Excitation energies along a range-separated adiabatic connection
Rebolini, Elisa Toulouse, Julien Savin, Andreas; Teale, Andrew M.; Helgaker, Trygve
2014-07-28
We present a study of the variation of total energies and excitation energies along a range-separated adiabatic connection. This connection links the non-interacting Kohn–Sham electronic system to the physical interacting system by progressively switching on the electron–electron interactions whilst simultaneously adjusting a one-electron effective potential so as to keep the ground-state density constant. The interactions are introduced in a range-dependent manner, first introducing predominantly long-range, and then all-range, interactions as the physical system is approached, as opposed to the conventional adiabatic connection where the interactions are introduced by globally scaling the standard Coulomb interaction. Reference data are reported for the He and Be atoms and the H{sub 2} molecule, obtained by calculating the short-range effective potential at the full configuration-interaction level using Lieb's Legendre-transform approach. As the strength of the electron–electron interactions increases, the excitation energies, calculated for the partially interacting systems along the adiabatic connection, offer increasingly accurate approximations to the exact excitation energies. Importantly, the excitation energies calculated at an intermediate point of the adiabatic connection are much better approximations to the exact excitation energies than are the corresponding Kohn–Sham excitation energies. This is particularly evident in situations involving strong static correlation effects and states with multiple excitation character, such as the dissociating H{sub 2} molecule. These results highlight the utility of long-range interacting reference systems as a starting point for the calculation of excitation energies and are of interest for developing and analyzing practical approximate range-separated density-functional methodologies.
Transient energy excitation in shortcuts to adiabaticity for the time-dependent harmonic oscillator
Chen Xi; Muga, J. G.
2010-11-15
We study for the time-dependent harmonic oscillator the transient energy excitation in speed-up processes ('shortcuts to adiabaticity') designed to reproduce the initial populations at some predetermined final frequency and time. We provide lower bounds and examples. Implications for the limits imposed to the process times and for the principle of unattainability of the absolute zero, in a single expansion or in quantum refrigerator cycles, are drawn.
NASA Astrophysics Data System (ADS)
Haruyama, Jun; Suzuki, Takahiro; Hu, Chunping; Watanabe, Kazuyuki
2012-01-01
We present a simple and computationally efficient method to calculate excited-state nuclear forces on adiabatic potential-energy surfaces (APES) from linear-response time-dependent density-functional theory within a real-space framework. The Casida ansatz, which has been validated for computing first-order nonadiabatic couplings in previous studies, was applied to the calculation of the excited-state forces. Our method is validated by the consistency of results in the lower excited states, which reproduce well those obtained by the numerical derivative of each APES. We emphasize the usefulness of this technique by demonstrating the excited-state molecular-dynamics simulation.
NASA Astrophysics Data System (ADS)
George, D. X. F.; Kumar, Sanjay
2010-08-01
Ab initio global adiabatic as well as quasidiabatic potential energy surfaces for the ground and the first excited electronic states of the H + + CO system have been computed as a function of the Jacobi coordinates ( R, r, γ) using Dunning's cc-pVTZ basis set at the internally contracted multi-reference (single and double) configuration interaction level of accuracy. In addition, nonadiabatic coupling matrix elements arising from radial motion, mixing angle and coupling potential have been computed using the ab initio procedure [Simah et al. (1999) [66
NASA Astrophysics Data System (ADS)
Dupuy, Nicolas; Bouaouli, Samira; Mauri, Francesco; Sorella, Sandro; Casula, Michele
2015-06-01
We study the ionization energy, electron affinity, and the π → π∗ (1La) excitation energy of the anthracene molecule, by means of variational quantum Monte Carlo (QMC) methods based on a Jastrow correlated antisymmetrized geminal power (JAGP) wave function, developed on molecular orbitals (MOs). The MO-based JAGP ansatz allows one to rigorously treat electron transitions, such as the HOMO → LUMO one, which underlies the 1La excited state. We present a QMC optimization scheme able to preserve the rank of the antisymmetrized geminal power matrix, thanks to a constrained minimization with projectors built upon symmetry selected MOs. We show that this approach leads to stable energy minimization and geometry relaxation of both ground and excited states, performed consistently within the correlated QMC framework. Geometry optimization of excited states is needed to make a reliable and direct comparison with experimental adiabatic excitation energies. This is particularly important in π-conjugated and polycyclic aromatic hydrocarbons, where there is a strong interplay between low-lying energy excitations and structural modifications, playing a functional role in many photochemical processes. Anthracene is an ideal benchmark to test these effects. Its geometry relaxation energies upon electron excitation are of up to 0.3 eV in the neutral 1La excited state, while they are of the order of 0.1 eV in electron addition and removal processes. Significant modifications of the ground state bond length alternation are revealed in the QMC excited state geometry optimizations. Our QMC study yields benchmark results for both geometries and energies, with values below chemical accuracy if compared to experiments, once zero point energy effects are taken into account.
Dupuy, Nicolas; Bouaouli, Samira; Mauri, Francesco Casula, Michele; Sorella, Sandro
2015-06-07
We study the ionization energy, electron affinity, and the π → π{sup ∗} ({sup 1}L{sub a}) excitation energy of the anthracene molecule, by means of variational quantum Monte Carlo (QMC) methods based on a Jastrow correlated antisymmetrized geminal power (JAGP) wave function, developed on molecular orbitals (MOs). The MO-based JAGP ansatz allows one to rigorously treat electron transitions, such as the HOMO → LUMO one, which underlies the {sup 1}L{sub a} excited state. We present a QMC optimization scheme able to preserve the rank of the antisymmetrized geminal power matrix, thanks to a constrained minimization with projectors built upon symmetry selected MOs. We show that this approach leads to stable energy minimization and geometry relaxation of both ground and excited states, performed consistently within the correlated QMC framework. Geometry optimization of excited states is needed to make a reliable and direct comparison with experimental adiabatic excitation energies. This is particularly important in π-conjugated and polycyclic aromatic hydrocarbons, where there is a strong interplay between low-lying energy excitations and structural modifications, playing a functional role in many photochemical processes. Anthracene is an ideal benchmark to test these effects. Its geometry relaxation energies upon electron excitation are of up to 0.3 eV in the neutral {sup 1}L{sub a} excited state, while they are of the order of 0.1 eV in electron addition and removal processes. Significant modifications of the ground state bond length alternation are revealed in the QMC excited state geometry optimizations. Our QMC study yields benchmark results for both geometries and energies, with values below chemical accuracy if compared to experiments, once zero point energy effects are taken into account.
Vertical and adiabatic electronic excitations in biphenylene: A theoretical study
NASA Astrophysics Data System (ADS)
Beck, M. E.; Rebentisch, R.; Hohlneicher, G.; Fülscher, M. P.; Serrano-Andrés, L.; Roos, B. O.
1997-12-01
The low-lying singlet states of biphenylene have been studied using ab initio methods. Vertical excitation energies were calculated by multiconfigurational perturbation theory (CASPT2), starting from a complete active space self-consistent field (CASSCF) reference. The geometries of the most important low-lying excited states were individually optimized at the CASSCF level to study the difference between vertical and adiabatic excitations. Extended atomic natural orbital (ANO)-type basis sets were used to calculate state energies. Geometry optimizations were done with smaller ANO-type basis sets. Excitations from the ground state to the 1 1B3g and 1 1B2u excited singlet states lead to pronounced geometry changes which alter the bond alternation pattern. The theoretical results provide a solid basis for the assignment and interpretation of experimental spectra.
NASA Astrophysics Data System (ADS)
Saheer, V. C.; Kumar, Sanjay
2016-01-01
The global ground and first three excited electronic state adiabatic as well as the corresponding quasidiabatic potential energy surfaces is reported as a function of nuclear geometries in the Jacobi coordinates ( R → , r → , γ ) using Dunning's cc-pVTZ basis set at the internally contracted multi-reference (single and double) configuration interaction level of accuracy. Nonadiabatic couplings, arising out of relative motion of proton and the vibrational motion of CO, are also reported in terms of coupling potentials. The quasidiabatic potential energy surfaces and the coupling potentials have been obtained using the ab initio procedure [Simah et al., J. Chem. Phys. 111, 4523 (1999)] for the purpose of dynamics studies.
Selective excitation in a three-state system using a hybrid adiabatic-nonadiabatic interaction
NASA Astrophysics Data System (ADS)
Song, Yunheung; Lee, Han-gyeol; Jo, Hanlae; Ahn, Jaewook
2016-08-01
The chirped-pulse interaction in the adiabatic coupling regime induces cyclic permutations of the energy states of a three-level system in the V -type configuration, which process is known as the three-level chirped rapid adiabatic passage (RAP). Here we show that a spectral hole in a chirped pulse can turn on or off the level mixing at adiabatic crossing points of this process, reducing the system to an effective two-level system. The given hybrid adiabatic-nonadiabatic transition enables selective excitation of the three-level system, controlled by the laser intensity and spectral position of the hole, as well as the sign of the chirp parameter. Experiments performed with shaped femtosecond laser pulses and the three lowest energy levels (5 S1 /2 , 5 P1 /2 , and 5 P3 /2 ) of atomic rubidium (Rb) show good agreement with the theoretically analyzed dynamics. The result indicates that our method, when being combined with the ordinary chirped RAP, implements an adiabatic transition between the Raman-coupled excited states. Furthermore, our laser intensity-dependent control may have applications including selective excitations of atoms or ions arranged in space when being used in conjunction with laser beam profile programming.
First-order derivative couplings between excited states from adiabatic TDDFT response theory
Ou, Qi; Subotnik, Joseph E.; Bellchambers, Gregory D.; Furche, Filipp
2015-02-14
We present a complete derivation of derivative couplings between excited states in the framework of adiabatic time-dependent density functional response theory. Explicit working equations are given and the resulting derivative couplings are compared with derivative couplings from a pseudo-wavefunction ansatz. For degenerate excited states, i.e., close to a conical intersection (CI), the two approaches are identical apart from an antisymmetric overlap term. However, if the difference between two excitation energies equals another excitation energy, the couplings from response theory exhibit an unphysical divergence. This spurious behavior is a result of the adiabatic or static kernel approximation of time-dependent density functional theory leading to an incorrect analytical structure of the quadratic response function. Numerical examples for couplings close to a CI and for well-separated electronic states are given.
NASA Astrophysics Data System (ADS)
Kłos, Jacek; Alexander, Millard H.; Kumar, Praveen; Poirier, Bill; Jiang, Bin; Guo, Hua
2016-05-01
We report new and more accurate adiabatic potential energy surfaces (PESs) for the ground X˜ 1A1 and electronically excited C˜ 1B2(21A') states of the SO2 molecule. Ab initio points are calculated using the explicitly correlated internally contracted multi-reference configuration interaction (icMRCI-F12) method. A second less accurate PES for the ground X ˜ state is also calculated using an explicitly correlated single-reference coupled-cluster method with single, double, and non-iterative triple excitations [CCSD(T)-F12]. With these new three-dimensional PESs, we determine energies of the vibrational bound states and compare these values to existing literature data and experiment.
Energy efficiency of adiabatic superconductor logic
NASA Astrophysics Data System (ADS)
Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki
2015-01-01
Adiabatic superconductor logic (ASL), including adiabatic quantum-flux-parametron (AQFP) logic, exhibits high energy efficiency because its bit energy can be decreased below the thermal energy through adiabatic switching operations. In the present paper, we present the general scaling laws of ASL and compare the energy efficiency of ASL with those of other energy-efficient logics. Also, we discuss the minimum energy-delay product (EDP) of ASL at finite temperature. Our study shows that there is a maximum temperature at which the EDP can reach the quantum limit given by ħ/2, which is dependent on the superconductor material and the Josephson junction quality, and that it is reasonable to operate ASL at cryogenic temperatures in order to achieve an EDP that approaches ħ/2.
Rotational excitation of H2 by positron impact in adiabatic rotational approximation
NASA Astrophysics Data System (ADS)
Zanin, Guilherme Luiz; Tenfen, Wagner; Arretche, Felipe
2016-09-01
We present rotational excitation cross sections for low energy scattering of positrons by H2, below positronium formation threshold (≈8.2 eV). The cross sections were computed from fixed-nuclei scattering amplitudes generated with the Schwinger multichannel method using the adiabatic rotational approximation. Comparison with other similar theoretical results shows that the magnitude of the cross section associated to the transition J i = 0 → J f = 2 is strongly affected by the methodology used to model the correlation-polarization effects.
Hoang, Thai M; Bharath, Hebbe M; Boguslawski, Matthew J; Anquez, Martin; Robbins, Bryce A; Chapman, Michael S
2016-08-23
Spontaneous symmetry breaking occurs in a physical system whenever the ground state does not share the symmetry of the underlying theory, e.g., the Hamiltonian. This mechanism gives rise to massless Nambu-Goldstone modes and massive Anderson-Higgs modes. These modes provide a fundamental understanding of matter in the Universe and appear as collective phase or amplitude excitations of an order parameter in a many-body system. The amplitude excitation plays a crucial role in determining the critical exponents governing universal nonequilibrium dynamics in the Kibble-Zurek mechanism (KZM). Here, we characterize the amplitude excitations in a spin-1 condensate and measure the energy gap for different phases of the quantum phase transition. At the quantum critical point of the transition, finite-size effects lead to a nonzero gap. Our measurements are consistent with this prediction, and furthermore, we demonstrate an adiabatic quench through the phase transition, which is forbidden at the mean field level. This work paves the way toward generating entanglement through an adiabatic phase transition. PMID:27503886
Hoang, Thai M.; Bharath, Hebbe M.; Boguslawski, Matthew J.; Anquez, Martin; Robbins, Bryce A.; Chapman, Michael S.
2016-01-01
Spontaneous symmetry breaking occurs in a physical system whenever the ground state does not share the symmetry of the underlying theory, e.g., the Hamiltonian. This mechanism gives rise to massless Nambu–Goldstone modes and massive Anderson–Higgs modes. These modes provide a fundamental understanding of matter in the Universe and appear as collective phase or amplitude excitations of an order parameter in a many-body system. The amplitude excitation plays a crucial role in determining the critical exponents governing universal nonequilibrium dynamics in the Kibble–Zurek mechanism (KZM). Here, we characterize the amplitude excitations in a spin-1 condensate and measure the energy gap for different phases of the quantum phase transition. At the quantum critical point of the transition, finite-size effects lead to a nonzero gap. Our measurements are consistent with this prediction, and furthermore, we demonstrate an adiabatic quench through the phase transition, which is forbidden at the mean field level. This work paves the way toward generating entanglement through an adiabatic phase transition. PMID:27503886
NASA Astrophysics Data System (ADS)
Hoang, Thai M.; Bharath, Hebbe M.; Boguslawski, Matthew J.; Anquez, Martin; Robbins, Bryce A.; Chapman, Michael S.
2016-08-01
Spontaneous symmetry breaking occurs in a physical system whenever the ground state does not share the symmetry of the underlying theory, e.g., the Hamiltonian. This mechanism gives rise to massless Nambu-Goldstone modes and massive Anderson-Higgs modes. These modes provide a fundamental understanding of matter in the Universe and appear as collective phase or amplitude excitations of an order parameter in a many-body system. The amplitude excitation plays a crucial role in determining the critical exponents governing universal nonequilibrium dynamics in the Kibble-Zurek mechanism (KZM). Here, we characterize the amplitude excitations in a spin-1 condensate and measure the energy gap for different phases of the quantum phase transition. At the quantum critical point of the transition, finite-size effects lead to a nonzero gap. Our measurements are consistent with this prediction, and furthermore, we demonstrate an adiabatic quench through the phase transition, which is forbidden at the mean field level. This work paves the way toward generating entanglement through an adiabatic phase transition.
Hoang, Thai M; Bharath, Hebbe M; Boguslawski, Matthew J; Anquez, Martin; Robbins, Bryce A; Chapman, Michael S
2016-08-23
Spontaneous symmetry breaking occurs in a physical system whenever the ground state does not share the symmetry of the underlying theory, e.g., the Hamiltonian. This mechanism gives rise to massless Nambu-Goldstone modes and massive Anderson-Higgs modes. These modes provide a fundamental understanding of matter in the Universe and appear as collective phase or amplitude excitations of an order parameter in a many-body system. The amplitude excitation plays a crucial role in determining the critical exponents governing universal nonequilibrium dynamics in the Kibble-Zurek mechanism (KZM). Here, we characterize the amplitude excitations in a spin-1 condensate and measure the energy gap for different phases of the quantum phase transition. At the quantum critical point of the transition, finite-size effects lead to a nonzero gap. Our measurements are consistent with this prediction, and furthermore, we demonstrate an adiabatic quench through the phase transition, which is forbidden at the mean field level. This work paves the way toward generating entanglement through an adiabatic phase transition.
NASA Astrophysics Data System (ADS)
Tsiper, E. V.; Chernyak, V.; Tretiak, S.; Mukamel, S.
1999-05-01
Excited-state potentials of a short protonated Schiff base cation which serves as a model for the photoisomerization of retinal are computed by combining a semi-empirical ground-state adiabatic surface with excitation energies obtained using the time-dependent coupled electronic oscillator (CEO) approach. Excited-state molecular dynamic simulation of the in-plane motion of cis-C5H6NH2+ following impulsive optical excitation reveals a dominating 1754 cm-1 π-conjugation mode. A new molecular dynamics algorithm is proposed which resembles the Car-Parinello ground-state technique and is based on the adiabatic propagation of the ground-state single-electron density matrix and the collective electronic modes along the trajectory.
Excitation energies from ensemble DFT
NASA Astrophysics Data System (ADS)
Borgoo, Alex; Teale, Andy M.; Helgaker, Trygve
2015-12-01
We study the evaluation of the Gross-Oliveira-Kohn expression for excitation energies E1-E0=ɛ1-ɛ0+∂E/xc,w[ρ] ∂w | ρ =ρ0. This expression gives the difference between an excitation energy E1 - E0 and the corresponding Kohn-Sham orbital energy difference ɛ1 - ɛ0 as a partial derivative of the exchange-correlation energy of an ensemble of states Exc,w[ρ]. Through Lieb maximisation, on input full-CI density functions, the exchange-correlation energy is evaluated accurately and the partial derivative is evaluated numerically using finite difference. The equality is studied numerically for different geometries of the H2 molecule and different ensemble weights. We explore the adiabatic connection for the ensemble exchange-correlation energy. The latter may prove useful when modelling the unknown weight dependence of the exchange-correlation energy.
Flapping current sheet motions in magnetotail excited by non-adiabatic ions: case study
NASA Astrophysics Data System (ADS)
Wei, X., Jr.
2015-12-01
The current sheet is a crucial region of the magnetotail, where energy reserve and release take place. The origin of the up-down motions of the current sheet, referred to as flapping motions, is among the most fundamental issues of magnetotail dynamics. Observational evidences suggest that the flapping motion is a kind of internal excited kink-like waves, but its particular propagating features such as the low phase speeds and the propagating direction from the tail center toward flanks do not match any local generation mechanisms previously established so far. Here we report observations of the current sheet flapping motions induced by non-adiabatic ions in the magnetic field configurations with a finite guiding component, whose population present periodic hemispherical asymmetries. Three type of current sheet flapping event in this paper will be discussed. This current sheet flapping phenomenon implies that the excitation mechanism of the current sheet flapping motions is a self-circulation process between the non-adiabatic ion population and the current sheet equilibrium itself.
Fernandez-Alberti, Sebastian; Makhov, Dmitry V; Tretiak, Sergei; Shalashilin, Dmitrii V
2016-04-21
Photoinduced dynamics of electronic and vibrational unidirectional energy transfer between meta-linked building blocks in a phenylene ethynylene dendrimer is simulated using a multiconfigurational Ehrenfest in time-dependent diabatic basis (MCE-TDDB) method, a new variant of the MCE approach developed by us for dynamics involving multiple electronic states with numerous abrupt crossings. Excited-state energies, gradients and non-adiabatic coupling terms needed for dynamics simulation are calculated on-the-fly using the Collective Electron Oscillator (CEO) approach. A comparative analysis of our results obtained using MCE-TDDB, the conventional Ehrenfest method and the surface-hopping approach with and without decoherence corrections is presented. PMID:27004611
VUV generation by adiabatically expanded and excited by a DC electrical discharge Argon gas
Pipergias, K.; Yasemidis, D.; Reppa, E.; Pentaris, D.; Efthimiopoulos, T.; Merlemis, N.; Giannetas, V.
2010-11-10
We investigate the emission of Argon (Ar) gas which is adiabatically expanded through a nozzle and excited using a DC electrical discharge. Because of the expansion and the electronic excitation, Ar dimers and clusters are formed, which give radiation in the second (2nd) and in the third (3rd) continua of Ar, centered at about 126 and 254 nm respectively. We particularly focus our study on the 2nd continuum, in order to develop a laser at this wavelength.
Transient Particle Energies in Shortcuts to Adiabatic Expansions of Harmonic Traps.
Cui, Yang-Yang; Chen, Xi; Muga, J G
2016-05-19
The expansion of a harmonic potential that holds a quantum particle may be realized without any final particle excitation but much faster than adiabatically via "shortcuts to adiabaticity" (STA). While ideally the process time can be reduced to zero, practical limitations and constraints impose minimal finite times for the externally controlled time-dependent frequency protocols. We examine the role of different time-averaged energies (total, kinetic, potential, nonadiabatic) and of the instantaneous power in characterizing or selecting different protocols. Specifically, we prove a virial theorem for STA processes, set minimal energies (or times) for given times (or energies), and discuss their realizability by means of Dirac impulses or otherwise.
Transient Particle Energies in Shortcuts to Adiabatic Expansions of Harmonic Traps.
Cui, Yang-Yang; Chen, Xi; Muga, J G
2016-05-19
The expansion of a harmonic potential that holds a quantum particle may be realized without any final particle excitation but much faster than adiabatically via "shortcuts to adiabaticity" (STA). While ideally the process time can be reduced to zero, practical limitations and constraints impose minimal finite times for the externally controlled time-dependent frequency protocols. We examine the role of different time-averaged energies (total, kinetic, potential, nonadiabatic) and of the instantaneous power in characterizing or selecting different protocols. Specifically, we prove a virial theorem for STA processes, set minimal energies (or times) for given times (or energies), and discuss their realizability by means of Dirac impulses or otherwise. PMID:26237328
Quantum adiabatic evolution with energy degeneracy levels
NASA Astrophysics Data System (ADS)
Zhang, Qi
2016-01-01
A classical-kind phase-space formalism is developed to address the tiny intrinsic dynamical deviation from what is predicted by Wilczek-Zee theorem during quantum adiabatic evolution on degeneracy levels. In this formalism, the Hilbert space and the aggregate of degenerate eigenstates become the classical-kind phase space and a high-dimensional subspace in the phase space, respectively. Compared with the previous analogous study by a different method, the current result is qualitatively different in that the first-order deviation derived here is always perpendicular to the degeneracy subspace. A tripod-scheme Hamiltonian with two degenerate dark states is employed to illustrate the adiabatic deviation with degeneracy levels.
NASA Astrophysics Data System (ADS)
Bačić, Z.
1991-09-01
We show that the triatomic adiabatic vibrational eigenstates (AVES) provide a convenient basis for accurate discrete variable representation (DVR) calculation and automatic assignment of highly excited, large amplitude motion vibrational states of floppy triatomic molecules. The DVR-AVES states are eigenvectors of the diagonal (in the stretch states) blocks of the adiabatically rearranged triatomic DVR-ray eigenvector (DVR-REV) Hamiltonian [J. C. Light and Z. Bačić, J. Chem. Phys. 87, 4008 (1987)]. The transformation of the full triatomic vibrational Hamiltonian from the DVR-REV basis to the new DVR-AVES basis is simple, and does not involve calculation of any new matrix elements. No dynamical approximation is made in the energy level calculation by the DVR-AVES approach; its accuracy and efficiency are identical to those of the DVR-REV method. The DVR-AVES states, as the adiabatic approximation to the vibrational states of a triatomic molecule, are labeled by three vibrational quantum numbers. Consequently, accurate large amplitude motion vibrational levels obtained by diagonalizing the full vibrational Hamiltonian transformed to the DVR-AVES basis, can be assigned automatically by the code, with the three quantum numbers of the dominant DVR-AVES state associated with the largest (by modulus) eigenvector element in the DVR-AVES basis. The DVR-AVES approach is used to calculate accurate highly excited localized and delocalized vibrational levels of HCN/HNC and LiCN/LiNC. A significant fraction of localized states of both systems, below and above the isomerization barrier, is assigned automatically, without inspection of wave function plots or separate approximate calculations.
Adiabatic corrections to density functional theory energies and wave functions.
Mohallem, José R; Coura, Thiago de O; Diniz, Leonardo G; de Castro, Gustavo; Assafrão, Denise; Heine, Thomas
2008-09-25
The adiabatic finite-nuclear-mass-correction (FNMC) to the electronic energies and wave functions of atoms and molecules is formulated for density-functional theory and implemented in the deMon code. The approach is tested for a series of local and gradient corrected density functionals, using MP2 results and diagonal-Born-Oppenheimer corrections from the literature for comparison. In the evaluation of absolute energy corrections of nonorganic molecules the LDA PZ81 functional works surprisingly better than the others. For organic molecules the GGA BLYP functional has the best performance. FNMC with GGA functionals, mainly BLYP, show a good performance in the evaluation of relative corrections, except for nonorganic molecules containing H atoms. The PW86 functional stands out with the best evaluation of the barrier of linearity of H2O and the isotopic dipole moment of HDO. In general, DFT functionals display an accuracy superior than the common belief and because the corrections are based on a change of the electronic kinetic energy they are here ranked in a new appropriate way. The approach is applied to obtain the adiabatic correction for full atomization of alcanes C(n)H(2n+2), n = 4-10. The barrier of 1 mHartree is approached for adiabatic corrections, justifying its insertion into DFT. PMID:18537228
Taher, Aymen Belhadj; Di Bin, Philippe; Bahloul, Faouzi; Tartaret-Josnière, Etienne; Jossent, Mathieu; Février, Sébastien; Attia, Rabah
2016-01-25
We propose a new technique to selectively excite the fundamental mode in a few mode fiber (FMF). This method of excitation is made from a single mode fiber (SMF) which is inserted facing the FMF into an air-silica microstructured cane before the assembly is adiabatically tapered. We study theoretically and numerically this method by calculating the effective indices of the propagated modes, their amplitudes along the taper and the adiabaticity criteria, showing the ability to achieve an excellent selective excitation of the fundamental mode in the FMF with negligible loss. We experimentally demonstrate that the proposed solution provides a successful mode conversion and allows an almost excellent fundamental mode excitation in the FMF (representing 99.8% of the total power).
Taher, Aymen Belhadj; Di Bin, Philippe; Bahloul, Faouzi; Tartaret-Josnière, Etienne; Jossent, Mathieu; Février, Sébastien; Attia, Rabah
2016-01-25
We propose a new technique to selectively excite the fundamental mode in a few mode fiber (FMF). This method of excitation is made from a single mode fiber (SMF) which is inserted facing the FMF into an air-silica microstructured cane before the assembly is adiabatically tapered. We study theoretically and numerically this method by calculating the effective indices of the propagated modes, their amplitudes along the taper and the adiabaticity criteria, showing the ability to achieve an excellent selective excitation of the fundamental mode in the FMF with negligible loss. We experimentally demonstrate that the proposed solution provides a successful mode conversion and allows an almost excellent fundamental mode excitation in the FMF (representing 99.8% of the total power). PMID:26832518
NASA Astrophysics Data System (ADS)
Hellman, A.
2009-01-01
The initial adsorption of O2 on Si(1 0 0) is investigated by density-functional theory calculations. The potential energy surface shows strong corrugations which can be interpreted as precursor states, however, there are also large areas where adsorption proceeds without a barrier. Furthermore, the initial sticking probability as a function of translational energy using first-principles molecular dynamics is calculated. The result is in disagreement with measurements of sticking probability which vary from high-low-high values as the translational energy of the oxygen molecules increase. A simple non-adiabatic model is put-forth that explains not only the measured sticking probability, but also have a novel interpretation of the increased sticking probability owing to tensile stress. The model deals with non-adiabatic effects originating both from a discrete and continuous set of electronic excitations. The implications are general and can be applied to other systems.
Hermann, Gunter; Liu, ChunMei; Manz, Jörn; Paulus, Beate; Pérez-Torres, Jhon Fredy; Pohl, Vincent; Tremblay, Jean Christophe
2016-07-14
Recently, adiabatic attosecond charge migration (AACM) has been monitored and simulated for the first time, with application to the oriented iodoacetylene cation where AACM starts from the initial superposition of the ground state (φ0) and an electronic excited state (φ1). Here, we develop the theory for electronic fluxes during AACM in ring-shaped molecules, with application to oriented benzene prepared in the superposition of the ground and first excited singlet states. The initial state and its time evolution are analogous to coherent tunneling where φ0 and φ1 have different meanings; however, they denote the wave functions of the lowest tunneling doublet. This analogy suggests to transfer the theory of electronic fluxes during coherent tunneling to AACM, with suitable modifications which account for (i) the different time scales and (ii) the different electronic states, and which make use of (iii) the preparation of the initial state for AACM by a linearly polarized laser pulse. Application to benzene yields the multidirectional angular electronic flux with a pincer-motion type pattern during AACM: this unequivocal result confirms a previous working hypothesis. Moreover, the theory of AACM allows quantification of the electronic flux; that is, the maximum number of electrons (out of 42) which flow concertedly during AACM in benzene is 6 × 0.08 = 0.48.
NASA Astrophysics Data System (ADS)
Beltran Madrigal, Josslyn; Berthel, Martin; Gardillou, Florent; Tellez Limon, Ricardo; Couteau, Christophe; Barbier, Denis; Drezet, Aurelien; Salas-Montiel, Rafael; Huant, Serge; Blaize, Sylvain; Geng, Wei
2015-10-01
Several works have already shown that the excitation of plasmonic structures through waveguides enables a strong light confinement and low propagation losses [1]. This kind of excitation is currently exploited in areas such as biosensing [2], nanocircuits[3] and spectroscopy[4]. The efficient excitation of surface plasmon modes (SPP) with guided modes supported by high-index-contrast waveguides, such as silicon-on-insulator waveguides, had already been shown [1,5]. However, the use of weakconfined guided modes of a glass ion exchanged waveguide as a SPP excitation source represents a technological challenge, because the mismatch between the size of their respective electromagnetic modes is so high that the resultant coupling loss is unacceptable for practical applications. In this work, we describe how an adiabatic taper structure formed by an intermediate high-index-contrast layer placed between a plasmonic structure and an ion-exchanged waveguide decreases the mismatch between effective indices, size, and shape of the guided modes. This hybrid structure concentrates the electromagnetic energy from the micrometer to the nanometer scale with low coupling losses to radiative modes. The electromagnetic mode confined to the high-index-contrast waveguide then works as an efficient source of SPP supported by metallic nanostructures placed on its surface. We theoretically studied the modal properties and field distribution along the adiabatic coupler structure. In addition, we fabricated a high-index-contrast waveguide by electron beam lithography and thermal evaporation on top of an ion-exchanged waveguide on glass. This structure was characterized with the use of near field scanning optical microscopy (NSOM). Numerical simulations were compared with the experimental results. [1] N. Djaker, R. Hostein, E. Devaux, T. W. Ebbesen, and H. Rigneault, and J. Wenger, J. Phys. Chem. C 114, 16250 (2010). [2] P. Debackere, S. Scheerlinck, P. Bienstman, R. Baets, Opt. Express 14
Rotational excitation of H2O by para-H2 from an adiabatically reduced dimensional potential
NASA Astrophysics Data System (ADS)
Scribano, Yohann; Faure, Alexandre; Lauvergnat, David
2012-03-01
Cross sections and rate coefficients for low lying rotational transitions in H2O colliding with para-hydrogen pH2 are computed using an adiabatic approximation which reduces the dimensional dynamics from a 5D to a 3D problem. Calculations have been performed at the close-coupling level using the recent potential of Valiron et al. [J. Chem. Phys. 129, 134306 (2008), 10.1063/1.2988314]. A good agreement is found between the reduced adiabatic calculations and the 5D exact calculations, with an impressive time saving and memory gain. This adiabatic reduction of dimensionality seems very promising for scattering studies involving the excitation of a heavy target molecule by a light molecular projectile.
High Energy Signatures of POST Adiabatic Supernova Remnants
NASA Astrophysics Data System (ADS)
Telezhinsky, Igor; Hnatyk, Bohdan
Between the well-known adiabatic and radiative stages of the Supernova remnant (SNR) evolution there is, in fact, a transition stage with a duration comparable to the duration of adiabatic one. Physical existence of the transition stage is motivated by cooling of some part of the downstream hot gas with formation of a thin cold shell that is joined to a shell of swept up interstellar medium (ISM). We give an approximate analytical method for full hydrodynamical description of the transition stage. On its base we investigate the evolution of X-ray and γ-ray radiation during this stage. It is shown that formation of a dense shell during the transition stage is accompanied by the decrease of X-ray luminosity because of hot gas cooling and increase of gamma-ray flux according to the increase of target proton density and CR energy in the newly born shell. The role of nonuniformity of ISM and its influence on the high energy fluxes from the SNRs is also discussed.
NASA Astrophysics Data System (ADS)
Dattani, Nike; Tanburn, Richard; Lunt, Oliver
We introduce two methods for speeding up adiabatic quantum computations by increasing the energy between the ground and first excited states. Our methods are even more general. They can be used to shift a Hamiltonian's density of states away from the ground state, so that fewer states occupy the low-lying energies near the minimum, hence allowing for faster adiabatic passages to find the ground state with less risk of getting caught in an undesired low-lying excited state during the passage. Even more generally, our methods can be used to transform a discrete optimization problem into a new one whose unique minimum still encodes the desired answer, but with the objective function's values forming a different landscape. Aspects of the landscape such as the objective function's range, or the values of certain coefficients, or how many different inputs lead to a given output value, can be decreased *or* increased. One of the many examples for which these methods are useful is in finding the ground state of a Hamiltonian using NMR. We apply our methods to an AQC algorithm for integer factorization, and the first method reduces the maximum runtime in our example by up to 754%, and the second method reduces the maximum runtime of another example by up to 250%.
Adiabatic principles in atom-diatom collisional energy transfer
Hovingh, W.J.
1993-01-01
This work describes the application of numerical methods to the solution of the time dependent Schroedinger equation for non-reactive atom-diatom collisions in which only one of the degrees of freedom has been removed. The basic method involves expanding the wave function in a basis set in two of the diatomic coordinates in a body-fixed frame (with respect to the triatomic complex) and defining the coefficients in that expansion as functions on a grid in the collision coordinate. The wave function is then propagated in time using a split operator method. The bulk of this work is devoted to the application of this formalism to the study of internal rotational predissociation in NeHF, in which quasibound states of the triatom predissociate through the transfer of energy from rotation of the diatom into translational energy in the atom-diatom separation coordinate. The author analyzes the computed time dependent wave functions to calculate the lifetimes for several quasibound states; these are in agreement with time independent quantum calculations using the same potential. Moreover, the time dependent behavior of the wave functions themselves sheds light on the dynamics of the predissociation processes. Finally, the partial cross sections of the products in those processes is determined with multiple exit channels. These show strong selectivity in the orbital angular momentum of the outgoing fragments, which the author explains with an adiabatic channel interpretation of the wave function's dynamics. The author also suggests that the same formalism might profitably be used to investigate the quantum dynamics of [open quotes]quasiresonant vibration-rotation transfer[close quotes], in which remarkably strong propensity rules in certain inelastic atom-diatom collision arise from classical adiabatic invariance theory.
Singularity of the time-energy uncertainty in adiabatic perturbation and cycloids on a Bloch sphere
Oh, Sangchul; Hu, Xuedong; Nori, Franco; Kais, Sabre
2016-01-01
Adiabatic perturbation is shown to be singular from the exact solution of a spin-1/2 particle in a uniformly rotating magnetic field. Due to a non-adiabatic effect, its quantum trajectory on a Bloch sphere is a cycloid traced by a circle rolling along an adiabatic path. As the magnetic field rotates more and more slowly, the time-energy uncertainty, proportional to the length of the quantum trajectory, calculated by the exact solution is entirely different from the one obtained by the adiabatic path traced by the instantaneous eigenstate. However, the non-adiabatic Aharonov- Anandan geometric phase, measured by the area enclosed by the exact path, approaches smoothly the adiabatic Berry phase, proportional to the area enclosed by the adiabatic path. The singular limit of the time-energy uncertainty and the regular limit of the geometric phase are associated with the arc length and arc area of the cycloid on a Bloch sphere, respectively. Prolate and curtate cycloids are also traced by different initial states outside and inside of the rolling circle, respectively. The axis trajectory of the rolling circle, parallel to the adiabatic path, is shown to be an example of transitionless driving. The non-adiabatic resonance is visualized by the number of cycloid arcs. PMID:26916031
Singularity of the time-energy uncertainty in adiabatic perturbation and cycloids on a Bloch sphere.
Oh, Sangchul; Hu, Xuedong; Nori, Franco; Kais, Sabre
2016-01-01
Adiabatic perturbation is shown to be singular from the exact solution of a spin-1/2 particle in a uniformly rotating magnetic field. Due to a non-adiabatic effect, its quantum trajectory on a Bloch sphere is a cycloid traced by a circle rolling along an adiabatic path. As the magnetic field rotates more and more slowly, the time-energy uncertainty, proportional to the length of the quantum trajectory, calculated by the exact solution is entirely different from the one obtained by the adiabatic path traced by the instantaneous eigenstate. However, the non-adiabatic Aharonov-Anandan geometric phase, measured by the area enclosed by the exact path, approaches smoothly the adiabatic Berry phase, proportional to the area enclosed by the adiabatic path. The singular limit of the time-energy uncertainty and the regular limit of the geometric phase are associated with the arc length and arc area of the cycloid on a Bloch sphere, respectively. Prolate and curtate cycloids are also traced by different initial states outside and inside of the rolling circle, respectively. The axis trajectory of the rolling circle, parallel to the adiabatic path, is shown to be an example of transitionless driving. The non-adiabatic resonance is visualized by the number of cycloid arcs. PMID:26916031
Copan, Andreas V.; Wiens, Avery E.; Nowara, Ewa M.; Schaefer, Henry F.; Agarwal, Jay
2015-02-07
Peroxyacetyl radical [CH{sub 3}C(O)O{sub 2}] is among the most abundant peroxy radicals in the atmosphere and is involved in OH-radical recycling along with peroxyacetyl nitrate formation. Herein, the ground (X{sup ~}) and first (A{sup ~}) excited state surfaces of cis and trans peroxyacetyl radical are characterized using high-level ab initio methods. Geometries, anharmonic vibrational frequencies, and adiabatic excitation energies extrapolated to the complete basis-set limit are reported from computations with coupled-cluster theory. Excitation of the trans conformer is found to induce a symmetry-breaking conformational change due to second-order Jahn-Teller interactions with higher-lying excited states. Additional benchmark computations are provided to aid future theoretical work on peroxy radicals.
Energy-Efficient and Secure S-Box circuit using Symmetric Pass Gate Adiabatic Logic
Kumar, Dinesh; Mohammad, Azhar; Singh, Vijay; Perumalla, Kalyan S
2016-01-01
Differential Power Analysis (DPA) attack is considered to be a main threat while designing cryptographic processors. In cryptographic algorithms like DES and AES, S-Box is used to indeterminate the relationship between the keys and the cipher texts. However, S-box is prone to DPA attack due to its high power consumption. In this paper, we are implementing an energy-efficient 8-bit S-Box circuit using our proposed Symmetric Pass Gate Adiabatic Logic (SPGAL). SPGAL is energy-efficient as compared to the existing DPAresistant adiabatic and non-adiabatic logic families. SPGAL is energy-efficient due to reduction of non-adiabatic loss during the evaluate phase of the outputs. Further, the S-Box circuit implemented using SPGAL is resistant to DPA attacks. The results are verified through SPICE simulations in 180nm technology. SPICE simulations show that the SPGAL based S-Box circuit saves upto 92% and 67% of energy as compared to the conventional CMOS and Secured Quasi-Adiabatic Logic (SQAL) based S-Box circuit. From the simulation results, it is evident that the SPGAL based circuits are energy-efficient as compared to the existing DPAresistant adiabatic and non-adiabatic logic families. In nutshell, SPGAL based gates can be used to build secure hardware for lowpower portable electronic devices and Internet-of-Things (IoT) based electronic devices.
Engin, Selma; Sisourat, Nicolas Selles, Patricia; Taïeb, Richard; Carniato, Stéphane
2014-06-21
Raman Chirped Adiabatic Passage (RCAP) is an efficient method to climb the vibrational ladder of molecules. It was shown on the example of fixed-in-space HCl molecule that selective vibrational excitation can thus be achieved by RCAP and that population transfer can be followed by X-ray Photoelectron spectroscopy [S. Engin, N. Sisourat, P. Selles, R. Taïeb, and S. Carniato, Chem. Phys. Lett. 535, 192–195 (2012)]. Here, in a more detailed analysis of the process, we investigate the effects of highly excited electronic states and of molecular rotation on the efficiency of RCAP. Furthermore, we propose an alternative spectroscopic way to monitor the transfer by means of X-ray absorption spectra.
NASA Astrophysics Data System (ADS)
Tiwari, Vivek
2015-05-01
Understanding the fundamental physics of light-harvesting in both, natural and artificial systems is key for the development of efficient light-harvesting technologies. My thesis addresses the following topics, i.) the mechanism underlying the remarkably efficient electronic energy transfer in natural light harvesting antennas, ii.) a femtosecond time-resolved photonumeric technique to quantitatively characterize transient chemical species. This talk will concentrate on the first project, while briefly touching the key ideas of the second project. Light harvesting antennas use a set of closely spaced pigment molecules held in a controlled relative geometry by a protein. It is shown that in certain antenna proteins the excited state electronic energy gaps between the pigments are resonant with a quantum of pigment vibrational energy. With such a vibrational-electronic resonance, anti-correlated motions between the pigments lead to a strong coupling between the electronic and nuclear motions, that is, breakdown of the Born-Oppenheimer approximation, over a wide range of pigment vibrational motions. It is shown that the 2D spectroscopic signatures of the resulting unavoidable nested non-adiabatic energy funnel on the excited states of photosynthetic antennas are consistent with all the reported 2D signatures of long-lived coherent oscillations, including the ones that are not explained by prior models of excited state electronic energy transfer. Extensions that account for both resonant and near-resonant pigment vibrations suggest that photosynthetic energy transfer presents a novel design in which electronic energy transfer proceeds non-adiabatically through clusters of vibrations with frequencies distributed around electronic energy gaps. I will also briefly talk about our experiments demonstrating quantitative time-resolved measurement of absolute number of excited state molecules. Based on these measurements, an all-optical technique that simultaneously determines
NASA Astrophysics Data System (ADS)
Petrosyan, David; Mølmer, Klaus; Fleischhauer, Michael
2016-04-01
We examine the adiabatic preparation of crystalline phases of Rydberg excitations in a one-dimensional lattice gas by frequency sweep of the excitation laser, as proposed by Pohl et al (2010 Phys. Rev. Lett. 104 043002) and recently realized experimentally by Schauß et al (2015 Science 347 1455). We find that the preparation of crystals of a few Rydberg excitations in a unitary system of several tens of atoms requires exceedingly long times for the adiabatic following of the ground state of the system Hamiltonian. Using quantum stochastic (Monte Carlo) wavefunction simulations, we show that realistic decay and dephasing processes affecting the atoms during the preparation lead to a final state of the system that has only a small overlap with the target crystalline state. Yet, the final number and highly sub-Poissonian statistics of Rydberg excitations and their spatial order are little affected by the relaxations.
Marciniak, A; Despré, V; Barillot, T; Rouzée, A; Galbraith, M C E; Klei, J; Yang, C-H; Smeenk, C T L; Loriot, V; Reddy, S Nagaprasad; Tielens, A G G M; Mahapatra, S; Kuleff, A I; Vrakking, M J J; Lépine, F
2015-01-01
Highly excited molecular species are at play in the chemistry of interstellar media and are involved in the creation of radiation damage in a biological tissue. Recently developed ultrashort extreme ultraviolet light sources offer the high excitation energies and ultrafast time-resolution required for probing the dynamics of highly excited molecular states on femtosecond (fs) (1 fs=10(-15) s) and even attosecond (as) (1 as=10(-18) s) timescales. Here we show that polycyclic aromatic hydrocarbons (PAHs) undergo ultrafast relaxation on a few tens of femtoseconds timescales, involving an interplay between the electronic and vibrational degrees of freedom. Our work reveals a general property of excited radical PAHs that can help to elucidate the assignment of diffuse interstellar absorption bands in astrochemistry, and provides a benchmark for the manner in which coupled electronic and nuclear dynamics determines reaction pathways in large molecules following extreme ultraviolet excitation. PMID:26268456
Marciniak, A.; Despré, V.; Barillot, T.; Rouzée, A.; Galbraith, M.C.E.; Klei, J.; Yang, C.-H.; Smeenk, C.T.L.; Loriot, V.; Reddy, S. Nagaprasad; Tielens, A.G.G.M.; Mahapatra, S.; Kuleff, A. I.; Vrakking, M.J.J.; Lépine, F.
2015-01-01
Highly excited molecular species are at play in the chemistry of interstellar media and are involved in the creation of radiation damage in a biological tissue. Recently developed ultrashort extreme ultraviolet light sources offer the high excitation energies and ultrafast time-resolution required for probing the dynamics of highly excited molecular states on femtosecond (fs) (1 fs=10−15s) and even attosecond (as) (1 as=10−18 s) timescales. Here we show that polycyclic aromatic hydrocarbons (PAHs) undergo ultrafast relaxation on a few tens of femtoseconds timescales, involving an interplay between the electronic and vibrational degrees of freedom. Our work reveals a general property of excited radical PAHs that can help to elucidate the assignment of diffuse interstellar absorption bands in astrochemistry, and provides a benchmark for the manner in which coupled electronic and nuclear dynamics determines reaction pathways in large molecules following extreme ultraviolet excitation. PMID:26268456
Adiabatic topological quantum computing
NASA Astrophysics Data System (ADS)
Cesare, Chris; Landahl, Andrew J.; Bacon, Dave; Flammia, Steven T.; Neels, Alice
2015-07-01
Topological quantum computing promises error-resistant quantum computation without active error correction. However, there is a worry that during the process of executing quantum gates by braiding anyons around each other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here, we explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological codes, notably Kitaev's surface codes and the more recently discovered color codes. We develop protocols that enable universal quantum computing by adiabatic evolution in a way that keeps the energy gap of the system constant with respect to the computation size and introduces only simple local Hamiltonian interactions. This allows one to perform holonomic quantum computing with these topological quantum computing systems. The tools we develop allow one to go beyond numerical simulations and understand these processes analytically.
Hobson, M. J.
1981-11-01
The objective of this study was to perform a conceptual engineering design and evaluation study and to develop a design for an adiabatic CAES system using water-compensated hard rock caverns for compressed air storage. The conceptual plant design was to feature underground containment for thermal energy storage and water-compensated hard rock caverns for high pressure air storage. Other design constraints included the selection of turbomachinery designs that would require little development and would therefore be available for near-term plant construction and demonstration. The design was to be based upon the DOE/EPRI/PEPCO-funded 231 MW/unit conventional CAES plant design prepared for a site in Maryland. This report summarizes the project, its findings, and the recommendations of the study team; presents the development and optimization of the plant heat cycle and the selection and thermal design of the thermal energy storage system; discusses the selection of turbomachinery and estimated plant performance and operational capability; describes the control system concept; and presents the conceptual design of the adiabatic CAES plant, the cost estimates and economic evaluation, and an assessment of technical and economic feasibility. Particular areas in the plant design requiring further development or investigation are discussed. It is concluded that the adiabatic concept appears to be the most attractive candidate for utility application in the near future. It is operationally viable, economically attractive compared with competing concerns, and will require relatively little development before the construction of a plant can be undertaken. It is estimated that a utility could start the design of a demonstration plant in 2 to 3 years if research regarding TES system design is undertaken in a timely manner. (LCL)
NASA Astrophysics Data System (ADS)
Nakata, Shunji; Katagiri, Yoshitada; Matsuno, Shun-ichi
2007-02-01
This paper considers the energy consumed by charging and discharging a width-variable capacitor. The capacitor with plate distance d is coupled with repulsive mechanical potential energy, which is proportional to 1/dn. In this capacitor model, there is a stable point between attractive electrical force and repulsive mechanical force. All energies, including the electrostatic energy, potential energy, and energy dissipation, are proportional not to the ordinary value V2 but to V2/(n-1)+2, where V is the abrupt power supply voltage. We apply N-stepwise adiabatic charging to the width-variable capacitor system. It is shown that the energy consumption after charging and discharging (or recycling) can be 1/N times smaller than that of the conventional abrupt operation. By increasing the step number N, the adiabatic operation can ideally charge and discharge the width-variable capacitor system with absolutely no energy dissipation, although the voltage dependence of energies is quite different from the usual one. Adiabatic charging is very promising for realizing dissipationless operation in the proposed system.
Mid-range adiabatic wireless energy transfer via a mediator coil
Rangelov, A.A. Vitanov, N.V.
2012-09-15
A technique for efficient mid-range wireless energy transfer between two coils via a mediator coil is proposed. By varying the coil frequencies, three resonances are created: emitter-mediator (EM), mediator-receiver (MR) and emitter-receiver (ER). If the frequency sweeps are adiabatic and such that the EM resonance precedes the MR resonance, the energy flows sequentially along the chain emitter-mediator-receiver. If the MR resonance precedes the EM resonance, then the energy flows directly from the emitter to the receiver via the ER resonance; then the losses from the mediator are suppressed. This technique is robust against noise, resonant constraints and external interferences. - Highlights: Black-Right-Pointing-Pointer Efficient and robust mid-range wireless energy transfer via a mediator coil. Black-Right-Pointing-Pointer The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. Black-Right-Pointing-Pointer Wireless energy transfer is insensitive to any resonant constraints. Black-Right-Pointing-Pointer Wireless energy transfer is insensitive to noise in the neighborhood of the coils.
Non-adiabatic corrections to the quasiparticle self-energy
NASA Astrophysics Data System (ADS)
Danylenko, Oleksiy V.; Dolgov, Oleg V.; Losyakov, Vladimir V.
1996-02-01
High T c superconductors and fullerenes seem to be characterized by very small bandwidths of the order of phonon frequencies. This may imply a breakdown of Migdal's theorem for the electron self-energy. There are two different approaches to the problem. The gauge-invariant self-consistent method proposed by Y. Takada includes many vertex corrections using the Ward identity. The other method by C. Grimaldi, L. Pietronero and S. Strässler (GPS) based on Migdal's idea uses the first correction to the unit vertex. These two approaches have been compared and the main results are the following: 1) Takada's method for the self-energy gives incorrect order in the Migdal parameter λΩ ph /ɛ F , 2) in GPS's method the momentum cut-off offered by the authors cannot be used as a free parameter, and 3) there is a possible instability which can be ascribed to appearing of polaron states.
Wu, Guorong; Neville, Simon P.; Worth, Graham A.; Schalk, Oliver; Sekikawa, Taro; Ashfold, Michael N. R.; Stolow, Albert
2015-02-21
The dynamics of pyrrole excited at wavelengths in the range 242-217 nm are studied using a combination of time-resolved photoelectron spectroscopy and wavepacket propagations performed using the multi-configurational time-dependent Hartree method. Excitation close to the origin of pyrrole’s electronic spectrum, at 242 and 236 nm, is found to result in an ultrafast decay of the system from the ionization window on a single timescale of less than 20 fs. This behaviour is explained fully by assuming the system to be excited to the A{sub 2}(πσ{sup ∗}) state, in accord with previous experimental and theoretical studies. Excitation at shorter wavelengths has previously been assumed to result predominantly in population of the bright A{sub 1}(ππ{sup ∗}) and B{sub 2}(ππ{sup ∗}) states. We here present time-resolved photoelectron spectra at a pump wavelength of 217 nm alongside detailed quantum dynamics calculations that, together with a recent reinterpretation of pyrrole’s electronic spectrum [S. P. Neville and G. A. Worth, J. Chem. Phys. 140, 034317 (2014)], suggest that population of the B{sub 1}(πσ{sup ∗}) state (hitherto assumed to be optically dark) may occur directly when pyrrole is excited at energies in the near UV part of its electronic spectrum. The B{sub 1}(πσ{sup ∗}) state is found to decay on a timescale of less than 20 fs by both N-H dissociation and internal conversion to the A{sub 2}(πσ{sup ∗}) state.
Zero-point energy, tunnelling, and vibrational adiabaticity in the Mu + H2 reaction
NASA Astrophysics Data System (ADS)
Mielke, Steven L.; Garrett, Bruce C.; Fleming, Donald G.; Truhlar, Donald G.
2015-01-01
Isotopic substitution of muonium for hydrogen provides an unparalleled opportunity to deepen our understanding of quantum mass effects on chemical reactions. A recent topical review in this journal of the thermal and vibrationally state-selected reaction of Mu with H2 raises a number of issues that are addressed here. We show that some earlier quantum mechanical calculations of the Mu + H2 reaction, which are highlighted in this review, and which have been used to benchmark approximate methods, are in error by as much as 19% in the low-temperature limit. We demonstrate that an approximate treatment of the Born-Oppenheimer diagonal correction that was used in some recent studies is not valid for treating the vibrationally state-selected reaction. We also discuss why vibrationally adiabatic potentials that neglect bend zero-point energy are not a useful analytical tool for understanding reaction rates, and why vibrationally non-adiabatic transitions cannot be understood by considering tunnelling through vibrationally adiabatic potentials. Finally, we present calculations on a hierarchical family of potential energy surfaces to assess the sensitivity of rate constants to the quality of the potential surface.
Arfin, Scott K; Sarpeshkar, Rahul
2012-02-01
In this paper, we present a novel energy-efficient electrode stimulator. Our stimulator uses inductive storage and recycling of energy in a dynamic power supply. This supply drives an electrode in an adiabatic fashion such that energy consumption is minimized. It also utilizes a shunt current-sensor to monitor and regulate the current through the electrode via feedback, thus enabling flexible and safe stimulation. Since there are no explicit current sources or current limiters, wasteful energy dissipation across such elements is naturally avoided. The dynamic power supply allows efficient transfer of energy both to and from the electrode and is based on a DC-DC converter topology that we use in a bidirectional fashion in forward-buck or reverse-boost modes. In an exemplary electrode implementation intended for neural stimulation, we show how the stimulator combines the efficiency of voltage control and the safety and accuracy of current control in a single low-power integrated-circuit built in a standard .35 μm CMOS process. This stimulator achieves a 2x-3x reduction in energy consumption as compared to a conventional current-source-based stimulator operating from a fixed power supply. We perform a theoretical analysis of the energy efficiency that is in accord with experimental measurements. This theoretical analysis reveals that further improvements in energy efficiency may be achievable with better implementations in the future. Our electrode stimulator could be widely useful for neural, cardiac, retinal, cochlear, muscular and other biomedical implants where low power operation is important.
Arfin, Scott K; Sarpeshkar, Rahul
2012-02-01
In this paper, we present a novel energy-efficient electrode stimulator. Our stimulator uses inductive storage and recycling of energy in a dynamic power supply. This supply drives an electrode in an adiabatic fashion such that energy consumption is minimized. It also utilizes a shunt current-sensor to monitor and regulate the current through the electrode via feedback, thus enabling flexible and safe stimulation. Since there are no explicit current sources or current limiters, wasteful energy dissipation across such elements is naturally avoided. The dynamic power supply allows efficient transfer of energy both to and from the electrode and is based on a DC-DC converter topology that we use in a bidirectional fashion in forward-buck or reverse-boost modes. In an exemplary electrode implementation intended for neural stimulation, we show how the stimulator combines the efficiency of voltage control and the safety and accuracy of current control in a single low-power integrated-circuit built in a standard .35 μm CMOS process. This stimulator achieves a 2x-3x reduction in energy consumption as compared to a conventional current-source-based stimulator operating from a fixed power supply. We perform a theoretical analysis of the energy efficiency that is in accord with experimental measurements. This theoretical analysis reveals that further improvements in energy efficiency may be achievable with better implementations in the future. Our electrode stimulator could be widely useful for neural, cardiac, retinal, cochlear, muscular and other biomedical implants where low power operation is important. PMID:23852740
Calibration-quality adiabatic potential energy surfaces for H3+ and its isotopologues
NASA Astrophysics Data System (ADS)
Pavanello, Michele; Adamowicz, Ludwik; Alijah, Alexander; Zobov, Nikolai F.; Mizus, Irina I.; Polyansky, Oleg L.; Tennyson, Jonathan; Szidarovszky, Tamás; Császár, Attila G.
2012-05-01
Calibration-quality ab initio adiabatic potential energy surfaces (PES) have been determined for all isotopologues of the molecular ion H_3^+. The underlying Born-Oppenheimer electronic structure computations used optimized explicitly correlated shifted Gaussian functions. The surfaces include diagonal Born-Oppenheimer corrections computed from the accurate electronic wave functions. A fit to the 41 655 ab initio points is presented which gives a standard deviation better than 0.1 cm-1 when restricted to the points up to 6000 cm-1 above the first dissociation asymptote. Nuclear motion calculations utilizing this PES, called GLH3P, and an exact kinetic energy operator given in orthogonal internal coordinates are presented. The ro-vibrational transition frequencies for H_3^+, H2D+, and HD_2^+ are compared with high resolution measurements. The most sophisticated and complete procedure employed to compute ro-vibrational energy levels, which makes explicit allowance for the inclusion of non-adiabatic effects, reproduces all the known ro-vibrational levels of the H_3^+ isotopologues considered to better than 0.2 cm-1. This represents a significant (order-of-magnitude) improvement compared to previous studies of transitions in the visible. Careful treatment of linear geometries is important for high frequency transitions and leads to new assignments for some of the previously observed lines. Prospects for further investigations of non-adiabatic effects in the H_3^+ isotopologues are discussed. In short, the paper presents (a) an extremely accurate global potential energy surface of H_3^+ resulting from high accuracy ab initio computations and global fit, (b) very accurate nuclear motion calculations of all available experimental line data up to 16 000 cm-1, and (c) results suggest that we can predict accurately the lines of H_3^+ towards dissociation and thus facilitate their experimental observation.
Non-classical role of potential energy in adiabatic quantum annealing
NASA Astrophysics Data System (ADS)
Das, Arnab
2009-12-01
Adiabatic quantum annealing is a paradigm of analog quantum computation, where a given computational job is converted to the task of finding the global minimum of some classical potential energy function and the search for the global potential minimum is performed by employing external kinetic quantum fluctuations and subsequent slow reduction (annealing) of them. In this method, the entire potential energy landscape (PEL) may be accessed simultaneously through a delocalized wave-function, in contrast to a classical search, where the searcher has to visit different points in the landscape (i.e., individual classical configurations) sequentially. Thus in such searches, the role of the potential energy might be significantly different in the two cases. Here we discuss this in the context of searching of a single isolated hole (potential minimum) in a golf-course type gradient free PEL. We show, that the quantum particle would be able to locate the hole faster if the hole is deeper, while the classical particle of course would have no scope to exploit the depth of the hole. We also discuss the effect of the underlying quantum phase transition on the adiabatic dynamics.
Wireless adiabatic power transfer
Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.
2011-03-15
Research Highlights: > Efficient and robust mid-range wireless energy transfer between two coils. > The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. > Wireless energy transfer is insensitive to any resonant constraints. > Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.
Tiwari, Vivek; Peters, William K.; Jonas, David M.
2013-01-01
The delocalized, anticorrelated component of pigment vibrations can drive nonadiabatic electronic energy transfer in photosynthetic light-harvesting antennas. In femtosecond experiments, this energy transfer mechanism leads to excitation of delocalized, anticorrelated vibrational wavepackets on the ground electronic state that exhibit not only 2D spectroscopic signatures attributed to electronic coherence and oscillatory quantum energy transport but also a cross-peak asymmetry not previously explained by theory. A number of antennas have electronic energy gaps matching a pigment vibrational frequency with a small vibrational coordinate change on electronic excitation. Such photosynthetic energy transfer steps resemble molecular internal conversion through a nested intermolecular funnel. PMID:23267114
Zero-point energy, tunneling, and vibrational adiabaticity in the Mu + H2 reaction
Mielke, Steven L.; Garrett, Bruce C.; Fleming, Donald G.; Truhlar, Donald G.
2015-01-09
Abstract: Isotopic substitution of muonium for hydrogen provides an unparalleled opportunity to deepen our understanding of quantum mass effects on chemical reactions. A recent topical review [Aldegunde et al., Mol. Phys. 111, 3169 (2013)] of the thermal and vibrationally-stateselected reaction of Mu with H2 raises a number of issues that are addressed here. We show that some earlier quantum mechanical calculations of the Mu + H2 reaction, which are highlighted in this review and which have been used to benchmark approximate methods, are in error by as much as 19% in the low-temperature limit. We demonstrate that an approximate treatment of the Born–Oppenheimer diagonal correction that was used in some recent studies is not valid for treating the vibrationally-state-selected reaction. We also discuss why vibrationally adiabatic potentials that neglect bend zero-point energy are not a useful analytical tool for understanding reaction rates and why vibrationally nonadiabatic transitions cannot be understood by considering tunneling through vibrationally adiabatic potentials. Finally, we present calculations on a hierarchical family of potential energy surfaces to assess the sensitivity of rate constants to the quality of the potential surface.
NASA Astrophysics Data System (ADS)
Wu, Guorong; Neville, Simon P.; Schalk, Oliver; Sekikawa, Taro; Ashfold, Michael N. R.; Worth, Graham A.; Stolow, Albert
2016-01-01
The dynamics of N-methylpyrrole following excitation at wavelengths in the range 241.5-217.0 nm were studied using a combination of time-resolved photoelectron spectroscopy (TRPES), ab initio quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree method, as well as high-level photoionization cross section calculations. Excitation at 241.5 and 236.2 nm results in population of the A2(πσ∗) state, in agreement with previous studies. Excitation at 217.0 nm prepares the previously neglected B1(π3py) Rydberg state, followed by prompt internal conversion to the A2(πσ∗) state. In contrast with the photoinduced dynamics of pyrrole, the lifetime of the wavepacket in the A2(πσ∗) state was found to vary with excitation wavelength, decreasing by one order of magnitude upon tuning from 241.5 nm to 236.2 nm and by more than three orders of magnitude when excited at 217.0 nm. The order of magnitude difference in lifetimes measured at the longer excitation wavelengths is attributed to vibrational excitation in the A2(πσ∗) state, facilitating wavepacket motion around the potential barrier in the N-CH3 dissociation coordinate.
Cuendet, Michel A; Tuckerman, Mark E
2012-10-01
Alchemical free energy simulations are commonly used to calculate relative binding or solvation free energies in molecular systems. The convergence of alchemical free energy calculations is often hampered by inefficient sampling of the conformational degrees of freedom, which remain trapped in metastable substates. Here, we show that thermodynamic integration (TI) or free energy perturbation (FEP) can be combined with the recent driven adiabatic free energy dynamics (dAFED) method, in order to enhance conformational sampling along a set of chosen collective variables. The resulting TI-dAFED or FEP-dAFED methods are validated on a two-dimensional analytical problem. The ability of these methods to provide accurate free energy differences for realistic molecular systems is demonstrated by calculating the enantiomerization free energy of the alanine dipeptide in explicit solvent.
Peculiarities of collisional excitation transfer with excited screened energy levels of atoms
Gerasimov, V. A.; Gerasimov, V. V.; Pavlinskiy, A. V.
2007-09-15
We report an experimental discovery of deviations from the known regularities in collisional excitation transfer processes for metal atoms. The collisional excitation transfer with excited screened energy levels of thulium and dysprosium atoms is studied. The selecting role of the screening 6s shell in collisional excitation transfer is shown.
Dynamics of excitation energy transfer in phycobiliproteins
NASA Astrophysics Data System (ADS)
Zheng, Xiguang; Wang, He Z.; Zhao, Fuli; Gao, Zhaolan; Yu, Zhenxin
1994-08-01
Theoretical descriptions of excitation energy transfer between chromophores in allophycocyanin are presented, including bilateral energy transfer paths between chromophores, and are expressed, based on Foster interaction mechanism, as Pauli master equations. Group analysis in C3 symmetry is performed to carry out analytic expressions for fluorescence decays which is generally of triexponential with effects of chromophore coupling and exciton splitting taken account. It is pointed out that the time constant of each decay component contains mixed information of different energy transfer paths, and therefore show its dependence on subtle configuration of chromophores, probably related to site heterogeneity and thus to inhomogeneous broadening previously observed.
Excitation energy transfer in the photosystem I
Webber, Andrew N
2012-09-25
Photosystem I is a multimeric pigment protein complex in plants, green alage and cyanobacteria that functions in series with Photosystem II to use light energy to oxidize water and reduce carbon dioxide. The Photosystem I core complex contains 96 chlorophyll a molecules and 22 carotenoids that are involved in light harvesting and electron transfer. In eucaryotes, PSI also has a peripheral light harvesting complex I (LHCI). The role of specific chlorophylls in excitation and electron transfer are still unresolved. In particular, the role of so-called bridging chlorophylls, located between the bulk antenna and the core electron transfer chain, in the transfer of excitation energy to the reaction center are unknown. During the past funding period, site directed mutagenesis has been used to create mutants that effect the physical properties of these key chlorophylls, and to explore how this alters the function of the photosystem. Studying these mutants using ultrafast absorption spectroscopy has led to a better understanding of the process by which excitation energy is transferred from the antenna chlorophylls to the electron transfer chain chlorophylls, and what the role of connecting chlorophylls and A_0 chlorophylls is in this process. We have also used these mutants to investigate whch of the central group of six chlorophylls are involved in the primary steps of charge separation and electron transfer.
NASA Astrophysics Data System (ADS)
Yarkony, David
2015-03-01
The construction of fit single state potential energy surfaces (PESs), analytic representations of ab initio electronic energies and energy gradients, is now well established. These single state PESs, which are essential for accurate quantum dynamics and have found wide application in more approximate quasi-classical treatments, have revolutionized adiabatic dynamics. The situation for nonadiabatic processes involving dissociative and large amplitude motion is less sanguine. In these cases, compared to single electronic state dynamics, both the electronic structure data and the representation are more challenging to determine. We describe the recent development and applications of algorithms that enable description of multiple adiabatic electronic potential energy surfaces coupled by conical intersections in their full dimensionality using coupled quasi-diabatic states. These representations are demonstrably quasi-diabatic, provide accurate representations of conical intersection seams and can smooth out the discontinuities in electronic structure energies due to changing active orbital spaces that routinely afflict global multistate representations.
NASA Astrophysics Data System (ADS)
Andrade, Tomás; Kelly, William R.; Marolf, Donald
2015-10-01
The gravitational Dirichlet problem—in which the induced metric is fixed on boundaries at finite distance from the bulk—is related to simple notions of UV cutoffs in gauge/gravity duality and appears in discussions relating the low-energy behavior of gravity to fluid dynamics. We study the Einstein-Maxwell version of this problem, in which the induced Maxwell potential on the wall is also fixed. For flat walls in otherwise asymptotically flat spacetimes, we identify a moduli space of Majumdar-Papapetrou-like static solutions parametrized by the location of an extreme black hole relative to the wall. Such solutions may be described as balancing gravitational repulsion from a negative-mass image source against electrostatic attraction to an oppositely signed image charge. Standard techniques for handling divergences yield a moduli space metric with an eigenvalue that becomes negative near the wall, indicating a region of negative kinetic energy and suggesting that the Hamiltonian may be unbounded below. One may also surround the black hole with an additional (roughly spherical) Dirichlet wall to impose a regulator whose physics is more clear. Negative kinetic energies remain, though new terms do appear in the moduli space metric. The regulator dependence indicates that the adiabatic approximation may be ill-defined for classical extreme black holes with Dirichlet walls.
Graph isomorphism and adiabatic quantum computing
NASA Astrophysics Data System (ADS)
Gaitan, Frank; Clark, Lane
2014-02-01
In the graph isomorphism (GI) problem two N-vertex graphs G and G' are given and the task is to determine whether there exists a permutation of the vertices of G that preserves adjacency and transforms G →G'. If yes, then G and G' are said to be isomorphic; otherwise they are nonisomorphic. The GI problem is an important problem in computer science and is thought to be of comparable difficulty to integer factorization. In this paper we present a quantum algorithm that solves arbitrary instances of GI and which also provides an approach to determining all automorphisms of a given graph. We show how the GI problem can be converted to a combinatorial optimization problem that can be solved using adiabatic quantum evolution. We numerically simulate the algorithm's quantum dynamics and show that it correctly (i) distinguishes nonisomorphic graphs; (ii) recognizes isomorphic graphs and determines the permutation(s) that connect them; and (iii) finds the automorphism group of a given graph G. We then discuss the GI quantum algorithm's experimental implementation, and close by showing how it can be leveraged to give a quantum algorithm that solves arbitrary instances of the NP-complete subgraph isomorphism problem. The computational complexity of an adiabatic quantum algorithm is largely determined by the minimum energy gap Δ (N) separating the ground and first-excited states in the limit of large problem size N ≫1. Calculating Δ (N) in this limit is a fundamental open problem in adiabatic quantum computing, and so it is not possible to determine the computational complexity of adiabatic quantum algorithms in general, nor consequently, of the specific adiabatic quantum algorithms presented here. Adiabatic quantum computing has been shown to be equivalent to the circuit model of quantum computing, and so development of adiabatic quantum algorithms continues to be of great interest.
Two-photon excitation energy transfer microscopy
NASA Astrophysics Data System (ADS)
Periasamy, Ammasi
2000-04-01
Fluorescence resonance energy transfer (FRET) imaging is a unique tool used to visualize the spaciotemporal dynamics of protein-protein interactions in living cells. We used FRET to study the dimerization of the pituitary-specific transcription factor of Pit-1 fused with blue flourescent protein and green fluorescent protein. Transcriptional activity of the GFP- and BFP-Pit-1 fusion proteins was demonstrated by their ability to activate the prolactin gene promoter. The energy transfer in the conventional fluorescence microscopy was less efficient due to photobleaching of the BFP-Pit-1 donor molecules. In our studies we developed two-photon excitation energy transfer microscopy, where the photobleaching of blue flourescent protein was considerably reduced. This 2p-FRET imaging system was used to acquire the donor and acceptor images for a living HeLa cell nucleus. We selected 732 nm from the tunable Verdi pumped ti:sapphire laser, in a way that only excites the BFP-Pit-1 and not the GFP-Pit-1 proteins. The efficiency of the 2p-FRET signal increased to 30 percent compared to the conventional FRET imaging, which clearly demonstrates that there is considerable reduction in photobleaching of donor molecules in the 2p-FRET microscopy.
Fission dynamics at low excitation energy
NASA Astrophysics Data System (ADS)
Aritomo, Y.; Chiba, S.; Ivanyuk, F.
2014-11-01
The mass asymmetry in the fission of 236U at low excitation energy is clarified by the analysis of the trajectories obtained by solving the Langevin equations for the shape degrees of freedom. It is demonstrated that the position of the peaks in the mass distribution of fission fragments is determined mainly by the saddle point configuration originating from the shell correction energy. The width of the peaks, on the other hand, results from the shape fluctuations close to the scission point caused by the random force in the Langevin equation. We have found out that the fluctuations between elongated and compact shapes are essential for the fission process. According to our results the fission does not occur with continuous stretching in the prolate direction, similarly to that observed in starch syrup, but is accompanied by the fluctuations between elongated and compact shapes. This picture presents a new viewpoint of fission dynamics and the splitting mechanism.
Shirhatti, Pranav R.; Werdecker, Jörn; Golibrzuch, Kai; Wodtke, Alec M.; Bartels, Christof
2014-09-28
We investigated the translational incidence energy (E{sub i}) and surface temperature (T{sub s}) dependence of CO vibrational excitation upon scattering from a clean Au(111) surface. We report absolute v = 0 → 1 excitation probabilities for E{sub i} between 0.16 and 0.84 eV and T{sub s} between 473 and 973 K. This is now only the second collision system where such comprehensive measurements are available – the first is NO on Au(111). For CO on Au(111), vibrational excitation occurs via direct inelastic scattering through electron hole pair mediated energy transfer – it is enhanced by incidence translation and the electronically non-adiabatic coupling is about 5 times weaker than in NO scattering from Au(111). Vibrational excitation via the trapping desorption channel dominates at E{sub i} = 0.16 eV and quickly disappears at higher E{sub i}.
Innocenti, Fabrizio; Eypper, Marie; Lee, Edmond P F; Stranges, Stefano; Mok, Daniel K W; Chau, Foo-tim; King, George C; Dyke, John M
2008-01-01
The first photoelectron band of difluorocarbene CF(2), has been studied by threshold photoelectron (TPE) spectroscopy. CF(2) was prepared by microwave discharge of a flowing mixture of hexafluoropropene, C(3)F(6), and argon. A vibrationally resolved band was observed in which at least twenty-two components were observed. In the first PE band of CF(2), the adiabatic ionization energy differs significantly from the vertical ionization energy because, for the ionization CF(2) (+) (X(2)A(1))+e(-) <-- CF(2) (X(1)A(1)), there is an increase in the FCF bond angle (by approximately 20 degrees ) and a decrease in the C--F bond length (by approximately 0.7 A). The adiabatic component was not observed in the experimental TPE spectrum. However, on comparing this spectrum with an ab initio/Franck-Condon simulation of this band, using results from high-level ab initio calculations, the structure associated with the vibrational components could be assigned. This led to alignment of the experimental TPE spectrum and the computed Franck-Condon envelope, and a determination of the first adiabatic ionization energy of CF(2) as (11.362+/-0.005) eV. From the assignment of the vibrational structure, values were obtained for the harmonic and fundamental frequencies of the symmetric stretching mode (nu(1)') and symmetric bending mode (nu(2)') in CF(2) (+) (X(2)A(1)). PMID:19006171
Adame, J.; Warzel, S.
2015-11-15
In this note, we use ideas of Farhi et al. [Int. J. Quantum. Inf. 6, 503 (2008) and Quantum Inf. Comput. 11, 840 (2011)] who link a lower bound on the run time of their quantum adiabatic search algorithm to an upper bound on the energy gap above the ground-state of the generators of this algorithm. We apply these ideas to the quantum random energy model (QREM). Our main result is a simple proof of the conjectured exponential vanishing of the energy gap of the QREM.
Zhu, Xiaolei; Malbon, Christopher L; Yarkony, David R
2016-03-28
In a recent work we constructed a quasi-diabatic representation, H(d), of the 1, 2, 3(1)A adiabatic states of phenol from high level multireference single and double excitation configuration interaction electronic structure data, energies, energy gradients, and derivative couplings. That H(d) accurately describes surface minima, saddle points, and also regions of strong nonadiabatic interactions, reproducing the locus of conical intersection seams and the coordinate dependence of the derivative couplings. The present work determines the accuracy of H(d) for describing phenol photodissociation. Additionally, we demonstrate that a modest energetic shift of two diabats yields a quantifiably more accurate H(d) compared with experimental energetics. The analysis shows that in favorable circumstances it is possible to use single point energies obtained from the most reliable electronic structure methods available, including methods for which the energy gradients and derivative couplings are not available, to improve the quality of a global representation of several coupled potential energy surfaces. Our data suggest an alternative interpretation of kinetic energy release measurements near λphot ∼ 248 nm.
NASA Astrophysics Data System (ADS)
Zhu, Xiaolei; Malbon, Christopher L.; Yarkony, David R.
2016-03-01
In a recent work we constructed a quasi-diabatic representation, Hd, of the 1, 2, 31A adiabatic states of phenol from high level multireference single and double excitation configuration interaction electronic structure data, energies, energy gradients, and derivative couplings. That Hd accurately describes surface minima, saddle points, and also regions of strong nonadiabatic interactions, reproducing the locus of conical intersection seams and the coordinate dependence of the derivative couplings. The present work determines the accuracy of Hd for describing phenol photodissociation. Additionally, we demonstrate that a modest energetic shift of two diabats yields a quantifiably more accurate Hd compared with experimental energetics. The analysis shows that in favorable circumstances it is possible to use single point energies obtained from the most reliable electronic structure methods available, including methods for which the energy gradients and derivative couplings are not available, to improve the quality of a global representation of several coupled potential energy surfaces. Our data suggest an alternative interpretation of kinetic energy release measurements near λphot ˜ 248 nm.
Chang, Hung-Tzu; Cheng, Yuan-Chung; Zhang, Pan-Pan
2013-12-14
The small polaron quantum master equation (SPQME) proposed by Jang et al. [J. Chem. Phys. 129, 101104 (2008)] is a promising approach to describe coherent excitation energy transfer dynamics in complex molecular systems. To determine the applicable regime of the SPQME approach, we perform a comprehensive investigation of its accuracy by comparing its simulated population dynamics with numerically exact quasi-adiabatic path integral calculations. We demonstrate that the SPQME method yields accurate dynamics in a wide parameter range. Furthermore, our results show that the accuracy of polaron theory depends strongly upon the degree of exciton delocalization and timescale of polaron formation. Finally, we propose a simple criterion to assess the applicability of the SPQME theory that ensures the reliability of practical simulations of energy transfer dynamics with SPQME in light-harvesting systems.
Jorner, Kjell; Emanuelsson, Rikard; Dahlstrand, Christian; Tong, Hui; Denisova, Aleksandra V; Ottosson, Henrik
2014-07-21
A new qualitative model for estimating the properties of substituted cyclopentadienes and siloles in their lowest ππ* excited states is introduced and confirmed through quantum chemical calculations, and then applied to explain earlier reported experimental excitation energies. According to our model, which is based on excited-state aromaticity and antiaromaticity, siloles and cyclopentadienes are cross-hyperconjugated "aromatic chameleons" that adapt their electronic structures to conform to the various aromaticity rules in different electronic states (Hückel's rule in the π(2) electronic ground state (S0) and Baird's rule in the lowest ππ* excited singlet and triplet states (S1 and T1)). By using pen-and-paper arguments, one can explain polarity changes upon excitation of substituted cyclopentadienes and siloles, and one can tune their lowest excitation energies by combined considerations of ground- and excited-state aromaticity/antiaromaticity effects. Finally, the "aromatic chameleon" model can be extended to other monocyclic compound classes of potential use in organic electronics, thereby providing a unified view of the S0, T1, and S1 states of a range of different cyclic cross-π-conjugated and cross-hyperconjugated compound classes. PMID:25043523
Bacon, Dave; Flammia, Steven T
2009-09-18
The difficulty in producing precisely timed and controlled quantum gates is a significant source of error in many physical implementations of quantum computers. Here we introduce a simple universal primitive, adiabatic gate teleportation, which is robust to timing errors and many control errors and maintains a constant energy gap throughout the computation above a degenerate ground state space. This construction allows for geometric robustness based upon the control of two independent qubit interactions. Further, our piecewise adiabatic evolution easily relates to the quantum circuit model, enabling the use of standard methods from fault-tolerance theory for establishing thresholds.
NASA Astrophysics Data System (ADS)
Mandal, Anirban; Hunt, Katharine L. C.
2015-07-01
The energy of a molecule subject to a time-dependent perturbation separates completely into adiabatic and non-adiabatic terms, where the adiabatic term reflects the adjustment of the ground state to the perturbation, while the non-adiabatic term accounts for the transition energy [A. Mandal and K. L. C. Hunt, J. Chem. Phys. 137, 164109 (2012)]. For a molecule perturbed by a time-dependent electromagnetic field, in this work, we show that the expectation value of the power absorbed by the molecule is equal to the time rate of change of the non-adiabatic term in the energy. The non-adiabatic term is given by the transition probability to an excited state k, multiplied by the transition energy from the ground state to k, and then summed over the excited states. The expectation value of the power absorbed by the molecule is derived from the integral over space of the scalar product of the applied electric field and the non-adiabatic current density induced in the molecule by the field. No net power is absorbed due to the action of the applied electric field on the adiabatic current density. The work done on the molecule by the applied field is the time integral of the power absorbed. The result established here shows that work done on the molecule by the applied field changes the populations of the molecular states.
NASA Astrophysics Data System (ADS)
Xavier, F. George D.; Kumar, Sanjay
2010-10-01
Ab initio global adiabatic and quasidiabatic potential energy surfaces of lowest four electronic (1-4 A3″) states of the H++O2 system have been computed in the Jacobi coordinates (R,r,γ) using Dunning's cc-pVTZ basis set at the internally contracted multireference (single and double) configuration interaction level of accuracy, which are relevant to the dynamics studies of inelastic vibrational and charge transfer processes observed in the scattering experiments. The computed equilibrium geometry parameters of the bound [HO2]+ ion in the ground electronic state and other parameters for the transition state for the isomerization process, HOO+⇌OOH+ are in good quantitative agreement with those available from the high level ab initio calculations, thus lending credence to the accuracy of the potential energy surfaces. The nonadiabatic couplings between the electronic states have been analyzed in both the adiabatic and quasidiabatic frameworks by computing the nonadiabatic coupling matrix elements and the coupling potentials, respectively. It is inferred that the dynamics of energy transfer processes in the scattering experiments carried out in the range of 9.5-23 eV would involve all the four electronic states.
Janke, Svenja M; Auerbach, Daniel J; Wodtke, Alec M; Kandratsenka, Alexander
2015-09-28
We have constructed a potential energy surface (PES) for H-atoms interacting with fcc Au(111) based on fitting the analytic form of the energy from Effective Medium Theory (EMT) to ab initio energy values calculated with density functional theory. The fit used input from configurations of the H-Au system with Au atoms at their lattice positions as well as configurations with the Au atoms displaced from their lattice positions. It reproduces the energy, in full dimension, not only for the configurations used as input but also for a large number of additional configurations derived from ab initio molecular dynamics (AIMD) trajectories at finite temperature. Adiabatic molecular dynamics simulations on this PES reproduce the energy loss behavior of AIMD. EMT also provides expressions for the embedding electron density, which enabled us to develop a self-consistent approach to simulate nonadiabatic electron-hole pair excitation and their effect on the motion of the incident H-atoms. For H atoms with an energy of 2.7 eV colliding with Au, electron-hole pair excitation is by far the most important energy loss pathway, giving an average energy loss ≈3 times that of the adiabatic case. This increased energy loss enhances the probability of the H-atom remaining on or in the Au slab by a factor of 2. The most likely outcome for H-atoms that are not scattered also depends prodigiously on the energy transfer mechanism; for the nonadiabatic case, more than 50% of the H-atoms which do not scatter are adsorbed on the surface, while for the adiabatic case more than 50% pass entirely through the 4 layer simulation slab.
Janke, Svenja M.; Auerbach, Daniel J.; Kandratsenka, Alexander; Wodtke, Alec M.
2015-09-28
We have constructed a potential energy surface (PES) for H-atoms interacting with fcc Au(111) based on fitting the analytic form of the energy from Effective Medium Theory (EMT) to ab initio energy values calculated with density functional theory. The fit used input from configurations of the H–Au system with Au atoms at their lattice positions as well as configurations with the Au atoms displaced from their lattice positions. It reproduces the energy, in full dimension, not only for the configurations used as input but also for a large number of additional configurations derived from ab initio molecular dynamics (AIMD) trajectories at finite temperature. Adiabatic molecular dynamics simulations on this PES reproduce the energy loss behavior of AIMD. EMT also provides expressions for the embedding electron density, which enabled us to develop a self-consistent approach to simulate nonadiabatic electron-hole pair excitation and their effect on the motion of the incident H-atoms. For H atoms with an energy of 2.7 eV colliding with Au, electron-hole pair excitation is by far the most important energy loss pathway, giving an average energy loss ≈3 times that of the adiabatic case. This increased energy loss enhances the probability of the H-atom remaining on or in the Au slab by a factor of 2. The most likely outcome for H-atoms that are not scattered also depends prodigiously on the energy transfer mechanism; for the nonadiabatic case, more than 50% of the H-atoms which do not scatter are adsorbed on the surface, while for the adiabatic case more than 50% pass entirely through the 4 layer simulation slab.
Roles of the Excitation in Harvesting Energy from Vibrations.
Zhang, Hui; Ma, Tianwei
2015-01-01
The study investigated the role of excitation in energy harvesting applications. While the energy ultimately comes from the excitation, it was shown that the excitation may not always behave as a source. When the device characteristics do not perfectly match the excitation, the excitation alternately behaves as a source and a sink. The extent to which the excitation behaves as a sink determines the energy harvesting efficiency. Such contradictory roles were shown to be dictated by a generalized phase defined as the instantaneous phase angle between the velocity of the device and the excitation. An inductive prototype device with a diamagnetically levitated seismic mass was proposed to take advantage of the well established phase changing mechanism of vibro-impact to achieve a broader device bandwidth. Results suggest that the vibro-impact can generate an instantaneous, significant phase shift in response velocity that switches the role of the excitation. If introduced properly outside the resonance zone it could dramatically increase the energy harvesting efficiency.
Roles of the Excitation in Harvesting Energy from Vibrations
Zhang, Hui; Ma, Tianwei
2015-01-01
The study investigated the role of excitation in energy harvesting applications. While the energy ultimately comes from the excitation, it was shown that the excitation may not always behave as a source. When the device characteristics do not perfectly match the excitation, the excitation alternately behaves as a source and a sink. The extent to which the excitation behaves as a sink determines the energy harvesting efficiency. Such contradictory roles were shown to be dictated by a generalized phase defined as the instantaneous phase angle between the velocity of the device and the excitation. An inductive prototype device with a diamagnetically levitated seismic mass was proposed to take advantage of the well established phase changing mechanism of vibro-impact to achieve a broader device bandwidth. Results suggest that the vibro-impact can generate an instantaneous, significant phase shift in response velocity that switches the role of the excitation. If introduced properly outside the resonance zone it could dramatically increase the energy harvesting efficiency. PMID:26496183
NASA Astrophysics Data System (ADS)
Yonehara, Takehiro; Takatsuka, Kazuo
2012-12-01
We develop a theory and the method of its application for chemical dynamics in systems, in which the adiabatic potential energy hyper-surfaces (PES) are densely quasi-degenerate to each other in a wide range of molecular geometry. Such adiabatic electronic states tend to couple each other through strong nonadiabatic interactions. Technically, therefore, it is often extremely hard to accurately single out the individual PES in those systems. Moreover, due to the mutual nonadiabatic couplings that may spread wide in space and due to the energy-time uncertainty relation, the notion of the isolated and well-defined potential energy surface should lose the sense. On the other hand, such dense electronic states should offer a very interesting molecular field in which chemical reactions to proceed in characteristic manners. However, to treat these systems, the standard theoretical framework of chemical reaction dynamics, which starts from the Born-Oppenheimer approximation and ends up with quantum nuclear wavepacket dynamics, is not very useful. We here explore this problem with our developed nonadiabatic electron wavepacket theory, which we call the phase-space averaging and natural branching (PSANB) method [T. Yonehara and K. Takatsuka, J. Chem. Phys. 129, 134109 (2008)], 10.1063/1.2987302, or branching-path representation, in which the packets are propagated in time along the non-Born-Oppenheimer branching paths. In this paper, after outlining the basic theory, we examine using a one-dimensional model how well the PSANB method works with such densely quasi-degenerate nonadiabatic systems. To do so, we compare the performance of PSANB with the full quantum mechanical results and those given by the fewest switches surface hopping (FSSH) method, which is known to be one of the most reliable and flexible methods to date. It turns out that the PSANB electron wavepacket approach actually yields very good results with far fewer initial sampling paths. Then we apply the
Yonehara, Takehiro; Takatsuka, Kazuo
2012-12-14
We develop a theory and the method of its application for chemical dynamics in systems, in which the adiabatic potential energy hyper-surfaces (PES) are densely quasi-degenerate to each other in a wide range of molecular geometry. Such adiabatic electronic states tend to couple each other through strong nonadiabatic interactions. Technically, therefore, it is often extremely hard to accurately single out the individual PES in those systems. Moreover, due to the mutual nonadiabatic couplings that may spread wide in space and due to the energy-time uncertainty relation, the notion of the isolated and well-defined potential energy surface should lose the sense. On the other hand, such dense electronic states should offer a very interesting molecular field in which chemical reactions to proceed in characteristic manners. However, to treat these systems, the standard theoretical framework of chemical reaction dynamics, which starts from the Born-Oppenheimer approximation and ends up with quantum nuclear wavepacket dynamics, is not very useful. We here explore this problem with our developed nonadiabatic electron wavepacket theory, which we call the phase-space averaging and natural branching (PSANB) method [T. Yonehara and K. Takatsuka, J. Chem. Phys. 129, 134109 (2008)], or branching-path representation, in which the packets are propagated in time along the non-Born-Oppenheimer branching paths. In this paper, after outlining the basic theory, we examine using a one-dimensional model how well the PSANB method works with such densely quasi-degenerate nonadiabatic systems. To do so, we compare the performance of PSANB with the full quantum mechanical results and those given by the fewest switches surface hopping (FSSH) method, which is known to be one of the most reliable and flexible methods to date. It turns out that the PSANB electron wavepacket approach actually yields very good results with far fewer initial sampling paths. Then we apply the electron wavepacket
Vibration energy harvesting from random force and motion excitations
NASA Astrophysics Data System (ADS)
Tang, Xiudong; Zuo, Lei
2012-07-01
A vibration energy harvester is typically composed of a spring-mass system with an electromagnetic or piezoelectric transducer connected in parallel with a spring. This configuration has been well studied and optimized for harmonic vibration sources. Recently, a dual-mass harvester, where two masses are connected in series by the energy transducer and a spring, has been proposed. The dual-mass vibration energy harvester is proved to be able to harvest more power and has a broader bandwidth than the single-mass configuration, when the parameters are optimized and the excitation is harmonic. In fact, some dual-mass vibration energy harvesters, such as regenerative vehicle suspensions and buildings with regenerative tuned mass dampers (TMDs), are subjected to random excitations. This paper is to investigate the dual-mass and single-mass vibration harvesters under random excitations using spectrum integration and the residue theorem. The output powers for these two types of vibration energy harvesters, when subjected to different random excitations, namely force, displacement, velocity and acceleration, are obtained analytically with closed-form expressions. It is also very interesting to find that the output power of the vibration energy harvesters under random excitations depends on only a few parameters in very simple and elegant forms. This paper also draws some important conclusions on regenerative vehicle suspensions and buildings with regenerative TMDs, which can be modeled as dual-mass vibration energy harvesters. It is found that, under white-noise random velocity excitation from road irregularity, the harvesting power from vehicle suspensions is proportional to the tire stiffness and road vertical excitation spectrum only. It is independent of the chassis mass, tire-wheel mass, suspension stiffness and damping coefficient. Under random wind force excitation, the power harvested from buildings with regenerative TMD will depends on the building mass only, not
Spectroscopic probes of vibrationally excited molecules at chemically significant energies
Rizzo, T.R.
1993-12-01
This project involves the application of multiple-resonance spectroscopic techniques for investigating energy transfer and dissociation dynamics of highly vibrationally excited molecules. Two major goals of this work are: (1) to provide information on potential energy surfaces of combustion related molecules at chemically significant energies, and (2) to test theoretical modes of unimolecular dissociation rates critically via quantum-state resolved measurements.
The Adiabatic Ionization Energy and Triplet T1 Energy of Jet-Cooled Keto-Amino Cytosine.
Lobsiger, Simon; Leutwyler, Samuel
2012-12-01
Gas-phase cytosine exists in five different tautomer/rotamer forms 1, 2a, 2b, 3a, and 3b. We determine the threshold ionization energy (IE) of the keto-amino tautomer 1 as 8.73 ± 0.02 eV, using resonant two-photon ionization mass spectrometry in a supersonic molecular beam via the (1)ππ* excited state. This is the first IE threshold measurement for the biologically relevant tautomer 1. The IE of the thermal gas-phase mixture of cytosine has been measured as 8.60 ± 0.05 eV by Kostko et al. using single-photon VUV photoionization [Phys. Chem. Chem. Phys., 2010, 12, 2860]. Given the tautomer distribution and ionization energies calculated in that work, our determination of the keto-amino tautomer IE implies that the IE measured by Kostko et al. is dominated by the enol-amino tautomers 2a and 2b. Upon excitation of keto-amino cytosine to its (1)ππ* state, relaxation occurs to a lower-lying long-lived state. The IE threshold measured via this state places its energy about 0.69 eV below the (1)ππ* state, in good agreement with the triplet T1 energy of keto-amino cytosine calculated by several high-level ab initio methods. The identification of keto-amino cytosine T1 is the basis for characterizing the intersystem crossing rates into and the photochemical reactions of this long-lived state.
Adiabatic computation: A toy model
NASA Astrophysics Data System (ADS)
Ribeiro, Pedro; Mosseri, Rémy
2006-10-01
We discuss a toy model for adiabatic quantum computation which displays some phenomenological properties expected in more realistic implementations. This model has two free parameters: the adiabatic evolution parameter s and the α parameter, which emulates many-variable constraints in the classical computational problem. The proposed model presents, in the s-α plane, a line of first-order quantum phase transition that ends at a second-order point. The relation between computation complexity and the occurrence of quantum phase transitions is discussed. We analyze the behavior of the ground and first excited states near the quantum phase transition, the gap, and the entanglement content of the ground state.
Adiabatic computation: A toy model
Ribeiro, Pedro; Mosseri, Remy
2006-10-15
We discuss a toy model for adiabatic quantum computation which displays some phenomenological properties expected in more realistic implementations. This model has two free parameters: the adiabatic evolution parameter s and the {alpha} parameter, which emulates many-variable constraints in the classical computational problem. The proposed model presents, in the s-{alpha} plane, a line of first-order quantum phase transition that ends at a second-order point. The relation between computation complexity and the occurrence of quantum phase transitions is discussed. We analyze the behavior of the ground and first excited states near the quantum phase transition, the gap, and the entanglement content of the ground state.
Potential Energy Curves for Excited States of the Hydrogen-Antihydrogen System
Sharipov, V.; Labzowsky, L.; Plunien, G.
2006-09-08
The potential energy curves for the hydrogen-antihydrogen (HH) system in states with a leptonic orbital angular momentum projection {lambda}=0, 1, 2, 6, and 30 are presented. Within the framework of the adiabatic picture, explicitly correlated Gaussians are used as basis functions which describe accurately the hydrogen-antihydrogen interaction. The critical internuclear distances where the system transforms into positronium and protonium atoms are found. Adiabatic corrections to the potential energy curves are also estimated.
Potential energy curves for excited states of the hydrogen-antihydrogen system.
Sharipov, V; Labzowsky, L; Plunien, G
2006-09-01
The potential energy curves for the hydrogen-antihydrogen (HH) system in states with a leptonic orbital angular momentum projection Lambda=0, 1, 2, 6, and 30 are presented. Within the framework of the adiabatic picture, explicitly correlated Gaussians are used as basis functions which describe accurately the hydrogen-antihydrogen interaction. The critical internuclear distances where the system transforms into positronium and protonium atoms are found. Adiabatic corrections to the potential energy curves are also estimated.
Egidi, Franco Segado, Mireia; Barone, Vincenzo; Koch, Henrik; Cappelli, Chiara
2014-12-14
In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π{sup *}, π-π{sup *}, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.
NASA Astrophysics Data System (ADS)
Egidi, Franco; Segado, Mireia; Koch, Henrik; Cappelli, Chiara; Barone, Vincenzo
2014-12-01
In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π*, π-π*, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.
A scalable piezoelectric impulse-excited energy harvester for human body excitation
NASA Astrophysics Data System (ADS)
Pillatsch, P.; Yeatman, E. M.; Holmes, A. S.
2012-11-01
Harvesting energy from low-frequency and non-harmonic excitations typical of human motion presents specific challenges. While resonant devices do have an advantage in environments where the excitation frequency is constant, and while they can make use of the entire proof mass travel range in the case of excitation amplitudes that are smaller than the internal displacement limit, they are not suitable for body applications since the frequencies are random and the amplitudes tend to be larger than the device size. In this paper a piezoelectric, impulse-excited approach is presented. A cylindrical proof mass actuates an array of piezoelectric bi-morph beams through magnetic attraction. After the initial excitation these transducers are left to vibrate at their natural frequency. This increases the operational frequency range as well as the electromechanical coupling. The principle of impulse excitation is discussed and a centimetre-scale functional model is introduced as a proof of concept. The obtained data show the influence of varying the frequency, acceleration and proof mass. Finally, a commercially available integrated circuit for voltage regulation is tested. At a frequency of 2 Hz and an acceleration of 2.7 m s-2 a maximal power output of 2.1 mW was achieved.
A simple formula for the energies of doubly excited states
Lin, C.D.; Watanabe, S.
1986-11-01
A simple formula for the energy levels of doubly excited states of atoms and multiply charged ions is derived and expressed in terms of a set of new correlation quantum numbers. The accuracy of the formula is checked by comparing with the results from other elaborate calculations. Modification of the formula for doubly excited states of multielectron atoms are also presented. 12 refs., 2 tabs.
Excitation energy migration in uniaxially oriented polymer films
NASA Astrophysics Data System (ADS)
Bojarski, P.; Kamińska, A.; Kułak, L.; Sadownik, M.
2003-07-01
Multistep nonradiative excitation energy transport is for the first time studied in uniaxially stretched polymer films. Concentration depolarization studies performed for 3,3 '-diethylthiacarbocyanine iodide (DTCI) for stretched (system I) and unstretched (system II) polyvinyl alcohol films (PVA) yield extremely different results. As expected, disordered system II exhibits strong concentration depolarization due to energy migration between identical fluorophores. However, for stretched films, concentration depolarization effect is much weaker and it occurs at higher dye concentrations compared to system II. This fact is mostly due to strongly modified angular distribution of dipole moments of molecules taking part in the excitation energy migration.
NASA Astrophysics Data System (ADS)
Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.
2016-05-01
Background: Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. Purpose: In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear density functional theory (DFT). Methods: Our theoretical framework is the nuclear energy density functional (EDF) method, where large-amplitude collective motion is treated adiabatically by using the time-dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). In practice, the TDGCM is implemented in two steps. First, a series of constrained EDF calculations map the configuration and potential-energy landscape of the fissioning system for a small set of collective variables (in this work, the axial quadrupole and octupole moments of the nucleus). Then, nuclear dynamics is modeled by propagating a collective wave packet on the potential-energy surface. Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. Results: We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in two-dimensional collective spaces. Theory and experiment agree typically within two mass units for the position of the asymmetric peak. As expected, calculations are sensitive to the structure of the initial state and the prescription for the collective inertia. We emphasize that results are also sensitive to the continuity of the collective landscape near scission. Conclusions: Our analysis confirms
NASA Astrophysics Data System (ADS)
Mahdavi, Mahboobe; Tiari, Saeed; Qiu, Songgang
2015-11-01
Latent heat thermal energy storage systems benefits from high energy density and isothermal storing process. However, the low thermal conductivity of the phase change material leads to prolong the melting or solidification time. Using a passive device such as heat pipes is required to enhance the heat transfer and to improve the efficiency of the system. In the present work, the performance of a heat pipe network specifically designed for a thermal energy storage system is studied numerically. The network includes a primary heat pipe, which transfers heat received from solar receiver to the heat engine. The excess heat is simultaneously delivered to charge the phase change material via secondary heat pipes. The primary heat pipe composed of a disk shape evaporator, an adiabatic section and a disk shape condenser. The adiabatic section can be either located at the center or positioned outward to the surrounding of the container. Here, the effect of adiabatic section position on thermal performance of the system is investigated. It was concluded that displacing the adiabatic section outwards dramatically increases the average temperatures of the condensers and reduces the thermal resistance of heat pipes.
Energy harvesting under excitations of time-varying frequency
NASA Astrophysics Data System (ADS)
Seuaciuc-Osório, Thiago; Daqaq, Mohammed F.
2010-06-01
The design and optimization of energy harvesters capable of scavenging energy efficiently from realistic environments require a deep understanding of their transduction under non-stationary and random excitations. Otherwise, their small energy outputs can be further decreased lowering their efficiency and rendering many critical and possibly life saving technologies inefficient. As a first step towards this critical understanding, this effort investigates the response of energy harvesters to harmonic excitations of time-varying frequency. Such excitations can be used to represent the behavior of realistic vibratory environments whose frequency varies or drifts with time. Specifically, we consider a piezoelectric stack-type harvester subjected to a harmonic excitation of constant amplitude and a sinusoidally varying frequency. We analyze the response of the harvester in the fixed-frequency scenario then use the Jacobi-Anger's expansion to analyze the response in the time-varying case. We obtain analytical expressions for the harvester's response, output voltage, and power. In-depth analysis of the attained results reveals that the solution to the more complex time-varying frequency can be understood through a process which "samples" the fixed-frequency response curve at a discrete and fixed frequency interval then multiplies the response by proper weights. Extensive discussions addressing the effect of the excitation parameters on the output power is presented leading to some initial suggestions pertinent to the harvester's design and optimization in the sinusoidally varying frequency case.
Excitation energy after a smooth quench in a Luttinger liquid
Dziarmaga, Jacek; Tylutki, Marek
2011-12-01
Low-energy physics of quasi-one-dimensional ultracold atomic gases is often described by a gapless Luttinger liquid (LL). It is nowadays routine to manipulate these systems by changing their parameters in time but, no matter how slow the manipulation is, it must excite a gapless system. We study a smooth change of parameters of the LL (a smooth ''quench'') with a variable quench time and find that the excitation energy decays with an inverse power of the quench time. This universal exponent is -2 at zero temperature and -1 for slow enough quenches at finite temperature. The smooth quench does not excite beyond the range of validity of the low-energy LL description.
Intermediate-energy Coulomb excitation of {sup 52}Fe
Yurkewicz, K.L.; Brown, B.A.; Campbell, C.M.; Church, J.A.; Dinca, D.-C.; Glasmacher, T.; Olliver, H.; Terry, J.R.; Bazin, D.; Gade, A.; Mueller, W.F.; Honma, M.; Mizusaki, T.; Otsuka, T.; Riley, L.A.
2004-09-01
The nucleus {sup 52}Fe with (N=Z=26) has been investigated using intermediate-energy Coulomb excitation in inverse kinematics. A reduced transition probability of B(E2;0{sub 1}{sup +}{yields}2{sub 1}{sup +})=817(102) e{sup 2} fm{sup 4} to the first excited 2{sup +} state at 849.0(5) keV was deduced. The increase in excitation strength B(E2{up_arrow}) with respect to the even-mass neighbor {sup 54}Fe (B(E2{up_arrow})=620(50) e{sup 2} fm{sup 4}) agrees with shell-model expectations as the magic number N=28 is approached. This measurement completes the systematics of reduced transition strengths to the first excited 2{sup +} state for the even-even N=Z nuclei up to mass A=56.
Efficient near-field wireless energy transfer using adiabatic system variations
Hamam, Rafif E; Karalis, Aristeidis; Joannopoulos, John D; Soljacic, Marin
2014-09-16
Disclosed is a method for transferring energy wirelessly including transferring energy wirelessly from a first resonator structure to an intermediate resonator structure, wherein the coupling rate between the first resonator structure and the intermediate resonator structure is .kappa..sub.1B, transferring energy wirelessly from the intermediate resonator structure to a second resonator structure, wherein the coupling rate between the intermediate resonator structure and the second resonator structure is .kappa..sub.B2, and during the wireless energy transfers, adjusting at least one of the coupling rates .kappa..sub.1B and .kappa..sub.B2 to reduce energy accumulation in the intermediate resonator structure and improve wireless energy transfer from the first resonator structure to the second resonator structure through the intermediate resonator structure.
Efficient near-field wireless energy transfer using adiabatic system variations
Hamam, Rafif E.; Karalis, Aristeidis; Joannopoulos, John D.; Soljacic, Marin
2013-01-29
Disclosed is a method for transferring energy wirelessly including transferring energy wirelessly from a first resonator structure to an intermediate resonator structure, wherein the coupling rate between the first resonator structure and the intermediate resonator structure is .kappa..sub.1B, transferring energy wirelessly from the intermediate resonator structure to a second resonator structure, wherein the coupling rate between the intermediate resonator structure and the second resonator structure is .kappa..sub.B2, and during the wireless energy transfers, adjusting at least one of the coupling rates .kappa..sub.1B and .kappa..sub.B2 to reduce energy accumulation in the intermediate resonator structure and improve wireless energy transfer from the first resonator structure to the second resonator structure through the intermediate resonator structure.
Low-energy Coulomb excitation of radioactive ^70Se
NASA Astrophysics Data System (ADS)
Hurst, Aaron
2007-10-01
An isobarically pure beam of ^70Se ions was post accelerated to an energy of 206 MeV using REX-ISOLDE. Coulomb-excitation yields for states in the beam and target nuclei were deduced by recording de-excitation γ rays in the highly segmented MINIBALL γ-ray spectrometer in coincidence with scattered particles in a silicon detector. At these energies, the Coulomb-excitation yield for the 2^+1 state in ^70Se is expected to be strongly sensitive to the sign of the spectroscopic quadrupole moment through the nuclear reorientation effect. Experimental evidence is presented here for a prolate shape for this state, using an earlier published lifetime measurement, reopening the question over whether there are deformed oblate shapes close to the ground state in the neutron-deficient selenium isotopes.
Bond selective chemistry beyond the adiabatic approximation
Butler, L.J.
1993-12-01
One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.
NASA Technical Reports Server (NTRS)
Vidal, C. R.; Stwalley, W. C.
1982-01-01
The molecular constants and their adiabatic corrections have been determined for the (A 1 Sigma +) - (X 1 Sigma +) system of the isotopic lithium hydrides: (Li-6)H, (Li-7)H, (Li-6)D, and (Li-7)D. Using a fully quantum mechanical variational method, the potential energy curves (IPA potentials) are determined. Extending the variational method, we have obtained for the first time adiabatic corrections of potential energy curves from isotopic spectroscopic data. A significant difference between the potential energy curves of the lithium hydrides and the lithium deuterides has been observed. When Li-6 was replaced by Li-7, a significant difference was only observed for the (A 1 Sigma +) state, but not for the (X 1 Sigma +) state.
Mean excitation energy for molecules of hydrogen and carbon
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Kamaratos, E.
1981-01-01
The Gordon-Kim electron gas model of molecular bonding is used to calculate correction factors for the Bragg rule for molecules of hydrogen and carbon. General rules for molecular mean excitation energies are obtained that agree to about 4% with experimental values.
Complex fragment emission at low and high excitation energy
Moretto, L.G.
1986-08-01
Complex fragment emission has been certified as a compound nucleus process at low energies. An extension of the measurements to heavy ion reactions up to 50 MeV/u shows that most complex fragments are emitted by highly excited compound nuclei formed in incomplete fusion reactions. 12 refs., 26 figs.
NASA Astrophysics Data System (ADS)
Zhu, Xiaolei; Yarkony, David R.
2012-05-01
In two previous papers we have introduced a method to generate coupled quasi-diabatic Hamiltonians (Hd) that are capable of representing adiabatic energies, energy gradients, and derivative couplings over a wide range of geometries including seams of conical intersection. In this work, two new synergistic features are introduced. Firstly, the functional form of Hd is generalized. Rather than requiring there to be a low energy point of high symmetry to serve as the unique origin, functions centered on points distributed in nuclear coordinate space are used in the polynomials that comprise the matrix elements in Hd. The use of functions with distributed origins, allows reproduction of the ab initio data with lower order expansions, and offers the possibility of describing multichannel dissociation. The fitting algorithm is combined with a three-step procedure in which the domain of Hd is extended from a core set of nuclear configurations to a region of nuclear coordinate space appropriate for nuclear dynamics, with a prescribed accuracy. This significant extension of the domain of definition compared to our original work, which is facilitated by the distributed origin approach, is achieved largely through the use of surface hopping trajectories. The 1,21A states of NH3, which provide an archetypical example of nonadiabatic dynamics, are used to demonstrate the utility of this approach. The representation describes 21 points on the 11A-21A seam of conical intersection and their local topography flawlessly and on the entire domain, the electronic structure data is represented to an accuracy of 77.00 (46.90) cm-1, as measured by the root mean square (mean unsigned) error for energies lower than 50 000 cm-1. This error is a factor of 10 lower than that of the most accurate representation of high quality ab initio data, on a comparable domain, previously reported for this system.
Excitation energy dependent Raman spectrum of MoSe2
Nam, Dahyun; Lee, Jae-Ung; Cheong, Hyeonsik
2015-01-01
Raman investigation of MoSe2 was carried out with eight different excitation energies. Seven peaks, including E1g, A1g, E2g1, and A2u2 peaks are observed in the range of 100–400 cm−1. The phonon modes are assigned by comparing the peak positions with theoretical calculations. The intensities of the peaks are enhanced at different excitation energies through resonance with different optical transitions. The A1g mode is enhanced at 1.58 and 3.82 eV, which are near the A exciton energy and the band-to-band transition between higher energy bands, respectively. The E2g1 mode is strongly enhanced with respect to the A1g mode for the 2.71- and 2.81-eV excitations, which are close to the C exciton energy. The different enhancements of the A1g and E2g1 modes are explained in terms of the symmetries of the exciton states and the exciton-phonon coupling. Other smaller peaks including E1g and A2u2 are forbidden but appear due to the resonance effect near optical transition energies. PMID:26601614
Structures and Low-Energy Excitations of Amorphous Gas Hydrates
NASA Astrophysics Data System (ADS)
Kikuchi, Tatsuya; Inamura, Yasuhiro; Onoda-Yamamuro, Noriko; Yamamuro, Osamu
2012-09-01
We have prepared amorphous clathrate hydrates of Ar, CD4, Xe, and SF6 by depositing mixed vapors of water and guest molecules on a substrate at ca. 10 K. The structure and vibrational density of states were investigated by neutron diffraction and inelastic scattering techniques, respectively. The radial distribution functions of the amorphous hydrates are larger than that of pure amorphous ice in the region around 4 Å (the center-edge distance of the 12-hedral cage), indicating that a local cagelike structure is maintained even in the amorphous solids. The incorporation of the guest molecules decreases the intensity of the phonon excitation below 7 meV, which is known as a low-energy excitation characteristic of amorphous ice. This may be due to the effect that the disorder, defects and distortion producing the low-energy excitation are reduced by a hydrophobic hydration between the guest and water molecules and the resultant hydrogen-bond formation. A similar effect was also observed in the libration mode of water molecules at about 60 meV. The present work has revealed the relation among the local cage formation, hydrogen bonds, and low energy excitations in amorphous hydrates that is the simplest hydrophobic hydration system (H2O--gas mixture).
Heavy-ion fission probability calculations at high excitation energy
D'Arrigo, A.; Giardina, G.; Taccone, A. Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Messina, Messina Istituto di Tecniche Spettroscopiche del Consiglio Nazionale delle Ricerche, Messina )
1991-12-01
In the framework of the statistical theory of nuclear reactions we calculated the fission probability {ital P}{sub {ital f}} of the {sup 153}Tb, {sup 158}Er, {sup 159}Dy, {sup 175}Hf, {sup 179}Ta, {sup 186}Os, and {sup 188}Os nuclei with a mass number {ital A}=150--200 produced by heavy-ion reactions. Starting from the spectra of the single-particle levels as determined by Nix and Moeller, and utilizing a formalism we developed, we determined the excitation energy dependence of the effective level density parameters for the fission and the neutron emission channels. The agreement between the fission probability calculations and the experimental data was reached when a nonadiabatic estimate of the collective effects was used to calculate the nuclear level density. In the fission process at high excitation energies induced by ions heavier than the {alpha} particle, an energy dependence of the effective fission barrier has to be used.
Elementary excitation and energy landscape in simple liquids
NASA Astrophysics Data System (ADS)
Egami, T.
2014-06-01
The nature of excitations in liquids has been a subject of debate for a long time. In liquids, phonons are extremely short-lived and marginalized. Instead, recent research results indicate that local topological or configurational excitations (anankeons) are the elementary excitations in high temperature metallic liquids. Local topological excitations are those which locally alter the atomic connectivity network by cutting or forming atomic bonds, and are directly tied to the atomistic origin of viscosity in the liquid. The local potential energy landscape (PEL) of anankeons represents the probability weighted projection of the global PEL to a single atom. The original PEL is an insightful concept, but is highly multi-dimensional and difficult to characterize or even to visualize. A description in terms of the local PEL for anankeons appears to offer a simpler and more effective approach toward this complex problem. At the base of these advances, is the recognition that atomic discreteness and the topology of atomic connectivity are the most crucial features of the structure in liquids, which current nonlinear continuum theories cannot fully capture. These discoveries could open the way to the explanation of various complex phenomena in liquids, such as atomic transport, fragility, and the glass transition, in terms of these excitations.
Calculation of reaction energies and adiabatic temperatures for waste tank reactions
Burger, L.L.
1995-10-01
Continual concern has been expressed over potentially hazardous exothermic reactions that might occur in Hanford Site underground waste storage tanks. These tanks contain many different oxidizable compounds covering a wide range of concentrations. The chemical hazards are a function of several interrelated factors, including the amount of energy (heat) produced, how fast it is produced, and the thermal absorption and heat transfer properties of the system. The reaction path(s) will determine the amount of energy produced and kinetics will determine the rate that it is produced. The tanks also contain many inorganic compounds inert to oxidation. These compounds act as diluents and can inhibit exothermic reactions because of their heat capacity and thus, in contrast to the oxidizable compounds, provide mitigation of hazardous reactions. In this report the energy that may be released when various organic and inorganic compounds react is computed as a function of the reaction-mix composition and the temperature. The enthalpy, or integrated heat capacity, of these compounds and various reaction products is presented as a function of temperature; the enthalpy of a given mixture can then be equated to the energy release from various reactions to predict the maximum temperature which may be reached. This is estimated for several different compositions. Alternatively, the amounts of various diluents required to prevent the temperature from reaching a critical value can be estimated. Reactions taking different paths, forming different products such as N{sub 2}O in place of N{sub 2} are also considered, as are reactions where an excess of caustic is present. Oxidants other than nitrate and nitrite are considered briefly.
NASA Astrophysics Data System (ADS)
Riesen, Hans; Krausz, Elmars
1995-02-01
[Zn(bpy)3](ClO4)2 are indicated in our preliminary results. In inhomogeneously broadened systems such as frozen glasses or solutions, in which MLCT excitations involving different ligands on the same chromophore may differ in energy by 100 cm-1 or more, an effectively localized description of the low lying 3MLCT states is appropriate for [Os(bpy)3]2+.
Calculation of reaction energies and adiabatic temperatures for waste tank reactions
Burger, L.L.
1993-03-01
Continual concern has been expressed over potentially hazardous exothermic reactions that might occur in underground Hanford waste tanks. These tanks contain many different oxidizable compounds covering a wide range of concentrations. Several may be in concentrations and quantities great enough to be considered a hazard in that they could undergo rapid and energetic chemical reactions with nitrate and nitrite salts that are present. The tanks also contain many inorganic compounds inert to oxidation. In this report the computed energy that may be released when various organic and inorganic compounds react is computed as a function of the reaction mix composition and the temperature. The enthalpy, or integrated heat capacity, of these compounds and various reaction products is presented as a function of temperature, and the enthalpy of a given mixture can then be equated to the energy release from various reactions to predict the maximum temperature that may be reached. This is estimated for several different compositions. Alternatively, the amounts of various diluents required to prevent the temperature from reaching a critical value can be estimated.
Topology of the Adiabatic Potential Energy Surfaces for theResonance States of the Water Anion
Haxton, Daniel J.; Rescigno, Thomas N.; McCurdy, C. William
2005-04-15
The potential energy surfaces corresponding to the long-lived fixed-nuclei electron scattering resonances of H{sub 2}O relevant to the dissociative electron attachment process are examined using a combination of ab initio scattering and bound-state calculations. These surfaces have a rich topology, characterized by three main features: a conical intersection between the {sup 2}A{sub 1} and {sup 2}B{sub 2} Feshbach resonance states; charge-transfer behavior in the OH ({sup 2}{Pi}) + H{sup -} asymptote of the {sup 2}B{sub 1} and {sup 2}A{sub 1} resonances; and an inherent double-valuedness of the surface for the {sup 2}B{sub 2} state the C{sub 2v} geometry, arising from a branch-point degeneracy with a {sup 2}B{sub 2} shape resonance. In total, eight individual seams of degeneracy among these resonances are located.
Towards disentangling coupled electronic-vibrational dynamics in ultrafast non-adiabatic processes
Blanchet; Lochbrunner; Schmitt; Shaffer; Larsen; Zgierski; Seideman; Stolow
2000-01-01
Femtosecond time-resolved photoelectron spectroscopy is emerging as a new technique for investigating polyatomic excited state dynamics. Due to the sensitivity of photoelectron spectroscopy to both electronic configurations and vibrational dynamics, it is well suited to the study of non-adiabatic processes such as internal conversion, which often occur on sub-picosecond time scales. We discuss the technical requirements for such experiments, including lasers systems, energy- and angle-resolved photoelectron spectrometers and new detectors for coincidence experiments. We present a few examples of these methods applied to problems in diatomic wavepacket dynamics and ultrafast non-adiabatic processes in polyatomic molecules.
Quantum Adiabatic Optimization and Combinatorial Landscapes
NASA Technical Reports Server (NTRS)
Smelyanskiy, V. N.; Knysh, S.; Morris, R. D.
2003-01-01
In this paper we analyze the performance of the Quantum Adiabatic Evolution (QAE) algorithm on a variant of Satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables, gamma = M / N. We introduce a set of macroscopic parameters (landscapes) and put forward an ansatz of universality for random bit flips. We then formulate the problem of finding the smallest eigenvalue and the excitation gap as a statistical mechanics problem. We use the so-called annealing approximation with a refinement that a finite set of macroscopic variables (verses only energy) is used, and are able to show the existence of a dynamic threshold gamma = gammad, beyond which QAE should take an exponentially long time to find a solution. We compare the results for extended and simplified sets of landscapes and provide numerical evidence in support of our universality ansatz.
High-energy excited states in 98Cd
NASA Astrophysics Data System (ADS)
Blazhev, A.; Braun, N.; Grawe, H.; Boutachkov, P.; Nara Singh, B. S.; Brock, T.; Liu, Zh; Wadsworth, R.; Górska, M.; Jolie, J.; Nowacki, F.; Pietri, S.; Domingo-Pardo, C.; Kojouharov, I.; Caceres, L.; Engert, T.; Farinon, F.; Gerl, J.; Goel, N.; Grȩbosz, J.; Hoischen, R.; Kurz, N.; Nociforo, C.; Prochazka, A.; Schaffner, H.; Steer, S.; Weick, H.; Wollersheim, H.-J.; Ataç, A.; Bettermann, L.; Eppinger, K.; Faestermann, T.; Finke, F.; Geibel, K.; Hinke, C.; Gottardo, A.; Ilie, G.; Iwasaki, H.; Krücken, R.; Merchan, E.; Nyberg, J.; Pfützner, M.; Podolyák, Zs; Regan, P.; Reiter, P.; Rinta-Antila, S.; Rudolph, D.; Scholl, C.; Söderström, P.-A.; Warr, N.; Woods, P.
2010-01-01
In 98Cd a new high-energy isomeric γ-ray transition was identified, which confirms previous spin-parity assignments and enables for the first time the measurement of the E2 and E4 strength for the two decay branches of the isomer. Preliminary results on the 98Cd high-excitation level scheme are presented. A comparison to shell-model calculations as well as implications for the nuclear structure around 100Sn are discussed.
Excitation-energy dependence of the giant dipole resonance width
NASA Astrophysics Data System (ADS)
Enders, G.; Berg, F. D.; Hagel, K.; Kühn, W.; Metag, V.; Novotny, R.; Pfeiffer, M.; Schwalb, O.; Charity, R. J.; Gobbi, A.; Freifelder, R.; Henning, W.; Hildenbrand, K. D.; Holzmann, R.; Mayer, R. S.; Simon, R. S.; Wessels, J. P.; Casini, G.; Olmi, A.; Stefanini, A. A.
1992-07-01
High-energy γ rays have been measured in coincidence with heavy fragents in deeply inelastic reactions of 136Xe+48Ti at 18.5 MeV/nucleon. The giant dipole resonance (GDR) strength function is deduced from an analysis of the photon spectra within the statistical model. The GDR width Γ is studied as a function of the fragment excitation energy E*. A saturation at about Γ=10 MeV is observed for E*/A>=1.0 MeV/nucleon.
Experimental demonstration of composite adiabatic passage
NASA Astrophysics Data System (ADS)
Schraft, Daniel; Halfmann, Thomas; Genov, Genko T.; Vitanov, Nikolay V.
2013-12-01
We report an experimental demonstration of composite adiabatic passage (CAP) for robust and efficient manipulation of two-level systems. The technique represents a altered version of rapid adiabatic passage (RAP), driven by composite sequences of radiation pulses with appropriately chosen phases. We implement CAP with radio-frequency pulses to invert (i.e., to rephase) optically prepared spin coherences in a Pr3+:Y2SiO5 crystal. We perform systematic investigations of the efficiency of CAP and compare the results with conventional π pulses and RAP. The data clearly demonstrate the superior features of CAP with regard to robustness and efficiency, even under conditions of weakly fulfilled adiabaticity. The experimental demonstration of composite sequences to support adiabatic passage is of significant relevance whenever a high efficiency or robustness of coherent excitation processes need to be maintained, e.g., as required in quantum information technology.
Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning
NASA Technical Reports Server (NTRS)
Smelyanskiy, V. N.; Toussaint, U. V.; Timucin, D. A.
2002-01-01
We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum excitation gap. g min, = O(n 2(exp -n/2), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to 'the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.
Intermediate-energy Coulomb excitation of {sup 30}Na
Ettenauer, S.; Adrich, P.; Bazin, D.; Campbell, C. M.; Lecouey, J.-L.; Mueller, W. F.; Yoneda, K.; Zwahlen, H.; Cook, J. M.; Davies, A. D.; Dinca, D.-C.; Gade, A.; Glasmacher, T.; Terry, J. R.; Otsuka, T.; Reynolds, R. R.; Riley, L. A.; Utsuno, Y.
2008-07-15
The neutron-rich nucleus {sup 30}Na in the vicinity of the 'Island of Inversion' was investigated using intermediate-energy Coulomb excitation. A single {gamma}-ray transition was observed and attributed to the 3{sub 1}{sup +}{yields}2{sub gs}{sup +} decay. A transition probability of B(E2;2{sub gs}{sup +}{yields}3{sub 1}{sup +})=147(21) e{sup 2} fm{sup 4} was determined and found in agreement with a previous experiment and with large-scale shell-model calculations. Evidence for the strong excitation of the 4{sub 1}{sup +} state predicted by the shell-model calculations was not observed.
Entanglement of Low-Energy Excitations in Conformal Field Theory
Alcaraz, Francisco Castilho; Ibanez Berganza, Miguel; Sierra, German
2011-05-20
In a quantum critical chain, the scaling regime of the energy and momentum of the ground state and low-lying excitations are described by conformal field theory (CFT). The same holds true for the von Neumann and Renyi entropies of the ground state, which display a universal logarithmic behavior depending on the central charge. In this Letter we generalize this result to those excited states of the chain that correspond to primary fields in CFT. It is shown that the nth Renyi entropy is related to a 2n-point correlator of primary fields. We verify this statement for the critical XX and XXZ chains. This result uncovers a new link between quantum information theory and CFT.
Amino Acid Mean Excitation Energies and Directional Dependencies from Core and Bond Calculations
Sabin, John R.; Oddershede, Jens; Sauer, Stephan P. A.
2008-12-08
We determine the mean excitation energies of several amino acids using a Bragg Rule developed for molecular fragments or functional groups. As the composition of the amino acids is very similar, we find that the amino acids have similar mean excitation energies (approximately 70 eV). Differences arise from variation of the side chains (-R); addition of-CH2-groups decreases the mean excitation energy. We also speculate concerning the directional dependence of the amino acid mean excitation energies.
Accurate potential energy functions, non-adiabatic and spin-orbit couplings in the ZnH(+) system.
Liang, Guiying; Liu, Xiaoting; Zhang, Xiaomei; Xu, Haifeng; Yan, Bing
2016-03-01
A high-level ab initio calculation on the ZnH(+) cation has been carried out with the multi-reference configuration interaction method plus Davison correction (MRCI+Q). The scalar relativistic effect is included by using the Douglas-Kroll-Hess (DKH) method. The calculated potential energy curves (PECs) of the 7 Λ-S states are associated with the dissociation limits of Zn(+)((2)Sg)+H((2)Sg), Zn((1)Sg)+H(+)((1)Sg), and Zn(+)((2)Pu)+H((2)Sg), respectively (The Λ-S state is labeled as (2S+1)Λ, in which Λ is the quantum number for the projection along the internuclear axis of the total electronic orbital angular momentum and S is the total electron spin). The spectroscopic constants of the bound states are determined and in good agreement with the available theoretical and experimental results. The permanent dipole moments (PDMs) of Λ-S states and the spin-orbit (SO) matrix elements between Λ-S states are also computed. The results show that the abrupt changes of the PDMs and SO matrix elements come into being for the reason of the avoided crossing between the states with the same symmetry. In addition, the non-adiabatic couplings matrix elements between Λ-S states are also evaluated. Finally, the spin-orbit couplings (SOCs) for the low-lying states are considered with Breit-Pauli operator. The SOC effect makes the 7 Λ-S states of the ZnH(+) cation split into 12 Ω states (Ω=Λ+Sz, in which Sz is projection of the total electron spin S along the internuclear Z-axis). For the (3)0(+) state, the two energy minima exhibit in the potential, which could be attributed to the formation of the new avoided crossing point. The transition dipole moments (TDMs), Franck-Condon factors, and the radiative lifetimes of the selected transitions (2)0(+)-X0(+), (3)0(+)-X0(+), (2)1-X0(+) and (3)1-X0(+) have been reported.
Accurate potential energy functions, non-adiabatic and spin-orbit couplings in the ZnH+ system
NASA Astrophysics Data System (ADS)
Liang, Guiying; Liu, Xiaoting; Zhang, Xiaomei; Xu, Haifeng; Yan, Bing
2016-03-01
A high-level ab initio calculation on the ZnH+ cation has been carried out with the multi-reference configuration interaction method plus Davison correction (MRCI + Q). The scalar relativistic effect is included by using the Douglas-Kroll-Hess (DKH) method. The calculated potential energy curves (PECs) of the 7 Λ-S states are associated with the dissociation limits of Zn+(2Sg) + H(2Sg), Zn(1Sg) + H+(1Sg), and Zn+(2Pu) + H(2Sg), respectively (The Λ-S state is labeled as 2S + 1Λ, in which Λ is the quantum number for the projection along the internuclear axis of the total electronic orbital angular momentum and S is the total electron spin). The spectroscopic constants of the bound states are determined and in good agreement with the available theoretical and experimental results. The permanent dipole moments (PDMs) of Λ-S states and the spin-orbit (SO) matrix elements between Λ-S states are also computed. The results show that the abrupt changes of the PDMs and SO matrix elements come into being for the reason of the avoided crossing between the states with the same symmetry. In addition, the non-adiabatic couplings matrix elements between Λ-S states are also evaluated. Finally, the spin-orbit couplings (SOCs) for the low-lying states are considered with Breit-Pauli operator. The SOC effect makes the 7 Λ-S states of the ZnH+ cation split into 12 Ω states (Ω = Λ + Sz, in which Sz is projection of the total electron spin S along the internuclear Z-axis). For the (3)0+ state, the two energy minima exhibit in the potential, which could be attributed to the formation of the new avoided crossing point. The transition dipole moments (TDMs), Franck-Condon factors, and the radiative lifetimes of the selected transitions (2)0+-X0+, (3)0+-X0+, (2)1-X0+ and (3)1-X0+ have been reported.
Studies in Chaotic adiabatic dynamics
Jarzynski, C.
1994-01-01
Chaotic adiabatic dynamics refers to the study of systems exhibiting chaotic evolution under slowly time-dependent equations of motion. In this dissertation the author restricts his attention to Hamiltonian chaotic adiabatic systems. The results presented are organized around a central theme, namely, that the energies of such systems evolve diffusively. He begins with a general analysis, in which he motivates and derives a Fokker-Planck equation governing this process of energy diffusion. He applies this equation to study the {open_quotes}goodness{close_quotes} of an adiabatic invariant associated with chaotic motion. This formalism is then applied to two specific examples. The first is that of a gas of noninteracting point particles inside a hard container that deforms slowly with time. Both the two- and three-dimensional cases are considered. The results are discussed in the context of the Wall Formula for one-body dissipation in nuclear physics, and it is shown that such a gas approaches, asymptotically with time, an exponential velocity distribution. The second example involves the Fermi mechanism for the acceleration of cosmic rays. Explicit evolution equations are obtained for the distribution of cosmic ray energies within this model, and the steady-state energy distribution that arises when this equation is modified to account for the injection and removal of cosmic rays is discussed. Finally, the author re-examines the multiple-time-scale approach as applied to the study of phase space evolution under a chaotic adiabatic Hamiltonian. This leads to a more rigorous derivation of the above-mentioned Fokker-Planck equation, and also to a new term which has relevance to the problem of chaotic adiabatic reaction forces (the forces acting on slow, heavy degrees of freedom due to their coupling to light, fast chaotic degrees).
Modeling coherent excitation energy transfer in photosynthetic light harvesting systems
NASA Astrophysics Data System (ADS)
Huo, Pengfei
2011-12-01
Recent non-linear spectroscopy experiments suggest the excitation energy transfer in some biological light harvesting systems initially occurs coherently. Treating such processes brings significant challenge for conventional theoretical tools that usually involve different approximations. In this dissertation, the recently developed Iterative Linearized Density Matrix (ILDM) propagation scheme, which is non-perturbative and non-Markovian is extended to study coherent excitation energy transfer in various light harvesting complexes. It is demonstrated that the ILDM approach can successfully describe the coherent beating of the site populations on model systems and gives quantitative agreement with both experimental results and the results of other theoretical methods have been developed recently to going beyond the usual approximations, thus providing a new reliable theoretical tool to study this phenomenon. This approach is used to investigate the excited energy transfer dynamics in various experimentally studied bacteria light harvesting complexes, such as Fenna-Matthews-Olsen (FMO) complex, Phycocyanin 645 (PC645). In these model calculations, quantitative agreement is found between computed de-coherence times and quantum beating pattens observed in the non-linear spectroscopy. As a result of these studies, it is concluded that the stochastic resonance behavior is important in determining the optimal throughput. To begin addressing possible mechanics for observed long de-coherence time, various models which include correlation between site energy fluctuations as well as correlation between site energy and inter-site coupling are developed. The influence of both types of correlation on the coherence and transfer rate is explored using with a two state system-bath hamiltonian parametrized to model the reaction center of Rhodobacter sphaeroides bacteria. To overcome the disadvantages of a fully reduced approach or a full propagation method, a brownian dynamics
Phonon-assisted excitation energy transfer in photosynthetic systems
NASA Astrophysics Data System (ADS)
Chen, Hao; Wang, Xin; Fang, Ai-Ping; Li, Hong-Rong
2016-09-01
The phonon-assisted process of energy transfer aiming at exploring the newly emerging frontier between biology and physics is an issue of central interest. This article shows the important role of the intramolecular vibrational modes for excitation energy transfer in the photosynthetic systems. Based on a dimer system consisting of a donor and an acceptor modeled by two two-level systems, in which one of them is coupled to a high-energy vibrational mode, we derive an effective Hamiltonian describing the vibration-assisted coherent energy transfer process in the polaron frame. The effective Hamiltonian reveals in the case that the vibrational mode dynamically matches the energy detuning between the donor and the acceptor, the original detuned energy transfer becomes resonant energy transfer. In addition, the population dynamics and coherence dynamics of the dimer system with and without vibration-assistance are investigated numerically. It is found that, the energy transfer efficiency and the transfer time depend heavily on the interaction strength of the donor and the high-energy vibrational mode, as well as the vibrational frequency. The numerical results also indicate that the initial state and dissipation rate of the vibrational mode have little influence on the dynamics of the dimer system. Results obtained in this article are not only helpful to understand the natural photosynthesis, but also offer an optimal design principle for artificial photosynthesis. Project supported by the National Natural Science Foundation of China (Grant No. 11174233).
Timescales for adiabatic photodissociation dynamics from the {tilde A} state of ammonia
NASA Astrophysics Data System (ADS)
Chatterley, Adam S.; Roberts, Gareth M.; Stavros, Vasilios G.
2013-07-01
Photodissociation dynamics after excitation of the {tilde A} state ν'2 = 4 (umbrella) level of ammonia are investigated using ultrafast time-resolved velocity map ion imaging (TR-VMI). These studies extend upon previous TR-VMI measurements [K. L. Wells, G. Perriam, and V. G. Stavros, J. Chem. Phys. 130, 074308 (2009)], 10.1063/1.3072763, which reported the appearance timescales for ground state NH_2 {(tilde X)} + H photoproducts, born from non-adiabatic passage through an {tilde X/tilde A} state conical intersection (CI) at elongated H-NH2 bond distances. In particular, the present work sheds new light on the formation timescales for electronically excited NH_2 {(tilde A)} + H species, generated from NH3 parent molecules that avoid the CI and dissociate adiabatically. The results reveal a step-wise dynamical picture for the production of NH_2 {(tilde A)} + H products, where nascent dissociative flux can become temporarily trapped/impeded around the upper cone of the CI on the {tilde A} state potential energy surface (PES), while on course towards the adiabatic dissociation asymptote - this behavior contrasts the concerted mechanism previously observed for non-adiabatic dissociation into H-atoms associated with ro-vibrationally "cold" NH_2 {(tilde X)}. Initially, non-planar NH3 molecules (species which have the capacity to yield adiabatic photoproducts) are found to evolve out of the vertical Franck-Condon excitation region and towards the CI region of the {tilde A} state PES with a time-constant of 113 ± 46 fs. Subsequently, transient population encircling the CI then progresses to finally form NH_2 {(tilde A)} + H photoproducts from the CI region of the tildeA state PES with a slower time-constant of 415 ± 25 fs. Non-adiabatic dissociation into ro-vibrationally "hot" NH_2 {(tilde X)} radicals together with H-atoms is also evidenced to occur via a qualitatively similar process.
Timescales for adiabatic photodissociation dynamics from the Ã state of ammonia.
Chatterley, Adam S; Roberts, Gareth M; Stavros, Vasilios G
2013-07-21
Photodissociation dynamics after excitation of the Ã state ν'2 = 4 (umbrella) level of ammonia are investigated using ultrafast time-resolved velocity map ion imaging (TR-VMI). These studies extend upon previous TR-VMI measurements [K. L. Wells, G. Perriam, and V. G. Stavros, J. Chem. Phys. 130, 074308 (2009)], which reported the appearance timescales for ground state NH2(X̃)+H photoproducts, born from non-adiabatic passage through an X̃/Ã state conical intersection (CI) at elongated H-NH2 bond distances. In particular, the present work sheds new light on the formation timescales for electronically excited NH2(Ã)+H species, generated from NH3 parent molecules that avoid the CI and dissociate adiabatically. The results reveal a step-wise dynamical picture for the production of NH2(Ã)+H products, where nascent dissociative flux can become temporarily trapped∕impeded around the upper cone of the CI on the Ã state potential energy surface (PES), while on course towards the adiabatic dissociation asymptote - this behavior contrasts the concerted mechanism previously observed for non-adiabatic dissociation into H-atoms associated with ro-vibrationally "cold" NH2(X̃). Initially, non-planar NH3 molecules (species which have the capacity to yield adiabatic photoproducts) are found to evolve out of the vertical Franck-Condon excitation region and towards the CI region of the Ã state PES with a time-constant of 113 ± 46 fs. Subsequently, transient population encircling the CI then progresses to finally form NH2(Ã)+H photoproducts from the CI region of the Ã state PES with a slower time-constant of 415 ± 25 fs. Non-adiabatic dissociation into ro-vibrationally "hot" NH2(X̃) radicals together with H-atoms is also evidenced to occur via a qualitatively similar process. PMID:23883038
Enhanced luminescence excitation via efficient optical energy transfer (Presentation Recording)
NASA Astrophysics Data System (ADS)
Aad, Roy; Nomenyo, Komla D.; Bercu, Bogdan; Couteau, Christophe; Sallet, Vincent; Rogers, David J.; Molinari, Michael; Lérondel, Gilles
2015-10-01
Luminescent nanoscale materials (LNMs) have received widespread interest in sensing and lighting applications due to their enhanced emissive properties. For sensing applications, LNMs offer improved sensitivity and fast response time which allow for lower limits of detection. Meanwhile, for lighting applications, LNMs, such as quantum dots, offer an improved internal quantum efficiency and controlled color rendering which allow for better lighting performances. Nevertheless, due to their nanometric dimensions, nanoscale materials suffer from extremely weak luminescence excitation (i.e. optical absorption) limiting their luminescence intensity, which in turn results in a downgrade in the limits of detection and external quantum efficiencies. Therefore, enhancing the luminescence excitation is a major issue for sensing and lighting applications. In this work, we report on a novel photonic approach to increase the luminescence excitation of nanoscale materials. Efficient luminescence excitation increase is achieved via a gain-assisted waveguided energy transfer (G-WET). The G-WET concept consists on placing nanoscale materials atop of a waveguiding active (i.e. luminescent) layer with optical gain. Efficient energy transfer is thus achieved by exciting the nanoscale material via the tail of the waveguided mode of the active layer emission. The G-WET concept is demonstrated on both a nanothin layer of fluorescent sensitive polymer and on CdSe/ZnS quantum dots coated on ZnO thin film, experimentally proving up to an 8-fold increase in the fluorescence of the polymer and a 3-fold increase in the luminescence of the CdSe/ZnS depending of the active layer emission regime (stimulated vs spontaneous emission). Furthermore, we will discuss on the extended G-WET concept which consists on coating nanoscale materials on a nanostructured active layer. The nanostructured active layer offers the necessary photonic modulation and a high specific surface which can presumably lead to
Piezoelectric compliant mechanism energy harvesters under large base excitations
NASA Astrophysics Data System (ADS)
Ma, Xiaokun; Trolier-McKinstry, Susan; Rahn, Christopher D.
2016-09-01
A piezoelectric compliant mechanism (PCM) energy harvester is designed, modeled, and analyzed that consists of a polyvinylidene diflouoride, PVDF unimorph clamped at its base and attached to a compliant mechanism at its tip. The compliant hinge stiffness is carefully tuned to approach a low frequency first mode with an efficient (nearly quadratic) shape that provides a uniform strain distribution. A nonlinear model of the PCM energy harvester under large base excitation is derived to determine the maximum power that can be generated by the device. Experiments with a fabricated PCM energy harvester prototype show that the compliant mechanism introduces a stiffening effect and a much wider bandwidth than a benchmark proof mass cantilever design. The PCM bridge structure self-limits the displacement and maximum strain at large excitations compared with the proof mass cantilever, improving the device robustness. The PCM outperforms the cantilever in both average power and power-strain sensitivity at high accelerations due to the PCM axial stretching effect and its more uniform strain distribution.
Energy harvesting under excitation of clamped-clamped beam
NASA Astrophysics Data System (ADS)
Batra, Ashok; Alomari, Almuatasim; Aggarwal, Mohan; Bandyopadhyay, Alak
2016-04-01
In this article, a piezoelectric energy harvesting has been developed experimentally and theoretically based on Euler- Bernoulli Theory. A PVDF piezoelectric thick film has attached along of clamped-clamped beam under sinusoidal base excitation of shaker. The results showed a good agreement between the experimental and simulation of suggested model. The voltage output frequency response function (FRF), current FRF, and output power has been studied under short and open circuit conditions at first vibration mode. The mode shape of the clamped-clamped beam for first three resonance frequency has been modeled and investigated using COMSOL Multiphysics and MATLAB.
Bosonization of the low energy excitations of Fermi liquids
Castro Neto, A.H.; Fradkin, E. )
1994-03-07
We bosonize the low energy excitations of Fermi liquids in any number of dimensions in the limit of long wavelengths. The bosons are a coherent superposition of electron-hole pairs and are related with the displacements of the Fermi surface in some arbitrary direction. A coherent-state path integral for the bosonized theory is derived and it is shown to represent histories of the shape of the Fermi surface. The Landau theory of Fermi liquids can be obtained from the formalism in the absence of nesting of the Fermi surface and singular interactions. We show that the Landau equation for sound waves is exact in the semiclassical approximation for the bosons.
Elementary examples of adiabatic invariance
NASA Astrophysics Data System (ADS)
Crawford, Frank S.
1990-04-01
Simple classical one-dimensional systems subject to adiabatic (gradual) perturbations are examined. The first examples are well known: the adiabatic invariance of the product Eτ of energy E and period τ for the simple pendulum and for the simple harmonic oscillator. Next, the adiabatic invariants of the vertical bouncer are found—a ball bouncing elastically from the floor of a rising elevator having slowly varying velocity and acceleration. These examples lead to consideration of adiabatic invariance for one-dimensional systems with potentials of the form V=axn, with a=a(t) slowly varying in time. Then, the horizontal bouncer is considered—a mass sliding on a smooth floor, bouncing back and forth between two impenetrable walls, one of which is slowly moving. This example is generalized to a particle in a bound state of a general potential with one slowly moving ``turning point.'' Finally, circular motion of a charged particle in a magnetic field slowly varying in time under three different configurations is considered: (a) a free particle in a uniform field; (b) a free particle in a nonuniform ``betatron'' field; and (c) a particle constrained to a circular orbit in a uniform field.
NASA Astrophysics Data System (ADS)
Gottardi, L.; Takei, Y.; van der Kuur, J.; de Korte, P. A. J.; Hoevers, H. F. C.; Boersma, D.; Bruijn, M.; Mels, W.; Ridder, M. L.; Takken, D.; van Weers, H.
2008-04-01
We characterised a TES-based X-ray microcalorimeter in an adiabatic demagnetisation refrigerator (ADR) using synchrotron radiation. The detector response and energy resolution was measured at the beam-line in the PTB radiometry laboratory at the electron storage ring BESSY II in the range from 200 to 1800 eV. We present and discuss the results of the energy resolution measurements as a function of energy, beam intensity and detector working point. The measured energy resolution ranges between 1.5 to 2.1 eV in the investigated energy range and is weakly dependent on the detector set point. A first analysis shows a count-rate capability, without considerable loss of performance, of about 500 counts per second.
Isothermal and Adiabatic Measurements.
ERIC Educational Resources Information Center
McNairy, William W.
1996-01-01
Describes the working of the Adiabatic Gas Law Apparatus, a useful tool for measuring the pressure, temperature, and volume of a variety of gases undergoing compressions and expansions. Describes the adaptation of this apparatus to perform isothermal measurements and discusses the theory behind the adiabatic and isothermal processes. (JRH)
Dependence of the energy transfer to graphene on the excitation energy
Mackowski, Sebastian Kamińska, Izabela
2015-07-13
Fluorescence studies of natural photosynthetic complexes on a graphene layer demonstrate pronounced influence of the excitation wavelength on the energy transfer efficiency to graphene. Ultraviolet light yields much faster decay of fluorescence, with average efficiencies of the energy transfer equal to 87% and 65% for excitation at 405 nm and 640 nm, respectively. This implies that focused light changes locally the properties of graphene affecting the energy transfer dynamics, in an analogous way as in the case of metallic nanostructures. Demonstrating optical control of the energy transfer is important for exploiting unique properties of graphene in photonic and sensing architectures.
Collisional energy transfer from highly vibrationally excited triatomic molecules
NASA Astrophysics Data System (ADS)
Hynes, Robert G.; Sceats, Mark G.
1989-12-01
The atom-atom encounter model developed in the accompanying paper [M. G. Sceats, J. Chem. Phys. 91, 0000 (1989)] is applied to the collisional deactivation of highly vibrationally excited triatomic molecules CS2 and SO2 by the monatomic colliders He, Ne, Ar, Kr, and Xe at 300 K. The molecular inputs are a crude normal mode analysis, vibrational frequencies and effective anharmonicities, while the collisional inputs are parameters of the atom-atom potentials. The results for CS2 are compared with the simulations of Bruehl and Schatz and the experiments of Dove, Hippler, and Troe, while those for SO2 are compared with the simulations of Schranz and Troe and the experimental results of Heymann, Hippler, and Troe. Excellent agreement is found with experiment, and the superlinear energy dependence of the average energy transfer is attributed to anharmonicity of the triatomic molecule.
Limit on rotational energy available to excite Jovian aurora
NASA Technical Reports Server (NTRS)
Eviatar, A.; Siscoe, G. L.
1980-01-01
There is a fundamental relationship between the power that is extracted from Jupiter's rotation to drive magnetospheric processes and the rate at which mass is injected into the Io plasma torus. Half of this power is consumed by bulk motion of the plasma and the other half represents an upper limit on the energy from rotation available for dissipation and in particular to excite the Jovian aurora. Since the rotation of the planet is the only plausible source of energy, the power inferred from the observed auroral intensities requires a plasma injection rate of 2.6 x 10 to the 29th AMU/sec or greater. This in turn leads to a residence time of a torus particle of 48 days or less. These results raise doubts about the applicability of equilibrium thermodynamics to the determination of plasma parameters in the Io torus.
Low energy vibrational excitations characteristic of superionic glass
NASA Astrophysics Data System (ADS)
Nakamura, M.; Iwase, H.; Arai, M.; Kartini, E.; Russina, M.; Yokoo, T.; Taylor, J. W.
2006-11-01
The mechanism of high ionic conductivity in superionic glass constitutes an unsolved problem in the field of science. Here we performed inelastic neutron scattering measurements of superionic glass system (AgI)x(Ag2S)x(AgPO3) by using MARI spectrometer at ISIS, and found that the Q-dependence of inelastic intensity in the energy region from 1 to 3 meV of superionic phase glass shows an excess intensity above Q=1.8 Å-1 compared with insulator phase. Similar phenomena were also observed in another superionic glass (AgI)0.5(AgPO3)0.5 by using NEAT spectrometer at HMI with high resolution measurement. These results clearly suggest peculiar low energy vibrational excitations should be universal features of superionic glass.
Spielfiedel, Annie; Balança, Christian; Feautrier, Nicole; Senent, Maria Luisa; Kalugina, Yulia; Scribano, Yohann; Lique, François
2015-07-14
We compute a new potential energy surface (PES) for the study of the inelastic collisions between N{sub 2}H{sup +} and H{sub 2} molecules. A preliminary study of the reactivity of N{sub 2}H{sup +} with H{sub 2} shows that neglecting reactive channels in collisional excitation studies is certainly valid at low temperatures. The four dimensional (4D) N{sub 2}H{sup +}–H{sub 2} PES is obtained from electronic structure calculations using the coupled cluster with single, double, and perturbative triple excitation level of theory. The atoms are described by the augmented correlation consistent triple zeta basis set. Both molecules were treated as rigid rotors. The potential energy surface exhibits a well depth of ≃2530 cm{sup −1}. Considering this very deep well, it appears that converged scattering calculations that take into account the rotational structure of both N{sub 2}H{sup +} and H{sub 2} should be very difficult to carry out. To overcome this difficulty, the “adiabatic-hindered-rotor” treatment, which allows para-H{sub 2}(j = 0) to be treated as if it were spherical, was used in order to reduce the scattering calculations to a 2D problem. The validity of this approach is checked and we find that cross sections and rate coefficients computed from the adiabatic reduced surface are in very good agreement with the full 4D calculations.
NASA Astrophysics Data System (ADS)
Bohr, Henrik G.; Malik, F. Bary
2013-11-01
The observed multiple de-excitation pathways of photo-absorbed electronic excited state in the peridinin-chlorophyll complex, involving both energy and charge transfers among its constituents, are analyzed using the bio-Auger (B-A) theory. It is also shown that the usually used Förster-Dexter theory, which does not allow for charge transfer, is a special case of B-A theory. The latter could, under appropriate circumstances, lead to excimers.
Spectroscopic probes of vibrationally excited molecules at chemically significant energies
Rizzo, T.R.
1992-03-01
These experiments apply multiple-laser spectroscopic techniques to investigate the bond energies, potential surface topologies, and dissociation dynamics of highly vibrationally excited molecules. Infrared-optical double resonance pumping of light atom stretch vibrations in H{sub 2}O{sub 2} and HN{sub 3} prepares reactant molecules in single rovibrational states above the unimolecular dissociation threshold on the ground potential surface, and laser induced fluorescence detection of the OH or NH fragments monitors the partitioning of energy into individual product quantum states. Product energy partitioning data from H{sub 2}O{sub 2} dissociation provide a stringent test of statistical theories as well as potential energy surface calculations. Ongoing work on HN{sub 3} seeks to determine the height of the barrier to dissociation on the singlet potential energy surface. Our most recently developed spectroscopic scheme allows the measurement of high vibrational overtone spectra of jet-cooled molecules. This approach uses CO{sub 2} laser infrared multiphoton dissociation followed by laser induced fluorescence product detection to measure weak vibrational overtone transitions in low pressure environments. Application of this scheme to record the {Delta}V{sub OH}=4 and {Delta}V{sub OH}=5 transitions of CH{sub 3}OH cooled in a supersonic free-jet demonstrates both its feasibility and its utility for simplifying high vibrational overtone spectra.
NASA Astrophysics Data System (ADS)
Engel, D.; Klews, M.; Wunner, G.
2009-02-01
We have developed a new method for the fast computation of wavelengths and oscillator strengths for medium-Z atoms and ions, up to iron, at neutron star magnetic field strengths. The method is a parallelized Hartree-Fock approach in adiabatic approximation based on finite-element and B-spline techniques. It turns out that typically 15-20 finite elements are sufficient to calculate energies to within a relative accuracy of 10-5 in 4 or 5 iteration steps using B-splines of 6th order, with parallelization speed-ups of 20 on a 26-processor machine. Results have been obtained for the energies of the ground states and excited levels and for the transition strengths of astrophysically relevant atoms and ions in the range Z=2…26 in different ionization stages. Catalogue identifier: AECC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3845 No. of bytes in distributed program, including test data, etc.: 27 989 Distribution format: tar.gz Programming language: MPI/Fortran 95 and Python Computer: Cluster of 1-26 HP Compaq dc5750 Operating system: Fedora 7 Has the code been vectorised or parallelized?: Yes RAM: 1 GByte Classification: 2.1 External routines: MPI/GFortran, LAPACK, PyLab/Matplotlib Nature of problem: Calculations of synthetic spectra [1] of strongly magnetized neutron stars are bedevilled by the lack of data for atoms in intense magnetic fields. While the behaviour of hydrogen and helium has been investigated in detail (see, e.g., [2]), complete and reliable data for heavier elements, in particular iron, are still missing. Since neutron stars are formed by the collapse of the iron cores of massive stars, it may be assumed that their atmospheres contain an iron plasma. Our objective is to fill the gap
NASA Astrophysics Data System (ADS)
Engel, D.; Klews, M.; Wunner, G.
2009-02-01
We have developed a new method for the fast computation of wavelengths and oscillator strengths for medium-Z atoms and ions, up to iron, at neutron star magnetic field strengths. The method is a parallelized Hartree-Fock approach in adiabatic approximation based on finite-element and B-spline techniques. It turns out that typically 15-20 finite elements are sufficient to calculate energies to within a relative accuracy of 10-5 in 4 or 5 iteration steps using B-splines of 6th order, with parallelization speed-ups of 20 on a 26-processor machine. Results have been obtained for the energies of the ground states and excited levels and for the transition strengths of astrophysically relevant atoms and ions in the range Z=2…26 in different ionization stages. Catalogue identifier: AECC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3845 No. of bytes in distributed program, including test data, etc.: 27 989 Distribution format: tar.gz Programming language: MPI/Fortran 95 and Python Computer: Cluster of 1-26 HP Compaq dc5750 Operating system: Fedora 7 Has the code been vectorised or parallelized?: Yes RAM: 1 GByte Classification: 2.1 External routines: MPI/GFortran, LAPACK, PyLab/Matplotlib Nature of problem: Calculations of synthetic spectra [1] of strongly magnetized neutron stars are bedevilled by the lack of data for atoms in intense magnetic fields. While the behaviour of hydrogen and helium has been investigated in detail (see, e.g., [2]), complete and reliable data for heavier elements, in particular iron, are still missing. Since neutron stars are formed by the collapse of the iron cores of massive stars, it may be assumed that their atmospheres contain an iron plasma. Our objective is to fill the gap
Non-adiabatic perturbations in multi-component perfect fluids
Koshelev, N.A.
2011-04-01
The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.
Plunger lifetime measurements after Coulomb excitation at intermediate beam energies
Dewald, A.; Hackstein, M.; Rother, W.; Jolie, J.; Melon, B.; Pissulla, T.; Shimbara, Y.; Starosta, K.; Adrich, P.; Amthor, A. M.; Baumann, T.; Bazin, D.; Bowen, M.; Chester, A.; Dunomes, A.; Gade, A.; Galaviz, D.; Glasmacher, T.; Ginter, T.; Hausmann, M.
2009-01-28
Absolute transition probabilities of the first 2{sup +} state in {sup 110,114}Pd were remeasured using the recoil distance Doppler shift technique following projectile Coulomb excitation at intermediate beam energies for the first time. The {sup 110}Pd experiment served to check the novel technique as well as the method used for the data analysis which is based on the examination of {gamma}-ray lineshapes. Whereas the measured B(E2) value for {sup 110}Pd agrees very well with the literature, the value obtained for {sup 114}Pd differs considerably. The data is also used to test a novel concept, called the valence proton symmetry, which allows one to extrapolate nuclear properties to very neutron rich nuclei.
Metallic bond effects on mean excitation energies for stopping powers
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Xu, Y. J.
1982-01-01
Mean excitation energies for first row metals are evaluated by means of the local plasma approximation. Particle corrections based on Pines' (1953) procedure and the Wigner Seitz (1934) model of the metallic state are included. The agreement with experimental values is remarkably good. In contrast to previous work, the calculations given here estimate shifts in the plasma frequency according to the theory for plane wave states in an extended plasma as calculated by Pines. It is demonstrated that the effects of the metallic bond in lithium and beryllium are quite large and that they appear mainly as a result of collective oscillations in the 'free' electron gas formed from the valence electrons. The usefulness of the plasma frequency shift derived for a degenerate electron gas in predicting the plasma frequency shift within the ion core is considered surprising.
Laser-nucleus interactions: The quasi-adiabatic regime
NASA Astrophysics Data System (ADS)
Pálffy, Adriana; Buss, Oliver; Hoefer, Axel; Weidenmüller, Hans A.
2015-10-01
The interaction between nuclei and a strong zeptosecond laser pulse with coherent MeV photons is investigated theoretically. We provide a first semiquantitative study of the quasi-adiabatic regime where the photon absorption rate is comparable to the nuclear equilibration rate. In that regime, multiple photon absorption leads to the formation of a compound nucleus in the so-far unexplored regime of excitation energies several hundred MeV above the yrast line. The temporal dynamics of the process is investigated by means of a set of master equations that account for dipole absorption, stimulated dipole emission, neutron decay, and induced fission in a chain of nuclei. That set is solved numerically by means of state-of-the-art matrix exponential methods also used in nuclear fuel burn-up and radioactivity transport calculations. Our quantitative estimates predict the excitation path and range of nuclei reached by neutron decay and provide relevant information for the layout of future experiments.
Bang, Junhyeok; Meng, Sheng; Sun, Yi-Yang; West, Damien; Wang, Zhiguo; Gao, Fei; Zhang, S. B.
2013-01-01
Understanding and controlling of excited carrier dynamics is of fundamental and practical importance, particularly in photochemistry and solar energy applications. However, theory of energy relaxation of excited carriers is still in its early stage. Here, using ab initio molecular dynamics (MD) coupled with time-dependent density functional theory, we show a coverage-dependent energy transfer of photoexcited carriers in hydrogenated graphene, giving rise to distinctively different ion dynamics. Graphene with sparsely populated H is difficult to dissociate due to inefficient transfer of the excitation energy into kinetic energy of the H. In contrast, H can easily desorb from fully hydrogenated graphane. The key is to bring down the H antibonding state to the conduction band minimum as the band gap increases. These results can be contrasted to those of standard ground-state MD that predict H in the sparse case should be much less stable than that in fully hydrogenated graphane. Our findings thus signify the importance of carrying out explicit electronic dynamics in excited-state simulations. PMID:23277576
Cotton, Stephen J; Miller, William H
2016-03-01
In a recent series of papers, it has been illustrated that a symmetrical quasi-classical (SQC) windowing model applied to the Meyer-Miller (MM) classical vibronic Hamiltonian provides an excellent description of a variety of electronically non-adiabatic benchmark model systems for which exact quantum results are available for comparison. In this paper, the SQC/MM approach is used to treat energy transfer dynamics in site-exciton models of light-harvesting complexes, and in particular, the well-known 7-state Fenna-Mathews-Olson (FMO) complex. Again, numerically "exact" results are available for comparison, here via the hierarchical equation of motion (HEOM) approach of Ishizaki and Fleming, and it is seen that the simple SQC/MM approach provides very reasonable agreement with the previous HEOM results. It is noted, however, that unlike most (if not all) simple approaches for treating these systems, because the SQC/MM approach presents a fully atomistic simulation based on classical trajectory simulation, it places no restrictions on the characteristics of the thermal baths coupled to each two-level site, e.g., bath spectral densities (SD) of any analytic functional form may be employed as well as discrete SD determined experimentally or from MD simulation (nor is there any restriction that the baths be harmonic), opening up the possibility of simulating more realistic variations on the basic site-exciton framework for describing the non-adiabatic dynamics of photosynthetic pigment complexes. PMID:26761191
Adiabatic invariance of oscillons/I -balls
NASA Astrophysics Data System (ADS)
Kawasaki, Masahiro; Takahashi, Fuminobu; Takeda, Naoyuki
2015-11-01
Real scalar fields are known to fragment into spatially localized and long-lived solitons called oscillons or I -balls. We prove the adiabatic invariance of the oscillons/I -balls for a potential that allows periodic motion even in the presence of non-negligible spatial gradient energy. We show that such a potential is uniquely determined to be the quadratic one with a logarithmic correction, for which the oscillons/I -balls are absolutely stable. For slightly different forms of the scalar potential dominated by the quadratic one, the oscillons/I -balls are only quasistable, because the adiabatic charge is only approximately conserved. We check the conservation of the adiabatic charge of the I -balls in numerical simulation by slowly varying the coefficient of logarithmic corrections. This unambiguously shows that the longevity of oscillons/I -balls is due to the adiabatic invariance.
Properties of Shell-Model Wavefunctions at High Excitation Energies
NASA Astrophysics Data System (ADS)
Frazier, Njema Jioni
Within the framework of the nuclear shell model with a realistic residual hamiltonian one can obtain the exact solution of the many-body problem. This makes it possible to study the interrelation between regular and chaotic features of dynamics in a generic many-body system with strong interaction. As an important application, we analyse the fragmentation of simple configurations as a function of excitation energy and interaction strength and examine the transition strengths induced by simple operators as a function of excitation energy. The analysis is performed for two systems; that of 12 valence particles in the sd-shell, or 28Si, and that of 8 valence particles in the sd-shell, or 24Mg. For the system of 12 valence particles in the sd-shell, we examine the fragmentation of shell-model basis states. For the system of 8 valence nucleons in the sd-shell, we examine the fragmentation associated with single-nucleon transfer and Gamow-Teller transitions. For the fragmentation of basis states, we use our statistics to establish the generic shape of the strength function distribution in the region of strong mixing. For the realistic interaction, the strength function distribution is close to Gaussian in the central part of the energy spectra. The width of the distribution is larger than predicted by Fermi's golden rule (4). We then take this one step further and examine the strength distributions associated with the one-nucleon transfer operator, aλ†, and the Gamow-Teller (GT) operator, Σλλ'(σμ τ±) λλ'aλ†a λ'. The spectroscopic factor, which is proportional to the square of the matrix element for the aλ† operator, is the simplest quantity used in predicting experimental observables. In our discussion of Gamow-Teller transitions, we examine both the GT strength function distribution and the values of total strength B(GT). For all the cases we examine, we take advantage of the reliability of our model for low-lying levels and our statistics to explore
Energy harvesting from human motion: exploiting swing and shock excitations
NASA Astrophysics Data System (ADS)
Ylli, K.; Hoffmann, D.; Willmann, A.; Becker, P.; Folkmer, B.; Manoli, Y.
2015-02-01
Modern compact and low power sensors and systems are leading towards increasingly integrated wearable systems. One key bottleneck of this technology is the power supply. The use of energy harvesting techniques offers a way of supplying sensor systems without the need for batteries and maintenance. In this work we present the development and characterization of two inductive energy harvesters which exploit different characteristics of the human gait. A multi-coil topology harvester is presented which uses the swing motion of the foot. The second device is a shock-type harvester which is excited into resonance upon heel strike. Both devices were modeled and designed with the key constraint of device height in mind, in order to facilitate the integration into the shoe sole. The devices were characterized under different motion speeds and with two test subjects on a treadmill. An average power output of up to 0.84 mW is achieved with the swing harvester. With a total device volume including the housing of 21 cm3 a power density of 40 μW cm-3 results. The shock harvester generates an average power output of up to 4.13 mW. The power density amounts to 86 μW cm-3 for the total device volume of 48 cm3. Difficulties and potential improvements are discussed briefly.
Hierarchical theory of quantum adiabatic evolution
NASA Astrophysics Data System (ADS)
Zhang, Qi; Gong, Jiangbin; Wu, Biao
2014-12-01
Quantum adiabatic evolution is a dynamical evolution of a quantum system under slow external driving. According to the quantum adiabatic theorem, no transitions occur between nondegenerate instantaneous energy eigenstates in such a dynamical evolution. However, this is true only when the driving rate is infinitesimally small. For a small nonzero driving rate, there are generally small transition probabilities between the energy eigenstates. We develop a classical mechanics framework to address the small deviations from the quantum adiabatic theorem order by order. A hierarchy of Hamiltonians is constructed iteratively with the zeroth-order Hamiltonian being determined by the original system Hamiltonian. The kth-order deviations are governed by a kth-order Hamiltonian, which depends on the time derivatives of the adiabatic parameters up to the kth-order. Two simple examples, the Landau-Zener model and a spin-1/2 particle in a rotating magnetic field, are used to illustrate our hierarchical theory. Our analysis also exposes a deep, previously unknown connection between classical adiabatic theory and quantum adiabatic theory.
Parallelizable adiabatic gate teleportation
NASA Astrophysics Data System (ADS)
Nakago, Kosuke; Hajdušek, Michal; Nakayama, Shojun; Murao, Mio
2015-12-01
To investigate how a temporally ordered gate sequence can be parallelized in adiabatic implementations of quantum computation, we modify adiabatic gate teleportation, a model of quantum computation proposed by Bacon and Flammia [Phys. Rev. Lett. 103, 120504 (2009), 10.1103/PhysRevLett.103.120504], to a form deterministically simulating parallelized gate teleportation, which is achievable only by postselection. We introduce a twisted Heisenberg-type interaction Hamiltonian, a Heisenberg-type spin interaction where the coordinates of the second qubit are twisted according to a unitary gate. We develop parallelizable adiabatic gate teleportation (PAGT) where a sequence of unitary gates is performed in a single step of the adiabatic process. In PAGT, numeric calculations suggest the necessary time for the adiabatic evolution implementing a sequence of L unitary gates increases at most as O (L5) . However, we show that it has the interesting property that it can map the temporal order of gates to the spatial order of interactions specified by the final Hamiltonian. Using this property, we present a controlled-PAGT scheme to manipulate the order of gates by a control qubit. In the controlled-PAGT scheme, two differently ordered sequential unitary gates F G and G F are coherently performed depending on the state of a control qubit by simultaneously applying the twisted Heisenberg-type interaction Hamiltonians implementing unitary gates F and G . We investigate why the twisted Heisenberg-type interaction Hamiltonian allows PAGT. We show that the twisted Heisenberg-type interaction Hamiltonian has an ability to perform a transposed unitary gate by just modifying the space ordering of the final Hamiltonian implementing a unitary gate in adiabatic gate teleportation. The dynamics generated by the time-reversed Hamiltonian represented by the transposed unitary gate enables deterministic simulation of a postselected event of parallelized gate teleportation in adiabatic
NASA Technical Reports Server (NTRS)
Goodrich, C. C.; Scudder, J. D.
1984-01-01
The adiabatic energy gain of electrons in the stationary electric and magnetic field structure of collisionless shock waves was examined analytically in reference to conditions of the earth's bow shock. The study was performed to characterize the behavior of electrons interacting with the cross-shock potential. A normal incidence frame (NIF) was adopted in order to calculate the reversible energy change across a time stationary shock, and comparisons were made with predictions made by the de Hoffman-Teller (HT) model (1950). The electron energy gain, about 20-50 eV, is demonstrated to be consistent with a 200-500 eV potential jump in the bow shock quasi-perpendicular geometry. The electrons lose energy working against the solar wind motional electric field. The reversible energy process is close to that modeled by HT, which predicts that the motional electric field vanishes and the electron energy gain from the electric potential is equated to the ion energy loss to the potential.
NASA Astrophysics Data System (ADS)
Cremers, C.; Degen, J.
1998-11-01
Coexistence of Jahn-Teller minima resulting from the coupling to different accepting modes within the adiabatic potential energy surface (APES) is not possible within the framework of linear vibronic coupling theory. For the lowest exited triplet state 3T1u of inorganic complexes with s2 electronic ground-state configuration, such a coexistence, due to quadratic coupling effects, is discussed. As a direct experimental evidence two vibronic progressions with different accepting modes in the emission spectra resulting from a single electronic state are observed in the emission spectra of the title compounds. The observation of vibronic finestructure in the emission spectra of [TeCl6]2- is reported for the first time.
Adiabatic Hyperspherical Analysis of Realistic Nuclear Potentials
NASA Astrophysics Data System (ADS)
Daily, K. M.; Kievsky, Alejandro; Greene, Chris H.
2015-12-01
Using the hyperspherical adiabatic method with the realistic nuclear potentials Argonne V14, Argonne V18, and Argonne V18 with the Urbana IX three-body potential, we calculate the adiabatic potentials and the triton bound state energies. We find that a discrete variable representation with the slow variable discretization method along the hyperradial degree of freedom results in energies consistent with the literature. However, using a Laguerre basis results in missing energy, even when extrapolated to an infinite number of basis functions and channels. We do not include the isospin T = 3/2 contribution in our analysis.
Trapped Ion Quantum Computation by Adiabatic Passage
Feng Xuni; Wu Chunfeng; Lai, C. H.; Oh, C. H.
2008-11-07
We propose a new universal quantum computation scheme for trapped ions in thermal motion via the technique of adiabatic passage, which incorporates the advantages of both the adiabatic passage and the model of trapped ions in thermal motion. Our scheme is immune from the decoherence due to spontaneous emission from excited states as the system in our scheme evolves along a dark state. In our scheme the vibrational degrees of freedom are not required to be cooled to their ground states because they are only virtually excited. It is shown that the fidelity of the resultant gate operation is still high even when the magnitude of the effective Rabi frequency moderately deviates from the desired value.
Exploring the vibrational fingerprint of the electronic excitation energy via molecular dynamics
Deyne, Andy Van Yperen-De; Pauwels, Ewald; Ghysels, An; Waroquier, Michel; Van Speybroeck, Veronique; Hemelsoet, Karen; De Meyer, Thierry; De Clerck, Karen
2014-04-07
A Fourier-based method is presented to relate changes of the molecular structure during a molecular dynamics simulation with fluctuations in the electronic excitation energy. The method implies sampling of the ground state potential energy surface. Subsequently, the power spectrum of the velocities is compared with the power spectrum of the excitation energy computed using time-dependent density functional theory. Peaks in both spectra are compared, and motions exhibiting a linear or quadratic behavior can be distinguished. The quadratically active motions are mainly responsible for the changes in the excitation energy and hence cause shifts between the dynamic and static values of the spectral property. Moreover, information about the potential energy surface of various excited states can be obtained. The procedure is illustrated with three case studies. The first electronic excitation is explored in detail and dominant vibrational motions responsible for changes in the excitation energy are identified for ethylene, biphenyl, and hexamethylbenzene. The proposed method is also extended to other low-energy excitations. Finally, the vibrational fingerprint of the excitation energy of a more complex molecule, in particular the azo dye ethyl orange in a water environment, is analyzed.
Adiabatic capture and debunching
Ng, K.Y.; /Fermilab
2012-03-01
In the study of beam preparation for the g-2 experiment, adiabatic debunching and adiabatic capture are revisited. The voltage programs for these adiabbatic processes are derived and their properties discussed. Comparison is made with some other form of adiabatic capture program. The muon g-2 experiment at Fermilab calls for intense proton bunches for the creation of muons. A booster batch of 84 bunches is injected into the Recycler Ring, where it is debunched and captured into 4 intense bunches with the 2.5-MHz rf. The experiment requires short bunches with total width less than 100 ns. The transport line from the Recycler to the muon-production target has a low momentum aperture of {approx} {+-}22 MeV. Thus each of the 4 intense proton bunches required to have an emittance less than {approx} 3.46 eVs. The incoming booster bunches have total emittance {approx} 8.4 eVs, or each one with an emittance {approx} 0.1 eVs. However, there is always emittance increase when the 84 booster bunches are debunched. There will be even larger emittance increase during adiabatic capture into the buckets of the 2.5-MHz rf. In addition, the incoming booster bunches may have emittances larger than 0.1 eVs. In this article, we will concentrate on the analysis of the adiabatic capture process with the intention of preserving the beam emittance as much as possible. At this moment, beam preparation experiment is being performed at the Main Injector. Since the Main Injector and the Recycler Ring have roughly the same lattice properties, we are referring to adiabatic capture in the Main Injector instead in our discussions.
Excitation energy sharing in binary peripheral heavy ion reactions at Fermi energies
NASA Astrophysics Data System (ADS)
Piantelli, S.; Mangiarotti, A.; Maurenzig, P. R.; Olmi, A.; Bardelli, L.; Bini, M.; Casini, G.; Pasquali, G.; Poggi, G.; Stefanini, A. A.
2008-12-01
Evidence for the dependence of excitation energy sharing between two heavy remnants on the difference in the lost mass in two-body peripheral heavy ion reactions at Fermi energy is presented, based on experimental results for the reactions Nb93+Sn116, Sn116+Nb93, and Nb93+Nb93 at 38A MeV. An observable based on the experimental velocities of the heavy residues is used to select reactions with equal preevaporative masses of projectile-like fragments and target-like fragments. The excitation energy, evaluated by means of a complete average calorimetry, is found to be larger for the nucleus that finally retains a larger part of the hot interaction region.
Fractionally Charged Zero-Energy Single-Particle Excitations in a Driven Fermi Sea
NASA Astrophysics Data System (ADS)
Moskalets, Michael
2016-07-01
A voltage pulse of a Lorentzian shape carrying half of the flux quantum excites out of a zero-temperature Fermi sea an electron in a mixed state, which looks like a quasiparticle with an effectively fractional charge e /2 . A prominent feature of such an excitation is a narrow peak in the energy distribution function lying exactly at the Fermi energy μ . Another spectacular feature is that the distribution function has symmetric tails around μ , which results in a zero-energy excitation. This sounds improbable since at zero temperature all available states below μ are fully occupied. The resolution lies in the fact that such a voltage pulse also excites electron-hole pairs, which free some space below μ and thus allow a zero-energy quasiparticle to exist. I discuss also how to address separately electron-hole pairs and a fractionally charged zero-energy excitation in an experiment.
NASA Astrophysics Data System (ADS)
Davari, N.; Åstrand, P.-O.; Unge, M.; Lundgaard, L. E.; Linhjell, D.
2014-03-01
The molecular ionization potential has a relatively strong electric-field dependence as compared to the excitation energies which has implications for electrical insulation since the excited states work as an energy sink emitting light in the UV/VIS region. At some threshold field, all the excited states of the molecule have vanished and the molecule is a two-state system with the ground state and the ionized state, which has been hypothesized as a possible origin of different streamer propagation modes. Constrained density-functional theory is used to calculate the field-dependent ionization potential of different types of molecules relevant for electrically insulating liquids. The low singlet-singlet excitation energies of each molecule have also been calculated using time-dependent density functional theory. It is shown that low-energy singlet-singlet excitation of the type n → π* (lone pair to unoccupied π* orbital) has the ability to survive at higher fields. This type of excitation can for example be found in esters, diketones and many color dyes. For alkanes (as for example n-tridecane and cyclohexane) on the other hand, all the excited states, in particular the σ → σ* excitations vanish in electric fields higher than 10 MV/cm. Further implications for the design of electrically insulating dielectric liquids based on the molecular ionization potential and excitation energies are discussed.
NASA Astrophysics Data System (ADS)
Wu, Xiaonan; Tseng, C. K.
1992-12-01
The excitation energy transfer from phycobiliproteins to thylakoid PSII of higher plants was investigated. When incubated with spinach thylakoids, phycobiliproteins isolated from red and blue-green algae transferred light energy absorbed to spinach PSII. The efficiency of energy transfer was dependent on the kind of phycobiliproteins used. If spinach thylakoids were replaced by the thylakoids of Brassica chinensis, R-phycoerythin or C-phycocyanin did not transfer their excitation energy to PSII of Brassica chinensis unless allophycocyanin was present.
Vibration excitation and energy transfer during ultrasonically assisted drilling
NASA Astrophysics Data System (ADS)
Babitsky, V. I.; Astashev, V. K.; Meadows, A.
2007-12-01
Successful application of ultrasonically assisted drilling needs dynamic matching of the transducer with the drill bit considered as a continuous system loaded by the nonlinear processing load. When using standard tools this leads to the compatible choice of the transducer and accurate matching of the transducer and tool. The principal dynamical features of this matching are considered. Optimal position of excitation cross section of the drill bit, which depends on the relationship between elasto-dissipative characteristics of the transducer, the drill bit and the work load, is found in general analytical form. The optimal matching preserves the resonant tuning of the transducer and compensates the additional energy losses in the drill bit and processing. This produces also an amplification of vibration amplitude. The effect is achieved through the generation and maintenance of a nonlinear resonant mode of vibration and by active matching of the oscillating system with the dynamic loads imposed by the cutting process with the help of the intelligent electronic feedback circuitry. A prototype of an ultrasonic drilling system has been designed, manufactured. and tested. Improvements of machining characteristics due to superposition of ultrasonic vibration are demonstrated. Substantial improvements in the cutting performance of drill bits lead to benefits in drilling performance, which include faster penetration rates, reduction of tool wear, improvements in the surface finish, roundness and straightness of holes and, in ductile materials, the reduction or even complete elimination of burrs on both the entrance and exit faces of plates. The reduction in the reactive force experienced also causes greatly reduced deformation when drilling through thin, flexible plates and helps to alleviate delamination hazard.
Adiabatic invariant value variation under shortwave band subcritical conditions
NASA Astrophysics Data System (ADS)
Svistunov, K. V.; Tinin, M. V.
1985-04-01
The possibility of significant variations of the adiabatic invariant is examined for the propagation of radio waves in an irregular Earth-ionosphere waveguide with a parabolic dependence of permittivity on height. Numerical and analytical results indicate that nonexponential deviations of the adiabatic invariant can occur not only when the characteristic size of horizontal irregularity decreases (e.g., during resonant beam excitation) but also in quasi-critical conditions and for smoothly irregular waveguides.
Shortcuts to adiabaticity for non-Hermitian systems
Ibanez, S.; Martinez-Garaot, S.; Torrontegui, E.; Muga, J. G.; Chen Xi
2011-08-15
Adiabatic processes driven by non-Hermitian, time-dependent Hamiltonians may be sped up by generalizing inverse engineering techniques based on counter-diabatic (transitionless driving) algorithms or on dynamical invariants. We work out the basic theory and examples described by two-level Hamiltonians: the acceleration of rapid adiabatic passage with a decaying excited level and of the dynamics of a classical particle on an expanding harmonic oscillator.
On enhancement of vibration-based energy harvesting by a random parametric excitation
NASA Astrophysics Data System (ADS)
Bobryk, Roman V.; Yurchenko, Daniil
2016-03-01
An electromechanical linear oscillator with a random ambient excitation and telegraphic noise parametric excitation is considered as an energy harvester model. It is shown that a parametric colored excitation can have a dramatic effect on the enhancement of the energy harvesting. A close relation with mean-square stability of the oscillator is established. Four sources of the ambient excitation are considered: the white noise, the Ornstein-Uhlenbeck noise, the harmonic noise and the periodic function. Analytical expressions for stationary electrical net mean power are presented for all the considered cases, confirming the proposed approach.
Alonso, J L; Castro, A; Clemente-Gallardo, J; Echenique, P; Mazo, J J; Polo, V; Rubio, A; Zueco, D
2012-12-14
At non-zero temperature and when a system has low-lying excited electronic states, the ground-state Born-Oppenheimer approximation breaks down and the low-lying electronic states are involved in any chemical process. In this work, we use a temperature-dependent effective potential for the nuclei which can accommodate the influence of an arbitrary number of electronic states in a simple way, while at the same time producing the correct Boltzmann equilibrium distribution for the electronic part. With the help of this effective potential, we show that thermally activated low-lying electronic states can have a significant effect in molecular properties for which electronic excitations are oftentimes ignored. We study the thermal expansion of the Manganese dimer, Mn(2), where we find that the average bond length experiences a change larger than the present experimental accuracy upon the inclusion of the excited states into the picture. We also show that, when these states are taken into account, reaction-rate constants are modified. In particular, we study the opening of the ozone molecule, O(3), and show that in this case the rate is modified as much as a 20% with respect to the ground-state Born-Oppenheimer prediction.
Adiabatically implementing quantum gates
Sun, Jie; Lu, Songfeng Liu, Fang
2014-06-14
We show that, through the approach of quantum adiabatic evolution, all of the usual quantum gates can be implemented efficiently, yielding running time of order O(1). This may be considered as a useful alternative to the standard quantum computing approach, which involves quantum gates transforming quantum states during the computing process.
Validation of local hybrid functionals for TDDFT calculations of electronic excitation energies
NASA Astrophysics Data System (ADS)
Maier, Toni M.; Bahmann, Hilke; Arbuznikov, Alexei V.; Kaupp, Martin
2016-02-01
The first systematic evaluation of local hybrid functionals for the calculation of electronic excitation energies within linear-response time-dependent density functional theory (TDDFT) is reported. Using our recent efficient semi-numerical TDDFT implementation [T. M. Maier et al., J. Chem. Theory Comput. 11, 4226 (2015)], four simple, thermochemically optimized one-parameter local hybrid functionals based on local spin-density exchange are evaluated against a database of singlet and triplet valence excitations of organic molecules, and against a mixed database including also Rydberg, intramolecular charge-transfer (CT) and core excitations. The four local hybrids exhibit comparable performance to standard global or range-separated hybrid functionals for common singlet valence excitations, but several local hybrids outperform all other functionals tested for the triplet excitations of the first test set, as well as for relative energies of excited states. Evaluation for the combined second test set shows that local hybrids can also provide excellent Rydberg and core excitations, in the latter case rivaling specialized functionals optimized specifically for such excitations. This good performance of local hybrids for different excitation types could be traced to relatively large exact-exchange (EXX) admixtures in a spatial region intermediate between valence and asymptotics, as well as close to the nucleus, and lower EXX admixtures in the valence region. In contrast, the tested local hybrids cannot compete with the best range-separated hybrids for intra- and intermolecular CT excitation energies. Possible directions for improvement in the latter category are discussed. As the used efficient TDDFT implementation requires essentially the same computational effort for global and local hybrids, applications of local hybrid functionals to excited-state problems appear promising in a wide range of fields. Influences of current-density dependence of local kinetic-energy
Entanglement and adiabatic quantum computation
NASA Astrophysics Data System (ADS)
Ahrensmeier, D.
2006-06-01
Adiabatic quantum computation provides an alternative approach to quantum computation using a time-dependent Hamiltonian. The time evolution of entanglement during the adiabatic quantum search algorithm is studied, and its relevance as a resource is discussed.
Two-photon excited quantum dots as energy donors for photosensitizer chlorin e6.
Skripka, Artiom; Valanciunaite, Jurga; Dauderis, Gediminas; Poderys, Vilius; Kubiliute, Reda; Rotomskis, Ricardas
2013-07-01
The excitation-related problems in photodynamic therapy of cancer might be solved by combining two-photon (TP) irradiation and quantum dots (QDs) as effective energy donors for conventional photosensitizers (PS). Here, it is demonstrated for the first time that QD-chlorin e6 (Ce6) complex formed due to the hydrophobic interaction between Ce6 molecules and lipid coating of QDs can be effectively excited via TP irradiation at 1030 nm, which spectrally coincides with the biological tissue optical window. TP absorption cross-section for free QDs and Ce6 at 1030 nm was 3325 and 13 Goeppert-Mayer, respectively. Upon TP excitation of QD-Ce6 solution, the fluorescence band of bound Ce6 molecules was observed via energy transfer from excited QDs. Increasing concentration of Ce6 resulted in quenching of the photoluminescence of QDs and an increase in the fluorescence intensity of bound Ce6 molecules. These intensity changes coincided well with those observed upon single-photon excitation of QD-Ce6 solution when QDs alone are excited. The efficiency of energy transfer in QD-Ce6 complex upon TP excitation was about 80% (QD∶Ce61∶5). These results indicate that the effective excitation of PS with a low TP absorption cross-section is possible in such type noncovalent complexes via energy transfer from TP excited QDs.
Two-photon excited quantum dots as energy donors for photosensitizer chlorin e6.
Skripka, Artiom; Valanciunaite, Jurga; Dauderis, Gediminas; Poderys, Vilius; Kubiliute, Reda; Rotomskis, Ricardas
2013-07-01
The excitation-related problems in photodynamic therapy of cancer might be solved by combining two-photon (TP) irradiation and quantum dots (QDs) as effective energy donors for conventional photosensitizers (PS). Here, it is demonstrated for the first time that QD-chlorin e6 (Ce6) complex formed due to the hydrophobic interaction between Ce6 molecules and lipid coating of QDs can be effectively excited via TP irradiation at 1030 nm, which spectrally coincides with the biological tissue optical window. TP absorption cross-section for free QDs and Ce6 at 1030 nm was 3325 and 13 Goeppert-Mayer, respectively. Upon TP excitation of QD-Ce6 solution, the fluorescence band of bound Ce6 molecules was observed via energy transfer from excited QDs. Increasing concentration of Ce6 resulted in quenching of the photoluminescence of QDs and an increase in the fluorescence intensity of bound Ce6 molecules. These intensity changes coincided well with those observed upon single-photon excitation of QD-Ce6 solution when QDs alone are excited. The efficiency of energy transfer in QD-Ce6 complex upon TP excitation was about 80% (QD∶Ce61∶5). These results indicate that the effective excitation of PS with a low TP absorption cross-section is possible in such type noncovalent complexes via energy transfer from TP excited QDs. PMID:23864017
Accurate adiabatic correction in the hydrogen molecule
NASA Astrophysics Data System (ADS)
Pachucki, Krzysztof; Komasa, Jacek
2014-12-01
A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10-12 at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H2, HD, HT, D2, DT, and T2 has been determined. For the ground state of H2 the estimated precision is 3 × 10-7 cm-1, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.
Accurate adiabatic correction in the hydrogen molecule
Pachucki, Krzysztof; Komasa, Jacek
2014-12-14
A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10{sup −12} at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H{sub 2}, HD, HT, D{sub 2}, DT, and T{sub 2} has been determined. For the ground state of H{sub 2} the estimated precision is 3 × 10{sup −7} cm{sup −1}, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.
Accurate adiabatic correction in the hydrogen molecule.
Pachucki, Krzysztof; Komasa, Jacek
2014-12-14
A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10(-12) at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H2, HD, HT, D2, DT, and T2 has been determined. For the ground state of H2 the estimated precision is 3 × 10(-7) cm(-1), which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels. PMID:25494728
Shortcuts to adiabaticity in classical and quantum processes for scale-invariant driving
NASA Astrophysics Data System (ADS)
Deffner, Sebastian; Jarzynski, Christopher; Del Campo, Adolfo
2014-03-01
All real physical processes in classical as well as in quantum devices operate in finite-time. For most applications, however, adiabatic, i.e. infinitely-slow processes, are more favorable, as these do not cause unwanted, parasitic excitations. A shortcut to adiabaticity is a driving protocol which reproduces in a short time the same final state that would result from an adiabatic process. A particular powerful technique to engineer such shortcuts is transitionless quantum driving by means of counterdiabatic fields. However, determining closed form expressions for the counterdiabatic field has generally proven to be a daunting task. In this paper, we introduce a novel approach, with which we find the explicit form of the counterdiabatic driving field in arbitrary scale-invariant dynamical processes, encompassing expansions and transport. Our approach originates in the formalism of generating functions, and unifies previous approaches independently developed for classical and quantum systems. We show how this new approach allows to design shortcuts to adiabaticity for a large class of classical and quantum, single-particle, non-linear, and many-body systems. SD and CJ acknowledge support from the National Science Foundation (USA) under grant DMR-1206971. This research is further supported by the U.S Department of Energy through the LANL/LDRD Program and a LANL J. Robert Oppenheimer fellowship (AdC).
Borovkov, V I; Beregovaya, I V; Shchegoleva, L N; Potashov, P A; Bagryansky, V A; Molin, Y N
2012-09-14
Paramagnetic spin-lattice relaxation (SLR) in radical cations (RCs) of the cycloalkane series in liquid solution was studied and analyzed from the point of view of the correlation between the relaxation rate and the structure of the adiabatic potential energy surface (PES) of the RCs. SLR rates in the RCs formed in x-ray irradiated n-hexane solutions of the cycloalkanes studied were measured with the method of time-resolved magnetic field effect in the recombination fluorescence of spin-correlated radical ion pairs. Temperature and, for some cycloalkanes, magnetic field dependences of the relaxation rate were determined. It was found that the conventional Redfield theory of the paramagnetic relaxation as applied to the results on cyclohexane RC, gave a value of about 0.2 ps for the correlation time of the perturbation together with an unrealistically high value of 0.1 T in field units for the matrix element of the relaxation transition. The PES structure was obtained with the DFT quantum-chemical calculations. It was found that for all of the cycloalkanes RCs considered, including low symmetric alkyl-substituted ones, the adiabatic PESes were surfaces of pseudorotation due to avoided crossing. In the RCs studied, a correlation between the SLR rate and the calculated barrier height to the pseudorotation was revealed. For RCs with a higher relaxation rate, the apparent activation energies for the SLR were similar to the calculated heights of the barrier. To rationalize the data obtained it was assumed that the vibronic states degeneracy, which is specific for Jahn-Teller active cyclohexane RC, was approximately kept in the RCs of substituted cycloalkanes for the vibronic states with the energies above and close to the barrier height to the pseudorotation. It was proposed that the effective spin-lattice relaxation in a radical with nearly degenerate low-lying vibronic states originated from stochastic crossings of the vibronic levels that occur due to fluctuations of
Lan, C. B.; Qin, W. Y.
2014-09-15
This letter investigates the energy harvesting from the horizontal coherent resonance of a vertical cantilever beam subjected to the vertical base excitation. The potential energy of the system has two symmetric potential wells. So, under vertical excitation, the system can jump between two potential wells, which will lead to the large vibration in horizontal direction. Two piezoelectric patches are pasted to harvest the energy. From experiment, it is found that the vertical excitation can make the beam turn to be bistable. The system can transform vertical vibration into horizontal vibration of low frequency when excited by harmonic motion. The horizontal coherence resonance can be observed when excited by a vertical white noise. The corresponding output voltages of piezoelectric films reach high values.
Excitation energies and Stokes shifts from a restricted open-shell Kohn-Sham approach
NASA Astrophysics Data System (ADS)
Kowalczyk, Tim; Tsuchimochi, Takashi; Chen, Po-Ta; Top, Laken; Van Voorhis, Troy
2013-04-01
Restricted open-shell Kohn-Sham (ROKS) theory provides a powerful computational tool for calculating singlet excited state energies and dynamics. However, the possibility of multiple solutions to the ROKS equations — with the associated difficulty of automatically selecting the physically meaningful solution — limits its usefulness for intensive applications such as long-time Born-Oppenheimer molecular dynamics. We present an implementation of ROKS for excited states which prescribes the physically correct solution from an overlap criterion and guarantees that this solution is stationary, allowing for straightforward evaluation of nuclear gradients. The method is used to benchmark ROKS for vertical excitation energies of small and large organic dyes and for the calculation of Stokes shifts. With common density functional approximations, ROKS vertical excitation energies, and Stokes shifts show similar accuracy to those from time-dependent density functional theory and Δ-self-consistent-field approaches. Advantages of the ROKS approach for excited state structure and molecular dynamics are discussed.
Bleiziffer, Patrick Schmidtel, Daniel; Görling, Andreas
2014-11-28
The occurrence of instabilities, in particular singlet-triplet and singlet-singlet instabilities, in the exact-exchange (EXX) Kohn-Sham method is investigated. Hessian matrices of the EXX electronic energy with respect to the expansion coefficients of the EXX effective Kohn-Sham potential in an auxiliary basis set are derived. The eigenvalues of these Hessian matrices determine whether or not instabilities are present. Similar as in the corresponding Hartree-Fock case instabilities in the EXX method are related to symmetry breaking of the Hamiltonian operator for the EXX orbitals. In the EXX methods symmetry breaking can easily be visualized by displaying the local multiplicative exchange potential. Examples (N{sub 2}, O{sub 2}, and the polyyne C{sub 10}H{sub 2}) for instabilities and symmetry breaking are discussed. The relation of the stability conditions for EXX methods to approaches calculating the Kohn-Sham correlation energy via the adiabatic-connection fluctuation-dissipation (ACFD) theorem is discussed. The existence or nonexistence of singlet-singlet instabilities in an EXX calculation is shown to indicate whether or not the frequency-integration in the evaluation of the correlation energy is singular in the EXX-ACFD method. This method calculates the Kohn-Sham correlation energy through the ACFD theorem theorem employing besides the Coulomb kernel also the full frequency-dependent exchange kernel and yields highly accurate electronic energies. For the case of singular frequency-integrands in the EXX-ACFD method a regularization is suggested. Finally, we present examples of molecular systems for which the self-consistent field procedure of the EXX as well as the Hartree-Fock method can converge to more than one local minimum depending on the initial conditions.
On adiabatic invariant in generalized Galileon theories
Ema, Yohei; Jinno, Ryusuke; Nakayama, Kazunori; Mukaida, Kyohei E-mail: jinno@hep-th.phys.s.u-tokyo.ac.jp E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp
2015-10-01
We consider background dynamics of generalized Galileon theories in the context of inflation, where gravity and inflaton are non-minimally coupled to each other. In the inflaton oscillation regime, the Hubble parameter and energy density oscillate violently in many cases, in contrast to the Einstein gravity with minimally coupled inflaton. However, we find that there is an adiabatic invariant in the inflaton oscillation regime in any generalized Galileon theory. This adiabatic invariant is useful in estimating the expansion law of the universe and also the particle production rate due to the oscillation of the Hubble parameter.
Adiabatic nanofocusing: spectroscopy, transport and imaging investigation of the nano world
NASA Astrophysics Data System (ADS)
Giugni, A.; Allione, M.; Torre, B.; Das, G.; Francardi, M.; Moretti, M.; Malerba, M.; Perozziello, G.; Candeloro, P.; Di Fabrizio, E.
2014-11-01
Adiabatic compression plays a fundamental role in the realization of localized enhanced electromagnetic field hot spots, it provides the possibility to focus at nanoscale optical excitation. It differs from the well-known lightning rod effect since it is based on the lossless propagation of surface plasmon polaritons (SPPs) up to a nano-sized metal tip where the energy density is largely enhanced. Here we discuss two important applications of adiabatic compression: Raman and hot electron spectroscopy at nanometric resolution. The underlying phenomena are the conversion of SPPs into photons or hot electrons. New scanning probe spectroscopy techniques along with experimental results are discussed. We foresee that these techniques will play a key role in relating the functional and structural properties of matter at the nanoscale.
Towards fault tolerant adiabatic quantum computation.
Lidar, Daniel A
2008-04-25
I show how to protect adiabatic quantum computation (AQC) against decoherence and certain control errors, using a hybrid methodology involving dynamical decoupling, subsystem and stabilizer codes, and energy gaps. Corresponding error bounds are derived. As an example, I show how to perform decoherence-protected AQC against local noise using at most two-body interactions.
Quantum Phase Transitions and Adiabatic Control of Ferromagnetic Spin-1 BEC
NASA Astrophysics Data System (ADS)
Hoang, Thai; Anquez, Martin; Robbins, Bryce; Madhusudhana, Bharath; Boguslawski, Matthew; Chapman, Michael
2015-05-01
The adiabatic theorem, which states that a quantum system can remain in its instantaneous eigenstate under slow temporal changes to the Hamiltonian, was formulated almost 100 years ago by Born and Fock. This phenomenon relies on the existence of an energy gap between neighboring eigenstates of the quantum system and has proved to be a powerful tool in realizing novel quantum computation algorithms. Furthermore, the energy gap between the ground and first excited state plays a crucial role in understanding the dynamics of quantum phase transitions and the Kibble-Zurek mechanism. A spin-1 Bose-Einstein condensate (BEC) features a well-characterized and controllable Hamiltonian, providing a unique framework for investigating quantum phase transition phenomena. A massive entanglement Dicke state can also be generated by exploiting the nonzero energy gap at the quantum critical point (QCP) and adiabatic quantum phase transition of the ground state (highest eigenstate) in a ferromagnetic (anti-ferromagnetic) condensate. Here, we experimentally investigate the energy gap and adiabaticity in a ferromagnetic BEC and compare our results to quantum simulations.
Spectroscopic probes of vibrationally excited molecules at chemically significant energies
Rizzo, T.R.
1993-04-01
Infrared-optical double resonance is being used to study the unimolecular dissociation dynamics of hydrazoic acid (HN[sub 3]). 6[nu][sub NH] vibrational overtone excitation spectra are given for HN[sub 3]. Work was begun to determine the feasibility of extending the infrared-optical double resonance photofragment spectroscopy to small free radicals, and to be able to monitor atomic dissociation fragments via laser induced fluorescence in the VUV spectrum. 1 fig.
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Xu, Y. J.; Kamaratos, E.; Chang, C. K.
1984-01-01
The local plasma model is used to study the effects of the chemical and physical state of a medium on its stopping power. The relationship between that model and a more exact quantum treatment of bound systems is elucidated by examining related quantities in both theories for the case of one and two-electron systems. Atomic mean excitation energies and straggling parameters in the local plasma model are compared with the accurate calculations of Inokuti et al. (1975, 1978, 1981). The use of the Gordon-Kim electron gas model of molecular bonding is used to determine the effects of covalent chemical bond shifts on the mean excitation energies for elements of the first two rows. Calculations of mean excitation energies of ionic bonded substances are presented, and the mean excitation energies of metals are discussed.
Proceedings of the 1984 workshop on high-energy excitations in condensed matter. Volume II
Silver, R.N.
1984-12-01
This volume covers electronic excitations, momentum distributions, high energy photons, and a wrap-up session. Abstracts of individual items from the conference were prepared separately for the data base. (GHT)
Chatterji, Tapan; Jalarvo, Niina
2013-04-17
We have investigated the low energy excitations in metallic Ho by high resolution neutron spectroscopy. We found at T = 3 K clear inelastic peaks in the energy loss and energy gain sides, along with the central elastic peak. The energy of this low energy excitation, which is 26.59 ± 0.02 μeV at T = 3 K, decreased continuously and became zero at TN ≈ 130 K. By fitting the data in the temperature range 100-127.5 K with a power law we obtained the power-law exponent β = 0.37 ± 0.02, which agrees with the expected value β = 0.367 for a three-dimensional Heisenberg model. Thus the energy of the low energy excitations can be associated with the order parameter.
Shortcuts to adiabaticity from linear response theory
Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian
2015-10-23
A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times.
Shortcuts to adiabaticity from linear response theory
Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian
2015-10-23
A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts tomore » adiabaticity for specific and very short driving times.« less
Excitation of positive ions by low-energy electrons - Relevance to the Io Torus
NASA Astrophysics Data System (ADS)
Smith, S. J.; Chutjian, A.; Mawhorter, R. J.; Williams, I. D.; Shemansky, D. E.
1993-03-01
The importance of measuring electron-ion excitation cross sections in singly and multiply charged positive ions is outlined, and recent results for Mg II and O II ions are given using the JPL's electron energy-loss merged-beams apparatus. Theoretical comparisons are given with two five-state close-coupling calculations. The energy variation of the collision strength is fitted with a semiempirical analytic function which includes approximations to polarization, resonance, and exchange contributions. In O II, first spectra anywhere of electron excitation of the optically allowed transitions are presented. In addition, excitations of two low lying, optically forbidden transitions are detected for the first time.
NASA Astrophysics Data System (ADS)
Ozeri, Roee; Steinhauer, Jeff; Katz, Nadav; Davidson, Nir
2002-05-01
The excitation spectrum gives the energy, hw(k), of each excitation in the Bose condensate (BEC) as a function of its wave vector k. We report the first measurement of the excitation spectrum [1]. The excitation spectrum is measured by Bragg spectroscopy [2]. The response of the condensate to the two-photon Bragg pulse is extracted from time of flight (TOF) images. The resonance frequency of the excitation for momentum hk is taken as w(k). The measured w(k) agrees with the Bogoliubov spectrum predictions. A linear phonon regime is seen for low k. The superfluid critical velocity is bounded by w(k)/k of this regime. In addition, the energy and momentum of the atoms are measured directly from the TOF image, computerized tomography is used to reconstruct the cylindrical density distribution, from a single absorption picture [3]. The excitation energies measured this way are in agreement with the value measured using Bragg spectroscopy. Our measurements also indicate that all of the excitation energy is carried by the atoms in the released-phonon cloud. [1] J. Steinhauer et. al. Phys. Rev. Lett. in press (Cond. Mat. 0111438). [2] J. Stenger, et. al. Phys. Rev. Lett. 82, 4569-4573 (1999). [3] R. Ozeri, et. al. Cond. Mat. 0112496.
NASA Astrophysics Data System (ADS)
Schneckenburger, Herbert; Gschwend, Michael H.; Bauer, Manfred; Strauss, Wolfgang S. L.; Steiner, Rudolf W.
1996-12-01
Mitochondrial malfunction may be concomitant with changes of the redox states of the coenzymes nicotinamide adenine dinucleotide (NAD+/NADH), as well as flavin.mononucleotide or dinucleotide. The intrinsic fluorescence of these coenzymes was therefore proposed to be a measure of malfunction. Since mitochondrial fluorescence is strongly superposed by autofluorescence from various cytoplasmatic fluorophores, cultivated endothelial cells were incubated with the mitochondrial marker rhodamine 123 (R123), and after excitation of flavin molecules, energy transfer to R123 was investigated. Due to spectral overlap of flavin and R123 fluorescence, energy transfer flavin yields R123 could not be detected from their emission spectra. Therefore, the method of microscopic fluorescence excitation spectroscopy was established. When detecting R123 fluorescence, excitation maxima at 370 - 390 nm and 420-460 nm were assigned to flavins, whereas a pronounced excitation band at 465 - 490 nm was attributed to R123. Therefore, excitation at 475 nm reflected the intracellular concentration of R123, whereas excitation at 385 nm reflected flavin excitation with a subsequent energy transfer to R123 molecules. An enhanced energy transfer after inhibition of specific enzyme complexes of the respiratory chain is discussed in the present article.
NASA Astrophysics Data System (ADS)
Homayoon, Zahra; Bowman, Joel M.
2014-10-01
A semi-global, permutationally invariant potential energy surface for NO3 is constructed from a subset of roughly 5000 Multi-State CASPT2 calculations (MS-CAS(17e,13o)PT2/aug-cc-pVTZ) reported by Morokuma and co-workers [H. Xiao, S. Maeda, and K. Morokuma, J. Chem. Theory Comput. 8, 2600 (2012)]. The PES, with empirical adjustments to modify the energies of two fundamentals and a hot-band transition, is used in full-dimensional vibrational self-consistent field/virtual state configuration interaction calculations using the code MULTIMODE. Vibrational energies and assignments are given for the fundamentals and low-lying combination states, including two that have been the focus of some controversy. Energies of a number of overtone and combinations are shown to be in good agreement with experiment and previous calculations using a model vibronic Hamiltonian [C. S. Simmons, T. Ichino, and J. F. Stanton, J. Phys. Chem. Lett. 3, 1946 (2012)]. Notably, the fundamental v3 is calculated to be at 1099 cm-1 in accord with the prediction from the vibronic analysis, although roughly 30 cm-1 higher. The state at 1493 cm-1 is assigned as v3 + v4, which is also in agreement with the vibronic analysis and some experiments. Vibrational energies for 15NO3 are also presented and these are also in good agreement with experiment.
Regnier, D.; Dubray, N.; Schunck, N.; Verriere, M.
2016-05-13
Here, accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics.
A theoretical analysis of the lowest excited states in HNO/NOH and HPO/POH
NASA Astrophysics Data System (ADS)
Luna, Alberto; Merchán, Manuela; Ross, Björn O.
1995-07-01
A theoretical study has been performed on the ground and two lowest excited states of the HNO/NOH and HPO/POH systems. Full geometry optimization was made for all states using the CASSCF method with dynamic correlation effects accounted for by second order perturbation theory (CASPT2). The computed vertical and adiabatic transition energies are in agreement with available experimental data.
Galindo, Johan F; Atas, Evrim; Altan, Aysun; Kuroda, Daniel G; Fernandez-Alberti, Sebastian; Tretiak, Sergei; Roitberg, Adrian E; Kleiman, Valeria D
2015-09-16
Solar energy conversion starts with the harvest of light, and its efficacy depends on the spatial transfer of the light energy to where it can be transduced into other forms of energy. Harnessing solar power as a clean energy source requires the continuous development of new synthetic materials that can harvest photon energy and transport it without significant losses. With chemically-controlled branched architectures, dendrimers are ideally suited for these initial steps, since they consist of arrays of chromophores with relative positioning and orientations to create energy gradients and to spatially focus excitation energies. The spatial localization of the energy delimits its efficacy and has been a point of intense research for synthetic light harvesters. We present the results of a combined theoretical experimental study elucidating ultrafast, unidirectional, electronic energy transfer on a complex molecule designed to spatially focus the initial excitation onto an energy sink. The study explores the complex interplay between atomic motions, excited-state populations, and localization/delocalization of excitations. Our findings show that the electronic energy-transfer mechanism involves the ultrafast collapse of the photoexcited wave function due to nonadiabatic electronic transitions. The localization of the wave function is driven by the efficient coupling to high-frequency vibrational modes leading to ultrafast excited-state dynamics and unidirectional efficient energy funneling. This work provides a long-awaited consistent experiment-theoretical description of excited-state dynamics in organic conjugated dendrimers with atomistic resolution, a phenomenon expected to universally appear in a variety of synthetic conjugated materials.
Galindo, Johan F; Atas, Evrim; Altan, Aysun; Kuroda, Daniel G; Fernandez-Alberti, Sebastian; Tretiak, Sergei; Roitberg, Adrian E; Kleiman, Valeria D
2015-09-16
Solar energy conversion starts with the harvest of light, and its efficacy depends on the spatial transfer of the light energy to where it can be transduced into other forms of energy. Harnessing solar power as a clean energy source requires the continuous development of new synthetic materials that can harvest photon energy and transport it without significant losses. With chemically-controlled branched architectures, dendrimers are ideally suited for these initial steps, since they consist of arrays of chromophores with relative positioning and orientations to create energy gradients and to spatially focus excitation energies. The spatial localization of the energy delimits its efficacy and has been a point of intense research for synthetic light harvesters. We present the results of a combined theoretical experimental study elucidating ultrafast, unidirectional, electronic energy transfer on a complex molecule designed to spatially focus the initial excitation onto an energy sink. The study explores the complex interplay between atomic motions, excited-state populations, and localization/delocalization of excitations. Our findings show that the electronic energy-transfer mechanism involves the ultrafast collapse of the photoexcited wave function due to nonadiabatic electronic transitions. The localization of the wave function is driven by the efficient coupling to high-frequency vibrational modes leading to ultrafast excited-state dynamics and unidirectional efficient energy funneling. This work provides a long-awaited consistent experiment-theoretical description of excited-state dynamics in organic conjugated dendrimers with atomistic resolution, a phenomenon expected to universally appear in a variety of synthetic conjugated materials. PMID:26122872
Potential energy surface of excited semiconductors: Graphene quantum dot and BODIPY
NASA Astrophysics Data System (ADS)
Colherinhas, Guilherme; Fileti, Eudes Eterno; Chaban, Vitaly V.
2016-08-01
Binding energy (BE) is an important descriptor in chemistry, which determines thermodynamics and phase behavior of a given substance. BE between two molecules is not directly accessible from the experiment. It has to be reconstructed from cohesive energies, vaporization heats, etc. We report BE for the excited states of two semiconductor molecules - boron-dipyrromethene (BODIPY) and graphene quantum dot (GQD) - with water. We show, for the first time, that excitation increases BE twofold at an optimal separation (energy minimum position), whereas higher separations lead to higher differences. Interestingly, the effects of excitation are similar irrespective of the dominant binding interactions (van der Waals or electrostatic) in the complex. This new knowledge is important for simulations of the excited semiconductors by simplified interaction functions.
Bazzani, A.; Turchetti, G.; Benedetti, C.; Rambaldi, S.; Servizi, G.
2005-06-08
In a high intensity circular accelerator the synchrotron dynamics introduces a slow modulation in the betatronic tune due to the space-charge tune depression. When the transverse motion is non-linear due to the presence of multipolar effects, resonance islands move in the phase space and change their amplitude. This effect introduces the trapping and detrapping phenomenon and a slow diffusion in the phase space. We apply the neo-adiabatic theory to describe this diffusion mechanism that can contribute to halo formation.
NASA Astrophysics Data System (ADS)
Zou, Wenlong; Cai, Zhijian; Zhou, Hongwu; Wu, Jianhong
2013-12-01
Raman spectroscopy is fast and nondestructive, and it is widely used in chemistry, biomedicine, food safety and other areas. However, Raman spectroscopy is often hampered by strong fluorescence background, especially in food additives detection and biomedicine researching. In this paper, one efficient technique was the multi-excitation Raman difference spectroscopy (MERDS) which incorporated a series of small wavelength-shift wavelengths as excitation sources. A modified multi-energy constrained iterative deconvolution (MMECID) algorithm was proposed to reconstruct the Raman Spectroscopy. Computer simulation and experiments both demonstrated that the Raman spectrum can be well reconstructed from large fluorescence background. The more excitation sources used, the better signal to noise ratio got. However, many excitation sources were equipped on the Raman spectrometer, which increased the complexity of the experimental system. Thus, a trade-off should be made between the number of excitation frequencies and experimental complexity.
Adiabat-shaping in indirect drive inertial confinement fusion
Baker, K. L.; Robey, H. F.; Milovich, J. L.; Jones, O. S.; Smalyuk, V. A.; Casey, D. T.; MacPhee, A. G.; Pak, A.; Celliers, P. M.; Clark, D. S.; Landen, O. L.; Peterson, J. L.; Berzak-Hopkins, L. F.; Weber, C. R.; Haan, S. W.; Döppner, T. D.; Dixit, S.; Hamza, A. V.; Jancaitis, K. S.; Kroll, J. J.; and others
2015-05-15
Adiabat-shaping techniques were investigated in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform for both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. This approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures.
Coverage dependent non-adiabaticity of CO on a copper surface
Omiya, Takuma; Arnolds, Heike
2014-12-07
We have studied the coverage-dependent energy transfer dynamics between hot electrons and CO on Cu(110) with femtosecond visible pump, sum frequency probe spectroscopy. We find that transients of the C–O stretch frequency display a red shift, which increases from 3 cm{sup −1} at 0.1 ML to 9 cm{sup −1} at 0.77 ML. Analysis of the transients reveals that the non-adiabatic coupling between the adsorbate vibrational motion and the electrons becomes stronger with increasing coverage. This trend requires the frustrated rotational mode to be the cause of the non-adiabatic behavior, even for relatively weak laser excitation of the adsorbate. We attribute the coverage dependence to both an increase in the adsorbate electronic density of states and an increasingly anharmonic potential energy surface caused by repulsive interactions between neighboring CO adsorbates. This work thus reveals adsorbate-adsorbate interactions as a new way to control adsorbate non-adiabaticity.
Effects of EOS adiabat on hot spot dynamics
NASA Astrophysics Data System (ADS)
Cheng, Baolian; Kwan, Thomas; Wang, Yi-Ming; Batha, Steven
2013-10-01
Equation of state (EOS) and adiabat of the pusher play significant roles in the dynamics and formation of the hot spot of an ignition capsule. For given imploding energy, they uniquely determine the partition of internal energy, mass, and volume between the pusher and the hot spot. In this work, we apply the new scaling laws recently derived by Cheng et al. to the National Ignition Campaign (NIC) ignition capsules and study the impacts of EOS and adiabat of the pusher on the hot spot dynamics by using the EOS adiabat index as an adjustable model parameter. We compare our analysis with the NIC data, specifically, for shots N120321 and N120205, and with the numerical simulations of these shots. The predictions from our theoretical model are in good agreements with the NIC data when a hot adiabat was used for the pusher, and with code simulations when a cold adiabat was used for the pusher. Our analysis indicates that the actual adiabat of the pusher in NIC experiments may well be higher than the adiabat assumed in the simulations. This analysis provides a physical and systematic explanation to the ongoing disagreements between the NIC experimental results and the multi-dimensional numerical simulations. This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under contract number W-7405-ENG-36.
NASA Astrophysics Data System (ADS)
Schmidt, R.; Pärs, M.; Weller, T.; Thelakkat, M.; Köhler, J.
2014-01-01
A thin film of polystyrene has been doped with small amounts of dithienylcyclopentene (DCP) based molecular switches and perylene bisimide (PBI) chromophores to obtain a photoswitchable smart matrix. The photochromic DCP can be converted by light between two bistable conformations and thereby changes the energetic position of its lowest excited singlet state. We exploit this feature to regulate the transfer of excitation energy between PBI and DCP as a function of the externally controllable illumination conditions in such a blend.
Excitation energies of particle-hole states in {sup 208}Pb and the surface delta interaction
Heusler, A.; Jolos, R. V.; Brentano, P. von
2013-07-15
The schematic shell model without residual interaction (SSM) assumes the same excitation energy for all spins in each particle-hole configuration multiplet. In {sup 208}Pb, more than forty states are known to contain almost the full strength of a single particle-hole configuration. The experimental excitation energy for a state with a certain spin differs from the energy predicted by the SSM by -0.2 to +0.6 MeV. The multiplet splitting is calculated with the surface delta interaction; it corresponds to the diagonal matrix element of the residual interaction in the SSM. For states containing more than 90% strength of a certain configuration and for the centroid of several completely observed configurations, the calculated multiplet splitting often approximates the experimental excitation energy within 30 keV. The strong mixing within some pairs of states containing the full strengths of two configurations is explained.
Low-energy electron elastic scattering cross sections for excited Au and Pt atoms
NASA Astrophysics Data System (ADS)
Felfli, Zineb; Eure, Amanda R.; Msezane, Alfred Z.; Sokolovski, Dmitri
2010-05-01
Electron elastic total cross sections (TCSs) and differential cross sections (DCSs) in both impact energy and scattering angle for the excited Au and Pt atoms are calculated in the electron impact energy range 0 ⩽ E ⩽ 4.0 eV. The cross sections are found to be characterized by very sharp long-lived resonances whose positions are identified with the binding energies of the excited anions formed during the collisions. The recent novel Regge-pole methodology wherein is embedded through the Mulholland formula the electron-electron correlations is used together with a Thomas-Fermi type potential incorporating the crucial core-polarization interaction for the calculations of the TCSs. The DCSs are evaluated using a partial wave expansion. The Ramsauer-Townsend minima, the shape resonances and the binding energies of the excited Au - and Pt - anions are extracted from the cross sections, while the critical minima are determined from the DCSs.
Electron energy-loss spectroscopy of excited states of the pyridine molecules
NASA Astrophysics Data System (ADS)
Linert, Ireneusz; Zubek, Mariusz
2016-04-01
Electron energy-loss spectra of the pyridine, C5H5N, molecules in the gas phase have been measured to investigate electronic excitation in the energy range 3.5-10 eV. The applied wide range of residual electron energy and the scattering angle range from 10° to 180° enabled to differentiate between optically-allowed and -forbidden transitions. These measurements have allowed vertical excitation energies of the triplet excited states of pyridine to be determined and tentative assignments of these states to be proposed. Some of these states have not been identified in the previous works. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.
Nogami, Keisuke; Sakai, Yasuhiro; Mineta, Shota; Kato, Daiji; Murakami, Izumi; Sakaue, Hiroyuki A.; Kenmotsu, Takahiro; Furuya, Kenji; Motohashi, Kenji
2015-11-15
Visible emission spectra were acquired from neutral atoms sputtered by 35–60 keV Kr{sup +} ions from a polycrystalline tungsten surface. Mean velocities of excited tungsten atoms in seven different 6p states were also obtained via the dependence of photon intensities on the distance from the surface. The average velocities parallel to the surface normal varied by factors of 2–4 for atoms in the different 6p energy levels. However, they were almost independent of the incident ion kinetic energy. The 6p-level energy dependence indicated that the velocities of the excited atoms were determined by inelastic processes that involve resonant charge exchange.
Do, T. P. T.; Lopes, M. C. A.; Konovalov, D. A.; White, R. D.; Brunger, M. J. E-mail: darryl.jones@flinders.edu.au; Jones, D. B. E-mail: darryl.jones@flinders.edu.au
2015-03-28
We report differential cross sections (DCSs) for electron-impact vibrational-excitation of tetrahydrofuran, at intermediate incident electron energies (15-50 eV) and over the 10°-90° scattered electron angular range. These measurements extend the available DCS data for vibrational excitation for this species, which have previously been obtained at lower incident electron energies (≤20 eV). Where possible, our data are compared to the earlier measurements in the overlapping energy ranges. Here, quite good agreement was generally observed where the measurements overlapped.
Generating Excitement: Build Your Own Generator to Study the Transfer of Energy
ERIC Educational Resources Information Center
Fletcher, Kurt; Rommel-Esham, Katie; Farthing, Dori; Sheldon, Amy
2011-01-01
The transfer of energy from one form to another can be difficult to understand. The electrical energy that turns on a lamp may come from the burning of coal, water falling at a hydroelectric plant, nuclear reactions, or gusts of wind caused by the uneven heating of the Earth. The authors have developed and tested an exciting hands-on activity to…
Geometry of the Adiabatic Theorem
ERIC Educational Resources Information Center
Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas
2012-01-01
We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…
Excitation energy transfer in a classical analogue of photosynthetic antennae.
Mančal, Tomáš
2013-09-26
We formulate a classical pure dephasing system-bath interaction model in a full correspondence to the well-studied quantum model of natural light-harvesting antennae. The equations of motion of our classical model not only represent the correct classical analogy to the quantum description of excitonic systems, but they also have exactly the same functional form. We demonstrate derivation of classical dissipation and relaxation tensor in second order perturbation theory. We find that the only difference between the classical and quantum descriptions is in the interpretation of the state and in certain limitations imposed on the parameters of the model by classical physics. The effects of delocalization, transfer pathway interference, and the transition from coherent to diffusive transfer can be found already in the classical realm. The only qualitatively new effect occurring in quantum systems is the preference for a downhill energy transfer and the resulting possibility of trapping the energy in the lowest energy state.
NASA Astrophysics Data System (ADS)
Zeng, Qiao; Liu, Jie; Liang, WanZhen
2014-05-01
This work extends our previous works [J. Liu and W. Z. Liang, J. Chem. Phys. 135, 014113 (2011); J. Liu and W. Z. Liang, J. Chem. Phys. 135, 184111 (2011)] on analytical excited-state energy Hessian within the framework of time-dependent density functional theory (TDDFT) to couple with molecular mechanics (MM). The formalism, implementation, and applications of analytical first and second energy derivatives of TDDFT/MM excited state with respect to the nuclear and electric perturbations are presented. Their performances are demonstrated by the calculations of adiabatic excitation energies, and excited-state geometries, harmonic vibrational frequencies, and infrared intensities for a number of benchmark systems. The consistent results with the full quantum mechanical method and other hybrid theoretical methods indicate the reliability of the current numerical implementation of developed algorithms. The computational accuracy and efficiency of the current analytical approach are also checked and the computational efficient strategies are suggested to speed up the calculations of complex systems with many MM degrees of freedom. Finally, we apply the current analytical approach in TDDFT/MM to a realistic system, a red fluorescent protein chromophore together with part of its nearby protein matrix. The calculated results indicate that the rearrangement of the hydrogen bond interactions between the chromophore and the protein matrix is responsible for the large Stokes shift.
Zeng, Qiao; Liu, Jie; Liang, WanZhen
2014-05-14
This work extends our previous works [J. Liu and W. Z. Liang, J. Chem. Phys. 135, 014113 (2011); J. Liu and W. Z. Liang, J. Chem. Phys. 135, 184111 (2011)] on analytical excited-state energy Hessian within the framework of time-dependent density functional theory (TDDFT) to couple with molecular mechanics (MM). The formalism, implementation, and applications of analytical first and second energy derivatives of TDDFT/MM excited state with respect to the nuclear and electric perturbations are presented. Their performances are demonstrated by the calculations of adiabatic excitation energies, and excited-state geometries, harmonic vibrational frequencies, and infrared intensities for a number of benchmark systems. The consistent results with the full quantum mechanical method and other hybrid theoretical methods indicate the reliability of the current numerical implementation of developed algorithms. The computational accuracy and efficiency of the current analytical approach are also checked and the computational efficient strategies are suggested to speed up the calculations of complex systems with many MM degrees of freedom. Finally, we apply the current analytical approach in TDDFT/MM to a realistic system, a red fluorescent protein chromophore together with part of its nearby protein matrix. The calculated results indicate that the rearrangement of the hydrogen bond interactions between the chromophore and the protein matrix is responsible for the large Stokes shift. PMID:24832314
Lee, Mi Kyung; Coker, David F
2016-08-18
An accurate approach for computing intermolecular and intrachromophore contributions to spectral densities to describe the electronic-nuclear interactions relevant for modeling excitation energy transfer processes in light harvesting systems is presented. The approach is based on molecular dynamics (MD) calculations of classical correlation functions of long-range contributions to excitation energy fluctuations and a separate harmonic analysis and single-point gradient quantum calculations for electron-intrachromophore vibrational couplings. A simple model is also presented that enables detailed analysis of the shortcomings of standard MD-based excitation energy fluctuation correlation function approaches. The method introduced here avoids these problems, and its reliability is demonstrated in accurate predictions for bacteriochlorophyll molecules in the Fenna-Matthews-Olson pigment-protein complex, where excellent agreement with experimental spectral densities is found. This efficient approach can provide instantaneous spectral densities for treating the influence of fluctuations in environmental dissipation on fast electronic relaxation.
Lee, Mi Kyung; Coker, David F
2016-08-18
An accurate approach for computing intermolecular and intrachromophore contributions to spectral densities to describe the electronic-nuclear interactions relevant for modeling excitation energy transfer processes in light harvesting systems is presented. The approach is based on molecular dynamics (MD) calculations of classical correlation functions of long-range contributions to excitation energy fluctuations and a separate harmonic analysis and single-point gradient quantum calculations for electron-intrachromophore vibrational couplings. A simple model is also presented that enables detailed analysis of the shortcomings of standard MD-based excitation energy fluctuation correlation function approaches. The method introduced here avoids these problems, and its reliability is demonstrated in accurate predictions for bacteriochlorophyll molecules in the Fenna-Matthews-Olson pigment-protein complex, where excellent agreement with experimental spectral densities is found. This efficient approach can provide instantaneous spectral densities for treating the influence of fluctuations in environmental dissipation on fast electronic relaxation. PMID:27472379
Modeling energy-loss spectra due to phonon excitation
NASA Astrophysics Data System (ADS)
Forbes, B. D.; Allen, L. J.
2016-07-01
We discuss a fundamental theory of how to calculate the phonon-loss sector of the energy-loss spectrum for electrons scattering from crystalline solids. A correlated model for the atomic motion is used for calculating the vibrational modes. Spectra are calculated for crystalline silicon illuminated by a plane wave and by an atomic-scale focused coherent probe, in which case the spectra depend on probe position. These spectra are also affected by the size of the spectrometer aperture. The correlated model is contrasted with the Einstein model in which atoms in the specimen are assumed to vibrate independently. We also discuss how both the correlated and Einstein models relate to a classical view of the energy-loss process.
Study of low energy excitations of carbon nanotubes with DMRG
NASA Astrophysics Data System (ADS)
Struck, Alexander; Reyes, Sebastian A.; Eggert, Sebastian
2010-03-01
We examine the low-energy properties of impure carbon nanotubes including short-ranged electron-electron interactions. In particular, we calculate the local density of states (LDOS) close to selected impurities such as Stone-Wales defect and half-fullerene caps at the tube ends using the density matrix renormalization group (DMRG). We discuss the possibility to identify interaction strength and range from LDOS patterns, which reveal the interplay of electron interactions and impurities.
The dynamic instability of adiabatic blast waves
NASA Technical Reports Server (NTRS)
Ryu, Dongsu; Vishniac, Ethan T.
1991-01-01
Adiabatic blastwaves, which have a total energy injected from the center E varies as t(sup q) and propagate through a preshock medium with a density rho(sub E) varies as r(sup -omega) are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.
NASA Astrophysics Data System (ADS)
Clary, David C.; Meijer, Anthony J. H. M.
2002-06-01
Quantum dynamical calculations have been carried out on the excitation of the torsional vibrations of a protein by collision with a solvent molecule. This energy transfer process represents the first step in the unfolding of the protein. The method developed for this purpose is the torsional close coupling, infinite order sudden approximation. Both time-independent and time dependent methods are used to solve the scattering problem and individual excitation of all the torsional modes of the protein is treated. The method is applied to the excitation of the HIV protein gp41 colliding with a water molecule. This protein has 1101 atoms, 56 amino acids, and 452 torsional modes. A major mode-selective effect is found in the computations: it is much easier to excite backbone torsions than sidechain torsions in the protein. In addition, resonances arise in the collisional process and these complexes involve temporary trapping of the water molecule inside the pockets of the protein.
Adiabatic quantum optimization for associative memory recall
Seddiqi, Hadayat; Humble, Travis S.
2014-12-22
Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.
Adiabatic quantum optimization for associative memory recall
Seddiqi, Hadayat; Humble, Travis S.
2014-12-22
Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are storedmore » in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.« less
NASA Astrophysics Data System (ADS)
Imamura, Yutaka; Suzuki, Kensei; Iizuka, Takeshi; Nakai, Hiromi
2015-01-01
A new scheme is proposed for constructing an orbital-specific (OS) exchange-correlation functional that satisfies multiple linearity conditions for orbital energies (LCOEs). The Hartree-Fock exchange portions in the OS exchange-correlation functional, based on a multiply range-separated functional, are set so as to satisfy the multiple LCOEs. The current scheme has also been extended to calculations of core, valence, and Rydberg excitations. Numerical assessments on ionization potentials, electron affinities and excitation energies have confirmed accurate descriptions of core, valence, and Rydberg orbitals by the OS hybrid functional.
NASA Astrophysics Data System (ADS)
Jiang, W. Z.; Ren, Z. Z.; Sheng, Z. Q.; Zhu, Z. Y.
2010-06-01
The relationship between de-excitation energies of superdeformed secondary minima relative to ground states and the density dependence of the symmetry energy is investigated for heavy nuclei using the relativistic mean-field (RMF) model. It is shown that the de-excitation energies of superdeformed secondary minima are sensitive to differences in the symmetry energy that are mimicked by the isoscalar-isovector coupling included in the model. With deliberate investigations on a few Hg isotopes that have data of de-excitation energies, we find that the description for the de-excitation energies can be improved due to the softening of the symmetry energy. Further, we have investigated de-excitation energies of odd-odd heavy nuclei that are nearly independent of pairing correlations, and have discussed the possible extraction of the constraint on the density dependence of the symmetry energy with the measurement of de-excitation energies of these nuclei.
Relativistic Energy Density Functionals: Exotic modes of excitation
Vretenar, D.; Paar, N.; Marketin, T.
2008-11-11
The framework of relativistic energy density functionals has been applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of {beta}-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure have been investigated with the relativistic quasiparticle random-phase approximation. We present results for the evolution of low-lying dipole (pygmy) strength in neutron-rich nuclei, and charged-current neutrino-nucleus cross sections.
Computer Code For Turbocompounded Adiabatic Diesel Engine
NASA Technical Reports Server (NTRS)
Assanis, D. N.; Heywood, J. B.
1988-01-01
Computer simulation developed to study advantages of increased exhaust enthalpy in adiabatic turbocompounded diesel engine. Subsytems of conceptual engine include compressor, reciprocator, turbocharger turbine, compounded turbine, ducting, and heat exchangers. Focus of simulation of total system is to define transfers of mass and energy, including release and transfer of heat and transfer of work in each subsystem, and relationship among subsystems. Written in FORTRAN IV.
Fujita, Takatoshi; Huh, Joonsuk; Saikin, Semion K; Brookes, Jennifer C; Aspuru-Guzik, Alán
2014-06-01
We present a theoretical study of excitation dynamics in the chlorosome antenna complex of green photosynthetic bacteria based on a recently proposed model for the molecular assembly. Our model for the excitation energy transfer (EET) throughout the antenna combines a stochastic time propagation of the excitonic wave function with molecular dynamics simulations of the supramolecular structure and electronic structure calculations of the excited states. We characterized the optical properties of the chlorosome with absorption, circular dichroism and fluorescence polarization anisotropy decay spectra. The simulation results for the excitation dynamics reveal a detailed picture of the EET in the chlorosome. Coherent energy transfer is significant only for the first 50 fs after the initial excitation, and the wavelike motion of the exciton is completely damped at 100 fs. Characteristic time constants of incoherent energy transfer, subsequently, vary from 1 ps to several tens of ps. We assign the time scales of the EET to specific physical processes by comparing our results with the data obtained from time-resolved spectroscopy experiments.
The energy flux of MHD wave modes excited by realistic photospheric drivers
NASA Astrophysics Data System (ADS)
Fedun, Viktor; Von Fay-Siebenburgen, Erdélyi Robert; Mumford, Stuart
The mechanism(s) responsible for solar coronal heating are still an unresolved and challenging task. In the framework of 3D numerical modelling of MHD wave excitation and propagation in the strongly stratified solar atmosphere we analyse the mode coupling and estimate the wave energy partition which can be supplied to the upper layers of the solar atmosphere by locally decomposed slow, fast and Alfven modes. These waves are excited by a number of realistic photospheric drivers which are mimicking the random granular buffeting, the coherent global solar oscillations and swirly motion observed in e.g. magnetic bright points. Based on a self-similar approach, a realistic magnetic flux tubes configuration is constructed and implemented in the VALIIIC model of the solar atmosphere. A novel method for decomposing the velocity perturbations into parallel, perpendicular and azimuthal components in 3D geometry is developed using field lines to trace a volume of constant energy flux. This method is used to identify the excited wave modes propagating upwards from the photosphere and to compute the percentage energy contribution of each mode. We have found, that for all cases where torsional motion is present, the main contribution to the flux (60%) is by Alfven wave. In the case of the vertical driver it is found to mainly excite the fast- and slow-sausage modes and a horizontal driver primarily excites the slow kink mode.
Solitary shock waves and adiabatic phase transition in lipid interfaces and nerves
NASA Astrophysics Data System (ADS)
Shrivastava, Shamit; Kang, Kevin Heeyong; Schneider, Matthias F.
2015-01-01
This study shows that the stability of solitary waves excited in a lipid monolayer near a phase transition requires positive curvature of the adiabats, a known necessary condition in shock compression science. It is further shown that the condition results in a threshold for excitation, saturation of the wave's amplitude, and the splitting of the wave at the phase boundaries. Splitting in particular confirms that a hydrated lipid interface can undergo condensation on adiabatic heating, thus showing retrograde behavior. Finally, using the theoretical insights and state dependence of conduction velocity in nerves, the curvature of the adiabatic state diagram is shown to be closely tied to the thermodynamic blockage of nerve pulse propagation.
Solitary shock waves and adiabatic phase transition in lipid interfaces and nerves.
Shrivastava, Shamit; Kang, Kevin Heeyong; Schneider, Matthias F
2015-01-01
This study shows that the stability of solitary waves excited in a lipid monolayer near a phase transition requires positive curvature of the adiabats, a known necessary condition in shock compression science. It is further shown that the condition results in a threshold for excitation, saturation of the wave's amplitude, and the splitting of the wave at the phase boundaries. Splitting in particular confirms that a hydrated lipid interface can undergo condensation on adiabatic heating, thus showing retrograde behavior. Finally, using the theoretical insights and state dependence of conduction velocity in nerves, the curvature of the adiabatic state diagram is shown to be closely tied to the thermodynamic blockage of nerve pulse propagation.
Local control of non-adiabatic dissociation dynamics
NASA Astrophysics Data System (ADS)
Bomble, L.; Chenel, A.; Meier, C.; Desouter-Lecomte, M.
2011-05-01
We present a theoretical approach which consists of applying the strategy of local control to projectors based on asymptotic scattering states. This allows to optimize final state distributions upon laser excitation in cases where strong non-adiabatic effects are present. The approach, despite being based on a time-local formulation, can take non-adiabatic transitions that appear at later times fully into account and adopt a corresponding control strategy. As an example, we show various dissociation channels of HeH+, a system where the ultrafast dissociation dynamics is determined by strong non-Born-Oppenheimer effects.
NASA Astrophysics Data System (ADS)
Martens, W.; von Wagner, U.; Litak, G.
2013-09-01
Recent years have shown increasing interest of researchers in energy harvesting systems designed to generate electrical energy from ambient energy sources, such as mechanical excitations. In a lot of cases excitation patterns of such systems exhibit random rather than deterministic behaviour with broad-band frequency spectra. In this paper, we study the efficiency of vibration energy harvesting systems with stochastic ambient excitations by solving corresponding Fokker-Planck equations. In the system under consideration, mechanical energy is transformed by a piezoelectric transducer in the presence of mechanical potential functions which are governed by magnetic fields applied to the device. Depending on the magnet positions and orientations the vibrating piezo beam system is subject to characteristic potential functions, including single and double well shapes. Considering random excitation, the probability density function (pdf) of the state variables can be calculated by solving the corresponding Fokker-Planck equation. For this purpose, the pdf is expanded into orthogonal polynomials specially adapted to the problem and the residual is minimized by a Galerkin procedure. The power output has been estimated as a function of basic potential function parameters determining the characteristic pdf shape.
Kinetic Energy Distribution of H(2p) Atoms from Dissociative Excitation of H2
NASA Technical Reports Server (NTRS)
Ajello, Joseph M.; Ahmed, Syed M.; Kanik, Isik; Multari, Rosalie
1995-01-01
The kinetic energy distribution of H(2p) atoms resulting from electron impact dissociation of H2 has been measured for the first time with uv spectroscopy. A high resolution uv spectrometer was used for the measurement of the H Lyman-alpha emission line profiles at 20 and 100 eV electron impact energies. Analysis of the deconvolved 100 eV line profile reveals the existence of a narrow line peak and a broad pedestal base. Slow H(2p) atoms with peak energy near 80 meV produce the peak profile, which is nearly independent of impact energy. The wings of H Lyman-alpha arise from dissociative excitation of a series of doubly excited Q(sub 1) and Q(sub 2) states, which define the core orbitals. The fast atom energy distribution peaks at 4 eV.
High spin spectroscopy near the N=Z line: Channel selection and excitation energy systematics
Svensson, C.E.; Cameron, J.A.; Flibotte, S.
1996-12-31
The total {gamma}-ray and charged-particle energies emitted in fusion-evaporation reactions leading to N=Z compound systems in the A = 50-70 mass region have been measured with the 8{pi} {gamma}-ray spectrometer and the miniball charged-particle detector array. A new method of channel selection has been developed which combines particle identification with these total energy measurements and greatly improves upon the selectivity possible with particle detection alone. In addition, the event by event measurement of total {gamma}-ray energies using the BGO ball of the 8{pi} spectrometer has allowed a determination of excitation energies following particle evaporation for a large number of channels in several different reactions. The new channel selection procedure and excitation energy systematics are illustrated with data from the reaction of {sup 24}Mg on {sup 40}Ca at E{sub lab} = 80MeV.
Alpha-helices direct excitation energy flow in the Fenna Matthews Olson protein.
Müh, Frank; Madjet, Mohamed El-Amine; Adolphs, Julia; Abdurahman, Ayjamal; Rabenstein, Björn; Ishikita, Hiroshi; Knapp, Ernst-Walter; Renger, Thomas
2007-10-23
In photosynthesis, light is captured by antenna proteins. These proteins transfer the excitation energy with almost 100% quantum efficiency to the reaction centers, where charge separation takes place. The time scale and pathways of this transfer are controlled by the protein scaffold, which holds the pigments at optimal geometry and tunes their excitation energies (site energies). The detailed understanding of the tuning of site energies by the protein has been an unsolved problem since the first high-resolution crystal structure of a light-harvesting antenna appeared >30 years ago [Fenna RE, Matthews BW (1975) Nature 258:573-577]. Here, we present a combined quantum chemical/electrostatic approach to compute site energies that considers the whole protein in atomic detail and provides the missing link between crystallography and spectroscopy. The calculation of site energies of the Fenna-Matthews-Olson protein results in optical spectra that are in quantitative agreement with experiment and reveals an unexpectedly strong influence of the backbone of two alpha-helices. The electric field from the latter defines the direction of excitation energy flow in the Fenna-Matthews-Olson protein, whereas the effects of amino acid side chains, hitherto thought to be crucial, largely compensate each other. This result challenges the current view of how energy flow is regulated in pigment-protein complexes and demonstrates that attention has to be paid to the backbone architecture. PMID:17940020
Excitation of the lowest electronic transitions in ethanol by low-energy electrons
NASA Astrophysics Data System (ADS)
Hargreaves, L. R.; Khakoo, M. A.; Winstead, C.; McKoy, V.
2016-09-01
We report absolute differential and integral cross sections for electronic excitation of ethanol, by low-energy electron impact. Cross sections for low-lying excited states were measured at incident electron energies from 9 to 20 eV and at scattering angles from {5}\\circ through {130}\\circ . Our results include cross sections for excitation of the 1{}3A\\prime \\prime and 1{}1A\\prime \\prime states as well as for the 2{}3A\\prime \\prime + 1{}3A\\prime and 2{}1A\\prime \\prime + 2{}1A\\prime cross section sums. Corresponding calculations were also performed using the Schwinger multichannel method, within an 11-channel close-coupling scheme.
Linear-response theory for Mukherjee's multireference coupled-cluster method: Excitation energies
NASA Astrophysics Data System (ADS)
Jagau, Thomas-C.; Gauss, Jürgen
2012-07-01
The recently presented linear-response function for Mukherjee's multireference coupled-cluster method (Mk-MRCC) [T.-C. Jagau and J. Gauss, J. Chem. Phys. 137, 044115 (2012)], 10.1063/1.4734308 is employed to determine vertical excitation energies within the singles and doubles approximation (Mk-MRCCSD-LR) for ozone as well as for o-benzyne, m-benzyne, and p-benzyne, which display increasing multireference character in their ground states. In order to assess the impact of a multireference ground-state wavefunction on excitation energies, we compare all our results to those obtained at the single-reference coupled-cluster level of theory within the singles and doubles as well as within the singles, doubles, and triples approximation. Special attention is paid to the artificial splitting of certain excited states which arises from the redundancy intrinsic to Mk-MRCC theory and hinders the straightforward application of the Mk-MRCC-LR method.
Dynamics of Excitation Energy Transfer Between the Subunits of Photosystem II Dimer.
Yoneda, Yusuke; Katayama, Tetsuro; Nagasawa, Yutaka; Miyasaka, Hiroshi; Umena, Yasufumi
2016-09-14
Energy transfer dynamics in monomer and dimer of the photosystem II core complex (PSII-CC) was investigated by means of femtosecond transient absorption (TA) spectroscopy. There is no profound difference between the TA dynamics of the monomer and the dimer in the weak excitation intensity condition (≤21 nJ). However, the fast recovery of the ground state bleach was pronounced at higher excitation intensities, and the excitation intensity dependence of the dimer was more significant than that of the monomer. This result indicates efficient exciton-exciton annihilation taking place in the dimer due to energy transfer between the two monomer units. The annihilation dynamics was reproduced by a simple model based on binomial theorem, which indicated that although PSII-CC dimer has two reaction centers, only one charge-separated state remained after annihilation. PMID:27541744
NASA Astrophysics Data System (ADS)
Chuluunbaatar, O.; Gusev, A. A.; Abrashkevich, A. G.; Amaya-Tapia, A.; Kaschiev, M. S.; Larsen, S. Y.; Vinitsky, S. I.
2007-10-01
A FORTRAN 77 program is presented which calculates energy values, reaction matrix and corresponding radial wave functions in a coupled-channel approximation of the hyperspherical adiabatic approach. In this approach, a multi-dimensional Schrödinger equation is reduced to a system of the coupled second-order ordinary differential equations on the finite interval with homogeneous boundary conditions of the third type. The resulting system of radial equations which contains the potential matrix elements and first-derivative coupling terms is solved using high-order accuracy approximations of the finite-element method. As a test desk, the program is applied to the calculation of the energy values and reaction matrix for an exactly solvable 2D-model of three identical particles on a line with pair zero-range potentials. Program summaryProgram title: KANTBP Catalogue identifier: ADZH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4224 No. of bytes in distributed program, including test data, etc.: 31 232 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IV Operating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XP RAM: depends on (a) the number of differential equations; (b) the number and order of finite-elements; (c) the number of hyperradial points; and (d) the number of eigensolutions required. Test run requires 30 MB Classification: 2.1, 2.4 External routines: GAULEG and GAUSSJ [W.H. Press, B.F. Flanery, S.A. Teukolsky, W.T. Vetterley, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986] Nature of problem: In the hyperspherical adiabatic
Collision-induced energy transfer in intermediate excited states of cesium
NASA Astrophysics Data System (ADS)
Lukaszewski, M.; Jackowska, I.
1993-09-01
We report an application of laser spectroscopy techniques to a study of collision-induced interactions in atomic excited states. Due to pulsed dye laser excitation a considerable selective population of highly excited states of ccsium is obtained. Collision-induced transfer of excitation energy between the excited states results in modifications in time and spectral characteristics of observed atomic fluorescence. Quantitative information on the efficiency of collisional processes can be obtained from the measurements of time constants of the time-resolved fluorescence signals and/or from those of the integrated intensities of the fluorescence lines. Both possibilities are used in the present work. Perturbation of nD (n=8-14) and nS (n=1O-15) states of cesium in collisions with noble-gas atoms is investigated. The cross sections for the transfer of excitation between fine-structure substates of the nD states (J mixing) and for the nS-(n-4)F intermultiplet transfer are obtained.
Megow, Jörg
2016-09-01
The gas-to-crystal-shift denotes the shift of electronic excitation energies, i.e., the difference between ground and excited state energies, for a molecule transferred from the gas to the bulk phase. The contributions to the gas-to-crystal-shift comprise electrostatic as well as inductive polarization and dispersive energy shifts of the molecular excitation energies due to interaction with environmental molecules. For the example of 3,4,9,10-perylene-tetracarboxylic-diimide (PTCDI) bulk, the contributions to the gas-to-crystal shift are investigated. In the present work, electrostatic interaction is calculated via Coulomb interaction of partial charges while inductive and dispersive interactions are obtained using respective sum over states expressions. The coupling of higher transition densities for the first 4500 excited states of PTCDI was computed using transition partial charges based on an atomistic model of PTCDI bulk obtained from molecular dynamics simulations. As a result it is concluded that for the investigated model system of a PTCDI crystal, the gas to crystal shift is dominated by dispersive interaction. PMID:27608991
NASA Astrophysics Data System (ADS)
Megow, Jörg
2016-09-01
The gas-to-crystal-shift denotes the shift of electronic excitation energies, i.e., the difference between ground and excited state energies, for a molecule transferred from the gas to the bulk phase. The contributions to the gas-to-crystal-shift comprise electrostatic as well as inductive polarization and dispersive energy shifts of the molecular excitation energies due to interaction with environmental molecules. For the example of 3,4,9,10-perylene-tetracarboxylic-diimide (PTCDI) bulk, the contributions to the gas-to-crystal shift are investigated. In the present work, electrostatic interaction is calculated via Coulomb interaction of partial charges while inductive and dispersive interactions are obtained using respective sum over states expressions. The coupling of higher transition densities for the first 4500 excited states of PTCDI was computed using transition partial charges based on an atomistic model of PTCDI bulk obtained from molecular dynamics simulations. As a result it is concluded that for the investigated model system of a PTCDI crystal, the gas to crystal shift is dominated by dispersive interaction.
Ionic bond effects on the mean excitation energy for stopping power
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Chang, C. K.; Kamaratos, E.; Xu, Y. J.
1982-01-01
Molecular mean excitation energies for ionic bonded molecules calculated according to the local plasma approximation are compared to the Bragg rule. Adjustments of 15% are calculated for LiF in agreement with experiments while 6% adjustments are predicted for HF and 3% for LiH.
Highly correlated systems. Excitation energies of first row transition metals Sc-Cu
NASA Astrophysics Data System (ADS)
Raghavachari, Krishnan; Trucks, Gary W.
1989-07-01
The low-lying dns2→dn+1s1 excitation energies of the first row transition metal atoms Sc-Cu are calculated using fourth-order M≂ller-Plesset perturbation theory (MP4) as well as quadratic configuration interaction (QCI) techniques with large spd and spdf basis sets. The MP4 method performs well for Sc-Mn but fails dramatically for Fe-Cu. In contrast, the QCI technique performs uniformly for all excitation energies with a mean deviation from experiment of only 0.14 eV after including relativistic corrections. f functions contribute 0.1-0.4 eV to the excitation energies for these systems. The highly correlated d10 state of the Ni atom is also considered in detail. The QCI technique obtains the d9s1→d10 splitting of the Ni atom with an error of only 0.13 eV. The results show that single-configuration Hartree-Fock based methods can be successful in calculating excitation energies of transition metal atoms.
NASA Astrophysics Data System (ADS)
Buchacz, A.; Banaś, W.; Płaczek, M.
2015-11-01
Piezoelectric transducers are used more and more often in modern technical devices. The wide range of their possible applications is a result of the possibility to use both direct and reverse piezoelectric effect. Nowadays, application of piezoelectric transducers in energy harvesting systems is getting more and more popular. It is caused by the easy way to convert energy of mechanical vibration to the electric voltage using piezoelectric transducers. This paper presents results of influence analysis of the vibrating mechanical subsystem's excitation parameters on the effectiveness of the system designed for energy harvesting. The considered vibrating system is a composite plate with piezoelectric transducer bonded to its surface. Vibrations of the system are excited by means of an actuator with possibility to change the excitation amplitude and frequency. Recovering of electrical energy from mechanical vibrations is possible by using the direct piezoelectric effect - generation of the electric voltage while the transducer is mechanically deformed. In carried out test Macro Fiber Composite (MFC) piezoelectric transducers were used. It was proved that the time that is necessary for switch on the output voltage in analyzed system depends on the frequency of the excitation.
NASA Astrophysics Data System (ADS)
Chuluunbaatar, O.; Gusev, A. A.; Vinitsky, S. I.; Abrashkevich, A. G.
2008-11-01
A FORTRAN 77 program for calculating energy values, reaction matrix and corresponding radial wave functions in a coupled-channel approximation of the hyperspherical adiabatic approach is presented. In this approach, a multi-dimensional Schrödinger equation is reduced to a system of the coupled second-order ordinary differential equations on a finite interval with homogeneous boundary conditions: (i) the Dirichlet, Neumann and third type at the left and right boundary points for continuous spectrum problem, (ii) the Dirichlet and Neumann type conditions at left boundary point and Dirichlet, Neumann and third type at the right boundary point for the discrete spectrum problem. The resulting system of radial equations containing the potential matrix elements and first-derivative coupling terms is solved using high-order accuracy approximations of the finite element method. As a test desk, the program is applied to the calculation of the reaction matrix and radial wave functions for 3D-model of a hydrogen-like atom in a homogeneous magnetic field. This version extends the previous version 1.0 of the KANTBP program [O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen, S.I. Vinitsky, Comput. Phys. Commun. 177 (2007) 649-675]. Program summaryProgram title: KANTBP Catalogue identifier: ADZH_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZH_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 20 403 No. of bytes in distributed program, including test data, etc.: 147 563 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IV Operating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XP RAM: This depends on the
NASA Astrophysics Data System (ADS)
Peng, Degao; Yang, Yang; Zhang, Peng; Yang, Weitao
2014-12-01
In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N4). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as < hat{S}2rangle are also developed and tested.
Yudanov, Vladislav V; Mikhailova, Valentina A; Ivanov, Anatoly I
2010-12-23
The charge recombination dynamics of excited donor-acceptor complexes in polar solvents has been investigated within the framework of the stochastic approach. The model involves the excited state formation by the pump pulse and accounts for the reorganization of a number of intramolecular high-frequency vibrational modes, for their relaxation as well as for the solvent reorganization following nonexponential relaxation. The hot transitions accelerate the charge recombination in the low exergonic region and suppress it in the region of moderate exothermicity. This straightens the dependence of the logarithm of the charge recombination rate constant on the free energy gap to the form that can be fitted to the experimental data. The free energy dependence of the charge recombination rate constant can be well fitted to the multichannel stochastic model if the donor-acceptor complexes are separated into a few groups with different values of the electronic coupling. The model provides correct description of the nonexponential charge recombination dynamics in excited donor-acceptor complexes, in particular, nearly exponential recombination in perylene-tetracyanoethylene complex in acetonitrile. It appears that majority of the initially excited donor-acceptor complexes recombines in a nonthermal (hot) stage when the nonequilibrium wave packet passes through a number of term crossings corresponding to transitions toward vibrational excited states of the electronic ground state in the area of the low and moderate exothermicity.
Peng, Degao; Yang, Yang; Zhang, Peng; Yang, Weitao
2014-12-07
In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N{sup 4}). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as 〈S{sup ^2}〉 are also developed and tested.
Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging.
Levy, Elizabeth S; Tajon, Cheryl A; Bischof, Thomas S; Iafrati, Jillian; Fernandez-Bravo, Angel; Garfield, David J; Chamanzar, Maysamreza; Maharbiz, Michel M; Sohal, Vikaas S; Schuck, P James; Cohen, Bruce E; Chan, Emory M
2016-09-27
Near infrared (NIR) microscopy enables noninvasive imaging in tissue, particularly in the NIR-II spectral range (1000-1400 nm) where attenuation due to tissue scattering and absorption is minimized. Lanthanide-doped upconverting nanocrystals are promising deep-tissue imaging probes due to their photostable emission in the visible and NIR, but these materials are not efficiently excited at NIR-II wavelengths due to the dearth of lanthanide ground-state absorption transitions in this window. Here, we develop a class of lanthanide-doped imaging probes that harness an energy-looping mechanism that facilitates excitation at NIR-II wavelengths, such as 1064 nm, that are resonant with excited-state absorption transitions but not ground-state absorption. Using computational methods and combinatorial screening, we have identified Tm(3+)-doped NaYF4 nanoparticles as efficient looping systems that emit at 800 nm under continuous-wave excitation at 1064 nm. Using this benign excitation with standard confocal microscopy, energy-looping nanoparticles (ELNPs) are imaged in cultured mammalian cells and through brain tissue without autofluorescence. The 1 mm imaging depths and 2 μm feature sizes are comparable to those demonstrated by state-of-the-art multiphoton techniques, illustrating that ELNPs are a promising class of NIR probes for high-fidelity visualization in cells and tissue. PMID:27603228
Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces
NASA Astrophysics Data System (ADS)
Olsen, Thomas; Gavnholt, Jeppe; Schiøtz, Jakob
2009-01-01
We present a model for desorption induced by (multiple) electronic transitions [DIET (DIMET)] based on potential energy surfaces calculated with the delta self-consistent field extension of density-functional theory. We calculate potential energy surfaces of CO and NO molecules adsorbed on various transition-metal surfaces and show that classical nuclear dynamics does not suffice for propagation in the excited state. We present a simple Hamiltonian describing the system with parameters obtained from the excited-state potential energy surface and show that this model can describe desorption dynamics in both the DIET and DIMET regimes and reproduce the power-law behavior observed experimentally. We observe that the internal stretch degree of freedom in the molecules is crucial for the energy transfer between the hot electrons and the molecule when the coupling to the surface is strong.
Blancafort, Lluis; Gatti, Fabien; Meyer, Hans-Dieter
2011-10-07
The double bond photoisomerization of fulvene has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method. Fulvene is a test case to develop optical control strategies based on the knowledge of the excited state decay mechanism. The decay takes place on a time scale of several hundred femtoseconds, and the potential energy surface is centered around a conical intersection seam between the ground and excited state. The competition between unreactive decay and photoisomerization depends on the region of the seam accessed during the decay. The dynamics are carried out on a four-dimensional model surface, parametrized from complete active space self-consistent field calculations, that captures the main features of the seam (energy and locus of the seam and associated branching space vectors). Wave packet propagations initiated by single laser pulses of 5-25 fs duration and 1.85-4 eV excitation energy show the principal characteristics of the first 150 fs of the photodynamics. Initially, the excitation energy is transferred to a bond stretching mode that leads the wave packet to the seam, inducing the regeneration of the reactant. The photoisomerization starts after the vibrational energy has flowed from the bond stretching to the torsional mode. In our propagations, intramolecular energy redistribution (IVR) is accelerated for higher excess energies along the bond stretch mode. Thus, the competition between unreactive decay and isomerization depends on the rate of IVR between the bond stretch and torsion coordinates, which in turn depends on the excitation energy. These results set the ground for the development of future optical control strategies.
Shortcuts to adiabaticity in a time-dependent box
Campo, A. del; Boshier, M. G.
2012-01-01
A method is proposed to drive an ultrafast non-adiabatic dynamics of an ultracold gas trapped in a time-dependent box potential. The resulting state is free from spurious excitations associated with the breakdown of adiabaticity, and preserves the quantum correlations of the initial state up to a scaling factor. The process relies on the existence of an adiabatic invariant and the inversion of the dynamical self-similar scaling law dictated by it. Its physical implementation generally requires the use of an auxiliary expulsive potential. The method is extended to a broad family of interacting many-body systems. As illustrative examples we consider the ultrafast expansion of a Tonks-Girardeau gas and of Bose-Einstein condensates in different dimensions, where the method exhibits an excellent robustness against different regimes of interactions and the features of an experimentally realizable box potential. PMID:22970340
Shortcuts to adiabaticity in a time-dependent box.
del Campo, A; Boshier, M G
2012-01-01
A method is proposed to drive an ultrafast non-adiabatic dynamics of an ultracold gas trapped in a time-dependent box potential. The resulting state is free from spurious excitations associated with the breakdown of adiabaticity, and preserves the quantum correlations of the initial state up to a scaling factor. The process relies on the existence of an adiabatic invariant and the inversion of the dynamical self-similar scaling law dictated by it. Its physical implementation generally requires the use of an auxiliary expulsive potential. The method is extended to a broad family of interacting many-body systems. As illustrative examples we consider the ultrafast expansion of a Tonks-Girardeau gas and of Bose-Einstein condensates in different dimensions, where the method exhibits an excellent robustness against different regimes of interactions and the features of an experimentally realizable box potential.
Shortcuts to adiabaticity in a time-dependent box
NASA Astrophysics Data System (ADS)
Del Campo, A.; Boshier, M. G.
2012-09-01
A method is proposed to drive an ultrafast non-adiabatic dynamics of an ultracold gas trapped in a time-dependent box potential. The resulting state is free from spurious excitations associated with the breakdown of adiabaticity, and preserves the quantum correlations of the initial state up to a scaling factor. The process relies on the existence of an adiabatic invariant and the inversion of the dynamical self-similar scaling law dictated by it. Its physical implementation generally requires the use of an auxiliary expulsive potential. The method is extended to a broad family of interacting many-body systems. As illustrative examples we consider the ultrafast expansion of a Tonks-Girardeau gas and of Bose-Einstein condensates in different dimensions, where the method exhibits an excellent robustness against different regimes of interactions and the features of an experimentally realizable box potential.
Optical excitation energies, Stokes shift, and spin-splitting of C24H72Si14.
Zope, Rajendra R; Baruah, Tunna; Richardson, Steven L; Pederson, Mark R; Dunlap, Brett I
2010-07-21
As an initial step toward the synthesis and characterization of sila-diamondoids, such as sila-adamantane (Si(10)H(16),T(d)), the synthesis of a fourfold silylated sila-adamantane molecule (C(24)H(72)Si(14),T(d)) has been reported in literature [Fischer et al., Science 310, 825 (2005)]. We present the electronic structure, ionization energies, quasiparticle gap, and the excitation energies for the Si(14)(CH(3))(24) and the exact silicon analog of adamantane Si(10)H(16) obtained at the all-electron level using the delta-self-consistent-field and transitional state methods within two different density functional models: (i) Perdew-Burke-Ernzerhof generalized gradient approximation and (ii) fully analytic density functional (ADFT) implementation with atom dependent potential. The ADFT is designed so that molecules separate into atoms having exact atomic energies. The calculations within the two models agree well, to within 0.25 eV for optical excitations. The effect of structural relaxation in the presence of electron-hole-pair excitations is examined to obtain its contribution to the luminescence Stokes shift. The spin-influence on exciton energies is also determined. Our calculations indicate overall decrease in the absorption, emission, quasiparticle, and highest occupied molecular orbital-lowest unoccupied molecular orbital gaps, ionization energies, Stokes shift, and exciton binding energy when passivating hydrogens in the Si(10)H(16) are replaced with electron donating groups such as methyl (Me) and trimehylsilyl (-Si(Me)(3)).
Dissociative recombination and vibrational excitation of BF+ in low energy electron collisions
NASA Astrophysics Data System (ADS)
Mezei, J. Zs; Colboc, F.; Pop, N.; Ilie, S.; Chakrabarti, K.; Niyonzima, S.; Lepers, M.; Bultel, A.; Dulieu, O.; Motapon, O.; Tennyson, J.; Hassouni, K.; Schneider, I. F.
2016-10-01
The latest molecular data—potential energy curves and Rydberg-valence interactions—characterising the super-excited electronic states of BF are reviewed in order to provide the input for the study of their fragmentation dynamics. Starting from this input, the main paths and mechanisms of BF+ dissociative recombination and vibrational excitation are analysed. Their cross sections are computed for the first time using a method based on the multichannel quantum defect theory (MQDT), and Maxwellian rate-coefficients are calculated and displayed in ready-to-be-used format for low temperature plasma kinetics simulations.
NASA Technical Reports Server (NTRS)
Kofsky, I. L.; Barrett, J. L.
1985-01-01
Laboratory experiments in which recombined CO, CO2, D2O, OH, N2, H2, and O2 molecules desorb from surfaces in excited internal and translational states are briefly reviewed. Unequilibrated distributions predominate from the principally catalytic metal substrates so far investigated. Mean kinetic energies have been observed up to approx. 3x, and in some cases less than, wall-thermal; the velocity distributions generally vary with emission angle, with non-Lambertian particle fluxes. The excitation state populations are found to depend on surface impurities, in an as yet unexplained way.
Nonequilibrium generalization of Förster Dexter theory for excitation energy transfer
NASA Astrophysics Data System (ADS)
Jang, Seogjoo; Jung, YounJoon; Silbey, Robert J.
2002-01-01
Förster-Dexter theory for excitation energy transfer (EET) is generalized for the account of short time nonequilibrium kinetics due to the nonstationary bath relaxation. The final rate expression is presented as a spectral overlap between the time dependent stimulated emission and the stationary absorption profiles, which allows experimental determination of the time dependent rate. For a harmonic oscillator bath model, an explicit rate expression is derived and model calculations are performed in order to examine the dependence of the nonequilibrium kinetics on the excitation-bath coupling strength and the temperature. Relevance of the present theory with recent experimental findings and possible future theoretical directions are discussed.
Heymann, M.; Hippler, H.; Nahr, D.; Plach, H.J.; Troe, J.
1988-09-22
Transient UV absorption spectra after UV laser excitation of SO/sub 2/ were recorded and analyzed with respect to collisional energy transfer. Byuse of previously determined calibration curves, the absorption-time signals were converted into average energy-number of collision profiles. Energy-dependent average energies transferred per collision (..delta..E) were derived for 22 different collision partners. The temperature dependence of (..delta..E) was determined over the range 300-1500 K by experiments in a CO/sub 2/ CW laser-heated reactor and in shock waves.
Excitation-energy dependence of solvation dynamics in room-temperature ionic liquids
NASA Astrophysics Data System (ADS)
Kim, Daekeon; Park, Sang-Won; Shim, Youngseon; Kim, Hyung J.; Jung, YounJoon
2016-07-01
Influence of the excitation energy of a probe solute molecule on its solvation dynamics and emission spectrum in 1-ethyl-3-methylimidazolium hexafluorophosphate (EMI+PF6-) is studied via molecular dynamics simulations using a coarse-grained model description. By exciting the probe at different energies, each with an extremely narrow distribution, ensuing solvent relaxation and its dynamic variance are monitored using the isoconfigurational ensemble method. Resulting Stokes shift function, S(t), indicates that long-time solvent relaxation becomes slower with the decreasing excitation energy and approaches the equilibrium correlation function, C(t), of solvent fluctuations. This suggests that the system excited at the red-edge of the spectrum observes linear response better than that at the blue-edge. A detailed analysis of nonequilibrium trajectories shows that the effect of initial configurations on variance of relaxation dynamics is mainly confined to short times; it reaches a maximum around 0.1 ≲ t ≲ 1 ps and diminishes as time further increases. The influence of the initial velocity distribution, on the other hand, tends to grow with time and dominates the long-time variations of dynamics. The emission spectrum shows the red-edge effect in accord with previous studies.
Excitation-energy dependence of solvation dynamics in room-temperature ionic liquids.
Kim, Daekeon; Park, Sang-Won; Shim, Youngseon; Kim, Hyung J; Jung, YounJoon
2016-07-28
Influence of the excitation energy of a probe solute molecule on its solvation dynamics and emission spectrum in 1-ethyl-3-methylimidazolium hexafluorophosphate (EMI(+)PF6 (-)) is studied via molecular dynamics simulations using a coarse-grained model description. By exciting the probe at different energies, each with an extremely narrow distribution, ensuing solvent relaxation and its dynamic variance are monitored using the isoconfigurational ensemble method. Resulting Stokes shift function, S(t), indicates that long-time solvent relaxation becomes slower with the decreasing excitation energy and approaches the equilibrium correlation function, C(t), of solvent fluctuations. This suggests that the system excited at the red-edge of the spectrum observes linear response better than that at the blue-edge. A detailed analysis of nonequilibrium trajectories shows that the effect of initial configurations on variance of relaxation dynamics is mainly confined to short times; it reaches a maximum around 0.1 ≲ t ≲ 1 ps and diminishes as time further increases. The influence of the initial velocity distribution, on the other hand, tends to grow with time and dominates the long-time variations of dynamics. The emission spectrum shows the red-edge effect in accord with previous studies.
Electron-driven excitations and dissociation of molecules
Miller, Greg; Orel, Ann E.
2015-02-13
This program studied how energy is interchanged in electron and photon collisions with molecules leading to ex-citation and dissociation. Modern ab initio techniques, both for the photoionization and electron scattering, and the subsequent nuclear dynamics studies, are used to accurately treat these problems. This work addresses vibrational ex-citation and dissociative attachment following electron impact, and the dynamics following inner shell photoionzation. These problems are ones for which a full multi-dimensional treatment of the nuclear dynamics is essential and where non-adiabatic effects are expected to be important.
Adiabaticity and spectral splits in collective neutrino transformations
Raffelt, Georg G.; Smirnov, Alexei Yu.
2007-12-15
Neutrinos streaming off a supernova core transform collectively by neutrino-neutrino interactions, leading to 'spectral splits' where an energy E{sub split} divides the transformed spectrum sharply into parts of almost pure but different flavors. We present a detailed description of the spectral-split phenomenon which is conceptually and quantitatively understood in an adiabatic treatment of neutrino-neutrino effects. Central to this theory is a self-consistency condition in the form of two sum rules (integrals over the neutrino spectra that must equal certain conserved quantities). We provide explicit analytic and numerical solutions for various neutrino spectra. We introduce the concept of the adiabatic reference frame and elaborate on the relative adiabatic evolution. Violating adiabaticity leads to the spectral split being 'washed out'. The sharpness of the split appears to be represented by a surprisingly universal function.
Adiabatic rotation, quantum search, and preparation of superposition states
NASA Astrophysics Data System (ADS)
Siu, M. Stewart
2007-06-01
We introduce the idea of using adiabatic rotation to generate superpositions of a large class of quantum states. For quantum computing this is an interesting alternative to the well-studied “straight line” adiabatic evolution. In ways that complement recent results, we show how to efficiently prepare three types of states: Kitaev’s toric code state, the cluster state of the measurement-based computation model, and the history state used in the adiabatic simulation of a quantum circuit. We also show that the method, when adapted for quantum search, provides quadratic speedup as other optimal methods do with the advantages that the problem Hamiltonian is time independent and that the energy gap above the ground state is strictly nondecreasing with time. Likewise the method can be used for optimization as an alternative to the standard adiabatic algorithm.
A non-adiabatic dynamics study of octatetraene: the radiationless conversion from S2 to S1.
Qu, Zexing; Liu, Chungen
2013-12-28
Simulation of the excited state dynamics of all-trans-1,3,5,7-octatetraene has been performed to investigate the ultrafast radiationless S2 → S1 internal conversion process. Multireference configuration interaction with single excitation method has been employed to optimize the equilibrium structure of the excited states, as well as the S2/S1 conical intersection, and to investigate the non-adiabatic molecular dynamics of the S2/S1 state transition. At the conical intersection, the molecule is found to be distorted from the original planar trans structure to a nearly perpendicular conformation around C3-C4 bond, with the torsion angle being about 107°. Such structural change can result in mutual approaching of states S2 and S1 in energy, and drastically increase the nonadiabatic coupling between the two states by destroying the inter-state symmetry prohibition in the electronic wavefunctions. Surface-hopping molecular dynamics simulations are performed to describe the non-adiabatic process. Upon the Franck-Condon excitation to the S2 state, the molecule quickly twists its C3-C4 bond and approaches the conical intersection region, where it can undergo efficient internal conversion to S1. The decay time constant (τ) of S2 state is estimated to be around 251 fs by fitting the occupation number of average fraction of trajectories using an exponential damping function. This value is reasonably consistent with previous experimental measurements of around 300-400 fs.
Low-Energy Electron Impact Excitation of the (010) Bending Mode of CO2
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Langhoff, Stephen R. (Technical Monitor)
1996-01-01
Low-energy electron impact excitation of the fundamental modes of CO2 has been extensively studied, both experimentally and theoretically. Much attention has been paid to the virtual state feature in the the (100) mode excitation and the (sup 2)II(sub upsilon) resonance feature around 3.8 eV, which is observable in all three fundamental modes. For the excitation of the (010) mode away from the resonance region, the Born dipole approximation was generally considered adequate. The present study employs the Born dipole approximation to treat the long range interaction and the Schwinger multichannel method for the short range interaction. The roles of the two interaction potentials will be compared.
NASA Astrophysics Data System (ADS)
Storey, P. J.; Sochi, Taha
2015-05-01
We present effective collision strengths for electron excitation and de-excitation of the 10 forbidden transitions between the five lowest energy levels of the astronomically abundant doubly ionized oxygen ion, O2+. The raw collision strength data were obtained from an R-matrix intermediate coupling calculation using the Breit-Pauli relativistic approximation published previously by the authors. The effective collision strengths were calculated with κ-distributed electron energies and are tabulated as a function of the electron temperature and κ.
Intermediate energy electron impact excitation of composite vibrational modes in phenol
Neves, R. F. C.; Jones, D. B.; Lopes, M. C. A.; Nixon, K. L.; Oliveira, E. M. de; Lima, M. A. P.; Costa, R. F. da; Varella, M. T. do N.; Bettega, M. H. F.; Silva, G. B. da; Brunger, M. J.
2015-05-21
We report differential cross section results from an experimental investigation into the electron impact excitation of a number of the low-lying composite (unresolved) vibrational modes in phenol (C{sub 6}H{sub 5}OH). The measurements were carried out at incident electron energies in the range 15–40 eV and for scattered-electron angles in the range 10–90°. The energy resolution of those measurements was typically ∼80 meV. Calculations, using the GAMESS code, were also undertaken with a B3LYP/aug-cc-pVDZ level model chemistry, in order to enable us to assign vibrational modes to the features observed in our energy loss spectra. To the best of our knowledge, the present cross sections are the first to be reported for vibrational excitation of the C{sub 6}H{sub 5}OH molecule by electron impact.
Duque, H V; Chiari, L; Jones, D B; Pettifer, Z; da Silva, G B; Limão-Vieira, P; Blanco, F; García, G; White, R D; Lopes, M C A; Brunger, M J
2014-06-01
Differential and integral cross section measurements, for incident electron energies in the 20-50 eV range, are reported for excitation of several composite vibrational modes in α-tetrahydrofurfuryl alcohol (THFA). Optimisation and frequency calculations, using GAUSSIAN 09 at the B3LYP/aug-cc-pVDZ level, were also undertaken for the two most abundant conformers of THFA, with results being reported for their respective mode classifications and excitation energies. Those calculations assisted us in the experimental assignments of the composite features observed in our measured energy loss spectra. There are, to the best of our knowledge, no other experimental or theoretical data currently available in the literature against which we can compare the present results.
Khan, Ahsan U.
1980-01-01
Phosphorus chemiluminescence under ambient conditions of a phosphorus oxidation flame is found to offer an efficient electronic energy transferring system to alkali metal atoms. The lowest resonance lines, 2P3 / 2,½→2S½, of potassium and sodium are excited by energy transfer when an argon stream at 80°C carrying potassium or sodium atoms intersects a phosphorus vapor stream, either at the flame or in the postflame region. The lowest electronically excited metastable 4IIi state of PO or the (PO[unk]PO)* excimer is considered to be the probable energy donor. The (PO[unk]PO)* excimer results from the interaction of the 4IIi state of one PO molecule with the ground 2IIr state of another. Metastability of the donor state is strongly indicated by the observation of intense sensitized alkali atom fluorescence in the postflame region. PMID:16592925
Pressure variation of 4f excitation energies in Eu and Tm metals
NASA Astrophysics Data System (ADS)
Herbst, J. F.; Wilkins, J. W.
1987-08-01
Calculations of 4f-electron excitation energies as functions of the Wigner-Seitz radius rWS in europium and thulium metals are reported. Crystal potentials are constructed by the renormalized-atom method for integrally-occupied 4f configurations, and each excitation energy is derived from a difference of band total energies. As rWS decreases for each metal the 6s and 5d levels are progressively depopulated, leading to enhancement of the 4f occupancy at elevated pressures. In particular our results predict a 4f7-->4f8 transition in Eu at a pressure P~44 Mbar and a 4f12-->4f13 transition in Tm at P~3 Mbar.
Response of energy envelop in complex oscillator networks to external stochastic excitations
NASA Astrophysics Data System (ADS)
Jin, Xiao-Ling; Huang, Zhi-Long; Chen, Guanrong; Leung, Andrew Y. T.
2010-07-01
The response of energy envelop in complex nonlinear oscillator networks to stochastic excitations is studied. First, by using the stochastic averaging method for quasi-nonintegrable-Hamiltonian systems, the averaged Fokker-Planck-Kolmogorov equation governing the probability density of the Hamiltonian is established. Then, the stationary probability density of the Hamiltonian is derived, and the stationary probability density of the averaged energy as well as the statistical moments of the Hamiltonian is obtained. To that end, an illustrative example is provided with the analytical relationship between the response and the network parameters as well as the network structure. Specific solutions are presented for five representative topological structures. Throughout extensive simulations, the effects of system parameters, such as the network size, coupling strength and intensities of stochastic excitations on the response of the energy envelop of the networks, are carefully observed and analyzed.
Duque, H. V.; Chiari, L.; Jones, D. B.; Pettifer, Z.; Silva, G. B. da; Limão-Vieira, P.; Blanco, F.; García, G.; White, R. D.; Lopes, M. C. A.; Brunger, M. J.
2014-06-07
Differential and integral cross section measurements, for incident electron energies in the 20–50 eV range, are reported for excitation of several composite vibrational modes in α-tetrahydrofurfuryl alcohol (THFA). Optimisation and frequency calculations, using GAUSSIAN 09 at the B3LYP/aug-cc-pVDZ level, were also undertaken for the two most abundant conformers of THFA, with results being reported for their respective mode classifications and excitation energies. Those calculations assisted us in the experimental assignments of the composite features observed in our measured energy loss spectra. There are, to the best of our knowledge, no other experimental or theoretical data currently available in the literature against which we can compare the present results.
Piecuch, Piotr; Hansen, Jared A.; Ajala, Adeayo O.
2015-09-15
When vertical energies are excited for a comprehensive test set of about 150 singlet excited states of 28 medium-sized organic molecules computed using two variants of the completely renormalised (CR) equation-of-motion (EOM) coupled-cluster (CC) method with singles, doubles, and non-iterative triples, abbreviated as δ-CR-EOMCCSD(T), and the analogous two variants of the newer, left-eigenstate δ-CR-EOMCC(2,3) approach are benchmarked against the previously published CASPT2, CC3, and EOMCCSDT-3 results, as well as the suggested theoretical best estimate (TBE) values. The δ-CR-EOMCC approaches are also used to identify and characterise about 50 additional excited states, including several states having substantial two-electron excitation components, which have not been found in the previous work and which can be used in future benchmark studies. We demonstrated that the non-iterative triples corrections to the EOMCCSD excitation energies defining the relatively inexpensive, single-reference, black-box δ-CR-EOMCC approaches provide significant improvements in the EOMCCSD data, while closely matching the results of the iterative and considerably more expensive CC3 and EOMCCSDT-3 calculations and their CASPT2 and TBE counterparts. It is also shown that the δ-CR-EOMCC methods, especially δ-CR-EOMCC(2,3), are capable of bringing the results of the CC3 and EOMCCSDT-3 calculations to a closer agreement with the CASPT2 and TBE data, demonstrating the utility of the cost-effective δ-CR-EOMCC methods in applications involving molecular electronic spectra. Finally, we show that there may exist a relationship between the magnitude of the triples corrections defining δ-CR-EOMCC approaches and the reduced excitation level diagnostic resulting from EOMCCSD.
Piecuch, Piotr; Hansen, Jared A.; Ajala, Adeayo O.
2015-09-15
When vertical energies are excited for a comprehensive test set of about 150 singlet excited states of 28 medium-sized organic molecules computed using two variants of the completely renormalised (CR) equation-of-motion (EOM) coupled-cluster (CC) method with singles, doubles, and non-iterative triples, abbreviated as δ-CR-EOMCCSD(T), and the analogous two variants of the newer, left-eigenstate δ-CR-EOMCC(2,3) approach are benchmarked against the previously published CASPT2, CC3, and EOMCCSDT-3 results, as well as the suggested theoretical best estimate (TBE) values. The δ-CR-EOMCC approaches are also used to identify and characterise about 50 additional excited states, including several states having substantial two-electron excitation components, whichmore » have not been found in the previous work and which can be used in future benchmark studies. We demonstrated that the non-iterative triples corrections to the EOMCCSD excitation energies defining the relatively inexpensive, single-reference, black-box δ-CR-EOMCC approaches provide significant improvements in the EOMCCSD data, while closely matching the results of the iterative and considerably more expensive CC3 and EOMCCSDT-3 calculations and their CASPT2 and TBE counterparts. It is also shown that the δ-CR-EOMCC methods, especially δ-CR-EOMCC(2,3), are capable of bringing the results of the CC3 and EOMCCSDT-3 calculations to a closer agreement with the CASPT2 and TBE data, demonstrating the utility of the cost-effective δ-CR-EOMCC methods in applications involving molecular electronic spectra. Finally, we show that there may exist a relationship between the magnitude of the triples corrections defining δ-CR-EOMCC approaches and the reduced excitation level diagnostic resulting from EOMCCSD.« less
Energy Dispersive XAFS: Characterization of Electronically Excited States of Copper(I) Complexes
2013-01-01
Energy dispersive X-ray absorption spectroscopy (ED-XAS), in which the whole XAS spectrum is acquired simultaneously, has been applied to reduce the real-time for acquisition of spectra of photoinduced excited states by using a germanium microstrip detector gated around one X-ray bunch of the ESRF (100 ps). Cu K-edge XAS was used to investigate the MLCT states of [Cu(dmp)2]+ (dmp =2,9-dimethyl-1,10-phenanthroline) and [Cu(dbtmp)2]+ (dbtmp =2,9-di-n-butyl-3,4,7,8-tetramethyl-1,10-phenanthroline) with the excited states created by excitation at 450 nm (10 Hz). The decay of the longer lived complex with bulky ligands, was monitored for up to 100 ns. DFT calculations of the longer lived MLCT excited state of [Cu(dbp)2]+ (dbp =2,9-di-n-butyl-1,10-phenanthroline) with the bulkier diimine ligands, indicated that the excited state behaves as a Jahn–Teller distorted Cu(II) site, with the interligand dihedral angle changing from 83 to 60° as the tetrahedral coordination geometry flattens and a reduction in the Cu–N distance of 0.03 Å. PMID:23718738
Non-adiabatic dark fluid cosmology
Hipólito-Ricaldi, W.S.; Velten, H.E.S.; Zimdahl, W. E-mail: velten@cce.ufes.br
2009-06-01
We model the dark sector of the cosmic substratum by a viscous fluid with an equation of state p = −ζΘ, where Θ is the fluid-expansion scalar and ζ is the coefficient of bulk viscosity for which we assume a dependence ζ∝ρ{sup ν} on the energy density ρ. The homogeneous and isotropic background dynamics coincides with that of a generalized Chaplygin gas with equation of state p = −A/ρ{sup α}. The perturbation dynamics of the viscous model, however, is intrinsically non-adiabatic and qualitatively different from the Chaplygin-gas case. In particular, it avoids short-scale instabilities and/or oscillations which apparently have ruled out unified models of the Chaplygin-gas type. We calculate the matter power spectrum and demonstrate that the non-adiabatic model is compatible with the data from the 2dFGRS and the SDSS surveys. A χ{sup 2}-analysis shows, that for certain parameter combinations the viscous-dark-fluid (VDF) model is well competitive with the ΛCDM model. These results indicate that non-adiabatic unified models can be seen as potential contenders for a General-Relativity-based description of the cosmic substratum.
Kato, Tsuyoshi; Ide, Yoshihiro; Yamanouchi, Kaoru
2015-12-31
We first calculate the ground-state molecular wave function of 1D model H{sub 2} molecule by solving the coupled equations of motion formulated in the extended multi-configuration time-dependent Hartree-Fock (MCTDHF) method by the imaginary time propagation. From the comparisons with the results obtained by the Born-Huang (BH) expansion method as well as with the exact wave function, we observe that the memory size required in the extended MCTDHF method is about two orders of magnitude smaller than in the BH expansion method to achieve the same accuracy for the total energy. Second, in order to provide a theoretical means to understand dynamical behavior of the wave function, we propose to define effective adiabatic potential functions and compare them with the conventional adiabatic electronic potentials, although the notion of the adiabatic potentials is not used in the extended MCTDHF approach. From the comparison, we conclude that by calculating the effective potentials we may be able to predict the energy differences among electronic states even for a time-dependent system, e.g., time-dependent excitation energies, which would be difficult to be estimated within the BH expansion approach.
Closser, Kristina D.; Head-Gordon, Martin; Gessner, Oliver
2014-04-07
The dynamics resulting from electronic excitations of helium clusters were explored using ab initio molecular dynamics. The simulations were performed with configuration interaction singles and adiabatic classical dynamics coupled to a state-following algorithm. 100 different configurations of He{sub 7} were excited into the 2s and 2p manifold for a total of 2800 trajectories. While the most common outcome (90%) was complete fragmentation to 6 ground state atoms and 1 excited state atom, 3% of trajectories yielded bound, He {sub 2}{sup *}, and <0.5% yielded an excited helium trimer. The nature of the dynamics, kinetic energy release, and connections to experiments are discussed.
Taple-top imaging of the non-adiabatically driven isomerization in the acetylene cation
NASA Astrophysics Data System (ADS)
Beaulieu, Samuel; Ibrahim, Heide; Wales, Benji; Schmidt, Bruno E.; Thiré, Nicolas; Bisson, Éric; Hebeisen, Christoph T.; Wanie, Vincent; Giguere, Mathieu; Kieffer, Jean-Claude; Sanderson, Joe; Schuurman, Michael S.; Légaré, François
2014-05-01
One of the primary goals of modern ultrafast science is to follow nuclear and electronic evolution of molecules as they undergo a photo-chemical reaction. Most of the interesting dynamics phenomena in molecules occur when an electronically excited state is populated. When the energy difference between electronic ground and excited states is large, Free Electron Laser (FEL) and HHG-based VUV sources were, up to date, the only light sources able to efficiently initiate those non-adiabatic dynamics. We have developed a simple table-top approach to initiate those rich dynamics via multiphoton absorption. As a proof of principle, we studied the ultrafast isomerization of the acetylene cation. We have chosen this model system for isomerization since the internal conversion mechanism which leads to proton migration is still under debate since decades. Using 266 nm multiphoton absorption as a pump and 800 nm induced Coulomb Explosion as a probe, we have shoot the first high-resolution molecular movie of the non-adiabatically driven proton migration in the acetylene cation. The experimental results are in excellent agreement with high level ab initio trajectory simulations.
The current sheet tiled and non-adiabatic ions effect on the flapping motion in magnetotail
NASA Astrophysics Data System (ADS)
Wei, XinHua
2016-04-01
The current sheet is a crucial region of the magnetotail, where energy reserve and release take place. The origin of the up-down motions of the current sheet, referred to as flapping motions, is among the most fundamental issues of magnetotail dynamics. Observational evidences suggest that the flapping motion is a kind of internal excited kink-like waves, but its particular propagating features such as the low phase speeds and the propagating direction from the tail center toward flanks do not match any local generation mechanisms previously established so far. Here we report observations of the current sheet flapping motions induced by non-adiabatic ions in the magnetic field configurations with a finite guiding component, whose population present periodic hemispherical asymmetries. These flapping motion current sheet cases often observed tiled. The current sheet flapping phenomenon implies that the excitation mechanism of the current sheet flapping motions is a self-circulation process between the non-adiabatic ion population and the current sheet equilibrium itself.
Energy level decay and excited state absorption processes in erbium-doped tellurite glass
NASA Astrophysics Data System (ADS)
Gomes, Laércio; Oermann, Michael; Ebendorff-Heidepriem, Heike; Ottaway, David; Monro, Tanya; Felipe Henriques Librantz, André; Jackson, Stuart D.
2011-10-01
The fundamental excited state decay processes relating to the 4I11/2 → 4I13/2 transition in singly Er3+-doped tellurite (TZNL) glass have been investigated in detail using time-resolved fluorescence spectroscopy. Selective laser excitation of the 4I11/2 energy level at 970 nm and selective laser excitation of the 4I13/2 energy level at 1485 nm has established that energy transfer upconversion by way of a dipole-dipole interaction between two excited erbium ions in the 4I13/2 level populates the 4I11/2 upper laser level of the 3 μm transition. This upconversion has been analyzed for Er2O3 concentrations between 0.5 mol. % and 2.2 mol. %. The 4I13/2 and 4I11/2 energy levels emit luminescence with peaks located at 1532 nm and 2734 nm, respectively, with radiative decay efficiencies of 65% and 6.8% for the higher (2.2 mol. %) concentration sample. The low 2.7 μm emission efficiency is due to the non-radiative decay bridging the 4I11/2 → 4I13/2 transition and energy transfer to the OH- groups in the glass. Excited state absorption was observed to occur from the 4I13/2 and 4I11/2 levels with peak absorptions occurring at 1550 nm and 971 nm, respectively. The decay time of the 4I11/2 excited state decreased with an increase in the Er3+ concentration, which related to energy transfer to OH- ions that had a measured concentration of 6.6 × 1018 cm-3. Results from numerical simulations showed that a population inversion is reached at a threshold pumping intensity of ˜80 kW cm-2 for a cw laser pump at 976 nm if [Er3+] ≥ 1.2 × 1021 cm-3 (or [Er2O3] ≥ 2.65 mol. %) without OH- impurities being present.
Yanguas-Gil, A.; Cotrino, J.; Gonzalez-Elipe, A.R.
2005-07-01
In this work the influence of the excited states on the electron-energy distribution function has been determined for an argon microwave discharge at low pressure. A collisional-radiative model of argon has been developed taking into account the most recent experimental and theoretical values of argon-electron-impact excitation cross sections. The model has been solved along with the electron Boltzmann equation in order to study the influence of the inelastic collisions from the argon excited states on the electron-energy distribution function. Results show that under certain conditions the excited states can play an important role in determining the shape of the distribution function and the mean kinetic energy of the electrons, deplecting the high-energy tail due to inelastic processes from the excited states, especially from the 4s excited configuration. It has been found that from the populations of the excited states an excitation temperature can be defined. This excitation temperature, which can be experimentally determined by optical emission spectroscopy, is lower than the electron kinetic temperature obtained from the electron-energy distribution function.
A proposal for fs-electron microscopy experiments on high-energy excitations in solids.
Piazza, L; Musumeci, P; Luiten, O J; Carbone, Fabrizio
2014-08-01
Recent advances in ultrafast technology enable both the study and the control of materials properties thanks to the ability to record high temporal resolution movies of their transformations, or the ability to generate new states of matter by selecting ad hoc an excitation to drive the system out of equilibrium. The holy grail of this type of experiments is to combine a high tuneability of the excitation with a wide observation window. For example, this is achieved in multidimensional optical spectroscopy where the response to several excitation energies is monitored in a broad energy range by a large bandwidth optical pulse. In this article, the possibility to combine the chemical sensitivity of intense tuneable X-rays pulses from a free electron laser, with the wide range of observables available in an ultrafast transmission electron microscope is discussed. The requirements for such experiments are quantified via estimates based on state of the art experiments and simulations, and it is proposed that ultrafast electron imaging, diffraction and spectroscopy experiments can be performed in combination with a chemically selective X-ray excitation of materials. PMID:24631423
Akhtar, Parveen; Lingvay, Mónika; Kiss, Teréz; Deák, Róbert; Bóta, Attila; Ughy, Bettina; Garab, Győző; Lambrev, Petar H
2016-04-01
Light-harvesting complex II (LHCII), the major peripheral antenna of Photosystem II in plants, participates in several concerted mechanisms for regulation of the excitation energy and electron fluxes in thylakoid membranes. In part, these include interaction of LHCII with Photosystem I (PSI) enhancing the latter's absorption cross-section - for example in the well-known state 1 - state 2 transitions or as a long-term acclimation to high light. In this work we examined the capability of LHCII to deliver excitations to PSI in reconstituted membranes in vitro. Proteoliposomes with native plant thylakoid membrane lipids and different stoichiometric ratios of LHCII:PSI were reconstituted and studied by steady-state and time-resolved fluorescence spectroscopy. Fluorescence emission from LHCII was strongly decreased in PSI-LHCII membranes due to trapping of excitations by PSI. Kinetic modelling of the time-resolved fluorescence data revealed the existence of separate pools of LHCII distinguished by the time scale of energy transfer. A strongly coupled pool, equivalent to one LHCII trimer per PSI, transferred excitations to PSI with near-unity efficiency on a time scale of less than 10ps but extra LHCIIs also contributed significantly to the effective antenna size of PSI, which could be increased by up to 47% in membranes containing 3 LHCII trimers per PSI. The results demonstrate a remarkable competence of LHCII to increase the absorption cross-section of PSI, given the opportunity that the two types of complexes interact in the membrane.
Meyer, T.J.
1995-12-31
A general method was developed for preparing complexes of Ru(II) with three different bidentate ligands; it is being extended to monodentate ligands for more synthetic versatility. This method was used to prepare a series of complexes with pre-designed absorption properties, with the goal of ``black absorbers`` for use as antenna chromophores in a light-to-chemical energy conversion array. The energy gap law for nonradiative decay was studied for preparing near-IR luminophores with long excited state lifetimes. The problem of destructive dd excited states in Ru(II) polypyridyl complexes was focused on, with success in preparing an extremely photo-inert complex with monodentate pyridine ligands. Time-resolved resonance Raman and infrared spectroscopy were used to study subtle excited state properties of complexes of Ru(II), Os(II), and Re(I). Success was achieved in controlled immobilization of d{sup 6} chromophores and quenchers on styrenic polymers. Having perfected our synthetic technique, we have begun to optimize the ground and excited state properties such as chromophore density, dipole orientation, and lifetime.
Coherent transport and energy flow patterns in photosynthesis under incoherent excitation.
Pelzer, Kenley M; Can, Tankut; Gray, Stephen K; Morr, Dirk K; Engel, Gregory S
2014-03-13
Long-lived coherences have been observed in photosynthetic complexes after laser excitation, inspiring new theories regarding the extreme quantum efficiency of photosynthetic energy transfer. Whether coherent (ballistic) transport occurs in nature and whether it improves photosynthetic efficiency remain topics of debate. Here, we use a nonequilibrium Green's function analysis to model exciton transport after excitation from an incoherent source (as opposed to coherent laser excitation). We find that even with an incoherent source, the rate of environmental dephasing strongly affects exciton transport efficiency, suggesting that the relationship between dephasing and efficiency is not an artifact of coherent excitation. The Green's function analysis provides a clear view of both the pattern of excitonic fluxes among chromophores and the multidirectionality of energy transfer that is a feature of coherent transport. We see that even in the presence of an incoherent source, transport occurs by qualitatively different mechanisms as dephasing increases. Our approach can be generalized to complex synthetic systems and may provide a new tool for optimizing synthetic light harvesting materials.
Impulse excitation of piezoelectric bimorphs for energy harvesting: a dimensionless model
NASA Astrophysics Data System (ADS)
Pozzi, Michele
2014-04-01
Energy harvesting (EH) is a multidisciplinary research area, involving physics, materials science and engineering, with the objective of providing renewable sources of power sufficient to operate targeted low-power applications. Piezoelectric transducers are often used for inertial vibrational as well as direct excitation EH. However, due to the stiffness of the most common material (PZT), compact and light-weight harvesters have high resonant frequencies, making them inefficient at extracting low-frequency power from the environment. The technique of frequency up-conversion, in the form of either plucking or impulse excitation, aims to bridge this frequency gap. In this paper, the technique is modelled analytically with focus on impulse excitation via impact or shock. An analytical model is developed in a standard way starting from the Euler-Bernoulli beam equations adapted to a piezoelectric bimorph. A set of dimensionless variables and parameters is defined and a system of differential equations derived. Here the system is solved numerically for a wide range of the two group parameters present, covering piezoelectric coupling strength between PVDF and PMN-PT. One major result is that the strength of the coupling strongly affects the timescale of the process, but has only a minor effect on the total energy converted. The model can be readily adapted to different excitation profiles.
Excitation Mechanisms in Moderate-Energy Na+-He and K+-He Collisions
NASA Astrophysics Data System (ADS)
Kita, Shigetomo; Hattori, Takehito; Shimakura, Noriyuki
2015-01-01
Excitation mechanisms in Na+-He and K+-He collisions were studied at laboratory collision energies of 1000 ≤ Elab ≤ 1500 eV by differential scattering spectroscopy. Extensive measurements were performed at Elab = 1500 eV. Double differential cross sections σ(Θ)k were measured over a wide range of center-of-mass scattering angles, 7.3 ≤ Θ ≤ 173°, by detecting all the scattered particles (Na+, Na, K+, K, He+, and He), where the subscript k denotes the number of exit channels in the reactions. At the collision energy of Elab = 1500 eV, one- and two-electron excitations were observed appreciably for the Na+-He collisions, while only one-electron excitations were observed in the K+-He collisions. The analyses of the experimental results for these collision systems indicate that the electronic transitions in the Na+-He and K+-He collisions take place at the internuclear distances of R < RC = 0.63 × 10-10 m [potential height V(R) > 49 eV] and R < RC = 0.80 × 10-10 m [V(R) > 36 eV], respectively. For these asymmetric systems, at Elab= 1500 eV, the electronic transition probabilities around the threshold angles are so small that the integral excitation cross sections have small values of Sex < 1.2 × 10-21 m2.
NASA Astrophysics Data System (ADS)
Dutta, A. K.
1995-07-01
In this article electronic excitation energy transfer between the aggregates of the donor erythrosin B (EB) and the acceptor malachite green (MG) has been studied in polystyrenebutylmethacrylate latex. Steady state flourescence quenching studies reveal that with the increasing latex concentration the rate of quenching decreases initially, attains a minimum and then increases again. Such a behaviour has been attributed to aggregation of the dye molecules at low latex concentration and redistribution at larger latex concentrations. These results illustrate the role of the microenvironment in modifying the energy transfer reaction rates and provides a model system for understanding energy transfer mechanisms in context to photosynthesis in real living systems.
Excitation energy and nuclear dissipation probed with evaporation-residue cross sections
Ye, W.
2011-04-15
Using a Langevin equation coupled with a statistical decay model, we calculate the excess of evaporation-residue cross sections over its standard statistical-model value as a function of nuclear dissipation strength for {sup 200}Hg compound nuclei (CNs) under two distinct types of initial conditions for populated CNs: (i) high excitation energy but low angular momentum (produced via proton-induced spallation reactions at GeV energies and via peripheral heavy-ion collisions at relativistic energies) and (ii) high angular momentum but low excitation energy (produced through fusion mechanisms). We find that the conditions of case (ii) not only amplify the effect of dissipation on the evaporation residues, but also substantially increase the sensitivity of this excess to nuclear dissipation. These results suggest that, in experiments, to obtain accurate information of presaddle nuclear dissipation strength by measuring evaporation-residue cross sections, it is best to choose the heavy-ion-induced fusion reaction approach to yield excited compound nuclei.
NASA Astrophysics Data System (ADS)
Weeraddana, Dilusha; Premaratne, Malin; Gunapala, Sarath D.; Andrews, David L.
2016-08-01
A fundamental theory is developed for describing laser-driven resonance energy transfer (RET) in dimensionally constrained nanostructures within the framework of quantum electrodynamics. The process of RET communicates electronic excitation between suitably disposed emitter and detector particles in close proximity, activated by the initial excitation of the emitter. Here, we demonstrate that the transfer rate can be significantly increased by propagation of an auxiliary laser beam through a pair of nanostructure particles. This is due to the higher order perturbative contribution to the Förster-type RET, in which laser field is applied to stimulate the energy transfer process. We construct a detailed picture of how excitation energy transfer is affected by an off-resonant radiation field, which includes the derivation of second and fourth order quantum amplitudes. The analysis delivers detailed results for the dependence of the transfer rates on orientational, distance, and laser intensity factor, providing a comprehensive fundamental understanding of laser-driven RET in nanostructures. The results of the derivations demonstrate that the geometry of the system exercises considerable control over the laser-assisted RET mechanism. Thus, under favorable conformational conditions and relative spacing of donor-acceptor nanostructures, the effect of the auxiliary laser beam is shown to produce up to 70% enhancement in the energy migration rate. This degree of control allows optical switching applications to be identified.
Fujitsuka, Mamoru; Lu, Chao; Iwamoto, Takahiro; Kayahara, Eiichi; Yamago, Shigeru; Majima, Tetsuro
2014-06-26
Cycloparaphenylenes (CPPs), a class of hoop-shaped conjugated macrocycles, have attracted the attention of researchers in various fields because of their interesting properties. Although their properties in the singlet-excited state have been reported, there is no systematic information on the triplet-excited state. In the present study, the properties of triplet-excited [n]CPP (n = 8-12, where n denotes the number of phenyl rings) were comprehensively investigated. The phosphorescence peak shifted to the shorter-wavelength side with increasing ring size of the CPPs, indicating smaller triplet energy for smaller CPPs. It was found that the triplet energy of a smaller CPP is even smaller than those of poly(p-phenylene)s, indicating that small hoop-shaped conjugated macrocycles are effective in realizing low-band gap materials. By applying laser flash photolysis, the Tn-T1 absorption spectra of CPPs were obtained, from which the size-dependence of energy levels of higher triplet states were also determined. Generation of singlet oxygen by the energy transfer from a triplet-excited CPP was confirmed. The generation yield became smaller with increasing size of the CPP in accordance with the triplet yield. From these observations, the size-dependence of the deactivation pathways is explained. PMID:24914824
Munafò, A; Panesi, M; Magin, T E
2014-02-01
A Boltzmann rovibrational collisional coarse-grained model is proposed to reduce a detailed kinetic mechanism database developed at NASA Ames Research Center for internal energy transfer and dissociation in N(2)-N interactions. The coarse-grained model is constructed by lumping the rovibrational energy levels of the N(2) molecule into energy bins. The population of the levels within each bin is assumed to follow a Boltzmann distribution at the local translational temperature. Excitation and dissociation rate coefficients for the energy bins are obtained by averaging the elementary rate coefficients. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The proposed coarse-grained model is applied to the study of nonequilibrium flows behind normal shock waves and within converging-diverging nozzles. In both cases, the flow is assumed inviscid and steady. Computational results are compared with those obtained by direct solution of the master equation for the rovibrational collisional model and a more conventional multitemperature model. It is found that the proposed coarse-grained model is able to accurately resolve the nonequilibrium dynamics of internal energy excitation and dissociation-recombination processes with only 20 energy bins. Furthermore, the proposed coarse-grained model provides a superior description of the nonequilibrium phenomena occurring in shock heated and nozzle flows when compared with the conventional multitemperature models.
A model for energy transfer in collisions of atoms with highly excited molecules.
Houston, Paul L; Conte, Riccardo; Bowman, Joel M
2015-05-21
A model for energy transfer in the collision between an atom and a highly excited target molecule has been developed on the basis of classical mechanics and turning point analysis. The predictions of the model have been tested against the results of trajectory calculations for collisions of five different target molecules with argon or helium under a variety of temperatures, collision energies, and initial rotational levels. The model predicts selected moments of the joint probability distribution, P(Jf,ΔE) with an R(2) ≈ 0.90. The calculation is efficient, in most cases taking less than one CPU-hour. The model provides several insights into the energy transfer process. The joint probability distribution is strongly dependent on rotational energy transfer and conservation laws and less dependent on vibrational energy transfer. There are two mechanisms for rotational excitation, one due to motion normal to the intermolecular potential and one due to motion tangential to it and perpendicular to the line of centers. Energy transfer is found to depend strongly on the intermolecular potential and only weakly on the intramolecular potential. Highly efficient collisions are a natural consequence of the energy transfer and arise due to collisions at "sweet spots" in the space of impact parameter and molecular orientation. PMID:25907301
Sedelnikova, O. V. Bulusheva, L. G.; Okotrub, A. V.; Asanov, I. P.; Yushina, I. V.
2014-04-21
Effect of corrugation of hexagonal carbon network on the collective electron excitations has been studied using optical absorption and X-ray photoelectron spectroscopy in conjunction with density functional theory calculations. Onion-like carbon (OLC) was taken as a material, where graphitic mantle enveloping agglomerates of multi-shell fullerenes is strongly curved. Experiments showed that positions of π and π + σ plasmon modes as well as π → π* absorption peak are substantially redshifted for OLC as compared with those of highly ordered pyrolytic graphite and thermally exfoliated graphite consisted of planar sheets. This effect was reproduced in behavior of dielectric functions of rippled graphite models calculated within the random phase approximation. We conclude that the energy of electron excitations in graphitic materials could be precisely tuned by a simple bending of hexagonal network without change of topology. Moreover, our investigation suggests that in such materials optical exciton can transfer energy to plasmon non-radiatively.
Low-energy singlet excitations in spin-1/2 Heisenberg antiferromagnet on square lattice
NASA Astrophysics Data System (ADS)
Aktersky, A. Yu.; Syromyatnikov, A. V.
2016-05-01
We present an approach based on a dimer expansion which describes low-energy singlet excitations (singlons) in spin-1/2 Heisenberg antiferromagnet on simple square lattice. An operator ("effective Hamiltonian") is constructed whose eigenvalues give the singlon spectrum. The "effective Hamiltonian" looks like a Hamiltonian of a spin-1/2 magnet in strong external magnetic field and it has a gapped spectrum. It is found that singlet states lie above triplet ones (magnons) in the whole Brillouin zone except in the vicinity of the point (π , 0), where their energies are slightly smaller. Based on this finding, we suggest that a magnon decay is possible near (π , 0) into another magnon and a singlon which may contribute to the dip of the magnon spectrum near (π , 0) and reduce the magnon lifetime. It is pointed out that the singlon-magnon continuum may contribute to the continuum of excitations observed recently near (π , 0).
Chong, C; Kim, E; Charalampidis, E G; Kim, H; Li, F; Kevrekidis, P G; Lydon, J; Daraio, C; Yang, J
2016-05-01
This article explores the excitation of different vibrational states in a spatially extended dynamical system through theory and experiment. As a prototypical example, we consider a one-dimensional packing of spherical particles (a so-called granular chain) that is subject to harmonic boundary excitation. The combination of the multimodal nature of the system and the strong coupling between the particles due to the nonlinear Hertzian contact force leads to broad regions in frequency where different vibrational states are possible. In certain parametric regions, we demonstrate that the nonlinear Schrödinger equation predicts the corresponding modes fairly well. The electromechanical model we apply predicts accurately the conversion from the obtained mechanical energy to the electrical energy observed in experiments. PMID:27300876
NASA Technical Reports Server (NTRS)
Brinca, A. L.; Tsurutani, B. T.
1987-01-01
The characteristics of electromagnetic waves excited by cometary newborn ions with large perpendicular energies are examined using a model of solar wind permeated by dilute drifting ring distributions of electrons and oxygen ions with finite thermal spreads. The model has parameters compatible with the ICE observations at the Giacobini-Zinner comet. It is shown that cometary newborn ions with large perpendicular energies can excite a wave mode with rest frame frequencies in the order of the heavy ion cyclotron frequency, Omega(i), and unusual propagation characteristics at small obliquity angles. For parallel propagation, the mode is left-hand circularly polarized, might be unstable in a frequency range containing Omega(i), and moves in the direction of the newborn ion drift along the static magnetic field.
Adiabatic frequency conversion of ultrafast pulses
NASA Astrophysics Data System (ADS)
Suchowski, H.; Bruner, B. D.; Ganany-Padowicz, A.; Juwiler, I.; Arie, A.; Silberberg, Y.
2011-12-01
A new method for efficient, broadband sum and difference frequency generation of ultrafast pulses is demonstrated. The principles of the method follow from an analogy between frequency conversion and coherent optical excitation of a two-level system. For conversion of ultrafast pulses, the concepts of adiabatic conversion are developed further in order to account for dispersion and group velocity mismatch. The scheme was implemented using aperiodically poled nonlinear crystals and a single step nonlinear mixing process, leading to conversion of near-IR (˜790 nm) ultrafast pulses into the blue (˜450 nm) and mid-IR (˜3.15 μm) spectral regions. Conversion bandwidths up to 15 THz FWHM and efficiencies up to 50% are reported.
NASA Technical Reports Server (NTRS)
Rosen, G.
1973-01-01
A survey is presented of free radicals and electronically excited metastable species as high energy propellants for rocket engines. Nascent or atomic forms of diatomic gases are considered free radicals as well as the highly reactive diatomic triatomic molecules that posess unpaired electrons. Manufacturing and storage problems are described, and a review of current experimental work related to the manufacture of atomic hydrogen propellants is presented.
NASA Technical Reports Server (NTRS)
Papailiou, D. D. (Editor)
1975-01-01
Concepts are described that presently appear to have the potential for propulsion applications in the post-1990 era of space technology. The studies are still in progress, and only the current status of investigation is presented. The topics for possible propulsion application are lasers, nuclear fusion, matter-antimatter annihilation, electronically excited helium, energy exchange through the interaction of various fields, laser propagation, and thermonuclear fusion technology.
Population of bound excited states in intermediate-energy fragmentation reactions
Obertelli, A.; Gade, A.; Bazin, D.; Hansen, P.G.; Hoagland, T.; Lecouey, J.-L.; Mueller, W.F.; Yoneda, K.; Campbell, C.M.; Cook, J.M.; Davies, A.D.; Dinca, D.-C.; Glasmacher, T.; Terry, J.R.; Zwahlen, H.; Cottle, P.D.; Kemper, K.W.; Reynolds, R.R.; Roeder, B.T.; Tostevin, J.A.
2006-04-15
Fragmentation reactions with intermediate-energy heavy-ion beams exhibit a wide range of reaction mechanisms, ranging from direct reactions to statistical processes. We examine this transition by measuring the relative population of excited states in several sd-shell nuclei produced by fragmentation with the number of removed nucleons ranging from two to sixteen. The two-nucleon removal is consistent with a non-dissipative process, whereas the removal of more than five nucleons appears to be mainly statistical.
Energy spectrum of the low-lying gluon excitations in the Coulomb gauge
Szczepaniak, Adam P.; Krupinski, Pawel
2006-06-01
We compute the energy spectrum of low-lying gluonic excitations in the presence of static quark-antiquark sources using Coulomb gauge and the quasiparticle representation. Within the valence sector of the Fock space we reproduce both, the overall normalization and the ordering of the spin-parity multiplets. We discus how the interactions induced by the nonabelian Coulomb kernel are central in to fine structure of the spectrum.
New Dynamical Scaling Universality for Quantum Networks Across Adiabatic Quantum Phase Transitions
NASA Astrophysics Data System (ADS)
Acevedo, Oscar L.; Rodriguez, Ferney J.; Quiroga, Luis; Johnson, Neil F.; Rey, Ana M.
2014-05-01
We reveal universal dynamical scaling behavior across adiabatic quantum phase transitions in networks ranging from traditional spatial systems (Ising model) to fully connected ones (Dicke and Lipkin-Meshkov-Glick models). Our findings, which lie beyond traditional critical exponent analysis and adiabatic perturbation approximations, are applicable even where excitations have not yet stabilized and, hence, provide a time-resolved understanding of quantum phase transitions encompassing a wide range of adiabatic regimes. We show explicitly that even though two systems may traditionally belong to the same universality class, they can have very different adiabatic evolutions. This implies that more stringent conditions need to be imposed than at present, both for quantum simulations where one system is used to simulate the other and for adiabatic quantum computing schemes.
New Dynamical Scaling Universality for Quantum Networks Across Adiabatic Quantum Phase Transitions
NASA Astrophysics Data System (ADS)
Acevedo, O. L.; Quiroga, L.; Rodríguez, F. J.; Johnson, N. F.
2014-01-01
We reveal universal dynamical scaling behavior across adiabatic quantum phase transitions in networks ranging from traditional spatial systems (Ising model) to fully connected ones (Dicke and Lipkin-Meshkov-Glick models). Our findings, which lie beyond traditional critical exponent analysis and adiabatic perturbation approximations, are applicable even where excitations have not yet stabilized and, hence, provide a time-resolved understanding of quantum phase transitions encompassing a wide range of adiabatic regimes. We show explicitly that even though two systems may traditionally belong to the same universality class, they can have very different adiabatic evolutions. This implies that more stringent conditions need to be imposed than at present, both for quantum simulations where one system is used to simulate the other and for adiabatic quantum computing schemes.
Stimulated Raman adiabatic passage in a three-level superconducting circuit
NASA Astrophysics Data System (ADS)
Kumar, K. S.; Vepsäläinen, A.; Danilin, S.; Paraoanu, G. S.
2016-02-01
The adiabatic manipulation of quantum states is a powerful technique that opened up new directions in quantum engineering--enabling tests of fundamental concepts such as geometrical phases and topological transitions, and holding the promise of alternative models of quantum computation. Here we benchmark the stimulated Raman adiabatic passage for circuit quantum electrodynamics by employing the first three levels of a transmon qubit. In this ladder configuration, we demonstrate a population transfer efficiency >80% between the ground state and the second excited state using two adiabatic Gaussian-shaped control microwave pulses. By doing quantum tomography at successive moments during the Raman pulses, we investigate the transfer of the population in time domain. Furthermore, we show that this protocol can be reversed by applying a third adiabatic pulse, we study a hybrid nondiabatic-adiabatic sequence, and we present experimental results for a quasi-degenerate intermediate level.
Stimulated Raman adiabatic passage in a three-level superconducting circuit.
Kumar, K S; Vepsäläinen, A; Danilin, S; Paraoanu, G S
2016-01-01
The adiabatic manipulation of quantum states is a powerful technique that opened up new directions in quantum engineering--enabling tests of fundamental concepts such as geometrical phases and topological transitions, and holding the promise of alternative models of quantum computation. Here we benchmark the stimulated Raman adiabatic passage for circuit quantum electrodynamics by employing the first three levels of a transmon qubit. In this ladder configuration, we demonstrate a population transfer efficiency >80% between the ground state and the second excited state using two adiabatic Gaussian-shaped control microwave pulses. By doing quantum tomography at successive moments during the Raman pulses, we investigate the transfer of the population in time domain. Furthermore, we show that this protocol can be reversed by applying a third adiabatic pulse, we study a hybrid nondiabatic-adiabatic sequence, and we present experimental results for a quasi-degenerate intermediate level. PMID:26902454
Low-energy Coulomb excitation of neutron-rich zinc isotopes
NASA Astrophysics Data System (ADS)
van de Walle, J.; Aksouh, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Davinson, T.; Delahaye, P.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Gernhauser, R.; Georgiev, G.; Habs, D.; Heyde, K.; Huber, G.; Huyse, M.; Ibrahim, F.; Ivanov, O.; Iwanicki, J.; Jolie, J.; Kester, O.; Köster, U.; Kröll, T.; Krücken, R.; Lauer, M.; Lisetskiy, A. F.; Lutter, R.; Marsh, B. A.; Mayet, P.; Niedermaier, O.; Pantea, M.; Raabe, R.; Reiter, P.; Sawicka, M.; Scheit, H.; Schrieder, G.; Schwalm, D.; Seliverstov, M. D.; Sieber, T.; Sletten, G.; Smirnova, N.; Stanoiu, M.; Stefanescu, I.; Thomas, J.-C.; Valiente-Dobón, J. J.; Duppen, P. Van; Verney, D.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wolf, B. H.; Zielińska, M.
2009-01-01
At the radioactive ion beam facility REX-ISOLDE, neutron-rich zinc isotopes were investigated using low-energy Coulomb excitation. These experiments have resulted in B(E2,21+→01+) values in Zn74-80, B(E2,41+→21+) values in Zn74,76 and the determination of the energy of the first excited 21+ states in Zn78,80. The zinc isotopes were produced by high-energy proton- (A=74,76,80) and neutron- (A=78) induced fission of U238, combined with selective laser ionization and mass separation. The isobaric beam was postaccelerated by the REX linear accelerator and Coulomb excitation was induced on a thin secondary target, which was surrounded by the MINIBALL germanium detector array. In this work, it is shown how the selective laser ionization can be used to deal with the considerable isobaric beam contamination and how a reliable normalization of the experiment can be achieved. The results for zinc isotopes and the N=50 isotones are compared to collective model predictions and state-of-the-art large-scale shell-model calculations, including a recent empirical residual interaction constructed to describe the present experimental data up to 2004 in this region of the nuclear chart.
Zhang, Yijing Moore, Keegan J.; Vakakis, Alexander F.; McFarland, D. Michael
2015-12-21
We study passive pulse redirection and nonlinear targeted energy transfer in a granular network composed of two semi-infinite, ordered homogeneous granular chains mounted on linear elastic foundations and coupled by weak linear stiffnesses. Periodic excitation in the form of repetitive half-sine pulses is applied to one of the chains, designated as the “excited chain,” whereas the other chain is initially at rest and is regarded as the “absorbing chain.” We show that passive pulse redirection and targeted energy transfer from the excited to the absorbing chain can be achieved by macro-scale realization of the spatial analog of the Landau-Zener quantum tunneling effect. This is realized by finite stratification of the elastic foundation of the excited chain and depends on the system parameters (e.g., the percentage of stratification) and on the parameters of the periodic excitation. Utilizing empirical mode decomposition and numerical Hilbert transforms, we detect the existence of two distinct nonlinear phenomena in the periodically forced network; namely, (i) energy localization in the absorbing chain due to sustained 1:1 resonance capture leading to irreversible pulse redirection from the excited chain, and (ii) continuous energy exchanges in the form of nonlinear beats between the two chains in the absence of resonance capture. Our results extend previous findings of transient passive energy redirection in impulsively excited granular networks and demonstrate that steady state passive pulse redirection in these networks can be robustly achieved under periodic excitation.
Adiabatic evolution of plasma equilibrium
Grad, H.; Hu, P. N.; Stevens, D. C.
1975-01-01
A new theory of plasma equilibrium is introduced in which adiabatic constraints are specified. This leads to a mathematically nonstandard structure, as compared to the usual equilibrium theory, in which prescription of pressure and current profiles leads to an elliptic partial differential equation. Topologically complex configurations require further generalization of the concept of adiabaticity to allow irreversible mixing of plasma and magnetic flux among islands. Matching conditions across a boundary layer at the separatrix are obtained from appropriate conservation laws. Applications are made to configurations with planned islands (as in Doublet) and accidental islands (as in Tokamaks). Two-dimensional, axially symmetric, helically symmetric, and closed line equilibria are included. PMID:16578729
NASA Astrophysics Data System (ADS)
Synak, A.; Gondek, G.; Bojarski, P.; Kułak, L.; Kubicki, A.; Szabelski, M.; Kwiek, P.
2004-11-01
Excitation energy migration is studied for 3,3'-diethylthiacyanine iodide in uniaxially stretched and unstretched poly(vinyl alcohol) films. Time-resolved and steady-state measurements of fluorescence depolarization yield quite different results for disordered and partly ordered systems. Contrary to disordered systems, for which strong concentration depolarization was observed, partly ordered systems exhibit much weaker depolarization as a result of preferential angular distribution of transition dipole moments of identical fluorophores participating in energy migration. Difference of the same origin was found for time-resolved emission anisotropy measurements. These results are in agreement with those obtained from the Monte-Carlo simulation.
The role of the partner atom and resonant excitation energy in ICD in rare gas dimers
NASA Astrophysics Data System (ADS)
O'Keeffe, Patrick; Ripani, Enrico; Bolognesi, Paola; Coreno, Marcello; Avaldi, Lorenzo; Devetta, Michele; Callegari, Carlo; Di Praia, Michele; Prince, Kevin; Richter, Robert; Alagial, Michele; Kivimäkil, Antti
2014-04-01
We show experimental evidence for Interatomic Coulombic Decay (ICD) in mixed rare gas dimers following resonant Auger decay. A velocity map imaging apparatus together with a cooled supersonic beam containing Ar2, ArNe and ArKr dimers was used to record electron VMI images in coincidence with two mass selected ions following excitation on five resonances converging to the Ar+ 2p-11/2 and 2p-13/2 thresholds using the synchrotron radiation. The results show that the kinetic energy distribution of the ICD electrons observed in coincidence with the ions from Coulomb explosion of the dimers depends on the partner ion and resonant photon energy.
Low-energy excitations in α- and γ-Ce observed by photoemission
NASA Astrophysics Data System (ADS)
Patthey, F.; Delley, B.; Schneider, W.-D.; Baer, Y.
1985-09-01
uv-photoemission spectra of the α- and γ-phases of Ce have been measured with an unprecedented resolution (20 meV). A detailed many-body calculation based on the Anderson impurity model and including the 4f1 spin-orbit splitting has been performed. It accounts perfectly for the fine structures observed in the spectra. Within the energy range corresponding to the ground-state lowering by the f-d hybridization, the f contribution to the spectra reveals the density of low-energy excitations culminating at EF.
Excitation energies of double isobar-analog states in heavy nuclei
Poplavskii, I. V.
1988-12-01
Several new relationships are established for isomultiplets on the basis of a theory in which the Coulomb coupling constant (CCC) is allowed to be complex. In particular, the following rule is formulated: the energies for fission or decay of members of an isomultiplet into a charged cluster and members of the corresponding daughter isomultiplet are equidistant. This relationship is well satisfied for isomultiplets with /ital A/less than or equal to60. By extrapolating the rule for fission and decay energies to the region of heavy nuclei, the excitation energies /ital E//sub /ital x// of double isobar-analog states (DIASs) are found for the nuclei /sup 197,199/Hg, /sup 205/Pb, /sup 205 - -209/Po, /sup 209/At, and /sup 238/Pu. A comparison of the computed energies /ital E//sub /ital x// with the experimentally measured values for /sup 208/Po attest to the reliability and good accuracy of the method proposed here when used to determine the excitation energies of DIASs in heavy nuclei.
Liu, Lingzhi; Li, Hui; Qiu, Ting; Zhou, Guohua; Wong, Kwok-Yin; He, Zhike; Liu, Zhihong
2011-03-01
A new molecular beacon (MB) driven by two-photon excitation (TPE) using quantum dots as energy donor is constructed, which provides reduced direct excitation of acceptor and is free of interferences from autofluorescence or scattering light in a complicated biological matrix.
Gamiz-Hernandez, Ana P; Magomedov, Artiom; Hummer, Gerhard; Kaila, Ville R I
2015-02-12
Proton-coupled electron transfer (PCET) processes are elementary chemical reactions involved in a broad range of radical and redox reactions. Elucidating fundamental PCET reaction mechanisms are thus of central importance for chemical and biochemical research. Here we use quantum chemical density functional theory (DFT), time-dependent density functional theory (TDDFT), and the algebraic diagrammatic-construction through second-order (ADC(2)) to study the mechanism, thermodynamic driving force effects, and reaction barriers of both ground state proton transfer (pT) and photoinduced proton-coupled electron transfer (PCET) between nitrosylated phenyl-phenol compounds and hydrogen-bonded t-butylamine as an external base. We show that the obtained reaction barriers for the ground state pT reactions depend linearly on the thermodynamic driving force, with a Brønsted slope of 1 or 0. Photoexcitation leads to a PCET reaction, for which we find that the excited state reaction barrier depends on the thermodynamic driving force with a Brønsted slope of 1/2. To support the mechanistic picture arising from the static potential energy surfaces, we perform additional molecular dynamics simulations on the excited state energy surface, in which we observe a spontaneous PCET between the donor and the acceptor groups. Our findings suggest that a Brønsted analysis may distinguish the ground state pT and excited state PCET processes.
Xiong, Chao; Ge, Liang-quan; Liu, Duan; Zhang, Qing-xian; Gu, Yi; Luo, Yao-yao; Zhao, Jian-kun
2016-03-01
Aiming at the self-excitation effect on the interference of measurements which exist in the process of Energy dispersive X-ray fluorescence method for uranium measurement. To solve the problem of radioactive isotopes only used as excitation source in determination of uranium. Utilizing the micro X-ray tube to test Self-excitation effect to get a comparison of the results obtained by three different uranium ore samples--109 Cd, 241 Am and Mirco X-ray tube. The results showed that self-excitation effect produced the area measure of characteristic X-ray peak is less than 1% of active condition, also the interference of measurements can be negligible. Photoelectric effect cross-section excited by 109 Cd is higher, corresponding fluorescence yield is higher than excited by 241 Am as well due to characteristics X-ray energy of 109 Cd, 22.11 & 24.95 KeV adjacent to absorption edge energy of L(α), 21.75 KeV, based on the above, excitation efficiency by 109 Cd is higher than 241 Am; The fact that measurement error excited by 241 Am is significantly greater than by 109 Cd is mainly due to peak region overlap between L energy peaks of uranium and Scattering peak of 241 Am, 26.35 keV, These factors above caused the background of measured Spectrum higher; The error between the uranium content in ore samples which the X-ray tube as the excitation source and the chemical analysis results is within 10%. Conclusion: This paper come to the conclusion that the technical quality of uranium measurement used X-ray tube as excitation source is superior to that in radioactive source excitation mode. PMID:27400534
Xiong, Chao; Ge, Liang-quan; Liu, Duan; Zhang, Qing-xian; Gu, Yi; Luo, Yao-yao; Zhao, Jian-kun
2016-03-01
Aiming at the self-excitation effect on the interference of measurements which exist in the process of Energy dispersive X-ray fluorescence method for uranium measurement. To solve the problem of radioactive isotopes only used as excitation source in determination of uranium. Utilizing the micro X-ray tube to test Self-excitation effect to get a comparison of the results obtained by three different uranium ore samples--109 Cd, 241 Am and Mirco X-ray tube. The results showed that self-excitation effect produced the area measure of characteristic X-ray peak is less than 1% of active condition, also the interference of measurements can be negligible. Photoelectric effect cross-section excited by 109 Cd is higher, corresponding fluorescence yield is higher than excited by 241 Am as well due to characteristics X-ray energy of 109 Cd, 22.11 & 24.95 KeV adjacent to absorption edge energy of L(α), 21.75 KeV, based on the above, excitation efficiency by 109 Cd is higher than 241 Am; The fact that measurement error excited by 241 Am is significantly greater than by 109 Cd is mainly due to peak region overlap between L energy peaks of uranium and Scattering peak of 241 Am, 26.35 keV, These factors above caused the background of measured Spectrum higher; The error between the uranium content in ore samples which the X-ray tube as the excitation source and the chemical analysis results is within 10%. Conclusion: This paper come to the conclusion that the technical quality of uranium measurement used X-ray tube as excitation source is superior to that in radioactive source excitation mode.
Pressure Oscillations in Adiabatic Compression
ERIC Educational Resources Information Center
Stout, Roland
2011-01-01
After finding Moloney and McGarvey's modified adiabatic compression apparatus, I decided to insert this experiment into my physical chemistry laboratory at the last minute, replacing a problematic experiment. With insufficient time to build the apparatus, we placed a bottle between two thick textbooks and compressed it with a third textbook forced…
Xie, Changjian; Zhu, Xiaolei; Yarkony, David R. E-mail: yarkony@jhu.edu E-mail: hguo@unm.edu; Ma, Jianyi E-mail: yarkony@jhu.edu E-mail: hguo@unm.edu; Xie, Daiqian E-mail: yarkony@jhu.edu E-mail: hguo@unm.edu; Guo, Hua E-mail: yarkony@jhu.edu E-mail: hguo@unm.edu
2015-03-07
Non-adiabatic processes play an important role in photochemistry, but the mechanism for conversion of electronic energy to chemical energy is still poorly understood. To explore the possibility of vibrational control of non-adiabatic dynamics in a prototypical photoreaction, namely, the A-band photodissociation of NH{sub 3}(X{sup ~1}A{sub 1}), full-dimensional state-to-state quantum dynamics of symmetric or antisymmetric stretch excited NH{sub 3}(X{sup ~1}A{sub 1}) is investigated on recently developed coupled diabatic potential energy surfaces. The experimentally observed H atom kinetic energy distributions are reproduced. However, contrary to previous inferences, the NH{sub 2}(A{sup ~2}A{sub 1})/NH{sub 2}(X{sup ~2}B{sub 1}) branching ratio is found to be small regardless of the initial preparation of NH{sub 3}(X{sup ~1}A{sub 1}), while the internal state distribution of the preeminent fragment, NH{sub 2}(X{sup ~2}B{sub 1}), is found to depend strongly on the initial vibrational excitation of NH{sub 3}(X{sup ~1}A{sub 1}). The slow H atoms in photodissociation mediated by the antisymmetric stretch fundamental state are due to energy sequestered in the internally excited NH{sub 2}(X{sup ~2}B{sub 1}) fragment, rather than in NH{sub 2}(A{sup ~2}A{sub 1}) as previously proposed. The high internal excitation of the NH{sub 2}(X{sup ~2}B{sub 1}) fragment is attributed to the torques exerted on the molecule as it passes through the conical intersection seam to the ground electronic state of NH{sub 3}. Thus in this system, contrary to previous assertions, the control of electronic state branching by selective excitation of ground state vibrational modes is concluded to be ineffective. The juxtaposition of precise quantum mechanical results with complementary results based on quasi-classical surface hopping trajectories provides significant insights into the non-adiabatic process.
Excitation of vibrational quanta in furfural by intermediate-energy electrons
Jones, D. B.; Neves, R. F. C.; Lopes, M. C. A.; Costa, R. F. da; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; García, G.; and others
2015-12-14
We report cross sections for electron-impact excitation of vibrational quanta in furfural, at intermediate incident electron energies (20, 30, and 40 eV). The present differential cross sections are measured over the scattered electron angular range 10°–90°, with corresponding integral cross sections subsequently being determined. Furfural is a viable plant-derived alternative to petrochemicals, being produced via low-temperature plasma treatment of biomass. Current yields, however, need to be significantly improved, possibly through modelling, with the present cross sections being an important component of such simulations. To the best of our knowledge, there are no other cross sections for vibrational excitation of furfural available in the literature, so the present data are valuable for this important molecule.
León-Montiel, Roberto de J; Kassal, Ivan; Torres, Juan P
2014-09-11
It has been argued that excitonic energy transport in photosynthetic complexes is efficient because of a balance between coherent evolution and decoherence, a phenomenon called environment-assisted quantum transport (ENAQT). Studies of ENAQT have usually assumed that the excitation is initially localized on a particular chromophore, and that it is transferred to a reaction center through a similarly localized trap. However, these assumptions are not physically accurate. We show that more realistic models of excitation and trapping can lead to very different predictions about the importance of ENAQT. In particular, although ENAQT is a robust effect if one assumes a localized trap, its effect can be negligible if the trapping is more accurately modeled as Förster transfer to a reaction center. Our results call into question the suggested role of ENAQT in the photosynthetic process of green sulfur bacteria and highlight the subtleties associated with drawing lessons for designing biomimetic light-harvesting complexes.
Excitation of vibrational quanta in furfural by intermediate-energy electrons
NASA Astrophysics Data System (ADS)
Jones, D. B.; Neves, R. F. C.; Lopes, M. C. A.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; García, G.; Blanco, F.; Brunger, M. J.
2015-12-01
We report cross sections for electron-impact excitation of vibrational quanta in furfural, at intermediate incident electron energies (20, 30, and 40 eV). The present differential cross sections are measured over the scattered electron angular range 10°-90°, with corresponding integral cross sections subsequently being determined. Furfural is a viable plant-derived alternative to petrochemicals, being produced via low-temperature plasma treatment of biomass. Current yields, however, need to be significantly improved, possibly through modelling, with the present cross sections being an important component of such simulations. To the best of our knowledge, there are no other cross sections for vibrational excitation of furfural available in the literature, so the present data are valuable for this important molecule.
Distributed Multipolar Expansion Approach to Calculation of Excitation Energy Transfer Couplings.
Błasiak, Bartosz; Maj, Michał; Cho, Minhaeng; Góra, Robert W
2015-07-14
We propose a new approach for estimating the electrostatic part of the excitation energy transfer (EET) coupling between electronically excited chromophores based on the transition density-derived cumulative atomic multipole moments (TrCAMM). In this approach, the transition potential of a chromophore is expressed in terms of truncated distributed multipolar expansion and analytical formulas for the TrCAMMs are derived. The accuracy and computational feasibility of the proposed approach is tested against the exact Coulombic couplings, and various multipole expansion truncation schemes are analyzed. The results of preliminary calculations show that the TrCAMM approach is capable of reproducing the exact Coulombic EET couplings accurately and efficiently and is superior to other widely used schemes: the transition charges from electrostatic potential (TrESP) and the transition density cube (TDC) method.
van Meer, R; Gritsenko, O V; Baerends, E J
2014-10-14
In recent years, several benchmark studies on the performance of large sets of functionals in time-dependent density functional theory (TDDFT) calculations of excitation energies have been performed. The tested functionals do not approximate exact Kohn-Sham orbitals and orbital energies closely. We highlight the advantages of (close to) exact Kohn-Sham orbitals and orbital energies for a simple description, very often as just a single orbital-to-orbital transition, of molecular excitations. Benchmark calculations are performed for the statistical average of orbital potentials (SAOP) functional for the potential [J. Chem. Phys. 2000, 112, 1344; 2001, 114, 652], which approximates the true Kohn-Sham potential much better than LDA, GGA, mGGA, and hybrid potentials do. An accurate Kohn-Sham potential does not only perform satisfactorily for calculated vertical excitation energies of both valence and Rydberg transitions but also exhibits appealing properties of the KS orbitals including occupied orbital energies close to ionization energies, virtual-occupied orbital energy gaps very close to excitation energies, realistic shapes of virtual orbitals, leading to straightforward interpretation of most excitations as single orbital transitions. We stress that such advantages are completely lost in time-dependent Hartree-Fock and partly in hybrid approaches. Many excitations and excitation energies calculated with local density, generalized gradient, and hybrid functionals are spurious. There is, with an accurate KS, or even the LDA or GGA potentials, nothing problematic about the "band gap" in molecules: the HOMO-LUMO gap is close to the first excitation energy (the optical gap).
Effect of Grain Boundary Character Distribution on the Adiabatic Shear Susceptibility
NASA Astrophysics Data System (ADS)
Yang, Yang; Jiang, Lihong; Luo, Shuhong; Hu, Haibo; Tang, Tiegang; Zhang, Qingming
2016-11-01
The adiabatic shear susceptibility of AISI321 stainless steels with different grain boundary character distributions (GBCDs) was investigated by means of split-Hopkinson pressure bar. The results indicate that the width of the adiabatic shear band of the specimen after thermomechanical processing (TMP) treatment is narrower. The comparison of the stress collapse time, the critical stress, and the adiabatic shear forming energy suggests that the TMP specimens have lower adiabatic shear susceptibility than that of the solution-treated samples under the same loading condition. GBCD and grain size affected the adiabatic shear susceptibility. The high-angle boundary network of the TMP specimens was interrupted or replaced by the special grain boundary, and smaller grain size hindered the adiabatic shearing.
Transitionless driving on adiabatic search algorithm
Oh, Sangchul; Kais, Sabre
2014-12-14
We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.
Intermediate energy cross sections for electron-impact vibrational-excitation of pyrimidine
Jones, D. B.; Ellis-Gibbings, L.; García, G.; Nixon, K. L.; Lopes, M. C. A.; Brunger, M. J.
2015-09-07
We report differential cross sections (DCSs) and integral cross sections (ICSs) for electron-impact vibrational-excitation of pyrimidine, at incident electron energies in the range 15–50 eV. The scattered electron angular range for the DCS measurements was 15°–90°. The measurements at the DCS-level are the first to be reported for vibrational-excitation in pyrimidine via electron impact, while for the ICS we extend the results from the only previous condensed-phase study [P. L. Levesque, M. Michaud, and L. Sanche, J. Chem. Phys. 122, 094701 (2005)], for electron energies ⩽12 eV, to higher energies. Interestingly, the trend in the magnitude of the lower energy condensed-phase ICSs is much smaller when compared to the corresponding gas phase results. As there is no evidence for the existence of any shape-resonances, in the available pyrimidine total cross sections [Baek et al., Phys. Rev. A 88, 032702 (2013); Fuss et al., ibid. 88, 042702 (2013)], between 10 and 20 eV, this mismatch in absolute magnitude between the condensed-phase and gas-phase ICSs might be indicative for collective-behaviour effects in the condensed-phase results.
Park, Hoyong; Choe, Wonho; You, S. J.
2010-10-15
The relationship between the electron excitation temperature (T{sub exc}) determined by optical emission spectroscopy and the electron temperature (T{sub e}) using a rf-compensated Langmuir probe was investigated in argon capacitively coupled plasmas. In the experiment performed at the gas pressure range of 30 mTorr to 1 Torr and the rf power range of 5-37 W, the electron energy probability function (EEPF) obtained from the probe current versus voltage characteristic curve showed two energy groups of electrons. The measured EEPF demonstrated that the electron energy distribution changed from Druyvesteyn to single Maxwellian as the discharge current was increased and from bi-Maxwellian to Druyvesteyn as the pressure was increased. As a result, T{sub exc} showed a tendency identical to that of T{sub e} of the high energy part of electrons as pressure and rf power were varied. This suggests that electron temperature can be determined from the measured T{sub exc} through a calibration experiment by which the ratio between electron and excitation temperatures is measured.
NASA Technical Reports Server (NTRS)
Kamaratos, E.
1985-01-01
A statistical model, the local plasma approximation, is considered for the calculation of the logarithmic mean excitation energy for stopping power of chemically bound particles by taking into consideration chemical bonding. This statistical model is applied to molecular hydrogen and leads to results that suggest a value for the logarithmic mean excitation energy of molecular hydrogen that is larger than the accepted experimental and theoretical values.
Measurement of the fusion excitation function for 19O + 12C at near barrier energies
NASA Astrophysics Data System (ADS)
Singh, Varinderjit; Steinbach, T. K.; Vadas, J.; Wiggins, B. B.; Hudan, S.; Desouza, R. T.; Baby, L. T.; Tripathi, V.; Kuvin, S. A.; Wiedenhover, I.
2015-10-01
Fusion of neutron-rich light nuclei in the outer crust of an accreting neutron star has been proposed as responsible for triggering X-ray super-bursts. The underlying hypothesis in this proposition is that the fusion of neutron-rich nuclei is enhanced as compared to stable nuclei. To investigate this hypothesis, an experiment has been performed to measure the fusion excitation function for 18O and 19O nuclei incident on a 12C target. A beam of 19O was produced by the 18O(d,p) reaction at Florida State University and separated using the RESOLUT mass spectrometer. The resulting 19O beam bombarded a 100 μg/cm2 12C target at an intensity of 2-4 × 103 p/s. Evaporation residues resulting from the de-excitation of the fusion product were distinguished by measuring their energy and time-of-flight. Using silicon detectors, micro-channel plate detectors, and an ionization chamber, evaporation residues were detected in the angular range θlab <= 23° with high efficiency. Initial experimental results including measurement of the fusion cross-section to approximately the 100 mb level will be presented. The measured excitation function will be compared to theoretical predictions. Supported by the US DOE under Grand No. DEFG02-88ER-40404.
Calculated ground state potential surface and excitation energies for the copper trimer
NASA Technical Reports Server (NTRS)
Walch, S. P.; Laskowski, B. C.
1986-01-01
In the context of their relevance to catalysis and to materials science problems, transition metals and transition metal (TM) compounds are currently of considerable interest, and studies have been conducted of the copper trimer, Cu3. The present investigation is concerned with a study of the ground state surface and several groups of excited states in order to improve the understanding of the spectroscopy of Cu3. Differences of the current study from previous investigations are related to an employment of larger basis sets and a more extensive electron correlation. This was done with the objective to obtain a more accurate definition of the ground state surface. Features of the bonding in the copper dimer are considered to obtain a basis for an understanding of the copper trimer. Attention is given to calculational details, the ground state surface, and calculated vertical excitation energies. The results of SCF/SDCI calculations are reported for portions of the ground surface, for two groups of excited states, and for the ionization potential of Cu3.
Adiabatic cooling of solar wind electrons
NASA Technical Reports Server (NTRS)
Sandbaek, Ornulf; Leer, Egil
1992-01-01
In thermally driven winds emanating from regions in the solar corona with base electron densities of n0 not less than 10 exp 8/cu cm, a substantial fraction of the heat conductive flux from the base is transfered into flow energy by the pressure gradient force. The adiabatic cooling of the electrons causes the electron temperature profile to fall off more rapidly than in heat conduction dominated flows. Alfven waves of solar origin, accelerating the basically thermally driven solar wind, lead to an increased mass flux and enhanced adiabatic cooling. The reduction in electron temperature may be significant also in the subsonic region of the flow and lead to a moderate increase of solar wind mass flux with increasing Alfven wave amplitude. In the solar wind model presented here the Alfven wave energy flux per unit mass is larger than that in models where the temperature in the subsonic flow is not reduced by the wave, and consequently the asymptotic flow speed is higher.
Reduction in ignition energy for single-shot microthrusters using pulsedlaser excitation
NASA Astrophysics Data System (ADS)
Hansen, William W.; Janson, Siegfried W.; Helvajian, Henry
2002-09-01
An experiment has been conducted to compare the ignition energy of an existing digital thruster design between a pulsed electrical and laser excitations. A 355nm Nd-YAG pulsed laser is used to ignite the stored lead styphnate propellant charge. Given the device design, roughly 800 μJ is necessary to ignite a 180 μg charge volume with a 90% probability of ignition. This energy value is considered an upper limit. Under equivalent conditions, roughly 2.4mJ of electrical energy is required to ignite the same volume. The digital thruster concept is one approach to provide a valveless, slap-on propulsion capability for small (1kg mass class) and large satellites (1000kg mass class) to help maintain attitude or control the damping of low frequency oscillations in extended surfaces.
Excited-state charging energies in quantum dots investigated by terahertz photocurrent spectroscopy
NASA Astrophysics Data System (ADS)
Zhang, Y.; Shibata, K.; Nagai, N.; Ndebeka-Bandou, C.; Bastard, G.; Hirakawa, K.
2016-06-01
We have investigated the excited-state (ES) charging energies in quantum dots (QDs) by measuring a terahertz (THz)-induced photocurrent in a single-electron transistor (SET) geometry that contains a single InAs QD between metal nanogap electrodes. A photocurrent is produced in the QD SETs through THz intersublevel transitions and the subsequent resonant tunneling. We have found that the photocurrent exhibits stepwise change even within one Coulomb blockaded region as the electrochemical potential in the QD is swept by the gate voltage. From the threshold for the photocurrent generation, we have determined the charging energies for adding an electron in the photoexcited state in the QD. Furthermore, the charging energies for the ESs with different electron configurations are clearly resolved. The present THz photocurrent measurements are essentially dynamical experiments and allow us to analyze electronic properties in off-equilibrium states in the QD.
Transfer of the Excitation Energy in Anacystis nidulans Grown to Obtain Different Pigment Ratios
Ghosh, A. K.; Govindjee
1966-01-01
The blue-green alga, Anacystis nidulans, was grown in lights of different colors and intensities, and its absorption and fluorescence properties were studied. Strong orange light, absorbed mainly by phycocyanin, causes reduction in the ratio of phycocyanin to chlorophyll a; strong red light, absorbed mainly by chlorophyll, causes an increase in this ratio. This confirms the earlier findings of Brody and Emerson (12) on Porphyridum, and of Jones and Myers (8) on Anacystis. Anacystis cultures grown in light of low intensity show, upon excitation of phycocyanin, emission peaks at 600 mμ and 680 mμ, due to the fluorescence of phycocyanin and chlorophyll a, respectively. Changes in the efficiency of energy transfer from phycocyanin to chlorophyll a are revealed by changes in the ratios of these two bands. A decrease in efficiency of energy transfer from phycocyanin to chlorophyll a seems to occur whenever the ratio of chlorophyll a to phycocyanin deviates from the normal. Algae grown in light of high intensity show, upon excitation of phycocyanin, only a fluorescence band at 660 mμ and no band at 680 mμ. This suggests reduced efficiency of energy transfer from phycocyanin to the strongly fluorescent form of chlorophyll a (chlorophyll a2) and perhaps increased transfer to the weakly fluorescent form of chlorophyll a (chlorophyll a1). PMID:5970565
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Xu, Y. J.; Kamaratos, E.; Chang, C. K.
1984-01-01
The basic model of Lindhard and Scharff, known as the local plasma model, is used to study the effects on stopping power of the chemical and physical state of the medium. Unlike previous work with the local plasma model, in which individual electron shifts in the plasma frequency were estimated empirically, he Pines correction derived for a degenerate Fermi gas is shown herein to provide a reasonable estimate, even on the atomic scale. Thus, the model is moved to a complete theoretical base requiring no empirical adjustments, as characteristic of past applications. The principal remaining error is in the overestimation of the low-energy absorption properties that are characteristic of the plasma model in the region of the atomic discrete spectrum, although higher-energy phenomena are accurately represented, and even excitation-to-ionization ratios are given to fair accuracy. Mean excitation energies for covalent-bonded gases and solids, for ionic gases and crystals, and for metals are calculated using first-order models of the bonded states.
Excitation of the 3p states in electron-sodium scattering at intermediate energies
Kamali, M. Z. M.; Wong, B. R.; Chin, J. H.; Ratnavelu, K.
2014-03-05
A coupled-channel-optical method (CCOM), to investigate the excitation of the 3p states for e{sup −}-Na scattering at intermediate energies, is reported. Nine atomic states( Na(3s), Na(3p), Na(4s), Na(3d), Na(4p), Na(5s), Na(4d), Na(5p), Na(5d) ) together with three optical potentials are used in this work. The inelastic differential cross sections (DCS) as well as the reduced Stokes parameters are compared with latest theoretical data and experimental measurements.
Morozov, A.; Kruecken, R.; Ulrich, A.; Wieser, J.
2006-11-01
Side-view intensity profiles of fluorescent light were measured for neon and nitrogen excited with 12 keV electron beams at gas pressures from 250 to 1400 hPa. The intensity profiles were compared with theoretical profiles calculated using the CASINO program which performs Monte Carlo simulations of electron scattering. It was assumed that the spatial distribution of fluorescent intensity is directly proportional to the spatial distribution of energy loss by primary electrons. The comparison shows good correlation of experimental data and the results of numeric simulations.
Adiabatic Quantum Computation and the Theory of Quantum Phase Transitions
NASA Astrophysics Data System (ADS)
Kaminsky, William; Lloyd, Seth
2007-03-01
We present a general approach to determining the asymptotic scaling of adiabatic quantum computational resources (space, time, energy, and precision) on random instances of NP-complete graph theory problems. By utilizing the isomorphisms between certain NP-complete graph theory problems and certain frustrated spin models, we demonstrate that the asymptotic scaling of the minimum spectral gap that determines the asymptotic running time of adiabatic algorithms is itself determined by the presence and character of quantum phase transitions in these frustrated models. Most notably, we draw the conclusion that adiabatic quantum computers based on quantum Ising models are much less likely to be efficient than those based on quantum rotor or Heisenberg models. We then exhibit practical rotor and Heisenberg model based architectures using Josephson junction and quantum dot circuits.
Huo, P; Coker, D F
2010-11-14
Rather than incoherent hopping between chromophores, experimental evidence suggests that the excitation energy transfer in some biological light harvesting systems initially occurs coherently, and involves coherent superposition states in which excitation spreads over multiple chromophores separated by several nanometers. Treating such delocalized coherent superposition states in the presence of decoherence and dissipation arising from coupling to an environment is a significant challenge for conventional theoretical tools that either use a perturbative approach or make the Markovian approximation. In this paper, we extend the recently developed iterative linearized density matrix (ILDM) propagation scheme [E. R. Dunkel et al., J. Chem. Phys. 129, 114106 (2008)] to study coherent excitation energy transfer in a model of the Fenna-Matthews-Olsen light harvesting complex from green sulfur bacteria. This approach is nonperturbative and uses a discrete path integral description employing a short time approximation to the density matrix propagator that accounts for interference between forward and backward paths of the quantum excitonic system while linearizing the phase in the difference between the forward and backward paths of the environmental degrees of freedom resulting in a classical-like treatment of these variables. The approach avoids making the Markovian approximation and we demonstrate that it successfully describes the coherent beating of the site populations on different chromophores and gives good agreement with other methods that have been developed recently for going beyond the usual approximations, thus providing a new reliable theoretical tool to study coherent exciton transfer in light harvesting systems. We conclude with a discussion of decoherence in independent bilinearly coupled harmonic chromophore baths. The ILDM propagation approach in principle can be applied to more general descriptions of the environment.
Electron-Excited X-Ray Microanalysis at Low Beam Energy: Almost Always an Adventure!
Newbury, Dale E; Ritchie, Nicholas W M
2016-08-01
Scanning electron microscopy with energy-dispersive spectrometry has been applied to the analysis of various materials at low-incident beam energies, E 0≤5 keV, using peak fitting and following the measured standards/matrix corrections protocol embedded in the National Institute of Standards and Technology Desktop Spectrum Analyzer-II analytical software engine. Low beam energy analysis provides improved spatial resolution laterally and in-depth. The lower beam energy restricts the atomic shells that can be ionized, reducing the number of X-ray peak families available to the analyst. At E 0=5 keV, all elements of the periodic table except H and He can be measured. As the beam energy is reduced below 5 keV, elements become inaccessible due to lack of excitation of useful characteristic X-ray peaks. The shallow sampling depth of low beam energy microanalysis makes the technique more sensitive to surface compositional modification due to formation of oxides and other reaction layers. Accurate and precise analysis is possible with the use of appropriate standards and by accumulating high count spectra of unknowns and standards (>1 million counts integrated from 0.1 keV to E 0). PMID:27515566
Electron-Excited X-Ray Microanalysis at Low Beam Energy: Almost Always an Adventure!
Newbury, Dale E; Ritchie, Nicholas W M
2016-08-01
Scanning electron microscopy with energy-dispersive spectrometry has been applied to the analysis of various materials at low-incident beam energies, E 0≤5 keV, using peak fitting and following the measured standards/matrix corrections protocol embedded in the National Institute of Standards and Technology Desktop Spectrum Analyzer-II analytical software engine. Low beam energy analysis provides improved spatial resolution laterally and in-depth. The lower beam energy restricts the atomic shells that can be ionized, reducing the number of X-ray peak families available to the analyst. At E 0=5 keV, all elements of the periodic table except H and He can be measured. As the beam energy is reduced below 5 keV, elements become inaccessible due to lack of excitation of useful characteristic X-ray peaks. The shallow sampling depth of low beam energy microanalysis makes the technique more sensitive to surface compositional modification due to formation of oxides and other reaction layers. Accurate and precise analysis is possible with the use of appropriate standards and by accumulating high count spectra of unknowns and standards (>1 million counts integrated from 0.1 keV to E 0).
Dependence of Fission-Fragment Properties On Excitation Energy For Neutron-Rich Actinides
NASA Astrophysics Data System (ADS)
Ramos, D.; Rodríguez-Tajes, C.; Caamaño, M.; Farget, F.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clement, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domínguez, B.; de France, G.; Heinz, A.; Jacquot, B.; Navin, A.; Paradela, C.; Rejmund, M.; Roger, T.; Salsac, M. D.; Schmitt, C.
2016-03-01
Experimental access to full isotopic fragment distributions is very important to determine the features of the fission process. However, the isotopic identification of fission fragments has been, in the past, partial and scarce. A solution based on the use of inverse kinematics to study transfer-induced fission of exotic actinides was carried out at GANIL, resulting in the first experiment accessing the full identification of a collection of fissioning systems and their corresponding fission fragment distribution. In these experiments, a 238U beam at 6.14 AMeV impinged on a carbon target to produce fissioning systems from U to Am by transfer reactions, and Cf by fusion reactions. Isotopic fission yields of 250Cf, 244Cm, 240Pu, 239Np and 238U are presented in this work. With this information, the average number of neutrons as a function of the atomic number of the fragments is calculated, which reflects the impact of nuclear structure around Z=50, N=80 on the production of fission fragments. The characteristics of the Super Long, Standard I, Standard II, and Standard III fission channels were extracted from fits of the fragment yields for different ranges of excitation energy. The position and contribution of the fission channels as function of excitation energy are presented.
Safronova, U. I.; Johnson, W. R.; Safronova, M. S.
2007-10-15
Relativistic many-body perturbation theory is applied to study properties of ions of the francium isoelectronic sequence. Specifically, energies of the 7s, 7p, 6d, and 5f states of Fr-like ions with nuclear charges Z=87-100 are calculated through third order; reduced matrix elements, oscillator strengths, transition rates, and lifetimes are determined for 7s-7p, 7p-6d, and 6d-5f electric-dipole transitions; and 7s-6d, 7s-5f, and 5f{sub 5/2}-5f{sub 7/2} multipole matrix elements are evaluated to obtain the lifetimes of low-lying excited states. Moreover, for the ions Z=87-92 calculations are also carried out using the relativistic all-order single-double method, in which single and double excitations of Dirac-Fock wave functions are included to all orders in perturbation theory. With the aid of the single-double wave functions, we obtain accurate values of energies, transition rates, oscillator strengths, and the lifetimes of these six ions. Ground state scalar polarizabilities in Fr I, Ra II, Ac III, and Th IV are calculated using relativistic third-order and all-order methods. Ground state scalar polarizabilities for other Fr-like ions are calculated using a relativistic second-order method. These calculations provide a theoretical benchmark for comparison with experiment and theory.
Live-cell visualization of excitation energy dynamics in chloroplast thylakoid structures.
Iwai, Masakazu; Yokono, Makio; Kurokawa, Kazuo; Ichihara, Akira; Nakano, Akihiko
2016-01-01
The intricate molecular processes underlying photosynthesis have long been studied using various analytic approaches. However, the three-dimensional (3D) dynamics of such photosynthetic processes remain unexplored due to technological limitations related to investigating intraorganellar mechanisms in vivo. By developing a system for high-speed 3D laser scanning confocal microscopy combined with high-sensitivity multiple-channel detection, we visualized excitation energy dynamics in thylakoid structures within chloroplasts of live Physcomitrella patens cells. Two distinct thylakoid structures in the chloroplast, namely the grana and stroma lamellae, were visualized three-dimensionally in live cells. The simultaneous detection of the shorter (than ~670 nm) and longer (than ~680 nm) wavelength regions of chlorophyll (Chl) fluorescence reveals different spatial characteristics-irregular and vertical structures, respectively. Spectroscopic analyses showed that the shorter and longer wavelength regions of Chl fluorescence are affected more by free light-harvesting antenna proteins and photosystem II supercomplexes, respectively. The high-speed 3D time-lapse imaging of the shorter and longer wavelength regions also reveals different structural dynamics-rapid and slow movements within 1.5 seconds, respectively. Such structural dynamics of the two wavelength regions of Chl fluorescence would indicate excitation energy dynamics between light-harvesting antenna proteins and photosystems, reflecting the energetically active nature of photosynthetic proteins in thylakoid membranes. PMID:27416900
Calculation of excitation energies from the CC2 linear response theory using Cholesky decomposition
Baudin, Pablo; Marín, José Sánchez; Cuesta, Inmaculada García; Sánchez de Merás, Alfredo M. J.
2014-03-14
A new implementation of the approximate coupled cluster singles and doubles CC2 linear response model is reported. It employs a Cholesky decomposition of the two-electron integrals that significantly reduces the computational cost and the storage requirements of the method compared to standard implementations. Our algorithm also exploits a partitioning form of the CC2 equations which reduces the dimension of the problem and avoids the storage of doubles amplitudes. We present calculation of excitation energies of benzene using a hierarchy of basis sets and compare the results with conventional CC2 calculations. The reduction of the scaling is evaluated as well as the effect of the Cholesky decomposition parameter on the quality of the results. The new algorithm is used to perform an extrapolation to complete basis set investigation on the spectroscopically interesting benzylallene conformers. A set of calculations on medium-sized molecules is carried out to check the dependence of the accuracy of the results on the decomposition thresholds. Moreover, CC2 singlet excitation energies of the free base porphin are also presented.
NASA Astrophysics Data System (ADS)
Li, H. T.; Yang, Z.; Zu, J.; Qin, W. Y.
2016-08-01
This paper presents the modeling and parametric analysis of the recently proposed nonlinear compressive-mode energy harvester (HC-PEH) under harmonic excitation. Both theoretical and experimental investigations are performed in this study over a range of excitation frequencies. Specially, a distributed parameter electro-elastic model is analytically developed by means of the energy-based method and the extended Hamilton's principle. An analytical formulation of bending and stretching forces are derived to gain insight on the source of nonlinearity. Furthermore, the analytical model is validated against with experimental data and a good agreement is achieved. Both numerical simulations and experiment illustrate that the harvester exhibits a hardening nonlinearity and hence a broad frequency bandwidth, multiple coexisting solutions and a large-amplitude voltage response. Using the derived model, a parametric study is carried out to examine the effect of various parameters on the harvester voltage response. It is also shown from parametric analysis that the harvester's performance can be further improved by selecting the proper length of elastic beams, proof mass and reducing the mechanical damping.
Live-cell visualization of excitation energy dynamics in chloroplast thylakoid structures
Iwai, Masakazu; Yokono, Makio; Kurokawa, Kazuo; Ichihara, Akira; Nakano, Akihiko
2016-01-01
The intricate molecular processes underlying photosynthesis have long been studied using various analytic approaches. However, the three-dimensional (3D) dynamics of such photosynthetic processes remain unexplored due to technological limitations related to investigating intraorganellar mechanisms in vivo. By developing a system for high-speed 3D laser scanning confocal microscopy combined with high-sensitivity multiple-channel detection, we visualized excitation energy dynamics in thylakoid structures within chloroplasts of live Physcomitrella patens cells. Two distinct thylakoid structures in the chloroplast, namely the grana and stroma lamellae, were visualized three-dimensionally in live cells. The simultaneous detection of the shorter (than ~670 nm) and longer (than ~680 nm) wavelength regions of chlorophyll (Chl) fluorescence reveals different spatial characteristics—irregular and vertical structures, respectively. Spectroscopic analyses showed that the shorter and longer wavelength regions of Chl fluorescence are affected more by free light-harvesting antenna proteins and photosystem II supercomplexes, respectively. The high-speed 3D time-lapse imaging of the shorter and longer wavelength regions also reveals different structural dynamics—rapid and slow movements within 1.5 seconds, respectively. Such structural dynamics of the two wavelength regions of Chl fluorescence would indicate excitation energy dynamics between light-harvesting antenna proteins and photosystems, reflecting the energetically active nature of photosynthetic proteins in thylakoid membranes. PMID:27416900
Live-cell visualization of excitation energy dynamics in chloroplast thylakoid structures.
Iwai, Masakazu; Yokono, Makio; Kurokawa, Kazuo; Ichihara, Akira; Nakano, Akihiko
2016-07-15
The intricate molecular processes underlying photosynthesis have long been studied using various analytic approaches. However, the three-dimensional (3D) dynamics of such photosynthetic processes remain unexplored due to technological limitations related to investigating intraorganellar mechanisms in vivo. By developing a system for high-speed 3D laser scanning confocal microscopy combined with high-sensitivity multiple-channel detection, we visualized excitation energy dynamics in thylakoid structures within chloroplasts of live Physcomitrella patens cells. Two distinct thylakoid structures in the chloroplast, namely the grana and stroma lamellae, were visualized three-dimensionally in live cells. The simultaneous detection of the shorter (than ~670 nm) and longer (than ~680 nm) wavelength regions of chlorophyll (Chl) fluorescence reveals different spatial characteristics-irregular and vertical structures, respectively. Spectroscopic analyses showed that the shorter and longer wavelength regions of Chl fluorescence are affected more by free light-harvesting antenna proteins and photosystem II supercomplexes, respectively. The high-speed 3D time-lapse imaging of the shorter and longer wavelength regions also reveals different structural dynamics-rapid and slow movements within 1.5 seconds, respectively. Such structural dynamics of the two wavelength regions of Chl fluorescence would indicate excitation energy dynamics between light-harvesting antenna proteins and photosystems, reflecting the energetically active nature of photosynthetic proteins in thylakoid membranes.
NASA Astrophysics Data System (ADS)
Huang, Bo; Hsieh, Chen-Yu; Golnaraghi, Farid; Moallem, Mehrdad
2015-11-01
In this paper a vehicle suspension system with energy harvesting capability is developed, and an analytical methodology for the optimal design of the system is proposed. The optimization technique provides design guidelines for determining the stiffness and damping coefficients aimed at the optimal performance in terms of ride comfort and energy regeneration. The corresponding performance metrics are selected as root-mean-square (RMS) of sprung mass acceleration and expectation of generated power. The actual road roughness is considered as the stochastic excitation defined by ISO 8608:1995 standard road profiles and used in deriving the optimization method. An electronic circuit is proposed to provide variable damping in the real-time based on the optimization rule. A test-bed is utilized and the experiments under different driving conditions are conducted to verify the effectiveness of the proposed method. The test results suggest that the analytical approach is credible in determining the optimality of system performance.
Mass-number and excitation-energy dependence of the spin cutoff parameter
NASA Astrophysics Data System (ADS)
Grimes, S. M.; Voinov, A. V.; Massey, T. N.
2016-07-01
The spin cutoff parameter determining the nuclear level density spin distribution ρ (J ) is defined through the spin projection as
NASA Astrophysics Data System (ADS)
Manser, Joseph S.
travel 220 nm over the course of 2 ns after photoexcitation, with an extrapolated diffusion length greater than one micrometer over the full excited state lifetime. The solution-processability of metal halide perovskites necessarily raises questions as to the properties of the solvated precursors and their connection to the final solid-state perovskite phase. Through structural and steady-state and time-resolved absorption studies, the important link between the excited state properties of the precursor components, composed of solvated and solid-state halometallate complexes, and CH3NH3PbI3 is evinced. This connection provides insight into optical nonlinearities and electronic properties of the perovskite phase. Fundamental studies of CH 3NH3PbI3 ultimately serve as a foundation for application of this and other related materials in high-performance devices. In the final chapter, the operation of CH3NH3PbI 3 solar cells in a tandem architecture is presented. The quest for economic, large scale hydrogen production has motivated the search for new materials and device designs capable of splitting water using only energy from the sun. In light of this, we introduce an all solution-processed tandem water splitting assembly composed of a BiVO4 photoanode and a single-junction CH3NH3PbI3 hybrid perovskite solar cell. This unique configuration allows efficient solar photon management, with the metal oxide photoanode selectively harvesting high energy visible photons and the underlying perovskite solar cell capturing lower energy visible-near IR wavelengths in a single-pass excitation. Operating without external bias under standard terrestrial one sun illumination, the photoanode-photovoltaic architecture, in conjunction with an earthabundant cobalt phosphate catalyst, exhibits a solar-to-hydrogen conversion efficiency of 2.5% at neutral pH. The design of low-cost tandem water splitting assemblies employing single-junction hybrid perovskite materials establishes a potentially
Robust quantum logic in neutral atoms via adiabatic Rydberg dressing
NASA Astrophysics Data System (ADS)
Keating, Tyler; Cook, Robert L.; Hankin, Aaron M.; Jau, Yuan-Yu; Biedermann, Grant W.; Deutsch, Ivan H.
2015-01-01
We study a scheme for implementing a controlled-Z (cz) gate between two neutral-atom qubits based on the Rydberg blockade mechanism in a manner that is robust to errors caused by atomic motion. By employing adiabatic dressing of the ground electronic state, we can protect the gate from decoherence due to random phase errors that typically arise because of atomic thermal motion. In addition, the adiabatic protocol allows for a Doppler-free configuration that involves counterpropagating lasers in a σ+/σ- orthogonal polarization geometry that further reduces motional errors due to Doppler shifts. The residual motional error is dominated by dipole-dipole forces acting on doubly excited Rydberg atoms when the blockade is imperfect. For reasonable parameters, with qubits encoded into the clock states of 133Cs, we predict that our protocol could produce a cz gate in <10 μ s with error probability on the order of 10-3.
NASA Astrophysics Data System (ADS)
Li, Dafa
2016-05-01
The adiabatic theorem was proposed about 90 years ago and has played an important role in quantum physics. The quantitative adiabatic condition constructed from eigenstates and eigenvalues of a Hamiltonian is a traditional tool to estimate adiabaticity and has proven to be the necessary and sufficient condition for adiabaticity. However, recently the condition has become a controversial subject. In this paper, we list some expressions to estimate the validity of the adiabatic approximation. We show that the quantitative adiabatic condition is invalid for the adiabatic approximation via the Euclidean distance between the adiabatic state and the evolution state. Furthermore, we deduce general necessary and sufficient conditions for the validity of the adiabatic approximation by different definitions.
Zeng, Qiao; Liang, WanZhen
2015-10-07
The time-dependent density functional theory (TDDFT) has become the most popular method to calculate the electronic excitation energies, describe the excited-state properties, and perform the excited-state geometric optimization of medium and large-size molecules due to the implementation of analytic excited-state energy gradient and Hessian in many electronic structure software packages. To describe the molecules in condensed phase, one usually adopts the computationally efficient hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) models. Here, we extend our previous work on the energy gradient of TDDFT/MM excited state to account for the mutual polarization effects between QM and MM regions, which is believed to hold a crucial position in the potential energy surface of molecular systems when the photoexcitation-induced charge rearrangement in the QM region is drastic. The implementation of a simple polarizable TDDFT/MM (TDDFT/MMpol) model in Q-Chem/CHARMM interface with both the linear response and the state-specific features has been realized. Several benchmark tests and preliminary applications are exhibited to confirm our implementation and assess the effects of different treatment of environmental polarization on the excited-state properties, and the efficiency of parallel implementation is demonstrated as well.
Zeng, Qiao; Liang, WanZhen
2015-10-01
The time-dependent density functional theory (TDDFT) has become the most popular method to calculate the electronic excitation energies, describe the excited-state properties, and perform the excited-state geometric optimization of medium and large-size molecules due to the implementation of analytic excited-state energy gradient and Hessian in many electronic structure software packages. To describe the molecules in condensed phase, one usually adopts the computationally efficient hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) models. Here, we extend our previous work on the energy gradient of TDDFT/MM excited state to account for the mutual polarization effects between QM and MM regions, which is believed to hold a crucial position in the potential energy surface of molecular systems when the photoexcitation-induced charge rearrangement in the QM region is drastic. The implementation of a simple polarizable TDDFT/MM (TDDFT/MMpol) model in Q-Chem/CHARMM interface with both the linear response and the state-specific features has been realized. Several benchmark tests and preliminary applications are exhibited to confirm our implementation and assess the effects of different treatment of environmental polarization on the excited-state properties, and the efficiency of parallel implementation is demonstrated as well. PMID:26450289
Zeng, Qiao; Liang, WanZhen
2015-10-01
The time-dependent density functional theory (TDDFT) has become the most popular method to calculate the electronic excitation energies, describe the excited-state properties, and perform the excited-state geometric optimization of medium and large-size molecules due to the implementation of analytic excited-state energy gradient and Hessian in many electronic structure software packages. To describe the molecules in condensed phase, one usually adopts the computationally efficient hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) models. Here, we extend our previous work on the energy gradient of TDDFT/MM excited state to account for the mutual polarization effects between QM and MM regions, which is believed to hold a crucial position in the potential energy surface of molecular systems when the photoexcitation-induced charge rearrangement in the QM region is drastic. The implementation of a simple polarizable TDDFT/MM (TDDFT/MMpol) model in Q-Chem/CHARMM interface with both the linear response and the state-specific features has been realized. Several benchmark tests and preliminary applications are exhibited to confirm our implementation and assess the effects of different treatment of environmental polarization on the excited-state properties, and the efficiency of parallel implementation is demonstrated as well.
Energy transfer kinetics of the np5(n + 1)p excited states of Ne and Kr.
Kabir, Md Humayun; Heaven, Michael C
2011-09-01
Energy transfer rate constants for Ne(2p(5)3p) and Kr(4p(5)5p) atoms colliding with ground state rare gas atoms (Rg) have been measured. In part, this study is motivated by the possibility of using excited rare gas atoms as the active species in optically pumped laser systems. Rg(np(5)(n + 1)s) metastable states may be produced using low-power electrical discharges. The potential then exits for optical pumping and laser action on the np(5)(n + 1)p ↔ np(5)(n + 1)s transitions. Knowledge of the rate constants for collisional energy transfer and deactivation of the np(5)(n + 1)p states is required to evaluate the laser potential for various Rg + buffer gas combinations. In the present study we have characterized energy transfer processes for Ne (2p(5)3p) + He for the six lowest energy states of the multiplet. Rate constants for state-to-state transfer have been determined. Deactivation of the lowest energy level of Kr (4p(5)5p) by He, Ne, and Kr has also been characterized. Initial results suggest that Kr (4p(5)5p) + Ne mixtures may be the best suited for optically pumped laser applications.
Excitation energies, oscillator strengths and lifetimes in Mg-like vanadium
NASA Astrophysics Data System (ADS)
Gupta, G. P.; Msezane, A. Z.
2013-08-01
Excitation energies from the ground state for 86 fine-structure levels as well as oscillator strengths and radiative decay rates for all fine-structure transitions among the levels of the terms (1s22s22p6)3s2(1S), 3s3p(1,3Po), 3s3d(1,3D), 3s4s(1,3S), 3s4p(1,3Po), 3s4d(1,3D), 3s4f(1,3Fo), 3p2(1S, 3P, 1D), 3p3d(1,3Po, 1,3Do, 1,3Fo), 3p4s(1,3Po), 3p4p(1,3S, 1,3P, 1,3D), 3p4d(1,3Po, 1,3Do, 1,3Fo), 3p4f(1,3D, 1,3F, 1,3G) and 3d2(1S, 3P, 1D,3F,1G) of V XII are calculated using extensive configuration-interaction wave functions obtained with the configuration-interaction version 3 computer code of Hibbert. The important relativistic effects in intermediate coupling are included through the Breit-Pauli approximation. In order to keep our calculated energy splittings as close as possible to the corresponding experimental values, we have made small adjustments to the diagonal elements of the Hamiltonian matrices. The mixing among several fine-structure levels is found to be very strong. Our fine-tuned excitation energies, including their ordering, are in excellent agreement (better than 0.25%) with the available experimental results. From our calculated radiative decay rates, we have also calculated the radiative lifetimes of fine-structure levels. Generally, our calculated data for the excitation energies and radiative decay rates are found to agree reasonably well with other available calculations. However, significant differences between our calculated lifetimes and those from the calculation of Froese Fischer et al (2006 At. Data Nucl. Data Tables 92 607) for a few fine-structure levels, mainly those belonging to the 3p4d configuration, are noted and discussed. Also, our calculated lifetime for the longer-lived level 3s3p(3P1) is found to be in excellent agreement with the corresponding value of Curtis (1991 Phys. Scr. 43 137). ) for all 1108 transitions in V XII are available with the first author (
Jennings, Robert C; Zucchelli, Giuseppe
2014-01-01
We examine ergodicity and configurational entropy for a dilute pigment solution and for a suspension of plant photosystem particles in which both ground and excited state pigments are present. It is concluded that the pigment solution, due to the extreme brevity of the excited state lifetime, is non-ergodic and the configurational entropy approaches zero. Conversely, due to the rapid energy transfer among pigments, each photosystem is ergodic and the configurational entropy is positive. This decreases the free energy of the single photosystem pigment array by a small amount. On the other hand, the suspension of photosystems is non-ergodic and the configurational entropy approaches zero. The overall configurational entropy which, in principle, includes contributions from both the single excited photosystems and the suspension which contains excited photosystems, also approaches zero. Thus the configurational entropy upon photon absorption by either a pigment solution or a suspension of photosystem particles is approximately zero.
NASA Astrophysics Data System (ADS)
Harne, R. L.; Zhang, Chunlin; Li, Bing; Wang, K. W.
2016-07-01
Impulsive energies are abundant throughout the natural and built environments, for instance as stimulated by wind gusts, foot-steps, or vehicle-road interactions. In the interest of maximizing the sustainability of society's technological developments, one idea is to capture these high-amplitude and abrupt energies and convert them into usable electrical power such as for sensors which otherwise rely on less sustainable power supplies. In this spirit, the considerable sensitivity to impulse-type events previously uncovered for bistable oscillators has motivated recent experimental and numerical studies on the power generation performance of bistable vibration energy harvesters. To lead to an effective and efficient predictive tool and design guide, this research develops a new analytical approach to estimate the electroelastic response and power generation of a bistable energy harvester when excited by an impulse. Comparison with values determined by direct simulation of the governing equations shows that the analytically predicted net converted energies are very accurate for a wide range of impulse strengths. Extensive experimental investigations are undertaken to validate the analytical approach and it is seen that the predicted estimates of the impulsive energy conversion are in excellent agreement with the measurements, and the detailed structural dynamics are correctly reproduced. As a result, the analytical approach represents a significant leap forward in the understanding of how to effectively leverage bistable structures as energy harvesting devices and introduces new means to elucidate the transient and far-from-equilibrium dynamics of nonlinear systems more generally.
Rhee, Young Min; Head-Gordon, Martin
2007-02-01
Two modifications of the perturbative doubles correction to configuration interaction with single substitutions (CIS(D)) are suggested, which are excited state analogs of ground state scaled second order Moeller-Plesset (MP2) methods. The first approach employs two parameters to scale the two spin components of the direct term of CIS(D), starting from the two-parameter spin-component scaled (SCS) MP2 ground state, and is termed SCS-CIS(D). An efficient resolution-of-the-identity (RI) implementation of this approach is described. The second approach employs a single parameter to scale only the opposite-spin direct term of CIS(D), starting from the one-parameter scaled opposite spin (SOS) MP2 ground state, and is called SOS-CIS(D). By utilizing auxiliary basis expansions and a Laplace transform, a fourth order algorithm for SOS-CIS(D) is described and implemented. The parameters describing SCS-CIS(D) and SOS-CIS(D) are optimized based on a training set including valence excitations of various organic molecules and Rydberg transitions of water and ammonia, and they significantly improve upon CIS(D) itself. The accuracy of the two methods is found to be comparable. This arises from a strong correlation between the same-spin and opposite-spin portions of the excitation energy terms. The methods are successfully applied to the zincbacteriochlorin-bacteriochlorin charge transfer transition, for which time-dependent density functional theory, with presently available exchange-correlation functionals, is known to fail. The methods are also successfully applied to describe various electronic transitions outside of the training set. The efficiency of SOS-CIS(D) and the auxiliary basis implementation of CIS(D) and SCS-CIS(D) are confirmed with a series of timing tests.
Zhong, Yeteng; Rostami, Iman; Wang, Zihua; Dai, Hongjie; Hu, Zhiyuan
2015-11-01
A novel Nd(3+) -sensitized upconversion nanoparticle (UCNP) that can be excited by near-infrared 740 nm light-emitting diode (LED) lamps with bright upconversion luminescence is designed. Yb(3+) ion distribution is engineered to increase the energy migration efficiency. The benefit of the novel LED-excited UCNPs is demonstrated by imaging of breast cancer cells and enabling an economic handheld semiquantitative visual measurement device. PMID:26393770
Yuan, Bing; Yu, Zijun; Bernstein, Elliot R.
2014-01-21
Decomposition of energetic material 3,4-dinitropyrazole (DNP) and two model molecules 4-nitropyrazole and 1-nitropyrazole is investigated both theoretically and experimentally. The initial decomposition mechanisms for these three nitropyrazoles are explored with complete active space self-consistent field (CASSCF) level. The NO molecule is observed as an initial decomposition product from all three materials subsequent to UV excitation. Observed NO products are rotationally cold (<50 K) for all three systems. The vibrational temperature of the NO product from DNP is (3850 ± 50) K, 1350 K hotter than that of the two model species. Potential energy surface calculations at the CASSCF(12,8)/6-31+G(d) level illustrate that conical intersections plays an essential role in the decomposition mechanism. Electronically excited S{sub 2} nitropyraozles can nonradiatively relax to lower electronic states through (S{sub 2}/S{sub 1}){sub CI} and (S{sub 1}/S{sub 0}){sub CI} conical intersection and undergo a nitro-nitrite isomerization to generate NO product either in the S{sub 1} state or S{sub 0} state. In model systems, NO is generated in the S{sub 1} state, while in the energetic material DNP, NO is produced on the ground state surface, as the S{sub 1} decomposition pathway is energetically unavailable. The theoretically predicted mechanism is consistent with the experimental results, as DNP decomposes in a lower electronic state than do the model systems and thus the vibrational energy in the NO product from DNP should be hotter than from the model systems. The observed rotational energy distributions for NO are consistent with the final structures of the respective transition states for each molecule.
On the ultrashort lifetime of electronically excited thiophenol
NASA Astrophysics Data System (ADS)
Ovejas, Virginia; Fernández-Fernández, Marta; Montero, Raúl; Longarte, Asier
2016-09-01
The relaxation dynamics of thiophenol, excited from the onset of the S1 (11ππ∗) state absorption, to the more intense S3 (21ππ∗) state band (290-244 nm), has been studied by time resolved ion yield spectroscopy. Along the studied energy range, the reached excited states relax in less 100 fs. These results evidence that the photophysics is dominated by the non-adiabatic coupling between the initially excited S1 and S31ππ∗ states, and the dissociative character 1πσ∗ state. Contrarily to phenol, the 11ππ∗/1πσ∗ crossing is reached from the origin of the 11ππ∗ state absorption, through a nearly barrierless pathway.
Martin, V.; Egido, J.L.
1995-06-01
Using the finite-temperature Hartree-Fock-Bogoliubov formalism we analyze the properties of the nuclei {sup 152,154,156}Dy at the quasicontinuum region from {ital I}=0{h_bar} to 70{h_bar} and excitation energy up to approximately 16 MeV. We discuss energy gaps, shapes, moments of inertia, and entropy among others. The role of shape fluctuations is studied in the frame of classical statistics and we find large effects on several observables. A very rich structure is found in terms of excitation energy and angular momentum.
NASA Astrophysics Data System (ADS)
Gorelik, M. L.; Shlomo, S.; Tulupov, B. A.; Urin, M. H.
2016-11-01
The particle-hole dispersive optical model, developed recently, is applied to study properties of high-energy isoscalar monopole excitations in medium-heavy mass spherical nuclei. The energy-averaged strength functions of the isoscalar giant monopole resonance and its overtone in 208Pb are analyzed. In particular, we analyze the energy-averaged isoscalar monopole double transition density, the key quantity in the description of the hadron-nucleus inelastic scattering, and studied the validity of the factorization approximation using semi classical and microscopic one body transition densities, respectively, in calculating the cross sections for the excitation of isoscalar giant resonances by inelastic alpha scattering.
Controlled Rapid Adiabatic Passage in a V-Type System
NASA Astrophysics Data System (ADS)
Song, Yunheung; Lee, Han-Gyeol; Jo, Hanlae; Ahn, Jaewook
2016-05-01
In chirped rapid adiabatic passage (RAP), chirp sign determines the final state to which the complete population transfer (CPT) occurs in a three-level V-type system. In this study, we show that laser intensity can be alternatively used as a control means in RAP, when the laser pulse is chirped and of a spectral hole resonant to one of the excited states. We verified such excitation selectivity in the experiment performed as-shaped femtosecond laser pulses interacting with the lowest three levels (5S, 5 P1/2, and 5 P3/2) of atomic rubidium. The successful demonstration implies that this intensity-dependent RAP in conjunction with laser beam profile programming may allow excitation selectivity for atoms or ions arranged in space.
Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy
Butorin, S.M.; Guo, J.; Magnuson, M.
1997-04-01
Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.
NASA Astrophysics Data System (ADS)
Sauer, Stephan P. A.; Pitzner-Frydendahl, Henrik F.; Buse, Mogens; Jensen, Hans Jørgen Aa.; Thiel, Walter
2015-07-01
We present two new modifications of the second-order polarization propagator approximation (SOPPA), SOPPA(SCS-MP2) and SOPPA(SOS-MP2), which employ either spin-component-scaled or scaled opposite-spin MP2 correlation coefficients instead of the regular MP2 coefficients. The performance of these two methods, the original SOPPA method as well as SOPPA(CCSD) and RPA(D) in the calculation of vertical electronic excitation energies and oscillator strengths is investigated for a large benchmark set of 28 medium-sized molecules with 139 singlet and 71 triplet excited states. The results are compared with the corresponding CC3 and CASPT2 results from the literature for both the TZVP set and the larger and more diffuse aug-cc-pVTZ basis set. In addition, the results with the aug-cc-pVTZ basis set are compared with the theoretical best estimates for this benchmark set. We find that the original SOPPA method gives overall the smallest mean deviations from the reference values and the most consistent results.
Orf, Gregory S; Saer, Rafael G; Niedzwiedzki, Dariusz M; Zhang, Hao; McIntosh, Chelsea L; Schultz, Jason W; Mirica, Liviu M; Blankenship, Robert E
2016-08-01
Light-harvesting antenna complexes not only aid in the capture of solar energy for photosynthesis, but regulate the quantity of transferred energy as well. Light-harvesting regulation is important for protecting reaction center complexes from overexcitation, generation of reactive oxygen species, and metabolic overload. Usually, this regulation is controlled by the association of light-harvesting antennas with accessory quenchers such as carotenoids. One antenna complex, the Fenna-Matthews-Olson (FMO) antenna protein from green sulfur bacteria, completely lacks carotenoids and other known accessory quenchers. Nonetheless, the FMO protein is able to quench energy transfer in aerobic conditions effectively, indicating a previously unidentified type of regulatory mechanism. Through de novo sequencing MS, chemical modification, and mutagenesis, we have pinpointed the source of the quenching action to cysteine residues (Cys49 and Cys353) situated near two low-energy bacteriochlorophylls in the FMO protein from Chlorobaculum tepidum Removal of these cysteines (particularly removal of the completely conserved Cys353) through N-ethylmaleimide modification or mutagenesis to alanine abolishes the aerobic quenching effect. Electrochemical analysis and electron paramagnetic resonance spectra suggest that in aerobic conditions the cysteine thiols are converted to thiyl radicals which then are capable of quenching bacteriochlorophyll excited states through electron transfer photochemistry. This simple mechanism has implications for the design of bio-inspired light-harvesting antennas and the redesign of natural photosynthetic systems. PMID:27335466
Liu, Zhi-qiang; Jia, Peng-ying; Liu, Tie
2013-09-01
Atmospheric pressure glow discharge excited by a DC voltage was realized in a 6 mm air gap by using a needle-water electrode discharge device. The atompheric pressure glow discharge has characteristic regions such as a cathode fall, a negative glow, a Faraday dark space, a positive column and an anode glow. The discharge is a normal glow through analyzing its voltage-current curve. The emission intensity of 337.1 nm spectral line from the second positive system of N2 was investigated because it can indicate the electron density with high energy. Results show that the maxima of high energy electrons appears in the vicinity of the needle tip, and it almost remains constant at other locations. The density of high energy electrons decreases with increasing the voltage. Similarly, it decreases with increasing the value of the ballast resistor. Oxygen atom is important for the sterilization and disinfection. The distribution of oxygen atom was also investigated by optical emission spectroscopy. It was found that the oxygen distribution is similar with the distribution of high energy electrons. These results are important for the application of atmospheric pressure glow discharge in environmental protection and biological treatment. PMID:24369623
Response analysis of a nonlinear magnetoelectric energy harvester under harmonic excitation
NASA Astrophysics Data System (ADS)
Naifar, S.; Bradai, S.; Viehweger, C.; Kanoun, O.
2015-11-01
Magnetostrictive (MS) piezoelectric composites provide interesting possibilities to harvest energy from low amplitude and low frequency vibrations with a relative high energy outcome. In this paper a magnetoelectric (ME) vibration energy harvester has been designed, which consists of two ME transducers a magnetic circuit and a magnetic spring. The ME transducers consist of three layered Terfenol-D and Lead Zirconate Titanate (PZT) laminated composites. The outcoming energy is collected directly from the piezo layer to avoid electrical losses. In the system under consideration, the magnetic forces between the ME transducers and the magnetic circuit introduce additional stiffness on the magnetic spring. The one degree of freedom system is analysed analytically and the corresponding governing equation is solved with the Lindstedt-Poincaré method. The effects of the structure parameters, such as the nonlinear magnetic forces and the magnetic field distribution, are analysed based on finite element analysis for optimization of electric output performances. Investigations demonstrate that 1.56 mW output power across 8 MΩ load resistance can be harvested for an excitation amplitude of 1 mm at 21.84 Hz.
NASA Astrophysics Data System (ADS)
Safronova, U. I.; Johnson, W. R.; Shlyaptseva, A.; Hamasha, S.
2003-05-01
Energies of (3s23p63d94l4l'), (3s23p53d104l4l'), and (3s3p63d104l4l') states for Cu-like ions with Z=30 100 are evaluated to second order in relativistic many-body perturbation theory (RMBPT) starting from a Ni-like Dirac-Fock potential. Second-order Coulomb and Breit-Coulomb interactions are included. Correction for the frequency dependence of the Breit interaction is taken into account in lowest order. The Lamb shift correction to energies is also included in lowest order. Intrinsic particle-particle-hole contributions to energies are found to be 20 30 % of the sum of one- and two-body contributions. Transition rates and line strengths are calculated for the 3l-4l' electric-dipole (E1) transitions in Cu-like ions with nuclear charge Z=30 100. RMBPT including the Breit interaction is used to evaluate retarded E1 matrix elements in length and velocity forms. First-order RMBPT is used to obtain intermediate coupling coefficients, and second-order RMBPT is used to calculate transition matrix elements. A detailed discussion of the various contributions to the dipole- matrix elements and energy levels is given for copperlike tungsten (Z=74). The transition energies used in the calculation of oscillator strengths and transition rates are from second-order RMBPT. Trends of the transition rates as functions of Z are illustrated graphically for selected transitions. Comparisons are made with available experimental data. These atomic data are important in the modeling of M-shell radiation spectra of heavy ions generated in electron-beam ion trap experiments and in M-shell diagnostics of plasmas.
Adiabatic Wankel type rotary engine
NASA Technical Reports Server (NTRS)
Kamo, R.; Badgley, P.; Doup, D.
1988-01-01
This SBIR Phase program accomplished the objective of advancing the technology of the Wankel type rotary engine for aircraft applications through the use of adiabatic engine technology. Based on the results of this program, technology is in place to provide a rotor and side and intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Injection Stratified Charge (DISC) rotary engine was performed which concluded that applying thermal barrier coatings to the rotor should be successful and that it was unlikely that the rotor housing could be successfully run with thermal barrier coatings as the thermal stresses were extensive.
Adiabatic processes in monatomic gases
NASA Astrophysics Data System (ADS)
Carrera-Patiño, Martin E.
1988-08-01
A kinetic model is used to predict the temperature evolution of a monatomic ideal gas undergoing an adiabatic expansion or compression at a constant finite rate, and it is then generalized to treat real gases. The effects of interatomic forces are considered, using as examples the gas with the square-well potential and the van der Waals gas. The model is integrated into a Carnot cycle operating at a finite rate to compare the efficiency's rate-dependent behavior with the reversible result. Limitations of the model, rate penalties, and their importance are discussed.
Adiabatic preparation of Floquet condensates
NASA Astrophysics Data System (ADS)
Heinisch, Christoph; Holthaus, Martin
2016-10-01
We argue that a Bose-Einstein condensate can be transformed into a Floquet condensate, that is, into a periodically time-dependent many-particle state possessing the coherence properties of a mesoscopically occupied single-particle Floquet state. Our reasoning is based on the observation that the denseness of the many-body system's quasienergy spectrum does not necessarily obstruct effectively adiabatic transport. Employing the idealized model of a driven bosonic Josephson junction, we demonstrate that only a small amount of Floquet entropy is generated when a driving force with judiciously chosen frequency and maximum amplitude is turned on smoothly.
Chen, T. E-mail: henning@fysik.su.se; Gatchell, M.; Stockett, M. H.; Schmidt, H. T.; Cederquist, H.; Zettergren, H. E-mail: henning@fysik.su.se; Delaunay, R.; Rousseau, P.; Adoui, L.; Domaracka, A.; Huber, B. A.; Tielens, A. G. G. M.
2015-04-14
We have investigated the effectiveness of molecular hydrogen (H{sub 2}) formation from Polycyclic Aromatic Hydrocarbons (PAHs) which are internally heated by collisions with keV ions. The present and earlier experimental results are analyzed in view of molecular structure calculations and a simple collision model. We estimate that H{sub 2} formation becomes important for internal PAH temperatures exceeding about 2200 K, regardless of the PAH size and the excitation agent. This suggests that keV ions may effectively induce such reactions, while they are unlikely due to, e.g., absorption of single photons with energies below the Lyman limit. The present analysis also suggests that H{sub 2} emission is correlated with multi-fragmentation processes, which means that the [PAH-2H]{sup +} peak intensities in the mass spectra may not be used for estimating H{sub 2}-formation rates.
Excitation of the copper resonance lines by low-energy electrons
NASA Astrophysics Data System (ADS)
Flynn, Connor; Wei, Zuyi; Stumpf, Bernhard
1993-08-01
The optical-excitation-function method has been used in a crossed-atom and electron-beam arrangement to measure the electron-impact cross section of the copper 4 2P-->4 2S resonance lines (324.8, 327.4 nm) from threshold (3.8 eV) to 8 eV. Relative experimental cross-section data are normalized at an energy of 1000 eV with respect to first Born theory that includes the 4 2S-->4 2P resonance transition with an oscillator strength of 0.652 and cascading from the (3d10nd)2D states with n=4,...,10. The measured Cu 4 2S-->4 2P cross section is compared with recent theoretical calculations in close-coupling approximation. Very good agreement is found with the ten-state close-coupling theory of Scheibner and Hazi (private communication).
Chen, T; Gatchell, M; Stockett, M H; Delaunay, R; Domaracka, A; Micelotta, E R; Tielens, A G G M; Rousseau, P; Adoui, L; Huber, B A; Schmidt, H T; Cederquist, H; Zettergren, H
2015-04-14
We have investigated the effectiveness of molecular hydrogen (H2) formation from Polycyclic Aromatic Hydrocarbons (PAHs) which are internally heated by collisions with keV ions. The present and earlier experimental results are analyzed in view of molecular structure calculations and a simple collision model. We estimate that H2 formation becomes important for internal PAH temperatures exceeding about 2200 K, regardless of the PAH size and the excitation agent. This suggests that keV ions may effectively induce such reactions, while they are unlikely due to, e.g., absorption of single photons with energies below the Lyman limit. The present analysis also suggests that H2 emission is correlated with multi-fragmentation processes, which means that the [PAH-2H](+) peak intensities in the mass spectra may not be used for estimating H2-formation rates.
Excited baryon form-factors at high momentum transfer at CEBAF at higher energies
Stoler, P.
1994-04-01
The possibilities of measuring the properties of excited nucleons at high Q{sup 2} by means of exclusive single meson production at CEBAF with an electron energy of 8 GeV is considered. The motivation is to access short range phenomena in baryon structure, and to investigate the transition from the low Q{sup 2} non-perturbative QCD regime, where constituent quark models are valid, to higher Q{sup 2} where it is believed perturbative QCD plays an increasingly important role. It is found that high quality baryon decay angular distributions can be obtained for the most prominent states up to Q{sup 2} {approximately} 12 GeV{sup 2}/c{sup 2} using a set of moderate resolution, large solid angle magnetic spectrometers.
Beste, Ariana; Vazquez-Mayagoitia, Alvaro; Ortiz, J. Vincent
2013-01-01
A direct method (D-Delta-MBPT(2)) to calculate second-order ionization potentials (IPs), electron affinities (EAs), and excitation energies is developed. The Delta-MBPT(2) method is defined as the correlated extension of the Delta-HF method. Energy differences are obtained by integrating the energy derivative with respect to occupation numbers over the appropriate parameter range. This is made possible by writing the second-order energy as a function of the occupation numbers. Relaxation effects are fully included at the SCF level. This is in contrast to linear response theory, which makes the D-Delta-MBPT(2) applicable not only to single excited but also higher excited states. We show the relationship of the D-Delta-MBPT(2) method for IPs and EAs to a second-order approximation of the effective Fock-space coupled-cluster Hamiltonian and a second-order electron propagator method. We also discuss the connection between the D-Delta-MBPT(2) method for excitation energies and the CIS-MP2 method. Finally, as a proof of principle, we apply our method to calculate ionization potentials and excitation energies of some small molecules. For IPs, the Delta-MBPT(2) results compare well to the second-order solution of the Dyson equation. For excitation energies, the deviation from EOM-CCSD increases when correlation becomes more important. When using the numerical integration technique, we encounter difficulties that prevented us from reaching the Delta-MBPT(2) values. Most importantly, relaxation beyond the Hartree Fock level is significant and needs to be included in future research.
Assessment of the ΔSCF density functional theory approach for electronic excitations in organic dyes
Kowalczyk, T.; Yost, S. R.; Van Voorhis, T.
2010-01-01
This paper assesses the accuracy of the ΔSCF method for computing low-lying HOMO→LUMO transitions in organic dye molecules. For a test set of vertical excitation energies of 16 chromophores, surprisingly similar accuracy is observed for time-dependent density functional theory and for ΔSCF density functional theory. In light of this performance, we reconsider the ad hoc ΔSCF prescription and demonstrate that it formally obtains the exact stationary density within the adiabatic approximation, partially justifying its use. The relative merits and future prospects of ΔSCF for simulating individual excited states are discussed.
Differential topology of adiabatically controlled quantum processes
NASA Astrophysics Data System (ADS)
Jonckheere, Edmond A.; Rezakhani, Ali T.; Ahmad, Farooq
2013-03-01
It is shown that in a controlled adiabatic homotopy between two Hamiltonians, H 0 and H 1, the gap or "anti-crossing" phenomenon can be viewed as the development of cusps and swallow tails in the region of the complex plane where two critical value curves of the quadratic map associated with the numerical range of H 0 + i H 1 come close. The "near crossing" in the energy level plots happens to be a generic situation, in the sense that a crossing is a manifestation of the quadratic numerical range map being unstable in the sense of differential topology. The stable singularities that can develop are identified and it is shown that they could occur near the gap, making those singularities of paramount importance. Various applications, including the quantum random walk, are provided to illustrate this theory.
Adiabatic connection at negative coupling strengths
Seidl, Michael; Gori-Giorgi, Paola
2010-01-15
The adiabatic connection of density functional theory (DFT) for electronic systems is generalized here to negative values of the coupling strength alpha (with attractive electrons). In the extreme limit alpha->-infinity a simple physical solution is presented and its implications for DFT (as well as its limitations) are discussed. For two-electron systems (a case in which the present solution can be calculated exactly), we find that an interpolation between the limit alpha->-infinity and the opposite limit of infinitely strong repulsion (alpha->+infinity) yields a rather accurate estimate of the second-order correlation energy E{sub c}{sup GL2}[rho] for several different densities rho, without using virtual orbitals. The same procedure is also applied to the Be isoelectronic series, analyzing the effects of near degeneracy.
Low energy excitations in iridates studied with Resonant Inelastic X-ray Scattering
NASA Astrophysics Data System (ADS)
Liu, Xuerong
2013-03-01
In the iridium oxides, the strong spin-orbit coupling (SOC) of the 5d iridium electrons entangles the orbital and spin degrees of freedom, providing opportunities for exotic magnetic states with highly anisotropic exchange interactions. At the same time, the spatially extended 5d electrons are expected to have much stronger hybridization with the oxygen 2p orbitals, comparing with that in 3d transition element compounds. Both factors make crystal symmetry and local environment crucial in determining the electronic and magnetic properties of the iridates. We present here our resonant inelastic X-ray scattering (RIXS) studies of a number of octahedrally coordinated iridates with special structures, exploring these effects. In particular, for the 1-D spin 1/2 chain compound, Sr3CuIrO6, the wavefunction of the hole in the t2g manifold was reconstructed based on the RIXS spectra. Our results show that it is significantly modified from the isotropic shape expected for Jeff = 1 / 2 states in the strong SOC limit, due to the distortion of the oxygen octahedral cage. This distortion is comparable to, or smaller than, that present in most iridates and thus this work emphasizes the importance of local symmetry for the iridate families. Further, the magnetic excitations of this material were also measured. A large gap of ~30 meV, was found, comparable to the magnetic dispersion bandwidth. This is in contrast to the gapless dispersion expected for linear chain with isotropic Heisenberg exchange interaction. We also studied Na4Ir3O8 which has a hyperkagome lattice, and is a candidate quantum spin liquid. Here, a low energy continuum is observed below the d-d excitations. Optical conductivity measurements performed on the same sample and polarization dependence of the RIXS signal suggest that these excitations are magnetic in origin, agreeing with the spin-liquid state prediction. The work at Brookhaven was supported by the U.S. Department of Energy, Division of Materials Science
On the question of adiabatic invariants
NASA Astrophysics Data System (ADS)
Mitropol'Skii, Iu. A.
Some aspects of the construction of adiabadic invariants for dynamic systems with a single degree of freedom are discussed. Adiabatic invariants are derived using classical principles and the method proposed by Djukic (1981). The discussion covers an adiabatic invariant for a dynamic system with slowly varying parameters; derivation of an expression for an adiabatic invariant by the Djukic method for a second-order equation with a variable mass; and derivation of an expression for the adiabatic invariant for a nearly integrable differential equation.
NASA Astrophysics Data System (ADS)
Msezane, A. Z.; Eure, A.; Felfli, Z.; Sokolovski, D.
2009-11-01
The recent Regge-pole methodology has been benchmarked [1] on the accurately measured binding energies of the excited Ge= and Sn= anions [2] through the binding energies (BEs) extracted from the Regge-pole calculated elastic total cross sections (TCSs). Here the methodology is applied together with a Thomas-Fermi type potential that incorporates the vital core polarization interaction to investigate the possibility of forming excited Au= and Pt= anions in low-energy electron elastic collisions with Au and Pt atoms. From the positions of the characteristic extremely narrow resonances in the total cross sections, we extract the binding energies of the excited Au= and Pt= anions formed as Regge resonances during the collisions. The angular life of the complexes thus formed is used to differentiate the stable excited bound states of the anions from the shape resonances [3]. The BEs for the excited Au= and Pt= anions are found to be 0.475eVand 0.543eV, respectively, challenging both theory and experiment to verify. [1] A. Msezane et al, Phys. Rev. A, Submitted (2009) [2] M. Scheer et al, Phys. Rev. A 58, 2844 (1998) [3] Z. Felfli et al, Phys. Rev. A 79, 012714 (2009)
Description of electronic excited states using electron correlation operator.
Nichols, Bryan; Rassolov, Vitaly A
2013-09-14
The electron correlation energy in a chemical system is defined as a difference between the energy of an exact energy for a given Hamiltonian, and a mean-field, or single determinant, approximation to it. A promising way to model electron correlation is through the expectation value of a linear two-electron operator for the Kohn-Sham single determinant wavefunction. For practical reasons, it is desirable for such an operator to be universal, i.e., independent of the positions and types of nuclei in a molecule. The correlation operator models the effect of electron correlation on the interaction energy in a electron pair. We choose an operator expanded in a small number of Gaussians as a model for electron correlation, and test it by computing atomic and molecular adiabatic excited states. The computations are performed within the Δ Self-Consistent Field (ΔSCF) formalism, and are compared to the time-dependent density functional theory model with popular density functionals. The simplest form of the correlation operator contains only one parameter derived from the helium atom ground state correlation energy. The correlation operator approach significantly outperforms other methods in computation of atomic excitation energies. The accuracy of molecular excitation energies computed with the correlation operator is limited by the shortcomings of the ΔSCF methodology in describing excited states.
Noise assisted excitation energy transfer in a linear model of a selectivity filter backbone strand.
Bassereh, Hassan; Salari, Vahid; Shahbazi, Farhad
2015-07-15
In this paper, we investigate the effect of noise and disorder on the efficiency of excitation energy transfer (EET) in a N = 5 sites linear chain with 'static' dipole-dipole couplings. In fact, here, the disordered chain is a toy model for one strand of the selectivity filter backbone in ion channels. It has recently been discussed that the presence of quantum coherence in the selectivity filter is possible and can play a role in mediating ion-conduction and ion-selectivity in the selectivity filter. The question is 'how a quantum coherence can be effective in such structures while the environment of the channel is dephasing (i.e. noisy)?' Basically, we expect that the presence of the noise should have a destructive effect in the quantum transport. In fact, we show that such expectation is valid for ordered chains. However, our results indicate that introducing the dephasing in the disordered chains leads to the weakening of the localization effects, arising from the multiple back-scatterings due to the randomness, and then increases the efficiency of quantum energy transfer. Thus, the presence of noise is crucial for the enhancement of EET efficiency in disordered chains. We also show that the contribution of both classical and quantum mechanical effects are required to improve the speed of energy transfer along the chain. Our analysis may help for better understanding of fast and efficient functioning of the selectivity filters in ion channels.
Sub-barrier fusion excitation function data and energy dependent Woods-Saxon potential
NASA Astrophysics Data System (ADS)
Gautam, Manjeet Singh
2016-07-01
This paper analyzed the role of intrinsic degrees of freedom of colliding nuclei in the enhancement of sub-barrier fusion cross-section data of various heavy ion fusion reactions. The influences of inelastic surface vibrations of colliding pairs are found to be dominant and their couplings result in the significantly larger fusion enhancement over the predictions of the one dimensional barrier penetration model at sub-barrier energies. The theoretical calculations are performed by using energy dependent Woods-Saxon potential model (EDWSP model) in conjunction with the one dimensional Wong formula. The effects of dominant intrinsic channels are entertained within framework of the coupled channel calculations obtained by using the code CCFULL. It is quite interesting to note that the energy dependence in Woods-Saxon potential simulates the effects of inelastic surface vibrational states of reactants wherein significantly larger value of diffuseness parameter ranging from a = 0.85 fm to a = 0.95 fm is required to address the observed fusion excitation function data of the various heavy ion fusion reactions.
Elangovan, Masilamani; Wallrabe, Horst; Chen, Ye; Day, Richard N; Barroso, Margarida; Periasamy, Ammasi
2003-01-01
Advances in molecular biology provide various methods to define the structure and function of the individual proteins that form the component parts of subcellular structures. The ability to see the dynamic behavior of a specific protein inside the living cell became possible through the application of advanced fluorescence resonance energy transfer (FRET) microscope techniques. The fluorophore molecule used for FRET imaging has a characteristic absorption and emission spectrum that should be considered for characterizing the FRET signal. In this article we describe the system development for the image acquisition for one- and two-photon excitation FRET microscopy. We also describe the precision FRET (PFRET) data analysis algorithm that we developed to remove spectral bleed-through and variation in the fluorophore expression level (or concentration) for the donor and acceptor molecules. The acquired images have been processed using a PFRET algorithm to calculate the energy transfer efficiency and the distance between donor and acceptor molecules. We implemented the software correction to study the organization of the apical endosome in epithelial polarized MDCK cells and dimerization of the CAATT/enhancer binding protein alpha (C/EBPalpha). For these proteins, the results revealed that the extent of correction affects the conventionally calculated energy transfer efficiency (E) and the distance (r) between donor and acceptor molecules by 38 and 9%, respectively. PMID:12543072
NASA Astrophysics Data System (ADS)
Domínguez-Gutiérrez, F. J.; Cabrera-Trujillo, R.
2016-01-01
The electron capture process plays an important role as a diagnostic tool for measuring the temperature, plasma rotation, and impurity densities of plasma in tokamaks. In this work we report the electron capture and excitation cross-sections for Li+, Be{}2+, and {{{B}}}3+ colliding with atomic hydrogen in the collision energy range 0.25-25 keV/amu. For this, we solve numerically the time dependent Schrödinger equation by using a finite difference approach. We model the ion projectile interaction with the target using a pseudopotential obtained within a Hartree-Fock method. We use classical trajectories, obtained self-consistently, for the projectile at collision energies lower than 2 keV/amu and a straight line trajectory at high collision energies. We report new results for the total, n=2,3, and 4 state projectile electron capture cross-section, as well as the n = 2-state target excitation cross-section. We find a good agreement between our cross-section results when compared with available theoretical and experimental data found in the literature. Finally, we find that the electron capture probability, as a function of the impact parameter, shows Stückelberg oscillations at low collision energies for the n = 2 of Be+ and n = 3 of {{{B}}}2+, in the radial range (large impact parameters). Our results assess the validity of the adiabatic basis set at low collision energies and confirm the use of a finite difference method as an accurate approach to study a time-dependent process in charge exchange collisions. A discussion of our results is provided.
Analytical Energy Gradients for Excited-State Coupled-Cluster Methods
NASA Astrophysics Data System (ADS)
Wladyslawski, Mark; Nooijen, Marcel
The equation-of-motion coupled-cluster (EOM-CC) and similarity transformed equation-of-motion coupled-cluster (STEOM-CC) methods have been firmly established as accurate and routinely applicable extensions of single-reference coupled-cluster theory to describe electronically excited states. An overview of these methods is provided, with emphasis on the many-body similarity transform concept that is the key to a rationalization of their accuracy. The main topic of the paper is the derivation of analytical energy gradients for such non-variational electronic structure approaches, with an ultimate focus on obtaining their detailed algebraic working equations. A general theoretical framework using Lagrange's method of undetermined multipliers is presented, and the method is applied to formulate the EOM-CC and STEOM-CC gradients in abstract operator terms, following the previous work in [P.G. Szalay, Int. J. Quantum Chem. 55 (1995) 151] and [S.R. Gwaltney, R.J. Bartlett, M. Nooijen, J. Chem. Phys. 111 (1999) 58]. Moreover, the systematics of the Lagrange multiplier approach is suitable for automation by computer, enabling the derivation of the detailed derivative equations through a standardized and direct procedure. To this end, we have developed the SMART (Symbolic Manipulation and Regrouping of Tensors) package of automated symbolic algebra routines, written in the Mathematica programming language. The SMART toolkit provides the means to expand, differentiate, and simplify equations by manipulation of the detailed algebraic tensor expressions directly. The Lagrangian multiplier formulation establishes a uniform strategy to perform the automated derivation in a standardized manner: A Lagrange multiplier functional is constructed from the explicit algebraic equations that define the energy in the electronic method; the energy functional is then made fully variational with respect to all of its parameters, and the symbolic differentiations directly yield the explicit
Hu, Han-Shi; Kowalski, Karol
2013-11-12
In this paper, we discuss the performance of several simplified variants of equation-of-motion coupled cluster method (EOMCC) with iterative inclusion of singles, doubles, and active-space triples (EOMCCSDt). In particular, we explore simplified EOMCCSDt approaches that enable one to generate the triply excited amplitudes in an on-the-fly manner. The original EOMCCSDt formulation has already demonstrated great success in encapsulating the most important excited-state correlation effects due to triples. In analogy to the original EOMCCSDT-3 formulation, the proposed approach can bypass the typical bottlenecks associated with the need for storing triply excited amplitudes. In this paper, we illustrate the performance of several approximate EOMCCSDt methods, named EOMCCSDt-3̅ and EOMCCSDt-3̅, on typical benchmark systems including C2, N2, ozone, ethene, and E-butadiene molecules. These new methods yield excitation energies close to the EOMCCSDt ones. The extrapolation of excitation energies for basis sets ranging from cc-pVDZ to cc-pV6Z for N2 and C2 shows very good convergence to the experimental results for states dominated by single excitations. The performance of the EOMCCSDt-3̅x approach is also compared with the results obtained with popular CCSDR(3) and CC3 approaches. PMID:26583394
Bertrand, F.E.; Beene, J.R.; Horen, D.J.
1988-01-01
Inelastic scattering of medium energy heavy ions provides very large cross sections and peak-to-continuum ratios for excitation of giant resonances. For energies above about 50 MeV/nucleon, giant resonances are excited primarily through Coulomb excitation, which is indifferent to isospin, thus providing a good probe for the study of isovector giant resonances. The extremely large cross sections available from heavy ion excitation permit the study of rare decay modes of the photon decay of giant resonances following excitation by 22 and 84 MeV/nucleon /sup 17/O projectiles. The singles results at 84 MeV/nucleon yield peak cross sections for the isoscalar giant quadrupole resonance and the isovector giant dipole resonance of approximately 0.8 and 3 barns/sr, respectively. Data on the ground state decay of the isoscalar giant quadrupole and isovector giant dipole resonances are presented and compared with calculations. Decays to low-lying excited states are also discussed. Preliminary results from an experiment to isolate the /sup 208/Pb isovector quadrupole resonance using its gamma decay are presented.
Nganou, A C; David, L; Adir, N; Pouhe, D; Deen, M J; Mkandawire, M
2015-02-01
To improve the energy conversion efficiency of solar organic cells, the clue may lie in the development of devices inspired by an efficient light harvesting mechanism of some aquatic photosynthetic microorganisms that are adapted to low light intensity. Consequently, we investigated the pathways of excitation energy transfer (EET) from successive light harvesting pigments to the low energy level inside the phycobiliprotein antenna system of Acaryochloris marina, a cyanobacterium, using a time resolved absorption difference spectroscopy with a resolution time of 200 fs. The objective was to understand the actual biochemical process and pathways that determine the EET mechanism. Anisotropy of the EET pathway was calculated from the absorption change trace in order to determine the contribution of excitonic coupling. The results reveal a new electron energy relaxation pathway of 14 ps inside the phycocyanin component, which runs from phycocyanin to the terminal emitter. The bleaching of the 660 nm band suggests a broader absorption of the terminal emitter between 660 nm and 675 nm. Further, there are trimer depolarization kinetics of 450 fs and 500 fs in high and low ionic strength, respectively, which arise from the relaxation of the β84 and α84 in adjacent monomers of phycocyanin. Under conditions of low ionic strength buffer solution, the evolution of the kinetic amplitude during the depolarization of the trimer is suggestive of trimer conservation within the phycocyanin hexamer. The anisotropy values were 0.38 and 0.40 in high and in low ionic strength, respectively, indicating that there is no excitonic delocalization in the high energy level of phycocyanin hexamers.
Sun Yan; Gou Bingcong; Chen Feng
2011-09-28
Energy levels, Auger branching ratios, and radiative rates of the core-excited states of B-like carbon are calculated by the saddle-point variation and saddle-point complex-rotation methods. Relativistic and mass polarization corrections are included using first-order perturbation theory. Calculated Auger channel energies and branching ratios are used to identify high-resolution Auger spectrum in the 300-keV C{sup +}{yields} CH{sub 4} collision experiment. It is found that Auger decay of these five-electron core-excited states gives significant contributions to Auger spectrum in the range of 238-280 eV.
Vibrational excitation in CO by electron impact in the energy range 10-90 eV.
NASA Technical Reports Server (NTRS)
Chutjian, A.; Truhlar, D. G.; Williams, W.; Trajmar, S.
1972-01-01
The ratio of the scattering intensity for the v double prime = 1 excitation to the elastic scattering intensity at 40- and 80-deg scattering angles has been determined for 10- to 90-eV impact energies for electron scattering by CO. These ratio curves exhibit broad peaks near 20-eV impact energy which cannot be accounted for by plane-wave calculations based on potential scattering models. The peaks are indicative of a resonant excitation process (or processes) in the v double prime = 1 channel in the range from 15 to 25 eV.
Rury, Aaron S; Wiley, Theodore E; Sension, Roseanne J
2015-03-17
Porphyrins and the related chlorins and corrins contain a cyclic tetrapyrrole with the ability to coordinate an active metal center and to perform a variety of functions exploiting the oxidation state, reactivity, and axial ligation of the metal center. These compounds are used in optically activated applications ranging from light harvesting and energy conversion to medical therapeutics and photodynamic therapy to molecular electronics, spintronics, optoelectronic thin films, and optomagnetics. Cobalt containing corrin rings extend the range of applications through photolytic cleavage of a unique axial carbon-cobalt bond, permitting spatiotemporal control of drug delivery. The photochemistry and photophysics of cyclic tetrapyrroles are controlled by electronic relaxation dynamics including internal conversion and intersystem crossing. Typically the electronic excitation cascades through ring centered ππ* states, ligand to metal charge transfer (LMCT) states, metal to ligand charge transfer (MLCT) states, and metal centered states. Ultrafast transient absorption spectroscopy provides a powerful tool for the investigation of the electronic state dynamics in metal containing tetrapyrroles. The UV-visible spectrum is sensitive to the oxidation state, electronic configuration, spin state, and axial ligation of the central metal atom. Ultrashort broadband white light probes spanning the range from 270 to 800 nm, combined with tunable excitation pulses, permit the detailed unravelling of the time scales involved in the electronic energy cascade. State-of-the-art theoretical calculations provide additional insight required for precise assignment of the states. In this Account, we focus on recent ultrafast transient absorption studies of ferric porphyrins and corrin containing cob(III)alamins elucidating the electronic states responsible for ultrafast energy cascades, excited state dynamics, and the resulting photoreactivity or photostability of these compounds. Iron
Double resonance spectroscopy of several highly excited rovibronic states of H2
NASA Astrophysics Data System (ADS)
Ekey, R. C., Jr.; McCormack, E. F.
2005-04-01
The energies of several highly excited levels of the B1Σ+u, B'1Σ+u and C 1Πu states of molecular hydrogen, located several hundred wave numbers below the second dissociation limit, have been measured using two-colour, resonantly enhanced multi-photon ionization. The states were probed by excitation from the double-well E, F 1Σ+u state, populated by two-photon excitation from the ground state. Ion production was detected as a function of wavelength using a time-of-flight mass spectrometer. Non-adiabatic couplings extensively mix the configurations of the B 1Σ+u, B'1Σ+u and C 1Πu states leading to perturbations that are predicted to vary considerably as a function of rotational and vibrational excitation. Term energies are compared to previous measurements and to ab initio theoretical calculations which include non-adiabatic effects. Several observed discrepancies with the calculations and previously reported energies are discussed. Term energies for two rovibronic levels are reported for the first time.
NASA Astrophysics Data System (ADS)
Huo, Pengfei; Coker, David F.
2012-03-01
Two-dimensional photon-echo experiments indicate that excitation energy transfer between chromophores near the reaction center of the photosynthetic purple bacterium Rhodobacter sphaeroides occurs coherently with decoherence times of hundreds of femtoseconds, comparable to the energy transfer time scale in these systems. The original explanation of this observation suggested that correlated fluctuations in chromophore excitation energies, driven by large scale protein motions could result in long lived coherent energy transfer dynamics. However, no significant site energy correlation has been found in recent molecular dynamics simulations of several model light harvesting systems. Instead, there is evidence of correlated fluctuations in site energy-electronic coupling and electronic coupling-electronic coupling. The roles of these different types of correlations in excitation energy transfer dynamics are not yet thoroughly understood, though the effects of site energy correlations have been well studied. In this paper, we introduce several general models that can realistically describe the effects of various types of correlated fluctuations in chromophore properties and systematically study the behavior of these models using general methods for treating dissipative quantum dynamics in complex multi-chromophore systems. The effects of correlation between site energy and inter-site electronic couplings are explored in a two state model of excitation energy transfer between the accessory bacteriochlorophyll and bacteriopheophytin in a reaction center system and we find that these types of correlated fluctuations can enhance or suppress coherence and transfer rate simultaneously. In contrast, models for correlated fluctuations in chromophore excitation energies show enhanced coherent dynamics but necessarily show decrease in excitation energy transfer rate accompanying such coherence enhancement. Finally, for a three state model of the Fenna-Matthews-Olsen light
The Adiabatic Invariant of the n-Degree-of-Freedom Harmonic Oscillator
ERIC Educational Resources Information Center
Devaud, M.; Leroy, V.; Bacri, J.-C.; Hocquet, T.
2008-01-01
In this graduate-level theoretical paper, we propose a general derivation of the adiabatic invariant of the n-degree-of-freedom harmonic oscillator, available whichever the physical nature of the oscillator and of the parametrical excitation it undergoes. This derivation is founded on the use of the classical Glauber variables and ends up with…
Collado, Daniel; Remón, Patricia; Vida, Yolanda; Najera, Francisco; Sen, Pratik; Pischel, Uwe; Perez-Inestrosa, Ezequiel
2014-03-01
Aminonaphthalimide-BODIPY energy transfer cassettes were found to show very fast (kEET ≈ 10(10)-10(11) s(-1) and efficient BODIPY fluorescence sensitization. This was observed upon one- and two-photon excitation, which extends the application range of the investigated bichromophoric dyads in terms of accessible excitation wavelengths. In comparison with the direct excitation of the BODIPY chromophore, the two-photon absorption cross-section δ of the dyads is significantly incremented by the presence of the aminonaphthalimide donor [δ ≈ 10 GM for the BODIPY versus 19-26 GM in the dyad at λ(exc)=840 nm; 1 GM (Goeppert-Mayer unit)=10(-50) cm(4) smolecule(-1) photon-(1)]. The electronic decoupling of the donor and acceptor, which is a precondition for the energy transfercassette concept, was demonstrated by time-dependent density functional theory calculations. The applicability of the new probes in the one- and twophoton excitation mode was demonstrated in a proof-of-principle approach in the fluorescence imaging of HeLa cells. To the best of our knowledge, this is the first demonstration of the merging of multiphoton excitation with the energy transfer cassette concept for a BODIPY-containing dyad. PMID:24730057
Collado, Daniel; Remón, Patricia; Vida, Yolanda; Najera, Francisco; Sen, Pratik; Pischel, Uwe; Perez-Inestrosa, Ezequiel
2014-03-01
Aminonaphthalimide-BODIPY energy transfer cassettes were found to show very fast (kEET ≈ 10(10)-10(11) s(-1) and efficient BODIPY fluorescence sensitization. This was observed upon one- and two-photon excitation, which extends the application range of the investigated bichromophoric dyads in terms of accessible excitation wavelengths. In comparison with the direct excitation of the BODIPY chromophore, the two-photon absorption cross-section δ of the dyads is significantly incremented by the presence of the aminonaphthalimide donor [δ ≈ 10 GM for the BODIPY versus 19-26 GM in the dyad at λ(exc)=840 nm; 1 GM (Goeppert-Mayer unit)=10(-50) cm(4) smolecule(-1) photon-(1)]. The electronic decoupling of the donor and acceptor, which is a precondition for the energy transfercassette concept, was demonstrated by time-dependent density functional theory calculations. The applicability of the new probes in the one- and twophoton excitation mode was demonstrated in a proof-of-principle approach in the fluorescence imaging of HeLa cells. To the best of our knowledge, this is the first demonstration of the merging of multiphoton excitation with the energy transfer cassette concept for a BODIPY-containing dyad.
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Dateo, Christopher E.
2001-01-01
Vertical electronic excitation energies for single states have been computed for the high energy density material (HEDM) Td N4 in order to assess possible synthetic routes that originate from excited electronic states of N2 molecules. Several ab initio theoretical approaches have been used, including complete active space self-consistent field (CASSCF), state averaged CASSCF (SA-CASSCF), singles configuration interaction (CIS), CIS with second-order and third-order correlation corrections [CIS(D)) and CIS(3)], and linear response singles and doubles coupled-cluster (LRCCSD), which is the highest level of theory employed. Standard double zeta polarized (DZP) and triple zeta double polarized (TZ2P) one-particle basis sets were used. The CASSCF calculations are found to overestimate the excitation energies, while the SA-CASSCF approach rectifies this error to some extent, but not completely. The accuracy of the CIS calculations varied depending on the particular state, while the CIS(D), CIS(3), and LRCCSD results are in generally good agreement. Based on the LRCCSD calculations, the lowest six excited singlet states are 9.35(l(sup)T1), 10.01(l(sup)T2), 10.04(1(sup)A2), 10.07(1(sup)E), 10.12(2(sup)T1), and 10.42(2(sup)T2) eV above the ground state, respectively. Comparison of these excited state energies with the energies of possible excited states of N2+N2 fragments, leads us to propose that the most likely synthetic route for Td N4 involving this mechanism arises from combination of two bound quintet states of N2.
NASA Astrophysics Data System (ADS)
Heaps, Charles W.; Mazziotti, David A.
2016-08-01
Quantum molecular dynamics requires an accurate representation of the molecular potential energy surface from a minimal number of electronic structure calculations, particularly for nonadiabatic dynamics where excited states are required. In this paper, we employ pseudospectral sampling of time-dependent Gaussian basis functions for the simulation of non-adiabatic dynamics. Unlike other methods, the pseudospectral Gaussian molecular dynamics tests the Schrödinger equation with N Dirac delta functions located at the centers of the Gaussian functions reducing the scaling of potential energy evaluations from O ( N 2 ) to O ( N ) . By projecting the Gaussian basis onto discrete points in space, the method is capable of efficiently and quantitatively describing the nonadiabatic population transfer and intra-surface quantum coherence. We investigate three model systems: the photodissociation of three coupled Morse oscillators, the bound state dynamics of two coupled Morse oscillators, and a two-dimensional model for collinear triatomic vibrational dynamics. In all cases, the pseudospectral Gaussian method is in quantitative agreement with numerically exact calculations. The results are promising for nonadiabatic molecular dynamics in molecular systems where strongly correlated ground or excited states require expensive electronic structure calculations.
YIELDS OF IONS AND EXCITED STATES IN NONPOLAR LIQUIDS EXPOSED TO X-RAYS OF 1 TO 30 KEV ENERGY
HOLROYD,R.A.
1999-08-18
When x-rays from a synchrotron source are absorbed in a liquid, the x-ray energy (E{sub x}) is converted by the photoelectric effect into the kinetic energy of the electrons released. For hydrocarbons, absorption by the K-electrons of carbon dominates. Thus the energy of the photoelectron (E{sub pe}) is E{sub x}-E{sub b}, where E{sub b} is the K-shell binding energy of carbon. Additional electrons with energy equal to E{sub b} is released in the Auger process that fills the hole in the K-shell. These energetic electrons will produce many ionizations, excitations and products. The consequences of the high density of ionizations and excitations along the track of the photoelectron and special effects near the K-edge are examined here.
The effect of electron beams on cyclotron maser emission excited by lower-energy cutoffs
NASA Astrophysics Data System (ADS)
Zhao, G. Q.; Feng, H. Q.; Wu, D. J.
2016-05-01
Electron-cyclotron maser (ECM) is one of the most important emission mechanisms in astrophysics and can be excited efficiently by lower-energy cutoffs of power-law electrons. These non-thermal electrons probably propagate as a directed collimated beam along ambient magnetic fields. This paper investigates the ECM, in which the effect of electron beams is emphasized. Results show the dependence of emission properties of the ECM on the beam feature. The maximum growth rate of the extraordinary mode (X2) rapidly decreases as the beam momentum increases, while the growth rate of the ordinary mode (O1) changes slightly. In particular, the ordinary mode can overcome the extraordinary mode and becomes the fastest growth mode once the beam momentum is large enough. This research presents an extension of the conventional studies on ECM driven by lower-energy cutoffs and may be helpful to understand better the emission process of solar type I radio bursts, which are dominated by the ordinary mode emission.
Bose, Samik; Chakrabarty, Suman; Ghosh, Debashree
2016-05-19
Hybrid quantum mechanics/molecular mechanics (QM/MM) is applied to the fluorinated green fluorescent protein (GFP) chromophore (DFHBDI) in its deprotonated form to understand the solvatochromic shifts in its vertical detachment energy (VDE) and vertical excitation energy (VEE). This variant of the GFP chromophore becomes fluorescent in an RNA environment and has a wide range of applications in biomedical and biochemical fields. From microsolvation studies, we benchmark (with respect to full QM) the accuracy of our QM/MM calculations with effective fragment potential (EFP) as the MM method of choice. We show that while the solvatochromic shift in the VEE is minimal (0.1 eV blue shift) and its polarization component is only 0.03 eV, the effect of the solvent on the VDE is quite large (3.85 eV). We also show by accurate calculations on the solvatochromic shift of the VDE that polarization accounts for ∼0.23 eV and therefore cannot be neglected. The effect of the counterions on the VDE of the deprotonated chromophore in solvation is studied in detail, and a charge-smearing scheme is suggested for charged chromophores. PMID:27116477
Ground state spin and excitation energies in half-filled Lieb lattices
NASA Astrophysics Data System (ADS)
Ţolea, M.; Niţǎ, M.
2016-10-01
We present detailed spectral calculations for small Lieb lattices having up to N =4 number of cells, in the regime of half-filling, an instance of particular relevance for the nanomagnetism of discrete systems such as quantum dot arrays, due to the degenerate levels at midspectrum. While for the Hubbard interaction model—and even number of sites—the ground state spin is given by the Lieb theorem, the inclusion of long-range interaction—or odd number of sites—makes the spin state not known a priori, which justifies our approach. We calculate also the excitation energies, which are of experimental importance, and find significant variation induced by the interaction potential. One obtains insights on the mechanisms involved that impose as ground state the Lieb state with lower spin rather than the Hund one with maximum spin for the degenerate levels, showing this in the first and second orders of the interaction potential for the smaller lattices. The analytical results agree with the numerical ones, which are performed by exact diagonalization calculations or by a combined mean-field and configuration interaction method. While the Lieb state is always lower in energy than the Hund state, for strong long-range interaction, when possible, another minimal spin state is imposed as ground state.
Thomas, Ryan A; Tsai, Chia Nung; Mazumder, Shivnath; Lu, I Chen; Lord, Richard L; Schlegel, H Bernhard; Chen, Yuan Jang; Endicott, John F
2015-06-18
The variations in band shape with excited state energy found for the triplet metal to ligand charge transfer ((3)MLCT) emission spectra of ruthenium-bipyridine (Ru-bpy) chromophores at 77 K have been postulated to arise from excited state/excited state configurational mixing. This issue is more critically examined through the determination of the excited state energy dependence of the radiative rate constants (kRAD) for these emissions. Experimental values for kRAD were determined relative to known literature references for Ru-bpy complexes. When the lowest energy excited states are metal centered, kRAD can be anomalously small and such complexes have been identified using density functional theory (DFT) modeling. When such complexes are removed from the energy correlation, there is a strong (3)MLCT energy-dependent contribution to kRAD in addition to the expected classical energy cubed factor for complexes with excited state energies greater than 10 000 cm(-1). This correlates with the DFT calculations which show significant excited state electronic delocalization between a π(bpy-orbital) and a half-filled dπ*-(Ru(III)-orbital) for Ru-bpy complexes with (3)MLCT excited state energies greater than about 16 000 cm(-1). Overall, this work implicates the "stealing" of emission bandshapes as well as intensity from the higher energy, strongly allowed bpy-centered singlet ππ* excited state.
A Hamiltonian approach to the parametric excitation
NASA Astrophysics Data System (ADS)
Leroy, V.; Bacri, J.-C.; Hocquet, T.; Devaud, M.
2006-05-01
We propose a solution of the parametrically excited oscillator problem using the Hamiltonian formalism introduced by Glauber. The main advantage is that, within the framework of this formalism, the different possible approximations appear much more naturally than in the standard textbook presentation. Experiments on adiabatic and resonant parametric excitations of a pendulum are presented as an illustration, with particular attention being paid to the role played by the phase of the excitation.
NASA Astrophysics Data System (ADS)
Itoh, Tamitake; Yamamoto, Yuko S.; Tamaru, Hiroharu; Biju, Vasudevanpillai; Murase, Norio; Ozaki, Yukihiro
2013-06-01
We find unique properties accompanying surface-enhanced fluorescence (SEF) from dye molecules adsorbed on Ag nanoparticle aggregates, which generate surface-enhanced Raman scattering. The properties are observed in excitation laser energy dependence of SEF after excluding plasmonic spectral modulation in SEF. The unique properties are large blue shifts of fluorescence spectra, deviation of ratios between anti-Stokes SEF intensity and Stokes from those of normal fluorescence, super-broadening of Stokes spectra, and returning to original fluorescence by lower energy excitation. We elucidate that these properties are induced by electromagnetic enhancement of radiative decay rates exceeding the vibrational relaxation rates within an electronic excited state, which suggests that molecular electronic dynamics in strong plasmonic fields can be largely deviated from that in free space.
Degenerate adiabatic perturbation theory: Foundations and applications
NASA Astrophysics Data System (ADS)
Rigolin, Gustavo; Ortiz, Gerardo
2014-08-01
We present details and expand on the framework leading to the recently introduced degenerate adiabatic perturbation theory [Phys. Rev. Lett. 104, 170406 (2010), 10.1103/PhysRevLett.104.170406], and on the formulation of the degenerate adiabatic theorem, along with its necessary and sufficient conditions [given in Phys. Rev. A 85, 062111 (2012), 10.1103/PhysRevA.85.062111]. We start with the adiabatic approximation for degenerate Hamiltonians that paves the way to a clear and rigorous statement of the associated degenerate adiabatic theorem, where the non-Abelian geometric phase (Wilczek-Zee phase) plays a central role to its quantitative formulation. We then describe the degenerate adiabatic perturbation theory, whose zeroth-order term is the degenerate adiabatic approximation, in its full generality. The parameter in the perturbative power-series expansion of the time-dependent wave function is directly associated to the inverse of the time it takes to drive the system from its initial to its final state. With the aid of the degenerate adiabatic perturbation theory we obtain rigorous necessary and sufficient conditions for the validity of the adiabatic theorem of quantum mechanics. Finally, to illustrate the power and wide scope of the methodology, we apply the framework to a degenerate Hamiltonian, whose closed-form time-dependent wave function is derived exactly, and also to other nonexactly solvable Hamiltonians whose solutions are numerically computed.
Signature of nonadiabatic coupling in excited-state vibrational modes.
Soler, Miguel A; Nelson, Tammie; Roitberg, Adrian E; Tretiak, Sergei; Fernandez-Alberti, Sebastian
2014-11-13
Using analytical excited-state gradients, vibrational normal modes have been calculated at the minimum of the electronic excited-state potential energy surfaces for a set of extended conjugated molecules with different coupling between them. Molecular model systems composed of units of polyphenylene ethynylene (PPE), polyphenylenevinylene (PPV), and naphthacene/pentacene (NP) have been considered. In all cases except the NP model, the influence of the nonadiabatic coupling on the excited-state equilibrium normal modes is revealed as a unique highest frequency adiabatic vibrational mode that overlaps with the coupling vector. This feature is removed by using a locally diabatic representation in which the effect of NA interaction is removed. Comparison of the original adiabatic modes with a set of vibrational modes computed in the locally diabatic representation demonstrates that the effect of nonadiabaticity is confined to only a few modes. This suggests that the nonadiabatic character of a molecular system may be detected spectroscopically by identifying these unique state-specific high frequency vibrational modes. PMID:24844735
NASA Astrophysics Data System (ADS)
Zhang, Du; Yang, Weitao
2016-10-01
An efficient method for calculating excitation energies based on the particle-particle random phase approximation (ppRPA) is presented. Neglecting the contributions from the high-lying virtual states and the low-lying core states leads to the significantly smaller active-space ppRPA matrix while keeping the error to within 0.05 eV from the corresponding full ppRPA excitation energies. The resulting computational cost is significantly reduced and becomes less than the construction of the non-local Fock exchange potential matrix in the self-consistent-field (SCF) procedure. With only a modest number of active orbitals, the original ppRPA singlet-triplet (ST) gaps as well as the low-lying single and double excitation energies can be accurately reproduced at much reduced computational costs, up to 100 times faster than the iterative Davidson diagonalization of the original full ppRPA matrix. For high-lying Rydberg excitations where the Davidson algorithm fails, the computational savings of active-space ppRPA with respect to the direct diagonalization is even more dramatic. The virtues of the underlying full ppRPA combined with the significantly lower computational cost of the active-space approach will significantly expand the applicability of the ppRPA method to calculate excitation energies at a cost of O(K4), with a prefactor much smaller than a single SCF Hartree-Fock (HF)/hybrid functional calculation, thus opening up new possibilities for the quantum mechanical study of excited state electronic structure of large systems.
Zhang, Du; Yang, Weitao
2016-10-13
An efficient method for calculating excitation energies based on the particle-particle random phase approximation (ppRPA) is presented. Neglecting the contributions from the high-lying virtual states and the low-lying core states leads to the significantly smaller active-space ppRPA matrix while keeping the error to within 0.05 eV from the corresponding full ppRPA excitation energies. The resulting computational cost is significantly reduced and becomes less than the construction of the non-local Fock exchange potential matrix in the self-consistent-field (SCF) procedure. With only a modest number of active orbitals, the original ppRPA singlet-triplet (ST) gaps as well as the low-lying single and doublemore » excitation energies can be accurately reproduced at much reduced computational costs, up to 100 times faster than the iterative Davidson diagonalization of the original full ppRPA matrix. For high-lying Rydberg excitations where the Davidson algorithm fails, the computational savings of active-space ppRPA with respect to the direct diagonalization is even more dramatic. The virtues of the underlying full ppRPA combined with the significantly lower computational cost of the active-space approach will significantly expand the applicability of the ppRPA method to calculate excitation energies at a cost of O(K^{4}), with a prefactor much smaller than a single SCF Hartree-Fock (HF)/hybrid functional calculation, thus opening up new possibilities for the quantum mechanical study of excited state electronic structure of large systems.« less
On a Nonlinear Model in Adiabatic Evolutions
NASA Astrophysics Data System (ADS)
Sun, Jie; Lu, Song-Feng
2016-08-01
In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully solve the problem, while the linear model can not. Also in the same setting, when the overlap between the initial state and the final stare is sufficiently large, a simple linear adiabatic evolution can achieve O(1) time efficiency, but infinite time complexity for the nonlinear model of adiabatic evolution is needed. This tells us, it is not always a wise choice to use nonlinear interpolations in adiabatic algorithms. Sometimes, simple linear adiabatic evolutions may be sufficient for using. Supported by the National Natural Science Foundation of China under Grant Nos. 61402188 and 61173050. The first author also gratefully acknowledges the support from the China Postdoctoral Science Foundation under Grant No. 2014M552041
Quantum and classical dynamics in adiabatic computation
NASA Astrophysics Data System (ADS)
Crowley, P. J. D.; Äńurić, T.; Vinci, W.; Warburton, P. A.; Green, A. G.
2014-10-01
Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialized state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose ground state encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations that an open system can support and degrade the power of such adiabatic computation. We quantify this effect by allowing the system to evolve over a restricted set of quantum states, providing a link between physically inspired classical optimization algorithms and quantum adiabatic optimization. This perspective allows us to develop benchmarks to bound the quantum correlations harnessed by an adiabatic computation. We apply these to the D-Wave Vesuvius machine with revealing—though inconclusive—results.
Ab initio study on electronically excited states of lithium isocyanide, LiNC
NASA Astrophysics Data System (ADS)
Yasumatsu, Hisato; Jeung, Gwang-Hi
2014-01-01
The electronically excited states of the lithium isocyanide molecule, LiNC, were studied by means of ab initio calculations. The bonding nature of LiNC up to ˜10 eV is discussed on the basis of the potential energy surfaces according to the interaction between the ion-pair and covalent states. The ion-pair states are described by Coulomb attractive interaction in the long distance range, while the covalent ones are almost repulsive or bound with a very shallow potential dent. These two states interact each other to form adiabatic potential energy surfaces with non-monotonic change in the potential energy with the internuclear distance.
Oseki, Yosuke; Fujitsuka, Mamoru; Sakamoto, Masanori; Majima, Tetsuro
2007-10-01
We studied the energy transfer processes in the molecular array consisting of pyrene (Py), biphenyl (Ph2), and bisphthalimidethiophene (ImT), (Py-Ph2)2-ImT, during two-color two-laser flash photolysis (2-LFP). The first laser irradiation predominantly generates ImT in the lowest triplet excited state (ImT(T1)) because of the efficient singlet energy transfer from Py in the lowest singlet excited state to ImT and, then, intersystem crossing of ImT. ImT(T1) was excited to the higher triplet excited state (Tn) with the second laser irradiation. Then, the triplet energy was rapidly transferred to Py via a two-step triplet energy transfer (TET) process through Ph2. The efficient generation of Py(T1) was suggested from the nanosecond-picosecond 2-LFP. The back-TET from Py(T1) to ImT was observed for several tens of microseconds after the second laser irradiation. The estimated intramolecular TET rate from Py(T1) to ImT was as slow as 3.1 x 104 s-1. Hence, long-lived Py(T1) was selectively and efficiently produced during the 2-LFP.
The structure of the high-energy spin excitations in YBa2Cu3O6+x
NASA Astrophysics Data System (ADS)
Hayden, Stephen
2005-03-01
The most obvious feature in the magnetic excitations of high-Tc superconductors is the so-called `resonance-mode'. This mode is strongly coupled to the superconductivity, however, it has not been found in the La2-x(Ba,Sr)xCuO4 family and is not universally present in Bi2Sr2CaCu2O8+δ. Here we use inelastic neutron scattering to characterize other excitations at higher energies which may be relevant to the superconductive pairing in YBa2Cu3O6.6. We observe a square-shaped continuum of excitations in reciprocal space [1]. These excitations have energies greater than the superconducting pairing energy, are present at Tc, and have spectral weight far exceeding that of the `resonance'. The discovery of similar excitations in La2-xBaxCuO4 [2] suggests that they are a general property of the copper oxides, and a candidate for mediating the electron pairing. Our data show that the high-energy magnetic excitations in the high-temperature superconductor YBa2Cu3O6.6 consists of a continuum of scattering bounded by a square and peaked at wavevector positions Qɛ =(1/2±ɛ,1/2±ɛ) and (1/2±ɛ,1/2ɛ). A similar structure is observed in the high-energy magnetic excitations of the magnetically ordered but weakly superconducting compound La1.85Ba0.125CuO4 [2]. This suggests there is universality, both in the low-energy and the high-energy spin dynamics between two very different classes of high-Tc superconductor. [1] S.M. Hayden, H.A. Mook, P.C. Dai, T.G. Perring, and F. Dogan, Nature 429, 531-534 (2004) [2] J.M. Tranquada, H. Woo, T.G. Perring, H. Goka, G.D. Gu , G. Xu, M. Fujita, K.Yamada K, Nature 429, 534-538 (2004).
Carbon nanorings with inserted acenes: breaking symmetry in excited state dynamics.
Franklin-Mergarejo, R; Alvarez, D Ondarse; Tretiak, S; Fernandez-Alberti, S
2016-01-01
Conjugated cycloparaphenylene rings have unique electronic properties being the smallest segments of carbon nanotubes. Their conjugated backbones support delocalized electronic excitations, which dynamics is strongly influenced by cyclic geometry. Here we present a comparative theoretical study of the electronic and vibrational energy relaxation and redistribution in photoexcited cycloparaphenylene carbon nanorings with inserted naphthalene, anthracene, and tetracene units using non-adiabatic excited-state molecular dynamics simulations. Calculated excited state structures reflect modifications of optical selection rules and appearance of low-energy electronic states localized on the acenes due to gradual departure from a perfect circular symmetry. After photoexcitation, an ultrafast electronic energy relaxation to the lowest excited state is observed on the time scale of hundreds of femtoseconds in all molecules studied. Concomitantly, the efficiency of the exciton trapping in the acene raises when moving from naphthalene to anthracene and to tetracene, being negligible in naphthalene, and ~60% and 70% in anthracene and tetracene within the first 500 fs after photoexcitation. Observed photoinduced dynamics is further analyzed in details using induced molecular distortions, delocatization properties of participating electronic states and non-adiabatic coupling strengths. Our results provide a number of insights into design of cyclic molecular systems for electronic and light-harvesting applications. PMID:27507429
Carbon nanorings with inserted acenes: breaking symmetry in excited state dynamics
NASA Astrophysics Data System (ADS)
Franklin-Mergarejo, R.; Alvarez, D. Ondarse; Tretiak, S.; Fernandez-Alberti, S.
2016-08-01
Conjugated cycloparaphenylene rings have unique electronic properties being the smallest segments of carbon nanotubes. Their conjugated backbones support delocalized electronic excitations, which dynamics is strongly influenced by cyclic geometry. Here we present a comparative theoretical study of the electronic and vibrational energy relaxation and redistribution in photoexcited cycloparaphenylene carbon nanorings with inserted naphthalene, anthracene, and tetracene units using non-adiabatic excited-state molecular dynamics simulations. Calculated excited state structures reflect modifications of optical selection rules and appearance of low-energy electronic states localized on the acenes due to gradual departure from a perfect circular symmetry. After photoexcitation, an ultrafast electronic energy relaxation to the lowest excited state is observed on the time scale of hundreds of femtoseconds in all molecules studied. Concomitantly, the efficiency of the exciton trapping in the acene raises when moving from naphthalene to anthracene and to tetracene, being negligible in naphthalene, and ~60% and 70% in anthracene and tetracene within the first 500 fs after photoexcitation. Observed photoinduced dynamics is further analyzed in details using induced molecular distortions, delocatization properties of participating electronic states and non-adiabatic coupling strengths. Our results provide a number of insights into design of cyclic molecular systems for electronic and light-harvesting applications.
Carbon nanorings with inserted acenes: Breaking symmetry in excited state dynamics
Franklin-Mergarejo, R.; Alvarez, D. Ondarse; Tretiak, S.; Fernandez-Alberti, S.
2016-08-10
Conjugated cycloparaphenylene rings have unique electronic properties being the smallest segments of carbon nanotubes. Their conjugated backbones support delocalized electronic excitations, which dynamics is strongly influenced by cyclic geometry. Here we present a comparative theoretical study of the electronic and vibrational energy relaxation and redistribution in photoexcited cycloparaphenylene carbon nanorings with inserted naphthalene, anthracene, and tetracene units using non-adiabatic excited-state molecular dynamics simulations. Calculated excited state structures reflect modifications of optical selection rules and appearance of low-energy electronic states localized on the acenes due to gradual departure from a perfect circular symmetry. After photoexcitation, an ultrafast electronic energy relaxation tomore » the lowest excited state is observed on the time scale of hundreds of femtoseconds in all molecules studied. Concomitantly, the efficiency of the exciton trapping in the acene raises when moving from naphthalene to anthracene and to tetracene, being negligible in naphthalene, and ~60% and 70% in anthracene and tetracene within the first 500 fs after photoexcitation. Observed photoinduced dynamics is further analyzed in details using induced molecular distortions, delocatization properties of participating electronic states and non-adiabatic coupling strengths. Lastly, our results provide a number of insights into design of cyclic molecular systems for electronic and light-harvesting applications.« less
Carbon nanorings with inserted acenes: breaking symmetry in excited state dynamics
Franklin-Mergarejo, R.; Alvarez, D. Ondarse; Tretiak, S.; Fernandez-Alberti, S.
2016-01-01
Conjugated cycloparaphenylene rings have unique electronic properties being the smallest segments of carbon nanotubes. Their conjugated backbones support delocalized electronic excitations, which dynamics is strongly influenced by cyclic geometry. Here we present a comparative theoretical study of the electronic and vibrational energy relaxation and redistribution in photoexcited cycloparaphenylene carbon nanorings with inserted naphthalene, anthracene, and tetracene units using non-adiabatic excited-state molecular dynamics simulations. Calculated excited state structures reflect modifications of optical selection rules and appearance of low-energy electronic states localized on the acenes due to gradual departure from a perfect circular symmetry. After photoexcitation, an ultrafast electronic energy relaxation to the lowest excited state is observed on the time scale of hundreds of femtoseconds in all molecules studied. Concomitantly, the efficiency of the exciton trapping in the acene raises when moving from naphthalene to anthracene and to tetracene, being negligible in naphthalene, and ~60% and 70% in anthracene and tetracene within the first 500 fs after photoexcitation. Observed photoinduced dynamics is further analyzed in details using induced molecular distortions, delocatization properties of participating electronic states and non-adiabatic coupling strengths. Our results provide a number of insights into design of cyclic molecular systems for electronic and light-harvesting applications. PMID:27507429
NASA Astrophysics Data System (ADS)
Kanungo, Jitendra; Dasgupta, S.
2014-09-01
We analyze the energy performance of a complete adiabatic circuit/system including the Power Clock Generator (PCG) at the 90 nm CMOS technology node. The energy performance in terms of the conversion efficiency of the PCG is extensively carried out under the variations of supply voltage, process corner and the driver transistor's width. We propose an energy-efficient singe cycle control circuit based on the two-stage comparator for the synchronous charge recovery sinusoidal power clock generator (PCG). The proposed PCG is used to drive the 4-bit adiabatic Ripple Carry Adder (RCA) and their simulation results are compared with the adiabatic RCA driven by the reported PCG. We have also simulated the logically equivalent static CMOS RCA circuit to compare the energy saving of adiabatic and non-adiabatic logic circuits. In the clock frequency range from 25 MHz to 1GHz, the proposed PCG gives a maximum conversion efficiency of 56.48%. This research work shows how the design of an efficient PCG increases the energy saving of adiabatic logic.
Coherent tunneling by adiabatic process in a four-waveguide optical coupler
NASA Astrophysics Data System (ADS)
Shi, Jian; Ma, Rui-Qiong; Duan, Zuo-Liang; Liang, Meng; Zhang, Wen-wen; Dong, Jun
2016-07-01
We numerically simulate Schrödinger-like paraxial wave equation of a four-waveguide system. The coherent tunneling by adiabatic passage in a four-waveguide optical coupler is analyzed by borrowing the dressed state theory of coherent atom system. We discuss the optical coupling mechanism and coupling efficiency of light energy in both intuitive and counterintuitive tunneling schemes and analyze the threshold condition from adiabatic to non-adiabatic regimes in intuitive scheme. The results show that this coupler can be used as power splitter under certain conditions.
Low-energy electromagnetic excitation strengths in 121Sb and 123Sb
NASA Astrophysics Data System (ADS)
Bryssinck, J.; Govor, L.; Bauwens, F.; Belic, D.; von Brentano, P.; de Frenne, D.; Fransen, C.; Gade, A.; Jacobs, E.; Kneissl, U.; Kohstall, C.; Linnemann, A.; Nord, A.; Pietralla, N.; Pitz, H. H.; Scheck, M.; Stedile, F.; Werner, V.
2002-02-01
Results are presented from nuclear resonance fluorescence experiments on the odd-mass nuclei 121Sb and 123Sb with Z=51. The improved sensitivity reached with the present NRF facility, installed at the 4.3 MV Dynamitron accelerator of the Stuttgart University, allowed the detection of huge numbers of weak photoexcitations in the stable Sb nuclei 121Sb (164 transitions) and 123Sb (83 transitions) in the energy range up to 4 MeV and 3.5 MeV, respectively. The data are compared to former results for odd-mass nuclei near the Z=50 and N=82 shell closures (117Sn, 139La, 141Pr, and 143Nd). In the odd-mass nuclei within the Z=50 region, a similar total amount of electromagnetic excitation strength below 4 MeV is found; however, in 121Sb and 123Sb (Z=51) this strength is much more fragmented than in 117Sn with a closed proton shell (Z=50).
Electron-impact excitation and ionization of atomic boron at low and intermediate energies
NASA Astrophysics Data System (ADS)
Wang, Kedong; Zatsarinny, Oleg; Bartschat, Klaus
2016-05-01
We present a comprehensive study of electron collisions with neutral boron atoms. The calculations were performed with the B-Spline R-matrix (close-coupling) method, by employing a parallelized version of the associated computer code. Elastic, excitation, and ionization cross sections were obtained for all transitions involving the lowest 11 states of boron, for incident electron energies ranging from threshold to 100 eV. A multiconfiguration Hartree-Fock method with nonorthogonal term-dependent orbitals was used to generate accurate wave functions for the target states. Close-coupling expansions including 13, 51, and 999 physical and pseudo states were set up to check the sensitivity of the predictions to variations in the theoretical model. The cross-section dataset generated in this work is expected to be the most accurate one available today and should be sufficiently comprehensive for most modeling applications involving neutral boron. Work supported by the China Scholarship Council and the United States National Science Foundation under Grants PHY-1403245 and PHY-1520970, and by the XSEDE allocation PHY-090031.
Self-Excited Fluidic Energy Harvesters with Finite-Length Cylinders
NASA Astrophysics Data System (ADS)
Akaydin, Huseyin; Duquesnois, Chloe; Elvin, Niell; Andreopoulos, Yiannis
2011-11-01
In this experimental work, we explore the possibility of using piezoelectric materials for harvesting electrical energy from fluid flow. Such harvesters may be used for powering small sensors and obviate the need for batteries and/or power lines. Piezoelectric harvesters behave as AC-coupled devices and need oscillatory motion to generate an electrical output. The harvester should be designed to be ``self-excited,'' i.e. capable of initiating and sustaining the necessary oscillations in steady and uniform flows. The present configuration consists of a piezoelectric cantilever beam with a cylindrical tip body which promotes aeroelastic vibrations induced by vortex shedding. The harvester was tested in a wind tunnel and it produced 0.1 mW of electrical power at a flow speed of about 1.19 m/s. Using strain measurements and a distributed parameter model, the harvested electrical power was predicted, and a reasonable agreement is obtained with the measurements. The magnitude and frequency of the driving aerodynamic forces were also estimated. Results were comparable with literature data on flow past oscillating cylinders. Finally, the effect of using various shapes of tip body is presented. Sponsored by NSF Grant: CBET #1033117.
Potential energy curves for the ground and low-lying excited states of CuAg
Alizadeh, Davood; Shayesteh, Alireza E-mail: ashayesteh@ut.ac.ir; Jamshidi, Zahra E-mail: ashayesteh@ut.ac.ir
2014-10-21
The ground and low-lying excited states of heteronuclear diatomic CuAg are examined by multi-reference configuration interaction (MRCI) method. Relativistic effects were treated and probed in two steps. Scalar terms were considered using the spin-free DKH Hamiltonian as a priori and spin-orbit coupling was calculated perturbatively via the spin-orbit terms of the Breit-Pauli Hamiltonian based on MRCI wavefunctions. Potential energy curves of the spin-free states and their corresponding Ω components correlating with the separated atom limits {sup 2}S(Cu) + {sup 2}S(Ag) and {sup 2}D(Cu) + {sup 2}S(Ag) are obtained. The results are in fine agreement with the experimental measurements and tentative conclusions for the ion-pair B0{sup +} state are confirmed by our theoretical calculations. Illustrative results are presented to reveal the relative importance and magnitude of the scalar and spin-orbit effects on the spectroscopic properties of this molecule. Time dependent density functional theory calculations, using the LDA, BLYP, B3LYP, and SAOP functionals have been carried out for CuAg and the accuracy of TD-DFT has been compared with ab initio results.
NASA Astrophysics Data System (ADS)
Meng, Qing-Hao; Yao, Zhen-Jing; Peng, Han-Yang
2009-12-01
Both the energy efficiency and correlation characteristics are important in airborne sonar systems to realize multichannel ultrasonic transducers working together. High energy efficiency can increase echo energy and measurement range, and sharp autocorrelation and flat cross correlation can help eliminate cross-talk among multichannel transducers. This paper addresses energy efficiency optimization under the premise that cross-talk between different sonar transducers can be avoided. The nondominated sorting genetic algorithm-II is applied to optimize both the spectrum and correlation characteristics of the excitation sequence. The central idea of the spectrum optimization is to distribute most of the energy of the excitation sequence within the frequency band of the sonar transducer; thus, less energy is filtered out by the transducers. Real experiments show that a sonar system consisting of eight-channel Polaroid 600 series electrostatic transducers excited with 2 ms optimized pulse-position-modulation sequences can work together without cross-talk and can measure distances up to 650 cm with maximal 1% relative error.
Meng, Qing-Hao; Yao, Zhen-Jing; Peng, Han-Yang
2009-12-01
Both the energy efficiency and correlation characteristics are important in airborne sonar systems to realize multichannel ultrasonic transducers working together. High energy efficiency can increase echo energy and measurement range, and sharp autocorrelation and flat cross correlation can help eliminate cross-talk among multichannel transducers. This paper addresses energy efficiency optimization under the premise that cross-talk between different sonar transducers can be avoided. The nondominated sorting genetic algorithm-II is applied to optimize both the spectrum and correlation characteristics of the excitation sequence. The central idea of the spectrum optimization is to distribute most of the energy of the excitation sequence within the frequency band of the sonar transducer; thus, less energy is filtered out by the transducers. Real experiments show that a sonar system consisting of eight-channel Polaroid 600 series electrostatic transducers excited with 2 ms optimized pulse-position-modulation sequences can work together without cross-talk and can measure distances up to 650 cm with maximal 1% relative error.
Complete Cycle Experiments Using the Adiabatic Gas Law Apparatus
NASA Astrophysics Data System (ADS)
Kutzner, Mickey D.; Plantak, Mateja
2014-10-01
The ability of our society to make informed energy-usage decisions in the future depends partly on current science and engineering students retaining a deep understanding of the thermodynamics of heat engines. Teacher imaginations and equipment budgets can both be taxed in the effort to engage students in hands-on heat engine activities. The experiments described in this paper, carried out using the Adiabatic Gas Law Apparatus1 (AGLA), quantitatively explore popular complete cycle heat engine processes.
Somoza Márquez, Alejandro; Chen, Lipeng; Sun, Kewei; Zhao, Yang
2016-07-27
The chlorosome antenna complex is a fascinating structure which due to its immense scale, accurate simulation of excitation energy transfer (EET) dynamics supposes a genuine computational challenge. Resonant vibronic modes have been recently identified in 2D spectra of the chlorosome which motivates our present endeavour of modelling electronic and vibrational degrees of freedom on an equal footing. Following the Dirac-Frenkel time-dependent variational principle, we exploit a general theory of polaron dynamics in two-dimensional lattices based on the Holstein molecular crystal model and investigate a single rod model of pigment aggregates. Unlike reduced formalisms, explicit integration of the degrees of freedom of both the system and the bath requires extensive computational resources. We exploit the architecture of graphic processor units (GPUs) by implementing our simulations on this platform. The simulation of dynamic properties of hundreds or even thousands of pigments is thus achievable in just a few hours. The potential investigation and design of natural or engineered two-dimensional pigment networks can thus be accommodated. Due to the lack of consensus regarding the precise arrangement of chromophores in the chlorosome, helicity and dimerization are investigated independently, extracting their contributions to both optical and EET properties. The presence of dimerization is found to slow down the delocalization process. Exciton delocalization is completed in 100 fs in a single rod aggregate whose dimensions (20 nm) fairly exceed the estimated extent of a coherent domain. Ultrafast energy relaxation in the exciton manifold occurs in 50 fs and the duration of super-diffusive transport is found to last for about 80 fs. PMID:26792106
Tensor numerical methods in quantum chemistry: from Hartree-Fock to excitation energies.
Khoromskaia, Venera; Khoromskij, Boris N
2015-12-21
We resume the recent successes of the grid-based tensor numerical methods and discuss their prospects in real-space electronic structure calculations. These methods, based on the low-rank representation of the multidimensional functions and integral operators, first appeared as an accurate tensor calculus for the 3D Hartree potential using 1D complexity operations, and have evolved to entirely grid-based tensor-structured 3D Hartree-Fock eigenvalue solver. It benefits from tensor calculation of the core Hamiltonian and two-electron integrals (TEI) in O(n log n) complexity using the rank-structured approximation of basis functions, electron densities and convolution integral operators all represented on 3D n × n × n Cartesian grids. The algorithm for calculating TEI tensor in a form of the Cholesky decomposition is based on multiple factorizations using algebraic 1D "density fitting" scheme, which yield an almost irreducible number of product basis functions involved in the 3D convolution integrals, depending on a threshold ε > 0. The basis functions are not restricted to separable Gaussians, since the analytical integration is substituted by high-precision tensor-structured numerical quadratures. The tensor approaches to post-Hartree-Fock calculations for the MP2 energy correction and for the Bethe-Salpeter excitation energies, based on using low-rank factorizations and the reduced basis method, were recently introduced. Another direction is towards the tensor-based Hartree-Fock numerical scheme for finite lattices, where one of the numerical challenges is the summation of electrostatic potentials of a large number of nuclei. The 3D grid-based tensor method for calculation of a potential sum on a L × L × L lattice manifests the linear in L computational work, O(L), instead of the usual O(L(3) log L) scaling by the Ewald-type approaches. PMID:26016539
Photon-energy dependence of single-photon simultaneous core ionization and core excitation in CO2
NASA Astrophysics Data System (ADS)
Carniato, S.; Selles, P.; Lablanquie, P.; Palaudoux, J.; Andric, L.; Nakano, M.; Hikosaka, Y.; Ito, K.; Marchenko, T.; Travnikova, O.; Goldsztejn, G.; Journel, L.; Guillemin, R.; Céolin, D.; Simon, M.; Piancastelli, M. N.; Penent, F.
2016-07-01
We have studied the K-2V process corresponding to simultaneous K -shell ionization and K -shell excitation in the C O2 molecule. We define these K-2V states as super shake-up, at variance with the "conventional" K-1v-1V shake-up states. While the nature and evolution with photon energy of the conventional shake-up satellites has been the object of many studies, no such data on a large photon-energy range were previously reported on super shake-up. The C O2 molecule is a textbook example because it exhibits two well-isolated K-2V resonances (with V being 2 πu* and 5 σg* ) with different symmetries resulting from shake-up processes of different origin populated in comparable proportions. The variation of the excitation cross section of these two resonances with photon energy is reported, using two different experimental approaches, which sheds light on the excitation mechanisms. Furthermore, double-core-hole spectroscopy is shown to be able to integrate and even expand information provided by conventional single-core-hole X-ray Photoelectron Spectroscopy (XPS) and Near-Edge X-ray Absorption Fine Structure (NEXAFS) techniques, revealing, for instance, g -g dipole forbidden transitions which are only excited in NEXAFS spectra through vibronic coupling.
Sanz-Sanz, Cristina; Aguado, Alfredo; Roncero, Octavio; Naumkin, Fedor
2016-01-01
Analytical derivatives and non-adiabatic coupling matrix elements are derived for Hn+ systems (n=3, 4 and 5). The method uses a generalized Hellmann-Feynman theorem applied to a multi-state description based on diatomics-in-molecules (for H3+) or triatomics-in-molecules (for H4+ and H5+) formalisms, corrected with a permutationally invariant many-body term to get high accuracy. The analytical non-adiabatic coupling matrix elements are compared with ab initio calculations performed at multi-reference configuration interaction level. These magnitudes are used to calculate H2(v′=0,j′=0)+H2+(v,j=0) collisions, to determine the effect of electronic transitions using a molecular dynamics method with electronic transitions. Cross sections for several initial vibrational states of H2+ are calculated and compared with the available experimental data, yielding an excellent agreement. The effect of vibrational excitation of H2+ reactant, and its relation with non-adiabatic processes are discussed. Also, the behavior at low collisional energies, in the 1 meV-0.1 eV interval, of interest in astrophysical environments, are discussed in terms of the long range behaviour of the interaction potential which is properly described within the TRIM formalism. PMID:26696058
Sanz-Sanz, Cristina; Aguado, Alfredo; Roncero, Octavio; Naumkin, Fedor
2015-12-21
Analytical derivatives and non-adiabatic coupling matrix elements are derived for Hn (+) systems (n = 3-5). The method uses a generalized Hellmann-Feynman theorem applied to a multi-state description based on diatomics-in-molecules (for H3 (+)) or triatomics-in-molecules (for H4 (+) and H5 (+)) formalisms, corrected with a permutationally invariant many-body term to get high accuracy. The analytical non-adiabatic coupling matrix elements are compared with ab initio calculations performed at multi-reference configuration interaction level. These magnitudes are used to calculate H2(v(')=0,j(')=0)+H2 (+)(v,j=0) collisions, to determine the effect of electronic transitions using a molecular dynamics method with electronic transitions. Cross sections for several initial vibrational states of H2 (+) are calculated and compared with the available experimental data, yielding an excellent agreement. The effect of vibrational excitation of H2 (+) reactant and its relation with non-adiabatic processes are discussed. Also, the behavior at low collisional energies, in the 1 meV-0.1 eV interval, of interest in astrophysical environments, is discussed in terms of the long range behaviour of the interaction potential which is properly described within the triatomics-in-molecules formalism. PMID:26696058
Multi-atom entanglement engineering and phase-covariant cloning via adiabatic passage
NASA Astrophysics Data System (ADS)
Zheng, Shi-Biao
2005-05-01
A scheme is proposed for the generation of entangled states for multiple atoms trapped in an optical cavity via adiabatic passage. In the scheme, both the atomic system and the cavity have no probability of being excited. Thus both the atomic spontaneous emission and the cavity decay are suppressed, which makes our scheme very robust against decoherence. Taking advantage of the adiabatic process, the scheme does not require accurate adjustment of the interaction time. Furthermore, the scheme is scalable in principle. The idea can also be used for realizing phase-covariant cloning.
Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas
Rohringer, W.; Fischer, D.; Steiner, F.; Mazets, I. E.; Schmiedmayer, J.; Trupke, M.
2015-01-01
We present experimental evidence for scale invariant behaviour of the excitation spectrum in phase-fluctuating quasi-1d Bose gases after a rapid change of the external trapping potential. Probing density correlations in free expansion, we find that the temperature of an initial thermal state scales with the spatial extension of the cloud as predicted by a model based on adiabatic rescaling of initial eigenmodes with conserved quasiparticle occupation numbers. Based on this result, we demonstrate that shortcuts to adiabaticity for the rapid expansion or compression of the gas do not induce additional heating. PMID:25867640
Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas
NASA Astrophysics Data System (ADS)
Rohringer, W.; Fischer, D.; Steiner, F.; Mazets, I. E.; Schmiedmayer, J.; Trupke, M.
2015-04-01
We present experimental evidence for scale invariant behaviour of the excitation spectrum in phase-fluctuating quasi-1d Bose gases after a rapid change of the external trapping potential. Probing density correlations in free expansion, we find that the temperature of an initial thermal state scales with the spatial extension of the cloud as predicted by a model based on adiabatic rescaling of initial eigenmodes with conserved quasiparticle occupation numbers. Based on this result, we demonstrate that shortcuts to adiabaticity for the rapid expansion or compression of the gas do not induce additional heating.
Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas.
Rohringer, W; Fischer, D; Steiner, F; Mazets, I E; Schmiedmayer, J; Trupke, M
2015-04-13
We present experimental evidence for scale invariant behaviour of the excitation spectrum in phase-fluctuating quasi-1d Bose gases after a rapid change of the external trapping potential. Probing density correlations in free expansion, we find that the temperature of an initial thermal state scales with the spatial extension of the cloud as predicted by a model based on adiabatic rescaling of initial eigenmodes with conserved quasiparticle occupation numbers. Based on this result, we demonstrate that shortcuts to adiabaticity for the rapid expansion or compression of the gas do not induce additional heating.
Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning
NASA Technical Reports Server (NTRS)
Smelyanskiy, Vadius; vonToussaint, Udo V.; Timucin, Dogan A.; Clancy, Daniel (Technical Monitor)
2002-01-01
We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum exitation gap, gmin = O(n2(sup -n/2)), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.
Adiabat shape Laser Pulses for ablation front instability control and high fuel compression
NASA Astrophysics Data System (ADS)
Milovich, Jose; Jones, O. S.; Berzak-Hopkins, L.; Clark, D. S.; Baker, K. L.; Casey, D. T.; Macphee, A. G.; Peterson, J. L.; Robey, H. F.; Smalyuk, V. A.; Weber, C. R.
2014-10-01
At the end of the NIC campaign a large body of experimental evidence showed that the point-design implosions driven by low-adiabat pulses had a high degree of mix. To reduce instability a high-adiabat (~3 × higher picket drive) design was fielded in the National Ignition Facility (NIF). The experimental results from this campaign have shown considerable improvement in performance (10 × neutron yields) over the point design with little evidence of mix. However, the adiabat of the implosions may be too high to achieve ignition for the available laser energy. To overcome this difficulty, and to take advantage of the high-picket drives, we have developed hybrid laser pulses that combined the virtue of both designs. These pulses can be thought of achieving adiabat shaping, where the ablator is set in a higher adiabat for instability control, while the fuel is maintained at a lower adiabat favoring higher fuel compression. Using these pulses, recent experiments at the NIF have indeed shown reduced growth rates. In this talk we will present the design of high-yield low-growth DT ignition experiments using these adiabat-shaped pulses. Work performed under the auspices of the U.S. D.O.E. by LLNL under contract DE-AC52-07NA27344.
Mielke, Steven L; Schwenke, David W; Schatz, George C; Garrett, Bruce C; Peterson, Kirk A
2009-04-23
Multireference configuration interaction (MRCI) calculations of the Born-Oppenheimer diagonal correction (BODC) for H(3) were performed at 1397 symmetry-unique configurations using the Handy-Yamaguchi-Schaefer approach; isotopic substitution leads to 4041 symmetry-unique configurations for the DH(2) mass combination. These results were then fit to a functional form that permits calculation of the BODC for any combination of isotopes. Mean unsigned fitting errors on a test grid of configurations not included in the fitting process were 0.14, 0.12, and 0.65 cm(-1) for the H(3), DH(2), and MuH(2) isotopomers, respectively. This representation can be combined with any Born-Oppenheimer potential energy surface (PES) to yield Born-Huang (BH) PESs; herein, we choose the CCI potential energy surface, the uncertainties of which ( approximately 0.01 kcal/mol) are much smaller than the magnitude of the BODC. Fortran routines to evaluate these BH surfaces are provided. Variational transition state theory calculations are presented comparing thermal rate constants for reactions on the BO and BH surfaces to provide an initial estimate of the significance of the diagonal correction for the dynamics. PMID:19290604
Absolute cross sections for vibrational excitations of cytosine by low energy electron impact
NASA Astrophysics Data System (ADS)
Michaud, M.; Bazin, M.; Sanche, L.
2012-09-01
The absolute cross sections (CSs) for vibrational excitations of cytosine by electron impact between 0.5 and 18 eV were measured by electron-energy loss (EEL) spectroscopy of the molecule deposited at monolayer coverage on an inert Ar substrate. The vibrational energies compare to those that have been reported from IR spectroscopy of cytosine isolated in Ar matrix, IR and Raman spectra of polycrystalline cytosine, and ab initio calculation. The CSs for the various H bending modes at 142 and 160 meV are both rising from their energy threshold up to 1.7 and 2.1 × 10-17 cm2 at about 4 eV, respectively, and then decrease moderately while maintaining some intensity at 18 eV. The latter trend is displayed as well for the CS assigned to the NH2 scissor along with bending of all H at 179 meV. This overall behavior in electron-molecule collision is attributed to direct processes such as the dipole, quadrupole, and polarization contributions, etc. of the interaction of the incident electron with a molecule. The CSs for the ring deformation at 61 meV, the ring deformation with N-H symmetric wag at 77 meV, and the ring deformations with symmetric bending of all H at 119 meV exhibit common enhancement maxima at 1.5, 3.5, and 5.5 eV followed by a broad hump at about 12 eV, which are superimposed on the contribution due to the direct processes. At 3.5 eV, the CS values for the 61-, 77-, and 119-meV modes reach 4.0, 3.0, and 4.5 × 10-17 cm2, respectively. The CS for the C-C and C-O stretches at 202 meV, which dominates in the intermediate EEL region, rises sharply until 1.5 eV, reaches its maximum of 5.7 × 10-17 cm2 at 3.5 eV and then decreases toward 18 eV. The present vibrational enhancements, correspond to the features found around 1.5 and 4.5 eV in electron transmission spectroscopy (ETS) and those lying within 1.5-2.1 eV, 5.2-6.8 eV, and 9.5-10.9 eV range in dissociative electron attachment (DEA) experiments with cytosine in gas phase. While the ETS features are ascribed
Absolute cross sections for vibrational excitations of cytosine by low energy electron impact.
Michaud, M; Bazin, M; Sanche, L
2012-09-21
The absolute cross sections (CSs) for vibrational excitations of cytosine by electron impact between 0.5 and 18 eV were measured by electron-energy loss (EEL) spectroscopy of the molecule deposited at monolayer coverage on an inert Ar substrate. The vibrational energies compare to those that have been reported from IR spectroscopy of cytosine isolated in Ar matrix, IR and Raman spectra of polycrystalline cytosine, and ab initio calculation. The CSs for the various H bending modes at 142 and 160 meV are both rising from their energy threshold up to 1.7 and 2.1 × 10(-17) cm(2) at about 4 eV, respectively, and then decrease moderately while maintaining some intensity at 18 eV. The latter trend is displayed as well for the CS assigned to the NH(2) scissor along with bending of all H at 179 meV. This overall behavior in electron-molecule collision is attributed to direct processes such as the dipole, quadrupole, and polarization contributions, etc. of the interaction of the incident electron with a molecule. The CSs for the ring deformation at 61 meV, the ring deformation with N-H symmetric wag at 77 meV, and the ring deformations with symmetric bending of all H at 119 meV exhibit common enhancement maxima at 1.5, 3.5, and 5.5 eV followed by a broad hump at about 12 eV, which are superimposed on the contribution due to the direct processes. At 3.5 eV, the CS values for the 61-, 77-, and 119-meV modes reach 4.0, 3.0, and 4.5 × 10(-17) cm(2), respectively. The CS for the C-C and C-O stretches at 202 meV, which dominates in the intermediate EEL region, rises sharply until 1.5 eV, reaches its maximum of 5.7 × 10(-17) cm(2) at 3.5 eV and then decreases toward 18 eV. The present vibrational enhancements, correspond to the features found around 1.5 and 4.5 eV in electron transmission spectroscopy (ETS) and those lying within 1.5-2.1 eV, 5.2-6.8 eV, and 9.5-10.9 eV range in dissociative electron attachment (DEA) experiments with cytosine in gas phase. While the ETS features
A geometric criterion for adiabatic chaos
Kaper, T.J. ); Kovacic, G. )
1994-03-01
Chaos in adiabatic Hamiltonian systems is a recent discovery and a pervasive phenomenon in physics. In this work, a geometric criterion is discussed based on the theory of action from classical mechanics to detect the existence of Smale horseshoe chaos in adiabatic systems. It is used to show that generic adiabatic planar Hamiltonian systems exhibit stochastic dynamics in large regions of phase space. To illustrate the method, results are obtained for three problems concerning relativistic particle dynamics, fluid mechanics, and passage through resonance, results which either could not be obtained with existing methods, or which were difficult and analytically impractical to obtain with them.
Heating and cooling in adiabatic mixing process
Zhou Jing; Zou Xubo; Guo Guangcan; Cai Zi
2010-12-15
We study the effect of interaction on the temperature change in the process of adiabatic mixing of two components of Fermi gases using the real-space Bogoliubov-de Gennes method. We find that in the process of adiabatic mixing, the competition between the adiabatic expansion and the attractive interaction makes it possible to cool or heat the system depending on the strength of the interaction and the initial temperature of the system. The changes of the temperature in a bulk system and in a trapped system are investigated.
The low-energy, charge-transfer excited states of 4-amino-4-prime-nitrodiphenyl sulfide
NASA Technical Reports Server (NTRS)
O'Connor, Donald B.; Scott, Gary W.; Tran, Kim; Coulter, Daniel R.; Miskowski, Vincent M.; Stiegman, Albert E.; Wnek, Gary E.
1992-01-01
Absorption and emission spectra of 4-amino-4-prime-nitrodiphenyl sulfide in polar and nonpolar solvents were used to characterize and assign the low-energy excited states of the molecule. Fluorescence-excitation anisotropy spectra and fluorescence quantum yields were also used to characterize the photophysics of these states. The lowest-energy fluorescent singlet state was determined to be an intramolecular charge transfer (ICT) state involving transfer of a full electron charge from the amino to the nitro group yielding a dipole moment of about 50 D. A low-energy, intense absorption band is assigned as a transition to a different ICT state involving a partial electron charge transfer from sulfur to the nitro group.
Zhou, Xiuli; Norris, Theodore B.; Hörl, Anton; Trügler, Andreas; Hohenester, Ulrich; Herzing, Andrew A.
2014-12-14
We have characterized the surface plasmon resonance (SPR) in silver nanowires using spatially resolved electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope. Non-symmetric EELS spectra due to high-k SPR propagation along the nanowire and spectral shifts due to higher-order mode excitation are observed when the beam is positioned near the tip of the nanowire. When the beam is far from the tip region and on the side of nanowire, no spectral shifts are observed as the beam is scanned in the radial direction of the nanowire. The experimental spectra are compared with three different theoretical approaches: direct numerical calculation of the energy loss, analytical models for energy loss, and numerical simulations using an optical model. All three models reproduce the spectral shifts as the electron beam approaches the cap of the nanowire. The analytical model reveals the origin of the shifts in high-order plasmon mode excitation.
Ito, Akitaka; Stewart, David J.; Fang, Zhen; Brennaman, M. Kyle; Meyer, Thomas J.
2012-01-01
Distance-dependent energy transfer occurs from the Metal-to-Ligand Charge Transfer (MLCT) excited state to an anthracene-acrylate derivative (Acr-An) incorporated into the polymer network of a semirigid poly(ethyleneglycol)dimethacrylate monolith. Following excitation, to Acr-An triplet energy transfer occurs followed by long-range, Acr-3An—Acr-An → Acr-An—Acr-3An, energy migration. With methyl viologen dication (MV2+) added as a trap, Acr-3An + MV2+ → Acr-An+ + MV+ electron transfer results in sensitized electron transfer quenching over a distance of approximately 90 Å. PMID:22949698
NASA Astrophysics Data System (ADS)
Isegawa, Miho; Truhlar, Donald G.
2013-04-01
Time-dependent density functional theory (TDDFT) holds great promise for studying photochemistry because of its affordable cost for large systems and for repeated calculations as required for direct dynamics. The chief obstacle is uncertain accuracy. There have been many validation studies, but there are also many formulations, and there have been few studies where several formulations were applied systematically to the same problems. Another issue, when TDDFT is applied with only a single exchange-correlation functional, is that errors in the functional may mask successes or failures of the formulation. Here, to try to sort out some of the issues, we apply eight formulations of adiabatic TDDFT to the first valence excitations of ten molecules with 18 density functionals of diverse types. The formulations examined are linear response from the ground state (LR-TDDFT), linear response from the ground state with the Tamm-Dancoff approximation (TDDFT-TDA), the original collinear spin-flip approximation with the Tamm-Dancoff (TD) approximation (SF1-TDDFT-TDA), the original noncollinear spin-flip approximation with the TDA approximation (SF1-NC-TDDFT-TDA), combined self-consistent-field (SCF) and collinear spin-flip calculations in the original spin-projected form (SF2-TDDFT-TDA) or non-spin-projected (NSF2-TDDFT-TDA), and combined SCF and noncollinear spin-flip calculations (SF2-NC-TDDFT-TDA and NSF2-NC-TDDFT-TDA). Comparing LR-TDDFT to TDDFT-TDA, we observed that the excitation energy is raised by the TDA; this brings the excitation energies underestimated by full linear response closer to experiment, but sometimes it makes the results worse. For ethylene and butadiene, the excitation energies are underestimated by LR-TDDFT, and the error becomes smaller making the TDA. Neither SF1-TDDFT-TDA nor SF2-TDDFT-TDA provides a lower mean unsigned error than LR-TDDFT or TDDFT-TDA. The comparison between collinear and noncollinear kernels shows that the noncollinear kernel
Durrant, James R
2013-08-13
This review starts with a brief overview of the technological potential of molecular-based solar cell technologies. It then goes on to focus on the core scientific challenge associated with using molecular light-absorbing materials for solar energy conversion, namely the separation of short-lived, molecular-excited states into sufficiently long-lived, energetic, separated charges capable of generating an external photocurrent. Comparisons are made between different molecular-based solar cell technologies, with particular focus on the function of dye-sensitized photoelectrochemical solar cells as well as parallels with the function of photosynthetic reaction centres. The core theme of this review is that generating charge carriers with sufficient lifetime and a high quantum yield from molecular-excited states comes at a significant energetic cost-such that the energy stored in these charge-separated states is typically substantially less than the energy of the initially generated excited state. The role of this energetic loss in limiting the efficiency of solar energy conversion by such devices is emphasized, and strategies to minimize this energy loss are compared and contrasted.
Linnanto, Juha M; Korppi-Tommola, Jouko E I
2013-09-26
A description of intra-chlorosome and from chlorosome to baseplate excitation energy transfer in green sulfur bacteria and in filamentous anoxygenic phototrophs is presented. Various shapes and sizes, single and multiwalled tubes, cylindrical spirals and lamellae of the antenna elements mimicking pigment organization in chlorosomes were generated by using molecular mechanics calculations, and the absorption, LD, and CD spectra of these were predicted by using exciton theory. Calculated absorption and LD spectra were similar for all modeled antenna structures; on the contrary, CD spectra turned out to be sensitive to the size and pigment orientations in the antenna. It was observed that, bringing two tubular antennae at close enough interaction distance, the exciton density of the lowest energy state became localized on pigments facing each other in the antenna dimer. Calculations predicted for stacked tubular antenna elements extremely fast, faster than 500 fs, intra-chlorosome energy transfer toward the baseplates in the direction perpendicular to the chlorosome long axis. Downhill excitation energy transfer according to our model is driven by interactions of the antennae with their immediate surroundings. Energy transfer from the chlorosome to the baseplate, consisting of 2D lattices of monomeric and dimeric bacteriochlorophyll a molecules, was predicted to occur in 5-15 ps, in agreement with experimental findings. Advancement of excitation through a double tube antenna stack, a model for antenna element organization in chlorosomes of green sulfur bacteria, to a monomeric baseplate was visualized in space and in time.
NASA Astrophysics Data System (ADS)
Kozich, V.; Szyc, Ł.; Nibbering, E. T. J.; Werncke, W.; Elsaesser, T.
2009-04-01
Vibrational relaxation after spectrally selective excitation within the NH stretching band of adenine-thymine base pairs in DNA oligomers was studied by subpicosecond infrared-pump/anti-Stokes Raman-probe spectroscopy. The decay of the different NH stretching vibrations populates distinct accepting modes in the NH bending range with a rise time of 0.6 ps that is close to the NH stretching decay times. The population of thymine fingerprint modes after excitation of the adenine antisymmetric NH 2 stretching mode points to an ultrafast excitation transfer to the thymine NH stretching vibration before relaxation. The nonequilibrium fingerprint populations decay on a time scale of several picoseconds.
Miyamoto, Yoshiyuki; Tateyama, Yoshitaka; Oyama, Norihisa; Ohno, Takahisa
2015-01-01
We examined real-time-propagation time-dependent density functional theory (rtp-TDDFT) coupled with molecular dynamics (MD), which uses single-particle representation of time-evolving wavefunctions allowing exchange of orbital characteristics between occupied and empty states making the effective Kohn-Sham Hamiltonian dependent on the potential energy surfaces (PESs). This scheme is expected to lead to mean-field average of adiabatic potential energy surfaces (PESs), and is one of Ehrenfest (mean-field) approaches. However, we demonstrate that the mean-field average can be absent in simulating photoisomerization of azobenzene and ethylene molecules. A transition from the S2 to the S1 excited state without the mean- field average was observed after examining several rtp-TDDFT-MD trajectories of a photoexcited azobenzene molecule. The subsequent trans-cis isomerization was observed in our simulation, which is consistent with experimental observation and supported by previous calculations. The absence of the mean-field average of PESs was also observed for the transition between the S1 and S0 states, indicating that the MD simulation was on a single PES. Conversely, we found no transition to the ground state (S0 state) when we performed a MD simulation of an S1 excited ethylene molecule owing to the constraint on the occupation number of each molecular orbital. Thus, we conclude that, at least for azobenzene and ethylene molecules, the rtp-TDDFT-MD is an on-the-fly simulation that can automatically see the transition among the PESs of excited states without the mean-field average unless the simulation reaches the PES of the S0 state. PMID:26658633
Quenching of Excited Na due to He Collisions
NASA Technical Reports Server (NTRS)
Lin, C. Y.; Stancil, P. C.; Liebermann, H. P.; Funke, P.; Buenker, R. J.
2006-01-01
The quenching and elastic scattering of excited Sodium by collisions with Helium have been investigated for energies between 10(exp -13) eV and 10 eV. With the ab initio adiabatic potentials and nonadiabatic radial and rotational couplings obtained from multireference single- and double-excitation configuration interaction approach, we carried out scattering calculations by the quantum-mechanical molecular-orbital close-coupling method. Cross sections for quenching reactions and elastic collisions are presented. Quenching and elastic collisional rate coefficients as a function of temperature between 1 micro-K and 10,000 K are also obtained. The results are relevant to modeling non-LTE effects on Na D absorption lines in extrasolar planets and brown dwarfs.
Analysis of hyperspherical adiabatic curves of helium: A classical dynamics study
NASA Astrophysics Data System (ADS)
Simonović, N. S.; Solov'ev, E. A.
2013-05-01
The hyperspherical adiabatic curves (adiabatic eigenenergies as functions of the hyperradius R) of helium for zero total angular momentum are analyzed by studying the underlying classical dynamics which in the adiabatic treatment reduces to constrained two-electron motion on a hypersphere. This dynamics supports five characteristic classical configurations which can be represented by five types of short periodic orbits: the frozen planet (FP), the inverted frozen planet (IFP), the asymmetric stretch (AS), the asynchronous (ASC), and the Langmuir periodic orbit (PO). These POs are considered as fundamental modes of the two-electron motion on a hypersphere which, after quantization, give five families of so-called adiabatic lines (adiabatic energies related to these POs as functions of R). It is found that multiplets, each of them consisting of adiabatic curves which converge to the same ionization threshold, are at large values of R delimited from the bottom and from the top by the adiabatic lines which are related to the IFP and stable AS POs and to the FP PO, respectively. At smaller values of R, where the AS PO becomes unstable, the curves move to the area between the ASC (bottom) and AS (top) lines by crossing the latter. Therefore, at different values of R the lower limiting line of the multiplet is related to the three types of PO (IFP, AS, and ASC), which are all stable in the negative-energy part of this line. As a consequence, the quantum states of helium in principle are not related individually to a single classical configuration on the hypersphere. In addition, it is demonstrated that “unstable parts” of adiabatic lines (the so-called diabatic curves) determine the positions and type of avoided and hidden crossings between hyperspherical adiabatic curves. Two clearly visible classes of avoided crossings are related to the AS and ASC POs. In addition, a number of avoided crossings of the adiabatic curves is observed at the positions where the
NASA Astrophysics Data System (ADS)
Casanova, David; Rhee, Young Min; Head-Gordon, Martin
2008-04-01
Scaled opposite spin (SOS) second order perturbative corrections to single excitation configuration interaction (CIS) are extended to correctly treat quasidegeneracies between excited states. Two viable methods, termed as SOS-CIS(D0) and SOS-CIS(D1), are defined, implemented, and tested. Each involves one empirical parameter (plus a second for the SOS-MP2 ground state), has computational cost that scales with the fourth power of molecule size, and has storage requirements that are cubic, with only quantities of the rank of single excitations produced and stored during iterations. Tests on a set of low-lying adiabatic valence excitation energies and vertical Rydberg excitations of organic and inorganic molecules show that the empirical parameter can be acceptably transferred from the corresponding nondegenerate perturbation theories without any further fitting. Further tests on higher excited states show that the new methods correctly perform for surface crossings for which nondegenerate approaches fail. Numerical results show that SOS-CIS(D0) appears to treat Rydberg excitations in a more balanced way than SOS-CIS(D1) and is, therefore, likely to be the preferred approach. It should be useful for exploring excited state geometries, transition structures, and conical intersections for states of medium to large organic molecules that are dominated by single excitations.
Mukhopadhyay, N.C.
1986-01-01
The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)
NASA Astrophysics Data System (ADS)
Wang, Y. W.; Kim, J. S.; Kim, G. H.; Kim, Kwang S.
2006-04-01
Quantum size effects in volume plasmon excitation of bismuth nanoparticles with diameters ranging from 5to500nm have been studied by electron energy loss spectroscopy. The Bi nanoparticles were prepared by reducing Bi3+ with sodium borohydride in the presence of poly(vinylpyrroldone). The volume plasmon energy and its peak width increase with decreasing nanoparticle diameter, due to the quantum size effect. For the particles with diameter less than 40nm, the increase of the volume plasmon energy is proportional to the inverse square of the nanoparticle diameter, confirming the semimetal to semiconductor transition in Bi nanoparticles.
Tensor numerical methods in quantum chemistry: from Hartree-Fock to excitation energies
NASA Astrophysics Data System (ADS)
Khoromskaia, Venera; Khoromskij, Boris N.
We resume the recent successes of the grid-based tensor numerical methods and discuss their prospects in real-space electronic structure calculations. These methods, based on the low-rank representation of the multidimensional functions and integral operators, led to entirely grid-based tensor-structured 3D Hartree-Fock eigenvalue solver. It benefits from tensor calculation of the core Hamiltonian and two-electron integrals (TEI) in $O(n\\log n)$ complexity using the rank-structured approximation of basis functions, electron densities and convolution integral operators all represented on 3D $n\\times n\\times n $ Cartesian grids. The algorithm for calculating TEI tensor in a form of the Cholesky decomposition is based on multiple factorizations using algebraic 1D ``density fitting`` scheme. The basis functions are not restricted to separable Gaussians, since the analytical integration is substituted by high-precision tensor-structured numerical quadratures. The tensor approaches to post-Hartree-Fock calculations for the MP2 energy correction and for the Bethe-Salpeter excited states, based on using low-rank factorizations and the reduced basis method, were recently introduced. Another direction is related to the recent attempts to develop a tensor-based Hartree-Fock numerical scheme for finite lattice-structured systems, where one of the numerical challenges is the summation of electrostatic potentials of a large number of nuclei. The 3D grid-based tensor method for calculation of a potential sum on a $L\\times L\\times L$ lattice manifests the linear in $L$ computational work, $O(L)$, instead of the usual $O(L^3 \\log L)$ scaling by the Ewald-type approaches.
Mendive-Tapia, David; Lasorne, Benjamin; Worth, Graham A; Robb, Michael A; Bearpark, Michael J
2012-12-14
In this article, we investigate the convergence of quantum dynamics calculations with coupled variationally optimized gaussian product basis functions, describing wavepacket motion on regions of molecular potential energy surfaces calculated on the fly. As a benchmark system, we model the radiationless decay of fulvene from its first electronic excited state through an extended S(1)∕S(0) conical intersection seam and monitor two associated properties: the spatial extent to which the conical intersection seam is sampled and the timescale and stepwise nature of the population transfer. We suggest that the fully variational description reviewed here (direct dynamics-variational multi-configuration gaussian) provides a way to balance accuracy against computational cost for molecules of comparable sizes by choosing the number of coupled gaussian product basis functions and a middle way forward between grid based and trajectory surface hopping approaches to non-adiabatic molecular quantum dynamics calculations.
Simulation of periodically focused, adiabatic thermal beams
Chen, C.; Akylas, T. R.; Barton, T. J.; Field, D. M.; Lang, K. M.; Mok, R. V.
2012-12-21
Self-consistent particle-in-cell simulations are performed to verify earlier theoretical predictions of adiabatic thermal beams in a periodic solenoidal magnetic focusing field [K.R. Samokhvalova, J. Zhou and C. Chen, Phys. Plasma 14, 103102 (2007); J. Zhou, K.R. Samokhvalova and C. Chen, Phys. Plasma 15, 023102 (2008)]. In particular, results are obtained for adiabatic thermal beams that do not rotate in the Larmor frame. For such beams, the theoretical predictions of the rms beam envelope, the conservations of the rms thermal emittances, the adiabatic equation of state, and the Debye length are verified in the simulations. Furthermore, the adiabatic thermal beam is found be stable in the parameter regime where the simulations are performed.
Adiabatic Motion of Fault Tolerant Qubits
NASA Astrophysics Data System (ADS)
Drummond, David Edward
This work proposes and analyzes the adiabatic motion of fault tolerant qubits in two systems as candidates for the building blocks of a quantum computer. The first proposal examines a pair of electron spins in double quantum dots, finding that the leading source of decoherence, hyperfine dephasing, can be suppressed by adiabatic rotation of the dots in real space. The additional spin-orbit effects introduced by this motion are analyzed, simulated, and found to result in an infidelity below the error-correction threshold. The second proposal examines topological qubits formed by Majorana zero modes theorized to exist at the ends of semiconductor nanowires coupled to conventional superconductors. A model is developed to design adiabatic movements of the Majorana bound states to produce entangled qubits. Analysis and simulations indicate that these adiabatic operations can also be used to demonstrate entanglement experimentally by testing Bell's theorem.
General conditions for quantum adiabatic evolution
Comparat, Daniel
2009-07-15
Adiabaticity occurs when, during its evolution, a physical system remains in the instantaneous eigenstate of the Hamiltonian. Unfortunately, existing results, such as the quantum adiabatic theorem based on a slow down evolution [H({epsilon}t),{epsilon}{yields}0], are insufficient to describe an evolution driven by the Hamiltonian H(t) itself. Here we derive general criteria and exact bounds, for the state and its phase, ensuring an adiabatic evolution for any Hamiltonian H(t). As a corollary, we demonstrate that the commonly used condition of a slow Hamiltonian variation rate, compared to the spectral gap, is indeed sufficient to ensure adiabaticity but only when the Hamiltonian is real and nonoscillating (for instance, containing exponential or polynomial but no sinusoidal functions)
Adiabatic Quantum Search in Open Systems
NASA Astrophysics Data System (ADS)
Wild, Dominik S.; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y.; Lukin, Mikhail D.
2016-10-01
Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.
Adiabatic limits on Riemannian Heisenberg manifolds
Yakovlev, A A
2008-02-28
An asymptotic formula is obtained for the distribution function of the spectrum of the Laplace operator, in the adiabatic limit for the foliation defined by the orbits of an invariant flow on a compact Riemannian Heisenberg manifold. Bibliography: 21 titles.
Pino, Ilaria; Martinazzo, Rocco; Tantardini, Gian Franco
2008-09-28
Quasi-classical trajectory calculations have been performed on the adiabatically allowed reactions taking place on the two lowest-lying electronic states of the LiH2+ system, using the ab initio potential energy surfaces of Martinazzo et al. (J. Chem. Phys., 2003, 119, 11 241). These reactions comprise: (i) the exoergic H2 and H2+ formation occurring through LiH+ + H and LiH + H+ collisions in the ground and in the first electronically excited state, respectively; (ii) the endoergic (ground state) LiH+ dissociation induced by collisions with H atoms; and (iii) the endoergic (excited state) Li + H2+ --> LiH + H+ reaction. The topic is of relevance for a better understanding of the lithium chemistry in the early universe. Thermal rate constants for the above reactions have been computed in the temperature range 10-5000 K and found in reasonably good agreement with estimates based on the capture model.
Numerical study of polaron problem in the adiabatic limit
NASA Astrophysics Data System (ADS)
Marsiglio, Frank; Li, Zhou; Blois, Cindy; Baillie, Devin
2010-03-01
We study the polaron problem in a one dimensional chain and on a two dimensional square lattice. The models we have used are the Holstein model and the Su-Schrieffer-Heeger (SSH) model. By a variational procedure based on the Lanczos method, we are able to examine the polaron problem in the limit when the mass of the ion is very large, i.e. close to the adiabatic limit. It is known that for the Holstein model there is no phase transition [1] for any nonzero phonon energy. It is also known that for the one dimensional Holstein or SSH model there will be long range order [2] (e.g. dimerization) in the adiabatic limit at half-filling. It is then interesting to study the long range order on a two dimensional square lattice in and away from the adiabatic limit. Moreover, recent progress for the single polaron near an impurity (disorder) [3] make it an interesting problem for studying bond length disorder which can change the hopping energy in a specific direction in the Holstein model. Reference: [1] H. Lowen, Phys.Rev.B 37, 8661 (1988) [2] J.E.Hirsch and E. Frandkin, Phys. Rev. Lett. 49, 402 (1982) [3]A.S.Mishchenko et.al Phys.Rev.B 79(2009) 180301(R)
Adiabatic Demagnetization Cooler For Far Infrared Detector
NASA Astrophysics Data System (ADS)
Sato, Akio; Yazawa, Takashi; Yamamoto, Junya
1988-11-01
An small adiabatic demagnetization cooler for an astronomical far infrared detector has been built. Single crystals of manganese ammonium sulphate and chromium potassium alum, were prepared as magnetic substances. The superconducting magnet was indirectly cooled and operated by small current up to 13.3 A, the maximum field being 3.5 T. As a preliminary step, adiabatic demagnetization to zero field was implemented. The lowest temperature obtained was 0.5 K, for 5.0 K initial temperature.
Schmidt, Slawa; Engelke, Pascal; Piglosiewicz, Björn; Esmann, Martin; Becker, Simon F; Yoo, Kyungwan; Park, Namkyoo; Lienau, Christoph; Groß, Petra
2013-11-01
We describe and demonstrate the use of an adaptive wave front optimization scheme for enhancing the efficiency of adiabatic nanofocusing of surface plasmon polariton (SPP) waves along an ultrasharp conical gold taper. Adiabatic nanofocusing is an emerging and promising scheme for controlled focusing of far field light into nanometric volumes. It comprises three essential steps: SPP excitation by coupling far field light to an SPP waveguide, SPP propagation along the waveguide and adiabatic SPP nanofocusing towards a geometric singularity. For commonly used complex waveguide geometries, such as, e.g., conical metal tapers, a realistic modeling and efficiency optimization is challenging. Here, we use a deformable mirror to adaptively control the wave front of the incident far field light. We demonstrate an eight-fold enhancement in nanofocusing efficiency and analyze the shape of the resulting optimized wave front. The introduced wave front optimization scheme is of general interest for guiding and controlling light on the nanoscale.
NASA Astrophysics Data System (ADS)
Thyagarajan, K.; Gupta, Ruchi
2016-08-01
In this paper, we present the optical analogue of stimulated Raman adiabatic passage (STIRAP) technique for three level atomic system in optical fibre geometry. Considering linearly polarized modes of an optical fibre, it is shown that using a pair of superimposed long-period gratings with peak refractive index perturbation varying spatially along the propagation axis, light can be transferred adiabatically from one core mode to another core mode via an intermediate cladding mode which itself does not get appreciably excited; thus acting like a dark mode. We compare the transmission spectrum of superimposed long-period gratings involved in adiabatic transfer with the transmission spectrum of conventional long-period grating. The analogue output is further analysed for its tolerance to the changes in the ambient refractive index, temperature and other fabrication parameters.
NASA Astrophysics Data System (ADS)
González, Leticia; Kröner, Dominik; Solá, Ignacio R.
2001-08-01
Different strategies to separate enantiomers from a racemate using analytical laser pulses in the ultraviolet frequency domain are proposed for the prototype model system H2POSH. Wave-packet propagations on ab initio ground- and electronic-excited state potentials show that it is possible to produce 100% of enantiomeric excess in a sub-picosecond time scale using a sequence of π and half-π pulses. Alternatively, the previous transitions can be substituted by adiabatic counterparts, using chirped laser pulses and a half-STIRAP (stimulated Raman adiabatic passage) method which only transfers half of the population between appropriate levels. Such an overall adiabatic mechanism gains stability concerning the pulse areas and frequencies at the expense of introducing new control variables, like the chirp and time delay.
Symmetry of the Adiabatic Condition in the Piston Problem
ERIC Educational Resources Information Center
Anacleto, Joaquim; Ferreira, J. M.
2011-01-01
This study addresses a controversial issue in the adiabatic piston problem, namely that of the piston being adiabatic when it is fixed but no longer so when it can move freely. It is shown that this apparent contradiction arises from the usual definition of adiabatic condition. The issue is addressed here by requiring the adiabatic condition to be…
Laboratory Measurements of Adiabatic and Isothermal Processes
NASA Astrophysics Data System (ADS)
McNairy, W. W.
1997-04-01
Adiabatic and isothermal measurements on various of gases are made possible by using the Adiabatic Gas Law apparatus made by PASCO Scientific(Much of this work was published by the author in "The Physics Teacher", vol. 34, March 1996, p. 178-80.). By using a computer interface, undergraduates are able to data for monatomic, diatomic and polyatomic gases for both compression and expansion processes. Designed principally to obtain adiabatic data, the apparatus may be easily modified for use in isothermal processes. The various sets of data are imported into a spreadsheet program where fits may be made to the ideal gas law and the adiabatic gas law. Excellent results are obtained for the natural logarithm of pressure versus the natural logarithm of volume for both the isothermal data (expected slope equal to -1 in all cases) and the adiabatic data (slope equal to -1 times the ratio of specific heats for the particular gas). An overview of the lab procedure used at VMI will be presented along with data obtained for several adiabatic and isothermal processes.
NASA Astrophysics Data System (ADS)
Pozzi, Michele; Zhu, Meiling
2012-05-01
Wearable medical and electronic devices demand a similarly wearable electrical power supply. Human-based piezoelectric energy harvesters may be the solution, but the mismatch between the typical frequencies of human activities and the optimal operating frequencies of piezoelectric generators calls for the implementation of a frequency up-conversion technique. A rotary piezoelectric energy harvester designed to be attached to the knee-joint is here implemented and characterized. The wearable harvester is based on the plucking method of frequency up-conversion, where a piezoelectric bimorph is deflected by a plectrum and permitted to vibrate unhindered upon release. Experiments were conducted to characterize the energy produced by the rotary piezoelectric energy harvester with different electric loads and different excitation speeds, covering the range between 0.1 and 1 rev s-1 to simulate human gait speeds. The electrical loads were connected to the generator either directly or through a rectifying bridge, as would be found in most power management circuits. The focus of the paper is to study the capability of energy generation of the harvester for knee-joint wearable applications, and study the effects of the different loads and different excitation speeds. It is found that the energy harvested is around 160-490 µJ and strongly depends on the angular speed, the connected electric loads and also the manufacturing quality of the harvester. Statistical analysis is used to predict the potential energy production of a harvester manufactured to tighter tolerances than the one presented here.
Passive broadband targeted energy transfers and control of self-excited vibrations
NASA Astrophysics Data System (ADS)
Lee, Young S.
This work consists of the three main parts---Nonlinear energy pumping (that is, passive broadband targeted energy transfers---TETs), and its applications to theoretical and experimental suppression of aeroelastic instabilities. In the first part, nonlinear energy pumping (or TETs) in coupled oscillators is studied. The system is composed of a primary linear subsystem coupled through an essentially nonlinear stiffness and a linear viscous damper to an additional mass (which is called, as a whole, a nonlinear energy sink---NES). By considering the linear damping as a perturbation to the system, periodic solutions of the underlying Hamiltonian system are formulated by means of the non-smooth temporal transformation and solved numerically by a shooting method. The special periodic orbits, which are corresponding to the impulsive initial conditions for the primary subsystem, bear their importance as baits for initiating localized transfers of a significant portion of energy to the NES. The second part theoretically deals with suppression of limit cycle oscillations (LCOs) in self-excited systems by means of passive energy localizations. As a pilot scheme, suppression or even complete elimination of the LCO in a van der Pol (VDP) oscillator coupled with two types of NESS---grounded and ungrounded---is studied. Computational parametric study proves the efficacy of LCO elimination by means of passive nonlinear energy pumping from the VDP oscillator to appropriately designed NESs. The numerical study of the transient dynamics of the system showed that the dynamical mechanism for LCO suppression is a series of 1:1 and 1:3 transient resonance captures, with the damped transient dynamics following closely corresponding resonant manifolds of the underlying Hamiltonian system. It is through the TRCs that energy gets transferred from the VDP oscillator to the NES, thus causing LCO suppression. By performing an additional bifurcation analysis of the steady state responses through
Adiabatic freezing of long-range quantum correlations in spin chains
NASA Astrophysics Data System (ADS)
Shekhar Dhar, Himadri; Rakshit, Debraj; Sen(De, Aditi; Sen, Ujjwal
2016-06-01
We consider a process to create quasi-long-range quantum discord between the non-interacting end spins of a quantum spin chain, with the end spins weakly coupled to the bulk of the chain. The process is not only capable of creating long-range quantum correlation but the latter remains frozen, when certain weak end-couplings are adiabatically varied below certain thresholds. We term this phenomenon as adiabatic freezing of quantum correlation. We observe that the freezing is robust to moderate thermal fluctuations and is intrinsically related to the cooperative properties of the quantum spin chain. In particular, we find that the energy gap of the system remains frozen for these adiabatic variations, and moreover, considering the end spins as probes, we show that the interval of freezing can detect the anisotropy transition in quantum XY spin chains. Importantly, the adiabatic freezing of long-range quantum correlations can be simulated with contemporary experimental techniques.
NASA Technical Reports Server (NTRS)
Nash-Stevenson, S. K.; Reddy, B. R.; Venkateswarlu, P.
1994-01-01
A summary is presented of the spectroscopic study of three systems: LaF3:Ho(3+), LaF3:Er(3+) and CaF2:Nd(3+). When the D levels of Ho(3+) in LaF3 were resonantly excited with a laser beam of 640 nm, upconverted emissions were detected from J (416 nm), F (485 nm), and E (546 nm) levels. Energy upconverted emissions were also observed from F and E levels of Ho(3+) when the material was excited with an 800 nm near infrared laser. When the D levels of Er(3+) in LaF3 were resonantly excited with a laser beam of 637 nm, upconverted emissions were detected from the E (540 nm) and P (320, 400, and 468 nm) levels. Energy upconverted emissions were also observed from F, E, and D levels of Er(3+) when the material was resonantly excited with an 804 nm near infrared laser. When the D levels of Nd(3+) in CaF2 were resonantly excited with a laser beam of 577 nm, upconverted emissions were detected from the L (360 and 382 nm), K (418 nm), and I (432 nm) levels. Very weak upconverted emissions were detected when this system was irradiated with a near infrared laser. The numbers in parentheses are the wavelengths of the emissions.
He, Shuang; Su, Shi-Lei; Wang, Dong-Yang; Sun, Wen-Mei; Bai, Cheng-Hua; Zhu, Ai-Dong; Wang, Hong-Fu; Zhang, Shou
2016-01-01
We propose an effective scheme of shortcuts to adiabaticity for generating a three-dimensional entanglement of two atoms trapped in a cavity using the transitionless quantum driving (TQD) approach. The key point of this approach is to construct an effective Hamiltonian that drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final state as that of an adiabatic process within a much shorter time. In this paper, the shortcuts to adiabatic passage are constructed by introducing two auxiliary excited levels in each atom and applying extra cavity modes and classical fields to drive the relevant transitions. Thereby, the three-dimensional entanglement is obtained with a faster rate than that in the adiabatic passage. Moreover, the influences of atomic spontaneous emission and photon loss on the fidelity are discussed by numerical simulation. The results show that the speed of entanglement implementation is greatly improved by the use of adiabatic shortcuts and that this entanglement implementation is robust against decoherence. This will be beneficial to the preparation of high-dimensional entanglement in experiment and provides the necessary conditions for the application of high-dimensional entangled states in quantum information processing. PMID:27499169
NASA Astrophysics Data System (ADS)
He, Shuang; Su, Shi-Lei; Wang, Dong-Yang; Sun, Wen-Mei; Bai, Cheng-Hua; Zhu, Ai-Dong; Wang, Hong-Fu; Zhang, Shou
2016-08-01
We propose an effective scheme of shortcuts to adiabaticity for generating a three-dimensional entanglement of two atoms trapped in a cavity using the transitionless quantum driving (TQD) approach. The key point of this approach is to construct an effective Hamiltonian that drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final state as that of an adiabatic process within a much shorter time. In this paper, the shortcuts to adiabatic passage are constructed by introducing two auxiliary excited levels in each atom and applying extra cavity modes and classical fields to drive the relevant transitions. Thereby, the three-dimensional entanglement is obtained with a faster rate than that in the adiabatic passage. Moreover, the influences of atomic spontaneous emission and photon loss on the fidelity are discussed by numerical simulation. The results show that the speed of entanglement implementation is greatly improved by the use of adiabatic shortcuts and that this entanglement implementation is robust against decoherence. This will be beneficial to the preparation of high-dimensional entanglement in experiment and provides the necessary conditions for the application of high-dimensional entangled states in quantum information processing.
He, Shuang; Su, Shi-Lei; Wang, Dong-Yang; Sun, Wen-Mei; Bai, Cheng-Hua; Zhu, Ai-Dong; Wang, Hong-Fu; Zhang, Shou
2016-08-08
We propose an effective scheme of shortcuts to adiabaticity for generating a three-dimensional entanglement of two atoms trapped in a cavity using the transitionless quantum driving (TQD) approach. The key point of this approach is to construct an effective Hamiltonian that drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final state as that of an adiabatic process within a much shorter time. In this paper, the shortcuts to adiabatic passage are constructed by introducing two auxiliary excited levels in each atom and applying extra cavity modes and classical fields to drive the relevant transitions. Thereby, the three-dimensional entanglement is obtained with a faster rate than that in the adiabatic passage. Moreover, the influences of atomic spontaneous emission and photon loss on the fidelity are discussed by numerical simulation. The results show that the speed of entanglement implementation is greatly improved by the use of adiabatic shortcuts and that this entanglement implementation is robust against decoherence. This will be beneficial to the preparation of high-dimensional entanglement in experiment and provides the necessary conditions for the application of high-dimensional entangled states in quantum information processing.