; Taylor, P. R.

    1986-01-01

    The electron affinity (EA) of oxygen is computed to be 1.287 eV, using 2p electron full configuration-interaction (CI) wave functions expanded in a 6s5p3d2f Slater-type orbital basis. The best complete active space self-consistent field - multireference CI (CASSCF-MRCI) result including only 2p correlation is 1.263 eV. However, inclusion of 2s intrashell and 2s2p intershell correlation increases the computed EA to 1.290 at the CASSCF-MRCI level. At the full CI basis set limit, the 2s contribution to the electron affinity is estimated to be as large as 0.1 eV. This study clearly establishes the synergistic effect between the higher excitations and basis set completeness on the electron affinity when the 2s electrons are correlated.

  7. Towards disentangling coupled electronic-vibrational dynamics in ultrafast non-adiabatic processes

    PubMed

    Blanchet; Lochbrunner; Schmitt; Shaffer; Larsen; Zgierski; Seideman; Stolow

    2000-01-01

    Femtosecond time-resolved photoelectron spectroscopy is emerging as a new technique for investigating polyatomic excited state dynamics. Due to the sensitivity of photoelectron spectroscopy to both electronic configurations and vibrational dynamics, it is well suited to the study of non-adiabatic processes such as internal conversion, which often occur on sub-picosecond time scales. We discuss the technical requirements for such experiments, including lasers systems, energy- and angle-resolved photoelectron spectrometers and new detectors for coincidence experiments. We present a few examples of these methods applied to problems in diatomic wavepacket dynamics and ultrafast non-adiabatic processes in polyatomic molecules.

  8. Adiabatic theory of the linear hose instability of a relativistic electron beam propagating in resistive plasma

    SciTech Connect

    O'Brien, K.J.

    1985-01-01

    It is demonstrated that the cold Vlasov beam, the circle-limit of the warm Vlasov beam, the spread-mass model, and the energy-group model of a relativistic electron beam undergoing linear hose instability, are all formally equivalent. Therefore, the circle-orbit beam is the natural starting point for a higher order theory. Introducing the next order in non-circularity the author makes contact with the adiabatic theory for warm beams. The adiabatic theory is founded upon the existence of transverse action invariants that remain sufficiently well-defined, despite the nonaxisymmetric potential and the coupling resonances driven by linear hose instability. The existence of action invariants enables the elimination of a fast variable, analogous to gyro-motion, called vortex-gyration. One problem with adiabatic beam theory is that coupling resonances between the degrees of freedom could destroy the adiabatic invariants upon which the theory rests. KAM theory is employed here to study the destruction of action invariants due to linear hose instability. Nonaxisymmetric adiabatic beams are defined to be those for which KAM tori exist in the transverse phase space. For hose deflections of the magnitude considered in linear theory, KAM tori persist, preventing the destruction of the invariants.

  9. Non-adiabatic imprints on the electron wave packet in strong field ionization with circular polarization

    NASA Astrophysics Data System (ADS)

    Hofmann, C.; Zimmermann, T.; Zielinski, A.; Landsman, A. S.

    2016-04-01

    The validity of the adiabatic approximation in strong field ionization under typical experimental conditions has recently become a topic of great interest. Experimental results have been inconclusive, in part, due to the uncertainty in experimental calibration of intensity. Here we turn to the time-dependent Schrödinger equation, where all the laser parameters are known exactly. We find that the centre of the electron momentum distribution (typically used for calibration of elliptically and circularly polarized light) is sensitive to non-adiabatic effects, leading to intensity shifts in experimental data that can significantly affect the interpretation of results. On the other hand, the transverse momentum spread in the plane of polarization is relatively insensitive to such effects, even in the Keldysh parameter regime approaching γ ≈ 3. This suggests the transverse momentum spread in the plane of polarization as a good alternative to the usual calibration method, particularly for experimental investigation of non-adiabatic effects using circularly polarized light.

  10. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment.

    PubMed

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J Timothy; Champion, Paul M

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical "gating" distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near

  11. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: Comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment

    SciTech Connect

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy; Champion, Paul M.

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical “gating” distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working

  12. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment.

    PubMed

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J Timothy; Champion, Paul M

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical "gating" distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near

  13. The adiabatic phase mixing and heating of electrons in Buneman turbulence

    SciTech Connect

    Che, H.; Goldstein, M. L.; Drake, J. F.; Swisdak, M.

    2013-06-15

    The nonlinear development of the strong Buneman instability and the associated fast electron heating in thin current layers with Ω{sub e}/ω{sub pe}<1 is explored. Phase mixing of the electrons in wave potential troughs and a rapid increase in temperature are observed during the saturation of the instability. We show that the motion of trapped electrons can be described using a Hamiltonian formalism in the adiabatic approximation. The process of separatrix crossing as electrons are trapped and de-trapped is irreversible and guarantees that the resulting electron energy gain is a true heating process.

  14. Dawn-dusk asymmetry and adiabatic dynamic of the radiation belt electrons during magnetic storm

    NASA Astrophysics Data System (ADS)

    Lazutin, Leonid L.

    2016-09-01

    The changes of the latitudinal profiles of outer belt energetic electrons during magnetic storms are mostly explained by the precipitation into the loss cone caused by VLF and EMIC waves or by the scattering into the magnetopause. In present work, energetic electron dynamics during magnetic storm of August 29-30, 2004 we attributed at most to the adiabatic transformation of the magnetic drift trajectories and Dst effect. This conclusion was based on the analysis of dawn-dusk asymmetry of the electron latitudinal profiles measured by low altitude polar orbiter SERVIS-1 and on the coincidence of pre-storm and after-storm profiles of radiation belt electrons and protons.

  15. Microstructural evolution in adiabatic shear bands of copper at high strain rates: Electron backscatter diffraction characterization

    SciTech Connect

    Tang Lin; Chen Zhiyong; Zhan Congkun; Yang Xuyue; Liu Chuming; Cai Hongnian

    2012-02-15

    The microstructural evolution of adiabatic shear bands in annealed copper with different large strains at high strain rates has been investigated by electron backscatter diffraction. The results show that mechanical twinning can occur with minimal contribution to shear localization under dynamic loading. Elongated ultrafine grains with widths of 100-300 nm are observed during the evolution of the adiabatic shear bands. A rotational dynamic recrystallization mechanism is proposed to explain the formation of the elongated ultrafine grains. - Highlights: Black-Right-Pointing-Pointer The microstructural evolution of ASB is studied by electron backscatter diffraction. Black-Right-Pointing-Pointer Twinning can occur in ASB while the contribution to shear localization is slight. Black-Right-Pointing-Pointer Elongated ultrafine grains are observed during the evolution process of ASB. Black-Right-Pointing-Pointer A possible mechanism is proposed to explain the microstructure evolution of ASB.

  16. Direct measurement of energetic electrons coupling to an imploding low-adiabat inertial confinement fusion capsule.

    PubMed

    Döppner, T; Thomas, C A; Divol, L; Dewald, E L; Celliers, P M; Bradley, D K; Callahan, D A; Dixit, S N; Harte, J A; Glenn, S M; Haan, S W; Izumi, N; Kyrala, G A; LaCaille, G; Kline, J K; Kruer, W L; Ma, T; MacKinnon, A J; McNaney, J M; Meezan, N B; Robey, H F; Salmonson, J D; Suter, L J; Zimmerman, G B; Edwards, M J; MacGowan, B J; Kilkenny, J D; Lindl, J D; Van Wonterghem, B M; Atherton, L J; Moses, E I; Glenzer, S H; Landen, O L

    2012-03-30

    We have imaged hard x-ray (>100 keV) bremsstrahlung emission from energetic electrons slowing in a plastic ablator shell during indirectly driven implosions at the National Ignition Facility. We measure 570 J in electrons with E>100 keV impinging on the fusion capsule under ignition drive conditions. This translates into an acceptable increase in the adiabat α, defined as the ratio of total deuterium-tritium fuel pressure to Fermi pressure, of 3.5%. The hard x-ray observables are consistent with detailed radiative-hydrodynamics simulations, including the sourcing and transport of these high energy electrons.

  17. The electron affinities of C{sub 3}O and C{sub 4}O

    SciTech Connect

    Rienstra-Kiracofe, J.C.; Ellison, G.B.; Hoffman, B.C.; Schaefer, H.F. III

    2000-03-23

    The authors predict the adiabatic electron affinities of C{sub 3}O and C{sub 4}O based on electronic structure calculations, using a large triple-{zeta} basis set with polarization and diffuse functions (TZ2Pf+diff) with the SCF, CCSD, and CCSD(T) methods as well as with the aug-cc-pVDZ and aug-cc-pVTZ basis sets. The results imply electron affinities for C{sub 3}O and C{sub 4}O; EA(C{sub 3}O) = 0.93 eV {+-} 0.10 and EA(C{sub 4}O) = 2.99 {+-} 0.10. The EA(C{sub 3}O) is 0.41 eV lower than the experimental value of 1.34 {+-} 0.15 eV, while the EA(C{sub 4}O) is 0.94 eV higher than the experimental value of 2.05 {+-} 0.15 eV. Optimized geometries for all species at each level of theory are given, and harmonic vibrational frequencies are reported at the SCF/TZ2Pf+diff and CCSD/aug-cc-pVDZ levels.

  18. Density matrix treatment of non-adiabatic photoinduced electron transfer at a semiconductor surface.

    PubMed

    Micha, David A

    2012-12-14

    Photoinduced electron transfer at a nanostructured surface leads to localized transitions and involves three different types of non-adiabatic couplings: vertical electronic transitions induced by light absorption emission, coupling of electronic states by the momentum of atomic motions, and their coupling due to interactions with electronic density fluctuations and vibrational motions in the substrate. These phenomena are described in a unified way by a reduced density matrix (RDM) satisfying an equation of motion that contains dissipative rates. The RDM treatment is used here to distinguish non-adiabatic phenomena that are localized from those due to interaction with a medium. The fast decay of localized state populations due to electronic density fluctuations in the medium has been treated within the Lindblad formulation of rates. The formulation is developed introducing vibronic states constructed from electron orbitals available from density functional calculations, and from vibrational states describing local atomic displacements. Related ab initio molecular dynamics calculations have provided diabatic momentum couplings between excited electronic states. This has been done in detail for an indirect photoexcitation mechanism of the surface Ag(3)Si(111):H, which leads to long lasting electronic charge separation. The resulting coupled density matrix equations are solved numerically to obtain the population of the final charge-separated state as it changes over time, for several values of the diabatic momentum coupling. New insight and unexpected results are presented here which can be understood in terms of photoinduced non-adiabatic transitions involving many vibronic states. It is found that the population of long lasting charge separation states is larger for smaller momentum coupling, and that their population grows faster for smaller coupling.

  19. Isotope shift in the electron affinity of lithium

    SciTech Connect

    Bubin, Sergiy; Komasa, Jacek; Stanke, Monika; Adamowicz, Ludwik

    2009-12-21

    Very accurate electron affinity (EA) calculations of {sup 6}Li and {sup 7}Li (and {sup {infinity}L}i) have been performed using explicitly correlated Gaussian functions and a variational approach that explicitly includes the nuclear motion in the calculations (i.e., the approach that does not assume the Born-Oppenheimer approximation). The leading relativistic and quantum electrodynamics corrections to the electron affinities were also calculated. The results are the most accurate theoretical values obtained for the studied systems to date. Our best estimates of the {sup 7}Li and {sup 6}Li EAs are 4984.9842(30) and 4984.9015(30) cm{sup -1}, respectively, and of the {sup 7}Li/{sup 6}Li EA isotope shift is 0.0827 cm{sup -1}.

  20. Isotope shift in the electron affinity of lithium.

    PubMed

    Bubin, Sergiy; Komasa, Jacek; Stanke, Monika; Adamowicz, Ludwik

    2009-12-21

    Very accurate electron affinity (EA) calculations of (6)Li and (7)Li (and (infinity)Li) have been performed using explicitly correlated Gaussian functions and a variational approach that explicitly includes the nuclear motion in the calculations (i.e., the approach that does not assume the Born-Oppenheimer approximation). The leading relativistic and quantum electrodynamics corrections to the electron affinities were also calculated. The results are the most accurate theoretical values obtained for the studied systems to date. Our best estimates of the (7)Li and (6)Li EAs are 4984.9842(30) and 4984.9015(30) cm(-1), respectively, and of the (7)Li/(6)Li EA isotope shift is 0.0827 cm(-1).

  1. Electron affinity of cubic boron nitride terminated with vanadium oxide

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Sun, Tianyin; Shammas, Joseph; Kaur, Manpuneet; Hao, Mei; Nemanich, Robert J.

    2015-10-01

    A thermally stable negative electron affinity (NEA) for a cubic boron nitride (c-BN) surface with vanadium-oxide-termination is achieved, and its electronic structure was analyzed with in-situ photoelectron spectroscopy. The c-BN films were prepared by electron cyclotron resonance plasma-enhanced chemical vapor deposition employing BF3 and N2 as precursors. Vanadium layers of ˜0.1 and 0.5 nm thickness were deposited on the c-BN surface in an electron beam deposition system. Oxidation of the metal layer was achieved by an oxygen plasma treatment. After 650 °C thermal annealing, the vanadium oxide on the c-BN surface was determined to be VO2, and the surfaces were found to be thermally stable, exhibiting an NEA. In comparison, the oxygen-terminated c-BN surface, where B2O3 was detected, showed a positive electron affinity of ˜1.2 eV. The B2O3 evidently acts as a negatively charged layer introducing a surface dipole directed into the c-BN. Through the interaction of VO2 with the B2O3 layer, a B-O-V layer structure would contribute a dipole between the O and V layers with the positive side facing vacuum. The lower enthalpy of formation for B2O3 is favorable for the formation of the B-O-V layer structure, which provides a thermally stable surface dipole and an NEA surface.

  2. Benzodiazepines: electron affinity, receptors and cell signaling - a multifaceted approach.

    PubMed

    Kovacic, Peter; Ott, Nadia; Cooksy, Andrew L

    2013-12-01

    This report entails a multifaceted approach to benzodiazepine (BZ) action, involving electron affinity, receptors, cell signaling and other aspects. Computations of the electron affinities (EAs) of different BZs have been carried out to establish the effect of various substituents on their EA. These computations were undertaken to serve as a first step in determining what role electron transfer (ET) plays in BZ activity. The calculations were conducted on the premise that the nature of the substituent will either decrease or increase the electron density of the benzene ring, thus altering the ability of the molecule to accept an electron. Investigations were performed on the effect of drug protonation on EA. Similarities involving substituent effects in prior electrochemical studies are also discussed. As part of the multifaceted approach, EA is linked to ET, which appears to play a role in therapeutic activity and toxicity. There is extensive literature dealing with the role of receptors in BZ activity. Significant information on receptor involvement was reported more than 40 years ago. Gamma-aminobutyric acid (GABA) is known to be importantly involved. GABA is a probable mediator of BZ effects. BZ and GABA receptors, although not identical, are physiologically linked. Cell signaling is known to play a part in the biochemistry of BZ action. Various factors participated, such as gene expression, allosteric influence, toxic effects and therapeutic action. Evidence points to involvement of EA and ET in the mode of action in cell signaling. Oxidative stress and antioxidant effects are also addressed.

  3. Stimulated Raman adiabatic passage for improved performance of a cold-atom electron and ion source

    NASA Astrophysics Data System (ADS)

    Sparkes, B. M.; Murphy, D.; Taylor, R. J.; Speirs, R. W.; McCulloch, A. J.; Scholten, R. E.

    2016-08-01

    We implement high-efficiency coherent excitation to a Rydberg state using stimulated Raman adiabatic passage in a cold-atom electron and ion source. We achieve an efficiency of 60% averaged over the laser excitation volume with a peak efficiency of 82%, a 1.6 times improvement relative to incoherent pulsed-laser excitation. Using pulsed electric field ionization of the Rydberg atoms we create electron bunches with durations of 250 ps. High-efficiency excitation will increase source brightness, crucial for ultrafast electron diffraction experiments, and coherent excitation to high-lying Rydberg states could allow for the reduction of internal bunch heating and the creation of a high-speed single-ion source.

  4. Benchmark theoretical study of the ionization energies, electron affinities and singlet-triplet energy gaps of azulene, phenanthrene, pyrene, chrysene and perylene

    NASA Astrophysics Data System (ADS)

    Huzak, M.; Hajgató, B.; Deleuze, M. S.

    2012-10-01

    The vertical and adiabatic singlet-triplet energy gaps, electron affinities and ionization energies of azulene, phenanthrene, pyrene, chrysene, and perylene are computed by applying the principles of a focal point analysis onto a series of single-point calculations at the level of Hartree-Fock theory, second-, third-, and fourth-order Møller-Plesset perturbation theory, as well as coupled cluster theory including single, double and perturbative triple excitations, in conjunction with correlation consistent basis sets of improving quality. Results are supplemented with an extrapolation to the limit of an asymptotically complete basis set. According to our best estimates, azulene, phenanthrene, pyrene, chrysene, and perylene exhibit adiabatic singlet-triplet energy gaps of 1.79, 2.92, 2.22, 2.79 and 1.71 eV, respectively. In the same order, the corresponding adiabatic electron affinities (EAs) amount to 0.71, -0.08, -0.40, 0.24, and 0.87 eV, whereas benchmark values equal to 7.43, 8.01, 7.48, 7.66 and 7.15 eV, are found for the adiabatic ionization energies.

  5. Experimental aspects of the adiabatic approach in estimating the effect of electron screening on alpha decay

    SciTech Connect

    Karpeshin, F. F.; Trzhaskovskaya, M. B.

    2015-12-15

    Special features of the effect of the electron shell on alpha decay that have important experimental implications are studied within the adiabatic approach. The magnitude of the effect is about several tenths of a percent or smaller, depending on the transition energy and on the atomic number. A dominant role of inner shells is shown: more than 80% of the effect is saturated by 1s electrons. This circumstance plays a crucial role for experiments, making it possible to measure this small effect by a difference method in the same storage rings via a comparison of, for example, decay probabilities in bare nuclei and heliumlike ions. The reasons behind the relative success and the applicability limits of the frozen-shell model, which has been used to calculate the effect in question for more than half a century, are analyzed. An interesting experiment aimed at studying charged alpha-particle states is proposed. This experiment will furnish unique information for testing our ideas of the interplay of nonadiabatic and adiabatic processes.

  6. Geometric effects in nonequilibrium electron transfer statistics in adiabatically driven quantum junctions

    NASA Astrophysics Data System (ADS)

    Goswami, Himangshu Prabal; Agarwalla, Bijay Kumar; Harbola, Upendra

    2016-05-01

    Cyclic Pancharatnam-Berry (PB) and adiabatic noncyclic geometric (ANG) effects are investigated in a single electron orbital system connected to two metal contacts with externally driven chemical potential and/or temperatures. The PB contribution doesn't affect the density matrix evolution, but has a quantitative effect on the statistics (fluctuations) of electron transfer. The ANG contribution, on the other hand, affects the net flux across the junction. Unlike the PB, the ANG contribution is nonzero when two parameters are identically driven. Closed analytical expressions are derived for the ANG contribution to the flux, and the PB contribution to the first two leading order fluctuations. Fluctuations can be modified by manipulating the relative phases of the drivings. Interestingly, we find that the fluctuations of the pumped charge do not satisfy the steady state fluctuation theorem in presence of nonzero geometric contribution, but can be recovered for a vanishing geometric contribution even in presence of the external driving.

  7. Multidirectional Angular Electronic Flux during Adiabatic Attosecond Charge Migration in Excited Benzene.

    PubMed

    Hermann, Gunter; Liu, ChunMei; Manz, Jörn; Paulus, Beate; Pérez-Torres, Jhon Fredy; Pohl, Vincent; Tremblay, Jean Christophe

    2016-07-14

    Recently, adiabatic attosecond charge migration (AACM) has been monitored and simulated for the first time, with application to the oriented iodoacetylene cation where AACM starts from the initial superposition of the ground state (φ0) and an electronic excited state (φ1). Here, we develop the theory for electronic fluxes during AACM in ring-shaped molecules, with application to oriented benzene prepared in the superposition of the ground and first excited singlet states. The initial state and its time evolution are analogous to coherent tunneling where φ0 and φ1 have different meanings; however, they denote the wave functions of the lowest tunneling doublet. This analogy suggests to transfer the theory of electronic fluxes during coherent tunneling to AACM, with suitable modifications which account for (i) the different time scales and (ii) the different electronic states, and which make use of (iii) the preparation of the initial state for AACM by a linearly polarized laser pulse. Application to benzene yields the multidirectional angular electronic flux with a pincer-motion type pattern during AACM: this unequivocal result confirms a previous working hypothesis. Moreover, the theory of AACM allows quantification of the electronic flux; that is, the maximum number of electrons (out of 42) which flow concertedly during AACM in benzene is 6 × 0.08 = 0.48.

  8. Electron affinity of cubic boron nitride terminated with vanadium oxide

    SciTech Connect

    Yang, Yu; Sun, Tianyin; Shammas, Joseph; Hao, Mei; Nemanich, Robert J.; Kaur, Manpuneet

    2015-10-28

    A thermally stable negative electron affinity (NEA) for a cubic boron nitride (c-BN) surface with vanadium-oxide-termination is achieved, and its electronic structure was analyzed with in-situ photoelectron spectroscopy. The c-BN films were prepared by electron cyclotron resonance plasma-enhanced chemical vapor deposition employing BF{sub 3} and N{sub 2} as precursors. Vanadium layers of ∼0.1 and 0.5 nm thickness were deposited on the c-BN surface in an electron beam deposition system. Oxidation of the metal layer was achieved by an oxygen plasma treatment. After 650 °C thermal annealing, the vanadium oxide on the c-BN surface was determined to be VO{sub 2}, and the surfaces were found to be thermally stable, exhibiting an NEA. In comparison, the oxygen-terminated c-BN surface, where B{sub 2}O{sub 3} was detected, showed a positive electron affinity of ∼1.2 eV. The B{sub 2}O{sub 3} evidently acts as a negatively charged layer introducing a surface dipole directed into the c-BN. Through the interaction of VO{sub 2} with the B{sub 2}O{sub 3} layer, a B-O-V layer structure would contribute a dipole between the O and V layers with the positive side facing vacuum. The lower enthalpy of formation for B{sub 2}O{sub 3} is favorable for the formation of the B-O-V layer structure, which provides a thermally stable surface dipole and an NEA surface.

  9. Robust activation method for negative electron affinity photocathodes

    DOEpatents

    Mulhollan, Gregory A.; Bierman, John C.

    2011-09-13

    A method by which photocathodes(201), single crystal, amorphous, or otherwise ordered, can be surface modified to a robust state of lowered and in best cases negative, electron affinity has been discovered. Conventional methods employ the use of Cs(203) and an oxidizing agent(207), typically carried by diatomic oxygen or by more complex molecules, for example nitrogen trifluoride, to achieve a lowered electron affinity(404). In the improved activation method, a second alkali, other than Cs(205), is introduced onto the surface during the activation process, either by co-deposition, yo-yo, or sporadic or intermittent application. Best effect for GaAs photocathodes has been found through the use of Li(402) as the second alkali, though nearly the same effect can be found by employing Na(406). Suitable photocathodes are those which are grown, cut from boules, implanted, rolled, deposited or otherwise fabricated in a fashion and shape desired for test or manufacture independently supported or atop a support structure or within a framework or otherwise affixed or suspended in the place and position required for use.

  10. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling

    PubMed Central

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S.; Bud’ko, Sergey L.; Canfield, Paul C.; Gegenwart, Philipp

    2016-01-01

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with 3He gas are widely used for cooling below 1 K. However, usage of the gas has been increasingly difficult because of the current worldwide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require 3He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1−xScxCo2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. This study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration.

  11. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling

    PubMed Central

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S.; Bud’ko, Sergey L.; Canfield, Paul C.; Gegenwart, Philipp

    2016-01-01

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with 3He gas are widely used for cooling below 1 K. However, usage of the gas has been increasingly difficult because of the current worldwide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require 3He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1−xScxCo2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. This study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration. PMID:27626073

  12. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling.

    PubMed

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S; Bud'ko, Sergey L; Canfield, Paul C; Gegenwart, Philipp

    2016-09-01

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with (3)He gas are widely used for cooling below 1 K. However, usage of the gas has been increasingly difficult because of the current worldwide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require (3)He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1-x Sc x Co2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. This study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration. PMID:27626073

  13. Calculation of the Ionization Potentials and Electron Affinities for Atoms

    NASA Astrophysics Data System (ADS)

    Chen, Jiqiang; Krieger, J. B.; Iafrate, G. J.; Savin, A.

    1998-03-01

    The method employing the self-interaction-corrected correlation energy functional obtained from the homogeneous electron gas with a gap is extended to atoms and ions with non-zero spin polarization. As in the case for atoms and ions with ζ=3D0, the error in the calculated Ec is significantly smaller than in the LSD approximation with zero gap for atoms and ions with Z<=18. Comparison of the resulting ionization potentials and electron affinities with experimental values will also be presented. Finally, we will discuss the possibility of obtaining saturation for Ec for the He, Li, N, O, F and Ne isoelectronic series, but a divergent Ec for the Be, B and C isoelectronic series, in the large Z limit.

  14. Vibrational photodetachment spectroscopy near the electron affinity of S2

    NASA Astrophysics Data System (ADS)

    Barrick, J. B.; Yukich, J. N.

    2016-02-01

    We have conducted laser photodetachment spectroscopy near the detachment threshold of the electron affinity of S2 in a 1.8-T field. The ions are prepared by dissociative electron attachment to carbonyl sulfide. The experiment is conducted in a Penning ion trap and with a narrow-band, tunable, Ti:sapphire laser. A hybrid model for photodetachment in an ion trap is fit to the data using the appropriate Franck-Condon factors. The observations reveal detachment from and to the first few vibrational levels of the anion and the neutral molecule, respectively. Evaporative cooling of the anion ensemble condenses the thermal distribution to the lowest initial vibrational states. The subsequent detachment spectroscopy yields results consistent with a vibrationally cooled anion population.

  15. Electron distributions upstream of the Comet Halley bow shock - Evidence for adiabatic heating

    NASA Technical Reports Server (NTRS)

    Larson, D. E.; Anderson, K. A.; Lin, R. P.; Carlson, C. W.; Reme, H.; Glassmeier, K. H.; Neubauer, F. M.

    1992-01-01

    Three-dimensional plasma electron (22 eV to 30 keV) observations upstream of Comet Halley bow shock, obtained by the RPA-1 COPERNIC (Reme Plasma Analyzer - Complete Positive Ion, Electron and Ram Negative Ion Measurements near Comet Halley) experiment on the Giotto spacecraft are reported. Besides electron distributions typical of the undisturbed solar wind and backstreaming electrons observed when the magnetic field line intersects the cometary bow shock, a new type of distribution, characterized by enhanced low energy (less than 100 eV) flux which peaks at 90-deg pitch angles is found. These are most prominent when the spacecraft is on field lines which pass close to but are not connected to the bow shock. The 90-deg pitch angle electrons appear to have been adiabatically heated by the increase in the magnetic field strength resulting from the compression of the upstream solar wind plasma by the cometary mass loading. A model calculation of this effect which agrees qualitatively with the observed 90-deg flux enhancements is presented.

  16. Examining the specific entropy (density of adiabatic invariants) of the outer electron radiation belt

    SciTech Connect

    Borovsky, Joseph E; Denton, Michael H

    2008-01-01

    Using temperature and number-density measurements of the energetic-electron population from multiple spacecraft in geosynchronous orbit, the specific entropy S = T/n{sup 2/3} of the outer electron radiation belt is calculated. Then 955,527 half-hour-long data intervals are statistically analyzed. Local-time and solar-cycle variations in S are examined. The median value of the specific entropy (2.8 x 10{sup 7} eVcm{sup 2}) is much larger than the specific entropy of other particle populations in and around the magnetosphere. The evolution of the specific entropy through high-speed-stream-driven geomagnetic storms and through magnetic-cloud-driven geomagnetic storms is studied using superposed-epoch analysis. For high-speed-stream-driven storms, systematic variations in the entropy associated with electron loss and gain and with radiation-belt heating are observed in the various storm phases. For magnetic-cloud-driven storms, multiple trigger choices for the data superpositions reveal the effects of interplanetary shock arrival, sheath driving, cloud driving, and recovery phase. The specific entropy S = T/n{sup 2/3} is algebraically expressed in terms of the first and second adiabatic invariants of the electrons: this allows a relativistic expression for S in terms of T and n to be derived. For the outer electron radiation belt at geosynchronous orbit, the relativistic corrections to the specific entropy expression are -15%.

  17. Two measured completely different electron affinities for atomic Eu?

    NASA Astrophysics Data System (ADS)

    Msezane, A. Z.; Felfli, Z.

    2016-05-01

    Recently, the electron affinity (EA) of atomic Eu was measured to be 0.116?eV. This value is in outstanding agreement with the theoretically calculated values using the Regge pole and MCDF-RCI methods. Previously, the EA of Eu was measured to be 1.053 eV. In an attempt to resolve the discrepancy between the two measured values, we have adopted the complex angular momentum (CAM) method and investigated in the electron energy range 0.11 eV electron with atomic Eu as Regge resonances following Ref.. We find the value of 2.63 eV as the EA of Eu. This leads us to conclude that neither the claimed measured EA of Eu correspond to the actual EA of Eu. We conclude that the EA in corresponds to the BE of an excited (metastable) state of the Euanion and that in to a shape resonance. We have also investigated the EA of atomic Nd and found the value of 1.88 eV, consistent with the measurement. These significant EA values of Eu and Nd could be important in the use of their negative ions in catalyzing the oxidation of water to peroxide and of methane to methanol without CO2 emission. These new results call for immediate experimental and theoretical verification.

  18. Quantum theory of concerted electronic and nuclear fluxes associated with adiabatic intramolecular processes.

    PubMed

    Bredtmann, Timm; Diestler, Dennis J; Li, Si-Dian; Manz, Jörn; Pérez-Torres, Jhon Fredy; Tian, Wen-Juan; Wu, Yan-Bo; Yang, Yonggang; Zhai, Hua-Jin

    2015-11-28

    An elementary molecular process can be characterized by the flow of particles (i.e., electrons and nuclei) that compose the system. The flow, in turn, is quantitatively described by the flux (i.e., the time-sequence of maps of the rate of flow of particles though specified surfaces of observation) or, in more detail, by the flux density. The quantum theory of concerted electronic and nuclear fluxes (CENFs) associated with electronically adiabatic intramolecular processes is presented. In particular, it is emphasized how the electronic continuity equation can be employed to circumvent the failure of the Born-Oppenheimer approximation, which always predicts a vanishing electronic flux density (EFD). It is also shown that all CENFs accompanying coherent tunnelling between equivalent "reactant" and "product" configurations of isolated molecules are synchronous. The theory is applied to three systems of increasing complexity. The first application is to vibrating, aligned H2(+)((2)Σg(+)), or vibrating and dissociating H2(+)((2)Σg(+), J = 0, M = 0). The EFD maps manifest a rich and surprising structure in this simplest of systems; for example, they show that the EFD is not necessarily synchronous with the nuclear flux density and can alternate in direction several times over the length of the molecule. The second application is to coherent tunnelling isomerization in the model inorganic system B4, in which all CENFs are synchronous. The contributions of core and valence electrons to the EFD are separately computed and it is found that core electrons flow with the nuclei, whereas the valence electrons flow obliquely to the core electrons in distinctive patterns. The third application is to the Cope rearrangement of semibullvalene, which also involves coherent tunnelling. An especially interesting discovery is that the so-called "pericyclic" electrons do not behave in the manner typically portrayed by the traditional Lewis structures with appended arrows. Indeed, it is

  19. Coupled-channels quantum theory of electronic flux density in electronically adiabatic processes: application to the hydrogen molecule ion.

    PubMed

    Diestler, D J; Kenfack, A; Manz, J; Paulus, B

    2012-03-22

    This article presents the results of the first quantum simulations of the electronic flux density (j(e)) by the "coupled-channels" (CC) theory, the fundamentals of which are presented in the previous article [Diestler, D. J. J. Phys. Chem. A 2012, DOI: 10.1021/jp207843z]. The principal advantage of the CC scheme is that it employs exclusively standard methods of quantum chemistry and quantum dynamics within the framework of the Born-Oppenheimer approximation (BOA). The CC theory goes beyond the BOA in that it yields a nonzero j(e) for electronically adiabatic processes, in contradistinction to the BOA itself, which always gives j(e) = 0. The CC is applied to oriented H(2)(+) vibrating in the electronic ground state ((2)Σ(g)(+)), for which the nuclear and electronic flux densities evolve on a common time scale of about 22 fs per vibrational period. The system is chosen as a touchstone for the CC theory, because it is the only one for which highly accurate flux densities have been calculated numerically without invoking the BOA [Barth et al, Chem. Phys. Lett. 2009, 481, 118]. Good agreement between CC and accurate results supports the CC approach, another advantage of which is that it allows a transparent interpretation of the temporal and spatial properties of j(e).

  20. Negative Electron Affinity Effect on the Surface of Chemical Vapor Deposited Diamond Polycrystalline Films

    NASA Technical Reports Server (NTRS)

    Krainsky, I. L.; Asnin, V. M.; Mearini, G. T.; Dayton, J. A., Jr.

    1996-01-01

    Strong negative electron affinity effects have been observed on the surface of as-grown chemical vapor deposited diamond using Secondary Electron Emission. The test samples were randomly oriented and the surface was terminated with hydrogen. The effect appears as an intensive peak in the low energy part of the spectrum of the electron energy distribution and may be described in the model of effective negative electron affinity.

  1. Indium phosphide negative electron affinity photocathodes: Surface cleaning and activation

    NASA Astrophysics Data System (ADS)

    Sun, Yun

    InP(100) is a very important semi-conductor for many applications. When activated by Cs and oxygen, the InP surface achieves the state of Negative Electron Affinity (NEA) making the Cs+O/InP system a very efficient electron source. Despite many years of study, the chemical cleaning and activation of InP are still not well understood. In our work, we have established an understanding of the basic physics and chemistry for the chemical cleaning and activation of the InP(100) surface. Synchrotron Radiation Photoelectron Spectroscopy is the main technique used in this study because of its high surface sensitivity and ability to identify chemical species present on the surface at each stage of our process. A clean, stoichiometric InP(100) surface is crucial for obtaining high performance of NEA photocathodes. Therefore, the first part of our study focused on the chemical cleaning of InP(100). We found that hydrogen peroxide based solutions alone, originally developed to clean GaAs(100) surfaces and widely used for InP(100), do not result in clean InP(I00) surfaces because oxide is left on the surface. A second cleaning step, which uses acid solutions like HCl or H2SO4, can remove all the oxide and leave a 0.4 ML protective layer of elemental phosphorous on the surface. The elemental phosphorous can be removed by annealing at 330°C and a clean InP(100) surface can be obtained. Cs deposition on InP(100) surface shows clear charge transfer from the Cs ad-atoms to the substrate. When the Cs/InP(100) surface is dosed with oxygen, the charge transfer from the Cs to substrate is reduced and substrate is oxidized. The activation of InP as a NEA photocathode is carried out by an alternating series of steps consisting of Cs deposition and Cs+O co-deposition. Two types of oxygen are found after activation. The first is dissociated oxygen and the other is a di-oxygen species (peroxide or superoxide). The decay of quantum-yield with time and with annealing is studied and changes in

  2. Photodetachment of electrons from phosphide ion - The electron affinity of PH2.

    NASA Technical Reports Server (NTRS)

    Smyth, K. C.; Brauman, J. I.

    1972-01-01

    Measurement of the relative cross section for photodetachment of electrons from PH2(-) in the wavelength region 725 to 1020 nm (1.71 to 1.22 eV). An ion cyclotron resonance spectrometer was used to generate, trap, and detect the negative ions, and two light sources were employed to study photodetachment: a 1000-W xenon arc lamp with a grating monochromator and a continuously tunable laser. A single sharp threshold in the cross-section curve was observed, and a detailed analysis yielded an electron affinity value of 1.25 plus or minus 0.03 eV.

  3. Symmetrical windowing for quantum states in quasi-classical trajectory simulations: Application to electronically non-adiabatic processes

    SciTech Connect

    Cotton, Stephen J.; Miller, William H.

    2013-12-21

    A recently described symmetrical windowing methodology [S. J. Cotton and W. H. Miller, J. Phys. Chem. A 117, 7190 (2013)] for quasi-classical trajectory simulations is applied here to the Meyer-Miller [H.-D. Meyer and W. H. Miller, J. Chem. Phys. 70, 3214 (1979)] model for the electronic degrees of freedom in electronically non-adiabatic dynamics. Results generated using this classical approach are observed to be in very good agreement with accurate quantum mechanical results for a variety of test applications, including problems where coherence effects are significant such as the challenging asymmetric spin-boson system.

  4. Low energy Mott polarimetry of electrons from negative electron affinity photocathodes

    SciTech Connect

    Ciccacci, F.; De Rossi, S.; Campbell, D.M.

    1995-08-01

    We present data on the spin polarization {ital P} and quantum yield {ital Y} of electrons photoemitted from negative electron affinity semiconductors, including GaAs(100), GaAsP(100) alloy, and strained GaAs layer epitaxially grown on a GaAsP(100) buffer. Near photothreshold the following values for {ital P}({ital Y}) are, respectively, obtained: 26% (2.5{times}10{sup {minus}2}), 40% (1{times}10{sup {minus}3}), and 60% (1.5{times}10{sup {minus}4}). We describe in detail the apparatus used containing a low energy (10--25 keV) Mott polarimeter. The system, completely fitted in a small volume ({similar_to}10{sup 4} cm{sup 3}) ultrahigh vacuum chamber, is intended as a test facility for characterizing candidate photocathode materials for spin polarized electron sources. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  5. Ab initio adiabatic and quasidiabatic potential energy surfaces of lowest four electronic states of the H++O2 system

    NASA Astrophysics Data System (ADS)

    Xavier, F. George D.; Kumar, Sanjay

    2010-10-01

    Ab initio global adiabatic and quasidiabatic potential energy surfaces of lowest four electronic (1-4 A3″) states of the H++O2 system have been computed in the Jacobi coordinates (R,r,γ) using Dunning's cc-pVTZ basis set at the internally contracted multireference (single and double) configuration interaction level of accuracy, which are relevant to the dynamics studies of inelastic vibrational and charge transfer processes observed in the scattering experiments. The computed equilibrium geometry parameters of the bound [HO2]+ ion in the ground electronic state and other parameters for the transition state for the isomerization process, HOO+⇌OOH+ are in good quantitative agreement with those available from the high level ab initio calculations, thus lending credence to the accuracy of the potential energy surfaces. The nonadiabatic couplings between the electronic states have been analyzed in both the adiabatic and quasidiabatic frameworks by computing the nonadiabatic coupling matrix elements and the coupling potentials, respectively. It is inferred that the dynamics of energy transfer processes in the scattering experiments carried out in the range of 9.5-23 eV would involve all the four electronic states.

  6. PHYSICAL BASIS OF QUANTUM ELECTRONICS: Propagation of laser pulses under conditions of adiabatic population transfer

    NASA Astrophysics Data System (ADS)

    Arkhipkin, V. G.; Manushkin, D. V.; Timofeev, V. P.

    1998-12-01

    A medium of three-level absorbing atoms is considered under conditions of adiabatic population transfer. A study is made of the characteristics of spatial propagation of two delayed (relative to one another) Gaussian pulses. It is shown that selective excitation of a two-photon resonant state with a near-unity probability is conserved over the length of a medium, which is considerably greater than the absorption length of a weak probe pulse in the absence of the second field.

  7. Low-energy electron elastic scattering from Os atom: New electron affinity

    NASA Astrophysics Data System (ADS)

    Felfli, Z.; Kiros, F.; Msezane, A. Z.

    2013-05-01

    Bilodeau and Haugan measured the binding energies (BEs) of the ground state and the excited state of the Os- ion to be 1.07780(12) eV and 0.553(3) eV, respectively. These values are consistent with those calculated in. Here our investigation, using the recent complex angular momentum methodology wherein is embedded the crucial electron-electron correlations and the vital core polarization interaction, has found that the near threshold electron-Os elastic scattering total cross section (TCS) is characterized by three stable bound states of the Os- ion formed as resonances during the slow electron collision, with BEs of 1.910 eV, 1.230 eV and 0.224 eV. The new extracted electron affinity (EA) value from the TCS of 1.910 eV for the Os atom is significantly different from that measured in. Our calculated elastic differential cross sections (DCSs) also yield the relevant BEs for the ground and the two excited states of the Os- ion. The complex characteristic resonance structure in the TCS for the Os atom is ideal for catalysis, but makes it difficult to execute the Wigner threshold law in describing the threshold detachment behavior of complex atoms and extracting the reliable attendant EAs. Supported by U.S. DOE, AFOSR and CAU CFNM, NSF-CREST Program.

  8. Vertical and adiabatic excitations in anthracene from quantum Monte Carlo: Constrained energy minimization for structural and electronic excited-state properties in the JAGP ansatz

    NASA Astrophysics Data System (ADS)

    Dupuy, Nicolas; Bouaouli, Samira; Mauri, Francesco; Sorella, Sandro; Casula, Michele

    2015-06-01

    We study the ionization energy, electron affinity, and the π → π∗ (1La) excitation energy of the anthracene molecule, by means of variational quantum Monte Carlo (QMC) methods based on a Jastrow correlated antisymmetrized geminal power (JAGP) wave function, developed on molecular orbitals (MOs). The MO-based JAGP ansatz allows one to rigorously treat electron transitions, such as the HOMO → LUMO one, which underlies the 1La excited state. We present a QMC optimization scheme able to preserve the rank of the antisymmetrized geminal power matrix, thanks to a constrained minimization with projectors built upon symmetry selected MOs. We show that this approach leads to stable energy minimization and geometry relaxation of both ground and excited states, performed consistently within the correlated QMC framework. Geometry optimization of excited states is needed to make a reliable and direct comparison with experimental adiabatic excitation energies. This is particularly important in π-conjugated and polycyclic aromatic hydrocarbons, where there is a strong interplay between low-lying energy excitations and structural modifications, playing a functional role in many photochemical processes. Anthracene is an ideal benchmark to test these effects. Its geometry relaxation energies upon electron excitation are of up to 0.3 eV in the neutral 1La excited state, while they are of the order of 0.1 eV in electron addition and removal processes. Significant modifications of the ground state bond length alternation are revealed in the QMC excited state geometry optimizations. Our QMC study yields benchmark results for both geometries and energies, with values below chemical accuracy if compared to experiments, once zero point energy effects are taken into account.

  9. Vertical and adiabatic excitations in anthracene from quantum Monte Carlo: Constrained energy minimization for structural and electronic excited-state properties in the JAGP ansatz

    SciTech Connect

    Dupuy, Nicolas; Bouaouli, Samira; Mauri, Francesco Casula, Michele; Sorella, Sandro

    2015-06-07

    We study the ionization energy, electron affinity, and the π → π{sup ∗} ({sup 1}L{sub a}) excitation energy of the anthracene molecule, by means of variational quantum Monte Carlo (QMC) methods based on a Jastrow correlated antisymmetrized geminal power (JAGP) wave function, developed on molecular orbitals (MOs). The MO-based JAGP ansatz allows one to rigorously treat electron transitions, such as the HOMO → LUMO one, which underlies the {sup 1}L{sub a} excited state. We present a QMC optimization scheme able to preserve the rank of the antisymmetrized geminal power matrix, thanks to a constrained minimization with projectors built upon symmetry selected MOs. We show that this approach leads to stable energy minimization and geometry relaxation of both ground and excited states, performed consistently within the correlated QMC framework. Geometry optimization of excited states is needed to make a reliable and direct comparison with experimental adiabatic excitation energies. This is particularly important in π-conjugated and polycyclic aromatic hydrocarbons, where there is a strong interplay between low-lying energy excitations and structural modifications, playing a functional role in many photochemical processes. Anthracene is an ideal benchmark to test these effects. Its geometry relaxation energies upon electron excitation are of up to 0.3 eV in the neutral {sup 1}L{sub a} excited state, while they are of the order of 0.1 eV in electron addition and removal processes. Significant modifications of the ground state bond length alternation are revealed in the QMC excited state geometry optimizations. Our QMC study yields benchmark results for both geometries and energies, with values below chemical accuracy if compared to experiments, once zero point energy effects are taken into account.

  10. Aromaticity and electron affinity of Carbo(k)-[3]radialenes, k=0, 1, 2.

    PubMed

    Lepetit, Christine; Brøndsted Nielsen, Mogens; Diederich, François; Chauvin, Remi

    2003-10-17

    (z) electrons in the resonance forms was calculated and compared with the closest even integer of either forms 4m+2 or 4m. A density-based continuous generalization of the orbital-based discrete Hückel rule is then heuristically proposed through an analytical correlation of NICS versus sigma(d), n, and S, the spin of the species. The frontier-orbital-degeneracy pattern of neutral species is discussed with respect to structural and magnetic aromaticity criteria. A decreasing HOMO-LUMO gap versus endocyclic expansion is obtained, but [C-C](3) (1)carbo-[3]radialene possesses the highest HOMO and LUMO energies. Vertical and adiabatic electron affinities of neutral and monoanionic species were also computed and compared with related experimental data.

  11. Efficient algorithms for the simulation of non-adiabatic electron transfer in complex molecular systems: application to DNA.

    PubMed

    Kubař, Tomáš; Elstner, Marcus

    2013-04-28

    In this work, a fragment-orbital density functional theory-based method is combined with two different non-adiabatic schemes for the propagation of the electronic degrees of freedom. This allows us to perform unbiased simulations of electron transfer processes in complex media, and the computational scheme is applied to the transfer of a hole in solvated DNA. It turns out that the mean-field approach, where the wave function of the hole is driven into a superposition of adiabatic states, leads to over-delocalization of the hole charge. This problem is avoided using a surface hopping scheme, resulting in a smaller rate of hole transfer. The method is highly efficient due to the on-the-fly computation of the coarse-grained DFT Hamiltonian for the nucleobases, which is coupled to the environment using a QM/MM approach. The computational efficiency and partial parallel character of the methodology make it possible to simulate electron transfer in systems of relevant biochemical size on a nanosecond time scale. Since standard non-polarizable force fields are applied in the molecular-mechanics part of the calculation, a simple scaling scheme was introduced into the electrostatic potential in order to simulate the effect of electronic polarization. It is shown that electronic polarization has an important effect on the features of charge transfer. The methodology is applied to two kinds of DNA sequences, illustrating the features of transfer along a flat energy landscape as well as over an energy barrier. The performance and relative merit of the mean-field scheme and the surface hopping for this application are discussed. PMID:23493847

  12. Fullerene Cyanation Does Not Always Increase Electron Affinity: Experimental and Theoretical Study

    SciTech Connect

    Clikeman, Tyler T.; Deng, Shihu; Popov, Alexey A.; Wang, Xue B.; Strauss, Steven H.; Boltalina, Olga V.

    2015-01-01

    The electron affinities of C70 derivatives with trifluoromethyl, methyl and cyano groups were studied experimentally and theoretically using low-temperature photoelectron spectroscopy (LT PES) and density functional theory (DFT). The electronic effects of these functional groups were determined and found to be highly dependent on the addition patterns. Substitution of CF3 for CN for the same addition pattern increases the experimental electron affinity by 70 meV per substitution. The synthesis of a new fullerene derivative, C70(CF3)10(CN)2, is reported for the first time

  13. CALCULATION OF ELECTRON AFFINITIES OF POLYCYCLIC AROMATIC HYDROCARBONS AND SOVATION ENERGIES OF THEIR ANIONS

    EPA Science Inventory

    Electron affinities (EAs) and free energies for electron attachment have been calculated for 42 polynuclear aromatic hydrocarbons and related molecules by a variety of theoretical models, including Koopmans' theorem methods and the L1E method from differences in energy between th...

  14. Communication: Note on detailed balance in symmetrical quasi-classical models for electronically non-adiabatic dynamics

    NASA Astrophysics Data System (ADS)

    Miller, William H.; Cotton, Stephen J.

    2015-04-01

    It is noted that the recently developed symmetrical quasi-classical (SQC) treatment of the Meyer-Miller (MM) model for the simulation of electronically non-adiabatic dynamics provides a good description of detailed balance, even though the dynamics which results from the classical MM Hamiltonian is "Ehrenfest dynamics" (i.e., the force on the nuclei is an instantaneous coherent average over all electronic states). This is seen to be a consequence of the SQC windowing methodology for "processing" the results of the trajectory calculation. For a particularly simple model discussed here, this is shown to be true regardless of the choice of windowing function employed in the SQC model, and for a more realistic full classical molecular dynamics simulation, it is seen to be maintained correctly for very long time.

  15. Communication: Note on detailed balance in symmetrical quasi-classical models for electronically non-adiabatic dynamics

    SciTech Connect

    Miller, William H. Cotton, Stephen J.

    2015-04-07

    It is noted that the recently developed symmetrical quasi-classical (SQC) treatment of the Meyer-Miller (MM) model for the simulation of electronically non-adiabatic dynamics provides a good description of detailed balance, even though the dynamics which results from the classical MM Hamiltonian is “Ehrenfest dynamics” (i.e., the force on the nuclei is an instantaneous coherent average over all electronic states). This is seen to be a consequence of the SQC windowing methodology for “processing” the results of the trajectory calculation. For a particularly simple model discussed here, this is shown to be true regardless of the choice of windowing function employed in the SQC model, and for a more realistic full classical molecular dynamics simulation, it is seen to be maintained correctly for very long time.

  16. Electron affinity of trans-2-C4F8 from electron attachment-detachment kinetics.

    PubMed

    Van Doren, Jane M; Condon, Laura R; DeSouza-Goding, Antonet; Miller, Thomas M; Bopp, Joseph C; Viggiano, A A

    2010-01-28

    Electron attachment and detachment kinetics of 2-C(4)F(8) were studied over the temperature range 298-487 K with a flowing-afterglow Langmuir-probe apparatus. Only parent anions were formed in the attachment process throughout this temperature range. At the highest temperatures, thermal electron detachment of the parent anions is important. Analysis of the 2-C(4)F(8) gas showed an 82/18 mixture of trans/cis isomers. The kinetic data at the higher temperatures were used to determine the electron affinity EA(trans-2-C(4)F(8)) = 0.79 +/- 0.06 eV after making some reasonable assumptions. The same quantity was calculated using the G3(MP2) compound method, yielding 0.74 eV. The kinetic data were not sufficient to establish a reliable value for EA(cis-2-C(4)F(8)), but G3(MP2) calculations give a value 0.017 eV greater than that for trans-2-C(4)F(8). MP2 and density functional theory were used to study the structural properties of the neutral and anion isomers.

  17. Theoretical study for the electron affinities of negative ions with the MCDHF method

    NASA Astrophysics Data System (ADS)

    Li, Junqin; Zhao, Zilong; Andersson, Martin; Zhang, Xuemei; Chen, Chongyang

    2012-08-01

    Systematic theoretical calculations based on the multi-configuration Dirac-Hartree-Fock method have been carried out for the electron affinities of anions of the elements of group III (B, Al, Ga, In and Tl), group IV (C, Si, Ge, Sn and Pb), group V (N, P and As), group VI (O, S, Se, Te and Po) and group VII (F, Cl, Br, I and At) by studying the ground energies of neutral atoms and their corresponding negative ions. The differences between the calculated total energies of the neutral atom and its anion were used to obtain the electron affinities. We discuss in detail the effects of configuration interaction, investigate the importance of including different types of correlations and check the impact of the higher order relativistic corrections on electron affinities. Our calculated electron affinities are compared with experimental and other available theoretical results. The present studies are the first systematic studies of all these elements. We give the first theoretical values for the affinities of elements Se, Te, Po and At; thereinto, there is no experimental value for elements Po and At.

  18. Work function and electron affinity of the fluorine-terminated (100) diamond surface

    NASA Astrophysics Data System (ADS)

    Rietwyk, K. J.; Wong, S. L.; Cao, L.; O'Donnell, K. M.; Ley, L.; Wee, A. T. S.; Pakes, C. I.

    2013-03-01

    The work function and electron affinity of fluorine-terminated (100) diamond surfaces prepared by exposure to dissociated XeF2 have been determined using synchrotron-based photoemission. After vacuum annealing to 350 °C a clean, monofluoride terminated C(100):F surface was obtained for which an electron affinity of 2.56 eV was measured. This is the highest electron affinity reported for any diamond surface termination so far, and it exceeds the value predicted by recent density functional theory calculations by 0.43 eV. The work function of 7.24 eV measured for the same surface places the Fermi energy of 0.79 eV above the valence band maximum.

  19. Method for resurrecting negative electron affinity photocathodes after exposure to an oxidizing gas

    DOEpatents

    Mulhollan, Gregory A; Bierman, John C

    2012-10-30

    A method by which negative electron affinity photocathodes (201), single crystal, amorphous, or otherwise ordered, can be made to recover their quantum yield following exposure to an oxidizing gas has been discovered. Conventional recovery methods employ the use of cesium as a positive acting agent (104). In the improved recovery method, an electron beam (205), sufficiently energetic to generate a secondary electron cloud (207), is applied to the photocathode in need of recovery. The energetic beam, through the high secondary electron yield of the negative electron affinity surface (203), creates sufficient numbers of low energy electrons which act on the reduced-yield surface so as to negate the effects of absorbed oxidizing atoms thereby recovering the quantum yield to a pre-decay value.

  20. Electron affinities for rare gases and some actinides from local-spin-density-functional theory

    SciTech Connect

    Guo, Y.; Wrinn, M.C.; Whitehead, M.A. )

    1989-12-01

    The negative ions of the rare gases (He, Ne, Ar, Kr, Xe, and Rn) and some actinides (Pu, Am, Bk, Cf, and Es) have been calculated self-consistently by the generalized exchange local-spin-density-functional theory with self-interaction correction and correlation. The electron affinities were obtained as the differences between the statistical total energies of the negative ions and neutral atoms; the electron affinities were positive around several millirydbergs. Consequently, the negative ions are predicted stable for the rare gases and actinides.

  1. Theoretical study of Raman chirped adiabatic passage by X-ray absorption spectroscopy: Highly excited electronic states and rotational effects

    SciTech Connect

    Engin, Selma; Sisourat, Nicolas Selles, Patricia; Taïeb, Richard; Carniato, Stéphane

    2014-06-21

    Raman Chirped Adiabatic Passage (RCAP) is an efficient method to climb the vibrational ladder of molecules. It was shown on the example of fixed-in-space HCl molecule that selective vibrational excitation can thus be achieved by RCAP and that population transfer can be followed by X-ray Photoelectron spectroscopy [S. Engin, N. Sisourat, P. Selles, R. Taïeb, and S. Carniato, Chem. Phys. Lett. 535, 192–195 (2012)]. Here, in a more detailed analysis of the process, we investigate the effects of highly excited electronic states and of molecular rotation on the efficiency of RCAP. Furthermore, we propose an alternative spectroscopic way to monitor the transfer by means of X-ray absorption spectra.

  2. MCDHF calculation of electron affinities of Group I and Group IB atomic anions

    NASA Astrophysics Data System (ADS)

    Li, Junqin; Zhao, Zilong; Zhang, Xuemei

    2014-08-01

    The affinities of negative ions for elements of Group I and Group IB have been calculated using the multi-configuration Dirac-Hartree-Fock (MCDHF) method. The difference between the total energy of the ground state of the atom and that of its anion is used to obtain the electron affinity. The theoretical results for these elements agree well with measured values, and have a deviation less than 0.5% with respect to measured values for most of the elements. With a systematic calculation method, this work gives a high-accuracy theoretical value for the electron affinities of the elements of Group I and Group IB. For element Fr, there is no experimental value.

  3. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework

    PubMed Central

    Tiwari, Vivek; Peters, William K.; Jonas, David M.

    2013-01-01

    The delocalized, anticorrelated component of pigment vibrations can drive nonadiabatic electronic energy transfer in photosynthetic light-harvesting antennas. In femtosecond experiments, this energy transfer mechanism leads to excitation of delocalized, anticorrelated vibrational wavepackets on the ground electronic state that exhibit not only 2D spectroscopic signatures attributed to electronic coherence and oscillatory quantum energy transport but also a cross-peak asymmetry not previously explained by theory. A number of antennas have electronic energy gaps matching a pigment vibrational frequency with a small vibrational coordinate change on electronic excitation. Such photosynthetic energy transfer steps resemble molecular internal conversion through a nested intermolecular funnel. PMID:23267114

  4. Determination of electron affinity of carbonyl radicals by means of negative ion mass spectrometry.

    PubMed

    Muftakhov; Vasil'ev; Mazunov

    1999-06-01

    Appearance energies of [M-H](-) ions from carbonyl compounds R-CO-R' (R,R' = H, CH(3), NH(2), OH) have been measured by means of negative ion mass spectrometry in resonant electron capture mode. Values of electron affinity of the corresponding radicals, CH(2)&dbond;C(X)O, NH&dbond;C(X)O and O&dbond;C(X)O, have been determined. Copyright 1999 John Wiley & Sons, Ltd. PMID:10407285

  5. Capturing enveloped viruses on affinity grids for downstream cryo-electron microscopy applications

    PubMed Central

    Kiss, Gabriella; Chen, Xuemin; Brindley, Melinda A.; Campbell, Patricia; Afonso, Claudio L.; Ke, Zunlong; Holl, Jens M.; Guerrero-Ferreira, Ricardo C.; Byrd-Leotis, Lauren A.; Steel, John; Steinhauer, David A.; Plemper, Richard K.; Kelly, Deborah F.; Spearman, Paul W.; Wright, Elizabeth R.

    2014-01-01

    Electron microscopy (EM), cryo-electron microscopy (cryo-EM), and cryo-electron tomography (cryo-ET) are essential techniques used for characterizing basic virus morphology and determining the three-dimensional structure of viruses. Enveloped viruses, which contain an outer lipoprotein coat, constitute the largest group of pathogenic viruses to humans. The purification of enveloped viruses from cell culture presents certain challenges. Specifically, the inclusion of host-membrane derived vesicles, the complete destruction of the viruses, and the disruption of the internal architecture of individual virus particles. Here, we present a strategy for capturing enveloped viruses on affinity grids for use in both conventional EM and cryo-EM/ET applications. We examined the utility of affinity grids for the selective capture of human immunodeficiency virus (HIV) virus-like particles (VLPs), influenza A, and measles virus (MeV). We applied Nickel-nitrilotriacetic acid (Ni-NTA) lipid layers in combination with molecular adaptors to selectively adhere the viruses to the affinity grid surface. This further development of the affinity grid method may prove essential for the gentle and selective purification of enveloped viruses directly onto EM grids for ultrastructural analysis. PMID:24279992

  6. Accurate electron affinity of Pb and isotope shifts of binding energies of Pb(.).

    PubMed

    Chen, Xiaolin; Ning, Chuangang

    2016-08-28

    Lead (Pb) was the last element of the group IVA whose electron affinity had a low accuracy around 10 meV before the present work. This was due to the generic threshold photodetachment measurement that cannot extent well below 0.5 eV due to the light source limitation. In the present work, the electron affinity of Pb was determined to be 2877.33(13) cm(-1) or 0.356 743(16) eV for the isotope m = 208. The accuracy was improved by a factor of 500 with respect to the previous laser photodetachment electron spectroscopy. Moreover, remarkable isotope shifts of the binding energy of Pb(-) 6p(3) (4)S3/2 - Pb 6p(2) (3)P2 were observed for m = 206, 207, and 208. PMID:27586918

  7. Electron affinities of d1 transition metal chloride clusters and onset of super halogen behavior

    NASA Astrophysics Data System (ADS)

    Behera, Swayamprabha; Joseph, Jorly; Jena, Purusottam

    2011-03-01

    Geometry, electronic structure, and electron affinity of d1 transition metal chloride clusters (MCl n , M = Sc,Y, La; n = 1--5) have been calculated using density functional theory. Chlorine atoms are chemically bound in all cases except for MCl 5 . The electron affinities of MCl n (n = 1--3) are small and increase only marginally as a function of n until the valence of the metal atom is consumed. Beyond this, they rise sharply and reach a value of 5.96, 6.03 and 5.90 eV for ScCl 4 , YCl 4 and LaCl 4 , respectively and remain high for n = 5. MCl n , (n = 4,5) clusters, therefore, behave as superhalogens. Results are compared with available experimental data

  8. Electron affinities of d1 transition metal chloride clusters and onset of super halogen behavior

    NASA Astrophysics Data System (ADS)

    Joseph, Jorly; Behera, Swayamprabha; Jena, Purusottam

    2010-09-01

    Geometry, electronic structure, and electron affinity of d1 transition metal chloride clusters (MCl n, M = Sc, Y, La; n = 1-5) have been calculated using density functional theory. Chlorine atoms are chemically bound in all cases except for MCl 5. The electron affinities of MCl n ( n = 1-3) are small and increase only marginally as a function of n until the valence of the metal atom is consumed. Beyond this, they rise sharply and reach a value of 5.96, 6.03 and 5.90 eV for ScCl 4, YCl 4 and LaCl 4, respectively and remain high for n = 5. MCl n, ( n = 4,5) clusters, therefore, behave as superhalogens. Results are compared with available experimental data.

  9. Accurate electron affinity of Pb and isotope shifts of binding energies of Pb-

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolin; Ning, Chuangang

    2016-08-01

    Lead (Pb) was the last element of the group IVA whose electron affinity had a low accuracy around 10 meV before the present work. This was due to the generic threshold photodetachment measurement that cannot extent well below 0.5 eV due to the light source limitation. In the present work, the electron affinity of Pb was determined to be 2877.33(13) cm-1 or 0.356 743(16) eV for the isotope m = 208. The accuracy was improved by a factor of 500 with respect to the previous laser photodetachment electron spectroscopy. Moreover, remarkable isotope shifts of the binding energy of Pb- 6p3 4S3/2 - Pb 6p2 3P2 were observed for m = 206, 207, and 208.

  10. Comparative investigation of surface transfer doping of hydrogen terminated diamond by high electron affinity insulators

    NASA Astrophysics Data System (ADS)

    Verona, C.; Ciccognani, W.; Colangeli, S.; Limiti, E.; Marinelli, Marco; Verona-Rinati, G.

    2016-07-01

    We report on a comparative study of transfer doping of hydrogenated single crystal diamond surface by insulators featured by high electron affinity, such as Nb2O5, WO3, V2O5, and MoO3. The low electron affinity Al2O3 was also investigated for comparison. Hole transport properties were evaluated in the passivated hydrogenated diamond films by Hall effect measurements, and were compared to un-passivated diamond films (air-induced doping). A drastic improvement was observed in passivated samples in terms of conductivity, stability with time, and resistance to high temperatures. The efficiency of the investigated insulators, as electron accepting materials in hydrogenated diamond surface, is consistent with their electronic structure. These surface acceptor materials generate a higher hole sheet concentration, up to 6.5 × 1013 cm-2, and a lower sheet resistance, down to 2.6 kΩ/sq, in comparison to the atmosphere-induced values of about 1 × 1013 cm-2 and 10 kΩ/sq, respectively. On the other hand, hole mobilities were reduced by using high electron affinity insulator dopants. Hole mobility as a function of hole concentration in a hydrogenated diamond layer was also investigated, showing a well-defined monotonically decreasing trend.

  11. Ladderlike oligomers; intramolecular hydrogen bonding, push-pull character, and electron affinity.

    PubMed

    Pieterse, K; Vekemans, J A; Kooijman, H; Spek, A L; Meijer, E W

    2000-12-15

    Symmetrical 2,5-bis(2-aminophenyl)pyrazines have been synthesized by application of the Stille coupling strategy. These cotrimers feature three important properties, namely strong intramolecular hydrogen bonding, push-pull character, and high electron affinity. The presence of intramolecular hydrogen bonds has been confirmed by 1H NMR, IR spectroscopy, and single-crystal X-ray diffraction. The hydrogen bond strength can be increased by substituting the amino groups with stronger electron-withdrawing functionalities. Despite the anticipated enhanced pi-conjugation through planarization, a hypsochromic shift was observed in the UV/Vis spectra, explained by a decrease in push-pull character. The electron affinity of the cotrimers was deduced from the first reduction potentials measured by cyclic voltammetry and is related to the electron-withdrawing character of the amino substituents. The results obtained have been compared with those of the corresponding 4-aminophenyl analogues and show that intramolecular hydrogen bonds can be used to design polymers with enhanced pi conjugation as well as a high electron affinity.

  12. Fine Structure in the Secondary Electron Emission Peak for Diamond Crystal with (100) Negative Electron Affinity Surface

    NASA Technical Reports Server (NTRS)

    Asnin, V. M.; Krainsky, I. L.

    1998-01-01

    A fine structure was discovered in the low-energy peak of the secondary electron emission spectra of the diamond surface with negative electron affinity. We studied this structure for the (100) surface of the natural type-IIb diamond crystal. We have found that the low-energy peak consists of a total of four maxima. The relative energy positions of three of them could be related to the electron energy minima near the bottom of the conduction band. The fourth peak, having the lowest energy, was attributed to the breakup of the bulk exciton at the surface during the process of secondary electron emission.

  13. Electric Field Cancellation on Quartz by Rb Adsorbate-Induced Negative Electron Affinity

    NASA Astrophysics Data System (ADS)

    Sedlacek, J. A.; Kim, E.; Rittenhouse, S. T.; Weck, P. F.; Sadeghpour, H. R.; Shaffer, J. P.

    2016-04-01

    We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric fields resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the adsorbed Rb induces negative electron affinity (NEA) on the quartz surface. The NEA surface allows low energy electrons to bind to the surface and cancel the electric field from the Rb adsorbates. Our results will be important for integrating Rydberg atoms into hybrid quantum systems, as fundamental probes of atom-surface interactions, and for studies of 2D electron gases bound to surfaces.

  14. Electric Field Cancellation on Quartz by Rb Adsorbate-Induced Negative Electron Affinity.

    PubMed

    Sedlacek, J A; Kim, E; Rittenhouse, S T; Weck, P F; Sadeghpour, H R; Shaffer, J P

    2016-04-01

    We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric fields resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the adsorbed Rb induces negative electron affinity (NEA) on the quartz surface. The NEA surface allows low energy electrons to bind to the surface and cancel the electric field from the Rb adsorbates. Our results will be important for integrating Rydberg atoms into hybrid quantum systems, as fundamental probes of atom-surface interactions, and for studies of 2D electron gases bound to surfaces. PMID:27081976

  15. Rapid contrast evaluation method based on affinity beads and backscattered electron imaging for the screening of electron stains.

    PubMed

    Kaku, Hiroki; Inoue, Kanako; Muranaka, Yoshinori; Park, Pyoyun; Ikeda, Kenichi

    2015-10-01

    Uranyl salts are toxic and radioactive; therefore, several studies have been conducted to screen for substitutes of electron stains. In this regard, the contrast evaluation process is time consuming and the results obtained are inconsistent. In this study, we developed a novel contrast evaluation method using affinity beads and a backscattered electron image (BSEI), obtained using scanning electron microscopy. The contrast ratios of BSEI in each electron stain treatment were correlated with those of transmission electron microscopic images. The affinity beads bound to cell components independently. Protein and DNA samples were enhanced by image contrast treated with electron stains; however, this was not observed for sugars. Protein-conjugated beads showed an additive effect of image contrast when double-stained with lead. However, additive effect of double staining was not observed in DNA-conjugated beads. The varying chemical properties of oligopeptides showed differences in image contrast when treated with each electron stain. This BSEI-based evaluation method not only enables screening for alternate electron stains, but also helps analyze the underlying mechanisms of electron staining of cellular structures. PMID:26199255

  16. Field-Emission from Chemically Functionalized Diamond Surfaces: Does Electron Affinity Picture Work?

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yoshiyuki; Miyazaki, Takehide; Takeuchi, Daisuke; Okushi, Hideyo; Yamasaki, Satoshi

    2014-03-01

    By means of the time-dependent density functional electron dynamics, we have revisited the field-emission efficiency of chemically functionalized diamond (100) surfaces. In order to achieve high efficiency and high (chemical) stability, proper chemical species are needed to terminate diamond surfaces. Hydrogen (H) termination is well known to achieve the negative electron affinity (NEA) of diamond surface which indeed enhances field emission performance than that of clean surface with positive electron affinity (PEA). Yet, the durability of H-terminated diamond surface was concerned for long-time operation of the field-emission. Meantime, oxidation, or hydroxyl (OH) termination was considered to achieve chemical stability of the surface but presence of oxygen (O) atom should reduce the emission efficiency. Recently, H- OH-co-terminated surface is reported as NEA and was expected to achieve both emission efficiency and chemical stability. However, our simulation showed that emission efficiency of the H- OH- co-terminated surface is much lower than clean surface with PEA, thus we note that the electron affinity cannot be a unique measure to determine the emission efficiency. In this talk, we introduce necessity of new concept to understand the emission efficiency which needs to know detailed potential profile from bulk to vacuum through surface, which is strongly dependent on the surface chemical functionalization. This work was supported by ALCA project conducted by Japan Science and Technology Agency.

  17. Collective motion of two-electron atom in hyperspherical adiabatic approximation

    SciTech Connect

    Mohamed, A. S.; Nikitin, S. I.

    2015-03-30

    This work is devoted to calculate bound states in the two-electron atoms. The separation of variables has carried out in hyper spherical coordinate system (R, θ, α). Assuming collective motion of the electrons, where the hper angle (α∼π/4) and (θ∼π). The separation of the rotational variables leads to system of differential equations with more simple form as compared with non restricted motion. Energy of doubly excited P{sup e} and D{sup 0} states are calculated semi classically by using quantization condition of Bohr -Somerfield. The results compared with previously published data.

  18. Electron Affinities, Fluoride Affinities, and Heats of Formation of the Second Row Transition Metal Hexafluorides: MF6 (M = Mo, Tc, Ru, Rh, Pd, Ag)

    SciTech Connect

    Craciun, Raluca; Long, Rebecca T.; Dixon, David A.; Christe, Karl O.

    2010-07-22

    High-level electronic structure calculations were used to evaluate reliable, self-consistent thermochemical data sets for the second row transition metal hexafluorides. The electron affinities, heats of formation, first (MF{sub 6} {yields} MF{sub 5} + F) and average M-F bond dissociation energies, and fluoride affinities of MF{sub 6} (MF{sub 6} + F{sup -} {yields} MF{sub 7}{sup -}) and MF{sub 5} (MF{sub 5} + F{sup -} {yields} MF{sub 6}{sup -}) were calculated. The electron affinities are higher than those of the corresponding third row hexafluorides, making them stronger one-electron oxidizers. The calculated electron affinities, in good agreement with the available experimental values, are 4.23 eV for MoF{sub 6}, 5.89 eV for TcF{sub 6}, 7.01 eV for RuF{sub 6}, 6.80 eV for RhF{sub 6}, 7.95 eV for PdF{sub 6}, and 8.89 eV for AgF{sub 6}. The corresponding pentafluorides are also very strong Lewis acids, although their acidities on the pF{sup -} scale are about one unit lower than those of the third row pentafluorides. The performance of a wide range of DFT exchange-correlation functionals was benchmarked by comparing them to our more accurate CCSD(T) results.

  19. Coherent adiabatic theory of two-electron quantum dot molecules in external spin baths

    NASA Astrophysics Data System (ADS)

    Nepstad, R.; Sælen, L.; Hansen, J. P.

    2008-03-01

    We derive an accurate molecular orbital based expression for the coherent time evolution of a two-electron wave function in a quantum dot molecule where the electrons interact with each other, with external time-dependent electromagnetic fields and with a surrounding nuclear spin reservoir. The theory allows for direct numerical modeling of the decoherence in quantum dots due to hyperfine interactions. Calculations result in good agreement with recent singlet-triplet dephasing experiments by Laird [Phys. Rev. Lett. 97, 056801 (2006)], as well as analytical model calculations. Furthermore, it is shown that using a much faster electric switch than applied in these experiments will transfer the initial state to excited states where the hyperfine singlet-triplet mixing is negligible.

  20. Transition from the adiabatic to the sudden limit in core-electron photoemission

    NASA Astrophysics Data System (ADS)

    Hedin, Lars; Michiels, John; Inglesfield, John

    1998-12-01

    Experimental results for core-electron photoemission Jk(ω) are often compared with the one-electron spectral function Ac(ɛk-ω), where ω is the photon energy, ɛk is the photoelectron energy, and the optical transition matrix elements are taken as constant. Since Jk(ω) is nonzero only for ɛk>0, we must actually compare it with Ac(ɛk-ω)θ(ɛk). For metals Ac(ω) is known to have a quasiparticle (QP) peak with an asymmetric power-law [theories of Mahan, Nozières, de Dominicis, Langreth, and others (MND)] singularity due to low-energy particle-hole excitations. The QP peak starts at the core-electron energy ɛc, and is followed by an extended satellite (shakeup) structure at smaller ω. For photon energies ω just above threshold, ωth=-ɛc, Ac(ɛk-ω)θ(ɛk) as a function of ɛk (ω constant) is cut just behind the quasiparticle peak, and neither the tail of the MND line nor the plasmon satellites are present. The sudden (high-energy) limit is given by a convolution of Ac(ω) and a loss function, i.e., by the Berglund-Spicer two-step expression. Thus Ac(ω) alone does not give the correct photoelectron spectrum, neither at low nor at high energies. We present an extension of the quantum-mechanical (QM) models developed earlier by Inglesfield, and by Bardyszewski and Hedin to calculate Jk(ω). It includes recoil and damping, as well as shakeup effects and extrinsic losses, is exact in the high-energy limit, and allows calculations of Jk(ω) including the MND line and multiple plasmon losses. The model, which involves electrons coupled to quasibosons, is motivated by detailed arguments. As an illustration we have made quantitative calculations for a semi-infinite jellium with the density of aluminum metal and an embedded atom. The coupling functions (fluctuation potentials) between the electron and the quasibosons are related to the random-phase-approximation dielectric function, and different levels of approximations are evaluated numerically. The differences

  1. Electron affinity coefficients of nitrogen oxides and biodegradation kinetics in denitrification of contaminated stream water.

    PubMed

    Kim, Seung-Hyun; Chung, Jong-Bae; Jeong, Byeong-Ryong; Lee, Young-Deuk; Prasher, Shiv O

    2003-01-01

    During the dry season in Korea, rivers become more vulnerable to contamination by biochemical oxygen demand (BOD) and nitrogen. It is hypothesized that the natural characteristics of the streams in Korea allow the contaminated water to be treated at the tributaries. Down-stream river water quality in Korea may be improved by spraying the contaminated stream water from the tributaries over the surrounding floodplains. The consequent water filtration through the soil could remove the contaminants through aerobic and denitrifying reactions. In this study, the kinetics parameters of the denitrifying reaction in floodplain filtration were determined using contaminated stream water. For the electron donor the Monod kinetics was used, while the competitive Michaelis-Menten model was employed for the electron acceptors. The parameters to the competitive Michaelis-Menten model were found using continuous denitrifying reactions, instead of the batch reactions employed in previous studies, to match the conditions needed to apply the competitive Michaelis-Menten kinetics. From the result, it was found that continuous reactions as well as batch reactions could be used to determine the affinity coefficients in denitrification. The results of this study also showed that the affinity coefficient of NO2, using continuous reactions, was similar to that of other studies in the literature found via batch reactions, whereas the affinity coefficient of N2O was much larger than that acquired with batch reactions. The parameters obtained in this study will be used in future work to simulate the contaminant behaviors during floodplain filtration using a mathematical model.

  2. Calculation of the electron affinities of the chromophores involved in photosynthesis

    SciTech Connect

    Cory, M.G.; Zerner, M.C.

    1996-05-01

    We examine the electron affinities (EA) of the postulated electron acceptor chromophores of the photosynthetic reaction center in R. Viridis. We estimate a difference of EA`s between bacteriochlorophyll-b and bacteriopheophytin-b of 0.19eV, in excellent agreement with the experimental value reported at 0.20 eV. We estimate this difference in situ at 0.42 eV, compared to an experimental estimate of 0.34 eV. These results support those of Thompson and Zerner that in the absence of specific interactions between BChl-L-side and the environment, electron transfer to BChl-L-side might not be directly involved in the overall electron transfer process. 42 refs., 2 figs., 3 tabs.

  3. Electron wavepacket dynamics in highly quasi-degenerate coupled electronic states: A theory for chemistry where the notion of adiabatic potential energy surface loses the sense

    NASA Astrophysics Data System (ADS)

    Yonehara, Takehiro; Takatsuka, Kazuo

    2012-12-01

    We develop a theory and the method of its application for chemical dynamics in systems, in which the adiabatic potential energy hyper-surfaces (PES) are densely quasi-degenerate to each other in a wide range of molecular geometry. Such adiabatic electronic states tend to couple each other through strong nonadiabatic interactions. Technically, therefore, it is often extremely hard to accurately single out the individual PES in those systems. Moreover, due to the mutual nonadiabatic couplings that may spread wide in space and due to the energy-time uncertainty relation, the notion of the isolated and well-defined potential energy surface should lose the sense. On the other hand, such dense electronic states should offer a very interesting molecular field in which chemical reactions to proceed in characteristic manners. However, to treat these systems, the standard theoretical framework of chemical reaction dynamics, which starts from the Born-Oppenheimer approximation and ends up with quantum nuclear wavepacket dynamics, is not very useful. We here explore this problem with our developed nonadiabatic electron wavepacket theory, which we call the phase-space averaging and natural branching (PSANB) method [T. Yonehara and K. Takatsuka, J. Chem. Phys. 129, 134109 (2008)], 10.1063/1.2987302, or branching-path representation, in which the packets are propagated in time along the non-Born-Oppenheimer branching paths. In this paper, after outlining the basic theory, we examine using a one-dimensional model how well the PSANB method works with such densely quasi-degenerate nonadiabatic systems. To do so, we compare the performance of PSANB with the full quantum mechanical results and those given by the fewest switches surface hopping (FSSH) method, which is known to be one of the most reliable and flexible methods to date. It turns out that the PSANB electron wavepacket approach actually yields very good results with far fewer initial sampling paths. Then we apply the

  4. Electron wavepacket dynamics in highly quasi-degenerate coupled electronic states: a theory for chemistry where the notion of adiabatic potential energy surface loses the sense.

    PubMed

    Yonehara, Takehiro; Takatsuka, Kazuo

    2012-12-14

    We develop a theory and the method of its application for chemical dynamics in systems, in which the adiabatic potential energy hyper-surfaces (PES) are densely quasi-degenerate to each other in a wide range of molecular geometry. Such adiabatic electronic states tend to couple each other through strong nonadiabatic interactions. Technically, therefore, it is often extremely hard to accurately single out the individual PES in those systems. Moreover, due to the mutual nonadiabatic couplings that may spread wide in space and due to the energy-time uncertainty relation, the notion of the isolated and well-defined potential energy surface should lose the sense. On the other hand, such dense electronic states should offer a very interesting molecular field in which chemical reactions to proceed in characteristic manners. However, to treat these systems, the standard theoretical framework of chemical reaction dynamics, which starts from the Born-Oppenheimer approximation and ends up with quantum nuclear wavepacket dynamics, is not very useful. We here explore this problem with our developed nonadiabatic electron wavepacket theory, which we call the phase-space averaging and natural branching (PSANB) method [T. Yonehara and K. Takatsuka, J. Chem. Phys. 129, 134109 (2008)], or branching-path representation, in which the packets are propagated in time along the non-Born-Oppenheimer branching paths. In this paper, after outlining the basic theory, we examine using a one-dimensional model how well the PSANB method works with such densely quasi-degenerate nonadiabatic systems. To do so, we compare the performance of PSANB with the full quantum mechanical results and those given by the fewest switches surface hopping (FSSH) method, which is known to be one of the most reliable and flexible methods to date. It turns out that the PSANB electron wavepacket approach actually yields very good results with far fewer initial sampling paths. Then we apply the electron wavepacket

  5. Photodetachment of an electron from selenide ion - The electron affinity and spin-orbit coupling constant for SeH.

    NASA Technical Reports Server (NTRS)

    Smyth, K. C.; Brauman, J. I.

    1972-01-01

    The relative cross section for the gas phase photodetachment of an electron from SeH(-) was determined in the wavelength region 428 to 578 nm. An ion cyclotron resonance spectrometer was used to generate, trap, and detect the negative ions, and a 1000-W xenon arc lamp with a grating monochromator was employed as the light source. The cross section exhibited two sharp thresholds, whose positions remained unchanged for the photodetachment of SeD(-). As a result of these thresholds, the electron affinity and the spin-orbit coupling constant were evaluated.

  6. Electron Affinity Calculations for Atoms: Sensitive Probe of Many-Body Effects

    NASA Astrophysics Data System (ADS)

    Felfli, Z.; Msezane, A. Z.

    2016-05-01

    Electron-electron correlations and core-polarization interactions are crucial for the existence and stability of most negative ions. Therefore, they can be used as a sensitive probe of many-body effects in the calculation of the electron affinities (EAs) of atoms. The importance of relativistic effects in the calculation of the EAs of atoms has recently been assessed to be insignificant up to Z of 85. Here we use the complex angular momentum (CAM) methodology wherein is embedded fully the electron-electron correlations, to investigate core-polarization interactions in low-energy electron elastic scattering from the atoms In, Sn, Eu, Au and At through the calculation of their EAs. For the core-polarization interaction we use the rational function approximation of the Thomas-Fermi potential, which can be analytically continued into the complex plane. The EAs are extracted from the large resonance peaks in the CAM calculated low-energy electron-atom scattering total cross sections and compared with those from measurements and sophisticated theoretical methods. It is concluded that when the electron-electron correlations and core polarization interactions (both major many-body effects) are accounted for adequately the importance of relativity on the calculation of the EAs of atoms can be assessed. Even for the high Z (85) At atom relativistic effects are estimated to contribute a maximum of 3.6% to its EA calculation.

  7. Beyond the Born-Oppenheimer approximation: a treatment of electronic flux density in electronically adiabatic molecular processes.

    PubMed

    Diestler, D J

    2013-06-01

    Intuition suggests that a molecular system in the electronic ground state Φ0 should exhibit an electronic flux density (EFD) in response to the motion of its nuclei. If that state is described by the Born-Oppenheimer approximation (BOA), however, a straightforward calculation of the EFD yields zero, since the electrons are in a stationary state, regardless of the state of the nuclear motion. Here an alternative pathway to a nonzero EFD from a knowledge of only the BOA ground-state wave function is proposed. Via perturbation theory a complete set of approximate vibronic eigenfunctions of the whole Hamiltonian is generated. If the complete non-BOA wave function is expressed in the basis of these vibronic eigenfunctions, the ground-state contribution to the EFD is found to involve a summation over excited states. Evaluation of this sum through the so-called "average excitation energy approximation" produces a nonzero EFD. An explicit formula for the EFD for the prototypical system, namely, oriented H2+ vibrating in the electronic ground state, is derived.

  8. Electric field cancellation on quartz by Rb adsorbate-induced negative electron affinity

    NASA Astrophysics Data System (ADS)

    Shaffer, James

    2016-05-01

    We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric fields resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the adsorbed Rb induces a negative electron affinity (NEA) on the quartz surface. The NEA surface allows low energy electrons to bind to the surface and cancel the electric field from the Rb adsorbates. Our results are important for integrating Rydberg atoms into hybrid quantum systems and the fundamental study of atom-surface interactions, as well as applications for electrons bound to a 2D surface. This work was supported by the DARPA Quasar program by a Grant through ARO (60181-PH-DRP) and the AFOSR (FA9550-12-1-0282),.

  9. On the electron affinities of the Ca, Sc, Ti and Y atoms

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    For the Ca, Sc, Ti, and Y atoms calculations are performed for the ground states of the neutrals and the ground and several low-lying excited states of the negative ions. Overall, the computed electron affinities are in good accord with experiment. The calculations show the rapid stabilization of the 3d orbital relative to the 4p as the nuclear charge increases. The 3F0 and 3D0 terms are found to be close in energy in Sc(-) and in Y(-). This confirms earlier speculation that some of the peaks in the photodetachment spectra of Y(-) originate from the bound excited 3F0 term of Y(-).

  10. On the electron affinities of the Ca, Sc, Ti and Y atoms

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1988-01-01

    For the Ca, Sc, Ti and Y atoms calculations are performed for the ground states of the neutrals and the ground and several low-lying excited states of the negative ions. Overall the computed electron affinities are in good accord with experiment. The calculations show the rapid stabilization of the 3d orbital relative to the 4p as the nuclear charge increases. The 3F(0) and 3D(0) terms are found to be close in energy in Sc(-) and in Y(-). This confirms earlier speculation that some of the peaks in the photodetachment spectra of Y(-) originate from the bound excited 3F(0) term of Y(-).

  11. Initial adsorption of O 2 on Si(1 0 0): Non-adiabaticity originating both from a discrete and a continuous set of electronic excitations

    NASA Astrophysics Data System (ADS)

    Hellman, A.

    2009-01-01

    The initial adsorption of O2 on Si(1 0 0) is investigated by density-functional theory calculations. The potential energy surface shows strong corrugations which can be interpreted as precursor states, however, there are also large areas where adsorption proceeds without a barrier. Furthermore, the initial sticking probability as a function of translational energy using first-principles molecular dynamics is calculated. The result is in disagreement with measurements of sticking probability which vary from high-low-high values as the translational energy of the oxygen molecules increase. A simple non-adiabatic model is put-forth that explains not only the measured sticking probability, but also have a novel interpretation of the increased sticking probability owing to tensile stress. The model deals with non-adiabatic effects originating both from a discrete and continuous set of electronic excitations. The implications are general and can be applied to other systems.

  12. Analysis of the Molecules Structure and Vertical Electron Affinity of Organic Gas Impact on Electric Strength

    NASA Astrophysics Data System (ADS)

    Jiao, Juntao; Xiao, Dengming; Zhao, Xiaoling; Deng, Yunkun

    2016-05-01

    It is necessary to find an efficient selection method to pre-analyze the gas electric strength from the perspective of molecule structure and the properties for finding the alternative gases to sulphur hexafluoride (SF6). As the properties of gas are determined by the gas molecule structure, the research on the relationship between the gas molecule structure and the electric strength can contribute to the gas pre-screening and new gas development. In this paper, we calculated the vertical electron affinity, molecule orbits distribution and orbits energy of gas molecules by the means of density functional theory (DFT) for the typical structures of organic gases and compared their electric strengths. By this method, we find part of the key properties of the molecule which are related to the electric strength, including the vertical electron affinity, the lowest unoccupied molecule orbit (LUMO) energy, molecule orbits distribution and negative-ion system energy. We also listed some molecule groups such as unsaturated carbons double bonds (C=C) and carbonitrile bonds (C≡N) which have high electric strength theoretically by this method. supported by National Natural Science Foundation of China (Nos. 51177101 and 51337006)

  13. Surface passivation of lead sulfide nanocrystals with low electron affinity metals: photoluminescence and photovoltaic performance.

    PubMed

    Tavakoli, Mohammad Mahdi; Mirfasih, Mohammad Hassan; Hasanzadeh, Soheil; Aashuri, Hossein; Simchi, Abdolreza

    2016-04-28

    During the last decade, solution-processed colloidal quantum dots (CQDs) have attracted significant attention for low-cost fabrication of optoelectronic devices. In this study, lead sulfide (PbS) CQDs were synthesized via the hot injection method and the effect of doping elements with low electron affinity, including cadmium, calcium and zinc, on the passivation of trap states was investigated. A red-shift in the luminescence emission was observed by doping through passivation of lead dangling bonds. Time-resolved photoluminescence measurements showed that the lifetime of charged carriers was significantly enhanced by cadmium doping (∼80%) which is quite noticeable compared with calcium- and zinc-doped nanocrystals. External quantum efficiency measurements on thin solid films (∼300 nm) prepared by spin coating supported improved lifetime of carriers through passivation of mid-gap trap states. In order to show the potential application of the doping process, bulk heterojunction CQD solar cells were fabricated. It was found that the power conversion efficiency (PCE) was improved up to ∼40%; the highest improvement was observed with the Cd treatment. Finally, density functional theory (DFT) and electrochemical impedance spectroscopy (EIS) were employed to study the effect of doping on the density of states. The results showed that doping with low electron affinity metals effectively reduced the deep trap states of PbS QDs.

  14. Accurate Electron Affinity of Iron and Fine Structures of Negative Iron ions

    PubMed Central

    Chen, Xiaolin; Luo, Zhihong; Li, Jiaming; Ning, Chuangang

    2016-01-01

    Ionization potential (IP) is defined as the amount of energy required to remove the most loosely bound electron of an atom, while electron affinity (EA) is defined as the amount of energy released when an electron is attached to a neutral atom. Both IP and EA are critical for understanding chemical properties of an element. In contrast to accurate IPs and structures of neutral atoms, EAs and structures of negative ions are relatively unexplored, especially for the transition metal anions. Here, we report the accurate EA value of Fe and fine structures of Fe− using the slow electron velocity imaging method. These measurements yield a very accurate EA value of Fe, 1235.93(28) cm−1 or 153.236(34) meV. The fine structures of Fe− were also successfully resolved. The present work provides a reliable benchmark for theoretical calculations, and also paves the way for improving the EA measurements of other transition metal atoms to the sub cm−1 accuracy. PMID:27138292

  15. Accurate Electron Affinity of Iron and Fine Structures of Negative Iron ions

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolin; Luo, Zhihong; Li, Jiaming; Ning, Chuangang

    2016-05-01

    Ionization potential (IP) is defined as the amount of energy required to remove the most loosely bound electron of an atom, while electron affinity (EA) is defined as the amount of energy released when an electron is attached to a neutral atom. Both IP and EA are critical for understanding chemical properties of an element. In contrast to accurate IPs and structures of neutral atoms, EAs and structures of negative ions are relatively unexplored, especially for the transition metal anions. Here, we report the accurate EA value of Fe and fine structures of Fe‑ using the slow electron velocity imaging method. These measurements yield a very accurate EA value of Fe, 1235.93(28) cm‑1 or 153.236(34) meV. The fine structures of Fe‑ were also successfully resolved. The present work provides a reliable benchmark for theoretical calculations, and also paves the way for improving the EA measurements of other transition metal atoms to the sub cm‑1 accuracy.

  16. Accurate Electron Affinity of Iron and Fine Structures of Negative Iron ions.

    PubMed

    Chen, Xiaolin; Luo, Zhihong; Li, Jiaming; Ning, Chuangang

    2016-01-01

    Ionization potential (IP) is defined as the amount of energy required to remove the most loosely bound electron of an atom, while electron affinity (EA) is defined as the amount of energy released when an electron is attached to a neutral atom. Both IP and EA are critical for understanding chemical properties of an element. In contrast to accurate IPs and structures of neutral atoms, EAs and structures of negative ions are relatively unexplored, especially for the transition metal anions. Here, we report the accurate EA value of Fe and fine structures of Fe(-) using the slow electron velocity imaging method. These measurements yield a very accurate EA value of Fe, 1235.93(28) cm(-1) or 153.236(34) meV. The fine structures of Fe(-) were also successfully resolved. The present work provides a reliable benchmark for theoretical calculations, and also paves the way for improving the EA measurements of other transition metal atoms to the sub cm(-1) accuracy. PMID:27138292

  17. Low-energy electron attachment to SF6. III. From thermal detachment to the electron affinity of SF6.

    PubMed

    Viggiano, Albert A; Miller, Thomas M; Friedman, Jeffrey F; Troe, Jürgen

    2007-12-28

    The thermal attachment of electrons to SF(6) is measured in a flowing-afterglow Langmuir-probe apparatus monitoring electron concentrations versus axial position in the flow tube. Temperatures between 300 and 670 K and pressures of the bath gas He in the range of 0.3-9 Torr are employed. Monitoring the concentrations of SF(6)(-) and SF(5)(-), the latter of which does not detach electrons under the applied conditions, an onset of thermal detachment and dissociation of SF(6) at temperatures above about 530 K is observed. Analysis of the mechanism allows one to deduce thermal detachment rate coefficients. Thermal dissociation rate coefficients for the reaction SF(6)(-)-->SF(5)(-)+F can only be estimated by unimolecular rate theory based on the results from Part I and II of this series. Under the applied conditions they are found to be smaller than detachment rate coefficients. Combining thermal attachment and detachment rates in a third-law analysis, employing calculated vibrational frequencies of SF(6) and SF(6)(-), leads to the electron affinity (EA) of SF(6)(-). The new value of EA=1.20(+/-0.05) eV is significantly higher than previous recommendations which were based on less direct methods.

  18. The Effects of Non-adiabatic Processes on Near-Earth Plasma Sheet Electrons for Different Substorm-Related Magnetotail Conditions

    NASA Astrophysics Data System (ADS)

    Liang, H.; Ashour-Abdalla, M.; Richard, R. L.; Schriver, D.; El-Alaoui, M.; Walker, R. J.

    2013-12-01

    We investigate the spatial evolution of energetic electron distribution functions in the near-Earth plasma sheet associated with earthward propagating dipolarization fronts by using in situ observations as well as magnetohydrodynamic (MHD) and large scale kinetic (LSK) simulations. We have investigated two substorms, one on February 15, 2008 and the other on August 15, 2001. The February 15 event was observed by one of the THEMIS spacecraft at X_{GSM} -10RE, while the August 15 event was observed by Cluster at X -18RE. Both the MHD and LSK simulation results are compared to these spacecraft observations. Earthward propagating dipolarization fronts are found in both the observations and the MHD simulations, which exhibit very different magnetotail configurations, with contrasting flows, magnetic reconnection configuration, and plasma sheet structure. Electron LSK simulations were performed by using the time-varying magnetic and electric fields from the global MHD simulations. For the February 15, 2008 event, the electrons were launched near X = -20 RE with a thermal energy of 1 keV and for August 15, 2001 event, they were launched at 4 keV near X = -22 RE. These electrons undergo both non-adiabatic acceleration near the magnetotail reconnection region and adiabatic acceleration as they propagate earthward from the launch region. We compute the electron distribution functions parallel and perpendicular to the magnetic field at different locations between X = -18 RE and X = -10 RE in the plasma sheet. We find that for the February 15, 2008 event, reconnection is localized with a narrow region of high-speed flows ( 300 km/s). For this event the distribution functions show mainly f(v_perp) > f(v_par) ("par" and "perp" correspond to parallel and perpendicular to magnetic field). On August 15, 2001, there is a neutral line extending across the tail with relatively low-speed flows ( 100 km/s). For this event the distribution functions show mainly f(v_par) > f(v_perp). The

  19. Resonances in Near-Threshold Electron Elastic Scattering Cross Sections for Au and Pt: Identification of Electron Affinities.

    NASA Astrophysics Data System (ADS)

    Felfli, Z.; Msezane, A. Z.; Sokolovski, D.

    2008-05-01

    The near-threshold electron attachment in Au and Pt atoms is investigated as Regge resonances using our recent Regge-pole methodology [1] together with a Thomas-Fermi potential which incorporates the crucial core-polarization interaction. The resultant stable negative ion states are found to have the discernable characteristic of very small imaginary parts of the Regge poles, which translates into long-lived resonances. The near-threshold electron elastic total cross sections for both Au and Pt are characterized by multiple resonances from which we extract the electron affinity (EA) values through the scrutiny of the imaginary part of the relevant complex angular momentum. For Au^- and Pt^- the extracted binding energies of 2.262 eV and 2.163 eV, respectively, are in excellent agreement with the most recently measured EA values for Au [2] and Pt [3]. Ramsauer-Townsend minima, shape resonances and the Wigner threshold behavior are identified in both Au^- and Pt^- ions.[1] D. Sokolovski et al, Phys. Rev. A 76, 012705 (2007)[2] H. Hotop and W. C. Lineberger, J. Chem. Ref. Data 14, 731 (1985)[3] R. C. Bilodeau et al, Phys. Rev. A 61, 012505 (1999)

  20. Near-threshold resonances in electron elastic scattering cross sections for Au and Pt atoms: identification of electron affinities

    NASA Astrophysics Data System (ADS)

    Msezane, A. Z.; Felfli, Z.; Sokolovski, D.

    2008-05-01

    The recent Regge-pole methodology has been employed together with a Thomas-Fermi type potential which incorporates the vital core-polarization interaction to investigate the near-threshold electron attachment in Au and Pt as Regge resonances. The resultant stable negative ion states are found to have the discernible characteristic of very small imaginary parts of the Regge poles, which translate into long-lived resonances. The near-threshold electron elastic total cross sections are characterized by multiple resonances from which we extract the electron affinity (EA) values through the scrutiny of the imaginary part of the relevant complex angular momentum. For the Au- and Pt- negative ions the extracted binding energies of 2.262 eV and 2.163 eV, respectively are in excellent agreement with the most recently measured EA values for Au and Pt. Ramsauer-Townsend minima, shape resonances and the Wigner threshold behaviour are identified in both Au- and Pt- ions.

  1. Quantitatively identical orientation-dependent ionization energy and electron affinity of diindenoperylene

    SciTech Connect

    Han, W. N.; Yonezawa, K.; Makino, R.; Kato, K.; Hinderhofer, A.; Ueno, N.; Kera, S.; Murdey, R.; Shiraishi, R.; Yoshida, H.; Sato, N.

    2013-12-16

    Molecular orientation dependences of the ionization energy (IE) and the electron affinity (EA) of diindenoperylene (DIP) films were studied by using ultraviolet photoemission spectroscopy and inverse photoemission spectroscopy. The molecular orientation was controlled by preparing the DIP films on graphite and SiO{sub 2} substrates. The threshold IE and EA of DIP thin films were determined to be 5.81 and 3.53 eV for the film of flat-lying DIP orientation, respectively, and 5.38 and 3.13 eV for the film of standing DIP orientation, respectively. The result indicates that the IE and EA for the flat-lying film are larger by 0.4 eV and the frontier orbital states shift away from the vacuum level compared to the standing film. This rigid energy shift is ascribed to a surface-electrostatic potential produced by the intramolecular polar bond (>C{sup −}-H{sup +}) for standing orientation and π-electron tailing to vacuum for flat-lying orientation.

  2. Electron Affinity of Phenyl-C61-Butyric Acid Methyl Ester (PCBM)

    SciTech Connect

    Larson, Bryon W.; Whitaker, James B.; Wang, Xue B.; Popov, Alexey A.; Rumbles, Garry; Kopidakis, Nikos; Strauss, Steven H.; Boltalina, Olga V.

    2013-07-25

    The gas-phase electron affinity (EA) of phenyl-C61-butyric acid methyl ester (PCBM), one of the best-performing electron acceptors in organic photovoltaic devices, is measured by lowtemperature photoelectron spectroscopy for the first time. The obtained value of 2.63(1) eV is only ca. 0.05 eV lower than that of C60 (2.68(1) eV), compared to a 0.09 V difference in their E1/2 values measured in this work by cyclic voltammetry. Literature E(LUMO) values for PCBM that are typically estimated from cyclic voltammetry, and commonly used as a quantitative measure of acceptor properties, are dispersed over a wide range between -4.3 and -3.62 eV; the reasons for such a huge discrepancy are analyzed here, and the protocol for reliable and consistent estimations of relative fullerene-based acceptor strength in solution is proposed.

  3. Quasi-classical trajectory study of the adiabatic reactions occurring on the two lowest-lying electronic states of the LiH2+ system.

    PubMed

    Pino, Ilaria; Martinazzo, Rocco; Tantardini, Gian Franco

    2008-09-28

    Quasi-classical trajectory calculations have been performed on the adiabatically allowed reactions taking place on the two lowest-lying electronic states of the LiH2+ system, using the ab initio potential energy surfaces of Martinazzo et al. (J. Chem. Phys., 2003, 119, 11 241). These reactions comprise: (i) the exoergic H2 and H2+ formation occurring through LiH+ + H and LiH + H+ collisions in the ground and in the first electronically excited state, respectively; (ii) the endoergic (ground state) LiH+ dissociation induced by collisions with H atoms; and (iii) the endoergic (excited state) Li + H2+ --> LiH + H+ reaction. The topic is of relevance for a better understanding of the lithium chemistry in the early universe. Thermal rate constants for the above reactions have been computed in the temperature range 10-5000 K and found in reasonably good agreement with estimates based on the capture model.

  4. Modified Korteweg–de Vries equation in a negative ion rich hot adiabatic dusty plasma with non-thermal ion and trapped electron

    SciTech Connect

    Adhikary, N. C.; Deka, M. K.; Dev, A. N.; Sarmah, J.

    2014-08-15

    In this report, the investigation of the properties of dust acoustic (DA) solitary wave propagation in an adiabatic dusty plasma including the effect of the non-thermal ions and trapped electrons is presented. The reductive perturbation method has been employed to derive the modified Korteweg–de Vries (mK-dV) equation for dust acoustic solitary waves in a homogeneous, unmagnetized, and collisionless plasma whose constituents are electrons, singly charged positive ions, singly charged negative ions, and massive charged dust particles. The stationary analytical solution of the mK-dV equation is numerically analyzed and where the effect of various dusty plasma constituents DA solitary wave propagation is taken into account. It is observed that both the ions in dusty plasma play as a key role for the formation of both rarefactive as well as the compressive DA solitary waves and also the ion concentration controls the transformation of negative to positive potentials of the waves.

  5. Calculation of electron affinities of polycyclic aromatic hydrocarbons and solvation energies of their radical anion.

    PubMed

    Betowski, Leon D; Enlow, Mark; Riddick, Lee; Aue, Donald H

    2006-11-30

    Electron affinities (EAs) and free energies for electron attachment (DeltaGo(a,298K)) have been directly calculated for 45 polynuclear aromatic hydrocarbons (PAHs) and related molecules by a variety of theoretical methods, with standard regression errors of about 0.07 eV (mean unsigned error = 0.05 eV) at the B3LYP/6-31 + G(d,p) level and larger errors with HF or MP2 methods or using Koopmans' Theorem. Comparison of gas-phase free energies with solution-phase reduction potentials provides a measure of solvation energy differences between the radical anion and neutral PAH. A simple Born-charging model approximates the solvation effects on the radical anions, leading to a good correlation with experimental solvation energy differences. This is used to estimate unknown or questionable EAs from reduction potentials. Two independent methods are used to predict DeltaGo(a,298K) values: (1) based upon DFT methods, or (2) based upon reduction potentials and the Born model. They suggest reassignments or a resolution of conflicting experimental EAs for nearly one-half (17 of 38) of the PAH molecules for which experimental EAs have been reported. For the antiaromatic molecules, 1,3,5-tri-tert-butylpentalene and the dithia-substituted cyclobutadiene 1, the reduction potentials lead to estimated EAs close to those expected from DFT calculations and provide a basis for the prediction of the EAs and reduction potentials of pentalene and cyclobutadiene. The Born model has been used to relate the electrostatic solvation energies of PAH and hydrocarbon radical anions, and spherical halide anions, alkali metal cations, and ammonium ions to effective ionic radii from DFT electron-density envelopes. The Born model used for PAHs has been successfully extended here to quantitatively explain the solvation energy of the C60 radical anion.

  6. Electron attachment and detachment, and the electron affinities of C5F5N and C5HF4N.

    PubMed

    Van Doren, Jane M; Kerr, Donna M; Miller, Thomas M; Viggiano, A A

    2005-09-15

    Rate constants have been measured for electron attachment to C5F5N (297-433 K) and to 2, 3, 5, 6-C5HF4N (303 K) using a flowing-afterglow Langmuir-probe apparatus (at a He gas pressure of 133 Pa). In both cases only the parent anion was formed in the attachment process. The attachment rate constants measured at room temperature are 1.8 +/- 0.5 X 10(-7) and 7 +/- 3 X 10(-10) cm(-3) s(-1), respectively. Rate constants were also measured for thermal electron detachment from the parent anions of these molecules. For C5F5N- detachment is negligible at room temperature, but increases to 2530 +/- 890 s(-1) at 433 K. For 2, 3, 5, 6-C5HF4N-, the detachment rate at 303 K was 520 +/- 180 s(-1). The attachment/detachment equilibrium yielded experimental electron affinities EA(C5F5N)=0.70 +/- 0.05 eV and EA(2, 3, 5, 6-C5HF4N)=0.40 +/- 0.08 eV. Electronic structure calculations were carried out for these molecules and related C5HxF5-xN using density-functional theory and the G3(MP2)//B3LYP compound method. The EAs are found to decrease by 0.25 eV, on average, with each F substitution by H. The calculated EAs are in good agreement with the present experimental results.

  7. Adiabatic-connection fluctuation-dissipation DFT for the structural properties of solids—The renormalized ALDA and electron gas kernels

    NASA Astrophysics Data System (ADS)

    Patrick, Christopher E.; Thygesen, Kristian S.

    2015-09-01

    We present calculations of the correlation energies of crystalline solids and isolated systems within the adiabatic-connection fluctuation-dissipation formulation of density-functional theory. We perform a quantitative comparison of a set of model exchange-correlation kernels originally derived for the homogeneous electron gas (HEG), including the recently introduced renormalized adiabatic local-density approximation (rALDA) and also kernels which (a) satisfy known exact limits of the HEG, (b) carry a frequency dependence, or (c) display a 1/k2 divergence for small wavevectors. After generalizing the kernels to inhomogeneous systems through a reciprocal-space averaging procedure, we calculate the lattice constants and bulk moduli of a test set of 10 solids consisting of tetrahedrally bonded semiconductors (C, Si, SiC), ionic compounds (MgO, LiCl, LiF), and metals (Al, Na, Cu, Pd). We also consider the atomization energy of the H2 molecule. We compare the results calculated with different kernels to those obtained from the random-phase approximation (RPA) and to experimental measurements. We demonstrate that the model kernels correct the RPA's tendency to overestimate the magnitude of the correlation energy whilst maintaining a high-accuracy description of structural properties.

  8. The Symmetrical Quasi-Classical Model for Electronically Non-Adiabatic Processes Applied to Energy Transfer Dynamics in Site-Exciton Models of Light-Harvesting Complexes.

    PubMed

    Cotton, Stephen J; Miller, William H

    2016-03-01

    In a recent series of papers, it has been illustrated that a symmetrical quasi-classical (SQC) windowing model applied to the Meyer-Miller (MM) classical vibronic Hamiltonian provides an excellent description of a variety of electronically non-adiabatic benchmark model systems for which exact quantum results are available for comparison. In this paper, the SQC/MM approach is used to treat energy transfer dynamics in site-exciton models of light-harvesting complexes, and in particular, the well-known 7-state Fenna-Mathews-Olson (FMO) complex. Again, numerically "exact" results are available for comparison, here via the hierarchical equation of motion (HEOM) approach of Ishizaki and Fleming, and it is seen that the simple SQC/MM approach provides very reasonable agreement with the previous HEOM results. It is noted, however, that unlike most (if not all) simple approaches for treating these systems, because the SQC/MM approach presents a fully atomistic simulation based on classical trajectory simulation, it places no restrictions on the characteristics of the thermal baths coupled to each two-level site, e.g., bath spectral densities (SD) of any analytic functional form may be employed as well as discrete SD determined experimentally or from MD simulation (nor is there any restriction that the baths be harmonic), opening up the possibility of simulating more realistic variations on the basic site-exciton framework for describing the non-adiabatic dynamics of photosynthetic pigment complexes. PMID:26761191

  9. Adiabatic-connection fluctuation-dissipation DFT for the structural properties of solids—The renormalized ALDA and electron gas kernels

    SciTech Connect

    Patrick, Christopher E. Thygesen, Kristian S.

    2015-09-14

    We present calculations of the correlation energies of crystalline solids and isolated systems within the adiabatic-connection fluctuation-dissipation formulation of density-functional theory. We perform a quantitative comparison of a set of model exchange-correlation kernels originally derived for the homogeneous electron gas (HEG), including the recently introduced renormalized adiabatic local-density approximation (rALDA) and also kernels which (a) satisfy known exact limits of the HEG, (b) carry a frequency dependence, or (c) display a 1/k{sup 2} divergence for small wavevectors. After generalizing the kernels to inhomogeneous systems through a reciprocal-space averaging procedure, we calculate the lattice constants and bulk moduli of a test set of 10 solids consisting of tetrahedrally bonded semiconductors (C, Si, SiC), ionic compounds (MgO, LiCl, LiF), and metals (Al, Na, Cu, Pd). We also consider the atomization energy of the H{sub 2} molecule. We compare the results calculated with different kernels to those obtained from the random-phase approximation (RPA) and to experimental measurements. We demonstrate that the model kernels correct the RPA’s tendency to overestimate the magnitude of the correlation energy whilst maintaining a high-accuracy description of structural properties.

  10. Detection of undistorted continuous wave (CW) electron paramagnetic resonance (EPR) spectra with non-adiabatic rapid sweep (NARS) of the magnetic field

    PubMed Central

    Kittell, Aaron W.; Camenisch, Theodore G.; Ratke, Joseph J.; Sidabras, Jason W.; Hyde, James S.

    2011-01-01

    A continuous wave (CW) electron paramagnetic resonance (EPR) spectrum is typically displayed as the first harmonic response to the application of 100 kHz magnetic field modulation, which is used to enhance sensitivity by reducing the level of 1/f noise. However, magnetic field modulation of any amplitude causes spectral broadening and sacrifices EPR spectral intensity by at least a factor of two. In the work presented here, a CW rapid-scan spectroscopic technique that avoids these compromises and also provides a means of avoiding 1/f noise is developed. This technique, termed non-adiabatic rapid sweep (NARS) EPR, consists of repetitively sweeping the polarizing magnetic field in a linear manner over a spectral fragment with a small coil at a repetition rate that is sufficiently high that receiver noise, microwave phase noise, and environmental microphonics, each of which has 1/f characteristics, are overcome. Nevertheless, the rate of sweep is sufficiently slow that adiabatic responses are avoided and the spin system is always close to thermal equilibrium. The repetitively acquired spectra from the spectral fragment are averaged. Under these conditions, undistorted pure absorption spectra are obtained without broadening or loss of signal intensity. A digital filter such as a moving average is applied to remove high frequency noise, which is approximately equivalent in bandwidth to use of an integrating time constant in conventional field modulation with lock-in detection. Nitroxide spectra at L- and X-band are presented. PMID:21741868

  11. Electron affinity of arsenic and the fine structure of As- measured using infrared photodetachment threshold spectroscopy

    NASA Astrophysics Data System (ADS)

    Walter, C. W.; Gibson, N. D.; Field, R. L., III; Snedden, A. P.; Shapiro, J. Z.; Janczak, C. M.; Hanstorp, D.

    2009-07-01

    The binding energy and fine-structure splittings of the arsenic negative ion (As-) have been measured using infrared photodetachment threshold spectroscopy. The relative cross section for neutral atom production was measured with a crossed ion-beam-laser-beam apparatus over selected photon energy ranges between 630-810 meV. An s -wave threshold was observed due to the opening of the As-(4p4P32) to As(4p3S43/2) ground-state to ground-state transition, which yields the electron affinity of As to be 804.8(2) meV. s -wave thresholds were also observed for detachment from the J=1 and J=0 excited levels of As- , permitting accurate determination of the fine-structure splittings of 127.6(2) meV for P31-P32 and 164.3(10) meV for P30-P32 . The present values are consistent with previous measurements and substantially reduce the uncertainties.

  12. Spectral response variation of a negative-electron-affinity photocathode in the preparation process

    SciTech Connect

    Liu Lei; Du Yujie; Chang Benkang; Yunsheng Qian

    2006-08-20

    In order to research the spectral response variation of a negative electron affinity (NEA) photocathode in the preparation process, we have done two experiments on a transmission-type GaAs photocathode.First, an automatic spectral response recording system is described, which is used to take spectral response curves during the activation procedure of the photocathode. By this system, the spectral response curves of a GaAs:Cs-Ophotocathode measured in situ are presented. Then, after the cathode is sealed with a microchannel plate and a fluorescence screen into the image tube, we measure the spectral response of the tube by another measurement instrument. By way of comparing and analyzing these curves, we can find the typical variation in spectral-responses.The reasons for the variation are discussed. Based on these curves, spectral matching factors of a GaAs cathode for green vegetation and rough concrete are calculated. The visual ranges of night-vision goggles under specific circumstances are estimated. The results show that the spectral response of the NEA photocathode degraded in the sealing process, especially at long wavelengths. The variation has also influenced the whole performance of the intensifier tube.

  13. Collisional destruction of circular Rydberg states by atoms with small electron affinities

    NASA Astrophysics Data System (ADS)

    Mironchuk, Elena S.; Narits, Alexander A.; Lebedev, Vladimir S.

    2014-12-01

    The results of theoretical studies of interaction between neutral targets with small electron affinities and Rydberg atoms in circular states are reported. The cross sections of collisional destruction of such states due to the resonant quenching mechanism are calculated on the basis of the semiclassical theory of nonadiabatic transitions between the ionic and Rydberg covalent terms of a quasimolecule combined with recently developed technique for exact evaluation of matrix elements. We obtain the basic formula for the square of the coupling parameter involving Rydberg nlm-state with the given values of the principal, orbital, and magnetic quantum numbers. It is employed for the derivation of explicit expressions for transitions from circular states applicable in cases of s- and p-states of negative ion temporarily formed during a collision of atoms. Numerical calculations are carried out for thermal collisions of Li∗ and Na∗ atoms with Ca(4s2) and Sr(5s2). We explore n-, l-, m-, and velocity-dependences of the cross sections and analyze orientation effects in such collisions. Cross sections of resonant quenching for circular states (l = | m | = n - 1) are shown to be much smaller than those for states with small l values and typically two times lower than for nearly-circular states (l = n - 1) averaged over m.

  14. The adiabatic energy change of plasma electrons and the frame dependence of the cross-shock potential at collisionless magnetosonic shock waves

    NASA Technical Reports Server (NTRS)

    Goodrich, C. C.; Scudder, J. D.

    1984-01-01

    The adiabatic energy gain of electrons in the stationary electric and magnetic field structure of collisionless shock waves was examined analytically in reference to conditions of the earth's bow shock. The study was performed to characterize the behavior of electrons interacting with the cross-shock potential. A normal incidence frame (NIF) was adopted in order to calculate the reversible energy change across a time stationary shock, and comparisons were made with predictions made by the de Hoffman-Teller (HT) model (1950). The electron energy gain, about 20-50 eV, is demonstrated to be consistent with a 200-500 eV potential jump in the bow shock quasi-perpendicular geometry. The electrons lose energy working against the solar wind motional electric field. The reversible energy process is close to that modeled by HT, which predicts that the motional electric field vanishes and the electron energy gain from the electric potential is equated to the ion energy loss to the potential.

  15. Ab initio adiabatic and quasidiabatic potential energy surfaces of H+ + CO system: A study of the ground and the first three excited electronic states

    NASA Astrophysics Data System (ADS)

    Saheer, V. C.; Kumar, Sanjay

    2016-01-01

    The global ground and first three excited electronic state adiabatic as well as the corresponding quasidiabatic potential energy surfaces is reported as a function of nuclear geometries in the Jacobi coordinates ( R → , r → , γ ) using Dunning's cc-pVTZ basis set at the internally contracted multi-reference (single and double) configuration interaction level of accuracy. Nonadiabatic couplings, arising out of relative motion of proton and the vibrational motion of CO, are also reported in terms of coupling potentials. The quasidiabatic potential energy surfaces and the coupling potentials have been obtained using the ab initio procedure [Simah et al., J. Chem. Phys. 111, 4523 (1999)] for the purpose of dynamics studies.

  16. Kinetics of band bending and electron affinity at GaAs(001) surface with nonequilibrium cesium overlayers

    SciTech Connect

    Zhuravlev, A. G.; Savchenko, M. L.; Paulish, A. G.; Alperovich, V. L.; Scheibler, H. E.; Jaroshevich, A. S.

    2013-12-04

    The dosage dependences of surface band bending and effective electron affinity under cesium deposition on the Ga-rich GaAs(001) surface, along with the relaxation of these electronic properties after switching off the Cs source are experimentally studied by means of modified photoreflectance spectroscopy and photoemission quantum yield spectroscopy. At small Cs coverages, below half of a monolayer, additional features in the dosage dependence and subsequent downward relaxation of the photoemission current are determined by the variations of band bending. At coverages above half of a monolayer the upward relaxation of the photocurrent is caused supposedly by the decrease of the electron affinity due to restructuring in the nonequilibrium cesium overlayer.

  17. Non-planar ion-acoustic solitary waves and their head-on collision in a plasma with nonthermal electrons and warm adiabatic ions

    SciTech Connect

    Han Jiuning; He Yonglin; Chen Yan; Zhang Kezhi; Ma Baohong

    2013-01-15

    By using the model of Cairns et al.[Geophys. Rev. Lett. 22, 2709 (1995)], the head-on collision of cylindrical/spherical ion-acoustic solitary waves in an unmagnetized non-planar plasma consisting of warm adiabatic ions and nonthermally distributed electrons is investigated. The extended Poincare-Lighthill-Kuo perturbation method is used to derive the modified Korteweg-de Vries equations for ion-acoustic solitary waves in this plasma system. The effects of the plasma geometry m, the ion to electron temperature ratio {sigma}, and the nonthermality of the electron distribution {alpha} on the interaction of the colliding solitary waves are studied. It is found that the plasma geometries have a big impact on the phase shifts of solitary waves. Also it is important to note that the phase shifts induced by the collision of compressive and rarefactive solitary waves are very different. We point out that this study is useful to the investigations about the observations of electrostatic solitary structures in astrophysical as well as in experimental plasmas with nonthermal energetic electrons.

  18. Stimulated Raman adiabatic passage preparation of a coherent superposition of ThO H3Δ1 states for an improved electron electric-dipole-moment measurement

    NASA Astrophysics Data System (ADS)

    Panda, C. D.; O'Leary, B. R.; West, A. D.; Baron, J.; Hess, P. W.; Hoffman, C.; Kirilov, E.; Overstreet, C. B.; West, E. P.; DeMille, D.; Doyle, J. M.; Gabrielse, G.

    2016-05-01

    Experimental searches for the electron electric-dipole moment (EDM) probe new physics beyond the standard model. The current best EDM limit was set by the ACME Collaboration [Science 343, 269 (2014), 10.1126/science.1248213], constraining time-reversal symmetry (T ) violating physics at the TeV energy scale. ACME used optical pumping to prepare a coherent superposition of ThO H3Δ1 states that have aligned electron spins. Spin precession due to the molecule's internal electric field was measured to extract the EDM. We report here on an improved method for preparing this spin-aligned state of the electron by using stimulated Raman adiabatic passage (STIRAP). We demonstrate a transfer efficiency of 75 %±5 % , representing a significant gain in signal for a next-generation EDM experiment. We discuss the particularities of implementing STIRAP in systems such as ours, where molecular ensembles with large phase-space distributions are transferred via weak molecular transitions with limited laser power and limited optical access.

  19. Stability of ion acoustic solitary waves in a magnetized plasma consisting of warm adiabatic ions and non-thermal electrons having vortex-like velocity distribution

    NASA Astrophysics Data System (ADS)

    Das, Jayasree; Bandyopadhyay, Anup; Das, K. P.; Das

    2014-02-01

    Schamel's modified Korteweg-de Vries-Zakharov-Kuznetsov (S-ZK) equation, governing the behavior of long wavelength, weak nonlinear ion acoustic waves propagating obliquely to an external uniform static magnetic field in a plasma consisting of warm adiabatic ions and non-thermal electrons (due to the presence of fast energetic electrons) having vortex-like velocity distribution function (due to the presence of trapped electrons), immersed in a uniform (space-independent) and static (time-independent) magnetic field, admits solitary wave solutions having a sech 4 profile. The higher order stability of this solitary wave solution of the S-ZK equation has been analyzed with the help of multiple-scale perturbation expansion method of Allen and Rowlands (Allen, M. A. and Rowlands, G. 1993 J. Plasma Phys. 50, 413; 1995 J. Plasma Phys. 53, 63). The growth rate of instability is obtained correct to the order k 2, where k is the wave number of a long wavelength plane wave perturbation. It is found that the lowest order (at the order k) instability condition is strongly sensitive to the angle of propagation (δ) of the solitary wave with the external uniform static magnetic field, whereas at the next order (at the order k 2) the solitary wave solutions of the S-ZK equation are unstable irrespective of δ. It is also found that the growth rate of instability up to the order k 2 for the electrons having Boltzmann distribution is higher than that of the non-thermal electrons having vortex-like distribution for any fixed δ.

  20. Inter-spin distance determination using L-band (1-2 GHz) non-adiabatic rapid sweep electron paramagnetic resonance (NARS EPR)

    PubMed Central

    Kittell, Aaron W.; Hustedt, Eric J.; Hyde, James S.

    2014-01-01

    Site-directed spin-labeling electron paramagnetic resonance (SDSL EPR) provides insight into the local structure and motion of a spin probe strategically attached to a molecule. When a second spin is introduced to the system, macromolecular information can be obtained through measurement of inter-spin distances either by continuous wave (CW) or pulsed electron double resonance (ELDOR) techniques. If both methodologies are considered, inter-spin distances of 8 to 80 Å can be experimentally determined. However, there exists a region at the upper limit of the conventional X-band (9.5 GHz) CW technique and the lower limit of the four-pulse double electron-electron resonance (DEER) experiment where neither method is particularly reliable. The work presented here utilizes L-band (1.9 GHz) in combination with non-adiabatic rapid sweep (NARS) EPR to address this opportunity by increasing the upper limit of the CW technique. Because L-band linewidths are three to seven times narrower than those at X-band, dipolar broadenings that are small relative to the X-band inhomogeneous linewidth become observable, but the signal loss due to the frequency dependence of the Boltzmann factor, has made L-band especially challenging. NARS has been shown to increase sensitivity by a factor of five, and overcomes much of this loss, making L-band distance determination more feasible [1]. Two different systems are presented and distances of 18–30 Å have been experimentally determined at physiologically relevant temperatures. Measurements are in excellent agreement with a helical model and values determined by DEER. PMID:22750251

  1. The multi-configurational adiabatic electron transfer theory and its invariance under transformations of charge density basis functions

    NASA Astrophysics Data System (ADS)

    Basilevsky, M. V.; Chudinov, G. E.; Newton, M. D.

    1994-02-01

    The continuum multi-configurational dynamical theory of electron transfer (ET) reactions in a chemical solute immersed in a polar solvent is developed. The solute wave function is represented as a CI expansion. The corresponding decomposition of the solute charge density generates a set of dynamical variables, the discrete medium coordinates. A new expression for the free energy surface in terms of these coordinates is derived. The stochastic equations of motion derived earlier are shown to be invariant under unitary transformations of orbitals used to build the CI expansion provided the latter is complete over the corresponding orbital subspace, and also under general linear transformations of the bases employed in expanding the charge density. The interrelation between the present general treatment and the reduced theory applied previously in terms of the two-level ET model is investigated. Finally, the explicit expression for the screening potential of medium electrons is derived in the electronic Born-Oppenheimer approximation (fast (slow) electronic timescale for solvent (solute)). The theory leads to a self-consistent scheme for practical calculations of rate constants for ET reactions involving complex solutes. Illustrative test calculations for two-level ET systems are presented, and the importance of proper boundary conditions for realistic molecular cavities is demonstrated.

  2. High-Affinity Proton Donors Promote Proton-Coupled Electron Transfer by Samarium Diiodide.

    PubMed

    Chciuk, Tesia V; Anderson, William R; Flowers, Robert A

    2016-05-10

    The relationship between proton-donor affinity for Sm(II) ions and the reduction of two substrates (anthracene and benzyl chloride) was examined. A combination of spectroscopic, thermochemical, and kinetic studies show that only those proton donors that coordinate or chelate strongly to Sm(II) promote anthracene reduction through a PCET process. These studies demonstrate that the combination of Sm(II) ions and water does not provide a unique reagent system for formal hydrogen atom transfer to substrates. PMID:27061351

  3. Isothermal and Adiabatic Measurements.

    ERIC Educational Resources Information Center

    McNairy, William W.

    1996-01-01

    Describes the working of the Adiabatic Gas Law Apparatus, a useful tool for measuring the pressure, temperature, and volume of a variety of gases undergoing compressions and expansions. Describes the adaptation of this apparatus to perform isothermal measurements and discusses the theory behind the adiabatic and isothermal processes. (JRH)

  4. Small copper-doped silicon clusters CuSin (n = 4-10) and their anions: structures, thermochemistry, and electron affinities.

    PubMed

    Lin, Lin; Yang, Jucai

    2015-06-01

    The structures and energies of copper-doped small silicon clusters CuSi n (n = 4-10) and their anions were investigated systematically using CCSD(T)/aug-cc-pVTZ-DK//MP2/6-31G(2df,p), G4//MP2/6-31G(2df,p), and the B3LYP/6-311+G* basis set. The performance of the methods used for the prediction of energetic and thermodynamic properties was evaluated. Comparing experimental [Xu et al. (2012) J Chem Phys 136:104308] and theoretical calculations, it was concluded that the CCSD(T) results are very accurate and exhibit the best performance; the mean absolute deviation from experimental data was 0.043 eV. The excellent agreement of vertical detachment energy (VDE) between experimental results and CCSD(T) calculations indicates that the ground state structures of CuSi n (-) (n = 4-10) presented in this paper are reliable. For CuSi10, assigning 2.90±0.08 eV to the experimental adiabatic electron affinity (AEA) and 3.90±0.08 eV to the VDE is more reasonable than to 3.46±0.08 eV and 3.62±0.08 eV, respectively, based on the CCSD(T) calculations and the previous photoelectron spectrum of CuSi10 (-) (Xu et al., op. cit.). The AEAs of CuSi n (n = 4-10), excluding CuSi7, are in excellent agreement with experimental data, showing that the ground state structures of CuSi n (n = 4-6, 8-10) reported in this paper are reliable. CuSi10 is suggested to be the smallest endohedral ground state structure. However, adding an additional electron to CuSi10 pulls out the Cu atom from the center location, forming an exohedral ground state structure of CuSi10 (-). The charge transfer and dissociation energy of Cu from CuSi n and their anions determined to examine the nature of bonding and their relative stabilities. PMID:26003428

  5. Small copper-doped silicon clusters CuSin (n = 4-10) and their anions: structures, thermochemistry, and electron affinities.

    PubMed

    Lin, Lin; Yang, Jucai

    2015-06-01

    The structures and energies of copper-doped small silicon clusters CuSi n (n = 4-10) and their anions were investigated systematically using CCSD(T)/aug-cc-pVTZ-DK//MP2/6-31G(2df,p), G4//MP2/6-31G(2df,p), and the B3LYP/6-311+G* basis set. The performance of the methods used for the prediction of energetic and thermodynamic properties was evaluated. Comparing experimental [Xu et al. (2012) J Chem Phys 136:104308] and theoretical calculations, it was concluded that the CCSD(T) results are very accurate and exhibit the best performance; the mean absolute deviation from experimental data was 0.043 eV. The excellent agreement of vertical detachment energy (VDE) between experimental results and CCSD(T) calculations indicates that the ground state structures of CuSi n (-) (n = 4-10) presented in this paper are reliable. For CuSi10, assigning 2.90±0.08 eV to the experimental adiabatic electron affinity (AEA) and 3.90±0.08 eV to the VDE is more reasonable than to 3.46±0.08 eV and 3.62±0.08 eV, respectively, based on the CCSD(T) calculations and the previous photoelectron spectrum of CuSi10 (-) (Xu et al., op. cit.). The AEAs of CuSi n (n = 4-10), excluding CuSi7, are in excellent agreement with experimental data, showing that the ground state structures of CuSi n (n = 4-6, 8-10) reported in this paper are reliable. CuSi10 is suggested to be the smallest endohedral ground state structure. However, adding an additional electron to CuSi10 pulls out the Cu atom from the center location, forming an exohedral ground state structure of CuSi10 (-). The charge transfer and dissociation energy of Cu from CuSi n and their anions determined to examine the nature of bonding and their relative stabilities.

  6. Developing conjugated polymers with high electron affinity by replacing a C-C unit with a B←N unit.

    PubMed

    Dou, Chuandong; Ding, Zicheng; Zhang, Zijian; Xie, Zhiyuan; Liu, Jun; Wang, Lixiang

    2015-03-16

    The key parameters of conjugated polymers are lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels. Few approaches can simultaneously lower LUMO and HOMO energy levels of conjugated polymers to a large extent (>0.5 eV). Disclosed herein is a novel strategy to decrease both LUMO and HOMO energy levels of conjugated polymers by about 0.6 eV through replacement of a C-C unit by a B←N unit. The replacement makes the resulting polymer transform from an electron donor into an electron acceptor, and is proven by fluorescence quenching experiments and the photovoltaic response. This work not only provides an effective approach to tune the LUMO/HOMO energy levels of conjugated polymers, but also uses organic boron chemistry as a new toolbox to develop conjugated polymers with high electron affinity for polymer optoelectronic devices.

  7. Ionization potentials, electron affinities, resonance excitation energies, oscillator strengths, and ionic radii of element Uus (Z = 117) and astatine.

    PubMed

    Chang, Zhiwei; Li, Jiguang; Dong, Chenzhong

    2010-12-30

    Multiconfiguration Dirac-Fock (MCDF) method was employed to calculate the first five ionization potentials, electron affinities, resonance excitation energies, oscillator strengths, and radii for the element Uus and its homologue At. Main valence correlation effects were taken into account. The Breit interaction and QED effects were also estimated. The uncertainties of calculated IPs, EAs, and IR for Uus and At were reduced through an extrapolation procedure. The good consistency with available experimental and other theoretical values demonstrates the validity of the present results. These theoretical data therefore can be used to predict some unknown physicochemical properties of element Uus, Astatine, and their compounds. PMID:21141866

  8. In situ Observation of Formation Process of Negative Electron Affinity Surface of GaAs by Surface Photo-Absorption

    NASA Astrophysics Data System (ADS)

    Hayase, Kazuya; Nishitani, Tomohiro; Suzuki, Katsunari; Imai, Hironobu; Hasegawa, Jun-ichi; Namba, Daiki; Meguro, Takashi

    2013-06-01

    We have used surface photo-absorption (SPA) to investigate the formation of negative electron affinity (NEA) surfaces on p-GaAs during the Yo-Yo method, under an alternating supply of Cs and O2. The SPA spectra showed that the surface during the first Cs step was different from those in the following Cs and O2 steps. This suggests that the surface structure did not change after the initial surface was formed, indicating that there could be two Cs adsorption sites on the GaAs surface, which is different from previously proposed models.

  9. Ionization potentials, electron affinities, resonance excitation energies, oscillator strengths, and ionic radii of element Uus (Z = 117) and astatine.

    PubMed

    Chang, Zhiwei; Li, Jiguang; Dong, Chenzhong

    2010-12-30

    Multiconfiguration Dirac-Fock (MCDF) method was employed to calculate the first five ionization potentials, electron affinities, resonance excitation energies, oscillator strengths, and radii for the element Uus and its homologue At. Main valence correlation effects were taken into account. The Breit interaction and QED effects were also estimated. The uncertainties of calculated IPs, EAs, and IR for Uus and At were reduced through an extrapolation procedure. The good consistency with available experimental and other theoretical values demonstrates the validity of the present results. These theoretical data therefore can be used to predict some unknown physicochemical properties of element Uus, Astatine, and their compounds.

  10. An effective shortcut to adiabatic passage for fast quantum state transfer in a cavity quantum electronic dynamics system

    NASA Astrophysics Data System (ADS)

    Lu, Mei; Xia, Yan; Shen, Li-Tuo; Song, Jie

    2014-10-01

    We propose an alternative scheme for constructing a shortcut to implement the quantum state transfer between two three-level atoms founded on the invariant-based inverse engineering in a cavity quantum electronic dynamics (QED) system. Quantum information can be quickly transferred between atoms by taking advantage of the cavity field as a medium. Through our design of the time-dependent laser pulse and atom-cavity coupling, we send atoms through the cavity within a short time interval, which involves the two processes of the invariant dynamics between each atom and the cavity field simultaneously. We redesign a reasonable Gaussian-type wave form in the atom-cavity coupling for a realistic experimental operation. Numerical simulation shows that the target state can be quickly populated with a high fidelity which is robust against both the parameter fluctuations and the dissipation.

  11. Capturing enveloped viruses on affinity grids for downstream cryo-electron microscopy applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electron microscopy cryo-electron microscopy and cryo-electron tomography are essential techniques used for characterizing basic virus morphology and determining the three-dimensional structure of viruses. Enveloped viruses, which contain an outer lipoprotein coat, constitute the largest group of pa...

  12. Single-step antibody-based affinity cryo-electron microscopy for imaging and structural analysis of macromolecular assemblies.

    PubMed

    Yu, Guimei; Vago, Frank; Zhang, Dongsheng; Snyder, Jonathan E; Yan, Rui; Zhang, Ci; Benjamin, Christopher; Jiang, Xi; Kuhn, Richard J; Serwer, Philip; Thompson, David H; Jiang, Wen

    2014-07-01

    Single particle cryo-electron microscopy (cryo-EM) is an emerging powerful tool for structural studies of macromolecular assemblies (i.e., protein complexes and viruses). Although single particle cryo-EM requires less concentrated and smaller amounts of samples than X-ray crystallography, it remains challenging to study specimens that are low-abundance, low-yield, or short-lived. The recent development of affinity grid techniques can potentially further extend single particle cryo-EM to these challenging samples by combining sample purification and cryo-EM grid preparation into a single step. Here we report a new design of affinity cryo-EM approach, cryo-SPIEM, that applies a traditional pathogen diagnosis tool Solid Phase Immune Electron Microscopy (SPIEM) to the single particle cryo-EM method. This approach provides an alternative, largely simplified and easier to use affinity grid that directly works with most native macromolecular complexes with established antibodies, and enables cryo-EM studies of native samples directly from cell cultures. In the present work, we extensively tested the feasibility of cryo-SPIEM with multiple samples including those of high or low molecular weight, macromolecules with low or high symmetry, His-tagged or native particles, and high- or low-yield macromolecules. Results for all these samples (non-purified His-tagged bacteriophage T7, His-tagged Escherichiacoli ribosomes, native Sindbis virus, and purified but low-concentration native Tulane virus) demonstrated the capability of cryo-SPIEM approach in specifically trapping and concentrating target particles on TEM grids with minimal view constraints for cryo-EM imaging and determination of 3D structures.

  13. Wireless adiabatic power transfer

    SciTech Connect

    Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.

    2011-03-15

    Research Highlights: > Efficient and robust mid-range wireless energy transfer between two coils. > The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. > Wireless energy transfer is insensitive to any resonant constraints. > Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  14. Adiabatic Motion of Fault Tolerant Qubits

    NASA Astrophysics Data System (ADS)

    Drummond, David Edward

    This work proposes and analyzes the adiabatic motion of fault tolerant qubits in two systems as candidates for the building blocks of a quantum computer. The first proposal examines a pair of electron spins in double quantum dots, finding that the leading source of decoherence, hyperfine dephasing, can be suppressed by adiabatic rotation of the dots in real space. The additional spin-orbit effects introduced by this motion are analyzed, simulated, and found to result in an infidelity below the error-correction threshold. The second proposal examines topological qubits formed by Majorana zero modes theorized to exist at the ends of semiconductor nanowires coupled to conventional superconductors. A model is developed to design adiabatic movements of the Majorana bound states to produce entangled qubits. Analysis and simulations indicate that these adiabatic operations can also be used to demonstrate entanglement experimentally by testing Bell's theorem.

  15. Structure of the Zymomonas mobilis respiratory chain: oxygen affinity of electron transport and the role of cytochrome c peroxidase.

    PubMed

    Balodite, Elina; Strazdina, Inese; Galinina, Nina; McLean, Samantha; Rutkis, Reinis; Poole, Robert K; Kalnenieks, Uldis

    2014-09-01

    The genome of the ethanol-producing bacterium Zymomonas mobilis encodes a bd-type terminal oxidase, cytochrome bc1 complex and several c-type cytochromes, yet lacks sequences homologous to any of the known bacterial cytochrome c oxidase genes. Recently, it was suggested that a putative respiratory cytochrome c peroxidase, receiving electrons from the cytochrome bc1 complex via cytochrome c552, might function as a peroxidase and/or an alternative oxidase. The present study was designed to test this hypothesis, by construction of a cytochrome c peroxidase mutant (Zm6-perC), and comparison of its properties with those of a mutant defective in the cytochrome b subunit of the bc1 complex (Zm6-cytB). Disruption of the cytochrome c peroxidase gene (ZZ60192) caused a decrease of the membrane NADH peroxidase activity, impaired the resistance of growing culture to exogenous hydrogen peroxide and hampered aerobic growth. However, this mutation did not affect the activity or oxygen affinity of the respiratory chain, or the kinetics of cytochrome d reduction. Furthermore, the peroxide resistance and membrane NADH peroxidase activity of strain Zm6-cytB had not decreased, but both the oxygen affinity of electron transport and the kinetics of cytochrome d reduction were affected. It is therefore concluded that the cytochrome c peroxidase does not terminate the cytochrome bc1 branch of Z. mobilis, and that it is functioning as a quinol peroxidase.

  16. First- and second-electron affinities of C{sub 60} and C{sub 70} isomers

    SciTech Connect

    Zettergren, Henning; Alcami, Manuel; Martin, Fernando

    2007-10-15

    We present density functional theory calculations of C{sub 60}{sup q-} and C{sub 70}{sup q-} (q=0-2) isomers that contain zero to three pairs of adjacent pentagons. The first- and second-electron affinities for the archetype structures of C{sub 60} and C{sub 70} are close to the experimental results, while isomers with pentagon adjacencies have significantly higher values. The results are rationalized in view of the numbers and locations of pentagon adjacencies in the fullerene cages and the spherical aromaticity for the magic number C{sub 70}{sup 2-} with a closed (l=5) electronic shell in the spherical gas model.

  17. Calculations of the ionization potentials and electron affinities of bacteriochlorophyll and bacteriopheophytin via ab initio quantum chemistry

    SciTech Connect

    Crystal, J.; Friesner, R.A.

    2000-03-23

    Ionization potentials (IP) and electron affinities (EA) are calculated for bacteriopheophytin (BPh) and bacteriochlorophyll (BChl) in the photosynthetic reaction center utilizing density functional methods implemented in a parallel version of the JAGUAR electronic structure code. These quantities are studied as a function of basis set size and molecular geometry. The results indicate the necessity of using large basis sets with diffuse functions in order to obtain reliable IP and EA in the gas phase. The relative reduction potentials of BChl and BPh in dimethylformamide solution are also calculated and compared with experimental results. Excellent agreement between theory and experiment is obtained when ligand binding of solvent molecules to the central Mg atom of BNhl is incorporated in the calculations.

  18. Communication: Vibrationally resolved photoelectron spectroscopy of the tetracyanoquinodimethane (TCNQ) anion and accurate determination of the electron affinity of TCNQ

    SciTech Connect

    Zhu, Guo-Zhu; Wang, Lai-Sheng

    2015-12-14

    Tetracyanoquinodimethane (TCNQ) is widely used as an electron acceptor to form highly conducting organic charge-transfer solids. Surprisingly, the electron affinity (EA) of TCNQ is not well known and has never been directly measured. Here, we report vibrationally resolved photoelectron spectroscopy (PES) of the TCNQ{sup −} anion produced using electrospray and cooled in a cryogenic ion trap. Photoelectron spectrum taken at 354.7 nm represents the detachment transition from the ground state of TCNQ{sup −} to that of neutral TCNQ with a short vibrational progression. The EA of TCNQ is measured accurately to be 3.383 ± 0.001 eV (27 289 ± 8 cm{sup −1}), compared to the 2.8 ± 0.1 eV value known in the literature and measured previously using collisional ionization technique. In addition, six vibrational peaks are observed in the photoelectron spectrum, yielding vibrational frequencies for three totally symmetric modes of TCNQ. Two-photon PES via a bound electronic excited state of TCNQ{sup −} at 3.100 eV yields a broad low kinetic energy peak due to fast internal conversion to vibrationally excited levels of the anion ground electronic state. The high EA measured for TCNQ underlies its ability as a good electron acceptor.

  19. Communication: Vibrationally resolved photoelectron spectroscopy of the tetracyanoquinodimethane (TCNQ) anion and accurate determination of the electron affinity of TCNQ

    NASA Astrophysics Data System (ADS)

    Zhu, Guo-Zhu; Wang, Lai-Sheng

    2015-12-01

    Tetracyanoquinodimethane (TCNQ) is widely used as an electron acceptor to form highly conducting organic charge-transfer solids. Surprisingly, the electron affinity (EA) of TCNQ is not well known and has never been directly measured. Here, we report vibrationally resolved photoelectron spectroscopy (PES) of the TCNQ- anion produced using electrospray and cooled in a cryogenic ion trap. Photoelectron spectrum taken at 354.7 nm represents the detachment transition from the ground state of TCNQ- to that of neutral TCNQ with a short vibrational progression. The EA of TCNQ is measured accurately to be 3.383 ± 0.001 eV (27 289 ± 8 cm-1), compared to the 2.8 ± 0.1 eV value known in the literature and measured previously using collisional ionization technique. In addition, six vibrational peaks are observed in the photoelectron spectrum, yielding vibrational frequencies for three totally symmetric modes of TCNQ. Two-photon PES via a bound electronic excited state of TCNQ- at 3.100 eV yields a broad low kinetic energy peak due to fast internal conversion to vibrationally excited levels of the anion ground electronic state. The high EA measured for TCNQ underlies its ability as a good electron acceptor.

  20. Combining high electron affinity and intramolecular charge transfer in 1,3-dithiole-nitrofluorene push-pull diads.

    PubMed

    Perepichka, Dmitrii F; Perepichka, Igor F; Ivasenko, Oleksandr; Moore, Adrian J; Bryce, Martin R; Kuz'mina, Lyudmila G; Batsanov, Andrei S; Sokolov, Nikolai I

    2008-01-01

    Attaching electron-rich 1,3-dithiol-2-ylidene moieties to polynitrofluorene electron acceptors leads to the formation of highly conjugated compounds 6 to 11, which combine high electron affinity with a pronounced intramolecular charge transfer (ICT) that is manifested as an intense absorption band in their visible spectra. Such a rare combination of optical and electronic properties is beneficial for several applications in optoelectronics. Thus, incorporation of fluorene-dithiole derivative 6a into photoconductive films affords photothermoplastic storage media with dramatically increased photosensitivity in the ICT region. A wide structural variation of the dithiole and fluorene parts of the molecules reveals excellent correlation between the ICT energy and the reduction potential with the Hammett's parameters for the substituents. Although only a small solvatochromism of the ICT band was observed, heating the solution led to a pronounced blueshift, which was probably as a result of increased twisting around the C9=C14 bond that links the fluorene and dithiole moieties. X-ray crystallographic analysis of 7a, 8a, 10a, 11a and 13a confirms an ICT interaction in the ground state of the molecules. The C9=C14 double bond between the donor and acceptor is substantially elongated and its length increases as the donor character of the dithiole moiety is enhanced. PMID:18240117

  1. A fast parallel code for calculating energies and oscillator strengths of many-electron atoms at neutron star magnetic field strengths in adiabatic approximation

    NASA Astrophysics Data System (ADS)

    Engel, D.; Klews, M.; Wunner, G.

    2009-02-01

    and to provide a program which allows users to calculate as comprehensively as possible energies, wavelengths, and oscillator strengths of medium-Z atoms and ions up to Z=26 in neutron star magnetic field strengths. Obviously, the method for achieving this goal must be highly efficient since for the calculation of synthetic spectra data of many thousands or even millions of atomic transitions may be required. Solution method: As in previous work on the problem (cf. [3,7]) we exploit the fact that a strong magnetic field results in an approximate decoupling of the dynamics of the electrons parallel and perpendicular to the field. In this adiabatic approximation the single-particle wave functions take the form: ψ(ρ,φ,z)=ϕ(ρ,φ)ṡP(z), where ϕ(ρ,φ) are Landau wave functions, describing the (fast) motion perpendicular to the field, and the P(z) are the longitudinal wave functions, describing the (slow) bound motion along the direction of the field. The spins of the electrons are all aligned antiparallel to the magnetic field and need not be accounted for explicitly. The total N-electron wave function is constructed as a Slater determinant of the single-particle wave functions, and the unknown longitudinal wave functions are determined from the Hartree-Fock equations, which follow from inserting the total N-electron wave function into Schrödinger's variational principle for the total energy. The novel feature of our approach [8] is to use finite-element and B-spline techniques to solve the Hartree-Fock equations for atoms in strong magnetic fields. This is accomplished through the following steps: 1) decomposition of the z-axis into finite elements with quadratically widening element borders; 2) sixth-order B-spline expansion of the single-particle wave functions on the individual finite elements; 3) formulation of the variational principle equivalent to the Hartree-Fock equations in terms of the expansion coefficients. This leads to a simple system of linear

  2. Enrichment and Analysis of Nonenzymatically Glycated Peptides: Boronate Affinity Chromatography Coupled with Electron-Transfer Dissociation Mass Spectrometry

    SciTech Connect

    Zhang, Qibin; Tang, Ning; Brock, Jonathan W.; Mottaz, Heather M.; Ames, Jennifer M.; Baynes, John; Smith, Richard D.; Metz, Thomas O.

    2007-06-01

    Non-enzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. However, no effective high-throughput methods exist for identifying proteins containing this low abundance post-translational modification in bottom-up proteomic studies. In this report, phenylboronate affinity chromatography was used in a two-step enrichment scheme to selectively isolate first glycated proteins and then glycated, tryptic peptides from human serum glycated in vitro. Enriched peptides were subsequently analyzed by alternating electron transfer dissociation (ETD) and collision induced dissociation (CID) tandem mass spectrometry. It was observed that ETD fragmentation mode resulted in a significantly higher number of glycated peptide identifications (87.6% of all identified peptides) versus CID mode (17.0% of all identified peptides), when utilizing dual glycation enrichment on both the protein and peptide level. This study illustrates that phenylboronate affinity chromatography coupled with LC-MS/MS with ETD as the fragmentation mode is an efficient approach for analyses of glycated proteins and can have broad applications in studies of diabetes mellitus.

  3. Electron paramagnetic resonance spectroscopic measurement of Mn2+ binding affinities to the hammerhead ribozyme and correlation with cleavage activity.

    PubMed

    Horton, T E; Clardy, D R; DeRose, V J

    1998-12-22

    Efficient phosphodiester bond cleavage activity by the hammerhead ribozyme requires divalent cations. Toward understanding this metal ion requirement, the Mn2+-binding properties of hammerhead model ribozymes have been investigated under dilute solution conditions, using electron paramagnetic resonance spectroscopy (EPR) to detect free Mn2+ in the presence of added ribozyme. Numbers and affinities of bound Mn2+ were obtained at pH 7.8 (5 mM triethanolamine) in the presence of 0, 0.1, and 1.0 M NaCl for an RNA-DNA model consisting of a 13-nucleotide DNA "substrate" hybridized to a 34-nucleotide RNA "enzyme" [Pley, H. W., Flaherty, K. M., and McKay, D. B. (1994) Nature 372, 68-74]. In 0.1 M NaCl, two classes of Mn2+ sites are found with n1 = 3.7 +/- 0.4, Kd(1) = 4 +/- 1 microM (type 1) and n2 = 5.2 +/- 0.4, Kd(2) = 460 +/- 130 microM (type 2). The high-affinity type 1 sites are confirmed for an active RNA-RNA hybrid (34-nucleotide RNA enzyme:13-nucleotide RNA substrate) by EPR measurements at low Mn2+ concentrations. Decreasing NaCl concentration results in an increased number of bound Mn2+ per hammerhead. By contrast, a binding titration in 1 M NaCl indicates that a single Mn2+ site with apparent Kd approximately 10 microM is populated in low concentrations of Mn2+, and apparent cooperative effects at higher Mn2+ concentrations result in population of a similar total number of Mn2+ sites (n1 = 8-10) as found in 0.1 M NaCl. Mn2+-dependent activity profiles are similar for the active RNA-RNA hybrid in 0.1 and 1 M NaCl. Correlation with binding affinities determined by EPR indicates that hammerhead activity in 0.1 M NaCl is only observed after all four of the high-affinity Mn2+ sites are occupied, rises with population of the type 2 sites, and is independent of Mn2+ concentrations corresponding to > 8-9 Mn2+ bound per hammerhead. Equivalent measurements in 1 M NaCl demonstrate a rise in activity with the cooperative transition observed in the Mn2+ binding curve. These

  4. Parallelizable adiabatic gate teleportation

    NASA Astrophysics Data System (ADS)

    Nakago, Kosuke; Hajdušek, Michal; Nakayama, Shojun; Murao, Mio

    2015-12-01

    To investigate how a temporally ordered gate sequence can be parallelized in adiabatic implementations of quantum computation, we modify adiabatic gate teleportation, a model of quantum computation proposed by Bacon and Flammia [Phys. Rev. Lett. 103, 120504 (2009), 10.1103/PhysRevLett.103.120504], to a form deterministically simulating parallelized gate teleportation, which is achievable only by postselection. We introduce a twisted Heisenberg-type interaction Hamiltonian, a Heisenberg-type spin interaction where the coordinates of the second qubit are twisted according to a unitary gate. We develop parallelizable adiabatic gate teleportation (PAGT) where a sequence of unitary gates is performed in a single step of the adiabatic process. In PAGT, numeric calculations suggest the necessary time for the adiabatic evolution implementing a sequence of L unitary gates increases at most as O (L5) . However, we show that it has the interesting property that it can map the temporal order of gates to the spatial order of interactions specified by the final Hamiltonian. Using this property, we present a controlled-PAGT scheme to manipulate the order of gates by a control qubit. In the controlled-PAGT scheme, two differently ordered sequential unitary gates F G and G F are coherently performed depending on the state of a control qubit by simultaneously applying the twisted Heisenberg-type interaction Hamiltonians implementing unitary gates F and G . We investigate why the twisted Heisenberg-type interaction Hamiltonian allows PAGT. We show that the twisted Heisenberg-type interaction Hamiltonian has an ability to perform a transposed unitary gate by just modifying the space ordering of the final Hamiltonian implementing a unitary gate in adiabatic gate teleportation. The dynamics generated by the time-reversed Hamiltonian represented by the transposed unitary gate enables deterministic simulation of a postselected event of parallelized gate teleportation in adiabatic

  5. Second-Order Perturbation Theory for Fractional Occupation Systems: Applications to Ionization Potential and Electron Affinity Calculations.

    PubMed

    Su, Neil Qiang; Xu, Xin

    2016-05-10

    Recently, we have developed an integration approach for the calculations of ionization potentials (IPs) and electron affinities (EAs) of molecular systems at the level of second-order Møller-Plesset (MP2) (Su, N. Q.; Xu, X. J. Chem. Theory Comput. 11, 4677, 2015), where the full MP2 energy gradient with respect to the orbital occupation numbers was derived but only at integer occupations. The theory is completed here to cover the fractional occupation systems, such that Slater's transition state concept can be used to have accurate predictions of IPs and EAs. Antisymmetrized Goldstone diagrams have been employed for interpretations and better understanding of the derived equations, where two additional rules were introduced in the present work specifically for hole or particle lines with fractional occupation numbers.

  6. Second-Order Perturbation Theory for Fractional Occupation Systems: Applications to Ionization Potential and Electron Affinity Calculations.

    PubMed

    Su, Neil Qiang; Xu, Xin

    2016-05-10

    Recently, we have developed an integration approach for the calculations of ionization potentials (IPs) and electron affinities (EAs) of molecular systems at the level of second-order Møller-Plesset (MP2) (Su, N. Q.; Xu, X. J. Chem. Theory Comput. 11, 4677, 2015), where the full MP2 energy gradient with respect to the orbital occupation numbers was derived but only at integer occupations. The theory is completed here to cover the fractional occupation systems, such that Slater's transition state concept can be used to have accurate predictions of IPs and EAs. Antisymmetrized Goldstone diagrams have been employed for interpretations and better understanding of the derived equations, where two additional rules were introduced in the present work specifically for hole or particle lines with fractional occupation numbers. PMID:27010405

  7. A fast parallel code for calculating energies and oscillator strengths of many-electron atoms at neutron star magnetic field strengths in adiabatic approximation

    NASA Astrophysics Data System (ADS)

    Engel, D.; Klews, M.; Wunner, G.

    2009-02-01

    and to provide a program which allows users to calculate as comprehensively as possible energies, wavelengths, and oscillator strengths of medium-Z atoms and ions up to Z=26 in neutron star magnetic field strengths. Obviously, the method for achieving this goal must be highly efficient since for the calculation of synthetic spectra data of many thousands or even millions of atomic transitions may be required. Solution method: As in previous work on the problem (cf. [3,7]) we exploit the fact that a strong magnetic field results in an approximate decoupling of the dynamics of the electrons parallel and perpendicular to the field. In this adiabatic approximation the single-particle wave functions take the form: ψ(ρ,φ,z)=ϕ(ρ,φ)ṡP(z), where ϕ(ρ,φ) are Landau wave functions, describing the (fast) motion perpendicular to the field, and the P(z) are the longitudinal wave functions, describing the (slow) bound motion along the direction of the field. The spins of the electrons are all aligned antiparallel to the magnetic field and need not be accounted for explicitly. The total N-electron wave function is constructed as a Slater determinant of the single-particle wave functions, and the unknown longitudinal wave functions are determined from the Hartree-Fock equations, which follow from inserting the total N-electron wave function into Schrödinger's variational principle for the total energy. The novel feature of our approach [8] is to use finite-element and B-spline techniques to solve the Hartree-Fock equations for atoms in strong magnetic fields. This is accomplished through the following steps: 1) decomposition of the z-axis into finite elements with quadratically widening element borders; 2) sixth-order B-spline expansion of the single-particle wave functions on the individual finite elements; 3) formulation of the variational principle equivalent to the Hartree-Fock equations in terms of the expansion coefficients. This leads to a simple system of linear

  8. Germylenes: structures, electron affinities, and singlet-triplet gaps of the conventional XGeCY(3) (X = H, F, Cl, Br, and I; Y = F and Cl) species and the unexpected cyclic XGeCY(3) (Y = Br and I) systems.

    PubMed

    Bundhun, Ashwini; Abdallah, Hassan H; Ramasami, Ponnadurai; Schaefer, Henry F

    2010-12-23

    A systematic investigation of the X-Ge-CY(3) (X = H, F, Cl, Br, and I; Y = F, Cl, Br, and I) species is carried out using density functional theory. The basis sets used for all atoms (except iodine) in this work are of double-ζ plus polarization quality with additional s- and p-type diffuse functions, and denoted DZP++. Vibrational frequency analyses are performed to evaluate zero-point energy corrections and to determine the nature of the stationary points located. Predicted are four different forms of neutral-anion separations: adiabatic electron affinity (EA(ad)), zero-point vibrational energy corrected EA(ad(ZPVE)), vertical electron affinity (EA(vert)), and vertical detachment energy (VDE). The electronegativity (χ) reactivity descriptor for the halogens (X = F, Cl, Br, and I) is used as a tool to assess the interrelated properties of these germylenes. The topological position of the halogen atom bound to the divalent germanium center is well correlated with the trend in the electron affinities and singlet-triplet gaps. For the expected XGeCY(3) structures (X = H, F, Cl, Br, and I; Y = F and Cl), the predicted trend in the electron affinities is well correlated with simpler germylene derivatives (J. Phys. Chem. A 2009, 113, 8080). The predicted EA(ad(ZPVE)) values with the BHLYP functional range from 1.66 eV (FGeCCl(3)) to 2.20 eV (IGeCF(3)), while the singlet-triplet splittings range from 1.28 eV (HGeCF(3)) to 2.22 eV (FGeCCl(3)). The XGeCY(3) (Y = Br and I) species are most often characterized by three-membered cyclic systems involving the divalent germanium atom, the carbon atom, and a halogen atom.

  9. Adiabatic capture and debunching

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2012-03-01

    In the study of beam preparation for the g-2 experiment, adiabatic debunching and adiabatic capture are revisited. The voltage programs for these adiabbatic processes are derived and their properties discussed. Comparison is made with some other form of adiabatic capture program. The muon g-2 experiment at Fermilab calls for intense proton bunches for the creation of muons. A booster batch of 84 bunches is injected into the Recycler Ring, where it is debunched and captured into 4 intense bunches with the 2.5-MHz rf. The experiment requires short bunches with total width less than 100 ns. The transport line from the Recycler to the muon-production target has a low momentum aperture of {approx} {+-}22 MeV. Thus each of the 4 intense proton bunches required to have an emittance less than {approx} 3.46 eVs. The incoming booster bunches have total emittance {approx} 8.4 eVs, or each one with an emittance {approx} 0.1 eVs. However, there is always emittance increase when the 84 booster bunches are debunched. There will be even larger emittance increase during adiabatic capture into the buckets of the 2.5-MHz rf. In addition, the incoming booster bunches may have emittances larger than 0.1 eVs. In this article, we will concentrate on the analysis of the adiabatic capture process with the intention of preserving the beam emittance as much as possible. At this moment, beam preparation experiment is being performed at the Main Injector. Since the Main Injector and the Recycler Ring have roughly the same lattice properties, we are referring to adiabatic capture in the Main Injector instead in our discussions.

  10. Adiabatic gate teleportation.

    PubMed

    Bacon, Dave; Flammia, Steven T

    2009-09-18

    The difficulty in producing precisely timed and controlled quantum gates is a significant source of error in many physical implementations of quantum computers. Here we introduce a simple universal primitive, adiabatic gate teleportation, which is robust to timing errors and many control errors and maintains a constant energy gap throughout the computation above a degenerate ground state space. This construction allows for geometric robustness based upon the control of two independent qubit interactions. Further, our piecewise adiabatic evolution easily relates to the quantum circuit model, enabling the use of standard methods from fault-tolerance theory for establishing thresholds.

  11. Structural and electronic factors that influence oxygen affinities: a spectroscopic comparison of ferrous and cobaltous oxymyoglobin.

    PubMed

    Miller, L M; Chance, M R

    1995-08-15

    Various structural and electronic factors that result in similar rates of oxygen association (kon) and differing rates of oxygen dissociation (koff) for ferrous (FeMb) and cobaltous (CoMb) myoglobin have been investigated. Similar values for kon indicate similar barriers to oxygen binding for CoMb and FeMb. Through optical spectroscopy, we have found that the stable quantum yields of photolysis for CoMbO2 (0.55 +/- 0.05) and FeMbO2 (0.50 +/- 0.05) at 10 K are the same. The X-ray absorption near edge spectra (XANES) of CoMb and FeMb reveal similar metal-heme displacements for the deoxy, oxy, and low temperature photoproduct states of CoMb and FeMb. Thus, similar barriers to ligand binding, indicated by similar kon's and photoproduct yields for CoMb and FeMb, correlate with the metal-heme displacements for the oxy, deoxy, and low temperature photoproduct states of CoMb and FeMb. Lower values of koff for FeMbO2 versus CoMbO2 imply different barriers to oxygen release for the two species. X-ray edge positions of CoMb and FeMb indicate a substantial transfer of electron density from the metal to the ligand upon oxygenation. The distribution of electron density throughout the M-O-O moiety differs for CoMbO2 and FeMbO2. Resonance Raman spectroscopy has demonstrated that the Co-O bond is weaker when compared to Fe-O [Tsubaki, M., & Yu, N. T. (1981) Proc. Natl. Acad. Sci., U.S.A. 78, 3581]. We have used photolyzed/unphotolyzed Fourier Transform Infrared (FTIR) difference spectra of CoMb16O2, CoMb18O2, FeMb16O2, and FeMb18O2 to show that the dioxygen stretching frequency, v(O-O), in CoMbO2 (approximately 1138 cm-1) is higher than FeMbO2 (approximately 1131 cm-1). The dioxygen stretching frequency in CoMbO2 is closer to that of heme protein models lacking a hydrogen bond to the distal histidine, suggesting that formation of the hydrogen bond in FeMbO2 provides a greater effect on the distribution of electron density throughout the Fe-O-O... HN moiety, potentially stabilizing

  12. AlGaN/GaN high electron mobility transistors for protein-peptide binding affinity study.

    PubMed

    Huang, Chih-Cheng; Lee, Geng-Yen; Chyi, Jen-Inn; Cheng, Hui-Teng; Hsu, Chen-Pin; Hsu, You-Ren; Hsu, Chia-Hsien; Huang, Yu-Fen; Sun, Yuh-Chang; Chen, Chih-Chen; Li, Sheng-Shian; Yeh, J Andrew; Yao, Da-Jeng; Ren, Fan; Wang, Yu-Lin

    2013-03-15

    Antibody-immobilized AlGaN/GaN high electron mobility transistors (HEMTs) were used to detect a short peptide consisting of 20 amino acids. One-binding-site model and two-binding-site model were used for the analysis of the electrical signals, revealing the number of binding sites on an antibody and the dissociation constants between the antibody and the short peptide. In the binding-site models, the surface coverage ratio of the short peptide on the sensor surface is relevant to the electrical signals resulted from the peptide-antibody binding on the HEMTs. Two binding sites on an antibody were observed and two dissociation constants, 4.404×10(-11) M and 1.596×10(-9) M, were extracted from the binding-site model through the analysis of the surface coverage ratio of the short peptide on the sensor surface. We have also shown that the conventional method to extract the dissociation constant from the linear regression of curve-fitting with Langmuir isotherm equation may lead to an incorrect information if the receptor has more than one binding site for the ligand. The limit of detection (LOD) of the sensor observed in the experimental result (~10 pM of the short peptide) is very close to the LOD (around 2.7-3.4 pM) predicted from the value of the smallest dissociation constants. The sensitivity of the sensor is not only dependent on the transistors, but also highly relies on the affinity of the ligand-receptor pair. The results demonstrate that the AlGaN/GaN HEMTs cannot only be used for biosensors, but also for the biological affinity study.

  13. Large work function reduction by adsorption of a molecule with a negative electron affinity: pyridine on ZnO(1010).

    PubMed

    Hofmann, Oliver T; Deinert, Jan-Christoph; Xu, Yong; Rinke, Patrick; Stähler, Julia; Wolf, Martin; Scheffler, Matthias

    2013-11-01

    Using thermal desorption and photoelectron spectroscopy to study the adsorption of pyridine on ZnO(1010), we find that the work function is significantly reduced from 4.5 eV for the bare ZnO surface to 1.6 eV for one monolayer of adsorbed pyridine. Further insight into the interface morphology and binding mechanism is obtained using density functional theory. Although semilocal density functional theory provides unsatisfactory total work functions, excellent agreement of the work function changes is achieved for all coverages. In a closed monolayer, pyridine is found to bind to every second surface Zn atom. The strong polarity of the Zn-pyridine bond and the molecular dipole moment act cooperatively, leading to the observed strong work function reduction. Based on simple alignment considerations, we illustrate that even larger work function modifications should be achievable using molecules with negative electron affinity. We expect the application of such molecules to significantly reduce the electron injection barriers at ZnO/organic heterostructures.

  14. Third Row Transition Metal Hexafluorides, Extraordinary Oxidizers, and Lewis Acids: Electron Affinities, Fluoride Affinities, and Heats of Formation of WF₆, ReF₆, OsF₆, IrF₆, PtF₆, and AuF₆

    SciTech Connect

    Craciun, Raluca; Picone, Desiree; Long, Rebecca T.; Li, Shenggang; Dixon, David A.; Peterson, Kirk A.; Christe, Karl O.

    2010-02-01

    High level electronic structure calculations were used to evaluate reliable, self-consistent thermochemical data sets for the third row transitionmetal hexafluorides. The electron affinities, heats of formation, first (MF₆ → MF₅ + F) and average M-F bond dissociation energies, and fluoride affinities of MF₆ (MF₆ + F⁻→ MF₇ ⁻) and MF₅ (MF₅ + F⁻→ MF₆ ⁻) were calculated. The electron affinities which are a direct measure for the oxidizer strength increase monotonically from WF₆ to AuF₆, with PtF₆ and AuF₆ being extremely powerful oxidizers. The inclusion of spin orbit corrections is necessary to obtain the correct qualitative order for the electron affinities. The calculated electron affinities increase with increasing atomic number, are in good agreement with the available experimental values, and are as follows: WF₆ (3.15 eV), ReF₆ (4.58 eV), OsF₆ (5.92 eV), IrF₆ (5.99 eV), PtF₆ (7.09 eV), and AuF₆ (8.20 eV). A wide range of density functional theory exchange-correlation functionals were also evaluated, and only three gave satisfactory results. The corresponding pentafluorides are extremely strong Lewis acids, with OsF₅, IrF₅, PtF₅, and AuF₅ significantly exceeding the acidity of SbF₅. The optimized geometries of the corresponding MF₇⁻ anions for W through Ir are classical MF₇⁻ anions with M-F bonds; however, for PtF₇⁻ and AuF₇⁻ non-classical anions were found with a very weak external F-F bond between an MF₆⁻ fragment and a fluorine atom. These two anions are text book examples for “superhalogens” and can serve as F atom sources under very mild conditions, explaining the ability of PtF₆ to convert NF₃ to NF₄⁺, ClF₅ to ClF₆⁺, and Xe to XeF⁺ and why Bartlett failed to observe XePtF₆ as the reaction product of the PtF₆/Xe reaction.

  15. Adiabatically implementing quantum gates

    SciTech Connect

    Sun, Jie; Lu, Songfeng Liu, Fang

    2014-06-14

    We show that, through the approach of quantum adiabatic evolution, all of the usual quantum gates can be implemented efficiently, yielding running time of order O(1). This may be considered as a useful alternative to the standard quantum computing approach, which involves quantum gates transforming quantum states during the computing process.

  16. Entanglement and adiabatic quantum computation

    NASA Astrophysics Data System (ADS)

    Ahrensmeier, D.

    2006-06-01

    Adiabatic quantum computation provides an alternative approach to quantum computation using a time-dependent Hamiltonian. The time evolution of entanglement during the adiabatic quantum search algorithm is studied, and its relevance as a resource is discussed.

  17. Accurate adiabatic correction in the hydrogen molecule

    NASA Astrophysics Data System (ADS)

    Pachucki, Krzysztof; Komasa, Jacek

    2014-12-01

    A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10-12 at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H2, HD, HT, D2, DT, and T2 has been determined. For the ground state of H2 the estimated precision is 3 × 10-7 cm-1, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.

  18. Accurate adiabatic correction in the hydrogen molecule

    SciTech Connect

    Pachucki, Krzysztof; Komasa, Jacek

    2014-12-14

    A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10{sup −12} at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H{sub 2}, HD, HT, D{sub 2}, DT, and T{sub 2} has been determined. For the ground state of H{sub 2} the estimated precision is 3 × 10{sup −7} cm{sup −1}, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.

  19. Accurate adiabatic correction in the hydrogen molecule.

    PubMed

    Pachucki, Krzysztof; Komasa, Jacek

    2014-12-14

    A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10(-12) at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H2, HD, HT, D2, DT, and T2 has been determined. For the ground state of H2 the estimated precision is 3 × 10(-7) cm(-1), which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels. PMID:25494728

  20. A theory of single-electron non-adiabatic tunneling through a small metal nanoparticle with due account of the strong interaction of valence electrons with phonons of the condensed matter environment.

    PubMed

    Medvedev, Igor G

    2011-11-01

    A theory of electrochemical behavior of small metal nanoparticles (NPs) which is governed both by the charging effect and the effect of the solvent reorganization on the dynamic of the electron transfer (ET) is considered under ambient conditions. The exact expression for the rate constant of ET from an electrode to NP which is valid for all values of the reorganization free energy E(r), bias voltage, and overpotential is obtained in the non-adiabatic limit. The tunnel current/overpotential relations are studied and calculated for different values of the bias voltage and E(r). The effect of E(r) on the full width at half maximum of the charging peaks is investigated at different values of the bias voltage. The differential conductance/bias voltage and the tunnel current/bias voltage dependencies are also studied and calculated. It is shown that, at room temperature, the pronounced Coulomb blockade oscillations in the differential conductance/bias voltage curves and the noticeable Coulomb staircase in the tunnel current/bias voltage relations are observed only at rather small values of E(r) in the case of the strongly asymmetric tunneling contacts.

  1. Negative electron affinity on GaAs(110) with Cs and NF3: a surface science study

    NASA Astrophysics Data System (ADS)

    Cao, Renyu; Tang, Huan; Pianetta, Piero A.

    1995-09-01

    We have investigated the formation and the nature of negative electron affinity on p-type GaAs surfaces prepared with Cs and NF3 as the fluorine carrier. The results have been compared with those obtained from the Cs-O prepared NEA photocathodes. High resolution photoelectron core level and valence band spectroscopy is utilized to reveal the underlying physics and chemistry during the NEA activation process. We have shown clear evidence of dipole formation both at the physics and chemistry during the NEA activation process. We have shown clear evidence of dipole formation both at the Cs/GaAs interface and in the activation layer. We also demonstrate that no chemcial reaction takes place between fluorine and the substrate. Other aspects related to the NEA formation such as the so-called two-stage activation, activation layer stoichiometry, and aging process have been studied. The study of this model system leads us to conclude that the NEA formation can be adequately explained by the double dipole layer model.

  2. Direct Delta-MBPT(2) method for ionization potentials, electron affinities, and excitation energies using fractional occupation numbers

    SciTech Connect

    Beste, Ariana; Vazquez-Mayagoitia, Alvaro; Ortiz, J. Vincent

    2013-01-01

    A direct method (D-Delta-MBPT(2)) to calculate second-order ionization potentials (IPs), electron affinities (EAs), and excitation energies is developed. The Delta-MBPT(2) method is defined as the correlated extension of the Delta-HF method. Energy differences are obtained by integrating the energy derivative with respect to occupation numbers over the appropriate parameter range. This is made possible by writing the second-order energy as a function of the occupation numbers. Relaxation effects are fully included at the SCF level. This is in contrast to linear response theory, which makes the D-Delta-MBPT(2) applicable not only to single excited but also higher excited states. We show the relationship of the D-Delta-MBPT(2) method for IPs and EAs to a second-order approximation of the effective Fock-space coupled-cluster Hamiltonian and a second-order electron propagator method. We also discuss the connection between the D-Delta-MBPT(2) method for excitation energies and the CIS-MP2 method. Finally, as a proof of principle, we apply our method to calculate ionization potentials and excitation energies of some small molecules. For IPs, the Delta-MBPT(2) results compare well to the second-order solution of the Dyson equation. For excitation energies, the deviation from EOM-CCSD increases when correlation becomes more important. When using the numerical integration technique, we encounter difficulties that prevented us from reaching the Delta-MBPT(2) values. Most importantly, relaxation beyond the Hartree Fock level is significant and needs to be included in future research.

  3. Adiabatic topological quantum computing

    NASA Astrophysics Data System (ADS)

    Cesare, Chris; Landahl, Andrew J.; Bacon, Dave; Flammia, Steven T.; Neels, Alice

    2015-07-01

    Topological quantum computing promises error-resistant quantum computation without active error correction. However, there is a worry that during the process of executing quantum gates by braiding anyons around each other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here, we explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological codes, notably Kitaev's surface codes and the more recently discovered color codes. We develop protocols that enable universal quantum computing by adiabatic evolution in a way that keeps the energy gap of the system constant with respect to the computation size and introduces only simple local Hamiltonian interactions. This allows one to perform holonomic quantum computing with these topological quantum computing systems. The tools we develop allow one to go beyond numerical simulations and understand these processes analytically.

  4. Basis set limit electronic excitation energies, ionization potentials, and electron affinities for the 3d transition metal atoms: Coupled cluster and multireference methods

    NASA Astrophysics Data System (ADS)

    Balabanov, Nikolai B.; Peterson, Kirk A.

    2006-08-01

    Recently developed correlation consistent basis sets for the first row transition metal elements Sc-Zn have been utilized to determine complete basis set (CBS) scalar relativistic electron affinities, ionization potentials, and 4s23dn -2-4s1dn -1 electronic excitation energies with single reference coupled cluster methods [CCSD(T), CCSDT, and CCSDTQ] and multireference configuration interaction with three reference spaces: 3d4s, 3d4s4p, and 3d4s4p3d'. The theoretical values calculated with the highest order coupled cluster techniques at the CBS limit, including extrapolations to full configuration interaction, are well within 1kcal/mol of the corresponding experimental data. For the early transition metal elements (Sc-Mn) the internally contracted multireference averaged coupled pair functional method yielded excellent agreement with experiment; however, the atomic properties for the late transition metals (Mn-Zn) proved to be much more difficult to describe with this level of theory, even with the largest reference function of the present work.

  5. Charge-Disproportionation Symmetry Breaking Creates a Heterodimeric Myoglobin Complex with Enhanced Affinity and Rapid Intracomplex Electron Transfer.

    PubMed

    Trana, Ethan N; Nocek, Judith M; Woude, Jon Vander; Span, Ingrid; Smith, Stephen M; Rosenzweig, Amy C; Hoffman, Brian M

    2016-09-28

    We report rapid photoinitiated intracomplex electron transfer (ET) within a "charge-disproportionated" myoglobin (Mb) dimer with greatly enhanced affinity. Two mutually supportive Brownian Dynamics (BD) interface redesign strategies, one a new "heme-filtering" approach, were employed to "break the symmetry" of a Mb homodimer by pairing Mb constructs with complementary highly positive and highly negative net surface charges, introduced through D/E → K and K → E mutations, respectively. BD simulations using a previously developed positive mutant, Mb(+6) = Mb(D44K/D60K/E85K), led to construction of the complementary negative mutant Mb(-6) = Mb(K45E, K63E, K95E). Simulations predict the pair will form a well-defined complex comprising a tight ensemble of conformations with nearly parallel hemes, at a metal-metal distance ∼18-19 Å. Upon expression and X-ray characterization of the partners, BD predictions were verified through ET photocycle measurements enabled by Zn-deuteroporphyrin substitution, forming the [ZnMb(-6), Fe(3+)Mb(+6)] complex. Triplet ET quenching shows charge disproportionation increases the binding constant by no less than ∼5 orders of magnitude relative to wild-type Mb values. All progress curves for charge separation (CS) and charge recombination (CR) are reproduced by a generalized kinetic model for the interprotein ET photocycle. The intracomplex ET rate constants for both CS and CR are increased by over 5 orders of magnitude, and their viscosity independence is indicative of true interprotein ET, rather than dynamic gating as seen in previous studies. The complex displays an unprecedented timecourse for CR of the CS intermediate I. After a laser flash, I forms through photoinduced CS, accumulates to a maximum concentration, then dies away through CR. However, before completely disappearing, I reappears without another flash and reaches a second maximum before disappearing completely. PMID:27646786

  6. Affinity Chromatography.

    ERIC Educational Resources Information Center

    Gray, Gary R.

    1980-01-01

    Presents selected recent advances in immobilization chemistry which have important connections to affinity chromatography. Discusses ligand immobilization and support modification. Cites 51 references. (CS)

  7. Adiabatic Halo Formation

    SciTech Connect

    Bazzani, A.; Turchetti, G.; Benedetti, C.; Rambaldi, S.; Servizi, G.

    2005-06-08

    In a high intensity circular accelerator the synchrotron dynamics introduces a slow modulation in the betatronic tune due to the space-charge tune depression. When the transverse motion is non-linear due to the presence of multipolar effects, resonance islands move in the phase space and change their amplitude. This effect introduces the trapping and detrapping phenomenon and a slow diffusion in the phase space. We apply the neo-adiabatic theory to describe this diffusion mechanism that can contribute to halo formation.

  8. Adiabatic quantum simulation of quantum chemistry.

    PubMed

    Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán

    2014-10-13

    We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.

  9. Adiabatic Quantum Simulation of Quantum Chemistry

    NASA Astrophysics Data System (ADS)

    Babbush, Ryan; Love, Peter J.; Aspuru-Guzik, Alán

    2014-10-01

    We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.

  10. Determination of the Electron Affinity of the Acetyloxyl Radical (CH3COO) by Low-Temperature Anion Photoelectron Spectroscopy and ab Initio Calculations

    SciTech Connect

    Wang, Xue B.; Woo, Hin-koon; Wang, Lai S.; Minofar, Babak; Jungwirth, Pavel

    2006-04-20

    The electronic structure and electron affinity of the acetyloxyl radical (CH3COO) were investigated by low-temperature anion photoelectron spectroscopy and ab initio calculations. Photoelectron spectra of the acetate anion (CH3COO-) were obtained at two photon energies (355 and 266 nm) and under three different temperatures (300, 70, and 20 K) using a new low temperature ion-trap photoelectron spectroscopy apparatus. In contrast to a featureless spectrum at 300 K, a well-resolved vibrational progression corresponding to the OCO bending mode was observed at low temperatures in the 355 nm spectrum, yielding an accurate electron affinity for the acetyloxyl radical as 3.250 + 0.010 eV. This experimental result is supported by ab initio calculations, which also indicate three low-lying electronic states observed in the 266 nm spectrum. The calculations suggest a 19° decrease of the OCO angle upon detaching an electron from acetate, consistent with the vibrational progression observed experimentally.

  11. Geometry of the Adiabatic Theorem

    ERIC Educational Resources Information Center

    Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas

    2012-01-01

    We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…

  12. Hydride, hydrogen, proton, and electron affinities of imines and their reaction intermediates in acetonitrile and construction of thermodynamic characteristic graphs (TCGs) of imines as a "molecule ID card".

    PubMed

    Zhu, Xiao-Qing; Liu, Qiao-Yun; Chen, Qiang; Mei, Lian-Rui

    2010-02-01

    A series of 61 imines with various typical structures were synthesized, and the thermodynamic affinities (defined as enthalpy changes or redox potentials in this work) of the imines to abstract hydride anions, hydrogen atoms, and electrons, the thermodynamic affinities of the radical anions of the imines to abstract hydrogen atoms and protons, and the thermodynamic affinities of the hydrogen adducts of the imines to abstract electrons in acetonitrile were determined by using titration calorimetry and electrochemical methods. The pure heterolytic and homolytic dissociation energies of the C=N pi-bond in the imines were estimated. The polarity of the C=N double bond in the imines was examined using a linear free-energy relationship. The idea of a thermodynamic characteristic graph (TCG) of imines as an efficient "Molecule ID Card" was introduced. The TCG can be used to quantitatively diagnose and predict the characteristic chemical properties of imines and their various reaction intermediates as well as the reduction mechanism of the imines. The information disclosed in this work could not only supply a gap of thermodynamics for the chemistry of imines but also strongly promote the fast development of the applications of imines.

  13. Photoelectron spectroscopy of higher bromine and iodine oxide anions: Electron affinities and electronic structures of BrO2,3 and IO2-4 radicals.

    SciTech Connect

    Wen, Hui; Hou, Gaolei; Huang, Wei; Govind, Niranjan; Wang, Xue B.

    2011-11-14

    This report details a photoelectron spectroscopy (PES) investigation on electron affinities (EAs) and electronic structures of several atmospherically relevant higher bromine and iodine oxide molecules in the gas phase. PES spectra of BrO{sub 2}{sup -} and IO{sub 2}{sup -} were recorded at 12 K and four photon energies--355 nm/3.496 eV, 266 nm/4.661 eV, 193 nm/6.424 eV, and 157 nm/7.867 eV--while BrO{sub 3}{sup -}, IO{sub 3}{sup -}, and IO{sub 4}{sup -} were studied at 193 and 157 nm only due to their expected high electron binding energies. Spectral features corresponding to transitions from the anion ground state to the ground and excited states of the neutral are unraveled and resolved for each species. For the first time, EAs of these bromine and iodine oxides are experimentally determined (except for IO{sub 2}) to be 2.515 {+-} 0.010 (BrO{sub 2}), 2.575 {+-} 0.010 (IO{sub 2}), 4.60 {+-} 0.05 (BrO{sub 3}), 4.70 {+-} 0.05 (IO{sub 3}), and 6.05 {+-} 0.05 eV (IO{sub 4}). Three low-lying excited states with their respective excitation energies are obtained for BrO{sub 2} [1.69 (A {sup 2}B2), 1.79 (B {sup 2}A{sub 1}), 1.99 eV (C {sup 2}A{sub 2})], BrO{sub 3} [0.7 (A {sup 2}A{sub 2}), 1.6 (B {sup 2}E), 3.1 eV (C {sup 2}E)], and IO{sub 3} [0.60 (A {sup 2}A{sub 2}), 1.20 (B {sup 2}E), {approx}3.0 eV (C {sup 2}E)], whereas six excited states of IO{sub 2} are determined with the respective excitation energies of 1.63 (A {sup 2}B{sub 2}), 1.73 (B {sup 2}A{sub 1}), 1.83 (C {sup 2}A{sub 2}), 4.23 (D {sup 2}A{sub 1}), 4.63 (E {sup 2}B{sub 2}), and 5.23 eV (F {sup 2}B{sub 1}). Periodate possesses a very high electron binding energy. Only one excited state feature with 0.95 eV excitation energy is shown in the 157 nm spectrum. The obtained EAs and low-lying excited state information are compared with available theoretical calculations and discussed with their atmospheric implications.

  14. Photoelectron spectroscopy of higher bromine and iodine oxide anions: electron affinities and electronic structures of BrO(2,3) and IO(2-4) radicals.

    PubMed

    Wen, Hui; Hou, Gao-Lei; Huang, Wei; Govind, Niranjan; Wang, Xue-Bin

    2011-11-14

    This report details a photoelectron spectroscopy (PES) and theoretical investigation of electron affinities (EAs) and electronic structures of several atmospherically relevant higher bromine and iodine oxide molecules in the gas phase. PES spectra of BrO(2)(-) and IO(2)(-) were recorded at 12 K and four photon energies--355 nm/3.496 eV, 266 nm/4.661 eV, 193 nm/6.424 eV, and 157 nm/7.867 eV--while BrO(3)(-), IO(3)(-), and IO(4)(-) were only studied at 193 and 157 nm due to their expected high electron binding energies. Spectral features corresponding to transitions from the anionic ground state to the ground and excited states of the neutral are unraveled and resolved for each species. The EAs of these bromine and iodine oxides are experimentally determined for the first time (except for IO(2)) to be 2.515 ± 0.010 (BrO(2)), 2.575 ± 0.010 (IO(2)), 4.60 ± 0.05 (BrO(3)), 4.70 ± 0.05 (IO(3)), and 6.05 ± 0.05 eV (IO(4)). Three low-lying excited states along with their respective excitation energies are obtained for BrO(2) [1.69 (A (2)B(2)), 1.79 (B (2)A(1)), 1.99 eV (C (2)A(2))], BrO(3) [0.7 (A (2)A(2)), 1.6 (B (2)E), 3.1 eV (C (2)E)], and IO(3) [0.60 (A (2)A(2)), 1.20 (B (2)E), ∼3.0 eV (C (2)E)], whereas six excited states of IO(2) are determined along with their respective excitation energies of 1.63 (A (2)B(2)), 1.73 (B (2)A(1)), 1.83 (C (2)A(2)), 4.23 (D (2)A(1)), 4.63 (E (2)B(2)), and 5.23 eV (F (2)B(1)). Periodate (IO(4)(-)) possesses a very high electron binding energy. Only one excited state feature with 0.95 eV excitation energy is shown in the 157 nm spectrum. Accompanying theoretical calculations reveal structural changes from the anions to the neutrals, and the calculated EAs are in good agreement with experimentally determined values. Franck-Condon factors simulations nicely reproduce the observed vibrational progressions for BrO(2) and IO(2). The low-lying excited state information is compared with theoretical calculations and discussed with their

  15. Altered condensed-phase electron affinities of carbonyl-/sup 13/C-, /sup 14/C, and -/sup 17/O- substituted ketones

    SciTech Connect

    Lauricella, T.L.; Pescatore, J.A. Jr.; Reiter, R.C.; Stevenson, R.D.; Stevenson, G.R.

    1988-06-16

    Electron spin resonance experiments have shown that the solution affinities of both benzoquinone (BQ) and benzophenone (BZO) in liquid ammonia are diminished when a /sup 13/C replaces the /sup 12/C in the carbonyl position. For the reaction *R + R/sup .-/ reversible *R/sup .-/ + R, where *R represents the /sup 13/C-substituted material (either BZO-13C or BQ-13C), the equilibrium constants (K/sub eq/) are 0.80 and 0.50 at -75/sup 0/ C for the BQ and BZO systems, respectively. The reduction of radioactive samples of benzophenone (mixtures of BZO and BZO-14C, /sup 14/C substitution at the carbonyl carbon) with deficient amounts of sodium metal in liquid ammonia followed by removal of the ammonia leaves a solid mixture of benzophenone and benzophenone ketyl. Sublimation of the neutral benzophenone from the anion radical salt produces benzophenone that is enhanced in radioactivity relative to the starting BZO/BZO-14C mixture. This enhancement in radioactivity is consistent with the equilibrium constant again being less than unity when *R represents the /sup 14/C-substituted benzophenone. In contrast to these results, substitution of the oxygen atom with /sup 17/O results in an increase in the relative solution electron affinity. This is explained in terms of the increase in bonding involving the oxygen upon reduction, due to ion association.

  16. Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules I. Reference Data at the CCSD(T) Complete Basis Set Limit.

    PubMed

    Richard, Ryan M; Marshall, Michael S; Dolgounitcheva, O; Ortiz, J V; Brédas, Jean-Luc; Marom, Noa; Sherrill, C David

    2016-02-01

    In designing organic materials for electronics applications, particularly for organic photovoltaics (OPV), the ionization potential (IP) of the donor and the electron affinity (EA) of the acceptor play key roles. This makes OPV design an appealing application for computational chemistry since IPs and EAs are readily calculable from most electronic structure methods. Unfortunately reliable, high-accuracy wave function methods, such as coupled cluster theory with single, double, and perturbative triples [CCSD(T)] in the complete basis set (CBS) limit are too expensive for routine applications to this problem for any but the smallest of systems. One solution is to calibrate approximate, less computationally expensive methods against a database of high-accuracy IP/EA values; however, to our knowledge, no such database exists for systems related to OPV design. The present work is the first of a multipart study whose overarching goal is to determine which computational methods can be used to reliably compute IPs and EAs of electron acceptors. This part introduces a database of 24 known organic electron acceptors and provides high-accuracy vertical IP and EA values expected to be within ±0.03 eV of the true non-relativistic, vertical CCSD(T)/CBS limit. Convergence of IP and EA values toward the CBS limit is studied systematically for the Hartree-Fock, MP2 correlation, and beyond-MP2 coupled cluster contributions to the focal point estimates. PMID:26731487

  17. Bond selective chemistry beyond the adiabatic approximation

    SciTech Connect

    Butler, L.J.

    1993-12-01

    One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.

  18. Adiabatic connection at negative coupling strengths

    SciTech Connect

    Seidl, Michael; Gori-Giorgi, Paola

    2010-01-15

    The adiabatic connection of density functional theory (DFT) for electronic systems is generalized here to negative values of the coupling strength alpha (with attractive electrons). In the extreme limit alpha->-infinity a simple physical solution is presented and its implications for DFT (as well as its limitations) are discussed. For two-electron systems (a case in which the present solution can be calculated exactly), we find that an interpolation between the limit alpha->-infinity and the opposite limit of infinitely strong repulsion (alpha->+infinity) yields a rather accurate estimate of the second-order correlation energy E{sub c}{sup GL2}[rho] for several different densities rho, without using virtual orbitals. The same procedure is also applied to the Be isoelectronic series, analyzing the effects of near degeneracy.

  19. A Initio Mr-Rci Calculations of ((n - 1)D + Ns)(n) Atomic Bound States: Application to Hyperfine Structure and Electron Affinity Studies.

    NASA Astrophysics Data System (ADS)

    Datta, Debasis

    Systematic inclusion of many-body effects in open d and f subshell atoms has long been known as a formidable challenge in atomic structure theory. Due to the presence of competing relativistic effects in such systems, an appropriate theoretical approach needs to incorporate electron correlation within the framework of the Special Theory of Relativity. To this aim, the Relativistic Configuration Interaction methodology as developed by Beck and others has been extended and applied to multi-reference situations in ((n - 1)d + ns) ^{rm N} type valence configurations. Specific focus has been on the hyperfine structure and electron affinity studies of the transition metal ions and the rare earths respectively. Energies and magnetic dipole and electric quadrupole hyperfine structure constants of all the fifteen Zr II (4d + 5s)^3 J = 0.5, 1.5 levels and the twenty one Nb II (4d + 5s)^4 J = 2 levels have been determined with unprecedented accuracies. The average errors in energy are 0.087 eV and 0.050 eV for Zr II J = 3/2 & 1/2 respectively while that for the ten bottom levels of Nb II J = 2 is 0.055 eV. For the levels known experimentally, the corresponding errors in magnetic dipole hyperfine structure constants are 9.2%, 31.8% and 3.8%. Quite a few of the many-body hyperfine constant values exhibit striking improvements over the Multi-Configurational Dirac Fock values. A new value of nuclear quadrupole moment has also been predicted for Zr II. In all cases certain previous level assignments have been corrected and five previously unknown levels have been identified in Nb II. The rigorous systematics of the many-body effects important for the energy level and hyperfine structure of these systems has been presented including core-valence and core-core effects. Contrary to the conventional wisdom and theoretical predictions of the last decade, the attachment of an f electron has been discarded as the most likely mechanism for the formation of Lanthanide and Actinide negative

  20. Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation

    SciTech Connect

    Zamstein, Noa; Tannor, David J.

    2012-12-14

    We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schroedinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)]. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.

  1. Excess Electron Localization in Solvated DNA Bases

    SciTech Connect

    Smyth, Maeve; Kohanoff, Jorge

    2011-06-10

    We present a first-principles molecular dynamics study of an excess electron in condensed phase models of solvated DNA bases. Calculations on increasingly large microsolvated clusters taken from liquid phase simulations show that adiabatic electron affinities increase systematically upon solvation, as for optimized gas-phase geometries. Dynamical simulations after vertical attachment indicate that the excess electron, which is initially found delocalized, localizes around the nucleobases within a 15 fs time scale. This transition requires small rearrangements in the geometry of the bases.

  2. Adiabatic computation: A toy model

    NASA Astrophysics Data System (ADS)

    Ribeiro, Pedro; Mosseri, Rémy

    2006-10-01

    We discuss a toy model for adiabatic quantum computation which displays some phenomenological properties expected in more realistic implementations. This model has two free parameters: the adiabatic evolution parameter s and the α parameter, which emulates many-variable constraints in the classical computational problem. The proposed model presents, in the s-α plane, a line of first-order quantum phase transition that ends at a second-order point. The relation between computation complexity and the occurrence of quantum phase transitions is discussed. We analyze the behavior of the ground and first excited states near the quantum phase transition, the gap, and the entanglement content of the ground state.

  3. Adiabatic computation: A toy model

    SciTech Connect

    Ribeiro, Pedro; Mosseri, Remy

    2006-10-15

    We discuss a toy model for adiabatic quantum computation which displays some phenomenological properties expected in more realistic implementations. This model has two free parameters: the adiabatic evolution parameter s and the {alpha} parameter, which emulates many-variable constraints in the classical computational problem. The proposed model presents, in the s-{alpha} plane, a line of first-order quantum phase transition that ends at a second-order point. The relation between computation complexity and the occurrence of quantum phase transitions is discussed. We analyze the behavior of the ground and first excited states near the quantum phase transition, the gap, and the entanglement content of the ground state.

  4. Adiabatic evolution of plasma equilibrium

    PubMed Central

    Grad, H.; Hu, P. N.; Stevens, D. C.

    1975-01-01

    A new theory of plasma equilibrium is introduced in which adiabatic constraints are specified. This leads to a mathematically nonstandard structure, as compared to the usual equilibrium theory, in which prescription of pressure and current profiles leads to an elliptic partial differential equation. Topologically complex configurations require further generalization of the concept of adiabaticity to allow irreversible mixing of plasma and magnetic flux among islands. Matching conditions across a boundary layer at the separatrix are obtained from appropriate conservation laws. Applications are made to configurations with planned islands (as in Doublet) and accidental islands (as in Tokamaks). Two-dimensional, axially symmetric, helically symmetric, and closed line equilibria are included. PMID:16578729

  5. Theoretical study of the structures and electron affinities of the dimers and trimers of the group IB metals (Cu, Ag, and Au)

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry

    1989-01-01

    The molecular structure of both the neutral and negatively charged diatomic and triatomic systems containing the Cu, Ag, and Au metals are determined from ab initio calculations. For the neutral triatomic systems, the lowest energy structure is found to be triangular. The relative stability of the 2A1 and 2B2 structures can be predicted simply by knowing the constituent diatomic bond distances and atomic electron affinities (EAs). The lowest energy structure is linear for all of the negative ions. For anionic clusters containing Au, the Au atom(s) preferentially occupy the terminal position(s). The EAs of the heteronuclear systems can be predicted relatively accurately from a weighted average of the corresponding homonuclear systems. Although the theoretical EAs are systematically too small, accurate predictions for the EAs of the triatomics are obtained by uniformly scaling the ab initio results using the accurate experimental EA values available for the atoms and homonuclear diatomics.

  6. Elementary examples of adiabatic invariance

    NASA Astrophysics Data System (ADS)

    Crawford, Frank S.

    1990-04-01

    Simple classical one-dimensional systems subject to adiabatic (gradual) perturbations are examined. The first examples are well known: the adiabatic invariance of the product Eτ of energy E and period τ for the simple pendulum and for the simple harmonic oscillator. Next, the adiabatic invariants of the vertical bouncer are found—a ball bouncing elastically from the floor of a rising elevator having slowly varying velocity and acceleration. These examples lead to consideration of adiabatic invariance for one-dimensional systems with potentials of the form V=axn, with a=a(t) slowly varying in time. Then, the horizontal bouncer is considered—a mass sliding on a smooth floor, bouncing back and forth between two impenetrable walls, one of which is slowly moving. This example is generalized to a particle in a bound state of a general potential with one slowly moving ``turning point.'' Finally, circular motion of a charged particle in a magnetic field slowly varying in time under three different configurations is considered: (a) a free particle in a uniform field; (b) a free particle in a nonuniform ``betatron'' field; and (c) a particle constrained to a circular orbit in a uniform field.

  7. Pressure Oscillations in Adiabatic Compression

    ERIC Educational Resources Information Center

    Stout, Roland

    2011-01-01

    After finding Moloney and McGarvey's modified adiabatic compression apparatus, I decided to insert this experiment into my physical chemistry laboratory at the last minute, replacing a problematic experiment. With insufficient time to build the apparatus, we placed a bottle between two thick textbooks and compressed it with a third textbook forced…

  8. Transitionless driving on adiabatic search algorithm

    SciTech Connect

    Oh, Sangchul; Kais, Sabre

    2014-12-14

    We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.

  9. Spatial adiabatic passage: a review of recent progress

    NASA Astrophysics Data System (ADS)

    Menchon-Enrich, R.; Benseny, A.; Ahufinger, V.; Greentree, A. D.; Busch, Th; Mompart, J.

    2016-07-01

    Adiabatic techniques are known to allow for engineering quantum states with high fidelity. This requirement is currently of large interest, as applications in quantum information require the preparation and manipulation of quantum states with minimal errors. Here we review recent progress on developing techniques for the preparation of spatial states through adiabatic passage, particularly focusing on three state systems. These techniques can be applied to matter waves in external potentials, such as cold atoms or electrons, and to classical waves in waveguides, such as light or sound.

  10. Spatial adiabatic passage: a review of recent progress.

    PubMed

    Menchon-Enrich, R; Benseny, A; Ahufinger, V; Greentree, A D; Busch, Th; Mompart, J

    2016-07-01

    Adiabatic techniques are known to allow for engineering quantum states with high fidelity. This requirement is currently of large interest, as applications in quantum information require the preparation and manipulation of quantum states with minimal errors. Here we review recent progress on developing techniques for the preparation of spatial states through adiabatic passage, particularly focusing on three state systems. These techniques can be applied to matter waves in external potentials, such as cold atoms or electrons, and to classical waves in waveguides, such as light or sound. PMID:27245462

  11. Studies in Chaotic adiabatic dynamics

    SciTech Connect

    Jarzynski, C.

    1994-01-01

    Chaotic adiabatic dynamics refers to the study of systems exhibiting chaotic evolution under slowly time-dependent equations of motion. In this dissertation the author restricts his attention to Hamiltonian chaotic adiabatic systems. The results presented are organized around a central theme, namely, that the energies of such systems evolve diffusively. He begins with a general analysis, in which he motivates and derives a Fokker-Planck equation governing this process of energy diffusion. He applies this equation to study the {open_quotes}goodness{close_quotes} of an adiabatic invariant associated with chaotic motion. This formalism is then applied to two specific examples. The first is that of a gas of noninteracting point particles inside a hard container that deforms slowly with time. Both the two- and three-dimensional cases are considered. The results are discussed in the context of the Wall Formula for one-body dissipation in nuclear physics, and it is shown that such a gas approaches, asymptotically with time, an exponential velocity distribution. The second example involves the Fermi mechanism for the acceleration of cosmic rays. Explicit evolution equations are obtained for the distribution of cosmic ray energies within this model, and the steady-state energy distribution that arises when this equation is modified to account for the injection and removal of cosmic rays is discussed. Finally, the author re-examines the multiple-time-scale approach as applied to the study of phase space evolution under a chaotic adiabatic Hamiltonian. This leads to a more rigorous derivation of the above-mentioned Fokker-Planck equation, and also to a new term which has relevance to the problem of chaotic adiabatic reaction forces (the forces acting on slow, heavy degrees of freedom due to their coupling to light, fast chaotic degrees).

  12. Regioisomer-specific electron affinities and electronic structures of C70para-adducts at polar and equatorial positions with (bromo)benzyl radicals: photoelectron spectroscopy and theoretical study.

    PubMed

    Hou, Gao-Lei; Li, Lei-Jiao; Li, Shu-Hui; Sun, Zhong-Ming; Gao, Xiang; Wang, Xue-Bin

    2016-07-28

    Negative ion photoelectron spectroscopy shows interesting regioisomer-specific electron affinities (EAs) of 2,5- and 7,23-para-adducts of C70 [(ArCH2)2C70] (Ar = Ph, o-, m-, and p-BrC6H4). Their EA values are larger than that of C70 by 5-150 meV with the 2,5-polar adducts' EAs being higher than their corresponding 7,23-equatorial counterparts, exhibiting appreciable EA tunable ranges and regioisomeric specificity. Density functional theory (DFT) calculations reproduce both the experimental EA values and EA trends very well. PMID:27375165

  13. Modulating the magnetic behavior of Fe(II)-MOF-74 by the high electron affinity of the guest molecule.

    PubMed

    Han, Sungmin; Kim, Heejin; Kim, Jaehoon; Jung, Yousung

    2015-07-14

    As a new class of magnetic materials, metal-organic framework (MOF) has received a significant attention due to their functionality and porosity that can provide diverse magnetic phenomena by utilizing host-guest chemistry. For Fe-MOF-74, we here find using density functional calculations that the O2 and C2H4 adsorptions result in the ferromagnetic (FM) and antiferromagnetic (AFM) orderings along the 1D chain of an hexagonal MOF framework, respectively, while their adsorption energies, pi-complexation, and geometrical changes are all similar upon binding. We reveal that this different magnetism behavior is attributed to the different electronic effects, where the adsorbed O2 greatly withdraws a minor spin electron from the Fe centers. The latter significant back donation opens a new channel for superexchange interactions that can enhance the FM coupling between Fe centers, where the strength of calculated intrachain FM coupling constrant (Jin) in O2 adsorbed Fe-MOF-74 is more than 10 times enhanced compared to bare Fe-MOF-74. This prediction suggests a possibility for the conceptual usage of Fe-MOF-74 as a gas sensor based on its magnetic changes caused by the adsorbed gases. Furthermore, the suggested mechanism might be used to control the magnetic properties of MOFs using the guest molecules, although concrete strategies to enhance such magnetic interactions to be used in practical applications would require further significant investigation. PMID:26061285

  14. Arbitrary Amplitude DIA and DA Solitary Waves in Adiabatic Dusty Plasmas

    SciTech Connect

    Mamun, A. A.; Jahan, N.; Shukla, P. K.

    2008-10-15

    The dust-ion-acoustic (DIA) as well as the dust-acoustic (DA) solitary waves (SWs) in an adiabatic dusty plasma are investigated by the pseudo-potential approach which is valid for arbitrary amplitude SWs. The role of the adiabaticity of electrons and ions in modifying the basic features (polarity, speed, amplitude and width) of arbitrary amplitude DIA and DA SWs are explicitly examined. It is found that the effects of the adiabaticity of electrons and ions significantly modify the basic features (polarity, speed, amplitude and width) of the DIA and DA SWs. The implications of our results in space and laboratory dusty plasmas are briefly discussed.

  15. Observation of positive and small electron affinity of Si-doped AlN films grown by metalorganic chemical vapor deposition on n-type 6H–SiC

    NASA Astrophysics Data System (ADS)

    Feng, Liang; Ping, Chen; De-Gang, Zhao; De-Sheng, Jiang; Zhi-Juan, Zhao; Zong-Shun, Liu; Jian-Jun, Zhu; Jing, Yang; Wei, Liu; Xiao-Guang, He; Xiao-Jing, Li; Xiang, Li; Shuang-Tao, Liu; Hui, Yang; Li-Qun, Zhang; Jian-Ping, Liu; Yuan-Tao, Zhang; Guo-Tong, Du

    2016-05-01

    We have investigated the electron affinity of Si-doped AlN films (N Si = 1.0 × 1018–1.0 × 1019 cm‑3) with thicknesses of 50, 200, and 400 nm, synthesized by metalorganic chemical vapor deposition (MOCVD) under low pressure on the n-type (001)6H–SiC substrates. The positive and small electron affinity of AlN films was observed through the ultraviolet photoelectron spectroscopy (UPS) analysis, where an increase in electron affinity appears with the thickness of AlN films increasing, i.e., 0.36 eV for the 50-nm-thick one, 0.58 eV for the 200-nm-thick one, and 0.97 eV for the 400-nm-thick one. Accompanying the x-ray photoelectron spectroscopy (XPS) analysis on the surface contaminations, it suggests that the difference of electron affinity between our three samples may result from the discrepancy of surface impurity contaminations. Project supported by the National Natural Science Foundation of China (Grant Nos. 61574135, 61574134, 61474142, 61474110, 61377020, 61376089, 61223005, and 61321063), the One Hundred Person Project of the Chinese Academy of Sciences, and the Basic Research Project of Jiangsu Province, China (Grant No. BK20130362).

  16. Invalidity of the quantitative adiabatic condition and general conditions for adiabatic approximations

    NASA Astrophysics Data System (ADS)

    Li, Dafa

    2016-05-01

    The adiabatic theorem was proposed about 90 years ago and has played an important role in quantum physics. The quantitative adiabatic condition constructed from eigenstates and eigenvalues of a Hamiltonian is a traditional tool to estimate adiabaticity and has proven to be the necessary and sufficient condition for adiabaticity. However, recently the condition has become a controversial subject. In this paper, we list some expressions to estimate the validity of the adiabatic approximation. We show that the quantitative adiabatic condition is invalid for the adiabatic approximation via the Euclidean distance between the adiabatic state and the evolution state. Furthermore, we deduce general necessary and sufficient conditions for the validity of the adiabatic approximation by different definitions.

  17. Geometric Adiabatic Transport in Quantum Hall States.

    PubMed

    Klevtsov, S; Wiegmann, P

    2015-08-21

    We argue that in addition to the Hall conductance and the nondissipative component of the viscous tensor, there exists a third independent transport coefficient, which is precisely quantized. It takes constant values along quantum Hall plateaus. We show that the new coefficient is the Chern number of a vector bundle over moduli space of surfaces of genus 2 or higher and therefore cannot change continuously along the plateau. As such, it does not transpire on a sphere or a torus. In the linear response theory, this coefficient determines intensive forces exerted on electronic fluid by adiabatic deformations of geometry and represents the effect of the gravitational anomaly. We also present the method of computing the transport coefficients for quantum Hall states. PMID:26340197

  18. Geometric Adiabatic Transport in Quantum Hall States.

    PubMed

    Klevtsov, S; Wiegmann, P

    2015-08-21

    We argue that in addition to the Hall conductance and the nondissipative component of the viscous tensor, there exists a third independent transport coefficient, which is precisely quantized. It takes constant values along quantum Hall plateaus. We show that the new coefficient is the Chern number of a vector bundle over moduli space of surfaces of genus 2 or higher and therefore cannot change continuously along the plateau. As such, it does not transpire on a sphere or a torus. In the linear response theory, this coefficient determines intensive forces exerted on electronic fluid by adiabatic deformations of geometry and represents the effect of the gravitational anomaly. We also present the method of computing the transport coefficients for quantum Hall states.

  19. Sliding seal materials for adiabatic engines

    NASA Technical Reports Server (NTRS)

    Lankford, J.

    1985-01-01

    The sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, loading conditions that are representative of the adiabatic engine environment. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Microhardness tests were performed on the candidate materials at elevated temperatures, and in atmospheres relevant to the piston seal application, and optical and electron microscopy were used to elucidate the micromechanisms of wear following wear testing. X-ray spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Electrical effects in the friction and wear processes were explored in order to evaluate the potential usefulness of such effects in modifying the friction and wear rates in service. However, this factor was found to be of negligible significance in controlling friction and wear.

  20. Evaluation of valence band top and electron affinity of SiO2 and Si-based semiconductors using X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Fujimura, Nobuyuki; Ohta, Akio; Makihara, Katsunori; Miyazaki, Seiichi

    2016-08-01

    An evaluation method for the energy level of the valence band (VB) top from the vacuum level (VL) for metals, dielectrics, and semiconductors from the results of X-ray photoelectron spectroscopy (XPS) is presented for the accurate determination of the energy band diagram for materials of interest. In this method, the VB top can be determined by the energy difference between the onset of VB signals and the cut-off energy for secondary photoelectrons by considering the X-ray excitation energy (hν). The energy level of the VB top for three kinds of Si-based materials (H-terminated Si, wet-cleaned 4H-SiC, and thermally grown SiO2) has been investigated by XPS under monochromatized Al Kα radiation (hν = 1486.6 eV). We have also demonstrated the determination of the electron affinity for the samples by this measurement technique in combination with the measured and reported energy bandgaps (E g).

  1. Report: Affinity Chromatography.

    ERIC Educational Resources Information Center

    Walters, Rodney R.

    1985-01-01

    Supports, affinity ligands, immobilization, elution methods, and a number of applications are among the topics considered in this discussion of affinity chromatography. An outline of the basic principles of affinity chromatography is included. (JN)

  2. Tunneling conductance through the half-metal/conical magnet/superconductor junctions in the adiabatic and non-adiabatic regimes: Self-consistent calculations

    NASA Astrophysics Data System (ADS)

    Wójcik, P.; Zegrodnik, M.; Rzeszotarski, B.; Adamowski, J.

    2016-09-01

    The tunneling conductance through the half-metal/conical magnet/superconductor (HM/CM/SC) junctions is investigated with the use of the Bogoliubov-de Gennes equations in the framework of Blonder-Tinkham-Klapwijk formalism. Due to the spin band separation in the HM, the conductance in the subgap region is mainly determined by the anomalous Andreev reflection, the probability of which strongly depends on the spin transmission in the CM layer. We show that the spins of electrons injected from the HM can be transmitted through the CM to the SC either adiabatically or non-adiabatically depending on the period of the spatial modulation of the exchange field. We find that the conductance in the subgap region oscillates as a function of the CM layer thickness wherein the oscillations transform from the irregular pattern in the non-adiabatic regime to the regular one in the adiabatic regime. For both adiabatic and non-adiabatic transport regimes the conductance is studied over a broad range of parameters determining the spiral magnetization in the CM. We find that in the non-adiabatic regime, the decrease of the exchange field amplitude in the CM leads to the emergence of the conductance peak for the particular CM thickness in agreement with recent experiments.

  3. Adiabatic Wankel type rotary engine

    NASA Technical Reports Server (NTRS)

    Kamo, R.; Badgley, P.; Doup, D.

    1988-01-01

    This SBIR Phase program accomplished the objective of advancing the technology of the Wankel type rotary engine for aircraft applications through the use of adiabatic engine technology. Based on the results of this program, technology is in place to provide a rotor and side and intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Injection Stratified Charge (DISC) rotary engine was performed which concluded that applying thermal barrier coatings to the rotor should be successful and that it was unlikely that the rotor housing could be successfully run with thermal barrier coatings as the thermal stresses were extensive.

  4. Adiabatic processes in monatomic gases

    NASA Astrophysics Data System (ADS)

    Carrera-Patiño, Martin E.

    1988-08-01

    A kinetic model is used to predict the temperature evolution of a monatomic ideal gas undergoing an adiabatic expansion or compression at a constant finite rate, and it is then generalized to treat real gases. The effects of interatomic forces are considered, using as examples the gas with the square-well potential and the van der Waals gas. The model is integrated into a Carnot cycle operating at a finite rate to compare the efficiency's rate-dependent behavior with the reversible result. Limitations of the model, rate penalties, and their importance are discussed.

  5. Adiabatic preparation of Floquet condensates

    NASA Astrophysics Data System (ADS)

    Heinisch, Christoph; Holthaus, Martin

    2016-10-01

    We argue that a Bose-Einstein condensate can be transformed into a Floquet condensate, that is, into a periodically time-dependent many-particle state possessing the coherence properties of a mesoscopically occupied single-particle Floquet state. Our reasoning is based on the observation that the denseness of the many-body system's quasienergy spectrum does not necessarily obstruct effectively adiabatic transport. Employing the idealized model of a driven bosonic Josephson junction, we demonstrate that only a small amount of Floquet entropy is generated when a driving force with judiciously chosen frequency and maximum amplitude is turned on smoothly.

  6. On the question of adiabatic invariants

    NASA Astrophysics Data System (ADS)

    Mitropol'Skii, Iu. A.

    Some aspects of the construction of adiabadic invariants for dynamic systems with a single degree of freedom are discussed. Adiabatic invariants are derived using classical principles and the method proposed by Djukic (1981). The discussion covers an adiabatic invariant for a dynamic system with slowly varying parameters; derivation of an expression for an adiabatic invariant by the Djukic method for a second-order equation with a variable mass; and derivation of an expression for the adiabatic invariant for a nearly integrable differential equation.

  7. Energy-Efficient and Secure S-Box circuit using Symmetric Pass Gate Adiabatic Logic

    SciTech Connect

    Kumar, Dinesh; Mohammad, Azhar; Singh, Vijay; Perumalla, Kalyan S

    2016-01-01

    Differential Power Analysis (DPA) attack is considered to be a main threat while designing cryptographic processors. In cryptographic algorithms like DES and AES, S-Box is used to indeterminate the relationship between the keys and the cipher texts. However, S-box is prone to DPA attack due to its high power consumption. In this paper, we are implementing an energy-efficient 8-bit S-Box circuit using our proposed Symmetric Pass Gate Adiabatic Logic (SPGAL). SPGAL is energy-efficient as compared to the existing DPAresistant adiabatic and non-adiabatic logic families. SPGAL is energy-efficient due to reduction of non-adiabatic loss during the evaluate phase of the outputs. Further, the S-Box circuit implemented using SPGAL is resistant to DPA attacks. The results are verified through SPICE simulations in 180nm technology. SPICE simulations show that the SPGAL based S-Box circuit saves upto 92% and 67% of energy as compared to the conventional CMOS and Secured Quasi-Adiabatic Logic (SQAL) based S-Box circuit. From the simulation results, it is evident that the SPGAL based circuits are energy-efficient as compared to the existing DPAresistant adiabatic and non-adiabatic logic families. In nutshell, SPGAL based gates can be used to build secure hardware for lowpower portable electronic devices and Internet-of-Things (IoT) based electronic devices.

  8. Hexameric oligomerization of mitochondrial peroxiredoxin PrxIIF and formation of an ultrahigh affinity complex with its electron donor thioredoxin Trx-o

    PubMed Central

    Barranco-Medina, Sergio; Krell, Tino; Bernier-Villamor, Laura; Sevilla, Francisca; Lázaro, Juan-José; Dietz, Karl-Josef

    2008-01-01

    Mitochondria from plants, yeast, and animals each contain at least one peroxiredoxin (Prx) that is involved in peroxide detoxification and redox signalling. The supramolecular dynamics of atypical type II Prx targeted to the mitochondrion was addressed in pea. Microcalorimetric (ITC) titrations identified an extremely high-affinity binding between the mitochondrial PsPrxIIF and Trx-o with a KD of 126±14 pM. Binding was driven by a favourable enthalpy change (ΔH= –60.6 kcal mol−1) which was counterbalanced by unfavourable entropy changes (TΔS= –47.1 kcal mol−1). This is consistent with the occurrence of large conformational changes during binding which was abolished upon site-directed mutaganesis of the catalytic C59S and C84S. The redox-dependent interaction was confirmed by gel filtration of mitochondrial extracts and co-immunoprecipitation from extracts. The heterocomplex of PsPrxIIF and Trx-o reduced peroxide substrates more efficiently than free PsPrxIIF suggesting that Trx-o serves as an efficient and specific electron donor to PsPrxIIF in vivo. Other Trx-s tested by ITC analysis failed to interact with PsPrxIIF indicating a specific recognition of PsPrxIIF by Trx-o. PsPrxIIF exists primarily as a dimer or a hexamer depending on the redox state. In addition to the well-characterized oligomerization of classical 2-Cys Prx the results also show that atypical Prx undergo large structural reorganization with implications for protein–protein interaction and function. PMID:18632730

  9. Excitation energies along a range-separated adiabatic connection

    SciTech Connect

    Rebolini, Elisa Toulouse, Julien Savin, Andreas; Teale, Andrew M.; Helgaker, Trygve

    2014-07-28

    We present a study of the variation of total energies and excitation energies along a range-separated adiabatic connection. This connection links the non-interacting Kohn–Sham electronic system to the physical interacting system by progressively switching on the electron–electron interactions whilst simultaneously adjusting a one-electron effective potential so as to keep the ground-state density constant. The interactions are introduced in a range-dependent manner, first introducing predominantly long-range, and then all-range, interactions as the physical system is approached, as opposed to the conventional adiabatic connection where the interactions are introduced by globally scaling the standard Coulomb interaction. Reference data are reported for the He and Be atoms and the H{sub 2} molecule, obtained by calculating the short-range effective potential at the full configuration-interaction level using Lieb's Legendre-transform approach. As the strength of the electron–electron interactions increases, the excitation energies, calculated for the partially interacting systems along the adiabatic connection, offer increasingly accurate approximations to the exact excitation energies. Importantly, the excitation energies calculated at an intermediate point of the adiabatic connection are much better approximations to the exact excitation energies than are the corresponding Kohn–Sham excitation energies. This is particularly evident in situations involving strong static correlation effects and states with multiple excitation character, such as the dissociating H{sub 2} molecule. These results highlight the utility of long-range interacting reference systems as a starting point for the calculation of excitation energies and are of interest for developing and analyzing practical approximate range-separated density-functional methodologies.

  10. Degenerate adiabatic perturbation theory: Foundations and applications

    NASA Astrophysics Data System (ADS)

    Rigolin, Gustavo; Ortiz, Gerardo

    2014-08-01

    We present details and expand on the framework leading to the recently introduced degenerate adiabatic perturbation theory [Phys. Rev. Lett. 104, 170406 (2010), 10.1103/PhysRevLett.104.170406], and on the formulation of the degenerate adiabatic theorem, along with its necessary and sufficient conditions [given in Phys. Rev. A 85, 062111 (2012), 10.1103/PhysRevA.85.062111]. We start with the adiabatic approximation for degenerate Hamiltonians that paves the way to a clear and rigorous statement of the associated degenerate adiabatic theorem, where the non-Abelian geometric phase (Wilczek-Zee phase) plays a central role to its quantitative formulation. We then describe the degenerate adiabatic perturbation theory, whose zeroth-order term is the degenerate adiabatic approximation, in its full generality. The parameter in the perturbative power-series expansion of the time-dependent wave function is directly associated to the inverse of the time it takes to drive the system from its initial to its final state. With the aid of the degenerate adiabatic perturbation theory we obtain rigorous necessary and sufficient conditions for the validity of the adiabatic theorem of quantum mechanics. Finally, to illustrate the power and wide scope of the methodology, we apply the framework to a degenerate Hamiltonian, whose closed-form time-dependent wave function is derived exactly, and also to other nonexactly solvable Hamiltonians whose solutions are numerically computed.

  11. On a Nonlinear Model in Adiabatic Evolutions

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Lu, Song-Feng

    2016-08-01

    In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully solve the problem, while the linear model can not. Also in the same setting, when the overlap between the initial state and the final stare is sufficiently large, a simple linear adiabatic evolution can achieve O(1) time efficiency, but infinite time complexity for the nonlinear model of adiabatic evolution is needed. This tells us, it is not always a wise choice to use nonlinear interpolations in adiabatic algorithms. Sometimes, simple linear adiabatic evolutions may be sufficient for using. Supported by the National Natural Science Foundation of China under Grant Nos. 61402188 and 61173050. The first author also gratefully acknowledges the support from the China Postdoctoral Science Foundation under Grant No. 2014M552041

  12. Quantum and classical dynamics in adiabatic computation

    NASA Astrophysics Data System (ADS)

    Crowley, P. J. D.; Äńurić, T.; Vinci, W.; Warburton, P. A.; Green, A. G.

    2014-10-01

    Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialized state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose ground state encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations that an open system can support and degrade the power of such adiabatic computation. We quantify this effect by allowing the system to evolve over a restricted set of quantum states, providing a link between physically inspired classical optimization algorithms and quantum adiabatic optimization. This perspective allows us to develop benchmarks to bound the quantum correlations harnessed by an adiabatic computation. We apply these to the D-Wave Vesuvius machine with revealing—though inconclusive—results.

  13. Adiabatic quantum computing with spin qubits hosted by molecules.

    PubMed

    Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji

    2015-01-28

    A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.

  14. Comment on {open_quotes}On the Longuet-Higgins phase and its relation to the electronic adiabatic{endash}diabatic transformation angle{close_quotes} [J. Chem. Phys. {bold 107}, 2694 (1997)

    SciTech Connect

    Kendrick, B.K.; Mead, C.A.; Truhlar, D.G.

    1999-04-01

    We show that the new equation for nuclear motion obtained by Baer {ital et al.} is based on an invalid and self-contradictory approximation, and leads to incorrect results for the wave functions, energy levels, degeneracies, and matrix elements. Baer{close_quote}s conclusion about the connection between the Longuet{endash}Higgins (LH) phase and the adiabatic-diabatic transformation (ADT) angle is also shown to be incorrect. Applications of the method by Baer {ital et al.} are shown to contain further errors. {copyright} {ital 1999 American Institute of Physics.}

  15. Adiabatic corrections to density functional theory energies and wave functions.

    PubMed

    Mohallem, José R; Coura, Thiago de O; Diniz, Leonardo G; de Castro, Gustavo; Assafrão, Denise; Heine, Thomas

    2008-09-25

    The adiabatic finite-nuclear-mass-correction (FNMC) to the electronic energies and wave functions of atoms and molecules is formulated for density-functional theory and implemented in the deMon code. The approach is tested for a series of local and gradient corrected density functionals, using MP2 results and diagonal-Born-Oppenheimer corrections from the literature for comparison. In the evaluation of absolute energy corrections of nonorganic molecules the LDA PZ81 functional works surprisingly better than the others. For organic molecules the GGA BLYP functional has the best performance. FNMC with GGA functionals, mainly BLYP, show a good performance in the evaluation of relative corrections, except for nonorganic molecules containing H atoms. The PW86 functional stands out with the best evaluation of the barrier of linearity of H2O and the isotopic dipole moment of HDO. In general, DFT functionals display an accuracy superior than the common belief and because the corrections are based on a change of the electronic kinetic energy they are here ranked in a new appropriate way. The approach is applied to obtain the adiabatic correction for full atomization of alcanes C(n)H(2n+2), n = 4-10. The barrier of 1 mHartree is approached for adiabatic corrections, justifying its insertion into DFT. PMID:18537228

  16. Analysis of hyperspherical adiabatic curves of helium: A classical dynamics study

    NASA Astrophysics Data System (ADS)

    Simonović, N. S.; Solov'ev, E. A.

    2013-05-01

    The hyperspherical adiabatic curves (adiabatic eigenenergies as functions of the hyperradius R) of helium for zero total angular momentum are analyzed by studying the underlying classical dynamics which in the adiabatic treatment reduces to constrained two-electron motion on a hypersphere. This dynamics supports five characteristic classical configurations which can be represented by five types of short periodic orbits: the frozen planet (FP), the inverted frozen planet (IFP), the asymmetric stretch (AS), the asynchronous (ASC), and the Langmuir periodic orbit (PO). These POs are considered as fundamental modes of the two-electron motion on a hypersphere which, after quantization, give five families of so-called adiabatic lines (adiabatic energies related to these POs as functions of R). It is found that multiplets, each of them consisting of adiabatic curves which converge to the same ionization threshold, are at large values of R delimited from the bottom and from the top by the adiabatic lines which are related to the IFP and stable AS POs and to the FP PO, respectively. At smaller values of R, where the AS PO becomes unstable, the curves move to the area between the ASC (bottom) and AS (top) lines by crossing the latter. Therefore, at different values of R the lower limiting line of the multiplet is related to the three types of PO (IFP, AS, and ASC), which are all stable in the negative-energy part of this line. As a consequence, the quantum states of helium in principle are not related individually to a single classical configuration on the hypersphere. In addition, it is demonstrated that “unstable parts” of adiabatic lines (the so-called diabatic curves) determine the positions and type of avoided and hidden crossings between hyperspherical adiabatic curves. Two clearly visible classes of avoided crossings are related to the AS and ASC POs. In addition, a number of avoided crossings of the adiabatic curves is observed at the positions where the

  17. Robust quantum logic in neutral atoms via adiabatic Rydberg dressing

    NASA Astrophysics Data System (ADS)

    Keating, Tyler; Cook, Robert L.; Hankin, Aaron M.; Jau, Yuan-Yu; Biedermann, Grant W.; Deutsch, Ivan H.

    2015-01-01

    We study a scheme for implementing a controlled-Z (cz) gate between two neutral-atom qubits based on the Rydberg blockade mechanism in a manner that is robust to errors caused by atomic motion. By employing adiabatic dressing of the ground electronic state, we can protect the gate from decoherence due to random phase errors that typically arise because of atomic thermal motion. In addition, the adiabatic protocol allows for a Doppler-free configuration that involves counterpropagating lasers in a σ+/σ- orthogonal polarization geometry that further reduces motional errors due to Doppler shifts. The residual motional error is dominated by dipole-dipole forces acting on doubly excited Rydberg atoms when the blockade is imperfect. For reasonable parameters, with qubits encoded into the clock states of 133Cs, we predict that our protocol could produce a cz gate in <10 μ s with error probability on the order of 10-3.

  18. A geometric criterion for adiabatic chaos

    SciTech Connect

    Kaper, T.J. ); Kovacic, G. )

    1994-03-01

    Chaos in adiabatic Hamiltonian systems is a recent discovery and a pervasive phenomenon in physics. In this work, a geometric criterion is discussed based on the theory of action from classical mechanics to detect the existence of Smale horseshoe chaos in adiabatic systems. It is used to show that generic adiabatic planar Hamiltonian systems exhibit stochastic dynamics in large regions of phase space. To illustrate the method, results are obtained for three problems concerning relativistic particle dynamics, fluid mechanics, and passage through resonance, results which either could not be obtained with existing methods, or which were difficult and analytically impractical to obtain with them.

  19. Heating and cooling in adiabatic mixing process

    SciTech Connect

    Zhou Jing; Zou Xubo; Guo Guangcan; Cai Zi

    2010-12-15

    We study the effect of interaction on the temperature change in the process of adiabatic mixing of two components of Fermi gases using the real-space Bogoliubov-de Gennes method. We find that in the process of adiabatic mixing, the competition between the adiabatic expansion and the attractive interaction makes it possible to cool or heat the system depending on the strength of the interaction and the initial temperature of the system. The changes of the temperature in a bulk system and in a trapped system are investigated.

  20. Simulation of periodically focused, adiabatic thermal beams

    SciTech Connect

    Chen, C.; Akylas, T. R.; Barton, T. J.; Field, D. M.; Lang, K. M.; Mok, R. V.

    2012-12-21

    Self-consistent particle-in-cell simulations are performed to verify earlier theoretical predictions of adiabatic thermal beams in a periodic solenoidal magnetic focusing field [K.R. Samokhvalova, J. Zhou and C. Chen, Phys. Plasma 14, 103102 (2007); J. Zhou, K.R. Samokhvalova and C. Chen, Phys. Plasma 15, 023102 (2008)]. In particular, results are obtained for adiabatic thermal beams that do not rotate in the Larmor frame. For such beams, the theoretical predictions of the rms beam envelope, the conservations of the rms thermal emittances, the adiabatic equation of state, and the Debye length are verified in the simulations. Furthermore, the adiabatic thermal beam is found be stable in the parameter regime where the simulations are performed.

  1. General conditions for quantum adiabatic evolution

    SciTech Connect

    Comparat, Daniel

    2009-07-15

    Adiabaticity occurs when, during its evolution, a physical system remains in the instantaneous eigenstate of the Hamiltonian. Unfortunately, existing results, such as the quantum adiabatic theorem based on a slow down evolution [H({epsilon}t),{epsilon}{yields}0], are insufficient to describe an evolution driven by the Hamiltonian H(t) itself. Here we derive general criteria and exact bounds, for the state and its phase, ensuring an adiabatic evolution for any Hamiltonian H(t). As a corollary, we demonstrate that the commonly used condition of a slow Hamiltonian variation rate, compared to the spectral gap, is indeed sufficient to ensure adiabaticity but only when the Hamiltonian is real and nonoscillating (for instance, containing exponential or polynomial but no sinusoidal functions)

  2. Adiabatic Quantum Search in Open Systems

    NASA Astrophysics Data System (ADS)

    Wild, Dominik S.; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y.; Lukin, Mikhail D.

    2016-10-01

    Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.

  3. Experimental demonstration of composite adiabatic passage

    NASA Astrophysics Data System (ADS)

    Schraft, Daniel; Halfmann, Thomas; Genov, Genko T.; Vitanov, Nikolay V.

    2013-12-01

    We report an experimental demonstration of composite adiabatic passage (CAP) for robust and efficient manipulation of two-level systems. The technique represents a altered version of rapid adiabatic passage (RAP), driven by composite sequences of radiation pulses with appropriately chosen phases. We implement CAP with radio-frequency pulses to invert (i.e., to rephase) optically prepared spin coherences in a Pr3+:Y2SiO5 crystal. We perform systematic investigations of the efficiency of CAP and compare the results with conventional π pulses and RAP. The data clearly demonstrate the superior features of CAP with regard to robustness and efficiency, even under conditions of weakly fulfilled adiabaticity. The experimental demonstration of composite sequences to support adiabatic passage is of significant relevance whenever a high efficiency or robustness of coherent excitation processes need to be maintained, e.g., as required in quantum information technology.

  4. Adiabatic limits on Riemannian Heisenberg manifolds

    SciTech Connect

    Yakovlev, A A

    2008-02-28

    An asymptotic formula is obtained for the distribution function of the spectrum of the Laplace operator, in the adiabatic limit for the foliation defined by the orbits of an invariant flow on a compact Riemannian Heisenberg manifold. Bibliography: 21 titles.

  5. Adiabatic invariance of oscillons/I -balls

    NASA Astrophysics Data System (ADS)

    Kawasaki, Masahiro; Takahashi, Fuminobu; Takeda, Naoyuki

    2015-11-01

    Real scalar fields are known to fragment into spatially localized and long-lived solitons called oscillons or I -balls. We prove the adiabatic invariance of the oscillons/I -balls for a potential that allows periodic motion even in the presence of non-negligible spatial gradient energy. We show that such a potential is uniquely determined to be the quadratic one with a logarithmic correction, for which the oscillons/I -balls are absolutely stable. For slightly different forms of the scalar potential dominated by the quadratic one, the oscillons/I -balls are only quasistable, because the adiabatic charge is only approximately conserved. We check the conservation of the adiabatic charge of the I -balls in numerical simulation by slowly varying the coefficient of logarithmic corrections. This unambiguously shows that the longevity of oscillons/I -balls is due to the adiabatic invariance.

  6. Adiabatic Demagnetization Cooler For Far Infrared Detector

    NASA Astrophysics Data System (ADS)

    Sato, Akio; Yazawa, Takashi; Yamamoto, Junya

    1988-11-01

    An small adiabatic demagnetization cooler for an astronomical far infrared detector has been built. Single crystals of manganese ammonium sulphate and chromium potassium alum, were prepared as magnetic substances. The superconducting magnet was indirectly cooled and operated by small current up to 13.3 A, the maximum field being 3.5 T. As a preliminary step, adiabatic demagnetization to zero field was implemented. The lowest temperature obtained was 0.5 K, for 5.0 K initial temperature.

  7. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

    SciTech Connect

    White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry

    2015-07-07

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In most cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.

  8. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo.

    PubMed

    White, Alexander J; Gorshkov, Vyacheslav N; Tretiak, Sergei; Mozyrsky, Dmitry

    2015-07-01

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In most cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems. PMID:26156473

  9. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

    DOE PAGES

    White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry

    2015-07-07

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficientmore » as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.« less

  10. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

    SciTech Connect

    White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry

    2015-07-07

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.

  11. Symmetry of the Adiabatic Condition in the Piston Problem

    ERIC Educational Resources Information Center

    Anacleto, Joaquim; Ferreira, J. M.

    2011-01-01

    This study addresses a controversial issue in the adiabatic piston problem, namely that of the piston being adiabatic when it is fixed but no longer so when it can move freely. It is shown that this apparent contradiction arises from the usual definition of adiabatic condition. The issue is addressed here by requiring the adiabatic condition to be…

  12. Hierarchical theory of quantum adiabatic evolution

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Gong, Jiangbin; Wu, Biao

    2014-12-01

    Quantum adiabatic evolution is a dynamical evolution of a quantum system under slow external driving. According to the quantum adiabatic theorem, no transitions occur between nondegenerate instantaneous energy eigenstates in such a dynamical evolution. However, this is true only when the driving rate is infinitesimally small. For a small nonzero driving rate, there are generally small transition probabilities between the energy eigenstates. We develop a classical mechanics framework to address the small deviations from the quantum adiabatic theorem order by order. A hierarchy of Hamiltonians is constructed iteratively with the zeroth-order Hamiltonian being determined by the original system Hamiltonian. The kth-order deviations are governed by a kth-order Hamiltonian, which depends on the time derivatives of the adiabatic parameters up to the kth-order. Two simple examples, the Landau-Zener model and a spin-1/2 particle in a rotating magnetic field, are used to illustrate our hierarchical theory. Our analysis also exposes a deep, previously unknown connection between classical adiabatic theory and quantum adiabatic theory.

  13. Laboratory Measurements of Adiabatic and Isothermal Processes

    NASA Astrophysics Data System (ADS)

    McNairy, W. W.

    1997-04-01

    Adiabatic and isothermal measurements on various of gases are made possible by using the Adiabatic Gas Law apparatus made by PASCO Scientific(Much of this work was published by the author in "The Physics Teacher", vol. 34, March 1996, p. 178-80.). By using a computer interface, undergraduates are able to data for monatomic, diatomic and polyatomic gases for both compression and expansion processes. Designed principally to obtain adiabatic data, the apparatus may be easily modified for use in isothermal processes. The various sets of data are imported into a spreadsheet program where fits may be made to the ideal gas law and the adiabatic gas law. Excellent results are obtained for the natural logarithm of pressure versus the natural logarithm of volume for both the isothermal data (expected slope equal to -1 in all cases) and the adiabatic data (slope equal to -1 times the ratio of specific heats for the particular gas). An overview of the lab procedure used at VMI will be presented along with data obtained for several adiabatic and isothermal processes.

  14. Adiabatic response and quantum thermoelectrics for ac-driven quantum systems

    NASA Astrophysics Data System (ADS)

    Ludovico, María Florencia; Battista, Francesca; von Oppen, Felix; Arrachea, Liliana

    2016-02-01

    We generalize the theory of thermoelectrics to include coherent electron systems under adiabatic ac driving, accounting for quantum pumping of charge and heat, as well as for the work exchanged between the electron system and driving potentials. We derive the relevant response coefficients in the adiabatic regime and show that they obey generalized Onsager reciprocity relations. We analyze the consequences of our generalized thermoelectric framework for quantum motors, generators, heat engines, and heat pumps, characterizing them in terms of efficiencies and figures of merit. We illustrate these concepts in a model for a quantum pump.

  15. Assessment of total efficiency in adiabatic engines

    NASA Astrophysics Data System (ADS)

    Mitianiec, W.

    2016-09-01

    The paper presents influence of ceramic coating in all surfaces of the combustion chamber of SI four-stroke engine on working parameters mainly on heat balance and total efficiency. Three cases of engine were considered: standard without ceramic coating, fully adiabatic combustion chamber and engine with different thickness of ceramic coating. Consideration of adiabatic or semi-adiabatic engine was connected with mathematical modelling of heat transfer from the cylinder gas to the cooling medium. This model takes into account changeable convection coefficient based on the experimental formulas of Woschni, heat conductivity of multi-layer walls and also small effect of radiation in SI engines. The simulation model was elaborated with full heat transfer to the cooling medium and unsteady gas flow in the engine intake and exhaust systems. The computer program taking into account 0D model of engine processes in the cylinder and 1D model of gas flow was elaborated for determination of many basic engine thermodynamic parameters for Suzuki DR-Z400S 400 cc SI engine. The paper presents calculation results of influence of the ceramic coating thickness on indicated pressure, specific fuel consumption, cooling and exhaust heat losses. Next it were presented comparisons of effective power, heat losses in the cooling and exhaust systems, total efficiency in function of engine rotational speed and also comparison of temperature inside the cylinder for standard, semi-adiabatic and full adiabatic engine. On the basis of the achieved results it was found higher total efficiency of adiabatic engines at 2500 rpm from 27% for standard engine to 37% for full adiabatic engine.

  16. Graph isomorphism and adiabatic quantum computing

    NASA Astrophysics Data System (ADS)

    Gaitan, Frank; Clark, Lane

    2014-02-01

    In the graph isomorphism (GI) problem two N-vertex graphs G and G' are given and the task is to determine whether there exists a permutation of the vertices of G that preserves adjacency and transforms G →G'. If yes, then G and G' are said to be isomorphic; otherwise they are nonisomorphic. The GI problem is an important problem in computer science and is thought to be of comparable difficulty to integer factorization. In this paper we present a quantum algorithm that solves arbitrary instances of GI and which also provides an approach to determining all automorphisms of a given graph. We show how the GI problem can be converted to a combinatorial optimization problem that can be solved using adiabatic quantum evolution. We numerically simulate the algorithm's quantum dynamics and show that it correctly (i) distinguishes nonisomorphic graphs; (ii) recognizes isomorphic graphs and determines the permutation(s) that connect them; and (iii) finds the automorphism group of a given graph G. We then discuss the GI quantum algorithm's experimental implementation, and close by showing how it can be leveraged to give a quantum algorithm that solves arbitrary instances of the NP-complete subgraph isomorphism problem. The computational complexity of an adiabatic quantum algorithm is largely determined by the minimum energy gap Δ (N) separating the ground and first-excited states in the limit of large problem size N ≫1. Calculating Δ (N) in this limit is a fundamental open problem in adiabatic quantum computing, and so it is not possible to determine the computational complexity of adiabatic quantum algorithms in general, nor consequently, of the specific adiabatic quantum algorithms presented here. Adiabatic quantum computing has been shown to be equivalent to the circuit model of quantum computing, and so development of adiabatic quantum algorithms continues to be of great interest.

  17. Decoherence and adiabatic transport in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Switkes, Michael

    2000-10-01

    I present research on ballistic electron transport in lateral GaAs/AlGaAs quantum dots connected to the environment with leads supporting one or more fully transmitting quantum modes. The first part of this dissertation examines electron the phenomena which mediate the transition from quantum mechanical to classical behavior in these quantum dots. Measurements of electron phase coherence time based on the magnitude of weak localization correction are presented as a function both of temperature and of applied bias. The coherence time is found to depend on temperature approximately as a sum of two power laws, tauφ ≈ AT-1 + BT-2, in agreement with the prediction for diffusive two dimensional systems but not with predictions for closed quantum dots or ballistic 2D systems. The effects of a large applied bias can be described with an elevated effective electron temperature calculated from the balance of Joule heating and cooling by Wiedemann-Franz out diffusion of hot electrons. The limits this imposes for quantum dot based technologies are examined through the detailed analysis of a quantum dot magnetometer. The second part of the work presented here focuses on a novel form of electron transport, adiabatic quantum electron pumping, in which a current is driven by cyclic changes in the wave function of a mesoscopic system rather than by an externally imposed bias. After a brief review of other mechanisms which produce a dc current from an ac excitation, measurements of adiabatic pumping are presented. The pumped current (or voltage) is sinusoidal in the phase difference between the two ac voltages deforming the dot potential and fluctuates in both magnitude and direction with small changes in external parameters such as magnetic field. Dependencies of pumping on the strength of the deformations, temperature, and breaking of time-reversal symmetry are also investigated.

  18. Energy efficiency of adiabatic superconductor logic

    NASA Astrophysics Data System (ADS)

    Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2015-01-01

    Adiabatic superconductor logic (ASL), including adiabatic quantum-flux-parametron (AQFP) logic, exhibits high energy efficiency because its bit energy can be decreased below the thermal energy through adiabatic switching operations. In the present paper, we present the general scaling laws of ASL and compare the energy efficiency of ASL with those of other energy-efficient logics. Also, we discuss the minimum energy-delay product (EDP) of ASL at finite temperature. Our study shows that there is a maximum temperature at which the EDP can reach the quantum limit given by ħ/2, which is dependent on the superconductor material and the Josephson junction quality, and that it is reasonable to operate ASL at cryogenic temperatures in order to achieve an EDP that approaches ħ/2.

  19. Adiabatic approximation for the density matrix

    NASA Astrophysics Data System (ADS)

    Band, Yehuda B.

    1992-05-01

    An adiabatic approximation for the Liouville density-matrix equation which includes decay terms is developed. The adiabatic approximation employs the eigenvectors of the non-normal Liouville operator. The approximation is valid when there exists a complete set of eigenvectors of the non-normal Liouville operator (i.e., the eigenvectors span the density-matrix space), the time rate of change of the Liouville operator is small, and an auxiliary matrix is nonsingular. Numerical examples are presented involving efficient population transfer in a molecule by stimulated Raman scattering, with the intermediate level of the molecule decaying on a time scale that is fast compared with the pulse durations of the pump and Stokes fields. The adiabatic density-matrix approximation can be simply used to determine the density matrix for atomic or molecular systems interacting with cw electromagnetic fields when spontaneous emission or other decay mechanisms prevail.

  20. Adiabaticity and viscosity in deep mantle convection

    NASA Technical Reports Server (NTRS)

    Quareni, F.; Yuen, D. A.; Saari, M. R.

    1986-01-01

    A study has been conducted of steady convection with adiabatic and viscous heating for variable viscosity in the Boussinesq limit using the mean-field theory. A strong nonlinear coupling is found between the thermodynamic constants governing adiabatic heating and the rheological parameters. The range of rheological values for which adiabaticity would occur throughout the mantle has been established. Too large an activation volume, greater than 6 cu cm/mol for the cases examined, would produce unreasonably high temperature at the bottom of the mantle (greater than 6000 K) and superadiabatic gradients, especially in the lower mantle. Radiogenic heating plays a profound role in controlling dynamically mantle temperatures. Present values for the averaged mantle heat production would yield objectionably high temperatures in the lower mantle.

  1. Nonadiabatic exchange dynamics during adiabatic frequency sweeps

    NASA Astrophysics Data System (ADS)

    Barbara, Thomas M.

    2016-04-01

    A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging.

  2. Affine projective Osserman structures

    NASA Astrophysics Data System (ADS)

    Gilkey, P.; Nikčević, S.

    2013-08-01

    By considering the projectivized spectrum of the Jacobi operator, we introduce the concept of projective Osserman manifold in both the affine and in the pseudo-Riemannian settings. If M is an affine projective Osserman manifold, then the deformed Riemannian extension metric on the cotangent bundle is both spacelike and timelike projective Osserman. Since any rank-1-symmetric space is affine projective Osserman, this provides additional information concerning the cotangent bundle of a rank-1 Riemannian symmetric space with the deformed Riemannian extension metric. We construct other examples of affine projective Osserman manifolds where the Ricci tensor is not symmetric and thus the connection in question is not the Levi-Civita connection of any metric. If the dimension is odd, we use methods of algebraic topology to show the Jacobi operator of an affine projective Osserman manifold has only one non-zero eigenvalue and that eigenvalue is real.

  3. On adiabatic invariant in generalized Galileon theories

    SciTech Connect

    Ema, Yohei; Jinno, Ryusuke; Nakayama, Kazunori; Mukaida, Kyohei E-mail: jinno@hep-th.phys.s.u-tokyo.ac.jp E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp

    2015-10-01

    We consider background dynamics of generalized Galileon theories in the context of inflation, where gravity and inflaton are non-minimally coupled to each other. In the inflaton oscillation regime, the Hubble parameter and energy density oscillate violently in many cases, in contrast to the Einstein gravity with minimally coupled inflaton. However, we find that there is an adiabatic invariant in the inflaton oscillation regime in any generalized Galileon theory. This adiabatic invariant is useful in estimating the expansion law of the universe and also the particle production rate due to the oscillation of the Hubble parameter.

  4. Spontaneous emission in stimulated Raman adiabatic passage

    SciTech Connect

    Ivanov, P. A.; Vitanov, N. V.; Bergmann, K.

    2005-11-15

    This work explores the effect of spontaneous emission on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The approach uses adiabatic elimination of weakly coupled density matrix elements in the Liouville equation, from which a very accurate analytic approximation is derived. The loss of population transfer efficiency is found to decrease exponentially with the factor {omega}{sub 0}{sup 2}/{gamma}, where {gamma} is the spontaneous emission rate and {omega}{sub 0} is the peak Rabi frequency. The transfer efficiency increases with the pulse delay and reaches a steady value. For large pulse delay and large spontaneous emission rate STIRAP degenerates into optical pumping.

  5. Adiabatic Hyperspherical Analysis of Realistic Nuclear Potentials

    NASA Astrophysics Data System (ADS)

    Daily, K. M.; Kievsky, Alejandro; Greene, Chris H.

    2015-12-01

    Using the hyperspherical adiabatic method with the realistic nuclear potentials Argonne V14, Argonne V18, and Argonne V18 with the Urbana IX three-body potential, we calculate the adiabatic potentials and the triton bound state energies. We find that a discrete variable representation with the slow variable discretization method along the hyperradial degree of freedom results in energies consistent with the literature. However, using a Laguerre basis results in missing energy, even when extrapolated to an infinite number of basis functions and channels. We do not include the isospin T = 3/2 contribution in our analysis.

  6. Complexity of the Quantum Adiabatic Algorithm

    NASA Technical Reports Server (NTRS)

    Hen, Itay

    2013-01-01

    The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorithms.

  7. Sliding Seal Materials for Adiabatic Engines, Phase 2

    NASA Technical Reports Server (NTRS)

    Lankford, J.; Wei, W.

    1986-01-01

    An essential task in the development of the heavy-duty adiabatic diesel engine is identification and improvements of reliable, low-friction piston seal materials. In the present study, the sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, and loading conditions that are representative of the adiabatic engine environment. In addition, silicon nitride and partially stabilized zirconia disks were ion implanted with TiNi, Ni, Co, and Cr, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Electron microscopy was used to elucidate the micromechanisms of wear following wear testing, and Auger electron spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. The coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implanation of TiNi or Co. This beneficial effect was found to derive from lubricious Ti, Ni, and Co oxides.

  8. Towards fault tolerant adiabatic quantum computation.

    PubMed

    Lidar, Daniel A

    2008-04-25

    I show how to protect adiabatic quantum computation (AQC) against decoherence and certain control errors, using a hybrid methodology involving dynamical decoupling, subsystem and stabilizer codes, and energy gaps. Corresponding error bounds are derived. As an example, I show how to perform decoherence-protected AQC against local noise using at most two-body interactions.

  9. Dynamical aspects of an adiabatic piston.

    PubMed

    Munakata, T; Ogawa, H

    2001-09-01

    Dynamical aspects of an adiabatic piston are investigated, based on the mass ratio expansion of the master equation for the piston velocity distribution function. Simple theory for piston motion and relaxation of an ideal gas in a cylinder turns out to reproduce our numerical experiments quantitatively.

  10. Adiabatic reversible compression: a molecular view

    NASA Astrophysics Data System (ADS)

    Miranda, E. N.

    2002-07-01

    The adiabatic compression (or expansion) of an ideal gas has been analysed. Using the kinetic theory of gases the usual relation between temperature and volume is obtained, while textbooks follow a thermodynamic approach. In this way we show, once again, the agreement between a macroscopic view (thermodynamics) and a microscopic one (kinetic theory).

  11. Dynamical aspects of an adiabatic piston

    NASA Astrophysics Data System (ADS)

    Munakata, Toyonori; Ogawa, Hideki

    2001-09-01

    Dynamical aspects of an adiabatic piston are investigated, based on the mass ratio expansion of the master equation for the piston velocity distribution function. Simple theory for piston motion and relaxation of an ideal gas in a cylinder turns out to reproduce our numerical experiments quantitatively.

  12. Adiabatic Compression in a Fire Syringe.

    ERIC Educational Resources Information Center

    Hayn, Carl H.; Baird, Scott C.

    1985-01-01

    Suggests using better materials in fire syringes to obtain more effective results during demonstrations which show the elevation in temperature upon a very rapid (adiabatic) compression of air. Also describes an experiment (using ignition temperatures) which introduces students to the use of thermocouples for high temperature measurements. (DH)

  13. Time dependence of adiabatic particle number

    NASA Astrophysics Data System (ADS)

    Dabrowski, Robert; Dunne, Gerald V.

    2016-09-01

    We consider quantum field theoretic systems subject to a time-dependent perturbation, and discuss the question of defining a time-dependent particle number not just at asymptotic early and late times, but also during the perturbation. Naïvely, this is not a well-defined notion for such a nonequilibrium process, as the particle number at intermediate times depends on a basis choice of reference states with respect to which particles and antiparticles are defined, even though the final late-time particle number is independent of this basis choice. The basis choice is associated with a particular truncation of the adiabatic expansion. The adiabatic expansion is divergent, and we show that if this divergent expansion is truncated at its optimal order, a universal time dependence is obtained, confirming a general result of Dingle and Berry. This optimally truncated particle number provides a clear picture of quantum interference effects for perturbations with nontrivial temporal substructure. We illustrate these results using several equivalent definitions of adiabatic particle number: the Bogoliubov, Riccati, spectral function and Schrödinger picture approaches. In each approach, the particle number may be expressed in terms of the tiny deviations between the exact and adiabatic solutions of the Ermakov-Milne equation for the associated time-dependent oscillators.

  14. Apparatus to Measure Adiabatic and Isothermal Processes.

    ERIC Educational Resources Information Center

    Lamb, D. W.; White, G. M.

    1996-01-01

    Describes a simple manual apparatus designed to serve as an effective demonstration of the differences between isothermal and adiabatic processes for the general or elementary physics student. Enables students to verify Boyle's law for slow processes and identify the departure from this law for rapid processes and can also be used to give a clear…

  15. Adiabatic Mass Parameters for Spontaneous Fission

    SciTech Connect

    Baran, A.; Sheikh, J. A.; Nazarewicz, Witold

    2009-01-01

    The collective mass tensor derived from the adiabatic time-dependent Hartree-Fock-Bogoliubov theory, perturbative cranking approximation, and the Gaussian overlap approximation to the generator-coordinate method is discussed. Illustrative calculations are carried out for ^{252}Fm using the nuclear density functional theory with Skyrme interaction SkM* and seniority pairing.

  16. Protecting and accelerating adiabatic passage with time-delayed pulse sequences.

    PubMed

    Sampedro, Pablo; Chang, Bo Y; Sola, Ignacio R

    2016-05-21

    Using numerical simulations of two-photon electronic absorption with femtosecond pulses in Na2 we show that: (i) it is possible to avoid the characteristic saturation or dumped Rabi oscillations in the yield of absorption by time-delaying the laser pulses; (ii) it is possible to accelerate the onset of adiabatic passage by using the vibrational coherence starting in a wave packet; and (iii) it is possible to prepare the initial wave packet in order to achieve full state-selective transitions with broadband pulses. The findings can be used, for instance, to achieve ultrafast adiabatic passage by light-induced potentials and understand its intrinsic robustness. PMID:27125342

  17. Protecting and accelerating adiabatic passage with time-delayed pulse sequences.

    PubMed

    Sampedro, Pablo; Chang, Bo Y; Sola, Ignacio R

    2016-05-21

    Using numerical simulations of two-photon electronic absorption with femtosecond pulses in Na2 we show that: (i) it is possible to avoid the characteristic saturation or dumped Rabi oscillations in the yield of absorption by time-delaying the laser pulses; (ii) it is possible to accelerate the onset of adiabatic passage by using the vibrational coherence starting in a wave packet; and (iii) it is possible to prepare the initial wave packet in order to achieve full state-selective transitions with broadband pulses. The findings can be used, for instance, to achieve ultrafast adiabatic passage by light-induced potentials and understand its intrinsic robustness.

  18. The dynamic instability of adiabatic blast waves

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Vishniac, Ethan T.

    1991-01-01

    Adiabatic blastwaves, which have a total energy injected from the center E varies as t(sup q) and propagate through a preshock medium with a density rho(sub E) varies as r(sup -omega) are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.

  19. Adiabatic burst evaporation from bicontinuous nanoporous membranes

    PubMed Central

    Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk

    2015-01-01

    Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406

  20. Special Report: Affinity Chromatography.

    ERIC Educational Resources Information Center

    Parikh, Indu; Cuatrecasas, Pedro

    1985-01-01

    Describes the nature of affinity chromatography and its use in purifying enzymes, studying cell interactions, exploring hormone receptors, and other areas. The potential the technique may have in treating disease is also considered. (JN)

  1. Charge exchange transition probability for collisions between unlike ions and atoms within the adiabatic approximation

    NASA Technical Reports Server (NTRS)

    Xu, Y. J.; Khandelwal, G. S.; Wilson, John W.

    1989-01-01

    A simple formula for the transition probability for electron exchange between unlike ions and atoms is established within the adiabatic approximation by employing the Linear Combination of Atomic Orbitals (LCAO) method. The formula also involves an adiabatic parameter, introduced by Massey, and thus the difficulties arising from the internal energy defect and the adiabatic approximation are avoided. Specific reactions Li(+++) + H to Li(++) + H(+) and Be(4+) + H to Be(3+) + H(+) are considered as examples. The calculated capture cross section results of the present work are compared with the experimental data and with the calculation of other authors over the velocity range of 10(7) cm/sec to 10(8) cm/sec.

  2. Separation of enantiomers by ultraviolet laser pulses in H2POSH: π pulses versus adiabatic transitions

    NASA Astrophysics Data System (ADS)

    González, Leticia; Kröner, Dominik; Solá, Ignacio R.

    2001-08-01

    Different strategies to separate enantiomers from a racemate using analytical laser pulses in the ultraviolet frequency domain are proposed for the prototype model system H2POSH. Wave-packet propagations on ab initio ground- and electronic-excited state potentials show that it is possible to produce 100% of enantiomeric excess in a sub-picosecond time scale using a sequence of π and half-π pulses. Alternatively, the previous transitions can be substituted by adiabatic counterparts, using chirped laser pulses and a half-STIRAP (stimulated Raman adiabatic passage) method which only transfers half of the population between appropriate levels. Such an overall adiabatic mechanism gains stability concerning the pulse areas and frequencies at the expense of introducing new control variables, like the chirp and time delay.

  3. Robust quantum logic in neutral atoms via adiabatic Rydberg dressing

    DOE PAGES

    Keating, Tyler; Cook, Robert L.; Hankin, Aaron M.; Jau, Yuan -Yu; Biedermann, Grant W.; Deutsch, Ivan H.

    2015-01-28

    We study a scheme for implementing a controlled-Z (CZ) gate between two neutral-atom qubits based on the Rydberg blockade mechanism in a manner that is robust to errors caused by atomic motion. By employing adiabatic dressing of the ground electronic state, we can protect the gate from decoherence due to random phase errors that typically arise because of atomic thermal motion. In addition, the adiabatic protocol allows for a Doppler-free configuration that involves counterpropagating lasers in a σ+/σ- orthogonal polarization geometry that further reduces motional errors due to Doppler shifts. The residual motional error is dominated by dipole-dipole forces actingmore » on doubly-excited Rydberg atoms when the blockade is imperfect. As a result, for reasonable parameters, with qubits encoded into the clock states of 133Cs, we predict that our protocol could produce a CZ gate in < 10 μs with error probability on the order of 10-3.« less

  4. AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT

    SciTech Connect

    French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Redmer, Ronald; Wicht, Johannes

    2012-09-15

    We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grueneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.

  5. Robust quantum logic in neutral atoms via adiabatic Rydberg dressing

    SciTech Connect

    Keating, Tyler; Cook, Robert L.; Hankin, Aaron M.; Jau, Yuan -Yu; Biedermann, Grant W.; Deutsch, Ivan H.

    2015-01-28

    We study a scheme for implementing a controlled-Z (CZ) gate between two neutral-atom qubits based on the Rydberg blockade mechanism in a manner that is robust to errors caused by atomic motion. By employing adiabatic dressing of the ground electronic state, we can protect the gate from decoherence due to random phase errors that typically arise because of atomic thermal motion. In addition, the adiabatic protocol allows for a Doppler-free configuration that involves counterpropagating lasers in a σ+- orthogonal polarization geometry that further reduces motional errors due to Doppler shifts. The residual motional error is dominated by dipole-dipole forces acting on doubly-excited Rydberg atoms when the blockade is imperfect. As a result, for reasonable parameters, with qubits encoded into the clock states of 133Cs, we predict that our protocol could produce a CZ gate in < 10 μs with error probability on the order of 10-3.

  6. Temperature gradients due to adiabatic plasma expansion in a magnetic nozzle

    NASA Astrophysics Data System (ADS)

    Sheehan, J. P.; Longmier, B. W.; Bering, E. A.; Olsen, C. S.; Squire, J. P.; Ballenger, M. G.; Carter, M. D.; Cassady, L. D.; Díaz, F. R. Chang; Glover, T. W.; Ilin, A. V.

    2014-08-01

    A mechanism for ambipolar ion acceleration in a magnetic nozzle is proposed. The plasma is adiabatic (i.e., does not exchange energy with its surroundings) in the diverging section of a magnetic nozzle so any energy lost by the electrons must be transferred to the ions via the electric field. Fluid theory indicates that the change in plasma potential is proportional to the change in average electron energy. These predictions were compared to measurements in the VX-200 experiment which has conditions conducive to ambipolar ion acceleration. A planar Langmuir probe was used to measure the plasma potential, electron density, and electron temperature for a range of mass flow rates and power levels. Axial profiles of those parameters were also measured, showing consistency with the adiabatic ambipolar fluid theory.

  7. Non-adiabatic perturbations in multi-component perfect fluids

    SciTech Connect

    Koshelev, N.A.

    2011-04-01

    The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.

  8. Quantum adiabatic evolution with energy degeneracy levels

    NASA Astrophysics Data System (ADS)

    Zhang, Qi

    2016-01-01

    A classical-kind phase-space formalism is developed to address the tiny intrinsic dynamical deviation from what is predicted by Wilczek-Zee theorem during quantum adiabatic evolution on degeneracy levels. In this formalism, the Hilbert space and the aggregate of degenerate eigenstates become the classical-kind phase space and a high-dimensional subspace in the phase space, respectively. Compared with the previous analogous study by a different method, the current result is qualitatively different in that the first-order deviation derived here is always perpendicular to the degeneracy subspace. A tripod-scheme Hamiltonian with two degenerate dark states is employed to illustrate the adiabatic deviation with degeneracy levels.

  9. Adiabatic quantum optimization for associative memory recall

    SciTech Connect

    Seddiqi, Hadayat; Humble, Travis S.

    2014-12-22

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.

  10. Adiabatic quantum optimization for associative memory recall

    DOE PAGES

    Seddiqi, Hadayat; Humble, Travis S.

    2014-12-22

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are storedmore » in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.« less

  11. Trapped Ion Quantum Computation by Adiabatic Passage

    SciTech Connect

    Feng Xuni; Wu Chunfeng; Lai, C. H.; Oh, C. H.

    2008-11-07

    We propose a new universal quantum computation scheme for trapped ions in thermal motion via the technique of adiabatic passage, which incorporates the advantages of both the adiabatic passage and the model of trapped ions in thermal motion. Our scheme is immune from the decoherence due to spontaneous emission from excited states as the system in our scheme evolves along a dark state. In our scheme the vibrational degrees of freedom are not required to be cooled to their ground states because they are only virtually excited. It is shown that the fidelity of the resultant gate operation is still high even when the magnitude of the effective Rabi frequency moderately deviates from the desired value.

  12. Ramsey numbers and adiabatic quantum computing.

    PubMed

    Gaitan, Frank; Clark, Lane

    2012-01-01

    The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n) with m, n≥3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n). We show how the computation of R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5≤s≤7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.

  13. Adiabatic Heating of Contracting Turbulent Fluids

    NASA Astrophysics Data System (ADS)

    Robertson, Brant; Goldreich, Peter

    2012-05-01

    Turbulence influences the behavior of many astrophysical systems, frequently by providing non-thermal pressure support through random bulk motions. Although turbulence is commonly studied in systems with constant volume and mean density, turbulent astrophysical gases often expand or contract under the influence of pressure or gravity. Here, we examine the behavior of turbulence in contracting volumes using idealized models of compressed gases. Employing numerical simulations and an analytical model, we identify a simple mechanism by which the turbulent motions of contracting gases "adiabatically heat," experiencing an increase in their random bulk velocities until the largest eddies in the gas circulate over a Hubble time of the contraction. Adiabatic heating provides a mechanism for sustaining turbulence in gases where no large-scale driving exists. We describe this mechanism in detail and discuss some potential applications to turbulence in astrophysical settings.

  14. ADIABATIC HEATING OF CONTRACTING TURBULENT FLUIDS

    SciTech Connect

    Robertson, Brant; Goldreich, Peter

    2012-05-10

    Turbulence influences the behavior of many astrophysical systems, frequently by providing non-thermal pressure support through random bulk motions. Although turbulence is commonly studied in systems with constant volume and mean density, turbulent astrophysical gases often expand or contract under the influence of pressure or gravity. Here, we examine the behavior of turbulence in contracting volumes using idealized models of compressed gases. Employing numerical simulations and an analytical model, we identify a simple mechanism by which the turbulent motions of contracting gases 'adiabatically heat', experiencing an increase in their random bulk velocities until the largest eddies in the gas circulate over a Hubble time of the contraction. Adiabatic heating provides a mechanism for sustaining turbulence in gases where no large-scale driving exists. We describe this mechanism in detail and discuss some potential applications to turbulence in astrophysical settings.

  15. Shortcuts to adiabaticity from linear response theory

    SciTech Connect

    Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian

    2015-10-23

    A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times.

  16. Shortcuts to adiabaticity from linear response theory

    DOE PAGES

    Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian

    2015-10-23

    A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts tomore » adiabaticity for specific and very short driving times.« less

  17. Siphon flows in isolated magnetic flux tubes. II - Adiabatic flows

    NASA Technical Reports Server (NTRS)

    Montesinos, Benjamin; Thomas, John H.

    1989-01-01

    This paper extends the study of steady siphon flows in isolated magnetic flux tubes surrounded by field-free gas to the case of adiabatic flows. The basic equations governing steady adiabatic siphon flows in a thin, isolated magnetic flux tube are summarized, and qualitative features of adiabatic flows in elevated, arched flux tubes are discussed. The equations are then cast in nondimensional form and the results of numerical computations of adiabatic siphon flows in arched flux tubes are presented along with comparisons between isothermal and adiabatic flows. The effects of making the interior of the flux tube hotter or colder than the surrounding atmosphere at the upstream footpoint of the arch is considered. In this case, is it found that the adiabatic flows are qualitatively similar to the isothermal flows, with adiabatic cooling producing quantitative differences. Critical flows can produce a bulge point in the rising part of the arch and a concentration of magnetic flux above the bulge point.

  18. Siphon flows in isolated magnetic flux tubes. II. Adiabatic flows

    SciTech Connect

    Montesinos, B.; Thomas, J.H.

    1989-02-01

    This paper extends the study of steady siphon flows in isolated magnetic flux tubes surrounded by field-free gas to the case of adiabatic flows. The basic equations governing steady adiabatic siphon flows in a thin, isolated magnetic flux tube are summarized, and qualitative features of adiabatic flows in elevated, arched flux tubes are discussed. The equations are then cast in nondimensional form and the results of numerical computations of adiabatic siphon flows in arched flux tubes are presented along with comparisons between isothermal and adiabatic flows. The effects of making the interior of the flux tube hotter or colder than the surrounding atmosphere at the upstream footpoint of the arch is considered. In this case, is it found that the adiabatic flows are qualitatively similar to the isothermal flows, with adiabatic cooling producing quantitative differences. Critical flows can produce a bulge point in the rising part of the arch and a concentration of magnetic flux above the bulge point. 15 references.

  19. Computer Code For Turbocompounded Adiabatic Diesel Engine

    NASA Technical Reports Server (NTRS)

    Assanis, D. N.; Heywood, J. B.

    1988-01-01

    Computer simulation developed to study advantages of increased exhaust enthalpy in adiabatic turbocompounded diesel engine. Subsytems of conceptual engine include compressor, reciprocator, turbocharger turbine, compounded turbine, ducting, and heat exchangers. Focus of simulation of total system is to define transfers of mass and energy, including release and transfer of heat and transfer of work in each subsystem, and relationship among subsystems. Written in FORTRAN IV.

  20. Adiabatic charging of nickel-hydrogen batteries

    NASA Astrophysics Data System (ADS)

    Lurie, Chuck; Foroozan, S.; Brewer, Jeff; Jackson, Lorna

    1995-02-01

    Battery management during prelaunch activities has always required special attention and careful planning. The transition from nickel-cadium to nickel-hydrogen batteries, with their high self discharge rate and lower charge efficiency, as well as longer prelaunch scenarios, has made this aspect of spacecraft battery management even more challenging. The AXAF-I Program requires high battery state of charge at launch. The use of active cooling, to ensure efficient charging, was considered and proved to be difficult and expensive. Alternative approaches were evaluated. Optimized charging, in the absence of cooling, appeared promising and was investigated. Initial testing was conducted to demonstrate the feasibility of the 'Adiabatic Charging' approach. Feasibility was demonstrated and additional testing performed to provide a quantitative, parametric data base. The assumption that the battery is in an adiabatic environment during prelaunch charging is a conservative approximation because the battery will transfer some heat to its surroundings by convective air cooling. The amount is small compared to the heat dissipated during battery overcharge. Because the battery has a large thermal mass, substantial overcharge can occur before the cells get too hot to charge efficiently. The testing presented here simulates a true adiabatic environment. Accordingly the data base may be slightly conservative. The adiabatic charge methodology used in this investigation begins with stabilizing the cell at a given starting temperature. The cell is then fully insulated on all sides. Battery temperature is carefully monitored and the charge terminated when the cell temperature reaches 85 F. Charging has been evaluated with starting temperatures from 55 to 75 F.

  1. Advanced Adiabatic Demagnetization Refrigerators for Continuous Cooling

    NASA Technical Reports Server (NTRS)

    Chu, Paul C. W.

    2004-01-01

    The research at Houston was focused on optimizing the design of superconducting magnets for advanced adiabatic demagnetization refrigerators (ADRs), assessing the feasibility of using high temperature superconducting (HTS) magnets in ADRs in the future, and developing techniques to deposit HTS thin and thick films on high strength, low thermal conductivity substrates for HTS magnet leads. Several approaches have been tested for the suggested superconducting magnets.

  2. Random matrix model of adiabatic quantum computing

    SciTech Connect

    Mitchell, David R.; Adami, Christoph; Lue, Waynn; Williams, Colin P.

    2005-05-15

    We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SAT (an NP-complete problem) in terms of random matrix theory (RMT). We determine the global regularity of the spectral fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest. At each interpolation point, we quantify the degree of regularity of the average spectral distribution via its Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor spacings. We find that for hard problem instances - i.e., those having a critical ratio of clauses to variables - the spectral fluctuations typically become irregular across a contiguous region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region, RMT may be applied to obtain a mathematical model of the probability of avoided level crossings and concomitant failure rate of the adiabatic algorithm due to nonadiabatic Landau-Zener-type transitions. Our model predicts that if the interpolation is performed at a uniform rate, the average failure rate of the quantum adiabatic algorithm, when averaged over hard problem instances, scales exponentially with increasing problem size.

  3. Non-adiabatic dark fluid cosmology

    SciTech Connect

    Hipólito-Ricaldi, W.S.; Velten, H.E.S.; Zimdahl, W. E-mail: velten@cce.ufes.br

    2009-06-01

    We model the dark sector of the cosmic substratum by a viscous fluid with an equation of state p = −ζΘ, where Θ is the fluid-expansion scalar and ζ is the coefficient of bulk viscosity for which we assume a dependence ζ∝ρ{sup ν} on the energy density ρ. The homogeneous and isotropic background dynamics coincides with that of a generalized Chaplygin gas with equation of state p = −A/ρ{sup α}. The perturbation dynamics of the viscous model, however, is intrinsically non-adiabatic and qualitatively different from the Chaplygin-gas case. In particular, it avoids short-scale instabilities and/or oscillations which apparently have ruled out unified models of the Chaplygin-gas type. We calculate the matter power spectrum and demonstrate that the non-adiabatic model is compatible with the data from the 2dFGRS and the SDSS surveys. A χ{sup 2}-analysis shows, that for certain parameter combinations the viscous-dark-fluid (VDF) model is well competitive with the ΛCDM model. These results indicate that non-adiabatic unified models can be seen as potential contenders for a General-Relativity-based description of the cosmic substratum.

  4. Analytical Nonlinear Adiabatic Theory of the Autophase Microwave Tube

    NASA Astrophysics Data System (ADS)

    Belyavskiy, Eugene; Khotiaintsev, Sergei

    We present an analytical nonlinear adiabatic theory of the microwave electron device that we call the Autophase Microwave Tube (AMT). In contrast to the well-known Traveling Wave Tube (TWT), the AMT exploits a highly efficient non-synchronous beam-wave interaction for the amplification (or generation) of the HF electromagnetic waves, and, differently from klystron and such hybrid devices as twystron, it employs a continuous beam-wave interaction. Because of these distinctive features, the AMT presents a special class of microwave electron devices, which feature very high electronic efficiency (which tends to 100%) and large bandwidth. Here, we develop the theory that allows one to find the profiles of static longitudinal electric or magnetic field (or both) over the device length, which yield negligible de-bunching together with highly efficient amplification (generation) of the HF electromagnetic wave. The analysis of electron motion in the bunch is performed by means of Lyapunov stability theory. The numerical example illustrates the possibility of achieving the electronic efficiency of AMT as high as 92%. We compare different autophase regimes in the AMT and show that the profiling of the longitudinal static magnetic focusing field in the helix AMT with the non-azimuthally symmetric wave has many advantages with respect to other regimes.

  5. Antibody-based affinity cryo-EM grid.

    PubMed

    Yu, Guimei; Li, Kunpeng; Jiang, Wen

    2016-05-01

    The Affinity Grid technique combines sample purification and cryo-Electron Microscopy (cryo-EM) grid preparation into a single step. Several types of affinity surfaces, including functionalized lipids monolayers, streptavidin 2D crystals, and covalently functionalized carbon surfaces have been reported. More recently, we presented a new affinity cryo-EM approach, cryo-SPIEM, which applies the traditional Solid Phase Immune Electron Microscopy (SPIEM) technique to cryo-EM. This approach significantly simplifies the preparation of affinity grids and directly works with native macromolecular complexes without need of target modifications. With wide availability of high affinity and high specificity antibodies, the antibody-based affinity grid would enable cryo-EM studies of the native samples directly from cell cultures, targets of low abundance, and unstable or short-lived intermediate states.

  6. Timescales for adiabatic photodissociation dynamics from the {tilde A} state of ammonia

    NASA Astrophysics Data System (ADS)

    Chatterley, Adam S.; Roberts, Gareth M.; Stavros, Vasilios G.

    2013-07-01

    Photodissociation dynamics after excitation of the {tilde A} state ν'2 = 4 (umbrella) level of ammonia are investigated using ultrafast time-resolved velocity map ion imaging (TR-VMI). These studies extend upon previous TR-VMI measurements [K. L. Wells, G. Perriam, and V. G. Stavros, J. Chem. Phys. 130, 074308 (2009)], 10.1063/1.3072763, which reported the appearance timescales for ground state NH_2 {(tilde X)} + H photoproducts, born from non-adiabatic passage through an {tilde X/tilde A} state conical intersection (CI) at elongated H-NH2 bond distances. In particular, the present work sheds new light on the formation timescales for electronically excited NH_2 {(tilde A)} + H species, generated from NH3 parent molecules that avoid the CI and dissociate adiabatically. The results reveal a step-wise dynamical picture for the production of NH_2 {(tilde A)} + H products, where nascent dissociative flux can become temporarily trapped/impeded around the upper cone of the CI on the {tilde A} state potential energy surface (PES), while on course towards the adiabatic dissociation asymptote - this behavior contrasts the concerted mechanism previously observed for non-adiabatic dissociation into H-atoms associated with ro-vibrationally "cold" NH_2 {(tilde X)}. Initially, non-planar NH3 molecules (species which have the capacity to yield adiabatic photoproducts) are found to evolve out of the vertical Franck-Condon excitation region and towards the CI region of the {tilde A} state PES with a time-constant of 113 ± 46 fs. Subsequently, transient population encircling the CI then progresses to finally form NH_2 {(tilde A)} + H photoproducts from the CI region of the tildeA state PES with a slower time-constant of 415 ± 25 fs. Non-adiabatic dissociation into ro-vibrationally "hot" NH_2 {(tilde X)} radicals together with H-atoms is also evidenced to occur via a qualitatively similar process.

  7. Timescales for adiabatic photodissociation dynamics from the à state of ammonia.

    PubMed

    Chatterley, Adam S; Roberts, Gareth M; Stavros, Vasilios G

    2013-07-21

    Photodissociation dynamics after excitation of the à state ν'2 = 4 (umbrella) level of ammonia are investigated using ultrafast time-resolved velocity map ion imaging (TR-VMI). These studies extend upon previous TR-VMI measurements [K. L. Wells, G. Perriam, and V. G. Stavros, J. Chem. Phys. 130, 074308 (2009)], which reported the appearance timescales for ground state NH2(X̃)+H photoproducts, born from non-adiabatic passage through an X̃/à state conical intersection (CI) at elongated H-NH2 bond distances. In particular, the present work sheds new light on the formation timescales for electronically excited NH2(Ã)+H species, generated from NH3 parent molecules that avoid the CI and dissociate adiabatically. The results reveal a step-wise dynamical picture for the production of NH2(Ã)+H products, where nascent dissociative flux can become temporarily trapped∕impeded around the upper cone of the CI on the à state potential energy surface (PES), while on course towards the adiabatic dissociation asymptote - this behavior contrasts the concerted mechanism previously observed for non-adiabatic dissociation into H-atoms associated with ro-vibrationally "cold" NH2(X̃). Initially, non-planar NH3 molecules (species which have the capacity to yield adiabatic photoproducts) are found to evolve out of the vertical Franck-Condon excitation region and towards the CI region of the à state PES with a time-constant of 113 ± 46 fs. Subsequently, transient population encircling the CI then progresses to finally form NH2(Ã)+H photoproducts from the CI region of the à state PES with a slower time-constant of 415 ± 25 fs. Non-adiabatic dissociation into ro-vibrationally "hot" NH2(X̃) radicals together with H-atoms is also evidenced to occur via a qualitatively similar process. PMID:23883038

  8. Non-adiabatic effects in near-adiabatic mixed-field orientation and alignment

    NASA Astrophysics Data System (ADS)

    Maan, Anjali; Ahlawat, Dharamvir Singh; Prasad, Vinod

    2016-11-01

    We present a theoretical study of the impact of a pair of moderate electric fields tilted an angle with respect to one another on a molecule. As a prototype, we consider a molecule with large rotational constant (with corresponding small rotational period) and moderate dipole moment. Within rigid-rotor approximation, the time-dependent Schrodinger equation is solved using fourth-order Runge-Kutta method. We have analysed that lower rotational states are significantly influenced by variation in pulse durations, the tilt angle between the fields and also on the electric field strengths. We also suggest a control scheme of how the rotational dynamics, orientation and alignment of a molecule can be enhanced by a combination of near-adiabatic pulses in comparision to non-adiabatic or adiabatic pulses.

  9. F+ and F⁻ affinities of simple N(x)F(y) and O(x)F(y) compounds.

    PubMed

    Grant, Daniel J; Wang, Tsang-Hsiu; Vasiliu, Monica; Dixon, David A; Christe, Karl O

    2011-03-01

    Atomization energies at 0 K and heats of formation at 0 and 298 K are predicted for the neutral and ionic N(x)F(y) and O(x)F(y) systems using coupled cluster theory with single and double excitations and including a perturbative triples correction (CCSD(T)) method with correlation consistent basis sets extrapolated to the complete basis set (CBS) limit. To achieve near chemical accuracy (±1 kcal/mol), three corrections to the electronic energy were added to the frozen core CCSD(T)/CBS binding energies: corrections for core-valence, scalar relativistic, and first order atomic spin-orbit effects. Vibrational zero point energies were computed at the CCSD(T) level of theory where possible. The calculated heats of formation are in good agreement with the available experimental values, except for FOOF because of the neglect of higher order correlation corrections. The F(+) affinity in the N(x)F(y) series increases from N(2) to N(2)F(4) by 63 kcal/mol, while that in the O(2)F(y) series decreases by 18 kcal/mol from O(2) to O(2)F(2). Neither N(2) nor N(2)F(4) is predicted to bind F(-), and N(2)F(2) is a very weak Lewis acid with an F(-) affinity of about 10 kcal/mol for either the cis or trans isomer. The low F(-) affinities of the nitrogen fluorides explain why, in spite of the fact that many stable nitrogen fluoride cations are known, no nitrogen fluoride anions have been isolated so far. For example, the F(-) affinity of NF is predicted to be only 12.5 kcal/mol which explains the numerous experimental failures to prepare NF(2)(-) salts from the well-known strong acid HNF(2). The F(-) affinity of O(2) is predicted to have a small positive value and increases for O(2)F(2) by 23 kcal/mol, indicating that the O(2)F(3)(-) anion might be marginally stable at subambient temperatures. The calculated adiabatic ionization potentials and electron affinities are in good agreement with experiment considering that many of the experimental values are for vertical processes.

  10. The N-terminal shuttle domain of Erv1 determines the affinity for Mia40 and mediates electron transfer to the catalytic Erv1 core in yeast mitochondria.

    PubMed

    Lionaki, Eirini; Aivaliotis, Michalis; Pozidis, Charalambos; Tokatlidis, Kostas

    2010-11-01

    Erv1 and Mia40 constitute the two important components of the disulfide relay system that mediates oxidative protein folding in the mitochondrial intermembrane space. Mia40 is the import receptor that recognizes the substrates introducing disulfide bonds while it is reduced. A key function of Erv1 is to recycle Mia40 to its active oxidative state. Our aims here were to dissect the domain of Erv1 that mediates the protein-protein interaction with Mia40 and to investigate the interactions between the shuttle domain of Erv1 and its catalytic core and their relevance for the interaction with Mia40. We purified these domains separately as well as cysteine mutants in the shuttle and the active core domains. The noncovalent interaction of Mia40 with Erv1 was measured by isothermal titration calorimetry, whereas their covalent mixed disulfide intermediate was analyzed in reconstitution experiments in vitro and in organello. We established that the N-terminal shuttle domain of Erv1 is necessary and sufficient for interaction to occur. Furthermore, we provide direct evidence for the intramolecular electron transfer from the shuttle cysteine pair of Erv1 to the core domain. Finally, we reconstituted the system by adding in trans the N- and C- terminal domains of Erv1 together with its substrate Mia40.

  11. Shortcut to adiabaticity in spinor condensates

    NASA Astrophysics Data System (ADS)

    Sala, Arnau; Núñez, David López; Martorell, Joan; De Sarlo, Luigi; Zibold, Tilman; Gerbier, Fabrice; Polls, Artur; Juliá-Díaz, Bruno

    2016-10-01

    We devise a method to shortcut the adiabatic evolution of a spin-1 Bose gas with an external magnetic field as the control parameter. An initial many-body state with almost all bosons populating the Zeeman sublevel m =0 is evolved to a final state very close to a macroscopic spin-singlet condensate, a fragmented state with three macroscopically occupied Zeeman states. The shortcut protocol, obtained by an approximate mapping to a harmonic oscillator Hamiltonian, is compared to linear and exponential variations of the control parameter. We find a dramatic speedup of the dynamics when using the shortcut protocol.

  12. On adiabatic perturbations in the ekpyrotic scenario

    SciTech Connect

    Linde, A.; Mukhanov, V.; Vikman, A. E-mail: Viatcheslav.Mukhanov@physik.uni-muenchen.de

    2010-02-01

    In a recent paper, Khoury and Steinhardt proposed a way to generate adiabatic cosmological perturbations with a nearly flat spectrum in a contracting Universe. To produce these perturbations they used a regime in which the equation of state exponentially rapidly changed during a short time interval. Leaving aside the singularity problem and the difficult question about the possibility to transmit these perturbations from a contracting Universe to the expanding phase, we will show that the methods used in Khoury are inapplicable for the description of the cosmological evolution and of the process of generation of perturbations in this scenario.

  13. Generalized Ramsey numbers through adiabatic quantum optimization

    NASA Astrophysics Data System (ADS)

    Ranjbar, Mani; Macready, William G.; Clark, Lane; Gaitan, Frank

    2016-09-01

    Ramsey theory is an active research area in combinatorics whose central theme is the emergence of order in large disordered structures, with Ramsey numbers marking the threshold at which this order first appears. For generalized Ramsey numbers r( G, H), the emergent order is characterized by graphs G and H. In this paper we: (i) present a quantum algorithm for computing generalized Ramsey numbers by reformulating the computation as a combinatorial optimization problem which is solved using adiabatic quantum optimization; and (ii) determine the Ramsey numbers r({{T}}m,{{T}}n) for trees of order m,n = 6,7,8, most of which were previously unknown.

  14. Cavity-state preparation using adiabatic transfer

    NASA Astrophysics Data System (ADS)

    Larson, Jonas; Andersson, Erika

    2005-05-01

    We show how to prepare a variety of cavity field states for multiple cavities. The state preparation technique used is related to the method of stimulated adiabatic Raman passage. The cavity modes are coupled by atoms, making it possible to transfer an arbitrary cavity field state from one cavity to another and also to prepare nontrivial cavity field states. In particular, we show how to prepare entangled states of two or more cavities, such as an Einstein-Podolsky-Rosen state and a W state, as well as various entangled superpositions of coherent states in different cavities, including Schrödinger cat states. The theoretical considerations are supported by numerical simulations.

  15. Phase avalanches in near-adiabatic evolutions

    SciTech Connect

    Vertesi, T.; Englman, R.

    2006-02-15

    In the course of slow, nearly adiabatic motion of a system, relative changes in the slowness can cause abrupt and high magnitude phase changes, ''phase avalanches,'' superimposed on the ordinary geometric phases. The generality of this effect is examined for arbitrary Hamiltonians and multicomponent (>2) wave packets and is found to be connected (through the Blaschke term in the theory of analytic signals) to amplitude zeros in the lower half of the complex time plane. Motion on a nonmaximal circle on the Poincare-sphere suppresses the effect. A spectroscopic transition experiment can independently verify the phase-avalanche magnitudes.

  16. Local entanglement generation in the adiabatic regime

    SciTech Connect

    Cliche, M.; Veitia, Andrzej

    2010-09-15

    We study entanglement generation in a pair of qubits interacting with an initially correlated system. Using time-independent perturbation theory and the adiabatic theorem, we show conditions under which the qubits become entangled as the joint system evolves into the ground state of the interacting theory. We then apply these results to the case of qubits interacting with a scalar quantum field. We study three different variations of this setup; a quantum field subject to Dirichlet boundary conditions, a quantum field interacting with a classical potential, and a quantum field that starts in a thermal state.

  17. An adiabatic demagnetization refrigerator for infrared bolometers

    NASA Technical Reports Server (NTRS)

    Britt, R. D.; Richards, P. L.

    1981-01-01

    Adiabatic demagnetization refrigerators have been built and installed in small portable liquid helium cryostats to test the feasibility of this method of cooling infrared bolometric detectors to temperatures below 0.3 K. Performance has been achieved which suggests that bolometer temperatures of 0.2 K can be maintained for periods of approximately 60 hours. Applications to sensitive infrared detection from ground-based telescopes and space satellites are discussed. Design data are given which permit the evaluation of refrigerator performance for a variety of design parameters.

  18. Multiqubit gates protected by adiabaticity and dynamical decoupling applicable to donor qubits in silicon

    SciTech Connect

    Witzel, Wayne M.; Montaño, Inès; Muller, Richard P.; Carroll, Malcolm S.

    2015-08-19

    In this study, we present a strategy for producing multiqubit gates that promise high fidelity with minimal tuning requirements. Our strategy combines gap protection from the adiabatic theorem with dynamical decoupling in a complementary manner. Energy-level transition errors are protected by adiabaticity and remaining phase errors are mitigated via dynamical decoupling. This is a powerful way to divide and conquer the various error channels. In order to accomplish this without violating a no-go theorem regarding black-box dynamically corrected gates [Phys. Rev. A 80, 032314 (2009)], we require a robust operating point (sweet spot) in control space where the qubits interact with little sensitivity to noise. There are also energy gap requirements for effective adiabaticity. We apply our strategy to an architecture in Si with P donors where we assume we can shuttle electrons between different donors. Electron spins act as mobile ancillary qubits and P nuclear spins act as long-lived data qubits. This system can have a very robust operating point where the electron spin is bound to a donor in the quadratic Stark shift regime. High fidelity single qubit gates may be performed using well-established global magnetic resonance pulse sequences. Single electron-spin preparation and measurement has also been demonstrated. Putting this all together, we present a robust universal gate set for quantum computation.

  19. Multi-qubit gates protected by adiabaticity and dynamical decoupling applicable to donor qubits in silicon

    DOE PAGES

    Witzel, Wayne; Montano, Ines; Muller, Richard P.; Carroll, Malcolm S.

    2015-08-19

    In this paper, we present a strategy for producing multiqubit gates that promise high fidelity with minimal tuning requirements. Our strategy combines gap protection from the adiabatic theorem with dynamical decoupling in a complementary manner. Energy-level transition errors are protected by adiabaticity and remaining phase errors are mitigated via dynamical decoupling. This is a powerful way to divide and conquer the various error channels. In order to accomplish this without violating a no-go theorem regarding black-box dynamically corrected gates [Phys. Rev. A 80, 032314 (2009)], we require a robust operating point (sweet spot) in control space where the qubits interactmore » with little sensitivity to noise. There are also energy gap requirements for effective adiabaticity. We apply our strategy to an architecture in Si with P donors where we assume we can shuttle electrons between different donors. Electron spins act as mobile ancillary qubits and P nuclear spins act as long-lived data qubits. Furthermore, this system can have a very robust operating point where the electron spin is bound to a donor in the quadratic Stark shift regime. High fidelity single qubit gates may be performed using well-established global magnetic resonance pulse sequences. Single electron-spin preparation and measurement has also been demonstrated. Thus, putting this all together, we present a robust universal gate set for quantum computation.« less

  20. Multi-qubit gates protected by adiabaticity and dynamical decoupling applicable to donor qubits in silicon

    SciTech Connect

    Witzel, Wayne; Montano, Ines; Muller, Richard P.; Carroll, Malcolm S.

    2015-08-19

    In this paper, we present a strategy for producing multiqubit gates that promise high fidelity with minimal tuning requirements. Our strategy combines gap protection from the adiabatic theorem with dynamical decoupling in a complementary manner. Energy-level transition errors are protected by adiabaticity and remaining phase errors are mitigated via dynamical decoupling. This is a powerful way to divide and conquer the various error channels. In order to accomplish this without violating a no-go theorem regarding black-box dynamically corrected gates [Phys. Rev. A 80, 032314 (2009)], we require a robust operating point (sweet spot) in control space where the qubits interact with little sensitivity to noise. There are also energy gap requirements for effective adiabaticity. We apply our strategy to an architecture in Si with P donors where we assume we can shuttle electrons between different donors. Electron spins act as mobile ancillary qubits and P nuclear spins act as long-lived data qubits. Furthermore, this system can have a very robust operating point where the electron spin is bound to a donor in the quadratic Stark shift regime. High fidelity single qubit gates may be performed using well-established global magnetic resonance pulse sequences. Single electron-spin preparation and measurement has also been demonstrated. Thus, putting this all together, we present a robust universal gate set for quantum computation.

  1. Multiqubit gates protected by adiabaticity and dynamical decoupling applicable to donor qubits in silicon

    DOE PAGES

    Witzel, Wayne M.; Montaño, Inès; Muller, Richard P.; Carroll, Malcolm S.

    2015-08-19

    In this study, we present a strategy for producing multiqubit gates that promise high fidelity with minimal tuning requirements. Our strategy combines gap protection from the adiabatic theorem with dynamical decoupling in a complementary manner. Energy-level transition errors are protected by adiabaticity and remaining phase errors are mitigated via dynamical decoupling. This is a powerful way to divide and conquer the various error channels. In order to accomplish this without violating a no-go theorem regarding black-box dynamically corrected gates [Phys. Rev. A 80, 032314 (2009)], we require a robust operating point (sweet spot) in control space where the qubits interactmore » with little sensitivity to noise. There are also energy gap requirements for effective adiabaticity. We apply our strategy to an architecture in Si with P donors where we assume we can shuttle electrons between different donors. Electron spins act as mobile ancillary qubits and P nuclear spins act as long-lived data qubits. This system can have a very robust operating point where the electron spin is bound to a donor in the quadratic Stark shift regime. High fidelity single qubit gates may be performed using well-established global magnetic resonance pulse sequences. Single electron-spin preparation and measurement has also been demonstrated. Putting this all together, we present a robust universal gate set for quantum computation.« less

  2. Multiqubit gates protected by adiabaticity and dynamical decoupling applicable to donor qubits in silicon

    NASA Astrophysics Data System (ADS)

    Witzel, Wayne M.; Montaño, Inès; Muller, Richard P.; Carroll, Malcolm S.

    2015-08-01

    We present a strategy for producing multiqubit gates that promise high fidelity with minimal tuning requirements. Our strategy combines gap protection from the adiabatic theorem with dynamical decoupling in a complementary manner. Energy-level transition errors are protected by adiabaticity and remaining phase errors are mitigated via dynamical decoupling. This is a powerful way to divide and conquer the various error channels. In order to accomplish this without violating a no-go theorem regarding black-box dynamically corrected gates [Phys. Rev. A 80, 032314 (2009), 10.1103/PhysRevA.80.032314], we require a robust operating point (sweet spot) in control space where the qubits interact with little sensitivity to noise. There are also energy gap requirements for effective adiabaticity. We apply our strategy to an architecture in Si with P donors where we assume we can shuttle electrons between different donors. Electron spins act as mobile ancillary qubits and P nuclear spins act as long-lived data qubits. This system can have a very robust operating point where the electron spin is bound to a donor in the quadratic Stark shift regime. High fidelity single qubit gates may be performed using well-established global magnetic resonance pulse sequences. Single electron-spin preparation and measurement has also been demonstrated. Putting this all together, we present a robust universal gate set for quantum computation.

  3. Affinity driven social networks

    NASA Astrophysics Data System (ADS)

    Ruyú, B.; Kuperman, M. N.

    2007-04-01

    In this work we present a model for evolving networks, where the driven force is related to the social affinity between individuals of a population. In the model, a set of individuals initially arranged on a regular ordered network and thus linked with their closest neighbors are allowed to rearrange their connections according to a dynamics closely related to that of the stable marriage problem. We show that the behavior of some topological properties of the resulting networks follows a non trivial pattern.

  4. Non-adiabatic dynamics close to conical intersections and the surface hopping perspective

    PubMed Central

    Malhado, João Pedro; Bearpark, Michael J.; Hynes, James T.

    2014-01-01

    Conical intersections play a major role in the current understanding of electronic de-excitation in polyatomic molecules, and thus in the description of photochemistry and photophysics of molecular systems. This article reviews aspects of the basic theory underlying the description of non-adiabatic transitions at conical intersections, with particular emphasis on the important case when the dynamics of the nuclei are treated classically. Within this classical nuclear motion framework, the main aspects of the surface hopping methodology in the conical intersection context are presented. The emerging picture from this treatment is that of electronic transitions around conical intersections dominated by the interplay of the nuclear velocity and the derivative non-adiabatic coupling vector field. PMID:25485263

  5. Semiclassical Monte-Carlo approach for modelling non-adiabatic dynamics in extended molecules

    PubMed Central

    Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry

    2013-01-01

    Modelling of non-adiabatic dynamics in extended molecular systems and solids is a next frontier of atomistic electronic structure theory. The underlying numerical algorithms should operate only with a few quantities (that can be efficiently obtained from quantum chemistry), provide a controlled approximation (which can be systematically improved) and capture important phenomena such as branching (multiple products), detailed balance and evolution of electronic coherences. Here we propose a new algorithm based on Monte-Carlo sampling of classical trajectories, which satisfies the above requirements and provides a general framework for existing surface hopping methods for non-adiabatic dynamics simulations. In particular, our algorithm can be viewed as a post-processing technique for analysing numerical results obtained from the conventional surface hopping approaches. Presented numerical tests for several model problems demonstrate efficiency and accuracy of the new method. PMID:23864100

  6. Semiclassical Monte-Carlo approach for modelling non-adiabatic dynamics in extended molecules.

    PubMed

    Gorshkov, Vyacheslav N; Tretiak, Sergei; Mozyrsky, Dmitry

    2013-01-01

    Modelling of non-adiabatic dynamics in extended molecular systems and solids is a next frontier of atomistic electronic structure theory. The underlying numerical algorithms should operate only with a few quantities (that can be efficiently obtained from quantum chemistry), provide a controlled approximation (which can be systematically improved) and capture important phenomena such as branching (multiple products), detailed balance and evolution of electronic coherences. Here we propose a new algorithm based on Monte-Carlo sampling of classical trajectories, which satisfies the above requirements and provides a general framework for existing surface hopping methods for non-adiabatic dynamics simulations. In particular, our algorithm can be viewed as a post-processing technique for analysing numerical results obtained from the conventional surface hopping approaches. Presented numerical tests for several model problems demonstrate efficiency and accuracy of the new method. PMID:23864100

  7. Adiabatic nanofocusing: spectroscopy, transport and imaging investigation of the nano world

    NASA Astrophysics Data System (ADS)

    Giugni, A.; Allione, M.; Torre, B.; Das, G.; Francardi, M.; Moretti, M.; Malerba, M.; Perozziello, G.; Candeloro, P.; Di Fabrizio, E.

    2014-11-01

    Adiabatic compression plays a fundamental role in the realization of localized enhanced electromagnetic field hot spots, it provides the possibility to focus at nanoscale optical excitation. It differs from the well-known lightning rod effect since it is based on the lossless propagation of surface plasmon polaritons (SPPs) up to a nano-sized metal tip where the energy density is largely enhanced. Here we discuss two important applications of adiabatic compression: Raman and hot electron spectroscopy at nanometric resolution. The underlying phenomena are the conversion of SPPs into photons or hot electrons. New scanning probe spectroscopy techniques along with experimental results are discussed. We foresee that these techniques will play a key role in relating the functional and structural properties of matter at the nanoscale.

  8. Heavy-Ion-Acoustic Solitary and Shock Waves in an Adiabatic Multi-Ion Plasma

    NASA Astrophysics Data System (ADS)

    Hossen, M. A.; Rahman, M. M.; Hossen, M. R.; Mamun, A. A.

    2015-08-01

    The standard reductive perturbation method has been employed to derive the Korteweg-deVries (K-dV) and Burgers (BG) equations to investigate the basic properties of heavy-ion-acoustic (HIA) waves in a plasma system which is supposed to be composed of nonthermal electrons, Boltzmann distributed light ions, and adiabatic positively charged inertial heavy ions. The HIA solitary and shock structures are found to exist with either positive or negative potential. It is found that the effects of adiabaticity of inertial heavy ions, nonthermality of electrons, and number densities of plasma components significantly modify the basic properties of the HIA solitary and shock waves. The implications of our results may be helpful in understanding the electrostatic perturbations in various laboratory and astrophysical plasma environments.

  9. Adiabatic quantum pump in a zigzag graphene nanoribbon junction

    NASA Astrophysics Data System (ADS)

    Zhang, Lin

    2015-11-01

    The adiabatic electron transport is theoretically studied in a zigzag graphene nanoribbon (ZGNR) junction with two time-dependent pumping electric fields. By modeling a ZGNR p-n junction and applying the Keldysh Green’s function method, we find that a pumped charge current is flowing in the device at a zero external bias, which mainly comes from the photon-assisted tunneling process and the valley selection rule in an even-chain ZGNR junction. The pumped charge current and its ON and OFF states can be efficiently modulated by changing the system parameters such as the pumping frequency, the pumping phase difference, and the Fermi level. A ferromagnetic ZGNR device is also studied to generate a pure spin current and a fully polarized spin current due to the combined spin pump effect and the valley valve effect. Our finding might pave the way to manipulate the degree of freedom of electrons in a graphene-based electronic device. Project supported by the National Natural Science Foundation of China (Grant No. 110704033), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010416), and the Natural Science Foundation for Colleges and Universities in Jiangsu Province, China (Grant No. 13KJB140005).

  10. Quantum Adiabatic Algorithms and Large Spin Tunnelling

    NASA Technical Reports Server (NTRS)

    Boulatov, A.; Smelyanskiy, V. N.

    2003-01-01

    We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in this paper. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H (r) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H (r) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.

  11. Effect of the Heat Pipe Adiabatic Region.

    PubMed

    Brahim, Taoufik; Jemni, Abdelmajid

    2014-04-01

    The main motivation of conducting this work is to present a rigorous analysis and investigation of the potential effect of the heat pipe adiabatic region on the flow and heat transfer performance of a heat pipe under varying evaporator and condenser conditions. A two-dimensional steady-state model for a cylindrical heat pipe coupling, for both regions, is presented, where the flow of the fluid in the porous structure is described by Darcy-Brinkman-Forchheimer model which accounts for the boundary and inertial effects. The model is solved numerically by using the finite volumes method, and a fortran code was developed to solve the system of equations obtained. The results show that a phase change can occur in the adiabatic region due to temperature gradient created in the porous structure as the heat input increases and the heat pipe boundary conditions change. A recirculation zone may be created at the condenser end section. The effect of the heat transfer rate on the vapor radial velocities and the performance of the heat pipe are discussed. PMID:24895467

  12. Spectrophotometric studies on the thermodynamic properties of charge-transfer complexes between m-DNB (1,3-dinitrobenzene) with aliphatic amines in DMSO and determination of the vertical electron affinity of m-DNB

    NASA Astrophysics Data System (ADS)

    Sharma, K.; Lahiri, S. C.

    2011-09-01

    1,3-Dinitrobenzene formed colored 1:1 complexes with aliphatic amines (chromogenic agents) like isopropylamine,ethylenediamine, tetraethylenepentamine and bis(3-aminopropyl)amine in DMSO having absorption maxima at 563 nm, 584 nm, 580.5 nm and 555 nm respectively. The complexes were stable for more than 24 h. The accurate association constants KAD and other thermodynamic parameters were determined with D and A usually in stoichiometric ratios. But in case of m-DNB and bis(3-aminopropyl)amine, the association constants KAD and the thermodynamic parameters were also determined using Benesi-Hildebrand equation to show the variations of KAD under different conditions. Δ G° values were found to be negative in all cases resulting from exothermic enthalpy changes and favourable entropy changes. The energies of transition for the CT complexes hνCT found experimentally were considerably different from the energies of transition (from HOMO of donor to LUMO of acceptor) calculated using AM1 but the differences were considerably reduced using DFT calculations. The vertical electron affinity of m-DNB was calculated using the method suggested by Mulliken. However, no FTIR measurements of the complexes could be made due to experimental limitations.

  13. VUV generation by adiabatically expanded and excited by a DC electrical discharge Argon gas

    SciTech Connect

    Pipergias, K.; Yasemidis, D.; Reppa, E.; Pentaris, D.; Efthimiopoulos, T.; Merlemis, N.; Giannetas, V.

    2010-11-10

    We investigate the emission of Argon (Ar) gas which is adiabatically expanded through a nozzle and excited using a DC electrical discharge. Because of the expansion and the electronic excitation, Ar dimers and clusters are formed, which give radiation in the second (2nd) and in the third (3rd) continua of Ar, centered at about 126 and 254 nm respectively. We particularly focus our study on the 2nd continuum, in order to develop a laser at this wavelength.

  14. Adiabat Shaping of ICF Capsules Using Ramped Pressure Profiles

    NASA Astrophysics Data System (ADS)

    Anderson, K.; Betti, R.; Collins, T. J. B.; Marinak, M. M.; Haan, S. W.

    2002-11-01

    Target design of direct-drive ICF capsules has historically involved a compromise between high 1-D (clean) yield and capsule stability. Low-adiabat fuel is desirable to achieve high compression and, hence, high yield. A higher adiabat at the ablation front reduces the growth rate of the Raleigh--Taylor instability due to higher ablation velocity. An optimal target design will take advantage of both by shaping the adiabat of the capsule to allow for high adiabat in the material that is to be ablated and low adiabat in the remaining fuel. We present here a method of adiabat shaping using a low-intensity prepulse followed by laser shutoff before beginning the main drive pulse. This creates a decaying shock with a ramped pressure profile behind it. Since the prepulse is low intensity, the adiabat is not strongly affected by the prepulse. The main shock is then launched up this ramped pressure profile to set the adiabat. Because the main shock sees an increasing pressure profile, the effective strength of the shock decreases as it propagates through the shell, thus creating a smooth adiabat profile from high outer-shell adiabat to low inner-shell adiabat. Results of simulations using 1-D LILAC and 2-D DRACO (LLE), as well as 1-D and 2-D HYDRA (LLNL), are presented. This work was supported by the U.S. DOE Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460 and by the University of California LLNL under contract No. W-7405-Eng-48.

  15. Coverage dependent non-adiabaticity of CO on a copper surface

    SciTech Connect

    Omiya, Takuma; Arnolds, Heike

    2014-12-07

    We have studied the coverage-dependent energy transfer dynamics between hot electrons and CO on Cu(110) with femtosecond visible pump, sum frequency probe spectroscopy. We find that transients of the C–O stretch frequency display a red shift, which increases from 3 cm{sup −1} at 0.1 ML to 9 cm{sup −1} at 0.77 ML. Analysis of the transients reveals that the non-adiabatic coupling between the adsorbate vibrational motion and the electrons becomes stronger with increasing coverage. This trend requires the frustrated rotational mode to be the cause of the non-adiabatic behavior, even for relatively weak laser excitation of the adsorbate. We attribute the coverage dependence to both an increase in the adsorbate electronic density of states and an increasingly anharmonic potential energy surface caused by repulsive interactions between neighboring CO adsorbates. This work thus reveals adsorbate-adsorbate interactions as a new way to control adsorbate non-adiabaticity.

  16. The Adiabatic Invariance of the Action Variable in Classical Dynamics

    ERIC Educational Resources Information Center

    Wells, Clive G.; Siklos, Stephen T. C.

    2007-01-01

    We consider one-dimensional classical time-dependent Hamiltonian systems with quasi-periodic orbits. It is well known that such systems possess an adiabatic invariant which coincides with the action variable of the Hamiltonian formalism. We present a new proof of the adiabatic invariance of this quantity and illustrate our arguments by means of…

  17. Generation of atomic NOON states via shortcuts to adiabatic passage

    NASA Astrophysics Data System (ADS)

    Song, Chong; Su, Shi-Lei; Bai, Cheng-Hua; Ji, Xin; Zhang, Shou

    2016-10-01

    Based on Lewis-Riesenfeld invariants and quantum Zeno dynamics, we propose an effective scheme for generating atomic NOON states via shortcuts to adiabatic passage. The photon losses are efficiently suppressed by engineering shortcuts to adiabatic passage in the scheme. The numerical simulation shows that the atomic NOON states can be generated with high fidelity.

  18. Kinetic Theory Derivation of the Adiabatic Law for Ideal Gases.

    ERIC Educational Resources Information Center

    Sobel, Michael I.

    1980-01-01

    Discusses how the adiabatic law for ideal gases can be derived from the assumption of a Maxwell-Boltzmann (or any other) distribution of velocities--in contrast to the usual derivations from thermodynamics alone, and the higher-order effect that leads to one-body viscosity. An elementary derivation of the adiabatic law is given. (Author/DS)

  19. Adiabat-shaping in indirect drive inertial confinement fusion

    SciTech Connect

    Baker, K. L.; Robey, H. F.; Milovich, J. L.; Jones, O. S.; Smalyuk, V. A.; Casey, D. T.; MacPhee, A. G.; Pak, A.; Celliers, P. M.; Clark, D. S.; Landen, O. L.; Peterson, J. L.; Berzak-Hopkins, L. F.; Weber, C. R.; Haan, S. W.; Döppner, T. D.; Dixit, S.; Hamza, A. V.; Jancaitis, K. S.; Kroll, J. J.; and others

    2015-05-15

    Adiabat-shaping techniques were investigated in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform for both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. This approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures.

  20. Spin-label CW microwave power saturation and rapid passage with triangular non-adiabatic rapid sweep (NARS) and adiabatic rapid passage (ARP) EPR spectroscopy.

    PubMed

    Kittell, Aaron W; Hyde, James S

    2015-06-01

    Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell et al. (2011) as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions (Kittell et al., 2012), and enhance spectral resolution in copper (II) spectra (Hyde et al., 2013). In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10(-3) to 10(-7) s in a manner that is analogous to saturation transfer spectroscopy.

  1. Spin-label CW microwave power saturation and rapid passage with triangular non-adiabatic rapid sweep (NARS) and adiabatic rapid passage (ARP) EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kittell, Aaron W.; Hyde, James S.

    2015-06-01

    Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell et al. (2011) as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions (Kittell et al., 2012), and enhance spectral resolution in copper (II) spectra (Hyde et al., 2013). In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10-3 to 10-7 s in a manner that is analogous to saturation transfer spectroscopy.

  2. Spin-label CW microwave power saturation and rapid passage with triangular non-adiabatic rapid sweep (NARS) and adiabatic rapid passage (ARP) EPR spectroscopy.

    PubMed

    Kittell, Aaron W; Hyde, James S

    2015-06-01

    Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell et al. (2011) as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions (Kittell et al., 2012), and enhance spectral resolution in copper (II) spectra (Hyde et al., 2013). In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10(-3) to 10(-7) s in a manner that is analogous to saturation transfer spectroscopy. PMID:25917132

  3. An adiabatic demagnetization refrigerator for SIRTF

    NASA Technical Reports Server (NTRS)

    Timbie, P. T.; Bernstein, G. M.; Richards, P. L.

    1989-01-01

    An adiabatic demagnetization refrigerator (ADR) has been proposed to cool bolometric infrared detectors on the multiband imaging photometer of the Space Infrared Telescope Facility (SIRTF). One such refrigerator has been built which uses a ferric ammonium alum salt pill suspended by nylon threads in a 3-T solenoid. The resonant modes of this suspension are above 100 Hz. The heat leak to the salt pill is less than 0.5 microW. The system has a hold time at 0.1K of more than 12 h. The cold stage temperature is regulated with a feedback loop that controls the magnetic field. A second, similar refrigerator is being built at a SIRTF prototype to fly on a ballon-borne telescope. It will use a ferromagnetic shield. The possibility of using a high-Tc solenoid-actuated heat switch is also discussed.

  4. An adiabatic demagnetization refrigerator for SIRTF

    SciTech Connect

    Timbie, P.T.; Bernstein, G.M.; Richards, P.L.

    1989-02-01

    An adiabatic demagnetization refrigerator (ADR) has been proposed to cool bolometric infrared detectors on the Multiband Imaging Photometer of the Space Infrared Telescope Facility (SIRTF). The authors have built one such refrigerator which employs a ferric ammonium alum salt pill suspended by nylon threads in a 3 Tesla solenoid. The resonant modes of this suspension are above 100 Hz. The heat leak to the salt pill is <0.5 ..mu..W. The system has a hold time at 0.1 /sup 0/K of >12 hours. The cold stage temperature is regulated with a feedback loop that controls the magnetic field. A second, similar refrigerator is being built as a SIRTF prototype to fly on a balloon-borne telescope. It will employ a ferromagnetic shield. The possibility of using high T/sub c/ leads to the superconducting magnet and a solenoid-actuated heat switch are also discussed.

  5. The HAWC and SAFIRE Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Tuttle, Jim; Shirron, Peter; DiPirro, Michael; Jackson, Michael; Behr, Jason; Kunes, Evan; Hait, Tom; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    The High-Resolution Airborne Wide-band Camera (HAWC) and Submillimeter and Far Infrared Experiment (SAFIRE) are far-infrared experiments which will fly on the Stratospheric Observatory for Infrared Astronomy (SOFIA) aircraft. HAWC's detectors will operate at 0.2 Kelvin, while those of SAFIRE will be at 0.1 Kelvin. Each instrument will include an adiabatic demagnetization refrigerator (ADR) to cool its detector stage from the liquid helium bath temperature (HAWC's at 4.2 Kelvin and SAFIRE's pumped to about 1.3 Kelvin) to its operating temperature. Except for the magnets used to achieve the cooling and a slight difference in the heat switch design, the two ADRs are nearly identical. We describe the ADR design and present the results of performance testing.

  6. Number Partitioning via Quantum Adiabatic Computation

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, Vadim N.; Toussaint, Udo; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We study both analytically and numerically the complexity of the adiabatic quantum evolution algorithm applied to random instances of combinatorial optimization problems. We use as an example the NP-complete set partition problem and obtain an asymptotic expression for the minimal gap separating the ground and exited states of a system during the execution of the algorithm. We show that for computationally hard problem instances the size of the minimal gap scales exponentially with the problem size. This result is in qualitative agreement with the direct numerical simulation of the algorithm for small instances of the set partition problem. We describe the statistical properties of the optimization problem that are responsible for the exponential behavior of the algorithm.

  7. Differential topology of adiabatically controlled quantum processes

    NASA Astrophysics Data System (ADS)

    Jonckheere, Edmond A.; Rezakhani, Ali T.; Ahmad, Farooq

    2013-03-01

    It is shown that in a controlled adiabatic homotopy between two Hamiltonians, H 0 and H 1, the gap or "anti-crossing" phenomenon can be viewed as the development of cusps and swallow tails in the region of the complex plane where two critical value curves of the quadratic map associated with the numerical range of H 0 + i H 1 come close. The "near crossing" in the energy level plots happens to be a generic situation, in the sense that a crossing is a manifestation of the quadratic numerical range map being unstable in the sense of differential topology. The stable singularities that can develop are identified and it is shown that they could occur near the gap, making those singularities of paramount importance. Various applications, including the quantum random walk, are provided to illustrate this theory.

  8. Quantum Adiabatic Optimization and Combinatorial Landscapes

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, V. N.; Knysh, S.; Morris, R. D.

    2003-01-01

    In this paper we analyze the performance of the Quantum Adiabatic Evolution (QAE) algorithm on a variant of Satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables, gamma = M / N. We introduce a set of macroscopic parameters (landscapes) and put forward an ansatz of universality for random bit flips. We then formulate the problem of finding the smallest eigenvalue and the excitation gap as a statistical mechanics problem. We use the so-called annealing approximation with a refinement that a finite set of macroscopic variables (verses only energy) is used, and are able to show the existence of a dynamic threshold gamma = gammad, beyond which QAE should take an exponentially long time to find a solution. We compare the results for extended and simplified sets of landscapes and provide numerical evidence in support of our universality ansatz.

  9. Adiabatic frequency conversion of ultrafast pulses

    NASA Astrophysics Data System (ADS)

    Suchowski, H.; Bruner, B. D.; Ganany-Padowicz, A.; Juwiler, I.; Arie, A.; Silberberg, Y.

    2011-12-01

    A new method for efficient, broadband sum and difference frequency generation of ultrafast pulses is demonstrated. The principles of the method follow from an analogy between frequency conversion and coherent optical excitation of a two-level system. For conversion of ultrafast pulses, the concepts of adiabatic conversion are developed further in order to account for dispersion and group velocity mismatch. The scheme was implemented using aperiodically poled nonlinear crystals and a single step nonlinear mixing process, leading to conversion of near-IR (˜790 nm) ultrafast pulses into the blue (˜450 nm) and mid-IR (˜3.15 μm) spectral regions. Conversion bandwidths up to 15 THz FWHM and efficiencies up to 50% are reported.

  10. Stirling engine with one adiabatic cylinder

    NASA Astrophysics Data System (ADS)

    West, C. D.

    1982-03-01

    It is shown that integration around the P-V loop of a Stirling-like cycle with an adiabatic expansion or compression space is possible through careful application of the ideal gas laws. The result is a set of closed-form solutions or the work output, work input, and efficiency for ideal gases. Previous analyses yielded closed-form solutions only for machines in which all spaces behave isothermally, or that have other limitations that simplify the arithmetic but omit important aspects of real machines. The results of this analysis, although still far removed from the exact behavior of real, practical engines, yield important insights into the effects observed in computer models and experimental machines. These results are especially illuminating for machines intended to operate with fairly small temperature differences. Heat pumps and low-technology solar-powered engines might be included in this category.

  11. Adiabatic theory for anisotropic cold molecule collisions

    SciTech Connect

    Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod

    2015-08-21

    We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment {sup 4}He(1s2s {sup 3}S) + HD(1s{sup 2}) → {sup 4}He(1s{sup 2}) + HD{sup +}(1s) + e{sup −} [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.

  12. Lattice Boltzmann method for adiabatic acoustics.

    PubMed

    Li, Yanbing; Shan, Xiaowen

    2011-06-13

    The lattice Boltzmann method (LBM) has been proved to be a useful tool in many areas of computational fluid dynamics, including computational aero-acoustics (CAA). However, for historical reasons, its applications in CAA have been largely restricted to simulations of isothermal (Newtonian) sound waves. As the recent kinetic theory-based reformulation establishes a theoretical framework in which LBM can be extended to recover the full Navier-Stokes-Fourier (NS) equations and beyond, in this paper, we show that, at least at the low-frequency limit (sound frequency much less than molecular collision frequency), adiabatic sound waves can be accurately simulated by the LBM provided that the lattice and the distribution function ensure adequate recovery of the full NS equations.

  13. An integrated programming and development environment for adiabatic quantum optimization

    NASA Astrophysics Data System (ADS)

    Humble, T. S.; McCaskey, A. J.; Bennink, R. S.; Billings, J. J.; DʼAzevedo, E. F.; Sullivan, B. D.; Klymko, C. F.; Seddiqi, H.

    2014-01-01

    Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware has raised challenging questions about how to evaluate adiabatic quantum optimization (AQO) programs. Processor behavior depends on multiple steps to synthesize an adiabatic quantum program, which are each highly tunable. We present an integrated programming and development environment for AQO called Jade Adiabatic Development Environment (JADE) that provides control over all the steps taken during program synthesis. JADE captures the workflow needed to rigorously specify the AQO algorithm while allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its potential use for benchmarking AQO programs by the quantum computer science community.

  14. An Integrated Development Environment for Adiabatic Quantum Programming

    SciTech Connect

    Humble, Travis S; McCaskey, Alex; Bennink, Ryan S; Billings, Jay Jay; D'Azevedo, Eduardo; Sullivan, Blair D; Klymko, Christine F; Seddiqi, Hadayat

    2014-01-01

    Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware raises the question of how well quantum programs perform. Benchmarking behavior is challenging since the multiple steps to synthesize an adiabatic quantum program are highly tunable. We present an adiabatic quantum programming environment called JADE that provides control over all the steps taken during program development. JADE captures the workflow needed to rigorously benchmark performance while also allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its use for benchmarking adiabatic quantum programs.

  15. Representing Adiabatic Potential Energy Surfaces Coupled by Conical Intersections in their Full Dimensionality Using Coupled Quasi-Diabatic States

    NASA Astrophysics Data System (ADS)

    Yarkony, David

    2015-03-01

    The construction of fit single state potential energy surfaces (PESs), analytic representations of ab initio electronic energies and energy gradients, is now well established. These single state PESs, which are essential for accurate quantum dynamics and have found wide application in more approximate quasi-classical treatments, have revolutionized adiabatic dynamics. The situation for nonadiabatic processes involving dissociative and large amplitude motion is less sanguine. In these cases, compared to single electronic state dynamics, both the electronic structure data and the representation are more challenging to determine. We describe the recent development and applications of algorithms that enable description of multiple adiabatic electronic potential energy surfaces coupled by conical intersections in their full dimensionality using coupled quasi-diabatic states. These representations are demonstrably quasi-diabatic, provide accurate representations of conical intersection seams and can smooth out the discontinuities in electronic structure energies due to changing active orbital spaces that routinely afflict global multistate representations.

  16. Conical Intersections Between Vibrationally Adiabatic Surfaces in Methanol

    NASA Astrophysics Data System (ADS)

    Dawadi, Mahesh B.; Perry, David S.

    2014-06-01

    The discovery of a set of seven conical intersections (CI's) between vibrationally adiabatic surfaces in methanol is reported. The intersecting surfaces represent the energies of the two asymmetric CH stretch vibrations, νb{2} and νb{9}, regarded as adiabatic functions of the torsional angle, γ, and COH bend angle, ρ. One conical intersection, required by symmetry, is located at the C3v geometry where the COH group is linear (ρ = 0°); the other six are in eclipsed conformations with ρ = 62° and 94°. The three CI's at ρ = 62° are close to the equilibrium geometry (ρ = 71.4°), within the zero-point amplitude of the COH bending vibration. CI's between electronic surfaces have long been recognized as crucial conduits for ultrafast relaxation, and recently Hamm, and Stock have shown that vibrational CI's may also provide a mechanism for ultrafast vibrational relaxation. The ab initio data reported here are well described by an extended Zwanziger and Grant model for E ⊗ e Jahn-Teller systems in which Renner-Teller coupling is also active. However, in the present case, the distortion ρ from C3v symmetry is much larger than is typical in the Jahn-Teller coupling of electronic surfaces and accordingly higher-order terms in ρ are required. The present results are also consistent with the two-state model of Xu et al. The cusp-like features, which they found along the internal-rotation path, are explained in the context of the present work in terms of proximity to the CI's. The presence of multiple CI's near the torsional minimum energy path impacts the role of geometric phase in this three-fold internal-rotor system. When the dimensionality of the low-frequency space is extended to include the CO bond length as well as γ and ρ, the individual CI's become seams of CI's. It is shown that the CI's at ρ = 62° and 94° lie along the same seam of CI's in this higher dimensional space. P. Hamm and G. Stock, Phys. Rev. Lett., 109, 173201, (2012) P. Hamm, and G

  17. Exploiting initial-state dependence to improve the performance of adiabatic TDDFT

    NASA Astrophysics Data System (ADS)

    Fuks, Johanna I.; Nielsen, Soeren E. B.; Ruggenthaler, Michael; Maitra, Neepa T.; Hunter college City University of New York Collaboration; Max-Planck-Institut für Struktur und Dynamik der Materie, Hamburg Collaboration

    Although time-dependent density functional theory (TDDFT) descriptions of dynamics in non-equilibrium situations have seen exciting successes recently, there have also been studies that throw into doubt the reliability of the approximate exchange-correlation functionals to accurately describe the dynamics. Here we study exact exchange-correlation potentials for few electron systems, found using the global fixed-point iteration method [NRL]. We find that the size of dynamical correlation features that are missing in the currently-used adiabatic approximations depend strongly on the choice of the initial Kohn-Sham wavefunction. With a judicious choice, the dynamical effects can be small over a finite time duration, but sometimes they can get large at longer times. We also examine different starting points, in particular an orbital-dependent potential directly obtained from the Kohn-Sham hole [LFSEM14], for approximate xc functionals: instead of building on an adiabatic approximation.

  18. First-order derivative couplings between excited states from adiabatic TDDFT response theory

    SciTech Connect

    Ou, Qi; Subotnik, Joseph E.; Bellchambers, Gregory D.; Furche, Filipp

    2015-02-14

    We present a complete derivation of derivative couplings between excited states in the framework of adiabatic time-dependent density functional response theory. Explicit working equations are given and the resulting derivative couplings are compared with derivative couplings from a pseudo-wavefunction ansatz. For degenerate excited states, i.e., close to a conical intersection (CI), the two approaches are identical apart from an antisymmetric overlap term. However, if the difference between two excitation energies equals another excitation energy, the couplings from response theory exhibit an unphysical divergence. This spurious behavior is a result of the adiabatic or static kernel approximation of time-dependent density functional theory leading to an incorrect analytical structure of the quadratic response function. Numerical examples for couplings close to a CI and for well-separated electronic states are given.

  19. Adjoint affine fusion and tadpoles

    NASA Astrophysics Data System (ADS)

    Urichuk, Andrew; Walton, Mark A.

    2016-06-01

    We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are written for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.

  20. Non-adiabatic effects in the pseudorotational motion of triatomic molecules

    NASA Astrophysics Data System (ADS)

    Hagelberg, Frank; Deumens, Erik

    2002-03-01

    Electron-Nuclear Dynamics (END) theory simulations have been performed with the aim to understand the dynamic aspects of triatomic molecules in pseudorotational motion. More specifically, the units H_3^+ and Li_3^+ are investigated close to the threshold of dissociation. For both species, the dynamic response of the electronic system to the nuclear motion is examined by the computation of electronic angular momentum expectation values. The respective results differ markedly for alpha and beta spin orientations, reflecting the emergence of rapid spin oscillations. This phenomenon is investigated by a detailed analysis of the electronic excitation content in both molecules. This is achieved by projection of the dynamic wavefunction on adiabatic electronic states which are evaluated along the nuclear trajectories. From an inspection of the phase relations between the expansion coefficients for electronic excitations with alpha and beta spin orientation, we conclude that the systems maximize the observed spin polarization effects.

  1. Effects of EOS adiabat on hot spot dynamics

    NASA Astrophysics Data System (ADS)

    Cheng, Baolian; Kwan, Thomas; Wang, Yi-Ming; Batha, Steven

    2013-10-01

    Equation of state (EOS) and adiabat of the pusher play significant roles in the dynamics and formation of the hot spot of an ignition capsule. For given imploding energy, they uniquely determine the partition of internal energy, mass, and volume between the pusher and the hot spot. In this work, we apply the new scaling laws recently derived by Cheng et al. to the National Ignition Campaign (NIC) ignition capsules and study the impacts of EOS and adiabat of the pusher on the hot spot dynamics by using the EOS adiabat index as an adjustable model parameter. We compare our analysis with the NIC data, specifically, for shots N120321 and N120205, and with the numerical simulations of these shots. The predictions from our theoretical model are in good agreements with the NIC data when a hot adiabat was used for the pusher, and with code simulations when a cold adiabat was used for the pusher. Our analysis indicates that the actual adiabat of the pusher in NIC experiments may well be higher than the adiabat assumed in the simulations. This analysis provides a physical and systematic explanation to the ongoing disagreements between the NIC experimental results and the multi-dimensional numerical simulations. This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under contract number W-7405-ENG-36.

  2. Electron

    NASA Astrophysics Data System (ADS)

    Springford, Michael

    1997-03-01

    1. J. J. Thomson and the discovery of the electron A. B. P. Pippard; 2. The isolated electron W. N. Cottingham; 3. The relativistic electron D. I. Olive; 4. The electron glue B. L. Gyorffy; 5. The electron fluid P. Coleman; 6. The magnetic electron G. G. Lonzarich; 7. The paired electron A. J. Leggett; 8. The heavy electron M. Springford; 9. The coherent electron Y. Imry and M. Peskin; 10. The composite electron R. Nicholas; 11. The electron in the cosmos M. S. Longair.

  3. Electron

    NASA Astrophysics Data System (ADS)

    Springford, Michael

    2008-12-01

    1. J. J. Thomson and the discovery of the electron A. B. P. Pippard; 2. The isolated electron W. N. Cottingham; 3. The relativistic electron D. I. Olive; 4. The electron glue B. L. Gyorffy; 5. The electron fluid P. Coleman; 6. The magnetic electron G. G. Lonzarich; 7. The paired electron A. J. Leggett; 8. The heavy electron M. Springford; 9. The coherent electron Y. Imry and M. Peskin; 10. The composite electron R. Nicholas; 11. The electron in the cosmos M. S. Longair.

  4. Computational and ESR studies of electron attachment to decafluorocyclopentane, octafluorocyclobutane, and hexafluorocyclopropane: electron affinities of the molecules and the structures of their stable negative ions as determined from 13C and 19F hyperfine coupling constants.

    PubMed

    ElSohly, Adel M; Tschumper, Gregory S; Crocombe, Richard A; Wang, Jih Tzong; Williams, Ffrancon

    2005-08-01

    High-resolution ESR spectra of the ground-state negative ions of hexafluorocyclopropane (c-C3F6*-), octafluorocyclobutane (c-C4F8*-), and decafluorocyclopentane (c-C5F10*-) are reported and their isotropic 19F hyperfine coupling constants (hfcc) of 198.6 +/- 0.4 G, 147.6 +/- 0.4 G, and 117.9 +/- 0.4 G, respectively, are in inverse ratio to the total number of fluorine atoms per anion. Together with the small value of 5.2 +/- 0.4 G determined for the isotropic 13C hfcc of c-C4F8*-, these results indicate that in each case the singly occupied molecular orbital (SOMO) is delocalized over the equivalent fluorines and possesses a nodal plane through the carbon atoms of a time-averaged D(nh) structure. A series of quantum chemical computations were carried out to further characterize these anions and their neutral counterparts. Both the B3LYP density functional and second-order Møller-Plesset perturbation theory (MP2) indicate that c-C3F6*- adopts a D(3h) geometry and a (2)A2'' ground electronic state, that c-C4F8*- adopts a D(4h) geometry and a (2)A2u ground electronic state, and that c-C5F10*- adopts a C(s) structure and a (2)A' electronic state. Moreover, the 19F hyperfine coupling constants computed with the MP2 method and a high quality triple-zeta basis set are within 1% of the experimental values. Also, the values computed for the 13C hfcc of c-C4F8*- are consistent with the experimental value of 5.2 G. Therefore, in keeping with the ESR results, these negative ions derived from first-row elements can be characterized as pi* species. In addition, the hypervalency of these perfluorocycloalkane radical anions has been clarified.

  5. Optimality of partial adiabatic search and its circuit model

    NASA Astrophysics Data System (ADS)

    Mei, Ying; Sun, Jie; Lu, Songfeng; Gao, Chao

    2014-08-01

    In this paper, we first uncover a fact that a partial adiabatic quantum search with time complexity is in fact optimal, in which is the total number of elements in an unstructured database, and () of them are the marked ones(one) . We then discuss how to implement a partial adiabatic search algorithm on the quantum circuit model. From the implementing procedure on the circuit model, we can find out that the approximating steps needed are always in the same order of the time complexity of the adiabatic algorithm.

  6. Adiabatic control of atomic dressed states for transport and sensing

    NASA Astrophysics Data System (ADS)

    Cooper, N. R.; Rey, A. M.

    2015-08-01

    We describe forms of adiabatic transport that arise for dressed-state atoms in optical lattices. Focusing on the limit of weak tunnel-coupling between nearest-neighbor lattice sites, we explain how adiabatic variation of optical dressing allows control of atomic motion between lattice sites: allowing adiabatic particle transport in a direction that depends on the internal state, and force measurements via spectroscopic preparation and readout. For uniformly filled bands these systems display topologically quantized particle transport. An implementation of the dressing scheme using optical transitions in alkaline-earth atoms is discussed as well as its favorable features for precise force sensing.

  7. Decoherence in current induced forces: Application to adiabatic quantum motors

    NASA Astrophysics Data System (ADS)

    Fernández-Alcázar, Lucas J.; Bustos-Marún, Raúl A.; Pastawski, Horacio M.

    2015-08-01

    Current induced forces are not only related with the discrete nature of electrons but also with its quantum character. It is natural then to wonder about the effect of decoherence. Here, we develop the theory of current induced forces including dephasing processes and we apply it to study adiabatic quantum motors (AQMs). The theory is based on Büttiker's fictitious probe model, which here is reformulated for this particular case. We prove that it accomplishes the fluctuation-dissipation theorem. We also show that, in spite of decoherence, the total work performed by the current induced forces remains equal to the pumped charge per cycle times the voltage. We find that decoherence affects not only the current induced forces of the system but also its intrinsic friction and noise, modifying in a nontrivial way the efficiency of AQMs. We apply the theory to study an AQM inspired by a classical peristaltic pump where we surprisingly find that decoherence can play a crucial role by triggering its operation. Our results can help to understand how environmentally induced dephasing affects the quantum behavior of nanomechanical devices.

  8. Adiabatic nonlinear waves with trapped particles. III. Wave dynamics

    SciTech Connect

    Dodin, I. Y.; Fisch, N. J.

    2012-01-15

    The evolution of adiabatic waves with autoresonant trapped particles is described within the Lagrangian model developed in Paper I, under the assumption that the action distribution of these particles is conserved, and, in particular, that their number within each wavelength is a fixed independent parameter of the problem. One-dimensional nonlinear Langmuir waves with deeply trapped electrons are addressed as a paradigmatic example. For a stationary wave, tunneling into overcritical plasma is explained from the standpoint of the action conservation theorem. For a nonstationary wave, qualitatively different regimes are realized depending on the initial parameter S, which is the ratio of the energy flux carried by trapped particles to that carried by passing particles. At S < 1/2, a wave is stable and exhibits group velocity splitting. At S > 1/2, the trapped-particle modulational instability (TPMI) develops, in contrast with the existing theories of the TPMI yet in agreement with the general sideband instability theory. Remarkably, these effects are not captured by the nonlinear Schroedinger equation, which is traditionally considered as a universal model of wave self-action but misses the trapped-particle oscillation-center inertia.

  9. Topological States and Adiabatic Pumping in Quasicrystals

    NASA Astrophysics Data System (ADS)

    Kraus, Yaakov; Lahini, Yoav; Ringel, Zohar; Verbin, Mor; Zilberberg, Oded

    2012-02-01

    We find a connection between quasicrystals and topological matter, namely that quasicrystals exhibit non-trivial topological phases attributed to dimensions higher than their own [1]. Quasicrystals are materials which are neither ordered nor disordered, i.e. they exhibit only long-range order [2]. This long-range order is usually expressed as a projection from a higher dimensional ordered system. Recently, the unrelated discovery of Topological Insulators [3] defined a new type of materials classified by their topology. We show theoretically and experimentally using photonic lattices, that one-dimensional quasicrystals exhibit topologically-protected boundary states equivalent to the edge states of the two-dimensional Integer Quantum Hall Effect. We harness this property to adiabatically pump light across the quasicrystal, and generalize our results to higher dimensional systems. Hence, quasicrystals offer a new platform for the study of topological phases while their topology may better explain their surface properties.[4pt] [1] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg, arXiv:1109.5983 (2011).[0pt] [2] C. Janot, Quasicrystals (Clarendon, Oxford, 1994), 2nd ed.[0pt] [3] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

  10. On the persistence of adiabatic shear bands

    NASA Astrophysics Data System (ADS)

    Boakye-Yiadom, S.; Bassim, M. N.; Al-Ameeri, S.

    2012-08-01

    It is generally agreed that the initiation and development of adiabatic shear bands (ASBs) are manifestations of damage in metallic materials subjected to high strain rates and large strains as those due to impact in a Hopkinson Bar system. Models for evolution of these bands have been described in the literature. One question that has not received attention is how persistent these bands are and whether their presence and effect can be reversed or eliminated by using a process of thermal (heat treatment) or thermo-mechanical treatment that would relieve the material from the high strain associated with ASBs and their role as precursors to crack initiation and subsequent failure. Since ASBs are more prevalent and more defined in BCC metals including steels, a study was conducted to investigate the best conditions of generating ASBs in a heat treatable steel, followed by determining the best conditions for heat treatment of specimens already damaged by the presence of ASBs in order to relieve the strains due to ASBs and restore the material to an apparent microstructure without the "scars" due to the previous presence of ASBs. It was found that heat treatment achieves the curing from ASBs. This presentation documents the process undertaken to achieve this objective.

  11. Adiabatic quantum algorithm for search engine ranking.

    PubMed

    Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A

    2012-06-01

    We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in "q-sampling" protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank. PMID:23003933

  12. Graph isomorphism and adiabatic quantum computing

    NASA Astrophysics Data System (ADS)

    Gaitan, Frank; Clark, Lane

    2014-03-01

    In the Graph Isomorphism (GI) problem two N-vertex graphs G and G' are given and the task is to determine whether there exists a permutation of the vertices of G that preserves adjacency and maps G --> G'. If yes (no), then G and G' are said to be isomorphic (non-isomorphic). The GI problem is an important problem in computer science and is thought to be of comparable difficulty to integer factorization. We present a quantum algorithm that solves arbitrary instances of GI, and which provides a novel approach to determining all automorphisms of a graph. The algorithm converts a GI instance to a combinatorial optimization problem that can be solved using adiabatic quantum evolution. Numerical simulation of the algorithm's quantum dynamics shows that it correctly distinguishes non-isomorphic graphs; recognizes isomorphic graphs; and finds the automorphism group of a graph. We also discuss the algorithm's experimental implementation and show how it can be leveraged to solve arbitrary instances of the NP-Complete Sub-Graph Isomorphism problem.

  13. Design of the PIXIE Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.; Kimball, Mark Oliver; Fixsen, Dale J.; Kogut, Alan J.; Li, Xiaoyi; DiPirro, Michael

    2012-01-01

    The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a teslescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: 1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and 2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 millwatts, while maintaining a peak heat reject rate of less than 12 milliwatts. The detector heat load at 0.1 K is comparatively small at 1-2 microwatts. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope.

  14. Adiabaticity and spectral splits in collective neutrino transformations

    SciTech Connect

    Raffelt, Georg G.; Smirnov, Alexei Yu.

    2007-12-15

    Neutrinos streaming off a supernova core transform collectively by neutrino-neutrino interactions, leading to 'spectral splits' where an energy E{sub split} divides the transformed spectrum sharply into parts of almost pure but different flavors. We present a detailed description of the spectral-split phenomenon which is conceptually and quantitatively understood in an adiabatic treatment of neutrino-neutrino effects. Central to this theory is a self-consistency condition in the form of two sum rules (integrals over the neutrino spectra that must equal certain conserved quantities). We provide explicit analytic and numerical solutions for various neutrino spectra. We introduce the concept of the adiabatic reference frame and elaborate on the relative adiabatic evolution. Violating adiabaticity leads to the spectral split being 'washed out'. The sharpness of the split appears to be represented by a surprisingly universal function.

  15. Adiabatic rotation, quantum search, and preparation of superposition states

    NASA Astrophysics Data System (ADS)

    Siu, M. Stewart

    2007-06-01

    We introduce the idea of using adiabatic rotation to generate superpositions of a large class of quantum states. For quantum computing this is an interesting alternative to the well-studied “straight line” adiabatic evolution. In ways that complement recent results, we show how to efficiently prepare three types of states: Kitaev’s toric code state, the cluster state of the measurement-based computation model, and the history state used in the adiabatic simulation of a quantum circuit. We also show that the method, when adapted for quantum search, provides quadratic speedup as other optimal methods do with the advantages that the problem Hamiltonian is time independent and that the energy gap above the ground state is strictly nondecreasing with time. Likewise the method can be used for optimization as an alternative to the standard adiabatic algorithm.

  16. Coherent transfer by adiabatic passage in two-dimensional lattices

    SciTech Connect

    Longhi, Stefano

    2014-09-15

    Coherent tunneling by adiabatic passage (CTAP) is a well-established technique for robust spatial transport of quantum particles in linear chains. Here we introduce two exactly-solvable models where the CTAP protocol can be extended to two-dimensional lattice geometries. Such bi-dimensional lattice models are synthesized from time-dependent second-quantization Hamiltonians, in which the bosonic field operators evolve adiabatically like in an ordinary three-level CTAP scheme thus ensuring adiabatic passage in Fock space. - Highlights: • New ways of coherent transport by adiabatic passage (CTAP) in 2D lattices. • Synthesis of exactly-solvable 2D lattices from a simple three-well model. • CTAP in 2D lattices can be exploited for quantum state transfer.

  17. Adiabatic and isocurvature perturbation projections in multi-field inflation

    SciTech Connect

    Gordon, Chris; Saffin, Paul M. E-mail: Paul.Saffin@nottingham.ac.uk

    2013-08-01

    Current data are in good agreement with the predictions of single field inflation. However, the hemispherical asymmetry, seen in the cosmic microwave background data, may hint at a potential problem. Generalizing to multi-field models may provide one possible explanation. A useful way of modeling perturbations in multi-field inflation is to investigate the projection of the perturbation along and perpendicular to the background fields' trajectory. These correspond to the adiabatic and isocurvature perturbations. However, it is important to note that in general there are no corresponding adiabatic and isocurvature fields. The purpose of this article is to highlight the distinction between a field redefinition and a perturbation projection. We provide a detailed derivation of the evolution of the isocurvature perturbation to show that no assumption of an adiabatic or isocurvature field is needed. We also show how this evolution equation is consistent with the field covariant evolution equations for the adiabatic perturbation in the flat field space limit.

  18. Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses

    SciTech Connect

    Dridi, G.; Guerin, S.; Hakobyan, V.; Jauslin, H. R.; Eleuch, H.

    2009-10-15

    We present a general and versatile technique of population transfer based on parallel adiabatic passage by femtosecond shaped pulses. Their amplitude and phase are specifically designed to optimize the adiabatic passage corresponding to parallel eigenvalues at all times. We show that this technique allows the robust adiabatic population transfer in a Raman system with the total pulse area as low as 3{pi}, corresponding to a fluence of one order of magnitude below the conventional stimulated Raman adiabatic passage process. This process of short duration, typically picosecond and subpicosecond, is easily implementable with the modern pulse shaper technology and opens the possibility of ultrafast robust population transfer with interesting applications in quantum information processing.

  19. Photodetachment of Isolated Bicarbonate Anion: Electron Binding Energy of HCO3-

    SciTech Connect

    Wang, Xue B.; Xantheas, Sotiris S.

    2011-04-29

    We report the first direct photodetachment photoelectron spectroscopy of HCO3 in the gas phase under low temperature conditions. The observed photoelectron spectra are complicated due to excitations of manifolds in both vibrational and electronic states. A long and single vibrational progression with a frequency of 530 ± 20 cm-1 is partially resolved in the threshold of the T=20 K, 266 nm spectrum. The adiabatic electron detachment energy (ADE) of HCO3, or in other words the electron affinity (EA) of neutral HCO3, is experimentally determined from the (0-0) transition to be 3.680 ± 0.015 eV. High-level ab initio calculations at the CCSD(T) level of theory produce an anharmonic frequency of 546 cm-1 for HCO3 and a value of 3.62 eV for the (0,0) transition, both in excellent agreement with the experimentally determined values.

  20. Affinity chromatography: a historical perspective.

    PubMed

    Hage, David S; Matsuda, Ryan

    2015-01-01

    Affinity chromatography is one of the most selective and versatile forms of liquid chromatography for the separation or analysis of chemicals in complex mixtures. This method makes use of a biologically related agent as the stationary phase, which provides an affinity column with the ability to bind selectively and reversibly to a given target in a sample. This review examines the early work in this method and various developments that have lead to the current status of this technique. The general principles of affinity chromatography are briefly described as part of this discussion. Past and recent efforts in the generation of new binding agents, supports, and immobilization methods for this method are considered. Various applications of affinity chromatography are also summarized, as well as the influence this field has played in the creation of other affinity-based separation or analysis methods. PMID:25749941

  1. Adiabatic invariant value variation under shortwave band subcritical conditions

    NASA Astrophysics Data System (ADS)

    Svistunov, K. V.; Tinin, M. V.

    1985-04-01

    The possibility of significant variations of the adiabatic invariant is examined for the propagation of radio waves in an irregular Earth-ionosphere waveguide with a parabolic dependence of permittivity on height. Numerical and analytical results indicate that nonexponential deviations of the adiabatic invariant can occur not only when the characteristic size of horizontal irregularity decreases (e.g., during resonant beam excitation) but also in quasi-critical conditions and for smoothly irregular waveguides.

  2. Shortcuts to adiabaticity for non-Hermitian systems

    SciTech Connect

    Ibanez, S.; Martinez-Garaot, S.; Torrontegui, E.; Muga, J. G.; Chen Xi

    2011-08-15

    Adiabatic processes driven by non-Hermitian, time-dependent Hamiltonians may be sped up by generalizing inverse engineering techniques based on counter-diabatic (transitionless driving) algorithms or on dynamical invariants. We work out the basic theory and examples described by two-level Hamiltonians: the acceleration of rapid adiabatic passage with a decaying excited level and of the dynamics of a classical particle on an expanding harmonic oscillator.

  3. Semiclassical Monte Carlo: a first principles approach to non-adiabatic molecular dynamics.

    PubMed

    White, Alexander J; Gorshkov, Vyacheslav N; Wang, Ruixi; Tretiak, Sergei; Mozyrsky, Dmitry

    2014-11-14

    Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantum mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement.

  4. Semiclassical Monte Carlo: A first principles approach to non-adiabatic molecular dynamics

    SciTech Connect

    White, Alexander J.; Gorshkov, Vyacheslav N.; Wang, Ruixi; Tretiak, Sergei; Mozyrsky, Dmitry

    2014-11-14

    Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantum mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement.

  5. Semiclassical Monte Carlo: a first principles approach to non-adiabatic molecular dynamics.

    PubMed

    White, Alexander J; Gorshkov, Vyacheslav N; Wang, Ruixi; Tretiak, Sergei; Mozyrsky, Dmitry

    2014-11-14

    Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantum mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement. PMID:25399126

  6. Performance of indirectly driven capsule implosions on the National Ignition Facility using adiabat-shaping

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Smalyuk, V. A.; Milovich, J. L.; Döppner, T.; Casey, D. T.; Baker, K. L.; Peterson, J. L.; Bachmann, B.; Berzak Hopkins, L. F.; Bond, E.; Caggiano, J. A.; Callahan, D. A.; Celliers, P. M.; Cerjan, C.; Clark, D. S.; Dixit, S. N.; Edwards, M. J.; Gharibyan, N.; Haan, S. W.; Hammel, B. A.; Hamza, A. V.; Hatarik, R.; Hurricane, O. A.; Jancaitis, K. S.; Jones, O. S.; Kerbel, G. D.; Kroll, J. J.; Lafortune, K. N.; Landen, O. L.; Ma, T.; Marinak, M. M.; MacGowan, B. J.; MacPhee, A. G.; Pak, A.; Patel, M.; Patel, P. K.; Perkins, L. J.; Sayre, D. B.; Sepke, S. M.; Spears, B. K.; Tommasini, R.; Weber, C. R.; Widmayer, C. C.; Yeamans, C.; Giraldez, E.; Hoover, D.; Nikroo, A.; Hohenberger, M.; Gatu Johnson, M.

    2016-05-01

    A series of indirectly driven capsule implosions has been performed on the National Ignition Facility to assess the relative contributions of ablation-front instability growth vs. fuel compression on implosion performance. Laser pulse shapes for both low and high-foot pulses were modified to vary ablation-front growth and fuel adiabat, separately and controllably. Three principal conclusions are drawn from this study: (1) It is shown that reducing ablation-front instability growth in low-foot implosions results in a substantial (3-10X) increase in neutron yield with no loss of fuel compression. (2) It is shown that reducing the fuel adiabat in high-foot implosions results in a significant (36%) increase in fuel compression together with a small (10%) increase in neutron yield. (3) Increased electron preheat at higher laser power in high-foot implosions, however, appears to offset the gain in compression achieved by adiabat-shaping at lower power. These results taken collectively bridge the space between the higher compression low-foot results and the higher yield high-foot results.

  7. Adiabatic Green's function technique and transient behavior in time-dependent fermion-boson coupled models

    NASA Astrophysics Data System (ADS)

    Oh, Yun-Tak; Higashi, Yoichi; Chan, Ching-Kit; Han, Jung Hoon

    2016-08-01

    The Lang-Firsov Hamiltonian, a well-known solvable model of interacting fermion-boson system with sideband features in the fermion spectral weight, is generalized to have the time-dependent fermion-boson coupling constant. We show how to derive the two-time Green's function for the time-dependent problem in the adiabatic limit, defined as the slow temporal variation of the coupling over the characteristic oscillator period. The idea we use in deriving the Green's function is akin to the use of instantaneous basis states in solving the adiabatic evolution problem in quantum mechanics. With such "adiabatic Green's function" at hand we analyze the transient behavior of the spectral weight as the coupling is gradually tuned to zero. Time-dependent generalization of a related model, the spin-boson Hamiltonian, is analyzed in the same way. In both cases the sidebands arising from the fermion-boson coupling can be seen to gradually lose their spectral weights over time. Connections of our solution to the two-dimensional Dirac electrons coupled to quantized photons are discussed.

  8. Exchange-Correlation Functionals via Local Interpolation along the Adiabatic Connection.

    PubMed

    Vuckovic, Stefan; Irons, Tom J P; Savin, Andreas; Teale, Andrew M; Gori-Giorgi, Paola

    2016-06-14

    The construction of density-functional approximations is explored by modeling the adiabatic connection locally, using energy densities defined in terms of the electrostatic potential of the exchange-correlation hole. These local models are more amenable to the construction of size-consistent approximations than their global counterparts. In this work we use accurate input local ingredients to assess the accuracy of a range of local interpolation models against accurate exchange-correlation energy densities. The importance of the strictly correlated electrons (SCE) functional describing the strong coupling limit is emphasized, enabling the corresponding interpolated functionals to treat strong correlation effects. In addition to exploring the performance of such models numerically for the helium and beryllium isoelectronic series and the dissociation of the hydrogen molecule, an approximate analytic model is presented for the initial slope of the local adiabatic connection. Comparisons are made with approaches based on global models, and prospects for future approximations based on the local adiabatic connection are discussed. PMID:27116427

  9. Exchange–Correlation Functionals via Local Interpolation along the Adiabatic Connection

    PubMed Central

    2016-01-01

    The construction of density-functional approximations is explored by modeling the adiabatic connection locally, using energy densities defined in terms of the electrostatic potential of the exchange–correlation hole. These local models are more amenable to the construction of size-consistent approximations than their global counterparts. In this work we use accurate input local ingredients to assess the accuracy of a range of local interpolation models against accurate exchange–correlation energy densities. The importance of the strictly correlated electrons (SCE) functional describing the strong coupling limit is emphasized, enabling the corresponding interpolated functionals to treat strong correlation effects. In addition to exploring the performance of such models numerically for the helium and beryllium isoelectronic series and the dissociation of the hydrogen molecule, an approximate analytic model is presented for the initial slope of the local adiabatic connection. Comparisons are made with approaches based on global models, and prospects for future approximations based on the local adiabatic connection are discussed. PMID:27116427

  10. Semiclassical Monte Carlo: A first principles approach to non-adiabatic molecular dynamics

    NASA Astrophysics Data System (ADS)

    White, Alexander J.; Gorshkov, Vyacheslav N.; Wang, Ruixi; Tretiak, Sergei; Mozyrsky, Dmitry

    2014-11-01

    Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantum mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement.

  11. Density-matrix-spectroscopic algorithm for excited-state adiabatic surfaces and molecular dynamics of a protonated Schiff base

    NASA Astrophysics Data System (ADS)

    Tsiper, E. V.; Chernyak, V.; Tretiak, S.; Mukamel, S.

    1999-05-01

    Excited-state potentials of a short protonated Schiff base cation which serves as a model for the photoisomerization of retinal are computed by combining a semi-empirical ground-state adiabatic surface with excitation energies obtained using the time-dependent coupled electronic oscillator (CEO) approach. Excited-state molecular dynamic simulation of the in-plane motion of cis-C5H6NH2+ following impulsive optical excitation reveals a dominating 1754 cm-1 π-conjugation mode. A new molecular dynamics algorithm is proposed which resembles the Car-Parinello ground-state technique and is based on the adiabatic propagation of the ground-state single-electron density matrix and the collective electronic modes along the trajectory.

  12. Taple-top imaging of the non-adiabatically driven isomerization in the acetylene cation

    NASA Astrophysics Data System (ADS)

    Beaulieu, Samuel; Ibrahim, Heide; Wales, Benji; Schmidt, Bruno E.; Thiré, Nicolas; Bisson, Éric; Hebeisen, Christoph T.; Wanie, Vincent; Giguere, Mathieu; Kieffer, Jean-Claude; Sanderson, Joe; Schuurman, Michael S.; Légaré, François

    2014-05-01

    One of the primary goals of modern ultrafast science is to follow nuclear and electronic evolution of molecules as they undergo a photo-chemical reaction. Most of the interesting dynamics phenomena in molecules occur when an electronically excited state is populated. When the energy difference between electronic ground and excited states is large, Free Electron Laser (FEL) and HHG-based VUV sources were, up to date, the only light sources able to efficiently initiate those non-adiabatic dynamics. We have developed a simple table-top approach to initiate those rich dynamics via multiphoton absorption. As a proof of principle, we studied the ultrafast isomerization of the acetylene cation. We have chosen this model system for isomerization since the internal conversion mechanism which leads to proton migration is still under debate since decades. Using 266 nm multiphoton absorption as a pump and 800 nm induced Coulomb Explosion as a probe, we have shoot the first high-resolution molecular movie of the non-adiabatically driven proton migration in the acetylene cation. The experimental results are in excellent agreement with high level ab initio trajectory simulations.

  13. Non-adiabatic effects on the optical response of driven systems

    NASA Astrophysics Data System (ADS)

    Fregoso, Benjamin M.; Kolodrubetz, Michael; Moore, Joel

    Periodically driven systems have received renewed interest due to their capacity to engineer non-trivial effective Hamiltonians. A characteristic of such systems is how they respond to weak periodicity-breaking drive, as for example when a laser is pulsed instead of continuous wave. We develop semi-classical equations of motion of a wave packet in the presence of electric and magnetic fields which are turned on non-adiabatically. We then show the emergence of significant corrections to electronic collective excitations and optical responses of topological insulator surface states, Weyl metals and semiconductor mono-chalcogenides.

  14. A high resolution electrostatic time-of-flight spectrometer with adiabatic magnetic collimation

    NASA Astrophysics Data System (ADS)

    Bonn, J.; Bornschein, L.; Degen, B.; Otten, E. W.; Weinheimer, Ch

    1999-01-01

    A new type of spectrometer for low energy charged particles is presented. It consists of an adiabatic magnetic collimation and two filters: an electrostatic retarding potential to set a lower limit (high pass) and a time-of-flight analysis to reject high energy charged particles (low pass). Both filters are only limited in their resolution by the efficiency of the adiabatic magnetic collimation. The proof of this principle is demonstrated by a pilot measurement on the K conversion line of 83mKr. Possible applications to pulsed and continuous electron sources are discussed with the emphasis on the investigation of the β spectrum of T 2 to deduce information on the mass of the electron antineutrino and possible anomalies in the β spectrum. In this context design parameters of a spectrometer with a resolving power of E/ ΔE=20 000 and a luminosity of A ΔΩ/4 π=4 cm2 for 20 keV electrons are given.

  15. LETTERS AND COMMENTS: Adiabatic process reversibility: microscopic and macroscopic views

    NASA Astrophysics Data System (ADS)

    Anacleto, Joaquim; Pereira, Mário G.

    2009-05-01

    The reversibility of adiabatic processes was recently addressed by two publications. In the first (Miranda 2008 Eur. J. Phys. 29 937-43), an equation was derived relating the initial and final volumes and temperatures for adiabatic expansions of an ideal gas, using a microscopic approach. In that relation the parameter r accounts for the process reversibility, ranging between 0 and 1, which corresponds to the free and reversible expansion, respectively. In the second (Anacleto and Pereira 2009 Eur. J. Phys. 30 177-83), the authors have shown that thermodynamics can effectively and efficiently be used to obtain the general law for adiabatic processes carried out by an ideal gas, including compressions, for which r \\ge 1. The present work integrates and extends the aforementioned studies, providing thus further insights into the analysis of the adiabatic process. It is shown that Miranda's work is wholly valid for compressions. In addition, it is demonstrated that the adiabatic reversibility coefficient given in terms of the piston velocity and the root mean square velocity of the gas particles is equivalent to the macroscopic description, given just by the quotient between surroundings and system pressure values.

  16. Adiabatic continuity, wave-function overlap, and topological phase transitions

    NASA Astrophysics Data System (ADS)

    Gu, Jiahua; Sun, Kai

    2016-09-01

    In this paper, we study the relation between wave-function overlap and adiabatic continuity in gapped quantum systems. We show that for two band insulators, a scalar function can be defined in the momentum space, which characterizes the wave-function overlap between Bloch states in the two insulators. If this overlap is nonzero for all momentum points in the Brillouin zone, these two insulators are adiabatically connected, i.e., we can deform one insulator into the other smoothly without closing the band gap. In addition, we further prove that this adiabatic path preserves all the symmetries of the insulators. The existence of such an adiabatic path implies that two insulators with nonzero wave-function overlap belong to the same topological phase. This relation, between adiabatic continuity and wave-function overlap, can be further generalized to correlated systems. The generalized relation cannot be applied to study generic many-body systems in the thermodynamic limit, because of the orthogonality catastrophe. However, for certain interacting systems (e.g., quantum Hall systems), the quantum wave-function overlap can be utilized to distinguish different quantum states. Experimental implications are also discussed.

  17. Adiabatic condition and the quantum hitting time of Markov chains

    SciTech Connect

    Krovi, Hari; Ozols, Maris; Roland, Jeremie

    2010-08-15

    We present an adiabatic quantum algorithm for the abstract problem of searching marked vertices in a graph, or spatial search. Given a random walk (or Markov chain) P on a graph with a set of unknown marked vertices, one can define a related absorbing walk P{sup '} where outgoing transitions from marked vertices are replaced by self-loops. We build a Hamiltonian H(s) from the interpolated Markov chain P(s)=(1-s)P+sP{sup '} and use it in an adiabatic quantum algorithm to drive an initial superposition over all vertices to a superposition over marked vertices. The adiabatic condition implies that, for any reversible Markov chain and any set of marked vertices, the running time of the adiabatic algorithm is given by the square root of the classical hitting time. This algorithm therefore demonstrates a novel connection between the adiabatic condition and the classical notion of hitting time of a random walk. It also significantly extends the scope of previous quantum algorithms for this problem, which could only obtain a full quadratic speedup for state-transitive reversible Markov chains with a unique marked vertex.

  18. Non-adiabatic dynamics around a conical intersection with surface-hopping coupled coherent states.

    PubMed

    Humeniuk, Alexander; Mitrić, Roland

    2016-06-21

    A surface-hopping extension of the coupled coherent states-method [D. Shalashilin and M. Child, Chem. Phys. 304, 103-120 (2004)] for simulating non-adiabatic dynamics with quantum effects of the nuclei is put forward. The time-dependent Schrödinger equation for the motion of the nuclei is solved in a moving basis set. The basis set is guided by classical trajectories, which can hop stochastically between different electronic potential energy surfaces. The non-adiabatic transitions are modelled by a modified version of Tully's fewest switches algorithm. The trajectories consist of Gaussians in the phase space of the nuclei (coherent states) combined with amplitudes for an electronic wave function. The time-dependent matrix elements between different coherent states determine the amplitude of each trajectory in the total multistate wave function; the diagonal matrix elements determine the hopping probabilities and gradients. In this way, both interference effects and non-adiabatic transitions can be described in a very compact fashion, leading to the exact solution if convergence with respect to the number of trajectories is achieved and the potential energy surfaces are known globally. The method is tested on a 2D model for a conical intersection [A. Ferretti, J. Chem. Phys. 104, 5517 (1996)], where a nuclear wavepacket encircles the point of degeneracy between two potential energy surfaces and interferes with itself. These interference effects are absent in classical trajectory-based molecular dynamics but can be fully incorpo rated if trajectories are replaced by surface hopping coupled coherent states. PMID:27334155

  19. Calibration-quality adiabatic potential energy surfaces for H3+ and its isotopologues

    NASA Astrophysics Data System (ADS)

    Pavanello, Michele; Adamowicz, Ludwik; Alijah, Alexander; Zobov, Nikolai F.; Mizus, Irina I.; Polyansky, Oleg L.; Tennyson, Jonathan; Szidarovszky, Tamás; Császár, Attila G.

    2012-05-01

    Calibration-quality ab initio adiabatic potential energy surfaces (PES) have been determined for all isotopologues of the molecular ion H_3^+. The underlying Born-Oppenheimer electronic structure computations used optimized explicitly correlated shifted Gaussian functions. The surfaces include diagonal Born-Oppenheimer corrections computed from the accurate electronic wave functions. A fit to the 41 655 ab initio points is presented which gives a standard deviation better than 0.1 cm-1 when restricted to the points up to 6000 cm-1 above the first dissociation asymptote. Nuclear motion calculations utilizing this PES, called GLH3P, and an exact kinetic energy operator given in orthogonal internal coordinates are presented. The ro-vibrational transition frequencies for H_3^+, H2D+, and HD_2^+ are compared with high resolution measurements. The most sophisticated and complete procedure employed to compute ro-vibrational energy levels, which makes explicit allowance for the inclusion of non-adiabatic effects, reproduces all the known ro-vibrational levels of the H_3^+ isotopologues considered to better than 0.2 cm-1. This represents a significant (order-of-magnitude) improvement compared to previous studies of transitions in the visible. Careful treatment of linear geometries is important for high frequency transitions and leads to new assignments for some of the previously observed lines. Prospects for further investigations of non-adiabatic effects in the H_3^+ isotopologues are discussed. In short, the paper presents (a) an extremely accurate global potential energy surface of H_3^+ resulting from high accuracy ab initio computations and global fit, (b) very accurate nuclear motion calculations of all available experimental line data up to 16 000 cm-1, and (c) results suggest that we can predict accurately the lines of H_3^+ towards dissociation and thus facilitate their experimental observation.

  20. Non-adiabatic dynamics around a conical intersection with surface-hopping coupled coherent states

    NASA Astrophysics Data System (ADS)

    Humeniuk, Alexander; Mitrić, Roland

    2016-06-01

    A surface-hopping extension of the coupled coherent states-method [D. Shalashilin and M. Child, Chem. Phys. 304, 103-120 (2004)] for simulating non-adiabatic dynamics with quantum effects of the nuclei is put forward. The time-dependent Schrödinger equation for the motion of the nuclei is solved in a moving basis set. The basis set is guided by classical trajectories, which can hop stochastically between different electronic potential energy surfaces. The non-adiabatic transitions are modelled by a modified version of Tully's fewest switches algorithm. The trajectories consist of Gaussians in the phase space of the nuclei (coherent states) combined with amplitudes for an electronic wave function. The time-dependent matrix elements between different coherent states determine the amplitude of each trajectory in the total multistate wave function; the diagonal matrix elements determine the hopping probabilities and gradients. In this way, both interference effects and non-adiabatic transitions can be described in a very compact fashion, leading to the exact solution if convergence with respect to the number of trajectories is achieved and the potential energy surfaces are known globally. The method is tested on a 2D model for a conical intersection [A. Ferretti, J. Chem. Phys. 104, 5517 (1996)], where a nuclear wavepacket encircles the point of degeneracy between two potential energy surfaces and interferes with itself. These interference effects are absent in classical trajectory-based molecular dynamics but can be fully incorpo rated if trajectories are replaced by surface hopping coupled coherent states.

  1. Shortcuts to adiabaticity in a time-dependent box

    PubMed Central

    Campo, A. del; Boshier, M. G.

    2012-01-01

    A method is proposed to drive an ultrafast non-adiabatic dynamics of an ultracold gas trapped in a time-dependent box potential. The resulting state is free from spurious excitations associated with the breakdown of adiabaticity, and preserves the quantum correlations of the initial state up to a scaling factor. The process relies on the existence of an adiabatic invariant and the inversion of the dynamical self-similar scaling law dictated by it. Its physical implementation generally requires the use of an auxiliary expulsive potential. The method is extended to a broad family of interacting many-body systems. As illustrative examples we consider the ultrafast expansion of a Tonks-Girardeau gas and of Bose-Einstein condensates in different dimensions, where the method exhibits an excellent robustness against different regimes of interactions and the features of an experimentally realizable box potential. PMID:22970340

  2. Shortcuts to adiabaticity in a time-dependent box.

    PubMed

    del Campo, A; Boshier, M G

    2012-01-01

    A method is proposed to drive an ultrafast non-adiabatic dynamics of an ultracold gas trapped in a time-dependent box potential. The resulting state is free from spurious excitations associated with the breakdown of adiabaticity, and preserves the quantum correlations of the initial state up to a scaling factor. The process relies on the existence of an adiabatic invariant and the inversion of the dynamical self-similar scaling law dictated by it. Its physical implementation generally requires the use of an auxiliary expulsive potential. The method is extended to a broad family of interacting many-body systems. As illustrative examples we consider the ultrafast expansion of a Tonks-Girardeau gas and of Bose-Einstein condensates in different dimensions, where the method exhibits an excellent robustness against different regimes of interactions and the features of an experimentally realizable box potential.

  3. Shortcuts to adiabaticity in a time-dependent box

    NASA Astrophysics Data System (ADS)

    Del Campo, A.; Boshier, M. G.

    2012-09-01

    A method is proposed to drive an ultrafast non-adiabatic dynamics of an ultracold gas trapped in a time-dependent box potential. The resulting state is free from spurious excitations associated with the breakdown of adiabaticity, and preserves the quantum correlations of the initial state up to a scaling factor. The process relies on the existence of an adiabatic invariant and the inversion of the dynamical self-similar scaling law dictated by it. Its physical implementation generally requires the use of an auxiliary expulsive potential. The method is extended to a broad family of interacting many-body systems. As illustrative examples we consider the ultrafast expansion of a Tonks-Girardeau gas and of Bose-Einstein condensates in different dimensions, where the method exhibits an excellent robustness against different regimes of interactions and the features of an experimentally realizable box potential.

  4. Effect of dephasing on stimulated Raman adiabatic passage

    SciTech Connect

    Ivanov, P.A.; Vitanov, N.V.; Bergmann, K.

    2004-12-01

    This work explores the effect of phase relaxation on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The study is based on the Liouville equation, which is solved analytically in the adiabatic limit. The transfer efficiency of STIRAP is found to decrease exponentially with the dephasing rate; this effect is stronger for shorter pulse delays and weaker for larger delays, since the transition time is found to be inversely proportional to the pulse delay. Moreover, it is found that the transfer efficiency of STIRAP in the presence of dephasing does not depend on the peak Rabi frequencies at all, as long as they are sufficiently large to enforce adiabatic evolution; hence increasing the field intensity cannot reduce the dephasing losses. It is shown also that for any dephasing rate, the final populations of the initial state and the intermediate state are equal. For strong dephasing all three populations tend to (1/3)

  5. Design of a photonic lattice using shortcuts to adiabaticity

    NASA Astrophysics Data System (ADS)

    Stefanatos, Dionisis

    2014-08-01

    In this article we use the method of shortcuts to adiabaticity to design a photonic lattice (array of waveguides) which can drive the input light to a controlled location at the output. The output position in the array is determined by functions of the propagation distance along the waveguides, which modulate the lattice characteristics (index of refraction, and first- and second-neighbor couplings). The proposed coupler is expected to possess the robustness properties of the design method, coming from its adiabatic nature, and also to have a smaller footprint than purely adiabatic couplers. The present work provides a very interesting example where methods from quantum control can be exploited to design lattices with desired input-output properties.

  6. Adiabatic Quantum Programming: Minor Embedding With Hard Faults

    SciTech Connect

    Klymko, Christine F; Sullivan, Blair D; Humble, Travis S

    2013-01-01

    Adiabatic quantum programming defines the time-dependent mapping of a quantum algorithm into the hardware or logical fabric. An essential programming step is the embedding of problem-specific information into the logical fabric to define the quantum computational transformation. We present algorithms for embedding arbitrary instances of the adiabatic quantum optimization algorithm into a square lattice of specialized unit cells. Our methods are shown to be extensible in fabric growth, linear in time, and quadratic in logical footprint. In addition, we provide methods for accommodating hard faults in the logical fabric without invoking approximations to the original problem. These hard fault-tolerant embedding algorithms are expected to prove useful for benchmarking the adiabatic quantum optimization algorithm on existing quantum logical hardware. We illustrate this versatility through numerical studies of embeddabilty versus hard fault rates in square lattices of complete bipartite unit cells.

  7. Adiabatic Quantum Computation and the Theory of Quantum Phase Transitions

    NASA Astrophysics Data System (ADS)

    Kaminsky, William; Lloyd, Seth

    2007-03-01

    We present a general approach to determining the asymptotic scaling of adiabatic quantum computational resources (space, time, energy, and precision) on random instances of NP-complete graph theory problems. By utilizing the isomorphisms between certain NP-complete graph theory problems and certain frustrated spin models, we demonstrate that the asymptotic scaling of the minimum spectral gap that determines the asymptotic running time of adiabatic algorithms is itself determined by the presence and character of quantum phase transitions in these frustrated models. Most notably, we draw the conclusion that adiabatic quantum computers based on quantum Ising models are much less likely to be efficient than those based on quantum rotor or Heisenberg models. We then exhibit practical rotor and Heisenberg model based architectures using Josephson junction and quantum dot circuits.

  8. Non-adiabatic excited state molecular dynamics of phenylene ethynylene dendrimer using a multiconfigurational Ehrenfest approach.

    PubMed

    Fernandez-Alberti, Sebastian; Makhov, Dmitry V; Tretiak, Sergei; Shalashilin, Dmitrii V

    2016-04-21

    Photoinduced dynamics of electronic and vibrational unidirectional energy transfer between meta-linked building blocks in a phenylene ethynylene dendrimer is simulated using a multiconfigurational Ehrenfest in time-dependent diabatic basis (MCE-TDDB) method, a new variant of the MCE approach developed by us for dynamics involving multiple electronic states with numerous abrupt crossings. Excited-state energies, gradients and non-adiabatic coupling terms needed for dynamics simulation are calculated on-the-fly using the Collective Electron Oscillator (CEO) approach. A comparative analysis of our results obtained using MCE-TDDB, the conventional Ehrenfest method and the surface-hopping approach with and without decoherence corrections is presented. PMID:27004611

  9. Quantum defects of nonpenetrating Rydberg states of the SO molecule in adiabatic and nonadiabatic regions of the spectrum

    NASA Astrophysics Data System (ADS)

    Dorofeev, Dmitry L.; Elfimov, Sergei V.; Zon, Boris A.

    2012-02-01

    This paper is dedicated to the implementation of a generalized approach for calculating quantum defects in high Rydberg states of polar molecules with an account for the dipole moment of the molecular core and l uncoupling of the Rydberg electron. Adiabatic (Born-Oppenheimer) and nonadiabatic (inverse Born-Oppenheimer) regions of the spectrum are considered. The nonadiabatic case with a nonzero projection of the core momentum on the core axis is considered and is illustrated by the example of the SO molecule.

  10. Global adiabaticity and non-Gaussianity consistency condition

    NASA Astrophysics Data System (ADS)

    Romano, Antonio Enea; Mooij, Sander; Sasaki, Misao

    2016-10-01

    In the context of single-field inflation, the conservation of the curvature perturbation on comoving slices, Rc, on super-horizon scales is one of the assumptions necessary to derive the consistency condition between the squeezed limit of the bispectrum and the spectrum of the primordial curvature perturbation. However, the conservation of Rc holds only after the perturbation has reached the adiabatic limit where the constant mode of Rc dominates over the other (usually decaying) mode. In this case, the non-adiabatic pressure perturbation defined in the thermodynamic sense, δPnad ≡ δP - cw2 δρ where cw2 = P ˙ / ρ ˙ , usually becomes also negligible on superhorizon scales. Therefore one might think that the adiabatic limit is the same as thermodynamic adiabaticity. This is in fact not true. In other words, thermodynamic adiabaticity is not a sufficient condition for the conservation of Rc on super-horizon scales. In this paper, we consider models that satisfy δPnad = 0 on all scales, which we call global adiabaticity (GA), which is guaranteed if cw2 = cs2, where cs is the phase velocity of the propagation of the perturbation. A known example is the case of ultra-slow-roll (USR) inflation in which cw2 = cs2 = 1. In order to generalize USR we develop a method to find the Lagrangian of GA K-inflation models from the behavior of background quantities as functions of the scale factor. Applying this method we show that there indeed exists a wide class of GA models with cw2 = cs2, which allows Rc to grow on superhorizon scales, and hence violates the non-Gaussianity consistency condition.

  11. Gravitational Chern-Simons and the adiabatic limit

    NASA Astrophysics Data System (ADS)

    McLellan, Brendan

    2010-12-01

    We compute the gravitational Chern-Simons term explicitly for an adiabatic family of metrics using standard methods in general relativity. We use the fact that our base three-manifold is a quasiregular K-contact manifold heavily in this computation. Our key observation is that this geometric assumption corresponds exactly to a Kaluza-Klein Ansatz for the metric tensor on our three-manifold, which allows us to translate our problem into the language of general relativity. Similar computations have been performed by Guralnik et al. [Ann. Phys. 308, 222 (2008)], although not in the adiabatic context.

  12. Speeding up Adiabatic Quantum State Transfer by Using Dressed States

    NASA Astrophysics Data System (ADS)

    Baksic, Alexandre; Ribeiro, Hugo; Clerk, Aashish A.

    2016-06-01

    We develop new pulse schemes to significantly speed up adiabatic state transfer protocols. Our general strategy involves adding corrections to an initial control Hamiltonian that harness nonadiabatic transitions. These corrections define a set of dressed states that the system follows exactly during the state transfer. We apply this approach to stimulated Raman adiabatic passage protocols and show that a suitable choice of dressed states allows one to design fast protocols that do not require additional couplings, while simultaneously minimizing the occupancy of the "intermediate" level.

  13. Quantum Adiabatic Pumping by Modulating Tunnel Phase in Quantum Dots

    NASA Astrophysics Data System (ADS)

    Taguchi, Masahiko; Nakajima, Satoshi; Kubo, Toshihiro; Tokura, Yasuhiro

    2016-08-01

    In a mesoscopic system, under zero bias voltage, a finite charge is transferred by quantum adiabatic pumping by adiabatically and periodically changing two or more control parameters. We obtained expressions for the pumped charge for a ring of three quantum dots (QDs) by choosing the magnetic flux penetrating the ring as one of the control parameters. We found that the pumped charge shows a steplike behavior with respect to the variance of the flux. The value of the step heights is not universal but depends on the trajectory of the control parameters. We discuss the physical origin of this behavior on the basis of the Fano resonant condition of the ring.

  14. Gravitational Chern-Simons and the adiabatic limit

    SciTech Connect

    McLellan, Brendan

    2010-12-15

    We compute the gravitational Chern-Simons term explicitly for an adiabatic family of metrics using standard methods in general relativity. We use the fact that our base three-manifold is a quasiregular K-contact manifold heavily in this computation. Our key observation is that this geometric assumption corresponds exactly to a Kaluza-Klein Ansatz for the metric tensor on our three-manifold, which allows us to translate our problem into the language of general relativity. Similar computations have been performed by Guralnik et al.[Ann. Phys. 308, 222 (2008)], although not in the adiabatic context.

  15. Adiabatic fluctuations from cosmic strings in a contracting universe

    SciTech Connect

    Brandenberger, Robert H.; Takahashi, Tomo; Yamaguchi, Masahide E-mail: tomot@cc.saga-u.ac.jp

    2009-07-01

    We show that adiabatic, super-Hubble, and almost scale invariant density fluctuations are produced by cosmic strings in a contracting universe. An essential point is that isocurvature perturbations produced by topological defects such as cosmic strings on super-Hubble scales lead to a source term which seeds the growth of curvature fluctuations on these scales. Once the symmetry has been restored at high temperatures, the isocurvature seeds disappear, and the fluctuations evolve as adiabatic ones in the expanding phase. Thus, cosmic strings may be resurrected as a mechanism for generating the primordial density fluctuations observed today.

  16. Adiabatic effects in the dynamics of Langmuir solitons

    SciTech Connect

    Astrelin, V.T.; Breizman, B.N.; Sedlacek, Z.; Jungwirth, K.

    1988-06-01

    The adiabatic slowness with which the plasma density profile is reconstructed from localized in large-amplitude Langmuir solitons is characteristic of such solitons. Several examples making use of this feature in the description of the soliton dynamics are given. Specifically, long-lived states in the form of composite solitons ar found. Additional limitations are found on the interaction of solitons with each other and with sound waves. The effect of the adiabatic nature on the formation of solitons from free plasmons is discussed.

  17. Power-driven and adiabatic expansions into vacuum

    NASA Astrophysics Data System (ADS)

    Farnsworth, A. V., Jr.

    1980-08-01

    Analytical solutions are obtained for the planar, cylindrical, and spherical expansions into vacuum of matter initially concentrated at a plane, a line, or a point. Both power-driven and adiabatic expansions are considered, where in the power-driven case, the specific power is deposited uniformly in space, but may vary in time according to a power law. These problems are found to be self-similar. The non-self-similar motion of matter during the adiabatic expansion that follows a power pulse of finite duration has also been addressed and a solution has been obtained.

  18. Adiabatic regularisation of power spectra in k-inflation

    SciTech Connect

    Alinea, Allan L.; Kubota, Takahiro; Nakanishi, Yukari; Naylor, Wade E-mail: kubota@celas.osaka-u.ac.jp E-mail: naylor@phys.sci.osaka-u.ac.jp

    2015-06-01

    We look at the question posed by Parker et al. about the effect of UV regularisation on the power spectrum for inflation. Focusing on the slow-roll k-inflation, we show that up to second order in the Hubble and sound flow parameters, the adiabatic regularisation of such model leads to no difference in the power spectrum apart from certain cases that violate near scale-invariant power spectra. Furthermore, extending to non-minimal k-inflation, we establish the equivalence of the subtraction terms in the adiabatic regularisation of the power spectrum in Jordan and Einstein frames.

  19. Local control of non-adiabatic dissociation dynamics

    NASA Astrophysics Data System (ADS)

    Bomble, L.; Chenel, A.; Meier, C.; Desouter-Lecomte, M.

    2011-05-01

    We present a theoretical approach which consists of applying the strategy of local control to projectors based on asymptotic scattering states. This allows to optimize final state distributions upon laser excitation in cases where strong non-adiabatic effects are present. The approach, despite being based on a time-local formulation, can take non-adiabatic transitions that appear at later times fully into account and adopt a corresponding control strategy. As an example, we show various dissociation channels of HeH+, a system where the ultrafast dissociation dynamics is determined by strong non-Born-Oppenheimer effects.

  20. Cesium cation affinities and basicities

    NASA Astrophysics Data System (ADS)

    Gal, Jean-François; Maria, Pierre-Charles; Massi, Lionel; Mayeux, Charly; Burk, Peeter; Tammiku-Taul, Jaana

    2007-11-01

    This review focuses on the quantitative data related to cesium cation interaction with neutral or negatively charged ligands. The techniques used for measuring the cesium cation affinity (enthalpies, CCA), and cesium cation basicities (Gibbs free energies, CCB) are briefly described. The quantum chemical calculations methods that were specifically designed for the determination of cesium cation adduct structures and the energetic aspects of the interaction are discussed. The experimental results, obtained essentially from mass spectrometry techniques, and complemented by thermochemical data, are tabulated and commented. In particular, the correlations between cesium cation affinities and lithium cation affinities for the various kinds of ligands (rare gases, polyatomic neutral molecules, among them aromatic compounds and negative ions) serve as a basis for the interpretation of the diverse electrostatic modes of interaction. A brief account of some recent analytical applications of ion/molecule reactions with Cs+, as well as other cationization approaches by Cs+, is given.

  1. Characterization of adiabatic shear bands in AM60B magnesium alloy under ballistic impact

    SciTech Connect

    Zou, D.L.; Zhen, L. Xu, C.Y.; Shao, W.Z.

    2011-05-15

    Adiabatic shear bands in Mg alloy under ballistic impact at a velocity of 0.5 km.s{sup -1} were characterized by means of optical microscope, scanning electron microscope, transmission electron microscope and indenter technique. The results show that adiabatic shear bands were formed around the impacted crater, and the deformed and transformed bands were distinguished by etching colors in metallographic observation. TEM observation shows that the deformed bands were composed of the elongated grains and high density dislocations, while the transformed bands composed of the ultrafine and equiaxed grains were confirmed. In initial stage, the severe localized plastic deformation led to the formation of elongated grains in the deformed bands. With localized strain increasing, the severe localized deformation assisted with the plastic temperature rising led to the severe deformation grains evolved into the ultrafine and equiaxed grains, while the deformed bands were developed into transformed bands. The formation of the ultrafine and equiaxed grains in the transformed bands should be attributed to the twinning-induced rotational dynamic recrystallization mechanism. High microhardness in the bands was obtained because of the strain hardening, grain refining and content concentration. - Research Highlights: {yields} Deformed and transformed bands are found in Mg alloy under ballistic impact. {yields} The microstructures in the deformed and transformed bands are characterized. {yields} The evolution process of the microstructure in the bands is discussed.

  2. Trace element mass balance in hydrous adiabatic mantle melting: The Hydrous Adiabatic Mantle Melting Simulator version 1 (HAMMS1)

    NASA Astrophysics Data System (ADS)

    Kimura, Jun-Ichi; Kawabata, Hiroshi

    2014-06-01

    numerical mass balance calculation model for the adiabatic melting of a dry to hydrous peridotite has been programmed in order to simulate the trace element compositions of basalts from mid-ocean ridges, back-arc basins, ocean islands, and large igneous provinces. The Excel spreadsheet-based calculator, Hydrous Adiabatic Mantle Melting Simulator version 1 (HAMMS1) uses (1) a thermodynamic model of fractional adiabatic melting of mantle peridotite, with (2) the parameterized experimental melting relationships of primitive to depleted mantle sources in terms of pressure, temperature, water content, and degree of partial melting. The trace element composition of the model basalt is calculated from the accumulated incremental melts within the adiabatic melting regime, with consideration for source depletion. The mineralogic mode in the primitive to depleted source mantle in adiabat is calculated using parameterized experimental results. Partition coefficients of the trace elements of mantle minerals are parameterized to melt temperature mostly from a lattice strain model and are tested using the latest compilations of experimental results. The parameters that control the composition of trace elements in the model are as follows: (1) mantle potential temperature, (2) water content in the source mantle, (3) depth of termination of adiabatic melting, and (4) source mantle depletion. HAMMS1 enables us to obtain the above controlling parameters using Monte Carlo fitting calculations and by comparing the calculated basalt compositions to primary basalt compositions. Additionally, HAMMS1 compares melting parameters with a major element model, which uses petrogenetic grids formulated from experimental results, thus providing better constraints on the source conditions.

  3. "Clickable" agarose for affinity chromatography.

    PubMed

    Punna, Sreenivas; Kaltgrad, Eiton; Finn, M G

    2005-01-01

    Successful purification of biological molecules by affinity chromatography requires the attachment of desired ligands to biocompatible chromatographic supports. The Cu(I)-catalyzed cycloaddition of azides and alkynes-the premier example of "click chemistry"-is an efficient way to make covalent connections among diverse molecules and materials. Both azide and alkyne units are highly selective in their reactivity, being inert to most chemical functionalities and stable to wide ranges of solvent, temperature, and pH. We show that agarose beads bearing alkyne and azide groups can be easily made and are practical precursors to functionalized agarose materials for affinity chromatography.

  4. Overview of affinity tags for protein purification.

    PubMed

    Kimple, Michelle E; Brill, Allison L; Pasker, Renee L

    2013-01-01

    Addition of an affinity tag is a useful method for differentiating recombinant proteins expressed in bacterial and eukaryotic expression systems from the background of total cellular proteins, as well as for detecting protein-protein interactions. This overview describes the historical basis for the development of affinity tags, affinity tags that are commonly used today, how to choose an appropriate affinity tag for a particular purpose, and several recently developed affinity tag technologies that may prove useful in the near future. PMID:24510596

  5. Semiempirical Theories of the Affinities of Negative Atomic Ions

    NASA Technical Reports Server (NTRS)

    Edie, John W.

    1961-01-01

    The determination of the electron affinities of negative atomic ions by means of direct experimental investigation is limited. To supplement the meager experimental results, several semiempirical theories have been advanced. One commonly used technique involves extrapolating the electron affinities along the isoelectronic sequences, The most recent of these extrapolations Is studied by extending the method to Include one more member of the isoelectronic sequence, When the results show that this extension does not increase the accuracy of the calculations, several possible explanations for this situation are explored. A different approach to the problem is suggested by the regularities appearing in the electron affinities. Noting that the regular linear pattern that exists for the ionization potentials of the p electrons as a function of Z, repeats itself for different degrees of ionization q, the slopes and intercepts of these curves are extrapolated to the case of the negative Ion. The method is placed on a theoretical basis by calculating the Slater parameters as functions of q and n, the number of equivalent p-electrons. These functions are no more than quadratic in q and n. The electron affinities are calculated by extending the linear relations that exist for the neutral atoms and positive ions to the negative ions. The extrapolated. slopes are apparently correct, but the intercepts must be slightly altered to agree with experiment. For this purpose one or two experimental affinities (depending on the extrapolation method) are used in each of the two short periods. The two extrapolation methods used are: (A) an isoelectronic sequence extrapolation of the linear pattern as such; (B) the same extrapolation of a linearization of this pattern (configuration centers) combined with an extrapolation of the other terms of the ground configurations. The latter method Is preferable, since it requires only experimental point for each period. The results agree within

  6. Does temperature increase or decrease in adiabatic decompression of magma?

    NASA Astrophysics Data System (ADS)

    Kilinc, A. I.; Ghiorso, M. S.; Khan, T.

    2011-12-01

    We have modeled adiabatic decompression of an andesitic and a basaltic magma as an isentropic process using the Melts algorithm. Our modeling shows that during adiabatic decompression temperature of andesitic magma increases but temperature of basaltic magma decreases. In an isentropic process entropy is constant so change of temperature with pressure can be written as dT/dP=T (dV/dT)/Cp where T (dV/dT)/Cp is generally positive. If delta P is negative so is delta T. In general, in the absence of phase change, we expect the temperature to decrease with adiabatic decompression. The effect of crystallization is to turn a more entropic phase (liquid) into a less entropic phase (solid), which must be compensated by raising the temperature. If during adiabatic decompression there is small amount or no crystallization, T (dV/dT)/Cp effect which lowers the temperature overwhelms the small amount of crystallization, which raises the temperature, and overall system temperature decreases.

  7. On adiabatic stabilization and geometry of Bunsen flames

    SciTech Connect

    Sun, C.J.; Sung, C.J.; Law, C.K.

    1994-12-31

    Two aspects of stretched flame dynamics are investigated via the model problem of the stabilization and geometry of Bunsen flames. Specifically, the possibility of stabilizing a Bunsen flame without heat loss to the burner rim is experimentally investigated by examining the temperature of the rim, the temperature gradient between the rim and the flame base, and the standoff distance of the flame base in relation to the flame thickness. Results show that, while heat loss is still the dominant stabilization mechanism for flames in uniform flows and for strong flames in parabolic flow, adiabatic stabilization and, subsequently, blowoff are indeed possible for weak flames in parabolic flows. The adiabatically stabilized flame is then modeled by using the scalar field formulation and by allowing for the effects of curvature and aerodynamic straining on the local flame speed. The calculated flame configuration agrees well with the experiment for the adiabatically stabilized flame but not for the nonadiabatic flame. Results further show that active modification of the flame curvature is the dominant cause for the flame to maintain adiabatic stabilization. Implications of the present results on turbulent flame modeling are discussed.

  8. Digitized adiabatic quantum computing with a superconducting circuit

    NASA Astrophysics Data System (ADS)

    Barends, R.; Shabani, A.; Lamata, L.; Kelly, J.; Mezzacapo, A.; Heras, U. Las; Babbush, R.; Fowler, A. G.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Solano, E.; Neven, H.; Martinis, John M.

    2016-06-01

    Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.

  9. Digitized adiabatic quantum computing with a superconducting circuit.

    PubMed

    Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M

    2016-06-01

    Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable. PMID:27279216

  10. Digitized adiabatic quantum computing with a superconducting circuit.

    PubMed

    Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M

    2016-06-08

    Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.

  11. Failure of geometric electromagnetism in the adiabatic vector Kepler problem

    SciTech Connect

    Anglin, J.R.; Schmiedmayer, J.

    2004-02-01

    The magnetic moment of a particle orbiting a straight current-carrying wire may precess rapidly enough in the wire's magnetic field to justify an adiabatic approximation, eliminating the rapid time dependence of the magnetic moment and leaving only the particle position as a slow degree of freedom. To zeroth order in the adiabatic expansion, the orbits of the particle in the plane perpendicular to the wire are Keplerian ellipses. Higher-order postadiabatic corrections make the orbits precess, but recent analysis of this 'vector Kepler problem' has shown that the effective Hamiltonian incorporating a postadiabatic scalar potential ('geometric electromagnetism') fails to predict the precession correctly, while a heuristic alternative succeeds. In this paper we resolve the apparent failure of the postadiabatic approximation, by pointing out that the correct second-order analysis produces a third Hamiltonian, in which geometric electromagnetism is supplemented by a tensor potential. The heuristic Hamiltonian of Schmiedmayer and Scrinzi is then shown to be a canonical transformation of the correct adiabatic Hamiltonian, to second order. The transformation has the important advantage of removing a 1/r{sup 3} singularity which is an artifact of the adiabatic approximation.

  12. Fast Quasi-Adiabatic Gas Cooling: An Experiment Revisited

    ERIC Educational Resources Information Center

    Oss, S.; Gratton, L. M.; Calza, G.; Lopez-Arias, T.

    2012-01-01

    The well-known experiment of the rapid expansion and cooling of the air contained in a bottle is performed with a rapidly responsive, yet very cheap thermometer. The adiabatic, low temperature limit is approached quite closely and measured with our apparatus. A straightforward theoretical model for this process is also presented and discussed.…

  13. Quantum back-reaction from non-adiabatic changes

    NASA Astrophysics Data System (ADS)

    Asplund, Curtis; Berenstein, David

    2011-04-01

    Motivated by the problem of thermalization in QFTs and the dual non-equilibrium BH dynamics, we examine a generic and non-trivial aspect of these phenomena, non-adiabatic changes, in a highly simplified setting. We consider a harmonic oscillator whose frequency depends on a second quantum variable x. Beginning with a classical analysis, we show how the system can be described by an improved adiabatic expansion with a velocity dependent force for x. We find an instability at a critical velocity beyond which the adiabatic (Born-Oppenheimer) approximation breaks down. We extend this calculation to the fully quantum system and to field theory and describe how to study fermions with similar techniques. Finally, we set up a model with an abrupt change in the oscillator whose quantum mechanics can be solved exactly so that one can study the effects of back-reaction of a fully non-adiabatic change in a controlled setting. We comment on applications of these general results to the physics of D-branes, inflation, and BHs in AdS/CFT.

  14. Adiabatic quantum computing with phase modulated laser pulses

    PubMed Central

    Goswami, Debabrata

    2005-01-01

    Implementation of quantum logical gates for multilevel systems is demonstrated through decoherence control under the quantum adiabatic method using simple phase modulated laser pulses. We make use of selective population inversion and Hamiltonian evolution with time to achieve such goals robustly instead of the standard unitary transformation language. PMID:17195865

  15. Adiabatic frequency conversion with a sign flip in the coupling

    NASA Astrophysics Data System (ADS)

    Hristova, H. S.; Rangelov, A. A.; Montemezzani, G.; Vitanov, N. V.

    2016-09-01

    Adiabatic frequency conversion is a method recently developed in nonlinear optics [H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, Phys. Rev. A 78, 063821 (2008), 10.1103/PhysRevA.78.063821], using ideas from the technique of rapid adiabatic passage (RAP) via a level crossing in quantum physics. In this method, the coupling coefficients are constant and the phase mismatch is chirped adiabatically. In this work, we propose another method for adiabatic frequency conversion, in which the phase mismatch is constant and the coupling is a pulse-shaped function with a sign flip (i.e., a phase step of π ) at its maximum. Compared to the RAP method, our technique has comparable efficiency but it is simpler to implement for it only needs two bulk crystals with opposite χ(2 ) nonlinearity. Moreover, because our technique requires constant nonzero frequency mismatch and has zero conversion efficiency on exact frequency matching, it can be used as a frequency filter.

  16. The flat Grothendieck-Riemann-Roch theorem without adiabatic techniques

    NASA Astrophysics Data System (ADS)

    Ho, Man-Ho

    2016-09-01

    In this paper we give a simplified proof of the flat Grothendieck-Riemann-Roch theorem. The proof makes use of the local family index theorem and basic computations of the Chern-Simons form. In particular, it does not involve any adiabatic limit computation of the reduced eta-invariant.

  17. When an Adiabatic Irreversible Expansion or Compression Becomes Reversible

    ERIC Educational Resources Information Center

    Anacleto, Joaquim; Ferreira, J. M.; Soares, A. A.

    2009-01-01

    This paper aims to contribute to a better understanding of the concepts of a "reversible process" and "entropy". For this purpose, an adiabatic irreversible expansion or compression is analysed, by considering that an ideal gas is expanded (compressed), from an initial pressure P[subscript i] to a final pressure P[subscript f], by being placed in…

  18. A Kinetic Study of the Adiabatic Polymerization of Acrylamide.

    ERIC Educational Resources Information Center

    Thomson, R. A. M.

    1986-01-01

    Discusses theory, procedures, and results for an experiment which demonstrates the application of basic physics to chemical problems. The experiment involves the adiabatic process, in which polymerization carried out in a vacuum flask is compared to the theoretical prediction of the model with the temperature-time curve obtained in practice. (JN)

  19. Computational study of coagulation factor VIIa's affinity for phospholipid membranes.

    PubMed

    Taboureau, Olivier; Olsen, Ole Hvilsted

    2007-02-01

    The interaction between the gamma-carboxyglutamic acid-rich domain of coagulation factor VIIa (FVIIa), a vitamin-K-dependent enzyme, and phospholipid membranes plays a major role in initiation of blood coagulation. However, despite a high sequence and structural similarity to the Gla domain of other vitamin-K-dependent enzymes with a high membrane affinity, its affinity for negatively charged phospholipids is poor. A few amino acid differences are responsible for this observation. Based on the X-ray structure of lysophosphatidylserine (lysoPS) bound to the Gla domain of bovine prothrombin (Prth), models of the Gla domain of wildtype FVIIa and mutated FVIIa Gla domains in complex with lysoPS were built. Molecular dynamics (MD) and steered molecular dynamics (SMD) simulations on the complexes were applied to investigate the significant difference in the binding affinity. The MD simulation approach provides a structural and dynamic support to the role of P10Q and K32E mutations in the improvement of the membrane contact. Hence, rotation of the Gly11 main chain generated during the MD simulation results in a hydrogen bond with Q10 side chain as well as the appearance of a hydrogen bond between E32 and Q10 forcing the loop harbouring Arg9 and Arg15 to shrink and thereby enhances the accessibility of the phospholipids to the calcium ions. Furthermore, the application of the SMD simulation method to dissociate C6-lysoPS from a series of Gla domain models exhibits a ranking of the rupture force that can be useful in the interpretation of the PS interaction with Gla domains. Finally, adiabatic mapping of Gla6 residue in FVIIa with or without insertion of Tyr4 confirms the critical role of the insertion on the conformation of the side chain Gla6 in FVIIa and the corresponding Gla7 in Prth. PMID:17131117

  20. Quantifying Affinity among Chinese Dialects.

    ERIC Educational Resources Information Center

    Cheng, Chin-Chuan

    A study of the relationships between Chinese dialects based on a quantitative measure of dialect affinity is summarized. First, tone values in all the dialect localities available in the early 1970s were used to calculate the dialectal differences in terms of tone height with respect to the "yin and yang" split. In the late 1970s, calculations of…

  1. Affine Contractions on the Plane

    ERIC Educational Resources Information Center

    Celik, D.; Ozdemir, Y.; Ureyen, M.

    2007-01-01

    Contractions play a considerable role in the theory of fractals. However, it is not easy to find contractions which are not similitudes. In this study, it is shown by counter examples that an affine transformation of the plane carrying a given triangle onto another triangle may not be a contraction even if it contracts edges, heights or medians.…

  2. The exact forces on classical nuclei in non-adiabatic charge transfer.

    PubMed

    Agostini, Federica; Abedi, Ali; Suzuki, Yasumitsu; Min, Seung Kyu; Maitra, Neepa T; Gross, E K U

    2015-02-28

    The decomposition of electronic and nuclear motion presented in Abedi et al. [Phys. Rev. Lett. 105, 123002 (2010)] yields a time-dependent potential that drives the nuclear motion and fully accounts for the coupling to the electronic subsystem. Here, we show that propagation of an ensemble of independent classical nuclear trajectories on this exact potential yields dynamics that are essentially indistinguishable from the exact quantum dynamics for a model non-adiabatic charge transfer problem. We point out the importance of step and bump features in the exact potential that are critical in obtaining the correct splitting of the quasiclassical nuclear wave packet in space after it passes through an avoided crossing between two Born-Oppenheimer surfaces and analyze their structure. Finally, an analysis of the exact potentials in the context of trajectory surface hopping is presented, including preliminary investigations of velocity-adjustment and the force-induced decoherence effect.

  3. The exact forces on classical nuclei in non-adiabatic charge transfer.

    PubMed

    Agostini, Federica; Abedi, Ali; Suzuki, Yasumitsu; Min, Seung Kyu; Maitra, Neepa T; Gross, E K U

    2015-02-28

    The decomposition of electronic and nuclear motion presented in Abedi et al. [Phys. Rev. Lett. 105, 123002 (2010)] yields a time-dependent potential that drives the nuclear motion and fully accounts for the coupling to the electronic subsystem. Here, we show that propagation of an ensemble of independent classical nuclear trajectories on this exact potential yields dynamics that are essentially indistinguishable from the exact quantum dynamics for a model non-adiabatic charge transfer problem. We point out the importance of step and bump features in the exact potential that are critical in obtaining the correct splitting of the quasiclassical nuclear wave packet in space after it passes through an avoided crossing between two Born-Oppenheimer surfaces and analyze their structure. Finally, an analysis of the exact potentials in the context of trajectory surface hopping is presented, including preliminary investigations of velocity-adjustment and the force-induced decoherence effect. PMID:25725727

  4. Statistical theory of rarified gases in the coulomb model of substance: Adiabatic approximation and initial atoms

    NASA Astrophysics Data System (ADS)

    Bobrov, V. B.

    2014-03-01

    In the framework of the adiabatic approximation for a subsystem of nuclei with the average distance between them significantly exceeding the dimensions of the initial atom, we consider a nonrelativistic Coulomb system consisting of electrons and nuclei of one type for the temperature range where we can restrict ourself to using the ground state to describe the electron subsystem. We show that the equilibrium properties of such a system are equivalent to the thermodynamic properties of the one-component system of initial atoms interacting between themselves via a short-range potential that is the effective potential of the nucleus-nucleus interaction. In the framework of the applicability of Boltzmann statistics, we present quantum group expansions for the thermodynamic properties of a chemically reacting rarified gas that correspond to the method of initial atoms.

  5. The exact forces on classical nuclei in non-adiabatic charge transfer

    SciTech Connect

    Agostini, Federica; Abedi, Ali; Suzuki, Yasumitsu; Min, Seung Kyu; Gross, E. K. U.; Maitra, Neepa T.

    2015-02-28

    The decomposition of electronic and nuclear motion presented in Abedi et al. [Phys. Rev. Lett. 105, 123002 (2010)] yields a time-dependent potential that drives the nuclear motion and fully accounts for the coupling to the electronic subsystem. Here, we show that propagation of an ensemble of independent classical nuclear trajectories on this exact potential yields dynamics that are essentially indistinguishable from the exact quantum dynamics for a model non-adiabatic charge transfer problem. We point out the importance of step and bump features in the exact potential that are critical in obtaining the correct splitting of the quasiclassical nuclear wave packet in space after it passes through an avoided crossing between two Born-Oppenheimer surfaces and analyze their structure. Finally, an analysis of the exact potentials in the context of trajectory surface hopping is presented, including preliminary investigations of velocity-adjustment and the force-induced decoherence effect.

  6. Molecular wave function and effective adiabatic potentials calculated by extended multi-configuration time-dependent Hartree-Fock method

    SciTech Connect

    Kato, Tsuyoshi; Ide, Yoshihiro; Yamanouchi, Kaoru

    2015-12-31

    We first calculate the ground-state molecular wave function of 1D model H{sub 2} molecule by solving the coupled equations of motion formulated in the extended multi-configuration time-dependent Hartree-Fock (MCTDHF) method by the imaginary time propagation. From the comparisons with the results obtained by the Born-Huang (BH) expansion method as well as with the exact wave function, we observe that the memory size required in the extended MCTDHF method is about two orders of magnitude smaller than in the BH expansion method to achieve the same accuracy for the total energy. Second, in order to provide a theoretical means to understand dynamical behavior of the wave function, we propose to define effective adiabatic potential functions and compare them with the conventional adiabatic electronic potentials, although the notion of the adiabatic potentials is not used in the extended MCTDHF approach. From the comparison, we conclude that by calculating the effective potentials we may be able to predict the energy differences among electronic states even for a time-dependent system, e.g., time-dependent excitation energies, which would be difficult to be estimated within the BH expansion approach.

  7. Non-adiabatic exchange-correlation kernel for the non-equilibrium response of three-dimensional Hubbard model

    NASA Astrophysics Data System (ADS)

    Acharya, Shree Ram; Baral, Nisha; Turkowski, Volodymyr; Rahman, Talat S.

    2015-03-01

    We apply Dynamical Mean-Field Theory (DMFT) to calculate the non-adiabatic (frequency-dependent) exchange-correlation kernel for the three-dimensional Hubbard model. We analyze the dependence of the kernel on the electron doping, local Coulomb repulsion and frequency by using three different impurity solvers: Hubbard-I, Iterative Perturbation Theory (IPT) and Continuous-Time Quantum Monte Carlo (CT-QMC). From the calculated data, we obtain approximate analytical expressions for the kernel. We apply the exact numerical and analytical kernels to study the non-equilibrium response of the system for applied ultrafast laser pulse. We demonstrate that the non-adiabaticity of the kernel plays an important role in the system response; in particular, leading to new excited-states involved in the system dynamics. Work supported in part by DOE Grant No. DOE-DE-FG02-07ER46354.

  8. Vibrational coherences in charge-transfer dyes: A non-adiabatic picture

    SciTech Connect

    Sissa, Cristina; Delchiaro, Francesca; Di Maiolo, Francesco

    2014-10-28

    Essential-state models efficiently describe linear and nonlinear spectral properties of different families of charge-transfer chromophores. Here, the essential-state machinery is applied to the calculation of the early-stage dynamics after ultrafast (coherent) excitation of polar and quadrupolar chromophores. The fully non-adiabatic treatment of coupled electronic and vibrational motion allows for a reliable description of the dynamics of these intriguing systems. In particular, the proposed approach is reliable even when the adiabatic and harmonic approximations do not apply, such as for quadrupolar dyes that show a multistable, broken-symmetry excited state. Our approach quite naturally leads to a clear picture for a dynamical Jahn-Teller effect in these systems. The recovery of symmetry due to dynamical effects is however disrupted in polar solvents where a static symmetry lowering is observed. More generally, thermal disorder in polar solvents is responsible for dephasing phenomena, damping the coherent oscillations with particularly important effects in the case of polar dyes.

  9. Reduction of thioredoxin significantly decreases its partial specific volume and adiabatic compressibility.

    PubMed Central

    Kaminsky, S. M.; Richards, F. M.

    1992-01-01

    The partial specific volume and adiabatic compressibility were determined at several temperatures for oxidized and reduced Escherichia coli thioredoxin. Oxidized thioredoxin had a partial specific volume of 0.785-0.809 mL/g at the observed upper limit for all proteins whereas the partial specific volume of reduced thioredoxin was 0.745-0.755 mL/g, a value in the range found for a majority of proteins. The adiabatic compressibility of oxidized thioredoxin was also much larger (9.8-18 x 10(-12) cm2 dyne-1) than that of the reduced protein (3.8-7.3 x 10(-12)). Apart from the region immediately around the small disulfide loop, the structures of the oxidized (X-ray, crystal) and reduced protein (nuclear magnetic resonance, solution) are reported to be very similar. It would appear that alterations in the solvent layer in contact with the protein surface must play a major role in producing these large changes in the apparent specific volumes and compressibilities in this system. Some activities of thioredoxin require the reduced structure but are not electron transfer reactions. The large changes in physical parameters reported here suggest the possibility of a reversible metabolic control function for the SS bond. PMID:1304879

  10. Theory of laser-induced adiabat shaping in inertial fusion implosions: The relaxation method

    SciTech Connect

    Betti, R.; Anderson, K.; Knauer, J.; Collins, T.J.B.; McCrory, R.L.; McKenty, P.W.; Skupsky, S.

    2005-04-15

    The theory of the adiabat shaping induced by a strong shock propagating through a relaxed density profile is carried out for inertial confinement fusion (ICF) capsules. The relaxed profile is produced through a laser prepulse, while the adiabat-shaping shock is driven by the foot of the main laser pulse. The theoretical adiabat profiles accurately reproduce the simulation results. ICF capsules with a shaped adiabat are expected to benefit from improved hydrodynamic stability while maintaining the same one-dimensional performances as flat-adiabat shells.

  11. Lectin affinity chromatography of glycolipids

    SciTech Connect

    Torres, B.V.; Smith, D.F.

    1987-05-01

    Since glycolipids (GLs) are either insoluble or form mixed micelles in water, lectin affinity chromatography in aqueous systems has not been applied to their separation. They have overcome this problem by using tetrahydrofuran (THF) in the mobile phase during chromatography. Affinity columns prepared with the GalNAc-specific Helix pomatia agglutinin (HPA) and equilibrated in THF specifically bind the (/sup 3/H)oligosaccharide derived from Forssman GL indicating that the immobilized HPA retained its carbohydrate-binding specificity in this solvent. Intact Forssman GL was bound by the HPA-column equilibrated in THF and was specifically eluted with 0.1 mg/ml GalNAc in THF. Purification of the Forssman GL was achieved when a crude lipid extract of sheep erythrocyte membranes was applied to the HPA-column in THF. Non-specifically bound GLs were eluted from the column using a step gradient of aqueous buffer in THF, while the addition of GalNAc was required to elute the specifically bound GLs. Using this procedure the A-active GLs were purified from a crude lipid extract of type A human erythrocytes in a single chromatographic step. The use of solvents that maintain carbohydrate-binding specificity and lipid solubility will permit the application of affinity chromatography on immobilized carbohydrate-binding proteins to intact GLs.

  12. Adiabatic molecular-dynamics-simulation-method studies of kinetic friction

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Sokoloff, J. B.

    2005-06-01

    An adiabatic molecular-dynamics method is developed and used to study the Muser-Robbins model for dry friction (i.e., nonzero kinetic friction in the slow sliding speed limit). In this model, dry friction between two crystalline surfaces rotated with respect to each other is due to mobile molecules (i.e., dirt particles) adsorbed at the interface. Our adiabatic method allows us to quickly locate interface potential-well minima, which become unstable during sliding of the surfaces. Since dissipation due to friction in the slow sliding speed limit results from mobile molecules dropping out of such unstable wells, our method provides a way to calculate dry friction, which agrees extremely well with results found by conventional molecular dynamics for the same system, but our method is more than a factor of 10 faster.

  13. Adiabatic far-field sub-diffraction imaging

    PubMed Central

    Cang, Hu; Salandrino, Alessandro; Wang, Yuan; Zhang, Xiang

    2015-01-01

    The limited resolution of a conventional optical imaging system stems from the fact that the fine feature information of an object is carried by evanescent waves, which exponentially decays in space and thus cannot reach the imaging plane. We introduce here an adiabatic lens, which utilizes a geometrically conformal surface to mediate the interference of slowly decompressed electromagnetic waves at far field to form images. The decompression is satisfying an adiabatic condition, and by bridging the gap between far field and near field, it allows far-field optical systems to project an image of the near-field features directly. Using these designs, we demonstrated the magnification can be up to 20 times and it is possible to achieve sub-50 nm imaging resolution in visible. Our approach provides a means to extend the domain of geometrical optics to a deep sub-wavelength scale. PMID:26258769

  14. Adiabatic creation of atomic squeezing in dark states versus decoherences

    SciTech Connect

    Gong, Z. R.; Sun, C. P.; Wang Xiaoguang

    2010-07-15

    We study the multipartite correlations of the multiatom dark states, which are characterized by the atomic squeezing beyond the pairwise entanglement. It is shown that, in the photon storage process with atomic ensemble via the electromagnetically induced transparency (EIT) mechanism, the atomic squeezing and the pairwise entanglement can be created by adiabatically manipulating the Rabi frequency of the classical light field on the atomic ensemble. We also consider the sudden death for the atomic squeezing and the pairwise entanglement under various decoherence channels. An optimal time for generating the greatest atomic squeezing and pairwise entanglement is obtained by studying in detail the competition between the adiabatic creation of quantum correlation in the atomic ensemble and the decoherence that we describe with three typical decoherence channels.

  15. Adiabatic theory of solitons fed by dispersive waves

    NASA Astrophysics Data System (ADS)

    Pickartz, Sabrina; Bandelow, Uwe; Amiranashvili, Shalva

    2016-09-01

    We consider scattering of low-amplitude dispersive waves at an intense optical soliton which constitutes a nonlinear perturbation of the refractive index. Specifically, we consider a single-mode optical fiber and a group velocity matched pair: an optical soliton and a nearly perfectly reflected dispersive wave, a fiber-optical analog of the event horizon. By combining (i) an adiabatic approach that is used in soliton perturbation theory and (ii) scattering theory from quantum mechanics, we give a quantitative account of the evolution of all soliton parameters. In particular, we quantify the increase in the soliton peak power that may result in the spontaneous appearance of an extremely large, so-called champion soliton. The presented adiabatic theory agrees well with the numerical solutions of the pulse propagation equation. Moreover, we predict the full frequency band of the scattered dispersive waves and explain an emerging caustic structure in the space-time domain.

  16. On the Effect of Strain Gradient on Adiabatic Shear Banding

    NASA Astrophysics Data System (ADS)

    Tsagrakis, Ioannis; Aifantis, Elias C.

    2015-10-01

    Most of the work on adiabatic shear banding is based on the effect of temperature gradients on shear band nucleation and evolution. In contrast, the present work considers the coupling between temperature and strain gradients. The competition of thermal and strain gradient terms on the onset of instability and its dependence on specimen size is illustrated. It is shown that heat conduction promotes the instability initiation in the hardening part of the homogeneous stress-strain, while the strain gradient term favors the occurrence of this initiation in the softening regime. This behavior is size dependent, i.e., small specimens can support stable homogeneous deformations even in the softening regime. The spacing of adiabatic shear bands is also evaluated by considering the dominant instability mode during the primary stages of the localization process and it is found that it is an increasing function of the strain gradient coefficient.

  17. Steam bottoming cycle for an adiabatic diesel engine

    NASA Technical Reports Server (NTRS)

    Poulin, E.; Demier, R.; Krepchin, I.; Walker, D.

    1984-01-01

    Steam bottoming cycles using adiabatic diesel engine exhaust heat which projected substantial performance and economic benefits for long haul trucks were studied. Steam cycle and system component variables, system cost, size and performance were analyzed. An 811 K/6.90 MPa state of the art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. The costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with aftercooling with the same total output were compared, the annual fuel savings less the added maintenance cost was determined to cover the increase initial cost of the TC/B system in a payback period of 2.3 years. Steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability are considered and the cost and performance of advanced systes are evaluated.

  18. Fluctuations of work in nearly adiabatically driven open quantum systems.

    PubMed

    Suomela, S; Salmilehto, J; Savenko, I G; Ala-Nissila, T; Möttönen, M

    2015-02-01

    We extend the quantum jump method to nearly adiabatically driven open quantum systems in a way that allows for an accurate account of the external driving in the system-environment interaction. Using this framework, we construct the corresponding trajectory-dependent work performed on the system and derive the integral fluctuation theorem and the Jarzynski equality for nearly adiabatic driving. We show that such identities hold as long as the stochastic dynamics and work variable are consistently defined. We numerically study the emerging work statistics for a two-level quantum system and find that the conventional diabatic approximation is unable to capture some prominent features arising from driving, such as the continuity of the probability density of work. Our results reveal the necessity of using accurate expressions for the drive-dressed heat exchange in future experiments probing jump time distributions. PMID:25768477

  19. Coherent adiabatic transport of atoms in radio-frequency traps

    SciTech Connect

    Morgan, T.; O'Sullivan, B.; Busch, Th.

    2011-05-15

    Coherent transport by adiabatic passage has recently been suggested as a high-fidelity technique to engineer the center-of-mass state of single atoms in inhomogeneous environments. While the basic theory behind this process is well understood, several conceptual challenges for its experimental observation have still to be addressed. One of these is the difficulty that currently available optical or magnetic micro-trap systems have in adjusting the tunneling rate time dependently while keeping resonance between the asymptotic trapping states at all times. Here we suggest that both requirements can be fulfilled to a very high degree in an experimentally realistic setup based on radio-frequency traps on atom chips. We show that operations with close to 100% fidelity can be achieved and that these systems also allow significant improvements for performing adiabatic passage with interacting atomic clouds.

  20. Non-adiabatic effects in thermochemistry, spectroscopy and kinetics: the general importance of all three Born-Oppenheimer breakdown corrections.

    PubMed

    Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S

    2015-10-14

    Using a simple model Hamiltonian, the three correction terms for Born-Oppenheimer (BO) breakdown, the adiabatic diagonal correction (DC), the first-derivative momentum non-adiabatic correction (FD), and the second-derivative kinetic-energy non-adiabatic correction (SD), are shown to all contribute to thermodynamic and spectroscopic properties as well as to thermal non-diabatic chemical reaction rates. While DC often accounts for >80% of thermodynamic and spectroscopic property changes, the commonly used practice of including only the FD correction in kinetics calculations is rarely found to be adequate. For electron-transfer reactions not in the inverted region, the common physical picture that diabatic processes occur because of surface hopping at the transition state is proven inadequate as the DC acts first to block access, increasing the transition state energy by (ℏω)(2)λ/16J(2) (where λ is the reorganization energy, J the electronic coupling and ω the vibration frequency). However, the rate constant in the weakly-coupled Golden-Rule limit is identified as being only inversely proportional to this change rather than exponentially damped, owing to the effects of tunneling and surface hopping. Such weakly-coupled long-range electron-transfer processes should therefore not be described as "non-adiabatic" processes as they are easily described by Born-Huang ground-state adiabatic surfaces made by adding the DC to the BO surfaces; instead, they should be called just "non-Born-Oppenheimer" processes. The model system studied consists of two diabatic harmonic potential-energy surfaces coupled linearly through a single vibration, the "two-site Holstein model". Analytical expressions are derived for the BO breakdown terms, and the model is solved over a large parameter space focusing on both the lowest-energy spectroscopic transitions and the quantum dynamics of coherent-state wavepackets. BO breakdown is investigated pertinent to: ammonia inversion, aromaticity

  1. Non-adiabatic effects in thermochemistry, spectroscopy and kinetics: the general importance of all three Born-Oppenheimer breakdown corrections.

    PubMed

    Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S

    2015-10-14

    Using a simple model Hamiltonian, the three correction terms for Born-Oppenheimer (BO) breakdown, the adiabatic diagonal correction (DC), the first-derivative momentum non-adiabatic correction (FD), and the second-derivative kinetic-energy non-adiabatic correction (SD), are shown to all contribute to thermodynamic and spectroscopic properties as well as to thermal non-diabatic chemical reaction rates. While DC often accounts for >80% of thermodynamic and spectroscopic property changes, the commonly used practice of including only the FD correction in kinetics calculations is rarely found to be adequate. For electron-transfer reactions not in the inverted region, the common physical picture that diabatic processes occur because of surface hopping at the transition state is proven inadequate as the DC acts first to block access, increasing the transition state energy by (ℏω)(2)λ/16J(2) (where λ is the reorganization energy, J the electronic coupling and ω the vibration frequency). However, the rate constant in the weakly-coupled Golden-Rule limit is identified as being only inversely proportional to this change rather than exponentially damped, owing to the effects of tunneling and surface hopping. Such weakly-coupled long-range electron-transfer processes should therefore not be described as "non-adiabatic" processes as they are easily described by Born-Huang ground-state adiabatic surfaces made by adding the DC to the BO surfaces; instead, they should be called just "non-Born-Oppenheimer" processes. The model system studied consists of two diabatic harmonic potential-energy surfaces coupled linearly through a single vibration, the "two-site Holstein model". Analytical expressions are derived for the BO breakdown terms, and the model is solved over a large parameter space focusing on both the lowest-energy spectroscopic transitions and the quantum dynamics of coherent-state wavepackets. BO breakdown is investigated pertinent to: ammonia inversion, aromaticity

  2. Two-mode multiplexer and demultiplexer based on adiabatic couplers.

    PubMed

    Xing, Jiejiang; Li, Zhiyong; Xiao, Xi; Yu, Jinzhong; Yu, Yude

    2013-09-01

    A two-mode (de)multiplexer based on adiabatic couplers is proposed and experimentally demonstrated. The experimental results are in good agreement with the simulations. An ultralow mode cross talk below -36 dB and a low insertion loss of about 0.3 dB over a broad bandwidth from 1500 to 1600 nm are measured. The design is also fabrication-tolerant, and the insertion loss can be further improved in the future. PMID:23988986

  3. Adiabaticity and gravity theory independent conservation laws for cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Romano, Antonio Enea; Mooij, Sander; Sasaki, Misao

    2016-04-01

    We carefully study the implications of adiabaticity for the behavior of cosmological perturbations. There are essentially three similar but different definitions of non-adiabaticity: one is appropriate for a thermodynamic fluid δPnad, another is for a general matter field δPc,nad, and the last one is valid only on superhorizon scales. The first two definitions coincide if cs2 = cw2 where cs is the propagation speed of the perturbation, while cw2 = P ˙ / ρ ˙ . Assuming the adiabaticity in the general sense, δPc,nad = 0, we derive a relation between the lapse function in the comoving slicing Ac and δPnad valid for arbitrary matter field in any theory of gravity, by using only momentum conservation. The relation implies that as long as cs ≠cw, the uniform density, comoving and the proper-time slicings coincide approximately for any gravity theory and for any matter field if δPnad = 0 approximately. In the case of general relativity this gives the equivalence between the comoving curvature perturbation Rc and the uniform density curvature perturbation ζ on superhorizon scales, and their conservation. This is realized on superhorizon scales in standard slow-roll inflation. We then consider an example in which cw =cs, where δPnad = δPc,nad = 0 exactly, but the equivalence between Rc and ζ no longer holds. Namely we consider the so-called ultra slow-roll inflation. In this case both Rc and ζ are not conserved. In particular, as for ζ, we find that it is crucial to take into account the next-to-leading order term in ζ's spatial gradient expansion to show its non-conservation, even on superhorizon scales. This is an example of the fact that adiabaticity (in the thermodynamic sense) is not always enough to ensure the conservation of Rc or ζ.

  4. Adiabatic pipelining: a key to ternary computing with quantum dots.

    PubMed

    Pečar, P; Ramšak, A; Zimic, N; Mraz, M; Lebar Bajec, I

    2008-12-10

    The quantum-dot cellular automaton (QCA), a processing platform based on interacting quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating period with the development of the line, the functionally complete set of logic functions, as well as more complex processing structures, however all in the realm of binary logic. Regardless of these achievements, it has to be acknowledged that the use of binary logic is in computing systems mainly the end result of the technological limitations, which the designers had to cope with in the early days of their design. The first advancement of QCAs to multi-valued (ternary) processing was performed by Lebar Bajec et al, with the argument that processing platforms of the future should not disregard the clear advantages of multi-valued logic. Some of the elementary ternary QCAs, necessary for the construction of more complex processing entities, however, lead to a remarkable increase in size when compared to their binary counterparts. This somewhat negates the advantages gained by entering the ternary computing domain. As it turned out, even the binary QCA had its initial hiccups, which have been solved by the introduction of adiabatic switching and the application of adiabatic pipeline approaches. We present here a study that introduces adiabatic switching into the ternary QCA and employs the adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our view might serve towards their faster adoption.

  5. Fast quasi-adiabatic gas cooling: an experiment revisited

    NASA Astrophysics Data System (ADS)

    Oss, S.; Gratton, L. M.; Calzà, G.; López-Arias, T.

    2012-09-01

    The well-known experiment of the rapid expansion and cooling of the air contained in a bottle is performed with a rapidly responsive, yet very cheap thermometer. The adiabatic, low temperature limit is approached quite closely and measured with our apparatus. A straightforward theoretical model for this process is also presented and discussed. Both the experimental setup and the associated theoretical interpretation of the cooling phenomenon are suited for a standard general physics course at undergraduate level.

  6. Geometric Phase for Adiabatic Evolutions of General Quantum States

    SciTech Connect

    Wu, Biao; Liu, Jie; Niu, Qian; Singh, David J

    2005-01-01

    The concept of a geometric phase (Berry's phase) is generalized to the case of noneigenstates, which is applicable to both linear and nonlinear quantum systems. This is particularly important to nonlinear quantum systems, where, due to the lack of the superposition principle, the adiabatic evolution of a general state cannot be described in terms of eigenstates. For linear quantum systems, our new geometric phase reduces to a statistical average of Berry's phases. Our results are demonstrated with a nonlinear two-level model.

  7. Complete Cycle Experiments Using the Adiabatic Gas Law Apparatus

    NASA Astrophysics Data System (ADS)

    Kutzner, Mickey D.; Plantak, Mateja

    2014-10-01

    The ability of our society to make informed energy-usage decisions in the future depends partly on current science and engineering students retaining a deep understanding of the thermodynamics of heat engines. Teacher imaginations and equipment budgets can both be taxed in the effort to engage students in hands-on heat engine activities. The experiments described in this paper, carried out using the Adiabatic Gas Law Apparatus1 (AGLA), quantitatively explore popular complete cycle heat engine processes.

  8. Numerical study of polaron problem in the adiabatic limit

    NASA Astrophysics Data System (ADS)

    Marsiglio, Frank; Li, Zhou; Blois, Cindy; Baillie, Devin

    2010-03-01

    We study the polaron problem in a one dimensional chain and on a two dimensional square lattice. The models we have used are the Holstein model and the Su-Schrieffer-Heeger (SSH) model. By a variational procedure based on the Lanczos method, we are able to examine the polaron problem in the limit when the mass of the ion is very large, i.e. close to the adiabatic limit. It is known that for the Holstein model there is no phase transition [1] for any nonzero phonon energy. It is also known that for the one dimensional Holstein or SSH model there will be long range order [2] (e.g. dimerization) in the adiabatic limit at half-filling. It is then interesting to study the long range order on a two dimensional square lattice in and away from the adiabatic limit. Moreover, recent progress for the single polaron near an impurity (disorder) [3] make it an interesting problem for studying bond length disorder which can change the hopping energy in a specific direction in the Holstein model. Reference: [1] H. Lowen, Phys.Rev.B 37, 8661 (1988) [2] J.E.Hirsch and E. Frandkin, Phys. Rev. Lett. 49, 402 (1982) [3]A.S.Mishchenko et.al Phys.Rev.B 79(2009) 180301(R)

  9. Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, Vadius; vonToussaint, Udo V.; Timucin, Dogan A.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum exitation gap, gmin = O(n2(sup -n/2)), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.

  10. Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, V. N.; Toussaint, U. V.; Timucin, D. A.

    2002-01-01

    We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum excitation gap. g min, = O(n 2(exp -n/2), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to 'the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.

  11. Conditions for super-adiabatic droplet growth after entrainment mixing

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Shaw, Raymond; Xue, Huiwen

    2016-07-01

    Cloud droplet response to entrainment and mixing between a cloud and its environment is considered, accounting for subsequent droplet growth during adiabatic ascent following a mixing event. The vertical profile for liquid water mixing ratio after a mixing event is derived analytically, allowing the reduction to be predicted from the mixing fraction and from the temperature and humidity for both the cloud and environment. It is derived for the limit of homogeneous mixing. The expression leads to a critical height above the mixing level: at the critical height the cloud droplet radius is the same for both mixed and unmixed parcels, and the critical height is independent of the updraft velocity and mixing fraction. Cloud droplets in a mixed parcel are larger than in an unmixed parcel above the critical height, which we refer to as the "super-adiabatic" growth region. Analytical results are confirmed with a bin microphysics cloud model. Using the model, we explore the effects of updraft velocity, aerosol source in the environmental air, and polydisperse cloud droplets. Results show that the mixed parcel is more likely to reach the super-adiabatic growth region when the environmental air is humid and clean. It is also confirmed that the analytical predictions are matched by the volume-mean cloud droplet radius for polydisperse size distributions. The findings have implications for the origin of large cloud droplets that may contribute to onset of collision-coalescence in warm clouds.

  12. Steam bottoming cycle for an adiabatic diesel engine

    SciTech Connect

    Poulin, E.; Demler, R.; Krepchin, I.; Walker, D.

    1984-03-01

    A study of steam bottoming cycles using adiabatic diesel engine exhaust heat projected substantial performance and economic benefits for long haul trucks. A parametric analysis of steam cycle and system component variables, system cost, size and performance was conducted. An 811 K/6.90 MPa state-of-the-art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. When applied to a NASA specified turbo-charged adiabatic diesel the bottoming system increased the diesel output by almost 18%. In a comparison of the costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with after-cooling with the same total output, the annual fuel savings less the added maintenance cost was determined to cover the increased initial cost of the TC/B system in a payback period of 2.3 years. Also during this program steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability were considered and the cost and performance of advanced systems were evaluated.

  13. NMR implementation of adiabatic SAT algorithm using strongly modulated pulses.

    PubMed

    Mitra, Avik; Mahesh, T S; Kumar, Anil

    2008-03-28

    NMR implementation of adiabatic algorithms face severe problems in homonuclear spin systems since the qubit selective pulses are long and during this period, evolution under the Hamiltonian and decoherence cause errors. The decoherence destroys the answer as it causes the final state to evolve to mixed state and in homonuclear systems, evolution under the internal Hamiltonian causes phase errors preventing the initial state to converge to the solution state. The resolution of these issues is necessary before one can proceed to implement an adiabatic algorithm in a large system where homonuclear coupled spins will become a necessity. In the present work, we demonstrate that by using "strongly modulated pulses" (SMPs) for the creation of interpolating Hamiltonian, one can circumvent both the problems and successfully implement the adiabatic SAT algorithm in a homonuclear three qubit system. This work also demonstrates that the SMPs tremendously reduce the time taken for the implementation of the algorithm, can overcome problems associated with decoherence, and will be the modality in future implementation of quantum information processing by NMR. PMID:18376911

  14. NMR implementation of adiabatic SAT algorithm using strongly modulated pulses

    NASA Astrophysics Data System (ADS)

    Mitra, Avik; Mahesh, T. S.; Kumar, Anil

    2008-03-01

    NMR implementation of adiabatic algorithms face severe problems in homonuclear spin systems since the qubit selective pulses are long and during this period, evolution under the Hamiltonian and decoherence cause errors. The decoherence destroys the answer as it causes the final state to evolve to mixed state and in homonuclear systems, evolution under the internal Hamiltonian causes phase errors preventing the initial state to converge to the solution state. The resolution of these issues is necessary before one can proceed to implement an adiabatic algorithm in a large system where homonuclear coupled spins will become a necessity. In the present work, we demonstrate that by using "strongly modulated pulses" (SMPs) for the creation of interpolating Hamiltonian, one can circumvent both the problems and successfully implement the adiabatic SAT algorithm in a homonuclear three qubit system. This work also demonstrates that the SMPs tremendously reduce the time taken for the implementation of the algorithm, can overcome problems associated with decoherence, and will be the modality in future implementation of quantum information processing by NMR.

  15. Adiabatic shear mechanisms for the hard cutting process

    NASA Astrophysics Data System (ADS)

    Yue, Caixu; Wang, Bo; Liu, Xianli; Feng, Huize; Cai, Chunbin

    2015-05-01

    The most important consequence of adiabatic shear phenomenon is formation of sawtooth chip. Lots of scholars focused on the formation mechanism of sawtooth, and the research often depended on experimental approach. For the present, the mechanism of sawtooth chip formation still remains some ambiguous aspects. This study develops a combined numerical and experimental approach to get deeper understanding of sawtooth chip formation mechanism for Polycrystalline Cubic Boron Nitride (PCBN) tools orthogonal cutting hard steel GCr15. By adopting the Johnson-Cook material constitutive equations, the FEM simulation model established in this research effectively overcomes serious element distortions and cell singularity in high strain domain caused by large material deformation, and the adiabatic shear phenomenon is simulated successfully. Both the formation mechanism and process of sawtooth are simulated. Also, the change features regarding the cutting force as well as its effects on temperature are studied. More specifically, the contact of sawtooth formation frequency with cutting force fluctuation frequency is established. The cutting force and effect of cutting temperature on mechanism of adiabatic shear are investigated. Furthermore, the effects of the cutting condition on sawtooth chip formation are researched. The researching results show that cutting feed has the most important effect on sawtooth chip formation compared with cutting depth and speed. This research contributes a better understanding of mechanism, feature of chip formation in hard turning process, and supplies theoretical basis for the optimization of hard cutting process parameters.

  16. Non-adiabatic pulsations in %delta; Scuti stars

    NASA Astrophysics Data System (ADS)

    Moya, A.; Garrido, R.; Dupret, M. A.

    2004-01-01

    For δ Scuti stars, phase differences and amplitude ratios between the relative effective temperature variation and the relative radial displacement can be derived from multicolor photometric observations. The same quantities can be also calculated from theoretical non-adiabatic pulsation models. We present here these theoretical results, which indicate that non-adiabatic quantities depend on the mixing length parameter α used to treat the convection in the standard Mixing Length Theory (MLT). This dependence can be used to test and to constrain, through multicolor observations, the way MLT describes convection in the outermost layers of the star. We will use the equilibrium models provided by the CESAM evolutionary code. The pulsational observables are calculated by using a non-adiabatic pulsation code developed by R. Garridon and A. Moya. In the evolutionary and pulsation codes, a complete reconstruction of the non-grey atmosphere (Kurucz models) is included. The interaction between pulsation and atmosphere, as described by Dupret et al. (2002), is also included in the code.

  17. Irreconcilable difference between quantum walks and adiabatic quantum computing

    NASA Astrophysics Data System (ADS)

    Wong, Thomas G.; Meyer, David A.

    2016-06-01

    Continuous-time quantum walks and adiabatic quantum evolution are two general techniques for quantum computing, both of which are described by Hamiltonians that govern their evolutions by Schrödinger's equation. In the former, the Hamiltonian is fixed, while in the latter, the Hamiltonian varies with time. As a result, their formulations of Grover's algorithm evolve differently through Hilbert space. We show that this difference is fundamental; they cannot be made to evolve along each other's path without introducing structure more powerful than the standard oracle for unstructured search. For an adiabatic quantum evolution to evolve like the quantum walk search algorithm, it must interpolate between three fixed Hamiltonians, one of which is complex and introduces structure that is stronger than the oracle for unstructured search. Conversely, for a quantum walk to evolve along the path of the adiabatic search algorithm, it must be a chiral quantum walk on a weighted, directed star graph with structure that is also stronger than the oracle for unstructured search. Thus, the two techniques, although similar in being described by Hamiltonians that govern their evolution, compute by fundamentally irreconcilable means.

  18. Two-parameter twisted quantum affine algebras

    NASA Astrophysics Data System (ADS)

    Jing, Naihuan; Zhang, Honglian

    2016-09-01

    We establish Drinfeld realization for the two-parameter twisted quantum affine algebras using a new method. The Hopf algebra structure for Drinfeld generators is given for both untwisted and twisted two-parameter quantum affine algebras, which include the quantum affine algebras as special cases.

  19. Electron Heating During Reconnection, and the New TREX Experiment

    SciTech Connect

    Egedal, J.; Guo, Fan

    2015-07-13

    In the first part of the document the author presents some observations, theory and simulations related to electron pressure anisotropy, E||, adiabatic model, collisions, double layers, and Eperp energization. The relevant experimental setup is sketched, and some preliminary results are given. It is concluded that at low beta parallel adiabatic motion breaks down → double layers and electrons holes, and E|| pre-energizes and confines electrons, leading to further energization by Eperp.

  20. Microstructural characteristics of adiabatic shear localization in a metastable beta titanium alloy deformed at high strain rate and elevated temperatures

    SciTech Connect

    Zhan, Hongyi; Zeng, Weidong; Wang, Gui; Kent, Damon; Dargusch, Matthew

    2015-04-15

    The microstructural evolution and grain refinement within adiabatic shear bands in the Ti6554 alloy deformed at high strain rates and elevated temperatures have been characterized using transmission electron microscopy. No stress drops were observed in the corresponding stress–strain curve, indicating that the initiation of adiabatic shear bands does not lead to the loss of load capacity for the Ti6554 alloy. The outer region of the shear bands mainly consists of cell structures bounded by dislocation clusters. Equiaxed subgrains in the core area of the shear band can be evolved from the subdivision of cell structures or reconstruction and transverse segmentation of dislocation clusters. It is proposed that dislocation activity dominates the grain refinement process. The rotational recrystallization mechanism may operate as the kinetic requirements for it are fulfilled. The coexistence of different substructures across the shear bands implies that the microstructural evolution inside the shear bands is not homogeneous and different grain refinement mechanisms may operate simultaneously to refine the structure. - Graphical abstract: Display Omitted - Highlights: • The microstructure within the adiabatic shear band was characterized by TEM. • No stress drops were observed in the corresponding stress–strain curve. • Dislocation activity dominated the grain refinement process. • The kinetic requirements for rotational recrystallization mechanism were fulfilled. • Different grain refinement mechanisms operated simultaneously to refine the structure.

  1. Storm time impulsive enhancements of energetic oxygen due to adiabatic acceleration of preexisting warm oxygen in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Keika, Kunihiro; Seki, Kanako; Nosé, Masahito; Machida, Shinobu; Miyoshi, Yoshizumi; Lanzerotti, Louis J.; Mitchell, Donald G.; Gkioulidou, Matina; Turner, Drew; Spence, Harlan; Larsen, Brian A.

    2016-08-01

    We examine enhancements of energetic (>50 keV) oxygen ions observed by the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument on board the Van Allen Probes spacecraft in the inner magnetosphere (L ~ 6) at 22-23 h magnetic local time (MLT) during an injection event of the 6 June 2013 storm. Simultaneous observations by two Van Allen Probes spacecraft located close together (~0.5 RE) indicate that particle injections occurred in the premidnight sector (< ~24 h MLT). We also examine the evolution of the proton and oxygen energy spectra at L ~ 6 during the injection event. The spectral slope did not significantly change during the storm. The oxygen phase space density (PSD) was shifted toward higher PSD in a wide range of the first adiabatic invariant. The spectral evolution manifests the characteristics of adiabatic acceleration and density increase of oxygen ions. Warm (0.1-10 keV) oxygen measured by the Helium, Oxygen, Proton, and Electron (HOPE) instrument was enhanced prior to the storm mostly in magnetic field-aligned directions. The most reasonable scenario of this event is that warm oxygen ions that preexisted in the inner magnetosphere were picked up and adiabatically transported and accelerated by spatially localized, temporarily impulsive electric fields.

  2. Non-Adiabatic, Multi-State Ring-Polymer Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Bell, Franziska; Menzeleev, Artur; Miller, Thomas, III

    2014-03-01

    Ring-polymer molecular dynamics (RPMD) has been shown to be a promising method for studying mechanisms and rates in large systems which require the inclusion of quantum effects, such as zero-point energies and tunneling. Examples involve electron and/or proton transfer reactions in enzymes and artificial catalysts. However, the traditional formulation of RPMD has several shortcomings: (i) it is restricted to migrations of only one distinguishable electron, (ii) it cannot describe photophysical processes, and (iii) it cannot be used in conjunction with potential energy surfaces obtained from electronic structure methods. Here I present a parameter-free extension of the RPMD method that addresses these issues and allows for the direct simulation of non-adiabatic processes involving many-electron wavefunctions without prior assumptions of the reaction mechanism. The new approach is demonstrated to provide a quantitative description of electron-transfer reaction rates and mechanisms throughout (i) the normal and inverted regimes and (ii) the weak- and strong-coupling regimes. I would like to thank the APS for financial support in form of a New Investigator Travel Award.

  3. Novel developments and applications of the classical adiabatic dynamics technique

    NASA Astrophysics Data System (ADS)

    Rosso, Lula

    The present work aims to apply and develop modern molecular dynamics techniques based on a novel analysis of the classical adiabatic dynamics approach. In the first part of this thesis, Car-Parrinello ab-initio molecular dynamics, a successful technique based on adiabatic dynamics, is used to study the charge transport mechanism in solid ammonium perchlorate (AP) crystal exposed to an ammonia-rich environment. AP is a solid-state proton conductor composed of NH+4 and ClO-4 units that can undergo a decomposition process at high temperature, leading to its use such as rocket fuel. After computing IR spectra and carefully analysing the dynamics at different temperatures, we found that the charge transport mechanism in the pure crystal is dominated by diffusion of the ammonium ions and that the translational diffusion is strongly coupled to rotational diffusion of the two types of ions present. When the pure ammonium-perchlorate crystal is doped with neutral ammonia, another mechanism comes into play, namely, the Grotthuss proton hopping mechanism via short-lived N2H+7 complexes. In the second part of this thesis, adiabatic dynamics will be used to develop an alternative approach to the calculation of free energy profiles along reaction paths. The new method (AFED) is based on the creation of an adiabatic separation between the reaction coordinate subspace and the remaining degrees of freedom within a molecular dynamics run. This is achieved by associating with the reaction coordinate(s) a high temperature and large mass. These conditions allow the activated process to occur while permitting the remaining degrees of freedom to respond adiabatically. In this limit, by applying a formal multiple time scale Liouville operator factorization, it can be rigorously shown that the free energy profile is obtained directly from the probability distribution of the reaction coordinate subspace and, therefore, no postprocessing of the output data is required. The new method is

  4. In-Flight Measurements of Capsule Shell Adiabats in Laser-Driven Implosions

    SciTech Connect

    Kritcher, A. L.; Doeppner, T.; Ma, T.; Landen, O. L.; Wallace, R.; Glenzer, S. H.; Fortmann, C.

    2011-07-01

    We present the first x-ray Thomson scattering measurements of temperature and density from spherically imploding matter. The shape of the Compton downscattered spectrum provides a first-principles measurement of the electron velocity distribution function, dependent on T{sub e} and the Fermi temperature T{sub F}{approx}n{sub e}{sup 2/3}. In-flight compressions of Be and CH targets reach 6-13 times solid density, with T{sub e}/T{sub F}{approx}0.4-0.7 and {Gamma}{sub ii}{approx}5, resulting in minimum adiabats of {approx}1.6-2. These measurements are consistent with low-entropy implosions and predictions by radiation-hydrodynamic modeling.

  5. Extended adiabatic blast waves and a model of the soft X-ray background. [interstellar matter

    NASA Technical Reports Server (NTRS)

    Cox, D. P.; Anderson, P. R.

    1981-01-01

    An analytical approximation is generated which follows the development of an adiabatic spherical blast wave in a homogeneous ambient medium of finite pressure. An analytical approximation is also presented for the electron temperature distribution resulting from coulomb collisional heating. The dynamical, thermal, ionization, and spectral structures are calculated for blast waves of energy E sub 0 = 5 x 10 to the 50th power ergs in a hot low-density interstellar environment. A formula is presented for estimating the luminosity evolution of such explosions. The B and C bands of the soft X-ray background, it is shown, are reproduced by such a model explosion if the ambient density is about .000004 cm, the blast radius is roughly 100 pc, and the solar system is located inside the shocked region. Evolution in a pre-existing cavity with a strong density gradient may, it is suggested, remove both the M band and OVI discrepancies.

  6. In-Flight Measurements of Capsule Adiabats in Laser Driven Spherical Implosions

    SciTech Connect

    Kritcher, A L; Doppner, T; Fortman, C; Ma, T; Landen, O L; Wallace, R; Glenzer, S H

    2011-03-07

    We present the first x-ray Thomson scattering measurements of temperature and density from spherically imploding matter. The shape of the Compton downscattered spectrum provides a first-principles measurement of the electron velocity distribution function, dependent on T{sub e} and the Fermi temperature T{sub F} {approx} n{sub e}{sup 2/3}. In flight compressions of Be and CH targets reach 6-13 times solid density, with T{sub e}/T{sub F} {approx} 0.4-0.7, resulting in minimum adiabats of {approx}1.6-2. These measurements are consistent with low-entropy implosions and predictions by simulations using radiation-hydrodynamic modeling.

  7. Non-adiabatic molecular dynamic simulations of opening reaction of molecular junctions

    NASA Astrophysics Data System (ADS)

    Zobač, Vladmír; Lewis, James P.; Jelínek, Pavel

    2016-07-01

    We report non-adiabatic molecular dynamic simulations of the ring opening reaction of diarylethene (DAE) derivative molecules, both free standing and embedded between gold electrodes. Simulations are performed by the surface hopping method employing density functional theory. Typically, the free-standing molecules exhibit large quantum yields to open and close; however the process is quenched for the molecules embedded between electrodes. Our simulations reveal the importance of the DAE side chemical groups, which explain the efficiency of the quenching process. Namely, delocalization of the LUMO state contributes to electronic coupling between the molecule and electrodes, suppressing or enhancing the reaction process. The simulations indicate that a proper choice of the chemical side group, which provides the strong localization of the LUMO state, can substantially diminish the quenching mechanism. Additionally, we analyze a strong dependency of the quantum yield of the opening reaction coming from the mechanical strength of the molecules.

  8. Non-adiabatic molecular dynamic simulations of opening reaction of molecular junctions.

    PubMed

    Zobač, Vladmír; Lewis, James P; Jelínek, Pavel

    2016-07-15

    We report non-adiabatic molecular dynamic simulations of the ring opening reaction of diarylethene (DAE) derivative molecules, both free standing and embedded between gold electrodes. Simulations are performed by the surface hopping method employing density functional theory. Typically, the free-standing molecules exhibit large quantum yields to open and close; however the process is quenched for the molecules embedded between electrodes. Our simulations reveal the importance of the DAE side chemical groups, which explain the efficiency of the quenching process. Namely, delocalization of the LUMO state contributes to electronic coupling between the molecule and electrodes, suppressing or enhancing the reaction process. The simulations indicate that a proper choice of the chemical side group, which provides the strong localization of the LUMO state, can substantially diminish the quenching mechanism. Additionally, we analyze a strong dependency of the quantum yield of the opening reaction coming from the mechanical strength of the molecules. PMID:27255903

  9. Electron attachment to indole and related molecules

    SciTech Connect

    Modelli, Alberto; Jones, Derek; Pshenichnyuk, Stanislav A.

    2013-11-14

    Gas-phase formation of temporary negative ion states via resonance attachment of low-energy (0–6 eV) electrons into vacant molecular orbitals of indoline (I), indene (II), indole (III), 2-methylen-1,3,3-trimethylindoline (IV), and 2,3,3-trimethyl-indolenine (V) was investigated for the first time by electron transmission spectroscopy (ETS). The description of their empty-level structures was supported by density functional theory and Hartree-Fock calculations, using empirically calibrated linear equations to scale the calculated virtual orbital energies. Dissociative electron attachment spectroscopy (DEAS) was used to measure the fragment anion yields generated through dissociative decay channels of the parent molecular anions of compounds I-V, detected with a mass filter as a function of the incident electron energy in the 0–14 eV energy range. The vertical and adiabatic electron affinities were evaluated at the B3LYP/6-31+G(d) level as the anion/neutral total energy difference. The same theoretical method is also used for evaluation of the thermodynamic energy thresholds for production of the negative fragments observed in the DEA spectra. The loss of a hydrogen atom from the parent molecular anion ([M-H]{sup −}) provides the most intense signal in compounds I-IV. The gas-phase DEAS data can provide support for biochemical reaction mechanisms in vivo involving initial hydrogen abstraction from the nitrogen atom of the indole moiety, present in a variety of biologically important molecules.

  10. Experimental results of radiation-driven, layered deuterium-tritium implosions with adiabat-shaped drives at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Smalyuk, V. A.; Robey, H. F.; Döppner, T.; Casey, D. T.; Clark, D. S.; Jones, O. S.; Milovich, J. L.; Peterson, J. L.; Bachmann, B.; Baker, K. L.; Benedetti, L. R.; Berzak Hopkins, L. F.; Bionta, R.; Bond, E.; Bradley, D. K.; Callahan, D. A.; Celliers, P. M.; Cerjan, C.; Chen, K.-C.; Goyon, C.; Grim, G.; Dixit, S. N.; Eckart, M. J.; Edwards, M. J.; Farrell, M.; Fittinghoff, D. N.; Frenje, J. A.; Gatu-Johnson, M.; Gharibyan, N.; Haan, S. W.; Hamza, A. V.; Hartouni, E.; Hatarik, R.; Havre, M.; Hohenberger, M.; Hoover, D.; Hurricane, O. A.; Izumi, N.; Jancaitis, K. S.; Khan, S. F.; Knauer, J. P.; Kroll, J. J.; Kyrala, G.; Lafortune, K. N.; Landen, O. L.; Ma, T.; MacGowan, B. J.; MacPhee, A. G.; Mauldin, M.; Merrill, F. E.; Moore, A. S.; Nagel, S.; Nikroo, A.; Pak, A.; Patel, P. K.; Ralph, J. E.; Sayre, D. B.; Shaughnessy, D.; Spears, B. K.; Tommasini, R.; Turnbull, D. P.; Velikovich, A. L.; Volegov, P. L.; Weber, C. R.; Widmayer, C. C.; Yeamans, C.

    2016-10-01

    Radiation-driven, layered deuterium-tritium (DT) implosions were carried out using 3-shock and 4-shock "adiabat-shaped" drives and plastic ablators on the National Ignition Facility (NIF) [E. M. Campbell et al., AIP Conf. Proc. 429, 3 (1998)]. The purpose of these shots was to gain further understanding on the relative performance of the low-foot implosions of the National Ignition Campaign [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] versus the subsequent high-foot implosions [T. Döppner et al., Phys. Rev. Lett. 115, 055001 (2015)]. The neutron yield performance in the experiment with the 4-shock adiabat-shaped drive was improved by factors ˜3 to ˜10, compared to five companion low-foot shots despite large low-mode asymmetries of DT fuel, while measured compression was similar to its low-foot companions. This indicated that the dominant degradation source for low-foot implosions was ablation-front instability growth, since adiabat shaping significantly stabilized this growth. For the experiment with the low-power 3-shock adiabat-shaped drive, the DT fuel compression was significantly increased, by ˜25% to ˜36%, compared to its companion high-foot implosions. The neutron yield increased by ˜20%, lower than the increase of ˜50% estimated from one-dimensional scaling, suggesting the importance of residual instabilities and asymmetries. For the experiment with the high-power, 3-shock adiabat-shaped drive, the DT fuel compression was slightly increased by ˜14% compared to its companion high-foot experiments. However, the compression was reduced compared to the lower-power 3-shock adiabat-shaped drive, correlated with the increase of hot electrons that hypothetically can be responsible for reduced compression in high-power adiabat-shaped experiments as well as in high-foot experiments. The total neutron yield in the high-power 3-shock adiabat-shaped shot N150416 was 8.5 × 1015 ± 0.2 × 1015, with the fuel areal density of 0.90 ± 0.07 g/cm2

  11. Influence of viscosity and the adiabatic index on planetary migration

    NASA Astrophysics Data System (ADS)

    Bitsch, B.; Boley, A.; Kley, W.

    2013-02-01

    Context. The strength and direction of migration of low mass embedded planets depends on the disk's thermodynamic state. It has been shown that in active disks, where the internal dissipation is balanced by radiative transport, migration can be directed outwards, a process which extends the lifetime of growing embryos. Very important parameters determining the structure of disks, and hence the direction of migration, are the viscosity and the adiabatic index. Aims: In this paper we investigate the influence of different viscosity prescriptions (α-type and constant) and adiabatic indices on disk structures. We then determine how this affects the migration rate of planets embedded in such disks. Methods: We perform three-dimensional numerical simulations of accretion disks with embedded planets. We use the explicit/implicit hydrodynamical code NIRVANA that includes full tensor viscosity and radiation transport in the flux-limited diffusion approximation, as well as a proper equation of state for molecular hydrogen. The migration of embedded 20 MEarth planets is studied. Results: Low-viscosity disks have cooler temperatures and the migration rates of embedded planets tend toward the isothermal limit. Hence, in these disks, planets migrate inwards even in the fully radiative case. The effect of outward migration can only be sustained if the viscosity in the disk is large. Overall, the differences between the treatments for the equation of state seem to play a more important role in disks with higher viscosity. A change in the adiabatic index and in the viscosity changes the zero-torque radius that separates inward from outward migration. Conclusions: For larger viscosities, temperatures in the disk become higher and the zero-torque radius moves to larger radii, allowing outward migration of a 20-MEarth planet to persist over an extended radial range. In combination with large disk masses, this may allow for an extended period of the outward migration of growing

  12. Shortcuts to adiabaticity by counterdiabatic driving for trapped-ion displacement in phase space

    NASA Astrophysics Data System (ADS)

    An, Shuoming; Lv, Dingshun; Del Campo, Adolfo; Kim, Kihwan

    2016-09-01

    The application of adiabatic protocols in quantum technologies is severely limited by environmental sources of noise and decoherence. Shortcuts to adiabaticity by counterdiabatic driving constitute a powerful alternative that speed up time-evolution while mimicking adiabatic dynamics. Here we report the experimental implementation of counterdiabatic driving in a continuous variable system, a shortcut to the adiabatic transport of a trapped ion in phase space. The resulting dynamics is equivalent to a `fast-motion video' of the adiabatic trajectory. The robustness of this protocol is shown to surpass that of competing schemes based on classical local controls and Fourier optimization methods. Our results demonstrate that shortcuts to adiabaticity provide a robust speedup of quantum protocols of wide applicability in quantum technologies.

  13. Kibble-Zurek mechanism beyond adiabaticity: Finite-time scaling with critical initial slip

    NASA Astrophysics Data System (ADS)

    Huang, Yingyi; Yin, Shuai; Hu, Qijun; Zhong, Fan

    2016-01-01

    The Kibble-Zurek mechanism demands an initial adiabatic stage before an impulse stage to have a frozen correlation length that generates topological defects in a cooling phase transition. Here we study such a driven critical dynamics but with an initial condition that is near the critical point and that is far away from equilibrium. In this case, there is no initial adiabatic stage at all and thus adiabaticity is broken. However, we show that there again exists a finite length scale arising from the driving that divides the evolution into three stages. A relaxation-finite-time-scaling-adiabatic scenario is then proposed in place of the adiabatic-impulse-adiabatic scenario of the original Kibble-Zurek mechanism. A unified scaling theory, which combines finite-time scaling with critical initial slip, is developed to describe the universal behavior and is confirmed with numerical simulations of a two-dimensional classical Ising model.

  14. Effect of Grain Boundary Character Distribution on the Adiabatic Shear Susceptibility

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Jiang, Lihong; Luo, Shuhong; Hu, Haibo; Tang, Tiegang; Zhang, Qingming

    2016-11-01

    The adiabatic shear susceptibility of AISI321 stainless steels with different grain boundary character distributions (GBCDs) was investigated by means of split-Hopkinson pressure bar. The results indicate that the width of the adiabatic shear band of the specimen after thermomechanical processing (TMP) treatment is narrower. The comparison of the stress collapse time, the critical stress, and the adiabatic shear forming energy suggests that the TMP specimens have lower adiabatic shear susceptibility than that of the solution-treated samples under the same loading condition. GBCD and grain size affected the adiabatic shear susceptibility. The high-angle boundary network of the TMP specimens was interrupted or replaced by the special grain boundary, and smaller grain size hindered the adiabatic shearing.

  15. Shortcuts to adiabaticity by counterdiabatic driving for trapped-ion displacement in phase space

    PubMed Central

    An, Shuoming; Lv, Dingshun; del Campo, Adolfo; Kim, Kihwan

    2016-01-01

    The application of adiabatic protocols in quantum technologies is severely limited by environmental sources of noise and decoherence. Shortcuts to adiabaticity by counterdiabatic driving constitute a powerful alternative that speed up time-evolution while mimicking adiabatic dynamics. Here we report the experimental implementation of counterdiabatic driving in a continuous variable system, a shortcut to the adiabatic transport of a trapped ion in phase space. The resulting dynamics is equivalent to a ‘fast-motion video' of the adiabatic trajectory. The robustness of this protocol is shown to surpass that of competing schemes based on classical local controls and Fourier optimization methods. Our results demonstrate that shortcuts to adiabaticity provide a robust speedup of quantum protocols of wide applicability in quantum technologies. PMID:27669897

  16. Ab initio ground and the first excited adiabatic and quasidiabatic potential energy surfaces of H + + CO system

    NASA Astrophysics Data System (ADS)

    George, D. X. F.; Kumar, Sanjay

    2010-08-01

    Ab initio global adiabatic as well as quasidiabatic potential energy surfaces for the ground and the first excited electronic states of the H + + CO system have been computed as a function of the Jacobi coordinates ( R, r, γ) using Dunning's cc-pVTZ basis set at the internally contracted multi-reference (single and double) configuration interaction level of accuracy. In addition, nonadiabatic coupling matrix elements arising from radial motion, mixing angle and coupling potential have been computed using the ab initio procedure [Simah et al. (1999) [66

  17. From Classical Nonlinear Integrable Systems to Quantum Shortcuts to Adiabaticity.

    PubMed

    Okuyama, Manaka; Takahashi, Kazutaka

    2016-08-12

    Using shortcuts to adiabaticity, we solve the time-dependent Schrödinger equation that is reduced to a classical nonlinear integrable equation. For a given time-dependent Hamiltonian, the counterdiabatic term is introduced to prevent nonadiabatic transitions. Using the fact that the equation for the dynamical invariant is equivalent to the Lax equation in nonlinear integrable systems, we obtain the counterdiabatic term exactly. The counterdiabatic term is available when the corresponding Lax pair exists and the solvable systems are classified in a unified and systematic way. Multisoliton potentials obtained from the Korteweg-de Vries equation and isotropic XY spin chains from the Toda equations are studied in detail.

  18. From Classical Nonlinear Integrable Systems to Quantum Shortcuts to Adiabaticity

    NASA Astrophysics Data System (ADS)

    Okuyama, Manaka; Takahashi, Kazutaka

    2016-08-01

    Using shortcuts to adiabaticity, we solve the time-dependent Schrödinger equation that is reduced to a classical nonlinear integrable equation. For a given time-dependent Hamiltonian, the counterdiabatic term is introduced to prevent nonadiabatic transitions. Using the fact that the equation for the dynamical invariant is equivalent to the Lax equation in nonlinear integrable systems, we obtain the counterdiabatic term exactly. The counterdiabatic term is available when the corresponding Lax pair exists and the solvable systems are classified in a unified and systematic way. Multisoliton potentials obtained from the Korteweg-de Vries equation and isotropic X Y spin chains from the Toda equations are studied in detail.

  19. Salt materials testing for a spacecraft adiabatic demagnetization refrigerator

    NASA Astrophysics Data System (ADS)

    Savage, M. L.; Kittel, P.; Roellig, T.

    As part of a technology development effort to qualify adiabatic demagnetization refrigerators for use in a NASA spacecraft, such as the Space Infrared Telescope Facility, a study of low temperature characteristics, heat capacity and resistance to dehydration was conducted for different salt materials. This report includes results of testing with cerrous metaphosphate, several synthetic rubies, and chromic potassium alum (CPA). Preliminary results show that CPA may be suitable for long-term spacecraft use, provided that the salt is property encapsulated. Methods of salt pill construction and testing for all materials are discussed, as well as reliability tests. Also, the temperature regulation scheme and the test cryostat design are briefly discussed.

  20. Magnetic shielding for a spaceborne adiabatic demagnetization refrigerator (ADR)

    NASA Technical Reports Server (NTRS)

    Warner, Brent A.; Shirron, Peter J.; Castles, Stephen H.; Serlemitsos, Aristides T.

    1991-01-01

    The Goddard Space Flight Center has studied magnetic shielding for an adiabatic demagnetization refrigerator. Four types of shielding were studied: active coils, passive ferromagnetic shells, passive superconducting coils, and passive superconducting shells. The passive superconducting shells failed by allowing flux penetration. The other three methods were successful, singly or together. Experimental studies of passive ferromagnetic shielding are compared with calculations made using the Poisson Group of programs, distributed by the Los Alamos Accelerator Code Group of the Los Alamos National Laboratory. Agreement between calculation and experiment is good. The ferromagnetic material is a silicon iron alloy.