Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning
NASA Technical Reports Server (NTRS)
Smelyanskiy, Vadius; vonToussaint, Udo V.; Timucin, Dogan A.; Clancy, Daniel (Technical Monitor)
2002-01-01
We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum exitation gap, gmin = O(n2(sup -n/2)), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.
Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning
NASA Technical Reports Server (NTRS)
Smelyanskiy, V. N.; Toussaint, U. V.; Timucin, D. A.
2002-01-01
We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum excitation gap. g min, = O(n 2(exp -n/2), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to 'the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.
Random Matrix Approach to Quantum Adiabatic Evolution Algorithms
NASA Technical Reports Server (NTRS)
Boulatov, Alexei; Smelyanskiy, Vadier N.
2004-01-01
We analyze the power of quantum adiabatic evolution algorithms (Q-QA) for solving random NP-hard optimization problems within a theoretical framework based on the random matrix theory (RMT). We present two types of the driven RMT models. In the first model, the driving Hamiltonian is represented by Brownian motion in the matrix space. We use the Brownian motion model to obtain a description of multiple avoided crossing phenomena. We show that the failure mechanism of the QAA is due to the interaction of the ground state with the "cloud" formed by all the excited states, confirming that in the driven RMT models. the Landau-Zener mechanism of dissipation is not important. We show that the QAEA has a finite probability of success in a certain range of parameters. implying the polynomial complexity of the algorithm. The second model corresponds to the standard QAEA with the problem Hamiltonian taken from the Gaussian Unitary RMT ensemble (GUE). We show that the level dynamics in this model can be mapped onto the dynamics in the Brownian motion model. However, the driven RMT model always leads to the exponential complexity of the algorithm due to the presence of the long-range intertemporal correlations of the eigenvalues. Our results indicate that the weakness of effective transitions is the leading effect that can make the Markovian type QAEA successful.
Random matrix approach to quantum adiabatic evolution algorithms
Boulatov, A.; Smelyanskiy, V.N.
2005-05-15
We analyze the power of the quantum adiabatic evolution algorithm (QAA) for solving random computationally hard optimization problems within a theoretical framework based on random matrix theory (RMT). We present two types of driven RMT models. In the first model, the driving Hamiltonian is represented by Brownian motion in the matrix space. We use the Brownian motion model to obtain a description of multiple avoided crossing phenomena. We show that nonadiabatic corrections in the QAA are due to the interaction of the ground state with the 'cloud' formed by most of the excited states, confirming that in driven RMT models, the Landau-Zener scenario of pairwise level repulsions is not relevant for the description of nonadiabatic corrections. We show that the QAA has a finite probability of success in a certain range of parameters, implying a polynomial complexity of the algorithm. The second model corresponds to the standard QAA with the problem Hamiltonian taken from the RMT Gaussian unitary ensemble (GUE). We show that the level dynamics in this model can be mapped onto the dynamics in the Brownian motion model. For this reason, the driven GUE model can also lead to polynomial complexity of the QAA. The main contribution to the failure probability of the QAA comes from the nonadiabatic corrections to the eigenstates, which only depend on the absolute values of the transition amplitudes. Due to the mapping between the two models, these absolute values are the same in both cases. Our results indicate that this 'phase irrelevance' is the leading effect that can make both the Markovian- and GUE-type QAAs successful.
Transitionless driving on adiabatic search algorithm
Oh, Sangchul; Kais, Sabre
2014-12-14
We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.
Transitionless driving on adiabatic search algorithm
NASA Astrophysics Data System (ADS)
Oh, Sangchul; Kais, Sabre
2014-12-01
We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.
Transitionless driving on adiabatic search algorithm.
Oh, Sangchul; Kais, Sabre
2014-12-14
We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.
A Modified Adiabatic Quantum Algorithm for Evaluation of Boolean Functions
NASA Astrophysics Data System (ADS)
Sun, Jie; Lu, Songfeng; Liu, Fang
2015-09-01
In this paper, we propose a modified construction of the quantum adiabatic algorithm for Boolean functions studied by M. Andrecut et al. [13, 14]. Our algorithm has the time complexity O(1) for the evaluation of Boolean functions, without additional computational cost of implementing the driving Hamiltonian, which is required by the adiabatic evolution described in [13, 14].
Quantum Adiabatic Algorithms and Large Spin Tunnelling
NASA Technical Reports Server (NTRS)
Boulatov, A.; Smelyanskiy, V. N.
2003-01-01
We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in this paper. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H (r) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H (r) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.
On the Role of Prior Probability in Adiabatic Quantum Algorithms
NASA Astrophysics Data System (ADS)
Sun, Jie; Lu, Songfeng; Yang, Liping
2016-03-01
In this paper, we study the role of prior probability on the efficiency of quantum local adiabatic search algorithm. The following aspects for prior probability are found here: firstly, only the probabilities of marked states affect the running time of the adiabatic evolution; secondly, the prior probability can be used for improving the efficiency of the adiabatic algorithm; thirdly, like the usual quantum adiabatic evolution, the running time for the case of multiple solution states where the number of marked elements are smaller enough than the size of the set assigned that contains them can be significantly bigger than that of the case where the assigned set only contains all the marked states.
On the General Class of Models of Adiabatic Evolution
NASA Astrophysics Data System (ADS)
Sun, Jie; Lu, Songfeng; Liu, Fang
2016-10-01
The general class of models of adiabatic evolution was proposed to speed up the usual adiabatic computation in the case of quantum search problem. It was shown [8] that, by temporarily increasing the ground state energy of a time-dependent Hamiltonian to a suitable quantity, the quantum computation can perform the calculation in time complexity O(1). But it is also known that if the overlap between the initial and final states of the system is zero, then the computation based on the generalized models of adiabatic evolution can break down completely. In this paper, we find another severe limitation for this class of adiabatic evolution-based algorithms, which should be taken into account in applications. That is, it is still possible that this kind of evolution designed to deal with the quantum search problem fails completely if the interpolating paths in the system Hamiltonian are chosen inappropriately, while the usual adiabatic evolutions can do the same job relatively effectively. This implies that it is not always recommendable to use nonlinear paths in adiabatic computation. On the contrary, the usual simple adiabatic evolution may be sufficient for effective use.
Complexity of the Quantum Adiabatic Algorithm
NASA Technical Reports Server (NTRS)
Hen, Itay
2013-01-01
The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorithms.
General conditions for quantum adiabatic evolution
Comparat, Daniel
2009-07-15
Adiabaticity occurs when, during its evolution, a physical system remains in the instantaneous eigenstate of the Hamiltonian. Unfortunately, existing results, such as the quantum adiabatic theorem based on a slow down evolution [H({epsilon}t),{epsilon}{yields}0], are insufficient to describe an evolution driven by the Hamiltonian H(t) itself. Here we derive general criteria and exact bounds, for the state and its phase, ensuring an adiabatic evolution for any Hamiltonian H(t). As a corollary, we demonstrate that the commonly used condition of a slow Hamiltonian variation rate, compared to the spectral gap, is indeed sufficient to ensure adiabaticity but only when the Hamiltonian is real and nonoscillating (for instance, containing exponential or polynomial but no sinusoidal functions)
Adiabatic evolution of plasma equilibrium
Grad, H.; Hu, P. N.; Stevens, D. C.
1975-01-01
A new theory of plasma equilibrium is introduced in which adiabatic constraints are specified. This leads to a mathematically nonstandard structure, as compared to the usual equilibrium theory, in which prescription of pressure and current profiles leads to an elliptic partial differential equation. Topologically complex configurations require further generalization of the concept of adiabaticity to allow irreversible mixing of plasma and magnetic flux among islands. Matching conditions across a boundary layer at the separatrix are obtained from appropriate conservation laws. Applications are made to configurations with planned islands (as in Doublet) and accidental islands (as in Tokamaks). Two-dimensional, axially symmetric, helically symmetric, and closed line equilibria are included. PMID:16578729
Experimental implementation of an adiabatic quantum optimization algorithm
NASA Astrophysics Data System (ADS)
Steffen, Matthias; van Dam, Wim; Hogg, Tad; Breyta, Greg; Chuang, Isaac
2003-03-01
A novel quantum algorithm using adiabatic evolution was recently presented by Ed Farhi [1] and Tad Hogg [2]. This algorithm represents a remarkable discovery because it offers new insights into the usefulness of quantum resources. An experimental demonstration of an adiabatic algorithm has remained beyond reach because it requires an experimentally accessible Hamiltonian which encodes the problem and which must also be smoothly varied over time. We present tools to overcome these difficulties by discretizing the algorithm and extending average Hamiltonian techniques [3]. We used these techniques in the first experimental demonstration of an adiabatic optimization algorithm: solving an instance of the MAXCUT problem using three qubits and nuclear magnetic resonance techniques. We show that there exists an optimal run-time of the algorithm which can be predicted using a previously developed decoherence model. [1] E. Farhi et al., quant-ph/0001106 (2000) [2] T. Hogg, PRA, 61, 052311 (2000) [3] W. Rhim, A. Pines, J. Waugh, PRL, 24,218 (1970)
The performance of the quantum adiabatic algorithm on spike Hamiltonians
NASA Astrophysics Data System (ADS)
Kong, Linghang; Crosson, Elizabeth
Spike Hamiltonians arise from optimization instances for which the adiabatic algorithm provably out performs classical simulated annealing. In this work, we study the efficiency of the adiabatic algorithm for solving the “the Hamming weight with a spike” problem by analyzing the scaling of the spectral gap at the critical point for various sizes of the barrier. Our main result is a rigorous lower bound on the minimum spectral gap for the adiabatic evolution when the bit-symmetric cost function has a thin but polynomially high barrier, which is based on a comparison argument and an improved variational ansatz for the ground state. We also adapt the discrete WKB method for the case of abruptly changing potentials and compare it with the predictions of the spin coherent instanton method which was previously used by Farhi, Goldstone and Gutmann. Finally, our improved ansatz for the ground state leads to a method for predicting the location of avoided crossings in the excited energy states of the thin spike Hamiltonian, and we use a recursion relation to understand the ordering of some of these avoided crossings as a step towards analyzing the previously observed diabatic cascade phenomenon.
Adiabatic quantum algorithm for search engine ranking.
Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A
2012-06-08
We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in "q-sampling" protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.
Adiabatic Quantum Algorithm for Search Engine Ranking
NASA Astrophysics Data System (ADS)
Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A.
2012-06-01
We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in “q-sampling” protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.
Ultrafast adiabatic quantum algorithm for the NP-complete exact cover problem.
Wang, Hefeng; Wu, Lian-Ao
2016-02-29
An adiabatic quantum algorithm may lose quantumness such as quantum coherence entirely in its long runtime, and consequently the expected quantum speedup of the algorithm does not show up. Here we present a general ultrafast adiabatic quantum algorithm. We show that by applying a sequence of fast random or regular signals during evolution, the runtime can be reduced substantially, whereas advantages of the adiabatic algorithm remain intact. We also propose a randomized Trotter formula and show that the driving Hamiltonian and the proposed sequence of fast signals can be implemented simultaneously. We illustrate the algorithm by solving the NP-complete 3-bit exact cover problem (EC3), where NP stands for nondeterministic polynomial time, and put forward an approach to implementing the problem with trapped ions.
Ultrafast adiabatic quantum algorithm for the NP-complete exact cover problem
Wang, Hefeng; Wu, Lian-Ao
2016-01-01
An adiabatic quantum algorithm may lose quantumness such as quantum coherence entirely in its long runtime, and consequently the expected quantum speedup of the algorithm does not show up. Here we present a general ultrafast adiabatic quantum algorithm. We show that by applying a sequence of fast random or regular signals during evolution, the runtime can be reduced substantially, whereas advantages of the adiabatic algorithm remain intact. We also propose a randomized Trotter formula and show that the driving Hamiltonian and the proposed sequence of fast signals can be implemented simultaneously. We illustrate the algorithm by solving the NP-complete 3-bit exact cover problem (EC3), where NP stands for nondeterministic polynomial time, and put forward an approach to implementing the problem with trapped ions. PMID:26923834
Phase avalanches in near-adiabatic evolutions
Vertesi, T.; Englman, R.
2006-02-15
In the course of slow, nearly adiabatic motion of a system, relative changes in the slowness can cause abrupt and high magnitude phase changes, ''phase avalanches,'' superimposed on the ordinary geometric phases. The generality of this effect is examined for arbitrary Hamiltonians and multicomponent (>2) wave packets and is found to be connected (through the Blaschke term in the theory of analytic signals) to amplitude zeros in the lower half of the complex time plane. Motion on a nonmaximal circle on the Poincare-sphere suppresses the effect. A spectroscopic transition experiment can independently verify the phase-avalanche magnitudes.
Determining the Complexity of the Quantum Adiabatic Algorithm using Quantum Monte Carlo Simulations
2012-12-18
efficiently a quantum computer could solve optimization problems using the quantum adiabatic algorithm (QAA). Comparisons were made with a classical...Park, NC 27709-2211 15. SUBJECT TERMS Quantum Adiabatic Algorithm , Optimization, Monte Carlo, quantum computer, satisfiability problems, spin glass... quantum adiabatic algorithm (QAA). Comparisons were made with a classical heuristic algorithm , WalkSAT. A preliminary study was also made to see if the
Geometric Phase for Adiabatic Evolutions of General Quantum States
Wu, Biao; Liu, Jie; Niu, Qian; Singh, David J
2005-01-01
The concept of a geometric phase (Berry's phase) is generalized to the case of noneigenstates, which is applicable to both linear and nonlinear quantum systems. This is particularly important to nonlinear quantum systems, where, due to the lack of the superposition principle, the adiabatic evolution of a general state cannot be described in terms of eigenstates. For linear quantum systems, our new geometric phase reduces to a statistical average of Berry's phases. Our results are demonstrated with a nonlinear two-level model.
Effects of dissipation on an adiabatic quantum search algorithm
NASA Astrophysics Data System (ADS)
de Vega, Inés; Bañuls, Mari Carmen; Pérez, A.
2010-12-01
According to recent studies (Amin et al 2008 Phys. Rev. Lett. 100 060503), the effect of a thermal bath may improve the performance of a quantum adiabatic search algorithm. In this paper, we compare the effects of such a thermal environment on the algorithm performance with those of a structured environment similar to the one encountered in systems coupled to an electromagnetic field that exists within a photonic crystal. Whereas for all the parameter regimes explored here, the algorithm performance is worsened by contact with a thermal environment, the picture appears to be different when one considers a structured environment. In this case we show that by tuning the environment parameters to certain regimes, the algorithm performance can actually be improved with respect to the closed system case. Additionally, the relevance of considering the dissipation rates as complex quantities is discussed in both cases. More specifically, we find that the imaginary part of the rates cannot be neglected with the usual argument that it simply amounts to an energy shift and in fact influences crucially the system dynamics.
Algorithms, games, and evolution
Chastain, Erick; Livnat, Adi; Papadimitriou, Christos; Vazirani, Umesh
2014-01-01
Even the most seasoned students of evolution, starting with Darwin himself, have occasionally expressed amazement that the mechanism of natural selection has produced the whole of Life as we see it around us. There is a computational way to articulate the same amazement: “What algorithm could possibly achieve all this in a mere three and a half billion years?” In this paper we propose an answer: We demonstrate that in the regime of weak selection, the standard equations of population genetics describing natural selection in the presence of sex become identical to those of a repeated game between genes played according to multiplicative weight updates (MWUA), an algorithm known in computer science to be surprisingly powerful and versatile. MWUA maximizes a tradeoff between cumulative performance and entropy, which suggests a new view on the maintenance of diversity in evolution. PMID:24979793
Is the addition of an assisted driving Hamiltonian always useful for adiabatic evolution?
NASA Astrophysics Data System (ADS)
Sun, Jie; Lu, Songfeng; Li, Li
2017-04-01
It has been known that when an assisted driving item is added to the main system Hamiltonian, the efficiency of the resultant adiabatic evolution can be significantly improved. In some special cases, it can be seen that only through adding an assisted driving Hamiltonian can the resulting adiabatic evolution be made not to fail. Thus the additional driving Hamiltonian plays an important role in adiabatic computing. In this paper, we show that if the driving Hamiltonian is chosen inappropriately, the adiabatic computation may still fail. More importantly, we find that the adiabatic computation can only succeed if the assisted driving Hamiltonian has a relatively fixed form. This may help us understand why in the related literature all of the driving Hamiltonians used share the same form.
NASA Astrophysics Data System (ADS)
Farhi, Edward; Gosset, David; Hen, Itay; Sandvik, A. W.; Shor, Peter; Young, A. P.; Zamponi, Francesco
2012-11-01
In this paper we study the performance of the quantum adiabatic algorithm on random instances of two combinatorial optimization problems, 3-regular 3-XORSAT and 3-regular max-cut. The cost functions associated with these two clause-based optimization problems are similar as they are both defined on 3-regular hypergraphs. For 3-regular 3-XORSAT the clauses contain three variables and for 3-regular max-cut the clauses contain two variables. The quantum adiabatic algorithms we study for these two problems use interpolating Hamiltonians which are amenable to sign-problem free quantum Monte Carlo and quantum cavity methods. Using these techniques we find that the quantum adiabatic algorithm fails to solve either of these problems efficiently, although for different reasons.
Designing Adiabatic Radio Frequency Pulses Using the Shinnar–Le Roux Algorithm
Balchandani, Priti; Pauly, John; Spielman, Daniel
2010-01-01
Adiabatic pulses are a special class of radio frequency (RF) pulses that may be used to achieve uniform flip angles in the presence of a nonuniform B1 field. In this work, we present a new, systematic method for designing high-bandwidth (BW), low-peak-amplitude adiabatic RF pulses that utilizes the Shinnar–Le Roux (SLR) algorithm for pulse design. Currently, the SLR algorithm is extensively employed to design nonadiabatic pulses for use in magnetic resonance imaging and spectroscopy. We have adapted the SLR algorithm to create RF pulses that also satisfy the adiabatic condition. By overlaying sufficient quadratic phase across the spectral profile before the inverse SLR transform, we generate RF pulses that exhibit the required spectral characteristics and adiabatic behavior. Application of quadratic phase also distributes the RF energy more uniformly, making it possible to obtain the same spectral BW with lower RF peak amplitude. The method enables the pulse designer to specify spectral profile parameters and the degree of quadratic phase before pulse generation. Simulations and phantom experiments demonstrate that RF pulses designed using this new method behave adiabatically. PMID:20806378
First-Order Phase Transition in the Quantum Adiabatic Algorithm
2010-01-14
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing...polynomial- time -hard), for which it is believed that all classical algorithms take a time which grows exponentially with the problem size N. The most...a classical optimization prob- lem, a noncommuting ‘‘driver’’ Hamiltonian, H D, so the total Hamiltonian is H ðsÞ ¼ ð1 sÞH D þ sH P; (1) where sðtÞ
A quantum-walk-inspired adiabatic algorithm for solving graph isomorphism problems
NASA Astrophysics Data System (ADS)
Tamascelli, Dario; Zanetti, Luca
2014-08-01
We present a quantum algorithm for solving graph isomorphism problems that is based on an adiabatic protocol. We use a collection of continuous time quantum walks, each one generated by an XY Hamiltonian, to visit the configuration space. In this way we avoid a diffusion over all the possible configurations and significantly reduce the dimensionality of the accessible Hilbert space. Within this restricted space, the graph isomorphism problem can be translated into searching for a satisfying assignment to a 2-SAT (satisfiable) formula and mapped onto a 2-local Hamiltonian without resorting to perturbation gadgets or projective techniques. We present an analysis of the time for execution of the algorithm on small graph isomorphism problem instances and discuss the issue of an implementation of the proposed adiabatic scheme on current quantum computing hardware.
Quantum adiabatic machine learning
NASA Astrophysics Data System (ADS)
Pudenz, Kristen L.; Lidar, Daniel A.
2013-05-01
We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. This approach consists of two quantum phases, with some amount of classical preprocessing to set up the quantum problems. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. All quantum processing is strictly limited to two-qubit interactions so as to ensure physical feasibility. We apply and illustrate this approach in detail to the problem of software verification and validation, with a specific example of the learning phase applied to a problem of interest in flight control systems. Beyond this example, the algorithm can be used to attack a broad class of anomaly detection problems.
A general design algorithm for low optical loss adiabatic connections in waveguides.
Chen, Tong; Lee, Hansuek; Li, Jiang; Vahala, Kerry J
2012-09-24
Single-mode waveguide designs frequently support higher order transverse modes, usually as a consequence of process limitations such as lithography. In these systems, it is important to minimize coupling to higher-order modes so that the system nonetheless behaves single mode. We propose a variational approach to design adiabatic waveguide connections with minimal intermodal coupling. An application of this algorithm in designing the "S-bend" of a whispering-gallery spiral waveguide is demonstrated with approximately 0.05 dB insertion loss. Compared to other approaches, our algorithm requires less fabrication resolution and is able to minimize the transition loss over a broadband spectrum. The method can be applied to a wide range of turns and connections and has the advantage of handling connections with arbitrary boundary conditions.
Quantum adiabatic algorithm and scaling of gaps at first-order quantum phase transitions.
Laumann, C R; Moessner, R; Scardicchio, A; Sondhi, S L
2012-07-20
Motivated by the quantum adiabatic algorithm (QAA), we consider the scaling of the Hamiltonian gap at quantum first-order transitions, generally expected to be exponentially small in the size of the system. However, we show that a quantum antiferromagnetic Ising chain in a staggered field can exhibit a first-order transition with only an algebraically small gap. In addition, we construct a simple classical translationally invariant one-dimensional Hamiltonian containing nearest-neighbor interactions only, which exhibits an exponential gap at a thermodynamic quantum first-order transition of essentially topological origin. This establishes that (i) the QAA can be successful even across first-order transitions but also that (ii) it can fail on exceedingly simple problems readily solved by inspection, or by classical annealing.
Inchworm Monte Carlo for exact non-adiabatic dynamics. I. Theory and algorithms
NASA Astrophysics Data System (ADS)
Chen, Hsing-Ta; Cohen, Guy; Reichman, David R.
2017-02-01
In this paper, we provide a detailed description of the inchworm Monte Carlo formalism for the exact study of real-time non-adiabatic dynamics. This method optimally recycles Monte Carlo information from earlier times to greatly suppress the dynamical sign problem. Using the example of the spin-boson model, we formulate the inchworm expansion in two distinct ways: The first with respect to an expansion in the system-bath coupling and the second as an expansion in the diabatic coupling. The latter approach motivates the development of a cumulant version of the inchworm Monte Carlo method, which has the benefit of improved scaling. This paper deals completely with methodology, while Paper II provides a comprehensive comparison of the performance of the inchworm Monte Carlo algorithms to other exact methodologies as well as a discussion of the relative advantages and disadvantages of each.
TOPICAL REVIEW: Optimization using quantum mechanics: quantum annealing through adiabatic evolution
NASA Astrophysics Data System (ADS)
Santoro, Giuseppe E.; Tosatti, Erio
2006-09-01
We review here some recent work in the field of quantum annealing, alias adiabatic quantum computation. The idea of quantum annealing is to perform optimization by a quantum adiabatic evolution which tracks the ground state of a suitable time-dependent Hamiltonian, where 'planck' is slowly switched off. We illustrate several applications of quantum annealing strategies, starting from textbook toy-models—double-well potentials and other one-dimensional examples, with and without disorder. These examples display in a clear way the crucial differences between classical and quantum annealing. We then discuss applications of quantum annealing to challenging hard optimization problems, such as the random Ising model, the travelling salesman problem and Boolean satisfiability problems. The techniques used to implement quantum annealing are either deterministic Schrödinger's evolutions, for the toy models, or path-integral Monte Carlo and Green's function Monte Carlo approaches, for the hard optimization problems. The crucial role played by disorder and the associated non-trivial Landau-Zener tunnelling phenomena is discussed and emphasized.
NASA Astrophysics Data System (ADS)
Huo, Pengfei; Coker, David F.
2011-11-01
An approach for treating dissipative, non-adiabatic quantum dynamics in general model systems at finite temperature based on linearizing the density matrix evolution in the forward-backward path difference for the environment degrees of freedom is presented. We demonstrate that the approach can capture both short time coherent quantum dynamics and long time thermal equilibration in an application to excitation energy transfer in a model photosynthetic light harvesting complex. Results are also presented for some nonadiabatic scattering models which indicate that, even though the method is based on a "mean trajectory" like scheme, it can accurately capture electronic population branching through multiple avoided crossing regions and that the approach offers a robust and reliable way to treat quantum dynamical phenomena in a wide range of condensed phase applications.
NASA Astrophysics Data System (ADS)
Inoue, Jun-Ichi
2011-03-01
We analytically derive deterministic equations of order parameters such as spontaneous magnetization in infinite-range quantum spin systems obeying quantum Monte Carlo dynamics. By means of the Trotter decomposition, we consider the transition probability of Glauber-type dynamics of microscopic states for the corresponding classical system. Under the static approximation, differential equations with respect to macroscopic order parameters are explicitly obtained from the master equation that describes the microscopic-law. We discuss several possible applications of our approach to disordered spin systems for statistical-mechanical informatics. Especially, we argue the ground state searching for infinite-range random spin systems via quantum adiabatic evolution. We were financially supported by Grant-in-Aid for Scientific Research (C) of Japan Society for the Promotion of Science, No. 22500195.
Adiabatic invariants in stellar dynamics, 3: Application to globular cluster evolution
NASA Technical Reports Server (NTRS)
Weinberg, Martin D.
1994-01-01
The previous two companion papers demonstrate that slowly varying perturbations may not result in adiabatic cutoffs and provide a formalism for computing the long-term effects of time-dependent perturbations on stellar systems. Here, the theory is implemented in a Fokker-Planck code and a suite of runs illustrating the effects of shock heating on globular cluster evolution are described. Shock heating alone results in considerable mass loss for clusters with R(sub g) less than or approximately 8 kpc: a concentration c = 1.5 cluster with R(sub g) kpc loses up to 95% of its initial mass in 15 Gyr. Only those with concentration c greater than or approximately 1.3 survive disk shocks inside of this radius. Other effects, such as mass loss by stellar evolution, will decrease this survival bound. Loss of the initial halo together with mass segregation leads to mass spectral indices, x, which may be considerably larger than their initial values.
Adiabatic optimization versus diffusion Monte Carlo methods
NASA Astrophysics Data System (ADS)
Jarret, Michael; Jordan, Stephen P.; Lackey, Brad
2016-10-01
Most experimental and theoretical studies of adiabatic optimization use stoquastic Hamiltonians, whose ground states are expressible using only real nonnegative amplitudes. This raises a question as to whether classical Monte Carlo methods can simulate stoquastic adiabatic algorithms with polynomial overhead. Here we analyze diffusion Monte Carlo algorithms. We argue that, based on differences between L1 and L2 normalized states, these algorithms suffer from certain obstructions preventing them from efficiently simulating stoquastic adiabatic evolution in generality. In practice however, we obtain good performance by introducing a method that we call Substochastic Monte Carlo. In fact, our simulations are good classical optimization algorithms in their own right, competitive with the best previously known heuristic solvers for MAX-k -SAT at k =2 ,3 ,4 .
Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng
2017-03-31
The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian S_{z}I_{z} on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.
Adjoint-operators and non-adiabatic learning algorithms in neural networks
NASA Technical Reports Server (NTRS)
Toomarian, N.; Barhen, J.
1991-01-01
Adjoint sensitivity equations are presented, which can be solved simultaneously (i.e., forward in time) with the dynamics of a nonlinear neural network. These equations provide the foundations for a new methodology which enables the implementation of temporal learning algorithms in a highly efficient manner.
Power law scaling for the adiabatic algorithm for search engine ranking
NASA Astrophysics Data System (ADS)
Frees, Adam; King Gamble, John; Rudinger, Kenneth; Bach, Eric; Friesen, Mark; Joynt, Robert; Coppersmith, S. N.
2013-03-01
An important method for search engine result ranking works by finding the principal eigenvector of the ``Google matrix.'' Recently, a quantum algorithm for this problem and evidence of an exponential speedup for some scale-free networks were presented. Here, we show that the run-time depends on features of the graphs other than the degree distribution, and can be altered sufficiently to rule out a general exponential speedup. For a sample of graphs with degree distributions that more closely resemble the Web than in the previous work, the proposed algorithm does not appear to run exponentially faster than the classical one. This work was supported in part by ARO, DOD (W911NF-09-1-0439) and NSF (CCR-0635355, DMR 0906951). A.F. acknowledges support from the NSF REU program (PHY-PIF-1104660)
Power-law scaling for the adiabatic algorithm for search-engine ranking
NASA Astrophysics Data System (ADS)
Frees, Adam; Gamble, John King; Rudinger, Kenneth; Bach, Eric; Friesen, Mark; Joynt, Robert; Coppersmith, S. N.
2013-09-01
An important method for search engine result ranking works by finding the principal eigenvector of the “Google matrix.” Recently, a quantum algorithm for generating this eigenvector as a quantum state was presented, with evidence of an exponential speedup of this process for some scale-free networks. Here we show that the run time depends on features of the graphs other than the degree distribution, and can be altered sufficiently to rule out a general exponential speedup. According to our simulations, for a sample of graphs with degree distributions that are scale-free, with parameters thought to closely resemble the Web, the proposed algorithm for eigenvector preparation does not appear to run exponentially faster than the classical case.
Ramsey numbers and adiabatic quantum computing.
Gaitan, Frank; Clark, Lane
2012-01-06
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n) with m, n≥3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n). We show how the computation of R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5≤s≤7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.
New sampling distributions for evolution algorithms
NASA Astrophysics Data System (ADS)
Sweeney, Francis Dermot
Evolution algorithms are stochastic optimization methods based on evolutionary principles. They have long been used in optimization, and are gaining in popularity. They are particularly useful in high dimensional problems, or in problems where gradient methods fails. Evolution strategies, a class of evolutionary algorithms, are stochastic searches which evolve by mutation. This work proposes a new mutation distribution for use in single objective optimization. Up to now, cost function information obtained by mutations that do not improve fitness has been discarded. In many problems, particularly when cost function calls are expensive, it is desirable to use all available information to guide the search. The new method in this work patches Gaussians of different variances together to create a sampling distribution which delivers mutations designed to direct the search away from regions where low values of fitness have been observed. Analytic results for this new method are derived on idealized problems. The method is compared with existing methods on a range of test problems, and its overall performance attributes are assessed. A new method for multiobjective optimization is also developed. Genetic Algorithms introduce innovation into their populations by a process of bit mutation. This small scale mutation is often insufficient to successfully direct the search, unless the initial population is of sufficient quality. The new method proposed here, termed Rank Biased Sampling, uses the population to create new members, which are resampled across the entire search space from a distribution designed to favor regions which are inadequately represented by the current population. Again, this method is compared to existing methods on some standard test problems. These new optimization methods are then applied to some real-world problems of engineering interest. The optimization routines developed in this work performed well on these applications, and provide good
A Unified Differential Evolution Algorithm for Global Optimization
Qiang, Ji; Mitchell, Chad
2014-06-24
Abstract?In this paper, we propose a new unified differential evolution (uDE) algorithm for single objective global optimization. Instead of selecting among multiple mutation strategies as in the conventional differential evolution algorithm, this algorithm employs a single equation as the mutation strategy. It has the virtue of mathematical simplicity and also provides users the flexbility for broader exploration of different mutation strategies. Numerical tests using twelve basic unimodal and multimodal functions show promising performance of the proposed algorithm in comparison to convential differential evolution algorithms.
Digitized adiabatic quantum computing with a superconducting circuit, part II: Experiment
NASA Astrophysics Data System (ADS)
Barends, R.; Shabani, A.; Lamata, L.; Kelly, J.; Mezzacapo, A.; Las Heras, U.; Babbush, R.; Fowler, A. G.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J.; Neeley, M.; Neill, C.; O'Malley, P.; Quintana, C.; Roushan, P.; Solano, E.; Neven, H.; Martinis, J.
A major challenge in quantum computing is to solve general problems with limited physical hardware. We implement digitized adiabatic quantum computing, combining the generality of the adiabatic algorithm with the universality of the digital approach, using a superconducting circuit with nine qubits. We probe the adiabatic evolutions, explore the scaling of errors with system size, and quantify the success of the algorithm for random spin problems. We find that the system can approximate the solutions to both frustrated Ising problems and non-stoquastic problem Hamiltonians with a performance that is comparable.
Spectral evolution of gamma-rays from adiabatically expanding sources in dense clouds
NASA Technical Reports Server (NTRS)
Stephens, S. A.
1985-01-01
The excess of antiprotons (P) observed in cosmic ray was attributed to their production in supernova (SN) envelopes expanding in dense clouds. While creating P, gamma rays are also produced and these clouds would shine as gamma-ray sources. The evolution of the gamma-ray spectrum is calculated for clouds of r sub H = 10.000 and 100.000/cu cm.
Comparison of the Asynchronous Differential Evolution and JADE Minimization Algorithms
NASA Astrophysics Data System (ADS)
Zhabitsky, Mikhail
2016-02-01
Differential Evolution (DE) is an efficient evolutionary algorithm to solve global optimization problems. In this work we compare performance of the recently proposed Asynchronous Differential Evolution with Adaptive Correlation Matrix (ADEACM) to the widely used JADE algorithm, a DE variant with adaptive control parameters.
Adiabatically implementing quantum gates
Sun, Jie; Lu, Songfeng Liu, Fang
2014-06-14
We show that, through the approach of quantum adiabatic evolution, all of the usual quantum gates can be implemented efficiently, yielding running time of order O(1). This may be considered as a useful alternative to the standard quantum computing approach, which involves quantum gates transforming quantum states during the computing process.
An Adaptive Unified Differential Evolution Algorithm for Global Optimization
Qiang, Ji; Mitchell, Chad
2014-11-03
In this paper, we propose a new adaptive unified differential evolution algorithm for single-objective global optimization. Instead of the multiple mutation strate- gies proposed in conventional differential evolution algorithms, this algorithm employs a single equation unifying multiple strategies into one expression. It has the virtue of mathematical simplicity and also provides users the flexibility for broader exploration of the space of mutation operators. By making all control parameters in the proposed algorithm self-adaptively evolve during the process of optimization, it frees the application users from the burden of choosing appro- priate control parameters and also improves the performance of the algorithm. In numerical tests using thirteen basic unimodal and multimodal functions, the proposed adaptive unified algorithm shows promising performance in compari- son to several conventional differential evolution algorithms.
Bacon, Dave; Flammia, Steven T
2009-09-18
The difficulty in producing precisely timed and controlled quantum gates is a significant source of error in many physical implementations of quantum computers. Here we introduce a simple universal primitive, adiabatic gate teleportation, which is robust to timing errors and many control errors and maintains a constant energy gap throughout the computation above a degenerate ground state space. This construction allows for geometric robustness based upon the control of two independent qubit interactions. Further, our piecewise adiabatic evolution easily relates to the quantum circuit model, enabling the use of standard methods from fault-tolerance theory for establishing thresholds.
Parallelizable adiabatic gate teleportation
NASA Astrophysics Data System (ADS)
Nakago, Kosuke; Hajdušek, Michal; Nakayama, Shojun; Murao, Mio
2015-12-01
To investigate how a temporally ordered gate sequence can be parallelized in adiabatic implementations of quantum computation, we modify adiabatic gate teleportation, a model of quantum computation proposed by Bacon and Flammia [Phys. Rev. Lett. 103, 120504 (2009), 10.1103/PhysRevLett.103.120504], to a form deterministically simulating parallelized gate teleportation, which is achievable only by postselection. We introduce a twisted Heisenberg-type interaction Hamiltonian, a Heisenberg-type spin interaction where the coordinates of the second qubit are twisted according to a unitary gate. We develop parallelizable adiabatic gate teleportation (PAGT) where a sequence of unitary gates is performed in a single step of the adiabatic process. In PAGT, numeric calculations suggest the necessary time for the adiabatic evolution implementing a sequence of L unitary gates increases at most as O (L5) . However, we show that it has the interesting property that it can map the temporal order of gates to the spatial order of interactions specified by the final Hamiltonian. Using this property, we present a controlled-PAGT scheme to manipulate the order of gates by a control qubit. In the controlled-PAGT scheme, two differently ordered sequential unitary gates F G and G F are coherently performed depending on the state of a control qubit by simultaneously applying the twisted Heisenberg-type interaction Hamiltonians implementing unitary gates F and G . We investigate why the twisted Heisenberg-type interaction Hamiltonian allows PAGT. We show that the twisted Heisenberg-type interaction Hamiltonian has an ability to perform a transposed unitary gate by just modifying the space ordering of the final Hamiltonian implementing a unitary gate in adiabatic gate teleportation. The dynamics generated by the time-reversed Hamiltonian represented by the transposed unitary gate enables deterministic simulation of a postselected event of parallelized gate teleportation in adiabatic
Fan, Qinqin; Yan, Xuefeng
2016-01-01
The performance of the differential evolution (DE) algorithm is significantly affected by the choice of mutation strategies and control parameters. Maintaining the search capability of various control parameter combinations throughout the entire evolution process is also a key issue. A self-adaptive DE algorithm with zoning evolution of control parameters and adaptive mutation strategies is proposed in this paper. In the proposed algorithm, the mutation strategies are automatically adjusted with population evolution, and the control parameters evolve in their own zoning to self-adapt and discover near optimal values autonomously. The proposed algorithm is compared with five state-of-the-art DE algorithm variants according to a set of benchmark test functions. Furthermore, seven nonparametric statistical tests are implemented to analyze the experimental results. The results indicate that the overall performance of the proposed algorithm is better than those of the five existing improved algorithms.
Number Partitioning via Quantum Adiabatic Computation
NASA Technical Reports Server (NTRS)
Smelyanskiy, Vadim N.; Toussaint, Udo; Clancy, Daniel (Technical Monitor)
2002-01-01
We study both analytically and numerically the complexity of the adiabatic quantum evolution algorithm applied to random instances of combinatorial optimization problems. We use as an example the NP-complete set partition problem and obtain an asymptotic expression for the minimal gap separating the ground and exited states of a system during the execution of the algorithm. We show that for computationally hard problem instances the size of the minimal gap scales exponentially with the problem size. This result is in qualitative agreement with the direct numerical simulation of the algorithm for small instances of the set partition problem. We describe the statistical properties of the optimization problem that are responsible for the exponential behavior of the algorithm.
Differential evolution algorithm for global optimizations in nuclear physics
NASA Astrophysics Data System (ADS)
Qi, Chong
2017-04-01
We explore the applicability of the differential evolution algorithm in finding the global minima of three typical nuclear structure physics problems: the global deformation minimum in the nuclear potential energy surface, the optimization of mass model parameters and the lowest eigenvalue of a nuclear Hamiltonian. The algorithm works very effectively and efficiently in identifying the minima in all problems we have tested. We also show that the algorithm can be parallelized in a straightforward way.
Irreconcilable difference between quantum walks and adiabatic quantum computing
NASA Astrophysics Data System (ADS)
Wong, Thomas G.; Meyer, David A.
2016-06-01
Continuous-time quantum walks and adiabatic quantum evolution are two general techniques for quantum computing, both of which are described by Hamiltonians that govern their evolutions by Schrödinger's equation. In the former, the Hamiltonian is fixed, while in the latter, the Hamiltonian varies with time. As a result, their formulations of Grover's algorithm evolve differently through Hilbert space. We show that this difference is fundamental; they cannot be made to evolve along each other's path without introducing structure more powerful than the standard oracle for unstructured search. For an adiabatic quantum evolution to evolve like the quantum walk search algorithm, it must interpolate between three fixed Hamiltonians, one of which is complex and introduces structure that is stronger than the oracle for unstructured search. Conversely, for a quantum walk to evolve along the path of the adiabatic search algorithm, it must be a chiral quantum walk on a weighted, directed star graph with structure that is also stronger than the oracle for unstructured search. Thus, the two techniques, although similar in being described by Hamiltonians that govern their evolution, compute by fundamentally irreconcilable means.
NASA Astrophysics Data System (ADS)
Li, Dafa
2016-05-01
The adiabatic theorem was proposed about 90 years ago and has played an important role in quantum physics. The quantitative adiabatic condition constructed from eigenstates and eigenvalues of a Hamiltonian is a traditional tool to estimate adiabaticity and has proven to be the necessary and sufficient condition for adiabaticity. However, recently the condition has become a controversial subject. In this paper, we list some expressions to estimate the validity of the adiabatic approximation. We show that the quantitative adiabatic condition is invalid for the adiabatic approximation via the Euclidean distance between the adiabatic state and the evolution state. Furthermore, we deduce general necessary and sufficient conditions for the validity of the adiabatic approximation by different definitions.
Digitized adiabatic quantum computing with a superconducting circuit.
Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M
2016-06-09
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.
Digitized adiabatic quantum computing with a superconducting circuit
NASA Astrophysics Data System (ADS)
Barends, R.; Shabani, A.; Lamata, L.; Kelly, J.; Mezzacapo, A.; Heras, U. Las; Babbush, R.; Fowler, A. G.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Solano, E.; Neven, H.; Martinis, John M.
2016-06-01
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.
Adiabatic Quantum Search in Open Systems.
Wild, Dominik S; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y; Lukin, Mikhail D
2016-10-07
Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.
Adiabatic Quantum Search in Open Systems
NASA Astrophysics Data System (ADS)
Wild, Dominik S.; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y.; Lukin, Mikhail D.
2016-10-01
Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.
Digitized adiabatic quantum computing with a superconducting circuit, part I: Theory
NASA Astrophysics Data System (ADS)
Lamata, L.; Barends, R.; Shabani, A.; Kelly, J.; Mezzacapo, A.; Las Heras, U.; Babbush, R.; Fowler, A. G.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Solano, E.; Neven, H.; Martinis, John M.
Adiabatic quantum computing (AQC) is a general-purpose optimization algorithm that in contrast to circuit-model quantum algorithms can be applied to a large set of computational problems. An analog physical realization of AQC has certain limitations that we propose can be overcome by a gate-model equivalence of the AQC. In this talk we discuss the hardware advantages of digitized AQC in particular arbitrary interactions, precision, and coherence. We could experimentally realize the principles of digitized AQC on a chain of nine qubits, and highlight the physics of adiabatic evolutions as well as the Kibble-Zurek mechanism.
Fast wavelet based algorithms for linear evolution equations
NASA Technical Reports Server (NTRS)
Engquist, Bjorn; Osher, Stanley; Zhong, Sifen
1992-01-01
A class was devised of fast wavelet based algorithms for linear evolution equations whose coefficients are time independent. The method draws on the work of Beylkin, Coifman, and Rokhlin which they applied to general Calderon-Zygmund type integral operators. A modification of their idea is applied to linear hyperbolic and parabolic equations, with spatially varying coefficients. A significant speedup over standard methods is obtained when applied to hyperbolic equations in one space dimension and parabolic equations in multidimensions.
An Adaptive Cauchy Differential Evolution Algorithm for Global Numerical Optimization
Choi, Tae Jong; Ahn, Chang Wook; An, Jinung
2013-01-01
Adaptation of control parameters, such as scaling factor (F), crossover rate (CR), and population size (NP), appropriately is one of the major problems of Differential Evolution (DE) literature. Well-designed adaptive or self-adaptive parameter control method can highly improve the performance of DE. Although there are many suggestions for adapting the control parameters, it is still a challenging task to properly adapt the control parameters for problem. In this paper, we present an adaptive parameter control DE algorithm. In the proposed algorithm, each individual has its own control parameters. The control parameters of each individual are adapted based on the average parameter value of successfully evolved individuals' parameter values by using the Cauchy distribution. Through this, the control parameters of each individual are assigned either near the average parameter value or far from that of the average parameter value which might be better parameter value for next generation. The experimental results show that the proposed algorithm is more robust than the standard DE algorithm and several state-of-the-art adaptive DE algorithms in solving various unimodal and multimodal problems. PMID:23935445
An adaptive Cauchy differential evolution algorithm for global numerical optimization.
Choi, Tae Jong; Ahn, Chang Wook; An, Jinung
2013-01-01
Adaptation of control parameters, such as scaling factor (F), crossover rate (CR), and population size (NP), appropriately is one of the major problems of Differential Evolution (DE) literature. Well-designed adaptive or self-adaptive parameter control method can highly improve the performance of DE. Although there are many suggestions for adapting the control parameters, it is still a challenging task to properly adapt the control parameters for problem. In this paper, we present an adaptive parameter control DE algorithm. In the proposed algorithm, each individual has its own control parameters. The control parameters of each individual are adapted based on the average parameter value of successfully evolved individuals' parameter values by using the Cauchy distribution. Through this, the control parameters of each individual are assigned either near the average parameter value or far from that of the average parameter value which might be better parameter value for next generation. The experimental results show that the proposed algorithm is more robust than the standard DE algorithm and several state-of-the-art adaptive DE algorithms in solving various unimodal and multimodal problems.
An Enhanced Differential Evolution Algorithm Based on Multiple Mutation Strategies
Xiang, Wan-li; Meng, Xue-lei; An, Mei-qing; Li, Yin-zhen; Gao, Ming-xia
2015-01-01
Differential evolution algorithm is a simple yet efficient metaheuristic for global optimization over continuous spaces. However, there is a shortcoming of premature convergence in standard DE, especially in DE/best/1/bin. In order to take advantage of direction guidance information of the best individual of DE/best/1/bin and avoid getting into local trap, based on multiple mutation strategies, an enhanced differential evolution algorithm, named EDE, is proposed in this paper. In the EDE algorithm, an initialization technique, opposition-based learning initialization for improving the initial solution quality, and a new combined mutation strategy composed of DE/current/1/bin together with DE/pbest/bin/1 for the sake of accelerating standard DE and preventing DE from clustering around the global best individual, as well as a perturbation scheme for further avoiding premature convergence, are integrated. In addition, we also introduce two linear time-varying functions, which are used to decide which solution search equation is chosen at the phases of mutation and perturbation, respectively. Experimental results tested on twenty-five benchmark functions show that EDE is far better than the standard DE. In further comparisons, EDE is compared with other five state-of-the-art approaches and related results show that EDE is still superior to or at least equal to these methods on most of benchmark functions. PMID:26609304
Quantum Adiabatic Optimization and Combinatorial Landscapes
NASA Technical Reports Server (NTRS)
Smelyanskiy, V. N.; Knysh, S.; Morris, R. D.
2003-01-01
In this paper we analyze the performance of the Quantum Adiabatic Evolution (QAE) algorithm on a variant of Satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables, gamma = M / N. We introduce a set of macroscopic parameters (landscapes) and put forward an ansatz of universality for random bit flips. We then formulate the problem of finding the smallest eigenvalue and the excitation gap as a statistical mechanics problem. We use the so-called annealing approximation with a refinement that a finite set of macroscopic variables (verses only energy) is used, and are able to show the existence of a dynamic threshold gamma = gammad, beyond which QAE should take an exponentially long time to find a solution. We compare the results for extended and simplified sets of landscapes and provide numerical evidence in support of our universality ansatz.
Quantum and classical dynamics in adiabatic computation
NASA Astrophysics Data System (ADS)
Crowley, P. J. D.; Äńurić, T.; Vinci, W.; Warburton, P. A.; Green, A. G.
2014-10-01
Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialized state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose ground state encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations that an open system can support and degrade the power of such adiabatic computation. We quantify this effect by allowing the system to evolve over a restricted set of quantum states, providing a link between physically inspired classical optimization algorithms and quantum adiabatic optimization. This perspective allows us to develop benchmarks to bound the quantum correlations harnessed by an adiabatic computation. We apply these to the D-Wave Vesuvius machine with revealing—though inconclusive—results.
Application of Differential Evolution Algorithm on Self-Potential Data
Li, Xiangtao; Yin, Minghao
2012-01-01
Differential evolution (DE) is a population based evolutionary algorithm widely used for solving multidimensional global optimization problems over continuous spaces, and has been successfully used to solve several kinds of problems. In this paper, differential evolution is used for quantitative interpretation of self-potential data in geophysics. Six parameters are estimated including the electrical dipole moment, the depth of the source, the distance from the origin, the polarization angle and the regional coefficients. This study considers three kinds of data from Turkey: noise-free data, contaminated synthetic data, and Field example. The differential evolution and the corresponding model parameters are constructed as regards the number of the generations. Then, we show the vibration of the parameters at the vicinity of the low misfit area. Moreover, we show how the frequency distribution of each parameter is related to the number of the DE iteration. Experimental results show the DE can be used for solving the quantitative interpretation of self-potential data efficiently compared with previous methods. PMID:23240004
Optimizing Adiabaticity in NMR
NASA Astrophysics Data System (ADS)
Vandermause, Jonathan; Ramanathan, Chandrasekhar
We demonstrate the utility of Berry's superadiabatic formalism for numerically finding control sequences that implement quasi-adiabatic unitary transformations. Using an iterative interaction picture, we design a shortcut to adiabaticity that reduces the time required to perform an adiabatic inversion pulse in liquid state NMR. We also show that it is possible to extend our scheme to two or more qubits to find adiabatic quantum transformations that are allowed by the control algebra, and demonstrate a two-qubit entangling operation in liquid state NMR. We examine the pulse lengths at which the fidelity of these adiabatic transitions break down and compare with the quantum speed limit.
Semiclassical Monte-Carlo approach for modelling non-adiabatic dynamics in extended molecules
Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry
2013-01-01
Modelling of non-adiabatic dynamics in extended molecular systems and solids is a next frontier of atomistic electronic structure theory. The underlying numerical algorithms should operate only with a few quantities (that can be efficiently obtained from quantum chemistry), provide a controlled approximation (which can be systematically improved) and capture important phenomena such as branching (multiple products), detailed balance and evolution of electronic coherences. Here we propose a new algorithm based on Monte-Carlo sampling of classical trajectories, which satisfies the above requirements and provides a general framework for existing surface hopping methods for non-adiabatic dynamics simulations. In particular, our algorithm can be viewed as a post-processing technique for analysing numerical results obtained from the conventional surface hopping approaches. Presented numerical tests for several model problems demonstrate efficiency and accuracy of the new method. PMID:23864100
An Evolution Based Biosensor Receptor DNA Sequence Generation Algorithm
Kim, Eungyeong; Lee, Malrey; Gatton, Thomas M.; Lee, Jaewan; Zang, Yupeng
2010-01-01
A biosensor is composed of a bioreceptor, an associated recognition molecule, and a signal transducer that can selectively detect target substances for analysis. DNA based biosensors utilize receptor molecules that allow hybridization with the target analyte. However, most DNA biosensor research uses oligonucleotides as the target analytes and does not address the potential problems of real samples. The identification of recognition molecules suitable for real target analyte samples is an important step towards further development of DNA biosensors. This study examines the characteristics of DNA used as bioreceptors and proposes a hybrid evolution-based DNA sequence generating algorithm, based on DNA computing, to identify suitable DNA bioreceptor recognition molecules for stable hybridization with real target substances. The Traveling Salesman Problem (TSP) approach is applied in the proposed algorithm to evaluate the safety and fitness of the generated DNA sequences. This approach improves efficiency and stability for enhanced and variable-length DNA sequence generation and allows extension to generation of variable-length DNA sequences with diverse receptor recognition requirements. PMID:22315543
Adiabatic following for a three-state quantum system
NASA Astrophysics Data System (ADS)
Huang, Wei; Shore, Bruce W.; Rangelov, Andon; Kyoseva, Elica
2017-01-01
Adiabatic time-evolution - found in various forms of adiabatic following and adiabatic passage - is often advantageous for controlled manipulation of quantum systems due to its insensitivity to deviations in the pulse shapes and timings. In this paper we discuss controlled adiabatic evolution of a three-state quantum system, a natural advance to the widespread use of two-state systems in numerous contemporary applications. We discuss, and illustrate, not only possibilities for population transfer but also for creating, with prescribed relative phase, 50:50 superpositions of two Zeeman sublevels in a letter-vee coupling linkage.
Fixed-point adiabatic quantum search
NASA Astrophysics Data System (ADS)
Dalzell, Alexander M.; Yoder, Theodore J.; Chuang, Isaac L.
2017-01-01
Fixed-point quantum search algorithms succeed at finding one of M target items among N total items even when the run time of the algorithm is longer than necessary. While the famous Grover's algorithm can search quadratically faster than a classical computer, it lacks the fixed-point property—the fraction of target items must be known precisely to know when to terminate the algorithm. Recently, Yoder, Low, and Chuang [Phys. Rev. Lett. 113, 210501 (2014), 10.1103/PhysRevLett.113.210501] gave an optimal gate-model search algorithm with the fixed-point property. Previously, it had been discovered by Roland and Cerf [Phys. Rev. A 65, 042308 (2002), 10.1103/PhysRevA.65.042308] that an adiabatic quantum algorithm, operating by continuously varying a Hamiltonian, can reproduce the quadratic speedup of gate-model Grover search. We ask, can an adiabatic algorithm also reproduce the fixed-point property? We show that the answer depends on what interpolation schedule is used, so as in the gate model, there are both fixed-point and non-fixed-point versions of adiabatic search, only some of which attain the quadratic quantum speedup. Guided by geometric intuition on the Bloch sphere, we rigorously justify our claims with an explicit upper bound on the error in the adiabatic approximation. We also show that the fixed-point adiabatic search algorithm can be simulated in the gate model with neither loss of the quadratic Grover speedup nor of the fixed-point property. Finally, we discuss natural uses of fixed-point algorithms such as preparation of a relatively prime state and oblivious amplitude amplification.
Generating shortcuts to adiabaticity in quantum and classical dynamics
NASA Astrophysics Data System (ADS)
Jarzynski, Christopher
2013-10-01
Transitionless quantum driving achieves adiabatic evolution in a hurry, using a counterdiabatic Hamiltonian to stifle nonadiabatic transitions. Here this shortcut to adiabaticity is cast in terms of a generator of adiabatic transport. This yields a classical analog of transitionless driving, and provides a strategy for constructing quantal counterdiabatic Hamiltonians. As an application of this framework, exact classical and quantal counterdiabatic terms are obtained for a particle in a box and for even-power-law potentials in one degree of freedom.
Quantum adiabatic optimization and combinatorial landscapes
NASA Astrophysics Data System (ADS)
Smelyanskiy, V. N.; Knysh, S.; Morris, R. D.
2004-09-01
In this paper we analyze the performance of the Quantum Adiabatic Evolution algorithm on a variant of the satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables, γ=M/N . We introduce a set of macroscopic parameters (landscapes) and put forward an ansatz of universality for random bit flips. We then formulate the problem of finding the smallest eigenvalue and the excitation gap as a statistical mechanics problem. We use the so-called annealing approximation with a refinement that a finite set of macroscopic variables (instead of only energy) is used, and are able to show the existence of a dynamic threshold γ=γd starting with some value of K —the number of variables in each clause. Beyond the dynamic threshold, the algorithm should take an exponentially long time to find a solution. We compare the results for extended and simplified sets of landscapes and provide numerical evidence in support of our universality ansatz. We have been able to map the ensemble of random graphs onto another ensemble with fluctuations significantly reduced. This enabled us to obtain tight upper bounds on the satisfiability transition and to recompute the dynamical transition using the extended set of landscapes.
Wireless adiabatic power transfer
Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.
2011-03-15
Research Highlights: > Efficient and robust mid-range wireless energy transfer between two coils. > The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. > Wireless energy transfer is insensitive to any resonant constraints. > Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.
Adiabatic approximation via hodograph translation and zero-curvature equations
NASA Astrophysics Data System (ADS)
Karasev, M. V.
2014-04-01
For quantum as well classical slow-fast systems, we develop a general method which allows one to compute the adiabatic invariant (approximate integral of motion), its symmetries, the adiabatic guiding center coordinates and the effective scalar Hamiltonian in all orders of a small parameter. The scheme does not exploit eigenvectors or diagonalization, but is based on the ideas of isospectral deformation and zero-curvature equations, where the role of "time" is played by the adiabatic (quantization) parameter. The algorithm includes the construction of the zero-curvature adiabatic connection and its splitting generated by averaging up to an arbitrary order in the small parameter.
Adiabatic and Non-adiabatic quenches in a Spin-1 Bose Einstein Condensate
NASA Astrophysics Data System (ADS)
Boguslawski, Matthew; Hebbe Madhusudhana, Bharath; Anquez, Martin; Robbins, Bryce; Barrios, Maryrose; Hoang, Thai; Chapman, Michael
2016-05-01
A quantum phase transition (QPT) is observed in a wide range of phenomena. We have studied the dynamics of a spin-1 ferromagnetic Bose-Einstein condensate for both adiabatic and non-adiabatic quenches through a QPT. At the quantum critical point (QCP), finite size effects lead to a non-zero gap, which makes an adiabatic quench possible through the QPT. We experimentally demonstrate such a quench, which is forbidden at the mean field level. For faster quenches through the QCP, the vanishing energy gap causes the reaction timescale of the system to diverge, preventing the system from adiabatically following the ground state. We measure the temporal evolution of the spin populations for different quench speeds and determine the exponents characterizing the scaling of the onset of excitations, which are in good agreement with the predictions of Kibble-Zurek mechanism.
A Real-Time Algorithm for the Approximation of Level-Set-Based Curve Evolution
Shi, Yonggang; Karl, William Clem
2010-01-01
In this paper, we present a complete and practical algorithm for the approximation of level-set-based curve evolution suitable for real-time implementation. In particular, we propose a two-cycle algorithm to approximate level-set-based curve evolution without the need of solving partial differential equations (PDEs). Our algorithm is applicable to a broad class of evolution speeds that can be viewed as composed of a data-dependent term and a curve smoothness regularization term. We achieve curve evolution corresponding to such evolution speeds by separating the evolution process into two different cycles: one cycle for the data-dependent term and a second cycle for the smoothness regularization. The smoothing term is derived from a Gaussian filtering process. In both cycles, the evolution is realized through a simple element switching mechanism between two linked lists, that implicitly represents the curve using an integer valued level-set function. By careful construction, all the key evolution steps require only integer operations. A consequence is that we obtain significant computation speedups compared to exact PDE-based approaches while obtaining excellent agreement with these methods for problems of practical engineering interest. In particular, the resulting algorithm is fast enough for use in real-time video processing applications, which we demonstrate through several image segmentation and video tracking experiments. PMID:18390371
The Evolution of the Algorithms for Collective Behavior.
Gordon, Deborah M
2016-12-21
Collective behavior is the outcome of a network of local interactions. Here, I consider collective behavior as the result of algorithms that have evolved to operate in response to a particular environment and physiological context. I discuss how algorithms are shaped by the costs of operating under the constraints that the environment imposes, the extent to which the environment is stable, and the distribution, in space and time, of resources. I suggest that a focus on the dynamics of the environment may provide new hypotheses for elucidating the algorithms that produce the collective behavior of cellular systems.
Adiabatic capture and debunching
Ng, K.Y.; /Fermilab
2012-03-01
In the study of beam preparation for the g-2 experiment, adiabatic debunching and adiabatic capture are revisited. The voltage programs for these adiabbatic processes are derived and their properties discussed. Comparison is made with some other form of adiabatic capture program. The muon g-2 experiment at Fermilab calls for intense proton bunches for the creation of muons. A booster batch of 84 bunches is injected into the Recycler Ring, where it is debunched and captured into 4 intense bunches with the 2.5-MHz rf. The experiment requires short bunches with total width less than 100 ns. The transport line from the Recycler to the muon-production target has a low momentum aperture of {approx} {+-}22 MeV. Thus each of the 4 intense proton bunches required to have an emittance less than {approx} 3.46 eVs. The incoming booster bunches have total emittance {approx} 8.4 eVs, or each one with an emittance {approx} 0.1 eVs. However, there is always emittance increase when the 84 booster bunches are debunched. There will be even larger emittance increase during adiabatic capture into the buckets of the 2.5-MHz rf. In addition, the incoming booster bunches may have emittances larger than 0.1 eVs. In this article, we will concentrate on the analysis of the adiabatic capture process with the intention of preserving the beam emittance as much as possible. At this moment, beam preparation experiment is being performed at the Main Injector. Since the Main Injector and the Recycler Ring have roughly the same lattice properties, we are referring to adiabatic capture in the Main Injector instead in our discussions.
Adiabatic shear bands localization in materials undergoing deformations
NASA Astrophysics Data System (ADS)
Ryabov, P. N.; Kudryashov, N. A.; Muratov, R. V.
2017-01-01
We consider the adiabatic shear banding phenomenon in composite materials undergoing the high speed shear deformations. The mathematical model of adiabatic shear banding in thermo-visco-plastic material is given. New two step numerical algorithm which is based on the Courant-Isaacson-Rees scheme that allows one to simulate fully localized plastic flow from initial stage of localization is proposed. To test this numerical algorithm we use three benchmark problems. The testing results show the accuracy and efficiency of proposed algorithm. The features of adiabatic shear bands formation in composites are studied. The existence of characteristic depth of localization in composites is shown. Influence of initial temperature distribution on the processes of adiabatic shear bands formation in composites is considered.
Adiabatic and isocurvature perturbation projections in multi-field inflation
Gordon, Chris; Saffin, Paul M. E-mail: Paul.Saffin@nottingham.ac.uk
2013-08-01
Current data are in good agreement with the predictions of single field inflation. However, the hemispherical asymmetry, seen in the cosmic microwave background data, may hint at a potential problem. Generalizing to multi-field models may provide one possible explanation. A useful way of modeling perturbations in multi-field inflation is to investigate the projection of the perturbation along and perpendicular to the background fields' trajectory. These correspond to the adiabatic and isocurvature perturbations. However, it is important to note that in general there are no corresponding adiabatic and isocurvature fields. The purpose of this article is to highlight the distinction between a field redefinition and a perturbation projection. We provide a detailed derivation of the evolution of the isocurvature perturbation to show that no assumption of an adiabatic or isocurvature field is needed. We also show how this evolution equation is consistent with the field covariant evolution equations for the adiabatic perturbation in the flat field space limit.
Adiabatic quantum computing with spin qubits hosted by molecules.
Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji
2015-01-28
A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.
An integrated programming and development environment for adiabatic quantum optimization
NASA Astrophysics Data System (ADS)
Humble, T. S.; McCaskey, A. J.; Bennink, R. S.; Billings, J. J.; DʼAzevedo, E. F.; Sullivan, B. D.; Klymko, C. F.; Seddiqi, H.
2014-01-01
Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware has raised challenging questions about how to evaluate adiabatic quantum optimization (AQO) programs. Processor behavior depends on multiple steps to synthesize an adiabatic quantum program, which are each highly tunable. We present an integrated programming and development environment for AQO called Jade Adiabatic Development Environment (JADE) that provides control over all the steps taken during program synthesis. JADE captures the workflow needed to rigorously specify the AQO algorithm while allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its potential use for benchmarking AQO programs by the quantum computer science community.
Comment on ``Adiabatic quantum computation with a one-dimensional projector Hamiltonian''
NASA Astrophysics Data System (ADS)
Kay, Alastair
2013-10-01
The partial adiabatic search algorithm was introduced in Tulsi's paper [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.052328 80, 052328 (2009)] as a modification of the usual adiabatic algorithm for a quantum search with the idea that most of the interesting computation only happens over a very short range of the adiabatic path. By focusing on that restricted range, one can potentially gain an advantage by reducing the control requirements on the system, enabling a uniform rate of evolution. In this Comment, we point out an oversight in Tulsi's paper [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.052328 80, 052328 (2009)] that invalidates its proof. However, the argument can be corrected, and the calculations in Tulsi's paper [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.052328 80, 052328 (2009)] are then sufficient to show that the scheme still works. Nevertheless, subsequent works [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.034304 82, 034304 (2010), Chin. Phys. BCPBHAJ1674-105610.1088/1674-1056/20/4/040309 20, 040309 (2011), Chin. Phys. BCPBHAJ1674-105610.1088/1674-1056/21/1/010306 21, 010306 (2012), AASRI Procedia 1, 5862 (2012), and Quantum Inf. Process.10.1007/s11128-013-0557-1 12, 2689 (2013)] cannot all be recovered in the same way.
A fast solver for the gyrokinetic field equation with adiabatic electrons
Borchardt, M.; Kleiber, R.; Hackbusch, W.
2012-07-15
Describing turbulence and microinstabilities in fusion devices is often modelled with the gyrokinetic equation. During the time evolution of the distribution function a field equation for the electrostatic potential needs to be solved. In the case of adiabatic electrons it contains a flux-surface-average term resulting in an integro-differential equation. Its numerical solution is time and memory intensive for three-dimensional configurations. Here a new algorithm is presented which only requires the numerical inversion of a simpler differential operator and a subsequent addition of a correction term. This new procedure is as fast as solving the equation without the surface average.
Adiabatic Quantum Simulation of Quantum Chemistry
NASA Astrophysics Data System (ADS)
Babbush, Ryan; Love, Peter J.; Aspuru-Guzik, Alán
2014-10-01
We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.
Adiabatic quantum simulation of quantum chemistry.
Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán
2014-10-13
We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.
Adiabatic Quantum Simulation of Quantum Chemistry
Babbush, Ryan; Love, Peter J.; Aspuru-Guzik, Alán
2014-01-01
We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions. PMID:25308187
Semiconductor adiabatic qubits
Carroll, Malcolm S.; Witzel, Wayne; Jacobson, Noah Tobias; Ganti, Anand; Landahl, Andrew J.; Lilly, Michael; Nguyen, Khoi Thi; Bishop, Nathaniel; Carr, Stephen M.; Bussmann, Ezra; Nielsen, Erik; Levy, James Ewers; Blume-Kohout, Robin J.; Rahman, Rajib
2016-12-27
A quantum computing device that includes a plurality of semiconductor adiabatic qubits is described herein. The qubits are programmed with local biases and coupling terms between qubits that represent a problem of interest. The qubits are initialized by way of a tuneable parameter, a local tunnel coupling within each qubit, such that the qubits remain in a ground energy state, and that initial state is represented by the qubits being in a superposition of |0> and |1> states. The parameter is altered over time adiabatically or such that relaxation mechanisms maintain a large fraction of ground state occupation through decreasing the tunnel coupling barrier within each qubit with the appropriate schedule. The final state when tunnel coupling is effectively zero represents the solution state to the problem represented in the |0> and |1> basis, which can be accurately read at each qubit location.
Random matrix model of adiabatic quantum computing
Mitchell, David R.; Adami, Christoph; Lue, Waynn; Williams, Colin P.
2005-05-15
We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SAT (an NP-complete problem) in terms of random matrix theory (RMT). We determine the global regularity of the spectral fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest. At each interpolation point, we quantify the degree of regularity of the average spectral distribution via its Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor spacings. We find that for hard problem instances - i.e., those having a critical ratio of clauses to variables - the spectral fluctuations typically become irregular across a contiguous region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region, RMT may be applied to obtain a mathematical model of the probability of avoided level crossings and concomitant failure rate of the adiabatic algorithm due to nonadiabatic Landau-Zener-type transitions. Our model predicts that if the interpolation is performed at a uniform rate, the average failure rate of the quantum adiabatic algorithm, when averaged over hard problem instances, scales exponentially with increasing problem size.
NASA Astrophysics Data System (ADS)
Iwan Solihin, Mahmud; Fauzi Zanil, Mohd
2016-11-01
Cuckoo Search (CS) and Differential Evolution (DE) algorithms are considerably robust meta-heuristic algorithms to solve constrained optimization problems. In this study, the performance of CS and DE are compared in solving the constrained optimization problem from selected benchmark functions. Selection of the benchmark functions are based on active or inactive constraints and dimensionality of variables (i.e. number of solution variable). In addition, a specific constraint handling and stopping criterion technique are adopted in the optimization algorithm. The results show, CS approach outperforms DE in term of repeatability and the quality of the optimum solutions.
Xia, Xuewen
2016-01-01
In recent years, some researchers considered image color quantization as a single-objective problem and applied heuristic algorithms to solve it. This paper establishes a multiobjective image color quantization model with intracluster distance and intercluster separation as its objectives. Inspired by a multipopulation idea, a multiobjective image color quantization algorithm based on self-adaptive hybrid differential evolution (MoDE-CIQ) is then proposed to solve this model. Two numerical experiments on four common test images are conducted to analyze the effectiveness and competitiveness of the multiobjective model and the proposed algorithm. PMID:27738423
Numerical simulations of solar spicules: Adiabatic and non-adiabatic studies
NASA Astrophysics Data System (ADS)
Kuźma, B.; Murawski, K.; Zaqarashvili, T. V.; Konkol, P.; Mignone, A.
2017-01-01
Aims: We aim to study the formation and evolution of solar spicules using numerical simulations of a vertical velocity pulse that is launched from the upper chromosphere. Methods: With the use of the PLUTO code, we numerically solved adiabatic and non-adiabatic magnetohydrodynamic (MHD) equations in 2D cylindrical geometry. We followed the evolution of spicules triggered by pulses that are launched in a vertical velocity component from the upper chromosphere. Then we compared the results obtained with and without non-adiabatic terms in the MHD equations. Results: Our numerical results reveal that the velocity pulse is steepened into a shock that propagates upward into the corona. The chromospheric cold and dense plasma follows the shock and rises into the corona with the mean speed of 20-25 km s-1. The nonlinear wake behind the pulse in the stratified atmosphere leads to quasi-periodic rebound shocks, which lead to quasi-periodic rising of chromospheric plasma into the corona with a period close to the acoustic cut-off period of the chromosphere. We found that the effect of non-adiabatic terms on spicule evolution is minor; the general properties of spicules such as their heights and rising-time remain slightly affected by these terms. Conclusions: In the framework of the axisymmetric model we devised, we show that the solar spicules can be triggered by the vertical velocity pulses, and thermal conduction and radiative cooling terms do not exert any significant influence on the dynamics of these spicules.
NASA Astrophysics Data System (ADS)
Fan, Tian-E.; Shao, Gui-Fang; Ji, Qing-Shuang; Zheng, Ji-Wen; Liu, Tun-dong; Wen, Yu-Hua
2016-11-01
Theoretically, the determination of the structure of a cluster is to search the global minimum on its potential energy surface. The global minimization problem is often nondeterministic-polynomial-time (NP) hard and the number of local minima grows exponentially with the cluster size. In this article, a multi-populations multi-strategies differential evolution algorithm has been proposed to search the globally stable structure of Fe and Cr nanoclusters. The algorithm combines a multi-populations differential evolution with an elite pool scheme to keep the diversity of the solutions and avoid prematurely trapping into local optima. Moreover, multi-strategies such as growing method in initialization and three differential strategies in mutation are introduced to improve the convergence speed and lower the computational cost. The accuracy and effectiveness of our algorithm have been verified by comparing the results of Fe clusters with Cambridge Cluster Database. Meanwhile, the performance of our algorithm has been analyzed by comparing the convergence rate and energy evaluations with the classical DE algorithm. The multi-populations, multi-strategies mutation and growing method in initialization in our algorithm have been considered respectively. Furthermore, the structural growth pattern of Cr clusters has been predicted by this algorithm. The results show that the lowest-energy structure of Cr clusters contains many icosahedra, and the number of the icosahedral rings rises with increasing size.
NASA Astrophysics Data System (ADS)
Salcedo-Sanz, S.; Camacho-Gómez, C.; Magdaleno, A.; Pereira, E.; Lorenzana, A.
2017-04-01
In this paper we tackle a problem of optimal design and location of Tuned Mass Dampers (TMDs) for structures subjected to earthquake ground motions, using a novel meta-heuristic algorithm. Specifically, the Coral Reefs Optimization (CRO) with Substrate Layer (CRO-SL) is proposed as a competitive co-evolution algorithm with different exploration procedures within a single population of solutions. The proposed approach is able to solve the TMD design and location problem, by exploiting the combination of different types of searching mechanisms. This promotes a powerful evolutionary-like algorithm for optimization problems, which is shown to be very effective in this particular problem of TMDs tuning. The proposed algorithm's performance has been evaluated and compared with several reference algorithms in two building models with two and four floors, respectively.
EDGA: A Population Evolution Direction-Guided Genetic Algorithm for Protein-Ligand Docking.
Guan, Boxin; Zhang, Changsheng; Ning, Jiaxu
2016-07-01
Protein-ligand docking can be formulated as a search algorithm associated with an accurate scoring function. However, most current search algorithms cannot show good performance in docking problems, especially for highly flexible docking. To overcome this drawback, this article presents a novel and robust optimization algorithm (EDGA) based on the Lamarckian genetic algorithm (LGA) for solving flexible protein-ligand docking problems. This method applies a population evolution direction-guided model of genetics, in which search direction evolves to the optimum solution. The method is more efficient to find the lowest energy of protein-ligand docking. We consider four search methods-a tradition genetic algorithm, LGA, SODOCK, and EDGA-and compare their performance in docking of six protein-ligand docking problems. The results show that EDGA is the most stable, reliable, and successful.
Shortcuts to adiabaticity for non-Hermitian systems
Ibanez, S.; Martinez-Garaot, S.; Torrontegui, E.; Muga, J. G.; Chen Xi
2011-08-15
Adiabatic processes driven by non-Hermitian, time-dependent Hamiltonians may be sped up by generalizing inverse engineering techniques based on counter-diabatic (transitionless driving) algorithms or on dynamical invariants. We work out the basic theory and examples described by two-level Hamiltonians: the acceleration of rapid adiabatic passage with a decaying excited level and of the dynamics of a classical particle on an expanding harmonic oscillator.
Chain Copolymerization Reactions: An Algorithm to Predict the Reaction Evolution with Conversion
ERIC Educational Resources Information Center
Gallardo, Alberto; Aguilar, Maria Rosa; Abraham, Gustavo A.; Roman, Julio San
2004-01-01
An algorithm is developed to study and understand the behavior of chain copolymerization reactions. When a binary copolymerization reaction follows the terminal model, Conversion is able to predict the evolution of different parameters, such as instantaneous and cumulative copolymer molar fractions, or molar fractions of any sequence with the…
The dynamic instability of adiabatic blast waves
NASA Technical Reports Server (NTRS)
Ryu, Dongsu; Vishniac, Ethan T.
1991-01-01
Adiabatic blastwaves, which have a total energy injected from the center E varies as t(sup q) and propagate through a preshock medium with a density rho(sub E) varies as r(sup -omega) are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.
NASA Astrophysics Data System (ADS)
Pickl, Peter; Dürr, Detlef
2008-08-01
We give here a rigorous proof of the well known prediction of pair creation as it arises from the Dirac equation with an external time dependent potential. Pair creation happens with probability one if the potential changes adiabatically in time and becomes overcritical, which means that an eigenvalue curve (as a function of time) bridges the gap between the negative and positive spectral continuum. The potential can be thought of as being zero at large negative and large positive times. The rigorous treatment of this effect has been lacking since the pioneering work of Beck, Steinwedel and Süßmann [1] in 1963 and Gershtein and Zeldovich [8] in 1970.
Adiabatic state preparation study of methylene
Veis, Libor Pittner, Jiří
2014-06-07
Quantum computers attract much attention as they promise to outperform their classical counterparts in solving certain type of problems. One of them with practical applications in quantum chemistry is simulation of complex quantum systems. An essential ingredient of efficient quantum simulation algorithms are initial guesses of the exact wave functions with high enough fidelity. As was proposed in Aspuru-Guzik et al. [Science 309, 1704 (2005)], the exact ground states can in principle be prepared by the adiabatic state preparation method. Here, we apply this approach to preparation of the lowest lying multireference singlet electronic state of methylene and numerically investigate preparation of this state at different molecular geometries. We then propose modifications that lead to speeding up the preparation process. Finally, we decompose the minimal adiabatic state preparation employing the direct mapping in terms of two-qubit interactions.
Reverse engineering of a nonlossy adiabatic Hamiltonian for non-Hermitian systems
NASA Astrophysics Data System (ADS)
Wu, Qi-Cheng; Chen, Ye-Hong; Huang, Bi-Hua; Xia, Yan; Song, Jie
2016-11-01
We generalize the quantum adiabatic theorem to the non-Hermitian system and build a strict adiabaticity condition to make the adiabatic evolution nonlossy when taking into account the effect of the adiabatic phase. According to the strict adiabaticity condition, the nonadiabatic couplings and the effect of the imaginary part of adiabatic phase should be eliminated as much as possible. Also, the non-Hermitian Hamiltonian reverse-engineering method is proposed for adiabatically driving an artificial quantum state. A concrete two-level system is adopted to show the usefulness of the reverse-engineering method. We obtain the desired target state by adjusting extra rotating magnetic fields at a predefined time. Furthermore, the numerical simulation shows that certain noise and dissipation in the systems are no longer undesirable but play a positive role in the scheme. Therefore, the scheme is quite useful for quantum information processing in some dissipative systems.
Farzinfar, Mahshid; Teoh, Eam Khwang; Xue, Zhong
2011-11-01
This study proposes an expectation-maximization (EM)-based curve evolution algorithm for segmentation of magnetic resonance brain images. In the proposed algorithm, the evolution curve is constrained not only by a shape-based statistical model but also by a hidden variable model from image observation. The hidden variable model herein is defined by the local voxel labeling, which is unknown and estimated by the expected likelihood function derived from the image data and prior anatomical knowledge. In the M-step, the shapes of the structures are estimated jointly by encoding the hidden variable model and the statistical prior model obtained from the training stage. In the E-step, the expected observation likelihood and the prior distribution of the hidden variables are estimated. In experiments, the proposed automatic segmentation algorithm is applied to multiple gray nuclei structures such as caudate, putamens and thalamus of three-dimensional magnetic resonance imaging in volunteers and patients. As for the robustness and accuracy of the segmentation algorithm, the results of the proposed EM-joint shape-based algorithm outperformed those obtained using the statistical shape model-based techniques in the same framework and a current state-of-the-art region competition level set method.
NASA Astrophysics Data System (ADS)
Zhang, Yanjun; Yu, Chunjuan; Fu, Xinghu; Liu, Wenzhe; Bi, Weihong
2015-12-01
In the distributed optical fiber sensing system based on Brillouin scattering, strain and temperature are the main measuring parameters which can be obtained by analyzing the Brillouin center frequency shift. The novel algorithm which combines the cuckoo search algorithm (CS) with the improved differential evolution (IDE) algorithm is proposed for the Brillouin scattering parameter estimation. The CS-IDE algorithm is compared with CS algorithm and analyzed in different situation. The results show that both the CS and CS-IDE algorithm have very good convergence. The analysis reveals that the CS-IDE algorithm can extract the scattering spectrum features with different linear weight ratio, linewidth combination and SNR. Moreover, the BOTDR temperature measuring system based on electron optical frequency shift is set up to verify the effectiveness of the CS-IDE algorithm. Experimental results show that there is a good linear relationship between the Brillouin center frequency shift and temperature changes.
Adiabaticity and spectral splits in collective neutrino transformations
Raffelt, Georg G.; Smirnov, Alexei Yu.
2007-12-15
Neutrinos streaming off a supernova core transform collectively by neutrino-neutrino interactions, leading to 'spectral splits' where an energy E{sub split} divides the transformed spectrum sharply into parts of almost pure but different flavors. We present a detailed description of the spectral-split phenomenon which is conceptually and quantitatively understood in an adiabatic treatment of neutrino-neutrino effects. Central to this theory is a self-consistency condition in the form of two sum rules (integrals over the neutrino spectra that must equal certain conserved quantities). We provide explicit analytic and numerical solutions for various neutrino spectra. We introduce the concept of the adiabatic reference frame and elaborate on the relative adiabatic evolution. Violating adiabaticity leads to the spectral split being 'washed out'. The sharpness of the split appears to be represented by a surprisingly universal function.
Self-adaptive differential evolution algorithm incorporating local search for protein-ligand docking
NASA Astrophysics Data System (ADS)
Chung, Hwan Won; Cho, Seung Joo; Lee, Kwang-Ryeol; Lee, Kyu-Hwan
2013-02-01
Differential Evolution (DE) algorithm is powerful in optimization problems over several real parameters. DE depends on strategies to generate new trial solutions and the associated parameter values for searching performance. In self-adaptive DE, the automatic learning about previous evolution was used to determine the best mutation strategy and its parameter settings. By combining the self-adaptive DE and Hooke Jeeves local search, we developed a new docking method named SADock (Strategy Adaptation Dock) with the help of AutoDock4 scoring function. As the accuracy and performance of SADock was evaluated in self-docking using the Astex diverse set, the introduced SADock showed better success ratio (89%) than the success ratio (60%) of the Lamarckian genetic algorithm (LGA) of AutoDock4. The self-adapting scheme enabled our new docking method to converge fast and to be robust through the various docking problems.
Yang, Zhiyong; Zhang, Taohong; Zhang, Dezheng
2016-02-01
Extreme learning machine (ELM) is a novel and fast learning method to train single layer feed-forward networks. However due to the demand for larger number of hidden neurons, the prediction speed of ELM is not fast enough. An evolutionary based ELM with differential evolution (DE) has been proposed to reduce the prediction time of original ELM. But it may still get stuck at local optima. In this paper, a novel algorithm hybridizing DE and metaheuristic coral reef optimization (CRO), which is called differential evolution coral reef optimization (DECRO), is proposed to balance the explorative power and exploitive power to reach better performance. The thought and the implement of DECRO algorithm are discussed in this article with detail. DE, CRO and DECRO are applied to ELM training respectively. Experimental results show that DECRO-ELM can reduce the prediction time of original ELM, and obtain better performance for training ELM than both DE and CRO.
Geometry of the Adiabatic Theorem
ERIC Educational Resources Information Center
Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas
2012-01-01
We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…
Li, Xiaofang; Xu, Lizhong; Wang, Huibin; Song, Jie; Yang, Simon X.
2010-01-01
The traditional Low Energy Adaptive Cluster Hierarchy (LEACH) routing protocol is a clustering-based protocol. The uneven selection of cluster heads results in premature death of cluster heads and premature blind nodes inside the clusters, thus reducing the overall lifetime of the network. With a full consideration of information on energy and distance distribution of neighboring nodes inside the clusters, this paper proposes a new routing algorithm based on differential evolution (DE) to improve the LEACH routing protocol. To meet the requirements of monitoring applications in outdoor environments such as the meteorological, hydrological and wetland ecological environments, the proposed algorithm uses the simple and fast search features of DE to optimize the multi-objective selection of cluster heads and prevent blind nodes for improved energy efficiency and system stability. Simulation results show that the proposed new LEACH routing algorithm has better performance, effectively extends the working lifetime of the system, and improves the quality of the wireless sensor networks. PMID:22219670
Li, Xiaofang; Xu, Lizhong; Wang, Huibin; Song, Jie; Yang, Simon X
2010-01-01
The traditional Low Energy Adaptive Cluster Hierarchy (LEACH) routing protocol is a clustering-based protocol. The uneven selection of cluster heads results in premature death of cluster heads and premature blind nodes inside the clusters, thus reducing the overall lifetime of the network. With a full consideration of information on energy and distance distribution of neighboring nodes inside the clusters, this paper proposes a new routing algorithm based on differential evolution (DE) to improve the LEACH routing protocol. To meet the requirements of monitoring applications in outdoor environments such as the meteorological, hydrological and wetland ecological environments, the proposed algorithm uses the simple and fast search features of DE to optimize the multi-objective selection of cluster heads and prevent blind nodes for improved energy efficiency and system stability. Simulation results show that the proposed new LEACH routing algorithm has better performance, effectively extends the working lifetime of the system, and improves the quality of the wireless sensor networks.
A Knowledge-based Evolution Algorithm approach to political districting problem
NASA Astrophysics Data System (ADS)
Chou, Chung-I.
2011-01-01
The political districting problem is to study how to partition a comparatively large zone into many minor electoral districts. In our previously works, we have mapped this political problem onto a q-state Potts model system by using statistical physics methods. The political constraints (such as contiguity, population equality, etc.) are transformed to an energy function with interactions between sites or external fields acting on the system. Several optimization algorithms such as simulated annealing method and genetic algorithm have been applied to this problem. In this report, we will show how to apply the Knowledge-based Evolution Algorithm (KEA) to the problem. Our test objects include two real cities (Taipei and Kaohsiung) and the simulated cities. The results showed the KEA can reach the same minimum which has been found by using other methods in each test case.
The knowledge instinct, cognitive algorithms, modeling of language and cultural evolution
NASA Astrophysics Data System (ADS)
Perlovsky, Leonid I.
2008-04-01
The talk discusses mechanisms of the mind and their engineering applications. The past attempts at designing "intelligent systems" encountered mathematical difficulties related to algorithmic complexity. The culprit turned out to be logic, which in one way or another was used not only in logic rule systems, but also in statistical, neural, and fuzzy systems. Algorithmic complexity is related to Godel's theory, a most fundamental mathematical result. These difficulties were overcome by replacing logic with a dynamic process "from vague to crisp," dynamic logic. It leads to algorithms overcoming combinatorial complexity, and resulting in orders of magnitude improvement in classical problems of detection, tracking, fusion, and prediction in noise. I present engineering applications to pattern recognition, detection, tracking, fusion, financial predictions, and Internet search engines. Mathematical and engineering efficiency of dynamic logic can also be understood as cognitive algorithm, which describes fundamental property of the mind, the knowledge instinct responsible for all our higher cognitive functions: concepts, perception, cognition, instincts, imaginations, intuitions, emotions, including emotions of the beautiful. I present our latest results in modeling evolution of languages and cultures, their interactions in these processes, and role of music in cultural evolution. Experimental data is presented that support the theory. Future directions are outlined.
An adaptive left-right eigenvector evolution algorithm for vibration isolation control
NASA Astrophysics Data System (ADS)
Wu, T. Y.
2009-11-01
The purpose of this research is to investigate the feasibility of utilizing an adaptive left and right eigenvector evolution (ALREE) algorithm for active vibration isolation. As depicted in the previous paper presented by Wu and Wang (2008 Smart Mater. Struct. 17 015048), the structural vibration behavior depends on both the disturbance rejection capability and mode shape distributions, which correspond to the left and right eigenvector distributions of the system, respectively. In this paper, a novel adaptive evolution algorithm is developed for finding the optimal combination of left-right eigenvectors of the vibration isolator, which is an improvement over the simultaneous left-right eigenvector assignment (SLREA) method proposed by Wu and Wang (2008 Smart Mater. Struct. 17 015048). The isolation performance index used in the proposed algorithm is defined by combining the orthogonality index of left eigenvectors and the modal energy ratio index of right eigenvectors. Through the proposed ALREE algorithm, both the left and right eigenvectors evolve such that the isolation performance index decreases, and therefore one can find the optimal combination of left-right eigenvectors of the closed-loop system for vibration isolation purposes. The optimal combination of left-right eigenvectors is then synthesized to determine the feedback gain matrix of the closed-loop system. The result of the active isolation control shows that the proposed method can be utilized to improve the vibration isolation performance compared with the previous approaches.
An implementation of differential evolution algorithm for inversion of geoelectrical data
NASA Astrophysics Data System (ADS)
Balkaya, Çağlayan
2013-11-01
Differential evolution (DE), a population-based evolutionary algorithm (EA) has been implemented to invert self-potential (SP) and vertical electrical sounding (VES) data sets. The algorithm uses three operators including mutation, crossover and selection similar to genetic algorithm (GA). Mutation is the most important operator for the success of DE. Three commonly used mutation strategies including DE/best/1 (strategy 1), DE/rand/1 (strategy 2) and DE/rand-to-best/1 (strategy 3) were applied together with a binomial type crossover. Evolution cycle of DE was realized without boundary constraints. For the test studies performed with SP data, in addition to both noise-free and noisy synthetic data sets two field data sets observed over the sulfide ore body in the Malachite mine (Colorado) and over the ore bodies in the Neem-Ka Thana cooper belt (India) were considered. VES test studies were carried out using synthetically produced resistivity data representing a three-layered earth model and a field data set example from Gökçeada (Turkey), which displays a seawater infiltration problem. Mutation strategies mentioned above were also extensively tested on both synthetic and field data sets in consideration. Of these, strategy 1 was found to be the most effective strategy for the parameter estimation by providing less computational cost together with a good accuracy. The solutions obtained by DE for the synthetic cases of SP were quite consistent with particle swarm optimization (PSO) which is a more widely used population-based optimization algorithm than DE in geophysics. Estimated parameters of SP and VES data were also compared with those obtained from Metropolis-Hastings (M-H) sampling algorithm based on simulated annealing (SA) without cooling to clarify uncertainties in the solutions. Comparison to the M-H algorithm shows that DE performs a fast approximate posterior sampling for the case of low-dimensional inverse geophysical problems.
Aspects of adiabatic population transfer and control
NASA Astrophysics Data System (ADS)
Demirplak, Mustafa
This thesis explores two different questions. The first question we answer is how to restore a given population transfer scenario given that it works efficiently in the adiabatic limit but fails because of lack of intensity and/or short duration. We derive a very simple algorithm to do this and apply it to both toy and realistic models. Two results emerge from this study. While the mathematical existence of the programme is certain it might not always be physically desirable. The restoration of adiabaticity is phase sensitive. The second question that is answered in this thesis is not how to invent new control paradigms, but rather what would happen to them in the presence of stochastic perturbers. We first use a phenomenological model to study the effect of stochastic dephasing on population transfer by stimulated Raman adiabatic passage. The results of this Monte Carlo calculation are qualitatively explained with a perturbation theoretical result in the dressed state basis. The reliability of our phenomenological model is questioned through a more rigorous hybrid quantal-classical simulation of controlled population transfer in HCl in Ar.
The Adiabatic Contraction of Dark Matter Halos in Numerical Simulations
NASA Astrophysics Data System (ADS)
Jesseit, R.; Burkert, A.; Naab, T.
The flatness of rotation curves in the outer parts of galaxies led to the postulation of a dark component to compensate for the missing mass. The origin of this component is still unknown. Bahcall & Soneira first pointed out in 1985 that a unique ratio for disk to halo mass is needed to produce the flat and featureless rotation curves in agreement with observations. They called this the disk-halo conspiracy. To explain this conspiracy Blumenthal et al. proposed that an adiabtically forming baryonic disk can influence the density structure of its surrounding dark halo. They assumed that the time scale of the baryonic infall is very slow such and the change of mass inside the orbit of a dark matter particle is neglegible. They further assumed that the dark matter particles revolve on circular orbits and are dissipationless. In this case their radial action integral is an adiabatic invariant during the contraction. Blumenthal et al. could find the final density profile of the dark matter, if the final distribution of the baryonic matter is known, through an iterative algorithm. We tested the above assumptions using collisionless N-body simulations. We set up a dark matter halo with a Hernquist density profile and analytically added the potential of an exponential disk. Initially the disk had a very large scale length compared to the halo scale length. During the simulation we reduced the sclae length of the disk and followed the evolution of the dark component. We examined different contraction speeds as well as different combinations of disk mass and scale lenght. We find that the theoretical prediction for the adiabatic contraction is
Çoban, Gürsan; Çelebi, M Serdar
2016-09-10
In this work, we constructed a novel collagen fibre remodelling algorithm that incorporates the complex nature of random evolution acting on single fibres causing macroscopic fibre dispersion. The proposed framework is different from the existing remodelling algorithms, in that the microscopic random force on cellular scales causing a rotational-type Brownian motion alone is considered as an aspect of vascular tissue remodelling. A continuum mechanical framework for the evolution of local dispersion and how it could be used for modeling the evolution of internal radius of biaxially strained artery structures under constant internal blood pressure are presented. A linear evolution form for the statistical fibre dispersion is employed in the model. The random force component of the evolution, which depends on the mechanical stress stimuli, is described by a single parameter. Although the mathematical form of the proposed model is simple, there is a strong link between the microscopic evolution of collagen dispersion on the cellular level and its effects on the macroscopic visible world through mechanical variables. We believe that the proposed algorithm utilizes a better understanding of the relationship between the evolution rates of mean fibre direction and fibre dispersion. The predictive capability of the algorithm is presented using experimental data. The model has been simulated by solving a single-layered axisymmetric artery (adventitia) deformation problem. The algorithm performed well for estimating the quantitative features of experimental anisotropy, the mean fibre direction vector and the dispersion ([Formula: see text]) measurements under strain-dependent evolution assumptions.
Generalized Ramsey numbers through adiabatic quantum optimization
NASA Astrophysics Data System (ADS)
Ranjbar, Mani; Macready, William G.; Clark, Lane; Gaitan, Frank
2016-09-01
Ramsey theory is an active research area in combinatorics whose central theme is the emergence of order in large disordered structures, with Ramsey numbers marking the threshold at which this order first appears. For generalized Ramsey numbers r( G, H), the emergent order is characterized by graphs G and H. In this paper we: (i) present a quantum algorithm for computing generalized Ramsey numbers by reformulating the computation as a combinatorial optimization problem which is solved using adiabatic quantum optimization; and (ii) determine the Ramsey numbers r({{T}}m,{{T}}n) for trees of order m,n = 6,7,8, most of which were previously unknown.
Shortcuts to adiabaticity for quantum annealing
NASA Astrophysics Data System (ADS)
Takahashi, Kazutaka
2017-01-01
We study the Ising Hamiltonian with a transverse field term to simulate the quantum annealing. Using shortcuts to adiabaticity, we design the time dependence of the Hamiltonian. The dynamical invariant is obtained by the mean-field ansatz, and the Hamiltonian is designed by the inverse engineering. We show that the time dependence of physical quantities such as the magnetization is independent of the speed of the Hamiltonian variation in the infinite-range model. We also show that rotating transverse magnetic fields are useful to achieve the ideal time evolution.
A linear-time algorithm for Gaussian and non-Gaussian trait evolution models.
Ho, Lam si Tung; Ané, Cécile
2014-05-01
We developed a linear-time algorithm applicable to a large class of trait evolution models, for efficient likelihood calculations and parameter inference on very large trees. Our algorithm solves the traditional computational burden associated with two key terms, namely the determinant of the phylogenetic covariance matrix V and quadratic products involving the inverse of V. Applications include Gaussian models such as Brownian motion-derived models like Pagel's lambda, kappa, delta, and the early-burst model; Ornstein-Uhlenbeck models to account for natural selection with possibly varying selection parameters along the tree; as well as non-Gaussian models such as phylogenetic logistic regression, phylogenetic Poisson regression, and phylogenetic generalized linear mixed models. Outside of phylogenetic regression, our algorithm also applies to phylogenetic principal component analysis, phylogenetic discriminant analysis or phylogenetic prediction. The computational gain opens up new avenues for complex models or extensive resampling procedures on very large trees. We identify the class of models that our algorithm can handle as all models whose covariance matrix has a 3-point structure. We further show that this structure uniquely identifies a rooted tree whose branch lengths parametrize the trait covariance matrix, which acts as a similarity matrix. The new algorithm is implemented in the R package phylolm, including functions for phylogenetic linear regression and phylogenetic logistic regression.
odNEAT: An Algorithm for Decentralised Online Evolution of Robotic Controllers.
Silva, Fernando; Urbano, Paulo; Correia, Luís; Christensen, Anders Lyhne
2015-01-01
Online evolution gives robots the capacity to learn new tasks and to adapt to changing environmental conditions during task execution. Previous approaches to online evolution of neural controllers are typically limited to the optimisation of weights in networks with a prespecified, fixed topology. In this article, we propose a novel approach to online learning in groups of autonomous robots called odNEAT. odNEAT is a distributed and decentralised neuroevolution algorithm that evolves both weights and network topology. We demonstrate odNEAT in three multirobot tasks: aggregation, integrated navigation and obstacle avoidance, and phototaxis. Results show that odNEAT approximates the performance of rtNEAT, an efficient centralised method, and outperforms IM-(μ + 1), a decentralised neuroevolution algorithm. Compared with rtNEAT and IM-(μ + 1), odNEAT's evolutionary dynamics lead to the synthesis of less complex neural controllers with superior generalisation capabilities. We show that robots executing odNEAT can display a high degree of fault tolerance as they are able to adapt and learn new behaviours in the presence of faults. We conclude with a series of ablation studies to analyse the impact of each algorithmic component on performance.
Shortcuts to adiabaticity by counterdiabatic driving for trapped-ion displacement in phase space
An, Shuoming; Lv, Dingshun; del Campo, Adolfo; Kim, Kihwan
2016-01-01
The application of adiabatic protocols in quantum technologies is severely limited by environmental sources of noise and decoherence. Shortcuts to adiabaticity by counterdiabatic driving constitute a powerful alternative that speed up time-evolution while mimicking adiabatic dynamics. Here we report the experimental implementation of counterdiabatic driving in a continuous variable system, a shortcut to the adiabatic transport of a trapped ion in phase space. The resulting dynamics is equivalent to a ‘fast-motion video' of the adiabatic trajectory. The robustness of this protocol is shown to surpass that of competing schemes based on classical local controls and Fourier optimization methods. Our results demonstrate that shortcuts to adiabaticity provide a robust speedup of quantum protocols of wide applicability in quantum technologies. PMID:27669897
Macro-micro interlocked simulation algorithm: an exemplification for aurora arc evolution
NASA Astrophysics Data System (ADS)
Sato, Tetsuya; Hasegawa, Hiroki; Ohno, Nobuaki
2009-01-01
Using an innovative holistic simulation algorithm that can self-consistently treat a system that evolves as cooperation between macroscopic and microscopic processes, the evolution of a colorful aurora arc is beautifully reproduced as the result of cooperation between the global field-aligned feedback instability of the coupled magnetosphere-ionosphere system and the ensuing microscopic ion-acoustic instability that generates electric double layers and accelerates aurora electrons. These results are in agreement with rocket and satellite observations. This shows that the proposed holistic algorithm could be a reliable tool to reveal complex real dramatic events and become, in the near future, a viable scientifically secure prediction tool for natural disasters such as earthquakes, landslides and floods caused by typhoons.
NASA Astrophysics Data System (ADS)
Pitakaso, Rapeepan; Sethanan, Kanchana
2016-02-01
This article proposes the differential evolution algorithm (DE) and the modified differential evolution algorithm (DE-C) to solve a simple assembly line balancing problem type 1 (SALBP-1) and SALBP-1 when the maximum number of machine types in a workstation is considered (SALBP-1M). The proposed algorithms are tested and compared with existing effective heuristics using various sets of test instances found in the literature. The computational results show that the proposed heuristics is one of the best methods, compared with the other approaches.
Wang, Xiaolong; Jiang, Aipeng; Jiangzhou, Shu; Li, Ping
2014-01-01
A large-scale parallel-unit seawater reverse osmosis desalination plant contains many reverse osmosis (RO) units. If the operating conditions change, these RO units will not work at the optimal design points which are computed before the plant is built. The operational optimization problem (OOP) of the plant is to find out a scheduling of operation to minimize the total running cost when the change happens. In this paper, the OOP is modelled as a mixed-integer nonlinear programming problem. A two-stage differential evolution algorithm is proposed to solve this OOP. Experimental results show that the proposed method is satisfactory in solution quality. PMID:24701180
Zhu, Wu; Fang, Jian-an; Tang, Yang; Zhang, Wenbing; Du, Wei
2012-01-01
Design of a digital infinite-impulse-response (IIR) filter is the process of synthesizing and implementing a recursive filter network so that a set of prescribed excitations results a set of desired responses. However, the error surface of IIR filters is usually non-linear and multi-modal. In order to find the global minimum indeed, an improved differential evolution (DE) is proposed for digital IIR filter design in this paper. The suggested algorithm is a kind of DE variants with a controllable probabilistic (CPDE) population size. It considers the convergence speed and the computational cost simultaneously by nonperiodic partial increasing or declining individuals according to fitness diversities. In addition, we discuss as well some important aspects for IIR filter design, such as the cost function value, the influence of (noise) perturbations, the convergence rate and successful percentage, the parameter measurement, etc. As to the simulation result, it shows that the presented algorithm is viable and comparable. Compared with six existing State-of-the-Art algorithms-based digital IIR filter design methods obtained by numerical experiments, CPDE is relatively more promising and competitive. PMID:22808191
Effect of dephasing on stimulated Raman adiabatic passage
Ivanov, P.A.; Vitanov, N.V.; Bergmann, K.
2004-12-01
This work explores the effect of phase relaxation on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The study is based on the Liouville equation, which is solved analytically in the adiabatic limit. The transfer efficiency of STIRAP is found to decrease exponentially with the dephasing rate; this effect is stronger for shorter pulse delays and weaker for larger delays, since the transition time is found to be inversely proportional to the pulse delay. Moreover, it is found that the transfer efficiency of STIRAP in the presence of dephasing does not depend on the peak Rabi frequencies at all, as long as they are sufficiently large to enforce adiabatic evolution; hence increasing the field intensity cannot reduce the dephasing losses. It is shown also that for any dephasing rate, the final populations of the initial state and the intermediate state are equal. For strong dephasing all three populations tend to (1/3)
The Floquet Adiabatic Theorem revisited
NASA Astrophysics Data System (ADS)
Weinberg, Phillip; Bukov, Marin; D'Alessio, Luca; Kolodrubetz, Michael; Davidson, Shainen; Polkovnikov, Anatoli
2015-03-01
The existance of the adiabatic theorem for Floquet systems has been the subject of an active debate with different articles reaching opposite conclusions over the years. In this talk we clarify the situation by deriving a systematic expansion in the time-derivatives of a slow parameter for the occupation probabilities of the Floque states. Our analysis shows that the in a certain limit the transition between Floquet eigenstates are suppressed and it is possible to define an adiabatic theorem for Floquet systems. Crucially we observe however that the conditions for adiabaticity in ordinary and Floquet systems are different and that this difference can become important when the amplitude of the periodic driving is large. We illustrate our results with specific examples of a periodically driven harmonic oscillator and cold atoms in optical lattices which are relevant in current experiments.
Adiabatic losses in Stirling refrigerators
Bauwens, L.
1996-06-01
The Stirling cycle has been used very effectively in cryocoolers; but efficiencies relative to the Carnot limit are typically observed to peak for absolute temperature ratios of about two, which makes it less suitable for low-life refrigeration. The adiabatic loss appears to be responsible for poor performance at small temperature differences. In this paper, adiabatic losses are evaluated, for a temperature ratio of 2/3, taking into account the effect of phase angle between pistons, of volume ratio, of the distribution of the dead volume necessary to reduce the volume ratio, and of the distribution of displacement between expansion and compression spaces. The study is carried out numerically, using an adiabatic Stirling engine model in which cylinder flow is assumed to be stratified. Results show that the best location for the cylinder dead volume is on the compression side. Otherwise, all strategies used to trade off refrigeration for coefficient of performance are found to be roughly equivalent.
NASA Astrophysics Data System (ADS)
Wang, Congzhe; Fang, Yuefa; Guo, Sheng
2015-07-01
Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements.
Liu, Chang; Wang, Guofeng; Xie, Qinglu; Zhang, Yanchao
2014-06-16
Effective fault classification of rolling element bearings provides an important basis for ensuring safe operation of rotating machinery. In this paper, a novel vibration sensor-based fault diagnosis method using an Ellipsoid-ARTMAP network (EAM) and a differential evolution (DE) algorithm is proposed. The original features are firstly extracted from vibration signals based on wavelet packet decomposition. Then, a minimum-redundancy maximum-relevancy algorithm is introduced to select the most prominent features so as to decrease feature dimensions. Finally, a DE-based EAM (DE-EAM) classifier is constructed to realize the fault diagnosis. The major characteristic of EAM is that the sample distribution of each category is realized by using a hyper-ellipsoid node and smoothing operation algorithm. Therefore, it can depict the decision boundary of disperse samples accurately and effectively avoid over-fitting phenomena. To optimize EAM network parameters, the DE algorithm is presented and two objectives, including both classification accuracy and nodes number, are simultaneously introduced as the fitness functions. Meanwhile, an exponential criterion is proposed to realize final selection of the optimal parameters. To prove the effectiveness of the proposed method, the vibration signals of four types of rolling element bearings under different loads were collected. Moreover, to improve the robustness of the classifier evaluation, a two-fold cross validation scheme is adopted and the order of feature samples is randomly arranged ten times within each fold. The results show that DE-EAM classifier can recognize the fault categories of the rolling element bearings reliably and accurately.
The formation of multiple adiabatic shear bands
NASA Astrophysics Data System (ADS)
Zhou, F.; Wright, T. W.; Ramesh, K. T.
2006-07-01
In a previous paper, Zhou et al. [2006. A numerical methodology for investigating adiabatic shear band formation. J. Mech. Phys. Solids, 54, 904-926] developed a numerical method for analyzing one-dimensional deformation of thermoviscoplastic materials. The method uses a second order algorithm for integration along characteristic lines, and computes the plastic flow after complete localization with high resolution and efficiency. We apply this numerical scheme to analyze localization in a thermoviscoplastic material where multiple shear bands are allowed to form at random locations in a large specimen. As a shear band develops, it unloads neighboring regions and interacts with other bands. Beginning with a random distribution of imperfections, which might be imagined as arising qualitatively from the microstructure, we obtain the average spacing of shear bands through calculations and compare our results with previously existing theoretical estimates. It is found that the spacing between nucleating shear bands follows the perturbation theory due to Wright and Ockendon [1996. A scaling law for the effect of inertia on the formation of adiabatic shear bands. Int. J. Plasticity 12, 927-934], whereas the spacing between mature shear bands is closer to that predicted by the momentum diffusion theory of Grady and Kipp [1987. The growth of unstable thermoplastic shear with application to steady-wave shock compression in solids. J. Mech. Phys. Solids 35, 95-119]. Scaling laws for the dependence of band spacing on material parameters differ in many respects from either theory.
NASA Astrophysics Data System (ADS)
Dawood Al-Dabbagh, Mohanad; Dawoud Al-Dabbagh, Rawaa; Raja Abdullah, R. S. A.; Hashim, F.
2015-06-01
The main intention of this study was to investigate the development of a new optimization technique based on the differential evolution (DE) algorithm, for the purpose of linear frequency modulation radar signal de-noising. As the standard DE algorithm is a fixed length optimizer, it is not suitable for solving signal de-noising problems that call for variability. A modified crossover scheme called rand-length crossover was designed to fit the proposed variable-length DE, and the new DE algorithm is referred to as the random variable-length crossover differential evolution (rvlx-DE) algorithm. The measurement results demonstrate a highly efficient capability for target detection in terms of frequency response and peak forming that was isolated from noise distortion. The modified method showed significant improvements in performance over traditional de-noising techniques.
The genesis of adiabatic shear bands
Landau, P.; Osovski, S.; Venkert, A.; Gärtnerová, V.; Rittel, D.
2016-01-01
Adiabatic shear banding (ASB) is a unique dynamic failure mechanism that results in an unpredicted catastrophic failure due to a concentrated shear deformation mode. It is universally considered as a material or structural instability and as such, ASB is hardly controllable or predictable to some extent. ASB is modeled on the premise of stability analyses. The leading paradigm is that a competition between strain (rate) hardening and thermal softening determines the onset of the failure. It was recently shown that microstructural softening transformations, such as dynamic recrystallization, are responsible for adiabatic shear failure. These are dictated by the stored energy of cold work, so that energy considerations can be used to macroscopically model the failure mechanism. The initial mechanisms that lead to final failure are still unknown, as well as the ASB formation mechanism(s). Most of all - is ASB an abrupt instability or rather a gradual transition as would be dictated by microstructural evolutions? This paper reports thorough microstructural characterizations that clearly show the gradual character of the phenomenon, best described as a nucleation and growth failure mechanism, and not as an abrupt instability as previously thought. These observations are coupled to a simple numerical model that illustrates them. PMID:27849023
Accurate Variational Description of Adiabatic Quantum Optimization
NASA Astrophysics Data System (ADS)
Carleo, Giuseppe; Bauer, Bela; Troyer, Matthias
Adiabatic quantum optimization (AQO) is a quantum computing protocol where a system is driven by a time-dependent Hamiltonian. The initial Hamiltonian has an easily prepared ground-state and the final Hamiltonian encodes some desired optimization problem. An adiabatic time evolution then yields a solution to the optimization problem. Several challenges emerge in the theoretical description of this protocol: on one hand, the exact simulation of quantum dynamics is exponentially complex in the size of the optimization problem. On the other hand, approximate approaches such as tensor network states (TNS) are limited to small instances by the amount of entanglement that can be encoded. I will present here an extension of the time-dependent Variational Monte Carlo approach to problems in AQO. This approach is based on a general class of (Jastrow-Feenberg) entangled states, whose parameters are evolved in time according to a stochastic variational principle. We demonstrate this approach for optimization problems of the Ising spin-glass type. A very good accuracy is achieved when compared to exact time-dependent TNS on small instances. We then apply this approach to larger problems, and discuss the efficiency of the quantum annealing scheme in comparison with its classical counterpart.
Model based on a quantum algorithm to study the evolution of an epidemics.
León, A; Pozo, J
2007-03-01
A model based on a quantum algorithm is used to study the spread of HIV virus and to predict infection rates on individuals who are not aware of their particular condition. The model makes an analogy between quantum systems and individuals who are infected by the disease. Individuals are represented by two-level quantum systems (quantum "bit"), and the interactions among individuals who cause the infection are represented by unitary transformations. The population is divided into categories according to their behaviour, and the interactions among those individuals in the same category and those in different categories are simulated. The objective is to obtain statistical data on the number of infected individuals depending on the time for every category and for the entire population. Besides, we analyse the impact of the evolution of the disease on individuals who have not knowledge of their specific sanitary condition.
On exploring the genetic algorithm for modeling the evolution of cooperation in a population
NASA Astrophysics Data System (ADS)
Schimit, P. H. T.
2014-08-01
In this paper, we propose a genetic algorithm approximation for modeling a population which individuals compete with each other based on prisoner's dilemma game. Players act according to their genome, which gives them a strategy (phenotype); in our case, a probability for cooperation. The most successful players will produce more offspring and that depends directly of the strategy adopted. As individuals die, the newborns parents will be those fittest individuals in a certain spatial region. Four different fitness functions are tested to investigate the influence in the evolution of cooperation. Individuals live in a lattice modeled by probabilistic cellular automata and play the game with some of their neighborhoods. In spite of players homogeneously distributed over the space, a mean-field approximation is presented in terms of ordinary differential equations.
NASA Astrophysics Data System (ADS)
Binol, Hamidullah; Bal, Abdullah; Cukur, Huseyin
2015-10-01
The performance of the kernel based techniques depends on the selection of kernel parameters. That's why; suitable parameter selection is an important problem for many kernel based techniques. This article presents a novel technique to learn the kernel parameters in kernel Fukunaga-Koontz Transform based (KFKT) classifier. The proposed approach determines the appropriate values of kernel parameters through optimizing an objective function constructed based on discrimination ability of KFKT. For this purpose we have utilized differential evolution algorithm (DEA). The new technique overcomes some disadvantages such as high time consumption existing in the traditional cross-validation method, and it can be utilized in any type of data. The experiments for target detection applications on the hyperspectral images verify the effectiveness of the proposed method.
Pressure Oscillations in Adiabatic Compression
ERIC Educational Resources Information Center
Stout, Roland
2011-01-01
After finding Moloney and McGarvey's modified adiabatic compression apparatus, I decided to insert this experiment into my physical chemistry laboratory at the last minute, replacing a problematic experiment. With insufficient time to build the apparatus, we placed a bottle between two thick textbooks and compressed it with a third textbook forced…
An improved generalized differential evolution algorithm for multi-objective reactive power dispatch
NASA Astrophysics Data System (ADS)
Ramesh, S.; Kannan, S.; Baskar, S.
2012-04-01
An improved multi-objective generalized differential evolution (I-GDE3) approach to solve optimal reactive power dispatch (ORPD) with multiple and competing objectives is proposed in this article. The objective functions are minimization of real power loss and bus voltage profile improvement. For maintaining good diversity, the concepts of simulated binary crossover (SBX) based recombination and dynamic crowding distance (DCD), are implemented in the GDE3 algorithm. I-GDE3 obtains the Pareto-solution set for ORPD that is impervious to load drifts and perturbations. The performance of the proposed approach is tested in standard IEEE 118-bus and IEEE 300-bus test systems and the result demonstrates the capability of the I-GDE3 algorithm in generating diverse and well distributed Pareto-optimal solutions that are less sensitive to various loading conditions along with load perturbations. The performance of I-GDE3 is compared with respect to multi-objective performance measures namely span, hyper-volume and C-measure. The results show the effectiveness of I-GDE3 and confirm its potential to solve the multi-objective RPD problem.
NASA Astrophysics Data System (ADS)
Le-Duc, Thang; Ho-Huu, Vinh; Nguyen-Thoi, Trung; Nguyen-Quoc, Hung
2016-12-01
In recent years, various types of magnetorheological brakes (MRBs) have been proposed and optimized by different optimization algorithms that are integrated in commercial software such as ANSYS and Comsol Multiphysics. However, many of these optimization algorithms often possess some noteworthy shortcomings such as the trap of solutions at local extremes, or the limited number of design variables or the difficulty of dealing with discrete design variables. Thus, to overcome these limitations and develop an efficient computation tool for optimal design of the MRBs, an optimization procedure that combines differential evolution (DE), a gradient-free global optimization method with finite element analysis (FEA) is proposed in this paper. The proposed approach is then applied to the optimal design of MRBs with different configurations including conventional MRBs and MRBs with coils placed on the side housings. Moreover, to approach a real-life design, some necessary design variables of MRBs are considered as discrete variables in the optimization process. The obtained optimal design results are compared with those of available optimal designs in the literature. The results reveal that the proposed method outperforms some traditional approaches.
NASA Astrophysics Data System (ADS)
Addawe, Rizavel C.; Addawe, Joel M.; Magadia, Joselito C.
2016-11-01
The Least Squares (LS), Least Median Squares (LMdS), Reweighted Least Squares (RLS) and Trimmed Least Squares (TLS) estimators are used to obtain parameter estimates of AR models using DE algorithm. The empirical study indicated that, the RLS estimator seems to be very reasonable because of having smaller root mean square error (RMSE), particularly for the Gaussian AR(1) process with unknown drift and additive outliers. Moreover, while LS performs well on shorter processes with less percentage and smaller magnitude of additive outliers (AOS); RLS and TLS compare favorably with respect to LS for longer AR processes. Thus, this study recommends the Reweighted Least Squares estimator as an alternative to the LS estimator in the case of autoregressive processes with additive outliers. The experiment also demonstrates that Differential Evolution (DE) algorithm obtains optimal solutions for fitting first-order autoregressive processes with outliers using the estimators. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 15 December 2016. The original version supplied to AIP Publishing contained errors in some of the mathematical equations and in Table 2. The errors have been corrected in the updated and re-published article.
Digital waveguide adiabatic passage part 1: theory
NASA Astrophysics Data System (ADS)
Vaitkus, Jesse A.; Steel, M. J.; Greentree, Andrew D.
2017-03-01
Spatial adiabatic passage represents a new way to design integrated photonic devices. In conventional adiabatic passage designs require smoothly varying waveguide separations. Here we show modelling of adiabatic passage devices where the waveguide separation is varied digitally. Despite digitisation, our designs show robustness against variations in the input wavelength and refractive index contrast of the waveguides relative to the cladding. This approach to spatial adiabatic passage opens new design strategies and hence the potential for new photonics devices.
New Dynamical Scaling Universality for Quantum Networks Across Adiabatic Quantum Phase Transitions
NASA Astrophysics Data System (ADS)
Acevedo, O. L.; Quiroga, L.; Rodríguez, F. J.; Johnson, N. F.
2014-01-01
We reveal universal dynamical scaling behavior across adiabatic quantum phase transitions in networks ranging from traditional spatial systems (Ising model) to fully connected ones (Dicke and Lipkin-Meshkov-Glick models). Our findings, which lie beyond traditional critical exponent analysis and adiabatic perturbation approximations, are applicable even where excitations have not yet stabilized and, hence, provide a time-resolved understanding of quantum phase transitions encompassing a wide range of adiabatic regimes. We show explicitly that even though two systems may traditionally belong to the same universality class, they can have very different adiabatic evolutions. This implies that more stringent conditions need to be imposed than at present, both for quantum simulations where one system is used to simulate the other and for adiabatic quantum computing schemes.
New Dynamical Scaling Universality for Quantum Networks Across Adiabatic Quantum Phase Transitions
NASA Astrophysics Data System (ADS)
Acevedo, Oscar L.; Rodriguez, Ferney J.; Quiroga, Luis; Johnson, Neil F.; Rey, Ana M.
2014-05-01
We reveal universal dynamical scaling behavior across adiabatic quantum phase transitions in networks ranging from traditional spatial systems (Ising model) to fully connected ones (Dicke and Lipkin-Meshkov-Glick models). Our findings, which lie beyond traditional critical exponent analysis and adiabatic perturbation approximations, are applicable even where excitations have not yet stabilized and, hence, provide a time-resolved understanding of quantum phase transitions encompassing a wide range of adiabatic regimes. We show explicitly that even though two systems may traditionally belong to the same universality class, they can have very different adiabatic evolutions. This implies that more stringent conditions need to be imposed than at present, both for quantum simulations where one system is used to simulate the other and for adiabatic quantum computing schemes.
Gong, Li-gang; Yang, Wen-lun
2014-01-01
Unmanned combat aerial vehicles (UCAVs) have been of great interest to military organizations throughout the world due to their outstanding capabilities to operate in dangerous or hazardous environments. UCAV path planning aims to obtain an optimal flight route with the threats and constraints in the combat field well considered. In this work, a novel artificial bee colony (ABC) algorithm improved by a balance-evolution strategy (BES) is applied in this optimization scheme. In this new algorithm, convergence information during the iteration is fully utilized to manipulate the exploration/exploitation accuracy and to pursue a balance between local exploitation and global exploration capabilities. Simulation results confirm that BE-ABC algorithm is more competent for the UCAV path planning scheme than the conventional ABC algorithm and two other state-of-the-art modified ABC algorithms. PMID:24790555
Li, Bai; Gong, Li-gang; Yang, Wen-lun
2014-01-01
Unmanned combat aerial vehicles (UCAVs) have been of great interest to military organizations throughout the world due to their outstanding capabilities to operate in dangerous or hazardous environments. UCAV path planning aims to obtain an optimal flight route with the threats and constraints in the combat field well considered. In this work, a novel artificial bee colony (ABC) algorithm improved by a balance-evolution strategy (BES) is applied in this optimization scheme. In this new algorithm, convergence information during the iteration is fully utilized to manipulate the exploration/exploitation accuracy and to pursue a balance between local exploitation and global exploration capabilities. Simulation results confirm that BE-ABC algorithm is more competent for the UCAV path planning scheme than the conventional ABC algorithm and two other state-of-the-art modified ABC algorithms.
NASA Technical Reports Server (NTRS)
Koshak, William; Solakiewicz, Richard
2012-01-01
The ability to estimate the fraction of ground flashes in a set of flashes observed by a satellite lightning imager, such as the future GOES-R Geostationary Lightning Mapper (GLM), would likely improve operational and scientific applications (e.g., severe weather warnings, lightning nitrogen oxides studies, and global electric circuit analyses). A Bayesian inversion method, called the Ground Flash Fraction Retrieval Algorithm (GoFFRA), was recently developed for estimating the ground flash fraction. The method uses a constrained mixed exponential distribution model to describe a particular lightning optical measurement called the Maximum Group Area (MGA). To obtain the optimum model parameters (one of which is the desired ground flash fraction), a scalar function must be minimized. This minimization is difficult because of two problems: (1) Label Switching (LS), and (2) Parameter Identity Theft (PIT). The LS problem is well known in the literature on mixed exponential distributions, and the PIT problem was discovered in this study. Each problem occurs when one allows the numerical minimizer to freely roam through the parameter search space; this allows certain solution parameters to interchange roles which leads to fundamental ambiguities, and solution error. A major accomplishment of this study is that we have employed a state-of-the-art genetic-based global optimization algorithm called Differential Evolution (DE) that constrains the parameter search in such a way as to remove both the LS and PIT problems. To test the performance of the GoFFRA when DE is employed, we applied it to analyze simulated MGA datasets that we generated from known mixed exponential distributions. Moreover, we evaluated the GoFFRA/DE method by applying it to analyze actual MGAs derived from low-Earth orbiting lightning imaging sensor data; the actual MGA data were classified as either ground or cloud flash MGAs using National Lightning Detection Network[TM] (NLDN) data. Solution error
NASA Astrophysics Data System (ADS)
Peckham, S. D.
2010-12-01
The Community Surface Dynamics Modeling System (CSDMS) has an ever-growing collection of reusable, plug-and-play components for earth surface process modeling and this includes numerous components for spatial hydrologic and landscape evolution modeling. While components may represent any level of granularity from a simple function to a complete hydrologic model, the optimum level appears to be that of a particular physical process, such as infiltration, evaporation or snowmelt. It is at this level of complexity that researchers are most often interested in "swapping out" one method of modeling a process for another that differs in terms of required input, complexity, accuracy, or computational efficiency. CSDMS model components are designed for maximum reusability and strict adherence to this simple-sounding goal has proven to be a powerful decider when it comes to chosing between a number of different design choices. For example, it determines key aspects of a component's interface, and the need for each component to have or manage its own state variables, input files, output files and help files. As a result, each component can be used either as a stand-alone "submodel" or as a component in some larger model. Components do not, however, need to be written in the same language because the CSDMS project employs a powerful language-interoperability tool called Babel. The purpose of this talk is to share a few lessons learned from the CSDMS project, to provide an overview of the many components that are currently available, and to briefly present performance results from a new fluvial landscape evolution algorithm.
Reversibility and energy dissipation in adiabatic superconductor logic.
Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki
2017-12-01
Reversible computing is considered to be a key technology to achieve an extremely high energy efficiency in future computers. In this study, we investigated the relationship between reversibility and energy dissipation in adiabatic superconductor logic. We analyzed the evolution of phase differences of Josephson junctions in the reversible quantum-flux-parametron (RQFP) gate and confirmed that the phase differences can change time reversibly, which indicates that the RQFP gate is physically, as well as logically, reversible. We calculated energy dissipation required for the RQFP gate to perform a logic operation and numerically demonstrated that the energy dissipation can fall below the thermal limit, or the Landauer bound, by lowering operation frequencies. We also investigated the 1-bit-erasure gate as a logically irreversible gate and the quasi-RQFP gate as a physically irreversible gate. We calculated the energy dissipation of these irreversible gates and showed that the energy dissipation of these gate is dominated by non-adiabatic state changes, which are induced by unwanted interactions between gates due to logical or physical irreversibility. Our results show that, in reversible computing using adiabatic superconductor logic, logical and physical reversibility are required to achieve energy dissipation smaller than the Landauer bound without non-adiabatic processes caused by gate interactions.
A Novel Discrete Differential Evolution Algorithm for the Vehicle Routing Problem in B2C E-Commerce
NASA Astrophysics Data System (ADS)
Xia, Chao; Sheng, Ying; Jiang, Zhong-Zhong; Tan, Chunqiao; Huang, Min; He, Yuanjian
2015-12-01
In this paper, a novel discrete differential evolution (DDE) algorithm is proposed to solve the vehicle routing problems (VRP) in B2C e-commerce, in which VRP is modeled by the incomplete graph based on the actual urban road system. First, a variant of classical VRP is described and a mathematical programming model for the variant is given. Second, the DDE is presented, where individuals are represented as the sequential encoding scheme, and a novel reparation operator is employed to repair the infeasible solutions. Furthermore, a FLOYD operator for dealing with the shortest route is embedded in the proposed DDE. Finally, an extensive computational study is carried out in comparison with the predatory search algorithm and genetic algorithm, and the results show that the proposed DDE is an effective algorithm for VRP in B2C e-commerce.
Towards robust dynamical decoupling and high fidelity adiabatic quantum computation
NASA Astrophysics Data System (ADS)
Quiroz, Gregory
Quantum computation (QC) relies on the ability to implement high-fidelity quantum gate operations and successfully preserve quantum state coherence. One of the most challenging obstacles for reliable QC is overcoming the inevitable interaction between a quantum system and its environment. Unwanted interactions result in decoherence processes that cause quantum states to deviate from a desired evolution, consequently leading to computational errors and loss of coherence. Dynamical decoupling (DD) is one such method, which seeks to attenuate the effects of decoherence by applying strong and expeditious control pulses solely to the system. Provided the pulses are applied over a time duration sufficiently shorter than the correlation time associated with the environment dynamics, DD effectively averages out undesirable interactions and preserves quantum states with a low probability of error, or fidelity loss. In this study various aspects of this approach are studied from sequence construction to applications of DD to protecting QC. First, a comprehensive examination of the error suppression properties of a near-optimal DD approach is given to understand the relationship between error suppression capabilities and the number of required DD control pulses in the case of ideal, instantaneous pulses. While such considerations are instructive for examining DD efficiency, i.e., performance vs the number of control pulses, high-fidelity DD in realizable systems is difficult to achieve due to intrinsic pulse imperfections which further contribute to decoherence. As a second consideration, it is shown how one can overcome this hurdle and achieve robustness and recover high-fidelity DD in the presence of faulty control pulses using Genetic Algorithm optimization and sequence symmetrization. Thirdly, to illustrate the implementation of DD in conjunction with QC, the utilization of DD and quantum error correction codes (QECCs) as a protection method for adiabatic quantum
Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo
White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry
2015-07-07
Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.
Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo
White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; ...
2015-07-07
Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficientmore » as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.« less
Theory of Adiabatic Fountain Resonance
NASA Astrophysics Data System (ADS)
Williams, Gary A.
2017-01-01
The theory of "Adiabatic Fountain Resonance" with superfluid ^4{He} is clarified. In this geometry a film region between two silicon wafers bonded at their outer edge opens up to a central region with a free surface. We find that the resonance in this system is not a Helmholtz resonance as claimed by Gasparini et al., but in fact is a fourth sound resonance. We postulate that it occurs at relatively low frequency because the thin silicon wafers flex appreciably from the pressure oscillations of the sound wave.
Adiabatic Wankel type rotary engine
NASA Technical Reports Server (NTRS)
Kamo, R.; Badgley, P.; Doup, D.
1988-01-01
This SBIR Phase program accomplished the objective of advancing the technology of the Wankel type rotary engine for aircraft applications through the use of adiabatic engine technology. Based on the results of this program, technology is in place to provide a rotor and side and intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Injection Stratified Charge (DISC) rotary engine was performed which concluded that applying thermal barrier coatings to the rotor should be successful and that it was unlikely that the rotor housing could be successfully run with thermal barrier coatings as the thermal stresses were extensive.
Energy-Efficient and Secure S-Box circuit using Symmetric Pass Gate Adiabatic Logic
Kumar, Dinesh; Thapliyal, Himanshu; Mohammad, Azhar; Singh, Vijay; Perumalla, Kalyan S
2016-01-01
Differential Power Analysis (DPA) attack is considered to be a main threat while designing cryptographic processors. In cryptographic algorithms like DES and AES, S-Box is used to indeterminate the relationship between the keys and the cipher texts. However, S-box is prone to DPA attack due to its high power consumption. In this paper, we are implementing an energy-efficient 8-bit S-Box circuit using our proposed Symmetric Pass Gate Adiabatic Logic (SPGAL). SPGAL is energy-efficient as compared to the existing DPAresistant adiabatic and non-adiabatic logic families. SPGAL is energy-efficient due to reduction of non-adiabatic loss during the evaluate phase of the outputs. Further, the S-Box circuit implemented using SPGAL is resistant to DPA attacks. The results are verified through SPICE simulations in 180nm technology. SPICE simulations show that the SPGAL based S-Box circuit saves upto 92% and 67% of energy as compared to the conventional CMOS and Secured Quasi-Adiabatic Logic (SQAL) based S-Box circuit. From the simulation results, it is evident that the SPGAL based circuits are energy-efficient as compared to the existing DPAresistant adiabatic and non-adiabatic logic families. In nutshell, SPGAL based gates can be used to build secure hardware for lowpower portable electronic devices and Internet-of-Things (IoT) based electronic devices.
Adiabatic theory of solitons fed by dispersive waves
NASA Astrophysics Data System (ADS)
Pickartz, Sabrina; Bandelow, Uwe; Amiranashvili, Shalva
2016-09-01
We consider scattering of low-amplitude dispersive waves at an intense optical soliton which constitutes a nonlinear perturbation of the refractive index. Specifically, we consider a single-mode optical fiber and a group velocity matched pair: an optical soliton and a nearly perfectly reflected dispersive wave, a fiber-optical analog of the event horizon. By combining (i) an adiabatic approach that is used in soliton perturbation theory and (ii) scattering theory from quantum mechanics, we give a quantitative account of the evolution of all soliton parameters. In particular, we quantify the increase in the soliton peak power that may result in the spontaneous appearance of an extremely large, so-called champion soliton. The presented adiabatic theory agrees well with the numerical solutions of the pulse propagation equation. Moreover, we predict the full frequency band of the scattered dispersive waves and explain an emerging caustic structure in the space-time domain.
Ultrafast adiabatic second harmonic generation
NASA Astrophysics Data System (ADS)
Dahan, Asaf; Levanon, Assaf; Katz, Mordechai; Suchowski, Haim
2017-03-01
We introduce a generalization of the adiabatic frequency conversion method for an efficient conversion of ultrashort pulses in the full nonlinear regime. Our analysis takes into account dispersion as well as two-photon processes and Kerr effect, allowing complete analysis of any three waves with arbitrary phase mismatched design and any nonlinear optical process. We use this analysis to design an efficient and robust second harmonic generation, the most widely used nonlinear process for both fundamental and applied research. We experimentally show that such design not only allows for very efficient conversion of various of ultrashort pulses, but is also very robust to variations in the parameters of both the nonlinear crystal and the incoming light. These include variation of more than 100 °C in the crystal temperature, a wide bandwidth of up to 75 nm and a chirp variation of 300 fs to 3.5 ps of the incoming pulse. Also, we show the dependency of the adiabatic second harmonic generation design on the pump intensity and the crystal length. Our study shows that two photon absorption plays a critical role in such high influence nonlinear dynamics, and that it must be considered in order to achieve agreement with experimental results.
Ultrafast adiabatic second harmonic generation.
Dahan, Asaf; Levanon, Assaf; Katz, Mordechai; Suchowski, Haim
2017-03-01
We introduce a generalization of the adiabatic frequency conversion method for an efficient conversion of ultrashort pulses in the full nonlinear regime. Our analysis takes into account dispersion as well as two-photon processes and Kerr effect, allowing complete analysis of any three waves with arbitrary phase mismatched design and any nonlinear optical process. We use this analysis to design an efficient and robust second harmonic generation, the most widely used nonlinear process for both fundamental and applied research. We experimentally show that such design not only allows for very efficient conversion of various of ultrashort pulses, but is also very robust to variations in the parameters of both the nonlinear crystal and the incoming light. These include variation of more than 100 °C in the crystal temperature, a wide bandwidth of up to 75 nm and a chirp variation of 300 fs to 3.5 ps of the incoming pulse. Also, we show the dependency of the adiabatic second harmonic generation design on the pump intensity and the crystal length. Our study shows that two photon absorption plays a critical role in such high influence nonlinear dynamics, and that it must be considered in order to achieve agreement with experimental results.
Khan, S. U.; Qureshi, I. M.; Zaman, F.; Shoaib, B.; Naveed, A.; Basit, A.
2014-01-01
Three issues regarding sensor failure at any position in the antenna array are discussed. We assume that sensor position is known. The issues include raise in sidelobe levels, displacement of nulls from their original positions, and diminishing of null depth. The required null depth is achieved by making the weight of symmetrical complement sensor passive. A hybrid method based on memetic computing algorithm is proposed. The hybrid method combines the cultural algorithm with differential evolution (CADE) which is used for the reduction of sidelobe levels and placement of nulls at their original positions. Fitness function is used to minimize the error between the desired and estimated beam patterns along with null constraints. Simulation results for various scenarios have been given to exhibit the validity and performance of the proposed algorithm. PMID:24688440
Competing adiabatic Thouless pumps in enlarged parameter spaces
NASA Astrophysics Data System (ADS)
Lopes, Pedro L. e. S.; Ghaemi, Pouyan; Ryu, Shinsei; Hughes, Taylor L.
2016-12-01
The transfer of conserved charges through insulating matter via smooth deformations of the Hamiltonian is known as quantum adiabatic, or Thouless, pumping. Central to this phenomenon are Hamiltonians whose insulating gap is controlled by a multidimensional (usually two-dimensional) parameter space in which paths can be defined for adiabatic changes in the Hamiltonian, i.e., without closing the gap. Here, we extend the concept of Thouless pumps of band insulators by considering a larger, three-dimensional parameter space. We show that the connectivity of this parameter space is crucial for defining quantum pumps, demonstrating that, as opposed to the conventional two-dimensional case, pumped quantities depend not only on the initial and final points of Hamiltonian evolution but also on the class of the chosen path and preserved symmetries. As such, we distinguish the scenarios of closed/open paths of Hamiltonian evolution, finding that different closed cycles can lead to the pumping of different quantum numbers, and that different open paths may point to distinct scenarios for surface physics. As explicit examples, we consider models similar to simple models used to describe topological insulators, but with doubled degrees of freedom compared to a minimal topological insulator model. The extra fermionic flavors from doubling allow for extra gapping terms/adiabatic parameters—besides the usual topological mass which preserves the topology-protecting discrete symmetries—generating an enlarged adiabatic parameter space. We consider cases in one and three spatial dimensions, and our results in three dimensions may be realized in the context of crystalline topological insulators, as we briefly discuss.
Shi, Mingren; Renton, Michael
2011-10-01
Computational simulation models can provide a way of understanding and predicting insect population dynamics and evolution of resistance, but the usefulness of such models depends on generating or estimating the values of key parameters. In this paper, we describe four numerical algorithms generating or estimating key parameters for simulating four different processes within such models. First, we describe a novel method to generate an offspring genotype table for one- or two-locus genetic models for simulating evolution of resistance, and how this method can be extended to create offspring genotype tables for models with more than two loci. Second, we describe how we use a generalized inverse matrix to find a least-squares solution to an over-determined linear system for estimation of parameters in probit models of kill rates. This algorithm can also be used for the estimation of parameters of Freundlich adsorption isotherms. Third, we describe a simple algorithm to randomly select initial frequencies of genotypes either without any special constraints or with some pre-selected frequencies. Also we give a simple method to calculate the "stable" Hardy-Weinberg equilibrium proportions that would result from these initial frequencies. Fourth we describe how the problem of estimating the intrinsic rate of natural increase of a population can be converted to a root-finding problem and how the bisection algorithm can then be used to find the rate. We implemented all these algorithms using MATLAB and Python code; the key statements in both codes consist of only a few commands and are given in the appendices. The results of numerical experiments are also provided to demonstrate that our algorithms are valid and efficient.
An interacting adiabatic quantum motor
NASA Astrophysics Data System (ADS)
Viola Kusminskiy, Silvia; Bruch, Anton; von Oppen, Felix
We consider the effect of electron-electron interactions on the performance of an adiabatic quantum motor based on a Thouless pump operating in reverse. We model such a device by electrons in a 1d wire coupled to a slowly moving periodic potential associated with the classical mechanical degree of freedom of the motor. This periodic degree of freedom is set into motion by a bias voltage applied to the 1d electron channel. We investigate the Thouless motor with interacting leads modeled as Luttinger liquids. We show that interactions enhance the energy gap opened by the periodic potential and thus the robustness of the Thouless motor against variations in the chemical potential. We show that the motor degree of freedom can be described as a mobile impurity in a Luttinger liquid obeying Langevin dynamics with renormalized coefficients due to interactions, for which we give explicit expressions.
NASA Astrophysics Data System (ADS)
Chang, L.; Chen, Y.; Pan, C.
2009-12-01
Surface water resources are strongly influenced by hydrological conditions, and using only surface water resources as water supplies may have higher shortage risk than before because of the climate change caused by the global warming. Conjunctive use of surface and subsurface water is one of the most effective water resource practices to increase water supply reliability with minimal cost and environmental impact. Therefore, this paper presents a novel stepwise optimization model for optimizing the conjunctive use of surface and subsurface water resources management. At each time step, a two level decomposition approach was proposed to divide the nonlinear optimal conjunctive use problem into a linear surface water subproblem and a nonlinear groundwater subproblem. Because of the two level decomposition approach, a hybrid framework is used for the implementation of the conjunctive use model. In the hybrid framework, evolution algorithms, Genetic Algorithm (GA) and Artificial Neural Network (ANN), and Linear Programming (LP) are used for model solving. GA and LP are respectively used for determining the optimal pumping quantities and reservoir allocation, and ANN is used for the groundwater simulation. In the groundwater simulation, this study uses an ANN to simulate groundwater response and greatly reduce computational loading for unconfined aquifers, unlike conventional “response matrix method” or “embedding method”. Because of the very high performance of LP, the usage of LP for the linear surface water subproblem can significantly decrease the computational burden of entire model. In this study, four cases have been demonstrated. Case #1 is a pure surface water case and others are conjunctive use cases. In Case #2, “surface water supply firstly” is the supply principle between surface water. In Case #3 and #4, the “Index Balance” theory is the supply principle and different operation curves used in different cases respectively. The case result
On the persistence of adiabatic shear bands
NASA Astrophysics Data System (ADS)
Boakye-Yiadom, S.; Bassim, M. N.; Al-Ameeri, S.
2012-08-01
It is generally agreed that the initiation and development of adiabatic shear bands (ASBs) are manifestations of damage in metallic materials subjected to high strain rates and large strains as those due to impact in a Hopkinson Bar system. Models for evolution of these bands have been described in the literature. One question that has not received attention is how persistent these bands are and whether their presence and effect can be reversed or eliminated by using a process of thermal (heat treatment) or thermo-mechanical treatment that would relieve the material from the high strain associated with ASBs and their role as precursors to crack initiation and subsequent failure. Since ASBs are more prevalent and more defined in BCC metals including steels, a study was conducted to investigate the best conditions of generating ASBs in a heat treatable steel, followed by determining the best conditions for heat treatment of specimens already damaged by the presence of ASBs in order to relieve the strains due to ASBs and restore the material to an apparent microstructure without the "scars" due to the previous presence of ASBs. It was found that heat treatment achieves the curing from ASBs. This presentation documents the process undertaken to achieve this objective.
ERIC Educational Resources Information Center
Mayr, Ernst
1978-01-01
Traces the history of evolution theory from Lamarck and Darwin to the present. Discusses natural selection in detail. Suggests that, besides biological evolution, there is also a cultural evolution which is more rapid than the former. (MA)
On optimal methods for adiabatic quantum state transformations
NASA Astrophysics Data System (ADS)
Somma, Rolando
2013-03-01
Many problems in science could be solved by preparing the low-energy quantum state (or any eigenstate) of a Hamiltonian. A common example is the Boolean satisfiability problem, where each clause can be mapped to the energy of an interacting many-body system, and the problem reduces to minimizing the energy. In quantum computing, adiabatic quantum state transformations (ASTs) provide a tool for preparing the quantum state. ASTs are conventionally implemented via slow or adiabatic perturbations to the Hamiltonian, relying on the quantum adiabatic theorem. Nevertheless, more efficient implementations of ASTs exist. In this talk I will review recently developed methods for ASTs that are more efficient and require less assumptions on the Hamiltonians than the conventional implementation. Such methods involve measurements of the states along the evolution path and have a best-case implementation cost of L/G, where L is the length of the (evolved) state path and G is a lower bound to the spectral gap of the Hamiltonians. I will show that this cost is optimal and comment on results of the gap amplification problem, where the goal is to reduce the cost by increasing G. We acknowledge support from NSF through the CCF program and the LDRD programs at Los Alamos National Laboratory and Sandia National Laboratories.
Schedule path optimization for adiabatic quantum computing and optimization
NASA Astrophysics Data System (ADS)
Zeng, Lishan; Zhang, Jun; Sarovar, Mohan
2016-04-01
Adiabatic quantum computing and optimization have garnered much attention recently as possible models for achieving a quantum advantage over classical approaches to optimization and other special purpose computations. Both techniques are probabilistic in nature and the minimum gap between the ground state and first excited state of the system during evolution is a major factor in determining the success probability. In this work we investigate a strategy for increasing the minimum gap and success probability by introducing intermediate Hamiltonians that modify the evolution path between initial and final Hamiltonians. We focus on an optimization problem relevant to recent hardware implementations and present numerical evidence for the existence of a purely local intermediate Hamiltonian that achieve the optimum performance in terms of pushing the minimum gap to one of the end points of the evolution. As a part of this study we develop a convex optimization formulation of the search for optimal adiabatic schedules that makes this computation more tractable, and which may be of independent interest. We further study the effectiveness of random intermediate Hamiltonians on the minimum gap and success probability, and empirically find that random Hamiltonians have a significant probability of increasing the success probability, but only by a modest amount.
Relativistic blast waves in two dimensions. I - The adiabatic case
NASA Technical Reports Server (NTRS)
Shapiro, P. R.
1979-01-01
Approximate solutions are presented for the dynamical evolution of strong adiabatic relativistic blast waves which result from a point explosion in an ambient gas in which the density varies both with distance from the explosion center and with polar angle in axisymmetry. Solutions are analytical or quasi-analytical for the extreme relativistic case and numerical for the arbitrarily relativistic case. Some general properties of nonplanar relativistic shocks are also discussed, including the incoherence of spherical ultrarelativistic blast-wave fronts on angular scales greater than the reciprocal of the shock Lorentz factor, as well as the conditions for producing blast-wave acceleration.
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network
Goto, Hayato
2016-01-01
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence. PMID:26899997
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network
NASA Astrophysics Data System (ADS)
Goto, Hayato
2016-02-01
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network.
Goto, Hayato
2016-02-22
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.
He, Feng; Zhang, Wei; Zhang, Guoqiang
2016-01-01
A differential evolution algorithm for solving Nash equilibrium in nonlinear continuous games is presented in this paper, called NIDE (Nikaido-Isoda differential evolution). At each generation, parent and child strategy profiles are compared one by one pairwisely, adapting Nikaido-Isoda function as fitness function. In practice, the NE of nonlinear game model with cubic cost function and quadratic demand function is solved, and this method could also be applied to non-concave payoff functions. Moreover, the NIDE is compared with the existing Nash Domination Evolutionary Multiplayer Optimization (NDEMO), the result showed that NIDE was significantly better than NDEMO with less iterations and shorter running time. These numerical examples suggested that the NIDE method is potentially useful. PMID:27589229
Zheng, Weijia; Pi, Youguo
2016-07-01
A tuning method of the fractional order proportional integral speed controller for a permanent magnet synchronous motor is proposed in this paper. Taking the combination of the integral of time and absolute error and the phase margin as the optimization index, the robustness specification as the constraint condition, the differential evolution algorithm is applied to search the optimal controller parameters. The dynamic response performance and robustness of the obtained optimal controller are verified by motor speed-tracking experiments on the motor speed control platform. Experimental results show that the proposed tuning method can enable the obtained control system to achieve both the optimal dynamic response performance and the robustness to gain variations.
Adiabatic heating in impulsive solar flares
NASA Technical Reports Server (NTRS)
Maetzler, C.; Bai, T.; Crannell, C. J.; Frost, K. J.
1977-01-01
The dynamic X-ray spectra of two simple, impulsive solar flares are examined together with H alpha, microwave and meter wave radio observations. X-ray spectra of both events were characteristic of thermal bremsstrahlung from single temperature plasmas. The symmetry between rise and fall was found to hold for the temperature and emission measure. The relationship between temperature and emission measure was that of an adiabatic compression followed by adiabatic expansion; the adiabatic index of 5/3 indicated that the electron distribution remained isotropic. Observations in H alpha provided further evidence for compressive energy transfer.
The Structure and Evolution of LOCBURST: The BATSE Burst Location Algorithm
NASA Technical Reports Server (NTRS)
Pendleton, Geoffrey N.; Briggs, Michael S.; Kippen, R. Marc; Paciesas, William S.; Stollberg, Mark; Woods, Pete; Meegan, Charles A.; Fishman, Gerald J.; McCollough, Mike L.; Connaughton, Valerie
1999-01-01
The gamma-ray burst (GRB) location algorithm used to produce the BATSE GRB locations is described. The general flow of control of the current location algorithm is presented, and the significant properties of the various physical inputs required are identified. The development of the burst location algorithm during the releases of the BATSE IB, 2B, and 3B GRB catalogs is presented so that the reasons for the differences in the positions and error estimates between the catalogs can be understood. In particular, differences between the 2B and 3B locations are discussed for events that have moved significantly and the reasons for the changes explained. The locations of bursts located independently by the interplanetary network (IPN) are used to illustrate the effect on burst location accuracy of various components of the algorithm. IPN data and locations from other gamma-ray instruments are used to calculate estimates of the systematic errors on BATSE burst locations.
Adiabatic superconducting cells for ultra-low-power artificial neural networks
Schegolev, Andrey E; Soloviev, Igor I; Tereshonok, Maxim V
2016-01-01
Summary We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions. We optimize their parameters for application in three-layer perceptron and radial basis function networks. PMID:27826513
Adiabatic superconducting cells for ultra-low-power artificial neural networks.
Schegolev, Andrey E; Klenov, Nikolay V; Soloviev, Igor I; Tereshonok, Maxim V
2016-01-01
We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions. We optimize their parameters for application in three-layer perceptron and radial basis function networks.
Experimental demonstration of composite adiabatic passage
NASA Astrophysics Data System (ADS)
Schraft, Daniel; Halfmann, Thomas; Genov, Genko T.; Vitanov, Nikolay V.
2013-12-01
We report an experimental demonstration of composite adiabatic passage (CAP) for robust and efficient manipulation of two-level systems. The technique represents a altered version of rapid adiabatic passage (RAP), driven by composite sequences of radiation pulses with appropriately chosen phases. We implement CAP with radio-frequency pulses to invert (i.e., to rephase) optically prepared spin coherences in a Pr3+:Y2SiO5 crystal. We perform systematic investigations of the efficiency of CAP and compare the results with conventional π pulses and RAP. The data clearly demonstrate the superior features of CAP with regard to robustness and efficiency, even under conditions of weakly fulfilled adiabaticity. The experimental demonstration of composite sequences to support adiabatic passage is of significant relevance whenever a high efficiency or robustness of coherent excitation processes need to be maintained, e.g., as required in quantum information technology.
Adiabatic limits on Riemannian Heisenberg manifolds
Yakovlev, A A
2008-02-28
An asymptotic formula is obtained for the distribution function of the spectrum of the Laplace operator, in the adiabatic limit for the foliation defined by the orbits of an invariant flow on a compact Riemannian Heisenberg manifold. Bibliography: 21 titles.
Simulation of periodically focused, adiabatic thermal beams
Chen, C.; Akylas, T. R.; Barton, T. J.; Field, D. M.; Lang, K. M.; Mok, R. V.
2012-12-21
Self-consistent particle-in-cell simulations are performed to verify earlier theoretical predictions of adiabatic thermal beams in a periodic solenoidal magnetic focusing field [K.R. Samokhvalova, J. Zhou and C. Chen, Phys. Plasma 14, 103102 (2007); J. Zhou, K.R. Samokhvalova and C. Chen, Phys. Plasma 15, 023102 (2008)]. In particular, results are obtained for adiabatic thermal beams that do not rotate in the Larmor frame. For such beams, the theoretical predictions of the rms beam envelope, the conservations of the rms thermal emittances, the adiabatic equation of state, and the Debye length are verified in the simulations. Furthermore, the adiabatic thermal beam is found be stable in the parameter regime where the simulations are performed.
NASA Astrophysics Data System (ADS)
Li, Hong; Zhang, Li; Jiao, Yong-Chang
2016-07-01
This paper presents an interactive approach based on a discrete differential evolution algorithm to solve a class of integer bilevel programming problems, in which integer decision variables are controlled by an upper-level decision maker and real-value or continuous decision variables are controlled by a lower-level decision maker. Using the Karush--Kuhn-Tucker optimality conditions in the lower-level programming, the original discrete bilevel formulation can be converted into a discrete single-level nonlinear programming problem with the complementarity constraints, and then the smoothing technique is applied to deal with the complementarity constraints. Finally, a discrete single-level nonlinear programming problem is obtained, and solved by an interactive approach. In each iteration, for each given upper-level discrete variable, a system of nonlinear equations including the lower-level variables and Lagrange multipliers is solved first, and then a discrete nonlinear programming problem only with inequality constraints is handled by using a discrete differential evolution algorithm. Simulation results show the effectiveness of the proposed approach.
Symmetry of the Adiabatic Condition in the Piston Problem
ERIC Educational Resources Information Center
Anacleto, Joaquim; Ferreira, J. M.
2011-01-01
This study addresses a controversial issue in the adiabatic piston problem, namely that of the piston being adiabatic when it is fixed but no longer so when it can move freely. It is shown that this apparent contradiction arises from the usual definition of adiabatic condition. The issue is addressed here by requiring the adiabatic condition to be…
NASA Astrophysics Data System (ADS)
Ekinci, Yunus Levent; Balkaya, Çağlayan; Göktürkler, Gökhan; Turan, Seçil
2016-06-01
An efficient approach to estimate model parameters from residual gravity data based on differential evolution (DE), a stochastic vector-based metaheuristic algorithm, has been presented. We have showed the applicability and effectiveness of this algorithm on both synthetic and field anomalies. According to our knowledge, this is a first attempt of applying DE for the parameter estimations of residual gravity anomalies due to isolated causative sources embedded in the subsurface. The model parameters dealt with here are the amplitude coefficient (A), the depth and exact origin of causative source (zo and xo, respectively) and the shape factors (q and ƞ). The error energy maps generated for some parameter pairs have successfully revealed the nature of the parameter estimation problem under consideration. Noise-free and noisy synthetic single gravity anomalies have been evaluated with success via DE/best/1/bin, which is a widely used strategy in DE. Additionally some complicated gravity anomalies caused by multiple source bodies have been considered, and the results obtained have showed the efficiency of the algorithm. Then using the strategy applied in synthetic examples some field anomalies observed for various mineral explorations such as a chromite deposit (Camaguey district, Cuba), a manganese deposit (Nagpur, India) and a base metal sulphide deposit (Quebec, Canada) have been considered to estimate the model parameters of the ore bodies. Applications have exhibited that the obtained results such as the depths and shapes of the ore bodies are quite consistent with those published in the literature. Uncertainty in the solutions obtained from DE algorithm has been also investigated by Metropolis-Hastings (M-H) sampling algorithm based on simulated annealing without cooling schedule. Based on the resulting histogram reconstructions of both synthetic and field data examples the algorithm has provided reliable parameter estimations being within the sampling limits of
Bor, E; Turduev, M; Kurt, H
2016-08-01
Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction.
Bor, E.; Turduev, M.; Kurt, H.
2016-01-01
Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction. PMID:27477060
NASA Astrophysics Data System (ADS)
Bor, E.; Turduev, M.; Kurt, H.
2016-08-01
Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction.
Ferrauto, Tomassino; Parisi, Domenico; Di Stefano, Gabriele; Baldassarre, Gianluca
2013-01-01
Organisms that live in groups, from microbial symbionts to social insects and schooling fish, exhibit a number of highly efficient cooperative behaviors, often based on role taking and specialization. These behaviors are relevant not only for the biologist but also for the engineer interested in decentralized collective robotics. We address these phenomena by carrying out experiments with groups of two simulated robots controlled by neural networks whose connection weights are evolved by using genetic algorithms. These algorithms and controllers are well suited to autonomously find solutions for decentralized collective robotic tasks based on principles of self-organization. The article first presents a taxonomy of role-taking and specialization mechanisms related to evolved neural network controllers. Then it introduces two cooperation tasks, which can be accomplished by either role taking or specialization, and uses these tasks to compare four different genetic algorithms to evaluate their capacity to evolve a suitable behavioral strategy, which depends on the task demands. Interestingly, only one of the four algorithms, which appears to have more biological plausibility, is capable of evolving role taking or specialization when they are needed. The results are relevant for both collective robotics and biology, as they can provide useful hints on the different processes that can lead to the emergence of specialization in robots and organisms.
Adiabatic invariants in stellar dynamics. 1: Basic concepts
NASA Technical Reports Server (NTRS)
Weinberg, Martin D.
1994-01-01
The adiabatic criterion, widely used in astronomical dynamics, is based on the harmonic oscillator. It asserts that the change in action under a slowly varying perturbation is exponentially small. Recent mathematical results that precisely define the conditions for invariance show that this model does not apply in general. In particular, a slowly varying perturbation may cause significant evolution stellar dynamical systems even if its time scale is longer than any internal orbital time scale. This additional 'heating' may have serious implications for the evolution of star clusters and dwarf galaxies which are subject to long-term environmental forces. The mathematical developments leading to these results are reviewed, and the conditions for applicability to and further implications for stellar systems are discussed. Companion papers present a computational method for a general time-dependent disturbance and detailed example.
NASA Astrophysics Data System (ADS)
Kang, Yi-Hao; Wu, Qi-Cheng; Chen, Ye-Hong; Shi, Zhi-Cheng; Song, Jie; Xia, Yan
2017-04-01
In this paper, we investigate the quantum transfer for the system with three-level Λ-type structure, and construct a shortcut to the adiabatic passage via picture transformation to speed up the evolution. We can design the pulses directly without any additional couplings. Moreover, by choosing suitable control parameters, the Rabi frequencies of pulses can be expressed by the linear superpositions of Gaussian functions, which could be easily realized in experiments. Compared with the previous works using the stimulated Raman adiabatic passage, the quantum transfer can be significantly accelerated with the present scheme.
Assessment of total efficiency in adiabatic engines
NASA Astrophysics Data System (ADS)
Mitianiec, W.
2016-09-01
The paper presents influence of ceramic coating in all surfaces of the combustion chamber of SI four-stroke engine on working parameters mainly on heat balance and total efficiency. Three cases of engine were considered: standard without ceramic coating, fully adiabatic combustion chamber and engine with different thickness of ceramic coating. Consideration of adiabatic or semi-adiabatic engine was connected with mathematical modelling of heat transfer from the cylinder gas to the cooling medium. This model takes into account changeable convection coefficient based on the experimental formulas of Woschni, heat conductivity of multi-layer walls and also small effect of radiation in SI engines. The simulation model was elaborated with full heat transfer to the cooling medium and unsteady gas flow in the engine intake and exhaust systems. The computer program taking into account 0D model of engine processes in the cylinder and 1D model of gas flow was elaborated for determination of many basic engine thermodynamic parameters for Suzuki DR-Z400S 400 cc SI engine. The paper presents calculation results of influence of the ceramic coating thickness on indicated pressure, specific fuel consumption, cooling and exhaust heat losses. Next it were presented comparisons of effective power, heat losses in the cooling and exhaust systems, total efficiency in function of engine rotational speed and also comparison of temperature inside the cylinder for standard, semi-adiabatic and full adiabatic engine. On the basis of the achieved results it was found higher total efficiency of adiabatic engines at 2500 rpm from 27% for standard engine to 37% for full adiabatic engine.
Cognitive algorithms: dynamic logic, working of the mind, evolution of consciousness and cultures
NASA Astrophysics Data System (ADS)
Perlovsky, Leonid I.
2007-04-01
The paper discusses evolution of consciousness driven by the knowledge instinct, a fundamental mechanism of the mind which determines its higher cognitive functions. Dynamic logic mathematically describes the knowledge instinct. It overcomes past mathematical difficulties encountered in modeling intelligence and relates it to mechanisms of concepts, emotions, instincts, consciousness and unconscious. The two main aspects of the knowledge instinct are differentiation and synthesis. Differentiation is driven by dynamic logic and proceeds from vague and unconscious states to more crisp and conscious states, from less knowledge to more knowledge at each hierarchical level of the mind. Synthesis is driven by dynamic logic operating in a hierarchical organization of the mind; it strives to achieve unity and meaning of knowledge: every concept finds its deeper and more general meaning at a higher level. These mechanisms are in complex relationship of symbiosis and opposition, which leads to complex dynamics of evolution of consciousness and cultures. Modeling this dynamics in a population leads to predictions for the evolution of consciousness, and cultures. Cultural predictive models can be compared to experimental data and used for improvement of human conditions. We discuss existing evidence and future research directions.
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network
NASA Astrophysics Data System (ADS)
Goto, Hayato
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via its bifurcation with a slowly varying parameter. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing. To distinguish them, we refer to the present approach as bifurcation-based adiabatic quantum computation. Our numerical simulation results suggest that quantum superposition and quantum fluctuation work effectively to find optimal solutions.
Jiang, Cheng; Cui, Yuanshun; Chen, Guibin
2016-01-01
We explore theoretically the dynamics of an optomechanical system in which a resonantly driven cavity mode is quadratically coupled to the displacement of a mechanical resonator. Considering the first order correction to adiabatic elimination, we obtain the analytical expression of optomechanical damping rate which is negative and depends on the position of the mechanical resonator. After comparing the numerical results between the full simulation of Langevin equations, adiabatic elimination, and first order correction to adiabatic elimination, we explain the dynamics of the system in terms of overall mechanical potential and optomechanical damping rate. The antidamping induced by radiation pressure can result in self-sustained oscillation of the mechanical resonator. Finally, we discuss the time evolution of the intracavity photon number, which also shows that the effect of first order correction cannot be neglected when the ratio of the cavity decay rate to the mechanical resonance frequency becomes smaller than a critical value. PMID:27752125
NASA Astrophysics Data System (ADS)
Addawe, Rizavel C.; Addawe, Joel M.; Magadia, Joselito C.
2016-10-01
Accurate forecasting of dengue cases would significantly improve epidemic prevention and control capabilities. This paper attempts to provide useful models in forecasting dengue epidemic specific to the young and adult population of Baguio City. To capture the seasonal variations in dengue incidence, this paper develops a robust modeling approach to identify and estimate seasonal autoregressive integrated moving average (SARIMA) models in the presence of additive outliers. Since the least squares estimators are not robust in the presence of outliers, we suggest a robust estimation based on winsorized and reweighted least squares estimators. A hybrid algorithm, Differential Evolution - Simulated Annealing (DESA), is used to identify and estimate the parameters of the optimal SARIMA model. The method is applied to the monthly reported dengue cases in Baguio City, Philippines.
Shear Faulting and Adiabatic Heating: Experimental Results from Ice
NASA Astrophysics Data System (ADS)
Golding, N.; Schulson, E. M.; Renshaw, C. E.
2011-12-01
Ice exhibits two distinct modes of shear faulting (Golding et al. Acta Materialia, 2010;58:5043), namely frictional or Coulombic (C) faulting under moderate levels of confinement and non-frictional or plastic (P) faulting under high levels of confinement. The mechanisms governing C-faulting have previously been discussed in connection with the comb-crack model (Renshaw & Schulson Nature, 2001;412:897). Here we examine the physical process[es] that trigger P-faulting. Systematic experiments on laboratory grown granular and columnar polycrystalline ice loaded triaxially under a high degree of confinement at -10 oC to -40 oC at applied strain rates 10-5 s-1 to 10-1 s-1 trace the micro-mechanical evolution of P-faulting. Terminal failure is characterized by a sudden brittle-like loss in load bearing capacity, the development of a narrow shear band, comprised of recrystallized grains and oriented on a plane of maximum shear, and localized heating. Possible mechanisms considered to account for the localization include: 1) adiabatic heating, 2) localized material softening through a reduction in dislocation density caused by dynamic recrystallization and 3) a transition from power-law creep to grain-size-dependent diffusional creep as a result of grain refinement caused by dynamic recrystallization. Our results indicate that, although recrystallization develops dynamically during loading, microstructural development does not significantly affect shear localization in ice. Nor does it affect the character of the fault. The minimum levels of deformation required to generate faulting are found to be consistent with those predicted for adiabatic shear instability. The present observations suggest that under specific conditions adiabatic heating, rather than dynamic recrystallization, may lead to material instability and shear faulting.
Optical force on atoms with periodic adiabatic rapid passage sequences
NASA Astrophysics Data System (ADS)
Miao, Xiyue
Adiabatic Rapid Passage (ARP) is a long-existing method to invert the population of a two-level nuclear spin system. Its extension to the optical domain necessitates a frequency chirped light pulse to interact with a two-level atom through dipole interaction. In this dissertation ARP processes for various pulse schemes and pulse parameters have been studied theoretically and experimentally. The non-adiabatic transition probability of ARP was quantified to characterize the efficiency of ARP for population transfer. Unanticipated regularities were found in the pulse parameter space. ARP sequences in periodic phase coherent counter-propagating light pulses can be used to produce large optical forces on atoms. The magnitude of the force is proportional to the pulse repetition rate. So the force can be much larger than the usual radiative force if the pulse repetition rate is much higher than the spontaneous emission rate. The behavior of the atoms in such periodic ARP fields without spontaneous emission is well described by a periodic Hamiltonian. By investigating the evolution of the Bloch vector on the Bloch sphere, we related the average optical force on atoms to the non-adiabatic transition probability of a single pulse. Syncopation time has to be introduced in the pulsing scheme to produce a directional force in the presence of spontaneous emission. Experimentally, we observed the force on He* atoms by the deflection of the atomic beam with periodic chirped pulses from counter-propagating pulse trains. The chirped pulse train was realized by synchronized phase and amplitude modulation of the light from a cw diode laser. The Fourier spectrum of the modulated light was monitored to guarantee the quality of the chirped pulses. The measured ARP forces are about half of the theoretical predictions. Not only have we shown that such forces are huge and robust, but we have also been able to map the forces in the two dimensional pulse parameter space. The force
Nonadiabatic exchange dynamics during adiabatic frequency sweeps.
Barbara, Thomas M
2016-04-01
A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging.
Adiabatic many-body state preparation and information transfer in quantum dot arrays
NASA Astrophysics Data System (ADS)
Farooq, Umer; Bayat, Abolfazl; Mancini, Stefano; Bose, Sougato
2015-04-01
Quantum simulation of many-body systems are one of the most interesting tasks of quantum technology. Among them is the preparation of a many-body system in its ground state when the vanishing energy gap makes the cooling mechanisms ineffective. Adiabatic theorem, as an alternative to cooling, can be exploited for driving the many-body system to its ground state. In this paper, we study two most common disorders in quantum dot arrays, namely exchange coupling fluctuations and hyperfine interaction, in adiabatic preparation of ground state in such systems. We show that the adiabatic ground-state preparation is highly robust against those disorder effects making it a good analog simulator. Moreover, we also study the adiabatic quantum information transfer, using singlet-triplet states, across a spin chain. In contrast to ground-state preparation the transfer mechanism is highly affected by disorder and in particular, the hyperfine interaction is very destructive for the performance. This suggests that for communication tasks across such arrays adiabatic evolution is not as effective and quantum quenches could be preferable.
NASA Astrophysics Data System (ADS)
Balkaya, Çağlayan; Ekinci, Yunus Levent; Göktürkler, Gökhan; Turan, Seçil
2017-01-01
3D non-linear inversion of total field magnetic anomalies caused by vertical-sided prismatic bodies has been achieved by differential evolution (DE), which is one of the population-based evolutionary algorithms. We have demonstrated the efficiency of the algorithm on both synthetic and field magnetic anomalies by estimating horizontal distances from the origin in both north and east directions, depths to the top and bottom of the bodies, inclination and declination angles of the magnetization, and intensity of magnetization of the causative bodies. In the synthetic anomaly case, we have considered both noise-free and noisy data sets due to two vertical-sided prismatic bodies in a non-magnetic medium. For the field case, airborne magnetic anomalies originated from intrusive granitoids at the eastern part of the Biga Peninsula (NW Turkey) which is composed of various kinds of sedimentary, metamorphic and igneous rocks, have been inverted and interpreted. Since the granitoids are the outcropped rocks in the field, the estimations for the top depths of two prisms representing the magnetic bodies were excluded during inversion studies. Estimated bottom depths are in good agreement with the ones obtained by a different approach based on 3D modelling of pseudogravity anomalies. Accuracy of the estimated parameters from both cases has been also investigated via probability density functions. Based on the tests in the present study, it can be concluded that DE is a useful tool for the parameter estimation of source bodies using magnetic anomalies.
On black hole spectroscopy via adiabatic invariance
NASA Astrophysics Data System (ADS)
Jiang, Qing-Quan; Han, Yan
2012-12-01
In this Letter, we obtain the black hole spectroscopy by combining the black hole property of adiabaticity and the oscillating velocity of the black hole horizon. This velocity is obtained in the tunneling framework. In particular, we declare, if requiring canonical invariance, the adiabatic invariant quantity should be of the covariant form Iadia = ∮pi dqi. Using it, the horizon area of a Schwarzschild black hole is quantized independently of the choice of coordinates, with an equally spaced spectroscopy always given by ΔA = 8 π lp2 in the Schwarzschild and Painlevé coordinates.
On adiabatic invariant in generalized Galileon theories
Ema, Yohei; Jinno, Ryusuke; Nakayama, Kazunori; Mukaida, Kyohei E-mail: jinno@hep-th.phys.s.u-tokyo.ac.jp E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp
2015-10-01
We consider background dynamics of generalized Galileon theories in the context of inflation, where gravity and inflaton are non-minimally coupled to each other. In the inflaton oscillation regime, the Hubble parameter and energy density oscillate violently in many cases, in contrast to the Einstein gravity with minimally coupled inflaton. However, we find that there is an adiabatic invariant in the inflaton oscillation regime in any generalized Galileon theory. This adiabatic invariant is useful in estimating the expansion law of the universe and also the particle production rate due to the oscillation of the Hubble parameter.
Spontaneous emission in stimulated Raman adiabatic passage
Ivanov, P. A.; Vitanov, N. V.; Bergmann, K.
2005-11-15
This work explores the effect of spontaneous emission on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The approach uses adiabatic elimination of weakly coupled density matrix elements in the Liouville equation, from which a very accurate analytic approximation is derived. The loss of population transfer efficiency is found to decrease exponentially with the factor {omega}{sub 0}{sup 2}/{gamma}, where {gamma} is the spontaneous emission rate and {omega}{sub 0} is the peak Rabi frequency. The transfer efficiency increases with the pulse delay and reaches a steady value. For large pulse delay and large spontaneous emission rate STIRAP degenerates into optical pumping.
Adiabatic Hyperspherical Analysis of Realistic Nuclear Potentials
NASA Astrophysics Data System (ADS)
Daily, K. M.; Kievsky, Alejandro; Greene, Chris H.
2015-12-01
Using the hyperspherical adiabatic method with the realistic nuclear potentials Argonne V14, Argonne V18, and Argonne V18 with the Urbana IX three-body potential, we calculate the adiabatic potentials and the triton bound state energies. We find that a discrete variable representation with the slow variable discretization method along the hyperradial degree of freedom results in energies consistent with the literature. However, using a Laguerre basis results in missing energy, even when extrapolated to an infinite number of basis functions and channels. We do not include the isospin T = 3/2 contribution in our analysis.
Adiabatic cluster-state quantum computing
Bacon, Dave; Flammia, Steven T.
2010-09-15
Models of quantum computation (QC) are important because they change the physical requirements for achieving universal QC. For example, one-way QC requires the preparation of an entangled ''cluster'' state, followed by adaptive measurement on this state, a set of requirements which is different from the standard quantum-circuit model. Here we introduce a model based on one-way QC but without measurements (except for the final readout), instead using adiabatic deformation of a Hamiltonian whose initial ground state is the cluster state. Our results could help increase the feasibility of adiabatic schemes by using tools from one-way QC.
Markovian quantum master equation beyond adiabatic regime.
Yamaguchi, Makoto; Yuge, Tatsuro; Ogawa, Tetsuo
2017-01-01
By introducing a temporal change time scale τ_{A}(t) for the time-dependent system Hamiltonian, a general formulation of the Markovian quantum master equation is given to go well beyond the adiabatic regime. In appropriate situations, the framework is well justified even if τ_{A}(t) is faster than the decay time scale of the bath correlation function. An application to the dissipative Landau-Zener model demonstrates this general result. The findings are applicable to a wide range of fields, providing a basis for quantum control beyond the adiabatic regime.
Markovian quantum master equation beyond adiabatic regime
NASA Astrophysics Data System (ADS)
Yamaguchi, Makoto; Yuge, Tatsuro; Ogawa, Tetsuo
2017-01-01
By introducing a temporal change time scale τA(t ) for the time-dependent system Hamiltonian, a general formulation of the Markovian quantum master equation is given to go well beyond the adiabatic regime. In appropriate situations, the framework is well justified even if τA(t ) is faster than the decay time scale of the bath correlation function. An application to the dissipative Landau-Zener model demonstrates this general result. The findings are applicable to a wide range of fields, providing a basis for quantum control beyond the adiabatic regime.
Wright, Thomas; Ward, Jamie
2013-08-01
Sensory substitution is a promising technique for mitigating the loss of a sensory modality. Sensory substitution devices (SSDs) work by converting information from the impaired sense (e.g., vision) into another, intact sense (e.g., audition). However, there are a potentially infinite number of ways of converting images into sounds, and it is important that the conversion takes into account the limits of human perception and other user-related factors (e.g., whether the sounds are pleasant to listen to). The device explored here is termed "polyglot" because it generates a very large set of solutions. Specifically, we adapt a procedure that has been in widespread use in the design of technology but has rarely been used as a tool to explore perception-namely, interactive genetic algorithms. In this procedure, a very large range of potential sensory substitution devices can be explored by creating a set of "genes" with different allelic variants (e.g., different ways of translating luminance into loudness). The most successful devices are then "bred" together, and we statistically explore the characteristics of the selected-for traits after multiple generations. The aim of the present study is to produce design guidelines for a better SSD. In three experiments, we vary the way that the fitness of the device is computed: by asking the user to rate the auditory aesthetics of different devices (Experiment 1), and by measuring the ability of participants to match sounds to images (Experiment 2) and the ability to perceptually discriminate between two sounds derived from similar images (Experiment 3). In each case, the traits selected for by the genetic algorithm represent the ideal SSD for that task. Taken together, these traits can guide the design of a better SSD.
Morphological evolution of protective works by Genetic Algorithms: An application to Mt Etna
NASA Astrophysics Data System (ADS)
Marocco, Davide; Spataro, William; D'Ambrosio, Donato; Filippone, Giuseppe; Rongo, Rocco; Iovine, Giulio; Neri, Marco
2013-04-01
The hazard induced by dangerous flow-type phenomena - e.g. lava flows, earth flows, debris flows, and debris avalanches - has increased in recent years due to continuous urbanization. In many cases, the numerical simulation of hypothetical events can help to forecast the flow path in advance and therefore give indications about the areas that can be considered for the construction of protective works - e.g. earth barriers or channels. In this way, urbanized areas, as well as cultural heritage sites or even important infrastructures, can be protected by diverting the flow towards lower interest regions. Here, we have considered the numerical Cellular Automata model Sciara-fv2 for simulating lava flows at Mt Etna and Genetic Algorithms for optimizing the position, orientation and extension of an earth barrier built to protect the Rifugio Sapienza, a well-known touristic facility located near the summit of the volcano. The Rifugio Sapienza area was in fact interested by a lava flow in 2003, which destroyed a Service Center, a parking area and a Cafeteria. In this study, a perimeter was devised around the Rifugio (i.e., security perimeter), which delimitates the area that has to be protected by the flow. Furthermore, another perimeter was devised (i.e., work perimeter), specifying the area in which the earth barrier can be located. The barrier is specified by three parameters, namely the two geographic coordinates of the vertex and the height. In fact, in this preliminary analysis the barrier was modeled as a segment (in plant) having a constant height. Though preliminary, the study has produced extremely positive results. Among different alternatives generated by the genetic algorithm, an interesting scenario consists of a 35 meters barrier high solution, which completely deviates the flow avoiding that the lava reaches the inhabited area. The relative elevated height of the barrier is high due to the fact that the crater is located close to the area to be protected
Adiabatic Quantum Computing and Quantum Walks: Algorithms and Architectures
2011-02-15
0807.0929 Title: Environment-Assisted Quantum Transport Authors: Patrick Rebentrost, Masoud Mohseni, Ivan Kassal, Seth Lloyd, Alán Aspuru-Guzik...this effect, Environment Assisted Quantum Transport (ENAQT).The use of environmental effects to enhance transport rates appears to be ubiquitous in
Search for the algorithm of genes distribution during the process of microbial evolution
NASA Astrophysics Data System (ADS)
Pikuta, Elena V.
2015-09-01
Previous two and three dimensional graph analysis of eco-physiological data of Archaea demonstrated specific geometry for distribution of major Prokaryotic groups in a hyperboloid function. The function of a two-sheet hyperboloid covered all known biological groups, and therefore, could be applied for the entire evolution of life on Earth. The vector of evolution was indicated from the point of hyper temperature, extreme acidity and low salinity to the point of low temperature and increased alkalinity and salinity. According to this vector, the following groups were chosen for the gene screening analysis. In the vector "High-Temperature → Low-Temperature" within extreme acidic pH (0-3), it is: 1) the hyperthermophilic Crenarchaeota - order Sulfolobales, 2) moderately thermophilic Euryarchaeota - Class Thermoplasmata, and 3) mesophilic acidophiles- genus Thiobacillus and others. In the vector "Low pH → High pH" the following groups were selected in three temperature ranges: a) Hyperthermophilic Archaea and Eubacteria, b) moderately thermophilic - representatives of the genera Anaerobacter and Anoxybacillus, and c) mesophilic haloalkaliphiles (Eubacteria and Archaea). The genes associated with acidophily (H+ pump), chemolitho-autotrophy (proteins of biochemichal cycles), polymerases, and histones were proposed for the first vector, and for the second vector the genes associated with halo-alkaliphily (Na+ pumps), enzymes of organotrophic metabolisms (sugar- and proteolytics), and others were indicated for the screening. Here, an introduction to the phylogenetic constant (ρη) is presented and discussed. This universal characteristic is calculated for two principally different life forms -Prokaryotes and Eukaryotes; Existence of the second type of living forms is impossible without the first one. The number of chromosomes in Prokaryotic organisms is limited to one (with very rare exceptions, to two), while in Eukaryotic organisms this number is larger. Currently
Adiabatic Compression in a Fire Syringe.
ERIC Educational Resources Information Center
Hayn, Carl H.; Baird, Scott C.
1985-01-01
Suggests using better materials in fire syringes to obtain more effective results during demonstrations which show the elevation in temperature upon a very rapid (adiabatic) compression of air. Also describes an experiment (using ignition temperatures) which introduces students to the use of thermocouples for high temperature measurements. (DH)
Apparatus to Measure Adiabatic and Isothermal Processes.
ERIC Educational Resources Information Center
Lamb, D. W.; White, G. M.
1996-01-01
Describes a simple manual apparatus designed to serve as an effective demonstration of the differences between isothermal and adiabatic processes for the general or elementary physics student. Enables students to verify Boyle's law for slow processes and identify the departure from this law for rapid processes and can also be used to give a clear…
PCA algorithm for detection, localisation and evolution of damages in gearbox bearings
NASA Astrophysics Data System (ADS)
Pirra, M.; Gandino, E.; Torri, A.; Garibaldi, L.; Machorro-López, J. M.
2011-07-01
A fundamental aspect when dealing with rolling element bearings, which often represent a key component in rotating machineries, consists in correctly identifying a degraded behaviour of a bearing with a reasonable level of confidence. This is one of the main requirements a health and usage monitoring system (HUMS) should have. This paper introduces a monitoring technique for the diagnosis of bearing faults based on Principal Component Analysis (PCA). This method overcomes the problem of acquiring data under different environmental conditions (hardly biasing the data) and allows accurate damage recognition, also assuring a rather low number of False Alarms (FA). In addition, a novel criterion is proposed in order to isolate the area in which the faulty bearing stands. Another useful feature of this PCA-based method concerns the capability to observe an increasing trend in the evolution of bearing degradation. The described technique is tested on an industrial rig (designed by Avio S.p.A.), consisting of a full size aeroengine gearbox. Healthy and variously damaged bearings, such as with an inner or rolling element fault, are set up and vibration signals are collected and processed in order to properly detect a fault. Finally, data collected from a test rig assembled by the Dynamics & Identification Research Group (DIRG) are used to demonstrate that the proposed method is able to correctly detect and to classify different levels of the same type of fault and also to localise it.
Optimization of a mirror-based neutron source using differential evolution algorithm
NASA Astrophysics Data System (ADS)
Yurov, D. V.; Prikhodko, V. V.
2016-12-01
This study is dedicated to the assessment of capabilities of gas-dynamic trap (GDT) and gas-dynamic multiple-mirror trap (GDMT) as potential neutron sources for subcritical hybrids. In mathematical terms the problem of the study has been formulated as determining the global maximum of fusion gain (Q pl), the latter represented as a function of trap parameters. A differential evolution method has been applied to perform the search. Considered in all calculations has been a configuration of the neutron source with 20 m long distance between the mirrors and 100 MW heating power. It is important to mention that the numerical study has also taken into account a number of constraints on plasma characteristics so as to provide physical credibility of searched-for trap configurations. According to the results obtained the traps considered have demonstrated fusion gain up to 0.2, depending on the constraints applied. This enables them to be used either as neutron sources within subcritical reactors for minor actinides incineration or as material-testing facilities.
Adiabatic burst evaporation from bicontinuous nanoporous membranes.
Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk; Steinhart, Martin; Xue, Longjian
2015-05-28
Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol-gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 10(7) μm(3) are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media.
Adiabatic circuits: converter for static CMOS signals
NASA Astrophysics Data System (ADS)
Fischer, J.; Amirante, E.; Bargagli-Stoffi, A.; Schmitt-Landsiedel, D.
2003-05-01
Ultra low power applications can take great advantages from adiabatic circuitry. In this technique a multiphase system is used which consists ideally of trapezoidal voltage signals. The input signals to be processed will often come from a function block realized in static CMOS. The static rectangular signals must be converted for the oscillating multiphase system of the adiabatic circuitry. This work shows how to convert the input signals to the proposed pulse form which is synchronized to the appropriate supply voltage. By means of adder structures designed for a 0.13µm technology in a 4-phase system there will be demonstrated, which additional circuits are necessary for the conversion. It must be taken into account whether the data arrive in parallel or serial form. Parallel data are all in one phase and therefore it is advantageous to use an adder structure with a proper input stage, e.g. a Carry Lookahead Adder (CLA). With a serial input stage it is possible to read and to process four signals during one cycle due to the adiabatic 4-phase system. Therefore input signals with a frequency four times higher than the adiabatic clock frequency can be used. This reduces the disadvantage of the slow clock period typical for adiabatic circuits. By means of an 8 bit Ripple Carry Adder (8 bit RCA) the serial reading will be introduced. If the word width is larger than 4 bits the word can be divided in 4 bit words which are processed in parallel. This is the most efficient way to minimize the number of input lines and pads. At the same time a high throughput is achieved.
Crossover from adiabatic to antiadiabatic quantum pumping with dissipation.
Pellegrini, Franco; Negri, C; Pistolesi, F; Manini, Nicola; Santoro, Giuseppe E; Tosatti, Erio
2011-08-05
Quantum pumping, in its different forms, is attracting attention from different fields, from fundamental quantum mechanics, to nanotechnology, to superconductivity. We investigate the crossover of quantum pumping from the adiabatic to the antiadiabatic regime in the presence of dissipation, and find general and explicit analytical expressions for the pumped current in a minimal model describing a system with the topology of a ring forced by a periodic modulation of frequency ω. The solution allows following in a transparent way the evolution of pumped dc current from much smaller to much larger ω values than the other relevant energy scale, the energy splitting introduced by the modulation. We find and characterize a temperature-dependent optimal value of the frequency for which the pumped current is maximal.
Evolution of the spectral index after inflation
Asgari, A.A.; Abbassi, A.H. E-mail: ahabbasi@modares.ac.ir
2014-09-01
In this article we investigate the time evolution of the adiabatic (curvature) and isocurvature (entropy) spectral indices after inflation era for all cosmological scales with two different initial conditions. For this purpose, we first extract an explicit equation for the time evolution of the comoving curvature perturbation (which may be known as the generalized Mukhanov-Sasaki equation). It would be cleared that the evolution of adiabatic spectral index severely depends on the initial conditions moreover, as expected it is constant only for the super-Hubble scales and adiabatic initial conditions. Additionally, the adiabatic spectral index after recombination approaches a constant value for the isocurvature perturbations. Finally, we re-investigate the Sachs-Wolfe effect and show that the fudge factor 1/3 in the adiabatic ordinary Sachs-Wolfe formula must be replaced by 0.4.
Transition time of nonlinear Landau-Zener model in adiabatic limit
NASA Astrophysics Data System (ADS)
Liu, Xuan-Zuo; Tian, Dong-Ping; Chong, Bo
2016-06-01
The impact of nonlinear interaction on the loop structure of lower energy level and on the time evolution curve of canonical momentum which corresponds to the lower eigenstate are analyzed respectively. We find that the curve changes from single-valued to multi-valued as nonlinear interaction grows. The fascinating part is that the time range delimited by turning points in the loop of energy level and the period between two inflexion points on the multi-valued part of the evolution curve of canonical momentum are the same. Therefore, we propose a characteristic time in the transition process of nonlinear Landau-Zener model in adiabatic limit. Last, the physical meaning of the transition time as a measure of how much time the system experiences a structural change which directly results in the breakdown of adiabaticity is discussed.
Moonchai, Sompop; Madlhoo, Weeranuch; Jariyachavalit, Kanidtha; Shimizu, Hiroshi; Shioya, Suteaki; Chauvatcharin, Somchai
2005-11-01
The effect of pH and temperature on cell growth and bacteriocin production in Lactococcus lactis C7 was investigated in order to optimize the production of bacteriocin. The study showed that the bacteriocin production was growth-associated, but declined after reaching the maximum titer. The decrease of bacteriocin was caused by a cell-bound protease. Maximum bacteriocin titer was obtained at pH 5.5 and at 22 degrees C. In order to obtain a global optimized solution for production of bacteriocin, the optimal temperature for bacteriocin production was further studied. Mathematical models were developed for cell growth, substrate consumption, lactic acid production and bacteriocin production. A Differential Evolution algorithm was used both to estimate the model parameters from the experimental data and to compute a temperature profile for maximizing the final bacteriocin titer and bacteriocin productivity. This simulation showed that maximum bacteriocin production was obtained at the optimal temperature profile, starting at 30 degrees C and terminating at 22 degrees C, which was validated by experiment. This temperature profile yielded 20% higher maximum bacteriocin productivity than that obtained at a constant temperature of 22 degrees C, although the total amount of bacteriocin obtained was slightly decreased.
Bresadola, Vittorio; Feo, Carlo V
2012-04-01
Achalasia is a rare disease of the esophagus, characterized by the absence of peristalsis in the esophageal body and incomplete relaxation of the lower esophageal sphincter, which may be hypertensive. The cause of this disease is unknown; therefore, the aim of the therapy is to improve esophageal emptying by eliminating the outflow resistance caused by the lower esophageal sphincter. This goal can be accomplished either by pneumatic dilatation or surgical myotomy, which are the only long-term effective therapies for achalasia. Historically, pneumatic dilatation was preferred over surgical myotomy because of the morbidity associated with a thoracotomy or a laparotomy. However, with the development of minimally invasive techniques, the surgical approach has gained widespread acceptance among patients and gastroenterologists and, consequently, the role of surgery has changed. The aim of this study was to review the changes occurred in the surgical treatment of achalasia over the last 2 decades; specifically, the development of minimally invasive techniques with the evolution from a thoracoscopic approach without an antireflux procedure to a laparoscopic myotomy with a partial fundoplication, the changes in the length of the myotomy, and the modification of the therapeutic algorithm.
Quantum-Classical Correspondence of Shortcuts to Adiabaticity
NASA Astrophysics Data System (ADS)
Okuyama, Manaka; Takahashi, Kazutaka
2017-04-01
We formulate the theory of shortcuts to adiabaticity in classical mechanics. For a reference Hamiltonian, the counterdiabatic term is constructed from the dispersionless Korteweg-de Vries (KdV) hierarchy. Then the adiabatic theorem holds exactly for an arbitrary choice of time-dependent parameters. We use the Hamilton-Jacobi theory to define the generalized action. The action is independent of the history of the parameters and is directly related to the adiabatic invariant. The dispersionless KdV hierarchy is obtained from the classical limit of the KdV hierarchy for the quantum shortcuts to adiabaticity. This correspondence suggests some relation between the quantum and classical adiabatic theorems.
Comment on ``Adiabatic theory for the bipolaron''
NASA Astrophysics Data System (ADS)
Smondyrev, M. A.; Devreese, J. T.
1996-05-01
Comments are given on the application of the Bogoliubov-Tyablikov approach to the bipolaron problem in a recent paper by Lakhno [Phys. Rev. B 51, 3512 (1995)]. This author believes that his model (1) is the translation-invariant adiabatic theory of bipolarons and (2) gives asymptotically exact solutions in the adiabatic limit while the other approaches are considered as either phenomenological or variational in nature. Numerical results by Lakhno are in contradiction with all other papers published on the subject because his model leads to much lower energies. Thus, the author concludes that bipolarons ``are more stable than was considered before.'' We prove that both the analytical and the numerical results presented by Lakhno are wrong.
Shortcuts to adiabaticity from linear response theory
Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian
2015-10-23
A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times.
Shortcuts to adiabaticity from linear response theory
Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian
2015-10-23
A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts tomore » adiabaticity for specific and very short driving times.« less
Fast forward to the classical adiabatic invariant
NASA Astrophysics Data System (ADS)
Jarzynski, Christopher; Deffner, Sebastian; Patra, Ayoti; Subaşı, Yiǧit
2017-03-01
We show how the classical action, an adiabatic invariant, can be preserved under nonadiabatic conditions. Specifically, for a time-dependent Hamiltonian H =p2/2 m +U (q ,t ) in one degree of freedom, and for an arbitrary choice of action I0, we construct a so-called fast-forward potential energy function VFF(q ,t ) that, when added to H , guides all trajectories with initial action I0 to end with the same value of action. We use this result to construct a local dynamical invariant J (q ,p ,t ) whose value remains constant along these trajectories. We illustrate our results with numerical simulations. Finally, we sketch how our classical results may be used to design approximate quantum shortcuts to adiabaticity.
Adiabatic invariance with first integrals of motion.
Adib, Artur B
2002-10-01
The construction of a microthermodynamic formalism for isolated systems based on the concept of adiabatic invariance is an old but seldom appreciated effort in the literature, dating back at least to P. Hertz [Ann. Phys. (Leipzig) 33, 225 (1910)]. An apparently independent extension of such formalism for systems bearing additional first integrals of motion was recently proposed by Hans H. Rugh [Phys. Rev. E 64, 055101 (2001)], establishing the concept of adiabatic invariance even in such singular cases. After some remarks in connection with the formalism pioneered by Hertz, it will be suggested that such an extension can incidentally explain the success of a dynamical method for computing the entropy of classical interacting fluids, at least in some potential applications where the presence of additional first integrals cannot be ignored.
Trapped Ion Quantum Computation by Adiabatic Passage
Feng Xuni; Wu Chunfeng; Lai, C. H.; Oh, C. H.
2008-11-07
We propose a new universal quantum computation scheme for trapped ions in thermal motion via the technique of adiabatic passage, which incorporates the advantages of both the adiabatic passage and the model of trapped ions in thermal motion. Our scheme is immune from the decoherence due to spontaneous emission from excited states as the system in our scheme evolves along a dark state. In our scheme the vibrational degrees of freedom are not required to be cooled to their ground states because they are only virtually excited. It is shown that the fidelity of the resultant gate operation is still high even when the magnitude of the effective Rabi frequency moderately deviates from the desired value.
Multiphoton adiabatic passage for atom optics applications
Demeter, Gabor; Djotyan, Gagik P.
2009-04-15
We study the force exerted on two-level atoms by short, counterpropagating laser pulses. When the counterpropagating pulses overlap each other partially, multiphoton adiabatic processes are possible in several configurations, which amplify the force exerted on the atoms. We investigate the practical usefulness of such multiphoton adiabatic transitions for the manipulation of the atoms' mechanical state. In particular, we compare the efficiency of a pair of constant frequency, oppositely detuned laser pulses and that of a pair of frequency-chirped pulses. We also consider the case of prolonged exposure to a sequence of laser pulses for a duration that is comparable to or much larger than the spontaneous lifetime of the atoms. We use numerical methods to calculate the reduction of the force and the heating of the atomic ensemble when spontaneous emission cannot be neglected during the interaction. In addition, we derive simple approximate formulas for the force and the heating, and compare them to the numerical results.
Adiabatic quantum optimization for associative memory recall
Seddiqi, Hadayat; Humble, Travis S.
2014-12-22
Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are storedmore » in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.« less
Adiabatic quantum optimization for associative memory recall
Seddiqi, Hadayat; Humble, Travis S.
2014-12-22
Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.
Computer Code For Turbocompounded Adiabatic Diesel Engine
NASA Technical Reports Server (NTRS)
Assanis, D. N.; Heywood, J. B.
1988-01-01
Computer simulation developed to study advantages of increased exhaust enthalpy in adiabatic turbocompounded diesel engine. Subsytems of conceptual engine include compressor, reciprocator, turbocharger turbine, compounded turbine, ducting, and heat exchangers. Focus of simulation of total system is to define transfers of mass and energy, including release and transfer of heat and transfer of work in each subsystem, and relationship among subsystems. Written in FORTRAN IV.
Adiabatic charging of nickel-hydrogen batteries
NASA Technical Reports Server (NTRS)
Lurie, Chuck; Foroozan, S.; Brewer, Jeff; Jackson, Lorna
1995-01-01
Battery management during prelaunch activities has always required special attention and careful planning. The transition from nickel-cadium to nickel-hydrogen batteries, with their high self discharge rate and lower charge efficiency, as well as longer prelaunch scenarios, has made this aspect of spacecraft battery management even more challenging. The AXAF-I Program requires high battery state of charge at launch. The use of active cooling, to ensure efficient charging, was considered and proved to be difficult and expensive. Alternative approaches were evaluated. Optimized charging, in the absence of cooling, appeared promising and was investigated. Initial testing was conducted to demonstrate the feasibility of the 'Adiabatic Charging' approach. Feasibility was demonstrated and additional testing performed to provide a quantitative, parametric data base. The assumption that the battery is in an adiabatic environment during prelaunch charging is a conservative approximation because the battery will transfer some heat to its surroundings by convective air cooling. The amount is small compared to the heat dissipated during battery overcharge. Because the battery has a large thermal mass, substantial overcharge can occur before the cells get too hot to charge efficiently. The testing presented here simulates a true adiabatic environment. Accordingly the data base may be slightly conservative. The adiabatic charge methodology used in this investigation begins with stabilizing the cell at a given starting temperature. The cell is then fully insulated on all sides. Battery temperature is carefully monitored and the charge terminated when the cell temperature reaches 85 F. Charging has been evaluated with starting temperatures from 55 to 75 F.
Adiabatic graph-state quantum computation
NASA Astrophysics Data System (ADS)
Antonio, B.; Markham, D.; Anders, J.
2014-11-01
Measurement-based quantum computation (MBQC) and holonomic quantum computation (HQC) are two very different computational methods. The computation in MBQC is driven by adaptive measurements executed in a particular order on a large entangled state. In contrast in HQC the system starts in the ground subspace of a Hamiltonian which is slowly changed such that a transformation occurs within the subspace. Following the approach of Bacon and Flammia, we show that any MBQC on a graph state with generalized flow (gflow) can be converted into an adiabatically driven holonomic computation, which we call adiabatic graph-state quantum computation (AGQC). We then investigate how properties of AGQC relate to the properties of MBQC, such as computational depth. We identify a trade-off that can be made between the number of adiabatic steps in AGQC and the norm of \\dot{H} as well as the degree of H, in analogy to the trade-off between the number of measurements and classical post-processing seen in MBQC. Finally the effects of performing AGQC with orderings that differ from standard MBQC are investigated.
Stark-shift-chirped rapid-adiabatic-passage technique among three states
Rangelov, A. A.; Vitanov, N. V.; Yatsenko, L. P.; Shore, B. W.; Halfmann, T.; Bergmann, K.
2005-11-15
We show that the technique of Stark-chirped rapid adiabatic passage (SCRAP), hitherto used for complete population transfer between two quantum states, offers a simple and robust method for complete population transfer amongst three states in atoms and molecules. In this case SCRAP uses three laser pulses: a strong far-off-resonant pulse modifies the transition frequencies by inducing dynamic Stark shifts and thereby creating time-dependent level crossings amongst the three diabatic states, while near-resonant and moderately strong pump and Stokes pulses, appropriately offset in time, drive the population between the initial and final states via adiabatic passage. The population transfer efficiency is robust to variations in the intensities of the lasers, as long as these intensities are sufficiently large to enforce adiabatic evolution. With suitable pulse timings the population in the (possibly decaying) intermediate state can be minimized, as with stimulated Raman adiabatic passage (STIRAP). This technique applies to one-photon as well as multiphoton transitions and it is also applicable to media exhibiting inhomogeneous broadening; these features represent clear advantages over STIRAP by overcoming the inevitable dynamical Stark shifts that accompany multiphoton transitions as well as unwanted detunings, e.g., induced by Doppler shifts.
Measurements of the Effect of Adiabat on Shell Decompression in Direct-Drive Implosions on OMEGA
NASA Astrophysics Data System (ADS)
Michel, D. T.; Hu, S. X.; Radha, P. B.; Davis, A. K.; Craxton, R. S.; Glebov, V. Yu.; Goncharov, V. N.; Igumenshchev, I. V.; Stoeckl, C.; Froula, D. H.
2016-10-01
Measurements of the effect of adiabat (α) on the shell thickness were performed in direct-drive implosions. The maximum in-flight shell thickness was obtained using a novel technique where the outer and inner surfaces of the shell were simultaneously measured using self-emission images of the imploding target. When reducing the shell's adiabat from α = 6 to α = 4.5 , the shell thickness was measured to decrease from 75 μm to 60 μm, but when decreasing the adiabat further (α = 1.8), the shell thickness was measured to increase to 75 μm. The measured shell thickness, shell trajectories, neutron bang time, and neutron yield were reproduced by two-dimensional simulations that include laser imprint, nonlocal thermal transport, cross-beam energy transfer, and first-principles equation-of-state models. These results show that the decompression of the shell measured for low-adiabat implosions was a result of laser imprint. Additional information on the evolution of the density profile was obtained using x-ray radiography. The backlighter was created with six of the 60 OMEGA laser beams, with the pointings and energies of other beams adjusted to maintain a uniform implosion. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Non-adiabatic effects in near-adiabatic mixed-field orientation and alignment
NASA Astrophysics Data System (ADS)
Maan, Anjali; Ahlawat, Dharamvir Singh; Prasad, Vinod
2016-11-01
We present a theoretical study of the impact of a pair of moderate electric fields tilted an angle with respect to one another on a molecule. As a prototype, we consider a molecule with large rotational constant (with corresponding small rotational period) and moderate dipole moment. Within rigid-rotor approximation, the time-dependent Schrodinger equation is solved using fourth-order Runge-Kutta method. We have analysed that lower rotational states are significantly influenced by variation in pulse durations, the tilt angle between the fields and also on the electric field strengths. We also suggest a control scheme of how the rotational dynamics, orientation and alignment of a molecule can be enhanced by a combination of near-adiabatic pulses in comparision to non-adiabatic or adiabatic pulses.
NASA Astrophysics Data System (ADS)
Wang, L.; Wang, T. G.; Wu, J. H.; Cheng, G. P.
2016-09-01
A novel multi-objective optimization algorithm incorporating evolution strategies and vector mechanisms, referred as VD-MOEA, is proposed and applied in aerodynamic- structural integrated design of wind turbine blade. In the algorithm, a set of uniformly distributed vectors is constructed to guide population in moving forward to the Pareto front rapidly and maintain population diversity with high efficiency. For example, two- and three- objective designs of 1.5MW wind turbine blade are subsequently carried out for the optimization objectives of maximum annual energy production, minimum blade mass, and minimum extreme root thrust. The results show that the Pareto optimal solutions can be obtained in one single simulation run and uniformly distributed in the objective space, maximally maintaining the population diversity. In comparison to conventional evolution algorithms, VD-MOEA displays dramatic improvement of algorithm performance in both convergence and diversity preservation for handling complex problems of multi-variables, multi-objectives and multi-constraints. This provides a reliable high-performance optimization approach for the aerodynamic-structural integrated design of wind turbine blade.
On the Validity of the Adiabatic Approximation in Compact Binary Inspirals
NASA Astrophysics Data System (ADS)
Maselli, Andrea; Gualtieri, Leonardo; Ferrari, Valeria; Pannarale, Francesco
2015-01-01
We use the post-Newtonian-Affine model to assess the validity of the adiabatic approximation in modeling tidal effects in the phase evolution of compact binary systems. We compute the dynamical evolution of the tidal tensor, which we estimate at the 2PN order, and of the quadrupole tensor, finding that their ratio, i.e. the tidal deformability, increases in the last phases of the inspiral. We derive the gravitational wave phase corrections due to this phenomenon and quantify how they affect gravitational wave detectability.
Non-locality, adiabaticity, thermodynamics and electron energy probability functions
NASA Astrophysics Data System (ADS)
Boswell, Roderick; Zhang, Yunchao; Charles, Christine; Takahashi, Kazunori
2016-09-01
Thermodynamic properties are revisited for electrons that are governed by nonlocal electron energy probability functions in a plasma of low collisionality. Measurements in a laboratory helicon double layer experiment have shown that the effective electron temperature and density show a polytropic correlation with an index of γe = 1 . 17 +/- 0 . 02 along the divergent magnetic field, implying a nearly isothermal plasma (γe = 1) with heat being brought into the system. However, the evolution of electrons along the divergent magnetic field is essentially an adiabatic process, which should have a γe = 5 / 3 . The reason for this apparent contradiction is that the nearly collisionless plasma is very far from local thermodynamic equilibrium and the electrons behave nonlocally. The corresponding effective electron enthalpy has a conservation relation with the potential energy, which verifies that there is no heat transferred into the system during the electron evolution. The electrons are shown in nonlocal momentum equilibrium under the electric field and the gradient of the effective electron pressure. The convective momentum of ions, which can be assumed as a cold species, is determined by the effective electron pressure and the effective electron enthalpy is shown to be the source for ion acceleration. For these nearly collisionless plasmas, the use of traditional thermodynamic concepts can lead to very erroneous conclusions regarding the thermal conductivity.
Bond selective chemistry beyond the adiabatic approximation
Butler, L.J.
1993-12-01
One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.
MULTI-PARAMETRIC STUDY OF RISING 3D BUOYANT FLUX TUBES IN AN ADIABATIC STRATIFICATION USING AMR
Martínez-Sykora, Juan; Cheung, Mark C. M.; Moreno-Insertis, Fernando
2015-11-20
We study the buoyant rise of magnetic flux tubes embedded in an adiabatic stratification using two-and three-dimensional, magnetohydrodynamic simulations. We analyze the dependence of the tube evolution on the field line twist and on the curvature of the tube axis in different diffusion regimes. To be able to achieve a comparatively high spatial resolution we use the FLASH code, which has a built-in Adaptive Mesh Refinement (AMR) capability. Our 3D experiments reach Reynolds numbers that permit a reasonable comparison of the results with those of previous 2D simulations. When the experiments are run without AMR, hence with a comparatively large diffusivity, the amount of longitudinal magnetic flux retained inside the tube increases with the curvature of the tube axis. However, when a low-diffusion regime is reached by using the AMR algorithms, the magnetic twist is able to prevent the splitting of the magnetic loop into vortex tubes and the loop curvature does not play any significant role. We detect the generation of vorticity in the main body of the tube of opposite sign on the opposite sides of the apex. This is a consequence of the inhomogeneity of the azimuthal component of the field on the flux surfaces. The lift force associated with this global vorticity makes the flanks of the tube move away from their initial vertical plane in an antisymmetric fashion. The trajectories have an oscillatory motion superimposed, due to the shedding of vortex rolls to the wake, which creates a Von Karman street.
NASA Astrophysics Data System (ADS)
Savoini, P.; Lembege, B.
2010-11-01
Adiabatic and nonadiabatic electrons transmitted through a supercritical perpendicular shock wave are analyzed with the help of test particle simulations based on field components issued from 2 - D full-particle simulation. A previous analysis (Savoini et al., 2005) based on 1 - D shock profile, including mainly a ramp (no apparent foot) and defined at a fixed time, has identified three distinct electron populations: adiabatic, overadiabatic, and underadiabatic, respectively, identified by μds/μus ≈ 1, >1 and <1, where μus and μds are the magnetic momenta in the upstream and downstream regions. Presently, this study is extended by investigating the impact of the time evolution of 2 - D shock front dynamics on these three populations. Analysis of individual time particle trajectories is performed and completed by statistics based on the use of different upstream velocity distributions (spherical shell of radius vshell and a Maxwellian with thermal velocity vthe). In all statistics, the three electron populations are clearly recovered. Two types of shock front nonstationarity are analyzed. First, the impact of the nonstationarity along the shock normal (due to the front self-reformation only) strongly depends on the values of vshell or vthe. For low values, the percentages of adiabatic and overadiabatic electrons are almost comparable but become anticorrelated under the filtering impact of the self-reformation; the percentage of the underadiabatic population remains almost unchanged. In contrast, for large values, this impact becomes negligible and the adiabatic population alone becomes dominant. Second, when 2 - D nonstationarity effects along the shock front (moving rippling) are fully included, all three populations are strongly diffused, leading to a larger heating; the overadiabatic population becomes largely dominant (and even larger than the adiabatic one) and mainly contributes to the energy spectrum.
Quantized adiabatic transport in momentum space.
Ho, Derek Y H; Gong, Jiangbin
2012-07-06
Though topological aspects of energy bands are known to play a key role in quantum transport in solid-state systems, the implications of Floquet band topology for transport in momentum space (i.e., acceleration) have not been explored so far. Using a ratchet accelerator model inspired by existing cold-atom experiments, here we characterize a class of extended Floquet bands of one-dimensional driven quantum systems by Chern numbers, reveal topological phase transitions therein, and theoretically predict the quantization of adiabatic transport in momentum space. Numerical results confirm our theory and indicate the feasibility of experimental studies.
Adiabatic demagnetization refrigerator for space use
NASA Technical Reports Server (NTRS)
Serlemitsos, A. T.; Warner, B. A.; Castles, S.; Breon, S. R.; San Sebastian, M.; Hait, T.
1990-01-01
An Adiabatic Demagnetization Refrigerator (ADR) for space use is under development at NASA's Goddard Space Flight Center (GSFC). The breadboard ADR operated at 100 mK for 400 minutes. Some significant changes to that ADR, designed to eliminate shortcomings revealed during tests, are reported. To increase thermal contact, the ferric ammonium sulfate crystals were grown directly on gold-plated copper wires which serve as the thermal bus. The thermal link to the X-ray sensors was also markedly improved. To speed up the testing required to determine the best design parameters for the gas gap heat switch, the new heat switch has a modular design and is easy to disassemble.
Decoherence in a scalable adiabatic quantum computer
Ashhab, S.; Johansson, J. R.; Nori, Franco
2006-11-15
We consider the effects of decoherence on Landau-Zener crossings encountered in a large-scale adiabatic-quantum-computing setup. We analyze the dependence of the success probability--i.e., the probability for the system to end up in its new ground state--on the noise amplitude and correlation time. We determine the optimal sweep rate that is required to maximize the success probability. We then discuss the scaling of decoherence effects with increasing system size. We find that those effects can be important for large systems, even if they are small for each of the small building blocks.
Cavity-state preparation using adiabatic transfer
NASA Astrophysics Data System (ADS)
Larson, Jonas; Andersson, Erika
2005-05-01
We show how to prepare a variety of cavity field states for multiple cavities. The state preparation technique used is related to the method of stimulated adiabatic Raman passage. The cavity modes are coupled by atoms, making it possible to transfer an arbitrary cavity field state from one cavity to another and also to prepare nontrivial cavity field states. In particular, we show how to prepare entangled states of two or more cavities, such as an Einstein-Podolsky-Rosen state and a W state, as well as various entangled superpositions of coherent states in different cavities, including Schrödinger cat states. The theoretical considerations are supported by numerical simulations.
NASA Astrophysics Data System (ADS)
Winter, S.; Schmitz, F.; Clausmeyer, T.; Tekkaya, A. E.; F-X Wagner, M.
2017-03-01
In the automotive industry, advanced high strength steels (AHSS) are widely used as sheet part components to reduce weight, even though this leads to several challenges. The demand for high-quality shear cutting surfaces that do not require reworking can be fulfilled by adiabatic shear cutting: High strain rates and local temperatures lead to the formation of adiabatic shear bands (ASB). While this process is well suited to produce AHSS parts with excellent cutting surface quality, a fundamental understanding of the process is still missing today. In this study, compression tests in a Split-Hopkinson Pressure Bar with an initial strain rate of 1000 s-1 were performed in a temperature range between 200 °C and 1000 °C. The experimental results show that high strength steels with nearly the same mechanical properties at RT may possess a considerably different behavior at higher temperatures. The resulting microstructures after testing at different temperatures were analyzed by optical microscopy. The thermo-mechanical material behavior was then considered in an analytical model. To predict the local temperature increase that occurs during the adiabatic blanking process, experimentally determined flow curves were used. Furthermore, the influence of temperature evolution with respect to phase transformation is discussed. This study contributes to a more complete understanding of the relevant microstructural and thermo-mechanical mechanisms leading to the evolution of ASB during cutting of AHSS.
Wang, Lin; Qu, Hui; Chen, Tao; Yan, Fang-Ping
2013-01-01
The integration with different decisions in the supply chain is a trend, since it can avoid the suboptimal decisions. In this paper, we provide an effective intelligent algorithm for a modified joint replenishment and location-inventory problem (JR-LIP). The problem of the JR-LIP is to determine the reasonable number and location of distribution centers (DCs), the assignment policy of customers, and the replenishment policy of DCs such that the overall cost is minimized. However, due to the JR-LIP's difficult mathematical properties, simple and effective solutions for this NP-hard problem have eluded researchers. To find an effective approach for the JR-LIP, a hybrid self-adapting differential evolution algorithm (HSDE) is designed. To verify the effectiveness of the HSDE, two intelligent algorithms that have been proven to be effective algorithms for the similar problems named genetic algorithm (GA) and hybrid DE (HDE) are chosen to compare with it. Comparative results of benchmark functions and randomly generated JR-LIPs show that HSDE outperforms GA and HDE. Moreover, a sensitive analysis of cost parameters reveals the useful managerial insight. All comparative results show that HSDE is more stable and robust in handling this complex problem especially for the large-scale problem.
Universal adiabatic quantum computation via the space-time circuit-to-Hamiltonian construction.
Gosset, David; Terhal, Barbara M; Vershynina, Anna
2015-04-10
We show how to perform universal adiabatic quantum computation using a Hamiltonian which describes a set of particles with local interactions on a two-dimensional grid. A single parameter in the Hamiltonian is adiabatically changed as a function of time to simulate the quantum circuit. We bound the eigenvalue gap above the unique ground state by mapping our model onto the ferromagnetic XXZ chain with kink boundary conditions; the gap of this spin chain was computed exactly by Koma and Nachtergaele using its q-deformed version of SU(2) symmetry. We also discuss a related time-independent Hamiltonian which was shown by Janzing to be capable of universal computation. We observe that in the limit of large system size, the time evolution is equivalent to the exactly solvable quantum walk on Young's lattice.
Slow-roll suppression of adiabatic instabilities in coupled scalar field-dark matter models
Corasaniti, Pier Stefano
2008-10-15
We study the evolution of linear density perturbations in the context of interacting scalar field-dark matter cosmologies, where the presence of the coupling acts as a stabilization mechanism for the runaway behavior of the scalar self-interaction potential as in the case of the chameleon model. We show that, in the 'adiabatic' background regime of the system, the rise of unstable growing modes of the perturbations is suppressed by the slow-roll dynamics of the field. Furthermore, the coupled system behaves as an inhomogeneous adiabatic fluid. In contrast, instabilities may develop for large values of the coupling constant, or along nonadiabatic solutions, characterized by a period of high-frequency dumped oscillations of the scalar field. In the latter case, the dynamical instabilities of the field fluctuations, which are typical of oscillatory scalar field regimes, are amplified and transmitted by the coupling to dark matter perturbations.
Nonadiabatic Transitions in Adiabatic Rapid Passage
NASA Astrophysics Data System (ADS)
Lu, T.; Miao, X.; Metcalf, H.
2006-05-01
Optical forces much larger than the ordinary radiative force can be achieved on a two-level atom by multiple repetitions of adiabatic rapid passage sweeps with counterpropagating light beams. Chirped light pulses drive the atom-laser system up a ladder of dressed state energy sheets on sequential trajectories, thereby decreasing the atomic kinetic energy. Nonadiabatic transitions between the energy sheets must be avoided for this process to be effective. We have calculated the nonadiabatic transition probability for various chirped light pulses numerically. These results were compared to the first Demkov-Kunike model and the well-known Landau-Zener model. In addition, an analytical form of the nonadiabatic transition probability has been found for linearly chirped pulses and an approximate form for generic symmetric finite-time pulses has been found for the entire parameter space using the technique of unitary integration. From this, the asymptotic transition probability in the adiabatic limit was derived. T. Lu, X. Miao, and H. Metcalf, Phys., Rev. A 71 061405(R) (2005). Yu. Demkov and M. Kunike, Vestn. Leningr. Univ. Fis. Khim., 16, 39 (1969); K.-A. Suominen and B. Garraway, Phys. Rev. A45, 374 (1992)
Adiabatic cooling of solar wind electrons
NASA Technical Reports Server (NTRS)
Sandbaek, Ornulf; Leer, Egil
1992-01-01
In thermally driven winds emanating from regions in the solar corona with base electron densities of n0 not less than 10 exp 8/cu cm, a substantial fraction of the heat conductive flux from the base is transfered into flow energy by the pressure gradient force. The adiabatic cooling of the electrons causes the electron temperature profile to fall off more rapidly than in heat conduction dominated flows. Alfven waves of solar origin, accelerating the basically thermally driven solar wind, lead to an increased mass flux and enhanced adiabatic cooling. The reduction in electron temperature may be significant also in the subsonic region of the flow and lead to a moderate increase of solar wind mass flux with increasing Alfven wave amplitude. In the solar wind model presented here the Alfven wave energy flux per unit mass is larger than that in models where the temperature in the subsonic flow is not reduced by the wave, and consequently the asymptotic flow speed is higher.
Non-adiabatic Rayleigh-Taylor instability
NASA Astrophysics Data System (ADS)
Canfield, Jesse; Denissen, Nicholas; Reisner, Jon
2016-11-01
Onset of Rayleigh-Taylor instability (RTI) in a non-adiabatic environment is investigated with the multi-physics numerical model, FLAG. This work was inspired by laboratory experiments of non-adiabatic RTI, where a glass vessel with a layer of tetrahyrdofuran (THF) below a layer of toluene was placed inside a microwave. THF, a polar solvent, readily absorbs electromagnetic energy from microwaves. Toluene, a non-polar solvent, is nearly transparent to microwave heating. The presence of a heat source in the THF layer produced convection and a time-dependent Atwood number (At). The system, initially in stable hydrostatic equilibrium At < 0 , was set into motion by microwave induced, volumetric heating of the THF. The point when At > 0 , indicates that the system is RTI unstable. The observed dominant mode at the onset of RTI was the horizontal length scale of the vessel. This scale is contrary to classical RTI, where the modes start small and increases in scale with time. It is shown that the dominant RTI mode observed in the experiments was determined by the THF length scale prior to RTI. The dominant length scale transitions from the THF to the toluene via the updrafts and downdrafts in the convective cells. This happens when At passes from negative to positive. This work was funded by the Advanced Simulation and Computing Program.
Zhu, Xiaolei Yarkony, David R.
2016-01-28
We have recently introduced a diabatization scheme, which simultaneously fits and diabatizes adiabatic ab initio electronic wave functions, Zhu and Yarkony J. Chem. Phys. 140, 024112 (2014). The algorithm uses derivative couplings in the defining equations for the diabatic Hamiltonian, H{sup d}, and fits all its matrix elements simultaneously to adiabatic state data. This procedure ultimately provides an accurate, quantifiably diabatic, representation of the adiabatic electronic structure data. However, optimizing the large number of nonlinear parameters in the basis functions and adjusting the number and kind of basis functions from which the fit is built, which provide the essential flexibility, has proved challenging. In this work, we introduce a procedure that combines adiabatic state and diabatic state data to efficiently optimize the nonlinear parameters and basis function expansion. Further, we consider using direct properties based diabatizations to initialize the fitting procedure. To address this issue, we introduce a systematic method for eliminating the debilitating (diabolical) singularities in the defining equations of properties based diabatizations. We exploit the observation that if approximate diabatic data are available, the commonly used approach of fitting each matrix element of H{sup d} individually provides a starting point (seed) from which convergence of the full H{sup d} construction algorithm is rapid. The optimization of nonlinear parameters and basis functions and the elimination of debilitating singularities are, respectively, illustrated using the 1,2,3,4{sup 1}A states of phenol and the 1,2{sup 1}A states of NH{sub 3}, states which are coupled by conical intersections.
NASA Astrophysics Data System (ADS)
Tanjia, Fatema; Mamun, A. A.
2009-02-01
A dusty plasma consisting of negatively charged cold dust, adiabatic hot ions, and inertia-less adiabatic hot electrons has been considered. The adiabatic effects of electrons and ions on the basic properties of electro-acoustic solitary waves associated with different types of electro-acoustic (viz. ion-acoustic (IA), dust ion-acoustic (DIA), and dust acoustic (DA)) waves are thoroughly investigated by the reductive perturbation method. It is found that the basic properties of the IA, DIA, and DA waves are significantly modified by the adiabatic effects of ions and inertia-less electrons. The implications of our results in space and laboratory dusty plasmas are briefly discussed.
Adiabat-shaping in indirect drive inertial confinement fusion
Baker, K. L.; Robey, H. F.; Milovich, J. L.; Jones, O. S.; Smalyuk, V. A.; Casey, D. T.; MacPhee, A. G.; Pak, A.; Celliers, P. M.; Clark, D. S.; Landen, O. L.; Peterson, J. L.; Berzak-Hopkins, L. F.; Weber, C. R.; Haan, S. W.; Döppner, T. D.; Dixit, S.; Hamza, A. V.; Jancaitis, K. S.; Kroll, J. J.; and others
2015-05-15
Adiabat-shaping techniques were investigated in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform for both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. This approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures.
The Adiabatic Invariance of the Action Variable in Classical Dynamics
ERIC Educational Resources Information Center
Wells, Clive G.; Siklos, Stephen T. C.
2007-01-01
We consider one-dimensional classical time-dependent Hamiltonian systems with quasi-periodic orbits. It is well known that such systems possess an adiabatic invariant which coincides with the action variable of the Hamiltonian formalism. We present a new proof of the adiabatic invariance of this quantity and illustrate our arguments by means of…
Kinetic Theory Derivation of the Adiabatic Law for Ideal Gases.
ERIC Educational Resources Information Center
Sobel, Michael I.
1980-01-01
Discusses how the adiabatic law for ideal gases can be derived from the assumption of a Maxwell-Boltzmann (or any other) distribution of velocities--in contrast to the usual derivations from thermodynamics alone, and the higher-order effect that leads to one-body viscosity. An elementary derivation of the adiabatic law is given. (Author/DS)
El-Qulity, Said Ali; Mohamed, Ali Wagdy
2016-01-01
This paper proposes a nonlinear integer goal programming model (NIGPM) for solving the general problem of admission capacity planning in a country as a whole. The work aims to satisfy most of the required key objectives of a country related to the enrollment problem for higher education. The system general outlines are developed along with the solution methodology for application to the time horizon in a given plan. The up-to-date data for Saudi Arabia is used as a case study and a novel evolutionary algorithm based on modified differential evolution (DE) algorithm is used to solve the complexity of the NIGPM generated for different goal priorities. The experimental results presented in this paper show their effectiveness in solving the admission capacity for higher education in terms of final solution quality and robustness. PMID:26819583
El-Qulity, Said Ali; Mohamed, Ali Wagdy
2016-01-01
This paper proposes a nonlinear integer goal programming model (NIGPM) for solving the general problem of admission capacity planning in a country as a whole. The work aims to satisfy most of the required key objectives of a country related to the enrollment problem for higher education. The system general outlines are developed along with the solution methodology for application to the time horizon in a given plan. The up-to-date data for Saudi Arabia is used as a case study and a novel evolutionary algorithm based on modified differential evolution (DE) algorithm is used to solve the complexity of the NIGPM generated for different goal priorities. The experimental results presented in this paper show their effectiveness in solving the admission capacity for higher education in terms of final solution quality and robustness.
Watson, Richard A; Mills, Rob; Buckley, C L; Kouvaris, Kostas; Jackson, Adam; Powers, Simon T; Cox, Chris; Tudge, Simon; Davies, Adam; Kounios, Loizos; Power, Daniel
2016-01-01
The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term "evolutionary connectionism" to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary
Li, Bai; Chiong, Raymond; Lin, Mu
2015-02-01
Protein structure prediction is a fundamental issue in the field of computational molecular biology. In this paper, the AB off-lattice model is adopted to transform the original protein structure prediction scheme into a numerical optimization problem. We present a balance-evolution artificial bee colony (BE-ABC) algorithm to address the problem, with the aim of finding the structure for a given protein sequence with the minimal free-energy value. This is achieved through the use of convergence information during the optimization process to adaptively manipulate the search intensity. Besides that, an overall degradation procedure is introduced as part of the BE-ABC algorithm to prevent premature convergence. Comprehensive simulation experiments based on the well-known artificial Fibonacci sequence set and several real sequences from the database of Protein Data Bank have been carried out to compare the performance of BE-ABC against other algorithms. Our numerical results show that the BE-ABC algorithm is able to outperform many state-of-the-art approaches and can be effectively employed for protein structure optimization.
Resource efficient gadgets for compiling adiabatic quantum optimization problems
NASA Astrophysics Data System (ADS)
Babbush, Ryan; O'Gorman, Bryan; Aspuru-Guzik, Alán
2013-11-01
We develop a resource efficient method by which the ground-state of an arbitrary k-local, optimization Hamiltonian can be encoded as the ground-state of a (k-1)-local optimization Hamiltonian. This result is important because adiabatic quantum algorithms are often most easily formulated using many-body interactions but experimentally available interactions are generally 2-body. In this context, the efficiency of a reduction gadget is measured by the number of ancilla qubits required as well as the amount of control precision needed to implement the resulting Hamiltonian. First, we optimize methods of applying these gadgets to obtain 2-local Hamiltonians using the least possible number of ancilla qubits. Next, we show a novel reduction gadget which minimizes control precision and a heuristic which uses this gadget to compile 3-local problems with a significant reduction in control precision. Finally, we present numerics which indicate a substantial decrease in the resources required to implement randomly generated, 3-body optimization Hamiltonians when compared to other methods in the literature.
The HAWC and SAFIRE Adiabatic Demagnetization Refrigerators
NASA Technical Reports Server (NTRS)
Tuttle, Jim; Shirron, Peter; DiPirro, Michael; Jackson, Michael; Behr, Jason; Kunes, Evan; Hait, Tom; Krebs, Carolyn (Technical Monitor)
2001-01-01
The High-Resolution Airborne Wide-band Camera (HAWC) and Submillimeter and Far Infrared Experiment (SAFIRE) are far-infrared experiments which will fly on the Stratospheric Observatory for Infrared Astronomy (SOFIA) aircraft. HAWC's detectors will operate at 0.2 Kelvin, while those of SAFIRE will be at 0.1 Kelvin. Each instrument will include an adiabatic demagnetization refrigerator (ADR) to cool its detector stage from the liquid helium bath temperature (HAWC's at 4.2 Kelvin and SAFIRE's pumped to about 1.3 Kelvin) to its operating temperature. Except for the magnets used to achieve the cooling and a slight difference in the heat switch design, the two ADRs are nearly identical. We describe the ADR design and present the results of performance testing.
Sliding seal materials for adiabatic engines
NASA Technical Reports Server (NTRS)
Lankford, J.
1985-01-01
The sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, loading conditions that are representative of the adiabatic engine environment. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Microhardness tests were performed on the candidate materials at elevated temperatures, and in atmospheres relevant to the piston seal application, and optical and electron microscopy were used to elucidate the micromechanisms of wear following wear testing. X-ray spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Electrical effects in the friction and wear processes were explored in order to evaluate the potential usefulness of such effects in modifying the friction and wear rates in service. However, this factor was found to be of negligible significance in controlling friction and wear.
An adiabatic demagnetization refrigerator for SIRTF
NASA Astrophysics Data System (ADS)
Timbie, P. T.; Bernstein, G. M.; Richards, P. L.
1989-02-01
An adiabatic demagnetization refrigerator (ADR) has been proposed to cool bolometric infrared detectors on the multiband imaging photometer of the Space Infrared Telescope Facility (SIRTF). One such refrigerator has been built which uses a ferric ammonium alum salt pill suspended by nylon threads in a 3-T solenoid. The resonant modes of this suspension are above 100 Hz. The heat leak to the salt pill is less than 0.5 microW. The system has a hold time at 0.1K of more than 12 h. The cold stage temperature is regulated with a feedback loop that controls the magnetic field. A second, similar refrigerator is being built at a SIRTF prototype to fly on a ballon-borne telescope. It will use a ferromagnetic shield. The possibility of using a high-Tc solenoid-actuated heat switch is also discussed.
Design of a spaceworthy adiabatic demagnetization refrigerator
NASA Astrophysics Data System (ADS)
Serlemitsos, A. T.; Kunes, E.; Sansebastian, M.
A spaceworthy adiabatic demagnetization refrigerator (ADR) under development at NASA-Goddard is presented. A baseline model heat switch was tested extensively with an on/off ratio of about 10,000 and a parasitic heat leak of 10 micro-W. Data obtained from the breadboard models were used to design an ADR with improved structural integrity. The core of the ADR is the salt pill which consists of the paramagnetic salt crystal and the thermal bus. When a magnetic field is applied to the salt it forces the alignment of the magnetic moments, thereby decreasing the entropy of the salt. Preliminary tests results showed a net crystal mass of 680 g instead of the expected 740 g, which indicate that there are gaps in the salt pill. A partial fix was accomplished by sealing helium gas in the salt pill at a pressure of 2 bar, which improved the thermal contact during salt magnetization, at about 2 K.
On stress collapse in adiabatic shear bands
NASA Astrophysics Data System (ADS)
Wright, T. W.; Walter, J. W.
T HE DYNAMICS of adiabatic shear band formation is considered making use of a simplified thermo/visco/plastic flow law. A new numerical solution is used to follow the growth of a perturbation from initiation, through early growth and severe localization, to a slowly varying terminal configuration. Asymptotic analyses predict the early and late stage patterns, but the timing and structure of the abrupt transition to severe localization can only be studied numerically, to date. A characteristic feature of the process is that temperature and plastic strain rate begin to localize immediately, but only slowly, whereas the stress first evolves almost as if there were no perturbation, but then collapses rapidly when severe localization occurs.
Index Theory and Adiabatic Limit in QFT
NASA Astrophysics Data System (ADS)
Wawrzycki, Jarosław
2013-08-01
The paper has the form of a proposal concerned with the relationship between the three mathematically rigorous approaches to quantum field theory: (1) local algebraic formulation of Haag, (2) Wightman formulation and (3) the perturbative formulation based on the microlocal renormalization method. In this project we investigate the relationship between (1) and (3) and utilize the known relationships between (1) and (2). The main goal of the proposal lies in obtaining obstructions for the existence of the adiabatic limit ( confinement problem in the phenomenological standard model approach). We extend the method of deformation of Dütsch and Fredenhagen (in the Bordeman-Waldmann sense) and apply Fedosov construction of the formal index—an analog of the index for deformed symplectic manifolds, generalizing the Atiyah-Singer index. We present some first steps in realization of the proposal.
An adiabatic demagnetization refrigerator for SIRTF
NASA Technical Reports Server (NTRS)
Timbie, P. T.; Bernstein, G. M.; Richards, P. L.
1989-01-01
An adiabatic demagnetization refrigerator (ADR) has been proposed to cool bolometric infrared detectors on the multiband imaging photometer of the Space Infrared Telescope Facility (SIRTF). One such refrigerator has been built which uses a ferric ammonium alum salt pill suspended by nylon threads in a 3-T solenoid. The resonant modes of this suspension are above 100 Hz. The heat leak to the salt pill is less than 0.5 microW. The system has a hold time at 0.1K of more than 12 h. The cold stage temperature is regulated with a feedback loop that controls the magnetic field. A second, similar refrigerator is being built at a SIRTF prototype to fly on a ballon-borne telescope. It will use a ferromagnetic shield. The possibility of using a high-Tc solenoid-actuated heat switch is also discussed.
Design of a spaceworthy adiabatic demagnetization refrigerator
NASA Technical Reports Server (NTRS)
Serlemitsos, A. T.; Kunes, E.; Sansebastian, M.
1992-01-01
A spaceworthy adiabatic demagnetization refrigerator (ADR) under development at NASA-Goddard is presented. A baseline model heat switch was tested extensively with an on/off ratio of about 10,000 and a parasitic heat leak of 10 micro-W. Data obtained from the breadboard models were used to design an ADR with improved structural integrity. The core of the ADR is the salt pill which consists of the paramagnetic salt crystal and the thermal bus. When a magnetic field is applied to the salt it forces the alignment of the magnetic moments, thereby decreasing the entropy of the salt. Preliminary tests results showed a net crystal mass of 680 g instead of the expected 740 g, which indicate that there are gaps in the salt pill. A partial fix was accomplished by sealing helium gas in the salt pill at a pressure of 2 bar, which improved the thermal contact during salt magnetization, at about 2 K.
Adiabatic connection at negative coupling strengths
Seidl, Michael; Gori-Giorgi, Paola
2010-01-15
The adiabatic connection of density functional theory (DFT) for electronic systems is generalized here to negative values of the coupling strength alpha (with attractive electrons). In the extreme limit alpha->-infinity a simple physical solution is presented and its implications for DFT (as well as its limitations) are discussed. For two-electron systems (a case in which the present solution can be calculated exactly), we find that an interpolation between the limit alpha->-infinity and the opposite limit of infinitely strong repulsion (alpha->+infinity) yields a rather accurate estimate of the second-order correlation energy E{sub c}{sup GL2}[rho] for several different densities rho, without using virtual orbitals. The same procedure is also applied to the Be isoelectronic series, analyzing the effects of near degeneracy.
Adiabatic theory for anisotropic cold molecule collisions
Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod
2015-08-21
We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment {sup 4}He(1s2s {sup 3}S) + HD(1s{sup 2}) → {sup 4}He(1s{sup 2}) + HD{sup +}(1s) + e{sup −} [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.
An Integrated Development Environment for Adiabatic Quantum Programming
Humble, Travis S; McCaskey, Alex; Bennink, Ryan S; Billings, Jay Jay; D'Azevedo, Eduardo; Sullivan, Blair D; Klymko, Christine F; Seddiqi, Hadayat
2014-01-01
Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware raises the question of how well quantum programs perform. Benchmarking behavior is challenging since the multiple steps to synthesize an adiabatic quantum program are highly tunable. We present an adiabatic quantum programming environment called JADE that provides control over all the steps taken during program development. JADE captures the workflow needed to rigorously benchmark performance while also allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its use for benchmarking adiabatic quantum programs.
Adiabatic theory, Liapunov exponents, and rotation number for quadratic Hamiltonians
NASA Astrophysics Data System (ADS)
Delyon, François; Foulon, Patrick
1987-11-01
We consider the adiabatic problem for general time-dependent quadratic Hamiltonians and develop a method quite different from WKB. In particular, we apply our results to the Schrödinger equation in a strip. We show that there exists a first regular step (avoiding resonance problems) providing one adiabatic invariant, bounds on the Liapunov exponents, and estimates on the rotation number at any order of the perturbation theory. The further step is shown to be equivalent to a quantum adiabatic problem, which, by the usual adiabatic techniques, provides the other possible adiabatic invariants. In the special case of the Schrödinger equation our method is simpler and more powerful than the WKB techniques.
Adiabatic vs. non-adiabatic determination of specific absorption rate of ferrofluids
NASA Astrophysics Data System (ADS)
Natividad, Eva; Castro, Miguel; Mediano, Arturo
2009-05-01
The measurement of temperature variations in adiabatic conditions allows the determination of the specific absorption rate of magnetic nanoparticles and ferrofluids from the correct incremental expression, SAR=(1/ m MNP) C(Δ T/Δ t). However, when measurements take place in non-adiabatic conditions, one must approximate this expression by SAR≈ Cβ/ m MNP, where β is the initial slope of the temperature vs. time curve during alternating field application. The errors arising from the use of this approximation were estimated through several experiments with different isolating conditions, temperature sensors and sample-sensor contacts. It is concluded that small to appreciable errors can appear, which are difficult to infer or control.
Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation
Zamstein, Noa; Tannor, David J.
2012-12-14
We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schroedinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)]. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.
Energy decomposition analysis in an adiabatic picture.
Mao, Yuezhi; Horn, Paul R; Head-Gordon, Martin
2017-02-22
Energy decomposition analysis (EDA) of electronic structure calculations has facilitated quantitative understanding of diverse intermolecular interactions. Nevertheless, such analyses are usually performed at a single geometry and thus decompose a "single-point" interaction energy. As a result, the influence of the physically meaningful EDA components on the molecular structure and other properties are not directly obtained. To address this gap, the absolutely localized molecular orbital (ALMO)-EDA is reformulated in an adiabatic picture, where the frozen, polarization, and charge transfer energy contributions are defined as energy differences between the stationary points on different potential energy surfaces (PESs), which are accessed by geometry optimizations at the frozen, polarized and fully relaxed levels of density functional theory (DFT). Other molecular properties such as vibrational frequencies can thus be obtained at the stationary points on each PES. We apply the adiabatic ALMO-EDA to different configurations of the water dimer, the water-Cl(-) and water-Mg(2+)/Ca(2+) complexes, metallocenes (Fe(2+), Ni(2+), Cu(2+), Zn(2+)), and the ammonia-borane complex. This method appears to be very useful for unraveling how physical effects such as polarization and charge transfer modulate changes in molecular properties induced by intermolecular interactions. As an example of the insight obtained, we find that a linear hydrogen bond geometry for the water dimer is preferred even without the presence of polarization and charge transfer, while the red shift in the OH stretch frequency is primarily a charge transfer effect; by contrast, a near-linear geometry for the water-chloride hydrogen bond is achieved only when charge transfer is allowed.
Applications and error correction for adiabatic quantum optimization
NASA Astrophysics Data System (ADS)
Pudenz, Kristen
Adiabatic quantum optimization (AQO) is a fast-developing subfield of quantum information processing which holds great promise in the relatively near future. Here we develop an application, quantum anomaly detection, and an error correction code, Quantum Annealing Correction (QAC), for use with AQO. The motivation for the anomaly detection algorithm is the problematic nature of classical software verification and validation (V&V). The number of lines of code written for safety-critical applications such as cars and aircraft increases each year, and with it the cost of finding errors grows exponentially (the cost of overlooking errors, which can be measured in human safety, is arguably even higher). We approach the V&V problem by using a quantum machine learning algorithm to identify charateristics of software operations that are implemented outside of specifications, then define an AQO to return these anomalous operations as its result. Our error correction work is the first large-scale experimental demonstration of quantum error correcting codes. We develop QAC and apply it to USC's equipment, the first and second generation of commercially available D-Wave AQO processors. We first show comprehensive experimental results for the code's performance on antiferromagnetic chains, scaling the problem size up to 86 logical qubits (344 physical qubits) and recovering significant encoded success rates even when the unencoded success rates drop to almost nothing. A broader set of randomized benchmarking problems is then introduced, for which we observe similar behavior to the antiferromagnetic chain, specifically that the use of QAC is almost always advantageous for problems of sufficient size and difficulty. Along the way, we develop problem-specific optimizations for the code and gain insight into the various on-chip error mechanisms (most prominently thermal noise, since the hardware operates at finite temperature) and the ways QAC counteracts them. We finish by showing
Semiclassical Monte Carlo: a first principles approach to non-adiabatic molecular dynamics.
White, Alexander J; Gorshkov, Vyacheslav N; Wang, Ruixi; Tretiak, Sergei; Mozyrsky, Dmitry
2014-11-14
Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantum mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement.
NASA Astrophysics Data System (ADS)
Primorac, E.; Kuhlenbeck, H.; Freund, H.-J.
2016-07-01
The structure of a thin MoO3 layer on Au(111) with a c(4 × 2) superstructure was studied with LEED I/V analysis. As proposed previously (Quek et al., Surf. Sci. 577 (2005) L71), the atomic structure of the layer is similar to that of a MoO3 single layer as found in regular α-MoO3. The layer on Au(111) has a glide plane parallel to the short unit vector of the c(4 × 2) unit cell and the molybdenum atoms are bridge-bonded to two surface gold atoms with the structure of the gold surface being slightly distorted. The structural refinement of the structure was performed with the CMA-ES evolutionary strategy algorithm which could reach a Pendry R-factor of ∼ 0.044. In the second part the performance of CMA-ES is compared with that of the differential evolution method, a genetic algorithm and the Powell optimization algorithm employing I/V curves calculated with tensor LEED.
NASA Astrophysics Data System (ADS)
Lovinger, Zev; Rosenberg, Zvi; Rittel, Daniel
2015-09-01
Shear bands formation in collapsing thick walled cylinders occurs in a spontaneous manner. The advantage of examining spontaneous, as opposed to forced shear localization, is that it highlights the inherent susceptibility of the material to adiabatic shear banding without prescribed geometrical constraints. The Thick-Walled Cylinder technique (TWC) provides a controllable and repeatable technique to create and study multiple adiabatic shear bands. The technique, reported in the literature uses an explosive cylinder to create the driving force, collapsing the cylindrical sample. Recently, we developed an electro-magnetic set-up using a pulsed current generator to provide the collapsing force, replacing the use of explosives. Using this platform we examined the shear band evolution at different stages of formation in 7 metallic alloys, spanning a wide range of strength and failure properties. We examined the number of shear bands and spacing between them for the different materials to try and figure out what controls these parameters. The examination of the different materials enabled us to better comprehend the mechanisms which control the spatial distribution of multiple shear bands in this geometry. The results of these tests are discussed and compared to explosively driven collapsing TWC results in the literature and to existing analytical models for spontaneous adiabatic shear localization.
NASA Astrophysics Data System (ADS)
Oh, Yun-Tak; Higashi, Yoichi; Chan, Ching-Kit; Han, Jung Hoon
2016-08-01
The Lang-Firsov Hamiltonian, a well-known solvable model of interacting fermion-boson system with sideband features in the fermion spectral weight, is generalized to have the time-dependent fermion-boson coupling constant. We show how to derive the two-time Green's function for the time-dependent problem in the adiabatic limit, defined as the slow temporal variation of the coupling over the characteristic oscillator period. The idea we use in deriving the Green's function is akin to the use of instantaneous basis states in solving the adiabatic evolution problem in quantum mechanics. With such "adiabatic Green's function" at hand we analyze the transient behavior of the spectral weight as the coupling is gradually tuned to zero. Time-dependent generalization of a related model, the spin-boson Hamiltonian, is analyzed in the same way. In both cases the sidebands arising from the fermion-boson coupling can be seen to gradually lose their spectral weights over time. Connections of our solution to the two-dimensional Dirac electrons coupled to quantized photons are discussed.
Effects of EOS adiabat on hot spot dynamics
NASA Astrophysics Data System (ADS)
Cheng, Baolian; Kwan, Thomas; Wang, Yi-Ming; Batha, Steven
2013-10-01
Equation of state (EOS) and adiabat of the pusher play significant roles in the dynamics and formation of the hot spot of an ignition capsule. For given imploding energy, they uniquely determine the partition of internal energy, mass, and volume between the pusher and the hot spot. In this work, we apply the new scaling laws recently derived by Cheng et al. to the National Ignition Campaign (NIC) ignition capsules and study the impacts of EOS and adiabat of the pusher on the hot spot dynamics by using the EOS adiabat index as an adjustable model parameter. We compare our analysis with the NIC data, specifically, for shots N120321 and N120205, and with the numerical simulations of these shots. The predictions from our theoretical model are in good agreements with the NIC data when a hot adiabat was used for the pusher, and with code simulations when a cold adiabat was used for the pusher. Our analysis indicates that the actual adiabat of the pusher in NIC experiments may well be higher than the adiabat assumed in the simulations. This analysis provides a physical and systematic explanation to the ongoing disagreements between the NIC experimental results and the multi-dimensional numerical simulations. This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under contract number W-7405-ENG-36.
Non-adiabatic perturbations in Ricci dark energy model
Karwan, Khamphee; Thitapura, Thiti E-mail: nanodsci2523@hotmail.com
2012-01-01
We show that the non-adiabatic perturbations between Ricci dark energy and matter can grow both on superhorizon and subhorizon scales, and these non-adiabatic perturbations on subhorizon scales can lead to instability in this dark energy model. The rapidly growing non-adiabatic modes on subhorizon scales always occur when the equation of state parameter of dark energy starts to drop towards -1 near the end of matter era, except that the parameter α of Ricci dark energy equals to 1/2. In the case where α = 1/2, the rapidly growing non-adiabatic modes disappear when the perturbations in dark energy and matter are adiabatic initially. However, an adiabaticity between dark energy and matter perturbations at early time implies a non-adiabaticity between matter and radiation, this can influence the ordinary Sachs-Wolfe (OSW) effect. Since the amount of Ricci dark energy is not small during matter domination, the integrated Sachs-Wolfe (ISW) effect is greatly modified by density perturbations of dark energy, leading to a wrong shape of CMB power spectrum. The instability in Ricci dark energy is difficult to be alleviated if the effects of coupling between baryon and photon on dark energy perturbations are included.
Magnetic translation and Berry's phase factor through adiabatically rotating a magnetic field
NASA Astrophysics Data System (ADS)
Qi, Zhen
This dissertation covers two results obtained by the author on the Berry phase. Chapter one is the introduction. In chapter two, a special method is introduced to study the infinitely degenerate system of a charged particle moving in an adiabatically rotating magnetic field. It leads to the factorisation of the quantum evolution operator into three factors: a rotation, a path-dependent magnetic translation and a dynamical factor. While the rotation operator is well known from Berry's original work, this dissertation finds the new role played by the magnetic translation operator in the quantum adiabatic evolution. Chapter three introduces a nontrivial example where the concept of the Berry phase can be used even if the Hamiltonian is a time-dependent sum of a discrete spectrum part and a continuous spectrum part. The maximum amount of information concerning the evolution operator is also obtained in this case. These two results attest to the naturalness and effectiveness of the concept of the Berry phase, and are convincing evidence that more discoveries are waiting to be made in the future.
Coutinho dos Santos, B.; Souza, C. E. R.; Dechoum, K.; Khoury, A. Z.
2007-11-15
We developed a theoretical model for the spatial mode dynamics of an optical parametric oscillator under injection of orbital angular momentum. This process is interpreted in terms of a Poincare representation of first order spatial modes. The spatial properties of the down-converted fields can be easily understood from their symmetries in this geometric representation. By considering an adiabatic mode conversion of the injected signal, we calculate the evolution of the down-converted beams. A phase conjugation effect is predicted which is a consequence of the symmetry in the Poincare sphere. We also propose an experiment to measure this effect.
Adiabatic formation of a matched-beam distribution for an alternating-gradient quadrupole lattice
Dorf, Mikhail A.; Davidson, Ronald C.; Startsev, Edward A.; Qin Hong
2009-12-15
The formation of a quasiequilibrium beam distribution matched to an alternating-gradient quadrupole focusing lattice by means of the adiabatic turn-on of the oscillating focusing field is studied numerically using particle-in-cell simulations. Quiescent beam propagation over several hundred lattice periods is demonstrated for a broad range of beam intensities and vacuum phase advances describing the strength of the oscillating focusing field. Properties of the matched-beam distribution are investigated. In particular, self-similar evolution of the beam density profile is observed over a wide range of system parameters. The numerical simulations are performed using the WARP particle-in-cell code.
Adiabatic Formation of a Matched-beam Distribution for an Alternating-gradient Quadrupole Lattice
Dorf, Mikhail A.; Davidson, Ronald C.; Startsev, Edward A.; Qin, Hong
2010-02-02
The formation of a quasiequilibrium beam distribution matched to an alternating-gradient quadrupole focusing lattice by means of the adiabatic turn-on of the oscillating focusing field is studied numerically using particle-in-cell simulations. Quiescent beam propagation over several hundred lattice periods is demonstrated for a broad range of beam intensities and vacuum phase advances describing the strength of the oscillating focusing field. Properties of the matched-beam distribution are investigated. In particular, self-similar evolution of the beam density profile is observed over a wide range of system parameters. The numerical simulations are performed using the WARP particle-in-cell code.
Dynamics of Charged Particles in an Adiabatic Thermal Beam Equilibrium
NASA Astrophysics Data System (ADS)
Chen, Chiping; Wei, Haofei
2010-11-01
Charged-particle motion is studied in the self-electric and self-magnetic fields of a well-matched, intense charged-particle beam and an applied periodic solenoidal magnetic focusing field. The beam is assumed to be in a state of adiabatic thermal equilibrium. The phase space is analyzed and compared with that of the well-known Kapchinskij-Vladimirskij (KV)-type beam equilibrium. It is found that the widths of nonlinear resonances in the adiabatic thermal beam equilibrium are narrower than those in the KV-type beam equilibrium. Numerical evidence is presented, indicating almost complete elimination of chaotic particle motion in the adiabatic thermal beam equilibrium.
NASA Technical Reports Server (NTRS)
Heppenheimer, T. A.
1975-01-01
In the planar circular restricted three-body problem, the evolution of near-commensurable orbits is studied under change in the mass ratio, mu. The evolution involves preservation of two adiabatic invariants. Transition from circulation to libration may occur; such transitions are of two types. Type I transition occurs when the evolutionary track in phase space passes through near-zero eccentricity; as in the ordinary case (no transition), pre- and post-evolutionary states are linked by solution of a two-point boundary-value problem. Type II transition occurs when the evolutionary track encounters an unstable phase equilibrium or periodic orbit. There is then a discontinuous change in one adiabatic invariant, and pre- and post-evolutionary states are linked by solution of a three-point boundary-value problem. No evolutionary track can encounter a stable phase equilibrium, but the class of all stable phase equilibria is mapped into itself under mu change.
Design of the PIXIE adiabatic demagnetization refrigerators
NASA Astrophysics Data System (ADS)
Shirron, Peter J.; Kimball, Mark O.; Fixsen, Dale J.; Kogut, Alan J.; Li, Xiaoyi; DiPirro, Michael J.
2012-04-01
The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a telescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: (1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and (2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 mW, while maintaining a peak heat reject rate of less than 12 mW. The detector heat load at 0.1 K is comparatively small at 1-2 μW. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope.
Adiabatic Spin Pumping with Quantum Dots
NASA Astrophysics Data System (ADS)
Mucciolo, Eduardo R.
Electronic transport in mesoscopic systems has been intensively studied for more the last three decades. While there is a substantial understanding of the stationary regime, much less is know about phase-coherent nonequilibrium transport when pulses or ac perturbations are used to drive electrons at low temperatures and at small length scales. However, about 20 years ago Thouless proposed to drive nondissipative currents in quantum systems by applying simultaneously two phase-locked external perturbations. The so-called adiabatic pumping mechanism has been revived in the last few years, both theoretically and experimentally, in part because of the development of lateral semiconductor quantum dots. Here we will explain how open dots can be used to create spin-polarized currents with little or no net charge transfer. The pure spin pump we propose is the analog of a charge battery in conventional electronics and may provide a needed circuit element for spin-based electronics. We will also discuss other relevant issues such as rectification and decoherence and point out possible extensions of the mechanism to closed dots.
Acceleration of adiabatic quantum dynamics in electromagnetic fields
Masuda, Shumpei; Nakamura, Katsuhiro
2011-10-15
We show a method to accelerate quantum adiabatic dynamics of wave functions under electromagnetic field (EMF) by developing the preceding theory [Masuda and Nakamura, Proc. R. Soc. London Ser. A 466, 1135 (2010)]. Treating the orbital dynamics of a charged particle in EMF, we derive the driving field which accelerates quantum adiabatic dynamics in order to obtain the final adiabatic states in any desired short time. The scheme is consolidated by describing a way to overcome possible singularities in both the additional phase and driving potential due to nodes proper to wave functions under EMF. As explicit examples, we exhibit the fast forward of adiabatic squeezing and transport of excited Landau states with nonzero angular momentum, obtaining the result consistent with the transitionless quantum driving applied to the orbital dynamics in EMF.
Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses
Dridi, G.; Guerin, S.; Hakobyan, V.; Jauslin, H. R.; Eleuch, H.
2009-10-15
We present a general and versatile technique of population transfer based on parallel adiabatic passage by femtosecond shaped pulses. Their amplitude and phase are specifically designed to optimize the adiabatic passage corresponding to parallel eigenvalues at all times. We show that this technique allows the robust adiabatic population transfer in a Raman system with the total pulse area as low as 3{pi}, corresponding to a fluence of one order of magnitude below the conventional stimulated Raman adiabatic passage process. This process of short duration, typically picosecond and subpicosecond, is easily implementable with the modern pulse shaper technology and opens the possibility of ultrafast robust population transfer with interesting applications in quantum information processing.
2010-01-01
Background Growing interest and burgeoning technology for discovering genetic mechanisms that influence disease processes have ushered in a flood of genetic association studies over the last decade, yet little heritability in highly studied complex traits has been explained by genetic variation. Non-additive gene-gene interactions, which are not often explored, are thought to be one source of this "missing" heritability. Methods Stochastic methods employing evolutionary algorithms have demonstrated promise in being able to detect and model gene-gene and gene-environment interactions that influence human traits. Here we demonstrate modifications to a neural network algorithm in ATHENA (the Analysis Tool for Heritable and Environmental Network Associations) resulting in clear performance improvements for discovering gene-gene interactions that influence human traits. We employed an alternative tree-based crossover, backpropagation for locally fitting neural network weights, and incorporation of domain knowledge obtainable from publicly accessible biological databases for initializing the search for gene-gene interactions. We tested these modifications in silico using simulated datasets. Results We show that the alternative tree-based crossover modification resulted in a modest increase in the sensitivity of the ATHENA algorithm for discovering gene-gene interactions. The performance increase was highly statistically significant when backpropagation was used to locally fit NN weights. We also demonstrate that using domain knowledge to initialize the search for gene-gene interactions results in a large performance increase, especially when the search space is larger than the search coverage. Conclusions We show that a hybrid optimization procedure, alternative crossover strategies, and incorporation of domain knowledge from publicly available biological databases can result in marked increases in sensitivity and performance of the ATHENA algorithm for detecting and
Nonadiabatic transitions in finite-time adiabatic rapid passage
NASA Astrophysics Data System (ADS)
Lu, T.; Miao, X.; Metcalf, H.
2007-06-01
To apply the adiabatic rapid passage process repetitively [T. Lu, X. Miao, and H. Metcalf, Phys. Rev. A 71, 061405(R) (2005)], the nonadiabatic transition probability of a two-level atom subject to chirped light pulses over a finite period of time needs to be calculated. Using a unitary first-order perturbation method in the rotating adiabatic frame, an approximate formula has been derived for such transition probabilities in the entire parameter space of the pulses.
ENTROPY-VORTEX WAVES IN NON-ADIABATIC FLOWS
Ibáñez S, Miguel H.
2016-02-20
The Ertel theorem on the vorticity along the flow of adiabatic fluids is generalized for non-adiabatic flows. Several limiting cases are analyzed and the results are applied to flows behind different hydrodynamics fronts, particularly to thermal fronts (heat and cooling fronts). An important conclusion of the present analysis is that vorticity is inherent in the condensation’s (or hot spots) formation by thermal instabilities in plasma flows. Implications for several astrophysical plasmas are outlined.
Vacuum vessel eddy current modeling for TFTR adiabatic compression experiments
DeLucia, J.; Bell, M.; Wong, K.L.
1985-07-01
A relatively simple current filament model of the TFTR vacuum vessel is described. It is used to estimate the three-dimensional structure of magnetic field perturbations in the vicinity of the plasma that arise from vacuum vessel eddy currents induced during adiabatic compression. Eddy currents are calculated self-consistently with the plasma motion. The Shafranov formula and adiabatic scaling laws are used to model the plasma. Although the specific application is to TFTR, the present model is of generation applicability.
A connection between mix and adiabat in ICF capsules
NASA Astrophysics Data System (ADS)
Cheng, Baolian; Kwan, Thomas; Wang, Yi-Ming; Yi, Sunghuan (Austin); Batha, Steven
2016-10-01
We study the relationship between instability induced mix, preheat and the adiabat of the deuterium-tritium (DT) fuel in fusion capsule experiments. Our studies show that hydrodynamic instability not only directly affects the implosion, hot spot shape and mix, but also affects the thermodynamics of the capsule, such as, the adiabat of the DT fuel, and, in turn, affects the energy partition between the pusher shell (cold DT) and the hot spot. It was found that the adiabat of the DT fuel is sensitive to the amount of mix caused by Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities at the material interfaces due to its exponential dependence on the fuel entropy. An upper limit of mix allowed maintaining a low adiabat of DT fuel is derived. Additionally we demonstrated that the use of a high adiabat for the DT fuel in theoretical analysis and with the aid of 1D code simulations could explain some aspects of the 3D effects and mix in the capsule experiments. Furthermore, from the observed neutron images and our physics model, we could infer the adiabat of the DT fuel in the capsule and determine the possible amount of mix in the hot spot (LA-UR-16-24880). This work was conducted under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.
NASA Astrophysics Data System (ADS)
Habershon, Scott
2013-09-01
We introduce a new approach for calculating quantum time-correlation functions and time-dependent expectation values in many-body thermal systems; both electronically adiabatic and non-adiabatic cases can be treated. Our approach uses a path integral simulation to sample an initial thermal density matrix; subsequent evolution of this density matrix is equivalent to solution of the time-dependent Schrödinger equation, which we perform using a linear expansion of Gaussian wavepacket basis functions which evolve according to simple classical-like trajectories. Overall, this methodology represents a formally exact approach for calculating time-dependent quantum properties; by introducing approximations into both the imaginary-time and real-time propagations, this approach can be adapted for complex many-particle systems interacting through arbitrary potentials. We demonstrate this method for the spin Boson model, where we find good agreement with numerically exact calculations. We also discuss future directions of improvement for our approach with a view to improving accuracy and efficiency.
Adiabatic and non-adiabatic charge pumping in a single-level molecular motor
NASA Astrophysics Data System (ADS)
Napitu, B. D.; Thijssen, J. M.
2015-07-01
We propose a design for realizing quantum charge pump based on a recent proposal for a molecular motor (Seldenthuis J S et al 2010 ACS Nano 4 6681). Our design is based on the presence of a moiety with a permanent dipole moment which can rotate, thereby modulating the couplings to metallic contacts at both ends of the molecule. Using the non-equilibrium Keldysh Green’s function formalism (NEGF), we show that our design indeed generates a pump current. In the non-interacting pump, the variation of frequency from adiabatic to non-adiabatic regime, can be used to control the direction as well as the amplitude of the average current. The effect of Coulomb interaction is considered within the first- and the second- order perturbation. The numerical implementation of the scheme is quite demanding, and we develop an analytical approximation to obtain a speed-up giving results within a reasonable time. We find that the amplitude of the average pumped current can be controlled by both the driving frequency and the Coulomb interaction. The direction of of pumped current is shown to be determined by the phase difference between left and right anchoring groups.
Adiabatic and non-adiabatic charge pumping in a single-level molecular motor.
Napitu, B D; Thijssen, J M
2015-07-15
We propose a design for realizing quantum charge pump based on a recent proposal for a molecular motor (Seldenthuis J S et al 2010 ACS Nano 4 6681). Our design is based on the presence of a moiety with a permanent dipole moment which can rotate, thereby modulating the couplings to metallic contacts at both ends of the molecule. Using the non-equilibrium Keldysh Green's function formalism (NEGF), we show that our design indeed generates a pump current. In the non-interacting pump, the variation of frequency from adiabatic to non-adiabatic regime, can be used to control the direction as well as the amplitude of the average current. The effect of Coulomb interaction is considered within the first- and the second- order perturbation. The numerical implementation of the scheme is quite demanding, and we develop an analytical approximation to obtain a speed-up giving results within a reasonable time. We find that the amplitude of the average pumped current can be controlled by both the driving frequency and the Coulomb interaction. The direction of of pumped current is shown to be determined by the phase difference between left and right anchoring groups.
Adiabatic fission barriers in superheavy nuclei
NASA Astrophysics Data System (ADS)
Jachimowicz, P.; Kowal, M.; Skalski, J.
2017-01-01
Using the microscopic-macroscopic model based on the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy, we calculated static fission barriers Bf for 1305 heavy and superheavy nuclei 98 ≤Z ≤126 , including even-even, odd-even, even-odd and odd-odd systems. For odd and odd-odd nuclei, adiabatic potential-energy surfaces were calculated by a minimization over configurations with one blocked neutron or/and proton on a level from the 10th below to the 10th above the Fermi level. The parameters of the model that have been fixed previously by a fit to masses of even-even heavy nuclei were kept unchanged. A search for saddle points has been performed by the "imaginary water flow" method on a basic five-dimensional deformation grid, including triaxiality. Two auxiliary grids were used for checking the effects of the mass asymmetry and hexadecapole nonaxiality. The ground states (g.s.) were found by energy minimization over configurations and deformations. We find that the nonaxiality significantly changes first and second fission saddle in many nuclei. The effect of the mass asymmetry, known to lower the second, very deformed saddles in actinides, in the heaviest nuclei appears at the less deformed saddles in more than 100 nuclei. It happens for those saddles in which the triaxiality does not play any role, which suggests a decoupling between effects of the mass asymmetry and triaxiality. We studied also the influence of the pairing interaction strength on the staggering of Bf for odd- and even-particle numbers. Finally, we provide a comparison of our results with other theoretical fission barrier evaluations and with available experimental estimates.
NASA Astrophysics Data System (ADS)
Novelli, Antonio
2016-08-01
Leaf Area Index (LAI) is essential in ecosystem and agronomic studies, since it measures energy and gas exchanges between vegetation and atmosphere. In the last decades, LAI values have widely been estimated from passive remotely sensed data. Common approaches are based on semi-empirical/statistic techniques or on radiative transfer model inversion. Although the scientific community has been providing several LAI retrieval methods, the estimated results are often affected by noise and measurement uncertainties. The sequential data assimilation theory provides a theoretical framework to combine an imperfect model with incomplete observation data. In this document a data fusion Kalman filter algorithm is proposed in order to estimate the time evolution of LAI by combining MODIS LAI data and PROBA-V surface reflectance data. The reflectance data were linked to LAI by using the Reduced Simple Ratio index. The main working hypotheses were lacking input data necessary for climatic models and canopy reflectance models.
Adame, J.; Warzel, S.
2015-11-15
In this note, we use ideas of Farhi et al. [Int. J. Quantum. Inf. 6, 503 (2008) and Quantum Inf. Comput. 11, 840 (2011)] who link a lower bound on the run time of their quantum adiabatic search algorithm to an upper bound on the energy gap above the ground-state of the generators of this algorithm. We apply these ideas to the quantum random energy model (QREM). Our main result is a simple proof of the conjectured exponential vanishing of the energy gap of the QREM.
NASA Astrophysics Data System (ADS)
Kassab, R.; Treuillet, S.; Marzani, F.; Pieralli, C.; Lapayre, J. C.
2013-03-01
We propose a new system that makes possible to monitor the evolution of scars after the excision of a tumorous dermatosis. The hardware part of this system is composed of a new optical innovative probe with which two types of images can be acquired simultaneously: an anatomic image acquired under a white light and a functional one based on autofluorescence from the protoporphyrin within the cancer cells. For technical reasons related to the maximum size of the area covered by the probe, acquired images are too small to cover the whole scar. That is why a sequence of overlapping images is taken in order to cover the required area. The main goal of this paper is to describe the creation of two panoramic images (anatomic and functional). Fluorescence images do not have enough salient information for matching the images; stitching algorithms are applied over each couple of successive white light images to produce an anatomic panorama of the entire scar. The same transformations obtained from this step are used to register and stitch the functional images. Several experiments have been implemented using different stitching algorithms (SIFT, ASIFT and SURF), with various transformation parameters (angles of rotation, projection, scaling, etc…) and different types of skin images. We present the results of these experiments that propose the best solution. Thus, clinician has two panoramic images superimposed and usable for diagnostic support. A collaborative layer is added to the system to allow sharing panoramas among several practitioners over different places.
Extended adiabatic blast waves and a model of the soft X-ray background. [interstellar matter
NASA Technical Reports Server (NTRS)
Cox, D. P.; Anderson, P. R.
1981-01-01
An analytical approximation is generated which follows the development of an adiabatic spherical blast wave in a homogeneous ambient medium of finite pressure. An analytical approximation is also presented for the electron temperature distribution resulting from coulomb collisional heating. The dynamical, thermal, ionization, and spectral structures are calculated for blast waves of energy E sub 0 = 5 x 10 to the 50th power ergs in a hot low-density interstellar environment. A formula is presented for estimating the luminosity evolution of such explosions. The B and C bands of the soft X-ray background, it is shown, are reproduced by such a model explosion if the ambient density is about .000004 cm, the blast radius is roughly 100 pc, and the solar system is located inside the shocked region. Evolution in a pre-existing cavity with a strong density gradient may, it is suggested, remove both the M band and OVI discrepancies.
Ahmed, Ashik; Ullah, Md Shahid
2016-01-01
This paper proposes the application of differential evolution (DE) algorithm for the optimal tuning of proportional-integral (PI) controller designed to improve the small signal dynamic response of a stand-alone solid oxide fuel cell (SOFC) system. The small signal model of the study system is derived and considered for the controller design as the target here is to track small variations in SOFC load current. Two PI controllers are incorporated in the feedback loops of hydrogen and oxygen partial pressures with an aim to improve the small signal dynamic responses. The controller design problem is formulated as the minimization of an eigenvalue based objective function where the target is to find out the optimal gains of the PI controllers in such a way that the discrepancy of the obtained and desired eigenvalues are minimized. Eigenvalue and time domain simulations are presented for both open-loop and closed loop systems. To test the efficacy of DE over other optimization tools, the results obtained with DE are compared with those obtained by particle swarm optimization (PSO) algorithm and invasive weed optimization (IWO) algorithm. Three different types of load disturbances are considered for the time domain based results to investigate the performances of different optimizers under different sorts of load variations. Moreover, non-parametric statistical analyses, namely, one sample Kolmogorov-Smirnov (KS) test and paired sample t test are used to identify the statistical advantage of one optimizer over the other for the problem under study. The presented results suggest the supremacy of DE over PSO and IWO in finding the optimal solution.
Zhan, Hongyi; Zeng, Weidong; Wang, Gui; Kent, Damon; Dargusch, Matthew
2015-04-15
The microstructural evolution and grain refinement within adiabatic shear bands in the Ti6554 alloy deformed at high strain rates and elevated temperatures have been characterized using transmission electron microscopy. No stress drops were observed in the corresponding stress–strain curve, indicating that the initiation of adiabatic shear bands does not lead to the loss of load capacity for the Ti6554 alloy. The outer region of the shear bands mainly consists of cell structures bounded by dislocation clusters. Equiaxed subgrains in the core area of the shear band can be evolved from the subdivision of cell structures or reconstruction and transverse segmentation of dislocation clusters. It is proposed that dislocation activity dominates the grain refinement process. The rotational recrystallization mechanism may operate as the kinetic requirements for it are fulfilled. The coexistence of different substructures across the shear bands implies that the microstructural evolution inside the shear bands is not homogeneous and different grain refinement mechanisms may operate simultaneously to refine the structure. - Graphical abstract: Display Omitted - Highlights: • The microstructure within the adiabatic shear band was characterized by TEM. • No stress drops were observed in the corresponding stress–strain curve. • Dislocation activity dominated the grain refinement process. • The kinetic requirements for rotational recrystallization mechanism were fulfilled. • Different grain refinement mechanisms operated simultaneously to refine the structure.
NASA Astrophysics Data System (ADS)
Keika, Kunihiro; Seki, Kanako; Nosé, Masahito; Machida, Shinobu; Miyoshi, Yoshizumi; Lanzerotti, Louis J.; Mitchell, Donald G.; Gkioulidou, Matina; Turner, Drew; Spence, Harlan; Larsen, Brian A.
2016-08-01
We examine enhancements of energetic (>50 keV) oxygen ions observed by the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument on board the Van Allen Probes spacecraft in the inner magnetosphere (L ~ 6) at 22-23 h magnetic local time (MLT) during an injection event of the 6 June 2013 storm. Simultaneous observations by two Van Allen Probes spacecraft located close together (~0.5 RE) indicate that particle injections occurred in the premidnight sector (< ~24 h MLT). We also examine the evolution of the proton and oxygen energy spectra at L ~ 6 during the injection event. The spectral slope did not significantly change during the storm. The oxygen phase space density (PSD) was shifted toward higher PSD in a wide range of the first adiabatic invariant. The spectral evolution manifests the characteristics of adiabatic acceleration and density increase of oxygen ions. Warm (0.1-10 keV) oxygen measured by the Helium, Oxygen, Proton, and Electron (HOPE) instrument was enhanced prior to the storm mostly in magnetic field-aligned directions. The most reasonable scenario of this event is that warm oxygen ions that preexisted in the inner magnetosphere were picked up and adiabatically transported and accelerated by spatially localized, temporarily impulsive electric fields.
LETTERS AND COMMENTS: Adiabatic process reversibility: microscopic and macroscopic views
NASA Astrophysics Data System (ADS)
Anacleto, Joaquim; Pereira, Mário G.
2009-05-01
The reversibility of adiabatic processes was recently addressed by two publications. In the first (Miranda 2008 Eur. J. Phys. 29 937-43), an equation was derived relating the initial and final volumes and temperatures for adiabatic expansions of an ideal gas, using a microscopic approach. In that relation the parameter r accounts for the process reversibility, ranging between 0 and 1, which corresponds to the free and reversible expansion, respectively. In the second (Anacleto and Pereira 2009 Eur. J. Phys. 30 177-83), the authors have shown that thermodynamics can effectively and efficiently be used to obtain the general law for adiabatic processes carried out by an ideal gas, including compressions, for which r \\ge 1. The present work integrates and extends the aforementioned studies, providing thus further insights into the analysis of the adiabatic process. It is shown that Miranda's work is wholly valid for compressions. In addition, it is demonstrated that the adiabatic reversibility coefficient given in terms of the piston velocity and the root mean square velocity of the gas particles is equivalent to the macroscopic description, given just by the quotient between surroundings and system pressure values.
Broadband 2 × 2 adiabatic 3 dB coupler using silicon-on-insulator sub-wavelength grating waveguides.
Yun, Han; Wang, Yun; Zhang, Fan; Lu, Zeqin; Lin, Stephen; Chrostowski, Lukas; Jaeger, Nicolas A F
2016-07-01
We report on a compact, broadband, 2×2 adiabatic 3 dB coupler using sub-wavelength gratings (SWGs) for silicon-on-insulator waveguides. In our device, two SWG waveguides that support two transverse electric modes and have tapered waveguide widths were used to achieve an adiabatic mode evolution of the two-waveguide system for broadband 3 dB power splitting. We present results for a SWG adiabatic 3 dB coupler that has an overall coupler length of 50 μm and achieves broadband power splitting over a 130 nm wavelength range with an imbalance of no greater than ±0.3 dB and with low excess losses of less than 0.5 dB.
Huang, Lei; Liao, Li; Wu, Cathy H.
2016-01-01
Revealing the underlying evolutionary mechanism plays an important role in understanding protein interaction networks in the cell. While many evolutionary models have been proposed, the problem about applying these models to real network data, especially for differentiating which model can better describe evolutionary process for the observed network urgently remains as a challenge. The traditional way is to use a model with presumed parameters to generate a network, and then evaluate the fitness by summary statistics, which however cannot capture the complete network structures information and estimate parameter distribution. In this work we developed a novel method based on Approximate Bayesian Computation and modified Differential Evolution (ABC-DEP) that is capable of conducting model selection and parameter estimation simultaneously and detecting the underlying evolutionary mechanisms more accurately. We tested our method for its power in differentiating models and estimating parameters on the simulated data and found significant improvement in performance benchmark, as compared with a previous method. We further applied our method to real data of protein interaction networks in human and yeast. Our results show Duplication Attachment model as the predominant evolutionary mechanism for human PPI networks and Scale-Free model as the predominant mechanism for yeast PPI networks. PMID:26357273
Shortcuts to adiabaticity in a time-dependent box
Campo, A. del; Boshier, M. G.
2012-01-01
A method is proposed to drive an ultrafast non-adiabatic dynamics of an ultracold gas trapped in a time-dependent box potential. The resulting state is free from spurious excitations associated with the breakdown of adiabaticity, and preserves the quantum correlations of the initial state up to a scaling factor. The process relies on the existence of an adiabatic invariant and the inversion of the dynamical self-similar scaling law dictated by it. Its physical implementation generally requires the use of an auxiliary expulsive potential. The method is extended to a broad family of interacting many-body systems. As illustrative examples we consider the ultrafast expansion of a Tonks-Girardeau gas and of Bose-Einstein condensates in different dimensions, where the method exhibits an excellent robustness against different regimes of interactions and the features of an experimentally realizable box potential. PMID:22970340
Adiabatic circular polarizer based on chiral fiber grating.
Yang, Li; Xue, Lin-Lin; Li, Cheng; Su, Jue; Qian, Jing-Ren
2011-01-31
Based on the adiabatic coupling principle, a new scheme of a broadband circular polarizer formed by twisting a high-birefringence (Hi-Bi) fiber with a slowly varying twist rate is proposed. The conditions of adiabatic coupling for the adiabatic polarizer are first identified through analytical derivations. These conditions are easily realized by choosing a reasonable variation of the twist rate. Moreover, the bandwidth of the polarizer is able to be directly determined by the twist rates at the two ends. Finally, the broadband characteristics of the polarizer are demonstrated by simulations. It is also shown that the performance of the polarizer can be remarkably improved by accomplishing a multi-mode phase-matching along the grating or by using of the couplings of the core mode to lossy modes.
Applications of chirped Raman adiabatic rapid passage to atom interferometry
NASA Astrophysics Data System (ADS)
Kotru, Krish; Butts, David L.; Kinast, Joseph M.; Johnson, David M. S.; Radojevic, Antonije M.; Timmons, Brian P.; Stoner, Richard E.
2012-02-01
We present robust atom optics, based on chirped Raman adiabatic rapid passage (ARP), in the context of atom interferometry. Such ARP light pulses drive coherent population transfer between two hyperfine ground states by sweeping the frequency difference of two fixed-intensity optical fields with large single photon detunings. Since adiabatic transfer is less sensitive to atom temperature and non-uniform Raman beam intensity than standard Raman pulses, this approach should improve the stability of atom interferometers operating in dynamic environments. In such applications, chirped Raman ARP may also provide advantages over the previously demonstrated stimulated Raman adiabatic passage (STIRAP) technique, which requires precise modulation of beam intensity and zeroing of the single photon detuning. We demonstrate a clock interferometer with chirped Raman ARP pulses, and compare its stability to that of a conventional Raman pulse interferometer. We also discuss potential improvements to inertially sensitive atom interferometers. Copyright 2011 by The Charles Stark Draper Laboratory, Inc. All rights reserved.
Adiabatic Pseudospectral Technique: Applications to Four Atom Molecules
NASA Astrophysics Data System (ADS)
Antikainen, Jyrki Tapio
1995-01-01
After the introduction, in chapter 2 we review some of the well established techniques used to solve the Schrodinger equation. The following methods are discussed: the Finite Basis Representation, the Discrete Variable Representation, the Basic Light basis set truncation, and the Lanczos tridiagonalization. After reviewing the previous techniques we present the main features of our Adiabatic Pseudospectral (APS) technique. The Adiabatic Pseudospectral technique is a synthesis of several powerful computational methods such as the sequential adiabatic basis set reduction, the iterative Lanczos diagonalization, the collocation techniques, and a careful implementation of the matrix -vector product for the Hamiltonian in the reduced adiabatic representation. In chapter 3 we use our adiabatic pseudospectral method (APS) to calculate energy levels of the H _2O_2 molecule up to 5000 cm ^{-1}. Reasonably high accuracy (a few wavenumbers) is achieved for a fully six dimensional calculation in a few hours of CPU time on an IBM 580 workstation. These results are a great improvement over previous calculations on the same system which required 50-100 times more computational effort for a similar level of accuracy. The method presented here is both general and robust. It will allow for routine studies of six dimensional potential surfaces and the associated spectroscopy, while making calculations on still larger systems feasible. In chapter 4 the adiabatic pseudospectral method is used to study the high energy vibrational levels of the H_2C_2 molecule. We calculate stimulated emission pumping spectra initialized by the excited electronic state vibrational trans-bent state ~ A_sp{u}{1 }3_{nu}_3 . The calculations show that with the APS-method we can easily investigate energy regions in the excess of 15,000 cm^{-1}; these high energy regions have been previously unattainable by computational techniques.
Fidelity of adiabatic holonomic quantum gates
NASA Astrophysics Data System (ADS)
Malinovsky, Vladimir; Rudin, Sergey
2016-05-01
During last few years non-Abelian geometric phases are attracting increasing interest due to possible experimental applications in quantum computation. Here we discuss universal set of holonomic quantum gates using the geometric phase that the qubit wave function acquires after a cyclic evolution. The proposed scheme utilizes ultrafast pulses and provides a possibility to substantially suppress transient population of the ancillary states. Fidelity of the holonomic quantum gates in the presence of dephasing and dissipation is discussed. Example of electron spin qubit system in the InGaN/GaN, GaN/AlN quantum dot is considered in details.
Algorithms and Algorithmic Languages.
ERIC Educational Resources Information Center
Veselov, V. M.; Koprov, V. M.
This paper is intended as an introduction to a number of problems connected with the description of algorithms and algorithmic languages, particularly the syntaxes and semantics of algorithmic languages. The terms "letter, word, alphabet" are defined and described. The concept of the algorithm is defined and the relation between the algorithm and…
Spatial adiabatic passage: a review of recent progress
NASA Astrophysics Data System (ADS)
Menchon-Enrich, R.; Benseny, A.; Ahufinger, V.; Greentree, A. D.; Busch, Th; Mompart, J.
2016-07-01
Adiabatic techniques are known to allow for engineering quantum states with high fidelity. This requirement is currently of large interest, as applications in quantum information require the preparation and manipulation of quantum states with minimal errors. Here we review recent progress on developing techniques for the preparation of spatial states through adiabatic passage, particularly focusing on three state systems. These techniques can be applied to matter waves in external potentials, such as cold atoms or electrons, and to classical waves in waveguides, such as light or sound.
Quantum dynamics by the constrained adiabatic trajectory method
Leclerc, A.; Jolicard, G.; Guerin, S.; Killingbeck, J. P.
2011-03-15
We develop the constrained adiabatic trajectory method (CATM), which allows one to solve the time-dependent Schroedinger equation constraining the dynamics to a single Floquet eigenstate, as if it were adiabatic. This constrained Floquet state (CFS) is determined from the Hamiltonian modified by an artificial time-dependent absorbing potential whose forms are derived according to the initial conditions. The main advantage of this technique for practical implementation is that the CFS is easy to determine even for large systems since its corresponding eigenvalue is well isolated from the others through its imaginary part. The properties and limitations of the CATM are explored through simple examples.
Adiabatic regularisation of power spectra in k-inflation
Alinea, Allan L.; Kubota, Takahiro; Nakanishi, Yukari; Naylor, Wade E-mail: kubota@celas.osaka-u.ac.jp E-mail: naylor@phys.sci.osaka-u.ac.jp
2015-06-01
We look at the question posed by Parker et al. about the effect of UV regularisation on the power spectrum for inflation. Focusing on the slow-roll k-inflation, we show that up to second order in the Hubble and sound flow parameters, the adiabatic regularisation of such model leads to no difference in the power spectrum apart from certain cases that violate near scale-invariant power spectra. Furthermore, extending to non-minimal k-inflation, we establish the equivalence of the subtraction terms in the adiabatic regularisation of the power spectrum in Jordan and Einstein frames.
Dynamics with the effective adiabatic theory: The Bloch equations
NASA Astrophysics Data System (ADS)
Carmeli, Benny; Chandler, David
1988-07-01
This paper extends our earlier work on the effective adiabatic theory [J. Chem. Phys. 82, 3400 (1985)] to study relaxation of a two-level system coupled to a Gaussian dissipative bath—the spin-boson problem. Bloch equations are derived which, under the limited circumstances described herein, treat the role of bath fluctuations omitted in the equilibrium effective adiabatic reference system. Applications to the Lorentzian dissipative bath show that the theory agrees closely with numerical simulation results. Application to an Ohmic bath shows that the theory is in agreement with currently accepted results concerned with the problem of macroscopic quantum coherence.
Adiabatic State Conversion and Pulse Transmission in Optomechanical Systems
NASA Astrophysics Data System (ADS)
Tian, Lin
2012-04-01
Optomechanical systems with strong coupling can be a powerful medium for quantum state engineering of the cavity modes. Here, we show that quantum state conversion between cavity modes of distinctively different wavelengths can be realized with high fidelity by adiabatically varying the effective optomechanical couplings. The conversion fidelity for Gaussian states is derived by solving the Langevin equation in the adiabatic limit. Meanwhile, we also show that traveling photon pulses can be transmitted between different input and output channels with high fidelity and the output pulse can be engineered via the optomechanical couplings.
Gravitational Chern-Simons and the adiabatic limit
McLellan, Brendan
2010-12-15
We compute the gravitational Chern-Simons term explicitly for an adiabatic family of metrics using standard methods in general relativity. We use the fact that our base three-manifold is a quasiregular K-contact manifold heavily in this computation. Our key observation is that this geometric assumption corresponds exactly to a Kaluza-Klein Ansatz for the metric tensor on our three-manifold, which allows us to translate our problem into the language of general relativity. Similar computations have been performed by Guralnik et al.[Ann. Phys. 308, 222 (2008)], although not in the adiabatic context.
NASA Astrophysics Data System (ADS)
Cihan, A.; Birkholzer, J. T.; Bianchi, M.
2014-12-01
Injection of large volume of CO2 into deep geological reservoirs for geologic carbon sequestration (GCS) is expected to cause significant pressure perturbations in subsurface. Large-scale pressure increases in injection reservoirs during GCS operations, if not controlled properly, may limit dynamic storage capacity and increase risk of environmental impacts. The high pressure may impact caprock integrity, induce fault slippage, and cause leakage of brine and/or CO2 into shallow fresh groundwater resources. Thus, monitoring and controlling pressure buildup are critically important for environmentally safe implementation of GCS projects. Extraction of native brine during GCS operations is a pressure management approach to reduce significant pressure buildup. Extracted brine can be transferred to the surface for utilization or re-injected into overlying/underlying saline aquifers. However, pumping, transportation, treatment and disposal of extracted brine can be challenging and costly. Therefore, minimizing volume of extracted brine, while maximizing CO2 storage, is an essential objective of the pressure management with brine extraction schemes. Selection of optimal well locations and extraction rates are critical for maximizing storage and minimizing brine extraction during GCS. However, placing of injection and extraction wells is not intuitive because of heterogeneity in reservoir properties and complex reservoir geometry. Efficient computerized algorithms combining reservoir models and optimization methods are needed to make proper decisions on well locations and control parameters. This study presents a global optimization methodology for pressure management during geologic CO2 sequestration. A constrained differential evolution (CDE) algorithm is introduced for solving optimization problems involving well placement and injection/extraction control. The CDE methodology is tested and applied for realistic CO2 storage scenarios with the presence of uncertainty in
Universal fault-tolerant adiabatic quantum computing with quantum dots or donors
NASA Astrophysics Data System (ADS)
Landahl, Andrew
I will present a conceptual design for an adiabatic quantum computer that can achieve arbitrarily accurate universal fault-tolerant quantum computations with a constant energy gap and nearest-neighbor interactions. This machine can run any quantum algorithm known today or discovered in the future, in principle. The key theoretical idea is adiabatic deformation of degenerate ground spaces formed by topological quantum error-correcting codes. An open problem with the design is making the four-body interactions and measurements it uses more technologically accessible. I will present some partial solutions, including one in which interactions between quantum dots or donors in a two-dimensional array can emulate the desired interactions in second-order perturbation theory. I will conclude with some open problems, including the challenge of reformulating Kitaev's gadget perturbation theory technique so that it preserves fault tolerance. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Taple-top imaging of the non-adiabatically driven isomerization in the acetylene cation
NASA Astrophysics Data System (ADS)
Beaulieu, Samuel; Ibrahim, Heide; Wales, Benji; Schmidt, Bruno E.; Thiré, Nicolas; Bisson, Éric; Hebeisen, Christoph T.; Wanie, Vincent; Giguere, Mathieu; Kieffer, Jean-Claude; Sanderson, Joe; Schuurman, Michael S.; Légaré, François
2014-05-01
One of the primary goals of modern ultrafast science is to follow nuclear and electronic evolution of molecules as they undergo a photo-chemical reaction. Most of the interesting dynamics phenomena in molecules occur when an electronically excited state is populated. When the energy difference between electronic ground and excited states is large, Free Electron Laser (FEL) and HHG-based VUV sources were, up to date, the only light sources able to efficiently initiate those non-adiabatic dynamics. We have developed a simple table-top approach to initiate those rich dynamics via multiphoton absorption. As a proof of principle, we studied the ultrafast isomerization of the acetylene cation. We have chosen this model system for isomerization since the internal conversion mechanism which leads to proton migration is still under debate since decades. Using 266 nm multiphoton absorption as a pump and 800 nm induced Coulomb Explosion as a probe, we have shoot the first high-resolution molecular movie of the non-adiabatically driven proton migration in the acetylene cation. The experimental results are in excellent agreement with high level ab initio trajectory simulations.
NASA Astrophysics Data System (ADS)
Lovinger, Z.; Rittel, D.; Rosenberg, Z.
2015-06-01
The formation of shear bands in collapsing thick-walled cylinders (TWC) occurs in a spontaneous manner. The advantage of studying spontaneous, as opposed to forced, shear localization, is that it highlights the inherent susceptibility of the material to adiabatic shear banding without prescribed geometrical constraints. In the case of spontaneous shear localization, the role of microstructure (grain size and grain boundaries) on localization, is still unresolved. Using an electro-magnetic set-up, for the collapse of thick-walled cylinders, we examined the shear band formation and evolution in seven metallic alloys, with a wide range of strength and failure properties. To assess microstructural effects, we conducted systematic tests on copper and Ti6Al4V with different grain sizes. Our results match quite well with previously reported data on much larger specimens, showing the absence of a size effect, on adiabatic shearing. However, the measured shear band spacings, in this study, do not match the predictions of, existing analytical models, indicating that the physics of the problem needs to be better modeled.
A dynamical approach to non-adiabatic electron transfers at the bio-inorganic interface.
Zanetti-Polzi, Laura; Corni, Stefano
2016-04-21
A methodology is proposed to investigate electron transfer reactions between redox-active biomolecular systems (e.g. a protein) and inorganic surfaces. The whole system is modelled at the atomistic level using classical molecular dynamics - making an extensive sampling of the system's configurations possible - and the energies associated with the redox-active complex reduction are calculated using a hybrid quantum/classical approach along the molecular dynamics trajectory. The non-adiabaticity is introduced a posteriori using a Monte Carlo approach based on the Landau-Zener theory extended to treat a metal surface. This approach thus allows us to investigate the role of the energy fluctuations, determined by the dynamical evolution of the system, as well as the role of non-adiabaticity in affecting the kinetic rate of the electron transfer reaction. Most notably, it allows us to investigate the two contributions separately, hence achieving a detailed picture of the mechanisms that determine the rate. The analysis of the system configurations also allows us to relate the estimated electronic coupling to the structural and dynamic properties of the system. As a test case, the methodology is here applied to study the electron transfer reaction between cytochrome c and a gold surface. The results obtained explain the different electron transfer rates experimentally measured for two different concentrations of proteins on the electrode surface.
Kreutz, Jason E; Shukhaev, Anton; Du, Wenbin; Druskin, Sasha; Daugulis, Olafs; Ismagilov, Rustem F
2010-03-10
This paper uses microfluidics to implement genetic algorithms (GA) to discover new homogeneous catalysts using the oxidation of methane by molecular oxygen as a model system. The parameters of the GA were the catalyst, a cocatalyst capable of using molecular oxygen as the terminal oxidant, and ligands that could tune the catalytic system. The GA required running hundreds of reactions to discover and optimize catalyst systems of high fitness, and microfluidics enabled these numerous reactions to be run in parallel. The small scale and volumes of microfluidics offer significant safety benefits. The microfluidic system included methods to form diverse arrays of plugs containing catalysts, introduce gaseous reagents at high pressure, run reactions in parallel, and detect catalyst activity using an in situ indicator system. Platinum(II) was identified as an active catalyst, and iron(II) and the polyoxometalate H(5)PMo(10)V(2)O(40) (POM-V2) were identified as active cocatalysts. The Pt/Fe system was further optimized and characterized using NMR experiments. After optimization, turnover numbers of approximately 50 were achieved with approximately equal production of methanol and formic acid. The Pt/Fe system demonstrated the compatibility of iron with the entire catalytic cycle. This approach of GA-guided evolution has the potential to accelerate discovery in catalysis and other areas where exploration of chemical space is essential, including optimization of materials for hydrogen storage and CO(2) capture and modifications.
Adiabatic frequency conversion with a sign flip in the coupling
NASA Astrophysics Data System (ADS)
Hristova, H. S.; Rangelov, A. A.; Montemezzani, G.; Vitanov, N. V.
2016-09-01
Adiabatic frequency conversion is a method recently developed in nonlinear optics [H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, Phys. Rev. A 78, 063821 (2008), 10.1103/PhysRevA.78.063821], using ideas from the technique of rapid adiabatic passage (RAP) via a level crossing in quantum physics. In this method, the coupling coefficients are constant and the phase mismatch is chirped adiabatically. In this work, we propose another method for adiabatic frequency conversion, in which the phase mismatch is constant and the coupling is a pulse-shaped function with a sign flip (i.e., a phase step of π ) at its maximum. Compared to the RAP method, our technique has comparable efficiency but it is simpler to implement for it only needs two bulk crystals with opposite χ(2 ) nonlinearity. Moreover, because our technique requires constant nonzero frequency mismatch and has zero conversion efficiency on exact frequency matching, it can be used as a frequency filter.
Failure of geometric electromagnetism in the adiabatic vector Kepler problem
Anglin, J.R.; Schmiedmayer, J.
2004-02-01
The magnetic moment of a particle orbiting a straight current-carrying wire may precess rapidly enough in the wire's magnetic field to justify an adiabatic approximation, eliminating the rapid time dependence of the magnetic moment and leaving only the particle position as a slow degree of freedom. To zeroth order in the adiabatic expansion, the orbits of the particle in the plane perpendicular to the wire are Keplerian ellipses. Higher-order postadiabatic corrections make the orbits precess, but recent analysis of this 'vector Kepler problem' has shown that the effective Hamiltonian incorporating a postadiabatic scalar potential ('geometric electromagnetism') fails to predict the precession correctly, while a heuristic alternative succeeds. In this paper we resolve the apparent failure of the postadiabatic approximation, by pointing out that the correct second-order analysis produces a third Hamiltonian, in which geometric electromagnetism is supplemented by a tensor potential. The heuristic Hamiltonian of Schmiedmayer and Scrinzi is then shown to be a canonical transformation of the correct adiabatic Hamiltonian, to second order. The transformation has the important advantage of removing a 1/r{sup 3} singularity which is an artifact of the adiabatic approximation.
Fast Quasi-Adiabatic Gas Cooling: An Experiment Revisited
ERIC Educational Resources Information Center
Oss, S.; Gratton, L. M.; Calza, G.; Lopez-Arias, T.
2012-01-01
The well-known experiment of the rapid expansion and cooling of the air contained in a bottle is performed with a rapidly responsive, yet very cheap thermometer. The adiabatic, low temperature limit is approached quite closely and measured with our apparatus. A straightforward theoretical model for this process is also presented and discussed.…
Adiabatic compression and radiative compression of magnetic fields
Woods, C.H.
1980-02-12
Flux is conserved during mechanical compression of magnetic fields for both nonrelativistic and relativistic compressors. However, the relativistic compressor generates radiation, which can carry up to twice the energy content of the magnetic field compressed adiabatically. The radiation may be either confined or allowed to escape.
Cosmological solutions in spatially curved universes with adiabatic particle production
NASA Astrophysics Data System (ADS)
Aresté Saló, Llibert; de Haro, Jaume
2017-03-01
We perform a qualitative and thermodynamic study of two models when one takes into account adiabatic particle production. In the first one, there is a constant particle production rate, which leads to solutions depicting the current cosmic acceleration but without inflation. The other one has solutions that unify the early and late time acceleration. These solutions converge asymptotically to the thermal equilibrium.
A Kinetic Study of the Adiabatic Polymerization of Acrylamide.
ERIC Educational Resources Information Center
Thomson, R. A. M.
1986-01-01
Discusses theory, procedures, and results for an experiment which demonstrates the application of basic physics to chemical problems. The experiment involves the adiabatic process, in which polymerization carried out in a vacuum flask is compared to the theoretical prediction of the model with the temperature-time curve obtained in practice. (JN)
Adiabatic State Conversion and Photon Transmission in Optomechanical Systems
NASA Astrophysics Data System (ADS)
Tian, Lin
2012-02-01
Light-matter interaction in optomechanical systems in the strong coupling regime can be explored as a tool to transfer cavity states and to transmit photon pulses. Here, we show that quantum state conversion between cavity modes with different wavelengths can be realized with high fidelity by adiabatically varying the effective optomechanical couplings. During this adiabatic process, the quantum state is preserved in the dark mode of the cavities, similar to the adiabatic transfer schemes in EIT systems. The fidelity for gaussian states is derived by solving the Langevin equation in the adiabatic limit and shows negligible dependence on the mechanical noise. We also show that an input pulse can be transmitted to an output channel with a different wavelength via the effective optomechanical couplings. The condition for optimal transmission is derived in the frequency domain. Input pulses with a narrow spectral width can be transmitted with high fidelity. For input pulses with a large spectral width, the shape of the output pulses can be manipulated by applying time-dependent effective couplings. (1) L. Tian, arXiv:1111.2119. (2) L. Tian and H. L. Wang, Phys. Rev. A 82, 053806 (2010).
When an Adiabatic Irreversible Expansion or Compression Becomes Reversible
ERIC Educational Resources Information Center
Anacleto, Joaquim; Ferreira, J. M.; Soares, A. A.
2009-01-01
This paper aims to contribute to a better understanding of the concepts of a "reversible process" and "entropy". For this purpose, an adiabatic irreversible expansion or compression is analysed, by considering that an ideal gas is expanded (compressed), from an initial pressure P[subscript i] to a final pressure P[subscript f], by being placed in…
Dark energy and dark matter from an additional adiabatic fluid
NASA Astrophysics Data System (ADS)
Dunsby, Peter K. S.; Luongo, Orlando; Reverberi, Lorenzo
2016-10-01
The dark sector is described by an additional barotropic fluid which evolves adiabatically during the Universe's history and whose adiabatic exponent γ is derived from the standard definitions of specific heats. Although in general γ is a function of the redshift, the Hubble parameter and its derivatives, we find that our assumptions lead necessarily to solutions with γ =constant in a Friedmann-Lemaître-Robertson-Walker universe. The adiabatic fluid acts effectively as the sum of two distinct components, one evolving like nonrelativistic matter and the other depending on the value of the adiabatic index. This makes the model particularly interesting as a way of simultaneously explaining the nature of both dark energy and dark matter, at least at the level of the background cosmology. The Λ CDM model is included in this family of theories when γ =0 . We fit our model to supernovae Ia, H (z ) and baryonic acoustic oscillation data, discussing the model selection criteria. The implications for the early Universe and the growth of small perturbations in this model are also discussed.
Non-adiabatic transition probability dependence on conical intersection topography
NASA Astrophysics Data System (ADS)
Malhado, João Pedro; Hynes, James T.
2016-11-01
We derive a closed form analytical expression for the non-adiabatic transition probability for a distribution of trajectories passing through a generic conical intersection (CI), based on the Landau-Zener equation for the non-adiabatic transition probability for a single straight-line trajectory in the CI's vicinity. We investigate the non-adiabatic transition probability's variation with topographical features and find, for the same crossing velocity, no intrinsic difference in efficiency at promoting non-adiabatic decay between peaked and sloped CIs, a result in contrast to the commonly held view. Any increased efficiency of peaked over sloped CIs is thus due to dynamical effects rather than to any increased transition probability of topographical origin. It is also shown that the transition probability depends in general on the direction of approach to the CI, and that the coordinates' reduced mass can affect the transition probability via its influence on the CI topography in mass-scaled coordinates. The resulting predictions compare well with surface hopping simulation results.
Non-adiabatic transition probability dependence on conical intersection topography.
Malhado, João Pedro; Hynes, James T
2016-11-21
We derive a closed form analytical expression for the non-adiabatic transition probability for a distribution of trajectories passing through a generic conical intersection (CI), based on the Landau-Zener equation for the non-adiabatic transition probability for a single straight-line trajectory in the CI's vicinity. We investigate the non-adiabatic transition probability's variation with topographical features and find, for the same crossing velocity, no intrinsic difference in efficiency at promoting non-adiabatic decay between peaked and sloped CIs, a result in contrast to the commonly held view. Any increased efficiency of peaked over sloped CIs is thus due to dynamical effects rather than to any increased transition probability of topographical origin. It is also shown that the transition probability depends in general on the direction of approach to the CI, and that the coordinates' reduced mass can affect the transition probability via its influence on the CI topography in mass-scaled coordinates. The resulting predictions compare well with surface hopping simulation results.
Sub-adiabatic perpendicular electron heating across high-Mach number collisionless shocks
NASA Astrophysics Data System (ADS)
Sundkvist, D. J.; Mozer, F.
2012-12-01
Spacecraft observations of a high Mach number quasi-perpendicular bow shock with high plasma beta have revealed electrons that were sub-adiabatic through the shock ramp because they were less heated than expected from conservation of the first adiabatic invariant. This stands out in contrast to existing theories of electron heating at collisionless shocks in which the electrons are adiabatically heated through compression or more-than-adiabatically heated due to additional effects such as anomalous resistivity induced by microinstabilites.
Adiabatic transfer of light in a double cavity and the optical Landau-Zener problem
Miladinovic, N.; Hasan, F.; Linnington, I. E.; O'Dell, D. H. J.; Chisholm, N.; Hinds, E. A.
2011-10-15
We analyze the evolution of an electromagnetic field inside a double cavity when the difference in length between the two cavities is changed, e.g., by translating the common mirror. We find that this allows photons to be moved deterministically from one cavity to the other. We are able to obtain the conditions for adiabatic transfer by first mapping the Maxwell wave equation for the electric field onto a Schroedinger-like wave equation and then using the Landau-Zener result for the transition probability at an avoided crossing. Our analysis reveals that this mapping only rigorously holds when the two cavities are weakly coupled (i.e., in the regime of a highly reflective common mirror) and that, generally speaking, care is required when attempting a Hamiltonian description of cavity electrodynamics with time-dependent boundary conditions.
NASA Astrophysics Data System (ADS)
Hoover, Wm. G.; Hoover, C. G.
2009-04-01
We compare nonlinear stresses and temperatures for adiabatic-shear flows, using up to 262 144 particles, with those from corresponding homogeneous and inhomogeneous flows. Two varieties of kinetic temperature tensors are compared to the configurational temperatures. This comparison of temperatures led us to two findings beyond our original goal of analyzing shear algorithms. First, we found an improved form for local instantaneous velocity fluctuations, as calculated with smooth-particle weighting functions. Second, we came upon the previously unrecognized contribution of rotation to the configurational temperature.
VizieR Online Data Catalog: Adiabatic mass loss in binary stars. II. (Ge+, 2015)
NASA Astrophysics Data System (ADS)
Ge, H.; Webbink, R. F.; Chen, X.; Han, Z.
2016-02-01
In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z=0.02) of mass 0.10M⊙-100M⊙ from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. For intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio qad (throughout this paper, we follow the convention of defining the binary mass ratio as q{equiv}Mdonor/Maccretor) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, qad plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with qad declining with decreasing mass, and asymptotically approaching qad=2/3, appropriate to a classical isentropic n=3/2 polytrope. Our calculated qad values agree well with the behavior of time-dependent models by Chen & Han (2003MNRAS.341..662C) of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as systems that must be stable against rapid mass
Sideband excitation of trapped ions by rapid adiabatic passage for manipulation of motional states
Watanabe, T.; Nomura, S.; Toyoda, K.; Urabe, S.
2011-09-15
We describe an analysis and experimental results of the manipulation of motional states of a single trapped {sup 40}Ca{sup +} ion based on sideband excitation by rapid adiabatic passage. When the sideband transition is excited by rapid adiabatic passage, adiabaticity may be affected by ac Stark shifts. We investigate the influence of ac Stark shifts and compensate for these shifts with an additional laser field. This makes the population transfer by rapid adiabatic passage more robust with respect to experimental parameters. Finally, we manipulate the motional states and generate motional Fock states of a single {sup 40}Ca{sup +} ion by rapid adiabatic passage with ac Stark compensation.
Non-adiabatic dynamics of molecules in optical cavities
NASA Astrophysics Data System (ADS)
Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul
2016-02-01
Strong coupling of molecules to the vacuum field of micro cavities can modify the potential energy surfaces thereby opening new photophysical and photochemical reaction pathways. While the influence of laser fields is usually described in terms of classical field, coupling to the vacuum state of a cavity has to be described in terms of dressed photon-matter states (polaritons) which require quantized fields. We present a derivation of the non-adiabatic couplings for single molecules in the strong coupling regime suitable for the calculation of the dressed state dynamics. The formalism allows to use quantities readily accessible from quantum chemistry codes like the adiabatic potential energy surfaces and dipole moments to carry out wave packet simulations in the dressed basis. The implications for photochemistry are demonstrated for a set of model systems representing typical situations found in molecules.
Non-adiabatic dynamics of molecules in optical cavities
Kowalewski, Markus Bennett, Kochise; Mukamel, Shaul
2016-02-07
Strong coupling of molecules to the vacuum field of micro cavities can modify the potential energy surfaces thereby opening new photophysical and photochemical reaction pathways. While the influence of laser fields is usually described in terms of classical field, coupling to the vacuum state of a cavity has to be described in terms of dressed photon-matter states (polaritons) which require quantized fields. We present a derivation of the non-adiabatic couplings for single molecules in the strong coupling regime suitable for the calculation of the dressed state dynamics. The formalism allows to use quantities readily accessible from quantum chemistry codes like the adiabatic potential energy surfaces and dipole moments to carry out wave packet simulations in the dressed basis. The implications for photochemistry are demonstrated for a set of model systems representing typical situations found in molecules.
Adiabatic far-field sub-diffraction imaging.
Cang, Hu; Salandrino, Alessandro; Wang, Yuan; Zhang, Xiang
2015-08-10
The limited resolution of a conventional optical imaging system stems from the fact that the fine feature information of an object is carried by evanescent waves, which exponentially decays in space and thus cannot reach the imaging plane. We introduce here an adiabatic lens, which utilizes a geometrically conformal surface to mediate the interference of slowly decompressed electromagnetic waves at far field to form images. The decompression is satisfying an adiabatic condition, and by bridging the gap between far field and near field, it allows far-field optical systems to project an image of the near-field features directly. Using these designs, we demonstrated the magnification can be up to 20 times and it is possible to achieve sub-50 nm imaging resolution in visible. Our approach provides a means to extend the domain of geometrical optics to a deep sub-wavelength scale.
Engineering adiabaticity at an avoided crossing with optimal control
NASA Astrophysics Data System (ADS)
Chasseur, T.; Theis, L. S.; Sanders, Y. R.; Egger, D. J.; Wilhelm, F. K.
2015-04-01
We investigate ways to optimize adiabaticity and diabaticity in the Landau-Zener model with nonuniform sweeps. We show how diabaticity can be engineered with a pulse consisting of a linear sweep augmented by an oscillating term. We show that the oscillation leads to jumps in populations whose value can be accurately modeled using a model of multiple, photon-assisted Landau-Zener transitions, which generalizes work by Wubs et al. [New J. Phys. 7, 218 (2005)], 10.1088/1367-2630/7/1/218. We extend the study on diabaticity using methods derived from optimal control. We also show how to preserve adiabaticity with optimal pulses at limited time, finding a nonuniform quantum speed limit.
Adiabatic molecular-dynamics-simulation-method studies of kinetic friction
NASA Astrophysics Data System (ADS)
Zhang, J.; Sokoloff, J. B.
2005-06-01
An adiabatic molecular-dynamics method is developed and used to study the Muser-Robbins model for dry friction (i.e., nonzero kinetic friction in the slow sliding speed limit). In this model, dry friction between two crystalline surfaces rotated with respect to each other is due to mobile molecules (i.e., dirt particles) adsorbed at the interface. Our adiabatic method allows us to quickly locate interface potential-well minima, which become unstable during sliding of the surfaces. Since dissipation due to friction in the slow sliding speed limit results from mobile molecules dropping out of such unstable wells, our method provides a way to calculate dry friction, which agrees extremely well with results found by conventional molecular dynamics for the same system, but our method is more than a factor of 10 faster.
Steam bottoming cycle for an adiabatic diesel engine
NASA Technical Reports Server (NTRS)
Poulin, E.; Demier, R.; Krepchin, I.; Walker, D.
1984-01-01
Steam bottoming cycles using adiabatic diesel engine exhaust heat which projected substantial performance and economic benefits for long haul trucks were studied. Steam cycle and system component variables, system cost, size and performance were analyzed. An 811 K/6.90 MPa state of the art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. The costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with aftercooling with the same total output were compared, the annual fuel savings less the added maintenance cost was determined to cover the increase initial cost of the TC/B system in a payback period of 2.3 years. Steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability are considered and the cost and performance of advanced systes are evaluated.
Adiabatic approximation and fluctuations in exciton-polariton condensates
NASA Astrophysics Data System (ADS)
Bobrovska, Nataliya; Matuszewski, Michał
2015-07-01
We study the relation between the models commonly used to describe the dynamics of nonresonantly pumped exciton-polariton condensates, namely the ones described by the complex Ginzburg-Landau equation, and by the open-dissipative Gross-Pitaevskii equation including a separate equation for the reservoir density. In particular, we focus on the validity of the adiabatic approximation and small density fluctuations approximation that allow one to reduce the coupled condensate-reservoir dynamics to a single partial differential equation. We find that the adiabatic approximation consists of three independent analytical conditions that have to be fulfilled simultaneously. By investigating stochastic versions of the two corresponding models, we verify that the breakdown of these approximations can lead to discrepancies in correlation lengths and distributions of fluctuations. Additionally, we consider the phase diffusion and number fluctuations of a condensate in a box, and show that self-consistent description requires treatment beyond the typical Bogoliubov approximation.
Confinement loss in adiabatic photonic crystal fiber tapers
NASA Astrophysics Data System (ADS)
Kuhlmey, Boris T.; Nguyen, Hong C.; Steel, M. J.; Eggleton, Benjamin J.
2006-09-01
We numerically study confinement loss in photonic crystal fiber (PCF) tapers and compare our results with previously published experimental data. Agreement between theory and experiment requires taking into account hole shrinkage during the tapering process, which we measure by using a noninvasive technique. We show that losses are fully explained within the adiabatic approximation and that they are closely linked to the existence of a fundamental core-mode cutoff. This cutoff is equivalent to the core-mode cutoff in depressed-cladding fibers, so that losses in PCF tapers can be obtained semiquantitatively from an equivalent depressed-cladding fiber model. Finally, we discuss the definition of adiabaticity in this open boundary problem.
Adiabatic far-field sub-diffraction imaging
Cang, Hu; Salandrino, Alessandro; Wang, Yuan; Zhang, Xiang
2015-01-01
The limited resolution of a conventional optical imaging system stems from the fact that the fine feature information of an object is carried by evanescent waves, which exponentially decays in space and thus cannot reach the imaging plane. We introduce here an adiabatic lens, which utilizes a geometrically conformal surface to mediate the interference of slowly decompressed electromagnetic waves at far field to form images. The decompression is satisfying an adiabatic condition, and by bridging the gap between far field and near field, it allows far-field optical systems to project an image of the near-field features directly. Using these designs, we demonstrated the magnification can be up to 20 times and it is possible to achieve sub-50 nm imaging resolution in visible. Our approach provides a means to extend the domain of geometrical optics to a deep sub-wavelength scale. PMID:26258769
Multidimensional Study of High-Adiabat OMEGA Cryogenic Experiments
NASA Astrophysics Data System (ADS)
Collins, T. J. B.; Betti, R.; Bose, A.; Christopherson, A. R.; Knauer, J. P.; Marozas, J. A.; Maximov, A. V.; Mora, A.; Radha, P. B.; Shang, W.; Shvydky, A.; Stoeckl, C.; Woo, K. M.; Varchas, G.
2016-10-01
Despite recent advances in modeling laser direct-drive inertial confinement fusion (ICF) experiments, there remains a predictability gap. This is particularly shown by the shortfall in hot-spot pressures inferred from OMEGA cryogenic implosions. To address this, a series of high-adiabat, cryogenic implosions were performed on OMEGA. These shots were performed with and without single-beam smoothing by spectral dispersion, at low and high drive intensities. These shots represent a regime where good agreement with simulation is expected because of the high adiabat. Multidimensional simulations of these shots will be presented with an emphasis on comparison with experimental indicators of departure from spherical symmetry (``1-D-ness''). The roles of short- and long-wavelength perturbations are considered. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Breaking of dynamical adiabaticity in direct laser acceleration of electrons
NASA Astrophysics Data System (ADS)
Robinson, A. P. L.; Arefiev, A. V.
2017-02-01
The interaction of an electron oscillating in an ion channel and irradiated by a plane electromagnetic wave is considered. It is shown that the interaction qualitatively changes with the increase of electron energy, as the oscillations across the channel become relativistic. The "square-wave-like" profile of the transverse velocity in the relativistic case enables breaking of the adiabaticity that precludes electron energy retention in the non-relativistic case. For an electron with a relativistic factor γ0, the adiabaticity breaks if ωL/ωp0≪√{γ0 } . Under these conditions, the kinetic energy acquired by the electron is retained once the interaction with the laser field ceases. This mechanism notably enables electron heating in regimes that do not require a resonant interaction between the initially oscillating electron and the laser electric field.
Fluctuations of work in nearly adiabatically driven open quantum systems.
Suomela, S; Salmilehto, J; Savenko, I G; Ala-Nissila, T; Möttönen, M
2015-02-01
We extend the quantum jump method to nearly adiabatically driven open quantum systems in a way that allows for an accurate account of the external driving in the system-environment interaction. Using this framework, we construct the corresponding trajectory-dependent work performed on the system and derive the integral fluctuation theorem and the Jarzynski equality for nearly adiabatic driving. We show that such identities hold as long as the stochastic dynamics and work variable are consistently defined. We numerically study the emerging work statistics for a two-level quantum system and find that the conventional diabatic approximation is unable to capture some prominent features arising from driving, such as the continuity of the probability density of work. Our results reveal the necessity of using accurate expressions for the drive-dressed heat exchange in future experiments probing jump time distributions.
Stellar oscillations - II - The non-adiabatic case
NASA Astrophysics Data System (ADS)
Samadi, R.; Belkacem, K.; Sonoi, T.
2015-02-01
A leap forward has been performed due to the space-borne missions, MOST, CoRoT and Kepler. They provided a wealth of observational data, and more precisely oscillation spectra, which have been (and are still) exploited to infer the internal structure of stars. While an adiabatic approach is often sufficient to get information on the stellar equilibrium structures it is not sufficient to get a full understanding of the physics of the oscillation. Indeed, it does not permit one to answer some fundamental questions about the oscillations, such as: What are the physical mechanisms responsible for the pulsations inside stars? What determines the amplitudes? To what extent the adiabatic approximation is valid? All these questions can only be addressed by considering the energy exchanges between the oscillations and the surrounding medium. This lecture therefore aims at considering the energetical aspects of stellar pulsations with particular emphasis on the driving and damping mechanisms. To this end, the full non-adiabatic equations are introduced and thoroughly discussed. Two types of pulsation are distinguished, namely the self-excited oscillations that result from an instability and the solar-like oscillations that result from a balance between driving and damping by turbulent convection. For each type, the main physical principles are presented and illustrated using recent observations obtained with the ultra-high precision photometry space-borne missions (MOST, CoRoT and Kepler). Finally, we consider in detail the physics of scaling relations, which relates the seismic global indices with the global stellar parameters and gave birth to the development of statistical (or ensemble) asteroseismology. Indeed, several of these relations rely on the same cause: the physics of non-adiabatic oscillations.
Adiabatic modulation of cnoidal wave by Kuznetsov - Ma soliton
NASA Astrophysics Data System (ADS)
Makarov, V. A.; Petnikova, V. M.; Shuvalov, V. V.
2016-08-01
The problem of nonlinear interaction of a cnoidal wave (a “fast” component of vector light field) with localized in time and periodic in space control signal in the form of Kuznetsov-Ma soliton (a "slow" component of the same field) is analytically solved in the adiabatic approximation. The conditions which must be fulfilled for stable propagation of the obtained solution with amplitude and frequency modulation are determined.
Adiabatic pipelining: a key to ternary computing with quantum dots.
Pečar, P; Ramšak, A; Zimic, N; Mraz, M; Lebar Bajec, I
2008-12-10
The quantum-dot cellular automaton (QCA), a processing platform based on interacting quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating period with the development of the line, the functionally complete set of logic functions, as well as more complex processing structures, however all in the realm of binary logic. Regardless of these achievements, it has to be acknowledged that the use of binary logic is in computing systems mainly the end result of the technological limitations, which the designers had to cope with in the early days of their design. The first advancement of QCAs to multi-valued (ternary) processing was performed by Lebar Bajec et al, with the argument that processing platforms of the future should not disregard the clear advantages of multi-valued logic. Some of the elementary ternary QCAs, necessary for the construction of more complex processing entities, however, lead to a remarkable increase in size when compared to their binary counterparts. This somewhat negates the advantages gained by entering the ternary computing domain. As it turned out, even the binary QCA had its initial hiccups, which have been solved by the introduction of adiabatic switching and the application of adiabatic pipeline approaches. We present here a study that introduces adiabatic switching into the ternary QCA and employs the adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our view might serve towards their faster adoption.
Adiabatic Compression Sensitivity of Liquid Fuels and Monopropellants
2007-11-02
Sensitivity of Liquid Fuels and Monopropellants " 46’b Internat’I Instrumentation Syrup (Bellevue, WA, 30 Apr- 04 May 00) (Statement A) (Deadline: 30 Dec...99) Adiabatic Compression Sensitivity of Liquid Fuels and Monopropellants Ismail M. K. Ismail Tom W. Hawkins Senior Engineer/Scientist Group Leader...hazard sensitivity, propellants, fuels, oxidizers ABSTRACT Liquid rocket fuels and monopropellants can be sensitive to rapid compression. Such liquids
Adiabatic shear mechanisms for the hard cutting process
NASA Astrophysics Data System (ADS)
Yue, Caixu; Wang, Bo; Liu, Xianli; Feng, Huize; Cai, Chunbin
2015-05-01
The most important consequence of adiabatic shear phenomenon is formation of sawtooth chip. Lots of scholars focused on the formation mechanism of sawtooth, and the research often depended on experimental approach. For the present, the mechanism of sawtooth chip formation still remains some ambiguous aspects. This study develops a combined numerical and experimental approach to get deeper understanding of sawtooth chip formation mechanism for Polycrystalline Cubic Boron Nitride (PCBN) tools orthogonal cutting hard steel GCr15. By adopting the Johnson-Cook material constitutive equations, the FEM simulation model established in this research effectively overcomes serious element distortions and cell singularity in high strain domain caused by large material deformation, and the adiabatic shear phenomenon is simulated successfully. Both the formation mechanism and process of sawtooth are simulated. Also, the change features regarding the cutting force as well as its effects on temperature are studied. More specifically, the contact of sawtooth formation frequency with cutting force fluctuation frequency is established. The cutting force and effect of cutting temperature on mechanism of adiabatic shear are investigated. Furthermore, the effects of the cutting condition on sawtooth chip formation are researched. The researching results show that cutting feed has the most important effect on sawtooth chip formation compared with cutting depth and speed. This research contributes a better understanding of mechanism, feature of chip formation in hard turning process, and supplies theoretical basis for the optimization of hard cutting process parameters.
Adiabatic dynamics with classical noise in optical lattice
NASA Astrophysics Data System (ADS)
Xu, Guanglei; Daley, Andrew
2016-05-01
The technique of adiabatic state preparation is an interesting potential tool for the realisation of sensitive many-body states with ultra-cold atoms at low temperatures. However, questions remain regarding the influence of classical noise in these adiabatic dynamics. We investigate such dynamics in a situation where a level dressing scheme can make amplitude noise in an optical lattice proportional to the Hamiltonian, leading to a quantum Zeno effect for non-adiabatic transitions. We compute the dynamics using stochastic many-body Schrödinger equation and master equation approaches. Taking the examples of 1D Bose-Hubbard model from Mott insulator phase to superfluid phase and comparing with analytical calculations for a two-level system, we demonstrate that when the total time for the process is limited, properly transformed noise can lead to an increased final fidelity in the state preparation. We consider the dynamics also in the presence of imperfections, studying the resulting heating and dephasing for the many-body states, and identifying optimal regimes for future experiments.
Adiabatic invariants for the regular region of the Dicke model
NASA Astrophysics Data System (ADS)
Bastarrachea-Magnani, M. A.; Relaño, A.; Lerma-Hernández, S.; López-del-Carpio, B.; Chávez-Carlos, J.; Hirsch, J. G.
2017-04-01
Adiabatic invariants for the non-integrable Dicke model are introduced. They are shown to provide approximate second integrals of motion in the energy region where the system exhibits a regular dynamics. This low-energy region, present for any set of values of the Hamiltonian parameters is described both with a semiclassical and a full quantum analysis in a broad region of the parameter space. Peres lattices in this region exhibit that many observables vary smoothly with energy, along distinct lines which beg for a formal description. It is demonstrated how the adiabatic invariants provide a rationale to their presence in many cases. They are built employing the Born–Oppenheimer approximation, valid when a fast system is coupled to a much slower one. As the Dicke model has one bosonic and one fermionic degree of freedom, two versions of the approximation are used, depending on which one is the faster. In both cases a noticeably accord with exact numerical results is obtained. The employment of the adiabatic invariants provides a simple and clear theoretical framework to study the physical phenomenology associated to these regimes, far beyond the energies where a quadratic approximation around the minimal energy configuration can be used.
Analysis of a High-Adiabat Cryogenic Implosion on OMEGA
NASA Astrophysics Data System (ADS)
Christopherson, A. R.; Betti, R.; Nora, R.; Epstein, R.; Marshall, F. J.; Forrest, C. J.; Stoeckl, C.; Delettrez, J. A.; Radha, P. B.; Howard, J.
2014-10-01
The performance of high-adiabat implosions >~ 10 is marginally affected by nonuniformities because of the strong ablative stabilization. To test the validity of the one-dimensional (1-D) physics included in existing hydrocodes, a study of high-adiabat cryogenic DT implosions is carried out by comparing the results of 1-D simulations with several measured quantities. It is found that after including nonlocal transport, cross-beam energy transfer, and hot electrons, 1-D simulations reproduce most of the observables with reasonable accuracy. Since the analysis is applied to the only high-adiabat DT implosion fielded on OMEGA, these results do not fully validate the 1-D physics of current hydrocodes. However, this work shows the framework for establishing a validation capability of the 1-D physics of inertial confinement fusion implosions. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and the Office of Fusion Energy Sciences Number DE-FG02-04ER54786.
Feldman, Rebecca E; Islam, Haisam M; Xu, Junqian; Balchandani, Priti
2016-01-01
Purpose Simultaneous multi-slice (SMS) imaging is a powerful technique that can reduce image acquisition time for anatomical, functional, and diffusion weighted magnetic resonance imaging. At higher magnetic fields, such as 7 Tesla, increased radiofrequency (RF) field inhomogeneity, power deposition, and changes in relaxation parameters make SMS spin echo imaging challenging. We designed an adiabatic 180° Power Independent of Number of Slices (PINS) pulse and a matched-phase 90° PINS pulse to generate a SEmi-Adiabatic Matched-phase Spin echo (SEAMS) PINS sequence to address these issues. Methods We used the adiabatic Shinnar Le-Roux (SLR) algorithm to generate a 180° pulse. The SLR polynomials for the 180° pulse were then used to create a matched-phase 90° pulse. The pulses were sub-sampled to produce a SEAMS PINS pulse-pair and the performance of this pulse-pair was validated in phantoms and in vivo. Results Simulations as well as phantom and in vivo results, demonstrate multi-slice capability and improved B1-insensitivity of the SEAMS PINS pulse-pair when operating at RF amplitudes of up to 40% above adiabatic threshold. Conclusion The SEAMS PINS approach presented here achieves multi-slice spin echo profiles with improved B1-insensitivity when compared to a conventional spin echo. PMID:25753055
Non-Adiabatic Dynamics of ICN-(Ar)n and BrCN-(Ar)n
NASA Astrophysics Data System (ADS)
Opoku-Agyeman, Bernice; McCoy, Anne B.
2016-06-01
We investigate the dynamics of the photodissociation of ICN-(Ar)n and BrCN-(Ar)n following electronic excitation to states that dissociate into X- + CN and X* + CN- (X = I or Br) using classical dynamics approaches. Observations made from previous experiments and calculations of these anions demonstrated that non-adiabatic effects are important in the photodissociation process and are reflected in the branching ratios of the photoproducts. The addition of an argon atom is expected to shift the relative energies of these excited states, thereby altering the product branching. Interestingly, experimental studies show that electronically exciting ICN- solvated with even a single argon atom leads to a small fraction of the products recombine to form ICN-.a In this study, the dynamics are carried out using classical mechanics, treating the non-adiabatic effect with a surface hopping algorithm. We assess the accuracy of this approach by first calculating the branching ratios for the bare anions and comparing the results to those from quantum dynamics calculations.a,b Once the results from both the quantum and classical dynamics are shown to be consistent, the classical dynamics simulations are extended to the argon solvated anions. S. Case, E. M. Miller, J. P. Martin, Y. J. Lu, L. Sheps, A. B. McCoy, and W. C. Lineberger, Angew. Chem., Int. Ed. 51, 2651 (2012). B. Opoku-Agyeman, A. S. Case, J. H. Lehman, W. Carl Lineberger and A. B. McCoy, J. Chem Phys. 141, 084305 (2014). J. C. Tully, J. Chem Phys. 93, 1061 (1990).
Huo, Pengfei; Coker, David F
2012-12-14
Powerful approximate methods for propagating the density matrix of complex systems that are conveniently described in terms of electronic subsystem states and nuclear degrees of freedom have recently been developed that involve linearizing the density matrix propagator in the difference between the forward and backward paths of the nuclear degrees of freedom while keeping the interference effects between the different forward and backward paths of the electronic subsystem described in terms of the mapping Hamiltonian formalism and semi-classical mechanics. Here we demonstrate that different approaches to developing the linearized approximation to the density matrix propagator can yield a mean-field like approximate propagator in which the nuclear variables evolve classically subject to Ehrenfest-like forces that involve an average over quantum subsystem states, and by adopting an alternative approach to linearizing we obtain an algorithm that involves classical like nuclear dynamics influenced by a quantum subsystem state dependent force reminiscent of trajectory surface hopping methods. We show how these different short time approximations can be implemented iteratively to achieve accurate, stable long time propagation and explore their implementation in different representations. The merits of the different approximate quantum dynamics methods that are thus consistently derived from the density matrix propagator starting point and different partial linearization approximations are explored in various model system studies of multi-state scattering problems and dissipative non-adiabatic relaxation in condensed phase environments that demonstrate the capabilities of these different types of approximations for treating non-adiabatic electronic relaxation, bifurcation of nuclear distributions, and the passage from nonequilibrium coherent dynamics at short times to long time thermal equilibration in the presence of a model dissipative environment.
NASA Astrophysics Data System (ADS)
Elçi, Alper; Ayvaz, M. Tamer
2014-04-01
The objective of this study is to present an optimization approach to determine locations of new groundwater production wells, where groundwater is relatively less susceptible to groundwater contamination (i.e. more likely to obtain clean groundwater), the pumping rate is maximum or the cost of well installation and operation is minimum for a prescribed set of constraints. The approach also finds locations that are in suitable areas for new groundwater exploration with respect to land use. A regional-scale groundwater flow model is coupled with a hybrid optimization model that uses the Differential Evolution (DE) algorithm and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method as the global and local optimizers, respectively. Several constraints such as the depth to the water table, total well length and the restriction of seawater intrusion are considered in the optimization process. The optimization problem can be formulated either as the maximization of the pumping rate or as the minimization of total costs of well installation and pumping operation from existing and new wells. Pumping rates of existing wells that are prone to seawater intrusion are optimized to prevent groundwater flux from the shoreline towards these wells. The proposed simulation-optimization model is demonstrated on an existing groundwater flow model for the Tahtalı watershed in Izmir-Turkey. The model identifies for the demonstration study locations and pumping rates for up to four new wells and one new well in the cost minimization and maximization problem, respectively. All new well locations in the optimized solution coincide with areas of relatively low groundwater vulnerability. Considering all solutions of the demonstration study, groundwater vulnerability indices for new well locations range from 29.64 to 40.48 (on a scale of 0-100, where 100 indicates high vulnerability). All identified wells are located relatively close to each other. This implies that the method pinpoints the
Fitting and using model Hamiltonian in non-adiabatic molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Smale, Jonathan Ross
In order to study computationally increasingly complex systems using theoretical methods model, Hamiltonians are required to accurately describe the potential energy surface they represent. Also ab-initio methods improve the calculation of the excited states of these complex systems becomes increasingly feasible. One such model Hamiltonian described herein, the Vibronic Coupling Hamiltonian, has previously shown its versatility and ability to describe a variety of non-adiabatic problems. This thesis describes a new method, a genetic algorithm, for the parameterisation of the Vibronic Coupling Hamiltonian to describe both previously calculated potential energy surfaces (allene and pentatetraene) and newly calculated (cyclo-butadiene and toluene) potential energy surfaces. In order to test this genetic algorithm, quantum nuclear dynamics calculations were performed using the multi-configurational time dependent Hartree method and the results compared to experiment..
Adiabatic manipulations of Majorana fermions in a three-dimensional network of quantum wires
NASA Astrophysics Data System (ADS)
Halperin, Bertrand I.; Oreg, Yuval; Stern, Ady; Refael, Gil; Alicea, Jason; von Oppen, Felix
2012-04-01
It has been proposed that localized zero-energy Majorana states can be realized in a two-dimensional network of quasi-one-dimensional semiconductor wires that are proximity coupled to a bulk superconductor. The wires should have strong spin-orbit coupling with appropriate symmetry, and their electrons should be partially polarized by a strong Zeeman field. Then, if the Fermi level is in an appropriate range, the wire can be in a topological superconducting phase, with Majorana states that occur at wire ends and at Y junctions, where three topological superconductor segments may be joined. Here we generalize these ideas to consider a three-dimensional network. The positions of Majorana states can be manipulated, and their non-Abelian properties made visible, by using external gates to selectively deplete portions of the network or by physically connecting and redividing wire segments. Majorana states can also be manipulated by reorientations of the Zeeman field on a wire segment, by physically rotating the wire about almost any axis, or by evolution of the phase of the order parameter in the proximity-coupled superconductor. We show how to keep track of sign changes in the zero-energy Hilbert space during adiabatic manipulations by monitoring the evolution of each Majorana state separately, rather than keeping track of the braiding of all possible pairs. This has conceptual advantages in the case of a three-dimensional network, and may be computationally useful even in two dimensions, if large numbers of Majorana sites are involved.
Diabatic Versus Adiabatic Calculation of Torsion-Vibration Interactions
NASA Astrophysics Data System (ADS)
Hougen, Jon T.
2013-06-01
The introductory part of this talk will deal briefly with two historical topics: (i) use of the words adiabatic, nonadiabatic, and diabatic in thermodynamics and quantum mechanics, and (ii) application of diabatic and adiabatic ideas to vibrational energy level calculations for a pair of diatomic-molecule potential energy curves exhibiting an avoided crossing. The main part of the talk will be devoted to recent work with Li-Hong Xu and Ron Lees on how ab initio projected frequency calculations for small-amplitude vibrations along the large-amplitude internal rotation path in methanol can best be used to help guide experimental assignments and fits in the IR vibrational spectrum. The three CH stretching vibrations for CH_{3}OH can conveniently be represented as coefficients multiplying three different types of basis vibrations, i.e., as coefficients of: (i) the local mode C-H_i bond displacements δr_{i} for hydrogens H_{1}, H_{2} and H_{3} of the methyl top, (ii) symmetrized linear combinations of the three δr_{i} of species A_{1} oplus E in the permutation-inversion group G_{6} = C_{3v} appropriate for methanol, or (iii) symmetrized linear combinations of the three δr_{i} of species 2A_{1} oplus A_{2} in the permutation-inversion group G_{6}. In this talk, we will focus on diabatic and adiabatic computations for the A_{1} oplus E basis vibrations of case (ii) above. We will briefly explain how Jahn-Teller-like and Renner-Teller-like torsion-vibration interaction terms occurring in the potential energy expression in the diabatic calculation become torsion-vibration Coriolis interaction terms occurring in the kinetic energy expression of the adiabatic calculations, and also show how, for algebraically solvable parameter choices, the same energy levels are obtained from either calculation. A final conclusion as to which approach is computationally superior for the numerical data given in a quantum chemistry output file has not yet been arrived at.
Major Steps in the Discovery of Adiabatic Shear Bands
NASA Astrophysics Data System (ADS)
Dodd, Bradley; Walley, Stephen M.; Yang, Rong; Nesterenko, Vitali F.
2015-10-01
The standard story of the discovery of adiabatic shear bands is that it began with the American researchers Zener and Hollomon's famous 1944 paper where the phenomenon was first reported and named. However, a recent discovery by one of us (SMW) in the Cambridge University Library has shown that the phenomenon was discovered and described by a Russian researcher, V.P. Kravz-Tarnavskii, in 1928. A follow-up paper was published by two of his colleagues in 1935. Translations of the 1928 and 1935 papers may be found at http://arxiv.org/abs/1410.1353.
Adiabatic transport of qubits around a black hole
NASA Astrophysics Data System (ADS)
Viennot, David; Moro, Olivia
2017-03-01
We consider localized qubits evolving around a black hole following a quantum adiabatic dynamics. We develop a geometric structure (based on fibre bundles) permitting to describe the quantum states of a qubit and the spacetime geometry in a single framework. The quantum decoherence induced by the black hole on the qubit is analysed in this framework (the role of the dynamical and geometric phases in this decoherence is treated), especially for the quantum teleportation protocol when one qubit falls to the event horizon. A simple formula to compute the fidelity of the teleportation is derived. The case of a Schwarzschild black hole is analysed.
From Classical Nonlinear Integrable Systems to Quantum Shortcuts to Adiabaticity
NASA Astrophysics Data System (ADS)
Okuyama, Manaka; Takahashi, Kazutaka
2016-08-01
Using shortcuts to adiabaticity, we solve the time-dependent Schrödinger equation that is reduced to a classical nonlinear integrable equation. For a given time-dependent Hamiltonian, the counterdiabatic term is introduced to prevent nonadiabatic transitions. Using the fact that the equation for the dynamical invariant is equivalent to the Lax equation in nonlinear integrable systems, we obtain the counterdiabatic term exactly. The counterdiabatic term is available when the corresponding Lax pair exists and the solvable systems are classified in a unified and systematic way. Multisoliton potentials obtained from the Korteweg-de Vries equation and isotropic X Y spin chains from the Toda equations are studied in detail.
Magnetic shielding for a spaceborne adiabatic demagnetization refrigerator (ADR)
NASA Technical Reports Server (NTRS)
Warner, Brent A.; Shirron, Peter J.; Castles, Stephen H.; Serlemitsos, Aristides T.
1991-01-01
The Goddard Space Flight Center has studied magnetic shielding for an adiabatic demagnetization refrigerator. Four types of shielding were studied: active coils, passive ferromagnetic shells, passive superconducting coils, and passive superconducting shells. The passive superconducting shells failed by allowing flux penetration. The other three methods were successful, singly or together. Experimental studies of passive ferromagnetic shielding are compared with calculations made using the Poisson Group of programs, distributed by the Los Alamos Accelerator Code Group of the Los Alamos National Laboratory. Agreement between calculation and experiment is good. The ferromagnetic material is a silicon iron alloy.
More bang for your buck: Super-adiabatic quantum engines
Campo, A. del; Goold, J.; Paternostro, M.
2014-01-01
The practical untenability of the quasi-static assumption makes any realistic engine intrinsically irreversible and its operating time finite, thus implying friction effects at short cycle times. An important technological goal is thus the design of maximally efficient engines working at the maximum possible power. We show that, by utilising shortcuts to adiabaticity in a quantum engine cycle, one can engineer a thermodynamic cycle working at finite power and zero friction. Our findings are illustrated using a harmonic oscillator undergoing a quantum Otto cycle. PMID:25163421
Non-Adiabatic Holonomic Quantum Gates in an atomic system
NASA Astrophysics Data System (ADS)
Azimi Mousolou, Vahid; Canali, Carlo M.; Sjoqvist, Erik
2012-02-01
Quantum computation is essentially the implementation of a universal set of quantum gate operations on a set of qubits, which is reliable in the presence of noise. We propose a scheme to perform robust gates in an atomic four-level system using the idea of non-adiabatic holonomic quantum computation proposed in [1]. The gates are realized by applying sequences of short laser pulses that drive transitions between the four energy levels in such a way that the dynamical phases vanish. [4pt] [1] E. Sjoqvist, D.M. Tong, B. Hessmo, M. Johansson, K. Singh, arXiv:1107.5127v2 [quant-ph
Metallization of nanofilms in strong adiabatic electric fields.
Durach, Maxim; Rusina, Anastasia; Kling, Matthias F; Stockman, Mark I
2010-08-20
We introduce an effect of metallization of dielectric nanofilms by strong, adiabatically varying electric fields. The metallization causes optical properties of a dielectric film to become similar to those of a plasmonic metal (strong absorption and negative permittivity at low optical frequencies). This is a quantum effect, which is exponentially size-dependent, occurring at fields on the order of 0.1 V/Å and pulse durations ranging from ∼1 fs to ∼10 ns for a film thickness of 3-10 nm.
Metallization of Nanofilms in Strong Adiabatic Electric Fields
NASA Astrophysics Data System (ADS)
Durach, Maxim; Rusina, Anastasia; Kling, Matthias F.; Stockman, Mark I.
2010-08-01
We introduce an effect of metallization of dielectric nanofilms by strong, adiabatically varying electric fields. The metallization causes optical properties of a dielectric film to become similar to those of a plasmonic metal (strong absorption and negative permittivity at low optical frequencies). This is a quantum effect, which is exponentially size-dependent, occurring at fields on the order of 0.1V/Å and pulse durations ranging from ˜1fs to ˜10ns for a film thickness of 3-10 nm.
Salt materials testing for a spacecraft adiabatic demagnetization refrigerator
NASA Astrophysics Data System (ADS)
Savage, M. L.; Kittel, P.; Roellig, T.
As part of a technology development effort to qualify adiabatic demagnetization refrigerators for use in a NASA spacecraft, such as the Space Infrared Telescope Facility, a study of low temperature characteristics, heat capacity and resistance to dehydration was conducted for different salt materials. This report includes results of testing with cerrous metaphosphate, several synthetic rubies, and chromic potassium alum (CPA). Preliminary results show that CPA may be suitable for long-term spacecraft use, provided that the salt is property encapsulated. Methods of salt pill construction and testing for all materials are discussed, as well as reliability tests. Also, the temperature regulation scheme and the test cryostat design are briefly discussed.
Non-adiabatic pumping in an oscillating-piston model
NASA Astrophysics Data System (ADS)
Chuchem, Maya; Dittrich, Thomas; Cohen, Doron
2012-05-01
We consider the prototypical "piston pump" operating on a ring, where a circulating current is induced by means of an AC driving. This can be regarded as a generalized Fermi-Ulam model, incorporating a finite-height moving wall (piston) and non-trivial topology (ring). The amount of particles transported per cycle is determined by a layered structure of phase space. Each layer is characterized by a different drift velocity. We discuss the differences compared with the adiabatic and Boltzmann pictures, and highlight the significance of the "diabatic" contribution that might lead to a counter-stirring effect.
Optimized sympathetic cooling of atomic mixtures via fast adiabatic strategies
Choi, Stephen; Sundaram, Bala; Onofrio, Roberto
2011-11-15
We discuss fast frictionless cooling techniques in the framework of sympathetic cooling of cold atomic mixtures. It is argued that optimal cooling of an atomic species--in which the deepest quantum degeneracy regime is achieved--may be obtained by means of sympathetic cooling with another species whose trapping frequency is dynamically changed to maintain constancy of the Lewis-Riesenfeld adiabatic invariant. Advantages and limitations of this cooling strategy are discussed, with particular regard to the possibility of cooling Fermi gases to a deeper degenerate regime.
Salt materials testing for a spacecraft adiabatic demagnetization refrigerator
NASA Technical Reports Server (NTRS)
Savage, M. L.; Kittel, P.; Roellig, T.
1990-01-01
As part of a technology development effort to qualify adiabatic demagnetization refrigerators for use in a NASA spacecraft, such as the Space Infrared Telescope Facility, a study of low temperature characteristics, heat capacity and resistance to dehydration was conducted for different salt materials. This report includes results of testing with cerrous metaphosphate, several synthetic rubies, and chromic potassium alum (CPA). Preliminary results show that CPA may be suitable for long-term spacecraft use, provided that the salt is property encapsulated. Methods of salt pill construction and testing for all materials are discussed, as well as reliability tests. Also, the temperature regulation scheme and the test cryostat design are briefly discussed.
Propagation of laser pulses under conditions of adiabatic population transfer
Arkhipkin, V G; Manushkin, D V; Timofeev, V P
1998-12-31
A medium of three-level absorbing atoms is considered under conditions of adiabatic population transfer. A study is made of the characteristics of spatial propagation of two delayed (relative to one another) Gaussian pulses. It is shown that selective excitation of a two-photon resonant state with a near-unity probability is conserved over the length of a medium, which is considerably greater than the absorption length of a weak probe pulse in the absence of the second field. (physical basis of quantum electronics)
Stimulated Raman adiabatic passage in Tm{sup 3+}:YAG
Alexander, A. L.; Lauro, R.; Louchet, A.; Chaneliere, T.; Le Goueet, J. L.
2008-10-01
We report on the experimental demonstration of stimulated Raman adiabatic passage in a Tm{sup 3+}:YAG crystal. Tm{sup 3+}:YAG is a promising material for use in quantum information processing applications, but as yet there are few experimental investigations of coherent Raman processes in this material. We investigate the effect of inhomogeneous broadening and Rabi frequency on the transfer efficiency and the width of the two-photon spectrum. Simulations of the complete Tm{sup 3+}:YAG system are presented along with the corresponding experimental results.
Adiabatic invariants in stellar dynamics. 2: Gravitational shocking
NASA Technical Reports Server (NTRS)
Weinberg, Martin D.
1994-01-01
A new theory of gravitational shocking based on time-dependent perturbation theory shows that the changes in energy and angular momentum due to a slowly varying disturbance are not exponentially small for stellar dynamical systems in general. It predicts significant shock heating by slowly varying perturbations previously thought to be negligible according to the adiabatic criterion. The theory extends the scenarios traditionally computed only with the impulse approximation and is applicable to a wide class of disturbances. The approach is applied specifically to the problem of disk shocking of star clusters.
Modeling of the Adiabatic and Isothermal Methanation Process
NASA Astrophysics Data System (ADS)
Porubova, Jekaterina; Bazbauers, Gatis; Markova, Darja
2011-01-01
Increased use of biomass offers one of the ways to reduce anthropogenic impact on the environment. Using various biomass conversion processes, it is possible to obtain different types of fuels: • solid, e.g. bio-carbon; • liquid, e.g. biodiesel and ethanol; • gaseous, e.g. biomethane. Biomethane can be used in the transport and energy sector, and the total methane production efficiency can reach 65%. By modeling adiabatic and isothermal methanation processes, the most effective one from the methane production point of view is defined. Influence of the process parameters on the overall efficiency of the methane production is determined.
Control of adiabatic light transfer in coupled waveguides with longitudinally varying detuning
NASA Astrophysics Data System (ADS)
Oukraou, Hassan; Vittadello, Laura; Coda, Virginie; Ciret, Charles; Alonzo, Massimo; Rangelov, Andon A.; Vitanov, Nikolay V.; Montemezzani, Germano
2017-02-01
We study adiabatic light transfer in systems of two coupled waveguides with spatially varying detuning of the propagation constants, providing an analogy to the quantum phenomena of rapid adiabatic passage (RAP) and two-state stimulated Raman adiabatic passage (two-state STIRAP). Experimental demonstration using a photoinduction technique confirms the robust and broadband character of the structures that act as broadband directional couplers and broadband beam splitters, respectively.
Shortcut to Adiabatic Passage in Two- and Three-Level Atoms
Chen Xi; Lizuain, I.; Muga, J. G.; Ruschhaupt, A.; Guery-Odelin, D.
2010-09-17
We propose a method to speed up adiabatic passage techniques in two-level and three-level atoms extending to the short-time domain their robustness with respect to parameter variations. It supplements or substitutes the standard laser beam setups with auxiliary pulses that steer the system along the adiabatic path. Compared to other strategies, such as composite pulses or the original adiabatic techniques, it provides a fast and robust approach to population control.
Shortcut to adiabatic control of soliton matter waves by tunable interaction
Li, Jing; Sun, Kun; Chen, Xi
2016-01-01
We propose a method for shortcut to adiabatic control of soliton matter waves in harmonic traps. The tunable interaction controlled by Feshbach resonance is inversely designed to achieve fast and high-fidelity compression of soliton matter waves as compared to the conventional adiabatic compression. These results pave the way to control the nonlinear dynamics for matter waves and optical solitons by using shortcuts to adiabaticity. PMID:28009007
NASA Astrophysics Data System (ADS)
Lu, Jianfeng; Zhou, Zhennan
2016-09-01
In the spirit of the fewest switches surface hopping, the frozen Gaussian approximation with surface hopping (FGA-SH) method samples a path integral representation of the non-adiabatic dynamics in the semiclassical regime. An improved sampling scheme is developed in this work for FGA-SH based on birth and death branching processes. The algorithm is validated for the standard test examples of non-adiabatic dynamics.
Singularity of the time-energy uncertainty in adiabatic perturbation and cycloids on a Bloch sphere.
Oh, Sangchul; Hu, Xuedong; Nori, Franco; Kais, Sabre
2016-02-26
Adiabatic perturbation is shown to be singular from the exact solution of a spin-1/2 particle in a uniformly rotating magnetic field. Due to a non-adiabatic effect, its quantum trajectory on a Bloch sphere is a cycloid traced by a circle rolling along an adiabatic path. As the magnetic field rotates more and more slowly, the time-energy uncertainty, proportional to the length of the quantum trajectory, calculated by the exact solution is entirely different from the one obtained by the adiabatic path traced by the instantaneous eigenstate. However, the non-adiabatic Aharonov-Anandan geometric phase, measured by the area enclosed by the exact path, approaches smoothly the adiabatic Berry phase, proportional to the area enclosed by the adiabatic path. The singular limit of the time-energy uncertainty and the regular limit of the geometric phase are associated with the arc length and arc area of the cycloid on a Bloch sphere, respectively. Prolate and curtate cycloids are also traced by different initial states outside and inside of the rolling circle, respectively. The axis trajectory of the rolling circle, parallel to the adiabatic path, is shown to be an example of transitionless driving. The non-adiabatic resonance is visualized by the number of cycloid arcs.
Wu, Jin-Lei; Ji, Xin; Zhang, Shou
2017-01-01
We propose a dressed-state scheme to achieve shortcuts to adiabaticity in atom-cavity quantum electrodynamics for speeding up adiabatic two-atom quantum state transfer and maximum entanglement generation. Compared with stimulated Raman adiabatic passage, the dressed-state scheme greatly shortens the operation time in a non-adiabatic way. By means of some numerical simulations, we determine the parameters which can guarantee the feasibility and efficiency both in theory and experiment. Besides, numerical simulations also show the scheme is robust against the variations in the parameters, atomic spontaneous emissions and the photon leakages from the cavity.
Singularity of the time-energy uncertainty in adiabatic perturbation and cycloids on a Bloch sphere
Oh, Sangchul; Hu, Xuedong; Nori, Franco; Kais, Sabre
2016-01-01
Adiabatic perturbation is shown to be singular from the exact solution of a spin-1/2 particle in a uniformly rotating magnetic field. Due to a non-adiabatic effect, its quantum trajectory on a Bloch sphere is a cycloid traced by a circle rolling along an adiabatic path. As the magnetic field rotates more and more slowly, the time-energy uncertainty, proportional to the length of the quantum trajectory, calculated by the exact solution is entirely different from the one obtained by the adiabatic path traced by the instantaneous eigenstate. However, the non-adiabatic Aharonov- Anandan geometric phase, measured by the area enclosed by the exact path, approaches smoothly the adiabatic Berry phase, proportional to the area enclosed by the adiabatic path. The singular limit of the time-energy uncertainty and the regular limit of the geometric phase are associated with the arc length and arc area of the cycloid on a Bloch sphere, respectively. Prolate and curtate cycloids are also traced by different initial states outside and inside of the rolling circle, respectively. The axis trajectory of the rolling circle, parallel to the adiabatic path, is shown to be an example of transitionless driving. The non-adiabatic resonance is visualized by the number of cycloid arcs. PMID:26916031
Zhou, Jian; Yu, Wei-Can; Gao, Yu-Mei; Xue, Zheng-Yuan
2015-06-01
A cavity QED implementation of the non-adiabatic holonomic quantum computation in decoherence-free subspaces is proposed with nitrogen-vacancy centers coupled commonly to the whispering-gallery mode of a microsphere cavity, where a universal set of quantum gates can be realized on the qubits. In our implementation, with the assistant of the appropriate driving fields, the quantum evolution is insensitive to the cavity field state, which is only virtually excited. The implemented non-adiabatic holonomies, utilizing optical transitions in the Λ type of three-level configuration of the nitrogen-vacancy centers, can be used to construct a universal set of quantum gates on the encoded logical qubits. Therefore, our scheme opens up the possibility of realizing universal holonomic quantum computation with cavity assisted interaction on solid-state spins characterized by long coherence times.
Robust quantum logic in neutral atoms via adiabatic Rydberg dressing
Keating, Tyler; Cook, Robert L.; Hankin, Aaron M.; Jau, Yuan -Yu; Biedermann, Grant W.; Deutsch, Ivan H.
2015-01-28
We study a scheme for implementing a controlled-Z (CZ) gate between two neutral-atom qubits based on the Rydberg blockade mechanism in a manner that is robust to errors caused by atomic motion. By employing adiabatic dressing of the ground electronic state, we can protect the gate from decoherence due to random phase errors that typically arise because of atomic thermal motion. In addition, the adiabatic protocol allows for a Doppler-free configuration that involves counterpropagating lasers in a σ_{+}/σ_{-} orthogonal polarization geometry that further reduces motional errors due to Doppler shifts. The residual motional error is dominated by dipole-dipole forces acting on doubly-excited Rydberg atoms when the blockade is imperfect. As a result, for reasonable parameters, with qubits encoded into the clock states of ^{133}Cs, we predict that our protocol could produce a CZ gate in < 10 μs with error probability on the order of 10^{-3}.
Sliding Seal Materials for Adiabatic Engines, Phase 2
NASA Technical Reports Server (NTRS)
Lankford, J.; Wei, W.
1986-01-01
An essential task in the development of the heavy-duty adiabatic diesel engine is identification and improvements of reliable, low-friction piston seal materials. In the present study, the sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, and loading conditions that are representative of the adiabatic engine environment. In addition, silicon nitride and partially stabilized zirconia disks were ion implanted with TiNi, Ni, Co, and Cr, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Electron microscopy was used to elucidate the micromechanisms of wear following wear testing, and Auger electron spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. The coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implanation of TiNi or Co. This beneficial effect was found to derive from lubricious Ti, Ni, and Co oxides.
Breakdown of adiabatic electron behavior in expanding magnetic fields
NASA Astrophysics Data System (ADS)
Lichko, Emily; Egedal, Jan; Daughton, William
2015-11-01
During magnetic reconnection the incoming magnetic flux tubes expand in the inflow region. If this expansion is sufficiently slow the results are well described by a previously developed adiabatic model. Using kinetic simulations in a simple geometry and applying rapid magnetic perturbations, this study investigates the point at which the adiabatic assumption fails. To this end a 2D VPIC simulation was constructed, where the magnetic field in a uniform plasma is perturbed by externally driven currents. By varying the onset speed of the magnetic perturbation and the electron thermal speed, we found a sharp threshold at which this model breaks down. We believe that this point is determined by the time of the magnetic pumping compared to the electron transit time through the region, i.e. ω ~ Ḃ / B ~vthe / L . This threshold was also characterized by the launching of Whistler waves and with time domain structures, such as electron holes and double layers, which agree with those seen during magnetic reconnection and may relate to similar structures in the Van Allen Belts. NSF GEM award 1405166 and NASA grant NNX14AC68G.
Robust quantum logic in neutral atoms via adiabatic Rydberg dressing
Keating, Tyler; Cook, Robert L.; Hankin, Aaron M.; ...
2015-01-28
We study a scheme for implementing a controlled-Z (CZ) gate between two neutral-atom qubits based on the Rydberg blockade mechanism in a manner that is robust to errors caused by atomic motion. By employing adiabatic dressing of the ground electronic state, we can protect the gate from decoherence due to random phase errors that typically arise because of atomic thermal motion. In addition, the adiabatic protocol allows for a Doppler-free configuration that involves counterpropagating lasers in a σ+/σ- orthogonal polarization geometry that further reduces motional errors due to Doppler shifts. The residual motional error is dominated by dipole-dipole forces actingmore » on doubly-excited Rydberg atoms when the blockade is imperfect. As a result, for reasonable parameters, with qubits encoded into the clock states of 133Cs, we predict that our protocol could produce a CZ gate in < 10 μs with error probability on the order of 10-3.« less
The effect of adiabaticity on strongly quenched Bose Einstein Condensates
NASA Astrophysics Data System (ADS)
Ling, Hong; Kain, Ben
2015-05-01
We study the properties of a Bose-Einstein condensate following a deep quench to a large scattering length during which the condensate fraction nc changes with time. We construct a closed set of equations that highlight the role of the adiabaticity or equivalently, dnc/dt, the rate change of nc, which is to induce an (imaginary) effective interaction between quasiparticles. We show analytically that such a system supports a steady state characterized by a constant condensate density and a steady but periodically changing momentum distribution, whose time average is described exactly by the generalized Gibbs ensemble. We discuss how the nc -induced effective interaction, which cannot be ignored on the grounds of the adiabatic approximation for modes near the gapless Goldstone mode, can significantly affect condensate populations and Tan's contact for a Bose gas that has undergone a deep quench. In particular, we find that even when the Bose gas is quenched to unitarity, nc(t) does not completely deplete, approaching, instead, to a steady state with a finite condensate fraction. ITAMP, Harvard-Smithsonian Center for Astrophysics; KITP, University of Santa Barbara.
Highly parallel implementation of non-adiabatic Ehrenfest molecular dynamics
NASA Astrophysics Data System (ADS)
Kanai, Yosuke; Schleife, Andre; Draeger, Erik; Anisimov, Victor; Correa, Alfredo
2014-03-01
While the adiabatic Born-Oppenheimer approximation tremendously lowers computational effort, many questions in modern physics, chemistry, and materials science require an explicit description of coupled non-adiabatic electron-ion dynamics. Electronic stopping, i.e. the energy transfer of a fast projectile atom to the electronic system of the target material, is a notorious example. We recently implemented real-time time-dependent density functional theory based on the plane-wave pseudopotential formalism in the Qbox/qb@ll codes. We demonstrate that explicit integration using a fourth-order Runge-Kutta scheme is very suitable for modern highly parallelized supercomputers. Applying the new implementation to systems with hundreds of atoms and thousands of electrons, we achieved excellent performance and scalability on a large number of nodes both on the BlueGene based ``Sequoia'' system at LLNL as well as the Cray architecture of ``Blue Waters'' at NCSA. As an example, we discuss our work on computing the electronic stopping power of aluminum and gold for hydrogen projectiles, showing an excellent agreement with experiment. These first-principles calculations allow us to gain important insight into the the fundamental physics of electronic stopping.
Enhanced Diffusion Weighting Generated by Selective Adiabatic Pulse Trains
Sun, Ziqi; Bartha, Robert
2007-01-01
A theoretical description and experimental validation of the enhanced diffusion weighting generated by selective adiabatic full passage (AFP) pulse trains is provided. Six phantoms (Ph-1 to Ph-6) were studied on a 4T Varian/Siemens whole body MRI system. Phantoms consisted of 2.8 cm diameter plastic tubes containing a mixture of 10 μm ORGASOL polymer beads and 2 mM Gd-DTPA dissolved in 5% agar (Ph-1) or nickel(II) ammonium sulphate hexahydrate doped (56.3 mM – 0.8 mM) water solutions (Ph-2 to Ph-6). A customized localization by adiabatic selective refocusing (LASER) sequence containing slice selective AFP pulse trains and pulsed diffusion gradients applied in the phase encoding direction was used to measure 1H2O diffusion. The b-value associated with the LASER sequence was derived using the Bloch-Torrey equation. The apparent diffusion coefficients measured by LASER were comparable to those measured by a conventional pulsed gradient spin-echo (PGSE) sequence for all phantoms. Image signal intensity increased in Ph-1 and decreased in Ph-2 – Ph-6 as AFP pulse train length increased while maintaining a constant echo-time. These experimental results suggest that such AFP pulse trains can enhance contrast between regions containing microscopic magnetic susceptibility variations and homogeneous regions in which dynamic dephasing relaxation mechanisms are dominant. PMID:17600741
The 0.1K bolometers cooled by adiabatic demagnetization
NASA Technical Reports Server (NTRS)
Roellig, T.; Lesyna, L.; Kittel, P.; Werner, M.
1983-01-01
The most straightforward way of reducing the noise equivalent power of bolometers is to lower their operating temperature. We have been exploring the possibility of using conventionally constructed bolometers at ultra-low temperatures to achieve NEP's suitable to the background environment of cooled space telescopes. We have chosen the technique of adiabatic demagnetization of a paramagnetic salt as a gravity independent, compact, and low power way to achieve temperatures below pumped He-3 (0.3 K). The demagnetization cryostat we used was capable of reaching temperatures below 0.08 K using Chromium Potassium Alum as a salt from a starting temperature of 1.5 K and a starting magnetic field of 30,000 gauss. Computer control of the magnetic field decay allowed a temperature of 0.2 K to be maintained to within 0.5 mK over a time period exceeding 14 hours. The refrigerator duty cycle was over 90 percent at this temperature. The success of these tests has motivated us to construct a more compact portable adiabatic demagnetization cryostat capable of bolometer optical tests and use at the 5m Hale telescope at 1mm wavelengths.
Conditions for super-adiabatic droplet growth after entrainment mixing
Yang, Fan; Shaw, Raymond; Xue, Huiwen
2016-07-29
Cloud droplet response to entrainment and mixing between a cloud and its environment is considered, accounting for subsequent droplet growth during adiabatic ascent following a mixing event. The vertical profile for liquid water mixing ratio after a mixing event is derived analytically, allowing the reduction to be predicted from the mixing fraction and from the temperature and humidity for both the cloud and environment. It is derived for the limit of homogeneous mixing. The expression leads to a critical height above the mixing level: at the critical height the cloud droplet radius is the same for both mixed and unmixedmore » parcels, and the critical height is independent of the updraft velocity and mixing fraction. Cloud droplets in a mixed parcel are larger than in an unmixed parcel above the critical height, which we refer to as the “super-adiabatic” growth region. Analytical results are confirmed with a bin microphysics cloud model. Using the model, we explore the effects of updraft velocity, aerosol source in the environmental air, and polydisperse cloud droplets. Results show that the mixed parcel is more likely to reach the super-adiabatic growth region when the environmental air is humid and clean. It is also confirmed that the analytical predictions are matched by the volume-mean cloud droplet radius for polydisperse size distributions. The findings have implications for the origin of large cloud droplets that may contribute to onset of collision–coalescence in warm clouds.« less
Adiabatic cooling of the artificial Porcupine plasma jet
NASA Astrophysics Data System (ADS)
Ruizhin, Iu. Ia.; Treumann, R. A.; Bauer, O. H.; Moskalenko, A. M.
1987-01-01
Measurements of the plasma density obtained during the interaction of the artificial plasma jet, fired into the ionosphere with the body of the Porcupine main payload, have been analyzed for times when there was a well-developed wake effect. Using wake theory, the maximum temperature of the quasi-neutral xenon ion beam has been determined for an intermediate distance from the ion beam source when the beam has left the diamagnetic region but is still much denser than the ionospheric background plasma. The beam temperature is found to be about 4 times less than the temperature at injection. This observation is very well explained by adiabatic cooling of the beam during its initial diamagnetic and current-buildup phases at distances r smaller than 10 m. Outside this region, the beam conserves the temperature achieved. The observation proves that the artificial plasma jet passes through an initial gas-like diamagnetic phase restricted to the vicinity of the beam source, where it expands adiabatically. Partial cooling also takes place outside the diamagnetic region where the beam current still builds up. The observations also support a recently developed current-closure model of the quasi-neutral ion beam.
AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT
French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Redmer, Ronald; Wicht, Johannes
2012-09-15
We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grueneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.
Adiabatic-nuclei calculations of positron scattering from molecular hydrogen
NASA Astrophysics Data System (ADS)
Zammit, Mark C.; Fursa, Dmitry V.; Savage, Jeremy S.; Bray, Igor; Chiari, Luca; Zecca, Antonio; Brunger, Michael J.
2017-02-01
The single-center adiabatic-nuclei convergent close-coupling method is used to investigate positron collisions with molecular hydrogen (H2) in the ground and first vibrationally excited states. Cross sections are presented over the energy range from 1 to 1000 eV for elastic scattering, vibrational excitation, total ionization, and the grand total cross section. The present adiabatic-nuclei positron-H2 scattering length is calculated as A =-2.70 a0 for the ground state and A =-3.16 a0 for the first vibrationally excited state. The present elastic differential cross sections are also used to "correct" the low-energy grand total cross-section measurements of the Trento group [A. Zecca et al., Phys. Rev. A 80, 032702 (2009), 10.1103/PhysRevA.80.032702] for the forward-angle-scattering effect. In general, the comparison with experiment is good. By performing convergence studies, we estimate that our Rm=1.448 a0 fixed-nuclei results are converged to within ±5 % for the major scattering integrated cross sections.
Breakdown of the adiabatic Born-Oppenheimer approximation in graphene
NASA Astrophysics Data System (ADS)
Pisana, Simone; Lazzeri, Michele; Casiraghi, Cinzia; Novoselov, Kostya S.; Geim, A. K.; Ferrari, Andrea C.; Mauri, Francesco
2007-03-01
The adiabatic Born-Oppenheimer approximation (ABO) has been the standard ansatz to describe the interaction between electrons and nuclei since the early days of quantum mechanics. ABO assumes that the lighter electrons adjust adiabatically to the motion of the heavier nuclei, remaining at any time in their instantaneous ground state. ABO is well justified when the energy gap between ground and excited electronic states is larger than the energy scale of the nuclear motion. In metals, the gap is zero and phenomena beyond ABO (such as phonon-mediated superconductivity or phonon-induced renormalization of the electronic properties) occur. The use of ABO to describe lattice motion in metals is, therefore, questionable. In spite of this, ABO has proved effective for the accurate determination of chemical reactions, molecular dynamics and phonon frequencies in a wide range of metallic systems. Here, we show that ABO fails in graphene. Graphene, recently discovered in the free state, is a zero-bandgap semiconductor that becomes a metal if the Fermi energy is tuned applying a gate voltage, Vg. This induces a stiffening of the Raman G peak that cannot be described within ABO.
Pulsating low-mass white dwarfs in the frame of new evolutionary sequences. I. Adiabatic properties
NASA Astrophysics Data System (ADS)
Córsico, A. H.; Althaus, L. G.
2014-09-01
Context. Many low-mass white dwarfs with masses M∗/M⊙ ≲ 0.45, including the so-called extremely low-mass white dwarfs (M∗/M⊙ ≲ 0.20 - 0.25), have recently been discovered in the field of our Galaxy through dedicated photometric surveys. The subsequent discovery of pulsations in some of them has opened the unprecedented opportunity of probing the internal structure of these ancient stars. Aims: We present a detailed adiabatic pulsational study of these stars based on full evolutionary sequences derived from binary star evolution computations. The main aim of this study is to provide a detailed theoretical basis of reference for interpreting present and future observations of variable low-mass white dwarfs. Methods: Our pulsational analysis is based on a new set of He-core white-dwarf models with masses ranging from 0.1554 to 0.4352 M⊙ derived by computing the non-conservative evolution of a binary system consisting of an initially 1 M⊙ ZAMS star and a 1.4 M⊙ neutron star. We computed adiabatic radial (ℓ = 0) and non-radial (ℓ = 1,2) p and g modes to assess the dependence of the pulsational properties of these objects on stellar parameters such as the stellar mass and the effective temperature, as well as the effects of element diffusion. Results: We found that for white dwarf models with masses below ~ 0.18 M⊙, g modes mainly probe the core regions and p modes the envelope, therefore pulsations offer the opportunity of constraining both the core and envelope chemical structure of these stars via asteroseismology. For models with M∗ ≳ 0.18 M⊙, on the other hand, g modes are very sensitive to the He/H compositional gradient and therefore can be used as a diagnostic tool for constraining the H envelope thickness. Because both types of objects have not only very distinct evolutionary histories (according to whether the progenitor stars have experienced CNO-flashes or not), but also have strongly different pulsation properties, we propose to
Neville, Simon P; Averbukh, Vitali; Patchkovskii, Serguei; Ruberti, Marco; Yun, Renjie; Chergui, Majed; Stolow, Albert; Schuurman, Michael S
2016-12-16
The excited state non-adiabatic dynamics of polyatomic molecules, leading to the coupling of structural and electronic dynamics, is a fundamentally important yet challenging problem for both experiment and theory. Ongoing developments in ultrafast extreme vacuum ultraviolet (XUV) and soft X-ray sources present new probes of coupled electronic-structural dynamics because of their novel and desirable characteristics. As one example, inner-shell spectroscopy offers localized, atom-specific probes of evolving electronic structure and bonding (via chemical shifts). In this work, we present the first on-the-fly ultrafast X-ray time-resolved absorption spectrum simulations of excited state wavepacket dynamics: photo-excited ethylene. This was achieved by coupling the ab initio multiple spawning (AIMS) method, employing on-the-fly dynamics simulations, with high-level algebraic diagrammatic construction (ADC) X-ray absorption cross-section calculations. Using the excited state dynamics of ethylene as a test case, we assessed the ability of X-ray absorption spectroscopy to project out the electronic character of complex wavepacket dynamics, and evaluated the sensitivity of the calculated spectra to large amplitude nuclear motion. In particular, we demonstrate the pronounced sensitivity of the pre-edge region of the X-ray absorption spectrum to the electronic and structural evolution of the excited-state wavepacket. We conclude that ultrafast time-resolved X-ray absorption spectroscopy may become a powerful tool in the interrogation of excited state non-adiabatic molecular dynamics.
Simple proof of equivalence between adiabatic quantum computation and the circuit model.
Mizel, Ari; Lidar, Daniel A; Mitchell, Morgan
2007-08-17
We prove the equivalence between adiabatic quantum computation and quantum computation in the circuit model. An explicit adiabatic computation procedure is given that generates a ground state from which the answer can be extracted. The amount of time needed is evaluated by computing the gap. We show that the procedure is computationally efficient.
Controlled Rapid Adiabatic Passage in a V-Type System
NASA Astrophysics Data System (ADS)
Song, Yunheung; Lee, Han-Gyeol; Jo, Hanlae; Ahn, Jaewook
2016-05-01
In chirped rapid adiabatic passage (RAP), chirp sign determines the final state to which the complete population transfer (CPT) occurs in a three-level V-type system. In this study, we show that laser intensity can be alternatively used as a control means in RAP, when the laser pulse is chirped and of a spectral hole resonant to one of the excited states. We verified such excitation selectivity in the experiment performed as-shaped femtosecond laser pulses interacting with the lowest three levels (5S, 5 P1/2, and 5 P3/2) of atomic rubidium. The successful demonstration implies that this intensity-dependent RAP in conjunction with laser beam profile programming may allow excitation selectivity for atoms or ions arranged in space.
Multiphoton Raman Atom Optics with Frequency-Swept Adiabatic Passage
NASA Astrophysics Data System (ADS)
Kotru, Krish; Butts, David; Kinast, Joseph; Stoner, Richard
2016-05-01
Light-pulse atom interferometry is a promising candidate for future inertial navigators, gravitational wave detectors, and measurements of fundamental physical constants. The sensitivity of this technique, however, is often limited by the small momentum separations created between interfering atom wave packets (typically ~ 2 ℏk) . We address this issue using light-pulse atom optics derived from stimulated Raman transitions and frequency-swept adiabatic rapid passage (ARP). In experiments, these Raman ARP atom optics have generated up to 30 ℏk photon recoil momenta in an acceleration-sensitive atom interferometer, thereby enhancing the phase shift per unit acceleration by a factor of 15. Since this approach forgoes evaporative cooling and velocity selection, it could enable large-area atom interferometry at higher data rates, while also lowering the atom shot-noise-limited measurement uncertainty.
Adiabatic photo-steering theory in topological insulators
Inoue, Jun-ichi
2014-01-01
Feasible external control of material properties is a crucial issue in condensed matter physics. A new approach to achieving this aim, named adiabatic photo-steering, is reviewed. The core principle of this scheme is that several material constants are effectively turned into externally tunable variables by irradiation of monochromatic laser light. Two-dimensional topological insulators are selected as the optimal systems that exhibit a prominent change in their properties following the application of this method. Two specific examples of photo-steered quantum phenomena, which reflect topological aspects of the electronic systems at hand, are presented. One is the integer quantum Hall effect described by the Haldane model, and the other is the quantum spin Hall effect described by the Kane–Mele model. The topological quantities associated with these phenomena are the conventional Chern number and spin Chern number, respectively. A recent interesting idea, time-reversal symmetry breaking via a temporary periodic external stimulation, is also discussed. PMID:27877726
Investigating the adiabatic beam grouping at the NICA accelerator complex
NASA Astrophysics Data System (ADS)
Brovko, O. I.; Butenko, A. V.; Grebentsov, A. Yu.; Eliseev, A. V.; Meshkov, I. N.; Svetov, A. L.; Sidorin, A. O.; Slepnev, V. M.
2016-12-01
The NICA complex comprises the Booster and Nuclotron synchrotrons for accelerating particle beams to the required energy and the Collider machine, in which particle collisions are investigated. The experimental heavy-ion program deals with ions up to Au+79. The light-ion program deals with polarized deuterons and protons. Grouping of a beam coasting in an ion chamber is required in many parts of the complex. Beam grouping may effectively increase the longitudinal emittance and particle losses. To avoid these negative effects, various regimes of adiabatic grouping have been simulated and dedicated experiments with a deuteron beam have been conducted at the Nuclotron machine. As a result, we are able to construct and optimize the beam-grouping equipment, which provides a capture efficiency near 100% either retaining or varying the harmonic multiplicity of the HF system.
Adiabatic approximation for the Rabi model with broken inversion symmetry
NASA Astrophysics Data System (ADS)
Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi
2017-01-01
We study the properties and behavior of the Rabi model with broken inversion symmetry. Using an adiabatic approximation approach, we explore the high-frequency qubit and oscillator regimes, and obtain analytical solutions for the qubit-oscillator system. We demonstrate that, due to broken inversion symmetry, the positions of two potentials and zero-point energies in the oscillators become asymmetric and have a quadratic dependence on the mean dipole moments within the high-frequency oscillator regime. Furthermore, we find that there is a critical point above which the qubit-oscillator system becomes unstable, and the position of this critical point has a quadratic dependence on the mean dipole moments within the high-frequency qubit regime. Finally, we verify this critical point based on the method of semiclassical approximation.
Shortcut to Adiabaticity for an Anisotropic Gas Containing Quantum Defects.
Papoular, D J; Stringari, S
2015-07-10
We present a shortcut to adiabaticity (STA) protocol applicable to 3D unitary Fermi gases and 2D weakly interacting Bose gases containing defects such as vortices or solitons. Our protocol relies on a new class of exact scaling solutions in the presence of anisotropic time-dependent harmonic traps. It connects stationary states in initial and final traps having the same frequency ratios. The resulting scaling laws exhibit a universal form and also apply to the classical Boltzmann gas. The duration of the STA can be made very short so as to realize a quantum quench from one stationary state to another. When applied to an anisotropically trapped superfluid gas, the STA conserves the shape of the quantum defects hosted by the cloud, thereby acting like a perfect microscope, which sharply contrasts with their strong distortion occurring during the free expansion of the cloud.
Novel latch for adiabatic quantum-flux-parametron logic
Takeuchi, Naoki Yamanashi, Yuki; Yoshikawa, Nobuyuki; Ortlepp, Thomas
2014-03-14
We herein propose the quantum-flux-latch (QFL) as a novel latch for adiabatic quantum-flux-parametron (AQFP) logic. A QFL is very compact and compatible with AQFP logic gates and can be read out in one clock cycle. Simulation results revealed that the QFL operates at 5 GHz with wide parameter margins of more than ±22%. The calculated energy dissipation was only ∼0.1 aJ/bit, which yields a small energy delay product of 20 aJ·ps. We also designed shift registers using QFLs to demonstrate more complex circuits with QFLs. Finally, we experimentally demonstrated correct operations of the QFL and a 1-bit shift register (a D flip-flop)
Passive gas-gap heat switch for adiabatic demagnetization refrigerator
NASA Technical Reports Server (NTRS)
Shirron, Peter J. (Inventor); Di Pirro, Michael J. (Inventor)
2005-01-01
A passive gas-gap heat switch for use with a multi-stage continuous adiabatic demagnetization refrigerator (ADR). The passive gas-gap heat switch turns on automatically when the temperature of either side of the switch rises above a threshold value and turns off when the temperature on either side of the switch falls below this threshold value. One of the heat switches in this multistage process must be conductive in the 0.25? K to 0.3? K range. All of the heat switches must be capable of switching off in a short period of time (1-2 minutes), and when off to have a very low thermal conductance. This arrangement allows cyclic cooling cycles to be used without the need for separate heat switch controls.
Some properties of adiabatic blast waves in preexisting cavities
NASA Technical Reports Server (NTRS)
Cox, D. P.; Franco, J.
1981-01-01
Cox and Anderson (1982) have conducted an investigation regarding an adiabatic blast wave in a region of uniform density and finite external pressure. In connection with an application of the results of the investigation to a study of interstellar blast waves in the very hot, low-density matrix, it was found that it would be desirable to examine situations with a positive radial density gradient in the ambient medium. Information concerning such situations is needed to learn about the behavior of blast waves occurring within preexisting, presumably supernova-induced cavities in the interstellar mass distribution. The present investigation is concerned with the first steps of a study conducted to obtain the required information. A review is conducted of Sedov's (1959) similarity solutions for the dynamical structure of any explosion in a medium with negligible pressure and power law density dependence on radius.
Quasi-adiabatic compression heating of selected foods
NASA Astrophysics Data System (ADS)
Landfeld, Ales; Strohalm, Jan; Halama, Radek; Houska, Milan
2011-03-01
The quasi-adiabatic temperature increase due to compression heating, during high-pressure (HP) processing (HPP), was studied using specially designed equipment. The temperature increase was evaluated as the difference in temperature, during compression, between atmospheric pressure and nominal pressure. The temperature was measured using a thermocouple in the center of a polyoxymethylene cup, which contained the sample. Fresh meat balls, pork meat pate, and tomato purée temperature increases were measured at three initial temperature levels between 40 and 80 °C. Nominal pressure was either 400 or 500 MPa. Results showed that the fat content had a positive effect on temperature increases. Empirical equations were developed to calculate the temperature increase during HPP at different initial temperatures for pressures of 400 and 500 MPa. This thermal effect data can be used for numerical modeling of temperature histories of foods during HP-assisted pasteurization or sterilization processes.
Adiabatic nucleation in the liquid-vapor phase transition
NASA Astrophysics Data System (ADS)
de Sá, Elon M.; Meyer, Erich; Soares, Vitorvani
2001-05-01
The fundamental difference between classical (isothermal) nucleation theory (CNT) and adiabatic nucleation theory (ANT) is discussed. CNT uses the concept of isothermal heterophase fluctuations, while ANT depends on common fluctuations of the thermodynamic variables. Applications to the nonequilibrium liquid to vapor transition are shown. However, we cannot yet calculate nucleation frequencies. At present, we can only indicate at what temperatures and pressures copious homogeneous nucleation is expected in the liquid to vapor phase transition. It is also explained why a similar general indication cannot be made for the inverse vapor to liquid transition. Simultaneously, the validity of Peng-Robinson's equation of state [D.-Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fundam. 15, 59 (1976)] is confirmed for highly supersaturated liquids.
Adiabatic rotation of effective spin. II. Spin-rotational relaxation
NASA Astrophysics Data System (ADS)
Serebrennikov, Yu. A.; Steiner, U. E.
1994-05-01
The theory of electron spin-rotational (SR) relaxation in systems with an effective spin Seff=1/2 is formulated in terms of the adiabatic rotation of effective spin (ARES) approach. It is shown that SR relaxation results from the orientational random walk of the axes of the intramolecular electric field potential (ligand field) to which a spin-bearing atomic center is exposed. The validity of the stochastic treatment presented here is not limited by the Redfield conditions. The general expression obtained for the time constant of electron spin relaxation in liquid phase reproduces the well-known result of Hubbard-Atkins-Kivelson theory if it is specialized to the case of systems with weak spin-orbit coupling.
Perspective: Stimulated Raman adiabatic passage: The status after 25 years
NASA Astrophysics Data System (ADS)
Bergmann, Klaas; Vitanov, Nikolay V.; Shore, Bruce W.
2015-05-01
The first presentation of the STIRAP (stimulated Raman adiabatic passage) technique with proper theoretical foundation and convincing experimental data appeared 25 years ago, in the May 1st, 1990 issue of The Journal of Chemical Physics. By now, the STIRAP concept has been successfully applied in many different fields of physics, chemistry, and beyond. In this article, we comment briefly on the initial motivation of the work, namely, the study of reaction dynamics of vibrationally excited small molecules, and how this initial idea led to the documented success. We proceed by providing a brief discussion of the physics of STIRAP and how the method was developed over the years, before discussing a few examples from the amazingly wide range of applications which STIRAP now enjoys, with the aim to stimulate further use of the concept. Finally, we mention some promising future directions.
Properties of a two stage adiabatic demagnetization refrigerator
NASA Astrophysics Data System (ADS)
Fukuda, H.; Ueda, S.; Arai, R.; Li, J.; Saito, A. T.; Nakagome, H.; Numazawa, T.
2015-12-01
Currently, many space missions using cryogenic temperatures are being planned. In particular, high resolution sensors such as Transition Edge Sensors need very low temperatures, below 100 mK. It is well known that the adiabatic demagnetization refrigerator (ADR) is one of most useful tools for producing ultra-low temperatures in space because it is gravity independent. We studied a continuous ADR system consisting of 4 stages and demonstrated it could provide continuous temperatures around 100 mK. However, there was some heat leakage from the power leads which resulted in reduced cooling power. Our efforts to upgrade our ADR system are presented. We show the effect of using the HTS power leads and discuss a cascaded Carnot cycle consisting of 2 ADR units.
Planar prism spectrometer based on adiabatically connected waveguiding slabs
NASA Astrophysics Data System (ADS)
Civitci, F.; Hammer, M.; Hoekstra, H. J. W. M.
2016-04-01
The device principle of a prism-based on-chip spectrometer for TE polarization is introduced. The spectrometer exploits the modal dispersion in planar waveguides in a layout with slab regions having two different thicknesses of the guiding layer. The set-up uses parabolic mirrors, for the collimation of light of the input waveguide and focusing of the light to the receiver waveguides, which relies on total internal reflection at the interface between two such regions. These regions are connected adiabatically to prevent unwanted mode conversion and loss at the edges of the prism. The structure can be fabricated with two wet etching steps. The paper presents basic theory and a general approach for device optimization. The latter is illustrated with a numerical example assuming SiON technology.
Microwave photon Fock state generation by stimulated Raman adiabatic passage
NASA Astrophysics Data System (ADS)
Premaratne, Shavindra P.; Wellstood, F. C.; Palmer, B. S.
2017-01-01
The deterministic generation of non-classical states of light, including squeezed states, Fock states and Bell states, plays an important role in quantum information processing and exploration of the physics of quantum entanglement. Preparation of these non-classical states in resonators is non-trivial due to their inherent harmonicity. Here we use stimulated Raman adiabatic passage to generate microwave photon Fock states in a superconducting circuit quantum electrodynamics system comprised of a fixed-frequency transmon qubit in a three-dimensional microwave cavity at 20 mK. A two-photon process is employed to overcome a first order forbidden transition and the first, second and third Fock states are demonstrated. We also demonstrate how this all-microwave technique can be used to generate an arbitrary superposition of Fock states. Simulations of the system are in excellent agreement with the data and fidelities of 89%, 68% and 43% are inferred for the first three Fock states respectively.
Design of an adiabatic demagnetization refrigerator for studies in astrophysics
NASA Technical Reports Server (NTRS)
Castles, S.
1983-01-01
An adiabatic demagnetization refrigerator was designed for cooling infrared bolometers for studies in astrophysics and aeronomy. The design was tailored to the requirements of a Shuttle sortie experiment. The refrigerator should be capable of maintaining three bolometers at 0.1 K with a 90% cycle. The advantage are of operations the bolometer at 0.1K. greater sensitivity, faster response time, and the ability to use larger bolometer elements without compromising the response time. The design presented is the first complete design of an ADR intended for use in space. The most important of these specifications are to survive a Shuttle launch, to operate with 1.5 K - 2.0 K space-pumped liquid helium as a heat sink, to have a 90% duty cycle, and to be highly efficient.
Robust entanglement via optomechanical dark mode: adiabatic scheme
NASA Astrophysics Data System (ADS)
Tian, Lin; Wang, Ying-Dan; Huang, Sumei; Clerk, Aashish
2013-03-01
Entanglement is a powerful resource for studying quantum effects in macroscopic objects and for quantum information processing. Here, we show that robust entanglement between cavity modes with distinct frequencies can be generated via a mechanical dark mode in an optomechanical quantum interface. Due to quantum interference, the effect of the mechanical noise is cancelled in a way that is similar to the electromagnetically induced transparency. We derive the entanglement in the strong coupling regime by solving the quantum Langevin equation using a perturbation theory approach. The entanglement in the adiabatic scheme is then compared with the entanglement in the stationary state scheme. Given the robust entanglement schemes and our previous schemes on quantum wave length conversion, the optomechanical interface hence forms an effective building block for a quantum network. This work is supported by DARPA-ORCHID program, NSF-DMR-0956064, NSF-CCF-0916303, and NSF-COINS.
Broadband electrically detected magnetic resonance using adiabatic pulses
NASA Astrophysics Data System (ADS)
Hrubesch, F. M.; Braunbeck, G.; Voss, A.; Stutzmann, M.; Brandt, M. S.
2015-05-01
We present a broadband microwave setup for electrically detected magnetic resonance (EDMR) based on microwave antennae with the ability to apply arbitrarily shaped pulses for the excitation of electron spin resonance (ESR) and nuclear magnetic resonance (NMR) of spin ensembles. This setup uses non-resonant stripline structures for on-chip microwave delivery and is demonstrated to work in the frequency range from 4 MHz to 18 GHz. π pulse times of 50 ns and 70 μs for ESR and NMR transitions, respectively, are achieved with as little as 100 mW of microwave or radiofrequency power. The use of adiabatic pulses fully compensates for the microwave magnetic field inhomogeneity of the stripline antennae, as demonstrated with the help of BIR4 unitary rotation pulses driving the ESR transition of neutral phosphorus donors in silicon and the NMR transitions of ionized phosphorus donors as detected by electron nuclear double resonance (ENDOR).
Broadband electrically detected magnetic resonance using adiabatic pulses.
Hrubesch, F M; Braunbeck, G; Voss, A; Stutzmann, M; Brandt, M S
2015-05-01
We present a broadband microwave setup for electrically detected magnetic resonance (EDMR) based on microwave antennae with the ability to apply arbitrarily shaped pulses for the excitation of electron spin resonance (ESR) and nuclear magnetic resonance (NMR) of spin ensembles. This setup uses non-resonant stripline structures for on-chip microwave delivery and is demonstrated to work in the frequency range from 4 MHz to 18 GHz. π pulse times of 50 ns and 70 μs for ESR and NMR transitions, respectively, are achieved with as little as 100 mW of microwave or radiofrequency power. The use of adiabatic pulses fully compensates for the microwave magnetic field inhomogeneity of the stripline antennae, as demonstrated with the help of BIR4 unitary rotation pulses driving the ESR transition of neutral phosphorus donors in silicon and the NMR transitions of ionized phosphorus donors as detected by electron nuclear double resonance (ENDOR).
Differential geometric treewidth estimation in adiabatic quantum computation
NASA Astrophysics Data System (ADS)
Wang, Chi; Jonckheere, Edmond; Brun, Todd
2016-10-01
The D-Wave adiabatic quantum computing platform is designed to solve a particular class of problems—the Quadratic Unconstrained Binary Optimization (QUBO) problems. Due to the particular "Chimera" physical architecture of the D-Wave chip, the logical problem graph at hand needs an extra process called minor embedding in order to be solvable on the D-Wave architecture. The latter problem is itself NP-hard. In this paper, we propose a novel polynomial-time approximation to the closely related treewidth based on the differential geometric concept of Ollivier-Ricci curvature. The latter runs in polynomial time and thus could significantly reduce the overall complexity of determining whether a QUBO problem is minor embeddable, and thus solvable on the D-Wave architecture.
Comments on adiabatic modifications to plasma turbulence theory
Krommes, J.A.
1980-11-01
Catto earlier introduced an interesting and plausible modification of the usual resonance-broadening prescription for obtaining the nonlinear dielectric function. He argued reasonably that one should employ that prescription only for the nonadiabatic response, and that one should treat the adiabatic response essentially exactly. However, Misguich, in a recent Comment on Catto's work, found an apparent divergence in a form for the renormalized dielectric which he argued was equivalent to Catto's. Misguich was thus led to conclude that, at least for stationary turbulence, Catto's form was suspect, and that a more intricate renormalization might have to be used to obtain a sensible, convergent result. It is argued that this conclusion is incorrect, at least for the reasons Misguich gives.
Nonlinear Adiabatic Passage from Fermion Atoms to Boson Molecules
Pazy, E.; Tikhonenkov, I.; Band, Y.B.; Vardi, A.; Fleischhauer, M.
2005-10-21
We study the dynamics of an adiabatic sweep through a Feshbach resonance in a quantum gas of fermionic atoms. Analysis of the dynamical equations, supported by mean-field and many-body numerical results, shows that the dependence of the remaining atomic fraction {gamma} on the sweep rate {alpha} varies from exponential Landau-Zener behavior for a single pair of particles to a power-law dependence for large particle number N. The power law is linear, {gamma}{proportional_to}{alpha}, when the initial molecular fraction is smaller than the 1/N quantum fluctuations, and {gamma}{proportional_to}{alpha}{sup 1/3} when it is larger. Experimental data agree well with a linear dependence, but do not conclusively rule out the Landau-Zener model.
Effect of Poisson noise on adiabatic quantum control
NASA Astrophysics Data System (ADS)
Kiely, A.; Muga, J. G.; Ruschhaupt, A.
2017-01-01
We present a detailed derivation of the master equation describing a general time-dependent quantum system with classical Poisson white noise and outline its various properties. We discuss the limiting cases of Poisson white noise and provide approximations for the different noise strength regimes. We show that using the eigenstates of the noise superoperator as a basis can be a useful way of expressing the master equation. Using this, we simulate various settings to illustrate different effects of Poisson noise. In particular, we show a dip in the fidelity as a function of noise strength where high fidelity can occur in the strong-noise regime for some cases. We also investigate recent claims [J. Jing et al., Phys. Rev. A 89, 032110 (2014), 10.1103/PhysRevA.89.032110] that this type of noise may improve rather than destroy adiabaticity.
Optical waveguide device with an adiabatically-varying width
Watts; Michael R. , Nielson; Gregory N.
2011-05-10
Optical waveguide devices are disclosed which utilize an optical waveguide having a waveguide bend therein with a width that varies adiabatically between a minimum value and a maximum value of the width. One or more connecting members can be attached to the waveguide bend near the maximum value of the width thereof to support the waveguide bend or to supply electrical power to an impurity-doped region located within the waveguide bend near the maximum value of the width. The impurity-doped region can form an electrical heater or a semiconductor junction which can be activated with a voltage to provide a variable optical path length in the optical waveguide. The optical waveguide devices can be used to form a tunable interferometer (e.g. a Mach-Zehnder interferometer) which can be used for optical modulation or switching. The optical waveguide devices can also be used to form an optical delay line.
Adiabatic quantum-flux-parametron cell library adopting minimalist design
Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki
2015-05-07
We herein build an adiabatic quantum-flux-parametron (AQFP) cell library adopting minimalist design and a symmetric layout. In the proposed minimalist design, every logic cell is designed by arraying four types of building block cells: buffer, NOT, constant, and branch cells. Therefore, minimalist design enables us to effectively build and customize an AQFP cell library. The symmetric layout reduces unwanted parasitic magnetic coupling and ensures a large mutual inductance in an output transformer, which enables very long wiring between logic cells. We design and fabricate several logic circuits using the minimal AQFP cell library so as to test logic cells in the library. Moreover, we experimentally investigate the maximum wiring length between logic cells. Finally, we present an experimental demonstration of an 8-bit carry look-ahead adder designed using the minimal AQFP cell library and demonstrate that the proposed cell library is sufficiently robust to realize large-scale digital circuits.
Quantum and classical non-adiabatic dynamics of Li_{2}^{+}Ne photodissociation
NASA Astrophysics Data System (ADS)
Pouilly, Brigitte; Monnerville, Maurice; Zanuttini, David; Gervais, Benoît
2015-01-01
The 3D photodissociation dynamics of Li2+Ne system is investigated by quantum calculations using the multi-configuration time-dependent Hartree (MCTDH) method and by classical simulations with the trajectory surface hopping (TSH) approach. Six electronic states of A’ symmetry and two states of A” symmetry are involved in the process. Couplings in the excitation region and two conical intersections in the vicinity of the Franck-Condon zone control the non-adiabatic nuclear dynamics. A diabatic representation including all the states and the couplings is determined. Diabatic and adiabatic populations calculated for initial excitation to pure diabatic and adiabatic states lead to a clear understanding of the mechanisms governing the non-adiabatic photodissociation process. The classical and quantum photodissociation cross-sections for absorption in two adiabatic states of the A’ symmetry are calculated. A remarkable agreement between quantum and classical results is obtained regarding the populations and the absorption cross-sections.
NASA Astrophysics Data System (ADS)
Gevorgyan, Mariam; Guérin, Stéphane; Leroy, Claude; Ishkhanyan, Artur; Jauslin, Hans-Rudolf
2016-11-01
We develop the method of adiabatic tracking for photo- and magneto-association of Bose-Einstein atomic condensates with models that include Kerr type nonlinearities. We show that the inclusion of these terms can produce qualitatively important modifications in the adiabatic dynamics, like the appearance of bifurcations, in which the trajectory that is being tracked loses its stability. As a consequence the adiabatic theorem does not apply and the adiabatic transfer can be strongly degraded. This degradation can be compensated by using fields that are strong enough compared with the values of the Kerr terms. The main result is that, despite these potentially detrimental features, there is always a choice of the detuning that leads to an efficient adiabatic tracking, even for relatively weak fields.
Effects of preheat and mix on the fuel adiabat of an imploding capsule
NASA Astrophysics Data System (ADS)
Cheng, B.; Kwan, T. J. T.; Wang, Y. M.; Yi, S. A.; Batha, S. H.; Wysocki, F. J.
2016-12-01
We demonstrate the effect of preheat, hydrodynamic mix and vorticity on the adiabat of the deuterium-tritium (DT) fuel in fusion capsule experiments. We show that the adiabat of the DT fuel increases resulting from hydrodynamic mixing due to the phenomenon of entropy of mixture. An upper limit of mix, Mclean/MDT ≥ 0.98, is found necessary to keep the DT fuel on a low adiabat. We demonstrate in this study that the use of a high adiabat for the DT fuel in theoretical analysis and with the aid of 1D code simulations could explain some aspects of 3D effects and mix in capsule implosion. Furthermore, we can infer from our physics model and the observed neutron images the adiabat of the DT fuel in the capsule and the amount of mix produced on the hot spot.
Stimulated Raman adiabatic passage in a three-level superconducting circuit
Kumar, K. S.; Vepsäläinen, A.; Danilin, S.; Paraoanu, G. S.
2016-01-01
The adiabatic manipulation of quantum states is a powerful technique that opened up new directions in quantum engineering—enabling tests of fundamental concepts such as geometrical phases and topological transitions, and holding the promise of alternative models of quantum computation. Here we benchmark the stimulated Raman adiabatic passage for circuit quantum electrodynamics by employing the first three levels of a transmon qubit. In this ladder configuration, we demonstrate a population transfer efficiency >80% between the ground state and the second excited state using two adiabatic Gaussian-shaped control microwave pulses. By doing quantum tomography at successive moments during the Raman pulses, we investigate the transfer of the population in time domain. Furthermore, we show that this protocol can be reversed by applying a third adiabatic pulse, we study a hybrid nondiabatic–adiabatic sequence, and we present experimental results for a quasi-degenerate intermediate level. PMID:26902454
Phase relations and adiabats in boiling seafloor geothermal systems
Bischoff, J.L.; Pitzer, Kenneth S.
1985-01-01
Observations of large salinity variations and vent temperatures in the range of 380-400??C suggest that boiling or two-phase separation may be occurring in some seafloor geothermal systems. Consideration of flow rates and the relatively small differences in density between vapors and liquids at the supercritical pressures at depth in these systems suggests that boiling is occurring under closed-system conditions. Salinity and temperature of boiling vents can be used to estimate the pressure-temperature point in the subsurface at which liquid seawater first reached the two-phase boundary. Data are reviewed to construct phase diagrams of coexisting brines and vapors in the two-phase region at pressures corresponding to those of the seafloor geothermal systems. A method is developed for calculating the enthalpy and entropy of the coexisting mixtures, and results are used to construct adiabats from the seafloor to the P-T two-phase boundary. Results for seafloor vents discharging at 2300 m below sea level indicate that a 385??C vent is composed of a brine (7% NaCl equivalent) in equilibrium with a vapor (0.1% NaCl). Brine constitutes 45% by weight of the mixture, and the fluid first boiled at approximately 1 km below the seafloor at 415??C, 330 bar. A 400??C vent is primarily vapor (88 wt.%, 0.044% NaCl) with a small amount of brine (26% NaCl) and first boiled at 2.9 km below the seafloor at 500??C, 520 bar. These results show that adiabatic decompression in the two-phase region results in dramatic cooling of the fluid mixture when there is a large fraction of vapor. ?? 1985.
Observational tests of non-adiabatic Chaplygin gas
Carneiro, S.; Pigozzo, C. E-mail: cpigozzo@ufba.br
2014-10-01
In a previous paper [1] it was shown that any dark sector model can be mapped into a non-adiabatic fluid formed by two interacting components, one with zero pressure and the other with equation-of-state parameter ω = -1. It was also shown that the latter does not cluster and, hence, the former is identified as the observed clustering matter. This guarantees that the dark matter power spectrum does not suffer from oscillations or instabilities. It applies in particular to the generalised Chaplygin gas, which was shown to be equivalent to interacting models at both background and perturbation levels. In the present paper we test the non-adiabatic Chaplygin gas against the Hubble diagram of type Ia supernovae, the position of the first acoustic peak in the anisotropy spectrum of the cosmic microwave background and the linear power spectrum of large scale structures. We consider two different compilations of SNe Ia, namely the Constitution and SDSS samples, both calibrated with the MLCS2k2 fitter, and for the power spectrum we use the 2dFGRS catalogue. The model parameters to be adjusted are the present Hubble parameter, the present matter density and the Chaplygin gas parameter α. The joint analysis best fit gives α ≈ - 0.5, which corresponds to a constant-rate energy flux from dark energy to dark matter, with the dark energy density decaying linearly with the Hubble parameter. The ΛCDM model, equivalent to α = 0, stands outside the 3σ confidence interval.
Many-body effects on adiabatic passage through Feshbach resonances
Tikhonenkov, I.; Pazy, E.; Band, Y. B.; Vardi, A.; Fleischhauer, M.
2006-04-15
We theoretically study the dynamics of an adiabatic sweep through a Feshbach resonance, thereby converting a degenerate quantum gas of fermionic atoms into a degenerate quantum gas of bosonic dimers. Our analysis relies on a zero temperature mean-field theory which accurately accounts for initial molecular quantum fluctuations, triggering the association process. The structure of the resulting semiclassical phase space is investigated, highlighting the dynamical instability of the system towards association, for sufficiently small detuning from resonance. It is shown that this instability significantly modifies the finite-rate efficiency of the sweep, transforming the single-pair exponential Landau-Zener behavior of the remnant fraction of atoms {gamma} on sweep rate {alpha}, into a power-law dependence as the number of atoms increases. The obtained nonadiabaticity is determined from the interplay of characteristic time scales for the motion of adiabatic eigenstates and for fast periodic motion around them. Critical slowing-down of these precessions near the instability leads to the power-law dependence. A linear power law {gamma}{proportional_to}{alpha} is obtained when the initial molecular fraction is smaller than the 1/N quantum fluctuations, and a cubic-root power law {gamma}{proportional_to}{alpha}{sup 1/3} is attained when it is larger. Our mean-field analysis is confirmed by exact calculations, using Fock-space expansions. Finally, we fit experimental low temperature Feshbach sweep data with a power-law dependence. While the agreement with the experimental data is well within experimental error bars, similar accuracy can be obtained with an exponential fit, making additional data highly desirable.
Adiabatic principles in atom-diatom collisional energy transfer
Hovingh, W.J.
1993-01-01
This work describes the application of numerical methods to the solution of the time dependent Schroedinger equation for non-reactive atom-diatom collisions in which only one of the degrees of freedom has been removed. The basic method involves expanding the wave function in a basis set in two of the diatomic coordinates in a body-fixed frame (with respect to the triatomic complex) and defining the coefficients in that expansion as functions on a grid in the collision coordinate. The wave function is then propagated in time using a split operator method. The bulk of this work is devoted to the application of this formalism to the study of internal rotational predissociation in NeHF, in which quasibound states of the triatom predissociate through the transfer of energy from rotation of the diatom into translational energy in the atom-diatom separation coordinate. The author analyzes the computed time dependent wave functions to calculate the lifetimes for several quasibound states; these are in agreement with time independent quantum calculations using the same potential. Moreover, the time dependent behavior of the wave functions themselves sheds light on the dynamics of the predissociation processes. Finally, the partial cross sections of the products in those processes is determined with multiple exit channels. These show strong selectivity in the orbital angular momentum of the outgoing fragments, which the author explains with an adiabatic channel interpretation of the wave function's dynamics. The author also suggests that the same formalism might profitably be used to investigate the quantum dynamics of [open quotes]quasiresonant vibration-rotation transfer[close quotes], in which remarkably strong propensity rules in certain inelastic atom-diatom collision arise from classical adiabatic invariance theory.
Testing of a scanning adiabatic calorimeter with Joule effect heating of the sample
NASA Astrophysics Data System (ADS)
Barreiro-Rodríguez, G.; Yáñez-Limón, J. M.; Contreras-Servin, C. A.; Herrera-Gomez, A.
2008-01-01
We evaluated a scanning adiabatic resistive calorimeter (SARC) developed to measure the specific enthalpy of viscous and gel-type materials. The sample is heated employing the Joule effect. The cell is constituted by a cylindrical jacket and two pistons, and the sample is contained inside the jacket between the two pistons. The upper piston can slide to allow for thermal expansion and to keep the pressure constant. The pistons also function as electrodes for the sample. While the sample is heated through the Joule effect, the electrodes and the jacket are independently heated to the same temperature of the sample using automatic control. This minimizes the heat transport between the sample and its surroundings. The energy to the sample is supplied by applying to the electrodes an ac voltage in the kilohertz range, establishing a current in the sample and inducing electric dissipation. This energy can be measured with enough exactitude to determine the heat capacity. This apparatus also allows for the quantification of the thermal conductivity by reproducing the evolution of the temperature as heat is introduced only to one of the pistons. To this end, the system was modeled using finite element calculations. This dual capability proved to be very valuable for correction in the determination of the specific enthalpy. The performance of the SARC was evaluated by comparing the heat capacity results to those obtained by differential scanning calorimetry measurements using a commercial apparatus. The analyzed samples were zeolite, bauxite, hematite, bentonite, rice flour, corn flour, and potato starch.
Testing of a scanning adiabatic calorimeter with Joule effect heating of the sample.
Barreiro-Rodríguez, G; Yáñez-Limón, J M; Contreras-Servin, C A; Herrera-Gomez, A
2008-01-01
We evaluated a scanning adiabatic resistive calorimeter (SARC) developed to measure the specific enthalpy of viscous and gel-type materials. The sample is heated employing the Joule effect. The cell is constituted by a cylindrical jacket and two pistons, and the sample is contained inside the jacket between the two pistons. The upper piston can slide to allow for thermal expansion and to keep the pressure constant. The pistons also function as electrodes for the sample. While the sample is heated through the Joule effect, the electrodes and the jacket are independently heated to the same temperature of the sample using automatic control. This minimizes the heat transport between the sample and its surroundings. The energy to the sample is supplied by applying to the electrodes an ac voltage in the kilohertz range, establishing a current in the sample and inducing electric dissipation. This energy can be measured with enough exactitude to determine the heat capacity. This apparatus also allows for the quantification of the thermal conductivity by reproducing the evolution of the temperature as heat is introduced only to one of the pistons. To this end, the system was modeled using finite element calculations. This dual capability proved to be very valuable for correction in the determination of the specific enthalpy. The performance of the SARC was evaluated by comparing the heat capacity results to those obtained by differential scanning calorimetry measurements using a commercial apparatus. The analyzed samples were zeolite, bauxite, hematite, bentonite, rice flour, corn flour, and potato starch.
Extended adiabatic blast waves and a model of the soft X-ray background
NASA Technical Reports Server (NTRS)
Cox, D. P.; Anderson, P. R.
1982-01-01
The suggestion has been made that much of the soft X-ray background observed in X-ray astronomy might arise from being inside a very large supernova blast wave propagating in the hot, low-density component of the interstellar (ISM) medium. An investigation is conducted to study this possibility. An analytic approximation is presented for the nonsimilar time evolution of the dynamic structure of an adiabatic blast wave generated by a point explosion in a homogeneous ambient medium. A scheme is provided for evaluating the electron-temperature distribution for the evolving structure, and a procedure is presented for following the state of a given fluid element through the evolving dynamical and thermal structures. The results of the investigation show that, if the solar system were located within a blast wave, the Wisconsin soft X-ray rocket payload would measure the B and C band count rates that it does measure, provided conditions correspond to the values calculated in the investigation.
On the validity of the adiabatic approximation in compact binary inspirals
NASA Astrophysics Data System (ADS)
Maselli, Andrea; Gualtieri, Leonardo; Pannarale, Francesco; Ferrari, Valeria
2012-08-01
Using a semianalytical approach recently developed to model the tidal deformations of neutron stars in inspiralling compact binaries, we study the dynamical evolution of the tidal tensor, which we explicitly derive at second post-Newtonian order, and of the quadrupole tensor. Since we do not assume a priori that the quadrupole tensor is proportional to the tidal tensor, i.e., the so-called “adiabatic approximation,” our approach enables us to establish to which extent such approximation is reliable. We find that the ratio between the quadrupole and tidal tensors (i.e., the Love number) increases as the inspiral progresses, but this phenomenon only marginally affects the emitted gravitational waveform. We estimate the frequency range in which the tidal component of the gravitational signal is well described using the Stationary phase approximation at next-to-leading post-Newtonian order, comparing different contributions to the tidal phase. We also derive a semianalytical expression for the Love number, which reproduces within a few percentage points the results obtained so far by numerical integrations of the relativistic equations of stellar perturbations.
Borovsky, Joseph E; Denton, Michael H
2008-01-01
Using temperature and number-density measurements of the energetic-electron population from multiple spacecraft in geosynchronous orbit, the specific entropy S = T/n{sup 2/3} of the outer electron radiation belt is calculated. Then 955,527 half-hour-long data intervals are statistically analyzed. Local-time and solar-cycle variations in S are examined. The median value of the specific entropy (2.8 x 10{sup 7} eVcm{sup 2}) is much larger than the specific entropy of other particle populations in and around the magnetosphere. The evolution of the specific entropy through high-speed-stream-driven geomagnetic storms and through magnetic-cloud-driven geomagnetic storms is studied using superposed-epoch analysis. For high-speed-stream-driven storms, systematic variations in the entropy associated with electron loss and gain and with radiation-belt heating are observed in the various storm phases. For magnetic-cloud-driven storms, multiple trigger choices for the data superpositions reveal the effects of interplanetary shock arrival, sheath driving, cloud driving, and recovery phase. The specific entropy S = T/n{sup 2/3} is algebraically expressed in terms of the first and second adiabatic invariants of the electrons: this allows a relativistic expression for S in terms of T and n to be derived. For the outer electron radiation belt at geosynchronous orbit, the relativistic corrections to the specific entropy expression are -15%.
NASA Astrophysics Data System (ADS)
Hollenberg, Sebastian; Päs, Heinrich
2012-01-01
The standard wave function approach for the treatment of neutrino oscillations fails in situations where quantum ensembles at a finite temperature with or without an interacting background plasma are encountered. As a first step to treat such phenomena in a novel way, we propose a unified approach to both adiabatic and nonadiabatic two-flavor oscillations in neutrino ensembles with finite temperature and generic (e.g., matter) potentials. Neglecting effects of ensemble decoherence for now, we study the evolution of a neutrino ensemble governed by the associated quantum kinetic equations, which apply to systems with finite temperature. The quantum kinetic equations are solved formally using the Magnus expansion and it is shown that a convenient choice of the quantum mechanical picture (e.g., the interaction picture) reveals suitable parameters to characterize the physics of the underlying system (e.g., an effective oscillation length). It is understood that this method also provides a promising starting point for the treatment of the more general case in which decoherence is taken into account.
NASA Astrophysics Data System (ADS)
Antoshechkina, P. M.; Asimow, P. D.
2010-12-01
features to be incorporated into adiabat_1ph after its release was the ability to simulate flux melting, in which a metasomatic fluid or melt, of fixed composition, was added to the system before each equilibration step. This idea was further developed in the coupled dynamic and petrological subduction zone model GyPSM, so that fluid flux into the wedge was controlled by the location of dehydration reactions in the slab. The adiabat_1ph release candidate includes a similar option so that the user may specify assimilated compositions, which evolve as the calculation proceeds. This added flexibility opens up a number of possibilities, such as more realistic simulations of melt-rock reactions at mid-ocean ridges. Adiabat_1ph files may be downloaded from the MAGMA website at http://magmasource.caltech.edu/ and feedback is welcomed at a dedicated forum, especially ideas for new software features. MAGMA is an online resource for the study of mantle melting and magma evolution, hosted by Caltech. As well as MELTS-related resources, there are tools for visualization of binary and ternary phase diagrams. Flash movies of phase diagrams for adiabatic decompression melting of peridotite and pyroxenite sources can be played in a web browser or downloaded from a server.
Adiabatic Mass Loss in Binary Stars. II. From Zero-age Main Sequence to the Base of the Giant Branch
NASA Astrophysics Data System (ADS)
Ge, Hongwei; Webbink, Ronald F.; Chen, Xuefei; Han, Zhanwen
2015-10-01
In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z = 0.02) of mass 0.10 M⊙-100 M⊙ from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. For intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio qad (throughout this paper, we follow the convention of defining the binary mass ratio as q ≡ Mdonor/Maccretor) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, qad plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with qad declining with decreasing mass, and asymptotically approaching qad = 2/3, appropriate to a classical isentropic n = 3/2 polytrope. Our calculated qad values agree well with the behavior of time-dependent models by Chen & Han of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as systems that must be stable against rapid mass transfer, nicely
ADIABATIC MASS LOSS IN BINARY STARS. II. FROM ZERO-AGE MAIN SEQUENCE TO THE BASE OF THE GIANT BRANCH
Ge, Hongwei; Chen, Xuefei; Han, Zhanwen; Webbink, Ronald F. E-mail: rwebbink@illinois.edu
2015-10-10
In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z = 0.02) of mass 0.10 M{sub ⊙}–100 M{sub ⊙} from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. For intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio q{sub ad} (throughout this paper, we follow the convention of defining the binary mass ratio as q ≡ M{sub donor}/M{sub accretor}) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, q{sub ad} plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with q{sub ad} declining with decreasing mass, and asymptotically approaching q{sub ad} = 2/3, appropriate to a classical isentropic n = 3/2 polytrope. Our calculated q{sub ad} values agree well with the behavior of time-dependent models by Chen and Han of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as systems
Adiabat shape Laser Pulses for ablation front instability control and high fuel compression
NASA Astrophysics Data System (ADS)
Milovich, Jose; Jones, O. S.; Berzak-Hopkins, L.; Clark, D. S.; Baker, K. L.; Casey, D. T.; Macphee, A. G.; Peterson, J. L.; Robey, H. F.; Smalyuk, V. A.; Weber, C. R.
2014-10-01
At the end of the NIC campaign a large body of experimental evidence showed that the point-design implosions driven by low-adiabat pulses had a high degree of mix. To reduce instability a high-adiabat (~3 × higher picket drive) design was fielded in the National Ignition Facility (NIF). The experimental results from this campaign have shown considerable improvement in performance (10 × neutron yields) over the point design with little evidence of mix. However, the adiabat of the implosions may be too high to achieve ignition for the available laser energy. To overcome this difficulty, and to take advantage of the high-picket drives, we have developed hybrid laser pulses that combined the virtue of both designs. These pulses can be thought of achieving adiabat shaping, where the ablator is set in a higher adiabat for instability control, while the fuel is maintained at a lower adiabat favoring higher fuel compression. Using these pulses, recent experiments at the NIF have indeed shown reduced growth rates. In this talk we will present the design of high-yield low-growth DT ignition experiments using these adiabat-shaped pulses. Work performed under the auspices of the U.S. D.O.E. by LLNL under contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Song, Chuan-Jing; Zhang, Yi
2015-08-01
For El-Nabulsi's fractional Birkhoff system, Mei symmetry perturbation, the corresponding Mei-type adiabatic invariants and Noether-type adiabatic invariants are investigated in this paper. Firstly, based on El-Nabulsi-Birkhoff fractional equations, Mei symmetry and the corresponding Mei conserved quantity, Noether conserved quantity deduced indirectly by Mei symmetry are studied. Secondly, Mei-type exact invariants and Noether-type exact invariants are given on the basis of the definition of adiabatic invatiant. Thirdly, Mei symmetry perturbation, Mei-type adiabatic invariants and Noether-type adiabatic invariants for the disturbed El-Nabulsi's fractional Birkhoff system are studied. Finally, two examples, Hojman-Urrutia problem for Mei-type adiabatic invariants and another for the Noether-type adiabatic invariants, are given to illustrate the application of the results. Supported by the National Natural Science Foundation of China under Grant Nos. 10972151 and 11272227, and the Innovation Program for Scientific Research of Nanjing University of Science and Technology
Arbitrary amplitude electro-acoustic solitary waves in an adiabatic dusty plasma
NASA Astrophysics Data System (ADS)
Tanjia, Fatema; Mamun, A. A.
2008-12-01
The properties of different types of electro-acoustic (namely ion-acoustic (IA), dust ion-acoustic (DIA), and dust-acoustic (DA)) solitary waves (SWs) in an adiabatic dusty plasma (containing negatively charged cold dust, adiabatic hot ions and inertia-less adiabatic hot electrons) are investigated by the pseudo-potential approach. The combined effects of the adiabatic electrons and ions, and negatively charged dust on the basic properties (critical Mach number, amplitude and width) of the arbitrary amplitude electro-acoustic SWs are systematically and explicitly examined. It is found that the combined effects of the adiabatic electrons and ions, and negatively charged dust significantly modify the basic properties (critical Mach number, amplitude and width) of the SWs. It is also found that due to the effect of the adiabaticity of electrons, the negative DIA SWs (which are found to exist in a dusty plasma containing isothermal electrons, cold ions and negatively charged static dust) disappear, i.e. due to the effect of adiabatic electrons, one cannot have negative DIA SWs for any possible set of dusty plasma parameters.
Recent developments in trapping and manipulation of atoms with adiabatic potentials
NASA Astrophysics Data System (ADS)
Garraway, Barry M.; Perrin, Hélène
2016-09-01
A combination of static and oscillating magnetic fields can be used to ‘dress’ atoms with radio-frequency (RF), or microwave, radiation. The spatial variation of these fields can be used to create an enormous variety of traps for ultra-cold atoms and quantum gases. This article reviews the type and character of these adiabatic traps and the applications which include atom interferometry and the study of low-dimensional quantum systems. We introduce the main concepts of magnetic traps leading to adiabatic dressed traps. The concept of adiabaticity is discussed in the context of the Landau-Zener model. The first bubble trap experiment is reviewed together with the method used for loading it. Experiments based on atom chips show the production of double wells and ring traps. Dressed atom traps can be evaporatively cooled with an additional RF field, and a weak RF field can be used to probe the spectroscopy of the adiabatic potentials. Several approaches to ring traps formed from adiabatic potentials are discussed, including those based on atom chips, time-averaged adiabatic potentials and induction methods. Several proposals for adiabatic lattices with dressed atoms are also reviewed.
NASA Astrophysics Data System (ADS)
Martínez-Mesa, Aliezer; Saalfrank, Peter
2015-05-01
Femtosecond-laser pulse driven non-adiabatic spectroscopy and dynamics in molecular and condensed phase systems continue to be a challenge for theoretical modelling. One of the main obstacles is the "curse of dimensionality" encountered in non-adiabatic, exact wavepacket propagation. A possible route towards treating complex molecular systems is via semiclassical surface-hopping schemes, in particular if they account not only for non-adiabatic post-excitation dynamics but also for the initial optical excitation. One such approach, based on initial condition filtering, will be put forward in what follows. As a simple test case which can be compared with exact wavepacket dynamics, we investigate the influence of the different parameters determining the shape of a laser pulse (e.g., its finite width and a possible chirp) on the predissociation dynamics of a NaI molecule, upon photoexcitation of the A(0+) state. The finite-pulse effects are mapped into the initial conditions for semiclassical surface-hopping simulations. The simulated surface-hopping diabatic populations are in qualitative agreement with the quantum mechanical results, especially concerning the subpicosend photoinduced dynamics, the main deviations being the relative delay of the non-adiabatic transitions in the semiclassical picture. Likewise, these differences in the time-dependent electronic populations calculated via the semiclassical and the quantum methods are found to have a mild influence on the overall probability density distribution. As a result, the branching ratios between the bound and the dissociative reaction channels and the time-evolution of the molecular wavepacket predicted by the semiclassical method agree with those computed using quantum wavepacket propagation. Implications for more challenging molecular systems are given.
Martínez-Mesa, Aliezer; Saalfrank, Peter
2015-05-21
Femtosecond-laser pulse driven non-adiabatic spectroscopy and dynamics in molecular and condensed phase systems continue to be a challenge for theoretical modelling. One of the main obstacles is the “curse of dimensionality” encountered in non-adiabatic, exact wavepacket propagation. A possible route towards treating complex molecular systems is via semiclassical surface-hopping schemes, in particular if they account not only for non-adiabatic post-excitation dynamics but also for the initial optical excitation. One such approach, based on initial condition filtering, will be put forward in what follows. As a simple test case which can be compared with exact wavepacket dynamics, we investigate the influence of the different parameters determining the shape of a laser pulse (e.g., its finite width and a possible chirp) on the predissociation dynamics of a NaI molecule, upon photoexcitation of the A(0{sup +}) state. The finite-pulse effects are mapped into the initial conditions for semiclassical surface-hopping simulations. The simulated surface-hopping diabatic populations are in qualitative agreement with the quantum mechanical results, especially concerning the subpicosend photoinduced dynamics, the main deviations being the relative delay of the non-adiabatic transitions in the semiclassical picture. Likewise, these differences in the time-dependent electronic populations calculated via the semiclassical and the quantum methods are found to have a mild influence on the overall probability density distribution. As a result, the branching ratios between the bound and the dissociative reaction channels and the time-evolution of the molecular wavepacket predicted by the semiclassical method agree with those computed using quantum wavepacket propagation. Implications for more challenging molecular systems are given.
Arbitrary Amplitude DIA and DA Solitary Waves in Adiabatic Dusty Plasmas
Mamun, A. A.; Jahan, N.; Shukla, P. K.
2008-10-15
The dust-ion-acoustic (DIA) as well as the dust-acoustic (DA) solitary waves (SWs) in an adiabatic dusty plasma are investigated by the pseudo-potential approach which is valid for arbitrary amplitude SWs. The role of the adiabaticity of electrons and ions in modifying the basic features (polarity, speed, amplitude and width) of arbitrary amplitude DIA and DA SWs are explicitly examined. It is found that the effects of the adiabaticity of electrons and ions significantly modify the basic features (polarity, speed, amplitude and width) of the DIA and DA SWs. The implications of our results in space and laboratory dusty plasmas are briefly discussed.
Stochasticity, superadiabaticity, and the theory of adiabatic invariants and guiding center motion
Dubin, D.H.E.; Krommes, J.A.
1981-07-01
The theory of adiabatic invariants is discussed within the modern framework of symplectic Hamiltonian dynamics. The distinctions between exact, adiabatic, and superadiabatic invariants are clarified. The intimate connection between adiabatic (as opposed to exact) invariance and resonant interactions between motions on disparate time scales is elucidated. For the important case of charged particle motion in a strong magnetic field, resonances between gyration, bounce motion, and an external sinusoidal perturbation are described explicitly by introducing a time-dependent symplectic formulation of the guiding center motion. Destruction of invariance is discussed for quite general situations of physical interest, including the case of a trapped particle in a tokamak.
NASA Astrophysics Data System (ADS)
Kevorkian, J.; Li, H. K.
1984-08-01
The technique of isolating and order reducing transformations for computing adiabatic invariants in finite-degree-of-freedom Hamiltonian sytems is extended to the case of the non-Hamiltonian modal representation of a wave equation with weak nonlinearities in a slowly varying domain. The mechanism of resonant interactions for two or more normal modes whereby the associated actions change rapidly in a short period is exhibited. In the Hamiltonian problem there are a number of global adiabatic invariants associated with each resonance. Conditions for which similar adiabatic invariants can be found for the non-Hamiltonian case are derived. The results are then verified by extensive numerical computations.
NASA Astrophysics Data System (ADS)
Levandowski, Will; Boyd, Oliver S.; Briggs, Rich W.; Gold, Ryan D.
2015-12-01
This paper develops a Monte Carlo algorithm for extracting three-dimensional lithospheric density models from geophysical data. Empirical scaling relationships between velocity and density create a 3-D starting density model, which is then iteratively refined until it reproduces observed gravity and topography. This approach permits deviations from uniform crustal velocity-density scaling, which provide insight into crustal lithology and prevent spurious mapping of crustal anomalies into the mantle. We test this algorithm on the Proterozoic Midcontinent Rift (MCR), north-central United States. The MCR provides a challenge because it hosts a gravity high overlying low shear-wave velocity crust in a generally flat region. Our initial density estimates are derived from a seismic velocity/crustal thickness model based on joint inversion of surface-wave dispersion and receiver functions. By adjusting these estimates to reproduce gravity and topography, we generate a lithospheric-scale model that reveals dense middle crust and eclogitized lowermost crust within the rift. Mantle lithospheric density beneath the MCR is not anomalous, consistent with geochemical evidence that lithospheric mantle was not the primary source of rift-related magmas and suggesting that extension occurred in response to far-field stress rather than a hot mantle plume. Similarly, the subsequent inversion of normal faults resulted from changing far-field stress that exploited not only warm, recently faulted crust but also a gravitational potential energy low in the MCR. The success of this density modeling algorithm in the face of such apparently contradictory geophysical properties suggests that it may be applicable to a variety of tectonic and geodynamic problems.
Salt Pill Design and Fabrication for Adiabatic Demagnetization Refrigerators
NASA Technical Reports Server (NTRS)
Shirron, Peter J.; Mccammon, Dan
2014-01-01
The performance of an adiabatic demagnetization refrigerator (ADR) is critically dependent on the design and construction of the salt pills that produce cooling. In most cases, the primary goal is to obtain the largest cooling capacity at the low temperature end of the operating range. The realizable cooling capacity depends on a number of factors, including refrigerant mass, and how efficiently it absorbs heat from the various instrument loads. The design and optimization of "salt pills" for ADR systems depend not only on the mechanical, chemical and thermal properties of the refrigerant, but also on the range of heat fluxes that the salt pill must accommodate. Despite the fairly wide variety of refrigerants available, those used at very low temperature tend to be hydrated salts that require a dedicated thermal bus and must be hermetically sealed, while those used at higher temperature - greater than about 0.5 K - tend to be single-- or poly--crystals that have much simpler requirements for thermal and mechanical packaging. This paper presents a summary of strategies and techniques for designing, optimizing and fabricating salt pills for both low-- and mid--temperature applications.
Decoherence in current induced forces: Application to adiabatic quantum motors
NASA Astrophysics Data System (ADS)
Fernández-Alcázar, Lucas J.; Bustos-Marún, Raúl A.; Pastawski, Horacio M.
2015-08-01
Current induced forces are not only related with the discrete nature of electrons but also with its quantum character. It is natural then to wonder about the effect of decoherence. Here, we develop the theory of current induced forces including dephasing processes and we apply it to study adiabatic quantum motors (AQMs). The theory is based on Büttiker's fictitious probe model, which here is reformulated for this particular case. We prove that it accomplishes the fluctuation-dissipation theorem. We also show that, in spite of decoherence, the total work performed by the current induced forces remains equal to the pumped charge per cycle times the voltage. We find that decoherence affects not only the current induced forces of the system but also its intrinsic friction and noise, modifying in a nontrivial way the efficiency of AQMs. We apply the theory to study an AQM inspired by a classical peristaltic pump where we surprisingly find that decoherence can play a crucial role by triggering its operation. Our results can help to understand how environmentally induced dephasing affects the quantum behavior of nanomechanical devices.
Thermodynamic and spectral properties of adiabatic Peierls chains
NASA Astrophysics Data System (ADS)
Weber, Manuel; Assaad, Fakher F.; Hohenadler, Martin
2016-10-01
We present exact numerical results for the effects of thermal fluctuations on the experimentally relevant thermodynamic and spectral properties of Peierls chains. To this end, a combination of classical Monte Carlo sampling and exact diagonalization is used to study adiabatic half-filled Holstein and Su-Schrieffer-Heeger models. The classical nature of the lattice displacements in combination with parallel tempering permit simulations on large system sizes and a direct calculation of spectral functions in the frequency domain. Most notably, the long-range order and the associated Peierls gap give rise to a distinct low-temperature peak in the specific heat. The closing of the gap and suppression of order by thermal fluctuations involves in-gap excitations in the form of soliton-antisoliton pairs and is also reflected in the dynamic density and bond structure factors as well as in the optical conductivity. We compare our data to the widely used mean-field approximation and highlight relations to symmetry-protected topological phases and disorder problems.
Thermodynamics Analysis of Refinery Sludge Gasification in Adiabatic Updraft Gasifier
Ahmed, Reem; Sinnathambi, Chandra M.; Eldmerdash, Usama; Subbarao, Duvvuri
2014-01-01
Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS) is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER). It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5) at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9–55.5%, 43.7–72.4%, and 42.5–50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values. PMID:24672368
Progress in the Development of a Continuous Adiabatic Demagnetization Refrigerator
NASA Technical Reports Server (NTRS)
Shirron, Peter; Canavan, Edgar; DiPirro, Michael; Jackson, Michael; King, Todd; Tuttle, James; Krebs, Carolyn A. (Technical Monitor)
2002-01-01
We report on recent progress in the development of a continuous adiabatic demagnetization refrigerator (CADR). Continuous operation avoids the constraints of long hold times and short recycle times that lead to the generally large mass of single-shot ADRs, allowing us to achieve an order of magnitude larger cooling power per unit mass. Our current design goal is 10 micro W of cooling at 50 mK using a 6-10 K heat sink. The estimated mass is less than 10 kg, including magnetic shielding of each stage. The relatively high heat rejection capability allows it to operate with a mechanical cryocooler as part of a cryogen-free, low temperature cooling system. This has the advantages of long mission life and reduced complexity and cost. We have assembled a three-stage CADR and have demonstrated continuous cooling using a superfluid helium bath as the heat sink. The temperature stability is 8 micro K rms or better over the entire cycle, and the cooling power is 2.5 micro W at 60 mK rising to 10 micro W at 100 mK.
Adiabatic calorimetric decomposition studies of 50 wt.% hydroxylamine/water.
Cisneros, L O; Rogers, W J; Mannan, M S
2001-03-19
Calorimetric data can provide a basis for determining potential hazards in reactions, storage, and transportation of process chemicals. This work provides calorimetric data for the thermal decomposition behavior in air of 50wt.% hydroxylamine/water (HA), both with and without added stabilizers, which was measured in closed cells with an automatic pressure tracking adiabatic calorimeter (APTAC). Among the data provided are onset temperatures, reaction order, activation energies, pressures of noncondensable products, thermal stability at 100 degrees C, and the effect of HA storage time. Discussed also are the catalytic effects of carbon steel, stainless steel, stainless steel with silica coating, inconel, titanium, and titanium with silica coating on the reaction self-heat rates and onset temperatures. In borosilicate glass cells, HA was relatively stable at temperatures up to 133 degrees C, where the HA decomposition self-heat rate reached 0.05 degrees C/min. The added stabilizers appeared to reduce HA decomposition rates in glass cells and at ambient temperatures. The tested metals and metal surfaces coated with silica acted as catalysts to lower the onset temperatures and increase the self-heat rates.
Shortcuts to Adiabaticity in Transport of a Single Trapped Ion
NASA Astrophysics Data System (ADS)
An, Shuoming; Lv, Dingshun; Campo, Adolfo Del; Kim, Kihwan
2015-05-01
We report an experimental study on shortcuts to adiabaticity in the transport of a single 171Yb+ ion trapped in a harmonic potential. In these driving schemes, the application of a force induces a nonadiabatic dynamics in which excitations are tailored so as to preserve the ion motional state in the ground state upon completion of the process. We experimentally apply the laser induced force and realize three different protocols: (1) a transitionless driving with a counterdiabatic term out of phase with the displacement force, (2) a classical protocol assisted by counterdiabatic fields in phase with the main force, (3) and an engineered transport protocol based on the Fourier transform of the trap acceleration. We experimentally compare and discuss the robustness of these protocols under given experimental limitations such as trap frequency drifts. This work was supported by the National Basic Research Program of China under Grants No. 2011CBA00300 (No. 2011CBA00301), the National Natural Science Foundation of China 11374178, and the University of Massachusetts Boston (No. P20150000029279).
Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition
NASA Astrophysics Data System (ADS)
Alavi, Saman; Ripmeester, J. A.
2010-04-01
Nonequilibrium, constant energy, constant volume (NVE) molecular dynamics simulations are used to study the decomposition of methane clathrate hydrate in contact with water. Under adiabatic conditions, the rate of methane clathrate decomposition is affected by heat and mass transfer arising from the breakup of the clathrate hydrate framework and release of the methane gas at the solid-liquid interface and diffusion of methane through water. We observe that temperature gradients are established between the clathrate and solution phases as a result of the endothermic clathrate decomposition process and this factor must be considered when modeling the decomposition process. Additionally we observe that clathrate decomposition does not occur gradually with breakup of individual cages, but rather in a concerted fashion with rows of structure I cages parallel to the interface decomposing simultaneously. Due to the concerted breakup of layers of the hydrate, large amounts of methane gas are released near the surface which can form bubbles that will greatly affect the rate of mass transfer near the surface of the clathrate phase. The effects of these phenomena on the rate of methane hydrate decomposition are determined and implications on hydrate dissociation in natural methane hydrate reservoirs are discussed.
Adiabatic Demagnetisation Refrigerators for Future Sub-Millimetre Space Missions
NASA Astrophysics Data System (ADS)
Hepburn, I. D.; Davenport, I.; Smith, A.
1995-10-01
Space worthy refrigeration capable of providing a 100 mK and below heat load sink for bolometric detectors will be required for the next generation of sub-millimetre space missions. Adiabatic demagnetisation refrigeration (ADR), being a gravity independent laboratory method for obtaining such temperatures, is a favourable technique for utilisation in space. We show that by considering a 3 salt pill refrigerator rather than the classic single salt pill design the space prohibitive laboratory ADR properties of high magnetic field (6 Tesla) and a<2 K environment (provided by a bath of liquid4He) can be alleviated, while maintaining a sufficient low temperature hold time and short recycle time. The additional salt pills, composed of Gadolinium Gallium Garnet (GGG) provide intermediate cooling stages, enabling operation from a 4 K environment provided by a single 4 K mechanical cooler, thereby providing consumable free operation. Such ADRs could operate with fields as low as 1 Tesla allowing the use of high temperature, mechanically cooled superconducting magnets and so effectively remove the risk of quenching. We discuss the possibility of increasing the hold time from 3 hours, for the model presented, to between 40 and 80 hours, plus reducing the number of salt pills to two, through the use of a more efficient Garnet. We believe the technical advances necessitated by the envisaged ADRs are minimal and conclude that such ADRs offer a long orbital life time, consumable free, high efficiency means of milli-Kelvin cooling, requiring relatively little laboratory development.
Experimental Progress Toward Multiple Adiabatic Rapid Passage Sequences
NASA Astrophysics Data System (ADS)
Miao, X.; Wertz, E.; Cohen, M. G.; Metcalf, H.
2006-05-01
Multiple repetitions of adiabatic rapid passage (ARP) sweeps with counterpropagating light beams can enable huge optical forces on atoms. The repetition rate of the ARP sweeps φsγ results in a force k φs/πk γ/2 ≡Frad where 1/γ≡τ is the excited state lifetime and Frad is the ordinary radiative force. This is because each pair of ARP-induced inversions can coherently transfer momentum ±2 k between the light beams, and thus 2 k to the atoms. In developing instruments for such experiments on the 2^3S1-> 2^3P2 transition at λ = 1083 nm in He, we exploit recent developments in the optical communications industry. We use commercial phase and intensity modulators of the LiNbO3 waveguide type having Vπ as low as 6 V and thus requiring relatively low rf power for the modulation. Synchronized driving of the two modulators can produce the necessary multiple ARP sequences of 10 ns chirped pulses that span several GHz, as needed for the experiment^3. We are also developing optical methods for characterizing these pulses. T. Lu, X. Miao, and H. Metcalf, Phys., Rev. A 71 061405(R) (2005).
Adiabatic Heat of Hydration Calorimetric Measurements for Reference Saltstone Waste
Bollinger, James
2006-01-12
The production of nuclear materials for weapons, medical, and space applications from the mid-1950's through the late-1980's at the Savannah River Site (SRS) generated approximately 35 million gallons of liquid high-level radioactive waste, which is currently being processed into vitrified glass for long-term storage. Upstream of the vitrification process, the waste is separated into three components: high activity insoluble sludge, high activity insoluble salt, and very low activity soluble salts. The soluble salt represents 90% of the 35 million gallons of overall waste and is processed at the SRS Saltstone Facility, where it mixed with cement, blast furnace slag, and flyash, creating a grout-like mixture. The resulting grout is pumped into aboveground storage vaults, where it hydrates into concrete monoliths, called saltstone, thus immobilizing the low-level radioactive salt waste. As the saltstone hydrates, it generates heat that slowly diffuses out of the poured material. To ensure acceptable grout properties for disposal and immobilization of the salt waste, the grout temperature must not exceed 95 C during hydration. Adiabatic calorimetric measurements of the heat generated for a representative sample of saltstone were made to determine the time-dependent heat source term. These measurements subsequently were utilized as input to a numerical conjugate heat transfer model to determine the expected peak temperatures for the saltstone vaults.
Adiabatic Compression Sensitivity of Liquid Fuels and Monopropellants
NASA Technical Reports Server (NTRS)
Ismail, Ismail M. K.; Hawkins, Tom W.
2000-01-01
Liquid rocket propellants can be sensitive to rapid compression. Such liquids may undergo decomposition and their handling may be accompanied with risk. Decomposition produces small gas bubbles in the liquid, which upon rapid compression may cause catastrophic explosions. The rapid compression can result from mechanical shocks applied on the tank containing the liquid or from rapid closure of the valves installed on the lines. It is desirable to determine the conditions that may promote explosive reactions. At Air Force Research Laboratory (AFRL), we constructed an apparatus and established a safe procedure for estimating the sensitivity of propellant materials towards mechanical shocks (Adiabatic Compression Tester). A sample is placed on a stainless steel U-tube, held isothermally at a temperature between 20 and 150 C then exposed to an abrupt mechanical shock of nitrogen gas at a pressure between 6.9 and 20.7 MPa (1000 to 3000 psi). The apparatus is computer interfaced and is driven with LABTECH NOTEBOOK-pro (registered) Software. In this presentation, the design of the apparatus is shown, the operating procedure is outlined, and the safety issues are addressed. The results obtained on different energetic materials are presented.
Stimulated Raman adiabatic passage in physics, chemistry, and beyond
NASA Astrophysics Data System (ADS)
Vitanov, Nikolay V.; Rangelov, Andon A.; Shore, Bruce W.; Bergmann, Klaas
2017-01-01
The technique of stimulated Raman adiabatic passage (STIRAP), which allows efficient and selective population transfer between quantum states without suffering loss due to spontaneous emission, was introduced in 1990 by Gaubatz et al.. Since then STIRAP has emerged as an enabling methodology with widespread successful applications in many fields of physics, chemistry, and beyond. This article reviews the many applications of STIRAP emphasizing the developments since 2001, the time when the last major review on the topic was written (Vitanov, Fleischhauer et al.). A brief introduction into the theory of STIRAP and the early applications for population transfer within three-level systems is followed by the discussion of several extensions to multilevel systems, including multistate chains and tripod systems. The main emphasis is on the wide range of applications in atomic and molecular physics (including atom optics, cavity quantum electrodynamics, formation of ultracold molecules, etc.), quantum information (including single- and two-qubit gates, entangled-state preparation, etc.), solid-state physics (including processes in doped crystals, nitrogen-vacancy centers, superconducting circuits, semiconductor quantum dots and wells), and even some applications in classical physics (including waveguide optics, polarization optics, frequency conversion, etc.). Promising new prospects for STIRAP are also presented (including processes in optomechanics, precision experiments, detection of parity violation in molecules, spectroscopy of core-nonpenetrating Rydberg states, population transfer with x-ray pulses, etc.).
Development of a semi-adiabatic isoperibol solution calorimeter
Venkata Krishnan, R.; Jogeswararao, G.; Parthasarathy, R.; Premalatha, S.; Prabhakar Rao, J.; Gunasekaran, G.; Ananthasivan, K.
2014-12-15
A semi-adiabatic isoperibol solution calorimeter has been indigenously developed. The measurement system comprises modules for sensitive temperature measurement probe, signal processing, data collection, and joule calibration. The sensitivity of the temperature measurement module was enhanced by using a sensitive thermistor coupled with a lock-in amplifier based signal processor. A microcontroller coordinates the operation and control of these modules. The latter in turn is controlled through personal computer (PC) based custom made software developed with LabView. An innovative summing amplifier concept was used to cancel out the base resistance of the thermistor. The latter was placed in the dewar. The temperature calibration was carried out with a standard platinum resistance (PT100) sensor coupled with an 8½ digit multimeter. The water equivalent of this calorimeter was determined by using electrical calibration with the joule calibrator. The experimentally measured values of the quantum of heat were validated by measuring heats of dissolution of pure KCl (for endotherm) and tris (hydroxyl methyl) amino-methane (for exotherm). The uncertainity in the measurements was found to be within ±3%.
Development of a semi-adiabatic isoperibol solution calorimeter.
Venkata Krishnan, R; Jogeswararao, G; Parthasarathy, R; Premalatha, S; Prabhakar Rao, J; Gunasekaran, G; Ananthasivan, K
2014-12-01
A semi-adiabatic isoperibol solution calorimeter has been indigenously developed. The measurement system comprises modules for sensitive temperature measurement probe, signal processing, data collection, and joule calibration. The sensitivity of the temperature measurement module was enhanced by using a sensitive thermistor coupled with a lock-in amplifier based signal processor. A microcontroller coordinates the operation and control of these modules. The latter in turn is controlled through personal computer (PC) based custom made software developed with LabView. An innovative summing amplifier concept was used to cancel out the base resistance of the thermistor. The latter was placed in the dewar. The temperature calibration was carried out with a standard platinum resistance (PT100) sensor coupled with an 8½ digit multimeter. The water equivalent of this calorimeter was determined by using electrical calibration with the joule calibrator. The experimentally measured values of the quantum of heat were validated by measuring heats of dissolution of pure KCl (for endotherm) and tris (hydroxyl methyl) amino-methane (for exotherm). The uncertainity in the measurements was found to be within ±3%.
Development of a semi-adiabatic isoperibol solution calorimeter
NASA Astrophysics Data System (ADS)
Venkata Krishnan, R.; Jogeswararao, G.; Parthasarathy, R.; Premalatha, S.; Prabhakar Rao, J.; Gunasekaran, G.; Ananthasivan, K.
2014-12-01
A semi-adiabatic isoperibol solution calorimeter has been indigenously developed. The measurement system comprises modules for sensitive temperature measurement probe, signal processing, data collection, and joule calibration. The sensitivity of the temperature measurement module was enhanced by using a sensitive thermistor coupled with a lock-in amplifier based signal processor. A microcontroller coordinates the operation and control of these modules. The latter in turn is controlled through personal computer (PC) based custom made software developed with LabView. An innovative summing amplifier concept was used to cancel out the base resistance of the thermistor. The latter was placed in the dewar. The temperature calibration was carried out with a standard platinum resistance (PT100) sensor coupled with an 8½ digit multimeter. The water equivalent of this calorimeter was determined by using electrical calibration with the joule calibrator. The experimentally measured values of the quantum of heat were validated by measuring heats of dissolution of pure KCl (for endotherm) and tris (hydroxyl methyl) amino-methane (for exotherm). The uncertainity in the measurements was found to be within ±3%.
General background conditions for K-bounce and adiabaticity
NASA Astrophysics Data System (ADS)
Romano, Antonio Enea
2017-03-01
We study the background conditions for a bounce uniquely driven by a single scalar field model with a generalized kinetic term K( X), without any additional matter field. At the background level we impose the existence of two turning points where the derivative of the Hubble parameter H changes sign and of a bounce point where the Hubble parameter vanishes. We find the conditions for K( X) and the potential which ensure the above requirements. We then give the examples of two models constructed according to these conditions. One is based on a quadratic K( X), and the other on a K( X) which is avoiding divergences of the second time derivative of the scalar field, which may otherwise occur. An appropriate choice of the initial conditions can lead to a sequence of consecutive bounces, or oscillations of H. In the region where these models have a constant potential they are adiabatic on any scale and because of this they may not conserve curvature perturbations on super-horizon scales. While at the perturbation level one class of models is free from ghosts and singularities of the classical equations of motion, in general gradient instabilities are present around the bounce time, because the sign of the squared speed of sound is opposite to the sign of the time derivative of H. We discuss how this kind of instabilities could be avoided by modifying the Lagrangian by introducing Galilean terms in order to prevent a negative squared speed of sound around the bounce.
The Adiabatic Fast Passage magnet for Ultracold Neutron spin manipulation
NASA Astrophysics Data System (ADS)
Blatnik, Marie; UCNA Collaboration; UCNB Collaboration
2014-09-01
The Ultracold Neutron source at the Los Alamos Neutron Science Center is used to investigate the weak interaction of the Standard Model through the decay of the free neutron, such as a precise measurement of the correlations between the decaying neutron's polarization and the emitted electron or neutrino momenta (the A and B correlation coefficients). These angular correlation measurements require precise control of the neutron polarization. The neutrons are polarized by a 7-Tesla magnetic field, and their spins are flipped by a radio-frequency birdcage resonator using the adiabatic fast passage technique in a 1-Tesla field. Precise knowledge of their polarization and spin-flip efficiency requires the achievement of greater than roughly 99% polarization and 99.9% spin-flipper efficiency. This target performance requires precise characterization and control of the static magnetic field profile in the spinflipper, and the resonator must produce large, uniform radio-frequency fields at 29.2 MHz. Studies of the static field profile in our spin-flipper and measurements of the performance of a modified resonator utilizing silver-coated components will be presented along with its impact of our measurements and the system's performance optimization.
On reaching the adiabatic limit in multi-field inflation
Renaux-Petel, Sébastien; Turzyński, Krzysztof E-mail: krzysztof-jan.turzynski@fuw.edu.pl
2015-06-01
We calculate the scalar spectral index n{sub s} and the tensor-to-scalar ratio r in a class of recently proposed two-field no-scale inflationary models in supergravity. We show that, in order to obtain correct predictions, it is crucial to take into account the coupling between the curvature and the isocurvature perturbations induced by the noncanonical form of the kinetic terms. This coupling enhances the curvature perturbation and suppresses the resulting tensor-to-scalar ratio to the per mille level even for values of the slow-roll parameter ε ∼ 0.01. Beyond these particular models, we emphasise that multifield models of inflation are a priori not predictive, unless one supplies a prescription for the post-inflationary era, or an adiabatic limit is reached before the end of inflation. We examine the conditions that enabled us to actually derive predictions in the models under study, by analysing the various contributions to the effective isocurvature mass in general two-field inflationary models. In particular, we point out a universal geometrical contribution that is important at the end of inflation, and which can be directly extracted from the inflationary Lagrangian, independently of a specific trajectory. Eventually, we point out that spectator fields can lead to oscillatory features in the time-dependent power spectra at the end of inflation. We demonstrate how these features can be model semi-analytically as well as the theoretical uncertainties they can entail.
Salt pill design and fabrication for adiabatic demagnetization refrigerators
NASA Astrophysics Data System (ADS)
Shirron, Peter J.; McCammon, Dan
2014-07-01
The performance of an adiabatic demagnetization refrigerator (ADR) is critically dependent on the design and construction of the salt pills that produce cooling. In most cases, the primary goal is to obtain the largest cooling capacity at the low temperature end of the operating range. The realizable cooling capacity depends on a number of factors, including refrigerant mass, and how efficiently it absorbs heat from the various instrument loads. The design and optimization of “salt pills” for ADR systems depend not only on the mechanical, chemical and thermal properties of the refrigerant, but also on the range of heat fluxes that the salt pill must accommodate. Despite the fairly wide variety of refrigerants available, those used at very low temperature tend to be hydrated salts that require a dedicated thermal bus and must be hermetically sealed, while those used at higher temperature - greater than about 0.5 K - tend to be single- or poly-crystals that have much simpler requirements for thermal and mechanical packaging. This paper presents a summary of strategies and techniques for designing, optimizing and fabricating salt pills for both low- and mid-temperature applications.
Adiabatic demagnetization refrigerator for use in zero gravity
NASA Technical Reports Server (NTRS)
Dingus, Michael L.
1988-01-01
In this effort, a new design concept for an adiabatic demagnetization refrigerator (ADR) that is capable of operation in zero gravity has been developed. The design uses a vortex precooler to lower the initial temperature of magnetic salt from the initial space superfluid helium dewar of 1.8 K to 1.1 K. This reduces the required maximum magnetic field from 4 Tesla to 2 Tesla. The laboratory prototype vortex precooler reached a minimum temperature of 0.78 K, and had a cooling power of 1 mW at 1.1 K. A study was conducted to determine the dependence of vortex cooler performance on system element configuration. A superfluid filled capillary heat switch was used in the design. The laboratory prototype ADR reached a minimum temperature of 0.107 K, and maintained temperatures below 0.125 K for 90 minutes. Demagnetization was carried out from a maximum field of 2 T. A soft iron shield was developed that reduced the radial central field to 1 gauss at 0.25 meters.
Microwave photon Fock state generation by stimulated Raman adiabatic passage
Premaratne, Shavindra P.; Wellstood, F. C.; Palmer, B. S.
2017-01-01
The deterministic generation of non-classical states of light, including squeezed states, Fock states and Bell states, plays an important role in quantum information processing and exploration of the physics of quantum entanglement. Preparation of these non-classical states in resonators is non-trivial due to their inherent harmonicity. Here we use stimulated Raman adiabatic passage to generate microwave photon Fock states in a superconducting circuit quantum electrodynamics system comprised of a fixed-frequency transmon qubit in a three-dimensional microwave cavity at 20 mK. A two-photon process is employed to overcome a first order forbidden transition and the first, second and third Fock states are demonstrated. We also demonstrate how this all-microwave technique can be used to generate an arbitrary superposition of Fock states. Simulations of the system are in excellent agreement with the data and fidelities of 89%, 68% and 43% are inferred for the first three Fock states respectively. PMID:28128205
Thermodynamics analysis of refinery sludge gasification in adiabatic updraft gasifier.
Ahmed, Reem; Sinnathambi, Chandra M; Eldmerdash, Usama; Subbarao, Duvvuri
2014-01-01
Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS) is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER). It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5) at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9-55.5%, 43.7-72.4%, and 42.5-50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values.
Adiabatic contraction revisited: Implications for primordial black holes
NASA Astrophysics Data System (ADS)
Capela, Fabio; Pshirkov, Maxim; Tinyakov, Peter
2014-10-01
We simulate the adiabatic contraction of a dark matter (DM) distribution during the process of the star formation, paying particular attention to the phase space distribution of the DM particles after the contraction. Assuming the initial uniform density and Maxwellian distribution of DM velocities, we find that the number n(r) of DM particles within the radius r scales like n(r)∝r1.5, leading to the DM density profile ρ∝r-1.5, in agreement with the Liouville theorem and previous numerical studies. At the same time, the number of DM particles ν(r) with periastra smaller than r is parametrically larger, ν(r)∝r, implying that many particles contributing at any given moment into the density ρ(r) at small r have very elongated orbits and spend most of their time at distances larger than r. This has implications for the capture of DM by stars in the process of their formation. As a concrete example we consider the case of primordial black holes (PBHs). We show that accounting for very eccentric orbits boosts the amount of captured PBH by a factor of up to 2×103 depending on the PBH mass, improving correspondingly the previously derived constraints on the PBH abundance.
NASA Technical Reports Server (NTRS)
Wang, Lui; Bayer, Steven E.
1991-01-01
Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.