Science.gov

Sample records for adiabatic electronic states

  1. Electronic non-adiabatic states: towards a density functional theory beyond the Born–Oppenheimer approximation

    PubMed Central

    Gidopoulos, Nikitas I.; Gross, E. K. U.

    2014-01-01

    A novel treatment of non-adiabatic couplings is proposed. The derivation is based on a theorem by Hunter stating that the wave function of the complete system of electrons and nuclei can be written, without approximation, as a Born–Oppenheimer (BO)-type product of a nuclear wave function, X(R), and an electronic one, ΦR(r), which depends parametrically on the nuclear configuration R. From the variational principle, we deduce formally exact equations for ΦR(r) and X(R). The algebraic structure of the exact nuclear equation coincides with the corresponding one in the adiabatic approximation. The electronic equation, however, contains terms not appearing in the adiabatic case, which couple the electronic and the nuclear wave functions and account for the electron–nuclear correlation beyond the BO level. It is proposed that these terms can be incorporated using an optimized local effective potential. PMID:24516183

  2. Evaluating Electronic Couplings for Excited State Charge Transfer Based on Maximum Occupation Method ΔSCF Quasi-Adiabatic States.

    PubMed

    Liu, Junzi; Zhang, Yong; Bao, Peng; Yi, Yuanping

    2017-02-14

    Electronic couplings of charge-transfer states with the ground state and localized excited states at the donor/acceptor interface are crucial parameters for controlling the dynamics of exciton dissociation and charge recombination processes in organic solar cells. Here we propose a quasi-adiabatic state approach to evaluate electronic couplings through combining maximum occupation method (mom)-ΔSCF and state diabatization schemes. Compared with time-dependent density functional theory (TDDFT) using global hybrid functional, mom-ΔSCF is superior to estimate the excitation energies of charge-transfer states; moreover it can also provide good excited electronic state for property calculation. Our approach is hence reliable to evaluate electronic couplings for excited state electron transfer processes, which is demonstrated by calculations on a typical organic photovoltaic system, oligothiophene/perylenediimide complex.

  3. Quantum control of electronic fluxes during adiabatic attosecond charge migration in degenerate superposition states of benzene

    NASA Astrophysics Data System (ADS)

    Jia, Dongming; Manz, Jörn; Paulus, Beate; Pohl, Vincent; Tremblay, Jean Christophe; Yang, Yonggang

    2017-01-01

    We design four linearly x- and y-polarized as well as circularly right (+) and left (-) polarized, resonant π / 2 -laser pulses that prepare the model benzene molecule in four different degenerate superposition states. These consist of equal (0.5) populations of the electronic ground state S0 (1A1g) plus one of four degenerate excited states, all of them accessible by dipole-allowed transitions. Specifically, for the molecule aligned in the xy-plane, these excited states include different complex-valued linear combinations of the 1E1u,x and 1E1u,y degenerate states. As a consequence, the laser pulses induce four different types of periodic adiabatic attosecond (as) charge migrations (AACM) in benzene, all with the same period, 504 as, but with four different types of angular fluxes. One of the characteristic differences of these fluxes are the two angles for zero fluxes, which appear as the instantaneous angular positions of the "source" and "sink" of two equivalent, or nearly equivalent branches of the fluxes which flow in pincer-type patterns from one molecular site (the "source") to the opposite one (the "sink"). These angles of zero fluxes are either fixed at the positions of two opposite carbon nuclei in the yz-symmetry plane, or at the centers of two opposite carbon-carbon bonds in the xz-symmetry plane, or the angles of zero fluxes rotate in angular forward (+) or backward (-) directions, respectively. As a resume, our quantum model simulations demonstrate quantum control of the electronic fluxes during AACM in degenerate superposition states, in the attosecond time domain, with the laser polarization as the key knob for control.

  4. Theoretical study of Raman chirped adiabatic passage by X-ray absorption spectroscopy: Highly excited electronic states and rotational effects

    SciTech Connect

    Engin, Selma; Sisourat, Nicolas Selles, Patricia; Taïeb, Richard; Carniato, Stéphane

    2014-06-21

    Raman Chirped Adiabatic Passage (RCAP) is an efficient method to climb the vibrational ladder of molecules. It was shown on the example of fixed-in-space HCl molecule that selective vibrational excitation can thus be achieved by RCAP and that population transfer can be followed by X-ray Photoelectron spectroscopy [S. Engin, N. Sisourat, P. Selles, R. Taïeb, and S. Carniato, Chem. Phys. Lett. 535, 192–195 (2012)]. Here, in a more detailed analysis of the process, we investigate the effects of highly excited electronic states and of molecular rotation on the efficiency of RCAP. Furthermore, we propose an alternative spectroscopic way to monitor the transfer by means of X-ray absorption spectra.

  5. Adiabatic state preparation study of methylene

    SciTech Connect

    Veis, Libor Pittner, Jiří

    2014-06-07

    Quantum computers attract much attention as they promise to outperform their classical counterparts in solving certain type of problems. One of them with practical applications in quantum chemistry is simulation of complex quantum systems. An essential ingredient of efficient quantum simulation algorithms are initial guesses of the exact wave functions with high enough fidelity. As was proposed in Aspuru-Guzik et al. [Science 309, 1704 (2005)], the exact ground states can in principle be prepared by the adiabatic state preparation method. Here, we apply this approach to preparation of the lowest lying multireference singlet electronic state of methylene and numerically investigate preparation of this state at different molecular geometries. We then propose modifications that lead to speeding up the preparation process. Finally, we decompose the minimal adiabatic state preparation employing the direct mapping in terms of two-qubit interactions.

  6. Symmetrical windowing for quantum states in quasi-classical trajectory simulations: Application to electronically non-adiabatic processes

    SciTech Connect

    Cotton, Stephen J.; Miller, William H.

    2013-12-21

    A recently described symmetrical windowing methodology [S. J. Cotton and W. H. Miller, J. Phys. Chem. A 117, 7190 (2013)] for quasi-classical trajectory simulations is applied here to the Meyer-Miller [H.-D. Meyer and W. H. Miller, J. Chem. Phys. 70, 3214 (1979)] model for the electronic degrees of freedom in electronically non-adiabatic dynamics. Results generated using this classical approach are observed to be in very good agreement with accurate quantum mechanical results for a variety of test applications, including problems where coherence effects are significant such as the challenging asymmetric spin-boson system.

  7. Density functional theory calculations on rhodamine B and pinacyanol chloride. Optimized ground state, dipole moment, vertical ionization potential, adiabatic electron affinity and lowest excited triplet state.

    PubMed

    Delgado, Juan C; Selsby, Ronald G

    2013-01-01

    The ground state configuration of the gas phase cationic dyes pinacyanol chloride and rhodamine B are optimized with HF/6-311 + G(2d,2p) method and basis set. B3PW91/6-311 + G(2df,2p) functional and basis set is used to calculate the Mulliken atom charge distribution, total molecular energy, the dipole moment, the vertical ionization potential, the adiabatic electron affinity and the lowest excited triplet state, the last three as an energy difference between separately calculated open shell and ground states. The triplet and extra electron states are optimized to find the relaxation energy. In the ground state optimization of both dyes the chloride anion migrates to a position near the center of the chromophore. For rhodamine B the benzoidal group turns perpendicular to the chromophore plane. For both dyes, the LUMO is mostly of π character associated with the aromatic part of the molecule containing the chromophore. The highest occupied MOs consist of three almost degenerate eigenvectors involving the chloride anion coordinated with σ electrons in the molecular framework. The fourth highest MO is of π character. For both molecules in the gas phase ionization process the chloride anion loses the significant fraction of electric charge. In electron capture, the excess charge goes mainly on the dye cation.

  8. Application of a convergent, composite coupled cluster approach to bound state, adiabatic electron affinities in atoms and small molecules.

    PubMed

    Feller, David

    2016-01-07

    Benchmark quality adiabatic electron affinities for a collection of atoms and small molecules were obtained with the Feller-Peterson-Dixon composite coupled cluster theory method. Prior applications of this method demonstrated its ability to accurately predict atomization energies/heats of formation for more than 170 molecules. In the current work, the 1-particle expansion involved very large correlation consistent basis sets, ranging up to aug-cc-pV9Z (aug-cc-pV10Z for H and H2), with the goal of minimizing the residual basis set truncation error that must otherwise be approximated with extrapolation formulas. The n-particle expansion begins with coupled cluster calculations through iterative single and double excitations plus a quasiperturbative treatment of "connected" triple excitations (CCSD(T)) pushed to the complete basis set limit followed by CCSDT, CCSDTQ, or CCSDTQ5 corrections. Due to the small size of the systems examined here, it was possible in many cases to extend the n-particle expansion to the full configuration interaction wave function limit. Additional, smaller corrections associated with core/valence correlation, scalar relativity, anharmonic zero point vibrational energies, and non-adiabatic effects were also included. The overall root mean square (RMS) deviation was 0.005 eV (0.12 kcal/mol). This level of agreement was comparable to what was found with molecular heats of formation. A 95% confidence level corresponds to roughly twice the RMS value or 0.01 eV. While the atomic electron affinities are known experimentally to high accuracy, the molecular values are less certain. This contributes to the difficulty of gauging the accuracy of the theoretical results. A limited number of electron affinities were determined with the explicitly correlated CCSD(T)-F12b method. After extending the VnZ-F12 orbital basis sets with additional diffuse functions, the F12b method was found to accurately reproduce the best F/F(-) value obtained with standard

  9. Application of a convergent, composite coupled cluster approach to bound state, adiabatic electron affinities in atoms and small molecules

    NASA Astrophysics Data System (ADS)

    Feller, David

    2016-01-01

    Benchmark quality adiabatic electron affinities for a collection of atoms and small molecules were obtained with the Feller-Peterson-Dixon composite coupled cluster theory method. Prior applications of this method demonstrated its ability to accurately predict atomization energies/heats of formation for more than 170 molecules. In the current work, the 1-particle expansion involved very large correlation consistent basis sets, ranging up to aug-cc-pV9Z (aug-cc-pV10Z for H and H2), with the goal of minimizing the residual basis set truncation error that must otherwise be approximated with extrapolation formulas. The n-particle expansion begins with coupled cluster calculations through iterative single and double excitations plus a quasiperturbative treatment of "connected" triple excitations (CCSD(T)) pushed to the complete basis set limit followed by CCSDT, CCSDTQ, or CCSDTQ5 corrections. Due to the small size of the systems examined here, it was possible in many cases to extend the n-particle expansion to the full configuration interaction wave function limit. Additional, smaller corrections associated with core/valence correlation, scalar relativity, anharmonic zero point vibrational energies, and non-adiabatic effects were also included. The overall root mean square (RMS) deviation was 0.005 eV (0.12 kcal/mol). This level of agreement was comparable to what was found with molecular heats of formation. A 95% confidence level corresponds to roughly twice the RMS value or 0.01 eV. While the atomic electron affinities are known experimentally to high accuracy, the molecular values are less certain. This contributes to the difficulty of gauging the accuracy of the theoretical results. A limited number of electron affinities were determined with the explicitly correlated CCSD(T)-F12b method. After extending the VnZ-F12 orbital basis sets with additional diffuse functions, the F12b method was found to accurately reproduce the best F/F- value obtained with standard

  10. Adiabatic cluster-state quantum computing

    SciTech Connect

    Bacon, Dave; Flammia, Steven T.

    2010-09-15

    Models of quantum computation (QC) are important because they change the physical requirements for achieving universal QC. For example, one-way QC requires the preparation of an entangled ''cluster'' state, followed by adaptive measurement on this state, a set of requirements which is different from the standard quantum-circuit model. Here we introduce a model based on one-way QC but without measurements (except for the final readout), instead using adiabatic deformation of a Hamiltonian whose initial ground state is the cluster state. Our results could help increase the feasibility of adiabatic schemes by using tools from one-way QC.

  11. Adiabatic cooling of solar wind electrons

    NASA Technical Reports Server (NTRS)

    Sandbaek, Ornulf; Leer, Egil

    1992-01-01

    In thermally driven winds emanating from regions in the solar corona with base electron densities of n0 not less than 10 exp 8/cu cm, a substantial fraction of the heat conductive flux from the base is transfered into flow energy by the pressure gradient force. The adiabatic cooling of the electrons causes the electron temperature profile to fall off more rapidly than in heat conduction dominated flows. Alfven waves of solar origin, accelerating the basically thermally driven solar wind, lead to an increased mass flux and enhanced adiabatic cooling. The reduction in electron temperature may be significant also in the subsonic region of the flow and lead to a moderate increase of solar wind mass flux with increasing Alfven wave amplitude. In the solar wind model presented here the Alfven wave energy flux per unit mass is larger than that in models where the temperature in the subsonic flow is not reduced by the wave, and consequently the asymptotic flow speed is higher.

  12. Cavity-state preparation using adiabatic transfer

    NASA Astrophysics Data System (ADS)

    Larson, Jonas; Andersson, Erika

    2005-05-01

    We show how to prepare a variety of cavity field states for multiple cavities. The state preparation technique used is related to the method of stimulated adiabatic Raman passage. The cavity modes are coupled by atoms, making it possible to transfer an arbitrary cavity field state from one cavity to another and also to prepare nontrivial cavity field states. In particular, we show how to prepare entangled states of two or more cavities, such as an Einstein-Podolsky-Rosen state and a W state, as well as various entangled superpositions of coherent states in different cavities, including Schrödinger cat states. The theoretical considerations are supported by numerical simulations.

  13. Vertical and adiabatic excitations in anthracene from quantum Monte Carlo: Constrained energy minimization for structural and electronic excited-state properties in the JAGP ansatz.

    PubMed

    Dupuy, Nicolas; Bouaouli, Samira; Mauri, Francesco; Sorella, Sandro; Casula, Michele

    2015-06-07

    We study the ionization energy, electron affinity, and the π → π(∗) ((1)La) excitation energy of the anthracene molecule, by means of variational quantum Monte Carlo (QMC) methods based on a Jastrow correlated antisymmetrized geminal power (JAGP) wave function, developed on molecular orbitals (MOs). The MO-based JAGP ansatz allows one to rigorously treat electron transitions, such as the HOMO → LUMO one, which underlies the (1)La excited state. We present a QMC optimization scheme able to preserve the rank of the antisymmetrized geminal power matrix, thanks to a constrained minimization with projectors built upon symmetry selected MOs. We show that this approach leads to stable energy minimization and geometry relaxation of both ground and excited states, performed consistently within the correlated QMC framework. Geometry optimization of excited states is needed to make a reliable and direct comparison with experimental adiabatic excitation energies. This is particularly important in π-conjugated and polycyclic aromatic hydrocarbons, where there is a strong interplay between low-lying energy excitations and structural modifications, playing a functional role in many photochemical processes. Anthracene is an ideal benchmark to test these effects. Its geometry relaxation energies upon electron excitation are of up to 0.3 eV in the neutral (1)La excited state, while they are of the order of 0.1 eV in electron addition and removal processes. Significant modifications of the ground state bond length alternation are revealed in the QMC excited state geometry optimizations. Our QMC study yields benchmark results for both geometries and energies, with values below chemical accuracy if compared to experiments, once zero point energy effects are taken into account.

  14. Vertical and adiabatic excitations in anthracene from quantum Monte Carlo: Constrained energy minimization for structural and electronic excited-state properties in the JAGP ansatz

    SciTech Connect

    Dupuy, Nicolas; Bouaouli, Samira; Mauri, Francesco Casula, Michele; Sorella, Sandro

    2015-06-07

    We study the ionization energy, electron affinity, and the π → π{sup ∗} ({sup 1}L{sub a}) excitation energy of the anthracene molecule, by means of variational quantum Monte Carlo (QMC) methods based on a Jastrow correlated antisymmetrized geminal power (JAGP) wave function, developed on molecular orbitals (MOs). The MO-based JAGP ansatz allows one to rigorously treat electron transitions, such as the HOMO → LUMO one, which underlies the {sup 1}L{sub a} excited state. We present a QMC optimization scheme able to preserve the rank of the antisymmetrized geminal power matrix, thanks to a constrained minimization with projectors built upon symmetry selected MOs. We show that this approach leads to stable energy minimization and geometry relaxation of both ground and excited states, performed consistently within the correlated QMC framework. Geometry optimization of excited states is needed to make a reliable and direct comparison with experimental adiabatic excitation energies. This is particularly important in π-conjugated and polycyclic aromatic hydrocarbons, where there is a strong interplay between low-lying energy excitations and structural modifications, playing a functional role in many photochemical processes. Anthracene is an ideal benchmark to test these effects. Its geometry relaxation energies upon electron excitation are of up to 0.3 eV in the neutral {sup 1}L{sub a} excited state, while they are of the order of 0.1 eV in electron addition and removal processes. Significant modifications of the ground state bond length alternation are revealed in the QMC excited state geometry optimizations. Our QMC study yields benchmark results for both geometries and energies, with values below chemical accuracy if compared to experiments, once zero point energy effects are taken into account.

  15. Stimulated Raman adiabatic passage preparation of a coherent superposition of ThO H3Δ1 states for an improved electron electric-dipole-moment measurement

    NASA Astrophysics Data System (ADS)

    Panda, C. D.; O'Leary, B. R.; West, A. D.; Baron, J.; Hess, P. W.; Hoffman, C.; Kirilov, E.; Overstreet, C. B.; West, E. P.; DeMille, D.; Doyle, J. M.; Gabrielse, G.

    2016-05-01

    Experimental searches for the electron electric-dipole moment (EDM) probe new physics beyond the standard model. The current best EDM limit was set by the ACME Collaboration [Science 343, 269 (2014), 10.1126/science.1248213], constraining time-reversal symmetry (T ) violating physics at the TeV energy scale. ACME used optical pumping to prepare a coherent superposition of ThO H3Δ1 states that have aligned electron spins. Spin precession due to the molecule's internal electric field was measured to extract the EDM. We report here on an improved method for preparing this spin-aligned state of the electron by using stimulated Raman adiabatic passage (STIRAP). We demonstrate a transfer efficiency of 75 %±5 % , representing a significant gain in signal for a next-generation EDM experiment. We discuss the particularities of implementing STIRAP in systems such as ours, where molecular ensembles with large phase-space distributions are transferred via weak molecular transitions with limited laser power and limited optical access.

  16. Adiabatic graph-state quantum computation

    NASA Astrophysics Data System (ADS)

    Antonio, B.; Markham, D.; Anders, J.

    2014-11-01

    Measurement-based quantum computation (MBQC) and holonomic quantum computation (HQC) are two very different computational methods. The computation in MBQC is driven by adaptive measurements executed in a particular order on a large entangled state. In contrast in HQC the system starts in the ground subspace of a Hamiltonian which is slowly changed such that a transformation occurs within the subspace. Following the approach of Bacon and Flammia, we show that any MBQC on a graph state with generalized flow (gflow) can be converted into an adiabatically driven holonomic computation, which we call adiabatic graph-state quantum computation (AGQC). We then investigate how properties of AGQC relate to the properties of MBQC, such as computational depth. We identify a trade-off that can be made between the number of adiabatic steps in AGQC and the norm of \\dot{H} as well as the degree of H, in analogy to the trade-off between the number of measurements and classical post-processing seen in MBQC. Finally the effects of performing AGQC with orderings that differ from standard MBQC are investigated.

  17. Accurate ab initio determination of the adiabatic potential energy function and the Born-Oppenheimer breakdown corrections for the electronic ground state of LiH isotopologues

    NASA Astrophysics Data System (ADS)

    Holka, Filip; Szalay, Péter G.; Fremont, Julien; Rey, Michael; Peterson, Kirk A.; Tyuterev, Vladimir G.

    2011-03-01

    High level ab initio potential energy functions have been constructed for LiH in order to predict vibrational levels up to dissociation. After careful tests of the parameters of the calculation, the final adiabatic potential energy function has been composed from: (a) an ab initio nonrelativistic potential obtained at the multireference configuration interaction with singles and doubles level including a size-extensivity correction and quintuple-sextuple ζ extrapolations of the basis, (b) a mass-velocity-Darwin relativistic correction, and (c) a diagonal Born-Oppenheimer (BO) correction. Finally, nonadiabatic effects have also been considered by including a nonadiabatic correction to the kinetic energy operator of the nuclei. This correction is calculated from nonadiabatic matrix elements between the ground and excited electronic states. The calculated vibrational levels have been compared with those obtained from the experimental data [J. A. Coxon and C. S. Dickinson, J. Chem. Phys. 134, 9378 (2004)]. It was found that the calculated BO potential results in vibrational levels which have root mean square (rms) deviations of about 6-7 cm-1 for LiH and ˜3 cm-1 for LiD. With all the above mentioned corrections accounted for, the rms deviation falls down to ˜1 cm-1. These results represent a drastic improvement over previous theoretical predictions of vibrational levels for all isotopologues of LiH.

  18. Accurate ab initio determination of the adiabatic potential energy function and the Born-Oppenheimer breakdown corrections for the electronic ground state of LiH isotopologues.

    PubMed

    Holka, Filip; Szalay, Péter G; Fremont, Julien; Rey, Michael; Peterson, Kirk A; Tyuterev, Vladimir G

    2011-03-07

    High level ab initio potential energy functions have been constructed for LiH in order to predict vibrational levels up to dissociation. After careful tests of the parameters of the calculation, the final adiabatic potential energy function has been composed from: (a) an ab initio nonrelativistic potential obtained at the multireference configuration interaction with singles and doubles level including a size-extensivity correction and quintuple-sextuple ζ extrapolations of the basis, (b) a mass-velocity-Darwin relativistic correction, and (c) a diagonal Born-Oppenheimer (BO) correction. Finally, nonadiabatic effects have also been considered by including a nonadiabatic correction to the kinetic energy operator of the nuclei. This correction is calculated from nonadiabatic matrix elements between the ground and excited electronic states. The calculated vibrational levels have been compared with those obtained from the experimental data [J. A. Coxon and C. S. Dickinson, J. Chem. Phys. 134, 9378 (2004)]. It was found that the calculated BO potential results in vibrational levels which have root mean square (rms) deviations of about 6-7 cm(-1) for LiH and ∼3 cm(-1) for LiD. With all the above mentioned corrections accounted for, the rms deviation falls down to ∼1 cm(-1). These results represent a drastic improvement over previous theoretical predictions of vibrational levels for all isotopologues of LiH.

  19. Adiabatic following for a three-state quantum system

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Shore, Bruce W.; Rangelov, Andon; Kyoseva, Elica

    2017-01-01

    Adiabatic time-evolution - found in various forms of adiabatic following and adiabatic passage - is often advantageous for controlled manipulation of quantum systems due to its insensitivity to deviations in the pulse shapes and timings. In this paper we discuss controlled adiabatic evolution of a three-state quantum system, a natural advance to the widespread use of two-state systems in numerous contemporary applications. We discuss, and illustrate, not only possibilities for population transfer but also for creating, with prescribed relative phase, 50:50 superpositions of two Zeeman sublevels in a letter-vee coupling linkage.

  20. Classical molecular dynamics simulation of electronically non-adiabatic processes.

    PubMed

    Miller, William H; Cotton, Stephen J

    2016-12-22

    Both classical and quantum mechanics (as well as hybrids thereof, i.e., semiclassical approaches) find widespread use in simulating dynamical processes in molecular systems. For large chemical systems, however, which involve potential energy surfaces (PES) of general/arbitrary form, it is usually the case that only classical molecular dynamics (MD) approaches are feasible, and their use is thus ubiquitous nowadays, at least for chemical processes involving dynamics on a single PES (i.e., within a single Born-Oppenheimer electronic state). This paper reviews recent developments in an approach which extends standard classical MD methods to the treatment of electronically non-adiabatic processes, i.e., those that involve transitions between different electronic states. The approach treats nuclear and electronic degrees of freedom (DOF) equivalently (i.e., by classical mechanics, thereby retaining the simplicity of standard MD), and provides "quantization" of the electronic states through a symmetrical quasi-classical (SQC) windowing model. The approach is seen to be capable of treating extreme regimes of strong and weak coupling between the electronic states, as well as accurately describing coherence effects in the electronic DOF (including the de-coherence of such effects caused by coupling to the nuclear DOF). A survey of recent applications is presented to illustrate the performance of the approach. Also described is a newly developed variation on the original SQC model (found universally superior to the original) and a general extension of the SQC model to obtain the full electronic density matrix (at no additional cost/complexity).

  1. Adiabatic effects of electrons and ions on electro-acoustic solitary waves in an adiabatic dusty plasma

    NASA Astrophysics Data System (ADS)

    Tanjia, Fatema; Mamun, A. A.

    2009-02-01

    A dusty plasma consisting of negatively charged cold dust, adiabatic hot ions, and inertia-less adiabatic hot electrons has been considered. The adiabatic effects of electrons and ions on the basic properties of electro-acoustic solitary waves associated with different types of electro-acoustic (viz. ion-acoustic (IA), dust ion-acoustic (DIA), and dust acoustic (DA)) waves are thoroughly investigated by the reductive perturbation method. It is found that the basic properties of the IA, DIA, and DA waves are significantly modified by the adiabatic effects of ions and inertia-less electrons. The implications of our results in space and laboratory dusty plasmas are briefly discussed.

  2. Breaking of dynamical adiabaticity in direct laser acceleration of electrons

    NASA Astrophysics Data System (ADS)

    Robinson, A. P. L.; Arefiev, A. V.

    2017-02-01

    The interaction of an electron oscillating in an ion channel and irradiated by a plane electromagnetic wave is considered. It is shown that the interaction qualitatively changes with the increase of electron energy, as the oscillations across the channel become relativistic. The "square-wave-like" profile of the transverse velocity in the relativistic case enables breaking of the adiabaticity that precludes electron energy retention in the non-relativistic case. For an electron with a relativistic factor γ0, the adiabaticity breaks if ωL/ωp0≪√{γ0 } . Under these conditions, the kinetic energy acquired by the electron is retained once the interaction with the laser field ceases. This mechanism notably enables electron heating in regimes that do not require a resonant interaction between the initially oscillating electron and the laser electric field.

  3. Semiclassical quantization of bound and quasistationary states beyond the adiabatic approximation

    SciTech Connect

    Benderskii, V.A.; Vetoshkin, E.V.; Kats, E.I.

    2004-06-01

    We examine one important (and previously overlooked) aspect of well-known crossing diabatic potentials or Landau-Zener (LZ) problem. We derive the semiclassical quantization rules for the crossing diabatic potentials with localized initial and localized or delocalized final states, in the intermediate energy region, when all four adiabatic states are coupled and should be taken into account. We found all needed connection matrices and present the following analytical results: (i) in the tunneling region, the splittings of vibrational levels are represented as a product of the splitting in the lower adiabatic potential and the nontrivial function depending on the Massey parameter; (ii) in the overbarrier region, we find specific resonances between the levels in the lower and in the upper adiabatic potentials and, in that condition, independent quantizations rules are not correct; (iii) for the delocalized final states (decay lower adiabatic potential), we describe quasistationary states and calculate the decay rate as a function of the adiabatic coupling; and (iv) for the intermediate energy regions, we calculate the energy level quantization, which can be brought into a compact form by using either adiabatic or diabatic basis set (in contrast to the previous results found in the Landau diabatic basis). Applications of the results may concern the various systems; e.g., molecules undergoing conversion of electronic states, radiationless transitions, or isomerization reactions.

  4. Sub-adiabatic perpendicular electron heating across high-Mach number collisionless shocks

    NASA Astrophysics Data System (ADS)

    Sundkvist, D. J.; Mozer, F.

    2012-12-01

    Spacecraft observations of a high Mach number quasi-perpendicular bow shock with high plasma beta have revealed electrons that were sub-adiabatic through the shock ramp because they were less heated than expected from conservation of the first adiabatic invariant. This stands out in contrast to existing theories of electron heating at collisionless shocks in which the electrons are adiabatically heated through compression or more-than-adiabatically heated due to additional effects such as anomalous resistivity induced by microinstabilites.

  5. Adiabatic State Conversion and Pulse Transmission in Optomechanical Systems

    NASA Astrophysics Data System (ADS)

    Tian, Lin

    2012-04-01

    Optomechanical systems with strong coupling can be a powerful medium for quantum state engineering of the cavity modes. Here, we show that quantum state conversion between cavity modes of distinctively different wavelengths can be realized with high fidelity by adiabatically varying the effective optomechanical couplings. The conversion fidelity for Gaussian states is derived by solving the Langevin equation in the adiabatic limit. Meanwhile, we also show that traveling photon pulses can be transmitted between different input and output channels with high fidelity and the output pulse can be engineered via the optomechanical couplings.

  6. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment.

    PubMed

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J Timothy; Champion, Paul M

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical "gating" distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near

  7. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: Comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment

    SciTech Connect

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy; Champion, Paul M.

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical “gating” distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working

  8. Adiabatic State Conversion and Photon Transmission in Optomechanical Systems

    NASA Astrophysics Data System (ADS)

    Tian, Lin

    2012-02-01

    Light-matter interaction in optomechanical systems in the strong coupling regime can be explored as a tool to transfer cavity states and to transmit photon pulses. Here, we show that quantum state conversion between cavity modes with different wavelengths can be realized with high fidelity by adiabatically varying the effective optomechanical couplings. During this adiabatic process, the quantum state is preserved in the dark mode of the cavities, similar to the adiabatic transfer schemes in EIT systems. The fidelity for gaussian states is derived by solving the Langevin equation in the adiabatic limit and shows negligible dependence on the mechanical noise. We also show that an input pulse can be transmitted to an output channel with a different wavelength via the effective optomechanical couplings. The condition for optimal transmission is derived in the frequency domain. Input pulses with a narrow spectral width can be transmitted with high fidelity. For input pulses with a large spectral width, the shape of the output pulses can be manipulated by applying time-dependent effective couplings. (1) L. Tian, arXiv:1111.2119. (2) L. Tian and H. L. Wang, Phys. Rev. A 82, 053806 (2010).

  9. Non-locality, adiabaticity, thermodynamics and electron energy probability functions

    NASA Astrophysics Data System (ADS)

    Boswell, Roderick; Zhang, Yunchao; Charles, Christine; Takahashi, Kazunori

    2016-09-01

    Thermodynamic properties are revisited for electrons that are governed by nonlocal electron energy probability functions in a plasma of low collisionality. Measurements in a laboratory helicon double layer experiment have shown that the effective electron temperature and density show a polytropic correlation with an index of γe = 1 . 17 +/- 0 . 02 along the divergent magnetic field, implying a nearly isothermal plasma (γe = 1) with heat being brought into the system. However, the evolution of electrons along the divergent magnetic field is essentially an adiabatic process, which should have a γe = 5 / 3 . The reason for this apparent contradiction is that the nearly collisionless plasma is very far from local thermodynamic equilibrium and the electrons behave nonlocally. The corresponding effective electron enthalpy has a conservation relation with the potential energy, which verifies that there is no heat transferred into the system during the electron evolution. The electrons are shown in nonlocal momentum equilibrium under the electric field and the gradient of the effective electron pressure. The convective momentum of ions, which can be assumed as a cold species, is determined by the effective electron pressure and the effective electron enthalpy is shown to be the source for ion acceleration. For these nearly collisionless plasmas, the use of traditional thermodynamic concepts can lead to very erroneous conclusions regarding the thermal conductivity.

  10. Breakdown of adiabatic electron behavior in expanding magnetic fields

    NASA Astrophysics Data System (ADS)

    Lichko, Emily; Egedal, Jan; Daughton, William

    2015-11-01

    During magnetic reconnection the incoming magnetic flux tubes expand in the inflow region. If this expansion is sufficiently slow the results are well described by a previously developed adiabatic model. Using kinetic simulations in a simple geometry and applying rapid magnetic perturbations, this study investigates the point at which the adiabatic assumption fails. To this end a 2D VPIC simulation was constructed, where the magnetic field in a uniform plasma is perturbed by externally driven currents. By varying the onset speed of the magnetic perturbation and the electron thermal speed, we found a sharp threshold at which this model breaks down. We believe that this point is determined by the time of the magnetic pumping compared to the electron transit time through the region, i.e. ω ~ Ḃ / B ~vthe / L . This threshold was also characterized by the launching of Whistler waves and with time domain structures, such as electron holes and double layers, which agree with those seen during magnetic reconnection and may relate to similar structures in the Van Allen Belts. NSF GEM award 1405166 and NASA grant NNX14AC68G.

  11. Fast adiabatic quantum state transfer and entanglement generation between two atoms via dressed states

    PubMed Central

    Wu, Jin-Lei; Ji, Xin; Zhang, Shou

    2017-01-01

    We propose a dressed-state scheme to achieve shortcuts to adiabaticity in atom-cavity quantum electrodynamics for speeding up adiabatic two-atom quantum state transfer and maximum entanglement generation. Compared with stimulated Raman adiabatic passage, the dressed-state scheme greatly shortens the operation time in a non-adiabatic way. By means of some numerical simulations, we determine the parameters which can guarantee the feasibility and efficiency both in theory and experiment. Besides, numerical simulations also show the scheme is robust against the variations in the parameters, atomic spontaneous emissions and the photon leakages from the cavity.

  12. Diabatic-At-Construction Method for Diabatic and Adiabatic Ground and Excited States Based on Multistate Density Functional Theory.

    PubMed

    Grofe, Adam; Qu, Zexing; Truhlar, Donald G; Li, Hui; Gao, Jiali

    2017-03-14

    We describe a diabatic-at-construction (DAC) strategy for defining diabatic states to determine the adiabatic ground and excited electronic states and their potential energy surfaces using the multistate density functional theory (MSDFT). The DAC approach differs in two fundamental ways from the adiabatic-to-diabatic (ATD) procedures that transform a set of preselected adiabatic electronic states to a new representation. (1) The DAC states are defined in the first computation step to form an active space, whose configuration interaction produces the adiabatic ground and excited states in the second step of MSDFT. Thus, they do not result from a similarity transformation of the adiabatic states as in the ATD procedure; they are the basis for producing the adiabatic states. The appropriateness and completeness of the DAC active space can be validated by comparison with experimental observables of the ground and excited states. (2) The DAC diabatic states are defined using the valence bond characters of the asymptotic dissociation limits of the adiabatic states of interest, and they are strictly maintained at all molecular geometries. Consequently, DAC diabatic states have specific and well-defined physical and chemical meanings that can be used for understanding the nature of the adiabatic states and their energetic components. Here we present results for the four lowest singlet states of LiH and compare them to a well-tested ATD diabatization method, namely the 3-fold way; the comparison reveals both similarities and differences between the ATD diabatic states and the orthogonalized DAC diabatic states. Furthermore, MSDFT can provide a quantitative description of the ground and excited states for LiH with multiple strongly and weakly avoided curve crossings spanning over 10 Å of interatomic separation.

  13. On optimal methods for adiabatic quantum state transformations

    NASA Astrophysics Data System (ADS)

    Somma, Rolando

    2013-03-01

    Many problems in science could be solved by preparing the low-energy quantum state (or any eigenstate) of a Hamiltonian. A common example is the Boolean satisfiability problem, where each clause can be mapped to the energy of an interacting many-body system, and the problem reduces to minimizing the energy. In quantum computing, adiabatic quantum state transformations (ASTs) provide a tool for preparing the quantum state. ASTs are conventionally implemented via slow or adiabatic perturbations to the Hamiltonian, relying on the quantum adiabatic theorem. Nevertheless, more efficient implementations of ASTs exist. In this talk I will review recently developed methods for ASTs that are more efficient and require less assumptions on the Hamiltonians than the conventional implementation. Such methods involve measurements of the states along the evolution path and have a best-case implementation cost of L/G, where L is the length of the (evolved) state path and G is a lower bound to the spectral gap of the Hamiltonians. I will show that this cost is optimal and comment on results of the gap amplification problem, where the goal is to reduce the cost by increasing G. We acknowledge support from NSF through the CCF program and the LDRD programs at Los Alamos National Laboratory and Sandia National Laboratories.

  14. Geometric Phase for Adiabatic Evolutions of General Quantum States

    SciTech Connect

    Wu, Biao; Liu, Jie; Niu, Qian; Singh, David J

    2005-01-01

    The concept of a geometric phase (Berry's phase) is generalized to the case of noneigenstates, which is applicable to both linear and nonlinear quantum systems. This is particularly important to nonlinear quantum systems, where, due to the lack of the superposition principle, the adiabatic evolution of a general state cannot be described in terms of eigenstates. For linear quantum systems, our new geometric phase reduces to a statistical average of Berry's phases. Our results are demonstrated with a nonlinear two-level model.

  15. Preparation of Quantum States of H2 using Stark-induced Adiabatic Raman Passage (SARP)

    DTIC Science & Technology

    2013-12-02

    diatomic molecule to an excited rovibrational eigenstate. Based on this idea we carried out experiments using a sequence of overlapping pump (532 nm...overlapping pump and Stokes laser pulses it is possible to transfer the complete ground state population of an isolated diatomic molecule to an excited...wide energy gap ( diatoms like H2, D2, HCl, N2) between the ground and excited electronic states, where other adiabatic methods like STIRAP or SCRAP

  16. An adiabatic linearized path integral approach for quantum time correlation functions: electronic transport in metal-molten salt solutions.

    PubMed

    Causo, Maria Serena; Ciccotti, Giovanni; Montemayor, Daniel; Bonella, Sara; Coker, David F

    2005-04-14

    We generalize the linearized path integral approach to evaluate quantum time correlation functions for systems best described by a set of nuclear and electronic degrees of freedom, restricting ourselves to the adiabatic approximation. If the operators in the correlation function are nondiagonal in the electronic states, then this adiabatic linearized path integral approximation for the thermal averaged quantum dynamics presents interesting and distinctive features, which we derive and explore in this paper. The capability of these approximations to accurately reproduce the behavior of physical systems is demonstrated by calculating the diffusion constant for an excess electron in a metal-molten salt solution.

  17. Microwave photon Fock state generation by stimulated Raman adiabatic passage

    NASA Astrophysics Data System (ADS)

    Premaratne, Shavindra P.; Wellstood, F. C.; Palmer, B. S.

    2017-01-01

    The deterministic generation of non-classical states of light, including squeezed states, Fock states and Bell states, plays an important role in quantum information processing and exploration of the physics of quantum entanglement. Preparation of these non-classical states in resonators is non-trivial due to their inherent harmonicity. Here we use stimulated Raman adiabatic passage to generate microwave photon Fock states in a superconducting circuit quantum electrodynamics system comprised of a fixed-frequency transmon qubit in a three-dimensional microwave cavity at 20 mK. A two-photon process is employed to overcome a first order forbidden transition and the first, second and third Fock states are demonstrated. We also demonstrate how this all-microwave technique can be used to generate an arbitrary superposition of Fock states. Simulations of the system are in excellent agreement with the data and fidelities of 89%, 68% and 43% are inferred for the first three Fock states respectively.

  18. Sideband excitation of trapped ions by rapid adiabatic passage for manipulation of motional states

    SciTech Connect

    Watanabe, T.; Nomura, S.; Toyoda, K.; Urabe, S.

    2011-09-15

    We describe an analysis and experimental results of the manipulation of motional states of a single trapped {sup 40}Ca{sup +} ion based on sideband excitation by rapid adiabatic passage. When the sideband transition is excited by rapid adiabatic passage, adiabaticity may be affected by ac Stark shifts. We investigate the influence of ac Stark shifts and compensate for these shifts with an additional laser field. This makes the population transfer by rapid adiabatic passage more robust with respect to experimental parameters. Finally, we manipulate the motional states and generate motional Fock states of a single {sup 40}Ca{sup +} ion by rapid adiabatic passage with ac Stark compensation.

  19. First-order derivative couplings between excited states from adiabatic TDDFT response theory

    SciTech Connect

    Ou, Qi; Subotnik, Joseph E.; Bellchambers, Gregory D.; Furche, Filipp

    2015-02-14

    We present a complete derivation of derivative couplings between excited states in the framework of adiabatic time-dependent density functional response theory. Explicit working equations are given and the resulting derivative couplings are compared with derivative couplings from a pseudo-wavefunction ansatz. For degenerate excited states, i.e., close to a conical intersection (CI), the two approaches are identical apart from an antisymmetric overlap term. However, if the difference between two excitation energies equals another excitation energy, the couplings from response theory exhibit an unphysical divergence. This spurious behavior is a result of the adiabatic or static kernel approximation of time-dependent density functional theory leading to an incorrect analytical structure of the quadratic response function. Numerical examples for couplings close to a CI and for well-separated electronic states are given.

  20. First-order derivative couplings between excited states from adiabatic TDDFT response theory.

    PubMed

    Ou, Qi; Bellchambers, Gregory D; Furche, Filipp; Subotnik, Joseph E

    2015-02-14

    We present a complete derivation of derivative couplings between excited states in the framework of adiabatic time-dependent density functional response theory. Explicit working equations are given and the resulting derivative couplings are compared with derivative couplings from a pseudo-wavefunction ansatz. For degenerate excited states, i.e., close to a conical intersection (CI), the two approaches are identical apart from an antisymmetric overlap term. However, if the difference between two excitation energies equals another excitation energy, the couplings from response theory exhibit an unphysical divergence. This spurious behavior is a result of the adiabatic or static kernel approximation of time-dependent density functional theory leading to an incorrect analytical structure of the quadratic response function. Numerical examples for couplings close to a CI and for well-separated electronic states are given.

  1. Experimental Adiabatic Quantum Factorization under Ambient Conditions Based on a Solid-State Single Spin System.

    PubMed

    Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng

    2017-03-31

    The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian S_{z}I_{z} on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.

  2. Atomistic simulations of adiabatic coherent electron transport in triple donor systems

    NASA Astrophysics Data System (ADS)

    Rahman, Rajib; Park, Seung H.; Cole, Jared H.; Greentree, Andrew D.; Muller, Richard P.; Klimeck, Gerhard; Hollenberg, Lloyd C. L.

    2009-07-01

    A solid-state analog of stimulated Raman adiabatic passage can be implemented in a triple-well solid-state system to coherently transport an electron across the wells with exponentially suppressed occupation in the central well at any point of time. Termed coherent-tunneling adiabatic passage (CTAP), this method provides a robust way to transfer quantum information encoded in the electronic spin across a chain of quantum dots or donors. Using large-scale atomistic tight-binding simulations involving over 3.5×106 atoms, we verify the existence of a CTAP pathway in a realistic solid-state system: gated triple donors in silicon. Realistic gate profiles from commercial tools were combined with tight-binding methods to simulate gate control of the donor to donor tunnel barriers in the presence of crosstalk. As CTAP is an adiabatic protocol, it can be analyzed by solving the time-independent problem at various stages of the pulse justifying the use of time-independent tight-binding methods to this problem. This work also involves the first atomistic treatment to translate the three-state-based quantum-optics type of modeling into a solid-state description beyond the ideal localization assumption. Our results show that a three-donor CTAP transfer, with interdonor spacing of 15 nm can occur on time scales greater than 23 ps, well within experimentally accessible regimes. The method not only provides a tool to guide future CTAP experiments but also illuminates the possibility of system engineering to enhance control and transfer times.

  3. Microwave photon Fock state generation by stimulated Raman adiabatic passage

    PubMed Central

    Premaratne, Shavindra P.; Wellstood, F. C.; Palmer, B. S.

    2017-01-01

    The deterministic generation of non-classical states of light, including squeezed states, Fock states and Bell states, plays an important role in quantum information processing and exploration of the physics of quantum entanglement. Preparation of these non-classical states in resonators is non-trivial due to their inherent harmonicity. Here we use stimulated Raman adiabatic passage to generate microwave photon Fock states in a superconducting circuit quantum electrodynamics system comprised of a fixed-frequency transmon qubit in a three-dimensional microwave cavity at 20 mK. A two-photon process is employed to overcome a first order forbidden transition and the first, second and third Fock states are demonstrated. We also demonstrate how this all-microwave technique can be used to generate an arbitrary superposition of Fock states. Simulations of the system are in excellent agreement with the data and fidelities of 89%, 68% and 43% are inferred for the first three Fock states respectively. PMID:28128205

  4. A new symmetrical quasi-classical model for electronically non-adiabatic processes: Application to the case of weak non-adiabatic coupling

    NASA Astrophysics Data System (ADS)

    Cotton, Stephen J.; Miller, William H.

    2016-10-01

    Previous work has shown how a symmetrical quasi-classical (SQC) windowing procedure can be used to quantize the initial and final electronic degrees of freedom in the Meyer-Miller (MM) classical vibronic (i.e, nuclear + electronic) Hamiltonian, and that the approach provides a very good description of electronically non-adiabatic processes within a standard classical molecular dynamics framework for a number of benchmark problems. This paper explores application of the SQC/MM approach to the case of very weak non-adiabatic coupling between the electronic states, showing (as anticipated) how the standard SQC/MM approach used to date fails in this limit, and then devises a new SQC windowing scheme to deal with it. Application of this new SQC model to a variety of realistic benchmark systems shows that the new model not only treats the weak coupling case extremely well, but it is also seen to describe the "normal" regime (of electronic transition probabilities ≳ 0.1) even more accurately than the previous "standard" model.

  5. Analysis of magnetically immersed electron guns with non-adiabatic fields

    SciTech Connect

    Pikin, Alexander; Alessi, James G.; Beebe, Edward N.; Raparia, Deepak; Ritter, John

    2016-11-08

    Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams with high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. In conclusion, the tests results of non-adiabatic electron gun with modified magnetic field are presented.

  6. Analysis of magnetically immersed electron guns with non-adiabatic fields

    DOE PAGES

    Pikin, Alexander; Alessi, James G.; Beebe, Edward N.; ...

    2016-11-08

    Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams withmore » high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. In conclusion, the tests results of non-adiabatic electron gun with modified magnetic field are presented.« less

  7. Analysis of magnetically immersed electron guns with non-adiabatic fields

    NASA Astrophysics Data System (ADS)

    Pikin, Alexander; Alessi, James G.; Beebe, Edward N.; Raparia, Deepak; Ritter, John

    2016-11-01

    Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams with high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map, different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. The tests' results of a non-adiabatic electron gun with modified magnetic field are presented.

  8. Experimental aspects of the adiabatic approach in estimating the effect of electron screening on alpha decay

    SciTech Connect

    Karpeshin, F. F.; Trzhaskovskaya, M. B.

    2015-12-15

    Special features of the effect of the electron shell on alpha decay that have important experimental implications are studied within the adiabatic approach. The magnitude of the effect is about several tenths of a percent or smaller, depending on the transition energy and on the atomic number. A dominant role of inner shells is shown: more than 80% of the effect is saturated by 1s electrons. This circumstance plays a crucial role for experiments, making it possible to measure this small effect by a difference method in the same storage rings via a comparison of, for example, decay probabilities in bare nuclei and heliumlike ions. The reasons behind the relative success and the applicability limits of the frozen-shell model, which has been used to calculate the effect in question for more than half a century, are analyzed. An interesting experiment aimed at studying charged alpha-particle states is proposed. This experiment will furnish unique information for testing our ideas of the interplay of nonadiabatic and adiabatic processes.

  9. Non-adiabatic excited state molecular dynamics of phenylene ethynylene dendrimer using a multiconfigurational Ehrenfest approach

    DOE PAGES

    Fernandez-Alberti, Sebastian; Makhov, Dmitry V.; Tretiak, Sergei; ...

    2016-03-10

    Photoinduced dynamics of electronic and vibrational unidirectional energy transfer between meta-linked building blocks in a phenylene ethynylene dendrimer is simulated using a multiconfigurational Ehrenfest in time-dependent diabatic basis (MCE-TDDB) method, a new variant of the MCE approach developed by us for dynamics involving multiple electronic states with numerous abrupt crossings. Excited-state energies, gradients and non-adiabatic coupling terms needed for dynamics simulation are calculated on-the-fly using the Collective Electron Oscillator (CEO) approach. In conclusion, a comparative analysis of our results obtained using MCE-TDDB, the conventional Ehrenfest method and the surface-hopping approach with and without decoherence corrections is presented.

  10. Adiabatic Phase Mixing and Fast Electron Heating in Thin current Sheet

    NASA Astrophysics Data System (ADS)

    Che, H.; Drake, J. F.; Swisdak, M. M.; Goldstein, M. L.

    2012-12-01

    Using particle-in-cell simulations and kinetic theory, it's found that strong Buneman instability develop non-linearly in thin current layer form in plasma with Ω e/ω pe< 1. The Buneman instability produces strong electric field and fast phase mixing which leads to the increase of electron temperature by more than a factor of 10 in a few tens of electron gyro-periods. The resonance of wave-particles feeds waves with particle's kinetic energy and causes the growth of waves and strong trapping of electrons at a large velocity range. We discovered it is the adiabatic movement of trapped electrons produce fast phase mixing when the particle's bounce rate is much larger than the growth and decay rate of waves. The adiabatic movement effectively exchange energy between particles and waves and redistribute the energy from high velocity electrons to low energy electrons with the assistance of the non-adiabatic crossing of separatrix of electron holes. The implications of the results for reconnection are being explored.

  11. Non adiabatic electron behavior through a supercritical perpendicular collisionless shock: Impact of the shock front turbulence

    NASA Astrophysics Data System (ADS)

    Savoini, P.; Lembege, B.

    2010-11-01

    Adiabatic and nonadiabatic electrons transmitted through a supercritical perpendicular shock wave are analyzed with the help of test particle simulations based on field components issued from 2 - D full-particle simulation. A previous analysis (Savoini et al., 2005) based on 1 - D shock profile, including mainly a ramp (no apparent foot) and defined at a fixed time, has identified three distinct electron populations: adiabatic, overadiabatic, and underadiabatic, respectively, identified by μds/μus ≈ 1, >1 and <1, where μus and μds are the magnetic momenta in the upstream and downstream regions. Presently, this study is extended by investigating the impact of the time evolution of 2 - D shock front dynamics on these three populations. Analysis of individual time particle trajectories is performed and completed by statistics based on the use of different upstream velocity distributions (spherical shell of radius vshell and a Maxwellian with thermal velocity vthe). In all statistics, the three electron populations are clearly recovered. Two types of shock front nonstationarity are analyzed. First, the impact of the nonstationarity along the shock normal (due to the front self-reformation only) strongly depends on the values of vshell or vthe. For low values, the percentages of adiabatic and overadiabatic electrons are almost comparable but become anticorrelated under the filtering impact of the self-reformation; the percentage of the underadiabatic population remains almost unchanged. In contrast, for large values, this impact becomes negligible and the adiabatic population alone becomes dominant. Second, when 2 - D nonstationarity effects along the shock front (moving rippling) are fully included, all three populations are strongly diffused, leading to a larger heating; the overadiabatic population becomes largely dominant (and even larger than the adiabatic one) and mainly contributes to the energy spectrum.

  12. The adiabatic phase mixing and heating of electrons in Buneman turbulence

    SciTech Connect

    Che, H.; Goldstein, M. L.; Drake, J. F.; Swisdak, M.

    2013-06-15

    The nonlinear development of the strong Buneman instability and the associated fast electron heating in thin current layers with Ω{sub e}/ω{sub pe}<1 is explored. Phase mixing of the electrons in wave potential troughs and a rapid increase in temperature are observed during the saturation of the instability. We show that the motion of trapped electrons can be described using a Hamiltonian formalism in the adiabatic approximation. The process of separatrix crossing as electrons are trapped and de-trapped is irreversible and guarantees that the resulting electron energy gain is a true heating process.

  13. Adiabatic many-body state preparation and information transfer in quantum dot arrays

    NASA Astrophysics Data System (ADS)

    Farooq, Umer; Bayat, Abolfazl; Mancini, Stefano; Bose, Sougato

    2015-04-01

    Quantum simulation of many-body systems are one of the most interesting tasks of quantum technology. Among them is the preparation of a many-body system in its ground state when the vanishing energy gap makes the cooling mechanisms ineffective. Adiabatic theorem, as an alternative to cooling, can be exploited for driving the many-body system to its ground state. In this paper, we study two most common disorders in quantum dot arrays, namely exchange coupling fluctuations and hyperfine interaction, in adiabatic preparation of ground state in such systems. We show that the adiabatic ground-state preparation is highly robust against those disorder effects making it a good analog simulator. Moreover, we also study the adiabatic quantum information transfer, using singlet-triplet states, across a spin chain. In contrast to ground-state preparation the transfer mechanism is highly affected by disorder and in particular, the hyperfine interaction is very destructive for the performance. This suggests that for communication tasks across such arrays adiabatic evolution is not as effective and quantum quenches could be preferable.

  14. Dawn-dusk asymmetry and adiabatic dynamic of the radiation belt electrons during magnetic storm

    NASA Astrophysics Data System (ADS)

    Lazutin, Leonid L.

    2016-09-01

    The changes of the latitudinal profiles of outer belt energetic electrons during magnetic storms are mostly explained by the precipitation into the loss cone caused by VLF and EMIC waves or by the scattering into the magnetopause. In present work, energetic electron dynamics during magnetic storm of August 29-30, 2004 we attributed at most to the adiabatic transformation of the magnetic drift trajectories and Dst effect. This conclusion was based on the analysis of dawn-dusk asymmetry of the electron latitudinal profiles measured by low altitude polar orbiter SERVIS-1 and on the coincidence of pre-storm and after-storm profiles of radiation belt electrons and protons.

  15. Classical model for electronically non-adiabatic collision processes resonance effects in electronic-vibrational energy transfer

    SciTech Connect

    Orel, Ann E.; Ali, Dominic P.; Miller, William H.

    1981-02-01

    In this paper, a classical model for electronically non-adiabatic collision processes is applied to E → V energy transfer in a collinear system, A + BC (v = 1) → A* + BC (v = 0), resembling Br-H2. Finally, the model, which treats electronic as well as translational, rotational, and vibrational degrees of freedom by classical mechanics, describes the resonance features in this process reasonably well.

  16. Selective excitation in a three-state system using a hybrid adiabatic-nonadiabatic interaction

    NASA Astrophysics Data System (ADS)

    Song, Yunheung; Lee, Han-gyeol; Jo, Hanlae; Ahn, Jaewook

    2016-08-01

    The chirped-pulse interaction in the adiabatic coupling regime induces cyclic permutations of the energy states of a three-level system in the V -type configuration, which process is known as the three-level chirped rapid adiabatic passage (RAP). Here we show that a spectral hole in a chirped pulse can turn on or off the level mixing at adiabatic crossing points of this process, reducing the system to an effective two-level system. The given hybrid adiabatic-nonadiabatic transition enables selective excitation of the three-level system, controlled by the laser intensity and spectral position of the hole, as well as the sign of the chirp parameter. Experiments performed with shaped femtosecond laser pulses and the three lowest energy levels (5 S1 /2 , 5 P1 /2 , and 5 P3 /2 ) of atomic rubidium (Rb) show good agreement with the theoretically analyzed dynamics. The result indicates that our method, when being combined with the ordinary chirped RAP, implements an adiabatic transition between the Raman-coupled excited states. Furthermore, our laser intensity-dependent control may have applications including selective excitations of atoms or ions arranged in space when being used in conjunction with laser beam profile programming.

  17. How non-adiabatic passing electron layers of linear microinstabilities affect turbulent transport

    NASA Astrophysics Data System (ADS)

    Dominski, J.; Brunner, S.; Görler, T.; Jenko, F.; Told, D.; Villard, L.

    2015-06-01

    The response of passing electrons in ion temperature gradient and trapped electron mode microturbulence regimes is investigated in tokamak geometry making use of the flux-tube version of the gyrokinetic code GENE. Results are obtained using two different electron models, fully kinetic and hybrid in which passing particles are forced to respond adiabatically, while trapped are handled kinetically. Comparing linear eigenmodes obtained with these two models enables to systematically isolate fine radial structures located at corresponding mode rational surfaces, clearly resulting from the non-adiabatic passing-electron response. Non-linear simulations show that these fine structures on the non-axisymmetric modes survive in the turbulent phase. Furthermore, through non-linear coupling to axisymmetric modes, they induce radial modulations in the effective profiles of density, ion/electron temperature, and E × B shearing rate. Finally, the passing-electron channel is shown to significantly contribute to the transport levels, at least in our ion temperature gradient case. Also shown is that the passing electrons significantly influence the E × B saturation mechanism of turbulence fluxes.

  18. Stark-shift-chirped rapid-adiabatic-passage technique among three states

    SciTech Connect

    Rangelov, A. A.; Vitanov, N. V.; Yatsenko, L. P.; Shore, B. W.; Halfmann, T.; Bergmann, K.

    2005-11-15

    We show that the technique of Stark-chirped rapid adiabatic passage (SCRAP), hitherto used for complete population transfer between two quantum states, offers a simple and robust method for complete population transfer amongst three states in atoms and molecules. In this case SCRAP uses three laser pulses: a strong far-off-resonant pulse modifies the transition frequencies by inducing dynamic Stark shifts and thereby creating time-dependent level crossings amongst the three diabatic states, while near-resonant and moderately strong pump and Stokes pulses, appropriately offset in time, drive the population between the initial and final states via adiabatic passage. The population transfer efficiency is robust to variations in the intensities of the lasers, as long as these intensities are sufficiently large to enforce adiabatic evolution. With suitable pulse timings the population in the (possibly decaying) intermediate state can be minimized, as with stimulated Raman adiabatic passage (STIRAP). This technique applies to one-photon as well as multiphoton transitions and it is also applicable to media exhibiting inhomogeneous broadening; these features represent clear advantages over STIRAP by overcoming the inevitable dynamical Stark shifts that accompany multiphoton transitions as well as unwanted detunings, e.g., induced by Doppler shifts.

  19. Quasideterministic generation of maximally entangled states of two mesoscopic atomic ensembles by adiabatic quantum feedback

    SciTech Connect

    Di Lisi, Antonio; De Siena, Silvio; Illuminati, Fabrizio; Vitali, David

    2005-09-15

    We introduce an efficient, quasideterministic scheme to generate maximally entangled states of two atomic ensembles. The scheme is based on quantum nondemolition measurements of total atomic populations and on adiabatic quantum feedback conditioned by the measurements outputs. The high efficiency of the scheme is tested and confirmed numerically for ideal photodetection as well as in the presence of losses.

  20. A dynamical approach to non-adiabatic electron transfers at the bio-inorganic interface.

    PubMed

    Zanetti-Polzi, Laura; Corni, Stefano

    2016-04-21

    A methodology is proposed to investigate electron transfer reactions between redox-active biomolecular systems (e.g. a protein) and inorganic surfaces. The whole system is modelled at the atomistic level using classical molecular dynamics - making an extensive sampling of the system's configurations possible - and the energies associated with the redox-active complex reduction are calculated using a hybrid quantum/classical approach along the molecular dynamics trajectory. The non-adiabaticity is introduced a posteriori using a Monte Carlo approach based on the Landau-Zener theory extended to treat a metal surface. This approach thus allows us to investigate the role of the energy fluctuations, determined by the dynamical evolution of the system, as well as the role of non-adiabaticity in affecting the kinetic rate of the electron transfer reaction. Most notably, it allows us to investigate the two contributions separately, hence achieving a detailed picture of the mechanisms that determine the rate. The analysis of the system configurations also allows us to relate the estimated electronic coupling to the structural and dynamic properties of the system. As a test case, the methodology is here applied to study the electron transfer reaction between cytochrome c and a gold surface. The results obtained explain the different electron transfer rates experimentally measured for two different concentrations of proteins on the electrode surface.

  1. Adiabatic Generation of N-quNit Singlet States with Cavity QED

    PubMed Central

    Yang, Rong-Can; Ye, Li-Xiang; Lin, Xiu; Liu, Hong-Yu

    2017-01-01

    We present a theoretical scheme to generate N-quNit singlet states with N  3 via adiabatic passage. In this protocol, the system may be robust against both experimental parameter fluctuations and dissipations along dark states. In addition, during the whole procedure, quantum information is almost fully transferred between atomic ground states. It reduces the influence of dissipations such as atomic spontaneous emissions and cavity decays. Thus, the presented proposal may be feasible based on current technologies. PMID:28368022

  2. Deterministic entanglement generation between a pair of atoms on different Rydberg states via chirped adiabatic passage

    NASA Astrophysics Data System (ADS)

    Qian, Jing; Zhang, Weiping

    2017-03-01

    We develop a scheme for deterministic generation of an entangled state between two atoms on different Rydberg states via a chirped adiabatic passage, which directly connects the initial ground and target entangled states and also does not request the normally needed blockade effect. The occupancy of intermediate states suffers from a strong reduction via two pulses with proper time-dependent detunings and the electromagnetically induced transparency condition. By solving the analytical expressions of eigenvalues and eigenstates of a two-atom system, we investigate the optimal parameters for guaranteeing the adiabatic condition. We present a detailed study for the effect of pulse duration, changing rate, different Rydberg interactions on the fidelity of the prepared entangled state with experimentally feasible parameters, which reveals a good agreement between the analytic and full numerical results.

  3. Communication: Note on detailed balance in symmetrical quasi-classical models for electronically non-adiabatic dynamics

    SciTech Connect

    Miller, William H. Cotton, Stephen J.

    2015-04-07

    It is noted that the recently developed symmetrical quasi-classical (SQC) treatment of the Meyer-Miller (MM) model for the simulation of electronically non-adiabatic dynamics provides a good description of detailed balance, even though the dynamics which results from the classical MM Hamiltonian is “Ehrenfest dynamics” (i.e., the force on the nuclei is an instantaneous coherent average over all electronic states). This is seen to be a consequence of the SQC windowing methodology for “processing” the results of the trajectory calculation. For a particularly simple model discussed here, this is shown to be true regardless of the choice of windowing function employed in the SQC model, and for a more realistic full classical molecular dynamics simulation, it is seen to be maintained correctly for very long time.

  4. A fast solver for the gyrokinetic field equation with adiabatic electrons

    SciTech Connect

    Borchardt, M.; Kleiber, R.; Hackbusch, W.

    2012-07-15

    Describing turbulence and microinstabilities in fusion devices is often modelled with the gyrokinetic equation. During the time evolution of the distribution function a field equation for the electrostatic potential needs to be solved. In the case of adiabatic electrons it contains a flux-surface-average term resulting in an integro-differential equation. Its numerical solution is time and memory intensive for three-dimensional configurations. Here a new algorithm is presented which only requires the numerical inversion of a simpler differential operator and a subsequent addition of a correction term. This new procedure is as fast as solving the equation without the surface average.

  5. Quantum state engineering with flux-biased Josephson phase qubits by rapid adiabatic passages

    NASA Astrophysics Data System (ADS)

    Nie, W.; Huang, J. S.; Shi, X.; Wei, L. F.

    2010-09-01

    In this article, the scheme of quantum computing based on the Stark-chirped rapid adiabatic passage (SCRAP) technique [L. F. Wei, J. R. Johansson, L. X. Cen, S. Ashhab, and F. Nori, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.100.113601 100, 113601 (2008)] is extensively applied to implement quantum state manipulations in flux-biased Josephson phase qubits. The broken-parity symmetries of bound states in flux-biased Josephson junctions are utilized to conveniently generate the desirable Stark shifts. Then, assisted by various transition pulses, universal quantum logic gates as well as arbitrary quantum state preparations can be implemented. Compared with the usual π-pulse operations widely used in experiments, the adiabatic population passages proposed here are insensitive to the details of the applied pulses and thus the desirable population transfers can be satisfyingly implemented. The experimental feasibility of the proposal is also discussed.

  6. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling.

    PubMed

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S; Bud'ko, Sergey L; Canfield, Paul C; Gegenwart, Philipp

    2016-09-01

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with (3)He gas are widely used for cooling below 1 K. However, usage of the gas has been increasingly difficult because of the current worldwide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require (3)He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1-x Sc x Co2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. This study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration.

  7. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling

    DOE PAGES

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S.; ...

    2016-09-09

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with 3He gas are widely used for cooling below 1 Kelvin. However, usage of the gas has been increasingly difficult because of the current world-wide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require 3He gas.more » This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1$-$xScxCo2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. Lastly, this study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration.« less

  8. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling

    PubMed Central

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S.; Bud’ko, Sergey L.; Canfield, Paul C.; Gegenwart, Philipp

    2016-01-01

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with 3He gas are widely used for cooling below 1 K. However, usage of the gas has been increasingly difficult because of the current worldwide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require 3He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1−xScxCo2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. This study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration. PMID:27626073

  9. Electronic excitation of H{sub 2} by {ital e}{sup +} impact using adiabatic nuclear rotation model

    SciTech Connect

    Mukherjee, T.; Ghosh, A.S.

    1996-06-01

    The adiabatic nuclear rotation (ANR) model has been employed to obtain rotational excitation cross sections for electronically elastic and electronic excitation processes in {ital e}{sup +}-H{sub 2} scattering. The present results are compared with the more accurate laboratory-frame rotational close-coupling approximation (LFCCA) predictions. The electronically inelastic rotational excitation results using the ANR model differ from the corresponding LFCCA results near the electronic excitation threshold energies. {copyright} {ital 1996 The American Physical Society.}

  10. Examining the specific entropy (density of adiabatic invariants) of the outer electron radiation belt

    SciTech Connect

    Borovsky, Joseph E; Denton, Michael H

    2008-01-01

    Using temperature and number-density measurements of the energetic-electron population from multiple spacecraft in geosynchronous orbit, the specific entropy S = T/n{sup 2/3} of the outer electron radiation belt is calculated. Then 955,527 half-hour-long data intervals are statistically analyzed. Local-time and solar-cycle variations in S are examined. The median value of the specific entropy (2.8 x 10{sup 7} eVcm{sup 2}) is much larger than the specific entropy of other particle populations in and around the magnetosphere. The evolution of the specific entropy through high-speed-stream-driven geomagnetic storms and through magnetic-cloud-driven geomagnetic storms is studied using superposed-epoch analysis. For high-speed-stream-driven storms, systematic variations in the entropy associated with electron loss and gain and with radiation-belt heating are observed in the various storm phases. For magnetic-cloud-driven storms, multiple trigger choices for the data superpositions reveal the effects of interplanetary shock arrival, sheath driving, cloud driving, and recovery phase. The specific entropy S = T/n{sup 2/3} is algebraically expressed in terms of the first and second adiabatic invariants of the electrons: this allows a relativistic expression for S in terms of T and n to be derived. For the outer electron radiation belt at geosynchronous orbit, the relativistic corrections to the specific entropy expression are -15%.

  11. Band gaps, ionization potentials, and electron affinities of periodic electron systems via the adiabatic-connection fluctuation-dissipation theorem

    NASA Astrophysics Data System (ADS)

    Trushin, Egor; Betzinger, Markus; Blügel, Stefan; Görling, Andreas

    2016-08-01

    An approach to calculate fundamental band gaps, ionization energies, and electron affinities of periodic electron systems is explored. Starting from total energies obtained with the help of the adiabatic-connection fluctuation-dissipation (ACFD) theorem, these physical observables are calculated according to their basic definition by differences of the total energies of the N -, (N -1 ) -, and (N +1 ) -electron system. The response functions entering the ACFD theorem are approximated here by the direct random phase approximation (dRPA). For a set of prototypical semiconductors and insulators it is shown that even with this quite drastic approximation the resulting band gaps are very close to experiment and of a similar quality to those from the computationally more involved G W approximation. By going beyond the dRPA in the future the accuracy of the calculated band gaps may be significantly improved further.

  12. The calculation of adiabatic-connection curves from full configuration-interaction densities: two-electron systems.

    PubMed

    Teale, A M; Coriani, S; Helgaker, T

    2009-03-14

    The Lieb formulation of density-functional theory is briefly reviewed and its straightforward generalization to arbitrary electron-electron interaction strengths discussed, leading to the introduction of density-fixed and potential-fixed adiabatic connections. An iterative scheme for the calculation of the Lieb functionals under the appropriate constraints is outlined following the direct optimization approach of Wu and Yang [J. Chem. Phys. 118, 2498 (2003)]. First- and second-order optimization schemes for the calculation of accurate adiabatic-connection integrands are investigated and compared; the latter is preferred both in terms of computational efficiency and accuracy. The scheme is applicable to systems of any number of electrons. However, to determine the accuracy that may be achieved, the present work focuses on two-electron systems for which a number of simplifications may be exploited. The procedure is applied to the helium isoelectronic series and the H(2) molecule. The resulting adiabatic-connection curves yield the full configuration-interaction exchange-correlation energies extrapolated to the basis-set limit. The relationship between the Kohn-Sham and natural orbitals as functions of the electron-electron interaction strength is explored in detail for H(2). The accuracy with which the exchange-correlation contributions to the modified local potential can be determined is discussed. The new accurate adiabatic-connection curves are then compared with some recently investigated approximate forms calculated using accurate full configuration-interaction input data. This study demonstrates that the adiabatic-connection integrand may be determined accurately and efficiently, providing important insights into the link between the Kohn-Sham and traditional quantum-chemical treatments of the exchange-correlation problem in electronic-structure theory.

  13. Optimizing Adiabaticity in NMR

    NASA Astrophysics Data System (ADS)

    Vandermause, Jonathan; Ramanathan, Chandrasekhar

    We demonstrate the utility of Berry's superadiabatic formalism for numerically finding control sequences that implement quasi-adiabatic unitary transformations. Using an iterative interaction picture, we design a shortcut to adiabaticity that reduces the time required to perform an adiabatic inversion pulse in liquid state NMR. We also show that it is possible to extend our scheme to two or more qubits to find adiabatic quantum transformations that are allowed by the control algebra, and demonstrate a two-qubit entangling operation in liquid state NMR. We examine the pulse lengths at which the fidelity of these adiabatic transitions break down and compare with the quantum speed limit.

  14. Adiabatic electron affinity of pentacene and perfluoropentacene molecules studied by anion photoelectron spectroscopy: Molecular insights into electronic properties.

    PubMed

    Masubuchi, Tsugunosuke; Sugawara, Yoshito; Nakajima, Atsushi

    2016-12-28

    Pentacene (C22H14, PEN) and perfluoropentacene (C22F14, PFP) are considered promising building blocks of organic semiconductors. Using gas-phase anion photoelectron spectroscopy, the adiabatic electron affinity of PEN and PFP molecules is determined to be 1.43 ± 0.03 and 2.74 ± 0.03 eV, respectively, and the S0-T1 transition energies of PEN and PFP are evaluated to be 0.96 ± 0.06 and 0.72 ± 0.05 eV, respectively. Photoelectron spectra indicate that the vibronic coupling in PFP is stronger than that in PEN. Quantum chemistry calculations demonstrate that the strong vibronic coupling originates from significant structural displacement upon electron injection to PFP.

  15. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling

    SciTech Connect

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S.; Bud'ko, Sergey L.; Canfield, Paul C.; Gegenwart, Philipp

    2016-09-09

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with 3He gas are widely used for cooling below 1 Kelvin. However, usage of the gas has been increasingly difficult because of the current world-wide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require 3He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1$-$xScxCo2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. Lastly, this study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration.

  16. Steady-state domain wall motion driven by adiabatic spin-transfer torque with assistance of microwave field

    SciTech Connect

    Wang, Xi-guang; Guo, Guang-hua Nie, Yao-zhuang; Xia, Qing-lin; Tang, Wei; Wang, D.; Zeng, Zhong-ming

    2013-12-23

    We have studied the current-induced displacement of a 180° Bloch wall by means of micromagnetic simulation and analytical approach. It is found that the adiabatic spin-transfer torque can sustain a steady-state domain wall (DW) motion in the direction opposite to that of the electron flow without Walker Breakdown when a transverse microwave field is applied. This kind of motion is very sensitive to the microwave frequency and can be resonantly enhanced by exciting the domain wall thickness oscillation mode. A one-dimensional analytical model was established to account for the microwave-assisted wall motion. These findings may be helpful for reducing the critical spin-polarized current density and designing DW-based spintronic devices.

  17. Exploring the impact of semicore level electronic relaxation on polaron dynamics: An adiabatic ab initio study of FePO4

    NASA Astrophysics Data System (ADS)

    Wang, Zi; Bevan, Kirk H.

    2016-01-01

    In the present work, we study the effects of the electronic relaxation of semicore levels on polaron activation energies and dynamics. Within the framework of adiabatic ab initio theory, we utilize both static transition state theory and molecular dynamics methods for an in-depth study of polaronic hopping in delithiated LiFePO4 (FePO4). Our results show that electronic relaxation of semicore states is significant in FePO4, resulting in a lower activation barrier and kinetics that is one to two orders faster compared to the result of calculations that do not incorporate semicore states. In general, the results suggest that the relaxation of states far below the Fermi energy could dramatically impact the ab initio polaronic barrier estimates for many transition metal oxides and phosphates.

  18. Asymptotic electron trajectories and an adiabatic invariant for a helical-wiggler free electron laser with weak self-fields

    NASA Astrophysics Data System (ADS)

    Wang, L.; Kevorkian, J.

    1996-03-01

    The dynamics of a relativistic electron in the field configuration consisting of a constant-amplitude helical-wiggler magnetic field, a uniform axial magnetic field, and the equilibrium self-fields is described by a near-integrable three-degree-of-freedom Hamiltonian system. The system is solved asymptotically for small ɛ by the method of averaging, where ɛ measures the strength of the self-fields. Because the Hamiltonian does not depend on one of the coordinates, it immediately reduces to a two-degree-of-freedom system. For ɛ=0, this reduced system is integrable, but is not in standard form. The action-angle transformation to standard form is derived explicitly in terms of elliptic functions, thus enabling the application of the averaging procedure. For almost all regular electron trajectories the solution is explicitly derived in asymptotic form and an adiabatic invariant is constructed, both results are in a form that remains uniformly valid over the time interval for electrons to transit the laser. The analytical results are verified by numerical calculations for an example problem.

  19. Quantum state specific reactant preparation in a molecular beam by rapid adiabatic passage

    SciTech Connect

    Chadwick, Helen Hundt, P. Morten; Reijzen, Maarten E. van; Yoder, Bruce L.; Beck, Rainer D.

    2014-01-21

    Highly efficient preparation of molecules in a specific rovibrationally excited state for gas/surface reactivity measurements is achieved in a molecular beam using tunable infrared (IR) radiation from a single mode continuous wave optical parametric oscillator (cw-OPO). We demonstrate that with appropriate focusing of the IR radiation, molecules in the molecular beam crossing the fixed frequency IR field experience a Doppler tuning that can be adjusted to achieve complete population inversion of a two-level system by rapid adiabatic passage (RAP). A room temperature pyroelectric detector is used to monitor the excited fraction in the molecular beam and the population inversion is detected and quantified using IR bleaching by a second IR-OPO. The second OPO is also used for complete population transfer to an overtone or combination vibration via double resonance excitation using two spatially separated RAP processes.

  20. Quantum state specific reactant preparation in a molecular beam by rapid adiabatic passage

    NASA Astrophysics Data System (ADS)

    Chadwick, Helen; Hundt, P. Morten; van Reijzen, Maarten E.; Yoder, Bruce L.; Beck, Rainer D.

    2014-01-01

    Highly efficient preparation of molecules in a specific rovibrationally excited state for gas/surface reactivity measurements is achieved in a molecular beam using tunable infrared (IR) radiation from a single mode continuous wave optical parametric oscillator (cw-OPO). We demonstrate that with appropriate focusing of the IR radiation, molecules in the molecular beam crossing the fixed frequency IR field experience a Doppler tuning that can be adjusted to achieve complete population inversion of a two-level system by rapid adiabatic passage (RAP). A room temperature pyroelectric detector is used to monitor the excited fraction in the molecular beam and the population inversion is detected and quantified using IR bleaching by a second IR-OPO. The second OPO is also used for complete population transfer to an overtone or combination vibration via double resonance excitation using two spatially separated RAP processes.

  1. Collective motion of two-electron atom in hyperspherical adiabatic approximation

    SciTech Connect

    Mohamed, A. S.; Nikitin, S. I.

    2015-03-30

    This work is devoted to calculate bound states in the two-electron atoms. The separation of variables has carried out in hyper spherical coordinate system (R, θ, α). Assuming collective motion of the electrons, where the hper angle (α∼π/4) and (θ∼π). The separation of the rotational variables leads to system of differential equations with more simple form as compared with non restricted motion. Energy of doubly excited P{sup e} and D{sup 0} states are calculated semi classically by using quantization condition of Bohr -Somerfield. The results compared with previously published data.

  2. Conservation of the pure adiabatic state in Ehrenfest dynamics of the photoisomerization of molecules

    PubMed Central

    Miyamoto, Yoshiyuki; Tateyama, Yoshitaka; Oyama, Norihisa; Ohno, Takahisa

    2015-01-01

    We examined real-time-propagation time-dependent density functional theory (rtp-TDDFT) coupled with molecular dynamics (MD), which uses single-particle representation of time-evolving wavefunctions allowing exchange of orbital characteristics between occupied and empty states making the effective Kohn-Sham Hamiltonian dependent on the potential energy surfaces (PESs). This scheme is expected to lead to mean-field average of adiabatic potential energy surfaces (PESs), and is one of Ehrenfest (mean-field) approaches. However, we demonstrate that the mean-field average can be absent in simulating photoisomerization of azobenzene and ethylene molecules. A transition from the S2 to the S1 excited state without the mean- field average was observed after examining several rtp-TDDFT-MD trajectories of a photoexcited azobenzene molecule. The subsequent trans-cis isomerization was observed in our simulation, which is consistent with experimental observation and supported by previous calculations. The absence of the mean-field average of PESs was also observed for the transition between the S1 and S0 states, indicating that the MD simulation was on a single PES. Conversely, we found no transition to the ground state (S0 state) when we performed a MD simulation of an S1 excited ethylene molecule owing to the constraint on the occupation number of each molecular orbital. Thus, we conclude that, at least for azobenzene and ethylene molecules, the rtp-TDDFT-MD is an on-the-fly simulation that can automatically see the transition among the PESs of excited states without the mean-field average unless the simulation reaches the PES of the S0 state. PMID:26658633

  3. Adiabatic fast passage application in solid state NMR study of cross relaxation and molecular dynamics in heteronuclear systems

    NASA Astrophysics Data System (ADS)

    Baranowski, M.; Woźniak-Braszak, A.; Jurga, K.

    2016-01-01

    The paper presents the benefits of using fast adiabatic passage for the study of molecular dynamics in the solid state heteronuclear systems in the laboratory frame. A homemade pulse spectrometer operating at the frequency of 30.2 MHz and 28.411 MHz for protons and fluorines, respectively, has been enhanced with microcontroller direct digital synthesizer DDS controller [1-4]. This work briefly describes how to construct a low-cost and easy-to-assemble adiabatic extension set for homemade and commercial spectrometers based on recently very popular Arduino shields. The described set was designed for fast adiabatic generation. Timing and synchronization problems are discussed. The cross-relaxation experiments with different initial states of the two spin systems have been performed. Contrary to our previous work [5] where the steady-state NOE experiments were conducted now proton spins 1H are polarized in the magnetic field B0 while fluorine spins 19F are perturbed by selective saturation for a short time and then the system is allowed to evolve for a period in the absence of a saturating field. The adiabatic passage application leads to a reversal of magnetization of fluorine spins and increases the amplitude of the signal.

  4. Non-adiabatic molecular dynamics investigation of photoionization state formation and lifetime in Mn²⁺-doped ZnO quantum dots.

    PubMed

    Fischer, Sean A; Lingerfelt, David B; May, Joseph W; Li, Xiaosong

    2014-09-07

    The unique electronic structure of Mn(2+)-doped ZnO quantum dots gives rise to photoionization states that can be used to manipulate the magnetic state of the material and to generate zero-reabsorption luminescence. Fast formation and long non-radiative decay of this photoionization state is a necessary requirement for these important applications. In this work, surface hopping based non-adiabatic molecular dynamics are used to demonstrate the fast formation of a metal-to-ligand charge transfer state in a Mn(2+)-doped ZnO quantum dot. The formation occurs on an ultrafast timescale and is aided by the large density of states and significant mixing of the dopant Mn(2+) 3dt2 levels with the valence-band levels of the ZnO lattice. The non-radiative lifetime of the photoionization states is also investigated.

  5. Temperature effect on back electron-transfer reactions within a geminate radical pair: The influence of the solvent on the adiabaticity of the process

    NASA Astrophysics Data System (ADS)

    Vauthey, Eric; Suppan, Paul

    1989-12-01

    A study of the temperature dependence (from 233 to 353 K) of the rate of back electron-transfer reactions within geminate radical pairs by measurement of the free radical yield is reported. The radical pair is generated by photoinduced electron transfer with rhodamine 6G and oxazine 118 cations as electron acceptors and aromatic amines and methoxy-benzene derivatives as electron donors in acetonitrile, methanol and ethanol. In acetonitrile, the back electron transfer is non-adiabatic and apparent negative activation energies are observed for barrierless reactions. In alcohol solvents, an anomalously large temperature dependence is observed, which is attributed to a solvent-controlled adiabatic behaviour.

  6. Electronic states of WH

    NASA Astrophysics Data System (ADS)

    Ma, Zhongxin; Balasubramanian, K.

    1991-07-01

    Spectroscopic constants and potential energy curves of 15 electronic states of WH are obtained using the complete-active-space multi-configuration self-consistent field (CAS MCSCF) followed by full second-order configuration-interaction (SOCI) calculations. The spin-orbit effects are introduced using the relativistic-configuration-interaction (RCI) method. Our computations confirm the assignment of the observed emission spectrum at 6800 Å but yield different vibrational frequencies for the two observed states.

  7. Spectroscopic evidence for the coexistence of tetragonal and trigonal minima within the exited state adiabatic potential energy surfaces of hexachlorotellurate and -selenate complexes

    NASA Astrophysics Data System (ADS)

    Cremers, C.; Degen, J.

    1998-11-01

    Coexistence of Jahn-Teller minima resulting from the coupling to different accepting modes within the adiabatic potential energy surface (APES) is not possible within the framework of linear vibronic coupling theory. For the lowest exited triplet state 3T1u of inorganic complexes with s2 electronic ground-state configuration, such a coexistence, due to quadratic coupling effects, is discussed. As a direct experimental evidence two vibronic progressions with different accepting modes in the emission spectra resulting from a single electronic state are observed in the emission spectra of the title compounds. The observation of vibronic finestructure in the emission spectra of [TeCl6]2- is reported for the first time.

  8. Excited-state nuclear forces on adiabatic potential-energy surfaces by time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Haruyama, Jun; Suzuki, Takahiro; Hu, Chunping; Watanabe, Kazuyuki

    2012-01-01

    We present a simple and computationally efficient method to calculate excited-state nuclear forces on adiabatic potential-energy surfaces (APES) from linear-response time-dependent density-functional theory within a real-space framework. The Casida ansatz, which has been validated for computing first-order nonadiabatic couplings in previous studies, was applied to the calculation of the excited-state forces. Our method is validated by the consistency of results in the lower excited states, which reproduce well those obtained by the numerical derivative of each APES. We emphasize the usefulness of this technique by demonstrating the excited-state molecular-dynamics simulation.

  9. Dynamics and spectroscopy of CH₂OO excited electronic states.

    PubMed

    Kalinowski, Jaroslaw; Foreman, Elizabeth S; Kapnas, Kara M; Murray, Craig; Räsänen, Markku; Gerber, R Benny

    2016-04-28

    The excited states of the Criegee intermediate CH2OO are studied in molecular dynamics simulations using directly potentials from multi-reference perturbation theory (MR-PT2). The photoexcitation of the species is simulated, and trajectories are propagated in time on the excited state. Some of the photoexcitation events lead to direct fragmentation of the molecule, but other trajectories describe at least several vibrations in the excited state, that may terminate by relaxation to the ground electronic state. Limits on the role of non-adiabatic contributions to the process are estimated by two different simulations, one that forces surface-hopping at potential crossings, and another that ignores surface hopping altogether. The effect of non-adiabatic transitions is found to be small. Spectroscopic implications and consequences for the interpretation of experimental results are discussed.

  10. Molecular characterization and quantification using state of the art solid-state adiabatic TOBSY NMR in burn trauma.

    PubMed

    Righi, Valeria; Andronesi, Ovidiu; Mintzopoulos, Dionyssios; Tzika, A Aria

    2009-12-01

    We describe a novel solid-state nuclear magnetic resonance (NMR) method that maximizes the advantages of high-resolution magic-angle-spinning (HRMAS), relative conventional liquid-state NMR approaches, when applied to intact biopsies of skeletal muscle specimens collected from burn trauma patients. This novel method, termed optimized adiabatic TOtal through Bond correlation SpectroscopY (TOBSY) solid-state NMR pulse sequence for two-dimensional (2D) 1H-1H homonuclear scalar-coupling longitudinal isotropic mixing, was demonstrated to provide a 40-60% improvement in signal-to-noise ratio (SNR) relative to its liquid-state analogue TOCSY (TOtal Correlation SpectroscopY). Using 1- and 2-dimensional HRMAS NMR experiments, we identified several metabolites in burned tissues. Quantification of metabolites in burned tissues showed increased levels of lipid compounds, intracellular metabolites (e.g., taurine and phosphocreatine) and substantially decreased water-soluble metabolites (e.g., glutathione, carnosine, glucose, glutamine/glutamate and alanine). These findings demonstrate that HRMAS NMR Spectroscopy using TOBSY is a feasible technique that reveals new insights into the pathophysiology of burn trauma. Moreover, this method has applications that facilitate the development of novel therapeutic strategies.

  11. Adiabatic/nonadiabatic state-to-state reactive scattering dynamics implemented on graphics processing units.

    PubMed

    Zhang, Pei-Yu; Han, Ke-Li

    2013-09-12

    An efficient graphics processing units (GPUs) version of time-dependent wavepacket code is developed for the atom-diatom state-to-state reactive scattering processes. The propagation of the wavepacket is entirely calculated on GPUs employing the split-operator method after preparation of the initial wavepacket on the central processing unit (CPU). An additional split-operator method is introduced in the rotational part of the Hamiltonian to decrease communication of GPUs without losing accuracy of state-to-state information. The code is tested to calculate the differential cross sections of H + H2 reaction and state-resolved reaction probabilities of nonadiabatic triplet-singlet transitions of O((3)P,(1)D) + H2 for the total angular momentum J = 0. The global speedups of 22.11, 38.80, and 44.80 are found comparing the parallel computation of one GPU, two GPUs by exact rotational operator, and two GPU versions by an approximate rotational operator with serial computation of the CPU, respectively.

  12. Shortcuts to adiabatic passage for fast generation of Greenberger-Horne-Zeilinger states by transitionless quantum driving

    PubMed Central

    Chen, Ye-Hong; Xia, Yan; Song, Jie; Chen, Qing-Qin

    2015-01-01

    Berry’s approach on “transitionless quantum driving” shows how to set a Hamiltonian which drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final result of an adiabatic process in a shorter time. In this paper, motivated by transitionless quantum driving, we construct shortcuts to adiabatic passage in a three-atom system to create the Greenberger-Horne-Zeilinger states with the help of quantum Zeno dynamics and of non-resonant lasers. The influence of various decoherence processes is discussed by numerical simulation and the result proves that the scheme is fast and robust against decoherence and operational imperfection. PMID:26508283

  13. A homonuclear spin-pair filter for solid-state NMR based on adiabatic-passage techniques

    NASA Astrophysics Data System (ADS)

    Verel, René; Baldus, Marc; Ernst, Matthias; Meier, Beat H.

    1998-05-01

    A filtering scheme for the selection of spin pairs (and larger spin clusters) under fast magic-angle spinning is proposed. The scheme exploits the avoided level crossing in spin pairs during an adiabatic amplitude sweep through the so-called HORROR recoupling condition. The advantages over presently used double-quantum filters are twofold. (i) The maximum theoretical filter efficiency is, due to the adiabatic variation, 100% instead of 73% as for transient methods. (ii) Since the filter does not rely on the phase-cycling properties of the double-quantum coherence, there is no need to obtain the full double-quantum intensity for all spins in the sample at one single point in time. The only important requirement is that all coupled spins pass through a two-spin state during the amplitude sweep. This makes the pulse scheme robust with respect to rf-amplitude missetting, rf-field inhomogeneity and chemical-shift offset.

  14. Wireless adiabatic power transfer

    SciTech Connect

    Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.

    2011-03-15

    Research Highlights: > Efficient and robust mid-range wireless energy transfer between two coils. > The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. > Wireless energy transfer is insensitive to any resonant constraints. > Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  15. Electrostriction effects on electron transfer reactions in solution. I. Adiabatic regime

    NASA Astrophysics Data System (ADS)

    Jeon, Jonggu; Kim, Hyung J.

    1997-04-01

    The outer-sphere unimolecular electron transfer reactions, DA⇌D+A-, in polar solvents are studied theoretically. By employing a recent theory of fluctuating cavities [H. J. Kim, J. Chem. Phys. 105, 6818, 6833 (1996)], we construct a nonequilibrium free energy formulation that accounts for both the solvation and electrostriction aspects of the changing solute dipole moment during the reaction. With a two-state diabatic description for the solute electronic structure, we obtain a two-dimensional free energy surface in terms of the cavity radius a and a solvent coordinate that gauges the nonequilibrium solvent orientational polarization Por. The equilibrium a values for the reactant and product states are found to differ significantly, indicating that the cavity reorganization plays an important role in the reaction free energetics and dynamics. The reaction mechanism and rate constant are analyzed via the solution-phase reaction path, which is found to vary markedly with the relative time scales of the Por and a motions. To be specific, the charge transfer proceeds in a concerted fashion with active participation of both Por and a when their characteristic times are comparable. By contrast, a stepwise mechanism results when there is a large mismatch between the Por and a time scales. In the slow cavity limit where a is much slower than Por, the reorganization through the cavity size adjustment precedes the barrier crossing that occurs exclusively along the Por coordinate. In the opposite fast cavity regime where Por is mainly responsible for activation and deactivation, it is found that the saddle point on the free energy surface is no longer rate-determining due to the nonlinear residual entropic effects. A brief comparison with other reaction systems involving charge shift in solution is also made.

  16. Topology of the Adiabatic Potential Energy Surfaces for theResonance States of the Water Anion

    SciTech Connect

    Haxton, Daniel J.; Rescigno, Thomas N.; McCurdy, C. William

    2005-04-15

    The potential energy surfaces corresponding to the long-lived fixed-nuclei electron scattering resonances of H{sub 2}O relevant to the dissociative electron attachment process are examined using a combination of ab initio scattering and bound-state calculations. These surfaces have a rich topology, characterized by three main features: a conical intersection between the {sup 2}A{sub 1} and {sup 2}B{sub 2} Feshbach resonance states; charge-transfer behavior in the OH ({sup 2}{Pi}) + H{sup -} asymptote of the {sup 2}B{sub 1} and {sup 2}A{sub 1} resonances; and an inherent double-valuedness of the surface for the {sup 2}B{sub 2} state the C{sub 2v} geometry, arising from a branch-point degeneracy with a {sup 2}B{sub 2} shape resonance. In total, eight individual seams of degeneracy among these resonances are located.

  17. Constructing diabatic states from adiabatic states: Extending generalized Mulliken-Hush to multiple charge centers with Boys localization

    NASA Astrophysics Data System (ADS)

    Subotnik, Joseph E.; Yeganeh, Sina; Cave, Robert J.; Ratner, Mark A.

    2008-12-01

    This article shows that, although Boys localization is usually applied to single-electron orbitals, the Boys method itself can be applied to many electron molecular states. For the two-state charge-transfer problem, we show analytically that Boys localization yields the same charge-localized diabatic states as those found by generalized Mulliken-Hush theory. We suggest that for future work in electron transfer, where systems have more than two charge centers, one may benefit by using a variant of Boys localization to construct diabatic potential energy surfaces and extract electronic coupling matrix elements. We discuss two chemical examples of Boys localization and propose a generalization of the Boys algorithm for creating diabatic states with localized spin density that should be useful for Dexter triplet-triplet energy transfer.

  18. Constructing diabatic states from adiabatic states: extending generalized Mulliken-Hush to multiple charge centers with boys localization.

    PubMed

    Subotnik, Joseph E; Yeganeh, Sina; Cave, Robert J; Ratner, Mark A

    2008-12-28

    This article shows that, although Boys localization is usually applied to single-electron orbitals, the Boys method itself can be applied to many electron molecular states. For the two-state charge-transfer problem, we show analytically that Boys localization yields the same charge-localized diabatic states as those found by generalized Mulliken-Hush theory. We suggest that for future work in electron transfer, where systems have more than two charge centers, one may benefit by using a variant of Boys localization to construct diabatic potential energy surfaces and extract electronic coupling matrix elements. We discuss two chemical examples of Boys localization and propose a generalization of the Boys algorithm for creating diabatic states with localized spin density that should be useful for Dexter triplet-triplet energy transfer.

  19. Adiabatic quantum state transfer in tight-binding chains using periodic driving fields

    NASA Astrophysics Data System (ADS)

    Longhi, S.

    2014-09-01

    A method for high-fidelity coherent adiabatic transport in a zig-zag tight-binding chain, based on application of two external periodic driving fields, is theoretically proposed. The method turns out to be robust against imperfections and disorder of the static lattice Hamiltonian, is tolerant to next-nearest neighborhood interactions, and enables coherent transport in long chains without the need for a local control and timing of the trapping potential.

  20. Double-resonance spectroscopy of the high Rydberg states of HCO. I. A precise determination of the adiabatic ionization potential

    NASA Astrophysics Data System (ADS)

    Mayer, Eric; Grant, Edward R.

    1995-12-01

    We report the first spectroscopic observation of the high Rydberg states of HCO. Individual lines in a system of vibrationally autoionizing Rydberg series converging to the (010) state of HCO+ are rotationally labeled in a double-resonance excitation scheme that uses resolved levels in the (010) A' vibronic component of the 3pπ 2Π Rydberg state as intermediates. Observed high-Rydberg structure extends from the adiabatic ionization threshold—which falls just below the principal quantum number of 12 in the vibrationally excited series—to the (010) vertical threshold. Elements of a single series extending from n=12 to 50, for which the total angular momentumless spin can be assigned as N=1, are extrapolated to obtain a vertical convergence limit with respect to the 3pπ 2Π(010)A' N'=0 intermediate state of 20 296.9±0.3 cm-1. Referring this transition energy to the ground state, and subtracting the precisely known fundamental bending frequency of the cation, establishes the adiabatic ionization potential corresponding to the transition from HCO 2A'(000) J″=0, K″=0 to HCO+ J+=0 1Σ+(000). The result is 65 735.9±0.5 cm-1 or 8.150 22±0.000 06 eV.

  1. Exponential vanishing of the ground-state gap of the quantum random energy model via adiabatic quantum computing

    SciTech Connect

    Adame, J.; Warzel, S.

    2015-11-15

    In this note, we use ideas of Farhi et al. [Int. J. Quantum. Inf. 6, 503 (2008) and Quantum Inf. Comput. 11, 840 (2011)] who link a lower bound on the run time of their quantum adiabatic search algorithm to an upper bound on the energy gap above the ground-state of the generators of this algorithm. We apply these ideas to the quantum random energy model (QREM). Our main result is a simple proof of the conjectured exponential vanishing of the energy gap of the QREM.

  2. Single electron states in polyethylene

    SciTech Connect

    Wang, Y.; MacKernan, D.; Cubero, D. E-mail: n.quirke@imperial.ac.uk; Coker, D. F.; Quirke, N. E-mail: n.quirke@imperial.ac.uk

    2014-04-21

    We report computer simulations of an excess electron in various structural motifs of polyethylene at room temperature, including lamellar and interfacial regions between amorphous and lamellae, as well as nanometre-sized voids. Electronic properties such as density of states, mobility edges, and mobilities are computed on the different phases using a block Lanczos algorithm. Our results suggest that the electronic density of states for a heterogeneous material can be approximated by summing the single phase density of states weighted by their corresponding volume fractions. Additionally, a quantitative connection between the localized states of the excess electron and the local atomic structure is presented.

  3. Quantum and classical non-adiabatic dynamics of Li_{2}^{+}Ne photodissociation

    NASA Astrophysics Data System (ADS)

    Pouilly, Brigitte; Monnerville, Maurice; Zanuttini, David; Gervais, Benoît

    2015-01-01

    The 3D photodissociation dynamics of Li2+Ne system is investigated by quantum calculations using the multi-configuration time-dependent Hartree (MCTDH) method and by classical simulations with the trajectory surface hopping (TSH) approach. Six electronic states of A’ symmetry and two states of A” symmetry are involved in the process. Couplings in the excitation region and two conical intersections in the vicinity of the Franck-Condon zone control the non-adiabatic nuclear dynamics. A diabatic representation including all the states and the couplings is determined. Diabatic and adiabatic populations calculated for initial excitation to pure diabatic and adiabatic states lead to a clear understanding of the mechanisms governing the non-adiabatic photodissociation process. The classical and quantum photodissociation cross-sections for absorption in two adiabatic states of the A’ symmetry are calculated. A remarkable agreement between quantum and classical results is obtained regarding the populations and the absorption cross-sections.

  4. Parallelizable adiabatic gate teleportation

    NASA Astrophysics Data System (ADS)

    Nakago, Kosuke; Hajdušek, Michal; Nakayama, Shojun; Murao, Mio

    2015-12-01

    To investigate how a temporally ordered gate sequence can be parallelized in adiabatic implementations of quantum computation, we modify adiabatic gate teleportation, a model of quantum computation proposed by Bacon and Flammia [Phys. Rev. Lett. 103, 120504 (2009), 10.1103/PhysRevLett.103.120504], to a form deterministically simulating parallelized gate teleportation, which is achievable only by postselection. We introduce a twisted Heisenberg-type interaction Hamiltonian, a Heisenberg-type spin interaction where the coordinates of the second qubit are twisted according to a unitary gate. We develop parallelizable adiabatic gate teleportation (PAGT) where a sequence of unitary gates is performed in a single step of the adiabatic process. In PAGT, numeric calculations suggest the necessary time for the adiabatic evolution implementing a sequence of L unitary gates increases at most as O (L5) . However, we show that it has the interesting property that it can map the temporal order of gates to the spatial order of interactions specified by the final Hamiltonian. Using this property, we present a controlled-PAGT scheme to manipulate the order of gates by a control qubit. In the controlled-PAGT scheme, two differently ordered sequential unitary gates F G and G F are coherently performed depending on the state of a control qubit by simultaneously applying the twisted Heisenberg-type interaction Hamiltonians implementing unitary gates F and G . We investigate why the twisted Heisenberg-type interaction Hamiltonian allows PAGT. We show that the twisted Heisenberg-type interaction Hamiltonian has an ability to perform a transposed unitary gate by just modifying the space ordering of the final Hamiltonian implementing a unitary gate in adiabatic gate teleportation. The dynamics generated by the time-reversed Hamiltonian represented by the transposed unitary gate enables deterministic simulation of a postselected event of parallelized gate teleportation in adiabatic

  5. Description of molecular dynamics in intense laser fields by the time-dependent adiabatic state approach: application to simultaneous two-bond dissociation of CO2 and its control.

    PubMed

    Sato, Yukio; Kono, Hirohiko; Koseki, Shiro; Fujimura, Yuichi

    2003-07-02

    We theoretically investigated the dynamics of structural deformations of CO(2) and its cations in near-infrared intense laser fields (approximately 10(15) W cm(-2)) by using the time-dependent adiabatic state approach. To obtain "field-following" adiabatic potentials for nuclear dynamics, the electronic Hamiltonian including the interaction with the instantaneous laser electric field is diagonalized by the multiconfiguration self-consistent-field molecular orbital method. In the CO(2) and CO(2+) stages, ionization occurs before the field intensity becomes high enough to deform the molecule. In the CO(2)(2+) stage, simultaneous symmetric two-bond stretching occurs as well as one-bond stretching. Two-bond stretching is induced by an intense field in the lowest time-dependent adiabatic state |1> of CO(2)(2+), and this two-bond stretching is followed by the occurrence of a large-amplitude bending motion mainly in the second-lowest adiabatic state |2> nonadiabatically created at large internuclear distances by the field from |1>. It is concluded that the experimentally observed stretched and bent structure of CO(2)(3+) just before Coulomb explosions originates from the structural deformation of CO(2)(2+). We also show in this report that the concept of "optical-cycle-averaged potential" is useful for designing schemes to control molecular (reaction) dynamics, such as dissociation dynamics of CO(2), in intense fields. The present approach is simple but has wide applicability for analysis and prediction of electronic and nuclear dynamics of polyatomic molecules in intense laser fields.

  6. Transition from the adiabatic to the sudden limit in core-electron photoemission

    NASA Astrophysics Data System (ADS)

    Hedin, Lars; Michiels, John; Inglesfield, John

    1998-12-01

    Experimental results for core-electron photoemission Jk(ω) are often compared with the one-electron spectral function Ac(ɛk-ω), where ω is the photon energy, ɛk is the photoelectron energy, and the optical transition matrix elements are taken as constant. Since Jk(ω) is nonzero only for ɛk>0, we must actually compare it with Ac(ɛk-ω)θ(ɛk). For metals Ac(ω) is known to have a quasiparticle (QP) peak with an asymmetric power-law [theories of Mahan, Nozières, de Dominicis, Langreth, and others (MND)] singularity due to low-energy particle-hole excitations. The QP peak starts at the core-electron energy ɛc, and is followed by an extended satellite (shakeup) structure at smaller ω. For photon energies ω just above threshold, ωth=-ɛc, Ac(ɛk-ω)θ(ɛk) as a function of ɛk (ω constant) is cut just behind the quasiparticle peak, and neither the tail of the MND line nor the plasmon satellites are present. The sudden (high-energy) limit is given by a convolution of Ac(ω) and a loss function, i.e., by the Berglund-Spicer two-step expression. Thus Ac(ω) alone does not give the correct photoelectron spectrum, neither at low nor at high energies. We present an extension of the quantum-mechanical (QM) models developed earlier by Inglesfield, and by Bardyszewski and Hedin to calculate Jk(ω). It includes recoil and damping, as well as shakeup effects and extrinsic losses, is exact in the high-energy limit, and allows calculations of Jk(ω) including the MND line and multiple plasmon losses. The model, which involves electrons coupled to quasibosons, is motivated by detailed arguments. As an illustration we have made quantitative calculations for a semi-infinite jellium with the density of aluminum metal and an embedded atom. The coupling functions (fluctuation potentials) between the electron and the quasibosons are related to the random-phase-approximation dielectric function, and different levels of approximations are evaluated numerically. The differences

  7. A many-body states picture of electronic friction: The case of multiple orbitals and multiple electronic states.

    PubMed

    Dou, Wenjie; Subotnik, Joseph E

    2016-08-07

    We present a very general form of electronic friction as present when a molecule with multiple orbitals hybridizes with a metal electrode. To develop this picture of friction, we embed the quantum-classical Liouville equation (QCLE) within a classical master equation (CME). Thus, this article extends our previous work analyzing the case of one electronic level, as we may now treat the case of multiple levels and many electronic molecular states. We show that, in the adiabatic limit, where electron transitions are much faster than nuclear motion, the QCLE-CME reduces to a Fokker-Planck equation, such that nuclei feel an average force as well as friction and a random force-as caused by their interaction with the metallic electrons. Finally, we show numerically and analytically that our frictional results agree with other published results calculated using non-equilibrium Green's functions. Numerical recipes for solving this QCLE-CME will be provided in a subsequent paper.

  8. A many-body states picture of electronic friction: The case of multiple orbitals and multiple electronic states

    NASA Astrophysics Data System (ADS)

    Dou, Wenjie; Subotnik, Joseph E.

    2016-08-01

    We present a very general form of electronic friction as present when a molecule with multiple orbitals hybridizes with a metal electrode. To develop this picture of friction, we embed the quantum-classical Liouville equation (QCLE) within a classical master equation (CME). Thus, this article extends our previous work analyzing the case of one electronic level, as we may now treat the case of multiple levels and many electronic molecular states. We show that, in the adiabatic limit, where electron transitions are much faster than nuclear motion, the QCLE-CME reduces to a Fokker-Planck equation, such that nuclei feel an average force as well as friction and a random force—as caused by their interaction with the metallic electrons. Finally, we show numerically and analytically that our frictional results agree with other published results calculated using non-equilibrium Green's functions. Numerical recipes for solving this QCLE-CME will be provided in a subsequent paper.

  9. Adiabatic gate teleportation.

    PubMed

    Bacon, Dave; Flammia, Steven T

    2009-09-18

    The difficulty in producing precisely timed and controlled quantum gates is a significant source of error in many physical implementations of quantum computers. Here we introduce a simple universal primitive, adiabatic gate teleportation, which is robust to timing errors and many control errors and maintains a constant energy gap throughout the computation above a degenerate ground state space. This construction allows for geometric robustness based upon the control of two independent qubit interactions. Further, our piecewise adiabatic evolution easily relates to the quantum circuit model, enabling the use of standard methods from fault-tolerance theory for establishing thresholds.

  10. Spatial adiabatic passage: a review of recent progress

    NASA Astrophysics Data System (ADS)

    Menchon-Enrich, R.; Benseny, A.; Ahufinger, V.; Greentree, A. D.; Busch, Th; Mompart, J.

    2016-07-01

    Adiabatic techniques are known to allow for engineering quantum states with high fidelity. This requirement is currently of large interest, as applications in quantum information require the preparation and manipulation of quantum states with minimal errors. Here we review recent progress on developing techniques for the preparation of spatial states through adiabatic passage, particularly focusing on three state systems. These techniques can be applied to matter waves in external potentials, such as cold atoms or electrons, and to classical waves in waveguides, such as light or sound.

  11. Padé approximation of the adiabatic electron contribution to the gyrokinetic quasi-neutrality equation in the ORB5 code

    NASA Astrophysics Data System (ADS)

    Lanti, E.; Dominski, J.; Brunner, S.; McMillan, B. F.; Villard, L.

    2016-11-01

    This work aims at completing the implementation of a solver for the quasineutrality equation using a Padé approximation in the global gyrokinetic code ORB5. Initially [Dominski, Ph.D. thesis, 2016], the Pade approximation was only implemented for the kinetic electron model. To enable runs with adiabatic or hybrid electron models while using a Pade approximation to the polarization response, the adiabatic response term of the quasi-neutrality equation must be consistently modified. It is shown that the Pade solver is in good agreement with the arbitrary wavelength solver of ORB5 [Dominski, Ph.D. thesis, 2016]. To perform this verification, the linear dispersion relation of an ITG-TEM transition is computed for both solvers and the linear growth rates and frequencies are compared.

  12. Ab - initio non-adiabatic couplings among three lowest singlet states of H3 +: Construction of multisheeted diabatic potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Mukherjee, Bijit; Mukherjee, Saikat; Adhikari, Satrajit

    2016-10-01

    We calculate the adiabatic potential energy surfaces and non-adiabatic interactions among the three lowest singlet states (11 A', 21 A' and 31 A') of H3 + in hyperspherical coordinates for a fixed hyperradius, ρ = 9 bohr as functions of hyperangles, θ (0 < θ < 90°) and ϕ (0 < ϕ < 360°). All ab initio calculations are performed using MRCI level of methodology implemented in quantum chemistry package, MOLPRO. The ground (11 A') and the first excited (21 A') states exhibit several conical intersections as functions of ϕ for θ > 70°. Subsequently, we carry out adiabatic to diabatic transformation (ADT) to obtain ADT angles for constructing single-valued, continuous, smooth and symmetric 3 × 3 diabatic potential energy matrix to perform accurate scattering calculations.

  13. Adiabatically implementing quantum gates

    SciTech Connect

    Sun, Jie; Lu, Songfeng Liu, Fang

    2014-06-14

    We show that, through the approach of quantum adiabatic evolution, all of the usual quantum gates can be implemented efficiently, yielding running time of order O(1). This may be considered as a useful alternative to the standard quantum computing approach, which involves quantum gates transforming quantum states during the computing process.

  14. Electron correlations in solid state physics

    SciTech Connect

    Freericks, J.K.

    1991-04-01

    Exactly solvable models of electron correlations in solid state physics are presented. These models include the spinless Falicov- Kimball model, the t-t{prime}-J model, and the Hubbard model. The spinless Falicov-Kimball model is analyzed in one-dimension. Perturbation theory and numerical techniques are employed to determine the phase diagram at zero temperature. A fractal structure is found where the ground-state changes (discontinuously) at each rational electron filling. The t-t{prime}-J model (strongly interacting limit of a Hubbard model) is studied on eight-site small clusters in the simple-cubic, body-centered-cubic, face-centered-cubic, and square lattices. Symmetry is used to simplify the problem and determine the exact many-body wavefunctions. Ground states are found that exhibit magnetic order or heavy-fermionic character. Attempts to extrapolate to the thermodynamic limit are also made. The Hubbard model is examined on an eight-site square-lattice cluster in the presence of and in the absence of a magnetic field'' that couples only to orbital motion. A new magnetic phase is discovered for the ordinary Hubbard model at half-filling. In the magnetic field'' case, it is found that the strongly frustrated Heisenberg model may be studied from adiabatic continuation of a tight-binding model (from weak to strong coupling) at one point. The full symmetries of the Hamiltonian are utilized to make the exact diagonalization feasibile. Finally, the presence of hidden'' extra symmetry for finite size clusters with periodic boundary conditions is analyzed for a variety of clusters. Moderately sized systems allow nonrigid transformations that map a lattice onto itself preserving its neighbor structure; similar operations are not present in smaller or larger systems. The additional symmetry requires particular representations of the space group to stick together explaining many puzzling degeneracies found in exact diagonalization studies.

  15. Semiconductor adiabatic qubits

    DOEpatents

    Carroll, Malcolm S.; Witzel, Wayne; Jacobson, Noah Tobias; Ganti, Anand; Landahl, Andrew J.; Lilly, Michael; Nguyen, Khoi Thi; Bishop, Nathaniel; Carr, Stephen M.; Bussmann, Ezra; Nielsen, Erik; Levy, James Ewers; Blume-Kohout, Robin J.; Rahman, Rajib

    2016-12-27

    A quantum computing device that includes a plurality of semiconductor adiabatic qubits is described herein. The qubits are programmed with local biases and coupling terms between qubits that represent a problem of interest. The qubits are initialized by way of a tuneable parameter, a local tunnel coupling within each qubit, such that the qubits remain in a ground energy state, and that initial state is represented by the qubits being in a superposition of |0> and |1> states. The parameter is altered over time adiabatically or such that relaxation mechanisms maintain a large fraction of ground state occupation through decreasing the tunnel coupling barrier within each qubit with the appropriate schedule. The final state when tunnel coupling is effectively zero represents the solution state to the problem represented in the |0> and |1> basis, which can be accurately read at each qubit location.

  16. Donor acceptor electronic couplings in π-stacks: How many states must be accounted for?

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2006-04-01

    Two-state model is commonly used to estimate the donor-acceptor electronic coupling Vda for electron transfer. However, in some important cases, e.g. for DNA π-stacks, this scheme fails to provide accurate values of Vda because of multistate effects. The Generalized Mulliken-Hush method enables a multistate treatment of Vda. In this Letter, we analyze the dependence of calculated electronic couplings on the number of the adiabatic states included in the model. We suggest a simple scheme to determine this number. The superexchange correction of the two-state approximation is shown to provide good estimates of the electronic coupling.

  17. Invalidity of the quantitative adiabatic condition and general conditions for adiabatic approximations

    NASA Astrophysics Data System (ADS)

    Li, Dafa

    2016-05-01

    The adiabatic theorem was proposed about 90 years ago and has played an important role in quantum physics. The quantitative adiabatic condition constructed from eigenstates and eigenvalues of a Hamiltonian is a traditional tool to estimate adiabaticity and has proven to be the necessary and sufficient condition for adiabaticity. However, recently the condition has become a controversial subject. In this paper, we list some expressions to estimate the validity of the adiabatic approximation. We show that the quantitative adiabatic condition is invalid for the adiabatic approximation via the Euclidean distance between the adiabatic state and the evolution state. Furthermore, we deduce general necessary and sufficient conditions for the validity of the adiabatic approximation by different definitions.

  18. On the electron wavepacket dynamics of photoionizing states

    NASA Astrophysics Data System (ADS)

    Takatsuka, Kazuo

    2014-06-01

    To study electron wavepacket dynamics of photoionizing states in polyatomic molecules, we discuss two crucial issues to be overcome in the theory of molecular electronic wavepacket dynamics in an intense laser field (Takatsuka and Yonehara 2011 Phys. Chem. Chem. Phys. 13 4987). One is about the description of the ionization process from electronically excited states composed of many multiply excited configuration-state functions. The other is how to reconstruct the electronic states remaining in the molecular site while electrons are flowing out of the molecular bounds. These are both critical to extend the realm of the theories of electron dynamics based on the so-called expansion (algebraic) method in terms of basis functions. To calculate the photoionization amplitude and thereby to estimate the time-dependent amount of electron loss from a molecule, we extract the electron flux (probability current density) from the electron wavepackets without use of scattering theory. This is justified by the success of the recent works by Bandrauk’s group for attosecond photoionization dynamics from the hydrogen molecule ion, who performed numerical integration of the relevant Schrödinger equation (Yuan et al 2013 J. Chem. Phys. 138 134316). A key feature in the present study, on the other hand, is to calculate the electron flux in terms of complex-valued NOs, which arise from the complex electronic wavepackets. Through the change of these NOs, we reconstruct the involved electronic configurations during the flow of electrons out of molecular regions. These repopulated electronic wavefunctions are (non-adiabatically) evolved in time under laser fields.

  19. Transitionless driving on adiabatic search algorithm

    SciTech Connect

    Oh, Sangchul; Kais, Sabre

    2014-12-14

    We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.

  20. Transitionless driving on adiabatic search algorithm

    NASA Astrophysics Data System (ADS)

    Oh, Sangchul; Kais, Sabre

    2014-12-01

    We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.

  1. Transitionless driving on adiabatic search algorithm.

    PubMed

    Oh, Sangchul; Kais, Sabre

    2014-12-14

    We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.

  2. Ultrafast non-adiabatic dynamics of methyl substituted ethylenes: The π3s Rydberg state

    NASA Astrophysics Data System (ADS)

    Wu, Guorong; Boguslavskiy, Andrey E.; Schalk, Oliver; Schuurman, Michael S.; Stolow, Albert

    2011-10-01

    Excited state unimolecular reactions of some polyenes exhibit localization of their dynamics at a single ethylenic double bond. Here we present studies of the fundamental photophysical processes in the ethylene unit itself. Combined femtosecond time-resolved photoelectron spectroscopy (TRPES) and ab initio quantum chemical calculations was applied to the study of excited state dynamics in cis-butene, trans-butene, trimethylethylene, and tetramethylethylene, following initial excitation to their respective π3s Rydberg states. The wavelength dependence of the π3s Rydberg state dynamics of tetramethylethylene was investigated in more detail. The π3s Rydberg to ππ* valence state decay rate varies greatly with substituent: the 1,2-di- and tri-methyl substituted ethylenes (cis-butene, trans-butene, and trimethylethylene) show an ultrafast decay (˜20 fs), whereas the fully methylated tetramethylethylene shows a decay rate of 2 to 4 orders of magnitude slower. These observations are rationalized in terms of topographical trends in the relevant potential energy surfaces, as found from ab initio calculations: (1) the barrier between the π3s state and the ππ* state increases with increasing methylation, and (2) the π3s/ππ* minimum energy conical intersection displaces monotonically away from the π3s Franck-Condon region with increasing methylation. The use of systematic methylation in combination with TRPES and ab initio computation is emerging as an important tool in discerning the excited state dynamics of unsaturated hydrocarbons.

  3. Tamm states in electron plasma

    NASA Astrophysics Data System (ADS)

    2013-11-01

    Researchers have fabricated a voltage-tunable plasmonic crystal in a two-dimensional electron gas that operates at terahertz frequencies. Nature Photonics spoke to Eric Shaner, Greg Dyer and Greg Aizin about the observation of Tamm states at the crystal's edge.

  4. Equation of state in relativistic magnetohydrodynamics: variable versus constant adiabatic index

    NASA Astrophysics Data System (ADS)

    Mignone, A.; McKinney, Jonathan C.

    2007-07-01

    The role of the equation of state (EoS) for a perfectly conducting, relativistic magnetized fluid is the main subject of this work. The ideal constant Γ-law EoS, commonly adopted in a wide range of astrophysical applications, is compared with a more realistic EoS that better approximates the single-specie relativistic gas. The paper focuses on three different topics. First, the influence of a more realistic EoS on the propagation of fast magnetosonic shocks is investigated. This calls into question the validity of the constant Γ-law EoS in problems where the temperature of the gas substantially changes across hydromagnetic waves. Secondly, we present a new inversion scheme to recover primitive variables (such as rest-mass density and pressure) from conservative ones that allows for a general EoS and avoids catastrophic numerical cancellations in the non-relativistic and ultrarelativistic limits. Finally, selected numerical tests of astrophysical relevance (including magnetized accretion flows around Kerr black holes) are compared using different equations of state. Our main conclusion is that the choice of a realistic EoS can considerably bear upon the solution when transitions from cold to hot gas (or vice versa) are present. Under these circumstances, a polytropic EoS can significantly endanger the solution.

  5. On the relation between radiation belt electrons and solar wind parameters/geomagnetic indices: Dependence on the first adiabatic invariant and L*

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Baker, D. N.; Jaynes, A. N.; Li, X.; Elkington, S. R.; Kanekal, S. G.; Spence, H. E.; Boyd, A. J.; Huang, C.-L.; Forsyth, C.

    2017-02-01

    The relation between radiation belt electrons and solar wind/magnetospheric processes is of particular interest due to both scientific and practical needs. Though many studies have focused on this topic, electron data from Van Allen Probes with wide L shell coverage and fine energy resolution, for the first time, enabled this statistical study on the relation between radiation belt electrons and solar wind parameters/geomagnetic indices as a function of first adiabatic invariant μ and L*. Good correlations between electron phase space density (PSD) and solar wind speed, southward IMF Bz, SYM-H, and AL indices are found over wide μ and L* ranges, with higher correlation coefficients and shorter time lags for low-μ electrons than high-μ electrons; the anticorrelation between electron PSD and solar wind proton density is limited to high-μ electrons at high L*. The solar wind dynamic pressure has dominantly positive correlation with low-μ electrons and negative correlation with high-μ electrons at different L*. In addition, electron PSD enhancements also correlate well with various solar wind/geomagnetic parameters, and for most parameters this correlation is even better than that of electron PSD while the time lag is also much shorter. Among all parameters investigated, AL index is shown to correlate the best with electron PSD enhancements, with correlation coefficients up to 0.8 for low-μ electrons (time lag 0 day) and 0.7 for high-μ electrons (time lag 1-2 days), suggesting the importance of seed and source populations provided by substorms in radiation belt electron PSD enhancements.

  6. Elastic scattering, muon transfer, bound states and resonances in the three-body mesic molecular systems in the reduced adiabatic hyperspherical approach

    NASA Astrophysics Data System (ADS)

    Abramov, D. I.; Gusev, V. V.; Ponomarev, L. I.

    1999-06-01

    The uniform method of numerical investigation of bound states and scattering processes 2→ 2 (including resonance states) in the Coulomb three-body (CTB) systems is developed. It is based on the adiabatic hyperspherical approach (AHSA) and includes the numerical realization and applications to the three-body mesic atomic systems. The results of calculations of bound states of these systems (including the local characteristics of the wave functions) and the scattering processes 2→ 2 (including the characteristics of the resonance states) are presented.

  7. The Effects of Non-adiabatic Processes on Near-Earth Plasma Sheet Electrons for Different Substorm-Related Magnetotail Conditions

    NASA Astrophysics Data System (ADS)

    Liang, H.; Ashour-Abdalla, M.; Richard, R. L.; Schriver, D.; El-Alaoui, M.; Walker, R. J.

    2013-12-01

    We investigate the spatial evolution of energetic electron distribution functions in the near-Earth plasma sheet associated with earthward propagating dipolarization fronts by using in situ observations as well as magnetohydrodynamic (MHD) and large scale kinetic (LSK) simulations. We have investigated two substorms, one on February 15, 2008 and the other on August 15, 2001. The February 15 event was observed by one of the THEMIS spacecraft at X_{GSM} -10RE, while the August 15 event was observed by Cluster at X -18RE. Both the MHD and LSK simulation results are compared to these spacecraft observations. Earthward propagating dipolarization fronts are found in both the observations and the MHD simulations, which exhibit very different magnetotail configurations, with contrasting flows, magnetic reconnection configuration, and plasma sheet structure. Electron LSK simulations were performed by using the time-varying magnetic and electric fields from the global MHD simulations. For the February 15, 2008 event, the electrons were launched near X = -20 RE with a thermal energy of 1 keV and for August 15, 2001 event, they were launched at 4 keV near X = -22 RE. These electrons undergo both non-adiabatic acceleration near the magnetotail reconnection region and adiabatic acceleration as they propagate earthward from the launch region. We compute the electron distribution functions parallel and perpendicular to the magnetic field at different locations between X = -18 RE and X = -10 RE in the plasma sheet. We find that for the February 15, 2008 event, reconnection is localized with a narrow region of high-speed flows ( 300 km/s). For this event the distribution functions show mainly f(v_perp) > f(v_par) ("par" and "perp" correspond to parallel and perpendicular to magnetic field). On August 15, 2001, there is a neutral line extending across the tail with relatively low-speed flows ( 100 km/s). For this event the distribution functions show mainly f(v_par) > f(v_perp). The

  8. Adiabatic states derived from a spin-coupled diabatic transformation: semiclassical trajectory study of photodissociation of HBr and the construction of potential curves for LiBr+.

    PubMed

    Valero, Rosendo; Truhlar, Donald G; Jasper, Ahren W

    2008-06-26

    The development of spin-coupled diabatic representations for theoretical semiclassical treatments of photodissociation dynamics is an important practical goal, and some of the assumptions required to carry this out may be validated by applications to simple systems. With this objective, we report here a study of the photodissociation dynamics of the prototypical HBr system using semiclassical trajectory methods. The valence (spin-free) potential energy curves and the permanent and transition dipole moments were computed using high-level ab initio methods and were transformed to a spin-coupled diabatic representation. The spin-orbit coupling used in the transformation was taken as that of atomic bromine at all internuclear distances. Adiabatic potential energy curves, nonadiabatic couplings and transition dipole moments were then obtained from the diabatic ones and were used in all the dynamics calculations. Nonadiabatic photodissociation probabilities were computed using three semiclassical trajectory methods, namely, coherent switching with decay of mixing (CSDM), fewest switches with time uncertainty (FSTU), and its recently developed variant with stochastic decoherence (FTSU/SD), each combined with semiclassical sampling of the initial vibrational state. The calculated branching fraction to the higher fine-structure level of the bromine atom is in good agreement with experiment and with more complete theoretical treatments. The present study, by comparing our new calculations to wave packet calculations with distance-dependent ab initio spin-orbit coupling, validates the semiclassical trajectory methods, the semiclassical initial state sample scheme, and the use of a distance-independent spin-orbit coupling for future applications to polyatomic photodissociation. Finally, using LiBr(+) as a model system, it is shown that accurate spin-coupled potential curves can also be constructed for odd-electron systems using the same strategy as for HBr.

  9. Adiabatic calorimetry test of the reaction kinetics and self-heating model for 18650 Li-ion cells in various states of charge

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Chun; Wang, Yih-Wen; Shu, Chi-Min

    2016-06-01

    Use of adiabatic calorimetry to characterise thermal runaway of Li-ion cells is a crucial technique in battery safety testing. Various states of charge (SoC) of Li-ion cells were investigated to ascertain their thermal runaway features using a Vent Sizing Package 2 (VSP2) adiabatic calorimeter. To evaluate the thermal runaway characteristics, the temperature-pressure-time trajectories of commercial cylindrical cells were tested, and it was found that cells at a SoC of greater than 50% were subject to thermal explosion at elevated temperatures. Calorimetry data from various 18650 Li-ion cells with different SoC were used to calculate the thermal explosion energies and chemical kinetics; furthermore, a novel self-heating model based on a pseudo-zero-order reaction that follows the Arrhenius equation was found to be applicable for studying the exothermic reaction of a charged cell.

  10. A fast parallel code for calculating energies and oscillator strengths of many-electron atoms at neutron star magnetic field strengths in adiabatic approximation

    NASA Astrophysics Data System (ADS)

    Engel, D.; Klews, M.; Wunner, G.

    2009-02-01

    We have developed a new method for the fast computation of wavelengths and oscillator strengths for medium-Z atoms and ions, up to iron, at neutron star magnetic field strengths. The method is a parallelized Hartree-Fock approach in adiabatic approximation based on finite-element and B-spline techniques. It turns out that typically 15-20 finite elements are sufficient to calculate energies to within a relative accuracy of 10-5 in 4 or 5 iteration steps using B-splines of 6th order, with parallelization speed-ups of 20 on a 26-processor machine. Results have been obtained for the energies of the ground states and excited levels and for the transition strengths of astrophysically relevant atoms and ions in the range Z=2…26 in different ionization stages. Catalogue identifier: AECC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3845 No. of bytes in distributed program, including test data, etc.: 27 989 Distribution format: tar.gz Programming language: MPI/Fortran 95 and Python Computer: Cluster of 1-26 HP Compaq dc5750 Operating system: Fedora 7 Has the code been vectorised or parallelized?: Yes RAM: 1 GByte Classification: 2.1 External routines: MPI/GFortran, LAPACK, PyLab/Matplotlib Nature of problem: Calculations of synthetic spectra [1] of strongly magnetized neutron stars are bedevilled by the lack of data for atoms in intense magnetic fields. While the behaviour of hydrogen and helium has been investigated in detail (see, e.g., [2]), complete and reliable data for heavier elements, in particular iron, are still missing. Since neutron stars are formed by the collapse of the iron cores of massive stars, it may be assumed that their atmospheres contain an iron plasma. Our objective is to fill the gap

  11. Adiabatic-connection fluctuation-dissipation DFT for the structural properties of solids—The renormalized ALDA and electron gas kernels

    SciTech Connect

    Patrick, Christopher E. Thygesen, Kristian S.

    2015-09-14

    We present calculations of the correlation energies of crystalline solids and isolated systems within the adiabatic-connection fluctuation-dissipation formulation of density-functional theory. We perform a quantitative comparison of a set of model exchange-correlation kernels originally derived for the homogeneous electron gas (HEG), including the recently introduced renormalized adiabatic local-density approximation (rALDA) and also kernels which (a) satisfy known exact limits of the HEG, (b) carry a frequency dependence, or (c) display a 1/k{sup 2} divergence for small wavevectors. After generalizing the kernels to inhomogeneous systems through a reciprocal-space averaging procedure, we calculate the lattice constants and bulk moduli of a test set of 10 solids consisting of tetrahedrally bonded semiconductors (C, Si, SiC), ionic compounds (MgO, LiCl, LiF), and metals (Al, Na, Cu, Pd). We also consider the atomization energy of the H{sub 2} molecule. We compare the results calculated with different kernels to those obtained from the random-phase approximation (RPA) and to experimental measurements. We demonstrate that the model kernels correct the RPA’s tendency to overestimate the magnitude of the correlation energy whilst maintaining a high-accuracy description of structural properties.

  12. Non-adiabatic dynamics investigation of the radiationless decay mechanism of trans-urocanic acid in the S2 state

    NASA Astrophysics Data System (ADS)

    Zhao, Li; Zhou, Pan-Wang; Zhao, Guang-Jiu

    2016-07-01

    The trans-urocanic acid, a UV chromophore in the epidermis of human skin, was found to exhibit a wavelength dependent isomerization property. The isomerization quantum yield to cis-urocanic is greatest when being excited to the S1 state, whereas exciting the molecule to the S2 state causes almost no isomerization. The comparative photochemical behavior of the trans-urocanic on the S1 and S2 states continues to be the subject of intense research effort. This study is concerned with the unique photo-behavior of this interesting molecule on the S2 state. Combining the on-the-fly surface hopping dynamics simulations and static electronic structure calculations, three decay channels were observed following excitation to the S2 state. An overwhelming majority of the molecules decay to the S1 state through a planar or pucker characterized minimum energy conical intersection (MECI), and then decay to the ground state along a relaxation coordinate driven by a pucker deformation of the ring. A very small fraction of molecules decay to the S1 state by a MECI characterized by a twisting motion around the CC double bond, which continues to drive the molecule to deactivate to the ground state. The latter channel is related with the photoisomerization process, whereas the former one will only generate the original trans-form products. The present work provides a novel S2 state decay mechanism of this molecule, which offers useful information to explain the wavelength dependent isomerization behavior.

  13. Quantum and classical dynamics in adiabatic computation

    NASA Astrophysics Data System (ADS)

    Crowley, P. J. D.; Äńurić, T.; Vinci, W.; Warburton, P. A.; Green, A. G.

    2014-10-01

    Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialized state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose ground state encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations that an open system can support and degrade the power of such adiabatic computation. We quantify this effect by allowing the system to evolve over a restricted set of quantum states, providing a link between physically inspired classical optimization algorithms and quantum adiabatic optimization. This perspective allows us to develop benchmarks to bound the quantum correlations harnessed by an adiabatic computation. We apply these to the D-Wave Vesuvius machine with revealing—though inconclusive—results.

  14. The IMOMO and IMONM methods for excited states. A study of the adiabatic S 0 → T 1,2 excitation energies of cyclic alkenes and enones

    NASA Astrophysics Data System (ADS)

    Froese, Robert D. J.; Morokuma, Keiji

    1996-12-01

    The recently proposed integrated MO + MO (IMOMO) and MO + MM (IMOMM) methods have been applied to excited states of large molecules, i.e., the adiabatic triplet excitation energies of cyclic alkenes and enones. The IMOMO methods with G2MS as High level and HF or MP2 as Low level agree well with pure MO benchmarks and experiments. The substituent shifts have been discussed in the IMOMO analysis. The geometries of a testosterone derivative with more than 50 atoms were optimized for the lower triplet excited states with the IMOMM(HF:MM3) method and their energies were calculated using IMOMO and IMOMM methods.

  15. Ab initio study on electronically excited states of lithium isocyanide, LiNC

    NASA Astrophysics Data System (ADS)

    Yasumatsu, Hisato; Jeung, Gwang-Hi

    2014-01-01

    The electronically excited states of the lithium isocyanide molecule, LiNC, were studied by means of ab initio calculations. The bonding nature of LiNC up to ∼10 eV is discussed on the basis of the potential energy surfaces according to the interaction between the ion-pair and covalent states. The ion-pair states are described by Coulomb attractive interaction in the long distance range, while the covalent ones are almost repulsive or bound with a very shallow potential dent. These two states interact each other to form adiabatic potential energy surfaces with non-monotonic change in the potential energy with the internuclear distance.

  16. Canonical-ensemble state-averaged complete active space self-consistent field (SA-CASSCF) strategy for problems with more diabatic than adiabatic states: Charge-bond resonance in monomethine cyanines

    NASA Astrophysics Data System (ADS)

    Olsen, Seth

    2015-01-01

    This paper reviews basic results from a theory of the a priori classical probabilities (weights) in state-averaged complete active space self-consistent field (SA-CASSCF) models. It addresses how the classical probabilities limit the invariance of the self-consistency condition to transformations of the complete active space configuration interaction (CAS-CI) problem. Such transformations are of interest for choosing representations of the SA-CASSCF solution that are diabatic with respect to some interaction. I achieve the known result that a SA-CASSCF can be self-consistently transformed only within degenerate subspaces of the CAS-CI ensemble density matrix. For uniformly distributed ("microcanonical") SA-CASSCF ensembles, self-consistency is invariant to any unitary CAS-CI transformation that acts locally on the ensemble support. Most SA-CASSCF applications in current literature are microcanonical. A problem with microcanonical SA-CASSCF models for problems with "more diabatic than adiabatic" states is described. The problem is that not all diabatic energies and couplings are self-consistently resolvable. A canonical-ensemble SA-CASSCF strategy is proposed to solve the problem. For canonical-ensemble SA-CASSCF, the equilibrated ensemble is a Boltzmann density matrix parametrized by its own CAS-CI Hamiltonian and a Lagrange multiplier acting as an inverse "temperature," unrelated to the physical temperature. Like the convergence criterion for microcanonical-ensemble SA-CASSCF, the equilibration condition for canonical-ensemble SA-CASSCF is invariant to transformations that act locally on the ensemble CAS-CI density matrix. The advantage of a canonical-ensemble description is that more adiabatic states can be included in the support of the ensemble without running into convergence problems. The constraint on the dimensionality of the problem is relieved by the introduction of an energy constraint. The method is illustrated with a complete active space valence

  17. Canonical-ensemble state-averaged complete active space self-consistent field (SA-CASSCF) strategy for problems with more diabatic than adiabatic states: charge-bond resonance in monomethine cyanines.

    PubMed

    Olsen, Seth

    2015-01-28

    This paper reviews basic results from a theory of the a priori classical probabilities (weights) in state-averaged complete active space self-consistent field (SA-CASSCF) models. It addresses how the classical probabilities limit the invariance of the self-consistency condition to transformations of the complete active space configuration interaction (CAS-CI) problem. Such transformations are of interest for choosing representations of the SA-CASSCF solution that are diabatic with respect to some interaction. I achieve the known result that a SA-CASSCF can be self-consistently transformed only within degenerate subspaces of the CAS-CI ensemble density matrix. For uniformly distributed ("microcanonical") SA-CASSCF ensembles, self-consistency is invariant to any unitary CAS-CI transformation that acts locally on the ensemble support. Most SA-CASSCF applications in current literature are microcanonical. A problem with microcanonical SA-CASSCF models for problems with "more diabatic than adiabatic" states is described. The problem is that not all diabatic energies and couplings are self-consistently resolvable. A canonical-ensemble SA-CASSCF strategy is proposed to solve the problem. For canonical-ensemble SA-CASSCF, the equilibrated ensemble is a Boltzmann density matrix parametrized by its own CAS-CI Hamiltonian and a Lagrange multiplier acting as an inverse "temperature," unrelated to the physical temperature. Like the convergence criterion for microcanonical-ensemble SA-CASSCF, the equilibration condition for canonical-ensemble SA-CASSCF is invariant to transformations that act locally on the ensemble CAS-CI density matrix. The advantage of a canonical-ensemble description is that more adiabatic states can be included in the support of the ensemble without running into convergence problems. The constraint on the dimensionality of the problem is relieved by the introduction of an energy constraint. The method is illustrated with a complete active space valence

  18. Bond selective chemistry beyond the adiabatic approximation

    SciTech Connect

    Butler, L.J.

    1993-12-01

    One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.

  19. The adiabatic energy change of plasma electrons and the frame dependence of the cross-shock potential at collisionless magnetosonic shock waves

    NASA Technical Reports Server (NTRS)

    Goodrich, C. C.; Scudder, J. D.

    1984-01-01

    The adiabatic energy gain of electrons in the stationary electric and magnetic field structure of collisionless shock waves was examined analytically in reference to conditions of the earth's bow shock. The study was performed to characterize the behavior of electrons interacting with the cross-shock potential. A normal incidence frame (NIF) was adopted in order to calculate the reversible energy change across a time stationary shock, and comparisons were made with predictions made by the de Hoffman-Teller (HT) model (1950). The electron energy gain, about 20-50 eV, is demonstrated to be consistent with a 200-500 eV potential jump in the bow shock quasi-perpendicular geometry. The electrons lose energy working against the solar wind motional electric field. The reversible energy process is close to that modeled by HT, which predicts that the motional electric field vanishes and the electron energy gain from the electric potential is equated to the ion energy loss to the potential.

  20. Time-dependent and time-independent approaches to study effects of degenerate electronic states

    NASA Astrophysics Data System (ADS)

    Baer, Michael; Yahalom, Asher; Englman, Robert

    1998-10-01

    Two types of phases are discussed in this article: (1) The topological phase as introduced by Berry [Proc. R. Soc. London, Ser. A 392, 45(1984)] and Aharonov and Anandan [Phys. Rev. Lett. 58, 1593 (1987)] and (2) the Longuet-Higgins phase [Proc. R. Soc. London, Ser. A 344, 147 (1975)]. The two types of phases have a common origin, namely the multivaluedness of the electronic adiabatic basis, a phenomenon associated with the existence of a degeneracy in configuration space. It will be shown, by studying an electronic model Hamiltonian that arises from a two-state approximation to the Mathieu equation, that the two phases differ from each other substantially, coinciding only in the adiabatic limit upon completion of a cycle.

  1. Solid-state NMR adiabatic TOBSY sequences provide enhanced sensitivity for multidimensional high-resolution magic-angle-spinning 1H MR spectroscopy

    NASA Astrophysics Data System (ADS)

    Andronesi, Ovidiu C.; Mintzopoulos, Dionyssios; Struppe, Jochem; Black, Peter M.; Tzika, A. Aria

    2008-08-01

    We propose a solid-state NMR method that maximizes the advantages of high-resolution magic-angle-spinning (HRMAS) applied to intact biopsies when compared to more conventional liquid-state NMR approaches. Theoretical treatment, numerical simulations and experimental results on intact human brain biopsies are presented. Experimentally, it is proven that an optimized adiabatic TOBSY (TOtal through Bond correlation SpectroscopY) solid-state NMR pulse sequence for two-dimensional 1H- 1H homonuclear scalar-coupling longitudinal isotropic mixing provides a 20%-50% improvement in signal-to-noise ratio relative to its liquid-state analogue TOCSY (TOtal Correlation SpectroscopY). For this purpose we have refined the C9151 symmetry-based 13C TOBSY pulse sequence for 1H MRS use and compared it to MLEV-16 TOCSY sequence. Both sequences were rotor-synchronized and implemented using WURST-8 adiabatic inversion pulses. As discussed theoretically and shown in simulations, the improved magnetization-transfer comes from actively removing residual dipolar couplings from the average Hamiltonian. Importantly, the solid-state NMR techniques are tailored to perform measurements at low temperatures where sample degradation is reduced. This is the first demonstration of such a concept for HRMAS metabolic profiling of disease processes, including cancer, from biopsies requiring reduced sample degradation for further genomic analysis.

  2. Excited state non-adiabatic dynamics of pyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study

    SciTech Connect

    Wu, Guorong; Neville, Simon P.; Worth, Graham A.; Schalk, Oliver; Sekikawa, Taro; Ashfold, Michael N. R.; Stolow, Albert

    2015-02-21

    The dynamics of pyrrole excited at wavelengths in the range 242-217 nm are studied using a combination of time-resolved photoelectron spectroscopy and wavepacket propagations performed using the multi-configurational time-dependent Hartree method. Excitation close to the origin of pyrrole’s electronic spectrum, at 242 and 236 nm, is found to result in an ultrafast decay of the system from the ionization window on a single timescale of less than 20 fs. This behaviour is explained fully by assuming the system to be excited to the A{sub 2}(πσ{sup ∗}) state, in accord with previous experimental and theoretical studies. Excitation at shorter wavelengths has previously been assumed to result predominantly in population of the bright A{sub 1}(ππ{sup ∗}) and B{sub 2}(ππ{sup ∗}) states. We here present time-resolved photoelectron spectra at a pump wavelength of 217 nm alongside detailed quantum dynamics calculations that, together with a recent reinterpretation of pyrrole’s electronic spectrum [S. P. Neville and G. A. Worth, J. Chem. Phys. 140, 034317 (2014)], suggest that population of the B{sub 1}(πσ{sup ∗}) state (hitherto assumed to be optically dark) may occur directly when pyrrole is excited at energies in the near UV part of its electronic spectrum. The B{sub 1}(πσ{sup ∗}) state is found to decay on a timescale of less than 20 fs by both N-H dissociation and internal conversion to the A{sub 2}(πσ{sup ∗}) state.

  3. An arbitrary wavelength solver for global gyrokinetic simulations. Application to the study of fine radial structures on microturbulence due to non-adiabatic passing electron dynamics

    NASA Astrophysics Data System (ADS)

    Dominski, J.; McMillan, B. F.; Brunner, S.; Merlo, G.; Tran, T.-M.; Villard, L.

    2017-02-01

    The influence of the fine layers of the non-adiabatic passing electron response on electrostatic turbulent transport, previously studied systematically in flux tube geometry [Dominski et al., Phys. Plasmas 22, 062303 (2015)], is pursued in global geometry in conditions relevant for the TCV tokamak with a deuterium plasma (mi/me = 3672). The spectral organization of the passing electron turbulent flux and its dependence on the radial profile of the safety factor are revealed. A radially dependent toroidal spectral analysis of the turbulent fluxes led to the key result that the particle and heat diffusivities of passing-electrons are proportional to the local density of low-order mode rational surfaces. To permit this study of the short radial scales associated with the passing electron dynamics, a new field solver valid at an arbitrary wavelength is implemented in ORB5, for the gyrokinetic quasi-neutrality equation. A benchmark is conducted against the global version of the gyrokinetic code GENE, showing very good agreement.

  4. Rapid generation of a three-dimensional entangled state for two atoms trapped in a cavity via shortcuts to adiabatic passage

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Feng; Chen, Ye-Hong; Wu, Qi-Cheng; Kang, Yi-Hao; Huang, Bi-Hua; Xia, Yan

    2017-01-01

    We present an efficient protocol to rapidly generate a three-dimensional entangled state for two atoms trapped in a cavity with quantum Zeno dynamics and Lewis-Riesenfeld invariants. The required time for the protocol is much shorter than that with adiabatic passage. The influence of various decoherence processes such as atomic spontaneous emission and photon loss on the fidelity of the three-dimensional entangled state is investigated. Numerical simulation demonstrates that the protocol is robust against both the atomic spontaneous emission and cavity decay. Different from Lin et al. (J Opt Soc Am B 33(4):519-524, 2016), the three-dimensional entangled state can be fast generated with only one step. Furthermore, the protocol can be generalized to generate N-dimensional entanglement state. Therefore, we hope the protocol may be useful in quantum information field.

  5. Adiabatic Pseudospectral Technique: Applications to Four Atom Molecules

    NASA Astrophysics Data System (ADS)

    Antikainen, Jyrki Tapio

    1995-01-01

    After the introduction, in chapter 2 we review some of the well established techniques used to solve the Schrodinger equation. The following methods are discussed: the Finite Basis Representation, the Discrete Variable Representation, the Basic Light basis set truncation, and the Lanczos tridiagonalization. After reviewing the previous techniques we present the main features of our Adiabatic Pseudospectral (APS) technique. The Adiabatic Pseudospectral technique is a synthesis of several powerful computational methods such as the sequential adiabatic basis set reduction, the iterative Lanczos diagonalization, the collocation techniques, and a careful implementation of the matrix -vector product for the Hamiltonian in the reduced adiabatic representation. In chapter 3 we use our adiabatic pseudospectral method (APS) to calculate energy levels of the H _2O_2 molecule up to 5000 cm ^{-1}. Reasonably high accuracy (a few wavenumbers) is achieved for a fully six dimensional calculation in a few hours of CPU time on an IBM 580 workstation. These results are a great improvement over previous calculations on the same system which required 50-100 times more computational effort for a similar level of accuracy. The method presented here is both general and robust. It will allow for routine studies of six dimensional potential surfaces and the associated spectroscopy, while making calculations on still larger systems feasible. In chapter 4 the adiabatic pseudospectral method is used to study the high energy vibrational levels of the H_2C_2 molecule. We calculate stimulated emission pumping spectra initialized by the excited electronic state vibrational trans-bent state ~ A_sp{u}{1 }3_{nu}_3 . The calculations show that with the APS-method we can easily investigate energy regions in the excess of 15,000 cm^{-1}; these high energy regions have been previously unattainable by computational techniques.

  6. The Floquet Adiabatic Theorem revisited

    NASA Astrophysics Data System (ADS)

    Weinberg, Phillip; Bukov, Marin; D'Alessio, Luca; Kolodrubetz, Michael; Davidson, Shainen; Polkovnikov, Anatoli

    2015-03-01

    The existance of the adiabatic theorem for Floquet systems has been the subject of an active debate with different articles reaching opposite conclusions over the years. In this talk we clarify the situation by deriving a systematic expansion in the time-derivatives of a slow parameter for the occupation probabilities of the Floque states. Our analysis shows that the in a certain limit the transition between Floquet eigenstates are suppressed and it is possible to define an adiabatic theorem for Floquet systems. Crucially we observe however that the conditions for adiabaticity in ordinary and Floquet systems are different and that this difference can become important when the amplitude of the periodic driving is large. We illustrate our results with specific examples of a periodically driven harmonic oscillator and cold atoms in optical lattices which are relevant in current experiments.

  7. Adiabatic Demagnetization Refrigerator Field Mapping and Shielding Models for a 70 mK Superconducting Transition Edge Sensor Array and Associated Electronics

    SciTech Connect

    Ladner, D. R.; Martinez-Galarce, D. S.; McCammon, D.

    2006-04-27

    An X-ray detection instrument to be flown on a sounding rocket experiment (the Advanced Technology Solar Spectroscopic Imager -- ATSSI) for solar physics observations is being developed by the Lockheed Martin Solar and Astrophysics Laboratory (LMSAL). The detector is a novel class of microcalorimeter, a superconducting Transition-Edge Sensor (TES), that coupled with associated SQUID and feedback electronics requires high temperature stability at {approx}70 mK to resolve the energy of absorbed X-ray photons emitted from the solar corona. The cooling system incorporates an existing Adiabatic Demagnetization Refrigerator (ADR) developed at the University of Wisconsin (UW), which was previously flown to study the diffuse cosmic X-ray background. The Si thermistor detectors for that project required 130 K shielded JFET electronic components that are much less sensitive to the external field of the ADR solenoid than are the 1st ({approx}70 mK) and 2nd ({approx}2 K) SQUID stages used with TESs for solar observations. Modification of the Wisconsin ADR design, including TES focal plane and electronics re-positioning, therefore requires a tradeoff between the existing ADR solenoid nulling coil geometry and a low mass passive solenoid shield, while preserving the vibration isolation features of the existing design. We have developed models to accurately compute the magnetic field with and without shielding or nulling coils at critical locations to guide the re-design of the detector subsystem. The models and their application are described.

  8. Correlated Diskoid-like Electronic States

    PubMed Central

    Baskin, Artem; Sadeghpour, Hossein R.; Král, Petr

    2014-01-01

    We study highly excited diskoid-like electronic states formed in the vicinity of charged and strongly polarizable diskotic nanostructures, such as circular graphene flakes. First, we study the nature of such extended states in a simple two-electron model. The two electrons are attached to a point-like nucleus with a charge 2+, where the material electron is forced to move within a 2D disk area centered at the nucleus, while the extended electron is free to move in 3D. Pronounced and complex correlations are revealed in the diskoid-like states. We also develop semiclassical one-electron models of such diskotic systems and explain how the one-electron and many-electron solutions are related. PMID:25081595

  9. Inter-spin distance determination using L-band (1-2 GHz) non-adiabatic rapid sweep electron paramagnetic resonance (NARS EPR)

    PubMed Central

    Kittell, Aaron W.; Hustedt, Eric J.; Hyde, James S.

    2014-01-01

    Site-directed spin-labeling electron paramagnetic resonance (SDSL EPR) provides insight into the local structure and motion of a spin probe strategically attached to a molecule. When a second spin is introduced to the system, macromolecular information can be obtained through measurement of inter-spin distances either by continuous wave (CW) or pulsed electron double resonance (ELDOR) techniques. If both methodologies are considered, inter-spin distances of 8 to 80 Å can be experimentally determined. However, there exists a region at the upper limit of the conventional X-band (9.5 GHz) CW technique and the lower limit of the four-pulse double electron-electron resonance (DEER) experiment where neither method is particularly reliable. The work presented here utilizes L-band (1.9 GHz) in combination with non-adiabatic rapid sweep (NARS) EPR to address this opportunity by increasing the upper limit of the CW technique. Because L-band linewidths are three to seven times narrower than those at X-band, dipolar broadenings that are small relative to the X-band inhomogeneous linewidth become observable, but the signal loss due to the frequency dependence of the Boltzmann factor, has made L-band especially challenging. NARS has been shown to increase sensitivity by a factor of five, and overcomes much of this loss, making L-band distance determination more feasible [1]. Two different systems are presented and distances of 18–30 Å have been experimentally determined at physiologically relevant temperatures. Measurements are in excellent agreement with a helical model and values determined by DEER. PMID:22750251

  10. Inter-spin distance determination using L-band (1-2 GHz) non-adiabatic rapid sweep electron paramagnetic resonance (NARS EPR)

    NASA Astrophysics Data System (ADS)

    Kittell, Aaron W.; Hustedt, Eric J.; Hyde, James S.

    2012-08-01

    Site-directed spin-labeling electron paramagnetic resonance (SDSL EPR) provides insight into the local structure and motion of a spin probe strategically attached to a molecule. When a second spin is introduced to the system, macromolecular information can be obtained through measurement of inter-spin distances either by continuous wave (CW) or pulsed electron double resonance (ELDOR) techniques. If both methodologies are considered, inter-spin distances of 8-80 Å can be experimentally determined. However, there exists a region at the upper limit of the conventional X-band (9.5 GHz) CW technique and the lower limit of the four-pulse double electron-electron resonance (DEER) experiment where neither method is particularly reliable. The work presented here utilizes L-band (1.9 GHz) in combination with non-adiabatic rapid sweep (NARS) EPR to address this opportunity by increasing the upper limit of the CW technique. Because L-band linewidths are three to seven times narrower than those at X-band, dipolar broadenings that are small relative to the X-band inhomogeneous linewidth become observable, but the signal loss, due to the frequency dependence of the Boltzmann factor, has made L-band especially challenging. NARS has been shown to increase sensitivity by a factor of five, and overcomes much of this loss, making L-band distance determination more feasible [1]. Two different systems are presented, and distances of 18-30 Å have been experimentally determined at physiologically relevant temperatures. Measurements are in excellent agreement with a helical model and values determined by DEER.

  11. The multi-configurational adiabatic electron transfer theory and its invariance under transformations of charge density basis functions

    NASA Astrophysics Data System (ADS)

    Basilevsky, M. V.; Chudinov, G. E.; Newton, M. D.

    1994-02-01

    The continuum multi-configurational dynamical theory of electron transfer (ET) reactions in a chemical solute immersed in a polar solvent is developed. The solute wave function is represented as a CI expansion. The corresponding decomposition of the solute charge density generates a set of dynamical variables, the discrete medium coordinates. A new expression for the free energy surface in terms of these coordinates is derived. The stochastic equations of motion derived earlier are shown to be invariant under unitary transformations of orbitals used to build the CI expansion provided the latter is complete over the corresponding orbital subspace, and also under general linear transformations of the bases employed in expanding the charge density. The interrelation between the present general treatment and the reduced theory applied previously in terms of the two-level ET model is investigated. Finally, the explicit expression for the screening potential of medium electrons is derived in the electronic Born-Oppenheimer approximation (fast (slow) electronic timescale for solvent (solute)). The theory leads to a self-consistent scheme for practical calculations of rate constants for ET reactions involving complex solutes. Illustrative test calculations for two-level ET systems are presented, and the importance of proper boundary conditions for realistic molecular cavities is demonstrated.

  12. Nonadiabtic electron dynamics in densely quasidegenerate states in highly excited boron cluster

    NASA Astrophysics Data System (ADS)

    Yonehara, Takehiro; Takatsuka, Kazuo

    2016-04-01

    Following the previous study on nonadiabatic reaction dynamics including boron clusters [T. Yonehara and K. Takatsuka, J. Chem. Phys. 137, 22A520 (2012)], we explore deep into highly excited electronic states of the singlet boron cluster (B12) to find the characteristic features of the densely quasi-degenerate electronic state manifold, which undergo very frequent nonadiabatic transitions and thereby intensive electronic state mixing among very many of the relevant states. So much so, isolating the individual adiabatic states and tracking the expected potential energy surfaces both lose the physical sense. This domain of molecular situation is far beyond the realm of the Born-Oppenheimer approximation. To survey such a violent electronic state-mixing, we apply a method of nonadiabatic electron wavepacket dynamics, the semiclassical Ehrenfest method. We have tracked those electron wavepackets and found the electronic state mixing looks like an ultrafast diffusion in the Hilbert space, which results in huge fluctuation. Furthermore, due to such a violent mixing, the quantum phases associated with the electronic states are swiftly randomized, and consequently the coherence among the electronic states are lost quickly. Besides, these highly excited states are mostly of highly poly-radical nature, even in the spin singlet manifold and the number of radicals amounts up to 10 electrons in the sense of unpaired electrons. Thus the electronic states are summarized to be poly-radical and decoherent with huge fluctuation in shorter time scales of vibrational motions. The present numerical study sets a theoretical foundation for unknown molecular properties and chemical reactivity of such densely quasi-degenerate chemical species.

  13. Probing electronic states of TaC and observation of a stable excited state of TaC- by anion-photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Aravind, G.; Nrisimhamurty, M.; Mane, Rupali G.; Gupta, A. K.; Krishnakumar, E.

    2015-10-01

    We report the experimental value of electron affinity for TaC to be 1.928(0.056) eV by performing photodetachment of its anion at 355 nm. An excited-electronic state of the anion, stable against autodetachment, is observed lying 0.828 eV above the ground-electronic state. Five low-lying electronic states of TaC are observed and identified by comparison with restricted second-order configuration interaction (SOCI) calculations. Vibrational frequencies for the electronic states are obtained from the analysis of the measured data. We also present the results of density functional theory (DFT) calculations performed on the adiabatic electron affinity, yielding a value of 1.9236 eV and vertical detachment energy value of 1.924 eV.

  14. Electronic states of GeCl +

    NASA Astrophysics Data System (ADS)

    Dai, Dingguo; Xu, Hua; Balasubramanian, K.

    1995-11-01

    Twenty-eight electronic states of GeCl + are studied using the complete active space self-consistent field (CASSCF) followed by first- and second-order configuration interaction (FOCI, SOCI) methods. Spectroscopic constants of electronic states exhibiting minima are computed.

  15. Adiabatic heating in impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Maetzler, C.; Bai, T.; Crannell, C. J.; Frost, K. J.

    1977-01-01

    The dynamic X-ray spectra of two simple, impulsive solar flares are examined together with H alpha, microwave and meter wave radio observations. X-ray spectra of both events were characteristic of thermal bremsstrahlung from single temperature plasmas. The symmetry between rise and fall was found to hold for the temperature and emission measure. The relationship between temperature and emission measure was that of an adiabatic compression followed by adiabatic expansion; the adiabatic index of 5/3 indicated that the electron distribution remained isotropic. Observations in H alpha provided further evidence for compressive energy transfer.

  16. Characterizing the Locality of Diabatic States for Electronic Excitation Transfer by Decomposing the Diabatic Coupling

    SciTech Connect

    Vura-Weis, Josh; Newton, M. D.; Wasielewski, Michael R; Subotnik, J.E.

    2010-12-09

    A common strategy to calculate electronic coupling matrix elements for charge or energy transfer is to take the adiabatic states generated by electronic structure computations and rotate them to form localized diabatic states. In this paper, we show that, for intermolecular transfer of singlet electronic excitation, usually we cannot fully localize the electronic excitations in this way. Instead, we calculate putative initial and final states with small excitation tails caused by weak interactions with high energy excited states in the electronic manifold. These tails do not lead to substantial changes in the total diabatic coupling between states, but they do lead to a different partitioning of the total coupling between Coulomb (Förster), exchange (Dexter), and one-electron components. The tails may be reduced by using a multistate diabatic model or eliminated entirely by truncation (denoted as “chopping”). Without more information, we are unable to conclude with certainty whether the observed diabatic tails are a physical reality or a computational artifact. This research suggests that decomposition of the diabatic coupling between chromophores into Coulomb, exchange, and one-electron components may depend strongly on the number of states considered, and such results should be treated with caution.

  17. Ozone absorption spectroscopy in search of low-lying electronic states

    NASA Technical Reports Server (NTRS)

    Anderson, S. M.; Mauersberger, K.

    1995-01-01

    A spectrometer capable of detecting ozone absorption features 9 orders of magnitude weaker than the Hartley band has been employed to investigate the molecule's near-infrared absorption spectrum. At this sensitivity a wealth of information on the low-lying electronically excited states often believed to play a role in atmospheric chemistry is available in the form of vibrational and rotational structure. We have analyzed these spectra using a combination of digital filtering and isotope substitution and find evidence for three electronically excited states below 1.5 eV. The lowest of these states is metastable, bound by approximately 0.1 eV and probably the (3)A2 rather than the (3)B2 state. Its adiabatic electronic energy is 1.24 +/- 0.01 eV, slightly above the dissociation energy of the ground state. Two higher states, at 1.29 +/- 0.03 and 1.48 +/- 0.03 eV are identified as the (3)B2 and the (3)B1, respectively. Combined with other recent theoretical and experimental data on the low-lying electronic states of ozone, these results imply that these are, in fact, the lowest three excited states; that is, there are no electronically excited states of ozone lying below the energy of O(3P) + O2((3)Sigma(-), v = 0). Some of the implications for atmospheric chemistry are considered.

  18. Manipulation of electronic states and photonic states in nanosilicon

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Qi; Huang, Zhong-Mei; Miao, Xin-Jian; Qin, Chao-Jian; Lv, Quan

    2014-04-01

    On different size hierarchy, period symmetry provides energy band structure, and symmetry breaking produces localized states in gap, for example nanostructures open electronic band gap by confining electrons, but defects in symmetry system produce localized electronic states in gap. The experimental results demonstrate that controlling localized states in gap by changing passivation environment can manipulate emission wavelength, such as stimulated emission at 700 nm due to oxygen passivation and enhanced electroluminescence near 1600 nm due to ytterbium passivation on nanosilicon. In same way, modulating filling fraction and period parameters in photonic crystal enlarges width of photonic band gap (PBG) by confining photons. Symmetry breaking due to defects is effective in manipulating photonic states. New applications for selecting modes in nanolaser and for building single photon source in quantum information are explored by manipulating and coupling between electronic states and photonic states.

  19. Spectroscopic signatures of laser-induced non-adiabatic electron dynamics in H 2 +

    NASA Astrophysics Data System (ADS)

    Miller, Michelle; Jaron-Becker, Agnieszka; Becker, Andreas

    2015-05-01

    In this theoretical investigation of molecular high-order harmonic generation, we identify a new mechanism resulting in a spectral minimum and non-odd harmonic generation when H2+is driven at extended internuclear distances (~ 7.0 au) by a mid-infrared laser source (1.4 μm-1.8 μm) of moderate intensity. Manifestation of this minimum is connected to the sub-half-field cycle transient localization of the electron upon alternating nuclear centers. We establish the sensitivity of this feature to driving field parameters, eliminating or increasing the number of minima by reducing the driving wavelength or increasing the laser intensity, respectively. The robustness of the minimum feature to distributions of laser field intensities, internuclear distances and carrier envelope phase is also demonstrated. Supported via the U.S. Department of Energy (Award No. DE-FG02-09ER16103) and the U.S. National Science Foundation (Graduate Research Fellowship, Grant No. PHY-1125844 and No. PHY-1068706).

  20. State electronic disease surveillance systems --- United States, 2007 and 2010.

    PubMed

    2011-10-21

    The National Electronic Disease Surveillance System (NEDSS) is a web-based infrastructure for public health surveillance data exchange between CDC and the 50 states. In 2007, the Council of State and Territorial Epidemiologists (CSTE) conducted an assessment to evaluate states' electronic disease surveillance capacity. In 2010, CSTE conducted a follow-up assessment to evaluate the operational status and progress of integration, interoperability, and capacity of state electronic disease surveillance systems. This report summarizes the results of that assessment, which indicated a 17.5% increase from 40 states in 2007 to 47 states in 2010 with fully operational general communicable disease (GCD) electronic surveillance systems, a 211.5% increase from 13 to 39 states in the number of systems that were interoperable, a 22.4% increase from 23 to 34 states in the number with integrated systems, and a 20.0% increase to 42 states with the capacity to receive electronic laboratory reports (ELRs). New Centers for Medicare and Medicaid Services rules for meaningful use of health information technology encourage data exchange between electronic health record systems and public health agencies, including submission of ELRs. To meet national goals for health information exchange to improve population health, variation in disease surveillance systems should decrease, and functionality should increase.

  1. Canonical-ensemble state-averaged complete active space self-consistent field (SA-CASSCF) strategy for problems with more diabatic than adiabatic states: Charge-bond resonance in monomethine cyanines

    SciTech Connect

    Olsen, Seth

    2015-01-28

    This paper reviews basic results from a theory of the a priori classical probabilities (weights) in state-averaged complete active space self-consistent field (SA-CASSCF) models. It addresses how the classical probabilities limit the invariance of the self-consistency condition to transformations of the complete active space configuration interaction (CAS-CI) problem. Such transformations are of interest for choosing representations of the SA-CASSCF solution that are diabatic with respect to some interaction. I achieve the known result that a SA-CASSCF can be self-consistently transformed only within degenerate subspaces of the CAS-CI ensemble density matrix. For uniformly distributed (“microcanonical”) SA-CASSCF ensembles, self-consistency is invariant to any unitary CAS-CI transformation that acts locally on the ensemble support. Most SA-CASSCF applications in current literature are microcanonical. A problem with microcanonical SA-CASSCF models for problems with “more diabatic than adiabatic” states is described. The problem is that not all diabatic energies and couplings are self-consistently resolvable. A canonical-ensemble SA-CASSCF strategy is proposed to solve the problem. For canonical-ensemble SA-CASSCF, the equilibrated ensemble is a Boltzmann density matrix parametrized by its own CAS-CI Hamiltonian and a Lagrange multiplier acting as an inverse “temperature,” unrelated to the physical temperature. Like the convergence criterion for microcanonical-ensemble SA-CASSCF, the equilibration condition for canonical-ensemble SA-CASSCF is invariant to transformations that act locally on the ensemble CAS-CI density matrix. The advantage of a canonical-ensemble description is that more adiabatic states can be included in the support of the ensemble without running into convergence problems. The constraint on the dimensionality of the problem is relieved by the introduction of an energy constraint. The method is illustrated with a complete active space

  2. The electronic states of buta-1,3-diene studied by ab initio configuration interaction and DFT methods, and electron energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    H., Michael; | Isobel C., Palmer; Walker

    2010-08-01

    The electronic vertical excitation energies for singlet and triplet valence, and Rydberg states of trans-buta-1,3-diene have been computed using ab initio multi-reference multi-root CI procedures with a [4s3p3d3f] set of Rydberg functions. Close numerical agreement between theory and experiment was found for a number of low-lying electronic states. The present CI and CASSCF [8MO,8e] calculations suggest that both the vertical and adiabatic order of the valence (ππ∗) states is: A˜1Aelectron energy-loss spectrum, reported here, in which the incident electrons have near-threshold energies, supports this order. Adiabatic excitation energies and structures were obtained for several singlet and triplet states using CASSCF and B3LYP procedures; the results from these methods are generally in good agreement with each other. The C 1C 2 to C 2C 3 bond length ratio in the excited states varies widely, and is discussed.

  3. Electronic Information Services, Louisiana State University Libraries.

    ERIC Educational Resources Information Center

    Bolner, Smittie; And Others

    Reports prepared by the Louisiana State University (LSU) Libraries Task Force on Electronic Services examine the present level of automated services at the LSU libraries and make recommendations for both long- and short-term plans to handle information in electronic format. The reports, each of which is followed by a list of recommendations, focus…

  4. Photoassociation of cold atoms with chirped laser pulses: Time-dependent calculations and analysis of the adiabatic transfer within a two-state model

    SciTech Connect

    Luc-Koenig, E.; Masnou-Seeuws, F.; Kosloff, R.; Vatasescu, M.

    2004-09-01

    This theoretical paper presents numerical calculations for the photoassociation of ultracold cesium atoms with a chirped laser pulse and a detailed analysis of the results. In contrast with earlier work, the initial state is represented by a stationary continuum wave function. In the chosen example, it is shown that an important population transfer is achieved to {approx_equal}15 vibrational levels in the vicinity of the v=98 bound level in the external well of the 0{sub g}{sup -}(6s+6p{sub 3/2}) potential. Such levels lie in the energy range swept by the instantaneous frequency of the pulse, thus defining a 'photoassociation window'. Levels outside this window may be significantly excited during the pulse, but no population remains there after the pulse. Finally, the population transfer to the last vibrational levels of the ground a {sup 3}{sigma}{sub u}{sup +}(6s+6s) state is significant, making stable molecules. The results are interpreted in the framework of a two-state model as an adiabatic inversion mechanism, efficient only within the photoassociation window. The large value found for the photoassociation rate suggests promising applications. The present chirp has been designed in view of creating in the excited state a vibrational wave packet that is focusing at the barrier of the double-well potential.

  5. Unoccupied electronic states of Ru(0001)

    NASA Astrophysics Data System (ADS)

    del Campo, Valeria; Correa, Julián-David; Correa-Puerta, Jonathan; Kroeger, Daniel; Häberle, Patricio

    2016-11-01

    This report presents a combined theoretical and experimental description of the unoccupied electronic states of Ru(0001), along the Γ̅M̅ high symmetry direction of the Brillouin zone. A direct comparison between angle-resolved inverse photoemission spectroscopy and ab initio calculations of the 3-dimensional (3D) electronic structure of Ru(0001) have been used to determine the energy dispersion and the identification of different states and surface resonances. Both, measurements and calculations, complement previous reports regarding the electronic structure of Ru.

  6. Intense steady state electron beam generator

    DOEpatents

    Hershcovitch, Ady; Kovarik, Vincent J.; Prelec, Krsto

    1990-01-01

    An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source.

  7. Coupled 3D time-dependent wave-packet approach in hyperspherical coordinates: application to the adiabatic singlet-state(1(1)A') D(+) + H2 reaction.

    PubMed

    Sahoo, Tapas; Ghosh, Sandip; Adhikari, Satrajit; Sharma, Rahul; Varandas, António J C

    2014-07-03

    We explore a coupled three-dimensional (3D) time-dependent wave packet formalism in hyperspherical coordinates for a 4D reactive scattering problem on the lowest adiabatic singlet surface (1(1)A') of the D(+) + H2 reaction. The coupling among the wavepackets arises through quantization of the rotation matrix, which represents the orientation of the three particles in space. The required transformation from Jacobi to hyperspherical coordinates and vice versa during initialization and projection of the wave packet on the asymptotic state(s), and the coupled equations of motion, are briefly discussed. With the long-range potential known to contribute significantly on the D(+) + H2 system, we demonstrate the workability of our approach, where the convergence profiles of the reaction probability for the reactive noncharge transfer (RNCT) process [D(+) + H2(v=0, j=0,1) → HD(v',j') + H(+)] are shown for three different collisional energies (1.7, 2.1, and 2.5 eV) with respect to the helicity (K) and total angular momentum (J) quantum numbers. The calculated reactive cross-section is presented as a function of the collision energy for two different initial states of the diatom (v = 0, j = 0, 1).

  8. The best of both Reps—Diabatized Gaussians on adiabatic surfaces

    NASA Astrophysics Data System (ADS)

    Meek, Garrett A.; Levine, Benjamin G.

    2016-11-01

    When simulating nonadiabatic molecular dynamics, choosing an electronic representation requires consideration of well-known trade-offs. The uniqueness and spatially local couplings of the adiabatic representation come at the expense of an electronic wave function that changes discontinuously with nuclear motion and associated singularities in the nonadiabatic coupling matrix elements. The quasi-diabatic representation offers a smoothly varying wave function and finite couplings, but identification of a globally well-behaved quasi-diabatic representation is a system-specific challenge. In this work, we introduce the diabatized Gaussians on adiabatic surfaces (DGAS) approximation, a variant of the ab initio multiple spawning (AIMS) method that preserves the advantages of both electronic representations while avoiding their respective pitfalls. The DGAS wave function is expanded in a basis of vibronic functions that are continuous in both electronic and nuclear coordinates, but potentially discontinuous in time. Because the time-dependent Schrödinger equation contains only first-order derivatives with respect to time, singularities in the second-derivative nonadiabatic coupling terms (i.e., diagonal Born-Oppenheimer correction; DBOC) at conical intersections are rigorously absent, though singular time-derivative couplings remain. Interpolation of the electronic wave function allows the accurate prediction of population transfer probabilities even in the presence of the remaining singularities. We compare DGAS calculations of the dynamics of photoexcited ethene to AIMS calculations performed in the adiabatic representation, including the DBOC. The 28 fs excited state lifetime observed in DGAS simulations is considerably shorter than the 50 fs lifetime observed in the adiabatic simulations. The slower decay in the adiabatic representation is attributable to the large, repulsive DBOC in the neighborhood of conical intersections. These repulsive DBOC terms are artifacts

  9. On the Role of Prior Probability in Adiabatic Quantum Algorithms

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Lu, Songfeng; Yang, Liping

    2016-03-01

    In this paper, we study the role of prior probability on the efficiency of quantum local adiabatic search algorithm. The following aspects for prior probability are found here: firstly, only the probabilities of marked states affect the running time of the adiabatic evolution; secondly, the prior probability can be used for improving the efficiency of the adiabatic algorithm; thirdly, like the usual quantum adiabatic evolution, the running time for the case of multiple solution states where the number of marked elements are smaller enough than the size of the set assigned that contains them can be significantly bigger than that of the case where the assigned set only contains all the marked states.

  10. General conditions for quantum adiabatic evolution

    SciTech Connect

    Comparat, Daniel

    2009-07-15

    Adiabaticity occurs when, during its evolution, a physical system remains in the instantaneous eigenstate of the Hamiltonian. Unfortunately, existing results, such as the quantum adiabatic theorem based on a slow down evolution [H({epsilon}t),{epsilon}{yields}0], are insufficient to describe an evolution driven by the Hamiltonian H(t) itself. Here we derive general criteria and exact bounds, for the state and its phase, ensuring an adiabatic evolution for any Hamiltonian H(t). As a corollary, we demonstrate that the commonly used condition of a slow Hamiltonian variation rate, compared to the spectral gap, is indeed sufficient to ensure adiabaticity but only when the Hamiltonian is real and nonoscillating (for instance, containing exponential or polynomial but no sinusoidal functions)

  11. Simulation of periodically focused, adiabatic thermal beams

    SciTech Connect

    Chen, C.; Akylas, T. R.; Barton, T. J.; Field, D. M.; Lang, K. M.; Mok, R. V.

    2012-12-21

    Self-consistent particle-in-cell simulations are performed to verify earlier theoretical predictions of adiabatic thermal beams in a periodic solenoidal magnetic focusing field [K.R. Samokhvalova, J. Zhou and C. Chen, Phys. Plasma 14, 103102 (2007); J. Zhou, K.R. Samokhvalova and C. Chen, Phys. Plasma 15, 023102 (2008)]. In particular, results are obtained for adiabatic thermal beams that do not rotate in the Larmor frame. For such beams, the theoretical predictions of the rms beam envelope, the conservations of the rms thermal emittances, the adiabatic equation of state, and the Debye length are verified in the simulations. Furthermore, the adiabatic thermal beam is found be stable in the parameter regime where the simulations are performed.

  12. Protecting and accelerating adiabatic passage with time-delayed pulse sequences.

    PubMed

    Sampedro, Pablo; Chang, Bo Y; Sola, Ignacio R

    2016-05-21

    Using numerical simulations of two-photon electronic absorption with femtosecond pulses in Na2 we show that: (i) it is possible to avoid the characteristic saturation or dumped Rabi oscillations in the yield of absorption by time-delaying the laser pulses; (ii) it is possible to accelerate the onset of adiabatic passage by using the vibrational coherence starting in a wave packet; and (iii) it is possible to prepare the initial wave packet in order to achieve full state-selective transitions with broadband pulses. The findings can be used, for instance, to achieve ultrafast adiabatic passage by light-induced potentials and understand its intrinsic robustness.

  13. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene

    NASA Astrophysics Data System (ADS)

    Pisana, Simone; Lazzeri, Michele; Casiraghi, Cinzia; Novoselov, Kostya S.; Geim, A. K.; Ferrari, Andrea C.; Mauri, Francesco

    2007-03-01

    The adiabatic Born-Oppenheimer approximation (ABO) has been the standard ansatz to describe the interaction between electrons and nuclei since the early days of quantum mechanics. ABO assumes that the lighter electrons adjust adiabatically to the motion of the heavier nuclei, remaining at any time in their instantaneous ground state. ABO is well justified when the energy gap between ground and excited electronic states is larger than the energy scale of the nuclear motion. In metals, the gap is zero and phenomena beyond ABO (such as phonon-mediated superconductivity or phonon-induced renormalization of the electronic properties) occur. The use of ABO to describe lattice motion in metals is, therefore, questionable. In spite of this, ABO has proved effective for the accurate determination of chemical reactions, molecular dynamics and phonon frequencies in a wide range of metallic systems. Here, we show that ABO fails in graphene. Graphene, recently discovered in the free state, is a zero-bandgap semiconductor that becomes a metal if the Fermi energy is tuned applying a gate voltage, Vg. This induces a stiffening of the Raman G peak that cannot be described within ABO.

  14. Energy separations for the electronic states of PH -2,PH 2 and PH +2

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.

    1993-03-01

    All-electron complete-active space multi-configuration self-consistent field (CASSCF) followed by second-order configuration interaction (SOCI) calculations in conjunction with large P(13s10p3d2flg/7s6p3d2flg) and H (10s5p1d/8s5p1d) basis sets are made on the electronic states of PH -2, PH 2 and PH +2. We compute the adiabatic electron affinities of PH 2 and PH. The 3B 1-X 1A 1, 1B 1-X 1A 1 energy separations of PH +2 and the 2A 1-X 2B 1 energy separation of PH 2 are computed.

  15. An interacting adiabatic quantum motor

    NASA Astrophysics Data System (ADS)

    Viola Kusminskiy, Silvia; Bruch, Anton; von Oppen, Felix

    We consider the effect of electron-electron interactions on the performance of an adiabatic quantum motor based on a Thouless pump operating in reverse. We model such a device by electrons in a 1d wire coupled to a slowly moving periodic potential associated with the classical mechanical degree of freedom of the motor. This periodic degree of freedom is set into motion by a bias voltage applied to the 1d electron channel. We investigate the Thouless motor with interacting leads modeled as Luttinger liquids. We show that interactions enhance the energy gap opened by the periodic potential and thus the robustness of the Thouless motor against variations in the chemical potential. We show that the motor degree of freedom can be described as a mobile impurity in a Luttinger liquid obeying Langevin dynamics with renormalized coefficients due to interactions, for which we give explicit expressions.

  16. Proteins as solid-state electronic conductors.

    PubMed

    Ron, Izhar; Pecht, Israel; Sheves, Mordechai; Cahen, David

    2010-07-20

    Protein structures can facilitate long-range electron transfer in solution. But a fundamental question remains: can these structures also serve as solid-state electronic conductors? Answering this question requires methods for studying conductivity of the "dry" protein (which only contains tightly bound structured water molecules) sandwiched between two electronic conductors in a solid-state type configuration. If successful, such systems could serve as the basis for future, bioinspired electronic device technology. In this Account, we survey, analyze, and compare macroscopic and nanoscopic (scanning probe) solid-state conductivities of proteins, noting the inherent constraints of each of these, and provide the first status report on this research area. This analysis shows convincing evidence that "dry" proteins pass orders of magnitude higher currents than saturated molecules with comparable thickness and that proteins with known electrical activity show electronic conductivity, nearly comparable to that of conjugated molecules ("wires"). These findings suggest that the structural features of proteins must have elements that facilitate electronic conductivity, even if they do not have a known electron transfer function. As a result, proteins could serve not only as sensing, polar,or photoactive elements in devices (such as field-effect transistor configurations) but also as electronic conductors. Current knowledge of peptide synthesis and protein modification paves the way toward a greater understanding of how changes in a protein's structure affect its conductivity. Such an approach could minimize the need for biochemical cascades in systems such as enzyme-based circuits, which transduce the protein's response to electronic current. In addition, as precision and sensitivity of solid-state measurements increase, and as knowledge of the structure and function of "dry" proteins grows, electronic conductivity may become an additional approach to study electron

  17. Excited state non-adiabatic dynamics of N-methylpyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study

    SciTech Connect

    Wu, Guorong; Neville, Simon P.; Schalk, Oliver; Sekikawa, Taro; Ashfold, Michael N. R.; Worth, Graham A.; Stolow, Albert

    2016-01-07

    The dynamics of N-methylpyrrole following excitation at wavelengths in the range 241.5-217.0 nm were studied using a combination of time-resolved photoelectron spectroscopy (TRPES), ab initio quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree method, as well as high-level photoionization cross section calculations. Excitation at 241.5 and 236.2 nm results in population of the A{sub 2}(πσ{sup ∗}) state, in agreement with previous studies. Excitation at 217.0 nm prepares the previously neglected B{sub 1}(π3p{sub y}) Rydberg state, followed by prompt internal conversion to the A{sub 2}(πσ{sup ∗}) state. In contrast with the photoinduced dynamics of pyrrole, the lifetime of the wavepacket in the A{sub 2}(πσ{sup ∗}) state was found to vary with excitation wavelength, decreasing by one order of magnitude upon tuning from 241.5 nm to 236.2 nm and by more than three orders of magnitude when excited at 217.0 nm. The order of magnitude difference in lifetimes measured at the longer excitation wavelengths is attributed to vibrational excitation in the A{sub 2}(πσ{sup ∗}) state, facilitating wavepacket motion around the potential barrier in the N–CH{sub 3} dissociation coordinate.

  18. TCEQ State of Texas Environmental Electronic Reporting System (STEERS)

    EPA Pesticide Factsheets

    TCEQ's State of Texas Environmental Electronic Reporting System (STEERS) is an existing electronic document receiving system for collecting numerous reports required under the state's EPA-authorized programs.

  19. Excited state X-ray absorption spectroscopy: Probing both electronic and structural dynamics

    NASA Astrophysics Data System (ADS)

    Neville, Simon P.; Averbukh, Vitali; Ruberti, Marco; Yun, Renjie; Patchkovskii, Serguei; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.

    2016-10-01

    We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L 2 method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.

  20. Excited state X-ray absorption spectroscopy: Probing both electronic and structural dynamics.

    PubMed

    Neville, Simon P; Averbukh, Vitali; Ruberti, Marco; Yun, Renjie; Patchkovskii, Serguei; Chergui, Majed; Stolow, Albert; Schuurman, Michael S

    2016-10-14

    We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L(2) method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.

  1. Improved transfer efficiencies in radio-frequency-driven recoupling solid-state NMR by adiabatic sweep through the dipolar recoupling condition.

    PubMed

    Straasø, Lasse A; Shankar, Ravi; Tan, Kong Ooi; Hellwagner, Johannes; Meier, Beat H; Hansen, Michael Ryan; Nielsen, Niels Chr; Vosegaard, Thomas; Ernst, Matthias; Nielsen, Anders B

    2016-07-21

    The homonuclear radio-frequency driven recoupling (RFDR) experiment is commonly used in solid-state NMR spectroscopy to gain insight into the structure of biological samples due to its ease of implementation, stability towards fluctuations/missetting of radio-frequency (rf) field strength, and in general low rf requirements. A theoretical operator-based Floquet description is presented to appreciate the effect of having a temporal displacement of the π-pulses in the RFDR experiment. From this description, we demonstrate improved transfer efficiency for the RFDR experiment by generating an adiabatic passage through the zero-quantum recoupling condition. We have compared the performances of RFDR and the improved sequence to mediate efficient (13)CO to (13)Cα polarization transfer for uniformly (13)C,(15)N-labeled glycine and for the fibril forming peptide SNNFGAILSS (one-letter amino acid codes) uniformly (13)C,(15)N-labeled at the FGAIL residues. Using numerically optimized sweeps, we get experimental gains of approximately 20% for glycine where numerical simulations predict an improvement of 25% relative to the standard implementation. For the fibril forming peptide, using the same sweep parameters as found for glycine, we have gains in the order of 10%-20% depending on the spectral regions of interest.

  2. Quantum adiabatic machine learning

    NASA Astrophysics Data System (ADS)

    Pudenz, Kristen L.; Lidar, Daniel A.

    2013-05-01

    We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. This approach consists of two quantum phases, with some amount of classical preprocessing to set up the quantum problems. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. All quantum processing is strictly limited to two-qubit interactions so as to ensure physical feasibility. We apply and illustrate this approach in detail to the problem of software verification and validation, with a specific example of the learning phase applied to a problem of interest in flight control systems. Beyond this example, the algorithm can be used to attack a broad class of anomaly detection problems.

  3. Electronics: State of the Art No. 2.

    ERIC Educational Resources Information Center

    Gosling, W.

    1979-01-01

    Reviewed is a brief history of electronics technology, from the early beginnings of vacuum devices to development of solid state devices, silicon fabrication in the use of transistors, and integrated circuits. Educational needs at the university or polytechnic level are discussed. (CS)

  4. Adiabatic capture and debunching

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2012-03-01

    In the study of beam preparation for the g-2 experiment, adiabatic debunching and adiabatic capture are revisited. The voltage programs for these adiabbatic processes are derived and their properties discussed. Comparison is made with some other form of adiabatic capture program. The muon g-2 experiment at Fermilab calls for intense proton bunches for the creation of muons. A booster batch of 84 bunches is injected into the Recycler Ring, where it is debunched and captured into 4 intense bunches with the 2.5-MHz rf. The experiment requires short bunches with total width less than 100 ns. The transport line from the Recycler to the muon-production target has a low momentum aperture of {approx} {+-}22 MeV. Thus each of the 4 intense proton bunches required to have an emittance less than {approx} 3.46 eVs. The incoming booster bunches have total emittance {approx} 8.4 eVs, or each one with an emittance {approx} 0.1 eVs. However, there is always emittance increase when the 84 booster bunches are debunched. There will be even larger emittance increase during adiabatic capture into the buckets of the 2.5-MHz rf. In addition, the incoming booster bunches may have emittances larger than 0.1 eVs. In this article, we will concentrate on the analysis of the adiabatic capture process with the intention of preserving the beam emittance as much as possible. At this moment, beam preparation experiment is being performed at the Main Injector. Since the Main Injector and the Recycler Ring have roughly the same lattice properties, we are referring to adiabatic capture in the Main Injector instead in our discussions.

  5. 2 - 12 Minute Quasi-Periodic Variations of 50 - 1000 keV Trapped Electron Fluxes Detected in the Afternoon Magnetosphere. 2. Theory of Adiabatic Modulations,

    DTIC Science & Technology

    1975-09-02

    in %~e Af~ev,..,. M~4 ~OCUMENT IDENTIFICATION DISTRIBEION STATEMENTA DISTRBUIBUTIONMEN AVILABT CODES JUSTIF VAIND/RSEILDT CESE DISTRIBUTION STM DATE...magnetosphere is compressed (Inflated) adiabatically, the particle energy and the mirror points will be altered (Mcllwain, lQ66; Kaufmann, 1974; Murphy...particle energy and pitch-angle changes that occur for particles that mirror off the equator. Also, using the Liou- ville Theorem and a siven initial

  6. Propagation of laser pulses under conditions of adiabatic population transfer

    SciTech Connect

    Arkhipkin, V G; Manushkin, D V; Timofeev, V P

    1998-12-31

    A medium of three-level absorbing atoms is considered under conditions of adiabatic population transfer. A study is made of the characteristics of spatial propagation of two delayed (relative to one another) Gaussian pulses. It is shown that selective excitation of a two-photon resonant state with a near-unity probability is conserved over the length of a medium, which is considerably greater than the absorption length of a weak probe pulse in the absence of the second field. (physical basis of quantum electronics)

  7. Practical approximation of the non-adiabatic coupling terms for same-symmetry interstate crossings by using adiabatic potential energies only

    NASA Astrophysics Data System (ADS)

    Baeck, Kyoung Koo; An, Heesun

    2017-02-01

    A very simple equation, Fij A p p=[(∂2(Via-Vja ) /∂Q2 ) /(Via-Vja ) ] 1 /2/2 , giving a reliable magnitude of non-adiabatic coupling terms (NACTs, Fij's) based on adiabatic potential energies only (Via and Vja) was discovered, and its reliability was tested for several prototypes of same-symmetry interstate crossings in LiF, C2, NH3Cl, and C6H5SH molecules. Our theoretical derivation starts from the analysis of the relationship between the Lorentzian dependence of NACTs along a diabatization coordinate and the well-established linear vibronic coupling scheme. This analysis results in a very simple equation, α =2 κ /Δc , enabling the evaluation of the Lorentz function α parameter in terms of the coupling constant κ and the energy gap Δc (Δc=|Via-Vja| Q c ) between adiabatic states at the crossing point QC. Subsequently, it was shown that QC corresponds to the point where Fij A p p exhibit maximum values if we set the coupling parameter as κ =[(Via-Vja ) ṡ(∂2(Via-Vja ) /∂Q2 ) ] Qc1 /2 /2 . Finally, we conjectured that this relation could give reasonable values of NACTs not only at the crossing point but also at other geometries near QC. In this final approximation, the pre-defined crossing point QC is not required. The results of our test demonstrate that the approximation works much better than initially expected. The present new method does not depend on the selection of an ab initio method for adiabatic electronic states but is currently limited to local non-adiabatic regions where only two electronic states are dominantly involved within a nuclear degree of freedom.

  8. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

    SciTech Connect

    White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry

    2015-07-07

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.

  9. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

    DOE PAGES

    White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; ...

    2015-07-07

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficientmore » as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.« less

  10. Adiabatic optimization versus diffusion Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Jarret, Michael; Jordan, Stephen P.; Lackey, Brad

    2016-10-01

    Most experimental and theoretical studies of adiabatic optimization use stoquastic Hamiltonians, whose ground states are expressible using only real nonnegative amplitudes. This raises a question as to whether classical Monte Carlo methods can simulate stoquastic adiabatic algorithms with polynomial overhead. Here we analyze diffusion Monte Carlo algorithms. We argue that, based on differences between L1 and L2 normalized states, these algorithms suffer from certain obstructions preventing them from efficiently simulating stoquastic adiabatic evolution in generality. In practice however, we obtain good performance by introducing a method that we call Substochastic Monte Carlo. In fact, our simulations are good classical optimization algorithms in their own right, competitive with the best previously known heuristic solvers for MAX-k -SAT at k =2 ,3 ,4 .

  11. Ultrafast hydrogen migration in acetylene cation driven by non-adiabatic effects.

    PubMed

    Madjet, Mohamed El-Amine; Li, Zheng; Vendrell, Oriol

    2013-03-07

    Non-adiabatic dynamics of the acetylene cation is investigated using mixed quantum-classical dynamics based on trajectory surface hopping. To describe the non-adiabatic effects, two surface hopping methods are used, namely, Tully's fewest switches and Landau-Zener surface hopping. Similarities and differences between the results based on those two methods are discussed. We find that the photoionization of acetylene into the first excited state A(2)Σg(+) drives the molecule from the linear structure to a trans-bent structure. Through a conical intersection the acetylene cation can relax back to either the ground state of acetylene or vinylidene. We conclude that hydrogen migration always takes place after non-radiative electronic relaxation to the ground state of the monocation. Based on the analysis of correlation functions we identify coherent oscillations between acetylene and vinylidene with a period of about 70 fs after the electronic relaxation.

  12. Electronic ground state of Ni2+

    NASA Astrophysics Data System (ADS)

    Zamudio-Bayer, V.; Lindblad, R.; Bülow, C.; Leistner, G.; Terasaki, A.; v. Issendorff, B.; Lau, J. T.

    2016-11-01

    The 9/2 4Φ ground state of the Ni2+ diatomic molecular cation is determined experimentally from temperature and magnetic-field-dependent x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap, where an electronic and rotational temperature of 7.4 ±0.2 K was reached by buffer gas cooling of the molecular ion. The contribution of the spin dipole operator to the x-ray magnetic circular dichroism spin sum rule amounts to 7 Tz =0.17 ± 0.06 μB per atom, approximately 11% of the spin magnetic moment. We find that, in general, homonuclear diatomic molecular cations of 3d transition metals seem to adopt maximum spin magnetic moments in their electronic ground states.

  13. Electronic States in Capped Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Yaguchi, Tatsuya; Ando, Tsuneya

    2001-05-01

    Scattering of an electron wave at various caps closing an armchair nanotube is studied. The reflection coefficients can be understood as an effective shift in boundary position and phase shift at the boundary. The phase shift is approximately given by π for states with parity + and 0 for states with parity -, respectively. The effective position is approximated by (1/4)P, where P is the height of an equilateral triangle having a base line determined by neighboring five-membered rings located at the boundary between the tube and the cap. The electronic structure of a finite-length armchair nanotube closed by a cap can be calculated with the use of the phase shifts.

  14. MHD Equation of State with Relativistic Electrons

    NASA Astrophysics Data System (ADS)

    Gong, Zhigang; Däppen, Werner; Zejda, Ladislav

    2001-01-01

    The Mihalas-Däppen-Hummer (MHD) equation of state does not include the effect of relativistic partially degenerate electrons, although nonrelativistic partial degeneracy is taken into account. The discovery of a relativistic correction in helioseismology forces us to perform an appropriate upgrade of the MHD equation of state. We have adopted the method of J. M. Aparicio to evaluate the relativistic Fermi-Dirac functions. Our calculations confirm the validity of the approximation used, which works well for the weakly relativistic electrons under solar-center conditions. However, our results will also provide reliable thermodynamic quantities in the stronger relativistic regime as found in more massive stars. Since a particular feature of the original MHD papers was an explicit list of the adopted free energy and its first- and second-order analytical derivatives, we give the corresponding relativistic quantities in the Appendix.

  15. Excited electronic states of thiophene: high resolution photoabsorption Fourier transform spectroscopy and ab initio calculations.

    PubMed

    Holland, D M P; Trofimov, A B; Seddon, E A; Gromov, E V; Korona, T; de Oliveira, N; Archer, L E; Joyeux, D; Nahon, L

    2014-10-21

    The recently introduced synchrotron radiation-based Fourier transform spectroscopy has been employed to study the excited electronic states of thiophene. A highly resolved photoabsorption spectrum has been measured between ∼5 and 12.5 eV, providing a wealth of new data. High-level ab initio computations have been performed using the second-order algebraic-diagrammatic construction (ADC(2)) polarization propagator approach, and the equation-of-motion coupled-cluster (EOM-CC) method at the CCSD and CC3 levels, to guide the assignment of the spectrum. The adiabatic energy corrections have been evaluated, thereby extending the theoretical study beyond the vertical excitation picture and leading to a significantly improved understanding of the spectrum. The low-lying π→π* and π→σ* transitions result in prominent broad absorption bands. Two strong Rydberg series converging onto the X(~)(2)A2 state limit have been assigned to the 1a2→npb1(1)B2 and the 1a2→nda2(1)A1 transitions. A second, and much weaker, d-type series has been assigned to the 1a2→ndb1(1)B2 transitions. Excitation into some of the Rydberg states belonging to the two strong series gives rise to vibrational structure, most of which has been interpreted in terms of excitations of the totally symmetric ν4 and ν8 modes. One Rydberg series, assigned to the 3b1→nsa1(1)B1 transitions, has been identified converging onto the Ã(2)B1 state limit, and at higher energies Rydberg states converging onto the B(~)(2)A1 state limit could be identified. The present spectra reveal highly irregular vibrational structure in certain low energy absorption bands, and thus provide a new source of information for the rapidly developing studies of excited state non-adiabatic dynamics and photochemistry.

  16. Adiabatic and Non-adiabatic quenches in a Spin-1 Bose Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Boguslawski, Matthew; Hebbe Madhusudhana, Bharath; Anquez, Martin; Robbins, Bryce; Barrios, Maryrose; Hoang, Thai; Chapman, Michael

    2016-05-01

    A quantum phase transition (QPT) is observed in a wide range of phenomena. We have studied the dynamics of a spin-1 ferromagnetic Bose-Einstein condensate for both adiabatic and non-adiabatic quenches through a QPT. At the quantum critical point (QCP), finite size effects lead to a non-zero gap, which makes an adiabatic quench possible through the QPT. We experimentally demonstrate such a quench, which is forbidden at the mean field level. For faster quenches through the QCP, the vanishing energy gap causes the reaction timescale of the system to diverge, preventing the system from adiabatically following the ground state. We measure the temporal evolution of the spin populations for different quench speeds and determine the exponents characterizing the scaling of the onset of excitations, which are in good agreement with the predictions of Kibble-Zurek mechanism.

  17. A theoretical study on low-lying electronic states and spectroscopic properties of PH

    NASA Astrophysics Data System (ADS)

    Gao, Yufeng; Gao, Tao

    2014-01-01

    The low-lying electronic states (X3∑-, a1Δ, b1Σ+, A3Π, c1Π and 5∑-) of the PH species correlating with the first three dissociation channels have been investigated at the MRCI + Q/aug-cc-PV5Z level of theory. Accurate adiabatic potential energy curves and spectroscopic constants (Te, Re, ωeχe, ωe, Be, De) of these electronic states have been reported. Effect of the spin-orbit coupling on the A3Π and 5∑- states of the PH has been calculated, which lead to the spin-orbit-induced predissociation of the A3Π state. Electronic transition moment, Einstein coefficients and Franck-Condon factors for the A3Π - X3∑- system have been calculated. Dipole moment functions (μe) and radiative lifetime (τv‧) for the A3Π state has also been determined. The radiative lifetime for A3Π - X3∑- transition is computed and compared with the available data.

  18. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    SciTech Connect

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2015-06-21

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism.

  19. Experimental studies of the NaCs 12(0(+)) [7(1)Σ(+)] state: Spin-orbit and non-adiabatic interactions and quantum interference in the 12(0(+)) [7(1)Σ(+)] and 11(0(+)) [5(3)Π0] emission spectra.

    PubMed

    Faust, C; Jones, J; Huennekens, J; Field, R W

    2017-03-14

    We present results from experimental studies of the 11(0(+)) and 12(0(+)) electronic states of the NaCs molecule. An optical-optical double resonance method is used to obtain Doppler-free excitation spectra. Selected data from the 11(0(+)) and 12(0(+)) high-lying electronic states are used to obtain Rydberg-Klein-Rees and Inverse Perturbation Approach potential energy curves. Interactions between these two electronic states are evident in the patterns observed in the bound-bound and bound-free fluorescence spectra. A model, based on two separate interaction mechanisms, is presented to describe how the wavefunctions of the two states mix. The electronic parts of the wavefunctions interact via spin-orbit coupling, while the individual rotation-vibration levels interact via a second mechanism, which is likely to be non-adiabatic coupling. A modified version of the BCONT program was used to simulate resolved fluorescence from both upper states. Parameters of the model that describe the two interaction mechanisms were varied until simulations were able to adequately reproduce experimental spectra.

  20. Photodissociation of carbon dioxide in singlet valence electronic states. II. Five state absorption spectrum and vibronic assignment.

    PubMed

    Grebenshchikov, Sergy Yu

    2013-06-14

    The absorption spectrum of CO2 in the wavelength range 120-160 nm is analyzed by means of quantum mechanical calculations performed using vibronically coupled potential energy surfaces of five singlet valence electronic states and the coordinate dependent transition dipole moment vectors. The thermally averaged spectrum, calculated for T = 190 K via Boltzmann averaging of optical transitions from many initial rotational states, accurately reproduces the experimental spectral envelope, consisting of a low and a high energy band, the positions of the absorption maxima, their FWHMs, peak intensities, and frequencies of diffuse structures in each band. Contributions of the vibronic interactions due to Renner-Teller coupling, conical intersections, and the Herzberg-Teller effect are isolated and the calculated bands are assigned in terms of adiabatic electronic states. Finally, diffuse structures in the calculated bands are vibronically assigned using wave functions of the underlying resonance states. It is demonstrated that the main progressions in the high energy band correspond to consecutive excitations of the pseudorotational motion along the closed loop of the CI seam, and progressions differ in the number of nodes along the radial mode perpendicular to the closed seam. Irregularity of the diffuse peaks in the low energy band is interpreted as a manifestation of the carbene-type "cyclic" OCO minimum.

  1. Adiabatic Hyperspherical Analysis of Realistic Nuclear Potentials

    NASA Astrophysics Data System (ADS)

    Daily, K. M.; Kievsky, Alejandro; Greene, Chris H.

    2015-12-01

    Using the hyperspherical adiabatic method with the realistic nuclear potentials Argonne V14, Argonne V18, and Argonne V18 with the Urbana IX three-body potential, we calculate the adiabatic potentials and the triton bound state energies. We find that a discrete variable representation with the slow variable discretization method along the hyperradial degree of freedom results in energies consistent with the literature. However, using a Laguerre basis results in missing energy, even when extrapolated to an infinite number of basis functions and channels. We do not include the isospin T = 3/2 contribution in our analysis.

  2. Symmetrical windowing for quantum states in quasi-classical trajectory simulations: Application to electron transfer

    SciTech Connect

    Cotton, Stephen J.; Igumenshchev, Kirill; Miller, William H.

    2014-08-28

    It has recently been shown [S. J. Cotton and W. H. Miller, J. Chem. Phys. 139, 234112 (2013)] that a symmetrical windowing quasi-classical (SQC) approach [S. J. Cotton and W. H. Miller, J. Phys. Chem. A 117, 7190 (2013)] applied to the Meyer-Miller model [H.-D. Meyer and W. H. Miller, J. Chem. Phys. 70, 3214 (1979)] for the electronic degrees of freedom in electronically non-adiabatic dynamics is capable of quantitatively reproducing quantum mechanical results for a variety of test applications, including cases where “quantum” coherence effects are significant. Here we apply this same SQC methodology, within a flux-side correlation function framework, to calculate thermal rate constants corresponding to several proposed models of electron transfer processes [P. Huo, T. F. Miller III, and D. F. Coker, J. Chem. Phys. 139, 151103 (2013); A. R. Menzeleev, N. Ananth, and T. F. Miller III, J. Chem. Phys. 135, 074106 (2011)]. Good quantitative agreement with Marcus Theory is obtained over several orders of magnitude variation in non-adiabatic coupling. Moreover, the “inverted regime” in thermal rate constants (with increasing bias) known from Marcus Theory is also reproduced with good accuracy by this very simple classical approach. The SQC treatment is also applied to a recent model of photoinduced proton coupled electron transfer [C. Venkataraman, A. V. Soudackov, and S. Hammes-Schiffer, J. Chem. Phys. 131, 154502 (2009)] and population decay of the photoexcited donor state is found to be in reasonable agreement with results calculated via reduced density matrix theory.

  3. Symmetrical windowing for quantum states in quasi-classical trajectory simulations: application to electron transfer.

    PubMed

    Cotton, Stephen J; Igumenshchev, Kirill; Miller, William H

    2014-08-28

    It has recently been shown [S. J. Cotton and W. H. Miller, J. Chem. Phys. 139, 234112 (2013)] that a symmetrical windowing quasi-classical (SQC) approach [S. J. Cotton and W. H. Miller, J. Phys. Chem. A 117, 7190 (2013)] applied to the Meyer-Miller model [H.-D. Meyer and W. H. Miller, J. Chem. Phys. 70, 3214 (1979)] for the electronic degrees of freedom in electronically non-adiabatic dynamics is capable of quantitatively reproducing quantum mechanical results for a variety of test applications, including cases where "quantum" coherence effects are significant. Here we apply this same SQC methodology, within a flux-side correlation function framework, to calculate thermal rate constants corresponding to several proposed models of electron transfer processes [P. Huo, T. F. Miller III, and D. F. Coker, J. Chem. Phys. 139, 151103 (2013); A. R. Menzeleev, N. Ananth, and T. F. Miller III, J. Chem. Phys. 135, 074106 (2011)]. Good quantitative agreement with Marcus Theory is obtained over several orders of magnitude variation in non-adiabatic coupling. Moreover, the "inverted regime" in thermal rate constants (with increasing bias) known from Marcus Theory is also reproduced with good accuracy by this very simple classical approach. The SQC treatment is also applied to a recent model of photoinduced proton coupled electron transfer [C. Venkataraman, A. V. Soudackov, and S. Hammes-Schiffer, J. Chem. Phys. 131, 154502 (2009)] and population decay of the photoexcited donor state is found to be in reasonable agreement with results calculated via reduced density matrix theory.

  4. Characterizing the Locality of Diabatic States forElectronic Excitation Transfer By Decomposing theDiabatic Coupling

    SciTech Connect

    Newton, M.D.; Vura-Weis, J.; Wasielewski, M.R.; Subotnik, J.E.

    2010-10-19

    A common strategy to calculate electronic coupling matrix elements for charge or energy transfer is to take the adiabatic states generated by electronic structure computations and rotate them to form localized diabatic states. In this paper, we show that, for intermolecular transfer of singlet electronic excitation, usually we cannot fully localize the electronic excitations in this way. Instead, we calculate putative initial and final states with small excitation tails caused by weak interactions with high energy excited states in the electronic manifold. These tails do not lead to substantial changes in the total diabatic coupling between states, but they do lead to a different partitioning of the total coupling between Coulomb (Forster), exchange (Dexter), and one-electron components. The tails may be reduced by using a multistate diabatic model or eliminated entirely by truncation (denoted as 'chopping'). Without more information, we are unable to conclude with certainty whether the observed diabatic tails are a physical reality or a computational artifact. This research suggests that decomposition of the diabatic coupling between chromophores into Coulomb, exchange, and one-electron components may depend strongly on the number of states considered, and such results should be treated with caution.

  5. Recoherence by squeezed states in electron interferometry

    SciTech Connect

    Hsiang, J.-T.; Ford, L. H.

    2008-09-15

    Coherent electrons coupled to the quantized electromagnetic field undergo decoherence which can be viewed as due either to fluctuations of the Aharonov-Bohm phase or to photon emission. When the electromagnetic field is in a squeezed vacuum state, it is possible for this decoherence to be reduced, leading to the phenomenon of recoherence. This recoherence effect requires electrons which are emitted at selected times during the cycle of the excited mode of the electromagnetic field. We show that there are bounds on the degree of recoherence which are analogous to quantum inequality restriction on negative energy densities in quantum field theory. We make some estimates of the degree of recoherence, and show that although small, it is in principle observable.

  6. Estimation of electronic coupling in π-stacked donor-bridge-acceptor systems: Correction of the two-state model

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2006-02-01

    Comparison of donor-acceptor electronic couplings calculated within two-state and three-state models suggests that the two-state treatment can provide unreliable estimates of Vda because of neglecting the multistate effects. We show that in most cases accurate values of the electronic coupling in a π stack, where donor and acceptor are separated by a bridging unit, can be obtained as Ṽda=(E2-E1)μ12/Rda+(2E3-E1-E2)2μ13μ23/Rda2, where E1, E2, and E3 are adiabatic energies of the ground, charge-transfer, and bridge states, respectively, μij is the transition dipole moments between the states i and j, and Rda is the distance between the planes of donor and acceptor. In this expression based on the generalized Mulliken-Hush approach, the first term corresponds to the coupling derived within a two-state model, whereas the second term is the superexchange correction accounting for the bridge effect. The formula is extended to bridges consisting of several subunits. The influence of the donor-acceptor energy mismatch on the excess charge distribution, adiabatic dipole and transition moments, and electronic couplings is examined. A diagnostic is developed to determine whether the two-state approach can be applied. Based on numerical results, we showed that the superexchange correction considerably improves estimates of the donor-acceptor coupling derived within a two-state approach. In most cases when the two-state scheme fails, the formula gives reliable results which are in good agreement (within 5%) with the data of the three-state generalized Mulliken-Hush model.

  7. Metastable and spin-polarized states in electron systems with localized electron-electron interaction

    NASA Astrophysics Data System (ADS)

    Sablikov, Vladimir A.; Shchamkhalova, Bagun S.

    2014-05-01

    We study the formation of spontaneous spin polarization in inhomogeneous electron systems with pair interaction localized in a small region that is not separated by a barrier from surrounding gas of non-interacting electrons. Such a system is interesting as a minimal model of a quantum point contact in which the electron-electron interaction is strong in a small constriction coupled to electron reservoirs without barriers. Based on the analysis of the grand potential within the self-consistent field approximation, we find that the formation of the polarized state strongly differs from the Bloch or Stoner transition in homogeneous interacting systems. The main difference is that a metastable state appears in the critical point in addition to the globally stable state, so that when the interaction parameter exceeds a critical value, two states coexist. One state has spin polarization and the other is unpolarized. Another feature is that the spin polarization increases continuously with the interaction parameter and has a square-root singularity in the critical point. We study the critical conditions and the grand potentials of the polarized and unpolarized states for one-dimensional and two-dimensional models in the case of extremely small size of the interaction region.

  8. A simple quasi-diabatization scheme suitable for spectroscopic problems based on one-electron properties of interacting states

    SciTech Connect

    Cave, Robert J.; Stanton, John F.

    2016-02-07

    We present a simple quasi-diabatization scheme applicable to spectroscopic studies that can be applied using any wavefunction for which one-electron properties and transition properties can be calculated. The method is based on rotation of a pair (or set) of adiabatic states to minimize the difference between the given transition property at a reference geometry of high symmetry (where the quasi-diabatic states and adiabatic states coincide) and points of lower symmetry where quasi-diabatic quantities are desired. Compared to other quasi-diabatization techniques, the method requires no special coding, facilitates direct comparison between quasi-diabatic quantities calculated using different types of wavefunctions, and is free of any selection of configurations in the definition of the quasi-diabatic states. On the other hand, the method appears to be sensitive to multi-state issues, unlike recent methods we have developed that use a configurational definition of quasi-diabatic states. Results are presented and compared with two other recently developed quasi-diabatization techniques.

  9. Imaging of localized electronic states at a nonconducting surface by single-electron tunneling force microscopy.

    PubMed

    Bussmann, Ezra B; Zheng, Ning; Williams, Clayton C

    2006-11-01

    Localized electronic states near a nonconducting SiO(2) surface are imaged on a approximately 1 nm scale by single-electron tunneling between the states and a scanning probe tip. Each tunneling electron is detected by electrostatic force. The images represent the number of tunneling electrons at each spatial location. The spatial resolution of the single electron tunneling force microscope is determined by quantum mechanical tunneling, providing new atomic-scale access to electronic states in dielectric surfaces and nonconducting nanostructures.

  10. On Adiabatic Pair Creation

    NASA Astrophysics Data System (ADS)

    Pickl, Peter; Dürr, Detlef

    2008-08-01

    We give here a rigorous proof of the well known prediction of pair creation as it arises from the Dirac equation with an external time dependent potential. Pair creation happens with probability one if the potential changes adiabatically in time and becomes overcritical, which means that an eigenvalue curve (as a function of time) bridges the gap between the negative and positive spectral continuum. The potential can be thought of as being zero at large negative and large positive times. The rigorous treatment of this effect has been lacking since the pioneering work of Beck, Steinwedel and Süßmann [1] in 1963 and Gershtein and Zeldovich [8] in 1970.

  11. Enhanced negative ion formation via electron attachment to electronically-excited states

    SciTech Connect

    Pinnaduwage, L.A. |

    1995-12-31

    Recent basic studies on electron attachment to laser-excited molecules show that electron attachment to electronically-excited states can have orders of magnitude larger cross sections compared to the respective ground electronic states. Even though systematic studies have not been conducted, there are indications that electronically-excited states may play a significant role in negative ion formation in gas discharges. The high-lying Rydberg states could be of particular significance since, (i) their production efficiencies are high, and (ii) they have comparatively long lifetimes. Such states could be populated in discharge sources via direct electron impact or via excitation transfer from metastable states of inert gases.

  12. On the Electronically Excited States of Uracil

    SciTech Connect

    Epifanovsky, Evgeny; Kowalski, Karol; Fan, Peng-Dong; Valiev, Marat; Matsika, Spiridoula; Krylov, Anna

    2008-10-09

    Vertical excitation energies in uracil in the gas phase and in water solution are investigated by the equation-of-motion coupled-cluster and multi-reference configuration interaction methods. Basis set effects are found to be important for converged results. The analysis of electronic wave functions reveals that the lowest singlet states are predominantly of a singly excited character and are therefore well described by single-reference equation-of-motion methods augmented by a perturbative triples correction to account for dynamical correlation. Our best estimates for the vertical excitation energies for the lowest singlet n and are 5.0±0.1 eV and 5.3±0.1 eV, respectively. The solvent effects for these states are estimated to be +0.5 eV and ±0.1 eV, respectively. We attribute the difference between the computed vertical excitations and the maximum of the experimental absorption to strong vibronic interaction between the lowest A00 and A0 states leading to intensity borrowing by the forbidden transition.

  13. Constructing diabatic representations using adiabatic and approximate diabatic data – Coping with diabolical singularities

    SciTech Connect

    Zhu, Xiaolei Yarkony, David R.

    2016-01-28

    We have recently introduced a diabatization scheme, which simultaneously fits and diabatizes adiabatic ab initio electronic wave functions, Zhu and Yarkony J. Chem. Phys. 140, 024112 (2014). The algorithm uses derivative couplings in the defining equations for the diabatic Hamiltonian, H{sup d}, and fits all its matrix elements simultaneously to adiabatic state data. This procedure ultimately provides an accurate, quantifiably diabatic, representation of the adiabatic electronic structure data. However, optimizing the large number of nonlinear parameters in the basis functions and adjusting the number and kind of basis functions from which the fit is built, which provide the essential flexibility, has proved challenging. In this work, we introduce a procedure that combines adiabatic state and diabatic state data to efficiently optimize the nonlinear parameters and basis function expansion. Further, we consider using direct properties based diabatizations to initialize the fitting procedure. To address this issue, we introduce a systematic method for eliminating the debilitating (diabolical) singularities in the defining equations of properties based diabatizations. We exploit the observation that if approximate diabatic data are available, the commonly used approach of fitting each matrix element of H{sup d} individually provides a starting point (seed) from which convergence of the full H{sup d} construction algorithm is rapid. The optimization of nonlinear parameters and basis functions and the elimination of debilitating singularities are, respectively, illustrated using the 1,2,3,4{sup 1}A states of phenol and the 1,2{sup 1}A states of NH{sub 3}, states which are coupled by conical intersections.

  14. Adiabatic Quantum Simulation of Quantum Chemistry

    NASA Astrophysics Data System (ADS)

    Babbush, Ryan; Love, Peter J.; Aspuru-Guzik, Alán

    2014-10-01

    We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.

  15. Adiabatic quantum simulation of quantum chemistry.

    PubMed

    Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán

    2014-10-13

    We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.

  16. Adiabatic Quantum Simulation of Quantum Chemistry

    PubMed Central

    Babbush, Ryan; Love, Peter J.; Aspuru-Guzik, Alán

    2014-01-01

    We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions. PMID:25308187

  17. Electronically shielded solid state charged particle detector

    DOEpatents

    Balmer, David K.; Haverty, Thomas W.; Nordin, Carl W.; Tyree, William H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.

  18. Electronically shielded solid state charged particle detector

    DOEpatents

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig.

  19. Electronically shielded solid state charged particle detector

    SciTech Connect

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1995-12-31

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.

  20. Trapped Ion Quantum Computation by Adiabatic Passage

    SciTech Connect

    Feng Xuni; Wu Chunfeng; Lai, C. H.; Oh, C. H.

    2008-11-07

    We propose a new universal quantum computation scheme for trapped ions in thermal motion via the technique of adiabatic passage, which incorporates the advantages of both the adiabatic passage and the model of trapped ions in thermal motion. Our scheme is immune from the decoherence due to spontaneous emission from excited states as the system in our scheme evolves along a dark state. In our scheme the vibrational degrees of freedom are not required to be cooled to their ground states because they are only virtually excited. It is shown that the fidelity of the resultant gate operation is still high even when the magnitude of the effective Rabi frequency moderately deviates from the desired value.

  1. Robust quantum logic in neutral atoms via adiabatic Rydberg dressing

    SciTech Connect

    Keating, Tyler; Cook, Robert L.; Hankin, Aaron M.; Jau, Yuan -Yu; Biedermann, Grant W.; Deutsch, Ivan H.

    2015-01-28

    We study a scheme for implementing a controlled-Z (CZ) gate between two neutral-atom qubits based on the Rydberg blockade mechanism in a manner that is robust to errors caused by atomic motion. By employing adiabatic dressing of the ground electronic state, we can protect the gate from decoherence due to random phase errors that typically arise because of atomic thermal motion. In addition, the adiabatic protocol allows for a Doppler-free configuration that involves counterpropagating lasers in a σ+- orthogonal polarization geometry that further reduces motional errors due to Doppler shifts. The residual motional error is dominated by dipole-dipole forces acting on doubly-excited Rydberg atoms when the blockade is imperfect. As a result, for reasonable parameters, with qubits encoded into the clock states of 133Cs, we predict that our protocol could produce a CZ gate in < 10 μs with error probability on the order of 10-3.

  2. Robust quantum logic in neutral atoms via adiabatic Rydberg dressing

    DOE PAGES

    Keating, Tyler; Cook, Robert L.; Hankin, Aaron M.; ...

    2015-01-28

    We study a scheme for implementing a controlled-Z (CZ) gate between two neutral-atom qubits based on the Rydberg blockade mechanism in a manner that is robust to errors caused by atomic motion. By employing adiabatic dressing of the ground electronic state, we can protect the gate from decoherence due to random phase errors that typically arise because of atomic thermal motion. In addition, the adiabatic protocol allows for a Doppler-free configuration that involves counterpropagating lasers in a σ+/σ- orthogonal polarization geometry that further reduces motional errors due to Doppler shifts. The residual motional error is dominated by dipole-dipole forces actingmore » on doubly-excited Rydberg atoms when the blockade is imperfect. As a result, for reasonable parameters, with qubits encoded into the clock states of 133Cs, we predict that our protocol could produce a CZ gate in < 10 μs with error probability on the order of 10-3.« less

  3. State-resolved time-dependent wave packet and quasiclassical trajectory studies of the adiabatic reaction S(3P) + HD on the (1(3)A″) state.

    PubMed

    Cheng, Dahai; Yuan, Jiuchuang; Chen, Maodu

    2014-01-09

    Time-dependent wave packet (TDWP) and quasiclassical trajectory (QCT) calculations have been carried out for the reaction S(3P) + HD(X1Σg+) at the lowest 13A″ state with both rotational and vibrational excitations of reactant HD. The calculated integral cross sections from QCT agree fairly well with the TDWP calculations. The reaction probability results from TDWP show that the reaction displays a strong tendency to the SD channel. When the reactant HD is vibrationally excited, both channels are promoted apparently. The vibration of the HD bond tends to reduce the difference of reactivity between the two channels. The detailed state-to-state differential cross sections (DCSs) are calculated. These distributions show some significant characters of the barrier-type reactions. At the same time, the scattering width of product SD has a certain relationship with its rotation excitation. For the vector properties, P(θr), P(r), and P(θr,r) distributions are calculated by QCT, and the increased collision energy weakens the rotational polarization of the SD molecule.

  4. Geometry of the Adiabatic Theorem

    ERIC Educational Resources Information Center

    Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas

    2012-01-01

    We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…

  5. Electron Capture from Linear Stark Rydberg States above the Matching Velocity

    NASA Astrophysics Data System (ADS)

    Ciocca, M.; Creasey, C.; MacAdam, K. B.

    1998-05-01

    The relative cross section for electron capture by singly charged ions from linear Stark Rydberg states of Na has been measured, both as a function of the angle of impact and of projectile velocity. The target, the topmost state of the n = 24 Stark manifold, was prepared by two-step laser excitation from the Na ground state, via 3p_3/2, in an electric field F_Stark= 160 V/cm. By means of a device perfected in our laboratory (the "Stark Barrel"), we aligned the target by adiabatically switching the electric field, after excitation, down to a preset low value and a desired direction in the plane determined by the ion and Na beams. Thermionic emission ion sources of Li and Na were operated at accelerating voltages 400-2000 V to allow study of electron capture in the reduced velocity range v = 1.0 - 2.5. This augments an earlier study by Homan footnote D. M. Homan, Ph. D. Dissertation, University of Kentucky 1997, unpublished. at lower velocities.

  6. Exact and truncated Coriolis coupling calculations for the S(1D)+HD reaction employing the ground adiabatic electronic state.

    PubMed

    Yang, Huan; Han, Keli; Schatz, George C; Smith, Sean C; Hankel, Marlies

    2010-10-21

    We present exact quantum differential cross sections and exact and estimated integral cross sections and branching ratios for the title reaction. We employ a time-dependent wavepacket method as implemented in the DIFFREALWAVE code including all Coriolis couplings and also an adapted DIFFREALWAVE code where the helicity quantum number and with this the Coriolis couplings have been truncated. Our exact differential cross sections at 0.453 eV total energy, one of the experimental energies, show good agreement with the experimental results for one of the product channels. While the truncated calculation present a significant reduction in the computational effort needed they overestimate the exact integral cross sections.

  7. Electron-impact-induced allowed transitions between triplet states of H{sub 2}

    SciTech Connect

    Laricchiuta, A.; Celiberto, R.; Janev, R.K.

    2004-02-01

    Electron-impact-induced excitation and dissociation processes between the excited triplet states a {sup 3}{sigma}{sub g}{sup +}{yields}d {sup 3}{pi}{sub u}, c {sup 3}{pi}{sub u}{yields}h {sup 3}{sigma}{sub g}{sup +}, and c {sup 3}{pi}{sub u}{yields}g {sup 3}{sigma}{sub g}{sup +} of molecular hydrogen are studied by using the impact-parameter method. The cross sections for {nu}{sub i}-{nu}{sub f} resolved vibronic transitions between states have been calculated in the energy range from threshold to 100 eV; their maxima being located in the region of 5-10 eV. A special treatment was required for the transition to the h {sup 3}{sigma}{sub g}{sup +} state, whose adiabatic potential-energy curve possesses a barrier at the internuclear distance of about 5a{sub 0}, sustaining three quasi-bound vibrational states with widths of 5.3x10{sup -12}, 1.5x10{sup -3}, and 42.0 cm{sup -1}, respectively. The quasistationary character of these vibrational states is taken into account when calculating the c {sup 3}{pi}{sub u}{yields}h {sup 3}{sigma}{sub g}{sup +} excitation and dissociation cross sections.

  8. On the General Class of Models of Adiabatic Evolution

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Lu, Songfeng; Liu, Fang

    2016-10-01

    The general class of models of adiabatic evolution was proposed to speed up the usual adiabatic computation in the case of quantum search problem. It was shown [8] that, by temporarily increasing the ground state energy of a time-dependent Hamiltonian to a suitable quantity, the quantum computation can perform the calculation in time complexity O(1). But it is also known that if the overlap between the initial and final states of the system is zero, then the computation based on the generalized models of adiabatic evolution can break down completely. In this paper, we find another severe limitation for this class of adiabatic evolution-based algorithms, which should be taken into account in applications. That is, it is still possible that this kind of evolution designed to deal with the quantum search problem fails completely if the interpolating paths in the system Hamiltonian are chosen inappropriately, while the usual adiabatic evolutions can do the same job relatively effectively. This implies that it is not always recommendable to use nonlinear paths in adiabatic computation. On the contrary, the usual simple adiabatic evolution may be sufficient for effective use.

  9. Non-adiabatic effects in near-adiabatic mixed-field orientation and alignment

    NASA Astrophysics Data System (ADS)

    Maan, Anjali; Ahlawat, Dharamvir Singh; Prasad, Vinod

    2016-11-01

    We present a theoretical study of the impact of a pair of moderate electric fields tilted an angle with respect to one another on a molecule. As a prototype, we consider a molecule with large rotational constant (with corresponding small rotational period) and moderate dipole moment. Within rigid-rotor approximation, the time-dependent Schrodinger equation is solved using fourth-order Runge-Kutta method. We have analysed that lower rotational states are significantly influenced by variation in pulse durations, the tilt angle between the fields and also on the electric field strengths. We also suggest a control scheme of how the rotational dynamics, orientation and alignment of a molecule can be enhanced by a combination of near-adiabatic pulses in comparision to non-adiabatic or adiabatic pulses.

  10. Fixed-point adiabatic quantum search

    NASA Astrophysics Data System (ADS)

    Dalzell, Alexander M.; Yoder, Theodore J.; Chuang, Isaac L.

    2017-01-01

    Fixed-point quantum search algorithms succeed at finding one of M target items among N total items even when the run time of the algorithm is longer than necessary. While the famous Grover's algorithm can search quadratically faster than a classical computer, it lacks the fixed-point property—the fraction of target items must be known precisely to know when to terminate the algorithm. Recently, Yoder, Low, and Chuang [Phys. Rev. Lett. 113, 210501 (2014), 10.1103/PhysRevLett.113.210501] gave an optimal gate-model search algorithm with the fixed-point property. Previously, it had been discovered by Roland and Cerf [Phys. Rev. A 65, 042308 (2002), 10.1103/PhysRevA.65.042308] that an adiabatic quantum algorithm, operating by continuously varying a Hamiltonian, can reproduce the quadratic speedup of gate-model Grover search. We ask, can an adiabatic algorithm also reproduce the fixed-point property? We show that the answer depends on what interpolation schedule is used, so as in the gate model, there are both fixed-point and non-fixed-point versions of adiabatic search, only some of which attain the quadratic quantum speedup. Guided by geometric intuition on the Bloch sphere, we rigorously justify our claims with an explicit upper bound on the error in the adiabatic approximation. We also show that the fixed-point adiabatic search algorithm can be simulated in the gate model with neither loss of the quadratic Grover speedup nor of the fixed-point property. Finally, we discuss natural uses of fixed-point algorithms such as preparation of a relatively prime state and oblivious amplitude amplification.

  11. Dynamics of Charged Particles in an Adiabatic Thermal Beam Equilibrium

    NASA Astrophysics Data System (ADS)

    Chen, Chiping; Wei, Haofei

    2010-11-01

    Charged-particle motion is studied in the self-electric and self-magnetic fields of a well-matched, intense charged-particle beam and an applied periodic solenoidal magnetic focusing field. The beam is assumed to be in a state of adiabatic thermal equilibrium. The phase space is analyzed and compared with that of the well-known Kapchinskij-Vladimirskij (KV)-type beam equilibrium. It is found that the widths of nonlinear resonances in the adiabatic thermal beam equilibrium are narrower than those in the KV-type beam equilibrium. Numerical evidence is presented, indicating almost complete elimination of chaotic particle motion in the adiabatic thermal beam equilibrium.

  12. Electronic states of coupled graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Hashimoto, Futo; Mori, Nobuya; Kubo, Osamu; Katayama, Mitsuhiro

    2017-04-01

    Electronic states of laterally coupled graphene nanoribbons (GNRs) have been calculated within a nearest-neighbor tight-binding approximation with varying inter-GNR coupling strength γ from γ = 0 to t (intra-GNR transfer integral). For a coupled zigzag-edge GNR array, both almost flat bands and anisotropic Dirac cones appear near the Fermi level. For a coupled armchair-edge GNR array with a ribbon width N = 3n or 3n + 1, the system is semiconducting with a finite bandgap at γ = 0, which decreases as γ increases. For N = 3n, it becomes metallic with a zero bandgap only at γ = t. On the other hand, for N = 3n + 1, it becomes metallic when γ ≥ t/2. At γ = t/2, a peculiar energy dispersion emerges; the energy dispersion is parabolic perpendicular to the GNR axis and linear parallel to the GNR axis. When N = 3n + 2, the system is always metallic regardless of γ.

  13. Reverse engineering of a nonlossy adiabatic Hamiltonian for non-Hermitian systems

    NASA Astrophysics Data System (ADS)

    Wu, Qi-Cheng; Chen, Ye-Hong; Huang, Bi-Hua; Xia, Yan; Song, Jie

    2016-11-01

    We generalize the quantum adiabatic theorem to the non-Hermitian system and build a strict adiabaticity condition to make the adiabatic evolution nonlossy when taking into account the effect of the adiabatic phase. According to the strict adiabaticity condition, the nonadiabatic couplings and the effect of the imaginary part of adiabatic phase should be eliminated as much as possible. Also, the non-Hermitian Hamiltonian reverse-engineering method is proposed for adiabatically driving an artificial quantum state. A concrete two-level system is adopted to show the usefulness of the reverse-engineering method. We obtain the desired target state by adjusting extra rotating magnetic fields at a predefined time. Furthermore, the numerical simulation shows that certain noise and dissipation in the systems are no longer undesirable but play a positive role in the scheme. Therefore, the scheme is quite useful for quantum information processing in some dissipative systems.

  14. Electronic excited states of CO/sub 2/: An electron impact investigation

    SciTech Connect

    McDiarmid, R.; Doering, J.P.

    1984-01-15

    The electronic excited states of CO/sub 2/ were restudied by variable incident energy, variable angle electron impact spectroscopy. In this study, valence states of mixed configurations were distinguished from pure Rydberg states. Our results are incompatible with the theoretical description of CO/sub 2/, in which only two valence singlet states are located.

  15. Importance of electronic state of two-dimensional electron gas for electron injection process in nano-electronic devices

    NASA Astrophysics Data System (ADS)

    Muraguchi, M.; Endoh, T.; Takada, Y.; Sakurai, Y.; Nomura, S.; Shiraishi, K.; Ikeda, M.; Makihara, K.; Miyazaki, S.; Shigeta, Y.

    2010-09-01

    We report the unexpected temperature dependence of electron tunneling from the two-dimensional electron gas (2DEG) to the Si-dot in a Si-dots floating gate metal-oxide-semiconductor (MOS) capacitor. We indicate that this temperature dependence of the electron tunneling cannot be explained by the conventional one-dimensional tunneling model, and show that it is necessary for a new model which includes the geometrical factor of the system. To extract a mechanism of the electron injection process from the 2DEG to the nano-structure, we have employed the numerical simulation, which includes both the geometrical condition of the system and the experimental setup. We suggest in our new tunneling model that the main contribution to the electron tunneling is induced by the wave-packet-like state of the electron below the Si-dots. We successfully show that the temperature dependence of the electron injection voltage in the Si-dots floating gate MOS capacitor fits our model. This indicates that the spatial distribution of electron density in the two-dimensional electron gas would play a crucial role in the electron tunneling.

  16. Theoretical study of the CsNa molecule: adiabatic and diabatic potential energy and dipole moment.

    PubMed

    Mabrouk, N; Berriche, H

    2014-09-25

    The adiabatic and diabatic potential energy curves of the low-lying electronic states of the NaCs molecule dissociating into Na (3s, 3p) + Cs (6s, 6p, 5d, 7s, 7p, 6d, 8s, 4f) have been investigated. The molecular calculations are performed using an ab initio approach based on nonempirical pseudopotential, parametrized l-dependent polarization potentials and full configuration interaction calculations through the CIPCI quantum chemistry package. The derived spectroscopic constants (Re, De, Te, ωe, ωexe, and Be) of the ground state and lower excited states are compared with the available theoretical and experimental works. Moreover, accurate permanent and transition dipole moment have been determined as a function of the internuclear distance. The adiabatic permanent dipole moment for the first nine (1)Σ(+) electronic states have shown both ionic characters associated with electron transfer related to Cs(+)Na(-) and Cs(-)Na(+) arrangements. By a simple rotation, the diabatic permanent dipole moment is determined and has revealed a linear behavior, particularly at intermediate and large distances. Many peaks around the avoided crossing locations have been observed for the transition dipole moment between neighbor electronic states.

  17. Minimal parametrization of an n -electron state

    NASA Astrophysics Data System (ADS)

    Kutzelnigg, Werner; Mukherjee, Debashis

    2005-02-01

    The Hamiltonian H for an n -electron system in a finite one-electron basis of dimension m is characterized by d=O(m4) matrix elements. The eigenstates of this Hamiltonian—i.e., the full-CI states Ψ —depend, however, on the usually much larger set of N=O(mn) parameters. One can, nevertheless, write a full-CI state as Ψ=eSΦ with Φ a reference function and S an operator familiar from traditional coupled cluster (TCC) theory. The “exact” operator S can be expressed (though in an implicit and rather complicated way) in terms of d parameters. An alternative ansatz Ψ=eTΦ with T depending in a very simple way on d parameters only (namely, with T having the same structure in Fock space as H ) has been studied by Nooijen and by Nakatsuji and been called coupled-cluster with generalized single and double excitations (CCGSD). Nooijen has conjectured that the full-CI equations can be fulfilled with this ansatz. This paper is devoted to a comprehensive analysis of the Nooijen conjecture (NC). Several features make this analysis difficult and even intriguing. (a) One deals with coupled nonlinear systems of equations, for which theorems concerning the existence of their solution are hardly available. (b) There are different possible interpretations of the NC, especially as far as the choice of the reference function Φ is concerned. (c) There are solutions of the CCGSD equations, for which some elements of T becomes negative infinite, and eT becomes a projection operator. Such solutions are undesired but difficult to eliminate. We show by direct comparison of the exact wave operator with that of CCGSD theory, for a closed-shell state with Φ a single Slater determinant, using a perturbation expansion, that CCGSD cannot be exact. This required a reformulation of the CCGSD operator eT to an equivalent exponential form eR , with R similar to the S of TCC theory, but with constraints on the cluster amplitudes, such that these depend on d parameters only. The CCGSD ansatz

  18. Photoelectron Spectroscopy of Hexachloroplatinate-Nucleobase Complexes: Nucleobase Excited State Decay Observed via Delayed Electron Emission

    SciTech Connect

    Sen, Ananya; Matthews, Edward M.; Hou, Gao-Lei; Wang, Xue B.; Dessent, Caroline

    2015-11-14

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ~1.7 eV, values that are lower than the RCB of the uncomplexed PtCl6 2- dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl6 2-∙thymine and PtCl6 2-∙adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN)4 2-∙nucleobase complexes [Sen et al, J. Phys. Chem. B, 119, 11626, 2015]. The observation of delayed electron emission bands in the PtCl6 2-∙nucleobase spectra obtained in this work, as for the previously studied Pt(CN)4 2-∙nucleobase complexes, is attributed to onephoton excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a “dynamic tag” which has the propensity to emit electrons when the attached nucleobase decays over a timescale long enough to allow autodetachment.

  19. An incompressible state of a photo-excited electron gas

    PubMed Central

    Chepelianskii, Alexei D.; Watanabe, Masamitsu; Nasyedkin, Kostyantyn; Kono, Kimitoshi; Konstantinov, Denis

    2015-01-01

    Two-dimensional electrons in a magnetic field can form new states of matter characterized by topological properties and strong electronic correlations as displayed in the integer and fractional quantum Hall states. In these states, the electron liquid displays several spectacular characteristics, which manifest themselves in transport experiments with the quantization of the Hall resistance and a vanishing longitudinal conductivity or in thermodynamic equilibrium when the electron fluid becomes incompressible. Several experiments have reported that dissipationless transport can be achieved even at weak, non-quantizing magnetic fields when the electrons absorb photons at specific energies related to their cyclotron frequency. Here we perform compressibility measurements on electrons on liquid helium demonstrating the formation of an incompressible electronic state under these resonant excitation conditions. This new state provides a striking example of irradiation-induced self-organization in a quantum system. PMID:26007282

  20. Acceleration of adiabatic quantum dynamics in electromagnetic fields

    SciTech Connect

    Masuda, Shumpei; Nakamura, Katsuhiro

    2011-10-15

    We show a method to accelerate quantum adiabatic dynamics of wave functions under electromagnetic field (EMF) by developing the preceding theory [Masuda and Nakamura, Proc. R. Soc. London Ser. A 466, 1135 (2010)]. Treating the orbital dynamics of a charged particle in EMF, we derive the driving field which accelerates quantum adiabatic dynamics in order to obtain the final adiabatic states in any desired short time. The scheme is consolidated by describing a way to overcome possible singularities in both the additional phase and driving potential due to nodes proper to wave functions under EMF. As explicit examples, we exhibit the fast forward of adiabatic squeezing and transport of excited Landau states with nonzero angular momentum, obtaining the result consistent with the transitionless quantum driving applied to the orbital dynamics in EMF.

  1. Attosecond pumping of nonstationary electronic states of LiH: Charge shake-up and electron density distortion

    SciTech Connect

    Remacle, F.; Levine, R. D.

    2011-01-15

    Electronic reorganization during and after excitation by an intense ultrashort pulse is computed for LiH in a many-electron multireference time-dependent approach at a fixed nuclear geometry. The electronic dipole moment is used to probe the temporal response of the charge density. Above a field-strength threshold, there is an extensive Stark shifting and Rabi broadening of levels with corresponding distortion of the charge distribution whose response at strong fields is neither adiabatic nor diabatic. A nonresonant IR pulse is more effective in inducing charge shake-up during the pulse.

  2. AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT

    SciTech Connect

    French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Redmer, Ronald; Wicht, Johannes

    2012-09-15

    We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grueneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.

  3. Effects of EOS adiabat on hot spot dynamics

    NASA Astrophysics Data System (ADS)

    Cheng, Baolian; Kwan, Thomas; Wang, Yi-Ming; Batha, Steven

    2013-10-01

    Equation of state (EOS) and adiabat of the pusher play significant roles in the dynamics and formation of the hot spot of an ignition capsule. For given imploding energy, they uniquely determine the partition of internal energy, mass, and volume between the pusher and the hot spot. In this work, we apply the new scaling laws recently derived by Cheng et al. to the National Ignition Campaign (NIC) ignition capsules and study the impacts of EOS and adiabat of the pusher on the hot spot dynamics by using the EOS adiabat index as an adjustable model parameter. We compare our analysis with the NIC data, specifically, for shots N120321 and N120205, and with the numerical simulations of these shots. The predictions from our theoretical model are in good agreements with the NIC data when a hot adiabat was used for the pusher, and with code simulations when a cold adiabat was used for the pusher. Our analysis indicates that the actual adiabat of the pusher in NIC experiments may well be higher than the adiabat assumed in the simulations. This analysis provides a physical and systematic explanation to the ongoing disagreements between the NIC experimental results and the multi-dimensional numerical simulations. This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under contract number W-7405-ENG-36.

  4. Non-adiabatic perturbations in Ricci dark energy model

    SciTech Connect

    Karwan, Khamphee; Thitapura, Thiti E-mail: nanodsci2523@hotmail.com

    2012-01-01

    We show that the non-adiabatic perturbations between Ricci dark energy and matter can grow both on superhorizon and subhorizon scales, and these non-adiabatic perturbations on subhorizon scales can lead to instability in this dark energy model. The rapidly growing non-adiabatic modes on subhorizon scales always occur when the equation of state parameter of dark energy starts to drop towards -1 near the end of matter era, except that the parameter α of Ricci dark energy equals to 1/2. In the case where α = 1/2, the rapidly growing non-adiabatic modes disappear when the perturbations in dark energy and matter are adiabatic initially. However, an adiabaticity between dark energy and matter perturbations at early time implies a non-adiabaticity between matter and radiation, this can influence the ordinary Sachs-Wolfe (OSW) effect. Since the amount of Ricci dark energy is not small during matter domination, the integrated Sachs-Wolfe (ISW) effect is greatly modified by density perturbations of dark energy, leading to a wrong shape of CMB power spectrum. The instability in Ricci dark energy is difficult to be alleviated if the effects of coupling between baryon and photon on dark energy perturbations are included.

  5. Shortcuts to adiabaticity from linear response theory

    SciTech Connect

    Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian

    2015-10-23

    A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times.

  6. Shortcuts to adiabaticity from linear response theory

    DOE PAGES

    Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian

    2015-10-23

    A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts tomore » adiabaticity for specific and very short driving times.« less

  7. Multiphoton adiabatic passage for atom optics applications

    SciTech Connect

    Demeter, Gabor; Djotyan, Gagik P.

    2009-04-15

    We study the force exerted on two-level atoms by short, counterpropagating laser pulses. When the counterpropagating pulses overlap each other partially, multiphoton adiabatic processes are possible in several configurations, which amplify the force exerted on the atoms. We investigate the practical usefulness of such multiphoton adiabatic transitions for the manipulation of the atoms' mechanical state. In particular, we compare the efficiency of a pair of constant frequency, oppositely detuned laser pulses and that of a pair of frequency-chirped pulses. We also consider the case of prolonged exposure to a sequence of laser pulses for a duration that is comparable to or much larger than the spontaneous lifetime of the atoms. We use numerical methods to calculate the reduction of the force and the heating of the atomic ensemble when spontaneous emission cannot be neglected during the interaction. In addition, we derive simple approximate formulas for the force and the heating, and compare them to the numerical results.

  8. Adiabatic quantum optimization for associative memory recall

    DOE PAGES

    Seddiqi, Hadayat; Humble, Travis S.

    2014-12-22

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are storedmore » in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.« less

  9. Adiabatic quantum optimization for associative memory recall

    SciTech Connect

    Seddiqi, Hadayat; Humble, Travis S.

    2014-12-22

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.

  10. Determining quasidiabatic coupled electronic state Hamiltonians using derivative couplings: A normal equations based method.

    PubMed

    Papas, Brian N; Schuurman, Michael S; Yarkony, David R

    2008-09-28

    A self-consistent procedure for constructing a quasidiabatic Hamiltonian representing N(state) coupled electronic states in the vicinity of an arbitrary point in nuclear coordinate space is described. The matrix elements of the Hamiltonian are polynomials of arbitrary order. Employing a crude adiabatic basis, the coefficients of the linear terms are determined exactly using analytic gradient techniques. The remaining polynomial coefficients are determined from the normal form of a system of pseudolinear equations, which uses energy gradient and derivative coupling information obtained from reliable multireference configuration interaction wave functions. In a previous implementation energy gradient and derivative coupling information were employed to limit the number of nuclear configurations at which ab initio data were required to determine the unknown coefficients. Conversely, the key aspect of the current approach is the use of ab initio data over an extended range of nuclear configurations. The normal form of the system of pseudolinear equations is introduced here to obtain a least-squares fit to what would have been an (intractable) overcomplete set of data in the previous approach. This method provides a quasidiabatic representation that minimizes the residual derivative coupling in a least-squares sense, a means to extend the domain of accuracy of the diabatic Hamiltonian or refine its accuracy within a given domain, and a way to impose point group symmetry and hermiticity. These attributes are illustrated using the 1 (2)A(1) and 1 (2)E states of the 1-propynyl radical, CH(3)CC.

  11. Control of adiabatic light transfer in coupled waveguides with longitudinally varying detuning

    NASA Astrophysics Data System (ADS)

    Oukraou, Hassan; Vittadello, Laura; Coda, Virginie; Ciret, Charles; Alonzo, Massimo; Rangelov, Andon A.; Vitanov, Nikolay V.; Montemezzani, Germano

    2017-02-01

    We study adiabatic light transfer in systems of two coupled waveguides with spatially varying detuning of the propagation constants, providing an analogy to the quantum phenomena of rapid adiabatic passage (RAP) and two-state stimulated Raman adiabatic passage (two-state STIRAP). Experimental demonstration using a photoinduction technique confirms the robust and broadband character of the structures that act as broadband directional couplers and broadband beam splitters, respectively.

  12. Vibrationally-resolved spectroscopic studies of electronically excited states of 1,8-naphthalic anhydride and 1,8-naphthalimide: a delicate interplay between one ππ* and two nπ* states.

    PubMed

    Maltseva, Elena; Amirjalayer, Saeed; Buma, Wybren Jan

    2017-02-22

    The spectroscopic and dynamic properties of the lower electronically excited states of 1,8-naphthalic anhydride and 1,8-naphthalimide have been studied in supersonically cooled molecular beams using nanosecond Resonance Enhanced MultiPhoton Ionization (REMPI) spectroscopic techniques in combination with quantum chemical calculations. The excitation spectra of these compounds show near - and even below - the apparent 0-0 transition to a strongly allowed electronic state, previously assigned as the S1(2(1)A1(ππ*)) state, a plethora of vibronic transitions that cannot simply be rationalized in terms of the Franck-Condon vibronic activity of that particular state. Instead, it is shown that the (1)B1(nπ*) state, which was previously reported to be S3 for vertical excitation, is adiabatically the lowest excited singlet state. Interactions between this 'dark' state and the 'bright' 2(1)A1(ππ*) state lead to intensity borrowing of transitions to 'dark' state levels that thus show up in the excitation spectra. A complicating factor is that, apart from the coupling of these two singlet states, a relatively strong spin-orbit coupling between the 2(1)A1(ππ*) and (3)B1(nπ*) states is also present. We show that the latter state has a slightly higher adiabatic excitation energy than the former state in 1,8-naphthalic anhydride but lies energetically below the 2(1)A1(ππ*) state in 1,8-naphthalimide. Concurrently, we find that the decay dynamics of the excited states of 1,8-naphthalimide are entirely dominated by intersystem crossing, while in 1,8-naphthalic anhydride both internal conversion to the ground state and intersystem crossing occur, albeit the former loses importance once the excitation energy exceeds that of the (3)B1(nπ*) state.

  13. Electron states in semiconductor quantum dots

    SciTech Connect

    Dhayal, Suman S.; Ramaniah, Lavanya M.; Ruda, Harry E.; Nair, Selvakumar V.

    2014-11-28

    In this work, the electronic structures of quantum dots (QDs) of nine direct band gap semiconductor materials belonging to the group II-VI and III-V families are investigated, within the empirical tight-binding framework, in the effective bond orbital model. This methodology is shown to accurately describe these systems, yielding, at the same time, qualitative insights into their electronic properties. Various features of the bulk band structure such as band-gaps, band curvature, and band widths around symmetry points affect the quantum confinement of electrons and holes. These effects are identified and quantified. A comparison with experimental data yields good agreement with the calculations. These theoretical results would help quantify the optical response of QDs of these materials and provide useful input for applications.

  14. Ab initio investigation of potential energy curves of the 23 electronic states of IBr correlating to neutral (2)P atoms.

    PubMed

    Patchkovskii, Serguei

    2006-02-28

    Potential energy surfaces for all Born-Oppenheimer electronic states of IBr molecule correlating to the neutral (2)P ((2)P(3/2) and (2)P(1/2)) iodine and bromine are calculated for the first time. Electric dipole and polarizability curves (static and transition) are also determined. Calculations include scalar and spin-orbit relativistic effects within all-electron Douglas-Kroll two-component Hamiltonian. Electron correlation is treated with quasi-degenerate multi-reference second-order perturbation theory. Seven adiabatic electronic states (X (1)Sigma(+), A'(3)Pi(2), A (3)Pi(1), 1 (3)Pi(0-), B (3)Pi(0+), B'(3)Sigma, and 2 (3)Pi(0+)) exhibit significant covalent bonding, and can support vibrational states. Calculated spectroscopic parameters agree with experiment to better than 1000 cm(-1) (T(e)), 10 cm(-1) (omega(e)), and 0.05 Angstrom (r(e)). A new 1 (3)Pi(0-) state correlating to ground-state atoms is predicted at T(e) approximately 14 000 cm(-1), omega(e) approximately 80 cm(-1), and r(e) approximately 3.0 Angstrom. The second new state (2 (3)Pi(0+)) correlates to excited iodine atom, with T(e) approximately 20 000 cm(-1), omega(e) approximately 115 cm(-1), and r(e) approximately 3.3 Angstrom. Non-adiabatic coupling parameters are calculated for the four avoided crossings, which arise due to electronic spin-orbit interaction. Estimated parameters of the B (3)Pi(0+)/B'(3)Sigma crossing (R(c) approximately 3.32 Angstrom; V approximately 120 cm(-1)) agree with experimental values. The previously unsuspected 2 (3)Pi(0-)/1 (1)Sigma(-) crossing of two repulsive surfaces provides a new collisional deactivation channel for Br* atoms at relative velocities above 1000 m s(-1). Several repulsive states (including 1 (1)Pi(1) and 2 (3)Pi(1)) intersect the B/B' system near the avoided crossing point, and may affect dynamics of IBr in strong laser fields.

  15. Electron and electron-hole quasiparticle states in a driven quantum contact

    NASA Astrophysics Data System (ADS)

    Vanević, Mihajlo; Gabelli, Julien; Belzig, Wolfgang; Reulet, Bertrand

    2016-01-01

    We study the many-body electronic state created by a time-dependent drive of a mesoscopic contact. The many-body state is expressed manifestly in terms of single-electron and electron-hole quasiparticle excitations with the amplitudes and probabilities of creation which depend on the details of the applied voltage. We experimentally probe the time dependence of the constituent electronic states by using an analog of the optical Hong-Ou-Mandel correlation experiment where electrons emitted from the terminals with a relative time delay collide at the contact. The electron wave packet overlap is directly related to the current noise power in the contact. We have confirmed the time dependence of the electronic states predicted theoretically by measurements of the current noise power in a tunnel junction under harmonic excitation.

  16. Aspects of adiabatic population transfer and control

    NASA Astrophysics Data System (ADS)

    Demirplak, Mustafa

    This thesis explores two different questions. The first question we answer is how to restore a given population transfer scenario given that it works efficiently in the adiabatic limit but fails because of lack of intensity and/or short duration. We derive a very simple algorithm to do this and apply it to both toy and realistic models. Two results emerge from this study. While the mathematical existence of the programme is certain it might not always be physically desirable. The restoration of adiabaticity is phase sensitive. The second question that is answered in this thesis is not how to invent new control paradigms, but rather what would happen to them in the presence of stochastic perturbers. We first use a phenomenological model to study the effect of stochastic dephasing on population transfer by stimulated Raman adiabatic passage. The results of this Monte Carlo calculation are qualitatively explained with a perturbation theoretical result in the dressed state basis. The reliability of our phenomenological model is questioned through a more rigorous hybrid quantal-classical simulation of controlled population transfer in HCl in Ar.

  17. Random matrix model of adiabatic quantum computing

    SciTech Connect

    Mitchell, David R.; Adami, Christoph; Lue, Waynn; Williams, Colin P.

    2005-05-15

    We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SAT (an NP-complete problem) in terms of random matrix theory (RMT). We determine the global regularity of the spectral fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest. At each interpolation point, we quantify the degree of regularity of the average spectral distribution via its Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor spacings. We find that for hard problem instances - i.e., those having a critical ratio of clauses to variables - the spectral fluctuations typically become irregular across a contiguous region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region, RMT may be applied to obtain a mathematical model of the probability of avoided level crossings and concomitant failure rate of the adiabatic algorithm due to nonadiabatic Landau-Zener-type transitions. Our model predicts that if the interpolation is performed at a uniform rate, the average failure rate of the quantum adiabatic algorithm, when averaged over hard problem instances, scales exponentially with increasing problem size.

  18. Adiabatic charging of nickel-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Lurie, Chuck; Foroozan, S.; Brewer, Jeff; Jackson, Lorna

    1995-01-01

    Battery management during prelaunch activities has always required special attention and careful planning. The transition from nickel-cadium to nickel-hydrogen batteries, with their high self discharge rate and lower charge efficiency, as well as longer prelaunch scenarios, has made this aspect of spacecraft battery management even more challenging. The AXAF-I Program requires high battery state of charge at launch. The use of active cooling, to ensure efficient charging, was considered and proved to be difficult and expensive. Alternative approaches were evaluated. Optimized charging, in the absence of cooling, appeared promising and was investigated. Initial testing was conducted to demonstrate the feasibility of the 'Adiabatic Charging' approach. Feasibility was demonstrated and additional testing performed to provide a quantitative, parametric data base. The assumption that the battery is in an adiabatic environment during prelaunch charging is a conservative approximation because the battery will transfer some heat to its surroundings by convective air cooling. The amount is small compared to the heat dissipated during battery overcharge. Because the battery has a large thermal mass, substantial overcharge can occur before the cells get too hot to charge efficiently. The testing presented here simulates a true adiabatic environment. Accordingly the data base may be slightly conservative. The adiabatic charge methodology used in this investigation begins with stabilizing the cell at a given starting temperature. The cell is then fully insulated on all sides. Battery temperature is carefully monitored and the charge terminated when the cell temperature reaches 85 F. Charging has been evaluated with starting temperatures from 55 to 75 F.

  19. Determining the molecular Aharonov{endash}Bohm phase angle: A rigorous approach employing a molecular properties based adiabatic to diabatic states transformation

    SciTech Connect

    Yarkony, D.R.

    1999-01-01

    Recently there has been considerable interest, not to mention controversy, concerning a key aspect of the molecular Aharonov{endash}Bohm (MAB) effect: the construction of the phase angle, induced by geometric phase effect, whose gradient is the vector potential characteristic of MAB theory. In the past this angle was constructed from explicit knowledge of the locus of the seam of conical intersection. Here it is shown how a phase angle that satisfies the requirements of MAB theory can be determined {ital without a priori} knowledge of the locus of points of conical intersection. This approach has important implications for direct dynamics. It is a corollary of a recent analysis that showed that diagonalizing the matrix of virtually any symmetric (real-valued Hermitian) electronic property operator in the subspace of states that intersect conically generates a transformation that removes all of the singularity of the derivative coupling at a conical intersection. Key aspects of this method are illustrated by considering the dipole moment operator near a point on the 1thinsp{sup 3}A{sup {double_prime}}{endash}2thinsp{sup 3}A{sup {double_prime}} seam of conical intersection in CH{sub 2}. {copyright} {ital 1999 American Institute of Physics.}

  20. Anti-correlated vibrations drive fast non-adiabatic light harvesting

    NASA Astrophysics Data System (ADS)

    Jonas, David

    2015-03-01

    We have recently shown that intramolecular vibrations shared across pigments can drive electronic energy transfer beyond the Born-Oppenheimer framework developed by Forster. The key features of this mechanism are a small change in vibrational equilibrium (less than the zero point amplitude) upon electronic excitation of the pigments and vibrational resonance with the adiabatic electronic energy gap. For identical pigments, delocalized, anti-correlated vibrations increase the speed of energy transfer. The same anti-correlated vibrations are excited by an electronically enhanced Raman process on the ground electronic state of photosynthetic antennas, and these vibrational wavepackets generate all of the reported signatures of photosynthetic energy transfer in femtosecond two-dimensional Fourier transform spectra. The talk will discuss how these results are generalized for differences between donor and acceptor and for multiple vibrations. This material is based upon work supported by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-14-1-0258.

  1. An investigation into low-lying electronic states of HCS{sub 2} via threshold photoelectron imaging

    SciTech Connect

    Qin, Zhengbo; Cong, Ran; Liu, Zhiling; Xie, Hua; Tang, Zichao E-mail: fanhj@dicp.ac.cn; Fan, Hongjun E-mail: fanhj@dicp.ac.cn

    2014-06-07

    Low-energy photoelectron imaging spectra of HCS{sub 2}{sup −} are reported for the first time. Vibrationally resolved photodetachment transitions from the ground state of HCS{sub 2}{sup −} to the ground state and low-lying excited states of HCS{sub 2} are observed. Combined with the ab intio calculations and Franck-Condon simulations, well-resolved vibrational spectra demonstrate definitive evidence for the resolution of the ground-state and excited states of HCS{sub 2} radical in the gaseous phase. The ground state and two low-lying excited states of HCS{sub 2} radical are assigned as {sup 2}B{sub 2}, {sup 2}A{sub 2}, and {sup 2}A{sub 1} states, respectively. The adiabatic electron affinity is determined to be 2.910 ± 0.007 eV. And the term energies of the excited states, T{sub 0} = 0.451 ± 0.009 eV and 0.553 ± 0.009 eV, are directly measured from the experimental data, respectively. Angular filtering photoelectron spectra are carried out to assist in the spectral band assignment.

  2. State selectivity and dynamics in dissociative electron attachment to CF₃I revealed through velocity slice imaging.

    PubMed

    Ómarsson, Frímann H; Mason, Nigel J; Krishnakumar, E; Ingólfsson, Oddur

    2014-11-03

    In light of its substantially more environmentally friendly nature, CF3I is currently being considered as a replacement for the highly potent global-warming gas CF4, which is used extensively in plasma processing. In this context, we have studied the electron-driven dissociation of CF3I to form CF3(-) and I, and we compare this process to the corresponding photolysis channel. By using the velocity slice imaging (VSI) technique we can visualize the complete dynamics of this process and show that electron-driven dissociation proceeds from the same initial parent state as the corresponding photolysis process. However, in contrast to photolysis, which leads nearly exclusively to the (2)P(1/2) excited state of iodine, electron-induced dissociation leads predominantly to the (2)P(3/2) ground state. We believe that the changed spin state of the negative ion allows an adiabatic dissociation through a conical intersection, whereas this path is efficiently repressed by a required spin flip in the photolysis process.

  3. Taple-top imaging of the non-adiabatically driven isomerization in the acetylene cation

    NASA Astrophysics Data System (ADS)

    Beaulieu, Samuel; Ibrahim, Heide; Wales, Benji; Schmidt, Bruno E.; Thiré, Nicolas; Bisson, Éric; Hebeisen, Christoph T.; Wanie, Vincent; Giguere, Mathieu; Kieffer, Jean-Claude; Sanderson, Joe; Schuurman, Michael S.; Légaré, François

    2014-05-01

    One of the primary goals of modern ultrafast science is to follow nuclear and electronic evolution of molecules as they undergo a photo-chemical reaction. Most of the interesting dynamics phenomena in molecules occur when an electronically excited state is populated. When the energy difference between electronic ground and excited states is large, Free Electron Laser (FEL) and HHG-based VUV sources were, up to date, the only light sources able to efficiently initiate those non-adiabatic dynamics. We have developed a simple table-top approach to initiate those rich dynamics via multiphoton absorption. As a proof of principle, we studied the ultrafast isomerization of the acetylene cation. We have chosen this model system for isomerization since the internal conversion mechanism which leads to proton migration is still under debate since decades. Using 266 nm multiphoton absorption as a pump and 800 nm induced Coulomb Explosion as a probe, we have shoot the first high-resolution molecular movie of the non-adiabatically driven proton migration in the acetylene cation. The experimental results are in excellent agreement with high level ab initio trajectory simulations.

  4. Adiabatic connection at negative coupling strengths

    SciTech Connect

    Seidl, Michael; Gori-Giorgi, Paola

    2010-01-15

    The adiabatic connection of density functional theory (DFT) for electronic systems is generalized here to negative values of the coupling strength alpha (with attractive electrons). In the extreme limit alpha->-infinity a simple physical solution is presented and its implications for DFT (as well as its limitations) are discussed. For two-electron systems (a case in which the present solution can be calculated exactly), we find that an interpolation between the limit alpha->-infinity and the opposite limit of infinitely strong repulsion (alpha->+infinity) yields a rather accurate estimate of the second-order correlation energy E{sub c}{sup GL2}[rho] for several different densities rho, without using virtual orbitals. The same procedure is also applied to the Be isoelectronic series, analyzing the effects of near degeneracy.

  5. Two state electron model for geminate recombination of electron-ion pairs in liquid isooctane

    NASA Astrophysics Data System (ADS)

    Lukin, L. V.; Yakovlev, B. S.

    2011-04-01

    Recombination kinetics of geminate electron-ion pairs is considered in the framework of the two state model for electron transport in liquid hydrocarbons. It is shown that the model well reproduces recent experimental data on the subpicosecond geminate recombination obtained in liquid isooctane. The life time of electrons in a localized state in isooctane is estimated to lie in the range between 0.14 ps and 0.57 ps at room temperature.

  6. Adiabatic losses in Stirling refrigerators

    SciTech Connect

    Bauwens, L.

    1996-06-01

    The Stirling cycle has been used very effectively in cryocoolers; but efficiencies relative to the Carnot limit are typically observed to peak for absolute temperature ratios of about two, which makes it less suitable for low-life refrigeration. The adiabatic loss appears to be responsible for poor performance at small temperature differences. In this paper, adiabatic losses are evaluated, for a temperature ratio of 2/3, taking into account the effect of phase angle between pistons, of volume ratio, of the distribution of the dead volume necessary to reduce the volume ratio, and of the distribution of displacement between expansion and compression spaces. The study is carried out numerically, using an adiabatic Stirling engine model in which cylinder flow is assumed to be stratified. Results show that the best location for the cylinder dead volume is on the compression side. Otherwise, all strategies used to trade off refrigeration for coefficient of performance are found to be roughly equivalent.

  7. Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation

    SciTech Connect

    Zamstein, Noa; Tannor, David J.

    2012-12-14

    We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schroedinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)]. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.

  8. Adiabatic evolution of plasma equilibrium

    PubMed Central

    Grad, H.; Hu, P. N.; Stevens, D. C.

    1975-01-01

    A new theory of plasma equilibrium is introduced in which adiabatic constraints are specified. This leads to a mathematically nonstandard structure, as compared to the usual equilibrium theory, in which prescription of pressure and current profiles leads to an elliptic partial differential equation. Topologically complex configurations require further generalization of the concept of adiabaticity to allow irreversible mixing of plasma and magnetic flux among islands. Matching conditions across a boundary layer at the separatrix are obtained from appropriate conservation laws. Applications are made to configurations with planned islands (as in Doublet) and accidental islands (as in Tokamaks). Two-dimensional, axially symmetric, helically symmetric, and closed line equilibria are included. PMID:16578729

  9. Beyond structure: ultrafast X-ray absorption spectroscopy as a probe of non-adiabatic wavepacket dynamics.

    PubMed

    Neville, Simon P; Averbukh, Vitali; Patchkovskii, Serguei; Ruberti, Marco; Yun, Renjie; Chergui, Majed; Stolow, Albert; Schuurman, Michael S

    2016-12-16

    The excited state non-adiabatic dynamics of polyatomic molecules, leading to the coupling of structural and electronic dynamics, is a fundamentally important yet challenging problem for both experiment and theory. Ongoing developments in ultrafast extreme vacuum ultraviolet (XUV) and soft X-ray sources present new probes of coupled electronic-structural dynamics because of their novel and desirable characteristics. As one example, inner-shell spectroscopy offers localized, atom-specific probes of evolving electronic structure and bonding (via chemical shifts). In this work, we present the first on-the-fly ultrafast X-ray time-resolved absorption spectrum simulations of excited state wavepacket dynamics: photo-excited ethylene. This was achieved by coupling the ab initio multiple spawning (AIMS) method, employing on-the-fly dynamics simulations, with high-level algebraic diagrammatic construction (ADC) X-ray absorption cross-section calculations. Using the excited state dynamics of ethylene as a test case, we assessed the ability of X-ray absorption spectroscopy to project out the electronic character of complex wavepacket dynamics, and evaluated the sensitivity of the calculated spectra to large amplitude nuclear motion. In particular, we demonstrate the pronounced sensitivity of the pre-edge region of the X-ray absorption spectrum to the electronic and structural evolution of the excited-state wavepacket. We conclude that ultrafast time-resolved X-ray absorption spectroscopy may become a powerful tool in the interrogation of excited state non-adiabatic molecular dynamics.

  10. Timekeeping with electron spin states in diamond

    NASA Astrophysics Data System (ADS)

    Hodges, J. S.; Yao, N. Y.; Maclaurin, D.; Rastogi, C.; Lukin, M. D.; Englund, D.

    2013-03-01

    Frequency standards based on atomic states, such as Rb or Cs vapors, or single-trapped ions, are the most precise measures of time. Here we propose and analyze a precision oscillator approach based upon spins in a solid-state system, in particular, the nitrogen-vacancy defect in single-crystal diamond. We show that this system can have stability approaching portable atomic standards and is readily incorporable as a chip-scale device. Using a pulsed spin-echo technique, we anticipate an Allan deviation of σy=10-7τ-1/2 limited by thermally-induced strain variations; in the absence of such thermal fluctuations, the system is limited by spin dephasing and harbors an Allan deviation nearing ˜10-12τ-1/2. Potential improvements based upon advanced diamond material processing, temperature stabilization, and nanophotonic engineering are discussed.

  11. Generalization of the Mulliken-Hush treatment for the calculation of electron transfer matrix elements

    NASA Astrophysics Data System (ADS)

    Cave, Robert J.; Newton, Marshall D.

    1996-01-01

    A new method for the calculation of the electronic coupling matrix element for electron transfer processes is introduced and results for several systems are presented. The method can be applied to ground and excited state systems and can be used in cases where several states interact strongly. Within the set of states chosen it is a non-perturbative treatment, and can be implemented using quantities obtained solely in terms of the adiabatic states. Several applications based on quantum chemical calculations are briefly presented. Finally, since quantities for adiabatic states are the only input to the method, it can also be used with purely experimental data to estimate electron transfer matrix elements.

  12. Imaging the dynamics of free-electron Landau states.

    PubMed

    Schattschneider, P; Schachinger, Th; Stöger-Pollach, M; Löffler, S; Steiger-Thirsfeld, A; Bliokh, K Y; Nori, Franco

    2014-08-08

    Landau levels and states of electrons in a magnetic field are fundamental quantum entities underlying the quantum Hall and related effects in condensed matter physics. However, the real-space properties and observation of Landau wave functions remain elusive. Here we report the real-space observation of Landau states and the internal rotational dynamics of free electrons. States with different quantum numbers are produced using nanometre-sized electron vortex beams, with a radius chosen to match the waist of the Landau states, in a quasi-uniform magnetic field. Scanning the beams along the propagation direction, we reconstruct the rotational dynamics of the Landau wave functions with angular frequency ~100 GHz. We observe that Landau modes with different azimuthal quantum numbers belong to three classes, which are characterized by rotations with zero, Larmor and cyclotron frequencies, respectively. This is in sharp contrast to the uniform cyclotron rotation of classical electrons, and in perfect agreement with recent theoretical predictions.

  13. Electronic states of the diatomic antimony fluoride (SbF)

    NASA Astrophysics Data System (ADS)

    Latifzadeh, Lida; Balasubramanian, K.

    1996-07-01

    The potential energy curves of 21 electronic states of SbF and spectroscopic properties of bound states among these have been computed using the complete active space self-consistent field (CASSCF) followed by first- and second-order configuration interaction (FOCI, SOCI) and multireference singles and doubles configuration interaction (MRSDCI) methods. The computed results are in good agreement with the observed values for six states, while the properties of four other states have been computed which are yet to be observed.

  14. Quantized adiabatic transport in momentum space.

    PubMed

    Ho, Derek Y H; Gong, Jiangbin

    2012-07-06

    Though topological aspects of energy bands are known to play a key role in quantum transport in solid-state systems, the implications of Floquet band topology for transport in momentum space (i.e., acceleration) have not been explored so far. Using a ratchet accelerator model inspired by existing cold-atom experiments, here we characterize a class of extended Floquet bands of one-dimensional driven quantum systems by Chern numbers, reveal topological phase transitions therein, and theoretically predict the quantization of adiabatic transport in momentum space. Numerical results confirm our theory and indicate the feasibility of experimental studies.

  15. Decoherence in a scalable adiabatic quantum computer

    SciTech Connect

    Ashhab, S.; Johansson, J. R.; Nori, Franco

    2006-11-15

    We consider the effects of decoherence on Landau-Zener crossings encountered in a large-scale adiabatic-quantum-computing setup. We analyze the dependence of the success probability--i.e., the probability for the system to end up in its new ground state--on the noise amplitude and correlation time. We determine the optimal sweep rate that is required to maximize the success probability. We then discuss the scaling of decoherence effects with increasing system size. We find that those effects can be important for large systems, even if they are small for each of the small building blocks.

  16. Non-adiabatic effects on the optical response of driven systems

    NASA Astrophysics Data System (ADS)

    Fregoso, Benjamin M.; Kolodrubetz, Michael; Moore, Joel

    Periodically driven systems have received renewed interest due to their capacity to engineer non-trivial effective Hamiltonians. A characteristic of such systems is how they respond to weak periodicity-breaking drive, as for example when a laser is pulsed instead of continuous wave. We develop semi-classical equations of motion of a wave packet in the presence of electric and magnetic fields which are turned on non-adiabatically. We then show the emergence of significant corrections to electronic collective excitations and optical responses of topological insulator surface states, Weyl metals and semiconductor mono-chalcogenides.

  17. REFLECTIONS ON THE TWO-STATE ELECTRON TRANSFER MODEL.

    SciTech Connect

    Brunschwig, B.S.

    2000-01-12

    There is general agreement that the two most important factors determining electron transfer rates in solution are the degree of electronic interaction between the donor and acceptor sites, and the changes in the nuclear configurations of the donor, acceptor, and surrounding medium that occur upon the gain or loss of an electron Ll-51. The electronic interaction of the sites will be very weak, and the electron transfer slow, when the sites are far apart or their interaction is symmetry or spin forbidden. Since electron motion is much faster than nuclear motion, energy conservation requires that, prior to the actual electron transfer, the nuclear configurations of the reactants and the surrounding medium adjust from their equilibrium values to a configuration (generally) intermediate between that of the reactants and products. In the case of electron transfer between , two metal complexes in a polar solvent, the nuclear configuration changes involve adjustments in the metal-ligand and intraligand bond lengths and angles, and changes in the orientations of the surrounding solvent molecules. In common with ordinary chemical reactions, an electron transfer reaction can then be described in terms of the motion of the system on an energy surface from the reactant equilibrium configuration (initial state) to the product equilibrium configuration (final state) via the activated complex (transition state) configuration.

  18. Electron states and electron Raman scattering in semiconductor step-quantum well: Electric field effect

    NASA Astrophysics Data System (ADS)

    Betancourt-Riera, Ri.; Betancourt-Riera, Re.; Ferrer-Moreno, L. A.; Jalil, J. M. Nieto

    2017-04-01

    In this work we determine and show the expressions of the electron states of a step-quantum well with the presence of an external electric field, developed in a GaAs / AlGaAs matrix. The electron states are obtained using the envelope function approximation. In this work it is only necessary to consider a single conduction band, which due to the confinement is divided into a subband system, with T = 0K . Expressions for the electron states and the differential cross-section for an intraband electron Raman scattering process of are presented, the net Raman gain is also calculated. In addition, the interpretation of the singularities found in the emission or excitation spectra is given, since several dispersion configurations are discussed. Furthermore, the effects of an electric field on the electron states and on the differential cross section are studied.

  19. Arbitrary amplitude electro-acoustic solitary waves in an adiabatic dusty plasma

    NASA Astrophysics Data System (ADS)

    Tanjia, Fatema; Mamun, A. A.

    2008-12-01

    The properties of different types of electro-acoustic (namely ion-acoustic (IA), dust ion-acoustic (DIA), and dust-acoustic (DA)) solitary waves (SWs) in an adiabatic dusty plasma (containing negatively charged cold dust, adiabatic hot ions and inertia-less adiabatic hot electrons) are investigated by the pseudo-potential approach. The combined effects of the adiabatic electrons and ions, and negatively charged dust on the basic properties (critical Mach number, amplitude and width) of the arbitrary amplitude electro-acoustic SWs are systematically and explicitly examined. It is found that the combined effects of the adiabatic electrons and ions, and negatively charged dust significantly modify the basic properties (critical Mach number, amplitude and width) of the SWs. It is also found that due to the effect of the adiabaticity of electrons, the negative DIA SWs (which are found to exist in a dusty plasma containing isothermal electrons, cold ions and negatively charged static dust) disappear, i.e. due to the effect of adiabatic electrons, one cannot have negative DIA SWs for any possible set of dusty plasma parameters.

  20. Surface-electronic-state effects in electron emission from the Be(0001) surface

    SciTech Connect

    Archubi, C. D.; Gravielle, M. S.; Silkin, V. M.

    2011-07-15

    We study the electron emission produced by swift protons impinging grazingly on a Be(0001) surface. The process is described within a collisional formalism using the band-structure-based (BSB) approximation to represent the electron-surface interaction. The BSB model provides an accurate description of the electronic band structure of the solid and the surface-induced potential. Within this approach we derive both bulk and surface electronic states, with these latter characterized by a strong localization at the crystal surface. We found that such surface electronic states play an important role in double-differential energy- and angle-resolved electron emission probabilities, producing noticeable structures in the electron emission spectra.

  1. Adiabatic Green's function technique and transient behavior in time-dependent fermion-boson coupled models

    NASA Astrophysics Data System (ADS)

    Oh, Yun-Tak; Higashi, Yoichi; Chan, Ching-Kit; Han, Jung Hoon

    2016-08-01

    The Lang-Firsov Hamiltonian, a well-known solvable model of interacting fermion-boson system with sideband features in the fermion spectral weight, is generalized to have the time-dependent fermion-boson coupling constant. We show how to derive the two-time Green's function for the time-dependent problem in the adiabatic limit, defined as the slow temporal variation of the coupling over the characteristic oscillator period. The idea we use in deriving the Green's function is akin to the use of instantaneous basis states in solving the adiabatic evolution problem in quantum mechanics. With such "adiabatic Green's function" at hand we analyze the transient behavior of the spectral weight as the coupling is gradually tuned to zero. Time-dependent generalization of a related model, the spin-boson Hamiltonian, is analyzed in the same way. In both cases the sidebands arising from the fermion-boson coupling can be seen to gradually lose their spectral weights over time. Connections of our solution to the two-dimensional Dirac electrons coupled to quantized photons are discussed.

  2. Semiclassical Monte Carlo: a first principles approach to non-adiabatic molecular dynamics.

    PubMed

    White, Alexander J; Gorshkov, Vyacheslav N; Wang, Ruixi; Tretiak, Sergei; Mozyrsky, Dmitry

    2014-11-14

    Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantum mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement.

  3. Comprehensive theoretical studies on the low-lying electronic states of NiF, NiCl, NiBr, and NiI.

    PubMed

    Zou, Wenli; Liu, Wenjian

    2006-04-21

    The low-lying electronic states of the nickel monohalides, i.e., NiF, NiCl, NiBr, and NiI, are investigated by using multireference second-order perturbation theory with relativistic effects taken into account. For the energetically lowest 11 lambda-S states and 26 omega states there into, the potential energy curves and corresponding spectroscopic constants (vertical and adiabatic excitation energies, equilibrium bond lengths, vibrational frequencies, and rotational constants) are reported. The calculated results are grossly in very good agreement with those solid experimental data. In particular, the ground state of NiI is shown to be different from those of NiF, NiCl, and NiBr, being in line with the recent experimental observation. Detailed analyses are provided on those states that either have not been assigned or have been incorrectly assigned by previous experiments.

  4. Accurate Variational Description of Adiabatic Quantum Optimization

    NASA Astrophysics Data System (ADS)

    Carleo, Giuseppe; Bauer, Bela; Troyer, Matthias

    Adiabatic quantum optimization (AQO) is a quantum computing protocol where a system is driven by a time-dependent Hamiltonian. The initial Hamiltonian has an easily prepared ground-state and the final Hamiltonian encodes some desired optimization problem. An adiabatic time evolution then yields a solution to the optimization problem. Several challenges emerge in the theoretical description of this protocol: on one hand, the exact simulation of quantum dynamics is exponentially complex in the size of the optimization problem. On the other hand, approximate approaches such as tensor network states (TNS) are limited to small instances by the amount of entanglement that can be encoded. I will present here an extension of the time-dependent Variational Monte Carlo approach to problems in AQO. This approach is based on a general class of (Jastrow-Feenberg) entangled states, whose parameters are evolved in time according to a stochastic variational principle. We demonstrate this approach for optimization problems of the Ising spin-glass type. A very good accuracy is achieved when compared to exact time-dependent TNS on small instances. We then apply this approach to larger problems, and discuss the efficiency of the quantum annealing scheme in comparison with its classical counterpart.

  5. Pressure Oscillations in Adiabatic Compression

    ERIC Educational Resources Information Center

    Stout, Roland

    2011-01-01

    After finding Moloney and McGarvey's modified adiabatic compression apparatus, I decided to insert this experiment into my physical chemistry laboratory at the last minute, replacing a problematic experiment. With insufficient time to build the apparatus, we placed a bottle between two thick textbooks and compressed it with a third textbook forced…

  6. Electron-Electron Interaction in Ion-Atom Collisions Studied by Projectile State-Resolved Auger Electron Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Lee, Do-Hyung

    1990-01-01

    This dissertation addresses the problem of dynamic electron-electron interactions in fast ion-atom collisions using projectile Auger electron spectroscopy. The study was carried out by measuring high-resolution projectile KLL Auger electron spectra as a function of projectile energy for the various collision systems of 0.25-2 MeV/u O^{q+} and F^ {q+} incident on H_2 and He targets. The electrons were detected in the beam direction, where the kinematic broadening is minimized. A zero-degree tandem electron spectrometer system was developed and showed the versatility of zero-degree measurements of collisionally-produced atomic states. The zero-degree binary encounter electrons (BEe), quasifree target electrons ionized by the projectiles in head-on collisions, were observed as a strong background in the KLL Auger electron spectrum. They were studied by treating the target ionization as 180^circ Rutherford elastic scattering in the projectile frame, and resulted in a validity test of the impulse approximation (IA) and a way to determine the spectrometer efficiency. An anomalous q-dependence, in which the zero-degree BEe yields increase with decreasing projectile charge state (q), was observed. State-resolved KLL Auger cross sections were determined by using the BEe normalization and thus the cross sections of the electron -electron interactions such as resonant transfer-excitation (RTE), electron-electron excitation (eeE), and electron -electron ionization (eeI) were determined. Projectile 2l capture with 1s to 2p excitation by the captured target electron was observed as an RTE process with Li-like and He-like projectiles and the measured RTEA (RTE followed by Auger decay) cross sections showed good agreement with an RTE-IA treatment and RTE alignment theory. Projectile 1s to 2p excitation by a target electron was observed an an eeE process with Li-like projectiles. Projectile 1s ionization by a target electron was observed as an eeI process with Be-like projectiles

  7. Shortcuts to adiabaticity in a time-dependent box

    PubMed Central

    Campo, A. del; Boshier, M. G.

    2012-01-01

    A method is proposed to drive an ultrafast non-adiabatic dynamics of an ultracold gas trapped in a time-dependent box potential. The resulting state is free from spurious excitations associated with the breakdown of adiabaticity, and preserves the quantum correlations of the initial state up to a scaling factor. The process relies on the existence of an adiabatic invariant and the inversion of the dynamical self-similar scaling law dictated by it. Its physical implementation generally requires the use of an auxiliary expulsive potential. The method is extended to a broad family of interacting many-body systems. As illustrative examples we consider the ultrafast expansion of a Tonks-Girardeau gas and of Bose-Einstein condensates in different dimensions, where the method exhibits an excellent robustness against different regimes of interactions and the features of an experimentally realizable box potential. PMID:22970340

  8. Effect of dephasing on stimulated Raman adiabatic passage

    SciTech Connect

    Ivanov, P.A.; Vitanov, N.V.; Bergmann, K.

    2004-12-01

    This work explores the effect of phase relaxation on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The study is based on the Liouville equation, which is solved analytically in the adiabatic limit. The transfer efficiency of STIRAP is found to decrease exponentially with the dephasing rate; this effect is stronger for shorter pulse delays and weaker for larger delays, since the transition time is found to be inversely proportional to the pulse delay. Moreover, it is found that the transfer efficiency of STIRAP in the presence of dephasing does not depend on the peak Rabi frequencies at all, as long as they are sufficiently large to enforce adiabatic evolution; hence increasing the field intensity cannot reduce the dephasing losses. It is shown also that for any dephasing rate, the final populations of the initial state and the intermediate state are equal. For strong dephasing all three populations tend to (1/3)

  9. Alternative ground states enable pathway switching in biological electron transfer.

    PubMed

    Abriata, Luciano A; Álvarez-Paggi, Damián; Ledesma, Gabriela N; Blackburn, Ninian J; Vila, Alejandro J; Murgida, Daniel H

    2012-10-23

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant Cu(A) redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronic wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. These findings suggest a unique role for alternative or "invisible" electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein-protein interactions and membrane potential may optimize and regulate electron-proton energy transduction.

  10. Digital waveguide adiabatic passage part 1: theory

    NASA Astrophysics Data System (ADS)

    Vaitkus, Jesse A.; Steel, M. J.; Greentree, Andrew D.

    2017-03-01

    Spatial adiabatic passage represents a new way to design integrated photonic devices. In conventional adiabatic passage designs require smoothly varying waveguide separations. Here we show modelling of adiabatic passage devices where the waveguide separation is varied digitally. Despite digitisation, our designs show robustness against variations in the input wavelength and refractive index contrast of the waveguides relative to the cladding. This approach to spatial adiabatic passage opens new design strategies and hence the potential for new photonics devices.

  11. Adiabatic approximation in time-dependent reduced-density-matrix functional theory

    SciTech Connect

    Requist, Ryan; Pankratov, Oleg

    2010-04-15

    With the aim of describing real-time electron dynamics, we introduce an adiabatic approximation for the equation of motion of the one-body reduced density matrix (one-matrix). The eigenvalues of the one-matrix, which represent the occupation numbers of single-particle orbitals, are obtained from the constrained minimization of the instantaneous ground-state energy functional rather than from their dynamical equations. The performance of the approximation vis-a-vis nonadiabatic effects is assessed in real-time simulations of a two-site Hubbard model. Due to Landau-Zener-type transitions, the system evolves into a nonstationary state with persistent oscillations in the observables. The amplitude of the oscillations displays a strongly nonmonotonic dependence on the strength of the electron-electron interaction and the rate of variation of the external potential. We interpret an associated resonance behavior in the phase of the oscillations in terms of 'scattering' with spectator energy levels. To clarify the motivation for the minimization condition, we derive a sequence of energy functionals E{sub v}{sup (n)}, for which the corresponding sequence of minimizing one-matrices is asymptotic to the exact one-matrix in the adiabatic limit.

  12. Photoelectron spectroscopy of hexachloroplatinate-nucleobase complexes: Nucleobase excited state decay observed via delayed electron emission

    SciTech Connect

    Sen, Ananya; Matthews, Edward M.; Dessent, Caroline E. H. E-mail: xuebin.wang@pnnl.gov; Hou, Gao-Lei; Wang, Xue-Bin E-mail: xuebin.wang@pnnl.gov

    2015-11-14

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine, and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ∼1.7 eV, values that are lower than the RCB of the uncomplexed PtCl{sub 6}{sup 2−} dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl{sub 6}{sup 2−} ⋅ thymine and PtCl{sub 6}{sup 2−} ⋅ adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN){sub 4}{sup 2−} ⋅ nucleobase complexes [A. Sen et al., J. Phys. Chem. B 119, 11626 (2015)]. The observation of delayed electron emission bands in the PtCl{sub 6}{sup 2−} ⋅ nucleobase spectra obtained in this work, as for the previously studied Pt(CN){sub 4}{sup 2−} ⋅ nucleobase complexes, is attributed to one-photon excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a “dynamic tag” which has the propensity to emit electrons when the attached nucleobase decays over a time scale long enough to

  13. Search for bound-state electron+positron pair decay

    NASA Astrophysics Data System (ADS)

    Bosch, F.; Hagmann, S.; Hillenbrand, P.-M.; Lane, G. J.; Litvinov, Yu. A.; Reed, M. W.; Sanjari, M. S.; Stöhlker, Th.; Torilov, S. Yu.; Tu, X. L.; Walke, P. M.

    2016-09-01

    The heavy ion storage rings coupled to in-flight radioactive-ion beam facilities, namely the ability to produce and store for extended periods of time radioactive nuclides in high atomic charge states, for the searchof yet unobserved decay mode - bound-state electron-positron pair decay.

  14. Electronic Religion and the Separation of Church and State.

    ERIC Educational Resources Information Center

    Jackson, Gordon

    An examination of the rise of "electronic religion" (religious broadcasting on radio and television) in the United States and the movement's fusing of religious and political issues during the 1980 election year lends credibility to the argument that a clash between church and state is inherent in the political aspects of these…

  15. Electronic states in hybrid boron nitride and graphene structures

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Huang, Y. H.; Ma, F.; Hu, T. W.; Xu, K. W.; Chu, Paul K.

    2013-08-01

    The energy bands and electronic states of hybrid boron nitride (BN) and graphene structures are studied by first principle calculations. The electronic states change from semi-metallic to insulating depending on the number of B and N atoms as well as domain symmetry. When there are unequal numbers of B and N atoms, mid-gap states usually appear around the Fermi level and the corresponding hybrid structure possesses magnetic and semi-metallic properties. However, when the numbers of B and N atoms are equal, a band gap exists indicative of a semiconducting or insulating nature which depends on the structural symmetry.

  16. Reverse quantum state engineering using electronic feedback loops

    NASA Astrophysics Data System (ADS)

    Kießlich, Gerold; Emary, Clive; Schaller, Gernot; Brandes, Tobias

    2012-12-01

    We propose an all-electronic technique to manipulate and control interacting quantum systems by unitary single-jump feedback conditioned on the outcome of a capacitively coupled electrometer and, in particular, a single-electron transistor. We provide a general scheme for stabilizing pure states in the quantum system and use an effective Hamiltonian method for the quantum master equation to elaborate on the nature of stabilizable states and the conditions under which state purification can be achieved. The state engineering within the quantum feedback scheme is shown to be linked with the solution of an inverse eigenvalue problem. Two applications of the feedback scheme are presented in detail: (i) stabilization of delocalized pure states in a single charge qubit and (ii) entanglement stabilization in two coupled charge qubits. In the latter example, we demonstrate the stabilization of a maximally entangled Bell state for certain detector positions and local feedback operations.

  17. Tunable topological states in electron-doped HTT-Pt

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoming; Wang, Zhenhai; Zhao, Mingwen; Liu, Feng

    2016-04-01

    Modulating topologically nontrivial states in trivial materials is of both scientific and technological interest. Using first-principles calculations, we propose a demonstration of electron-doping- (or gate-voltage-) induced multiple quantum states; namely, quantum spin Hall (QSH) and quantum anomalous Hall (QAH) states, in a single material of the organometallic framework (HTT-Pt) synthesized from triphenylene hexathiol molecules (HTT) and PtC l2 . At a low doping level, the trivial HTT-Pt converts to a QSH insulator protected by time-reversal symmetry (TRS). When the electronic doping concentration is further increased, TRS will be broken, making the HTT-Pt a QAH insulator. The band gaps of these topologically nontrivial states can be as large as 42.5 meV, suggesting robustness at high temperatures. The possibility of switching between the QSH and QAH states offers an intriguing platform for a different device paradigm by interfacing between QSH and QAH states.

  18. Fast electronic resistance switching involving hidden charge density wave states

    NASA Astrophysics Data System (ADS)

    Vaskivskyi, I.; Mihailovic, I. A.; Brazovskii, S.; Gospodaric, J.; Mertelj, T.; Svetin, D.; Sutar, P.; Mihailovic, D.

    2016-05-01

    The functionality of computer memory elements is currently based on multi-stability, driven either by locally manipulating the density of electrons in transistors or by switching magnetic or ferroelectric order. Another possibility is switching between metallic and insulating phases by the motion of ions, but their speed is limited by slow nucleation and inhomogeneous percolative growth. Here we demonstrate fast resistance switching in a charge density wave system caused by pulsed current injection. As a charge pulse travels through the material, it converts a commensurately ordered polaronic Mott insulating state in 1T-TaS2 to a metastable electronic state with textured domain walls, accompanied with a conversion of polarons to band states, and concurrent rapid switching from an insulator to a metal. The large resistance change, high switching speed (30 ps) and ultralow energy per bit opens the way to new concepts in non-volatile memory devices manipulating all-electronic states.

  19. Fast electronic resistance switching involving hidden charge density wave states

    PubMed Central

    Vaskivskyi, I.; Mihailovic, I. A.; Brazovskii, S.; Gospodaric, J.; Mertelj, T.; Svetin, D.; Sutar, P.; Mihailovic, D.

    2016-01-01

    The functionality of computer memory elements is currently based on multi-stability, driven either by locally manipulating the density of electrons in transistors or by switching magnetic or ferroelectric order. Another possibility is switching between metallic and insulating phases by the motion of ions, but their speed is limited by slow nucleation and inhomogeneous percolative growth. Here we demonstrate fast resistance switching in a charge density wave system caused by pulsed current injection. As a charge pulse travels through the material, it converts a commensurately ordered polaronic Mott insulating state in 1T–TaS2 to a metastable electronic state with textured domain walls, accompanied with a conversion of polarons to band states, and concurrent rapid switching from an insulator to a metal. The large resistance change, high switching speed (30 ps) and ultralow energy per bit opens the way to new concepts in non-volatile memory devices manipulating all-electronic states. PMID:27181483

  20. State-to-state kinetics and transport properties of electronically excited N and O atoms

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Kustova, E. V.

    2016-11-01

    A theoretical model of transport properties in electronically excited atomic gases in the state-to-state approach is developed. Different models for the collision diameters of atoms in excited states are discussed, and it is shown that the Slater-like models can be applied for the state-resolved transport coefficient calculations. The influence of collision diameters of N and O atoms with electronic degrees of freedom on the transport properties is evaluated. Different distributions on the electronic energy are considered for the calculation of transport coefficients. For the Boltzmann-like distributions at temperatures greater than 15000 K, an important effect of electronic excitation on the thermal conductivity and viscosity coefficients is found; the coefficients decrease significantly when many electronic states are taken into account. It is shown that under hypersonic reentry conditions the impact of collision diameters on the transport properties is not really important since the populations of high levels behind the shock waves are low.

  1. Quantum Adiabatic Algorithms and Large Spin Tunnelling

    NASA Technical Reports Server (NTRS)

    Boulatov, A.; Smelyanskiy, V. N.

    2003-01-01

    We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in this paper. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H (r) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H (r) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.

  2. Molecular wave function and effective adiabatic potentials calculated by extended multi-configuration time-dependent Hartree-Fock method

    SciTech Connect

    Kato, Tsuyoshi; Ide, Yoshihiro; Yamanouchi, Kaoru

    2015-12-31

    We first calculate the ground-state molecular wave function of 1D model H{sub 2} molecule by solving the coupled equations of motion formulated in the extended multi-configuration time-dependent Hartree-Fock (MCTDHF) method by the imaginary time propagation. From the comparisons with the results obtained by the Born-Huang (BH) expansion method as well as with the exact wave function, we observe that the memory size required in the extended MCTDHF method is about two orders of magnitude smaller than in the BH expansion method to achieve the same accuracy for the total energy. Second, in order to provide a theoretical means to understand dynamical behavior of the wave function, we propose to define effective adiabatic potential functions and compare them with the conventional adiabatic electronic potentials, although the notion of the adiabatic potentials is not used in the extended MCTDHF approach. From the comparison, we conclude that by calculating the effective potentials we may be able to predict the energy differences among electronic states even for a time-dependent system, e.g., time-dependent excitation energies, which would be difficult to be estimated within the BH expansion approach.

  3. Communication: On the competition between adiabatic and nonadiabatic dynamics in vibrationally mediated ammonia photodissociation in its A band

    NASA Astrophysics Data System (ADS)

    Xie, Changjian; Zhu, Xiaolei; Ma, Jianyi; Yarkony, David R.; Xie, Daiqian; Guo, Hua

    2015-03-01

    Non-adiabatic processes play an important role in photochemistry, but the mechanism for conversion of electronic energy to chemical energy is still poorly understood. To explore the possibility of vibrational control of non-adiabatic dynamics in a prototypical photoreaction, namely, the A-band photodissociation of NH 3 ( X ˜ 1 A 1 ) , full-dimensional state-to-state quantum dynamics of symmetric or antisymmetric stretch excited NH 3 ( X ˜ 1 A 1 ) is investigated on recently developed coupled diabatic potential energy surfaces. The experimentally observed H atom kinetic energy distributions are reproduced. However, contrary to previous inferences, the NH 2 ( A ˜ 2 A 1 ) /NH 2 ( X ˜ 2 B 1 ) branching ratio is found to be small regardless of the initial preparation of NH 3 ( X ˜ 1 A 1 ) , while the internal state distribution of the preeminent fragment, NH 2 ( X ˜ 2 B 1 ) , is found to depend strongly on the initial vibrational excitation of NH 3 ( X ˜ 1 A 1 ) . The slow H atoms in photodissociation mediated by the antisymmetric stretch fundamental state are due to energy sequestered in the internally excited NH 2 ( X ˜ 2 B 1 ) fragment, rather than in NH 2 ( A ˜ 2 A 1 ) as previously proposed. The high internal excitation of the NH 2 ( X ˜ 2 B 1 ) fragment is attributed to the torques exerted on the molecule as it passes through the conical intersection seam to the ground electronic state of NH3. Thus in this system, contrary to previous assertions, the control of electronic state branching by selective excitation of ground state vibrational modes is concluded to be ineffective. The juxtaposition of precise quantum mechanical results with complementary results based on quasi-classical surface hopping trajectories provides significant insights into the non-adiabatic process.

  4. STEADY-STATE MODEL OF SOLAR WIND ELECTRONS REVISITED

    SciTech Connect

    Yoon, Peter H.; Kim, Sunjung; Choe, G. S.

    2015-10-20

    In a recent paper, Kim et al. put forth a steady-state model for the solar wind electrons. The model assumed local equilibrium between the halo electrons, characterized by an intermediate energy range, and the whistler-range fluctuations. The basic wave–particle interaction is assumed to be the cyclotron resonance. Similarly, it was assumed that a dynamical steady state is established between the highly energetic superhalo electrons and high-frequency Langmuir fluctuations. Comparisons with the measured solar wind electron velocity distribution function (VDF) during quiet times were also made, and reasonable agreements were obtained. In such a model, however, only the steady-state solution for the Fokker–Planck type of electron particle kinetic equation was considered. The present paper complements the previous analysis by considering both the steady-state particle and wave kinetic equations. It is shown that the model halo and superhalo electron VDFs, as well as the assumed wave intensity spectra for the whistler and Langmuir fluctuations, approximately satisfy the quasi-linear wave kinetic equations in an approximate sense, thus further validating the local equilibrium model constructed in the paper by Kim et al.

  5. Alternative ground states enable pathway switching in biological electron transfer

    PubMed Central

    Abriata, Luciano A.; Álvarez-Paggi, Damián; Ledesma, Gabriela N.; Blackburn, Ninian J.; Vila, Alejandro J.; Murgida, Daniel H.

    2012-01-01

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant CuA redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronic wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. These findings suggest a unique role for alternative or “invisible” electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein–protein interactions and membrane potential may optimize and regulate electron–proton energy transduction. PMID:23054836

  6. Alternative ground states enable pathway switching in biological electron transfer

    SciTech Connect

    Abriata, Luciano A.; Alvarez-Paggi, Damian; Ledesma, Gabirela N.; Blackburn, Ninian J.; Vila, Alejandro J.; Murgida, Daniel H.

    2012-10-10

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant CuA redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronic wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. In conclusion, these findings suggest a unique role for alternative or “invisible” electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein–protein interactions and membrane potential may optimize and regulate electron–proton energy transduction.

  7. Stimulated Raman adiabatic passage in a three-level superconducting circuit

    PubMed Central

    Kumar, K. S.; Vepsäläinen, A.; Danilin, S.; Paraoanu, G. S.

    2016-01-01

    The adiabatic manipulation of quantum states is a powerful technique that opened up new directions in quantum engineering—enabling tests of fundamental concepts such as geometrical phases and topological transitions, and holding the promise of alternative models of quantum computation. Here we benchmark the stimulated Raman adiabatic passage for circuit quantum electrodynamics by employing the first three levels of a transmon qubit. In this ladder configuration, we demonstrate a population transfer efficiency >80% between the ground state and the second excited state using two adiabatic Gaussian-shaped control microwave pulses. By doing quantum tomography at successive moments during the Raman pulses, we investigate the transfer of the population in time domain. Furthermore, we show that this protocol can be reversed by applying a third adiabatic pulse, we study a hybrid nondiabatic–adiabatic sequence, and we present experimental results for a quasi-degenerate intermediate level. PMID:26902454

  8. Simple proof of equivalence between adiabatic quantum computation and the circuit model.

    PubMed

    Mizel, Ari; Lidar, Daniel A; Mitchell, Morgan

    2007-08-17

    We prove the equivalence between adiabatic quantum computation and quantum computation in the circuit model. An explicit adiabatic computation procedure is given that generates a ground state from which the answer can be extracted. The amount of time needed is evaluated by computing the gap. We show that the procedure is computationally efficient.

  9. Computing electronic structures: A new multiconfiguration approach for excited states

    NASA Astrophysics Data System (ADS)

    Cancès, Éric; Galicher, Hervé; Lewin, Mathieu

    2006-02-01

    We present a new method for the computation of electronic excited states of molecular systems. This method is based upon a recent theoretical definition of multiconfiguration excited states [due to one of us, see M. Lewin, Solutions of the multiconfiguration equations in quantum chemistry, Arch. Rat. Mech. Anal. 171 (2004) 83-114]. Our algorithm, dedicated to the computation of the first excited state, always converges to a stationary state of the multiconfiguration model, which can be interpreted as an approximate excited state of the molecule. The definition of this approximate excited state is variational. An interesting feature is that it satisfies a non-linear Hylleraas-Undheim-MacDonald type principle: the energy of the approximate excited state is an upper bound to the true excited state energy of the N-body Hamiltonian. To compute the first excited state, one has to deform paths on a manifold, like this is usually done in the search for transition states between reactants and products on potential energy surfaces. We propose here a general method for the deformation of paths which could also be useful in other settings. We also compare our method to other approaches used in Quantum Chemistry and give some explanation of the unsatisfactory behaviours which are sometimes observed when using the latters. Numerical results for the special case of two-electron systems are provided: we compute the first singlet excited state potential energy surface of the H2 molecule.

  10. Computing electronic structures: A new multiconfiguration approach for excited states

    SciTech Connect

    Cances, Eric . E-mail: cances@cermics.enpc.fr; Galicher, Herve . E-mail: galicher@cermics.enpc.fr; Lewin, Mathieu . E-mail: lewin@cermic.enpc.fr

    2006-02-10

    We present a new method for the computation of electronic excited states of molecular systems. This method is based upon a recent theoretical definition of multiconfiguration excited states [due to one of us, see M. Lewin, Solutions of the multiconfiguration equations in quantum chemistry, Arch. Rat. Mech. Anal. 171 (2004) 83-114]. Our algorithm, dedicated to the computation of the first excited state, always converges to a stationary state of the multiconfiguration model, which can be interpreted as an approximate excited state of the molecule. The definition of this approximate excited state is variational. An interesting feature is that it satisfies a non-linear Hylleraas-Undheim-MacDonald type principle: the energy of the approximate excited state is an upper bound to the true excited state energy of the N-body Hamiltonian. To compute the first excited state, one has to deform paths on a manifold, like this is usually done in the search for transition states between reactants and products on potential energy surfaces. We propose here a general method for the deformation of paths which could also be useful in other settings. We also compare our method to other approaches used in Quantum Chemistry and give some explanation of the unsatisfactory behaviours which are sometimes observed when using the latter. Numerical results for the special case of two-electron systems are provided: we compute the first singlet excited state potential energy surface of the H {sub 2} molecule.

  11. Charge transfer to ground-state ions produces free electrons

    NASA Astrophysics Data System (ADS)

    You, D.; Fukuzawa, H.; Sakakibara, Y.; Takanashi, T.; Ito, Y.; Maliyar, G. G.; Motomura, K.; Nagaya, K.; Nishiyama, T.; Asa, K.; Sato, Y.; Saito, N.; Oura, M.; Schöffler, M.; Kastirke, G.; Hergenhahn, U.; Stumpf, V.; Gokhberg, K.; Kuleff, A. I.; Cederbaum, L. S.; Ueda, K.

    2017-01-01

    Inner-shell ionization of an isolated atom typically leads to Auger decay. In an environment, for example, a liquid or a van der Waals bonded system, this process will be modified, and becomes part of a complex cascade of relaxation steps. Understanding these steps is important, as they determine the production of slow electrons and singly charged radicals, the most abundant products in radiation chemistry. In this communication, we present experimental evidence for a so-far unobserved, but potentially very important step in such relaxation cascades: Multiply charged ionic states after Auger decay may partially be neutralized by electron transfer, simultaneously evoking the creation of a low-energy free electron (electron transfer-mediated decay). This process is effective even after Auger decay into the dicationic ground state. In our experiment, we observe the decay of Ne2+ produced after Ne 1s photoionization in Ne-Kr mixed clusters.

  12. Charge transfer to ground-state ions produces free electrons

    PubMed Central

    You, D.; Fukuzawa, H.; Sakakibara, Y.; Takanashi, T.; Ito, Y.; Maliyar, G. G.; Motomura, K.; Nagaya, K.; Nishiyama, T.; Asa, K.; Sato, Y.; Saito, N.; Oura, M.; Schöffler, M.; Kastirke, G.; Hergenhahn, U.; Stumpf, V.; Gokhberg, K.; Kuleff, A. I.; Cederbaum, L. S.; Ueda, K

    2017-01-01

    Inner-shell ionization of an isolated atom typically leads to Auger decay. In an environment, for example, a liquid or a van der Waals bonded system, this process will be modified, and becomes part of a complex cascade of relaxation steps. Understanding these steps is important, as they determine the production of slow electrons and singly charged radicals, the most abundant products in radiation chemistry. In this communication, we present experimental evidence for a so-far unobserved, but potentially very important step in such relaxation cascades: Multiply charged ionic states after Auger decay may partially be neutralized by electron transfer, simultaneously evoking the creation of a low-energy free electron (electron transfer-mediated decay). This process is effective even after Auger decay into the dicationic ground state. In our experiment, we observe the decay of Ne2+ produced after Ne 1s photoionization in Ne–Kr mixed clusters. PMID:28134238

  13. Singularity of the time-energy uncertainty in adiabatic perturbation and cycloids on a Bloch sphere.

    PubMed

    Oh, Sangchul; Hu, Xuedong; Nori, Franco; Kais, Sabre

    2016-02-26

    Adiabatic perturbation is shown to be singular from the exact solution of a spin-1/2 particle in a uniformly rotating magnetic field. Due to a non-adiabatic effect, its quantum trajectory on a Bloch sphere is a cycloid traced by a circle rolling along an adiabatic path. As the magnetic field rotates more and more slowly, the time-energy uncertainty, proportional to the length of the quantum trajectory, calculated by the exact solution is entirely different from the one obtained by the adiabatic path traced by the instantaneous eigenstate. However, the non-adiabatic Aharonov-Anandan geometric phase, measured by the area enclosed by the exact path, approaches smoothly the adiabatic Berry phase, proportional to the area enclosed by the adiabatic path. The singular limit of the time-energy uncertainty and the regular limit of the geometric phase are associated with the arc length and arc area of the cycloid on a Bloch sphere, respectively. Prolate and curtate cycloids are also traced by different initial states outside and inside of the rolling circle, respectively. The axis trajectory of the rolling circle, parallel to the adiabatic path, is shown to be an example of transitionless driving. The non-adiabatic resonance is visualized by the number of cycloid arcs.

  14. Singularity of the time-energy uncertainty in adiabatic perturbation and cycloids on a Bloch sphere

    PubMed Central

    Oh, Sangchul; Hu, Xuedong; Nori, Franco; Kais, Sabre

    2016-01-01

    Adiabatic perturbation is shown to be singular from the exact solution of a spin-1/2 particle in a uniformly rotating magnetic field. Due to a non-adiabatic effect, its quantum trajectory on a Bloch sphere is a cycloid traced by a circle rolling along an adiabatic path. As the magnetic field rotates more and more slowly, the time-energy uncertainty, proportional to the length of the quantum trajectory, calculated by the exact solution is entirely different from the one obtained by the adiabatic path traced by the instantaneous eigenstate. However, the non-adiabatic Aharonov- Anandan geometric phase, measured by the area enclosed by the exact path, approaches smoothly the adiabatic Berry phase, proportional to the area enclosed by the adiabatic path. The singular limit of the time-energy uncertainty and the regular limit of the geometric phase are associated with the arc length and arc area of the cycloid on a Bloch sphere, respectively. Prolate and curtate cycloids are also traced by different initial states outside and inside of the rolling circle, respectively. The axis trajectory of the rolling circle, parallel to the adiabatic path, is shown to be an example of transitionless driving. The non-adiabatic resonance is visualized by the number of cycloid arcs. PMID:26916031

  15. Quantum dynamics by the constrained adiabatic trajectory method

    SciTech Connect

    Leclerc, A.; Jolicard, G.; Guerin, S.; Killingbeck, J. P.

    2011-03-15

    We develop the constrained adiabatic trajectory method (CATM), which allows one to solve the time-dependent Schroedinger equation constraining the dynamics to a single Floquet eigenstate, as if it were adiabatic. This constrained Floquet state (CFS) is determined from the Hamiltonian modified by an artificial time-dependent absorbing potential whose forms are derived according to the initial conditions. The main advantage of this technique for practical implementation is that the CFS is easy to determine even for large systems since its corresponding eigenvalue is well isolated from the others through its imaginary part. The properties and limitations of the CATM are explored through simple examples.

  16. Fragmentation pathwaysfor selected electronic states of theacetylene dication

    SciTech Connect

    Osipov, Timur; Rescigno, Thomas N.; Weber, Thorsten; Miyabe,Shungo; Jahnke, T.; Alnaser, A.; Hertlein, Markus P.; Jagutzki, O.; Schmidt, L.Ph.H.; Schoffler, M.; Foucar, L.; Schossler, S.; Havermeier,T.; Odenweller,M.; Voss, S.; Feinberg, Ben; Landers, Alan; Prior, MichaelH.; Dorner, Reinhart; Cocke, C.L.; Belkacem, Ali

    2007-12-18

    Coincident measurement of the Auger electron and fragmention momenta emitted after carbon core-level photoionization of acetylenehas yielded new understanding of how the dication fragments. Ab initiocalculations and experimental data, including body-frame Auger angulardistributions, are used to identify the parent electronic states andtogether yield a comprehensive map of the dissociation pathways whichinclude surface crossings and barriers to direct dissociation. The Augerangular distributions show evidence of core-holelocalization.

  17. Microwave zero-resistance states in a bilayer electron system.

    PubMed

    Wiedmann, S; Gusev, G M; Raichev, O E; Bakarov, A K; Portal, J C

    2010-07-09

    Magnetotransport measurements on a high-mobility electron bilayer system formed in a wide GaAs quantum well reveal vanishing dissipative resistance under continuous microwave irradiation. Profound zero-resistance states (ZRS) appear even in the presence of additional intersubband scattering of electrons. We study the dependence of photoresistance on frequency, microwave power, and temperature. Experimental results are compared with a theory demonstrating that the conditions for absolute negative resistivity correlate with the appearance of ZRS.

  18. Non-adiabatic effects in thermochemistry, spectroscopy and kinetics: the general importance of all three Born-Oppenheimer breakdown corrections.

    PubMed

    Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S

    2015-10-14

    Using a simple model Hamiltonian, the three correction terms for Born-Oppenheimer (BO) breakdown, the adiabatic diagonal correction (DC), the first-derivative momentum non-adiabatic correction (FD), and the second-derivative kinetic-energy non-adiabatic correction (SD), are shown to all contribute to thermodynamic and spectroscopic properties as well as to thermal non-diabatic chemical reaction rates. While DC often accounts for >80% of thermodynamic and spectroscopic property changes, the commonly used practice of including only the FD correction in kinetics calculations is rarely found to be adequate. For electron-transfer reactions not in the inverted region, the common physical picture that diabatic processes occur because of surface hopping at the transition state is proven inadequate as the DC acts first to block access, increasing the transition state energy by (ℏω)(2)λ/16J(2) (where λ is the reorganization energy, J the electronic coupling and ω the vibration frequency). However, the rate constant in the weakly-coupled Golden-Rule limit is identified as being only inversely proportional to this change rather than exponentially damped, owing to the effects of tunneling and surface hopping. Such weakly-coupled long-range electron-transfer processes should therefore not be described as "non-adiabatic" processes as they are easily described by Born-Huang ground-state adiabatic surfaces made by adding the DC to the BO surfaces; instead, they should be called just "non-Born-Oppenheimer" processes. The model system studied consists of two diabatic harmonic potential-energy surfaces coupled linearly through a single vibration, the "two-site Holstein model". Analytical expressions are derived for the BO breakdown terms, and the model is solved over a large parameter space focusing on both the lowest-energy spectroscopic transitions and the quantum dynamics of coherent-state wavepackets. BO breakdown is investigated pertinent to: ammonia inversion, aromaticity

  19. Applications of chirped Raman adiabatic rapid passage to atom interferometry

    NASA Astrophysics Data System (ADS)

    Kotru, Krish; Butts, David L.; Kinast, Joseph M.; Johnson, David M. S.; Radojevic, Antonije M.; Timmons, Brian P.; Stoner, Richard E.

    2012-02-01

    We present robust atom optics, based on chirped Raman adiabatic rapid passage (ARP), in the context of atom interferometry. Such ARP light pulses drive coherent population transfer between two hyperfine ground states by sweeping the frequency difference of two fixed-intensity optical fields with large single photon detunings. Since adiabatic transfer is less sensitive to atom temperature and non-uniform Raman beam intensity than standard Raman pulses, this approach should improve the stability of atom interferometers operating in dynamic environments. In such applications, chirped Raman ARP may also provide advantages over the previously demonstrated stimulated Raman adiabatic passage (STIRAP) technique, which requires precise modulation of beam intensity and zeroing of the single photon detuning. We demonstrate a clock interferometer with chirped Raman ARP pulses, and compare its stability to that of a conventional Raman pulse interferometer. We also discuss potential improvements to inertially sensitive atom interferometers. Copyright 2011 by The Charles Stark Draper Laboratory, Inc. All rights reserved.

  20. Arbitrary Amplitude DIA and DA Solitary Waves in Adiabatic Dusty Plasmas

    SciTech Connect

    Mamun, A. A.; Jahan, N.; Shukla, P. K.

    2008-10-15

    The dust-ion-acoustic (DIA) as well as the dust-acoustic (DA) solitary waves (SWs) in an adiabatic dusty plasma are investigated by the pseudo-potential approach which is valid for arbitrary amplitude SWs. The role of the adiabaticity of electrons and ions in modifying the basic features (polarity, speed, amplitude and width) of arbitrary amplitude DIA and DA SWs are explicitly examined. It is found that the effects of the adiabaticity of electrons and ions significantly modify the basic features (polarity, speed, amplitude and width) of the DIA and DA SWs. The implications of our results in space and laboratory dusty plasmas are briefly discussed.

  1. Electron-impact excitation of the low-lying electronic states of formaldehyde

    NASA Technical Reports Server (NTRS)

    Chutjian, A.

    1974-01-01

    Electron-impact excitation has been observed at incident electron energies of 10.1 and 20.1 eV to the first five excited electronic states of formaldehyde lying at and below the 1B2 state at 7.10 eV. These excitations include two new transitions in the energy-loss range 5.6-6.2 eV and 6.7-7.0 eV which have been detected for the first time, either through electron-impact excitation or photon absorption. The differential cross sections of these new excitations are given at scattering angles between 15 and 135 deg. These cross-section ratios peak at large scattering angles - a characteristic of triplet - singlet excitations. The design and performance of the electron-impact spectrometer used in the above observations is outlined and discussed.

  2. Integral cross sections for electron impact excitation of vibrational and electronic states in phenol

    SciTech Connect

    Neves, R. F. C.; Jones, D. B.; Lopes, M. C. A.; Blanco, F.; García, G.; Ratnavelu, K.; Brunger, M. J.

    2015-05-21

    We report on measurements of integral cross sections (ICSs) for electron impact excitation of a series of composite vibrational modes and electronic-states in phenol, where the energy range of those experiments was 15–250 eV. There are currently no other results against which we can directly compare those measured data. We also report results from our independent atom model with screened additivity rule correction computations, namely, for the inelastic ICS (all discrete electronic states and neutral dissociation) and the total ionisation ICS. In addition, for the relevant dipole-allowed excited electronic states, we also report f-scaled Born-level and energy-corrected and f-scaled Born-level (BEf-scaled) ICS. Where possible, our measured and calculated ICSs are compared against one another with the general level of accord between them being satisfactory to within the measurement uncertainties.

  3. Alternative ground states enable pathway switching in biological electron transfer

    DOE PAGES

    Abriata, Luciano A.; Alvarez-Paggi, Damian; Ledesma, Gabirela N.; ...

    2012-10-10

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant CuA redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronicmore » wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. In conclusion, these findings suggest a unique role for alternative or “invisible” electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein–protein interactions and membrane potential may optimize and regulate electron–proton energy transduction.« less

  4. Non-adiabatic exchange-correlation kernel for the non-equilibrium response of three-dimensional Hubbard model

    NASA Astrophysics Data System (ADS)

    Acharya, Shree Ram; Baral, Nisha; Turkowski, Volodymyr; Rahman, Talat S.

    2015-03-01

    We apply Dynamical Mean-Field Theory (DMFT) to calculate the non-adiabatic (frequency-dependent) exchange-correlation kernel for the three-dimensional Hubbard model. We analyze the dependence of the kernel on the electron doping, local Coulomb repulsion and frequency by using three different impurity solvers: Hubbard-I, Iterative Perturbation Theory (IPT) and Continuous-Time Quantum Monte Carlo (CT-QMC). From the calculated data, we obtain approximate analytical expressions for the kernel. We apply the exact numerical and analytical kernels to study the non-equilibrium response of the system for applied ultrafast laser pulse. We demonstrate that the non-adiabaticity of the kernel plays an important role in the system response; in particular, leading to new excited-states involved in the system dynamics. Work supported in part by DOE Grant No. DOE-DE-FG02-07ER46354.

  5. Threshold ionization, structural isomers, and electronic states of M2O2 (M = Sc, Y, and La)

    NASA Astrophysics Data System (ADS)

    Wu, Lu; Zhang, Changhua; Krasnokutski, Serge A.; Yang, Dong-Sheng

    2014-06-01

    M2O2 (M = Sc, Y, and La) were synthesized in a pulsed laser-vaporization molecular beam source and studied by mass-analyzed threshold ionization (MATI) spectroscopy and ab initio calculations. Adiabatic ionization energies (AIEs) and several vibrational frequencies were measured accurately for the first time from the MATI spectra. Six possible structural isomers of M2O2 were considered in the calculations and the three converged structures were used in the spectral analysis. A planar cyclic structure in D2h point group was predicted to be the most stable one by the theory and observed by the experiment. The cyclic structure is formed by joining two MO2 fragments together through two shared oxygen atoms. In forming the ground state clusters, each metal atom loses two (n - 1)d electrons and as a result, has only one ns electron in the metal-based valence orbital. The ground electronic state of Sc2O2 is 1Ag, and those of Y2O2 and La2O2 are 3B1u. Ionization of both 1Ag and 3B1u neutral states yields the 2Ag ion state by removing one of the two ns electrons, and the resultant ion has a similar geometry to the neutral cluster. The AIEs of the clusters are 5.5752 (6), 5.2639 (6), 4.5795 (6) eV for M = Sc, Y, and La, respectively. The vibrational frequencies of the observed modes, including O-M and M-M stretches, are in the range of 200-800 cm-1.

  6. Nonadiabatic Transitions in Adiabatic Rapid Passage

    NASA Astrophysics Data System (ADS)

    Lu, T.; Miao, X.; Metcalf, H.

    2006-05-01

    Optical forces much larger than the ordinary radiative force can be achieved on a two-level atom by multiple repetitions of adiabatic rapid passage sweeps with counterpropagating light beams. Chirped light pulses drive the atom-laser system up a ladder of dressed state energy sheets on sequential trajectories, thereby decreasing the atomic kinetic energy. Nonadiabatic transitions between the energy sheets must be avoided for this process to be effective. We have calculated the nonadiabatic transition probability for various chirped light pulses numerically. These results were compared to the first Demkov-Kunike model and the well-known Landau-Zener model. In addition, an analytical form of the nonadiabatic transition probability has been found for linearly chirped pulses and an approximate form for generic symmetric finite-time pulses has been found for the entire parameter space using the technique of unitary integration. From this, the asymptotic transition probability in the adiabatic limit was derived. T. Lu, X. Miao, and H. Metcalf, Phys., Rev. A 71 061405(R) (2005). Yu. Demkov and M. Kunike, Vestn. Leningr. Univ. Fis. Khim., 16, 39 (1969); K.-A. Suominen and B. Garraway, Phys. Rev. A45, 374 (1992)

  7. CORRIGENDUM: Universal variational expansion for high-precision bound-state calculations in three-body systems. Applications to weakly bound, adiabatic and two-shell cluster systems

    NASA Astrophysics Data System (ADS)

    Bailey, David H.; Frolov, Alexei M.

    2003-12-01

    Since the above paper was published we have received a suggestion from T K Rebane that our variational energy, -402.261 928 652 266 220 998 au, for the 3S(L = 0) state from table 4 (right-hand column) is wrong in the fourth and fifth decimal digits. Our original variational energies were E(2000) = -402.192 865 226 622 099 583 au and E(3000) = -402.192 865 226 622 099 838 au. Unfortunately, table 4 contains a simple typographic error. The first two digits after the decimal point (26) in the published energies must be removed. Then the results exactly coincide with the original energies. These digits (26) were left in table 4 from the original version, which also included the 2S(L = 0) states of the helium-muonic atoms. A similar typographic error was found in table 4 of another paper by A M Frolov (2001 J. Phys. B: At. Mol. Opt. Phys. 34 3813). The computed ground state energy for the ppµ muonic molecular ion was -0.494 386 820 248 934 546 94 mau. In table 4 of that paper the first figure '8' (fifth digit after the decimal point) was lost from the energy value presented in this table. We wish to thank T K Rebane of the Fock Physical Institute in St Petersburg for pointing out the misprint related to the helium(4)-muonic atom.

  8. Sliding seal materials for adiabatic engines

    NASA Technical Reports Server (NTRS)

    Lankford, J.

    1985-01-01

    The sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, loading conditions that are representative of the adiabatic engine environment. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Microhardness tests were performed on the candidate materials at elevated temperatures, and in atmospheres relevant to the piston seal application, and optical and electron microscopy were used to elucidate the micromechanisms of wear following wear testing. X-ray spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Electrical effects in the friction and wear processes were explored in order to evaluate the potential usefulness of such effects in modifying the friction and wear rates in service. However, this factor was found to be of negligible significance in controlling friction and wear.

  9. Electronic State Decomposition of Energetic Materials and Model Systems

    DTIC Science & Technology

    2010-11-17

    tetrazine1,4-dioxde ( DATO ), is investigated. Although these molecules are based on N -oxides of a tetrazine aromatic heterocyclic ring, their...nitramines, furazan, tetrazines, tetrazine-N oxides, terazoles, PETN, RDX,HMX,CL-20,DAATO,ACTO, DATO ,conical intersections Elliot R Bernstein Colorado State...Tetrazine-N-Oxide Based High Nitrogen Content Energetic Materials from Excited Electronic States," J. Chem. Phys. 131, 194304 (2009). A

  10. Nature of ground and electronic excited states of higher acenes

    PubMed Central

    Yang, Yang; Yang, Weitao

    2016-01-01

    Higher acenes have drawn much attention as promising organic semiconductors with versatile electronic properties. However, the nature of their ground state and electronic excited states is still not fully clear. Their unusual chemical reactivity and instability are the main obstacles for experimental studies, and the potentially prominent diradical character, which might require a multireference description in such large systems, hinders theoretical investigations. Here, we provide a detailed answer with the particle–particle random-phase approximation calculation. The 1Ag ground states of acenes up to decacene are on the closed-shell side of the diradical continuum, whereas the ground state of undecacene and dodecacene tilts more to the open-shell side with a growing polyradical character. The ground state of all acenes has covalent nature with respect to both short and long axes. The lowest triplet state 3B2u is always above the singlet ground state even though the energy gap could be vanishingly small in the polyacene limit. The bright singlet excited state 1B2u is a zwitterionic state to the short axis. The excited 1Ag state gradually switches from a double-excitation state to another zwitterionic state to the short axis, but always keeps its covalent nature to the long axis. An energy crossing between the 1B2u and excited 1Ag states happens between hexacene and heptacene. Further energetic consideration suggests that higher acenes are likely to undergo singlet fission with a low photovoltaic efficiency; however, the efficiency might be improved if a singlet fission into multiple triplets could be achieved. PMID:27528690

  11. Experimental Studies of Interacting Electronic States in NaCs

    NASA Astrophysics Data System (ADS)

    Faust, Carl E.

    This dissertation describes methods and results of spectroscopic studies of the NaCs molecule. NaCs is of particular interest in many labs where experimental studies of ultra-cold molecules are being conducted. Data obtained in the present work will also be useful as benchmarks for various theoretical calculations. Our goals in studying this molecule were to map out high lying electronic states and to understand how these states interact with one another. Sodium and cesium metal were heated in a heat-pipe oven to form a vapor of NaCs molecules. These molecules were excited using narrow band, continuous wave (cw), tunable lasers. We employed the optical-optical double resonance (OODR) technique to obtain Doppler-free spectra of transitions to rotational and vibrational levels of high lying electronic states. One state of particular interest was the 12(0+) electronic state. Rovibrational level energies corresponding to this state were measured and used to generate a potential energy curve using computer programs to implement both the Rydberg-Klein-Rees (RKR) method and the inverted perturbation approach (IPA). By observing fluorescence from the 12(0+) state resolved as a function of wavelength, we determined that this state interacts with the nearby 11(0+) electronic state, which was previously mapped out by Ashman et al. A two-stage coupling model was devised to describe the resolved fluorescence originating from these two interacting states. The electronic states interact via spin-orbit coupling, while the individual rovibrational levels interact via a second mechanism, likely nonadiabatic coupling. This two-stage coupling between the levels of these states causes quantum interference between fluorescence pathways associated with different components of the wavefunctions describing these levels. This interference results in more complicated resolved fluorescence spectra. The model was used to fit parameters describing these interactions so that the resolved

  12. Ultrafast Spectroscopy of Delocalized Excited States of the Hydrated Electron

    SciTech Connect

    Paul F. Barbara

    2005-09-28

    Research under support of this grant has been focused on the understanding of highly delocalized ''conduction-band-like'' excited states of solvated electrons in bulk water, in water trapped in the core of reverse micelles, and in alkane solvents. We have strived in this work to probe conduction-band-like states by a variety of ultrafast spectroscopy techniques. (Most of which were developed under DOE support in a previous funding cycle.) We have recorded the optical spectrum of the hydrated electron for the first time. This was accomplished by applying a photo-detrapping technique that we had developed in a previous funding cycle, but had not yet been applied to characterize the actual spectrum. In the cases of reverse micelles, we have been investigating the potential role of conduction bands in the electron attachment process and the photoinduced detrapping, and have published two papers on this topic. Finally, we have been exploring solvated electrons in isooctane from various perspectives. All of these results strongly support the conclusion that optically accessible, highly delocalized electronic states exist in these various media.

  13. Status of state electronic disease surveillance systems--United States, 2007.

    PubMed

    2009-07-31

    The National Electronic Disease Surveillance System (NEDSS) is a web-based system that uses standard health information technology (IT) codes to integrate disease surveillance systems, enabling them to transfer public health, laboratory, and clinical data securely from health-care providers to public health departments. Each jurisdictions' system consists of a base system and modules that can be used for specific surveillance purposes. States also use NEDSS-like or other electronic systems to conduct surveillance on specific diseases or conditions. Until recently, no assessment had been done to describe the status and characteristics of state electronic disease surveillance systems. The Council of State and Territorial Epidemiologists (CSTE) conducted such an assessment in August 2007 in all 50 states. This report presents the results of that assessment, which indicated that, in 2007, state electronic disease surveillance systems varied widely and were in various stages of implementation. Each state had either custom-built systems or purchased systems that were customizable, with associated disease modules to meet its own surveillance needs. As interoperability becomes the standard for electronic data sharing, more states will face customization costs and the need to hire more technical specialists who can manage health information and exchange. Further collaboration and support from surveillance and health-care IT stakeholders with public health will be needed to improve the efficacy and quality of electronic disease surveillance systems.

  14. Controlling autoionization in strontium two-electron-excited states

    NASA Astrophysics Data System (ADS)

    Fields, Robert; Zhang, Xinyue; Dunning, F. Barry; Yoshida, Shuhei; Burgdörfer, Joachim

    2016-05-01

    One challenge in engineering long-lived two-electron-excited states, i.e., so-called planetary atoms, is autoionization. Autoionization, however, can be suppressed if the outermost electron is placed in a high- n, n ~ 300 - 600 , high- L state because such states have only a very small overlap with the inner electron, even when this is also excited to a state of relatively high n and hence of relatively long lifetime. Here the L-dependence of the autoionization rate for high- n strontium Rydberg atoms is examined during excitation of the core ion 5 s 2S1 / 2 - 5 p 2P3 / 2 transition. Measurements in which the angular momentum of the Rydberg electron is controlled using a pulsed electric field show that the autoionization rate decreases rapidly with increasing L and becomes very small for values larger than ~ 20 . The data are analyzed with the aid of calculations undertaken using complex scaling. Research supported by the NSF and Robert A. Welch Foundation.

  15. Tuning ground states and excitations in complex electronic materials

    SciTech Connect

    Bishop, A.R.

    1996-09-01

    Modern electronic materials are characterized by a great variety of broken-symmetry ground states and excitations. Their control requires understanding and tuning underlying driving forces of spin-charge-lattice coupling, critical to macroscopic properties and applications. We report representative model calculations which demonstrate some of the richness of the phenomena and the challenges for successful microscopic modeling.

  16. 45 CFR 265.6 - Must States file reports electronically?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 2 2010-10-01 2010-10-01 false Must States file reports electronically? 265.6 Section 265.6 Public Welfare Regulations Relating to Public Welfare OFFICE OF FAMILY ASSISTANCE (ASSISTANCE PROGRAMS), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  17. Determining the Origins of Electronic States in Semiconductor Nanostructures

    SciTech Connect

    Goldman, Rachel S.; Johnson, H. T.

    2014-12-15

    With support from this program, we have generated key results in quantum dot (QD) formation, strain/electronic coupling, measurement and modeling of confined states, and examination of the influence of QDs on thermoelectric and photovoltaic properties of nanocomposite structures. This final report contains a description of our key findings followed by a list of personnel supported and publications generated.

  18. Spilling of electronic states in Pb quantum wells

    NASA Astrophysics Data System (ADS)

    Jałochowski, M.; Palotás, K.; Krawiec, M.

    2016-01-01

    Energy-dependent apparent step heights of two-dimensional ultrathin Pb islands grown on the Si(111)6 ×6 -Au surface have been investigated by a combination of scanning tunneling microscopy, first-principles density-functional theory, and the particle-in-a-box model calculations. The apparent step height shows the thickness- and energy-dependent oscillatory behaviors, which are directly related to the spilling of electron states into the vacuum exhibiting a quantum size effect. This has been unambiguously proven by extensive first-principles scanning tunneling microscopy and spectroscopy simulations. An electronic contribution to the apparent step height is directly determined. At certain energies it reaches values as high as a half of the atomic contribution. The applicability of the particle-in-a-box model to the spilling of electron states is also discussed.

  19. Internal conversion from excited electronic states of 229Th ions

    NASA Astrophysics Data System (ADS)

    Bilous, Pavlo V.; Kazakov, Georgy A.; Moore, Iain D.; Schumm, Thorsten; Pálffy, Adriana

    2017-03-01

    The process of internal conversion from excited electronic states is investigated theoretically for the case of the vacuum-ultraviolet nuclear transition of 229Th. Due to the very low transition energy, the 229Th nucleus offers the unique possibility to open the otherwise forbidden internal conversion nuclear decay channel for thorium ions via optical laser excitation of the electronic shell. We show that this feature can be exploited to investigate the isomeric state properties via observation of internal conversion from excited electronic configurations of +Th and Th+2 ions. A possible experimental realization of the proposed scenario at the nuclear laser spectroscopy facility IGISOL in Jyväskylä, Finland, is discussed.

  20. Electronic density of states in sequence dependent DNA molecules

    NASA Astrophysics Data System (ADS)

    de Oliveira, B. P. W.; Albuquerque, E. L.; Vasconcelos, M. S.

    2006-09-01

    We report in this work a numerical study of the electronic density of states (DOS) in π-stacked arrays of DNA single-strand segments made up from the nucleotides guanine G, adenine A, cytosine C and thymine T, forming a Rudin-Shapiro (RS) as well as a Fibonacci (FB) polyGC quasiperiodic sequences. Both structures are constructed starting from a G nucleotide as seed and following their respective inflation rules. Our theoretical method uses Dyson's equation together with a transfer-matrix treatment, within an electronic tight-binding Hamiltonian model, suitable to describe the DNA segments modelled by the quasiperiodic chains. We compared the DOS spectra found for the quasiperiodic structure to those using a sequence of natural DNA, as part of the human chromosome Ch22, with a remarkable concordance, as far as the RS structure is concerned. The electronic spectrum shows several peaks, corresponding to localized states, as well as a striking self-similar aspect.

  1. Adiabatic Spin Pumping with Quantum Dots

    NASA Astrophysics Data System (ADS)

    Mucciolo, Eduardo R.

    Electronic transport in mesoscopic systems has been intensively studied for more the last three decades. While there is a substantial understanding of the stationary regime, much less is know about phase-coherent nonequilibrium transport when pulses or ac perturbations are used to drive electrons at low temperatures and at small length scales. However, about 20 years ago Thouless proposed to drive nondissipative currents in quantum systems by applying simultaneously two phase-locked external perturbations. The so-called adiabatic pumping mechanism has been revived in the last few years, both theoretically and experimentally, in part because of the development of lateral semiconductor quantum dots. Here we will explain how open dots can be used to create spin-polarized currents with little or no net charge transfer. The pure spin pump we propose is the analog of a charge battery in conventional electronics and may provide a needed circuit element for spin-based electronics. We will also discuss other relevant issues such as rectification and decoherence and point out possible extensions of the mechanism to closed dots.

  2. Monitoring Non-Adiabatic Dynamics of the RNA Base Uracil by UV-Pump-IR-Probe Spectroscopy

    PubMed Central

    Fingerhut, Benjamin P.; Dorfman, Konstantin E.; Mukamel, Shaul

    2013-01-01

    Resolving the excited state dynamics of DNA- and RNA- nucleobases has attracted considerably attention. UV irradiation of the isolated nucleobases leads to the population of an electronic excited state which is quenched by internal conversion mediated by conical intersections on an ultrafast timescale. We present non-adiabatic on-the-fly molecular dynamics simulations of the UV-pump-IR-probe signal of the pyrimidine nucleobase uracil using a novel semiclassical protocol which takes into account the path integral over the excited state vibrational dynamics and properly describes the joint temporal and spectral resolution of the technique. Simulations of vibrational motions of carbonyl fingerprint modes in the electronically excited states reveal clear signatures of different relaxation pathways on a timescale of hundreds of femtoseconds which arise from an ultrafast branching in the excited state. We show that the inherent temporal and spectral resolution of the technique is not purely instrumental but also depends on the vibrational fluctuation timescale. PMID:23914288

  3. Targeting excited states in all-trans polyenes with electron-pair states

    NASA Astrophysics Data System (ADS)

    Boguslawski, Katharina

    2016-12-01

    Wavefunctions restricted to electron pair states are promising models for strongly correlated systems. Specifically, the pair Coupled Cluster Doubles (pCCD) ansatz allows us to accurately describe bond dissociation processes and heavy-element containing compounds with multiple quasi-degenerate single-particle states. Here, we extend the pCCD method to model excited states using the equation of motion (EOM) formalism. As the cluster operator of pCCD is restricted to electron-pair excitations, EOM-pCCD allows us to target excited electron-pair states only. To model singly excited states within EOM-pCCD, we modify the configuration interaction ansatz of EOM-pCCD to contain also single excitations. Our proposed model represents a simple and cost-effective alternative to conventional EOM-CC methods to study singly excited electronic states. The performance of the excited state models is assessed against the lowest-lying excited states of the uranyl cation and the two lowest-lying excited states of all-trans polyenes. Our numerical results suggest that EOM-pCCD including single excitations is a good starting point to target singly excited states.

  4. Targeting excited states in all-trans polyenes with electron-pair states.

    PubMed

    Boguslawski, Katharina

    2016-12-21

    Wavefunctions restricted to electron pair states are promising models for strongly correlated systems. Specifically, the pair Coupled Cluster Doubles (pCCD) ansatz allows us to accurately describe bond dissociation processes and heavy-element containing compounds with multiple quasi-degenerate single-particle states. Here, we extend the pCCD method to model excited states using the equation of motion (EOM) formalism. As the cluster operator of pCCD is restricted to electron-pair excitations, EOM-pCCD allows us to target excited electron-pair states only. To model singly excited states within EOM-pCCD, we modify the configuration interaction ansatz of EOM-pCCD to contain also single excitations. Our proposed model represents a simple and cost-effective alternative to conventional EOM-CC methods to study singly excited electronic states. The performance of the excited state models is assessed against the lowest-lying excited states of the uranyl cation and the two lowest-lying excited states of all-trans polyenes. Our numerical results suggest that EOM-pCCD including single excitations is a good starting point to target singly excited states.

  5. Foucault's Pendulum, Analog for an Electron Spin State

    NASA Astrophysics Data System (ADS)

    Linck, Rebecca

    2012-11-01

    The classical Lagrangian that describes the coupled oscillations of Foucault's pendulum presents an interesting analog to an electron's spin state in an external magnetic field. With a simple modification, this classical Lagrangian yields equations of motion that directly map onto the Schrodinger-Pauli Equation. This analog goes well beyond the geometric phase, reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.

  6. The low-lying electronic states of ReB.

    PubMed

    Borin, Antonio Carlos; Gobbo, João Paulo; Castro, César Augusto Milani

    2014-07-01

    The ground and low-lying electronic states of ReB were studied at the CASPT2//CASSCF level (multiconfigurational second-order perturbation theory) and quadruple-ζ ANO-RCC basis sets. Spectroscopic constants, potential energy curves, wavefunctions, and Mulliken population analysis are given. The ground state of ReB is of X(5)Σ(+) symmetry (R e  = 1.817 Å, ω e  = .909 cm(-1), and μ = 2.87 D), giving rise to a Ω = 0(+) ground state after including spin-orbit coupling.

  7. The electronic properties of superatom states of hollow molecules.

    PubMed

    Feng, Min; Zhao, Jin; Huang, Tian; Zhu, Xiaoyang; Petek, Hrvoje

    2011-05-17

    Electronic and optical properties of molecules and molecular solids are traditionally considered from the perspective of the frontier orbitals and their intermolecular interactions. How molecules condense into crystalline solids, however, is mainly attributed to the long-range polarization interaction. In this Account, we show that long-range polarization also introduces a distinctive set of diffuse molecular electronic states, which in quantum structures or solids can combine into nearly-free-electron (NFE) bands. These NFE properties, which are usually associated with good metals, are vividly evident in sp(2) hybridized carbon materials, specifically graphene and its derivatives. The polarization interaction is primarily manifested in the screening of an external charge at a solid/vacuum interface. It is responsible for the universal image potential and the associated unoccupied image potential (IP) states, which are observed even at the He liquid/vacuum interface. The molecular electronic properties that we describe are derived from the IP states of graphene, which float above and below the molecular plane and undergo free motion parallel to it. Rolling or wrapping a graphene sheet into a nanotube or a fullerene transforms the IP states into diffuse atom-like orbitals that are bound primarily to hollow molecular cores, rather than the component atoms. Therefore, we named them the superatom molecular orbitals (SAMOs). Like the excitonic states of semiconductor nanostructures or the plasmonic resonances of metallic nanoparticles, SAMOs of fullerene molecules, separated by their van der Waals distance, can combine to form diatomic molecule-like orbitals of C(60) dimers. For larger aggregates, they form NFE bands of superatomic quantum structures and solids. The overlap of the diffuse SAMO wavefunctions in van der Waals solids provides a different paradigm for band formation than the valence or conduction bands formed by interaction of the more tightly bound

  8. Time-dependent renormalized natural orbital theory applied to the two-electron spin-singlet case: Ground state, linear response, and autoionization

    NASA Astrophysics Data System (ADS)

    Brics, M.; Bauer, D.

    2013-11-01

    Favorably scaling numerical time-dependent many-electron techniques such as time-dependent density functional theory (TDDFT) with adiabatic exchange-correlation potentials typically fail in capturing highly correlated electron dynamics. We propose a method based on natural orbitals, i.e., the eigenfunctions of the one-body reduced density matrix, that is almost as inexpensive numerically as adiabatic TDDFT, but which is capable of describing correlated phenomena such as doubly excited states, autoionization, Fano profiles in the photoelectron spectra, and strong-field ionization in general. Equations of motion (EOMs) for natural orbitals and their occupation numbers have been derived earlier. We show that by using renormalized natural orbitals (RNOs) both can be combined into one equation governed by a hermitian effective Hamiltonian. We specialize on the two-electron spin-singlet system, known as being a “worst case” testing ground for TDDFT, and employ the widely used, numerically exactly solvable, one-dimensional helium model atom (in a laser field) to benchmark our approach. The solution of the full, nonlinear EOMs for the RNOs is plagued by instabilities, and resorting to linear response is not an option for the ultimate goal to study nonperturbative dynamics in intense laser fields. We therefore make two rather bold approximations: we employ the initial-state-“frozen” effective RNO Hamiltonian for the time propagation and truncate the number of RNOs to only two per spin. Surprisingly, it turns out that even with these strong approximations we obtain a highly accurate ground state, reproduce doubly excited states, and autoionization.

  9. Foucault's pendulum, a classical analog for the electron spin state

    NASA Astrophysics Data System (ADS)

    Linck, Rebecca A.

    Spin has long been regarded as a fundamentally quantum phenomena that is incapable of being described classically. To bridge the gap and show that aspects of spin's quantum nature can be described classically, this work uses a classical Lagrangian based on the coupled oscillations of Foucault's pendulum as an analog for the electron spin state in an external magnetic field. With this analog it is possible to demonstrate that Foucault's pendulum not only serves as a basis for explaining geometric phase, but is also a basis for reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured electron spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.

  10. Calculation of electron scattering from the ground state of ytterbium

    SciTech Connect

    Bostock, Christopher J.; Fursa, Dmitry V.; Bray, Igor

    2011-05-15

    We report on the application of the convergent close-coupling method, in both relativistic and nonrelativistic formulations, to electron scattering from ytterbium. Angle-differential and integrated cross sections are presented for elastic scattering and excitation of the states (6s6p){sup 3}P{sub 0,1,2}, (6s6p){sup 1}P{sub 1}{sup o}, (6s7p){sup 1}P{sub 1}{sup o}, and (6s5d){sup 1}D{sub 2}{sup e} for a range of incident electron energies. We also present calculations of the total cross section, and angle-differential Stokes parameters for excitation of the (6s6p){sup 3}P{sub 1}{sup o} state from the ground state. A comparison is made with the relativistic distorted-wave method and experiments.

  11. Electronic states of PF 2 and PF +2

    NASA Astrophysics Data System (ADS)

    Latifzadeh, Lida; Balasubramanian, K.

    1994-10-01

    The ground and excited electronic states of PF 2 and PF +2 have been investigated using the complete active space self-consistent field (CASSCF) followed by multi-reference singles and doubles configuration interaction (MRSDCI) methods that include up to 1.2 million configurations. These states include X 2B 1, 4A 2, 2A 1(I), 2A 1(II), 2A 2, 2B 2(I), 2B 2(II), 4B 1, 2B 1(II) for PF 2 and 1A 1, 3B 1, 1B 1 for PF +2. Both all-electron computations employing large basis sets and relativistic effective core potentials using valence basis sets were carried out. The spectroscopic properties were determined for the bound states. The dissociation energy of PFF is obtained using the full second-order configuration interaction (SOCI) and CASSCF/MRSDCI methods.

  12. Vibrational coherences in charge-transfer dyes: a non-adiabatic picture.

    PubMed

    Sissa, Cristina; Delchiaro, Francesca; Di Maiolo, Francesco; Terenziani, Francesca; Painelli, Anna

    2014-10-28

    Essential-state models efficiently describe linear and nonlinear spectral properties of different families of charge-transfer chromophores. Here, the essential-state machinery is applied to the calculation of the early-stage dynamics after ultrafast (coherent) excitation of polar and quadrupolar chromophores. The fully non-adiabatic treatment of coupled electronic and vibrational motion allows for a reliable description of the dynamics of these intriguing systems. In particular, the proposed approach is reliable even when the adiabatic and harmonic approximations do not apply, such as for quadrupolar dyes that show a multistable, broken-symmetry excited state. Our approach quite naturally leads to a clear picture for a dynamical Jahn-Teller effect in these systems. The recovery of symmetry due to dynamical effects is however disrupted in polar solvents where a static symmetry lowering is observed. More generally, thermal disorder in polar solvents is responsible for dephasing phenomena, damping the coherent oscillations with particularly important effects in the case of polar dyes.

  13. Vibrational coherences in charge-transfer dyes: A non-adiabatic picture

    SciTech Connect

    Sissa, Cristina; Delchiaro, Francesca; Di Maiolo, Francesco

    2014-10-28

    Essential-state models efficiently describe linear and nonlinear spectral properties of different families of charge-transfer chromophores. Here, the essential-state machinery is applied to the calculation of the early-stage dynamics after ultrafast (coherent) excitation of polar and quadrupolar chromophores. The fully non-adiabatic treatment of coupled electronic and vibrational motion allows for a reliable description of the dynamics of these intriguing systems. In particular, the proposed approach is reliable even when the adiabatic and harmonic approximations do not apply, such as for quadrupolar dyes that show a multistable, broken-symmetry excited state. Our approach quite naturally leads to a clear picture for a dynamical Jahn-Teller effect in these systems. The recovery of symmetry due to dynamical effects is however disrupted in polar solvents where a static symmetry lowering is observed. More generally, thermal disorder in polar solvents is responsible for dephasing phenomena, damping the coherent oscillations with particularly important effects in the case of polar dyes.

  14. Optical limiting and picosecond relaxation of carbocyanines upper electronic states

    NASA Astrophysics Data System (ADS)

    Oulianov, D. A.; Dvornikov, A. S.; Rentzepis, P. M.

    2002-05-01

    Nonlinear absorption, anomalous fluorescence and relaxation of high-lying electronic states in six carbocyanine dyes, including cryptocyanine (DCI), DDI, DTDCI, DTTCI, DOTCI and HDIDCI, in solution and in polymer, were studied by means of picosecond transient absorption spectroscopy and nonlinear transmission experiments. Absorption cross-sections of the S 1→S n transition, and decay rates of the second singlet excited state, S 2, were measured. All dyes showed strong reverse saturable absorption in the 450-600 nm region with large excited to ground state absorption cross-section ratios. For DTDCI this ratio, at 470 nm, was measured to be 350, which is the largest ever reported. All molecules have shown strong optical limiting effect. However, in all molecules except DCI a saturation of the optical limiting process was observed as expected, owing to relatively long, up to 17.5 ps, lifetime of the S 2 state. The S 2 state fluorescence quantum yields were also measured.

  15. Kinetic and electron-electron energies for convex sums of ground state densities with degeneracies and fractional electron number

    SciTech Connect

    Levy, Mel E-mail: mlevy@tulane.edu; Anderson, James S. M.; Zadeh, Farnaz Heidar; Ayers, Paul W. E-mail: mlevy@tulane.edu

    2014-05-14

    Properties of exact density functionals provide useful constraints for the development of new approximate functionals. This paper focuses on convex sums of ground-level densities. It is observed that the electronic kinetic energy of a convex sum of degenerate ground-level densities is equal to the convex sum of the kinetic energies of the individual degenerate densities. (The same type of relationship holds also for the electron-electron repulsion energy.) This extends a known property of the Levy-Valone Ensemble Constrained-Search and the Lieb Legendre-Transform refomulations of the Hohenberg-Kohn functional to the individual components of the functional. Moreover, we observe that the kinetic and electron-repulsion results also apply to densities with fractional electron number (even if there are no degeneracies), and we close with an analogous point-wise property involving the external potential. Examples where different degenerate states have different kinetic energy and electron-nuclear attraction energy are given; consequently, individual components of the ground state electronic energy can change abruptly when the molecular geometry changes. These discontinuities are predicted to be ubiquitous at conical intersections, complicating the development of universally applicable density-functional approximations.

  16. Theory of Adiabatic Fountain Resonance

    NASA Astrophysics Data System (ADS)

    Williams, Gary A.

    2017-01-01

    The theory of "Adiabatic Fountain Resonance" with superfluid ^4{He} is clarified. In this geometry a film region between two silicon wafers bonded at their outer edge opens up to a central region with a free surface. We find that the resonance in this system is not a Helmholtz resonance as claimed by Gasparini et al., but in fact is a fourth sound resonance. We postulate that it occurs at relatively low frequency because the thin silicon wafers flex appreciably from the pressure oscillations of the sound wave.

  17. Adiabatic Wankel type rotary engine

    NASA Technical Reports Server (NTRS)

    Kamo, R.; Badgley, P.; Doup, D.

    1988-01-01

    This SBIR Phase program accomplished the objective of advancing the technology of the Wankel type rotary engine for aircraft applications through the use of adiabatic engine technology. Based on the results of this program, technology is in place to provide a rotor and side and intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Injection Stratified Charge (DISC) rotary engine was performed which concluded that applying thermal barrier coatings to the rotor should be successful and that it was unlikely that the rotor housing could be successfully run with thermal barrier coatings as the thermal stresses were extensive.

  18. Digitized adiabatic quantum computing with a superconducting circuit.

    PubMed

    Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M

    2016-06-09

    Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.

  19. Digitized adiabatic quantum computing with a superconducting circuit

    NASA Astrophysics Data System (ADS)

    Barends, R.; Shabani, A.; Lamata, L.; Kelly, J.; Mezzacapo, A.; Heras, U. Las; Babbush, R.; Fowler, A. G.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Solano, E.; Neven, H.; Martinis, John M.

    2016-06-01

    Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.

  20. Number Partitioning via Quantum Adiabatic Computation

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, Vadim N.; Toussaint, Udo; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We study both analytically and numerically the complexity of the adiabatic quantum evolution algorithm applied to random instances of combinatorial optimization problems. We use as an example the NP-complete set partition problem and obtain an asymptotic expression for the minimal gap separating the ground and exited states of a system during the execution of the algorithm. We show that for computationally hard problem instances the size of the minimal gap scales exponentially with the problem size. This result is in qualitative agreement with the direct numerical simulation of the algorithm for small instances of the set partition problem. We describe the statistical properties of the optimization problem that are responsible for the exponential behavior of the algorithm.

  1. Adiabatic theory for anisotropic cold molecule collisions

    SciTech Connect

    Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod

    2015-08-21

    We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment {sup 4}He(1s2s {sup 3}S) + HD(1s{sup 2}) → {sup 4}He(1s{sup 2}) + HD{sup +}(1s) + e{sup −} [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.

  2. Energy-Efficient and Secure S-Box circuit using Symmetric Pass Gate Adiabatic Logic

    SciTech Connect

    Kumar, Dinesh; Thapliyal, Himanshu; Mohammad, Azhar; Singh, Vijay; Perumalla, Kalyan S

    2016-01-01

    Differential Power Analysis (DPA) attack is considered to be a main threat while designing cryptographic processors. In cryptographic algorithms like DES and AES, S-Box is used to indeterminate the relationship between the keys and the cipher texts. However, S-box is prone to DPA attack due to its high power consumption. In this paper, we are implementing an energy-efficient 8-bit S-Box circuit using our proposed Symmetric Pass Gate Adiabatic Logic (SPGAL). SPGAL is energy-efficient as compared to the existing DPAresistant adiabatic and non-adiabatic logic families. SPGAL is energy-efficient due to reduction of non-adiabatic loss during the evaluate phase of the outputs. Further, the S-Box circuit implemented using SPGAL is resistant to DPA attacks. The results are verified through SPICE simulations in 180nm technology. SPICE simulations show that the SPGAL based S-Box circuit saves upto 92% and 67% of energy as compared to the conventional CMOS and Secured Quasi-Adiabatic Logic (SQAL) based S-Box circuit. From the simulation results, it is evident that the SPGAL based circuits are energy-efficient as compared to the existing DPAresistant adiabatic and non-adiabatic logic families. In nutshell, SPGAL based gates can be used to build secure hardware for lowpower portable electronic devices and Internet-of-Things (IoT) based electronic devices.

  3. Consistent schemes for non-adiabatic dynamics derived from partial linearized density matrix propagation.

    PubMed

    Huo, Pengfei; Coker, David F

    2012-12-14

    Powerful approximate methods for propagating the density matrix of complex systems that are conveniently described in terms of electronic subsystem states and nuclear degrees of freedom have recently been developed that involve linearizing the density matrix propagator in the difference between the forward and backward paths of the nuclear degrees of freedom while keeping the interference effects between the different forward and backward paths of the electronic subsystem described in terms of the mapping Hamiltonian formalism and semi-classical mechanics. Here we demonstrate that different approaches to developing the linearized approximation to the density matrix propagator can yield a mean-field like approximate propagator in which the nuclear variables evolve classically subject to Ehrenfest-like forces that involve an average over quantum subsystem states, and by adopting an alternative approach to linearizing we obtain an algorithm that involves classical like nuclear dynamics influenced by a quantum subsystem state dependent force reminiscent of trajectory surface hopping methods. We show how these different short time approximations can be implemented iteratively to achieve accurate, stable long time propagation and explore their implementation in different representations. The merits of the different approximate quantum dynamics methods that are thus consistently derived from the density matrix propagator starting point and different partial linearization approximations are explored in various model system studies of multi-state scattering problems and dissipative non-adiabatic relaxation in condensed phase environments that demonstrate the capabilities of these different types of approximations for treating non-adiabatic electronic relaxation, bifurcation of nuclear distributions, and the passage from nonequilibrium coherent dynamics at short times to long time thermal equilibration in the presence of a model dissipative environment.

  4. First and second derivative of the wave function of the {sup 1}{Sigma}{sup +} states of the KH molecule

    SciTech Connect

    Khelifi, Neji

    2011-04-15

    First and second derivative of the nonadiabatic coupling between the several {sup 1}{Sigma}{sup +} adiabatic states of the KH molecule considered from accurate diabatic and adiabatic data have been evaluated. Such derivatives of the electronic wave function are determined through a numerical differentiation of the rotational matrix connecting the diabatic and adiabatic representations. The first as well as the second derivative present many peaks related to ionic-neutral and neutral-neutral coupling between the {sup 1}{Sigma}{sup +} states. Such radial coupling has been exploited to calculate the first adiabatic correction, which corresponds to the diagonal term of the second derivative divided by the reduced mass, for the ground and some excited states of the KH molecule. The second adiabatic correction has been determined using the virial theorem. The first adiabatic correction was added to the adiabatic potential energy curves to redetermine the corrected spectroscopic constants and vibrational energy levels. The vibrational shift, which is the difference between the corrected and the adiabatic levels, has been calculated for X, A, C, and D {sup 1}{Sigma}{sup +} states of the KH molecule. A shift of some 10 cm{sup -1} is observed for some vibrational levels showing the breakdown of the Born-Oppenheimer approximation.

  5. Energy decomposition analysis in an adiabatic picture.

    PubMed

    Mao, Yuezhi; Horn, Paul R; Head-Gordon, Martin

    2017-02-22

    Energy decomposition analysis (EDA) of electronic structure calculations has facilitated quantitative understanding of diverse intermolecular interactions. Nevertheless, such analyses are usually performed at a single geometry and thus decompose a "single-point" interaction energy. As a result, the influence of the physically meaningful EDA components on the molecular structure and other properties are not directly obtained. To address this gap, the absolutely localized molecular orbital (ALMO)-EDA is reformulated in an adiabatic picture, where the frozen, polarization, and charge transfer energy contributions are defined as energy differences between the stationary points on different potential energy surfaces (PESs), which are accessed by geometry optimizations at the frozen, polarized and fully relaxed levels of density functional theory (DFT). Other molecular properties such as vibrational frequencies can thus be obtained at the stationary points on each PES. We apply the adiabatic ALMO-EDA to different configurations of the water dimer, the water-Cl(-) and water-Mg(2+)/Ca(2+) complexes, metallocenes (Fe(2+), Ni(2+), Cu(2+), Zn(2+)), and the ammonia-borane complex. This method appears to be very useful for unraveling how physical effects such as polarization and charge transfer modulate changes in molecular properties induced by intermolecular interactions. As an example of the insight obtained, we find that a linear hydrogen bond geometry for the water dimer is preferred even without the presence of polarization and charge transfer, while the red shift in the OH stretch frequency is primarily a charge transfer effect; by contrast, a near-linear geometry for the water-chloride hydrogen bond is achieved only when charge transfer is allowed.

  6. Ultrafast adiabatic second harmonic generation

    NASA Astrophysics Data System (ADS)

    Dahan, Asaf; Levanon, Assaf; Katz, Mordechai; Suchowski, Haim

    2017-03-01

    We introduce a generalization of the adiabatic frequency conversion method for an efficient conversion of ultrashort pulses in the full nonlinear regime. Our analysis takes into account dispersion as well as two-photon processes and Kerr effect, allowing complete analysis of any three waves with arbitrary phase mismatched design and any nonlinear optical process. We use this analysis to design an efficient and robust second harmonic generation, the most widely used nonlinear process for both fundamental and applied research. We experimentally show that such design not only allows for very efficient conversion of various of ultrashort pulses, but is also very robust to variations in the parameters of both the nonlinear crystal and the incoming light. These include variation of more than 100 °C in the crystal temperature, a wide bandwidth of up to 75 nm and a chirp variation of 300 fs to 3.5 ps of the incoming pulse. Also, we show the dependency of the adiabatic second harmonic generation design on the pump intensity and the crystal length. Our study shows that two photon absorption plays a critical role in such high influence nonlinear dynamics, and that it must be considered in order to achieve agreement with experimental results.

  7. Ultrafast adiabatic second harmonic generation.

    PubMed

    Dahan, Asaf; Levanon, Assaf; Katz, Mordechai; Suchowski, Haim

    2017-03-01

    We introduce a generalization of the adiabatic frequency conversion method for an efficient conversion of ultrashort pulses in the full nonlinear regime. Our analysis takes into account dispersion as well as two-photon processes and Kerr effect, allowing complete analysis of any three waves with arbitrary phase mismatched design and any nonlinear optical process. We use this analysis to design an efficient and robust second harmonic generation, the most widely used nonlinear process for both fundamental and applied research. We experimentally show that such design not only allows for very efficient conversion of various of ultrashort pulses, but is also very robust to variations in the parameters of both the nonlinear crystal and the incoming light. These include variation of more than 100 °C in the crystal temperature, a wide bandwidth of up to 75 nm and a chirp variation of 300 fs to 3.5 ps of the incoming pulse. Also, we show the dependency of the adiabatic second harmonic generation design on the pump intensity and the crystal length. Our study shows that two photon absorption plays a critical role in such high influence nonlinear dynamics, and that it must be considered in order to achieve agreement with experimental results.

  8. Low-lying electronic states of LiF molecule with inner electrons correlation

    NASA Astrophysics Data System (ADS)

    Wan, Ming-jie; Huang, Duo-hui; Yang, Jun-sheng; Cao, Qi-long; Jin, Cheng-guo; Wang, Fan-hou

    2015-06-01

    The potential energy curves and dipole moments of the low-lying electronic states of LiF molecule are performed by using highly accurate multi-reference configuration interaction with Awcv5z basis sets. 1s, the inner shell of Li is considered as the closed orbit, which is used to characterise the spectroscopic properties of a manifold of singlet and triplet states. 16 electronic states correlate with two lowest dissociation channels Li(2S)+F(2P) and Li(2P)+F(2P) are investigated. Spectroscopic parameters of the ground state X1Σ+ have been evaluated and critically compared with the available experimental values and the other theoretical data. However, spectroscopic parameters of 13Π, 11Δ, 11Σ-, 11Π, 13Σ+, 23Σ+, 13Δ, 13Σ-, 23Π, 21Π, 33Π, 31Π and 33Σ+ states are studied for the first time. These 13 excited states have shallow potential wells, and the dispersion coefficients of these excited states are predicted. In additional, oscillator strengths of excited states at equilibrium distances are also predicted.

  9. Start-up of the reversed-field pinch in an adiabatic manner

    NASA Astrophysics Data System (ADS)

    Caramana, E. J.

    1981-03-01

    Purely adiabatic formation of a reversed-field pinch is examined as a possible means of access to diffuse, stable reversed-field equilibria. Ideal MHD equations describing adiabatic reversed-field pinch formation are solved to obtain the electric fields and plasma density at the wall characteristic of the initial state and the states through which the system must pass adiabatically. It is shown that if the states through which the plasma evolves adiabatically to a final Bessel-function model state decay resistively, the magnetic energy lost is small. The effects of resistive MHD activity analogous to that observed in tokamaks on reversed-field pinch start-up are also considered.

  10. Electron teleportation via Majorana bound states in a mesoscopic superconductor.

    PubMed

    Fu, Liang

    2010-02-05

    Zero-energy Majorana bound states in superconductors have been proposed to be potential building blocks of a topological quantum computer, because quantum information can be encoded nonlocally in the fermion occupation of a pair of spatially separated Majorana bound states. However, despite intensive efforts, nonlocal signatures of Majorana bound states have not been found in charge transport. In this work, we predict a striking nonlocal phase-coherent electron transfer process by virtue of tunneling in and out of a pair of Majorana bound states. This teleportation phenomenon only exists in a mesoscopic superconductor because of an all-important but previously overlooked charging energy. We propose an experimental setup to detect this phenomenon in a superconductor-quantum-spin-Hall-insulator-magnetic-insulator hybrid system.

  11. Controlled interaction of surface quantum-well electronic states.

    PubMed

    Seufert, Knud; Auwärter, Willi; García de Abajo, F J; Ecija, David; Vijayaraghavan, Saranyan; Joshi, Sushobhan; Barth, Johannes V

    2013-01-01

    We report on the construction of well-defined surface quantum well arrangements by combining self-assembly protocols and molecular manipulation procedures. After the controlled removal of individual porphyrin molecules from dense-packed arrays on Ag(111), the surface state electrons are confined at the bare silver patches. These act as quantum wells that show well-defined unoccupied bound surface states. Scanning tunneling spectroscopy and complementary boundary element method calculations are performed to characterize the interaction between the bound states of adjacent quantum wells and reveal a hybridization of wave functions resulting in bonding and antibonding states. The interwell coupling can be tuned by the deliberate choice of the molecules acting as potential barriers. The fabrication method is shown to be ideally suited to engineer specific configurations as one-dimensional chains or two-dimensional artificial molecules.

  12. Photofragmentation and vibrational relaxation of size-selected clusters ions : Non-adiabatic molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Douady, J.; Gervais, B.; Jacquet, E.; Zanuttini, D.; Giglio, E.

    2009-11-01

    We present non-adiabatic molecular dynamics simulations of size-selected Na2+ Arn (n=6-11-17) cluster. Their electronic structure is obtained from an accurate 1-electron model using core polarization pseudopotentials. We follow the dynamics of two specific photoexcitation processes (X2 Σ+g → A2Σ+u) and (X2 Σ+g → B2 Πu) during the first 10 ps. We identify a variety of processes in these clusters, such as dissociation of the Na2+ chromophore, solvation of the Na+ fragment as Na+ Arp and the recombination to the ground state of the Na2+ Arp with an important solvent evaporation. These processes depend significantly on the transition and on the isomer. We discuss these processes as a function of the cluster size.

  13. Localized Electron States Near a Metal-SemiconductorNanocontact

    SciTech Connect

    Demchenko, Denis O.; Wang, Lin-Wang

    2007-04-25

    The electronic structure of nanowires in contact withmetallic electrodes of experimentally relevant sizes is calculated byincorporating the electrostatic polarization potential into the atomisticsingle particle Schrodinger equation. We show that the presence of anelectrode produces localized electron/hole states near the electrode, aphenomenon only exhibited in nanostructures and overlooked in the past.This phenomenon will have profound implications on electron transport insuch nanosystems. We calculate several electrode/nanowire geometries,with varying contact depths and nanowire radii. We demonstrate the changein the band gap of up to 0.5 eV in 3 nm diameter CdSe nanowires andcalculate the magnitude of the applied electric field necessary toovercome the localization.

  14. Evolution of electronic states in fullerenes with size

    NASA Astrophysics Data System (ADS)

    Dong, Jianjun; Drabold, David A.

    1996-04-01

    The electronic density of states (DOS) of fullerenes is studied in this paper. The DOS of small fullerences (C_60 and C_240) is computed with exact diagonalization, while the DOS of large fullerences (C_540, C_960, C_2169 and C_3840) is computed with a newly developed ``Order N" electronic structure method: the maximum entropy method (Maxent) footnote D.A. Drabold, O.F. Sankey, Phys. Rev. Lett. 70 3631,(1995). The projected DOS at different types of sites (pentagon site and facet center hexagon site) is also computed with Maxent. We illustrate the size dependence and the cluster to crystal evolution. footnote D.A. Drabold, P.Ordejón, J. Dong and R.M. Martin, Solid State Commun.,96 833, (1995). We observe that the DOS closely approximates graphite for relaxed C_2160 and C_3840.

  15. Electronic spectrum and localization of electronic states in aperiodic quantum dot chains

    NASA Astrophysics Data System (ADS)

    Korotaev, P. Yu.; Vekilov, Yu. Kh.; Kaputkina, N. E.

    2014-02-01

    The electronic energy spectra of aperiodic Thue-Morse, Rudin-Shapiro, and double-periodic quantum dot chains are investigated in the tight-binding approximation. The dependence of the spectrum on all parameters of a "mixed" aperiodic chain model is studied: the electronic energy at quantum dots and the hopping integrals. The electronic degree of localization in the chains under consideration is determined by analyzing the inverse participation ratio. Its spectral distribution and the dependence of the band-averaged degree of localization on these model parameters have been calculated. It is shown that a transition of the system's sites to a resonant state in which the degree of electron localization decreases, while an overlap between the subbands occurs in the spectrum is possible when the parameters are varied.

  16. Understanding x-ray driven impulsive electronic state redistribution using a three-state model

    NASA Astrophysics Data System (ADS)

    Ware, Matthew R.; Cryan, James; Bucksbaum, Philip H.

    2016-05-01

    The natural timescale for electron motion is extremely fast; electrons can move across molecular bonds in less than a femtosecond. To understand this fast motion and the role of electronic coherence, we are interested in creating a superposition of valence excited states through excitation with a broad bandwidth (>5eV) laser pulse. In the x-ray regime, the molecular ground state can couple to valence-excited states through an intermediate autoionizing resonance in a process known as stimulated x-ray Raman scattering (SXRS). X-rays excite electrons from the highly localized K-shells in a molecule, creating a superposition of valence-excited states initially localized around a target atom in the molecule. Coherences between states in the superposition will subsequently drive charge transfer as the wavepacket spreads out across the molecule. We use an effective 3-state model coupling the ground, auto-ionizing, and valence-excited states in diatomic systems to study the cross-section of SXRS as function of x-ray intensity, central frequency, bandwidth, and chirp. We also make observations on how the x-ray parameters affect the degree of initial localization to an atom of the wavepacket created in SXRS. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division.

  17. Electronic thermal conductivity in a superconducting vortex state

    NASA Astrophysics Data System (ADS)

    Adachi, H.; Miranovic, P.; Ichioka, M.; Machida, K.

    2007-10-01

    The longitudinal component of the electronic thermal conductivity κxx in a superconducting vortex state is calculated as a function of magnetic field B. Calculations are performed by taking account of the spatial dependence of normal Green's function g, which was neglected in the previous studies using the Brandt-Pesch-Tewordt method. We discuss the possibility of using κxx(B) as a probe of the pair potential symmetry.

  18. Non-Adiabatic Mechanism for Photosynthetic Energy Transfer and All-Optical Determination of Concentration using Femtosecond Lasers

    NASA Astrophysics Data System (ADS)

    Tiwari, Vivek

    2015-05-01

    Understanding the fundamental physics of light-harvesting in both, natural and artificial systems is key for the development of efficient light-harvesting technologies. My thesis addresses the following topics, i.) the mechanism underlying the remarkably efficient electronic energy transfer in natural light harvesting antennas, ii.) a femtosecond time-resolved photonumeric technique to quantitatively characterize transient chemical species. This talk will concentrate on the first project, while briefly touching the key ideas of the second project. Light harvesting antennas use a set of closely spaced pigment molecules held in a controlled relative geometry by a protein. It is shown that in certain antenna proteins the excited state electronic energy gaps between the pigments are resonant with a quantum of pigment vibrational energy. With such a vibrational-electronic resonance, anti-correlated motions between the pigments lead to a strong coupling between the electronic and nuclear motions, that is, breakdown of the Born-Oppenheimer approximation, over a wide range of pigment vibrational motions. It is shown that the 2D spectroscopic signatures of the resulting unavoidable nested non-adiabatic energy funnel on the excited states of photosynthetic antennas are consistent with all the reported 2D signatures of long-lived coherent oscillations, including the ones that are not explained by prior models of excited state electronic energy transfer. Extensions that account for both resonant and near-resonant pigment vibrations suggest that photosynthetic energy transfer presents a novel design in which electronic energy transfer proceeds non-adiabatically through clusters of vibrations with frequencies distributed around electronic energy gaps. I will also briefly talk about our experiments demonstrating quantitative time-resolved measurement of absolute number of excited state molecules. Based on these measurements, an all-optical technique that simultaneously determines

  19. Non-adiabatic dynamics of molecules in optical cavities

    NASA Astrophysics Data System (ADS)

    Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul

    2016-02-01

    Strong coupling of molecules to the vacuum field of micro cavities can modify the potential energy surfaces thereby opening new photophysical and photochemical reaction pathways. While the influence of laser fields is usually described in terms of classical field, coupling to the vacuum state of a cavity has to be described in terms of dressed photon-matter states (polaritons) which require quantized fields. We present a derivation of the non-adiabatic couplings for single molecules in the strong coupling regime suitable for the calculation of the dressed state dynamics. The formalism allows to use quantities readily accessible from quantum chemistry codes like the adiabatic potential energy surfaces and dipole moments to carry out wave packet simulations in the dressed basis. The implications for photochemistry are demonstrated for a set of model systems representing typical situations found in molecules.

  20. Non-adiabatic dynamics of molecules in optical cavities

    SciTech Connect

    Kowalewski, Markus Bennett, Kochise; Mukamel, Shaul

    2016-02-07

    Strong coupling of molecules to the vacuum field of micro cavities can modify the potential energy surfaces thereby opening new photophysical and photochemical reaction pathways. While the influence of laser fields is usually described in terms of classical field, coupling to the vacuum state of a cavity has to be described in terms of dressed photon-matter states (polaritons) which require quantized fields. We present a derivation of the non-adiabatic couplings for single molecules in the strong coupling regime suitable for the calculation of the dressed state dynamics. The formalism allows to use quantities readily accessible from quantum chemistry codes like the adiabatic potential energy surfaces and dipole moments to carry out wave packet simulations in the dressed basis. The implications for photochemistry are demonstrated for a set of model systems representing typical situations found in molecules.

  1. Glycine in an electronically excited state: ab initio electronic structure and dynamical calculations.

    PubMed

    Muchová, Eva; Slavícek, Petr; Sobolewski, Andrzej L; Hobza, Pavel

    2007-06-21

    The goal of this study is to explore the photochemical processes following optical excitation of the glycine molecule into its two low-lying excited states. We employed electronic structure methods at various levels to map the PES of the ground state and the two low-lying excited states of glycine. It follows from our calculations that the photochemistry of glycine can be regarded as a combination of photochemical behavior of amines and carboxylic acid. The first channel (connected to the presence of amino group) results in ultrafast decay, while the channels characteristic for the carboxylic group occur on a longer time scale. Dynamical calculations provided the branching ratio for these channels. We also addressed the question whether conformationally dependent photochemistry can be observed for glycine. While electronic structure calculations favor this possibility, the ab initio multiple spawning (AIMS) calculations showed only minor relevance of the reaction path resulting in conformationally dependent dynamics.

  2. Reversibility and energy dissipation in adiabatic superconductor logic.

    PubMed

    Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2017-12-01

    Reversible computing is considered to be a key technology to achieve an extremely high energy efficiency in future computers. In this study, we investigated the relationship between reversibility and energy dissipation in adiabatic superconductor logic. We analyzed the evolution of phase differences of Josephson junctions in the reversible quantum-flux-parametron (RQFP) gate and confirmed that the phase differences can change time reversibly, which indicates that the RQFP gate is physically, as well as logically, reversible. We calculated energy dissipation required for the RQFP gate to perform a logic operation and numerically demonstrated that the energy dissipation can fall below the thermal limit, or the Landauer bound, by lowering operation frequencies. We also investigated the 1-bit-erasure gate as a logically irreversible gate and the quasi-RQFP gate as a physically irreversible gate. We calculated the energy dissipation of these irreversible gates and showed that the energy dissipation of these gate is dominated by non-adiabatic state changes, which are induced by unwanted interactions between gates due to logical or physical irreversibility. Our results show that, in reversible computing using adiabatic superconductor logic, logical and physical reversibility are required to achieve energy dissipation smaller than the Landauer bound without non-adiabatic processes caused by gate interactions.

  3. Liquid-state polaron theory of the hydrated electron revisited

    NASA Astrophysics Data System (ADS)

    Donley, James P.; Heine, David R.; Tormey, Caleb A.; Wu, David T.

    2014-07-01

    The quantum path integral/classical liquid-state theory of Chandler and co-workers, created to describe an excess electron in solvent, is re-examined for the hydrated electron. The portion that models electron-water density correlations is replaced by two equations: the range optimized random phase approximation (RO-RPA), and the Donley, Rajasekaran, and Liu (DRL) approximation to the "two-chain" equation, both shown previously to describe accurately the static structure and thermodynamics of strongly charged polyelectrolyte solutions. The static equilibrium properties of the hydrated electron are analyzed using five different electron-water pseudopotentials. The theory is then compared with data from mixed quantum/classical Monte Carlo and molecular dynamics simulations using these same pseudopotentials. It is found that the predictions of the RO-RPA and DRL-based polaron theories are similar and improve upon previous theory, with values for almost all properties analyzed in reasonable quantitative agreement with the available simulation data. Also, it is found using the Larsen, Glover, and Schwartz pseudopotential that the theories give values for the solvation free energy that are at least three times larger than that from experiment.

  4. Liquid-state polaron theory of the hydrated electron revisited

    SciTech Connect

    Donley, James P.; Heine, David R.; Tormey, Caleb A.; Wu, David T.

    2014-07-14

    The quantum path integral/classical liquid-state theory of Chandler and co-workers, created to describe an excess electron in solvent, is re-examined for the hydrated electron. The portion that models electron-water density correlations is replaced by two equations: the range optimized random phase approximation (RO-RPA), and the Donley, Rajasekaran, and Liu (DRL) approximation to the “two-chain” equation, both shown previously to describe accurately the static structure and thermodynamics of strongly charged polyelectrolyte solutions. The static equilibrium properties of the hydrated electron are analyzed using five different electron-water pseudopotentials. The theory is then compared with data from mixed quantum/classical Monte Carlo and molecular dynamics simulations using these same pseudopotentials. It is found that the predictions of the RO-RPA and DRL-based polaron theories are similar and improve upon previous theory, with values for almost all properties analyzed in reasonable quantitative agreement with the available simulation data. Also, it is found using the Larsen, Glover, and Schwartz pseudopotential that the theories give values for the solvation free energy that are at least three times larger than that from experiment.

  5. New insights into the nonadiabatic state population dynamics of model proton-coupled electron transfer reactions from the mixed quantum-classical Liouville approach

    SciTech Connect

    Shakib, Farnaz A.; Hanna, Gabriel

    2016-01-14

    In a previous study [F. A. Shakib and G. Hanna, J. Chem. Phys. 141, 044122 (2014)], we investigated a model proton-coupled electron transfer (PCET) reaction via the mixed quantum-classical Liouville (MQCL) approach and found that the trajectories spend the majority of their time on the mean of two coherently coupled adiabatic potential energy surfaces. This suggested a need for mean surface evolution to accurately simulate observables related to ultrafast PCET processes. In this study, we simulate the time-dependent populations of the three lowest adiabatic states in the ET-PT (i.e., electron transfer preceding proton transfer) version of the same PCET model via the MQCL approach and compare them to the exact quantum results and those obtained via the fewest switches surface hopping (FSSH) approach. We find that the MQCL population profiles are in good agreement with the exact quantum results and show a significant improvement over the FSSH results. All of the mean surfaces are shown to play a direct role in the dynamics of the state populations. Interestingly, our results indicate that the population transfer to the second-excited state can be mediated by dynamics on the mean of the ground and second-excited state surfaces, as part of a sequence of nonadiabatic transitions that bypasses the first-excited state surface altogether. This is made possible through nonadiabatic transitions between different mean surfaces, which is the manifestation of coherence transfer in MQCL dynamics. We also investigate the effect of the strength of the coupling between the proton/electron and the solvent coordinate on the state population dynamics. Drastic changes in the population dynamics are observed, which can be understood in terms of the changes in the potential energy surfaces and the nonadiabatic couplings. Finally, we investigate the state population dynamics in the PT-ET (i.e., proton transfer preceding electron transfer) and concerted versions of the model. The PT

  6. New insights into the nonadiabatic state population dynamics of model proton-coupled electron transfer reactions from the mixed quantum-classical Liouville approach.

    PubMed

    Shakib, Farnaz A; Hanna, Gabriel

    2016-01-14

    In a previous study [F. A. Shakib and G. Hanna, J. Chem. Phys. 141, 044122 (2014)], we investigated a model proton-coupled electron transfer (PCET) reaction via the mixed quantum-classical Liouville (MQCL) approach and found that the trajectories spend the majority of their time on the mean of two coherently coupled adiabatic potential energy surfaces. This suggested a need for mean surface evolution to accurately simulate observables related to ultrafast PCET processes. In this study, we simulate the time-dependent populations of the three lowest adiabatic states in the ET-PT (i.e., electron transfer preceding proton transfer) version of the same PCET model via the MQCL approach and compare them to the exact quantum results and those obtained via the fewest switches surface hopping (FSSH) approach. We find that the MQCL population profiles are in good agreement with the exact quantum results and show a significant improvement over the FSSH results. All of the mean surfaces are shown to play a direct role in the dynamics of the state populations. Interestingly, our results indicate that the population transfer to the second-excited state can be mediated by dynamics on the mean of the ground and second-excited state surfaces, as part of a sequence of nonadiabatic transitions that bypasses the first-excited state surface altogether. This is made possible through nonadiabatic transitions between different mean surfaces, which is the manifestation of coherence transfer in MQCL dynamics. We also investigate the effect of the strength of the coupling between the proton/electron and the solvent coordinate on the state population dynamics. Drastic changes in the population dynamics are observed, which can be understood in terms of the changes in the potential energy surfaces and the nonadiabatic couplings. Finally, we investigate the state population dynamics in the PT-ET (i.e., proton transfer preceding electron transfer) and concerted versions of the model. The PT

  7. Model for primary electron transfer and coupling of electronic states at reaction centers of purple bacteria

    NASA Astrophysics Data System (ADS)

    Pavlovich, V. S.

    2006-05-01

    A detailed derivation is presented for relations making it possible to describe the effect of temperature on the halfwidth of the P960 and P870 absorption bands and also on the electron transfer (ET) rate at reaction centers (RCs) of the purple bacteria Rps. viridis and Rb. sphaeroides. Primary electron transfer is considered as a resonant nonradiative transition between P* and P+B L - states (where P is a special pair, BL is an additional bacteriochlorophyll in the L branch of the reaction center). It has been shown that the vibrational hα mode with frequency 130 150 cm-1 controls primary electron transfer. It has been found that the matrix element of the electronic transition between the states P* and P+B L - is equal to 12.7 ± 0.9 and 12.0 ± 1.2 cm-1 for Rps. viridis and Rb. sphaeroides respectively. The mechanism is discussed for electron transport from P* and BL and then to bacteriopheophytin HL.

  8. Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; Blanco, F.; García, G.; Brunger, M. J.

    2016-04-01

    We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20-250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron-furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.

  9. Adiabatic quantum algorithm for search engine ranking.

    PubMed

    Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A

    2012-06-08

    We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in "q-sampling" protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.

  10. Adiabatic Quantum Algorithm for Search Engine Ranking

    NASA Astrophysics Data System (ADS)

    Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A.

    2012-06-01

    We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log⁡(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in “q-sampling” protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.

  11. Theory of electron transfer and molecular state in DNA

    NASA Astrophysics Data System (ADS)

    Endres, Robert Gunter

    2002-09-01

    In this thesis, a mechanism for long-range electron transfer in DNA and a systematic search for high conductance DNA are developed. DNA is well known for containing the genetic code of all living species. On the other hand, there are some experimental indications that DNA can mediate effectively long-range electron transfer leading to the concept of chemistry at a distance. This can be important for DNA damage and healing. In the first part of the thesis, a possible mechanism for long-range electron transfer is introduced. The weak distance dependent electron transfer was experimentally observed using transition metal intercalators for donor and acceptor. In our model calculations, the transfer is mediated by the molecular analogue of a Kondo bound state well known from solid state physics of mixed-valence rare-earth compounds. We believe this is quite realistic, since localized d orbitals of the transition metal ions could function as an Anderson impurity embedded in a reservoir of rather delocalized molecular orbitals of the intercalator ligands and DNA pi orbitals. The effective Anderson model is solved with a physically intuitive variational ansatz as well as with the essentially exact DMRG method. The electronic transition matrix element, which is important because it contains the donor-acceptor distance dependence, is obtained with the Mulliken-Hush algorithm as well as from Born-Oppenheimer potential energy surfaces. Our possible explanation of long-range electron transfer is put in context to other more conventional mechanisms which also could lead to similar behavior. Another important issue of DNA is its possible use for nano-technology. Although DNA's mechanical properties are excellent, the question whether it can be conducting and be used for nano-wires is highly controversial. Experimentally, DNA shows conducting, semi-conducting and insulating properties. Motivated by these wide ranging experimental results on the conductivity of DNA, we have

  12. 75 FR 3463 - Cross-Media Electronic Reporting Rule State Authorized Program Revision Approval: State of North...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-21

    ... AGENCY Cross-Media Electronic Reporting Rule State Authorized Program Revision Approval: State of North...'s approval, under regulations for Cross-Media Electronic Reporting, of the State of North Carolina's..., the final Cross-Media Electronic Reporting Rule (CROMERR) was published in the Federal Register (70...

  13. 75 FR 1617 - Cross-Media Electronic Reporting Rule State Authorized Program Revision Approval: State of New York

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-12

    ... AGENCY Cross-Media Electronic Reporting Rule State Authorized Program Revision Approval: State of New...'s approval, under regulations for Cross-Media Electronic Reporting, of the State of New York's..., the final Cross-Media Electronic Reporting Rule (CROMERR) was published in the Federal Register (70...

  14. Exploring the electronic states of iodocarbyne: a theoretical contribution.

    PubMed

    Alves, Tiago Vinicius; Ornellas, Fernando R

    2014-05-28

    A manifold of electronic states correlating with the two lowest-lying dissociation channels of the iodocarbyne (CI) species is theoretically characterized for the first time in the literature. A contrast between the Λ + S and the relativistic (Ω) descriptions clearly shows the effect of perturbations on electronic states above 20 000 cm(-1) and the potential difficulties to detect them experimentally. For the bound states, spectroscopic parameters were evaluated, as well as the dipole moment functions. Similarly to CO, the polarity predicted for this iodocarbyne is C(δ-)I(δ+); as illustrated in the text, this is also the case for the other halocarbynes. As a potential mechanism for the experimental spectroscopic characterization of CI, we suggest the radiative association between C and I atoms, with light emitted in the red region of the visible spectra. Transition probabilities were also evaluated predicting very weak intensities. For the states 1/2(II) and 3/2(II), we have estimated radiative lifetimes of 7.1 and 714 ms, respectively.

  15. Single electron probes of fractional quantum hall states

    NASA Astrophysics Data System (ADS)

    Venkatachalam, Vivek

    When electrons are confined to a two dimensional layer with a perpendicular applied magnetic field, such that the ratio of electrons to flux quanta (nu) is a small integer or simple rational value, these electrons condense into remarkable new phases of matter that are strikingly different from the metallic electron gas that exists in the absence of a magnetic field. These phases, called integer or fractional quantum Hall (IQH or FQH) states, appear to be conventional insulators in their bulk, but behave as a dissipationless metal along their edge. Furthermore, electrical measurements of such a system are largely insensitive to the detailed geometry of how the system is contacted or even how large the system is... only the order in which contacts are made appears to matter. This insensitivity to local geometry has since appeared in a number of other two and three dimensional systems, earning them the classification of "topological insulators" and prompting an enormous experimental and theoretical effort to understand their properties and perhaps manipulate these properties to create robust quantum information processors. The focus of this thesis will be two experiments designed to elucidate remarkable properties of the metallic edge and insulating bulk of certain FQH systems. To study such systems, we can use mesoscopic devices known as single electron transistors (SETs). These devices operate by watching single electrons hop into and out of a confining box and into a nearby wire (for measurement). If it is initially unfavorable for an electron to leave the box, it can be made favorable by bringing another charge nearby, modifying the energy of the confined electron and pushing it out of the box and into the nearby wire. In this way, the SET can measure nearby charges. Alternatively, we can heat up the nearby wire to make it easier for electrons to enter and leave the box. In this way, the SET is a sensitive thermometer. First, by operating the SET as an

  16. Squeezed states of electrons and transitions of the density of states

    NASA Technical Reports Server (NTRS)

    Lee, Seung Joo; Um, Chung IN

    1993-01-01

    Electron systems which have low dimensional properties have been constructed by squeezing the motion in zero, one, or two-directions. An isolated quantum dot is modeled by a potential box with delta-profiled, penetrable potential walls embedded in a large outer box with infinitely high potential walls which represent the world function with respect to vacuum. We show the smooth crossover of the density of states from the three-dimensional to the quasi-zero dimensional electron gas.

  17. Adiabatic quantum computing with spin qubits hosted by molecules.

    PubMed

    Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji

    2015-01-28

    A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.

  18. Electronic excited states and relaxation dynamics in polymer heterojunction systems

    NASA Astrophysics Data System (ADS)

    Ramon, John Glenn Santos

    , we examine the effect of the nanoscale interfacial morphology and solvation on the electronic excited states of TFB/F8BT. Here, we employ time-dependent density functional theory (TD-DFT) to investigate the relevant excited states of two stacking configurations. We show that the calculated states agree with the excited states responsible for the experimentally observed emission peaks and that these states are blue shifted relative to those of the isolated chain. Furthermore, slight lateral shifts in the stacking orientation not only shift the excited state energies; more importantly, they alter the nature of these states altogether. Lastly, we see that solvation greatly stabilizes the charge-transfer states.

  19. On the Electron Gas Heat Capacity in Undergraduate Solid State

    NASA Astrophysics Data System (ADS)

    Hasbun, Javier

    2013-03-01

    In undergraduate solid state physics the electronic energy, Uel, is calculated through the Fermi distribution function while the energy is weighted with the density of states. The electronic heat capacity is the derivative of the electronic energy with respect to temperature. Through this process, it is possible to obtain a low temperature approximation for the heat capacity, Cel that's proportional to the temperature. It is of interest to do a numerical calculation of Uel from which the numerical Cel is extracted. However, the result obtained, while agreeing with the low temperature approximation, has a slope that's substantially different. The disagreement appears large as the temperature is increased from zero K. Here we show that the reason has to do with the constancy of the Fermi level. By including the self consistent behavior of the chemical potential, the deviation from zero Kelvin is much improved and the result seems to make better sense. The lesson learned is significant enough to be of great pedagogical importance as regards the heat capacity calculation and the behavior of the chemical potential with temperature.

  20. Adiabatic dynamics with classical noise in optical lattice

    NASA Astrophysics Data System (ADS)

    Xu, Guanglei; Daley, Andrew

    2016-05-01

    The technique of adiabatic state preparation is an interesting potential tool for the realisation of sensitive many-body states with ultra-cold atoms at low temperatures. However, questions remain regarding the influence of classical noise in these adiabatic dynamics. We investigate such dynamics in a situation where a level dressing scheme can make amplitude noise in an optical lattice proportional to the Hamiltonian, leading to a quantum Zeno effect for non-adiabatic transitions. We compute the dynamics using stochastic many-body Schrödinger equation and master equation approaches. Taking the examples of 1D Bose-Hubbard model from Mott insulator phase to superfluid phase and comparing with analytical calculations for a two-level system, we demonstrate that when the total time for the process is limited, properly transformed noise can lead to an increased final fidelity in the state preparation. We consider the dynamics also in the presence of imperfections, studying the resulting heating and dephasing for the many-body states, and identifying optimal regimes for future experiments.

  1. New Theoretical Developments in Exploring Electronically Excited States: Including Localized Configuration Interaction Singles and Application to Large Helium Clusters

    NASA Astrophysics Data System (ADS)

    Closser, Kristina Danielle

    This thesis presents new developments in excited state electronic structure theory. Contrasted with the ground state, the electronically excited states of atoms and molecules often are unstable and have short lifetimes, exhibit a greater diversity of character and are generally less well understood. The very unusual excited states of helium clusters motivated much of this work. These clusters consist of large numbers of atoms (experimentally 103--109 atoms) and bands of nearly degenerate excited states. For an isolated atom the lowest energy excitation energies are from 1s → 2s and 1s → 2 p transitions, and in clusters describing the lowest energy band minimally requires four states per atom. In the ground state the clusters are weakly bound by van der Waals interactions, however in the excited state they can form well-defined covalent bonds. The computational cost of quantum chemical calculations rapidly becomes prohibitive as the size of the systems increase. Standard excited-state methods such as configuration interaction singles (CIS) and time-dependent density functional theory (TD-DFT) can be used with ≈100 atoms, and are optimized to treat only a few states. Thus, one of our primary aims is to develop a method which can treat these large systems with large numbers of nearly degenerate excited states. Additionally, excited states are generally formed far from their equilibrium structures. Vertical excitations from the ground state induce dynamics in the excited states. Thus, another focus of this work is to explore the results of these forces and the fate of the excited states. Very little was known about helium cluster excited states when this work began, thus we first investigated the excitations in small helium clusters consisting of 7 or 25 atoms using CIS. The character of these excited states was determined using attachment/detachment density analysis and we found that in the n = 2 manifold the excitations could generally be interpreted as

  2. Diabatic Population Matrix Formalism for Performing Molecular Mechanics Style Simulations with Multiple Electronic States.

    PubMed

    Park, Jae Woo; Rhee, Young Min

    2014-12-09

    An accurate description of nonbonded interactions is important in investigating dynamics of molecular systems. In many situations, fixed point charge models are successfully applied to explaining various chemical phenomena. However, these models with conventional formulations will not be appropriate in elucidating the detailed dynamics during nonadiabatic events. This is mainly because the chemical properties of any molecule, especially its electronic populations, significantly change with respect to molecular distortions in the vicinity of the surface crossing. To overcome this issue in molecular simulations yet within the framework of the fixed point charge model, we define a diabatic electronic population matrix and substitute it for the conventional adiabatic partial charges. We show that this matrix can be readily utilized toward attaining more reliable descriptions of Coulombic interactions, in combination with the interpolation formalism for obtaining the intramolecular interaction potential. We demonstrate how the mixed formalism with the diabatic charges and the interpolation can be applied to molecular simulations by conducting adiabatic and nonadiabatic molecular dynamics trajectory calculations of the green fluorescent protein chromophore anion in aqueous environment.

  3. Underlying theory of a model for the Renner-Teller effect in tetra-atomic molecules: X(2)Πu electronic state of C2H2(+).

    PubMed

    Perić, M; Jerosimić, S; Mitić, M; Milovanović, M; Ranković, R

    2015-05-07

    In the present study, we prove the plausibility of a simple model for the Renner-Teller effect in tetra-atomic molecules with linear equilibrium geometry by ab initio calculations of the electronic energy surfaces and non-adiabatic matrix elements for the X(2)Πu state of C2H2 (+). This phenomenon is considered as a combination of the usual Renner-Teller effect, appearing in triatomic species, and a kind of the Jahn-Teller effect, similar to the original one arising in highly symmetric molecules. Only four parameters (plus the spin-orbit constant, if the spin effects are taken into account), which can be extracted from ab initio calculations carried out at five appropriate (planar) molecular geometries, are sufficient for building up the Hamiltonian matrix whose diagonalization results in the complete low-energy (bending) vibronic spectrum. The main result of the present study is the proof that the diabatization scheme, hidden beneath the apparent simplicity of the model, can safely be carried out, at small-amplitude bending vibrations, without cumbersome computation of non-adiabatic matrix elements at large number of molecular geometries.

  4. Geometries and energy separations of electronic states of AsCl2, AsBr2, AsCl2+, and AsBr2+

    NASA Astrophysics Data System (ADS)

    Latifzadeh-Masoudipour, Lida; Balasubramanian, K.

    1997-02-01

    Spectroscopic properties of the low-lying 2B1, 2A1, 2A2, 4A2, 2B1(II), 4B1, 2B2(I), 2B2(II) electronic states of AsCl2 and AsBr2 have been studied with the complete active space self-consistent field (CASSCF) followed by multireference singles and doubles configuration interaction (MRSDCI) methods. In addition, the three low-lying electronic states of AsCl2+ and AsBr2+, (1A1,3B1,1B1) and the ground states of AsCl and AsBr were investigated. The bond dissociation energies of AsCl2, AsBr2, AsCl, and AsBr have been computed at the CASSCF/MRSDCI and CASSCF/second order configuration interaction (SOCI) levels as De(ClAs-Cl)=2.56 eV, De(BrAs-Br)=1.96 eV, De(As-Cl)=2.68 eV, and De(As-Br)=2.26 eV. The adiabatic ionization energies obtained in this work are 8.40 eV for AsCl2 and 8.33 eV for AsBr2. All these species have been found to possess bent geometries at their ground electronic states.

  5. Efficient numerical simulation of electron states in quantum wires

    NASA Technical Reports Server (NTRS)

    Kerkhoven, Thomas; Galick, Albert T.; Ravaioli, Umberto; Arends, John H.; Saad, Youcef

    1990-01-01

    A new algorithm is presented for the numerical simulation of electrons in a quantum wire as described by a two-dimensional eigenvalue problem for Schroedinger's equation coupled with Poisson's equation. Initially, the algorithm employs an underrelaxed fixed point iteration to generate an approximation which is reasonably close to the solution. Subsequently, this approximate solution is employed as an initial guess for a Jacobian-free implementation of an approximate Newton method. In this manner the nonlinearity in the model is dealt with effectively. The effectiveness of this approach is demonstrated in a set of numerical experiments which study the electron states on the cross section of a quantum wire structure based on III-V semiconductors at 4.2 and 77 K.

  6. Electronic structure and magnetic state of transuranium metals under pressure.

    PubMed

    Lukoyanov, A V; Shorikov, A O; Bystrushkin, V B; Dyachenko, A A; Kabirova, L R; Tsiovkin, Yu Yu; Povzner, A A; Dremov, V V; Korotin, M A; Anisimov, V I

    2010-12-15

    The electronic structures of bcc Np, fcc Pu, Am, and Cm pure metals under pressure have been investigated employing the LDA + U method with spin-orbit coupling (LDA + U + SO). The magnetic state of the actinide ions was analyzed in both LS and jj coupling schemes to reveal the applicability of corresponding coupling bases. It was demonstrated that whereas Pu and Am are well described within the jj coupling scheme, Np and Cm can be described appropriately neither in a {mσ}, nor in a {jmj} basis, due to intermediate coupling scheme realization in these metals that requires some finer treatment. The LDA + U + SO results for the considered transuranium metals reveal band broadening and gradual 5f electron delocalization under pressure.

  7. Invisible Electronic States and Their Dynamics Revealed by Perturbations

    NASA Astrophysics Data System (ADS)

    Merer, Anthony J.

    2011-06-01

    Sooner or later everyone working in the field of spectroscopy encounters perturbations. These can range in size from a small shift of a single rotational level to total destruction of the vibrational and rotational patterns of an electronic state. To some workers perturbations are a source of terror, but to others they are the most fascinating features of molecular spectra, because they give information about molecular dynamics, and about states that would otherwise be invisible as a result of unfavorable selection rules. An example of the latter is the essentially complete characterization of the tilde{b}^3A_2 state of SO_2 from the vibronic perturbations it causes in the tilde{a}^3B_1 state. The S_1-trans state of acetylene is a beautiful example of dynamics in action. The level patterns of the three bending vibrations change dramatically with increasing vibrational excitation as a result of the vibrational angular momentum and the approach to the isomerization barrier. Several vibrational levels of the S_1-cis isomer, previously thought to be unobservable, can now be assigned. They obtain their intensity through interactions with nearby levels of the trans isomer.

  8. On the description of conical intersections—A continuous representation of the local topography of seams of conical intersection of three or more electronic states: A generalization of the two state result

    SciTech Connect

    Zhu, Xiaolei Yarkony, David R.

    2014-11-07

    For conical intersections of two states (I,J = I + 1) the vectors defining the branching or g-h plane, the energy difference gradient vector g{sup I,J}, and the interstate coupling vector h{sup I,J}, can be made orthogonal by a one parameter rotation of the degenerate electronic eigenstates. The representation obtained from this rotation is used to construct the parameters that describe the vicinity of the conical intersection seam, the conical parameters, s{sup I,J}{sub x} (R), s{sup I,J}{sub y} (R), g{sup I,J}(R), and h{sup I,J}(R). As a result of the orthogonalization these parameters can be made continuous functions of R, the internuclear coordinates. In this work we generalize this notion to construct continuous parametrizations of conical intersection seams of three or more states. The generalization derives from a recently introduced procedure for using non-degenerate electronic states to construct coupled diabatic states that represent adiabatic states coupled by conical intersections. The procedure is illustrated using the seam of conical intersections of three states in parazolyl as an example.

  9. On the description of conical intersections--a continuous representation of the local topography of seams of conical intersection of three or more electronic states: a generalization of the two state result.

    PubMed

    Zhu, Xiaolei; Yarkony, David R

    2014-11-07

    For conical intersections of two states (I,J = I + 1) the vectors defining the branching or g-h plane, the energy difference gradient vector g(I,J), and the interstate coupling vector h(I,J), can be made orthogonal by a one parameter rotation of the degenerate electronic eigenstates. The representation obtained from this rotation is used to construct the parameters that describe the vicinity of the conical intersection seam, the conical parameters, s(x)(I,J)(R), s(y)(I,J)(R), g(I,J)(R), and h(I,J)(R). As a result of the orthogonalization these parameters can be made continuous functions of R, the internuclear coordinates. In this work we generalize this notion to construct continuous parametrizations of conical intersection seams of three or more states. The generalization derives from a recently introduced procedure for using non-degenerate electronic states to construct coupled diabatic states that represent adiabatic states coupled by conical intersections. The procedure is illustrated using the seam of conical intersections of three states in parazolyl as an example.

  10. Highly parallel implementation of non-adiabatic Ehrenfest molecular dynamics

    NASA Astrophysics Data System (ADS)

    Kanai, Yosuke; Schleife, Andre; Draeger, Erik; Anisimov, Victor; Correa, Alfredo

    2014-03-01

    While the adiabatic Born-Oppenheimer approximation tremendously lowers computational effort, many questions in modern physics, chemistry, and materials science require an explicit description of coupled non-adiabatic electron-ion dynamics. Electronic stopping, i.e. the energy transfer of a fast projectile atom to the electronic system of the target material, is a notorious example. We recently implemented real-time time-dependent density functional theory based on the plane-wave pseudopotential formalism in the Qbox/qb@ll codes. We demonstrate that explicit integration using a fourth-order Runge-Kutta scheme is very suitable for modern highly parallelized supercomputers. Applying the new implementation to systems with hundreds of atoms and thousands of electrons, we achieved excellent performance and scalability on a large number of nodes both on the BlueGene based ``Sequoia'' system at LLNL as well as the Cray architecture of ``Blue Waters'' at NCSA. As an example, we discuss our work on computing the electronic stopping power of aluminum and gold for hydrogen projectiles, showing an excellent agreement with experiment. These first-principles calculations allow us to gain important insight into the the fundamental physics of electronic stopping.

  11. The electronic states of 2-furanmethanol (furfuryl alcohol) studied by photon absorption and electron impact spectroscopies

    NASA Astrophysics Data System (ADS)

    Giuliani, A.; Walker, I. C.; Delwiche, J.; Hoffmann, S. V.; Limão-Vieira, P.; Mason, N. J.; Heyne, B.; Hoebeke, M.; Hubin-Franskin, M.-J.

    2003-10-01

    The photoelectron spectrum of 2-furanmethanol (furfuryl alcohol) has been measured for ionization energies between 8 and 11.2 eV and the first three ionization bands assigned to π3, π2, and no ionizations in order of increasing binding energy. The photoabsorption spectrum has been recorded in the gas phase using both a synchrotron radiation source (5-9.91 eV, 248-125 nm) and electron energy-loss spectroscopy under electric-dipole conditions (5-10.9 eV, 248-90 nm). The (UV) absorption spectrum has also been recorded in solution (4.2-6.36 eV, 292-195 nm). The electronic excitation spectrum appears to be dominated by transitions between π and π* orbitals in the aromatic ring, leading to the conclusion that the frontier molecular orbitals of furan are affected only slightly on replacement of a H atom by the -CH2OH group. Additional experiments investigating electron impact at near-threshold energies have revealed two low-lying triplet states and at least one electron/molecule shape resonance. Dissociative electron attachment also shows to be widespread in furfuryl alcohol.

  12. Direct Imaging of Electron States in Open Quantum Dots

    NASA Astrophysics Data System (ADS)

    Aoki, N.; Brunner, R.; Burke, A. M.; Akis, R.; Meisels, R.; Ferry, D. K.; Ochiai, Y.

    2012-03-01

    We use scanning gate microscopy to probe the ballistic motion of electrons within an open GaAs/AlGaAs quantum dot. Conductance maps are recorded by scanning a biased tip over the open quantum dot while a magnetic field is applied. We show that, for specific magnetic fields, the measured conductance images resemble the classical transmitted and backscattered trajectories and their quantum mechanical analogue. In addition, we prove experimentally, with this direct measurement technique, the existence of pointer states. The demonstrated direct imaging technique is essential for the fundamental understanding of wave function scarring and quantum decoherence theory.

  13. Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms

    PubMed Central

    Du, Yan-Xiong; Liang, Zhen-Tao; Li, Yi-Chao; Yue, Xian-Xian; Lv, Qing-Xian; Huang, Wei; Chen, Xi; Yan, Hui; Zhu, Shi-Liang

    2016-01-01

    Accurate control of a quantum system is a fundamental requirement in many areas of modern science ranging from quantum information processing to high-precision measurements. A significantly important goal in quantum control is preparing a desired state as fast as possible, with sufficiently high fidelity allowed by available resources and experimental constraints. Stimulated Raman adiabatic passage (STIRAP) is a robust way to realize high-fidelity state transfer but it requires a sufficiently long operation time to satisfy the adiabatic criteria. Here we theoretically propose and then experimentally demonstrate a shortcut-to-adiabatic protocol to speed-up the STIRAP. By modifying the shapes of the Raman pulses, we experimentally realize a fast and high-fidelity stimulated Raman shortcut-to-adiabatic passage that is robust against control parameter variations. The all-optical, robust and fast protocol demonstrated here provides an efficient and practical way to control quantum systems. PMID:27511807

  14. Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms

    NASA Astrophysics Data System (ADS)

    Du, Yan-Xiong; Liang, Zhen-Tao; Li, Yi-Chao; Yue, Xian-Xian; Lv, Qing-Xian; Huang, Wei; Chen, Xi; Yan, Hui; Zhu, Shi-Liang

    2016-08-01

    Accurate control of a quantum system is a fundamental requirement in many areas of modern science ranging from quantum information processing to high-precision measurements. A significantly important goal in quantum control is preparing a desired state as fast as possible, with sufficiently high fidelity allowed by available resources and experimental constraints. Stimulated Raman adiabatic passage (STIRAP) is a robust way to realize high-fidelity state transfer but it requires a sufficiently long operation time to satisfy the adiabatic criteria. Here we theoretically propose and then experimentally demonstrate a shortcut-to-adiabatic protocol to speed-up the STIRAP. By modifying the shapes of the Raman pulses, we experimentally realize a fast and high-fidelity stimulated Raman shortcut-to-adiabatic passage that is robust against control parameter variations. The all-optical, robust and fast protocol demonstrated here provides an efficient and practical way to control quantum systems.

  15. The performance of the quantum adiabatic algorithm on spike Hamiltonians

    NASA Astrophysics Data System (ADS)

    Kong, Linghang; Crosson, Elizabeth

    Spike Hamiltonians arise from optimization instances for which the adiabatic algorithm provably out performs classical simulated annealing. In this work, we study the efficiency of the adiabatic algorithm for solving the “the Hamming weight with a spike” problem by analyzing the scaling of the spectral gap at the critical point for various sizes of the barrier. Our main result is a rigorous lower bound on the minimum spectral gap for the adiabatic evolution when the bit-symmetric cost function has a thin but polynomially high barrier, which is based on a comparison argument and an improved variational ansatz for the ground state. We also adapt the discrete WKB method for the case of abruptly changing potentials and compare it with the predictions of the spin coherent instanton method which was previously used by Farhi, Goldstone and Gutmann. Finally, our improved ansatz for the ground state leads to a method for predicting the location of avoided crossings in the excited energy states of the thin spike Hamiltonian, and we use a recursion relation to understand the ordering of some of these avoided crossings as a step towards analyzing the previously observed diabatic cascade phenomenon.

  16. Non-adiabatic couplings and dynamics in proton transfer reactions of Hn+ systems: application to H2+H2+→H+H3+ collisions

    PubMed Central

    Sanz-Sanz, Cristina; Aguado, Alfredo; Roncero, Octavio; Naumkin, Fedor

    2016-01-01

    Analytical derivatives and non-adiabatic coupling matrix elements are derived for Hn+ systems (n=3, 4 and 5). The method uses a generalized Hellmann-Feynman theorem applied to a multi-state description based on diatomics-in-molecules (for H3+) or triatomics-in-molecules (for H4+ and H5+) formalisms, corrected with a permutationally invariant many-body term to get high accuracy. The analytical non-adiabatic coupling matrix elements are compared with ab initio calculations performed at multi-reference configuration interaction level. These magnitudes are used to calculate H2(v′=0,j′=0)+H2+(v,j=0) collisions, to determine the effect of electronic transitions using a molecular dynamics method with electronic transitions. Cross sections for several initial vibrational states of H2+ are calculated and compared with the available experimental data, yielding an excellent agreement. The effect of vibrational excitation of H2+ reactant, and its relation with non-adiabatic processes are discussed. Also, the behavior at low collisional energies, in the 1 meV-0.1 eV interval, of interest in astrophysical environments, are discussed in terms of the long range behaviour of the interaction potential which is properly described within the TRIM formalism. PMID:26696058

  17. Electronic states and potential energy surfaces of H2Te, H2Po, and their positive ions

    NASA Astrophysics Data System (ADS)

    Sumathi, K.; Balasubramanian, K.

    1990-06-01

    Geometries, bond energies, ionization potentials, dipole moments, other one-electron properties, and potential energy surfaces of six valence electronic states of H2Te and H2Po species are obtained using the relativistic complete active space multiconfiguration self-consistent field (CASSCF) followed by full second-order configuration interaction (SOCI) and relativistic configuration interaction (RCI) calculations including spin-orbit coupling. In addition, Rydberg states of H2Te and H2Se are studied to interpret the experimental spectra. The potential energy surfaces of two electronic states of H2Te+ and H2Po+ are obtained. The ground states of both H2Te and H2Po are found to be of X 1A1(A1) symmetry with bent (C2v) equilibrium geometries of H2Te:re =1.668 Å, θe=91.2°; and H2Po:re =1.835 Å and θe=90.9°. The ground states of H2Te+ and H2Po+ are X 2B1 with H2Te+:re =1.676 Å, θe=90.7° and H2Po+:re =1.828 Å and θe=88°. The De (HTe-H) and De (HPo-H) including spin-orbit effects are calculated as 63.2 and 39.4 kcal/mol, respectively. The X 2B1(E)-A 2A1(E) energy separations of H2Te+ and H2Po+ ions are calculated as 66.6 and 76 kcal/mol, respectively. The adiabatic IPs of H2Te and H2Po are calculated as 8.47 and 7.79 eV, respectively. In addition CASSCF/SOCI/RCI calculations are also carried out on the X 2Π3/2 and 2Π1/2 states of TeH and PoH diatomics. The X 2Π3/2-2Π1/2 energy separations of TeH and PoH are computed as 3710 and 9920 cm-1, respectively. Spin-orbit effects are thus found to be very significant for PoH and H2Po. All excited states of H2Te and H2Po are above 3.7 and 3.1 eV, respectively. Properties and energy separations of H2Te and H2Po are compared with the lighter group (VI) H2Ch species.

  18. Electronic states of InSe/GaSe superlattice

    NASA Astrophysics Data System (ADS)

    Erkoç, Ş.; Allahverdi, K.; Ibrahim, Z.

    1994-06-01

    Analysis of recent publications revealed an increasing interest in epitaxial growth of InSe/GaSe superlattice. Within the effective mass theory we carried out self-consistent calculations of the confined and itinerant electronic states, potential profile and charge density distribution of InSe/GaSe superlattice, where the InSe layers are the well and the GaSe layers the barrier. Calculations were performed for three types of doping: uniform, modulated in the well, and modulated in the barrier. It has been found that the Coulomb interaction in the well and barrier forces the formation of localized states in the barrier region. The possibility of an insulator-metal transition in InSe/GaSe superlattice is predicted for modulation doping in the barrier and for a doping level n = 10 19cm-3. A decrease of the barrier height has been found for modulation doping in the well.

  19. Electronic structure and localized states in a model amorphous silicon

    NASA Astrophysics Data System (ADS)

    Allan, G.; Delerue, C.; Lannoo, M.

    1998-03-01

    The electronic structure of a model amorphous silicon (a-Si) represented by a supercell of 4096 silicon atoms [B.R. Djordjevic, M.F. Thorpe, and F. Wooten, Phys. Rev. B 52, 5685 (1995)] and of a model hydrogenated amorphous silicon (a-Si:H) that we have built from the a-Si model are calculated in the tight-binding approximation. The band edges near the gap are characterized by exponential tails of localized states induced mainly by the variations in bond angles. The spatial localization of the states is compared between a-Si and a-Si:H. Comparison with experiments suggests that the structural models give good descriptions of the amorphous materials.

  20. Semiclassical dynamics of electron wave packet states with phase vortices.

    PubMed

    Bliokh, Konstantin Yu; Bliokh, Yury P; Savel'ev, Sergey; Nori, Franco

    2007-11-09

    We consider semiclassical higher-order wave packet solutions of the Schrödinger equation with phase vortices. The vortex line is aligned with the propagation direction, and the wave packet carries a well-defined orbital angular momentum (OAM) variant Planck's over 2pil (l is the vortex strength) along its main linear momentum. The probability current coils around the momentum in such OAM states of electrons. In an electric field, these states evolve like massless particles with spin l. The magnetic-monopole Berry curvature appears in momentum space, which results in a spin-orbit-type interaction and a Berry/Magnus transverse force acting on the wave packet. This brings about the OAM Hall effect. In a magnetic field, there is a Zeeman interaction, which, can lead to more complicated dynamics.

  1. Detection of pulsed neutrons with solid-state electronics

    NASA Astrophysics Data System (ADS)

    Chatzakis, J.; Rigakis, I.; Hassan, S. M.; Clark, E. L.; Lee, P.

    2016-09-01

    Measurements of the spatial and time-resolved characteristics of pulsed neutron sources require large area detection materials and fast circuitry that can process the electronic pulses readout from the active region of the detector. In this paper, we present a solid-state detector based on the nuclear activation of materials by neutrons, and the detection of the secondary particle emission of the generated radionuclides’ decay. The detector utilizes a microcontroller that communicates using a modified SPI protocol. A solid-state, pulse shaping filter follows a charge amplifier, and it is designed as an inexpensive, low-noise solution for measuring pulses measured by a digital counter. An imaging detector can also be made by using an array of these detectors. The system can communicate with an interface unit and pass an image to a personal computer.

  2. Semiclassical Dynamics of Electron Wave Packet States with Phase Vortices

    SciTech Connect

    Bliokh, Konstantin Yu.; Bliokh, Yury P.; Savel'ev, Sergey; Nori, Franco

    2007-11-09

    We consider semiclassical higher-order wave packet solutions of the Schroedinger equation with phase vortices. The vortex line is aligned with the propagation direction, and the wave packet carries a well-defined orbital angular momentum (OAM) ({Dirac_h}/2{pi})l (l is the vortex strength) along its main linear momentum. The probability current coils around the momentum in such OAM states of electrons. In an electric field, these states evolve like massless particles with spin l. The magnetic-monopole Berry curvature appears in momentum space, which results in a spin-orbit-type interaction and a Berry/Magnus transverse force acting on the wave packet. This brings about the OAM Hall effect. In a magnetic field, there is a Zeeman interaction, which, can lead to more complicated dynamics.

  3. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    SciTech Connect

    Nenov, Artur Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K.; Rivalta, Ivan; Cerullo, Giulio; Mukamel, Shaul; Garavelli, Marco E-mail: marco.garavelli@ens-lyon.fr

    2015-06-07

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040–1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  4. Benchmarking electronic-state excitation cross sections for electron-N{sub 2} collisions

    SciTech Connect

    Kato, Hidetoshi; Suzuki, Daisuke; Ohkawa, Mizuha; Hoshino, Masamitsu; Tanaka, Hiroshi; Campbell, Laurence; Brunger, Michael J.

    2010-04-15

    We report differential cross sections for electron impact excitation of the a {sup 1{Pi}}{sub g}, C {sup 3{Pi}}{sub u}, E {sup 3{Sigma}}{sub g}{sup +}, a{sup ''} {sup 1{Sigma}}{sub g}{sup +}, b {sup 1{Pi}}{sub u}, c{sub 3} {sup 1{Pi}}{sub u}, o{sub 3} {sup 1{Pi}}{sub u}, b{sup '} {sup 1{Sigma}}{sub u}{sup +}, c{sub 4}{sup '} {sup 1{Sigma}}{sub u}{sup +}, G {sup 3{Pi}}{sub u}, and F {sup 3{Pi}}{sub u} electronic states in N{sub 2}. The incident electron energies are 20, 30, and 40 eV, while the scattered electron angles are 10 deg. and 20 deg. These kinematic conditions were specifically targeted in order to try and shed new light on the worrying discrepancies that exist in the literature for the a {sup 1{Pi}}{sub g}, C {sup 3{Pi}}{sub u}, E {sup 3{Sigma}}{sub g}{sup +}, and a{sup ''} {sup 1{Sigma}}{sub g}{sup +} cross sections, and in general the present measurements confirm that those from the more recent results of the University of California, Fullerton, and the Jet Propulsion Laboratory [M. A. Khakoo, P. V. Johnson, I. Ozkay, P. Yan, S. Trajmar, and I. Kanik, Phys. Rev. A 71, 062703 (2005); C. P. Malone, P. V. Johnson, I. Kanik, B. Ajdari, and M. A. Khakoo, Phys. Rev. A 79, 032704 (2009)] are reliable. In addition, we provide a rigorous cross-check for the remaining seven electronic states, where the only recent comprehensive study is from Khakoo and colleagues [Phys. Rev. A 77, 012704 (2008)]. Here, however, some of those cross sections are confirmed and others are not, suggesting that further work is still needed.

  5. Interaction of Pd electron states with adsorbed hydrogen

    NASA Astrophysics Data System (ADS)

    Solov'ev, S. M.; Pettenkofer, C.; Pronin, I. I.; Potekhina, N. D.; Petrov, V. N.

    2013-02-01

    Investigations of electrons excited into image states (IS) of Pd clusters and their interaction with adsorbed hydrogen using photoelectron (PE) spectroscopy with synchrotron radiation is presented. Pd clusters were deposited on pyrolytic graphite surfaces which were used as inert substrates. PE spectra measured for Pd clusters at low photon energies show additional peaks at energies of ~ 4.7 and 5.25 eV that corresponds to Pd image states at energies EIS - Evac ≈ - 0.75 ± 0.1 eV and EIS - Evac ≈ - 0.2 ± 0.1 eV. After hydrogen adsorption on graphite with Pd clusters the H-induced features: positive peaks at energy - 2 eV, - 3.5 eV, - 7 eV and a small negative peak at - 4.6 eV, were observed in the valence band spectra of Pd below EF. While the peaks at - 3.5 eV and - 2 eV are the result of the formation of H-induced states in the SBZ the - 7 eV peak is due to strong interaction of Pd clusters with hydrogen producing a H―Pd bonding adsorbate state. It is proposed that a charge transfer from IS2 to Pd-H bond dominates over the H- anion neutralization via transfer of excess charge from H- to IS1.

  6. Electronic States of IC60BA and PC71BM

    NASA Astrophysics Data System (ADS)

    Sheng, Chun-Qi; Wang, Peng; Shen, Ying; Li, Wen-Jie; Zhang, Wen-Hua; Zhu, Jun-Fa; Lai, Guo-Qiao; Li, Hong-Nian

    2013-11-01

    We investigate the electronic states of IC60BA and PC71BM using first-principles calculations and photoelectron spectroscopy (PES) measurements. The energy level structures for all possible isomers are reported and compared with those of C60, C70 and PC61BM. The attachment of the side chains can raise the LUMO energies and decrease the HOMO-LUMO gaps, and thus helps to increase the power-conversion efficiency of bulk heterojunction solar cells. In the PES studies, we prepared IC60BA and PC71BM films on Si:H(111) substrates to construct adsorbate/substrate interfaces describable with the integer charge-transfer (ICT) model. Successful measurements then revealed that one of the most important material properties for an electron acceptor, the energy of the negative integer charge-transfer state (EICT-), is 4.31 eV below the vacuum level for PC71BM. The EICT- of IC60BA is smaller than 4.14 eV.

  7. Photodissociation of CCH: classical trajectory calculations involving seven electronic states.

    PubMed

    Apaydin, Gökşin; Fink, William H; Jackson, William M

    2004-11-15

    The photodissociation dynamics of ethynyl radical, C(2)H, involving seven electronic states is studied by classical trajectory calculations. Initial values of the trajectories are selected based on relative absorption intensities calculated by Mebel et al. The energies and the derivatives are interpolated by three-dimensional cubic spline interpolator using an extended data pool. Mean square errors and standard deviations in interpolation of energies for 450 data points are found to be in the range 3.1 x 10(-6)-1.4 x 10(-5) and 1.7 x 10(-3)-3.8 x 10(-3) hartrees, respectively. The photofragments of C(2) and H are produced mainly in the X (1)Sigma(g) (+), a (3)Pi(u), b (3)Sigma(g) (-), c (3)Sigma(u) (+), A (1)Pi(u), B (1)Delta(g) electronic states of C(2) as product. The avoided crossings do not appear to be in the main dissociation pathways. The internal distributions are in good accord with the experimental results where comparison is possible, suggesting that the fragmentation mechanism of C(2)H(2) into C(2) and H is a two step process involving C(2)H radical as an intermediate with a life time long enough to allow complete collection of the phase space in the experiments.

  8. Photodissociation of CCH: Classical trajectory calculations involving seven electronic states

    NASA Astrophysics Data System (ADS)

    Apaydın, Gökşin; Fink, William H.; Jackson, William M.

    2004-11-01

    The photodissociation dynamics of ethynyl radical, C2H, involving seven electronic states is studied by classical trajectory calculations. Initial values of the trajectories are selected based on relative absorption intensities calculated by Mebel et al. The energies and the derivatives are interpolated by three-dimensional cubic spline interpolator using an extended data pool. Mean square errors and standard deviations in interpolation of energies for 450 data points are found to be in the range 3.1×10-6-1.4×10-5 and 1.7×10-3-3.8×10-3 hartrees, respectively. The photofragments of C2 and H are produced mainly in the X 1Σg+, a 3Πu, b 3Σg-, c 3Σu+, A 1Πu, B 1Δg electronic states of C2 as product. The avoided crossings do not appear to be in the main dissociation pathways. The internal distributions are in good accord with the experimental results where comparison is possible, suggesting that the fragmentation mechanism of C2H2 into C2 and H is a two step process involving C2H radical as an intermediate with a life time long enough to allow complete collection of the phase space in the experiments.

  9. Electronic states and spin-orbit splitting of lanthanum dimer

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Wu, Lu; Zhang, Chang-Hua; Krasnokutski, Serge A.; Yang, Dong-Sheng

    2011-07-01

    Lanthanum dimer (La2) was studied by mass-analyzed threshold ionization (MATI) spectroscopy and a series of multi-configuration ab initio calculations. The MATI spectrum exhibits three band systems originating from ionization of the neutral ground electronic state, and each system shows vibrational frequencies of the neutral molecule and singly charged cation. The three ionization processes are La2+ (a2∑g+) ← La2 (X1∑g+), La2+ (b2Π3/2, u) ← La2 (X1∑g+), and La2+ (b2Π1/2, u) ← La2 (X1∑g+), with the ionization energies of 39 046, 40 314, and 40 864 cm-1, respectively. The vibrational frequency of the X1Σg+ state is 207 cm-1, and those of the a2Σg+, b2Π3/2, u and b2Π1/2, u are 235.7, 242.2, and 240 cm-1. While X1Σg+ is the ground state of the neutral molecule, a2Σg+ and b2Πu are calculated to be the excited states of the cation. The spin-orbit splitting in the b2Πu ion is 550 cm-1. An X4Σg- state of La2+ was predicted by theory, but not observed by the experiment. The determination of a singlet ground state of La2 shows that lanthanum behaves differently from scandium and yttrium.

  10. Electronic spin state of iron in lower mantle perovskite

    SciTech Connect

    Li, J.; Struzhkin, V.; Mao, H.-k.; Shu, J.; Hemley, R.; Fei, Y.; Mysen, B.; Dera, P.; Parapenka, V.; Shen, G.

    2010-11-16

    The electronic spin state of iron in lower mantle perovskite is one of the fundamental parameters that governs the physics and chemistry of the most voluminous and massive shell in the Earth. We present experimental evidence for spin-pairing transition in aluminum-bearing silicate perovskite (Mg,Fe)(Si,Al)O{sub 3} under the lower mantle pressures. Our results demonstrate that as pressure increases, iron in perovskite transforms gradually from the initial high-spin state toward the final low-spin state. At 100 GPa, both aluminum-free and aluminum-bearing samples exhibit a mixed spin state. The residual magnetic moment in the aluminum-bearing perovskite is significantly higher than that in its aluminum-free counterpart. The observed spin evolution with pressure can be explained by the presence of multiple iron species and the occurrence of partial spin-paring transitions in the perovskite. Pressure-induced spin-pairing transitions in the perovskite would have important bearing on the magnetic, thermoelastic, and transport properties of the lower mantle, and on the distribution of iron in the Earth's interior. The lower mantle constitutes more than half of the Earth's interior by volume (1), and it is believed to consist predominantly (80-100%) of (Mg,Fe)(Si,Al)O{sub 3} perovskite (hereafter called perovskite), with up to 20% (Mg,Fe)O ferropericlase (2). The electronic spin state of iron has direct influence on the physical properties and chemical behavior of its host phase. Hence, knowledge on the spin state of iron is important for the interpretation of seismic observations, geochemical modeling, and geodynamic simulation of the Earth's deep interior (3, 4). Crystal field theory (4, 5) and band theory (6) predicted that a high-spin to low-spin transition would occur as a result of compression. To date, no experimental data exist on the spin sate of iron in Al-bearing perovskite. To detect possible spinpairing transition of iron in perovskite under the lower mantle

  11. Differential cross sections for electron-impact excitation of the electronic states of pyrimidine

    NASA Astrophysics Data System (ADS)

    Brunger, Michael; Jones, Darryl; Bellm, Susan

    2012-06-01

    Pyrimidine (C4N2H4) is an important molecule, as it forms the basis of larger biomolecules, such as the DNA bases thymine, cytosine and uracil. There is a pressing demand for low-energy electron scattering data from such biological analogs in order to model radiation induced damage [1]. We therefore present the first measurements for absolute differential cross section data for low-energy electron-impact excitation of the electronic states of pyrimidine. The present measurements were performed using a crossed-beam apparatus [2] for incident electron energies ranging between 15 to 50eV while covering a 10 to 90^o angular range. Here the absolute scale has been determined through a normalisation to the recently measured elastic scattering differential cross section data for pyrimidine [3]. [1] F. Ferreira da Silva, D. Almeida, G. Martins, A. R. Milosavljevic, B. P. Marinkovic, S. V. Hoffmann, N. J. Mason, Y. Nunes, G. Garcia and P. Limao-Vieira, Phys Chem Chem Phys 12, 6717 (2010). [2] M. J. Brunger and P. J. O. Teubner, Phys Rev A 41, 1413 (1990). [3] P. Palihawadana, J. Sullivan, M. Brunger, C. Winstead, V. McKoy, G. Garcia, F. Blanco and S. Buckman, Phys Rev A 84, 062702 (2011).

  12. Steam bottoming cycle for an adiabatic diesel engine

    NASA Technical Reports Server (NTRS)

    Poulin, E.; Demier, R.; Krepchin, I.; Walker, D.

    1984-01-01

    Steam bottoming cycles using adiabatic diesel engine exhaust heat which projected substantial performance and economic benefits for long haul trucks were studied. Steam cycle and system component variables, system cost, size and performance were analyzed. An 811 K/6.90 MPa state of the art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. The costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with aftercooling with the same total output were compared, the annual fuel savings less the added maintenance cost was determined to cover the increase initial cost of the TC/B system in a payback period of 2.3 years. Steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability are considered and the cost and performance of advanced systes are evaluated.

  13. Coupled wave-packets for non-adiabatic molecular dynamics: a generalization of Gaussian wave-packet dynamics to multiple potential energy surfaces

    SciTech Connect

    White, Alexander James; Tretiak, Sergei; Mozyrsky, Dima V.

    2016-04-25

    Accurate simulation of the non-adiabatic dynamics of molecules in excited electronic states is key to understanding molecular photo-physical processes. Here we present a novel method, based on a semiclassical approximation, that is as efficient as the commonly used mean field Ehrenfest or ad hoc surface hopping methods and properly accounts for interference and decoherence effects. This novel method is an extension of Heller's thawed Gaussian wave-packet dynamics that includes coupling between potential energy surfaces. By studying several standard test problems we demonstrate that the accuracy of the method can be systematically improved while maintaining high efficiency. The method is suitable for investigating the role of quantum coherence in the non-adiabatic dynamics of many-atom molecules.

  14. Coupled wave-packets for non-adiabatic molecular dynamics: a generalization of Gaussian wave-packet dynamics to multiple potential energy surfaces

    DOE PAGES

    White, Alexander James; Tretiak, Sergei; Mozyrsky, Dima V.

    2016-04-25

    Accurate simulation of the non-adiabatic dynamics of molecules in excited electronic states is key to understanding molecular photo-physical processes. Here we present a novel method, based on a semiclassical approximation, that is as efficient as the commonly used mean field Ehrenfest or ad hoc surface hopping methods and properly accounts for interference and decoherence effects. This novel method is an extension of Heller's thawed Gaussian wave-packet dynamics that includes coupling between potential energy surfaces. By studying several standard test problems we demonstrate that the accuracy of the method can be systematically improved while maintaining high efficiency. The method is suitablemore » for investigating the role of quantum coherence in the non-adiabatic dynamics of many-atom molecules.« less

  15. Experimental demonstration of composite adiabatic passage

    NASA Astrophysics Data System (ADS)

    Schraft, Daniel; Halfmann, Thomas; Genov, Genko T.; Vitanov, Nikolay V.

    2013-12-01

    We report an experimental demonstration of composite adiabatic passage (CAP) for robust and efficient manipulation of two-level systems. The technique represents a altered version of rapid adiabatic passage (RAP), driven by composite sequences of radiation pulses with appropriately chosen phases. We implement CAP with radio-frequency pulses to invert (i.e., to rephase) optically prepared spin coherences in a Pr3+:Y2SiO5 crystal. We perform systematic investigations of the efficiency of CAP and compare the results with conventional π pulses and RAP. The data clearly demonstrate the superior features of CAP with regard to robustness and efficiency, even under conditions of weakly fulfilled adiabaticity. The experimental demonstration of composite sequences to support adiabatic passage is of significant relevance whenever a high efficiency or robustness of coherent excitation processes need to be maintained, e.g., as required in quantum information technology.

  16. Adiabatic Quantum Search in Open Systems.

    PubMed

    Wild, Dominik S; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y; Lukin, Mikhail D

    2016-10-07

    Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.

  17. Adiabatic Quantum Search in Open Systems

    NASA Astrophysics Data System (ADS)

    Wild, Dominik S.; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y.; Lukin, Mikhail D.

    2016-10-01

    Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.

  18. Adiabatic limits on Riemannian Heisenberg manifolds

    SciTech Connect

    Yakovlev, A A

    2008-02-28

    An asymptotic formula is obtained for the distribution function of the spectrum of the Laplace operator, in the adiabatic limit for the foliation defined by the orbits of an invariant flow on a compact Riemannian Heisenberg manifold. Bibliography: 21 titles.

  19. Non-adiabatic processes in the charge transfer reaction of O{sub 2} molecules with potassium surfaces without dissociation

    SciTech Connect

    Krix, David; Nienhaus, Hermann

    2014-08-21

    Thin potassium films grown on Si(001) substrates are used to measure internal chemicurrents and the external emission of exoelectrons simultaneously during adsorption of molecular oxygen on K surfaces at 120 K. The experiments clarify the dynamics of electronic excitations at a simple metal with a narrow valence band. X-ray photoemission reveals that for exposures below 5 L almost exclusively peroxide K{sub 2}O{sub 2} is formed, i.e., no dissociation of the molecule occurs during interaction. Still a significant chemicurrent and a delayed exoelectron emission are detected due to a rapid injection of unoccupied molecular levels below the Fermi level. Since the valence band width of potassium is approximately equal to the potassium work function (2.4 eV) the underlying mechanism of exoemission is an Auger relaxation whereas chemicurrents are detected after resonant charge transfer from the metal valence band into the injected level. The change of the chemicurrent and exoemission efficiencies with oxygen coverage can be deduced from the kinetics of the reaction and the recorded internal and external emission currents traces. It is shown that the non-adiabaticity of the reaction increases with coverage due to a reduction of the electronic density of states at the surface while the work function does not vary significantly. Therefore, the peroxide formation is one of the first reaction systems which exhibits varying non-adiabaticity and efficiencies during the reaction. Non-adiabatic calculations based on model Hamiltonians and density functional theory support the picture of chemicurrent generation and explain the rapid injection of hot hole states by an intramolecular motion, i.e., the expansion of the oxygen molecule on the timescale of a quarter of a vibrational period.

  20. Analysis of a High-Adiabat Cryogenic Implosion on OMEGA

    NASA Astrophysics Data System (ADS)

    Christopherson, A. R.; Betti, R.; Nora, R.; Epstein, R.; Marshall, F. J.; Forrest, C. J.; Stoeckl, C.; Delettrez, J. A.; Radha, P. B.; Howard, J.

    2014-10-01

    The performance of high-adiabat implosions >~ 10 is marginally affected by nonuniformities because of the strong ablative stabilization. To test the validity of the one-dimensional (1-D) physics included in existing hydrocodes, a study of high-adiabat cryogenic DT implosions is carried out by comparing the results of 1-D simulations with several measured quantities. It is found that after including nonlocal transport, cross-beam energy transfer, and hot electrons, 1-D simulations reproduce most of the observables with reasonable accuracy. Since the analysis is applied to the only high-adiabat DT implosion fielded on OMEGA, these results do not fully validate the 1-D physics of current hydrocodes. However, this work shows the framework for establishing a validation capability of the 1-D physics of inertial confinement fusion implosions. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and the Office of Fusion Energy Sciences Number DE-FG02-04ER54786.

  1. ONIOM approach for non-adiabatic on-the-fly molecular dynamics demonstrated for the backbone controlled Dewar valence isomerization.

    PubMed

    Fingerhut, Benjamin P; Oesterling, Sven; Haiser, Karin; Heil, Korbinian; Glas, Andreas; Schreier, Wolfgang J; Zinth, Wolfgang; Carell, Thomas; de Vivie-Riedle, Regina

    2012-05-28

    Non-adiabatic on-the-fly molecular dynamics (NA-O-MD) simulations require the electronic wavefunction, energy gradients, and derivative coupling vectors in every timestep. Thus, they are commonly restricted to the excited state dynamics of molecules with up to ≈20 atoms. We discuss an approximation that combines the ONIOM(QM:QM) method with NA-O-MD simulations to allow calculations for larger molecules. As a proof of principle we present the excited state dynamics of a (6-4)-lesion containing dinucleotide (63 atoms), and especially the importance to include the confinement effects of the DNA backbone. The method is able to include electron correlation on a high level of theory and offers an attractive alternative to QM:MM approaches for moderate sized systems with unknown force fields.

  2. ONIOM approach for non-adiabatic on-the-fly molecular dynamics demonstrated for the backbone controlled Dewar valence isomerization

    NASA Astrophysics Data System (ADS)

    Fingerhut, Benjamin P.; Oesterling, Sven; Haiser, Karin; Heil, Korbinian; Glas, Andreas; Schreier, Wolfgang J.; Zinth, Wolfgang; Carell, Thomas; de Vivie-Riedle, Regina

    2012-05-01

    Non-adiabatic on-the-fly molecular dynamics (NA-O-MD) simulations require the electronic wavefunction, energy gradients, and derivative coupling vectors in every timestep. Thus, they are commonly restricted to the excited state dynamics of molecules with up to ≈20 atoms. We discuss an approximation that combines the ONIOM(QM:QM) method with NA-O-MD simulations to allow calculations for larger molecules. As a proof of principle we present the excited state dynamics of a (6-4)-lesion containing dinucleotide (63 atoms), and especially the importance to include the confinement effects of the DNA backbone. The method is able to include electron correlation on a high level of theory and offers an attractive alternative to QM:MM approaches for moderate sized systems with unknown force fields.

  3. Hamiltonian of a many-electron system with single-electron and electron-pair states in a two-dimensional periodic potential

    NASA Astrophysics Data System (ADS)

    Hai, Guo-Qiang; Peeters, François M.

    2015-01-01

    Based on the metastable electron-pair energy band in a two-dimensional (2D) periodic potential obtained previously by Hai and Castelano [J. Phys.: Condens. Matter 26, 115502 (2014)], we present in this work a Hamiltonian of many electrons consisting of single electrons and electron pairs in the 2D system. The electron-pair states are metastable of energies higher than those of the single-electron states at low electron density. We assume two different scenarios for the single-electron band. When it is considered as the lowest conduction band of a crystal, we compare the obtained Hamiltonian with the phenomenological model Hamiltonian of a boson-fermion mixture proposed by Friedberg and Lee [Phys. Rev. B 40, 6745 (1989)]. Single-electron-electron-pair and electron-pair-electron-pair interaction terms appear in our Hamiltonian and the interaction potentials can be determined from the electron-electron Coulomb interactions. When we consider the single-electron band as the highest valence band of a crystal, we show that holes in this valence band are important for stabilization of the electron-pair states in the system.

  4. Symmetry of the Adiabatic Condition in the Piston Problem

    ERIC Educational Resources Information Center

    Anacleto, Joaquim; Ferreira, J. M.

    2011-01-01

    This study addresses a controversial issue in the adiabatic piston problem, namely that of the piston being adiabatic when it is fixed but no longer so when it can move freely. It is shown that this apparent contradiction arises from the usual definition of adiabatic condition. The issue is addressed here by requiring the adiabatic condition to be…

  5. Electron impact excitation and assignment of the low-lying electronic states of CO2

    NASA Technical Reports Server (NTRS)

    Hall, R. I.; Trajmar, S.

    1973-01-01

    Electron scattering spectra of CO2 are reported in the 7 to 10 eV energy-loss range, at energies of 0.2, 0.35, 0.6, 0.7, and 7.0 eV above threshold, and at a scattering angle of 90 deg. Several new distinct overlapping continua with weak, diffuse bands superimposed are observed to lie in this energy-loss range. The experimental spectra are discussed in the light of recent ab initio configuration-interaction calculations of the vertical transition energies of CO2. The experimental spectra are shown to be consistent with the excitation states of CO2.

  6. Ultrafast excited state relaxation dynamics of electron deficient porphyrins: Conformational and electronic factors

    NASA Astrophysics Data System (ADS)

    Okhrimenko, Albert N.

    Metallo-tetrapyrroles (MTP) are highly stable macrocyclic pi-systems that display interesting properties that make them potential candidates for various applications. Among these applications are optoelectronics, magnetic materials, photoconductive materials, non-linear optical materials and photo tumor therapeutic drugs. These applications are generally related to their high stability and efficient light absorption ability in the visible and near-infrared region of the optical spectrum. Metallo porphyrins are well known and widely studied representatives of metallotetrapyrroles. Electron deficient substituents in the meso positions are well known to greatly influence the interaction between the metal d-orbitals and the nitrogen orbitals of the tetrapyrrole macrocycle. In this work, a series of electron deficient porphyrins has been studied to gain some knowledge about the change in the excited state dynamics with structural and electronic modifications. Among these porphyrins is nickel and iron modified species bearing perfluoro-, perprotio-, p-nitrophenyl- and perfluorophenyl-meso substituents. Ultrafast transient absorption spectrometry has been used as the main research instrument along with other spectroscopic and electrochemical methods. A new technique has been employed to study the photophysical properties of zinc (II) tetraphenylporphine cation radical. It employs a combination of controlled potential coulometry and femtosecond absorption spectrometry. The fast transient lifetime of 17 ps of the pi-cation species originates in very efficient mixing of the a2u HOMO cation orbital that places electronic density mainly on pyrrolic nitrogens and metal d-orbitals. That explains the lack of any emission of the cationic species. This non-radiative decay process might elucidate the processes taking place in photosynthetic systems when electron is removed from porphyrinic moiety and the hole is produced. In this work zinc(II) meso-tetraphenylporphine radial cation

  7. Non-Adiabatic Dynamics of ICN-(Ar)n and BrCN-(Ar)n

    NASA Astrophysics Data System (ADS)

    Opoku-Agyeman, Bernice; McCoy, Anne B.

    2016-06-01

    We investigate the dynamics of the photodissociation of ICN-(Ar)n and BrCN-(Ar)n following electronic excitation to states that dissociate into X- + CN and X* + CN- (X = I or Br) using classical dynamics approaches. Observations made from previous experiments and calculations of these anions demonstrated that non-adiabatic effects are important in the photodissociation process and are reflected in the branching ratios of the photoproducts. The addition of an argon atom is expected to shift the relative energies of these excited states, thereby altering the product branching. Interestingly, experimental studies show that electronically exciting ICN- solvated with even a single argon atom leads to a small fraction of the products recombine to form ICN-.a In this study, the dynamics are carried out using classical mechanics, treating the non-adiabatic effect with a surface hopping algorithm. We assess the accuracy of this approach by first calculating the branching ratios for the bare anions and comparing the results to those from quantum dynamics calculations.a,b Once the results from both the quantum and classical dynamics are shown to be consistent, the classical dynamics simulations are extended to the argon solvated anions. S. Case, E. M. Miller, J. P. Martin, Y. J. Lu, L. Sheps, A. B. McCoy, and W. C. Lineberger, Angew. Chem., Int. Ed. 51, 2651 (2012). B. Opoku-Agyeman, A. S. Case, J. H. Lehman, W. Carl Lineberger and A. B. McCoy, J. Chem Phys. 141, 084305 (2014). J. C. Tully, J. Chem Phys. 93, 1061 (1990).

  8. Shortcuts to adiabaticity: suppression of pair production in driven Dirac dynamics

    NASA Astrophysics Data System (ADS)

    Deffner, Sebastian

    2016-01-01

    Achieving effectively adiabatic dynamics in finite time is a ubiquitous goal in virtually all areas of modern physics. So-called shortcuts to adiabaticity refer to a set of methods and techniques that allow us to produce in a short time the same final state that would result from an adiabatic, infinitely slow process. In this paper we generalize one of these methods—the fast-forward technique—to driven Dirac dynamics. As our main result we find that shortcuts to adiabaticity for the (1+1)-dimensional Dirac equation are facilitated by a combination of both scalar and pseudoscalar potentials. Our findings are illustrated for two analytically solvable examples, namely charged particles driven in spatially homogeneous and linear vector fields.

  9. Electron excitation from ground state to first excited state: Bohmian mechanics method

    NASA Astrophysics Data System (ADS)

    Yang, Song; Shuang, Zhao; Fu-Ming, Guo; Yu-Jun, Yang; Su-Yu, Li

    2016-03-01

    The excitation process of electrons from the ground state to the first excited state via the resonant laser pulse is investigated by the Bohmian mechanics method. It is found that the Bohmian particles far away from the nucleus are easier to be excited and are excited firstly, while the Bohmian particles in the ground state is subject to a strong quantum force at a certain moment, being excited to the first excited state instantaneously. A detailed analysis for one of the trajectories is made, and finally we present the space and energy distribution of 2000 Bohmian particles at several typical instants and analyze their dynamical process at these moments. Project supported by the Doctoral Research Start-up Funding of Northeast Dianli University, China (Grant No. BSJXM-201332), the National Natural Science Foundation of China (Grant Nos. 11547114, 11534004, 11474129, 11274141, 11447192, and 11304116), and the Graduate Innovation Fund of Jilin University, China (Grant No. 2015091).

  10. Electronic states of cuprate superconductors containing halogen or carbon

    NASA Astrophysics Data System (ADS)

    Tohiyama, Takami; Shibata, Yasumasa; Maekawa, Sadamichi

    1996-12-01

    The electronic states of the halo-oxocuprate and oxycarbonate superconductors are examined by means of the ionic and cluster models. The oxycarbonates examined contain the CO3 group on one side of the CuO2 plane. The superconducting critical temperature Tc is found to be correlated with the stability of the Zhang-Rice local singlet in the CuO2 plane. The stability is generally determined by two factors: (1) the energy-level separation between apical ion and in-plane oxygen and (2) the hybridization between apical pz and in-plane orbitals. The former is dominant for the oxycarbonates. It is also found that the CO3 group has no effect on the stabilization. For the halo-oxocuprates, the latter is crucial to stabilize the singlet.

  11. Steady-state and transient electronic dynamics in granular metals

    NASA Astrophysics Data System (ADS)

    Chen, Wei

    In this thesis two very different approaches, steady state and transient, are taken to help understand the electronic dynamics in the nanogranular Cux(SiO2)1-x composite thin films. The electrical conductivity and thermopower are measured from 2 K to room temperature with the Cu volume fraction x varying from 1 down to 0.43. At low temperatures, a T dependence of the electrical conductivity is observed well above the percolation threshold due to the disorder-enhanced electron-electron interaction and as the metal-insulator transition is approached, the electrical conductivity assumes a T1/3 dependence. The thermopower is found to be small and rather insensitive to the degree of disorder in the system. It varies linearly with temperatures at both low and high temperatures. Annealing has considerable influence to the behavior of the electrical conductivity while introducing little changes to the thermopower. Femtosecond pump-probe experiments were performed on a series of Cu x(SiO2)1-x composite films with volume fraction x varying from 0.7 to 1.0 to study the reflectivity change DeltaR/R as a function of composition and temperature. It is discovered that DeltaR/R undergoes drastic changes as the metal content is lowered. Very small amount of SiO 2 inclusions can start to result in qualitatively different Delta R/R behavior from pure Cu. Changes in the dielectric constant of Cu are investigated and possible explanations for the DeltaR/R behaviors in the composite films are discussed.

  12. Electron transport in multiterminal networks of Majorana bound states

    NASA Astrophysics Data System (ADS)

    Weithofer, Luzie; Recher, Patrik; Schmidt, Thomas L.

    2014-11-01

    We investigate electron transport through multiterminal networks hosting Majorana bound states (MBS) in the framework of full counting statistics. In particular, we apply our general results to T-shaped junctions of two Majorana nanowires. When the wires are in the topologically nontrivial regime, three MBS are localized near the outer ends of the wires, while one MBS is localized near the crossing point, and when the lengths of the wires are finite adjacent MBS can overlap. We propose a combination of current and cross-correlation measurements to reveal the predicted coupling of four Majoranas in a topological T junction. Interestingly, we show that the elementary transport processes at the central lead are different compared to the outer leads, giving rise to characteristic nonlocal signatures in electronic transport. We find quantitative agreement between our analytical model and numerical simulations of a tight-binding model. Using the numerical simulations, we discuss the effect of weak disorder on the current and the cross-correlation functions.

  13. Experimental Realization of Nearly Steady-State Toroidal Electron Plasmas

    NASA Astrophysics Data System (ADS)

    Stoneking, M. R.

    2008-11-01

    Non-neutral plasmas are routinely confined in the uniform magnetic field of a Penning-Malmberg trap for arbitrarily long times and approach thermal equilibrium. Theory predicts that dynamically stable and therefore long-lived equilibria exist for non-neutral plasmas confined in the curved, non-uniform field of a toroidal trap, but that ultimately thermal equilibrium states do not exist. On long timescales, the poloidal ExB rotation through the non-uniform toroidal magnetic field leads to magnetic pumping transport. A new experiment has, for the first time, demonstrated the existence of a stable, long-lived (i.e. nearly steady-state) toroidal equilibrium for pure electron plasmas and is poised to observe the magnetic pumping transport mechanism. Electron plasmas with densities of order 10^6 cm-3 are trapped in the Lawrence Non-neutral Torus II for several seconds. LNT II is a high aspect ratio (Ro/a 10), partially toroidal trap (a 270^o arc with Bo=670 G). The m=1 diocotron mode is launched and detected using isolated segments of a fully-sectored conducting boundary and its frequency is used to determine the total trapped charge as a function of time. The observed confinement time ( 3 s) approaches the theoretical limit ( 6 s) set by the magnetic pumping transport mechanism of Crooks and O'Neil. We also present equilibrium modeling and numerical simulation of the toroidal m=1 mode constrained by experimental data. Future work includes the identification of the dominant transport mechanisms via confinement scaling experiments and measurement of the m=2 mode frequency, and development of a strategy for making a transition to fully toroidal confinement. J.P. Marler and M.R. Stoneking, Phys. Rev. Lett. 100, 155001 (2008). S.M. Crooks and T.M. O'Neil, Phys Plamas 3, 2533 (1996).

  14. Electron momentum spectroscopy of dimethyl ether taking account of nuclear dynamics in the electronic ground state.

    PubMed

    Morini, Filippo; Watanabe, Noboru; Kojima, Masataka; Deleuze, Michael Simon; Takahashi, Masahiko

    2015-10-07

    The influence of nuclear dynamics in the electronic ground state on the (e,2e) momentum profiles of dimethyl ether has been analyzed using the harmonic analytical quantum mechanical and Born-Oppenheimer molecular dynamics approaches. In spite of fundamental methodological differences, results obtained with both approaches consistently demonstrate that molecular vibrations in the electronic ground state have a most appreciable influence on the momentum profiles associated to the 2b1, 6a1, 4b2, and 1a2 orbitals. Taking this influence into account considerably improves the agreement between theoretical and newly obtained experimental momentum profiles, with improved statistical accuracy. Both approaches point out in particular the most appreciable role which is played by a few specific molecular vibrations of A1, B1, and B2 symmetries, which correspond to C-H stretching and H-C-H bending modes. In line with the Herzberg-Teller principle, the influence of these molecular vibrations on the computed momentum profiles can be unraveled from considerations on the symmetry characteristics of orbitals and their energy spacing.

  15. Electron momentum spectroscopy of dimethyl ether taking account of nuclear dynamics in the electronic ground state

    SciTech Connect

    Morini, Filippo; Deleuze, Michael Simon; Watanabe, Noboru; Kojima, Masataka; Takahashi, Masahiko

    2015-10-07

    The influence of nuclear dynamics in the electronic ground state on the (e,2e) momentum profiles of dimethyl ether has been analyzed using the harmonic analytical quantum mechanical and Born-Oppenheimer molecular dynamics approaches. In spite of fundamental methodological differences, results obtained with both approaches consistently demonstrate that molecular vibrations in the electronic ground state have a most appreciable influence on the momentum profiles associated to the 2b{sub 1}, 6a{sub 1}, 4b{sub 2}, and 1a{sub 2} orbitals. Taking this influence into account considerably improves the agreement between theoretical and newly obtained experimental momentum profiles, with improved statistical accuracy. Both approaches point out in particular the most appreciable role which is played by a few specific molecular vibrations of A{sub 1}, B{sub 1}, and B{sub 2} symmetries, which correspond to C–H stretching and H–C–H bending modes. In line with the Herzberg-Teller principle, the influence of these molecular vibrations on the computed momentum profiles can be unraveled from considerations on the symmetry characteristics of orbitals and their energy spacing.

  16. Communication: On the competition between adiabatic and nonadiabatic dynamics in vibrationally mediated ammonia photodissociation in its A band

    SciTech Connect

    Xie, Changjian; Zhu, Xiaolei; Yarkony, David R. E-mail: yarkony@jhu.edu E-mail: hguo@unm.edu; Ma, Jianyi E-mail: yarkony@jhu.edu E-mail: hguo@unm.edu; Xie, Daiqian E-mail: yarkony@jhu.edu E-mail: hguo@unm.edu; Guo, Hua E-mail: yarkony@jhu.edu E-mail: hguo@unm.edu

    2015-03-07

    Non-adiabatic processes play an important role in photochemistry, but the mechanism for conversion of electronic energy to chemical energy is still poorly understood. To explore the possibility of vibrational control of non-adiabatic dynamics in a prototypical photoreaction, namely, the A-band photodissociation of NH{sub 3}(X{sup ~1}A{sub 1}), full-dimensional state-to-state quantum dynamics of symmetric or antisymmetric stretch excited NH{sub 3}(X{sup ~1}A{sub 1}) is investigated on recently developed coupled diabatic potential energy surfaces. The experimentally observed H atom kinetic energy distributions are reproduced. However, contrary to previous inferences, the NH{sub 2}(A{sup ~2}A{sub 1})/NH{sub 2}(X{sup ~2}B{sub 1}) branching ratio is found to be small regardless of the initial preparation of NH{sub 3}(X{sup ~1}A{sub 1}), while the internal state distribution of the preeminent fragment, NH{sub 2}(X{sup ~2}B{sub 1}), is found to depend strongly on the initial vibrational excitation of NH{sub 3}(X{sup ~1}A{sub 1}). The slow H atoms in photodissociation mediated by the antisymmetric stretch fundamental state are due to energy sequestered in the internally excited NH{sub 2}(X{sup ~2}B{sub 1}) fragment, rather than in NH{sub 2}(A{sup ~2}A{sub 1}) as previously proposed. The high internal excitation of the NH{sub 2}(X{sup ~2}B{sub 1}) fragment is attributed to the torques exerted on the molecule as it passes through the conical intersection seam to the ground electronic state of NH{sub 3}. Thus in this system, contrary to previous assertions, the control of electronic state branching by selective excitation of ground state vibrational modes is concluded to be ineffective. The juxtaposition of precise quantum mechanical results with complementary results based on quasi-classical surface hopping trajectories provides significant insights into the non-adiabatic process.

  17. Improving the accuracy of ground-state correlation energies within a plane-wave basis set: The electron-hole exchange kernel

    NASA Astrophysics Data System (ADS)

    Dixit, Anant; Ángyán, János G.; Rocca, Dario

    2016-09-01

    A new formalism was recently proposed to improve random phase approximation (RPA) correlation energies by including approximate exchange effects [B. Mussard et al., J. Chem. Theory Comput. 12, 2191 (2016)]. Within this framework, by keeping only the electron-hole contributions to the exchange kernel, two approximations can be obtained: An adiabatic connection analog of the second order screened exchange (AC-SOSEX) and an approximate electron-hole time-dependent Hartree-Fock (eh-TDHF). Here we show how this formalism is suitable for an efficient implementation within the plane-wave basis set. The response functions involved in the AC-SOSEX and eh-TDHF equations can indeed be compactly represented by an auxiliary basis set obtained from the diagonalization of an approximate dielectric matrix. Additionally, the explicit calculation of unoccupied states can be avoided by using density functional perturbation theory techniques and the matrix elements of dynamical response functions can be efficiently computed by applying the Lanczos algorithm. As shown by several applications to reaction energies and weakly bound dimers, the inclusion of the electron-hole kernel significantly improves the accuracy of ground-state correlation energies with respect to RPA and semi-local functionals.

  18. Adiabatic response and quantum thermoelectrics for ac-driven quantum systems

    NASA Astrophysics Data System (ADS)

    Ludovico, María Florencia; Battista, Francesca; von Oppen, Felix; Arrachea, Liliana

    2016-02-01

    We generalize the theory of thermoelectrics to include coherent electron systems under adiabatic ac driving, accounting for quantum pumping of charge and heat, as well as for the work exchanged between the electron system and driving potentials. We derive the relevant response coefficients in the adiabatic regime and show that they obey generalized Onsager reciprocity relations. We analyze the consequences of our generalized thermoelectric framework for quantum motors, generators, heat engines, and heat pumps, characterizing them in terms of efficiencies and figures of merit. We illustrate these concepts in a model for a quantum pump.

  19. Peroxyacetyl radical: Electronic excitation energies, fundamental vibrational frequencies, and symmetry breaking in the first excited state

    SciTech Connect

    Copan, Andreas V.; Wiens, Avery E.; Nowara, Ewa M.; Schaefer, Henry F.; Agarwal, Jay

    2015-02-07

    Peroxyacetyl radical [CH{sub 3}C(O)O{sub 2}] is among the most abundant peroxy radicals in the atmosphere and is involved in OH-radical recycling along with peroxyacetyl nitrate formation. Herein, the ground (X{sup ~}) and first (A{sup ~}) excited state surfaces of cis and trans peroxyacetyl radical are characterized using high-level ab initio methods. Geometries, anharmonic vibrational frequencies, and adiabatic excitation energies extrapolated to the complete basis-set limit are reported from computations with coupled-cluster theory. Excitation of the trans conformer is found to induce a symmetry-breaking conformational change due to second-order Jahn-Teller interactions with higher-lying excited states. Additional benchmark computations are provided to aid future theoretical work on peroxy radicals.

  20. Assessment of total efficiency in adiabatic engines

    NASA Astrophysics Data System (ADS)

    Mitianiec, W.

    2016-09-01

    The paper presents influence of ceramic coating in all surfaces of the combustion chamber of SI four-stroke engine on working parameters mainly on heat balance and total efficiency. Three cases of engine were considered: standard without ceramic coating, fully adiabatic combustion chamber and engine with different thickness of ceramic coating. Consideration of adiabatic or semi-adiabatic engine was connected with mathematical modelling of heat transfer from the cylinder gas to the cooling medium. This model takes into account changeable convection coefficient based on the experimental formulas of Woschni, heat conductivity of multi-layer walls and also small effect of radiation in SI engines. The simulation model was elaborated with full heat transfer to the cooling medium and unsteady gas flow in the engine intake and exhaust systems. The computer program taking into account 0D model of engine processes in the cylinder and 1D model of gas flow was elaborated for determination of many basic engine thermodynamic parameters for Suzuki DR-Z400S 400 cc SI engine. The paper presents calculation results of influence of the ceramic coating thickness on indicated pressure, specific fuel consumption, cooling and exhaust heat losses. Next it were presented comparisons of effective power, heat losses in the cooling and exhaust systems, total efficiency in function of engine rotational speed and also comparison of temperature inside the cylinder for standard, semi-adiabatic and full adiabatic engine. On the basis of the achieved results it was found higher total efficiency of adiabatic engines at 2500 rpm from 27% for standard engine to 37% for full adiabatic engine.

  1. Non-adiabatic effects in the à 2B2 and \\tilde{B}^2 \\bf{A}_1 states of CH2F2 + through coupling vibrational modes

    NASA Astrophysics Data System (ADS)

    Sarkar, Rudraditya

    2016-10-01

    Vibronic coupling between the two energetically close-lying excited electronic states (Ã 2B2 and \\tilde{B}2 A_1) of CH2F2 + is studied in this article. A reduced dimensional model Hamiltonian is constructed in a diabatic representation and using standard vibronic coupling theory. A detailed topographical analysis of the \\tilde{A} - \\tilde{B} coupled surfaces is presented here and nuclear dynamics study on these surfaces is also studied by using time-dependent wavepacket propagation approach.

  2. Ultrafast dual photoresponse of isolated biological chromophores: link to the photoinduced mode-specific non-adiabatic dynamics in proteins.

    PubMed

    Bochenkova, Anastasia V; Andersen, Lars H

    2013-01-01

    The anionic wild-type Green Fluorescent Protein (GFP) chromophore defines an entire class of naturally occurring chromophores, which are based on the oxydized tyrosine side chain. The GFP chromophore exhibits an enriched photoinduced non-adiabatic dynamics in the multiple excited-state decay channels. Deactivation includes vibrational resonant photodetachment and internal conversion. Here, we provide detailed insight into the efficiency of different vibrational modes in promoting a selective photoresponse in the bare GFP chromophore anion. We introduce a general theoretical model that is capable of accounting for the alternative non-equivalent pathways in internal conversion, and we outline the factors, by which the photo-initiated response may be altered in this channel. The topography around the planar minimum in S1 and the two distinct types of the S1/S0 conical intersections obtained through high-level ab initio calculations provide direct support to the proposed model. There are mode-selective ways to control the photoresponse and to direct it towards a single excited-state decay channel. By tuning the excitation wavelength, the photoresponse may be directed towards the ultrafast non-statistical electron emission coupled with vibrational (de)coherence, whereas a vibrational pre-excitation in the ground state may lead to the ultrafast non-statistical internal conversion through a conical intersection. We also discuss the implication of our results to the photo-initiated non-adiabatic dynamics in the proteins.

  3. Creation and Transfer of Coherence via Technique of Stimulated Raman Adiabatic Passage in Triple Quantum Dots.

    PubMed

    Tian, Si-Cong; Wan, Ren-Gang; Wang, Chun-Liang; Shu, Shi-Li; Wang, Li-Jie; Tong, Chun-Zhu

    2016-12-01

    We propose a scheme for creation and transfer of coherence among ground state and indirect exciton states of triple quantum dots via the technique of stimulated Raman adiabatic passage. Compared with the traditional stimulated Raman adiabatic passage, the Stokes laser pulse is replaced by the tunneling pulse, which can be controlled by the externally applied voltages. By varying the amplitudes and sequences of the pump and tunneling pulses, a complete coherence transfer or an equal coherence distribution among multiple states can be obtained. The investigations can provide further insight for the experimental development of controllable coherence transfer in semiconductor structure and may have potential applications in quantum information processing.

  4. 75 FR 983 - Cross-Media Electronic Reporting Rule State Approved Program Revision/Modification Approvals...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-07

    ... AGENCY Cross-Media Electronic Reporting Rule State Approved Program Revision/Modification Approvals... announces EPA's approval, under regulations for Cross-Media Electronic Reporting, of the State of...@epa.gov . SUPPLEMENTARY INFORMATION: On October 13, 2005, the final Cross-Media Electronic...

  5. Adiabatic dynamics of an inhomogeneous quantum phase transition: the case of a z>1 dynamical exponent

    NASA Astrophysics Data System (ADS)

    Dziarmaga, Jacek; Rams, Marek M.

    2010-10-01

    We consider an inhomogeneous quantum phase transition across a multicritical point of the XY quantum spin chain. This is an example of a Lifshitz transition with a dynamical exponent z=2. Just like in the case z=1 considered by Dziarmaga and Rams (2010 New J. Phys. 12 055007), when a critical front propagates much faster than the maximal group velocity of quasiparticles vq, then the transition is effectively homogeneous: the density of excitations obeys a generalized Kibble-Zurek mechanism and scales with the sixth root of the transition rate. However, unlike for the case z=1, the inhomogeneous transition becomes adiabatic not below vq but at a lower threshold velocity \\hat{v} , proportional to the inhomogeneity of the transition, where the excitations are suppressed exponentially. Interestingly, the adiabatic threshold \\hat{v} is nonzero despite the vanishing minimal group velocity of low-energy quasiparticles. In the adiabatic regime below \\hat{v} , the inhomogeneous transition can be used for efficient adiabatic quantum state preparation in a quantum simulator: the time required for the critical front to sweep across a chain of N spins adiabatically is merely linear in N, while the corresponding time for a homogeneous transition across the multicritical point scales with the sixth power of N. What is more, excitations after the adiabatic inhomogeneous transition, if any, are brushed away by the critical front to the end of the spin chain.

  6. 75 FR 69660 - Cross-Media Electronic Reporting Rule State Authorized Program Revision Approval: State of Hawaii

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ...] [FR Doc No: 2010-28651] ENVIRONMENTAL PROTECTION AGENCY [FRL-9226-9] Cross-Media Electronic Reporting...-Media Electronic Reporting, of the State of Hawaii's request to revise certain of its EPA-authorized...-Media Electronic Reporting Rule (CROMERR) was published in the Federal Register (70 FR 59848)...

  7. Real-time electron dynamics simulation of two-electron transfer reactions induced by nuclear motion

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasumitsu; Yamashita, Koichi

    2012-04-01

    Real-time electron dynamics of two-electron transfer reactions induced by nuclear motion is calculated by three methods: the numerically exact propagation method, the time-dependent Hartree (TDH) method and the Ehrenfest method. We find that, as long as the nuclei move as localized wave packets, the TDH and Ehrenfest methods can reproduce the exact electron dynamics of a simple charge transfer reaction model containing two electrons qualitatively well, even when nonadiabatic transitions between adiabatic states occur. In particular, both methods can reproduce the cases where a complete two-electron transfer reaction occurs and those where it does not occur.

  8. Pseudopotential and full-electron DFT calculations of thermodynamic properties of electrons in metals and semiempirical equations of state.

    PubMed

    Levashov, P R; Sin'ko, G V; Smirnov, N A; Minakov, D V; Shemyakin, O P; Khishchenko, K V

    2010-12-22

    In the present work, we compare the thermal contribution of electrons to thermodynamic functions of metals in different models at high densities and electron temperatures. One of the theoretical approaches, the full-potential linear-muffin-tin-orbital method, treats all electrons in the framework of density functional theory (DFT). The other approach, VASP, uses projector-augmented-wave pseudopotentials for the core electrons and considers the valent electrons also in the context of DFT. We analyze the limitations of the pseudopotential approach and compare the DFT results with a finite-temperature Thomas-Fermi model and two semiempirical equations of state.

  9. Threshold ionization, structural isomers, and electronic states of M{sub 2}O{sub 2} (M = Sc, Y, and La)

    SciTech Connect

    Wu, Lu; Zhang, Changhua; Krasnokutski, Serge A.; Yang, Dong-Sheng

    2014-06-14

    M{sub 2}O{sub 2} (M = Sc, Y, and La) were synthesized in a pulsed laser-vaporization molecular beam source and studied by mass-analyzed threshold ionization (MATI) spectroscopy and ab initio calculations. Adiabatic ionization energies (AIEs) and several vibrational frequencies were measured accurately for the first time from the MATI spectra. Six possible structural isomers of M{sub 2}O{sub 2} were considered in the calculations and the three converged structures were used in the spectral analysis. A planar cyclic structure in D{sub 2h} point group was predicted to be the most stable one by the theory and observed by the experiment. The cyclic structure is formed by joining two MO{sub 2} fragments together through two shared oxygen atoms. In forming the ground state clusters, each metal atom loses two (n − 1)d electrons and as a result, has only one ns electron in the metal-based valence orbital. The ground electronic state of Sc{sub 2}O{sub 2} is {sup 1}A{sub g}, and those of Y{sub 2}O{sub 2} and La{sub 2}O{sub 2} are {sup 3}B{sub 1u}. Ionization of both {sup 1}A{sub g} and {sup 3}B{sub 1u} neutral states yields the {sup 2}A{sub g} ion state by removing one of the two ns electrons, and the resultant ion has a similar geometry to the neutral cluster. The AIEs of the clusters are 5.5752 (6), 5.2639 (6), 4.5795 (6) eV for M = Sc, Y, and La, respectively. The vibrational frequencies of the observed modes, including O-M and M-M stretches, are in the range of 200–800 cm{sup −1}.

  10. Effect of Magnetic Field Gradient on Plasma Detachment Induced by Breaking of Adiabatic Plasma Expansion

    NASA Astrophysics Data System (ADS)

    Chung, K. S.; Kim, June Young; Chung, Kyoung-Jae; Hwang, Y. S.

    2016-10-01

    A magnetic field gradient that is a variation in the magnetic field around the ion flow has been investigated as a primary parameter for ion detachment in the magnetic nozzle geometries. Some scale lengths of magnetic field are controlled by two solenoid coils outside the diffusion chamber of a ECR-driven linear plasma device. The axial and radial profiles of the plasma potential and electron temperature are measured by a Langmuir probe array for the various magnetic field configurations in the downstream. The local adiabaticity, strong constant magnetic moment, is satisfied with a linear relationship between the change in effective electron temperature and the change in plasma potential in the low magnetic field gradient. Whereas, with an increasing non-homogeneity of the magnetic field in the direction of the flow, the breaking of adiabatic plasma expansion is identified to measure the nonlinear process which is the variation for an adiabatic exponent. Such the loss of adiabaticity is also explained in terms of non-adiabaticity parameter i.e. degree of demagnetization. This research was supported by National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (Nos. 2014M1A7A1A02030165 and 2014M1A7A1A03045367).

  11. Nonadiabatic exchange dynamics during adiabatic frequency sweeps.

    PubMed

    Barbara, Thomas M

    2016-04-01

    A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging.

  12. Adiabatic manipulations of Majorana fermions in a three-dimensional network of quantum wires

    NASA Astrophysics Data System (ADS)

    Halperin, Bertrand I.; Oreg, Yuval; Stern, Ady; Refael, Gil; Alicea, Jason; von Oppen, Felix

    2012-04-01

    It has been proposed that localized zero-energy Majorana states can be realized in a two-dimensional network of quasi-one-dimensional semiconductor wires that are proximity coupled to a bulk superconductor. The wires should have strong spin-orbit coupling with appropriate symmetry, and their electrons should be partially polarized by a strong Zeeman field. Then, if the Fermi level is in an appropriate range, the wire can be in a topological superconducting phase, with Majorana states that occur at wire ends and at Y junctions, where three topological superconductor segments may be joined. Here we generalize these ideas to consider a three-dimensional network. The positions of Majorana states can be manipulated, and their non-Abelian properties made visible, by using external gates to selectively deplete portions of the network or by physically connecting and redividing wire segments. Majorana states can also be manipulated by reorientations of the Zeeman field on a wire segment, by physically rotating the wire about almost any axis, or by evolution of the phase of the order parameter in the proximity-coupled superconductor. We show how to keep track of sign changes in the zero-energy Hilbert space during adiabatic manipulations by monitoring the evolution of each Majorana state separately, rather than keeping track of the braiding of all possible pairs. This has conceptual advantages in the case of a three-dimensional network, and may be computationally useful even in two dimensions, if large numbers of Majorana sites are involved.

  13. Minimal parametrization of an n-electron state

    SciTech Connect

    Kutzelnigg, Werner; Mukherjee, Debashis

    2005-02-01

    The Hamiltonian H for an n-electron system in a finite one-electron basis of dimension m is characterized by d=O(m{sup 4}) matrix elements. The eigenstates of this Hamiltonian - i.e., the full-CI states {psi} - depend, however, on the usually much larger set of N=O(m{sup n}) parameters. One can, nevertheless, write a full-CI state as {psi}=e{sup S}{phi} with {phi} a reference function and S an operator familiar from traditional coupled cluster (TCC) theory. The 'exact' operator S can be expressed (though in an implicit and rather complicated way) in terms of d parameters. An alternative ansatz {psi}=e{sup T}{phi} with T depending in a very simple way on d parameters only (namely, with T having the same structure in Fock space as H) has been studied by Nooijen and by Nakatsuji and been called coupled-cluster with generalized single and double excitations (CCGSD). Nooijen has conjectured that the full-CI equations can be fulfilled with this ansatz. This paper is devoted to a comprehensive analysis of the Nooijen conjecture (NC). Several features make this analysis difficult and even intriguing. (a) One deals with coupled nonlinear systems of equations, for which theorems concerning the existence of their solution are hardly available. (b) There are different possible interpretations of the NC, especially as far as the choice of the reference function {phi} is concerned. (c) There are solutions of the CCGSD equations, for which some elements of T becomes negative infinite, and e{sup T} becomes a projection operator. Such solutions are undesired but difficult to eliminate. We show by direct comparison of the exact wave operator with that of CCGSD theory, for a closed-shell state with {phi} a single Slater determinant, using a perturbation expansion, that CCGSD cannot be exact. This required a reformulation of the CCGSD operator e{sup T} to an equivalent exponential form e{sup R}, with R similar to the S of TCC theory, but with constraints on the cluster amplitudes

  14. 77 FR 58131 - Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Mississippi

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Mississippi... . SUPPLEMENTARY INFORMATION: On October 13, 2005, the final Cross-Media Electronic Reporting Rule (CROMERR)...

  15. Separating the Spin States of a Free Electron Beam

    NASA Astrophysics Data System (ADS)

    Rifkin, Neil

    2008-10-01

    In 1922 Otto Stern and Walther Gerlach set out to test the spacial quantization of the electron by passing a beam of neutral silver atoms through a transverse magnetic field. The interaction of the two projections of the electron's magnetic moment with the magnetic field resulted in a splitting of the beam. However, for some sixty years it was generally accepted that the spin of free electrons, and thus their magnetic moment, could not be measured with an experiment similar to that of Stern and Gerlach. The reason being that the lorentz force on charged particles is far greater than the force due to the magnetic moment of the electron, thus blurring any desired results. To reduce the lorentz force, the electrons could be passed through a magnetic field whose gradient is in the direction of the electrons' momentum. This longitudinal Stern-Gerlach device, with a superconducting magnet, could polarize the tails of a low energy electron beam.

  16. Complexity of the Quantum Adiabatic Algorithm

    NASA Technical Reports Server (NTRS)

    Hen, Itay

    2013-01-01

    The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorithms.

  17. On black hole spectroscopy via adiabatic invariance

    NASA Astrophysics Data System (ADS)

    Jiang, Qing-Quan; Han, Yan

    2012-12-01

    In this Letter, we obtain the black hole spectroscopy by combining the black hole property of adiabaticity and the oscillating velocity of the black hole horizon. This velocity is obtained in the tunneling framework. In particular, we declare, if requiring canonical invariance, the adiabatic invariant quantity should be of the covariant form Iadia = ∮pi dqi. Using it, the horizon area of a Schwarzschild black hole is quantized independently of the choice of coordinates, with an equally spaced spectroscopy always given by ΔA = 8 π lp2 in the Schwarzschild and Painlevé coordinates.

  18. On adiabatic invariant in generalized Galileon theories

    SciTech Connect

    Ema, Yohei; Jinno, Ryusuke; Nakayama, Kazunori; Mukaida, Kyohei E-mail: jinno@hep-th.phys.s.u-tokyo.ac.jp E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp

    2015-10-01

    We consider background dynamics of generalized Galileon theories in the context of inflation, where gravity and inflaton are non-minimally coupled to each other. In the inflaton oscillation regime, the Hubble parameter and energy density oscillate violently in many cases, in contrast to the Einstein gravity with minimally coupled inflaton. However, we find that there is an adiabatic invariant in the inflaton oscillation regime in any generalized Galileon theory. This adiabatic invariant is useful in estimating the expansion law of the universe and also the particle production rate due to the oscillation of the Hubble parameter.

  19. Spontaneous emission in stimulated Raman adiabatic passage

    SciTech Connect

    Ivanov, P. A.; Vitanov, N. V.; Bergmann, K.

    2005-11-15

    This work explores the effect of spontaneous emission on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The approach uses adiabatic elimination of weakly coupled density matrix elements in the Liouville equation, from which a very accurate analytic approximation is derived. The loss of population transfer efficiency is found to decrease exponentially with the factor {omega}{sub 0}{sup 2}/{gamma}, where {gamma} is the spontaneous emission rate and {omega}{sub 0} is the peak Rabi frequency. The transfer efficiency increases with the pulse delay and reaches a steady value. For large pulse delay and large spontaneous emission rate STIRAP degenerates into optical pumping.

  20. Markovian quantum master equation beyond adiabatic regime.

    PubMed

    Yamaguchi, Makoto; Yuge, Tatsuro; Ogawa, Tetsuo

    2017-01-01

    By introducing a temporal change time scale τ_{A}(t) for the time-dependent system Hamiltonian, a general formulation of the Markovian quantum master equation is given to go well beyond the adiabatic regime. In appropriate situations, the framework is well justified even if τ_{A}(t) is faster than the decay time scale of the bath correlation function. An application to the dissipative Landau-Zener model demonstrates this general result. The findings are applicable to a wide range of fields, providing a basis for quantum control beyond the adiabatic regime.

  1. Markovian quantum master equation beyond adiabatic regime

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Makoto; Yuge, Tatsuro; Ogawa, Tetsuo

    2017-01-01

    By introducing a temporal change time scale τA(t ) for the time-dependent system Hamiltonian, a general formulation of the Markovian quantum master equation is given to go well beyond the adiabatic regime. In appropriate situations, the framework is well justified even if τA(t ) is faster than the decay time scale of the bath correlation function. An application to the dissipative Landau-Zener model demonstrates this general result. The findings are applicable to a wide range of fields, providing a basis for quantum control beyond the adiabatic regime.

  2. Adiabatic fission barriers in superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Jachimowicz, P.; Kowal, M.; Skalski, J.

    2017-01-01

    Using the microscopic-macroscopic model based on the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy, we calculated static fission barriers Bf for 1305 heavy and superheavy nuclei 98 ≤Z ≤126 , including even-even, odd-even, even-odd and odd-odd systems. For odd and odd-odd nuclei, adiabatic potential-energy surfaces were calculated by a minimization over configurations with one blocked neutron or/and proton on a level from the 10th below to the 10th above the Fermi level. The parameters of the model that have been fixed previously by a fit to masses of even-even heavy nuclei were kept unchanged. A search for saddle points has been performed by the "imaginary water flow" method on a basic five-dimensional deformation grid, including triaxiality. Two auxiliary grids were used for checking the effects of the mass asymmetry and hexadecapole nonaxiality. The ground states (g.s.) were found by energy minimization over configurations and deformations. We find that the nonaxiality significantly changes first and second fission saddle in many nuclei. The effect of the mass asymmetry, known to lower the second, very deformed saddles in actinides, in the heaviest nuclei appears at the less deformed saddles in more than 100 nuclei. It happens for those saddles in which the triaxiality does not play any role, which suggests a decoupling between effects of the mass asymmetry and triaxiality. We studied also the influence of the pairing interaction strength on the staggering of Bf for odd- and even-particle numbers. Finally, we provide a comparison of our results with other theoretical fission barrier evaluations and with available experimental estimates.

  3. Conical intersections and diabatic potential energy surfaces for the three lowest electronic singlet states of H3 (+).

    PubMed

    Mukherjee, Saikat; Mukhopadhyay, Debasis; Adhikari, Satrajit

    2014-11-28

    We calculate the adiabatic Potential Energy Surfaces (PESs) and the Non-Adiabatic Coupling Terms (NACTs) for the three lowest singlet states of H3 (+) in hyperspherical coordinates as functions of hyperangles (θ and ϕ) for a grid of fixed values of hyperradius (1.5 ⩽ ρ ⩽ 20 bohrs) using the MRCI level of methodology employing ab initio quantum chemistry package (MOLPRO). The NACT between the ground and the first excited state translates along the seams on the θ - ϕ space, i.e., there are six Conical Intersections (CIs) at each θ (60° ⩽ θ ⩽ 90°) within the domain, 0 ⩽ ϕ ⩽ 2π. While transforming the adiabatic PESs to the diabatic ones, such surfaces show up six crossings along those seams. Our beyond Born-Oppenheimer approach could incorporate the effect of NACTs accurately and construct single-valued, continuous, smooth, and symmetric diabatic PESs. Since the location of CIs and the spatial amplitudes of NACTs are most prominent around ρ = 10 bohrs, generally only those results are depicted.

  4. Are AB Initio Quantum Chemistry Methods Able to Predict Vibrational States up to the Dissociation Limit for Multi-Electron Molecules Close to Spectroscopic Accuracy?

    NASA Astrophysics Data System (ADS)

    Szalay, Péter G.; Holka, Filip; Fremont, Julien; Rey, Michael; Tyuterev, Vladimir G.

    2011-06-01

    The aim of the study was to explore the limits of initio methods towards the description of excited vibrational levels up to the dissociation limit for molecules having more than two electrons. To this end a high level ab initio potential energy function was constructed for the four-electron LiH molecule in order to accurately predict a complete set of bound vibrational levels corresponding to the electronic ground state. It was composed from: a) an ab initio non-relativistic potential obtained at the MR-CISD level including size-extensivity corrections and quintuple-sextuple ζ extrapolation of the basis, b) MVD (Mass-velocity-Darwin) relativistic corrections obtained at icMR-CISD/cc-pwCV5Z level, and c) DBOC (Diagonal Born-Oppenheimer correction) obtained at the MR-CISD/cc-pwCVTZ level. Finally, the importance of non-adiabatic effects was also tested by using atomic masses in the vibrational kinetic energy operator and by calculation of non-adiabatic coupling by ab initio methods. The calculated vibrational levels were compared with those obtained from experimental data [J.A. Coxon and C.S. Dickinson, J. Chem. Phys., 2004, 121, 9378]. Our best estimate of the potential curve results in vibrational energies with a RMS deviation of only ˜1 wn\\ for the entire set of all empirically determined vibrational levels known so far. These results represent a drastic improvement over previous theoretical predictions of vibrational levels of ^7LiH up to dissociation, D_0, which was predicted to be 19594 Cm-1. In addition, rotational levels have also been calculated. The RMS deviation between our ab initio calculations and empirical results by Coxon and Dickinson for rotational spacings Δ E = E(v, J = 1)-E(v, J = 0) over all available vibrational states of ^7LiH from v = 0 to v= 20 is 0.010 wn (with nuclear masses) and 0.006 wn (with atomic masses). Note that for high vibrational states with v > 6 this falls within the uncertainty of the measurements.

  5. Sliding Seal Materials for Adiabatic Engines, Phase 2

    NASA Technical Reports Server (NTRS)

    Lankford, J.; Wei, W.

    1986-01-01

    An essential task in the development of the heavy-duty adiabatic diesel engine is identification and improvements of reliable, low-friction piston seal materials. In the present study, the sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, and loading conditions that are representative of the adiabatic engine environment. In addition, silicon nitride and partially stabilized zirconia disks were ion implanted with TiNi, Ni, Co, and Cr, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Electron microscopy was used to elucidate the micromechanisms of wear following wear testing, and Auger electron spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. The coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implanation of TiNi or Co. This beneficial effect was found to derive from lubricious Ti, Ni, and Co oxides.

  6. Calculating and Visualizing Thermodynamic Equilibrium: A Tutorial on the Isolated System with an Internal Adiabatic Piston

    ERIC Educational Resources Information Center

    Ferreira, Joao Paulo M.

    2007-01-01

    The problem of the equilibrium state of an isolated composite system with a movable internal adiabatic wall is a recurrent one in the literature. Classical equilibrium thermodynamics is unable to predict the equilibrium state, unless supplemented with information about the process taking place. This conclusion is clearly demonstrated in this…

  7. Adiabatic transport of qubits around a black hole

    NASA Astrophysics Data System (ADS)

    Viennot, David; Moro, Olivia

    2017-03-01

    We consider localized qubits evolving around a black hole following a quantum adiabatic dynamics. We develop a geometric structure (based on fibre bundles) permitting to describe the quantum states of a qubit and the spacetime geometry in a single framework. The quantum decoherence induced by the black hole on the qubit is analysed in this framework (the role of the dynamical and geometric phases in this decoherence is treated), especially for the quantum teleportation protocol when one qubit falls to the event horizon. A simple formula to compute the fidelity of the teleportation is derived. The case of a Schwarzschild black hole is analysed.

  8. Formation and nonlinear dynamics of the squeezed state of a helical electron beam with additional deceleration

    SciTech Connect

    Egorov, E. N. Koronovskii, A. A.; Kurkin, S. A.; Hramov, A. E.

    2013-11-15

    Results of numerical simulations and analysis of the formation and nonlinear dynamics of the squeezed state of a helical electron beam in a vircator with a magnetron injection gun as an electron source and with additional electron deceleration are presented. The ranges of control parameters where the squeezed state can form in such a system are revealed, and specific features of the system dynamics are analyzed. It is shown that the formation of a squeezed state of a nonrelativistic helical electron beam in a system with electron deceleration is accompanied by low-frequency longitudinal dynamics of the space charge.

  9. Implementation of Inverse Photoelectron Spectroscopy for Measuring the Empty Electronic States of Metal Oxide Surfaces

    DTIC Science & Technology

    2014-11-05

    and initial results on oxidized zirconium have been performed. (a) Papers published in peer-reviewed journals (N/A for none) Enter List of papers...the electronic states of the surface with changes in the photoluminescence spectrum. The results of some of our first experiments on zirconium ...clean” zirconium oxide. The occupied valence electronic states are mainly composed of oxygen 2p electrons. The unoccupied states are zirconium 4d

  10. On the electron affinity of Be2

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Partridge, H.

    1984-01-01

    Calculations of the electron affinity (EA) of Be2 using a large Slater-type orbital basis set and extensive correlation based upon a CASSCF reference are reported. The adiabatic EAs are estimated to be 0.44 eV for the 2Sigma sub g(+) state and 0.56 eV for the 2Pi sub u state. The extra electron attaches into an empty bonding orbital, causing a shortening of the bond length and an increase in omega(e). The D(e) of the 2Pi sub u state of Be2 is six times as large as the D(e) of Be2.

  11. A two-atom electron pump

    NASA Astrophysics Data System (ADS)

    Roche, B.; Riwar, R.-P.; Voisin, B.; Dupont-Ferrier, E.; Wacquez, R.; Vinet, M.; Sanquer, M.; Splettstoesser, J.; Jehl, X.

    2013-03-01

    With the development of single-atom transistors, consisting of single dopants, nanofabrication has reached an extreme level of miniaturization. Promising functionalities for future nanoelectronic devices are based on the possibility of coupling several of these dopants to each other. This already allowed to perform spectroscopy of the donor state by d.c. electrical transport. The next step, namely manipulating a single electron over two dopants, remains a challenge. Here we demonstrate electron pumping through two phosphorus donors in series implanted in a silicon nanowire. While quantized pumping is achieved in the low-frequency adiabatic regime, we observe remarkable features at higher frequency when the charge transfer is limited either by the tunnelling rates to the electrodes or between the two donors. The transitions between quantum states are modelled involving a Landau-Zener transition, allowing to reproduce in detail the characteristic signatures observed in the non-adiabatic regime.

  12. A two-atom electron pump

    PubMed Central

    Roche, B.; Riwar, R.-P.; Voisin, B.; Dupont-Ferrier, E.; Wacquez, R.; Vinet, M.; Sanquer, M.; Splettstoesser, J.; Jehl, X.

    2013-01-01

    With the development of single-atom transistors, consisting of single dopants, nanofabrication has reached an extreme level of miniaturization. Promising functionalities for future nanoelectronic devices are based on the possibility of coupling several of these dopants to each other. This already allowed to perform spectroscopy of the donor state by d.c. electrical transport. The next step, namely manipulating a single electron over two dopants, remains a challenge. Here we demonstrate electron pumping through two phosphorus donors in series implanted in a silicon nanowire. While quantized pumping is achieved in the low-frequency adiabatic regime, we observe remarkable features at higher frequency when the charge transfer is limited either by the tunnelling rates to the electrodes or between the two donors. The transitions between quantum states are modelled involving a Landau–Zener transition, allowing to reproduce in detail the characteristic signatures observed in the non-adiabatic regime. PMID:23481389

  13. Two-electron bound states near a Coulomb impurity in gapped graphene

    NASA Astrophysics Data System (ADS)

    De Martino, Alessandro; Egger, Reinhold

    2017-02-01

    We formulate and solve the perhaps simplest two-body bound-state problem for interacting Dirac fermions in two spatial dimensions. A two-body bound state is predicted for gapped graphene monolayers in the presence of weakly repulsive electron-electron interactions and a Coulomb impurity with charge Z e >0 , where the most interesting case corresponds to Z =1 . We introduce a variational Chandrasekhar-Dirac spinor wave function and show the existence of at least one bound state. This state leaves clear signatures accessible by scanning tunneling microscopy. One may thereby obtain direct information about the strength of electron-electron interactions in graphene.

  14. Structural evolution and valence electron-state change during ultra thin silicon-oxide growth

    NASA Astrophysics Data System (ADS)

    Shimizu, A.; Abe, S.; Nakayama, H.; Nishino, T.; Iida, S.

    2000-06-01

    We have studied valence electron-state changes of Si during initial oxidation of Si(111) clean surface, HF-treated Si(001) and Si(111) surfaces by Auger valence electron spectroscopy (AVES). The results showed that the valence electron-state changes during initial oxidation were sensitively reflected in Si[2s,2p,V] (V=3s,3p) AVES spectra and that they depended on both initial surface treatment and surface orientation. The local valence electron-states, local density of states in other words, showed the characteristic-structure evolution depending on the initial surface treatment and surface orientation.

  15. Localization and adiabatic pumping in a generalized Aubry-André-Harper model

    NASA Astrophysics Data System (ADS)

    Liu, Fangli; Ghosh, Somnath; Chong, Y. D.

    2015-01-01

    A generalization of the Aubry-André-Harper (AAH) model is developed, containing a tunable phase shift between on-site and off-diagonal modulations. A localization transition can be induced by varying just this phase, keeping all other model parameters constant. The complete localization phase diagram is obtained. Unlike the original AAH model, the generalized model can exhibit a transition between topologically trivial band structures and topologically nontrivial band structures containing protected boundary states. These boundary states can be pumped across the system by adiabatic variations in the phase shift parameter. The model can also be used to demonstrate the phenomenon of adiabatic pumping breakdown due to localization.

  16. Piecewise Adiabatic Population Transfer in a Molecule via a Wave Packet

    SciTech Connect

    Shapiro, Evgeny A.; Peer, Avi; Ye Jun; Shapiro, Moshe

    2008-07-11

    We propose a class of schemes for robust population transfer between quantum states that utilize trains of coherent pulses, thus forming a generalized adiabatic passage via a wave packet. We study piecewise stimulated Raman adiabatic passage with pulse-to-pulse amplitude variation, and piecewise chirped Raman passage with pulse-to-pulse phase variation, implemented with an optical frequency comb. In the context of production of ultracold ground-state molecules, we show that with almost no knowledge of the excited potential, robust high-efficiency transfer is possible.

  17. Experimental demonstration of population inversion driven by retroreflection-induced bichromatic adiabatic passage

    SciTech Connect

    Conde, Alvaro Peralta; Yatsenko, Leonid P.; Klein, Jens; Oberst, Martin; Halfmann, Thomas

    2005-11-15

    We present experimental data to demonstrate coherently driven population inversion by retroreflection-induced bichromatic adiabatic passage in metastable helium atoms. Complete and robust population transfer from an initial to a target state is induced by coherent interaction of the atoms in a supersonic beam with two counterpropagating and temporally delayed laser pulses of different intensities. The radiation fields intersect the atomic beam slightly tilted away from normal incidence, thereby inducing Doppler shifts of the atomic resonance between the initial and the target state. Thus the laser pulses produce a bichromatic field in the rest frame of each atom, which induces complete coherent population transfer by an adiabatic passage process.

  18. Pulsed-field ionization zero electron kinetic energy spectrum of the ground electronic state of BeOBe+.

    PubMed

    Antonov, Ivan O; Barker, Beau J; Heaven, Michael C

    2011-01-28

    The ground electronic state of BeOBe(+) was probed using the pulsed-field ionization zero electron kinetic energy photoelectron technique. Spectra were rotationally resolved and transitions to the zero-point level, the symmetric stretch fundamental and first two bending vibrational levels were observed. The rotational state symmetry selection rules confirm that the ground electronic state of the cation is (2)Σ(g)(+). Detachment of an electron from the HOMO of neutral BeOBe results in little change in the vibrational or rotational constants, indicating that this orbital is nonbonding in nature. The ionization energy of BeOBe [65480(4) cm(-1)] was refined over previous measurements. Results from recent theoretical calculations for BeOBe(+) (multireference configuration interaction) were found to be in good agreement with the experimental data.

  19. Adiabatic-nuclei calculations of positron scattering from molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Zammit, Mark C.; Fursa, Dmitry V.; Savage, Jeremy S.; Bray, Igor; Chiari, Luca; Zecca, Antonio; Brunger, Michael J.

    2017-02-01

    The single-center adiabatic-nuclei convergent close-coupling method is used to investigate positron collisions with molecular hydrogen (H2) in the ground and first vibrationally excited states. Cross sections are presented over the energy range from 1 to 1000 eV for elastic scattering, vibrational excitation, total ionization, and the grand total cross section. The present adiabatic-nuclei positron-H2 scattering length is calculated as A =-2.70 a0 for the ground state and A =-3.16 a0 for the first vibrationally excited state. The present elastic differential cross sections are also used to "correct" the low-energy grand total cross-section measurements of the Trento group [A. Zecca et al., Phys. Rev. A 80, 032702 (2009), 10.1103/PhysRevA.80.032702] for the forward-angle-scattering effect. In general, the comparison with experiment is good. By performing convergence studies, we estimate that our Rm=1.448 a0 fixed-nuclei results are converged to within ±5 % for the major scattering integrated cross sections.

  20. Adiabatic Compression in a Fire Syringe.

    ERIC Educational Resources Information Center

    Hayn, Carl H.; Baird, Scott C.

    1985-01-01

    Suggests using better materials in fire syringes to obtain more effective results during demonstrations which show the elevation in temperature upon a very rapid (adiabatic) compression of air. Also describes an experiment (using ignition temperatures) which introduces students to the use of thermocouples for high temperature measurements. (DH)