Breakup of three particles within the adiabatic expansion method
NASA Astrophysics Data System (ADS)
Garrido, E.; Kievsky, A.; Viviani, M.
2014-07-01
General expressions for the breakup cross sections in the laboratory frame for 1+2 reactions are given in terms of the hyperspherical adiabatic basis. The three-body wave function is expanded in this basis and the corresponding hyperradial functions are obtained by solving a set of second order differential equations. The S matrix is computed by using two recently derived integral relations. Even though the method is shown to be well suited to describe 1+2 processes, there are particular configurations in the breakup channel (for example, those in which two particles move away close to each other in a relative zero-energy state) that need a huge number of basis states. This pathology manifests itself in the extremely slow convergence of the breakup amplitude in terms of the hyperspherical harmonic basis used to construct the adiabatic channels. To overcome this difficulty the breakup amplitude is extracted from an integral relation as well. For the sake of illustration, we consider neutron-deuteron scattering. The results are compared to the available benchmark calculations.
When an Adiabatic Irreversible Expansion or Compression Becomes Reversible
ERIC Educational Resources Information Center
Anacleto, Joaquim; Ferreira, J. M.; Soares, A. A.
2009-01-01
This paper aims to contribute to a better understanding of the concepts of a "reversible process" and "entropy". For this purpose, an adiabatic irreversible expansion or compression is analysed, by considering that an ideal gas is expanded (compressed), from an initial pressure P[subscript i] to a final pressure P[subscript f], by being placed in…
Plasma heating via adiabatic magnetic compression-expansion cycle
NASA Astrophysics Data System (ADS)
Avinash, K.; Sengupta, M.; Ganesh, R.
2016-06-01
Heating of collisionless plasmas in closed adiabatic magnetic cycle comprising of a quasi static compression followed by a non quasi static constrained expansion against a constant external pressure is proposed. Thermodynamic constraints are derived to show that the plasma always gains heat in cycles having at least one non quasi static process. The turbulent relaxation of the plasma to the equilibrium state at the end of the non quasi static expansion is discussed and verified via 1D Particle in Cell (PIC) simulations. Applications of this scheme to heating plasmas in open configurations (mirror machines) and closed configurations (tokamak, reverse field pinche) are discussed.
NASA Astrophysics Data System (ADS)
Kumar, Shiva; Hasegawa, Akira
1996-12-01
Properly designed adiabatic expansion of soliton reduces permanent frequency shifts of wavelength-division multiplexed solitons caused by initial overlap. The scheme combined with a dispersion-managed transmission line provides solutions to soliton wavelength-division multiplexing problems.
ERIC Educational Resources Information Center
Moore, William M.
1984-01-01
Describes the procedures and equipment for an experiment on the adiabatic expansion of gases suitable for demonstration and discussion in the physical chemical laboratory. The expansion produced shows how the process can change temperature and still return to a different location on an isotherm. (JN)
Transient Particle Energies in Shortcuts to Adiabatic Expansions of Harmonic Traps.
Cui, Yang-Yang; Chen, Xi; Muga, J G
2016-05-19
The expansion of a harmonic potential that holds a quantum particle may be realized without any final particle excitation but much faster than adiabatically via "shortcuts to adiabaticity" (STA). While ideally the process time can be reduced to zero, practical limitations and constraints impose minimal finite times for the externally controlled time-dependent frequency protocols. We examine the role of different time-averaged energies (total, kinetic, potential, nonadiabatic) and of the instantaneous power in characterizing or selecting different protocols. Specifically, we prove a virial theorem for STA processes, set minimal energies (or times) for given times (or energies), and discuss their realizability by means of Dirac impulses or otherwise. PMID:26237328
Adiabatic expansion of cosmic ray sources and the consequences for secondary antiprotons
NASA Technical Reports Server (NTRS)
Mauger, B. G.; Stephens, S. A.
1983-01-01
The low-energy antiproton flux measurement of Buffinton et al. (1981) is more than an order of magnitude higher than can be explained by interstellar production. It has been suggested that the excess antiprotons may be created by supernovae in very dense regions of ISM. These sources would provide the additional target material necessary to produce the excess cosmic ray antiprotons; in addition, adiabatic energy losses due to supernova expansion will increase the flux of low-energy antiprotons. The antiproton flux from such sources is examined here, with attention given to the energy loss effects of the adiabatic and collisional losses of both the primary and secondary cosmic ray fluxes. Ionization losses of the antiprotons are also considered.
Volume thermal expansivity for lower mantle region of earth under adiabatic condition
NASA Astrophysics Data System (ADS)
Sharma, S. K.
2013-06-01
A reciprocal equation for the volume dependence of Anderson-Grüneisen parameter has been proposed. This equation has been found to fit the seismic data for the lower mantle region of the Earth. We have developed a new expression for predicting the values of density (volume) dependence of volume thermal expansivity under adiabatic conditions based on the reciprocal equation for the volume dependence of Anderson-Grüneisen parameter. It is found that our relationship fits well the seismic data on volume thermal expansivity for lower mantle corresponding to a wide range of pressures (0-135.75 GPa). These equations thus proposed are found to be consistent with the thermodynamic constraints.
NASA Astrophysics Data System (ADS)
Riggs, Lloyd Stephen
In this work the transient currents induced on an arbitrary system of thin linear scatterers by an electromagnetic plane wave are solved by using an electric field integral equation (EFIE) formulation. The transient analysis is carried out using the singularity expansion method (SEM). The general analysis developed here is useful for assessing the vulnerability of military aircraft to a nuclear generated electromagnetic pulse (EMP). It is also useful as a modal synthesis tool in the analysis and design of frequency selective surfaces (FSS). SEM parameters for a variety of thin cylindrical geometries have been computed. Specifically, SEM poles, modes, coupling coefficients, and transient currents are given for the two and three element planar array. Poles and modes for planar arrays with a larger number (as many as eight) of identical equally spaced elements are also considered. SEM pole-mode results are given for identical parallel elements with ends located at the vertices of a regular N-agon. Pole-mode patterns are found for symmetric (and slightly perturbed) single junction N-arm elements and for the five junction Jerusalem cross. The Jerusalem cross element has been used extensively in FSS.
Quantum dynamics by the constrained adiabatic trajectory method
Leclerc, A.; Jolicard, G.; Guerin, S.; Killingbeck, J. P.
2011-03-15
We develop the constrained adiabatic trajectory method (CATM), which allows one to solve the time-dependent Schroedinger equation constraining the dynamics to a single Floquet eigenstate, as if it were adiabatic. This constrained Floquet state (CFS) is determined from the Hamiltonian modified by an artificial time-dependent absorbing potential whose forms are derived according to the initial conditions. The main advantage of this technique for practical implementation is that the CFS is easy to determine even for large systems since its corresponding eigenvalue is well isolated from the others through its imaginary part. The properties and limitations of the CATM are explored through simple examples.
Adiabatic Expansion of Supernova Remnants - an Explicit, Analytical Approximation in Two Dimensions
NASA Astrophysics Data System (ADS)
Maciejewski, W.; Shelton, R. L.; Cox, D. P.
1996-05-01
We propose a simple, analytical approximation for an adiabatic shock wave propagating in an exponentially stratified ambient medium. We aim to provide an effective tool for exploring the parameter space of 2-dimensional numerical models of supernova remnants (SNRs). We start from Kompaneets's (1960, Soviet Phys. Doklady, 5, 46) axisymmetric generalization of Sedov's spherically symmetric problem, to which he derived an implicit solution. We notice that the SNR shape in his solution can be closely approximated as an ellipsoid. In this case, an explicit solution for the size, eccentricity and expansion velocity of the remnant can be found. Our results are in excellent agreement with Kompaneets's solution, even when the ambient density varies across the remnant by factors as large as 1000. Beyond that, the blowout occurs, and Kompaneets's assumptions no longer hold. The remnant shapes are remarkably close to spherical for moderate density gradients. Using Kahn's cooling law (alpha T(-1/2) ) we derived a formula to estimate how long it takes for a cold shell to form. Even a small gradient in ambient density causes this time to vary substantially within a single remnant, so that for a period the H I shell will be only partially formed. To demonstrate how our approximation can be used, the parameter space for models of the supernova remnant W44 is explored.
Colossal Spincaloritronic Cooling by Adiabatic Spin-Entropy Expansion in Nanospintronics
NASA Astrophysics Data System (ADS)
Katayama-Yoshida, Hiroshi; Fukushima, Tetsuya; Dinh, Van An; Sato, Kazunori
2009-03-01
The exchange interactions in DMS are short ranged and can not play an important role for realizing high-TC because the solubility of magnetic impurity is too low to achieve magnetic percolation [1]. We show that spinodal nano-decomposition under layer-by-layer crystal growth condition (2D) leads to characteristic quasi-one dimensional nano-structures (Konbu- Phase) with highly anisotropic shape and high TC (> 1000K) even for low concentrations in DMS [2]. We design a spin-currents- controlled 100 Tera bits/icnh^2, Tera Hz switching, and non- volatile MRAM without Si-CMOS based on Konbu-Phase [3]. In addition to the conventional Peltier effect, we propose a colossal spincaloritronic cooling based on the adiabatic spin- entropy expansion in a Konbu-Phase (Zn,Cr)Te with very high blocking temperature (TB > 1000 K) by spinodal nano- decomposition and by nano-column of Half-Heusler NiMnSi (TC = 1050 K) [4]. [1] K. Sato et al., Phys. Rev. B70, 201202 (2004). [2] H. Katayama-Yoshida et al., Phys. stat. sol. (a) 204 (2007) 15. [3] Japanese Patent: JP3571034, US Patent: US 7,164,180 B2, EU Patent: EP 1548832A1, Taiwan Patent:1262593, Korean Patent: 0557387. [4] H. Katayama-Yoshida et al., Jpn. J. Appl. Phys. 46 (2007) L777.
ADIABATIC MASS LOSS IN BINARY STARS. I. COMPUTATIONAL METHOD
Ge Hongwei; Chen Xuefei; Han Zhanwen; Webbink, Ronald F. E-mail: mshjell@gmail.co
2010-07-10
The asymptotic response of donor stars in interacting binary systems to very rapid mass loss is characterized by adiabatic expansion throughout their interiors. In this limit, energy generation and heat flow through the stellar interior can be neglected. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed as mass is removed from the surface. The stellar interior remains in hydrostatic equilibrium. Luminosity profiles in these adiabatic models of mass-losing stars can be reconstructed from the specific entropy profiles and their gradients. These approximations are validated by comparison with time-dependent binary mass transfer calculations. We describe how adiabatic mass-loss sequences can be used to quantify threshold conditions for dynamical timescale mass transfer, and to establish the range of post-common envelope binaries that are allowed energetically. In dynamical timescale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main-sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal timescale mass transfer, a so-called delayed dynamical instability. We identify the critical binary mass ratio for the onset of dynamical timescale mass transfer as that ratio for which the adiabatic response of the donor star radius to mass loss matches that of its Roche lobe at some point during mass transfer; if the ratio of donor to accretor masses exceeds this critical value, dynamical timescale mass transfer ensues. In common envelope evolution, the dissipation of orbital energy of the
Nucleon-deuteron scattering using the adiabatic projection method
NASA Astrophysics Data System (ADS)
Elhatisari, Serdar; Lee, Dean; Meißner, Ulf-G.; Rupak, Gautam
2016-06-01
In this paper we discuss the adiabatic projection method, a general framework for scattering and reaction calculations on the lattice. We also introduce several new techniques developed to study nucleus-nucleus scattering and reactions on the lattice. We present technical details of the method for large-scale problems. To estimate the systematic errors of the calculations we consider simple two-particle scattering on the lattice. Then we benchmark the accuracy and efficiency of the numerical methods by applying these to calculate fermion-dimer scattering in lattice effective field theory with and without a long-range Coulomb potential. The fermion-dimer calculations correspond to neutron-deuteron and proton-deuteron scattering in the spin-quartet channel at leading order in the pionless effective field theory.
NASA Astrophysics Data System (ADS)
Kato, Tsuyoshi; Ide, Yoshihiro; Yamanouchi, Kaoru
2015-12-01
We first calculate the ground-state molecular wave function of 1D model H2 molecule by solving the coupled equations of motion formulated in the extended multi-configuration time-dependent Hartree-Fock (MCTDHF) method by the imaginary time propagation. From the comparisons with the results obtained by the Born-Huang (BH) expansion method as well as with the exact wave function, we observe that the memory size required in the extended MCTDHF method is about two orders of magnitude smaller than in the BH expansion method to achieve the same accuracy for the total energy. Second, in order to provide a theoretical means to understand dynamical behavior of the wave function, we propose to define effective adiabatic potential functions and compare them with the conventional adiabatic electronic potentials, although the notion of the adiabatic potentials is not used in the extended MCTDHF approach. From the comparison, we conclude that by calculating the effective potentials we may be able to predict the energy differences among electronic states even for a time-dependent system, e.g., time-dependent excitation energies, which would be difficult to be estimated within the BH expansion approach.
Kato, Tsuyoshi; Ide, Yoshihiro; Yamanouchi, Kaoru
2015-12-31
We first calculate the ground-state molecular wave function of 1D model H{sub 2} molecule by solving the coupled equations of motion formulated in the extended multi-configuration time-dependent Hartree-Fock (MCTDHF) method by the imaginary time propagation. From the comparisons with the results obtained by the Born-Huang (BH) expansion method as well as with the exact wave function, we observe that the memory size required in the extended MCTDHF method is about two orders of magnitude smaller than in the BH expansion method to achieve the same accuracy for the total energy. Second, in order to provide a theoretical means to understand dynamical behavior of the wave function, we propose to define effective adiabatic potential functions and compare them with the conventional adiabatic electronic potentials, although the notion of the adiabatic potentials is not used in the extended MCTDHF approach. From the comparison, we conclude that by calculating the effective potentials we may be able to predict the energy differences among electronic states even for a time-dependent system, e.g., time-dependent excitation energies, which would be difficult to be estimated within the BH expansion approach.
Habershon, Scott
2013-09-14
We introduce a new approach for calculating quantum time-correlation functions and time-dependent expectation values in many-body thermal systems; both electronically adiabatic and non-adiabatic cases can be treated. Our approach uses a path integral simulation to sample an initial thermal density matrix; subsequent evolution of this density matrix is equivalent to solution of the time-dependent Schrödinger equation, which we perform using a linear expansion of Gaussian wavepacket basis functions which evolve according to simple classical-like trajectories. Overall, this methodology represents a formally exact approach for calculating time-dependent quantum properties; by introducing approximations into both the imaginary-time and real-time propagations, this approach can be adapted for complex many-particle systems interacting through arbitrary potentials. We demonstrate this method for the spin Boson model, where we find good agreement with numerically exact calculations. We also discuss future directions of improvement for our approach with a view to improving accuracy and efficiency.
Egorov, A A; Sevast'yanov, L A; Sevast'yanov, A L
2014-02-28
We consider the application of the method of adiabatic waveguide modes for calculating the propagation of electromagnetic radiation in three-dimensional (3D) irregular integrated optical waveguides. The method of adiabatic modes takes into account a three-dimensional distribution of quasi-waveguide modes and explicit ('inclined') tangential boundary conditions. The possibilities of the method are demonstrated on the example of numerical research of two major elements of integrated optics: a waveguide of 'horn' type and a thin-film generalised waveguide Luneburg lens by the methods of adiabatic modes and comparative waveguides. (integral optical waveguides)
Multipole expansion method for supernova neutrino oscillations
Duan, Huaiyu; Shalgar, Shashank E-mail: shashankshalgar@unm.edu
2014-10-01
We demonstrate a multipole expansion method to calculate collective neutrino oscillations in supernovae using the neutrino bulb model. We show that it is much more efficient to solve multi-angle neutrino oscillations in multipole basis than in angle basis. The multipole expansion method also provides interesting insights into multi-angle calculations that were accomplished previously in angle basis.
Method for constructing shortcuts to adiabaticity by a substitute of counterdiabatic driving terms
NASA Astrophysics Data System (ADS)
Chen, Ye-Hong; Xia, Yan; Wu, Qi-Cheng; Huang, Bi-Hua; Song, Jie
2016-05-01
We propose an efficient method to construct shortcuts to adiabaticity through designing a substitute Hamiltonian to try to avoid the defect in which the speed-up protocols' Hamiltonian may involve terms which are difficult to realize in practice. We show that as long as the counterdiabatic coupling terms—even only some of them—have been nullified by the additional Hamiltonian, the corresponding shortcuts to the adiabatic process could be constructed and the adiabatic process would be sped up. As an application example, we apply this method to the popular Landau-Zener model for the realization of fast population inversion. The results show that in both Hermitian and non-Hermitian systems, we can design different additional Hamiltonians to replace the traditional counterdiabatic driving Hamiltonian to speed up the process. This method provides many choices for designing additional terms of the Hamiltonian such that one can choose a realizable model in practice.
NASA Astrophysics Data System (ADS)
Dupret, M.-A.; De Ridder, J.; De Cat, P.; Aerts, C.; Scuflaire, R.; Noels, A.; Thoul, A.
2003-02-01
We present an improved version of the method of photometric mode identification of Heynderickx et al. (\\cite{hey}). Our new version is based on the inclusion of precise non-adiabatic eigenfunctions determined in the outer stellar atmosphere according to the formalism recently proposed by Dupret et al. (\\cite{dup}). Our improved photometric mode identification technique is therefore no longer dependent on ad hoc parameters for the non-adiabatic effects. It contains the complete physical conditions of the outer atmosphere of the star, provided that rotation does not play a key role. We apply our method to the two slowly pulsating B stars HD 74560 and HD 138764 and to the beta Cephei star EN (16) Lac. Besides identifying the degree l of the pulsating stars, our method is also a tool for improving the knowledge of stellar interiors and atmospheres, by imposing constraints on parameters such as the metallicity and the mixing-length parameter alpha (a procedure we label non-adiabatic asteroseismology). The non-adiabatic eigenfunctions needed for the mode identification are available upon request from the authors.
Heating and cooling in adiabatic mixing process
NASA Astrophysics Data System (ADS)
Zhou, Jing; Cai, Zi; Zou, Xu-Bo; Guo, Guang-Can
2010-12-01
We study the effect of interaction on the temperature change in the process of adiabatic mixing of two components of Fermi gases using the real-space Bogoliubov-de Gennes method. We find that in the process of adiabatic mixing, the competition between the adiabatic expansion and the attractive interaction makes it possible to cool or heat the system depending on the strength of the interaction and the initial temperature of the system. The changes of the temperature in a bulk system and in a trapped system are investigated.
Method of adiabatic modes in studying problems of smoothly irregular open waveguide structures
Sevastianov, L. A.; Egorov, A. A.; Sevastyanov, A. L.
2013-02-15
Basic steps in developing an original method of adiabatic modes that makes it possible to solve the direct and inverse problems of simulating and designing three-dimensional multilayered smoothly irregular open waveguide structures are described. A new element in the method is that an approximate solution of Maxwell's equations is made to obey 'inclined' boundary conditions at the interfaces between themedia being considered. These boundary conditions take into account the obliqueness of planes tangent to nonplanar boundaries between the media and lead to new equations for coupled vector quasiwaveguide hybrid adiabatic modes. Solutions of these equations describe the phenomenon of 'entanglement' of two linear polarizations of an irregular multilayered waveguide, the appearance of a new mode in an entangled state, and the effect of rotation of the polarization plane of quasiwaveguide modes. The efficiency of the method is demonstrated by considering the example of numerically simulating a thin-film generalized waveguide Lueneburg lens.
Geroux, Chris M.; Deupree, Robert G.
2011-04-10
We are developing a three-dimensional radiation hydrodynamics code to simulate the interaction of convection and pulsation in classical variable stars. One key goal is the ability to carry these simulations to full amplitude in order to compare them with observed light and velocity curves. Previous two-dimensional calculations were prevented from doing this because of drift in the radial coordinate system, due to the algorithm defining radial movement of the coordinate system during the pulsation cycle. We remove this difficulty by defining our coordinate system flow algorithm to require that the mass in a spherical shell remains constant throughout the pulsation cycle. We perform adiabatic test calculations to show that large amplitude solutions repeat over more than 150 pulsation periods. We also verify that the computational method conserves the peak kinetic energy per period, as must be true for adiabatic pulsation models.
The method of Gaussian weighted trajectories. III. An adiabaticity correction proposal
Bonnet, L.
2008-01-28
The addition of an adiabaticity correction (AC) to the Gaussian weighted trajectory (GWT) method and its normalized version (GWT-N) is suggested. This correction simply consists in omitting vibrationally adiabatic nonreactive trajectories in the calculations of final attributes. For triatomic exchange reactions, these trajectories satisfy the criterion {omega} not much larger than ({Dirac_h}/2{pi}), where {omega} is a vibrational action defined by {omega}={integral}{sup []}-[]dt(pr-p{sub 0}r{sub 0}), r being the reagent diatom bond length, p its conjugate momentum, and r{sub 0} and p{sub 0} the corresponding variables for the unperturbed diatom ({omega}/({Dirac_h}/2{pi}) bears some analogy with the semiclassical elastic scattering phase shift). The resulting GWT-AC and GWT-ACN methods are applied to the recently studied H{sup +}+H{sub 2} and H{sup +}+D{sub 2} reactions and the agreement between their predictions and those of exact quantum scattering calculations is found to be much better than for the initial GWT and GWT-N methods. The GWT-AC method, however, appears to be the most accurate one for the processes considered, in particular, the H{sup +}+D{sub 2} reaction.
Bischoff, J.L.
1980-01-01
Pressure-volume-temperature relations for water at the depth of the magma chamber at 21°N on the East Pacific Rise suggest that the maximum subsurface temperature of the geothermal fluid is about 420°C. Both the chemistry of the discharging fluid and thermal balance considerations indicate that the effective water/rock ratios in the geothermal system are between 7 and 16. Such low ratios preclude effective metal transport at temperatures below 350°C, but metal solubilization at 400°C and above is effective even at such low ratios. It is proposed that the 420°C fluid ascends essentially adiabatically and in the process expands, cools, and precipitates metal sulfides within the upper few hundred meters of the sea floor and on the sea floor itself.
Density-functional expansion methods: Grand challenges
Giese, Timothy J.; York, Darrin M.
2016-01-01
We discuss the source of errors in semiempirical density functional expansion (VE) methods. In particular, we show that VE methods are capable of well-reproducing their standard Kohn-Sham density functional method counterparts, but suffer from large errors upon using one or more of these approximations: the limited size of the atomic orbital basis, the Slater monopole auxiliary basis description of the response density, and the one- and two-body treatment of the core-Hamiltonian matrix elements. In the process of discussing these approximations and highlighting their symptoms, we introduce a new model that supplements the second-order density-functional tight-binding model with a self-consistent charge-dependent chemical potential equalization correction; we review our recently reported method for generalizing the auxiliary basis description of the atomic orbital response density; and we decompose the first-order potential into a summation of additive atomic components and many-body corrections, and from this examination, we provide new insights and preliminary results that motivate and inspire new approximate treatments of the core-Hamiltonian. PMID:27293378
A shape optimisation method of a body located in adiabatic flows
NASA Astrophysics Data System (ADS)
Okumura, Hiroshi; Hikino, Yoichi; Kawahara, Mutsuto
2013-07-01
The purpose of this study is to derive an optimal shape of a body located in adiabatic flow. In this study, we use the equation of motion, the equation of continuity and the pressure-density relation derived from the Poisson's law as the governing equation. The formulation is based on an optimal control theory in which a performance function of fluid force is taken into consideration. The performance function should be minimised satisfying the governing equations. This problem can be solved without constraints by using the adjoint equation with adjoint variables corresponding to the state equation. The performance function is defined by the drag and lift forces acting on the body. The weighted gradient method is applied as a minimisation technique, the Galerkin finite element method is used as a spatial discretisation and the implicit scheme is used as a temporal discretisation to solve the state equations. The mixed interpolation, the bubble function for velocity and the linear function for density, is employed as the interpolation. The optimal shape is obtained for a body in adiabatic flows.
Alonso, J L; Castro, A; Clemente-Gallardo, J; Echenique, P; Mazo, J J; Polo, V; Rubio, A; Zueco, D
2012-12-14
At non-zero temperature and when a system has low-lying excited electronic states, the ground-state Born-Oppenheimer approximation breaks down and the low-lying electronic states are involved in any chemical process. In this work, we use a temperature-dependent effective potential for the nuclei which can accommodate the influence of an arbitrary number of electronic states in a simple way, while at the same time producing the correct Boltzmann equilibrium distribution for the electronic part. With the help of this effective potential, we show that thermally activated low-lying electronic states can have a significant effect in molecular properties for which electronic excitations are oftentimes ignored. We study the thermal expansion of the Manganese dimer, Mn(2), where we find that the average bond length experiences a change larger than the present experimental accuracy upon the inclusion of the excited states into the picture. We also show that, when these states are taken into account, reaction-rate constants are modified. In particular, we study the opening of the ozone molecule, O(3), and show that in this case the rate is modified as much as a 20% with respect to the ground-state Born-Oppenheimer prediction. PMID:23249070
Method of assembling a thermal expansion compensator
NASA Technical Reports Server (NTRS)
Determan, William (Inventor); Matejczyk, Daniel Edward (Inventor)
2012-01-01
A thermal expansion compensator is provided and includes a first electrode structure having a first surface, a second electrode structure having a second surface facing the first surface and an elastic element bonded to the first and second surfaces and including a conductive element by which the first and second electrode structures electrically and/or thermally communicate, the conductive element having a length that is not substantially longer than a distance between the first and second surfaces.
Generalization of the cavity method for adiabatic evolution of Gibbs states
NASA Astrophysics Data System (ADS)
Zdeborová, Lenka; Krzakala, Florent
2010-06-01
Mean-field glassy systems have a complicated energy landscape and an enormous number of different Gibbs states. In this paper, we introduce a generalization of the cavity method in order to describe the adiabatic evolution of these glassy Gibbs states as an external parameter, such as the temperature, is tuned. We give a general derivation of the method and describe in details the solution of the resulting equations for the fully connected p -spin model, the XOR-satisfiability (SAT) problem and the antiferromagnetic Potts glass (coloring problem). As direct results of the states following method we present a study of very slow Monte Carlo annealings, the demonstration of the presence of temperature chaos in these systems and the identification of an easy/hard transition for simulated annealing in constraint optimization problems. We also discuss the relation between our approach and the Franz-Parisi potential, as well as with the reconstruction problem on trees in computer science. A mapping between the states following method and the physics on the Nishimori line is also presented.
He, H.-Q.; Wan, W. E-mail: wanw@mail.iggcas.ac.cn
2012-03-01
The parallel mean free path of solar energetic particles (SEPs), which is determined by physical properties of SEPs as well as those of solar wind, is a very important parameter in space physics to study the transport of charged energetic particles in the heliosphere, especially for space weather forecasting. In space weather practice, it is necessary to find a quick approach to obtain the parallel mean free path of SEPs for a solar event. In addition, the adiabatic focusing effect caused by a spatially varying mean magnetic field in the solar system is important to the transport processes of SEPs. Recently, Shalchi presented an analytical description of the parallel diffusion coefficient with adiabatic focusing. Based on Shalchi's results, in this paper we provide a direct analytical formula as a function of parameters concerning the physical properties of SEPs and solar wind to directly and quickly determine the parallel mean free path of SEPs with adiabatic focusing. Since all of the quantities in the analytical formula can be directly observed by spacecraft, this direct method would be a very useful tool in space weather research. As applications of the direct method, we investigate the inherent relations between the parallel mean free path and various parameters concerning physical properties of SEPs and solar wind. Comparisons of parallel mean free paths with and without adiabatic focusing are also presented.
Series Expansion of Functions with He's Homotopy Perturbation Method
ERIC Educational Resources Information Center
Khattri, Sanjay Kumar
2012-01-01
Finding a series expansion, such as Taylor series, of functions is an important mathematical concept with many applications. Homotopy perturbation method (HPM) is a new, easy to use and effective tool for solving a variety of mathematical problems. In this study, we present how to apply HPM to obtain a series expansion of functions. Consequently,…
Homentcovschi, Dorel; Miles, Ronald N.
2012-01-01
The paper applies the re-expansion method for analyzing planar discontinuities at the junction of two axi-symmetrical circular waveguides. The normal modes in the two waveguides are expanded at the junction plane into a system of functions accounting for velocity singularities at the corner points. As the new expansion has a high convergence order, only a few terms have to be considered for obtaining the solution of most practical problems. This paper gives the equivalent impedance accounting for nonplanar waves into a plane-wave analysis and also the scattering matrix describing the coupling of arbitrary modes at each side of the discontinuity valid in the case of many propagating modes in both sides of the duct. The last section applies the re-expansion technique to some concentric expansion chambers providing an explicit formula for the transmission loss coefficient. PMID:22352491
IRP methods for Environmental Impact Statements of utility expansion plans
Cavallo, J.D.; Hemphill, R.C.; Veselka, T.D.
1992-10-01
Most large electric utilities and a growing number of gas utilities in the United States are using a planning method -- Integrated Resource Planning (IRP) - which incorporates demand-side management (DSM) programs whenever the marginal cost of the DSM programs are lower than the marginal cost of supply-side expansion options. Argonne National Laboratory has applied the IRP method in its socio-economic analysis of an Environmental Impact Statement (EIS) of power marketing for a system of electric utilities in the mountain and western regions of the United States. Applying the IRP methods provides valuable information to the participants in an EIS process involving capacity expansion of an electric or gas utility. The major challenges of applying the IRP method within an EIS are the time consuming and costly task of developing a least cost expansion path for each altemative, the detailed quantification of environmental damages associated with capacity expansion, and the explicit inclusion of societal-impacts to the region.
IRP methods for Environmental Impact Statements of utility expansion plans
Cavallo, J.D.; Hemphill, R.C.; Veselka, T.D.
1992-01-01
Most large electric utilities and a growing number of gas utilities in the United States are using a planning method -- Integrated Resource Planning (IRP) - which incorporates demand-side management (DSM) programs whenever the marginal cost of the DSM programs are lower than the marginal cost of supply-side expansion options. Argonne National Laboratory has applied the IRP method in its socio-economic analysis of an Environmental Impact Statement (EIS) of power marketing for a system of electric utilities in the mountain and western regions of the United States. Applying the IRP methods provides valuable information to the participants in an EIS process involving capacity expansion of an electric or gas utility. The major challenges of applying the IRP method within an EIS are the time consuming and costly task of developing a least cost expansion path for each altemative, the detailed quantification of environmental damages associated with capacity expansion, and the explicit inclusion of societal-impacts to the region.
Thermal expansion method for lining tantalum alloy tubing with tungsten
NASA Technical Reports Server (NTRS)
Watson, G. K.; Whittenberger, J. D.; Mattson, W. F.
1973-01-01
A differential-thermal expansion method was developed to line T-111 (tantalum - 8 percent tungsten - 2 percent hafnium) tubing with a tungsten diffusion barrier as part of a fuel element fabrication study for a space power nuclear reactor concept. This method uses a steel mandrel, which has a larger thermal expansion than T-111, to force the tungsten against the inside of the T-111 tube. Variables investigated include lining temperature, initial assembly gas size, and tube length. Linear integrity increased with increasing lining temperature and decreasing gap size. The method should have more general applicability where cylinders must be lined with a thin layer of a second material.
NASA Astrophysics Data System (ADS)
Predota, Milan; Cummings, Peter T.; Chialvo, Ariel A.
The adiabatic nuclear and electronic sampling method (ANES), originally formulated as an efficient Monte Carlo algorithm for systems with fluctuating charges, is applied to the simulation of a polarizable water model with induced dipole moments. Structural, thermodynamic and dipolar properties obtained by ANES and a newer algorithm, the pair approximation for polarization interaction (PAPI), are compared with full iteration. With the best parameters, the inaccuracy of both approximate methods was found to be comparable with the uncertainty of the full iteration. The PAPI method with iteration radius equal to the second minimum of the oxygen-oxygen correlation function is, depending on the convergence tolerance, 10-15 times faster than the full iteration for 256 molecules, and yields very accurate structure and thermodynamics with deviation about 0.3%. When the iteration radius is increased to the cutoff distance, exact results are recovered at the cost of decreased efficiency. The ANES method with small nuclear displacements proved to inefficiently sample the configurational space. Simulations at low electronic temperatures with large nuclear displacements are inaccurate for up to 100 electronic moves, and increasing this number would make the simulations as slow as the full iteration. The most accurate and efficient adiabatic ANES simulations are those with infinite electronic temperature, large nuclear displacements and 1-10 electronic moves. The extra freedom of induced dipoles in the ANES method at high electronic temperatures modifies the observed dipolar properties; however, the question of whether the dielectric constant is also modified needs further consideration.
Thermal expansion of composites: Methods and results. [large space structures
NASA Technical Reports Server (NTRS)
Bowles, D. E.; Tenney, D. R.
1981-01-01
The factors controlling the dimensional stability of various components of large space structures were investigated. Cyclic, thermal and mechanical loading were identified as the primary controlling factors of the dimensional stability of cables. For organic matrix composites, such as graphite-epoxy, it was found that these factors include moisture desorption in the space environment, thermal expansion as the structure moves from the sunlight to shadow in its orbit, mechanical loading, and microyielding of the material caused by microcracking of the matrix material. The major focus was placed on the thermal expansion of composites and in particular the development and testing of a method for its measurement.
Experiences using DAKOTA stochastic expansion methods in computational simulations.
Templeton, Jeremy Alan; Ruthruff, Joseph R.
2012-01-01
Uncertainty quantification (UQ) methods bring rigorous statistical connections to the analysis of computational and experiment data, and provide a basis for probabilistically assessing margins associated with safety and reliability. The DAKOTA toolkit developed at Sandia National Laboratories implements a number of UQ methods, which are being increasingly adopted by modeling and simulation teams to facilitate these analyses. This report disseminates results as to the performance of DAKOTA's stochastic expansion methods for UQ on a representative application. Our results provide a number of insights that may be of interest to future users of these methods, including the behavior of the methods in estimating responses at varying probability levels, and the expansion levels for the methodologies that may be needed to achieve convergence.
Adiabatic cooling of antiprotons.
Gabrielse, G; Kolthammer, W S; McConnell, R; Richerme, P; Kalra, R; Novitski, E; Grzonka, D; Oelert, W; Sefzick, T; Zielinski, M; Fitzakerley, D; George, M C; Hessels, E A; Storry, C H; Weel, M; Müllers, A; Walz, J
2011-02-18
Adiabatic cooling is shown to be a simple and effective method to cool many charged particles in a trap to very low temperatures. Up to 3×10(6) p are cooled to 3.5 K-10(3) times more cold p and a 3 times lower p temperature than previously reported. A second cooling method cools p plasmas via the synchrotron radiation of embedded e(-) (with many fewer e(-) than p in preparation for adiabatic cooling. No p are lost during either process-a significant advantage for rare particles. PMID:21405511
Adiabatic Cooling of Antiprotons
Gabrielse, G.; Kolthammer, W. S.; McConnell, R.; Richerme, P.; Kalra, R.; Novitski, E.; Oelert, W.; Grzonka, D.; Sefzick, T.; Zielinski, M.; Fitzakerley, D.; George, M. C.; Hessels, E. A.; Storry, C. H.; Weel, M.; Muellers, A.; Walz, J.
2011-02-18
Adiabatic cooling is shown to be a simple and effective method to cool many charged particles in a trap to very low temperatures. Up to 3x10{sup 6} p are cooled to 3.5 K--10{sup 3} times more cold p and a 3 times lower p temperature than previously reported. A second cooling method cools p plasmas via the synchrotron radiation of embedded e{sup -} (with many fewer e{sup -} than p) in preparation for adiabatic cooling. No p are lost during either process--a significant advantage for rare particles.
NASA Astrophysics Data System (ADS)
Clary, D. C.; Connor, J. N. L.
Rotationally adiabatic distorted wave (RADW) and vibrationally adiabatic distorted wave (VADW) calculations of total and differential cross sections are reported for the three-dimensional H + H2(v=0, j=0) →H2(v'=0, j') + H and D + H2(v=0, j=0) →DH(v'=0, j') + H chemical reactions. Both the Porter-Karplus (PK) and the Siegbahn-Liu-Truhlar-Horowitz (SLTH) potential energy surfaces are used. The RADW results for D+H2 on the SLTH potential surface agree well with those obtained by Yung et al. In calculations using the PK surface, we obtain poor agreement with the RADW results reported for the H + H2 reaction by Choi and Tang, and for the D + H2 reaction by Tang and Choi. Reasons for these discrepancies are discussed. The absolute total RADW cross sections for the H + H2 reaction using both potential surfaces fall well below those obtained in accurate quantum calculations while the VADW total cross sections are smaller in magnitude than the RADW cross sections. The RADW and VADW results for relative rotational population distributions and for normalized differential cross sections are almost identical, and agree well with accurate quantum calculations for these quantities for the H + H2 reaction using the PK potential surface.
Shortcuts to adiabaticity in a time-dependent box
Campo, A. del; Boshier, M. G.
2012-01-01
A method is proposed to drive an ultrafast non-adiabatic dynamics of an ultracold gas trapped in a time-dependent box potential. The resulting state is free from spurious excitations associated with the breakdown of adiabaticity, and preserves the quantum correlations of the initial state up to a scaling factor. The process relies on the existence of an adiabatic invariant and the inversion of the dynamical self-similar scaling law dictated by it. Its physical implementation generally requires the use of an auxiliary expulsive potential. The method is extended to a broad family of interacting many-body systems. As illustrative examples we consider the ultrafast expansion of a Tonks-Girardeau gas and of Bose-Einstein condensates in different dimensions, where the method exhibits an excellent robustness against different regimes of interactions and the features of an experimentally realizable box potential. PMID:22970340
Bleiziffer, Patrick Schmidtel, Daniel; Görling, Andreas
2014-11-28
The occurrence of instabilities, in particular singlet-triplet and singlet-singlet instabilities, in the exact-exchange (EXX) Kohn-Sham method is investigated. Hessian matrices of the EXX electronic energy with respect to the expansion coefficients of the EXX effective Kohn-Sham potential in an auxiliary basis set are derived. The eigenvalues of these Hessian matrices determine whether or not instabilities are present. Similar as in the corresponding Hartree-Fock case instabilities in the EXX method are related to symmetry breaking of the Hamiltonian operator for the EXX orbitals. In the EXX methods symmetry breaking can easily be visualized by displaying the local multiplicative exchange potential. Examples (N{sub 2}, O{sub 2}, and the polyyne C{sub 10}H{sub 2}) for instabilities and symmetry breaking are discussed. The relation of the stability conditions for EXX methods to approaches calculating the Kohn-Sham correlation energy via the adiabatic-connection fluctuation-dissipation (ACFD) theorem is discussed. The existence or nonexistence of singlet-singlet instabilities in an EXX calculation is shown to indicate whether or not the frequency-integration in the evaluation of the correlation energy is singular in the EXX-ACFD method. This method calculates the Kohn-Sham correlation energy through the ACFD theorem theorem employing besides the Coulomb kernel also the full frequency-dependent exchange kernel and yields highly accurate electronic energies. For the case of singular frequency-integrands in the EXX-ACFD method a regularization is suggested. Finally, we present examples of molecular systems for which the self-consistent field procedure of the EXX as well as the Hartree-Fock method can converge to more than one local minimum depending on the initial conditions.
A general moment expansion method for stochastic kinetic models
NASA Astrophysics Data System (ADS)
Ale, Angelique; Kirk, Paul; Stumpf, Michael P. H.
2013-05-01
Moment approximation methods are gaining increasing attention for their use in the approximation of the stochastic kinetics of chemical reaction systems. In this paper we derive a general moment expansion method for any type of propensities and which allows expansion up to any number of moments. For some chemical reaction systems, more than two moments are necessary to describe the dynamic properties of the system, which the linear noise approximation is unable to provide. Moreover, also for systems for which the mean does not have a strong dependence on higher order moments, moment approximation methods give information about higher order moments of the underlying probability distribution. We demonstrate the method using a dimerisation reaction, Michaelis-Menten kinetics and a model of an oscillating p53 system. We show that for the dimerisation reaction and Michaelis-Menten enzyme kinetics system higher order moments have limited influence on the estimation of the mean, while for the p53 system, the solution for the mean can require several moments to converge to the average obtained from many stochastic simulations. We also find that agreement between lower order moments does not guarantee that higher moments will agree. Compared to stochastic simulations, our approach is numerically highly efficient at capturing the behaviour of stochastic systems in terms of the average and higher moments, and we provide expressions for the computational cost for different system sizes and orders of approximation. We show how the moment expansion method can be employed to efficiently quantify parameter sensitivity. Finally we investigate the effects of using too few moments on parameter estimation, and provide guidance on how to estimate if the distribution can be accurately approximated using only a few moments.
A field expansions method for scattering by periodic multilayered media.
Malcolm, Alison; Nicholls, David P
2011-04-01
The interaction of acoustic and electromagnetic waves with periodic structures plays an important role in a wide range of problems of scientific and technological interest. This contribution focuses upon the robust and high-order numerical simulation of a model for the interaction of pressure waves generated within the earth incident upon layers of sediment near the surface. Herein described is a boundary perturbation method for the numerical simulation of scattering returns from irregularly shaped periodic layered media. The method requires only the discretization of the layer interfaces (so that the number of unknowns is an order of magnitude smaller than finite difference and finite element simulations), while it avoids not only the need for specialized quadrature rules but also the dense linear systems characteristic of boundary integral/element methods. The approach is a generalization to multiple layers of Bruno and Reitich's "Method of Field Expansions" for dielectric structures with two layers. By simply considering the entire structure simultaneously, rather than solving in individual layers separately, the full field can be recovered in time proportional to the number of interfaces. As with the original field expansions method, this approach is extremely efficient and spectrally accurate. PMID:21476635
NASA Astrophysics Data System (ADS)
Sahoo, S.; Saha Ray, S.
2016-04-01
In the present paper, we construct the analytical exact solutions of a nonlinear evolution equation in mathematical physics; namely time fractional modified KdV equation by using (G‧ / G)-expansion method and improved (G‧ / G)-expansion method. As a result, new types of exact analytical solutions are obtained.
A Multipole Expansion Method for Analyzing Lightning Field Changes
NASA Technical Reports Server (NTRS)
Koshak, William J.; Krider, E. Philip; Murphy, Martin J.
1998-01-01
Changes in the surface electric field are frequently used to infer the locations and magnitudes of lightning-caused changes in thundercloud charge distributions. The traditional procedure is to assume that the charges that are effectively deposited by the flash can be modeled either as a single point charge (the Q-model) or a point dipole (the P-model). The Q-model has 4 unknown parameters and provides a good description of many cloud-to-ground (CG) flashes. The P-model has 6 unknown parameters and describes many intracloud (IC) discharges. In this paper, we introduce a new analysis method that assumes that the change in the cloud charge can be described by a truncated multipole expansion, i.e., there are both monopole and dipole terms in the unknown source distribution, and both terms are applied simultaneously. This method can be used to analyze CG flashes that are accompanied by large changes in the cloud dipole moment and complex IC discharges. If there is enough information content in the measurements, the model can also be generalized to include quadrupole and higher order terms. The parameters of the charge moments are determined using a 3-dimensional grid search in combination with a linear inversion, and because of this, local minima in the error function and the associated solution ambiguities are avoided. The multipole method has been tested on computer simulated sources and on natural lightning at the NASA Kennedy Space Center and USAF Eastern Range.
A Multipole Expansion Method for Analyzing Lightning Field Changes
NASA Technical Reports Server (NTRS)
Koshak, William J.; Krider, E. Philip; Murphy, Martin J.
1999-01-01
Changes in the surface electric field are frequently used to infer the locations and magnitudes of lightning-caused changes in thundercloud charge distributions. The traditional procedure is to assume that the charges that are effectively deposited by the flash can be modeled either as a single point charge (the Q model) or a point dipole (the P model). The Q model has four unknown parameters and provides a good description of many cloud-to-ground (CG) flashes. The P model has six unknown parameters and describes many intracloud (IC) discharges. In this paper we introduce a new analysis method that assumes that the change in the cloud charge can be described by a truncated multipole expansion, i.e., there are both monopole and dipole terms in the unknown source distribution, and both terms are applied simultaneously. This method can be used to analyze CG flashes that are accompanied by large changes in the cloud dipole moment and complex IC discharges. If there is enough information content in the measurements, the model can also be generalized to include quadrupole and higher order terms. The parameters of the charge moments are determined using a dme-dimensional grid search in combination with a linear inversion, and because of this, local minima in the error function and the associated solution ambiguities are avoided. The multipole method has been tested on computer-simulated sources and on natural lightning at the NASA Kennedy Space Center and U.S. Air Force Eastern Range.
Non-adiabatic electron-proton couplings in H2 by floating Gaussian method
NASA Astrophysics Data System (ADS)
Ichikawa, Yuichi; Kato, Tsuyoshi; Yamanouchi, Kaoru
2016-08-01
Time-dependent electron-nuclear wave functions of H2 were described by the floating Gaussian method. The equations of motion for the parameters that specify the wave functions are explicitly derived. By the imaginary time propagation, the ground-state wave functions were obtained. Five high frequency components appearing in the Fourier transformed spectra of the squared inter-particle distances were ascribed to the motion of electrons, and the two lowest frequency components among the five were identified as those representing coupling of the motions of electrons and nuclei.
Smit, Hans Harmen; Meijaard, Erik; van der Laan, Carina; Mantel, Stephan; Budiman, Arif; Verweij, Pita
2013-01-01
Land degradation is a global concern. In tropical areas it primarily concerns the conversion of forest into non-forest lands and the associated losses of environmental services. Defining such degradation is not straightforward hampering effective reduction in degradation and use of already degraded lands for more productive purposes. To facilitate the processes of avoided degradation and land rehabilitation, we have developed a methodology in which we have used international environmental and social sustainability standards to determine the suitability of lands for sustainable agricultural expansion. The method was developed and tested in one of the frontiers of agricultural expansion, West Kalimantan province in Indonesia. The focus was on oil palm expansion, which is considered as a major driver for deforestation in tropical regions globally. The results suggest that substantial changes in current land-use planning are necessary for most new plantations to comply with international sustainability standards. Through visualizing options for sustainable expansion with our methodology, we demonstrate that the link between oil palm expansion and degradation can be broken. Application of the methodology with criteria and thresholds similar to ours could help the Indonesian government and the industry to achieve its pro-growth, pro-job, pro-poor and pro-environment development goals. For sustainable agricultural production, context specific guidance has to be developed in areas suitable for expansion. Our methodology can serve as a template for designing such commodity and country specific tools and deliver such guidance. PMID:24039700
Harmen Smit, Hans; Meijaard, Erik; van der Laan, Carina; Mantel, Stephan; Budiman, Arif; Verweij, Pita
2013-01-01
Land degradation is a global concern. In tropical areas it primarily concerns the conversion of forest into non-forest lands and the associated losses of environmental services. Defining such degradation is not straightforward hampering effective reduction in degradation and use of already degraded lands for more productive purposes. To facilitate the processes of avoided degradation and land rehabilitation, we have developed a methodology in which we have used international environmental and social sustainability standards to determine the suitability of lands for sustainable agricultural expansion. The method was developed and tested in one of the frontiers of agricultural expansion, West Kalimantan province in Indonesia. The focus was on oil palm expansion, which is considered as a major driver for deforestation in tropical regions globally. The results suggest that substantial changes in current land-use planning are necessary for most new plantations to comply with international sustainability standards. Through visualizing options for sustainable expansion with our methodology, we demonstrate that the link between oil palm expansion and degradation can be broken. Application of the methodology with criteria and thresholds similar to ours could help the Indonesian government and the industry to achieve its pro-growth, pro-job, pro-poor and pro-environment development goals. For sustainable agricultural production, context specific guidance has to be developed in areas suitable for expansion. Our methodology can serve as a template for designing such commodity and country specific tools and deliver such guidance. PMID:24039700
A multi-state trajectory method for non-adiabatic dynamics simulations.
Tao, Guohua
2016-03-01
A multi-state trajectory approach is proposed to describe nuclear-electron coupled dynamics in nonadiabatic simulations. In this approach, each electronic state is associated with an individual trajectory, among which electronic transition occurs. The set of these individual trajectories constitutes a multi-state trajectory, and nuclear dynamics is described by one of these individual trajectories as the system is on the corresponding state. The total nuclear-electron coupled dynamics is obtained from the ensemble average of the multi-state trajectories. A variety of benchmark systems such as the spin-boson system have been tested and the results generated using the quasi-classical version of the method show reasonably good agreement with the exact quantum calculations. Featured in a clear multi-state picture, high efficiency, and excellent numerical stability, the proposed method may have advantages in being implemented to realistic complex molecular systems, and it could be straightforwardly applied to general nonadiabatic dynamics involving multiple states. PMID:26957158
Degenerate adiabatic perturbation theory: Foundations and applications
NASA Astrophysics Data System (ADS)
Rigolin, Gustavo; Ortiz, Gerardo
2014-08-01
We present details and expand on the framework leading to the recently introduced degenerate adiabatic perturbation theory [Phys. Rev. Lett. 104, 170406 (2010), 10.1103/PhysRevLett.104.170406], and on the formulation of the degenerate adiabatic theorem, along with its necessary and sufficient conditions [given in Phys. Rev. A 85, 062111 (2012), 10.1103/PhysRevA.85.062111]. We start with the adiabatic approximation for degenerate Hamiltonians that paves the way to a clear and rigorous statement of the associated degenerate adiabatic theorem, where the non-Abelian geometric phase (Wilczek-Zee phase) plays a central role to its quantitative formulation. We then describe the degenerate adiabatic perturbation theory, whose zeroth-order term is the degenerate adiabatic approximation, in its full generality. The parameter in the perturbative power-series expansion of the time-dependent wave function is directly associated to the inverse of the time it takes to drive the system from its initial to its final state. With the aid of the degenerate adiabatic perturbation theory we obtain rigorous necessary and sufficient conditions for the validity of the adiabatic theorem of quantum mechanics. Finally, to illustrate the power and wide scope of the methodology, we apply the framework to a degenerate Hamiltonian, whose closed-form time-dependent wave function is derived exactly, and also to other nonexactly solvable Hamiltonians whose solutions are numerically computed.
Conservation laws and a new expansion method for sixth order Boussinesq equation
NASA Astrophysics Data System (ADS)
Yokuş, Asıf; Kaya, Doǧan
2015-09-01
In this study, we analyze the conservation laws of a sixth order Boussinesq equation by using variational derivative. We get sixth order Boussinesq equation's traveling wave solutions with (1/G) -expansion method which we constitute newly by being inspired with (G/G) -expansion method which is suggested in [1]. We investigate conservation laws of the analytical solutions which we obtained by the new constructed method. The analytical solution's conductions which we get according to new expansion method are given graphically.
The Dual-Angle Method for Fast, Sensitive T1 Measurement in Vivo with Low-Angle Adiabatic Pulses
NASA Astrophysics Data System (ADS)
Bottomley, P. A.; Ouwerkerk, R.
A new method for measuring T1 based on a measurement of the ratio, R, of the steady-state partially saturated NMR signals acquired at two fixed low flip angles (<90°) and a single sequence-repetition period, TR, is presented, The flip angles are chosen to optimize both the signal-to-noise ratio per unit time relative to the best possible Ernst-angle performance and the sensitivity with which a measurement of R can resolve differences in T1. A flip-angle pair at of around (60°, 15°) yields 70-79% of the maximum achievable Ernst-angle signal-to-noise ratio and a near-linear dependence of R on TR/ T1 with gradient of about 2:1 over the range 0.1 ≤ TR/ T1 ≤ 1. Errors in hip-angle and excitation-field ( B1) inhomogeneity result in roughly proportionate errors in the apparent T1. The method is best implemented with adiabatic low-angle pulses such as B1-independent rotation (BIR-4) or BIR-4 phase-cycled (BIRP) pulses, which permit measurements with surface coils. Experimental validation was obtained at 2 T by comparison of unlocalized inversion-recovery and dual-angle proton ( 1H) and phosphorus ( 31P) measurements from vials containing doped water with 0.04 ≤ T1 ≤ 2.8 s and from the metabolites in the calf muscles of eight human volunteers. Calf muscle values of 6 ± 0.5 s for phosphocreatine and around 3.7 ± 0.8 s for the adenosine triphosphates (ATP) were in good agreement with inversion-recovery T1 values and values from the literature. Use of the dual-angle method accelerated T1 measurement time by about fivefold over inversion recovery. The dual-angle method was implemented in a one-dimensional localized surface-coil 31P spectroscopy sequence, producing consistent T1 measurements from phantoms, the calf muscle, and the human liver. 31P T1 values of ATP in the livers of six volunteers were about 0.5 ± 0.1 to 0.6 ± 0.2 s: the total exam times were about 35 minutes per subject. The method is ideally suited to low-sensitivity and/or low
NASA Astrophysics Data System (ADS)
Froese, Robert D. J.; Morokuma, Keiji
1996-12-01
The recently proposed integrated MO + MO (IMOMO) and MO + MM (IMOMM) methods have been applied to excited states of large molecules, i.e., the adiabatic triplet excitation energies of cyclic alkenes and enones. The IMOMO methods with G2MS as High level and HF or MP2 as Low level agree well with pure MO benchmarks and experiments. The substituent shifts have been discussed in the IMOMO analysis. The geometries of a testosterone derivative with more than 50 atoms were optimized for the lower triplet excited states with the IMOMM(HF:MM3) method and their energies were calculated using IMOMO and IMOMM methods.
NASA Astrophysics Data System (ADS)
Landahl, Andrew
2012-10-01
Quantum computers promise to exploit counterintuitive quantum physics principles like superposition, entanglement, and uncertainty to solve problems using fundamentally fewer steps than any conventional computer ever could. The mere possibility of such a device has sharpened our understanding of quantum coherent information, just as lasers did for our understanding of coherent light. The chief obstacle to developing quantum computer technology is decoherence--one of the fastest phenomena in all of physics. In principle, decoherence can be overcome by using clever entangled redundancies in a process called fault-tolerant quantum error correction. However, the quality and scale of technology required to realize this solution appears distant. An exciting alternative is a proposal called ``adiabatic'' quantum computing (AQC), in which adiabatic quantum physics keeps the computer in its lowest-energy configuration throughout its operation, rendering it immune to many decoherence sources. The Adiabatic Quantum Architectures In Ultracold Systems (AQUARIUS) Grand Challenge Project at Sandia seeks to demonstrate this robustness in the laboratory and point a path forward for future hardware development. We are building devices in AQUARIUS that realize the AQC architecture on up to three quantum bits (``qubits'') in two platforms: Cs atoms laser-cooled to below 5 microkelvin and Si quantum dots cryo-cooled to below 100 millikelvin. We are also expanding theoretical frontiers by developing methods for scalable universal AQC in these platforms. We have successfully demonstrated operational qubits in both platforms and have even run modest one-qubit calculations using our Cs device. In the course of reaching our primary proof-of-principle demonstrations, we have developed multiple spinoff technologies including nanofabricated diffractive optical elements that define optical-tweezer trap arrays and atomic-scale Si lithography commensurate with placing individual donor atoms with
NASA Technical Reports Server (NTRS)
Hill, P R
1958-01-01
A method of calculating the temperature of thick walls has been developed in which the time series and the response to a unit triangle variation of surface temperature concepts are used, together with essentially standard formulas for transient temperature and heat flow into thick walls. The method can be used without knowledge of the mathematical tools of its development. The method is particularly suitable for determining the wall temperature in one-dimensional thermal problems in aeronautics where there is a continuous variation of the heat-transfer coefficient and adiabatic-wall temperature. The method also offers a convenient means for solving the inverse problem of determining the heat-flow history when temperature history is known.
Numerical simulation of stratified shear flow using a higher order Taylor series expansion method
Iwashige, Kengo; Ikeda, Takashi
1995-09-01
A higher order Taylor series expansion method is applied to two-dimensional numerical simulation of stratified shear flow. In the present study, central difference scheme-like method is adopted for an even expansion order, and upwind difference scheme-like method is adopted for an odd order, and the expansion order is variable. To evaluate the effects of expansion order upon the numerical results, a stratified shear flow test in a rectangular channel (Reynolds number = 1.7x10{sup 4}) is carried out, and the numerical velocity and temperature fields are compared with experimental results measured by laser Doppler velocimetry thermocouples. The results confirm that the higher and odd order methods can simulate mean velocity distributions, root-mean-square velocity fluctuations, Reynolds stress, temperature distributions, and root-mean-square temperature fluctuations.
Wireless adiabatic power transfer
Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.
2011-03-15
Research Highlights: > Efficient and robust mid-range wireless energy transfer between two coils. > The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. > Wireless energy transfer is insensitive to any resonant constraints. > Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.
Adiabatically driven Brownian pumps.
Rozenbaum, Viktor M; Makhnovskii, Yurii A; Shapochkina, Irina V; Sheu, Sheh-Yi; Yang, Dah-Yen; Lin, Sheng Hsien
2013-07-01
We investigate a Brownian pump which, being powered by a flashing ratchet mechanism, produces net particle transport through a membrane. The extension of the Parrondo's approach developed for reversible Brownian motors [Parrondo, Phys. Rev. E 57, 7297 (1998)] to adiabatically driven pumps is given. We demonstrate that the pumping mechanism becomes especially efficient when the time variation of the potential occurs adiabatically fast or adiabatically slow, in perfect analogy with adiabatically driven Brownian motors which exhibit high efficiency [Rozenbaum et al., Phys. Rev. E 85, 041116 (2012)]. At the same time, the efficiency of the pumping mechanism is shown to be less than that of Brownian motors due to fluctuations of the number of particles in the membrane. PMID:23944411
Modular application of an integration by fractional expansion method to multiloop Feynman diagrams
Gonzalez, Ivan; Schmidt, Ivan
2008-10-15
We present an alternative technique for evaluating multiloop Feynman diagrams, using the integration by fractional expansion method. Here we consider generic diagrams that contain propagators with radiative corrections which topologically correspond to recursive constructions of bubble type diagrams. The main idea is to reduce these subgraphs, replacing them by their equivalent multiregion expansion. One of the main advantages of this integration technique is that it allows one to reduce massive cases with the same degree of difficulty as in the massless case.
A Perturbation Expansion Method to Study Highly Correlated Spins
Anda, E. V.; Chiappe, G.; Busser, Carlos A; Davidovich, M. A.; Martins, G. B.; Heidrich-Meisner, F.; Dagotto, Elbio R
2009-01-01
This paper proposes a new numerical algorithm to study dynamical spin dependent properties of local highly correlated structures. The method consists in diagonalizing a finite cluster containing the many-body terms of the Hamil- tonian and embedding it into the rest of the system, the Em- bedding Cluster Approximation (ECA), combined with Wil- son s ideas of logarithmic discretization of the representa- tion of the Hamiltonian, the Logarithm Discretization Em- bedded Cluster Approximation (LDECA). The physics as- sociated to a dot and a side-coupled double dot connected to leads are discussed in detail.
On the Model and Solution Methods for Multi-Facility Capacity Expansion Problem
NASA Astrophysics Data System (ADS)
Magori, Hideki; Yokoyama, Ryuichi
Capacity expansion problem is a hard combinatorial problem to solve because it must treat many scheduling subproblems within a multi-facility framework. It is classified into a category of general Investment & Operation planning problems. This paper presents a basic model for a certain class of capacity expansion problem applicable to the generation expansion problem in power systems, and proposes several mathematical methods for the model. In the field of Operational Research, Dynamic Programming (DP) has been the most popular method under multistage dynamic environments. It is however made clear in the paper that the model cannot be exactly solved by standard DPs. Consequently, another representative methods such as Lagrangian Relaxation, Branch-and-Bound and Heuristics are also tailored as alternatives for DP and compared with each other. Computational experiments by all proposed methods yielded promising suboptima with quality guarantee, among others Branch-and-Bound and Lagrangian Relaxation methods are recommended as suitable ones for the model.
NASA Astrophysics Data System (ADS)
Dobbyn, Abigail J.; Knowles, Peter J.
A number of established techniques for obtaining diabatic electronic states in small molecules are critically compared for the example of the X and B states in the water molecule, which contribute to the two lowest-energy conical intersections. Integration of the coupling matrix elements and analysis of configuration mixing coefficients both produce reliable diabatic states globally. Methods relying on diagonalization of dipole moment and angular momentum operators are shown to fail in large regions of coordinate space. However, the use of transition angular momentum matrix elements involving the A state, which is degenerate with B at the conical intersections, is successful globally, provided that an appropriate choice of coordinates is made. Long range damping of non-adiabatic coupling to give correct asymptotic mixing angles also is investigated.
Robust adiabatic sum frequency conversion.
Suchowski, Haim; Prabhudesai, Vaibhav; Oron, Dan; Arie, Ady; Silberberg, Yaron
2009-07-20
We discuss theoretically and demonstrate experimentally the robustness of the adiabatic sum frequency conversion method. This technique, borrowed from an analogous scheme of robust population transfer in atomic physics and nuclear magnetic resonance, enables the achievement of nearly full frequency conversion in a sum frequency generation process for a bandwidth up to two orders of magnitude wider than in conventional conversion schemes. We show that this scheme is robust to variations in the parameters of both the nonlinear crystal and of the incoming light. These include the crystal temperature, the frequency of the incoming field, the pump intensity, the crystal length and the angle of incidence. Also, we show that this extremely broad bandwidth can be tuned to higher or lower central wavelengths by changing either the pump frequency or the crystal temperature. The detailed study of the properties of this converter is done using the Landau-Zener theory dealing with the adiabatic transitions in two level systems. PMID:19654679
Parallelizable adiabatic gate teleportation
NASA Astrophysics Data System (ADS)
Nakago, Kosuke; Hajdušek, Michal; Nakayama, Shojun; Murao, Mio
2015-12-01
To investigate how a temporally ordered gate sequence can be parallelized in adiabatic implementations of quantum computation, we modify adiabatic gate teleportation, a model of quantum computation proposed by Bacon and Flammia [Phys. Rev. Lett. 103, 120504 (2009), 10.1103/PhysRevLett.103.120504], to a form deterministically simulating parallelized gate teleportation, which is achievable only by postselection. We introduce a twisted Heisenberg-type interaction Hamiltonian, a Heisenberg-type spin interaction where the coordinates of the second qubit are twisted according to a unitary gate. We develop parallelizable adiabatic gate teleportation (PAGT) where a sequence of unitary gates is performed in a single step of the adiabatic process. In PAGT, numeric calculations suggest the necessary time for the adiabatic evolution implementing a sequence of L unitary gates increases at most as O (L5) . However, we show that it has the interesting property that it can map the temporal order of gates to the spatial order of interactions specified by the final Hamiltonian. Using this property, we present a controlled-PAGT scheme to manipulate the order of gates by a control qubit. In the controlled-PAGT scheme, two differently ordered sequential unitary gates F G and G F are coherently performed depending on the state of a control qubit by simultaneously applying the twisted Heisenberg-type interaction Hamiltonians implementing unitary gates F and G . We investigate why the twisted Heisenberg-type interaction Hamiltonian allows PAGT. We show that the twisted Heisenberg-type interaction Hamiltonian has an ability to perform a transposed unitary gate by just modifying the space ordering of the final Hamiltonian implementing a unitary gate in adiabatic gate teleportation. The dynamics generated by the time-reversed Hamiltonian represented by the transposed unitary gate enables deterministic simulation of a postselected event of parallelized gate teleportation in adiabatic
Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping
2011-01-01
In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring. PMID:22346672
Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping
2011-01-01
In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring. PMID:22346672
Computation of determinant expansion coefficients within the graphically contracted function method.
Gidofalvi, G.; Shepard, R.; Chemical Sciences and Engineering Division
2009-11-30
Most electronic structure methods express the wavefunction as an expansion of N-electron basis functions that are chosen to be either Slater determinants or configuration state functions. Although the expansion coefficient of a single determinant may be readily computed from configuration state function coefficients for small wavefunction expansions, traditional algorithms are impractical for systems with a large number of electrons and spatial orbitals. In this work, we describe an efficient algorithm for the evaluation of a single determinant expansion coefficient for wavefunctions expanded as a linear combination of graphically contracted functions. Each graphically contracted function has significant multiconfigurational character and depends on a relatively small number of variational parameters called arc factors. Because the graphically contracted function approach expresses the configuration state function coefficients as products of arc factors, a determinant expansion coefficient may be computed recursively more efficiently than with traditional configuration interaction methods. Although the cost of computing determinant coefficients scales exponentially with the number of spatial orbitals for traditional methods, the algorithm presented here exploits two levels of recursion and scales polynomially with system size. Hence, as demonstrated through applications to systems with hundreds of electrons and orbitals, it may readily be applied to very large systems.
Computation of determinant expansion coefficients within the graphically contracted function method.
Gidofalvi, Gergely; Shepard, Ron
2009-11-30
Most electronic structure methods express the wavefunction as an expansion of N-electron basis functions that are chosen to be either Slater determinants or configuration state functions. Although the expansion coefficient of a single determinant may be readily computed from configuration state function coefficients for small wavefunction expansions, traditional algorithms are impractical for systems with a large number of electrons and spatial orbitals. In this work, we describe an efficient algorithm for the evaluation of a single determinant expansion coefficient for wavefunctions expanded as a linear combination of graphically contracted functions. Each graphically contracted function has significant multiconfigurational character and depends on a relatively small number of variational parameters called arc factors. Because the graphically contracted function approach expresses the configuration state function coefficients as products of arc factors, a determinant expansion coefficient may be computed recursively more efficiently than with traditional configuration interaction methods. Although the cost of computing determinant coefficients scales exponentially with the number of spatial orbitals for traditional methods, the algorithm presented here exploits two levels of recursion and scales polynomially with system size. Hence, as demonstrated through applications to systems with hundreds of electrons and orbitals, it may readily be applied to very large systems. PMID:19360796
Modeling laser beam diffraction and propagation by the mode-expansion method.
Snyder, James J
2007-08-01
In the mode-expansion method for modeling propagation of a diffracted beam, the beam at the aperture can be expanded as a weighted set of orthogonal modes. The parameters of the expansion modes are chosen to maximize the weighting coefficient of the lowest-order mode. As the beam propagates, its field distribution can be reconstructed from the set of weighting coefficients and the Gouy phase of the lowest-order mode. We have developed a simple procedure to implement the mode-expansion method for propagation through an arbitrary ABCD matrix, and we have demonstrated that it is accurate in comparison with direct calculations of diffraction integrals and much faster. PMID:17676115
Chateau, M; Planas, C S
1995-01-01
Orthodontic goniometry applied to expansion cases treated by P. Planas method (neuro-occlusal rehabilitation) demonstrates considerable bimaxillary transverse expansion (crown and apices). Maximal expansion of 10 mm was noted for mandibular apices with a mean of 5.8 mm. Maximal expansion of 11.5 mm was noted for maxillary apices with a mean of 8.11 mm. Results were stable, some being controlled more than eight years out of retention. PMID:8611485
Adiabatically implementing quantum gates
Sun, Jie; Lu, Songfeng Liu, Fang
2014-06-14
We show that, through the approach of quantum adiabatic evolution, all of the usual quantum gates can be implemented efficiently, yielding running time of order O(1). This may be considered as a useful alternative to the standard quantum computing approach, which involves quantum gates transforming quantum states during the computing process.
NASA Astrophysics Data System (ADS)
Ali Akbar, M.; Norhashidah, Hj. Mohd. Ali; E. M. E., Zayed
2012-02-01
In this article, we construct abundant exact traveling wave solutions involving free parameters to the generalized Bretherton equation via the improved (G'/G)-expansion method. The traveling wave solutions are presented in terms of the trigonometric, the hyperbolic, and rational functions. When the parameters take special values, the solitary waves are derived from the traveling waves.
ERIC Educational Resources Information Center
Greenberg, Jane
2001-01-01
Explores what might be the optimal query expansion (QE) processing method with semantically coded thesauri. Examines whether QE via semantically coded thesauri terminology is more effective in the "automatic" or "interactive" processing environment. Results revealed that synonyms and partial synonyms and narrower terms are "generally good"…
A two-dimensional, semi-analytic expansion method for nodal calculations
Palmtag, S.P.
1995-08-01
Most modern nodal methods used today are based upon the transverse integration procedure in which the multi-dimensional flux shape is integrated over the transverse directions in order to produce a set of coupled one-dimensional flux shapes. The one-dimensional flux shapes are then solved either analytically or by representing the flux shape by a finite polynomial expansion. While these methods have been verified for most light-water reactor applications, they have been found to have difficulty predicting the large thermal flux gradients near the interfaces of highly-enriched MOX fuel assemblies. A new method is presented here in which the neutron flux is represented by a non-seperable, two-dimensional, semi-analytic flux expansion. The main features of this method are (1) the leakage terms from the node are modeled explicitly and therefore, the transverse integration procedure is not used, (2) the corner point flux values for each node are directly edited from the solution method, and a corner-point interpolation is not needed in the flux reconstruction, (3) the thermal flux expansion contains hyperbolic terms representing analytic solutions to the thermal flux diffusion equation, and (4) the thermal flux expansion contains a thermal to fast flux ratio term which reduces the number of polynomial expansion functions needed to represent the thermal flux. This new nodal method has been incorporated into the computer code COLOR2G and has been used to solve a two-dimensional, two-group colorset problem containing uranium and highly-enriched MOX fuel assemblies. The results from this calculation are compared to the results found using a code based on the traditional transverse integration procedure.
Gonzalez, Ivan; Schmidt, Ivan
2009-06-15
A modular application of the integration by fractional expansion method for evaluating Feynman diagrams is extended to diagrams that contain loop triangle subdiagrams in their geometry. The technique is based in the replacement of this module or subdiagram by its corresponding multiregion expansion (MRE), which in turn is obtained from Schwinger's parametric representation of the diagram. The result is a topological reduction, transforming the triangular loop into an equivalent vertex, which simplifies the search for the MRE of the complete diagram. This procedure has important advantages with respect to considering the parametric representation of the whole diagram: the obtained MRE is reduced, and the resulting hypergeometric series tends to have smaller multiplicity.
Entanglement and adiabatic quantum computation
NASA Astrophysics Data System (ADS)
Ahrensmeier, D.
2006-06-01
Adiabatic quantum computation provides an alternative approach to quantum computation using a time-dependent Hamiltonian. The time evolution of entanglement during the adiabatic quantum search algorithm is studied, and its relevance as a resource is discussed.
NASA Astrophysics Data System (ADS)
Bleiziffer, Patrick; Krug, Marcel; Görling, Andreas
2015-06-01
A self-consistent Kohn-Sham method based on the adiabatic-connection fluctuation-dissipation (ACFD) theorem, employing the frequency-dependent exact exchange kernel fx is presented. The resulting SC-exact-exchange-only (EXX)-ACFD method leads to even more accurate correlation potentials than those obtained within the direct random phase approximation (dRPA). In contrast to dRPA methods, not only the Coulomb kernel but also the exact exchange kernel fx is taken into account in the EXX-ACFD correlation which results in a method that, unlike dRPA methods, is free of self-correlations, i.e., a method that treats exactly all one-electron systems, like, e.g., the hydrogen atom. The self-consistent evaluation of EXX-ACFD total energies improves the accuracy compared to EXX-ACFD total energies evaluated non-self-consistently with EXX or dRPA orbitals and eigenvalues. Reaction energies of a set of small molecules, for which highly accurate experimental reference data are available, are calculated and compared to quantum chemistry methods like Møller-Plesset perturbation theory of second order (MP2) or coupled cluster methods [CCSD, coupled cluster singles, doubles, and perturbative triples (CCSD(T))]. Moreover, we compare our methods to other ACFD variants like dRPA combined with perturbative corrections such as the second order screened exchange corrections or a renormalized singles correction. Similarly, the performance of our EXX-ACFD methods is investigated for the non-covalently bonded dimers of the S22 reference set and for potential energy curves of noble gas, water, and benzene dimers. The computational effort of the SC-EXX-ACFD method exhibits the same scaling of N5 with respect to the system size N as the non-self-consistent evaluation of only the EXX-ACFD correlation energy; however, the prefactor increases significantly. Reaction energies from the SC-EXX-ACFD method deviate quite little from EXX-ACFD energies obtained non-self-consistently with dRPA orbitals
A novel hybrid Neumann expansion method for stochastic analysis of mistuned bladed discs
NASA Astrophysics Data System (ADS)
Yuan, Jie; Allegri, Giuliano; Scarpa, Fabrizio; Patsias, Sophoclis; Rajasekaran, Ramesh
2016-05-01
The paper presents a novel hybrid method to enhance the computational efficiency of matrix inversions during the stochastic analysis of mistuned bladed disc systems. The method is based on the use of stochastic Neumann expansion in the frequency domain, coupled with a matrix factorization in the neighbourhood of the resonant frequencies. The number of the expansion terms is used as an indicator to select the matrix inversion technique to be used, without introducing any additional computational cost. The proposed method is validated using two case studies, where the dynamics an aero-engine bladed disc is modelled first using a lumped parameter approach and then with high-fidelity finite element analysis. The frequency responses of the blades are evaluated according to different mistuning patterns via stiffness or mass perturbations under the excitation provided by the engine orders. Results from standard matrix factorization methods are used to benchmark the responses obtained from the proposed hybrid method. Unlike classic Neumann expansion methods, the new technique can effectively update the inversion of an uncertain matrix with no convergence problems during Monte Carlo simulations. The novel hybrid method is more computationally efficient than standard techniques, with no accuracy loss.
Romero-Redondo, C.; Garrido, E.; Barletta, P.; Kievsky, A.; Viviani, M.
2011-02-15
In this work we investigate 1+2 reactions within the framework of the hyperspherical adiabatic expansion method. With this aim two integral relations, derived from the Kohn variational principle, are used. A detailed derivation of these relations is shown. The expressions derived are general, not restricted to relative s partial waves, and with applicability in multichannel reactions. The convergence of the K matrix in terms of the adiabatic potentials is investigated. Together with a simple model case used as a test for the method, we show results for the collision of a {sup 4}He atom on a {sup 4}He{sub 2} dimer (only the elastic channel open), and for collisions involving a {sup 6}Li and two {sup 4}He atoms (two channels open).
NASA Astrophysics Data System (ADS)
Zhu, Xiaolei; Yarkony, David R.
2016-01-01
We have recently introduced a diabatization scheme, which simultaneously fits and diabatizes adiabatic ab initio electronic wave functions, Zhu and Yarkony J. Chem. Phys. 140, 024112 (2014). The algorithm uses derivative couplings in the defining equations for the diabatic Hamiltonian, Hd, and fits all its matrix elements simultaneously to adiabatic state data. This procedure ultimately provides an accurate, quantifiably diabatic, representation of the adiabatic electronic structure data. However, optimizing the large number of nonlinear parameters in the basis functions and adjusting the number and kind of basis functions from which the fit is built, which provide the essential flexibility, has proved challenging. In this work, we introduce a procedure that combines adiabatic state and diabatic state data to efficiently optimize the nonlinear parameters and basis function expansion. Further, we consider using direct properties based diabatizations to initialize the fitting procedure. To address this issue, we introduce a systematic method for eliminating the debilitating (diabolical) singularities in the defining equations of properties based diabatizations. We exploit the observation that if approximate diabatic data are available, the commonly used approach of fitting each matrix element of Hd individually provides a starting point (seed) from which convergence of the full Hd construction algorithm is rapid. The optimization of nonlinear parameters and basis functions and the elimination of debilitating singularities are, respectively, illustrated using the 1,2,3,41A states of phenol and the 1,21A states of NH3, states which are coupled by conical intersections.
Adiabatic topological quantum computing
NASA Astrophysics Data System (ADS)
Cesare, Chris; Landahl, Andrew J.; Bacon, Dave; Flammia, Steven T.; Neels, Alice
2015-07-01
Topological quantum computing promises error-resistant quantum computation without active error correction. However, there is a worry that during the process of executing quantum gates by braiding anyons around each other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here, we explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological codes, notably Kitaev's surface codes and the more recently discovered color codes. We develop protocols that enable universal quantum computing by adiabatic evolution in a way that keeps the energy gap of the system constant with respect to the computation size and introduces only simple local Hamiltonian interactions. This allows one to perform holonomic quantum computing with these topological quantum computing systems. The tools we develop allow one to go beyond numerical simulations and understand these processes analytically.
Adiabatic Hyperspherical Analysis of Realistic Nuclear Potentials
NASA Astrophysics Data System (ADS)
Daily, K. M.; Kievsky, Alejandro; Greene, Chris H.
2015-12-01
Using the hyperspherical adiabatic method with the realistic nuclear potentials Argonne V14, Argonne V18, and Argonne V18 with the Urbana IX three-body potential, we calculate the adiabatic potentials and the triton bound state energies. We find that a discrete variable representation with the slow variable discretization method along the hyperradial degree of freedom results in energies consistent with the literature. However, using a Laguerre basis results in missing energy, even when extrapolated to an infinite number of basis functions and channels. We do not include the isospin T = 3/2 contribution in our analysis.
NASA Astrophysics Data System (ADS)
Han, Jong Goo; Park, Tae Hee; Moon, Yong Ho; Eom, Il Kyu
2016-03-01
We propose an efficient Markov feature extraction method for color image splicing detection. The maximum value among the various directional difference values in the discrete cosine transform domain of three color channels is used to choose the Markov features. We show that the discriminability for slicing detection is increased through the maximization process from the point of view of the Kullback-Leibler divergence. In addition, we present a threshold expansion and Markov state decomposition algorithm. Threshold expansion reduces the information loss caused by the coefficient thresholding that is used to restrict the number of Markov features. To compensate the increased number of features due to the threshold expansion, we propose an even-odd Markov state decomposition algorithm. A fixed number of features, regardless of the difference directions, color channels and test datasets, are used in the proposed algorithm. We introduce three kinds of Markov feature vectors. The number of Markov features for splicing detection used in this paper is relatively small compared to the conventional methods, and our method does not require additional feature reduction algorithms. Through experimental simulations, we demonstrate that the proposed method achieves high performance in splicing detection.
NASA Astrophysics Data System (ADS)
Ye, Hezhou; Yin, Yanhua; Wang, Jianfeng
2015-08-01
While commercially available computational fluid dynamic packages are employed nowadays to analyze the spraying behavior of the cold spray (CS) system and optimize the nozzle geometry design, using these packages is often prohibitive because of complex computational resource requirements and expensive copyright licenses. This paper proposes a quick and economical method for predicting the performance of the CS system, while asking for minimal computational resource. A one-dimensional adiabatic friction model with the consideration of friction was developed to calculate the critical pressure of nozzles under different expansion ratios and the gas/particle velocity at different spraying conditions. The accuracy of the critical pressure calculation was evidenced by polymeric nozzle destructive tests. The particle velocities achieved from the nozzles with different expansion ratios were measured and compared with the velocity values calculated by the model. The suggested adiabatic friction model is validated by the well-matched values between the calculated results and the experimental data.
NASA Astrophysics Data System (ADS)
Kovalchuk, Valery I.
2014-11-01
In this paper, a method has been developed to solve three-particle Faddeev equations in the configuration space making use of a series expansion in hyperspherical harmonics. The following parameters of the bound state of triton and helium-3 nuclei have been calculated: the binding energies, the weights of symmetric and mixed-symmetry components of the wave function, the magnetic moments, and the charge radii.
Some Remarks on the Riccati Equation Expansion Method for Variable Separation of Nonlinear Models
NASA Astrophysics Data System (ADS)
Zhang, Yu-Peng; Dai, Chao-Qing
2015-10-01
Based on the Riccati equation expansion method, 11 kinds of variable separation solutions with different forms of (2+1)-dimensional modified Korteweg-de Vries equation are obtained. The following two remarks on the Riccati equation expansion method for variable separation are made: (i) a remark on the equivalence of different solutions constructed by the Riccati equation expansion method. From analysis, we find that these seemly independent solutions with different forms actually depend on each other, and they can transform from one to another via some relations. We should avoid arbitrarily asserting so-called "new" solutions; (ii) a remark on the construction of localised excitation based on variable separation solutions. For two or multi-component systems, we must be careful with excitation structures constructed by all components for the same model lest the appearance of some un-physical structures. We hope that these results are helpful to deeply study exact solutions of nonlinear models in physical, engineering and biophysical contexts.
Extensive Adiabatic Invariants for Nonlinear Chains
NASA Astrophysics Data System (ADS)
Giorgilli, Antonio; Paleari, Simone; Penati, Tiziano
2012-09-01
We look for extensive adiabatic invariants in nonlinear chains in the thermodynamic limit. Considering the quadratic part of the Klein-Gordon Hamiltonian, by a linear change of variables we transform it into a sum of two parts in involution. At variance with the usual method of introducing normal modes, our constructive procedure allows us to exploit the complete resonance, while keeping the extensive nature of the system. Next we construct a nonlinear approximation of an extensive adiabatic invariant for a perturbation of the discrete nonlinear Schrödinger model. The fluctuations of this quantity are controlled via Gibbs measure estimates independent of the system size, for a large set of initial data at low specific energy. Finally, by numerical calculations we show that our adiabatic invariant is well conserved for times much longer than predicted by our first order theory, with fluctuation much smaller than expected according to standard statistical estimates.
NASA Astrophysics Data System (ADS)
Lu, Wangtao; Qian, Jianliang; Burridge, Robert
2016-05-01
In some applications, it is reasonable to assume that geodesics (rays) have a consistent orientation so that the Helmholtz equation can be viewed as an evolution equation in one of the spatial directions. With such applications in mind, starting from Babich's expansion, we develop a new high-order asymptotic method, which we dub the fast Huygens sweeping method, for solving point-source Helmholtz equations in inhomogeneous media in the high-frequency regime and in the presence of caustics. The first novelty of this method is that we develop a new Eulerian approach to compute the asymptotics, i.e. the traveltime function and amplitude coefficients that arise in Babich's expansion, yielding a locally valid solution, which is accurate close enough to the source. The second novelty is that we utilize the Huygens-Kirchhoff integral to integrate many locally valid wavefields to construct globally valid wavefields. This automatically treats caustics and yields uniformly accurate solutions both near the source and remote from it. The third novelty is that the butterfly algorithm is adapted to accelerate the Huygens-Kirchhoff summation, achieving nearly optimal complexity O (Nlog N), where N is the number of mesh points; the complexity prefactor depends on the desired accuracy and is independent of the frequency. To reduce the storage of the resulting tables of asymptotics in Babich's expansion, we use the multivariable Chebyshev series expansion to compress each table by encoding the information into a small number of coefficients. The new method enjoys the following desired features. First, it precomputes the asymptotics in Babich's expansion, such as traveltime and amplitudes. Second, it takes care of caustics automatically. Third, it can compute the point-source Helmholtz solution for many different sources at many frequencies simultaneously. Fourth, for a specified number of points per wavelength, it can construct the wavefield in nearly optimal complexity in terms
Complexity of the Quantum Adiabatic Algorithm
NASA Technical Reports Server (NTRS)
Hen, Itay
2013-01-01
The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorithms.
Adiabatic approximation for nucleus-nucleus scattering
Johnson, R.C.
2005-10-14
Adiabatic approximations to few-body models of nuclear scattering are described with emphasis on reactions with deuterons and halo nuclei (frozen halo approximation) as projectiles. The different ways the approximation should be implemented in a consistent theory of elastic scattering, stripping and break-up are explained and the conditions for the theory's validity are briefly discussed. A formalism which links few-body models and the underlying many-body system is outlined and the connection between the adiabatic and CDCC methods is reviewed.
A study of the bending motion in tetratomic molecules by the algebraic operator expansion method.
Larese, Danielle; Caprio, Mark A; Pérez-Bernal, Francisco; Iachello, Francesco
2014-01-01
We study the bending motion in the tetratomic molecules C2H2 (X̃ (1)Σg (+)), C2H2 (Ã (1)Au) trans-S1, C2H2 (Ã (1)A2) cis-S1, and X̃ (1)A1 H2CO. We show that the algebraic operator expansion method with only linear terms comprised of the basic operators is able to describe the main features of the level energies in these molecules in terms of two (linear) or three (trans-bent, cis-bent, and branched) parameters. By including quadratic terms, the rms deviation in comparison with experiment goes down to typically ∼10 cm(-1) over the entire range of energy 0-6000 cm(-1). We determine the parameters by fitting the available data, and from these parameters we construct the algebraic potential functions. Our results are of particular interest in high-energy regions where spectra are very congested and conventional methods, force-field expansions or Dunham-expansions plus perturbations, are difficult to apply. PMID:24410226
Stochastic approach to the generalized Schrödinger equation: A method of eigenfunction expansion.
Tsuchida, Satoshi; Kuratsuji, Hiroshi
2015-05-01
Using a method of eigenfunction expansion, a stochastic equation is developed for the generalized Schrödinger equation with random fluctuations. The wave field ψ is expanded in terms of eigenfunctions: ψ=∑(n)a(n)(t)ϕ(n)(x), with ϕ(n) being the eigenfunction that satisfies the eigenvalue equation H(0)ϕ(n)=λ(n)ϕ(n), where H(0) is the reference "Hamiltonian" conventionally called the "unperturbed" Hamiltonian. The Langevin equation is derived for the expansion coefficient a(n)(t), and it is converted to the Fokker-Planck (FP) equation for a set {a(n)} under the assumption of Gaussian white noise for the fluctuation. This procedure is carried out by a functional integral, in which the functional Jacobian plays a crucial role in determining the form of the FP equation. The analyses are given for the FP equation by adopting several approximate schemes. PMID:26066158
Bazzani, A.; Turchetti, G.; Benedetti, C.; Rambaldi, S.; Servizi, G.
2005-06-08
In a high intensity circular accelerator the synchrotron dynamics introduces a slow modulation in the betatronic tune due to the space-charge tune depression. When the transverse motion is non-linear due to the presence of multipolar effects, resonance islands move in the phase space and change their amplitude. This effect introduces the trapping and detrapping phenomenon and a slow diffusion in the phase space. We apply the neo-adiabatic theory to describe this diffusion mechanism that can contribute to halo formation.
Fast Quasi-Adiabatic Gas Cooling: An Experiment Revisited
ERIC Educational Resources Information Center
Oss, S.; Gratton, L. M.; Calza, G.; Lopez-Arias, T.
2012-01-01
The well-known experiment of the rapid expansion and cooling of the air contained in a bottle is performed with a rapidly responsive, yet very cheap thermometer. The adiabatic, low temperature limit is approached quite closely and measured with our apparatus. A straightforward theoretical model for this process is also presented and discussed.…
Bleiziffer, Patrick; Krug, Marcel; Görling, Andreas
2015-06-28
A self-consistent Kohn-Sham method based on the adiabatic-connection fluctuation-dissipation (ACFD) theorem, employing the frequency-dependent exact exchange kernel fx is presented. The resulting SC-exact-exchange-only (EXX)-ACFD method leads to even more accurate correlation potentials than those obtained within the direct random phase approximation (dRPA). In contrast to dRPA methods, not only the Coulomb kernel but also the exact exchange kernel fx is taken into account in the EXX-ACFD correlation which results in a method that, unlike dRPA methods, is free of self-correlations, i.e., a method that treats exactly all one-electron systems, like, e.g., the hydrogen atom. The self-consistent evaluation of EXX-ACFD total energies improves the accuracy compared to EXX-ACFD total energies evaluated non-self-consistently with EXX or dRPA orbitals and eigenvalues. Reaction energies of a set of small molecules, for which highly accurate experimental reference data are available, are calculated and compared to quantum chemistry methods like Møller-Plesset perturbation theory of second order (MP2) or coupled cluster methods [CCSD, coupled cluster singles, doubles, and perturbative triples (CCSD(T))]. Moreover, we compare our methods to other ACFD variants like dRPA combined with perturbative corrections such as the second order screened exchange corrections or a renormalized singles correction. Similarly, the performance of our EXX-ACFD methods is investigated for the non-covalently bonded dimers of the S22 reference set and for potential energy curves of noble gas, water, and benzene dimers. The computational effort of the SC-EXX-ACFD method exhibits the same scaling of N(5) with respect to the system size N as the non-self-consistent evaluation of only the EXX-ACFD correlation energy; however, the prefactor increases significantly. Reaction energies from the SC-EXX-ACFD method deviate quite little from EXX-ACFD energies obtained non-self-consistently with dRPA orbitals
Bleiziffer, Patrick Krug, Marcel; Görling, Andreas
2015-06-28
A self-consistent Kohn-Sham method based on the adiabatic-connection fluctuation-dissipation (ACFD) theorem, employing the frequency-dependent exact exchange kernel f{sub x} is presented. The resulting SC-exact-exchange-only (EXX)-ACFD method leads to even more accurate correlation potentials than those obtained within the direct random phase approximation (dRPA). In contrast to dRPA methods, not only the Coulomb kernel but also the exact exchange kernel f{sub x} is taken into account in the EXX-ACFD correlation which results in a method that, unlike dRPA methods, is free of self-correlations, i.e., a method that treats exactly all one-electron systems, like, e.g., the hydrogen atom. The self-consistent evaluation of EXX-ACFD total energies improves the accuracy compared to EXX-ACFD total energies evaluated non-self-consistently with EXX or dRPA orbitals and eigenvalues. Reaction energies of a set of small molecules, for which highly accurate experimental reference data are available, are calculated and compared to quantum chemistry methods like Møller-Plesset perturbation theory of second order (MP2) or coupled cluster methods [CCSD, coupled cluster singles, doubles, and perturbative triples (CCSD(T))]. Moreover, we compare our methods to other ACFD variants like dRPA combined with perturbative corrections such as the second order screened exchange corrections or a renormalized singles correction. Similarly, the performance of our EXX-ACFD methods is investigated for the non-covalently bonded dimers of the S22 reference set and for potential energy curves of noble gas, water, and benzene dimers. The computational effort of the SC-EXX-ACFD method exhibits the same scaling of N{sup 5} with respect to the system size N as the non-self-consistent evaluation of only the EXX-ACFD correlation energy; however, the prefactor increases significantly. Reaction energies from the SC-EXX-ACFD method deviate quite little from EXX-ACFD energies obtained non
An Improved ((G'/G))-expansion Method for Solving Nonlinear PDEs in Mathematical Physics
Zayed, Elsayed M. E.; Al-Joudi, Shorog
2010-09-30
In the present article, we construct the traveling wave solutions of the (1+1)-dimensional coupled Hirota-Satsuma-KdV equations and the (1+1)-dimensional variant coupled Boussinesq system of equations by using an improved ((G'/G))-expansion method, where G satisfies the second order linear ordinary differential equation. As a result, hyperbolic, trigonometric and rational function solutions with parameters are obtained. It is shown that the proposed method is direct, effective and can be used for many other nonlinear evolution equations in mathematical physics.
Expanded-mode semiconductor laser with tapered-rib adiabatic-following fiber coupler
Vawter, G.A.; Smith, R.E.; Hou, H.; Wendt, J.R.
1997-02-01
A new diode laser using a Tapered-Rib Adiabatic-Following Fiber Coupler to achieve 2D mode expansion and narrow, symmetric far-field emission without epitaxial regrowth or sharply-defined tips on tapered waveguides is presented.
Adiabatic heating in impulsive solar flares
NASA Technical Reports Server (NTRS)
Maetzler, C.; Bai, T.; Crannell, C. J.; Frost, K. J.
1978-01-01
A study is made of adiabatic heating in two impulsive solar flares on the basis of dynamic X-ray spectra in the 28-254 keV range, H-alpha, microwave, and meter-wave radio observations. It is found that the X-ray spectra of the events are like those of thermal bremsstrahlung from single-temperature plasmas in the 10-60 keV range if photospheric albedo is taken into account. The temperature-emission correlation indicates adiabatic compression followed by adiabatic expansion and that the electron distribution remains isotropic. H-alpha data suggest compressive energy transfer. The projected areas and volumes of the flares are estimated assuming that X-ray and microwave emissions are produced in a single thermal plasma. Electron densities of about 10 to the 9th/cu cm are found for homogeneous, spherically symmetric sources. It is noted that the strong self-absorption of hot-plasma gyrosynchrotron radiation reveals low magnetic field strengths.
Yang, W.; Wu, H.; Cao, L.
2012-07-01
More and more MOX fuels are used in all over the world in the past several decades. Compared with UO{sub 2} fuel, it contains some new features. For example, the neutron spectrum is harder and more resonance interference effects within the resonance energy range are introduced because of more resonant nuclides contained in the MOX fuel. In this paper, the wavelets scaling function expansion method is applied to study the resonance behavior of plutonium isotopes within MOX fuel. Wavelets scaling function expansion continuous-energy self-shielding method is developed recently. It has been validated and verified by comparison to Monte Carlo calculations. In this method, the continuous-energy cross-sections are utilized within resonance energy, which means that it's capable to solve problems with serious resonance interference effects without iteration calculations. Therefore, this method adapts to treat the MOX fuel resonance calculation problem natively. Furthermore, plutonium isotopes have fierce oscillations of total cross-section within thermal energy range, especially for {sup 240}Pu and {sup 242}Pu. To take thermal resonance effect of plutonium isotopes into consideration the wavelet scaling function expansion continuous-energy resonance calculation code WAVERESON is enhanced by applying the free gas scattering kernel to obtain the continuous-energy scattering source within thermal energy range (2.1 eV to 4.0 eV) contrasting against the resonance energy range in which the elastic scattering kernel is utilized. Finally, all of the calculation results of WAVERESON are compared with MCNP calculation. (authors)
NASA Astrophysics Data System (ADS)
Chuang, C.-I.; Nyquist, D. P.; Chen, K.-M.; Drachman, B. C.
1985-10-01
The impulse response of an infinite, perfectly conducting thick cylinder to normally incident, transversely polarized, impulsive plane wave illumination is determined. Spectral-domain analysis based upon the singularity expansion method reveals that this response consists of a discrete series of natural resonance modes (natural frequencies are computed) augmented by a series of continuous-spectrum terms. The resultant late-time response demonstrates the correct 'creeping wave' behavior as predicted by the Fourier synthesis technique, but with far fewer terms required for convergence.
Axial expansion methods for solution of the multi-dimensional neutron diffusion equation
Beaklini Filho, J.F.
1984-01-01
The feasibility and practical implementation of axial expansion methods for the solution of the multi-dimensional multigroup neutron diffusion (MGD) equations is investigated. The theoretical examination which is applicable to the general MGD equations in arbitrary geometry includes the derivation of a new weak (reduced) form of the MGD equations by expanding the axial component of the neutron flux in a series of known trial functions and utilizing the Galerkin weighting. A general two-group albedo boundary condition is included in the weak form as a natural boundary condition. The application of different types of trial functions is presented.
Rapid maxillary expansion effects: An alternative assessment method by means of cone-beam tomography
Melgaço, Camilo Aquino; Columbano, José; Jurach, Estela Maris; Nojima, Matilde da Cunha Gonçalves; Sant'Anna, Eduardo Franzotti; Nojima, Lincoln Issamu
2014-01-01
INTRODUCTION: This study aims to develop a method to assess the changes in palatal and lingual cross-sectional areas in patients submitted to rapid maxillary expansion (RME). METHODS: The sample comprised 31 Class I malocclusion individuals submitted to RME and divided into two groups treated with Haas (17 patients) and Hyrax (14 patients) expanders. Cone-beam computed tomography scans were acquired at T0 (before expansion ) and T1 (six months after screw stabilization). Maxillary and mandibular cross-sectional areas were assessed at first permanent molars and first premolars regions and compared at T0 and T1. Mandibular occlusal area was also analyzed. RESULTS: Maxillary cross-sectional areas increased in 56.18 mm2 and 44.32 mm2 for the posterior and anterior regions. These values were smaller for the mandible, representing augmentation of 40.32 mm2 and 39.91 mm2 for posterior and anterior sections. No differences were found when comparing both expanders. Mandibular occlusal area increased 43.99mm2 and mandibular incisors proclined. Increments of 1.74 mm and 1.7 mm occurred in mandibular intermolar and interpremolar distances. These same distances presented increments of 5.5 mm and 5.57 mm for the maxillary arch. CONCLUSION: Occlusal and cross-sectional areas increased significantly after RME. The method described seems to be reliable and precise to assess intraoral area changes. PMID:25715721
Geometry of the Adiabatic Theorem
ERIC Educational Resources Information Center
Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas
2012-01-01
We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…
Non-adiabatic resonant conversion of solar neutrinos in three generations
NASA Astrophysics Data System (ADS)
Kim, C. W.; Nussinov, S.; Sze, W. K.
1987-02-01
The survival probability of solar electron neutrinos after non-adiabatic passage through the resonance-oscillation region in the Sun is discussed for the case of three generations. A method to calculate three-generation Landau-Zener transition probabilities between adiabatic states is described. We also discuss how the Landua-Zener probability is modified in the extreme non-adiabatic case.
Time-domain incident-field extrapolation technique based on the singularity-expansion method
Klaasen, J.J.
1991-05-01
In this report, a method presented to extrapolate measurements from Nuclear Electromagnetic Pulse (NEMP) assessments directly in the time domain. This method is based on a time-domain extrapolation function which is obtained from the Singularity Expansion Method representation of the measured incident field of the NEMP simulator. Once the time-domain extrapolation function is determined, the responses recorded during an assessment can be extrapolated simply by convolving them with the time domain extrapolation function. It is found that to obtain useful extrapolated responses, the incident field measurements needs to be made minimum phase; otherwise unbounded results can be obtained. Results obtained with this technique are presented, using data from actual assessments.
Method for fabricating an ultra-low expansion mask blank having a crystalline silicon layer
Cardinale, Gregory F.
2002-01-01
A method for fabricating masks for extreme ultraviolet lithography (EUVL) using Ultra-Low Expansion (ULE) substrates and crystalline silicon. ULE substrates are required for the necessary thermal management in EUVL mask blanks, and defect detection and classification have been obtained using crystalline silicon substrate materials. Thus, this method provides the advantages for both the ULE substrate and the crystalline silicon in an Extreme Ultra-Violet (EUV) mask blank. The method is carried out by bonding a crystalline silicon wafer or member to a ULE wafer or substrate and thinning the silicon to produce a 5-10 .mu.m thick crystalline silicon layer on the surface of the ULE substrate. The thinning of the crystalline silicon may be carried out, for example, by chemical mechanical polishing and if necessary or desired, oxidizing the silicon followed by etching to the desired thickness of the silicon.
A Modal Expansion Equilibrium Cycle Perturbation Method for Optimizing High Burnup Fast Reactors
NASA Astrophysics Data System (ADS)
Touran, Nicholas W.
This dissertation develops a simulation tool capable of optimizing advanced nuclear reactors considering the multiobjective nature of their design. An Enhanced Equilibrium Cycle (EEC) method based on the classic equilibrium method is developed to evaluate the response of the equilibrium cycle to changes in the core design. Advances are made in the consideration of burnup-dependent cross sections and dynamic fuel performance (fission gas release, fuel growth, and bond squeeze-out) to allow accuracy in high-burnup reactors such as the Traveling Wave Reactor. EEC is accelerated for design changes near a reference state through a new modal expansion perturbation method that expands arbitrary flux perturbations on a basis of λ-eigenmodes. A code is developed to solve the 3-D, multigroup diffusion equation with an Arnoldi-based solver that determines hundreds of the reference flux harmonics and later uses these harmonics to determine expansion coefficients required to approximate the perturbed flux. The harmonics are only required for the reference state, and many substantial and localized perturbations from this state are shown to be well-approximated with efficient expressions after the reference calculation is performed. The modal expansion method is coupled to EEC to produce the later-in-time response of each design perturbation. Because the code determines the perturbed flux explicitly, a wide variety of core performance metrics may be monitored by working within a recently-developed data management system called the ARMI. Through ARMI, the response of each design perturbation may be evaluated not only for the flux and reactivity, but also for reactivity coefficients, thermal hydraulics parameters, economics, and transient performance. Considering the parameters available, an automated optimization framework is designed and implemented. A non-parametric surrogate model using the Alternating Conditional Expectation (ACE) algorithm is trained with many design
SU-E-J-221: A Novel Expansion Method for MRI Based Target Delineation in Prostate Radiotherapy
Ruiz, B; Feng, Y; Shores, R; Fung, C
2015-06-15
Purpose: To compare a novel bladder/rectum carveout expansion method on MRI delineated prostate to standard CT and expansion based methods for maintaining prostate coverage while providing superior bladder and rectal sparing. Methods: Ten prostate cases were planned to include four trials: MRI vs CT delineated prostate/proximal seminal vesicles, and each image modality compared to both standard expansions (8mm 3D expansion and 5mm posterior, i.e. ∼8mm) and carveout method expansions (5mm 3D expansion, 4mm posterior for GTV-CTV excluding expansion into bladder/rectum followed by additional 5mm 3D expansion to PTV, i.e. ∼1cm). All trials were planned to total dose 7920 cGy via IMRT. Evaluation and comparison was made using the following criteria: QUANTEC constraints for bladder/rectum including analysis of low dose regions, changes in PTV volume, total control points, and maximum hot spot. Results: ∼8mm MRI expansion consistently produced the most optimal plan with lowest total control points and best bladder/rectum sparing. However, this scheme had the smallest prostate (average 22.9% reduction) and subsequent PTV volume, consistent with prior literature. ∼1cm MRI had an average PTV volume comparable to ∼8mm CT at 3.79% difference. Bladder QUANTEC constraints were on average less for the ∼1cm MRI as compared to the ∼8mm CT and observed as statistically significant with 2.64% reduction in V65. Rectal constraints appeared to follow the same trend. Case-by-case analysis showed variation in rectal V30 with MRI delineated prostate being most favorable regardless of expansion type. ∼1cm MRI and ∼8mm CT had comparable plan quality. Conclusion: MRI delineated prostate with standard expansions had the smallest PTV leading to margins that may be too tight. Bladder/rectum carveout expansion method on MRI delineated prostate was found to be superior to standard CT based methods in terms of bladder and rectal sparing while maintaining prostate coverage
An operator expansion method for computing nonlinear surface waves on a ferrofluid jet
NASA Astrophysics Data System (ADS)
Guyenne, Philippe; Părău, Emilian I.
2016-09-01
We present a new numerical method to simulate the time evolution of axisymmetric nonlinear waves on the surface of a ferrofluid jet. It is based on the reduction of this problem to a lower-dimensional computation involving surface variables alone. To do so, we describe the associated Dirichlet-Neumann operator in terms of a Taylor series expansion where each term can be efficiently computed by a pseudo-spectral scheme using the fast Fourier transform. We show detailed numerical tests on the convergence of this operator and, to illustrate the performance of our method, we simulate the long-time propagation and pairwise collisions of axisymmetric solitary waves. Both depression and elevation waves are examined by varying the magnetic field. Comparisons with weakly nonlinear predictions are also provided.
Spherical Harmonic Expansion Method for Coupled Electron-Phonon Boltzmann Transport
NASA Astrophysics Data System (ADS)
Santia, Marco; Albrecht, John
2014-03-01
Thermoelectric transport modeling often relies on independent Boltzmann transport equations (BTEs) for electrons and phonons which work best near equilibrium (linearized) and steady-state. Device design relies heavily on this baseline approximation. Monte Carlo methods can allow for complex physical interactions (e.g., anharmonicity) but their stochastic nature has practical limits. Distribution functions with wide disparities in population (e.g., ratios >108 between majority and minority carriers.[1]) are a computational challenge. We present a coupled BTE solver based on a k-space spherical harmonic expansion (SHE) of the distribution functions and eigenstates of electrons and phonons. The method is deterministic and allows for detailed treatments of scattering processes, yet ameliorates the issues with population disparity within phase space. We set the formalism and examine the accuracy of the SHE for phonon band structures, calculate scattering rates determined within that representation, and compare our preliminary results for distribution statistics in control examples such as thermal conductivity and drift velocity.
Pole positions and residues from pion photoproduction using the Laurent-Pietarinen expansion method
NASA Astrophysics Data System (ADS)
Švarc, Alfred; Hadžimehmedović, Mirza; Osmanović, Hedim; Stahov, Jugoslav; Tiator, Lothar; Workman, Ron L.
2014-06-01
We applied a new approach to determine the pole positions and residues from pion photoproduction multipoles. The method is based on a Laurent expansion of the partial-wave T matrices, with a Pietarinen series representing the regular part of energy-dependent and single-energy photoproduction solutions. The method is applied to multipole fits generated by the MAID and George Washington University SAID (GWU-SAID) groups. We show that the number and properties of poles extracted from photoproduction data correspond very well to results from πN elastic data and values cited by the Particle Data Group (PDG). The photoproduction residues provide new information for the electromagnetic current at the pole position, which are independent of background parametrizations, which is not the case for the Breit-Wigner representation. Finally, we present the photodecay amplitudes from the current MAID and SAID solutions at the pole for all four-star nucleon resonances below W =2 GeV.
Application of Gaussian expansion method to nuclear mean-field calculations with deformation
NASA Astrophysics Data System (ADS)
Nakada, H.
2008-08-01
We extensively develop a method of implementing mean-field calculations for deformed nuclei, using the Gaussian expansion method (GEM). This GEM algorithm has the following advantages: (i) it can efficiently describe the energy-dependent asymptotics of the wave functions at large r, (ii) it is applicable to various effective interactions including those with finite ranges, and (iii) the basis parameters are insensitive to nuclide, thereby many nuclei in wide mass range can be handled by a single set of bases. Superposing the spherical GEM bases with feasible truncation for the orbital angular momentum, we obtain deformed single-particle wave-functions to reasonable precision. We apply the new algorithm to the Hartree-Fock and the Hartree-Fock-Bogolyubov calculations of Mg nuclei with the Gogny interaction, by which neck structure of a deformed neutron halo is suggested for 40Mg.
Validation of the activity expansion method with ultrahigh pressure shock equations of state
NASA Astrophysics Data System (ADS)
Rogers, Forrest J.; Young, David A.
1997-11-01
Laser shock experiments have recently been used to measure the equation of state (EOS) of matter in the ultrahigh pressure region between condensed matter and a weakly coupled plasma. Some ultrahigh pressure data from nuclear-generated shocks are also available. Matter at these conditions has proven very difficult to treat theoretically. The many-body activity expansion method (ACTEX) has been used for some time to calculate EOS and opacity data in this region, for use in modeling inertial confinement fusion and stellar interior plasmas. In the present work, we carry out a detailed comparison with the available experimental data in order to validate the method. The agreement is good, showing that ACTEX adequately describes strongly shocked matter.
Calculation of Coherent Synchrotron Radiation Impedance Using the Mode Expansion Method
Stupakov, G.V.; Kotelnikov, I.A.; /Novosibirsk, IYF
2009-12-09
We study an impedance due to coherent synchrotron radiation (CSR) generated by a short bunch of charged particles passing through a dipole magnet of finite length in a vacuum chamber of a given cross section. In our method we decompose the electromagnetic field of the beam over the eigenmodes of the toroidal chamber and derive a system of equations for the expansion coefficients in the series. The general method is further specialized for a toroidal vacuum chamber of a rectangular cross section where the eigenmodes can be computed analytically. We also develop a computer code that calculates the CSR impedance for a toroid of rectangular cross section. Numerical results obtained with the code are presented in the paper.
Zhang, Yongliang; Chen, Yu; Li, David Day-Uei
2016-06-27
Fast deconvolution is an essential step to calibrate instrument responses in big fluorescence lifetime imaging microscopy (FLIM) image analysis. This paper examined a computationally effective least squares deconvolution method based on Laguerre expansion (LSD-LE), recently developed for clinical diagnosis applications, and proposed new criteria for selecting Laguerre basis functions (LBFs) without considering the mutual orthonormalities between LBFs. Compared with the previously reported LSD-LE, the improved LSD-LE allows to use a higher laser repetition rate, reducing the acquisition time per measurement. Moreover, we extended it, for the first time, to analyze bi-exponential fluorescence decays for more general FLIM-FRET applications. The proposed method was tested on both synthesized bi-exponential and realistic FLIM data for studying the endocytosis of gold nanorods in Hek293 cells. Compared with the previously reported constrained LSD-LE, it shows promising results. PMID:27410552
Adiabatic principles in atom-diatom collisional energy transfer
Hovingh, W.J.
1993-01-01
This work describes the application of numerical methods to the solution of the time dependent Schroedinger equation for non-reactive atom-diatom collisions in which only one of the degrees of freedom has been removed. The basic method involves expanding the wave function in a basis set in two of the diatomic coordinates in a body-fixed frame (with respect to the triatomic complex) and defining the coefficients in that expansion as functions on a grid in the collision coordinate. The wave function is then propagated in time using a split operator method. The bulk of this work is devoted to the application of this formalism to the study of internal rotational predissociation in NeHF, in which quasibound states of the triatom predissociate through the transfer of energy from rotation of the diatom into translational energy in the atom-diatom separation coordinate. The author analyzes the computed time dependent wave functions to calculate the lifetimes for several quasibound states; these are in agreement with time independent quantum calculations using the same potential. Moreover, the time dependent behavior of the wave functions themselves sheds light on the dynamics of the predissociation processes. Finally, the partial cross sections of the products in those processes is determined with multiple exit channels. These show strong selectivity in the orbital angular momentum of the outgoing fragments, which the author explains with an adiabatic channel interpretation of the wave function's dynamics. The author also suggests that the same formalism might profitably be used to investigate the quantum dynamics of [open quotes]quasiresonant vibration-rotation transfer[close quotes], in which remarkably strong propensity rules in certain inelastic atom-diatom collision arise from classical adiabatic invariance theory.
Feasibility of a wavelet expansion method to treat energy in cell calculations
Van Rooijen, W. F. G.
2012-07-01
This paper discusses the application of the Discrete Wavelet Transform (DWT) for the functional expansion of the energy variable in a cell calculation. The motivation of the work is the desire to obtain a self-shielding methodology in which the treatment of the energy variable in a given material region can be automatically adapted to the complexity of the cross section in that region. Unfortunately, the work presented in this paper shows that it is generally not possible to obtain the desired adaptivity. The most fundamental reason is that in a multi-region system, the energy dependence of the flux in a given material region is a function of the energy dependent cross sections and sources in all material regions through which the neutrons have crossed before entering into the present material. The complexity of the energy dependence of the cross section in a material region is thus not necessarily linked to the energy dependence of the flux in that region. If one sacrifices the objective of adaptivity, then an accurate method can be obtained using the DWT as a functional expansion. However, the resulting system of equations is more complicated than the direct solution of a hyper-fine group calculation. The conclusion is thus that the DWT approach is not very practical. (authors)
Plume expansion of a laser-induced plasma studied with the particle-in-cell method
NASA Astrophysics Data System (ADS)
Ellegaard, O.; Nedelea, T.; Schou, J.; Urbassek, H. M.
2002-09-01
The initial stage of laser-induced plasma plume expansion from a solid in vacuum and the effect of the Coulomb field have been studied. We have performed a one-dimensional numerical calculation by mapping the charge on a computational grid according to the particle-in-cell (PIC) method of Birdsall et al. It is assumed that the particle ablation from a surface with a fixed temperature takes place as a pulse, i.e. within a finite period of time. A number of characteristic quantities for the plasma plume are compared with similar data for expansion of neutrals as well as fluid models: Density profiles n( x, t), velocity distributions of ions u( x, t), distribution functions for velocities F( vx) of ions or electrons as well as the time dependence of kinetic energy Ekin( t) for both type of particles. We found a significant increase in the velocities of the ions at the expense of field potential energy as well as electron energy. We have estimated the time constant for energy transfer between the electrons and the ions. The scaling of these processes is given by a single parameter determined by the Debye length obtained from the electron density in the plasma outside the surface.
Startup of the RFP in a quasi-adiabatic mode
Caramana, E.J.
1980-01-01
The equations describing the purely adiabatic formation of the reversed-field pinch are solved. This method of formation in principle remedies the problem of flux consumption during the startup phase of this device.
Nishimoto, Yoshio
2015-09-07
We develop a formalism for the calculation of excitation energies and excited state gradients for the self-consistent-charge density-functional tight-binding method with the third-order contributions of a Taylor series of the density functional theory energy with respect to the fluctuation of electron density (time-dependent density-functional tight-binding (TD-DFTB3)). The formulation of the excitation energy is based on the existing time-dependent density functional theory and the older TD-DFTB2 formulae. The analytical gradient is computed by solving Z-vector equations, and it requires one to calculate the third-order derivative of the total energy with respect to density matrix elements due to the inclusion of the third-order contributions. The comparison of adiabatic excitation energies for selected small and medium-size molecules using the TD-DFTB2 and TD-DFTB3 methods shows that the inclusion of the third-order contributions does not affect excitation energies significantly. A different set of parameters, which are optimized for DFTB3, slightly improves the prediction of adiabatic excitation energies statistically. The application of TD-DFTB for the prediction of absorption and fluorescence energies of cresyl violet demonstrates that TD-DFTB3 reproduced the experimental fluorescence energy quite well.
Nishimoto, Yoshio
2015-09-01
We develop a formalism for the calculation of excitation energies and excited state gradients for the self-consistent-charge density-functional tight-binding method with the third-order contributions of a Taylor series of the density functional theory energy with respect to the fluctuation of electron density (time-dependent density-functional tight-binding (TD-DFTB3)). The formulation of the excitation energy is based on the existing time-dependent density functional theory and the older TD-DFTB2 formulae. The analytical gradient is computed by solving Z-vector equations, and it requires one to calculate the third-order derivative of the total energy with respect to density matrix elements due to the inclusion of the third-order contributions. The comparison of adiabatic excitation energies for selected small and medium-size molecules using the TD-DFTB2 and TD-DFTB3 methods shows that the inclusion of the third-order contributions does not affect excitation energies significantly. A different set of parameters, which are optimized for DFTB3, slightly improves the prediction of adiabatic excitation energies statistically. The application of TD-DFTB for the prediction of absorption and fluorescence energies of cresyl violet demonstrates that TD-DFTB3 reproduced the experimental fluorescence energy quite well. PMID:26342360
NASA Astrophysics Data System (ADS)
Sai Venkata Ramana, A.
2016-01-01
In this paper, we have applied the seventh order version of coupling parameter expansion (CPE) method combined with global renormalization group theory (GRGT) to square well fluids of various ranges and have performed the following studies. Firstly, the convergence of the GRGT iteration scheme has been studied. It is observed that the point-wise convergence is non-uniform and slow in the coexistence region away from the critical point. However, the point-wise convergence improved as the critical temperature is approached. Secondly, we have obtained the liquid-vapor phase diagrams (LVPDs) for the square well fluids. The LVPDs obtained using GRGT corrected seventh order CPE are significantly accurate over those obtained from GRGT corrected 1-order thermodynamic perturbation theory (TPT). Also, excessive flatness of LVPDs close to the critical region as observed in GRGT corrected 1-order TPT has not been seen in the LVPDs of present method. Thirdly, the critical exponents have been obtained using present method. The exponents are seen to be of Ising universality class and follow the Rushbrooke and Griffiths equalities qualitatively. Finally, a study of Yang-Yang anomaly has been done using our method. It has been observed that the method predicts the existence of the anomaly but the predictions of the strength of anomaly differed from those of simulations. The reasons for the differences are analyzed.
High order spatial expansion for the method of characteristics applied to 3-D geometries
Naymeh, L.; Masiello, E.; Sanchez, R.
2013-07-01
The method of characteristics is an efficient and flexible technique to solve the neutron transport equation and has been extensively used in two-dimensional calculations because it permits to deal with complex geometries. However, because of a very fast increase in storage requirements and number of floating operations, its direct application to three-dimensional routine transport calculations it is not still possible. In this work we introduce and analyze several modifications aimed to reduce memory requirements and to diminish the computing burden. We explore high-order spatial approximation, the use of intermediary trajectory-dependent flux expansions and the possibility of dynamic trajectory reconstruction from local tracking for typed subdomains. (authors)
Error analysis of the quadratic nodal expansion method in slab geometry
Penland, R.C.; Turinsky, P.J.; Azmy, Y.Y.
1994-10-01
As part of an effort to develop an adaptive mesh refinement strategy for use in state-of-the-art nodal diffusion codes, the authors derive error bounds on the solution variables of the quadratic Nodal Expansion Method (NEM) in slab geometry. Closure of the system is obtained through flux discontinuity relationships and boundary conditions. In order to verify the analysis presented, the authors compare the quadratic NEM to the analytic solution of a test problem. The test problem for this investigation is a one-dimensional slab [0,20cm] with L{sup 2} = 6.495cm{sup 2} and D = 0.1429cm. The slab has a unit neutron source distributed uniformly throughout and zero flux boundary conditions. The analytic solution to this problem is used to compute the node-average fluxes over a variety of meshes, and these are used to compute the NEM maximum error on each mesh.
NASA Astrophysics Data System (ADS)
Tang, Chen; Zhang, Junjiang; Sun, Chen; Su, Yonggang; Su, Kai Leung
2015-05-01
Nuclear graphite has been widely used as moderating and reflecting materials. However, due to severe neutron irradiation under high temperature, nuclear graphite is prone to deteriorate, resulting in massive microscopic flaws and even cracks under large stress in the later period of its service life. It is indispensable, therefore, to understand the fracture behavior of nuclear graphite to provide reference to structural integrity and safety analysis of nuclear graphite members in reactors. In this paper, we investigated the fracture expansion in nuclear graphite based on PDE image processing methods. We used the second-order oriented partial differential equations filtering model (SOOPDE) to denoise speckle noise, then used the oriented gradient vector fields for to obtain skeletons. The full-field displacement of fractured nuclear graphite and the location of the crack tip were lastly measured under various loading conditions.
NASA Astrophysics Data System (ADS)
Olsen, Jeppe
2014-07-01
A novel algorithm is introduced for the transformation of wave functions between the bases of Slater determinants (SD) and configuration state functions (CSF) in the genealogical coupling scheme. By modifying the expansion coefficients as each electron is spin-coupled, rather than performing a single many-electron transformation, the large transformation matrix that plagues previous approaches is avoided and the required number of operations is drastically reduced. As an example of the efficiency of the algorithm, the transformation for a configuration with 30 unpaired electrons and singlet spin is discussed. For this case, the 10 × 106 coefficients in the CSF basis is obtained from the 150 × 106 coefficients in the SD basis in 1 min, which should be compared with the seven years that the previously employed method is estimated to require.
Olsen, Jeppe
2014-07-21
A novel algorithm is introduced for the transformation of wave functions between the bases of Slater determinants (SD) and configuration state functions (CSF) in the genealogical coupling scheme. By modifying the expansion coefficients as each electron is spin-coupled, rather than performing a single many-electron transformation, the large transformation matrix that plagues previous approaches is avoided and the required number of operations is drastically reduced. As an example of the efficiency of the algorithm, the transformation for a configuration with 30 unpaired electrons and singlet spin is discussed. For this case, the 10 × 10(6) coefficients in the CSF basis is obtained from the 150 × 10(6) coefficients in the SD basis in 1 min, which should be compared with the seven years that the previously employed method is estimated to require. PMID:25053306
Lattice Boltzmann method for bosons and fermions and the fourth-order Hermite polynomial expansion.
Coelho, Rodrigo C V; Ilha, Anderson; Doria, Mauro M; Pereira, R M; Aibe, Valter Yoshihiko
2014-04-01
The Boltzmann equation with the Bhatnagar-Gross-Krook collision operator is considered for the Bose-Einstein and Fermi-Dirac equilibrium distribution functions. We show that the expansion of the microscopic velocity in terms of Hermite polynomials must be carried to the fourth order to correctly describe the energy equation. The viscosity and thermal coefficients, previously obtained by Yang et al. [Shi and Yang, J. Comput. Phys. 227, 9389 (2008); Yang and Hung, Phys. Rev. E 79, 056708 (2009)] through the Uehling-Uhlenbeck approach, are also derived here. Thus the construction of a lattice Boltzmann method for the quantum fluid is possible provided that the Bose-Einstein and Fermi-Dirac equilibrium distribution functions are expanded to fourth order in the Hermite polynomials. PMID:24827360
Olsen, Jeppe
2014-07-21
A novel algorithm is introduced for the transformation of wave functions between the bases of Slater determinants (SD) and configuration state functions (CSF) in the genealogical coupling scheme. By modifying the expansion coefficients as each electron is spin-coupled, rather than performing a single many-electron transformation, the large transformation matrix that plagues previous approaches is avoided and the required number of operations is drastically reduced. As an example of the efficiency of the algorithm, the transformation for a configuration with 30 unpaired electrons and singlet spin is discussed. For this case, the 10 × 10{sup 6} coefficients in the CSF basis is obtained from the 150 × 10{sup 6} coefficients in the SD basis in 1 min, which should be compared with the seven years that the previously employed method is estimated to require.
Comparing regression methods for the two-stage clonal expansion model of carcinogenesis.
Kaiser, J C; Heidenreich, W F
2004-11-15
In the statistical analysis of cohort data with risk estimation models, both Poisson and individual likelihood regressions are widely used methods of parameter estimation. In this paper, their performance has been tested with the biologically motivated two-stage clonal expansion (TSCE) model of carcinogenesis. To exclude inevitable uncertainties of existing data, cohorts with simple individual exposure history have been created by Monte Carlo simulation. To generate some similar properties of atomic bomb survivors and radon-exposed mine workers, both acute and protracted exposure patterns have been generated. Then the capacity of the two regression methods has been compared to retrieve a priori known model parameters from the simulated cohort data. For simple models with smooth hazard functions, the parameter estimates from both methods come close to their true values. However, for models with strongly discontinuous functions which are generated by the cell mutation process of transformation, the Poisson regression method fails to produce reliable estimates. This behaviour is explained by the construction of class averages during data stratification. Thereby, some indispensable information on the individual exposure history was destroyed. It could not be repaired by countermeasures such as the refinement of Poisson classes or a more adequate choice of Poisson groups. Although this choice might still exist we were unable to discover it. In contrast to this, the individual likelihood regression technique was found to work reliably for all considered versions of the TSCE model. PMID:15490436
NASA Astrophysics Data System (ADS)
Huang, He
In this thesis, I present the results of studies of the structural properties and phase transition of a charge neutral FCC Lattice Gas with Yukawa Interaction and discuss a novel fast calculation algorithm---Accelerated Cartesian Expansion (ACE) method. In the first part of my thesis, I discuss the results of Monte Carlo simulations carried out to understand the finite temperature (phase transition) properties and the ground state structure of a Yukawa Lattice Gas (YLG) model. In this model the ions interact via the potential q iqjexp(-kappar> ij)/rij where qi,j are the charges of the ions located at the lattice sites i and j with position vectors R i and Rj; rij = Ri-Rj, kappa is a measure of the range of the interaction and is called the screening parameter. This model approximates an interesting quaternary system of great current thermoelectric interest called LAST-m, AgSbPbmTem+2. I have also developed rapid calculation methods for the potential energy calculation in a lattice gas system with periodic boundary condition bases on the Ewald summation method and coded the algorithm to compute the energies in MC simulation. Some of the interesting results of the MC simulations are: (i) how the nature and strength of the phase transition depend on the range of interaction (Yukawa screening parameter kappa) (ii) what is the degeneracy of the ground state for different values of the concentration of charges, and (iii) what is the nature of two-stage disordering transition seen for certain values of x. In addition, based on the analysis of the surface energy of different nano-clusters formed near the transition temperature, the solidification process and the rate of production of these nano-clusters have been studied. In the second part of my thesis, we have developed two methods for rapidly computing potentials of the form R-nu. Both these methods are founded on addition theorems based on Taylor expansions. Taylor's series has a couple of inherent advantages: (i) it
Multisurface Adiabatic Reactive Molecular Dynamics.
Nagy, Tibor; Yosa Reyes, Juvenal; Meuwly, Markus
2014-04-01
Adiabatic reactive molecular dynamics (ARMD) simulation method is a surface-crossing algorithm for modeling chemical reactions in classical molecular dynamics simulations using empirical force fields. As the ARMD Hamiltonian is time dependent during crossing, it allows only approximate energy conservation. In the current work, the range of applicability of conventional ARMD is explored, and a new multisurface ARMD (MS-ARMD) method is presented, implemented in CHARMM and applied to the vibrationally induced photodissociation of sulfuric acid (H2SO4) in the gas phase. For this, an accurate global potential energy surface (PES) involving 12 H2SO4 and 4 H2O + SO3 force fields fitted to MP2/6-311G++(2d,2p) reference energies is employed. The MS-ARMD simulations conserve total energy and feature both intramolecular H-transfer reactions and water elimination. An analytical treatment of the dynamics in the crossing region finds that conventional ARMD can approximately conserve total energy for limiting cases. In one of them, the reduced mass of the system is large, which often occurs for simulations of solvated biomolecular systems. On the other hand, MS-ARMD is a general approach for modeling chemical reactions including gas-phase, homogeneous, heterogeneous, and enzymatic catalytic reactions while conserving total energy in atomistic simulations. PMID:26580356
Sever, Martin; Krč, Janez; Čampa, Andrej; Topič, Marko
2015-11-30
Finite element method is coupled with Huygens' expansion to determine light intensity distribution of scattered light in solar cells and other optoelectronic devices. The rigorous foundation of the modelling enables calculation of the light intensity distribution at a chosen distance and surface of observation in chosen material in reflection or in transmission for given wavelength of the incident light. The calculation of scattering or anti-reflection properties is not limited to a single textured interface, but can be done above more complex structures with several scattering interfaces or even with particles involved. Both scattering at periodic and at random textures can be efficiently handled with the modelling approach. A procedure for minimisation of the effect of small-area sample, which is considered in the finite element method calculation, is proposed and implemented into the modelling. Angular distribution function, total transmission and total reflection of the scattering interface or structure can be determined using the model. Furthermore, a method for calculation of the haze parameter of reflected or transmitted light is proposed. The modelling approach is applied to periodic and random nano-textured samples for photovoltaic applications, showing good agreement with measured data. PMID:26698803
Quantum Monte Carlo simulations of tunneling in quantum adiabatic optimization
NASA Astrophysics Data System (ADS)
Brady, Lucas T.; van Dam, Wim
2016-03-01
We explore to what extent path-integral quantum Monte Carlo methods can efficiently simulate quantum adiabatic optimization algorithms during a quantum tunneling process. Specifically we look at symmetric cost functions defined over n bits with a single potential barrier that a successful quantum adiabatic optimization algorithm will have to tunnel through. The height and width of this barrier depend on n , and by tuning these dependencies, we can make the optimization algorithm succeed or fail in polynomial time. In this article we compare the strength of quantum adiabatic tunneling with that of path-integral quantum Monte Carlo methods. We find numerical evidence that quantum Monte Carlo algorithms will succeed in the same regimes where quantum adiabatic optimization succeeds.
Quantum Adiabatic Algorithms and Large Spin Tunnelling
NASA Technical Reports Server (NTRS)
Boulatov, A.; Smelyanskiy, V. N.
2003-01-01
We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in this paper. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H (r) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H (r) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.
Inertial effects in adiabatically driven flashing ratchets
NASA Astrophysics Data System (ADS)
Rozenbaum, Viktor M.; Makhnovskii, Yurii A.; Shapochkina, Irina V.; Sheu, Sheh-Yi; Yang, Dah-Yen; Lin, Sheng Hsien
2014-05-01
We study analytically the effect of a small inertial correction on the properties of adiabatically driven flashing ratchets. Parrondo's lemma [J. M. R. Parrondo, Phys. Rev. E 57, 7297 (1998), 10.1103/PhysRevE.57.7297] is generalized to include the inertial term so as to establish the symmetry conditions allowing directed motion (other than in the overdamped massless case) and to obtain a high-temperature expansion of the motion velocity for arbitrary potential profiles. The inertial correction is thus shown to enhance the ratchet effect at all temperatures for sawtooth potentials and at high temperatures for simple potentials described by the first two harmonics. With the special choice of potentials represented by at least the first three harmonics, the correction gives rise to the motion reversal in the high-temperature region. In the low-temperature region, inertia weakens the ratchet effect, with the exception of the on-off model, where diffusion is important. The directed motion adiabatically driven by potential sign fluctuations, though forbidden in the overdamped limit, becomes possible due to purely inertial effects in neither symmetric nor antisymmetric potentials, i.e., not for commonly used sawtooth and two-sinusoid profiles.
A NOVEL ENVIRONMENT FRIENDLY METHOD FOR EXPANSION AND MOLDING OF POLYMERIC FOAM
The objective of the project is to develop an environment friendly, novel and efficient alternative process for expansion and molding of polymeric foam. Spherical, expandable polymer beads are prepared from liquid monomer suspended in an aqueous medium, containing an expansion...
Use of advanced particle methods in modeling space propulsion and its supersonic expansions
NASA Astrophysics Data System (ADS)
Borner, Arnaud
This research discusses the use of advanced kinetic particle methods such as Molecular Dynamics (MD) and direct simulation Monte Carlo (DSMC) to model space propulsion systems such as electrospray thrusters and their supersonic expansions. MD simulations are performed to model an electrospray thruster for the ionic liquid (IL) EMIM--BF4 using coarse-grained (CG) potentials. The model is initially featuring a constant electric field applied in the longitudinal direction. Two coarse-grained potentials are compared, and the effective-force CG (EFCG) potential is found to predict the formation of the Taylor cone, the cone-jet, and other extrusion modes for similar electric fields and mass flow rates observed in experiments of a IL fed capillary-tip-extractor system better than the simple CG potential. Later, one-dimensional and fully transient three-dimensional electric fields, the latter solving Poisson's equation to take into account the electric field due to space charge at each timestep, are computed by coupling the MD model to a Poisson solver. It is found that the inhomogeneous electric field as well as that of the IL space-charge improve agreement between modeling and experiment. The boundary conditions (BCs) are found to have a substantial impact on the potential and electric field, and the tip BC is introduced and compared to the two previous BCs, named plate and needle, showing good improvement by reducing unrealistically high radial electric fields generated in the vicinity of the capillary tip. The influence of the different boundary condition models on charged species currents as a function of the mass flow rate is studied, and it is found that a constant electric field model gives similar agreement to the more rigorous and computationally expensive tip boundary condition at lower flow rates. However, at higher mass flow rates the MD simulations with the constant electric field produces extruded particles with higher Coulomb energy per ion, consistent with
Adiabatic Quantum Optimization for Associative Memory Recall
NASA Astrophysics Data System (ADS)
Seddiqi, Hadayat; Humble, Travis
2014-12-01
Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.
Quantum adiabatic evolution with energy degeneracy levels
NASA Astrophysics Data System (ADS)
Zhang, Qi
2016-01-01
A classical-kind phase-space formalism is developed to address the tiny intrinsic dynamical deviation from what is predicted by Wilczek-Zee theorem during quantum adiabatic evolution on degeneracy levels. In this formalism, the Hilbert space and the aggregate of degenerate eigenstates become the classical-kind phase space and a high-dimensional subspace in the phase space, respectively. Compared with the previous analogous study by a different method, the current result is qualitatively different in that the first-order deviation derived here is always perpendicular to the degeneracy subspace. A tripod-scheme Hamiltonian with two degenerate dark states is employed to illustrate the adiabatic deviation with degeneracy levels.
Adiabatic quantum optimization for associative memory recall
Seddiqi, Hadayat; Humble, Travis S.
2014-12-22
Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are storedmore » in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.« less
Adiabatic quantum optimization for associative memory recall
Seddiqi, Hadayat; Humble, Travis S.
2014-12-22
Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.
Adiabatic state preparation study of methylene
Veis, Libor Pittner, Jiří
2014-06-07
Quantum computers attract much attention as they promise to outperform their classical counterparts in solving certain type of problems. One of them with practical applications in quantum chemistry is simulation of complex quantum systems. An essential ingredient of efficient quantum simulation algorithms are initial guesses of the exact wave functions with high enough fidelity. As was proposed in Aspuru-Guzik et al. [Science 309, 1704 (2005)], the exact ground states can in principle be prepared by the adiabatic state preparation method. Here, we apply this approach to preparation of the lowest lying multireference singlet electronic state of methylene and numerically investigate preparation of this state at different molecular geometries. We then propose modifications that lead to speeding up the preparation process. Finally, we decompose the minimal adiabatic state preparation employing the direct mapping in terms of two-qubit interactions.
Zhou, S.; Solana, J. R.
2014-12-28
In this paper, it is shown that the numerical differentiation method in performing the coupling parameter series expansion [S. Zhou, J. Chem. Phys. 125, 144518 (2006); AIP Adv. 1, 040703 (2011)] excels at calculating the coefficients a{sub i} of hard sphere high temperature series expansion (HS-HTSE) of the free energy. Both canonical ensemble and isothermal-isobaric ensemble Monte Carlo simulations for fluid interacting through a hard sphere attractive Yukawa (HSAY) potential with extremely short ranges and at very low temperatures are performed, and the resulting two sets of data of thermodynamic properties are in excellent agreement with each other, and well qualified to be used for assessing convergence of the HS-HTSE for the HSAY fluid. Results of valuation are that (i) by referring to the results of a hard sphere square well fluid [S. Zhou, J. Chem. Phys. 139, 124111 (2013)], it is found that existence of partial sum limit of the high temperature series expansion series and consistency between the limit value and the true solution depend on both the potential shapes and temperatures considered. (ii) For the extremely short range HSAY potential, the HS-HTSE coefficients a{sub i} falls rapidly with the order i, and the HS-HTSE converges from fourth order; however, it does not converge exactly to the true solution at reduced temperatures lower than 0.5, wherein difference between the partial sum limit of the HS-HTSE series and the simulation result tends to become more evident. Something worth mentioning is that before the convergence order is reached, the preceding truncation is always improved by the succeeding one, and the fourth- and higher-order truncations give the most dependable and qualitatively always correct thermodynamic results for the HSAY fluid even at low reduced temperatures to 0.25.
Nonadiabatic transitions in finite-time adiabatic rapid passage
NASA Astrophysics Data System (ADS)
Lu, T.; Miao, X.; Metcalf, H.
2007-06-01
To apply the adiabatic rapid passage process repetitively [T. Lu, X. Miao, and H. Metcalf, Phys. Rev. A 71, 061405(R) (2005)], the nonadiabatic transition probability of a two-level atom subject to chirped light pulses over a finite period of time needs to be calculated. Using a unitary first-order perturbation method in the rotating adiabatic frame, an approximate formula has been derived for such transition probabilities in the entire parameter space of the pulses.
Improved generalized F-expansion method for the time fractional modified KdV(fmKdV) equation
NASA Astrophysics Data System (ADS)
Sonmezoglu, Abdullah
2016-06-01
In this article, an improved generalized F-expansion method is used for solving the time fractional modified KdV(fmKdV) equation. Using this approach new Jacobi elliptic function solutions are obtained. This method can be suitable for solving other nonlinear fractional differential equations.
Numerical divergence effects of equivalence theory in the nodal expansion method
Zika, M.R.; Downar, T.J. )
1993-11-01
Accurate solutions of the advanced nodal equations require the use of discontinuity factors (DFs) to account for the homogenization errors that are inherent in all coarse-mesh nodal methods. During the last several years, nodal equivalence theory (NET) has successfully been implemented for the Cartesian geometry and has received widespread acceptance in the light water reactor industry. The extension of NET to other reactor types has had limited success. Recent efforts to implement NET within the framework of the nodal expansion method have successfully been applied to the fast breeder reactor. However, attempts to apply the same methods to thermal reactors such as the Modular High-Temperature Gas Reactor (MHTGR) have led to numerical divergence problems that can be attributed directly to the magnitude of the DFs. In the work performed here, it was found that the numerical problems occur in the inner and upscatter iterations of the solution algorithm. These iterations use a Gauss-Seidel iterative technique that is always convergent for problems with unity DFs. However, for an MHTGR model that requires large DFs, both the inner and upscatter iterations were divergent. Initial investigations into methods for bounding the DFs have proven unsatisfactory as a means of remedying the convergence problems. Although the DFs could be bounded to yield a convergent solution, several cases were encountered where the resulting flux solution was less accurate than the solution without DFs. For the specific case of problems without upscattering, an alternate numerical method for the inner iteration, an LU decomposition, was identified and shown to be feasible.
An adiabatic approximation for grain alignment theory
NASA Astrophysics Data System (ADS)
Roberge, W. G.
1997-10-01
The alignment of interstellar dust grains is described by the joint distribution function for certain `internal' and `external' variables, where the former describe the orientation of the axes of a grain with respect to its angular momentum, J, and the latter describe the orientation of J relative to the interstellar magnetic field. I show how the large disparity between the dynamical time-scales of the internal and external variables - which is typically 2-3 orders of magnitude - can be exploited to simplify calculations of the required distribution greatly. The method is based on an `adiabatic approximation' which closely resembles the Born-Oppenheimer approximation in quantum mechanics. The adiabatic approximation prescribes an analytic distribution function for the `fast' dynamical variables and a simplified Fokker-Planck equation for the `slow' variables which can be solved straightforwardly using various techniques. These solutions are accurate to O(epsilon), where epsilon is the ratio of the fast and slow dynamical time-scales. As a simple illustration of the method, I derive an analytic solution for the joint distribution established when Barnett relaxation acts in concert with gas damping. The statistics of the analytic solution agree with the results of laborious numerical calculations which do not exploit the adiabatic approximation.
An Adiabatic Approximation for Grain Alignment Theory
NASA Astrophysics Data System (ADS)
Roberge, W. G.
1997-12-01
The alignment of interstellar dust grains is described by the joint distribution function for certain ``internal'' and ``external'' variables, where the former describe the orientation of a grain's axes with respect to its angular momentum, J, and the latter describe the orientation of J relative to the interstellar magnetic field. I show how the large disparity between the dynamical timescales of the internal and external variables--- which is typically 2--3 orders of magnitude--- can be exploited to greatly simplify calculations of the required distribution. The method is based on an ``adiabatic approximation'' which closely resembles the Born-Oppenheimer approximation in quantum mechanics. The adiabatic approximation prescribes an analytic distribution function for the ``fast'' dynamical variables and a simplified Fokker-Planck equation for the ``slow'' variables which can be solved straightforwardly using various techniques. These solutions are accurate to cal {O}(epsilon ), where epsilon is the ratio of the fast and slow dynamical timescales. As a simple illustration of the method, I derive an analytic solution for the joint distribution established when Barnett relaxation acts in concert with gas damping. The statistics of the analytic solution agree with the results of laborious numerical calculations which do not exploit the adiabatic approximation.
Systematic synthesis of CCCCTA-based T-T filters using NAM expansion method
NASA Astrophysics Data System (ADS)
Li, Yongan; Cao, Rui
2016-06-01
In the light of nullor-mirror models for current-controlled current conveyor trans-conductance amplifier (CCCCTA), initiating the admittance matrices of the Tow-Thomas (T-T) filter, three different types of the T-T filter are synthesised by means of the nodal admittance matrix (NAM) expansion method. The type A filter, which employ one CCCCTA, one grounded resistor and two grounded capacitors, has eight different forms, the type B filter, which employ one CCCCTA, two grounded capacitors and a second-generation current-controlled conveyor (CCCII) or an second-generation inverting current-controlled conveyor (ICCCII) or an operational trans-conductance amplifier (OTA), has 64 different forms and the type C filter employing one CCCCTA and two grounded capacitors has eight different forms. In all, 80 voltage-mode/current-mode T-T filter circuits are obtained. Because of using canonic number components, the circuits are highly desirable from the viewpoint of IC fabrication and their parameters can be electronically tuned through tuning bias currents of CCCCTAs. The hand analysis and computer simulation results have been provided to support the synthesis method.
Zhao, Xiaolei; Zuo, Xiaoyu; Qin, Jiheng; Liang, Yan; Zhang, Naizun; Luan, Yizhao; Rao, Shaoqi
2014-04-01
Biological pathways have been widely used in gene function studies; however, the current knowledge for biological pathways is per se incomplete and has to be further expanded. Bioinformatics prediction provides us a cheap but effective way for pathway expansion. Here, we proposed a novel method for biological pathway prediction, by intergrating prior knowledge of protein?protein interactions and Gene Ontology (GO) database. First, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways to which the interacting neighbors of a targe gene (at the level of protein?protein interaction) belong were chosen as the candidate pathways. Then, the pathways to which the target gene belong were determined by testing whether the genes in the candidate pathways were enriched in the GO terms to which the target gene were annotated. The protein?protein interaction data obtained from the Human Protein Reference Database (HPRD) and Biological General Repository for Interaction Datasets (BioGRID) were respectively used to predict the pathway attribution(s) of the target gene. The results demanstrated that both the average accuracy (the ratio of the correctly predicted pathways to the totally pathways to which all the target genes were annotated) and the relative accuracy (of the genes with at least one annotated pathway being successful predicted, the percentage of the genes with all the annotated pathways being correctly predicted) for pathway predictions were increased with the number of the interacting neighbours. When the number of interacting neighbours reached 22, the average accuracy was 96.2% (HPRD) and 96.3% (BioGRID), respectively, and the relative accuracy was 93.3% (HPRD) and 84.1% (BioGRID), respectively. Further validation analysis of 89 genes whose pathway knowledge was updated in a new database release indicated that 50 genes were correctly predicted for at least one updated pathway, and 43 genes were accurately predicted for all the updated pathways, giving an
Linear 3 and 5-step methods using Taylor series expansion for solving special 3rd order ODEs
NASA Astrophysics Data System (ADS)
Rajabi, Marzieh; Ismail, Fudziah; Senu, Norazak
2016-06-01
Some new linear 3 and 5-step methods for solving special third order ordinary differential equations directly are constructed using Taylor's series expansion. A set of test problems are solved using the new method and the results are compared when the problem is reduced to a system of first order ordinary differential equations and then using the existing Runge-Kutta method. The numerical results have clearly shown the advantage and competency of the new methods.
Acceleration of adiabatic quantum dynamics in electromagnetic fields
Masuda, Shumpei; Nakamura, Katsuhiro
2011-10-15
We show a method to accelerate quantum adiabatic dynamics of wave functions under electromagnetic field (EMF) by developing the preceding theory [Masuda and Nakamura, Proc. R. Soc. London Ser. A 466, 1135 (2010)]. Treating the orbital dynamics of a charged particle in EMF, we derive the driving field which accelerates quantum adiabatic dynamics in order to obtain the final adiabatic states in any desired short time. The scheme is consolidated by describing a way to overcome possible singularities in both the additional phase and driving potential due to nodes proper to wave functions under EMF. As explicit examples, we exhibit the fast forward of adiabatic squeezing and transport of excited Landau states with nonzero angular momentum, obtaining the result consistent with the transitionless quantum driving applied to the orbital dynamics in EMF.
Salvador Planas, C
1992-01-01
In this work, the method of orthodontic goniometry is used, which is a simple technique and not expensive, that allows us to determine the apical expansion in the studied models. 42 patients are studied by means of the techniques of Neuro-Occlusal Rehabilitation. We reach by this method expansion to the level of the apex as far as 12 mm in the lower arch and 11 mm in the upper arch. A simple statistic analysis is made which shows an average of expansions of 7.76 mm at crown level of the upper arch and 8.11 mm at apex level; at the crown level of lower arch we get 6.43 mm and apex level 5.8 mm. We think these results are interesting and they should make us study in depth the Neuro-Occlusal Rehabilitation and its principles. PMID:1341737
Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons
NASA Astrophysics Data System (ADS)
Gallagher, Dominic F. G.; Felici, Thomas P.
2003-06-01
With the rapid growth of the telecommunications industry over the last 5 to 10 years has come the need to solve ever more complex electromagnetic problems and to solve them more precisely than ever before. The basic EME (EigenMode Expansion) technique is a powerful method for calculation of electromagnetic propagation which has been well known amongst academic environments and also in microwave fields, representing the electromagnetic fields everywhere in terms of a basis set of local modes. It is at the same time a rigorous solution of Maxwell's Equations and is able to deal with very long structures. We discuss here progress that the authors and others have made recently in applying and extending it to integrated, fibre, and diffractive optics - including development of efficient ways of modelling tapers and other smoothly varying structures, new more efficient boundary conditions and improved mode finders. We outline the advantages it has over other techniques and also its limitations. We illustrate its application with a variety of real life examples, including diffractive elements, directional couplers, tapers, MMI's, bend modelling, periodic structures and others.
Atomic self-consistent-field program by the basis set expansion method: Columbus version
NASA Astrophysics Data System (ADS)
Pitzer, Russell M.
2005-08-01
A revised and extended (Columbus) version of the Chicago atomic self-consistent-field (Hartree-Fock) program of 1963 is described. Its principal present use is in developing Gaussian basis sets for molecular calculations. Complete memory allocation (using Fortran 90) has been added as well as improved integral formulas and efficient and simple programming features. Energy-expression coefficients have been added sufficient to treat the ground states of all atoms to the extent that Russell-Saunders (LS) coupling applies. Excited states with large angular-momentum orbitals can be treated. Relativistic effects can be included to the extent possible with relativistic effective core potentials. A review of earlier work is included. Program summaryProgram title: atmscf Catalogue identifier: ADVR Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVR Program available from: CPC Program Library, Queen's University of Belfast, N. Ireland Programming language: Fortran 90 Computer: Sun, SGI, PC Operating system: Solaris, Irix, Linux RAM: 10 Mbytes No. of lines in distributed program, including test data, etc.: 2113 No. of bytes in distributed program, including test data, etc.: 15 379 Distribution format: tar.gz Nature of problem: Energies and wave functions, at the Hartree-Fock level Solution method: Expansions in Gaussian or Slater functions. Iterative minimization of the total energy. Optimization of exponential parameters. Used frequently for developing Gaussian basis sets for molecular use Running time: Typical 30 s per calculation
Adiabatic evolution of plasma equilibrium
Grad, H.; Hu, P. N.; Stevens, D. C.
1975-01-01
A new theory of plasma equilibrium is introduced in which adiabatic constraints are specified. This leads to a mathematically nonstandard structure, as compared to the usual equilibrium theory, in which prescription of pressure and current profiles leads to an elliptic partial differential equation. Topologically complex configurations require further generalization of the concept of adiabaticity to allow irreversible mixing of plasma and magnetic flux among islands. Matching conditions across a boundary layer at the separatrix are obtained from appropriate conservation laws. Applications are made to configurations with planned islands (as in Doublet) and accidental islands (as in Tokamaks). Two-dimensional, axially symmetric, helically symmetric, and closed line equilibria are included. PMID:16578729
Favorite, J.A.
1999-09-01
In previous work, exponential convergence of Monte Carlo solutions using the reduced source method with Legendre expansion has been achieved only in one-dimensional rod and slab geometries. In this paper, the method is applied to three-dimensional (right parallelepiped) problems, with resulting evidence suggesting success. As implemented in this paper, the method approximates an angular integral of the flux with a discrete-ordinates numerical quadrature. It is possible that this approximation introduces an inconsistency that must be addressed.
NASA Astrophysics Data System (ADS)
Pandir, Yusuf; Duzgun, Hasan Huseyin
2016-06-01
In this study, we investigate some new analytical solutions to the fractional Sine-Gordon equation by using the new version of generalized F-expansion method. The fractional derivatives are defined in the modified Riemann-Liouville context. As a result, new analytical solutions were obtained in terms Jacobi elliptic functions.
From Free Expansion to Abrupt Compression of an Ideal Gas
ERIC Educational Resources Information Center
Anacleto, Joaquim; Pereira, Mario G.
2009-01-01
Using macroscopic thermodynamics, the general law for adiabatic processes carried out by an ideal gas was studied. It was shown that the process reversibility is characterized by the adiabatic reversibility coefficient r, in the range 0 [less than or equal] r [less than or equal] 1 for expansions and r [greater than or equal] 1 for compressions.…
Pressure Oscillations in Adiabatic Compression
ERIC Educational Resources Information Center
Stout, Roland
2011-01-01
After finding Moloney and McGarvey's modified adiabatic compression apparatus, I decided to insert this experiment into my physical chemistry laboratory at the last minute, replacing a problematic experiment. With insufficient time to build the apparatus, we placed a bottle between two thick textbooks and compressed it with a third textbook forced…
Adiabatic dynamics of magnetic vortices
NASA Astrophysics Data System (ADS)
Papanicolaou, N.
1994-03-01
We formulate a reasonably detailed adiabatic conjecture concerning the dynamics of skew deflection of magnetic vortices in a field gradient, which is expected to be valid at sufficiently large values of the winding number. The conjecture is consistent with the golden rule used to describe the dynamics of realistic magnetic bubbles and is verified here numerically within the 2-D isotropic Heisenberg model.
Apparatus and method for measuring the expansion properties of a cement composition
Spangle, Lloyd B.
1983-01-01
An apparatus is disclosed which is useful for measuring the expansion properties of semi-solid materials which expand to a solid phase, upon curing, such as cement compositions. The apparatus includes a sleeve, preferably cylindrical, which has a vertical slit on one side, to allow the sleeve to expand. Mounted on the outside of the sleeve are several sets of pins, consisting of two pins each. The two pins in each set are located on opposite sides of the slit. In the test procedure, the sleeve is filled with wet cement, which is then cured to a solid. As the cement cures it causes the sleeve to expand. The actual expansion of the sleeve represents an expansion factor for the cement. This factor is calculated by measuring the distance across the pins of each set, when the sleeve is empty, and again after the cured cement expands the sleeve.
Transitionless driving on adiabatic search algorithm
Oh, Sangchul; Kais, Sabre
2014-12-14
We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.
Transitionless driving on adiabatic search algorithm
NASA Astrophysics Data System (ADS)
Oh, Sangchul; Kais, Sabre
2014-12-01
We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.
Transitionless driving on adiabatic search algorithm.
Oh, Sangchul; Kais, Sabre
2014-12-14
We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics. PMID:25494733
Failure of geometric electromagnetism in the adiabatic vector Kepler problem
Anglin, J.R.; Schmiedmayer, J.
2004-02-01
The magnetic moment of a particle orbiting a straight current-carrying wire may precess rapidly enough in the wire's magnetic field to justify an adiabatic approximation, eliminating the rapid time dependence of the magnetic moment and leaving only the particle position as a slow degree of freedom. To zeroth order in the adiabatic expansion, the orbits of the particle in the plane perpendicular to the wire are Keplerian ellipses. Higher-order postadiabatic corrections make the orbits precess, but recent analysis of this 'vector Kepler problem' has shown that the effective Hamiltonian incorporating a postadiabatic scalar potential ('geometric electromagnetism') fails to predict the precession correctly, while a heuristic alternative succeeds. In this paper we resolve the apparent failure of the postadiabatic approximation, by pointing out that the correct second-order analysis produces a third Hamiltonian, in which geometric electromagnetism is supplemented by a tensor potential. The heuristic Hamiltonian of Schmiedmayer and Scrinzi is then shown to be a canonical transformation of the correct adiabatic Hamiltonian, to second order. The transformation has the important advantage of removing a 1/r{sup 3} singularity which is an artifact of the adiabatic approximation.
Nishimura, Shin
2015-12-15
The spherical coordinates expressions of the Rosenbluth potentials are applied to the field particle portion in the linearized Coulomb collision operator. The Sonine (generalized Laguerre) polynomial expansion formulas for this operator allowing general field particles' velocity distributions are derived. An important application area of these formulas is the study of flows of thermalized particles in NBI-heated or burning plasmas since the energy space structure of the fast ions' slowing down velocity distribution cannot be expressed by usual orthogonal polynomial expansions, and since the Galilean invariant property and the momentum conservation of the collision must be distinguished there.
NASA Astrophysics Data System (ADS)
Nishimura, Shin
2015-12-01
The spherical coordinates expressions of the Rosenbluth potentials are applied to the field particle portion in the linearized Coulomb collision operator. The Sonine (generalized Laguerre) polynomial expansion formulas for this operator allowing general field particles' velocity distributions are derived. An important application area of these formulas is the study of flows of thermalized particles in NBI-heated or burning plasmas since the energy space structure of the fast ions' slowing down velocity distribution cannot be expressed by usual orthogonal polynomial expansions, and since the Galilean invariant property and the momentum conservation of the collision must be distinguished there.
NASA Technical Reports Server (NTRS)
Constantinescu, G.S.; Lele, S. K.
2000-01-01
using these schemes is especially sensitive to the type of equation treatment at the singularity axis. The objective of this work is to develop a generally applicable numerical method for treating the singularities present at the polar axis, which is particularly suitable for highly accurate finite-differences schemes (e.g., Pade schemes) on non-staggered grids. The main idea is to reinterpret the regularity conditions developed in the context of pseudo-spectral methods. A set of exact equations at the singularity axis is derived using the appropriate series expansions for the variables in the original set of equations. The present treatment of the equations preserves the same level of accuracy as for the interior scheme. We also want to point out the wider utility of the method, proposed here in the context of compressible flow equations, as its extension for incompressible flows or for any other set of equations that are solved on a non-staggered mesh in cylindrical coordinates with finite-differences schemes of various level of accuracy is straightforward. The robustness and accuracy of the proposed technique is assessed by comparing results from simulations of laminar forced-jets and turbulent compressible jets using LES with similar calculations in which the equations are solved in Cartesian coordinates at the polar axis, or in which the singularity is removed by employing a staggered mesh in the radial direction without a mesh point at r = 0.
Studies in Chaotic adiabatic dynamics
Jarzynski, C.
1994-01-01
Chaotic adiabatic dynamics refers to the study of systems exhibiting chaotic evolution under slowly time-dependent equations of motion. In this dissertation the author restricts his attention to Hamiltonian chaotic adiabatic systems. The results presented are organized around a central theme, namely, that the energies of such systems evolve diffusively. He begins with a general analysis, in which he motivates and derives a Fokker-Planck equation governing this process of energy diffusion. He applies this equation to study the {open_quotes}goodness{close_quotes} of an adiabatic invariant associated with chaotic motion. This formalism is then applied to two specific examples. The first is that of a gas of noninteracting point particles inside a hard container that deforms slowly with time. Both the two- and three-dimensional cases are considered. The results are discussed in the context of the Wall Formula for one-body dissipation in nuclear physics, and it is shown that such a gas approaches, asymptotically with time, an exponential velocity distribution. The second example involves the Fermi mechanism for the acceleration of cosmic rays. Explicit evolution equations are obtained for the distribution of cosmic ray energies within this model, and the steady-state energy distribution that arises when this equation is modified to account for the injection and removal of cosmic rays is discussed. Finally, the author re-examines the multiple-time-scale approach as applied to the study of phase space evolution under a chaotic adiabatic Hamiltonian. This leads to a more rigorous derivation of the above-mentioned Fokker-Planck equation, and also to a new term which has relevance to the problem of chaotic adiabatic reaction forces (the forces acting on slow, heavy degrees of freedom due to their coupling to light, fast chaotic degrees).
NASA Astrophysics Data System (ADS)
Aslan, İsmail
2010-10-01
In this paper, a discrete extension of the (G'/G)-expansion method is applied to a relativistic Toda lattice system and a discrete nonlinear Schrödinger equation in order to obtain discrete traveling wave solutions. Closed form solutions with more arbitrary parameters, which reduce to solitary and periodic waves, are exhibited. New rational solutions are also obtained. The method is straightforward and concise, and its applications in physical sciences are promising.
Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation
NASA Astrophysics Data System (ADS)
Zamstein, Noa; Tannor, David J.
2012-12-01
We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schrödinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)], 10.1063/1.4739845. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], 10.1063/1.459170, and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.
Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation
Zamstein, Noa; Tannor, David J.
2012-12-14
We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schroedinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)]. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.
Shortcut to Adiabatic Passage in Two- and Three-Level Atoms
Chen Xi; Lizuain, I.; Muga, J. G.; Ruschhaupt, A.; Guery-Odelin, D.
2010-09-17
We propose a method to speed up adiabatic passage techniques in two-level and three-level atoms extending to the short-time domain their robustness with respect to parameter variations. It supplements or substitutes the standard laser beam setups with auxiliary pulses that steer the system along the adiabatic path. Compared to other strategies, such as composite pulses or the original adiabatic techniques, it provides a fast and robust approach to population control.
Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas
Rohringer, W.; Fischer, D.; Steiner, F.; Mazets, I. E.; Schmiedmayer, J.; Trupke, M.
2015-01-01
We present experimental evidence for scale invariant behaviour of the excitation spectrum in phase-fluctuating quasi-1d Bose gases after a rapid change of the external trapping potential. Probing density correlations in free expansion, we find that the temperature of an initial thermal state scales with the spatial extension of the cloud as predicted by a model based on adiabatic rescaling of initial eigenmodes with conserved quasiparticle occupation numbers. Based on this result, we demonstrate that shortcuts to adiabaticity for the rapid expansion or compression of the gas do not induce additional heating. PMID:25867640
Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas.
Rohringer, W; Fischer, D; Steiner, F; Mazets, I E; Schmiedmayer, J; Trupke, M
2015-01-01
We present experimental evidence for scale invariant behaviour of the excitation spectrum in phase-fluctuating quasi-1d Bose gases after a rapid change of the external trapping potential. Probing density correlations in free expansion, we find that the temperature of an initial thermal state scales with the spatial extension of the cloud as predicted by a model based on adiabatic rescaling of initial eigenmodes with conserved quasiparticle occupation numbers. Based on this result, we demonstrate that shortcuts to adiabaticity for the rapid expansion or compression of the gas do not induce additional heating. PMID:25867640
An adiabatic demagnetization refrigerator for infrared bolometers
NASA Technical Reports Server (NTRS)
Britt, R. D.; Richards, P. L.
1981-01-01
Adiabatic demagnetization refrigerators have been built and installed in small portable liquid helium cryostats to test the feasibility of this method of cooling infrared bolometric detectors to temperatures below 0.3 K. Performance has been achieved which suggests that bolometer temperatures of 0.2 K can be maintained for periods of approximately 60 hours. Applications to sensitive infrared detection from ground-based telescopes and space satellites are discussed. Design data are given which permit the evaluation of refrigerator performance for a variety of design parameters.
F-expansion method and new exact solutions of the Schrödinger-KdV equation.
Filiz, Ali; Ekici, Mehmet; Sonmezoglu, Abdullah
2014-01-01
F-expansion method is proposed to seek exact solutions of nonlinear evolution equations. With the aid of symbolic computation, we choose the Schrödinger-KdV equation with a source to illustrate the validity and advantages of the proposed method. A number of Jacobi-elliptic function solutions are obtained including the Weierstrass-elliptic function solutions. When the modulus m of Jacobi-elliptic function approaches to 1 and 0, soliton-like solutions and trigonometric-function solutions are also obtained, respectively. The proposed method is a straightforward, short, promising, and powerful method for the nonlinear evolution equations in mathematical physics. PMID:24672327
F-Expansion Method and New Exact Solutions of the Schrödinger-KdV Equation
Filiz, Ali; Ekici, Mehmet; Sonmezoglu, Abdullah
2014-01-01
F-expansion method is proposed to seek exact solutions of nonlinear evolution equations. With the aid of symbolic computation, we choose the Schrödinger-KdV equation with a source to illustrate the validity and advantages of the proposed method. A number of Jacobi-elliptic function solutions are obtained including the Weierstrass-elliptic function solutions. When the modulus m of Jacobi-elliptic function approaches to 1 and 0, soliton-like solutions and trigonometric-function solutions are also obtained, respectively. The proposed method is a straightforward, short, promising, and powerful method for the nonlinear evolution equations in mathematical physics. PMID:24672327
Islam, Md. Shafiqul; Khan, Kamruzzaman; Akbar, M. Ali; Mastroberardino, Antonio
2014-01-01
The purpose of this article is to present an analytical method, namely the improved F-expansion method combined with the Riccati equation, for finding exact solutions of nonlinear evolution equations. The present method is capable of calculating all branches of solutions simultaneously, even if multiple solutions are very close and thus difficult to distinguish with numerical techniques. To verify the computational efficiency, we consider the modified Benjamin–Bona–Mahony equation and the modified Korteweg-de Vries equation. Our results reveal that the method is a very effective and straightforward way of formulating the exact travelling wave solutions of nonlinear wave equations arising in mathematical physics and engineering. PMID:26064530
Lukić, Sergio; Hey, Jody
2012-01-01
We present an implementation of a recently introduced method for estimating the allele-frequency spectrum under the diffusion approximation. For single-nucleotide polymorphism (SNP) frequency data from multiple populations, the method computes numerical solutions to the allele-frequency spectrum (AFS) under a complex model that includes population splitting events, migration, population expansion, and admixture. The solution to the diffusion partial differential equation (PDE) that mimics the evolutionary process is found by means of truncated polynomial expansions. In the absence of gene flow, our computation of frequency spectra yields exact results. The results are compared to those that use a finite-difference method and to forward diffusion simulations. In general, all the methods yield comparable results, although the polynomial-based approach is the most accurate in the weak-migration limit. Also, the economical use of memory attained by the polynomial expansions makes the study of models with four populations possible for the first time. The method was applied to a four-population model of the human expansion out of Africa and the peopling of the Americas, using the Environmental Genome Project (EGP) SNP database. Although our confidence intervals largely overlapped previous analyses of these data, some were significantly different. In particular, estimates of migration among African, European, and Asian populations were considerably lower than those in a previous study and the estimated time of migration out of Africa was earlier. The estimated time of founding of a human population outside of Africa was 52,000 years (95% confidence interval: 36,000–80,800 years). PMID:22865734
Microscopic expression for heat in the adiabatic basis.
Polkovnikov, Anatoli
2008-11-28
We derive a microscopic expression for the instantaneous diagonal elements of the density matrix rho(nn)(t) in the adiabatic basis for an arbitrary time-dependent process in a closed Hamiltonian system. If the initial density matrix is stationary (diagonal) then this expression contains only squares of absolute values of matrix elements of the evolution operator, which can be interpreted as transition probabilities. We then derive the microscopic expression for the heat defined as the energy generated due to transitions between instantaneous energy levels. If the initial density matrix is passive [diagonal with rho(nn)(0) monotonically decreasing with energy] then the heat is non-negative in agreement with basic expectations of thermodynamics. Our findings also can be used for systematic expansion of various observables around the adiabatic limit. PMID:19113464
Pessi, Jenni; Lassila, Ilkka; Meriläinen, Antti; Räikkönen, Heikki; Hæggström, Edward; Yliruusi, Jouko
2016-08-01
We introduce a robust, stable, and reproducible method to produce nanoparticles based on expansion of supercritical solutions using carbon dioxide as a solvent. The method, controlled expansion of supercritical solution (CESS), uses controlled mass transfer, flow, pressure reduction, and particle collection in dry ice. CESS offers control over the crystallization process as the pressure in the system is reduced according to a specific profile. Particle formation takes place before the exit nozzle, and condensation is the main mechanism for postnucleation particle growth. A 2-step gradient pressure reduction is used to prevent Mach disk formation and particle growth by coagulation. Controlled particle growth keeps the production process stable. With CESS, we produced piroxicam nanoparticles, 60 mg/h, featuring narrow size distribution (176 ± 53 nm). PMID:27368121
NASA Technical Reports Server (NTRS)
Savin, Raymond C
1955-01-01
The generalized shock-expansion method is applied to obtain solutions to the flow field about pointed bodies of revolution at high supersonic airspeeds and small angles of attack. Simple explicit expressions are obtained for the surface Mach numbers and surface pressures in the special case of slender bodies. In the case of inclined cones, algebraic solutions are obtained defining the entire flow field. Experimental pressure-distribution data for cones and ogives at Mach numbers from 3 to 5 are included. (author)
Adiabaticity in open quantum systems
NASA Astrophysics Data System (ADS)
Venuti, Lorenzo Campos; Albash, Tameem; Lidar, Daniel A.; Zanardi, Paolo
2016-03-01
We provide a rigorous generalization of the quantum adiabatic theorem for open systems described by a Markovian master equation with time-dependent Liouvillian L (t ) . We focus on the finite system case relevant for adiabatic quantum computing and quantum annealing. Adiabaticity is defined in terms of closeness to the instantaneous steady state. While the general result is conceptually similar to the closed-system case, there are important differences. Namely, a system initialized in the zero-eigenvalue eigenspace of L (t ) will remain in this eigenspace with a deviation that is inversely proportional to the total evolution time T . In the case of a finite number of level crossings, the scaling becomes T-η with an exponent η that we relate to the rate of the gap closing. For master equations that describe relaxation to thermal equilibrium, we show that the evolution time T should be long compared to the corresponding minimum inverse gap squared of L (t ) . Our results are illustrated with several examples.
Rising, M. E.; Prinja, A. K.
2012-07-01
A critical neutron transport problem with random material properties is introduced. The total cross section and the average neutron multiplicity are assumed to be uncertain, characterized by the mean and variance with a log-normal distribution. The average neutron multiplicity and the total cross section are assumed to be uncorrected and the material properties for differing materials are also assumed to be uncorrected. The principal component analysis method is used to decompose the covariance matrix into eigenvalues and eigenvectors and then 'realizations' of the material properties can be computed. A simple Monte Carlo brute force sampling of the decomposed covariance matrix is employed to obtain a benchmark result for each test problem. In order to save computational time and to characterize the moments and probability density function of the multiplication factor the polynomial chaos expansion method is employed along with the stochastic collocation method. A Gauss-Hermite quadrature set is convolved into a multidimensional tensor product quadrature set and is successfully used to compute the polynomial chaos expansion coefficients of the multiplication factor. Finally, for a particular critical fuel pin assembly the appropriate number of random variables and polynomial expansion order are investigated. (authors)
Adiabatic Quantum Programming: Minor Embedding With Hard Faults
Klymko, Christine F; Sullivan, Blair D; Humble, Travis S
2013-01-01
Adiabatic quantum programming defines the time-dependent mapping of a quantum algorithm into the hardware or logical fabric. An essential programming step is the embedding of problem-specific information into the logical fabric to define the quantum computational transformation. We present algorithms for embedding arbitrary instances of the adiabatic quantum optimization algorithm into a square lattice of specialized unit cells. Our methods are shown to be extensible in fabric growth, linear in time, and quadratic in logical footprint. In addition, we provide methods for accommodating hard faults in the logical fabric without invoking approximations to the original problem. These hard fault-tolerant embedding algorithms are expected to prove useful for benchmarking the adiabatic quantum optimization algorithm on existing quantum logical hardware. We illustrate this versatility through numerical studies of embeddabilty versus hard fault rates in square lattices of complete bipartite unit cells.
Adiabatic quantum programming: minor embedding with hard faults
NASA Astrophysics Data System (ADS)
Klymko, Christine; Sullivan, Blair D.; Humble, Travis S.
2013-11-01
Adiabatic quantum programming defines the time-dependent mapping of a quantum algorithm into an underlying hardware or logical fabric. An essential step is embedding problem-specific information into the quantum logical fabric. We present algorithms for embedding arbitrary instances of the adiabatic quantum optimization algorithm into a square lattice of specialized unit cells. These methods extend with fabric growth while scaling linearly in time and quadratically in footprint. We also provide methods for handling hard faults in the logical fabric without invoking approximations to the original problem and illustrate their versatility through numerical studies of embeddability versus fault rates in square lattices of complete bipartite unit cells. The studies show that these algorithms are more resilient to faulty fabrics than naive embedding approaches, a feature which should prove useful in benchmarking the adiabatic quantum optimization algorithm on existing faulty hardware.
NASA Astrophysics Data System (ADS)
Li, Dafa
2016-05-01
The adiabatic theorem was proposed about 90 years ago and has played an important role in quantum physics. The quantitative adiabatic condition constructed from eigenstates and eigenvalues of a Hamiltonian is a traditional tool to estimate adiabaticity and has proven to be the necessary and sufficient condition for adiabaticity. However, recently the condition has become a controversial subject. In this paper, we list some expressions to estimate the validity of the adiabatic approximation. We show that the quantitative adiabatic condition is invalid for the adiabatic approximation via the Euclidean distance between the adiabatic state and the evolution state. Furthermore, we deduce general necessary and sufficient conditions for the validity of the adiabatic approximation by different definitions.
Adiabatic transport, Kubo formula and Anderson localization in some lattice and continuum models
NASA Astrophysics Data System (ADS)
Elgart, A.
2006-03-01
The different explanations of the Quantum Hall Effect rely on the validity of the linear response theory for a system that has infinite extent. We will present recent results on the adiabatic charge transport in this context for two dimensional lattice (joint work with M. Aizenman and J. Schenker) and continuum (joint work with B. Schlein) models of a non-interacting electron gas. It is proved that if the Fermi energy falls in the localization regime then the Hall transport is correctly described by the linear response Kubo formula. The localization condition is set forth by the fractional moment method, which is by now extended also to continuum models (joint work with M. Aizenman, S. Naboko, J. Schenker and G. Stoltz). In the present talk, besides localization criteria, we will discuss some ideas -- Nenciu's asymptotic expansion, generalized space-momentum inequalities, and finite speed of propagation estimates -- which enter the proof.
Heim, Joseph R.
1993-01-01
The invention provides a high magnetic field coil. The invention provides a preloaded compressive force to the coil maintain the integrity of the coil. The compressive force is obtained by reinforcing the coil with two materials of different thermal expansion rates and then heating the coil to 700.degree. C. to obtain the desired compression. The embodiment of the invention uses Nb.sub.3 Sn as the conducting wire, since Nb.sub.3 Sn must be heated to 700.degree. C. to cause a reaction which makes Nb.sub.3 Sn superconducting.
Series Expansion Method for Asymmetrical Percolation Models with Two Connection Probabilities
NASA Astrophysics Data System (ADS)
Inui, Norio; Komatsu, Genichi; Kameoka, Koichi
2000-01-01
In order to study the solvability of the percolation model based on Guttmann and Enting's conjecture, the power series for the percolation probability in the form of ∑nHn(q)pn is examined. Although the power series is given by calculating inverse of the transfer-matrix in principle, it is very hard to obtain the inverse matrix containing many complex polynomials as elements. We introduce a new series expansion technique which does not necessitate inverse operation for the transfer-matrix.By using the new procedure, we derive the series of the asymmetrical percolation probability including the isotropic percolation probability as a special case.
Heim, J.R.
1993-02-23
The invention provides a high magnetic field coil. The invention provides a preloaded compressive force to the coil maintain the integrity of the coil. The compressive force is obtained by reinforcing the coil with two materials of different thermal expansion rates and then heating the coil to 700 C to obtain the desired compression. The embodiment of the invention uses Nb[sub 3]Sn as the conducting wire, since Nb[sub 3]Sn must be heated to 700 C to cause a reaction which makes Nb[sub 3]Sn superconducting.
Unified cluster expansion method applied to the configurational thermodynamics of cubic Ti1-xAlxN
NASA Astrophysics Data System (ADS)
Alling, Björn; Ruban, Andrei; Karimi, Ayat; Hultman, Lars; Abrikosov, Igor
2012-02-01
We study the thermodynamics of cubic Ti1-xAlxN using a unified cluster expansion approach for the alloy problem [1]. The purely configurational part of the alloy Hamiltonian is expanded in terms of concentration and volume-dependent effective cluster interactions. By separate expansions of the chemical fixed lattice, and local lattice relaxation terms of the ordering energies, we demonstrate how the screened generalized perturbation method can be fruitfully combined with a concentration-dependent Connolly-Williams cluster expansion method, getting the best out of both two schemes that are traditionally used separately. Utilizing the obtained Hamiltonian in Monte Carlo simulations we access the free energy of Ti1-xAlxN alloys and construct the isostructural phase diagram. The results show striking similarities with the previously obtained mean-field results: The metastable c-TiAlN is subject to coherent spinodal decomposition over a large part of the concentration range, e.g., from x 0.33 at 2000 K. [4pt] [1] B. Alling, A. V. Ruban, A. Karimi, L. Hultman, and I. A. Abrikosov, PHYSICAL REVIEW B 83, 104203 (2011)
NASA Astrophysics Data System (ADS)
Mohamed, Firdawati binti; Karim, Mohamad Faisal bin Abd
2015-10-01
Modelling physical problems in mathematical form yields the governing equations that may be linear or nonlinear for known and unknown boundaries. The exact solution for those equations may or may not be obtained easily. Hence we seek an analytical approximation solution in terms of asymptotic expansion. In this study, we focus on a singular perturbation in second order ordinary differential equations. Solutions to several perturbed ordinary differential equations are obtained in terms of asymptotic expansion. The aim of this work is to find an approximate analytical solution using the classical method of matched asymptotic expansion (MMAE). The Mathematica computer algebra system is used to perform the algebraic computations. The details procedures will be discussed and the underlying concepts and principles of the MMAE will be clarified. Perturbation problem for linear equation that occurs at one boundary and two boundary layers are discussed. Approximate analytical solution obtained for both cases are illustrated by graph using selected parameter by showing the outer, inner and composite solution separately. Then, the composite solution will be compare to the exact solution to show their accuracy by graph. By comparison, MMAE is found to be one of the best methods to solve singular perturbation problems in second order ordinary differential equation since the results obtained are very close to the exact solution.
Nishimura, S.; Sugama, H.; Maassberg, H.; Beidler, C. D.; Murakami, S.; Nakamura, Y.; Hirooka, S.
2010-08-15
The dependence of neoclassical parallel flow calculations on the maximum order of Laguerre polynomial expansions is investigated in a magnetic configuration of the Large Helical Device [S. Murakami, A. Wakasa, H. Maassberg, et al., Nucl. Fusion 42, L19 (2002)] using the monoenergetic coefficient database obtained by an international collaboration. On the basis of a previous generalization (the so-called Sugama-Nishimura method [H. Sugama and S. Nishimura, Phys. Plasmas 15, 042502 (2008)]) to an arbitrary order of the expansion, the 13 M, 21 M, and 29 M approximations are compared. In a previous comparison, only the ion distribution function in the banana collisionality regime of single-ion-species plasmas in tokamak configurations was investigated. In this paper, the dependence of the problems including electrons and impurities in the general collisionality regime in an actual nonsymmetric toroidal configuration is reported. In particular, qualities of approximations for the electron distribution function are investigated in detail.
Naher, Hasibun; Abdullah, Farah Aini; Akbar, M Ali
2013-01-01
The generalized and improved (G'/G)-expansion method is a powerful and advantageous mathematical tool for establishing abundant new traveling wave solutions of nonlinear partial differential equations. In this article, we investigate the higher dimensional nonlinear evolution equation, namely, the (3+1)-dimensional modified KdV-Zakharov-Kuznetsev equation via this powerful method. The solutions are found in hyperbolic, trigonometric and rational function form involving more parameters and some of our constructed solutions are identical with results obtained by other authors if certain parameters take special values and some are new. The numerical results described in the figures were obtained with the aid of commercial software Maple. PMID:23741355
NASA Astrophysics Data System (ADS)
Zayed, Elsayed M. E.; Abdelaziz, Mahmoud A. M.
2010-09-01
In this article, the generalized G'/G-expansion method using a generalized wave transformation is applied to find exact traveling wave solutions of the generalized Zakharov-Kuznetsov equation with variable coefficients. As a result, hyperbolic, trigonometric and rational function solutions with parameters are obtained. When these parameters are taken special values, the solitary wave solutions are derived from the hyperbolic function solution. It is shown that the proposed method is direct, effective and can be applied to many other nonlinear evolution equations in mathematical physics.
Effect of the Heat Pipe Adiabatic Region.
Brahim, Taoufik; Jemni, Abdelmajid
2014-04-01
The main motivation of conducting this work is to present a rigorous analysis and investigation of the potential effect of the heat pipe adiabatic region on the flow and heat transfer performance of a heat pipe under varying evaporator and condenser conditions. A two-dimensional steady-state model for a cylindrical heat pipe coupling, for both regions, is presented, where the flow of the fluid in the porous structure is described by Darcy-Brinkman-Forchheimer model which accounts for the boundary and inertial effects. The model is solved numerically by using the finite volumes method, and a fortran code was developed to solve the system of equations obtained. The results show that a phase change can occur in the adiabatic region due to temperature gradient created in the porous structure as the heat input increases and the heat pipe boundary conditions change. A recirculation zone may be created at the condenser end section. The effect of the heat transfer rate on the vapor radial velocities and the performance of the heat pipe are discussed. PMID:24895467
Adiabatic invariants, diffusion and acceleration in rigid body dynamics
NASA Astrophysics Data System (ADS)
Borisov, Alexey V.; Mamaev, Ivan S.
2016-03-01
The onset of adiabatic chaos in rigid body dynamics is considered. A comparison of the analytically calculated diffusion coefficient describing probabilistic effects in the zone of chaos with a numerical experiment is made. An analysis of the splitting of asymptotic surfaces is performed and uncertainty curves are constructed in the Poincaré-Zhukovsky problem. The application of Hamiltonian methods to nonholonomic systems is discussed. New problem statements are given which are related to the destruction of an adiabatic invariant and to the acceleration of the system (Fermi's acceleration).
Gravitational Chern-Simons and the adiabatic limit
McLellan, Brendan
2010-12-15
We compute the gravitational Chern-Simons term explicitly for an adiabatic family of metrics using standard methods in general relativity. We use the fact that our base three-manifold is a quasiregular K-contact manifold heavily in this computation. Our key observation is that this geometric assumption corresponds exactly to a Kaluza-Klein Ansatz for the metric tensor on our three-manifold, which allows us to translate our problem into the language of general relativity. Similar computations have been performed by Guralnik et al.[Ann. Phys. 308, 222 (2008)], although not in the adiabatic context.
Classical nuclear motion coupled to electronic non-adiabatic transitions
NASA Astrophysics Data System (ADS)
Agostini, Federica; Abedi, Ali; Gross, E. K. U.
2014-12-01
Based on the exact factorization of the electron-nuclear wave function, we have recently proposed a mixed quantum-classical scheme [A. Abedi, F. Agostini, and E. K. U. Gross, Europhys. Lett. 106, 33001 (2014)] to deal with non-adiabatic processes. Here we present a comprehensive description of the formalism, including the full derivation of the equations of motion. Numerical results are presented for a model system for non-adiabatic charge transfer in order to test the performance of the method and to validate the underlying approximations.
Classical nuclear motion coupled to electronic non-adiabatic transitions
Agostini, Federica; Abedi, Ali; Gross, E. K. U.
2014-12-07
Based on the exact factorization of the electron-nuclear wave function, we have recently proposed a mixed quantum-classical scheme [A. Abedi, F. Agostini, and E. K. U. Gross, Europhys. Lett. 106, 33001 (2014)] to deal with non-adiabatic processes. Here we present a comprehensive description of the formalism, including the full derivation of the equations of motion. Numerical results are presented for a model system for non-adiabatic charge transfer in order to test the performance of the method and to validate the underlying approximations.
Adiabatic Mass Loss Model in Binary Stars
NASA Astrophysics Data System (ADS)
Ge, H. W.
2012-07-01
Rapid mass transfer process in the interacting binary systems is very complicated. It relates to two basic problems in the binary star evolution, i.e., the dynamically unstable Roche-lobe overflow and the common envelope evolution. Both of the problems are very important and difficult to be modeled. In this PhD thesis, we focus on the rapid mass loss process of the donor in interacting binary systems. The application to the criterion of dynamically unstable mass transfer and the common envelope evolution are also included. Our results based on the adiabatic mass loss model could be used to improve the binary evolution theory, the binary population synthetic method, and other related aspects. We build up the adiabatic mass loss model. In this model, two approximations are included. The first one is that the energy generation and heat flow through the stellar interior can be neglected, hence the restructuring is adiabatic. The second one is that he stellar interior remains in hydrostatic equilibrium. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed. These approximations are validated by the comparison with the time-dependent binary mass transfer calculations and the polytropic model for low mass zero-age main-sequence stars. In the dynamical time scale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal time scale mass transfer, so-called delayed dynamical instability. We identify the critical binary mass ratio for the
Reduced Basis Methods for the One Over N Expansion of the Anderson Model
NASA Astrophysics Data System (ADS)
Landgraf, Jeffery Michael
1995-01-01
The Anderson model simultaneously explains both the bulk properties and valence photoemission spectrum of Cerium and Ytterbium heavy fermion materials. The observed spectral properties of Uranium heavy fermion compounds, however, are qualitatively different; They show a single bandlike peak near the Fermi energy rather than multiple ionization peaks. The spectral properties of Uranium heavy fermion systems represent an unanswered challenge for the description of heavy fermions using the Anderson model. We investigate this issue using an f^1 - f^2 Anderson model and the zero temperature 1/N expansion. The Kondo temperature is small for all valences which is consistent with heavy fermion behavior even in the mixed valence region. In this region, the calculated photoemission spectrum has a Fermi energy peak which contains substantial spectral weight. Unfortunately, the peak is much more narrow than observed in Uranium systems. Spin-orbit effects may broaden the low energy peak. We include Hunds first rule splitting for the f ^2 state in photoemission calculation. The spectrum then has additional structure at low energies, but the overall weight added is too small to explain observed spectra without considering extra broadening mechanisms, such as additional spin orbit terms. We also make contributions to the formal theory of the 1/N expansion. We present a diagrammatic scheme for classifying the basis elements and their coupling, from which the wave function equations may be directly obtained. Secondly, we develop a formulation of the 1/N expansion based upon zeroing the O(Gamma/N) coupling between basis elements with different numbers of electron-hole pairs. The Hamiltonian is then block diagonal. We obtain a full eigenstate and eigenvalue spectrum which is similar to that of the leading order ground state basis replicated at higher energies. Finally we undertake a systematic study of the 1/N corrections for the f^1 - f^2 model. We directly calculate first order
Adiabatic Wankel type rotary engine
NASA Technical Reports Server (NTRS)
Kamo, R.; Badgley, P.; Doup, D.
1988-01-01
This SBIR Phase program accomplished the objective of advancing the technology of the Wankel type rotary engine for aircraft applications through the use of adiabatic engine technology. Based on the results of this program, technology is in place to provide a rotor and side and intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Injection Stratified Charge (DISC) rotary engine was performed which concluded that applying thermal barrier coatings to the rotor should be successful and that it was unlikely that the rotor housing could be successfully run with thermal barrier coatings as the thermal stresses were extensive.
Assemblies and methods for mitigating effects of reactor pressure vessel expansion
Challberg, Roy C.; Gou, Perng-Fei; Chu, Cherk Lam; Oliver, Robert P.
1999-01-01
Support assemblies for allowing RPV radial expansion while simultaneously limiting horizontal, vertical, and azimuthal movement of the RPV within a nuclear reactor are described. In one embodiment, the support assembly includes a support block and a guide block. The support block includes a first portion and a second portion, and the first portion is rigidly coupled to the RPV adjacent the first portion. The guide block is rigidly coupled to a reactor pressure vessel support structure and includes a channel sized to receive the second portion of the support block. The second portion of the support block is positioned in the guide block channel to movably couple the guide block to the support block.
Assemblies and methods for mitigating effects of reactor pressure vessel expansion
Challberg, R.C.; Gou, P.F.; Chu, C.L.; Oliver, R.P.
1999-07-27
Support assemblies for allowing RPV radial expansion while simultaneously limiting horizontal, vertical, and azimuthal movement of the RPV within a nuclear reactor are described. In one embodiment, the support assembly includes a support block and a guide block. The support block includes a first portion and a second portion, and the first portion is rigidly coupled to the RPV adjacent the first portion. The guide block is rigidly coupled to a reactor pressure vessel support structure and includes a channel sized to receive the second portion of the support block. The second portion of the support block is positioned in the guide block channel to movably couple the guide block to the support block. 6 figs.
Adiabatic quantum computing with phase modulated laser pulses
Goswami, Debabrata
2005-01-01
Implementation of quantum logical gates for multilevel systems is demonstrated through decoherence control under the quantum adiabatic method using simple phase modulated laser pulses. We make use of selective population inversion and Hamiltonian evolution with time to achieve such goals robustly instead of the standard unitary transformation language. PMID:17195865
An Expansion of the Trait-State-Occasion Model: Accounting for Shared Method Variance
ERIC Educational Resources Information Center
LaGrange, Beth; Cole, David A.
2008-01-01
This article examines 4 approaches for explaining shared method variance, each applied to a longitudinal trait-state-occasion (TSO) model. Many approaches have been developed to account for shared method variance in multitrait-multimethod (MTMM) data. Some of these MTMM approaches (correlated method, orthogonal method, correlated method minus one,…
Expansion dynamics of laser produced plasma
Doggett, B.; Lunney, J. G.
2011-05-01
We consider the applicability of the isentropic, adiabatic gas dynamical model of plume expansion for laser ablation in vacuum. We show that the model can be applied to ionized plumes and estimate the upper electron temperature limit on the applicability of the isentropic approximation. The model predictions are compared with Langmuir ion probe measurements and deposition profiles obtained for excimer laser ablation of silver.
Mode-expansion method for predicting radar signature above rough ocean surfaces at low-grazing angle
NASA Technical Reports Server (NTRS)
Zhang, Y.
2005-01-01
The Mode-Expansion Method (MEM) is introduced to calculate the electromagnetic (EM) waves scattered by 2-D rough water surfaces at low-grazing angles. The Electric Field Integral Equation (EFIE) is used in defining the problem and is simplified by using the Impedance Boundary Condition (IBC). The surface currents are expressed as the sum of modes expanded as the Fourier series with incident wave as the dominant mode. It is shown that, by the MEM and for the geometry with transmitting and receiving waves at low-grazing angles, very few modes are needed in solving the forward scattering field with reasonable accuracy.
Girod, Christophe; Vitalis, Renaud; Leblois, Raphaël; Fréville, Hélène
2011-01-01
Reconstructing the demographic history of populations is a central issue in evolutionary biology. Using likelihood-based methods coupled with Monte Carlo simulations, it is now possible to reconstruct past changes in population size from genetic data. Using simulated data sets under various demographic scenarios, we evaluate the statistical performance of Msvar, a full-likelihood Bayesian method that infers past demographic change from microsatellite data. Our simulation tests show that Msvar is very efficient at detecting population declines and expansions, provided the event is neither too weak nor too recent. We further show that Msvar outperforms two moment-based methods (the M-ratio test and Bottleneck) for detecting population size changes, whatever the time and the severity of the event. The same trend emerges from a compilation of empirical studies. The latest version of Msvar provides estimates of the current and the ancestral population size and the time since the population started changing in size. We show that, in the absence of prior knowledge, Msvar provides little information on the mutation rate, which results in biased estimates and/or wide credibility intervals for each of the demographic parameters. However, scaling the population size parameters with the mutation rate and scaling the time with current population size, as coalescent theory requires, significantly improves the quality of the estimates for contraction but not for expansion scenarios. Finally, our results suggest that Msvar is robust to moderate departures from a strict stepwise mutation model. PMID:21385729
NASA Astrophysics Data System (ADS)
Dyall, Kenneth G.; Enevoldsen, Thomas
1999-12-01
Two approximations to the normalized elimination of the small component are presented which enable the work of a relativistic calculation to be substantially reduced. The first involves fixing the ratio of the large and small components in atomic calculations, which corresponds to a basis set expansion in terms of positive energy atomic 4-spinors. The second involves the definition of a local, i.e., center-dependent, fine structure constant, which has the effect of making atoms with α=0 nonrelativistic. A series of test calculations on a variety of molecules and properties indicates that the errors incurred in the first approximation are negligible. In the second approximation, the errors are dependent on the property, the chemical environment and the atomic number. For the second period elements the errors in the approximation are for chemical purposes negligible. In the third period this is true for many properties, but for some, such as ligand-metal binding energies, there are discrepancies which may be a cause for concern in more accurate calculations. Beyond the third period it is usually necessary to treat atoms relativistically.
Hayami, Masao; Seino, Junji; Nakai, Hiromi
2014-07-30
An algorithm of the accompanying coordinate expansion and recurrence relation (ACE-RR), which is used for the rapid evaluation of the electron repulsion integral (ERI), has been extended to the general-contraction (GC) scheme. The present algorithm, denoted by GC-ACE-RR, is designed for molecular calculations including heavy elements, whose orbitals consist of many primitive functions with and without higher angular momentum such as d- and f-orbitals. The performance of GC-ACE-RR was assessed for (ss|ss)-, (pp|pp)-, (dd|dd)-, and (ff|ff)-type ERIs in terms of contraction length and the number of GC orbitals. The present algorithm was found to reduce the central processing unit time compared with the ACE-RR algorithm, especially for higher angular momentum and highly contracted orbitals. Compared with HONDOPLUS and GAMESS program packages, GC-ACE-RR computations for ERIs of three-dimensional gold clusters Aun (n = 1, 2, …, 10, 15, 20, and 25) are more than 10 times faster. PMID:24889356
Adiabaticity and gravity theory independent conservation laws for cosmological perturbations
NASA Astrophysics Data System (ADS)
Romano, Antonio Enea; Mooij, Sander; Sasaki, Misao
2016-04-01
We carefully study the implications of adiabaticity for the behavior of cosmological perturbations. There are essentially three similar but different definitions of non-adiabaticity: one is appropriate for a thermodynamic fluid δPnad, another is for a general matter field δPc,nad, and the last one is valid only on superhorizon scales. The first two definitions coincide if cs2 = cw2 where cs is the propagation speed of the perturbation, while cw2 = P ˙ / ρ ˙ . Assuming the adiabaticity in the general sense, δPc,nad = 0, we derive a relation between the lapse function in the comoving slicing Ac and δPnad valid for arbitrary matter field in any theory of gravity, by using only momentum conservation. The relation implies that as long as cs ≠cw, the uniform density, comoving and the proper-time slicings coincide approximately for any gravity theory and for any matter field if δPnad = 0 approximately. In the case of general relativity this gives the equivalence between the comoving curvature perturbation Rc and the uniform density curvature perturbation ζ on superhorizon scales, and their conservation. This is realized on superhorizon scales in standard slow-roll inflation. We then consider an example in which cw =cs, where δPnad = δPc,nad = 0 exactly, but the equivalence between Rc and ζ no longer holds. Namely we consider the so-called ultra slow-roll inflation. In this case both Rc and ζ are not conserved. In particular, as for ζ, we find that it is crucial to take into account the next-to-leading order term in ζ's spatial gradient expansion to show its non-conservation, even on superhorizon scales. This is an example of the fact that adiabaticity (in the thermodynamic sense) is not always enough to ensure the conservation of Rc or ζ.
The study on the methods of ellipsoid expansion in high-speed railway in high elevation area
NASA Astrophysics Data System (ADS)
Yang, Zhi; Wen, HongYan; Nie, GuangYu; Gao, Hong
2015-12-01
With the development of high-speed railway in recent years, the previous precision of control surveying and the methods of data processing will not meet the requirement of high-speed railway any longer. In view of the characteristics of precision is much higher in large-scale precise construction and the superiority of precision in reform of large-scale engineering control networks, in this paper, using the algorithm of ellipsoid expansion to deal with overrun coordinate projection distortion in high-speed railway, then compares with common calculation method of surveying, we get a conclusion that this method can get minimum projection and it accord with the requirement of high-precision control surveying.
Geometric Adiabatic Transport in Quantum Hall States
NASA Astrophysics Data System (ADS)
Klevtsov, S.; Wiegmann, P.
2015-08-01
We argue that in addition to the Hall conductance and the nondissipative component of the viscous tensor, there exists a third independent transport coefficient, which is precisely quantized. It takes constant values along quantum Hall plateaus. We show that the new coefficient is the Chern number of a vector bundle over moduli space of surfaces of genus 2 or higher and therefore cannot change continuously along the plateau. As such, it does not transpire on a sphere or a torus. In the linear response theory, this coefficient determines intensive forces exerted on electronic fluid by adiabatic deformations of geometry and represents the effect of the gravitational anomaly. We also present the method of computing the transport coefficients for quantum Hall states.
Geometric Adiabatic Transport in Quantum Hall States.
Klevtsov, S; Wiegmann, P
2015-08-21
We argue that in addition to the Hall conductance and the nondissipative component of the viscous tensor, there exists a third independent transport coefficient, which is precisely quantized. It takes constant values along quantum Hall plateaus. We show that the new coefficient is the Chern number of a vector bundle over moduli space of surfaces of genus 2 or higher and therefore cannot change continuously along the plateau. As such, it does not transpire on a sphere or a torus. In the linear response theory, this coefficient determines intensive forces exerted on electronic fluid by adiabatic deformations of geometry and represents the effect of the gravitational anomaly. We also present the method of computing the transport coefficients for quantum Hall states. PMID:26340197
Yu, Huimin; Zhao, Xiuhua; Zu, Yuangang; Zhang, Xinjuan; Zu, Baishi; Zhang, Xiaonan
2012-01-01
The particle sizes of pharmaceutical substances are important for their bioavailability. Bioavailability can be improved by reducing the particle size of the drug. In this study, artemisinin was micronized by the rapid expansion of supercritical solutions (RESS). The particle size of the unprocessed white needle-like artemisinin particles was 30 to 1200 μm. The optimum micronization conditions are determined as follows: extraction temperature of 62 °C, extraction pressure of 25 MPa, precipitation temperature 45 °C and nozzle diameter of 1000 μm. Under the optimum conditions, micronized artemisinin with a (mean particle size) MPS of 550 nm is obtained. By analysis of variance (ANOVA), extraction temperature and pressure have significant effects on the MPS of the micronized artemisinin. The particle size of micronized artemisinin decreased with increasing extraction temperature and pressure. Moreover, the SEM, LC-MS, FTIR, DSC and XRD allowed the comparison between the crystalline initial state and the micronization particles obtained after the RESS process. The results showed that RESS process has not induced degradation of artemisinin and that processed artemisinin particles have lower crystallinity and melting point. The bulk density of artemisinin was determined before and after RESS process and the obtained results showed that it passes from an initial density of 0.554 to 0.128 g·cm(-3) after the processing. The decrease in bulk density of the micronized powder can increase the liquidity of drug particles when they are applied for medicinal preparations. These results suggest micronized powder of artemisinin can be of great potential in drug delivery systems. PMID:22606030
Rodrigo, J.L.; Carrasco, P.; Alamo, J. )
1989-05-01
Previous disagreement about the thermal expansion of the rhombohedral compound, NZP-type, NaTi/sub 2/(PO/sub 4/)/sub 3/ is clarified. It is shown that thermal stresses affect the thermal expansion, but they relax after some time of storage. Its anisotropic thermal expansion, has been calculate from high temperature X-ray diffraction, and it is linear in the range from room temperature up to 800{sup 0}C. The predictability of thermal expansion and the tailoring of the composition of NZP ceramics require checking whether the thermal effect on the rotations and distortions of the atomic polyhedra in this structure is the responsible for the high anisotropy in the thermal expansion. This effect has been determined experimentally by solving the chemical structure at five different temperatures, applying the Rietveld method to deconvolute the powder X-ray diffraction profiles.
Quantum and classical non-adiabatic dynamics of Li_{2}^{+}Ne photodissociation
NASA Astrophysics Data System (ADS)
Pouilly, Brigitte; Monnerville, Maurice; Zanuttini, David; Gervais, Benoît
2015-01-01
The 3D photodissociation dynamics of Li2+Ne system is investigated by quantum calculations using the multi-configuration time-dependent Hartree (MCTDH) method and by classical simulations with the trajectory surface hopping (TSH) approach. Six electronic states of A’ symmetry and two states of A” symmetry are involved in the process. Couplings in the excitation region and two conical intersections in the vicinity of the Franck-Condon zone control the non-adiabatic nuclear dynamics. A diabatic representation including all the states and the couplings is determined. Diabatic and adiabatic populations calculated for initial excitation to pure diabatic and adiabatic states lead to a clear understanding of the mechanisms governing the non-adiabatic photodissociation process. The classical and quantum photodissociation cross-sections for absorption in two adiabatic states of the A’ symmetry are calculated. A remarkable agreement between quantum and classical results is obtained regarding the populations and the absorption cross-sections.
Shortcut to adiabatic gate teleportation
NASA Astrophysics Data System (ADS)
Santos, Alan C.; Silva, Raphael D.; Sarandy, Marcelo S.
2016-01-01
We introduce a shortcut to the adiabatic gate teleportation model of quantum computation. More specifically, we determine fast local counterdiabatic Hamiltonians able to implement teleportation as a universal computational primitive. In this scenario, we provide the counterdiabatic driving for arbitrary n -qubit gates, which allows to achieve universality through a variety of gate sets. Remarkably, our approach maps the superadiabatic Hamiltonian HSA for an arbitrary n -qubit gate teleportation into the implementation of a rotated superadiabatic dynamics of an n -qubit state teleportation. This result is rather general, with the speed of the evolution only dictated by the quantum speed limit. In particular, we analyze the energetic cost for different Hamiltonian interpolations in the context of the energy-time complementarity.
Vance, W.E.; Chen, X.D.; Scott, S.C.
1996-08-01
This work investigates the effect of the moisture content of coal on its spontaneous ignition in oxygen (40 C--140 C). It has been found that the highest heating rate is achieved at a medium moisture content of {approximately}7 wt% for an initial inherent moisture content of the coal before drying (in dry nitrogen at 65 C) of {approximately}20 wt%. This is particularly noticeable at temperatures below 80 C and tends to support previous studies showing that a maximum oxidation rate occurs at such a moisture content in the same temperature range. Two drying methods have been adopted in the current work and the effects of their operating conditions on the heating rates are described.
Quantum gates with controlled adiabatic evolutions
NASA Astrophysics Data System (ADS)
Hen, Itay
2015-02-01
We introduce a class of quantum adiabatic evolutions that we claim may be interpreted as the equivalents of the unitary gates of the quantum gate model. We argue that these gates form a universal set and may therefore be used as building blocks in the construction of arbitrary "adiabatic circuits," analogously to the manner in which gates are used in the circuit model. One implication of the above construction is that arbitrary classical boolean circuits as well as gate model circuits may be directly translated to adiabatic algorithms with no additional resources or complexities. We show that while these adiabatic algorithms fail to exhibit certain aspects of the inherent fault tolerance of traditional quantum adiabatic algorithms, they may have certain other experimental advantages acting as quantum gates.
On a Nonlinear Model in Adiabatic Evolutions
NASA Astrophysics Data System (ADS)
Sun, Jie; Lu, Song-Feng
2016-08-01
In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully solve the problem, while the linear model can not. Also in the same setting, when the overlap between the initial state and the final stare is sufficiently large, a simple linear adiabatic evolution can achieve O(1) time efficiency, but infinite time complexity for the nonlinear model of adiabatic evolution is needed. This tells us, it is not always a wise choice to use nonlinear interpolations in adiabatic algorithms. Sometimes, simple linear adiabatic evolutions may be sufficient for using. Supported by the National Natural Science Foundation of China under Grant Nos. 61402188 and 61173050. The first author also gratefully acknowledges the support from the China Postdoctoral Science Foundation under Grant No. 2014M552041
NASA Astrophysics Data System (ADS)
Mehdipoor, M.; Neirameh, A.
2012-01-01
The nonlinear propagation of ion acoustic waves in an ideal plasmas containing degenerate electrons is investigated. The Korteweg-de-Vries (K-dV) equation is derived for ion acoustic waves by using reductive perturbation method. The analytical traveling wave solutions of the K-dV equation investigated, through the ( G'/ G)-expansion method. These traveling wave solutions are expressed by hyperbolic function, trigonometric functions are rational functions. When the parameters are taken special values, the solitary waves are derived from the traveling waves. Also, numerically the effect different parameters on these solitary waves investigated and it is seen that exist only the compressive solitary waves in Thomas-Fermi plasmas.
Atom cooling by nonadiabatic expansion
Chen Xi; Muga, J. G.; Campo, A. del; Ruschhaupt, A.
2009-12-15
Motivated by the recent discovery that a reflecting wall moving with a square-root-in-time trajectory behaves as a universal stopper of classical particles regardless of their initial velocities, we compare linear-in-time and square-root-in-time expansions of a box to achieve efficient atom cooling. For the quantum single-atom wave functions studied the square-root-in-time expansion presents important advantages: asymptotically it leads to zero average energy whereas any linear-in-time (constant box-wall velocity) expansion leaves a nonzero residual energy, except in the limit of an infinitely slow expansion. For finite final times and box lengths we set a number of bounds and cooling principles which again confirm the superior performance of the square-root-in-time expansion, even more clearly for increasing excitation of the initial state. Breakdown of adiabaticity is generally fatal for cooling with the linear expansion but not so with the square-root-in-time expansion.
Andronesi, Ovidiu C.; Ramadan, Saadallah; Mountford, Carolyn E.; Sorensen, A. Gregory
2011-01-01
Novel low-power adiabatic sequences are demonstrated for in-vivo localized two-dimensional (2D) correlated MR spectroscopy, such as COSY (Correlated Spectroscopy) and TOCSY (Total Correlated Spectroscopy). The design is based on three new elements for in-vivo 2D MRS: the use of gradient modulated constant adiabaticity GOIA-W(16,4) pulses for i) localization (COSY and TOCSY) and ii) mixing (TOCSY), and iii) the use of longitudinal mixing (z-filter) for magnetization transfer during TOCSY. GOIA-W(16,4) provides accurate signal localization, and more importantly, lowers the SAR for both TOCSY mixing and localization. Longitudinal mixing improves considerably (five-folds) the efficiency of TOCSY transfer. These are markedly different from previous 1D editing TOCSY sequences using spatially non-selective pulses and transverse mixing. Fully adiabatic (adiabatic mixing with adiabatic localization) and semi-adiabatic (adiabatic mixing with non-adiabatic localization) methods for 2D TOCSY are compared. Results are presented for simulations, phantoms, and in-vivo 2D spectra from healthy volunteers and patients with brain tumors obtained on 3T clinical platforms equipped with standard hardware. To the best of our knowledge this is the first demonstration of in-vivo adiabatic 2D TOCSY and fully adiabatic 2D COSY. It is expected that these methodological developments will advance the in-vivo applicability of multi(spectrally)dimensional MRS to reliably identify metabolic biomarkers. PMID:20890988
He, Yue-Jing; Hung, Wei-Chih; Lai, Zhe-Ping
2016-01-01
In this study, a numerical simulation method was employed to investigate and analyze superstructure fiber Bragg gratings (SFBGs) with five duty cycles (50%, 33.33%, 14.28%, 12.5%, and 10%). This study focuses on demonstrating the relevance between design period and spectral characteristics of SFBGs (in the form of graphics) for SFBGs of all duty cycles. Compared with complicated and hard-to-learn conventional coupled-mode theory, the result of the present study may assist beginner and expert designers in understanding the basic application aspects, optical characteristics, and design techniques of SFBGs, thereby indirectly lowering the physical concepts and mathematical skills required for entering the design field. To effectively improve the accuracy of overall computational performance and numerical calculations and to shorten the gap between simulation results and actual production, this study integrated a perfectly matched layer (PML), perfectly reflecting boundary (PRB), object meshing method (OMM), and boundary meshing method (BMM) into the finite element method (FEM) and eigenmode expansion method (EEM). The integrated method enables designers to easily and flexibly design optical fiber communication systems that conform to the specific spectral characteristic by using the simulation data in this paper, which includes bandwidth, number of channels, and band gap size. PMID:26861322
He, Yue-Jing; Hung, Wei-Chih; Lai, Zhe-Ping
2016-01-01
In this study, a numerical simulation method was employed to investigate and analyze superstructure fiber Bragg gratings (SFBGs) with five duty cycles (50%, 33.33%, 14.28%, 12.5%, and 10%). This study focuses on demonstrating the relevance between design period and spectral characteristics of SFBGs (in the form of graphics) for SFBGs of all duty cycles. Compared with complicated and hard-to-learn conventional coupled-mode theory, the result of the present study may assist beginner and expert designers in understanding the basic application aspects, optical characteristics, and design techniques of SFBGs, thereby indirectly lowering the physical concepts and mathematical skills required for entering the design field. To effectively improve the accuracy of overall computational performance and numerical calculations and to shorten the gap between simulation results and actual production, this study integrated a perfectly matched layer (PML), perfectly reflecting boundary (PRB), object meshing method (OMM), and boundary meshing method (BMM) into the finite element method (FEM) and eigenmode expansion method (EEM). The integrated method enables designers to easily and flexibly design optical fiber communication systems that conform to the specific spectral characteristic by using the simulation data in this paper, which includes bandwidth, number of channels, and band gap size. PMID:26861322
A ghost cell expansion method for reducing communications in solving PDE problems
Ding, Chris H.Q.; He, Yun
2001-05-01
In solving Partial Differential Equations, such as the Barotropic equations in ocean models, on Distributed Memory Computers, finite difference methods are commonly used. Most often, processor subdomain boundaries must be updated at each time step. This boundary update process involves many messages of small sizes, therefore large communication overhead. Here we propose a new approach which expands the ghost cell layers and thus updates boundaries much less frequently ---reducing total message volume and grouping small messages into bigger ones. Together with a technique for eliminating diagonal communications, the method speedup communication substantially, up to 170%. We explain the method and implementation in details, provide systematic timing results and performance analysis on Cray T3E and IBM SP.
A modal radar cross section of thin-wire targets via the singularity expansion method
NASA Technical Reports Server (NTRS)
Richards, M. A.; Shumpert, T. H.; Riggs, L. S.
1992-01-01
A modal radar cross section (RCS) of arbitrary wire scatterers is constructed in terms of SEM parameters. Numerical results are presented for both straight and L-shaped wire targets and are compared to computations performed in the frequency domain using the method of moments.
Action First--Understanding Follows: An Expansion of Skills-Based Training Using Action Method.
ERIC Educational Resources Information Center
Martin, Colin
1988-01-01
This paper discusses the concept of training trainers in the skills they need to perform competently as trainers and how they follow their skills mastery with discussion on their new theoretical insight. Moreno's action method (psychodrama, sociodrama, sociometry, and role training) is the model used. (JOW)
FINITE EXPANSION METHOD FOR THE CALCULATION AND INTERPRETATION OF MOLECULAR ELECTROSTATIC POTENTIALS
Because it is useful to have the molecular electrostatic potential as an element in a complex scheme to assess the toxicity of large molecules, efficient and reliable methods are needed for the calculation and characterization of these potentials. A multicenter multipole expansio...
Park, Jeong-Ran; Kim, Eunjeong; Yang, Jungwon; Lee, Hanbyeol; Hong, Seok-Ho; Woo, Heung-Myong; Park, Sung-Min; Na, Sunghun; Yang, Se-Ran
2015-06-01
Recent studies have reported that stem cells can be isolated from a wide range of tissues including bone marrow, fatty tissue, adipose tissue and placenta. Moreover, several studies also suggest that skin dermis could serve as a source of stem cells, but are of unclear phenotype. Therefore, we isolated and investigated to determine the potential of stem cell within human skin dermis. We isolated cells from human dermis, termed here as human dermis-derived mesenchymal stem cells (hDMSCs) which is able to be isolated by using explants culture method. Our method has an advantage over the enzymatic method as it is easier, less expensive and less cell damage. hDMSCs were maintained in basal culture media and proliferation potential was measured. hDMSCs were highly proliferative and successfully expanded with no additional growth factor. In addition, hDMSCs revealed normal karyotype and expressed high levels of CD90, CD73 and CD105 while did not express the surface markers for CD34, CD45 and HLA-DR. Also, we confirmed that hDMSCs possess the capacity to differentiate into multiple lineage including adipocyte, osteocyte, chondrocyte and precursor of hepatocyte lineage. Considering these results, we suggest that hDMSCs might be a valuable source of stem cells and could potentially be a useful source of clinical application. PMID:25163610
NASA Astrophysics Data System (ADS)
Mehdipoor, M.
2012-03-01
Korteweg-de-Vries-Burger (K-dVB) equation is derived for ion acoustic shock waves in electron-positron-ion plasmas. Electrons and positrons are considered superthermal and are effectively modeled by a kappa distribution in which ions are as cold fluid. The analytical traveling wave solutions of the K-dVB equation investigated, through the ( G'/ G)-expansion method. These traveling wave solutions are expressed by hyperbolic function, trigonometric functions are rational functions. When the parameters are taken special values, the shock waves are derived from the traveling waves. It is observed that the amplitude ion acoustic shock waves increase as spectral index κ and kinematic viscosity η i,0 increases in which with increasing positron density β and electron temperature σ the shock amplitude decreases. Also, numerically the effect different parameters on the nonlinearity A and dispersive B terms and wave velocity V investigated.
Tanaka, Isao; Seko, Atsuto; Togo, Atsushi; Koyama, Yukinori; Oba, Fumiyasu
2010-09-29
Properties of crystalline solutions are generally dependent not only on their chemical composition but also on the configurations of solute atoms and/or point defects. Quantitative knowledge of the configuration-dependent properties is therefore essential for materials design. The cluster expansion (CE) method has been widely used to describe the configurational properties. Increases in computational power and advances in numerical techniques enable us to perform a large set of systematic first principles calculations based on density functional theory (DFT) to be combined with CE calculations. In this paper, our procedure of CE with optimal selections of clusters and DFT structures is described. Two examples of such calculations are then shown. One is the cation arrangement in a series of spinel oxides. The other is arrangement of the oxygen vacancy in a series of tin sub-dioxides. PMID:21386541
NASA Astrophysics Data System (ADS)
Tanaka, Isao; Seko, Atsuto; Togo, Atsushi; Koyama, Yukinori; Oba, Fumiyasu
2010-09-01
Properties of crystalline solutions are generally dependent not only on their chemical composition but also on the configurations of solute atoms and/or point defects. Quantitative knowledge of the configuration-dependent properties is therefore essential for materials design. The cluster expansion (CE) method has been widely used to describe the configurational properties. Increases in computational power and advances in numerical techniques enable us to perform a large set of systematic first principles calculations based on density functional theory (DFT) to be combined with CE calculations. In this paper, our procedure of CE with optimal selections of clusters and DFT structures is described. Two examples of such calculations are then shown. One is the cation arrangement in a series of spinel oxides. The other is arrangement of the oxygen vacancy in a series of tin sub-dioxides.
Adiabatic Compression of Oxygen: Real Fluid Temperatures
NASA Technical Reports Server (NTRS)
Barragan, Michelle; Wilson, D. Bruce; Stoltzfus, Joel M.
2000-01-01
The adiabatic compression of oxygen has been identified as an ignition source for systems operating in enriched oxygen atmospheres. Current practice is to evaluate the temperature rise on compression by treating oxygen as an ideal gas with constant heat capacity. This paper establishes the appropriate thermodynamic analysis for the common occurrence of adiabatic compression of oxygen and in the process defines a satisfactory equation of state (EOS) for oxygen. It uses that EOS to model adiabatic compression as isentropic compression and calculates final temperatures for this system using current approaches for comparison.
Adiabatic tapered optical fiber fabrication in two step etching
NASA Astrophysics Data System (ADS)
Chenari, Z.; Latifi, H.; Ghamari, S.; Hashemi, R. S.; Doroodmand, F.
2016-01-01
A two-step etching method using HF acid and Buffered HF is proposed to fabricate adiabatic biconical optical fiber tapers. Due to the fact that the etching rate in second step is almost 3 times slower than the previous droplet etching method, terminating the fabrication process is controllable enough to achieve a desirable fiber diameter. By monitoring transmitted spectrum, final diameter and adiabaticity of tapers are deduced. Tapers with losses about 0.3 dB in air and 4.2 dB in water are produced. The biconical fiber taper fabricated using this method is used to excite whispering gallery modes (WGMs) on a microsphere surface in an aquatic environment. So that they are suitable to be used in applications like WGM biosensors.
Method of Producing Controlled Thermal Expansion Coat for Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Brindley, William J. (Inventor); Miller, Robert A. (Inventor); Aikin, Beverly J. M. (Inventor)
2000-01-01
An improved thermal barrier coating and method for producing and applying such is disclosed herein. The thermal barrier coatings includes a high temperature substrate, a first bond coat layer applied to the substrate of MCrAlX and a second bond coat layer of MCrAlX with particles of a particulate dispersed throughout the MCrAlX and the preferred particulate is Al2O3. The particles of the particulate dispersed throughout the second bond coat layer preferably have a diameter of less then the height of the peaks of the second bond coat layer or a diameter of less than 5 micron. The method of producing the second bond coat layer may either include the steps of mechanical alloying of particles throughout the second bond coat layer, attrition milling the particles of the particulate throughout the second bond coat layer, or using electrophoresis to disperse the particles throughout the second bond coat layer. In the preferred embodiment of the invention the first bond coat layer is applied to the substrate. and then the second bond coat layer is thermally sprayed onto the first bond coat layer. Further, in a preferred embodiment of the invention a ceramic insulating layer covers the second bond coat layer.
NASA Astrophysics Data System (ADS)
Savoini, Ph.; Lembège, B.; Krasnoselskikh, V.; Balikhin, M.
Test particles simulations have been performed in order to analyze quantitatively the non adiabatic heating of electrons crossing the shock front of a planar quasi-perpendicular shock. Profiles of E and B fields are issued from selfconsistent 2D full particle simulations. Results evidence the non adiabatic dynamic of a certain percentage of transmitted electrons and allow to validate the theoritical prediction of Balikhin et al. (1998). Present numerical study is extended to the quantitative statistical approach. Test particles simulations have been performed with drifted electrons crossing homogeneous shock profiles. Both cubes and spherical shell electron velocity distributions have been investigated. Relative nonadiabatic and adiabatic electron heating efficiency is discussed versus initial velocities, pitch angle and shock profile encounter by the electrons. Numerical estimates of the Lyapounov coefficient (velocity volume expansion at crossing) are deduced from simulations and will be compared with theoretical expectations.
Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo
White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry
2015-07-07
Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficientmore » as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.« less
Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo
White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry
2015-07-07
Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.
Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo
White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry
2015-07-07
Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In most cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.
Adiabatic limits on Riemannian Heisenberg manifolds
Yakovlev, A A
2008-02-28
An asymptotic formula is obtained for the distribution function of the spectrum of the Laplace operator, in the adiabatic limit for the foliation defined by the orbits of an invariant flow on a compact Riemannian Heisenberg manifold. Bibliography: 21 titles.
Experimental demonstration of composite adiabatic passage
NASA Astrophysics Data System (ADS)
Schraft, Daniel; Halfmann, Thomas; Genov, Genko T.; Vitanov, Nikolay V.
2013-12-01
We report an experimental demonstration of composite adiabatic passage (CAP) for robust and efficient manipulation of two-level systems. The technique represents a altered version of rapid adiabatic passage (RAP), driven by composite sequences of radiation pulses with appropriately chosen phases. We implement CAP with radio-frequency pulses to invert (i.e., to rephase) optically prepared spin coherences in a Pr3+:Y2SiO5 crystal. We perform systematic investigations of the efficiency of CAP and compare the results with conventional π pulses and RAP. The data clearly demonstrate the superior features of CAP with regard to robustness and efficiency, even under conditions of weakly fulfilled adiabaticity. The experimental demonstration of composite sequences to support adiabatic passage is of significant relevance whenever a high efficiency or robustness of coherent excitation processes need to be maintained, e.g., as required in quantum information technology.
An Adiabatic Architecture for Linear Signal Processing
NASA Astrophysics Data System (ADS)
Vollmer, M.; Götze, J.
2005-05-01
Using adiabatic CMOS logic instead of the more traditional static CMOS logic can lower the power consumption of a hardware design. However, the characteristic differences between adiabatic and static logic, such as a four-phase clock, have a far reaching influence on the design itself. These influences are investigated in this paper by adapting a systolic array of CORDIC devices to be implemented adiabatically. We present a means to describe adiabatic logic in VHDL and use it to define the systolic array with precise timing and bit-true calculations. The large pipeline bubbles that occur in a naive version of this array are identified and removed to a large degree. As an example, we demonstrate a parameterization of the CORDIC array that carries out adaptive RLS filtering.
General conditions for quantum adiabatic evolution
Comparat, Daniel
2009-07-15
Adiabaticity occurs when, during its evolution, a physical system remains in the instantaneous eigenstate of the Hamiltonian. Unfortunately, existing results, such as the quantum adiabatic theorem based on a slow down evolution [H({epsilon}t),{epsilon}{yields}0], are insufficient to describe an evolution driven by the Hamiltonian H(t) itself. Here we derive general criteria and exact bounds, for the state and its phase, ensuring an adiabatic evolution for any Hamiltonian H(t). As a corollary, we demonstrate that the commonly used condition of a slow Hamiltonian variation rate, compared to the spectral gap, is indeed sufficient to ensure adiabaticity but only when the Hamiltonian is real and nonoscillating (for instance, containing exponential or polynomial but no sinusoidal functions)
Adiabatic invariance of oscillons/I -balls
NASA Astrophysics Data System (ADS)
Kawasaki, Masahiro; Takahashi, Fuminobu; Takeda, Naoyuki
2015-11-01
Real scalar fields are known to fragment into spatially localized and long-lived solitons called oscillons or I -balls. We prove the adiabatic invariance of the oscillons/I -balls for a potential that allows periodic motion even in the presence of non-negligible spatial gradient energy. We show that such a potential is uniquely determined to be the quadratic one with a logarithmic correction, for which the oscillons/I -balls are absolutely stable. For slightly different forms of the scalar potential dominated by the quadratic one, the oscillons/I -balls are only quasistable, because the adiabatic charge is only approximately conserved. We check the conservation of the adiabatic charge of the I -balls in numerical simulation by slowly varying the coefficient of logarithmic corrections. This unambiguously shows that the longevity of oscillons/I -balls is due to the adiabatic invariance.
Numerical modeling of the expansion phase of steam explosions. Part 1, Method and validation
Hyder, M.L.; Farawila, Y.M.; Abdel-Khalik, S.I.; Halvorson, P.J.
1992-05-01
In the development of the Severe Accident Analysis Program for the Savannah River production reactors, it was recognized that certain accidents have -the potential for causing damaging steam explosions. Steam explosions can occur when metals, such as the aluminum-based fuel used at Savannah River, are melted and come into contact with water. This condition is unstable, and local turbulence can lead to the generation of great quantities of steam within a few milliseconds. This phenomenon has been observed in several reactor incidents and experiments (BORAX, SPERT-1, SL-1, probably Chernobyl) where it caused damage to the reactor and associated structures. The massive SRS reactor buildings are likely to withstand any imaginable steam explosion. However, reactor components and building structures including hatches, ventilation ducts, etc., could be at risk if such an explosion occurred. The goal for this study was to develop a computer code that could be used parametrically to predict the effects of various steam explosions on their surroundings. This would be able to predict whether a steam explosion of a given magnitude would be likely to fail a particular structure. This would require, of course, that the magnitude of the explosion be specified through some combination of judgment and calculation. The requested code, identified as the K-FIX(GT) code, was developed and delivered by the contractor, along with extensive documentation. The several individual reports that constitute the documentation are each being issued as a separate WSRC report. Documentation includes several model calculations, and. representation of these in graphic form. This report incorporates Report GTRSR-006, which gives an overview of the methods used in the development of K-FIX(GT), and the results of a comparison with experiments in the literature. The authors conclude that the results of the comparison calculation are in reasonable agreement with observations.
NASA Astrophysics Data System (ADS)
Kakuta, Hiroki; Mori, Hiroyuki
This paper proposes a new method for transmission network expansion planning (TNEP) with Multi-objective Memetic Algorithm (MOMA) in consideration of a probabilistic reliability index. Recently, power networks increase the degree of the uncertainties due to the new environment of power network liberations, the emergences of renewable energy, etc. As a result, the importance of improving power supply reliability with probabilistic approaches has been recognized in power system operation and planning. This paper formulates TNEP as a multi-objective optimization problem that optimizes a probabilistic reliability index as well as the construction cost to obtain a set of the Pareto solutions in Monte Carlo Simulation (MCS). This paper proposes a new method for TNEP with MOMA that combines Multi-objective meta-heuristics (MOMH) with Tabu Search (TS) to obtain better solution sets. MOMH is useful for evaluating a set of the Pareto solutions systematically while TS plays a key role to improve the solution quality. The effectiveness of the proposed method is successfully demonstrated in the IEEE 24-bus system.
Hayami, Masao; Seino, Junji; Nakai, Hiromi
2015-05-28
An efficient algorithm for the rapid evaluation of electron repulsion integrals is proposed. The present method, denoted by accompanying coordinate expansion and transferred recurrence relation (ACE-TRR), is constructed using a transfer relation scheme based on the accompanying coordinate expansion and recurrence relation method. Furthermore, the ACE-TRR algorithm is extended for the general-contraction basis sets. Numerical assessments clarify the efficiency of the ACE-TRR method for the systems including heavy elements, whose orbitals have long contractions and high angular momenta, such as f- and g-orbitals.
ERIC Educational Resources Information Center
McArdle, Heather K.
1997-01-01
Describes a week-long activity for general to honors-level students that addresses Hubble's law and the universal expansion theory. Uses a discrepant event-type activity to lead up to the abstract principles of the universal expansion theory. (JRH)
Symmetry of the Adiabatic Condition in the Piston Problem
ERIC Educational Resources Information Center
Anacleto, Joaquim; Ferreira, J. M.
2011-01-01
This study addresses a controversial issue in the adiabatic piston problem, namely that of the piston being adiabatic when it is fixed but no longer so when it can move freely. It is shown that this apparent contradiction arises from the usual definition of adiabatic condition. The issue is addressed here by requiring the adiabatic condition to be…
NASA Astrophysics Data System (ADS)
Alvarez, G.; Şen, C.; Furukawa, N.; Motome, Y.; Dagotto, E.
2005-05-01
A software library is presented for the polynomial expansion method (PEM) of the density of states (DOS) introduced in [Y. Motome, N. Furukawa, J. Phys. Soc. Japan 68 (1999) 3853; N. Furukawa, Y. Motome, H. Nakata, Comput. Phys. Comm. 142 (2001) 410]. The library provides all necessary functions for the use of the PEM and its truncated version (TPEM) in a model independent way. The PEM/TPEM replaces the exact diagonalization of the one electron sector in models for fermions coupled to classical fields. The computational cost of the algorithm is O(N)—with N the number of lattice sites—for the TPEM [N. Furukawa, Y. Motome, J. Phys. Soc. Japan 73 (2004) 1482] which should be contrasted with the computational cost of the diagonalization technique that scales as O(N). The method is applied for the first time to a double exchange model with finite Hund coupling and also to diluted spin-fermion models. Program summaryTitle of library:TPEM Catalogue identifier: ADVK Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVK Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland No. of lines in distributed program, including test data, etc.: 1707 No. of bytes in distributed program, including test data, etc.: 13 644 Distribution format:tar.gz Operating system:Linux, UNIX Number of files:4 plus 1 test program Programming language used:C Computer:PC Nature of the physical problem:The study of correlated electrons coupled to classical fields appears in the treatment of many materials of much current interest in condensed matter theory, e.g., manganites, diluted magnetic semiconductors and high temperature superconductors among others. Method of solution: Typically an exact diagonalization of the electronic sector is performed in this type of models for each configuration of classical fields, which are integrated using a classical Monte Carlo algorithm. A polynomial expansion of the density of states is able to replace the exact
AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT
French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Redmer, Ronald; Wicht, Johannes
2012-09-15
We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grueneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.
Experimental implementation of adiabatic passage between different topological orders.
Peng, Xinhua; Luo, Zhihuang; Zheng, Wenqiang; Kou, Supeng; Suter, Dieter; Du, Jiangfeng
2014-08-22
Topological orders are exotic phases of matter existing in strongly correlated quantum systems, which are beyond the usual symmetry description and cannot be distinguished by local order parameters. Here we report an experimental quantum simulation of the Wen-plaquette spin model with different topological orders in a nuclear magnetic resonance system, and observe the adiabatic transition between two Z(2) topological orders through a spin-polarized phase by measuring the nonlocal closed-string (Wilson loop) operator. Moreover, we also measure the entanglement properties of the topological orders. This work confirms the adiabatic method for preparing topologically ordered states and provides an experimental tool for further studies of complex quantum systems. PMID:25192080
Fluctuations of work in nearly adiabatically driven open quantum systems.
Suomela, S; Salmilehto, J; Savenko, I G; Ala-Nissila, T; Möttönen, M
2015-02-01
We extend the quantum jump method to nearly adiabatically driven open quantum systems in a way that allows for an accurate account of the external driving in the system-environment interaction. Using this framework, we construct the corresponding trajectory-dependent work performed on the system and derive the integral fluctuation theorem and the Jarzynski equality for nearly adiabatic driving. We show that such identities hold as long as the stochastic dynamics and work variable are consistently defined. We numerically study the emerging work statistics for a two-level quantum system and find that the conventional diabatic approximation is unable to capture some prominent features arising from driving, such as the continuity of the probability density of work. Our results reveal the necessity of using accurate expressions for the drive-dressed heat exchange in future experiments probing jump time distributions. PMID:25768477
Engineering adiabaticity at an avoided crossing with optimal control
NASA Astrophysics Data System (ADS)
Chasseur, T.; Theis, L. S.; Sanders, Y. R.; Egger, D. J.; Wilhelm, F. K.
2015-04-01
We investigate ways to optimize adiabaticity and diabaticity in the Landau-Zener model with nonuniform sweeps. We show how diabaticity can be engineered with a pulse consisting of a linear sweep augmented by an oscillating term. We show that the oscillation leads to jumps in populations whose value can be accurately modeled using a model of multiple, photon-assisted Landau-Zener transitions, which generalizes work by Wubs et al. [New J. Phys. 7, 218 (2005)], 10.1088/1367-2630/7/1/218. We extend the study on diabaticity using methods derived from optimal control. We also show how to preserve adiabaticity with optimal pulses at limited time, finding a nonuniform quantum speed limit.
Graph isomorphism and adiabatic quantum computing
NASA Astrophysics Data System (ADS)
Gaitan, Frank; Clark, Lane
2014-02-01
In the graph isomorphism (GI) problem two N-vertex graphs G and G' are given and the task is to determine whether there exists a permutation of the vertices of G that preserves adjacency and transforms G →G'. If yes, then G and G' are said to be isomorphic; otherwise they are nonisomorphic. The GI problem is an important problem in computer science and is thought to be of comparable difficulty to integer factorization. In this paper we present a quantum algorithm that solves arbitrary instances of GI and which also provides an approach to determining all automorphisms of a given graph. We show how the GI problem can be converted to a combinatorial optimization problem that can be solved using adiabatic quantum evolution. We numerically simulate the algorithm's quantum dynamics and show that it correctly (i) distinguishes nonisomorphic graphs; (ii) recognizes isomorphic graphs and determines the permutation(s) that connect them; and (iii) finds the automorphism group of a given graph G. We then discuss the GI quantum algorithm's experimental implementation, and close by showing how it can be leveraged to give a quantum algorithm that solves arbitrary instances of the NP-complete subgraph isomorphism problem. The computational complexity of an adiabatic quantum algorithm is largely determined by the minimum energy gap Δ (N) separating the ground and first-excited states in the limit of large problem size N ≫1. Calculating Δ (N) in this limit is a fundamental open problem in adiabatic quantum computing, and so it is not possible to determine the computational complexity of adiabatic quantum algorithms in general, nor consequently, of the specific adiabatic quantum algorithms presented here. Adiabatic quantum computing has been shown to be equivalent to the circuit model of quantum computing, and so development of adiabatic quantum algorithms continues to be of great interest.
Model of TPTC Stirling engine with adiabatic working spaces
NASA Astrophysics Data System (ADS)
Renfroe, D. A.; Counts, M.
1988-10-01
A Stirling engine incorporating a phase-changing component of the working fluid has been modeled with the assumption that the compression and expansion space are adiabatic, and that the heat exchanger consists of a cooler, regenerator, and heater of finite size where the fluid follows an idealized temperature profile. Differential equations for the rate of change of mass in any cell and pressure over the entire engine were derived from the energy, continuity, state equations, and Dalton's law. From the simultaneous solution of these equations, all of the information necessary for calculation of power output and efficiency were obtained. Comparison of the results from this model with previous studies shows that the advantage of adding a phase-changing component to the working fluid may have been overstated.
Shortcut to Adiabaticity for an Anisotropic Gas Containing Quantum Defects.
Papoular, D J; Stringari, S
2015-07-10
We present a shortcut to adiabaticity (STA) protocol applicable to 3D unitary Fermi gases and 2D weakly interacting Bose gases containing defects such as vortices or solitons. Our protocol relies on a new class of exact scaling solutions in the presence of anisotropic time-dependent harmonic traps. It connects stationary states in initial and final traps having the same frequency ratios. The resulting scaling laws exhibit a universal form and also apply to the classical Boltzmann gas. The duration of the STA can be made very short so as to realize a quantum quench from one stationary state to another. When applied to an anisotropically trapped superfluid gas, the STA conserves the shape of the quantum defects hosted by the cloud, thereby acting like a perfect microscope, which sharply contrasts with their strong distortion occurring during the free expansion of the cloud. PMID:26207476
Transient energy excitation in shortcuts to adiabaticity for the time-dependent harmonic oscillator
Chen Xi; Muga, J. G.
2010-11-15
We study for the time-dependent harmonic oscillator the transient energy excitation in speed-up processes ('shortcuts to adiabaticity') designed to reproduce the initial populations at some predetermined final frequency and time. We provide lower bounds and examples. Implications for the limits imposed to the process times and for the principle of unattainability of the absolute zero, in a single expansion or in quantum refrigerator cycles, are drawn.
VUV generation by adiabatically expanded and excited by a DC electrical discharge Argon gas
Pipergias, K.; Yasemidis, D.; Reppa, E.; Pentaris, D.; Efthimiopoulos, T.; Merlemis, N.; Giannetas, V.
2010-11-10
We investigate the emission of Argon (Ar) gas which is adiabatically expanded through a nozzle and excited using a DC electrical discharge. Because of the expansion and the electronic excitation, Ar dimers and clusters are formed, which give radiation in the second (2nd) and in the third (3rd) continua of Ar, centered at about 126 and 254 nm respectively. We particularly focus our study on the 2nd continuum, in order to develop a laser at this wavelength.
ATAT@WIEN2k: An interface for cluster expansion based on the linearized augmented planewave method
NASA Astrophysics Data System (ADS)
Chakraborty, Monodeep; Spitaler, Jürgen; Puschnig, Peter; Ambrosch-Draxl, Claudia
2010-05-01
We have developed an interface between the all-electron density functional theory code WIEN2k, and the MIT Ab-initio Phase Stability (MAPS) code of the Alloy-Theoretic Automated Toolkit (ATAT). WIEN2k is an implementation of the full-potential linearized augmented planewave method which yields highly accurate total energies and optimized geometries for any given structure. The ATAT package consists of two parts. The first one is the MAPS code, which constructs a cluster expansion (CE) in conjunction with a first-principles code. These results form the basis for the second part, which computes the thermodynamic properties of the alloy. The main task of the CE is to calculate the many-body potentials or effective cluster interactions (ECIs) from the first-principles total energies of different structures or supercells using the structure-inversion technique. By linking MAPS seamlessly with WIEN2k we have created a tool to obtain the ECIs for any lattice type of an alloy. We have chosen fcc Al-Ti and bcc W-Re to evaluate our implementation. Our calculated ECIs exhibit all features of a converged CE and compare well with literature results.
Application of the viscosity-expansion method to a rotating thin fluid disk bound by central gravity
NASA Astrophysics Data System (ADS)
Takahashi, Koichi
2015-07-01
The 2D rotation of a thin fluid disk with a porous sink around the center is studied within the Navier-Stokes and Euler equations. The viscosity (ν)-expansion method is applied to the viscous fluid bound to the central mass via gravity. The Navier-Stokes equations yield various types of rotation curve, including a flat one, depending on the choice of the pressure function that is not determined within the fluid dynamics. Stationary flow is achieved through the balance of the pressure gradient, gravity, and the centrifugal force. These features of the stationary flow survive in the inviscid limit. The stability of the inviscid flow is examined by the Euler equations for the perturbations. At large distances, the real part of eigenfrequencies (EFs) are dominantly positive and decreasing with distance for flat and rising rotation curves, meaning that the spiral pattern of the perturbations is trailing. One real increasing EF exists for the decaying rotation curve, for which the spiral pattern is leading. Complex frequencies always emerge when the disk has m-fold rotational symmetry with m≥ 2. The shape of the perturbed rotation curve has azimuthal as well as temporal dependences.
Accurate adiabatic correction in the hydrogen molecule
Pachucki, Krzysztof; Komasa, Jacek
2014-12-14
A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10{sup −12} at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H{sub 2}, HD, HT, D{sub 2}, DT, and T{sub 2} has been determined. For the ground state of H{sub 2} the estimated precision is 3 × 10{sup −7} cm{sup −1}, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.
Accurate adiabatic correction in the hydrogen molecule
NASA Astrophysics Data System (ADS)
Pachucki, Krzysztof; Komasa, Jacek
2014-12-01
A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10-12 at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H2, HD, HT, D2, DT, and T2 has been determined. For the ground state of H2 the estimated precision is 3 × 10-7 cm-1, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.
Symmetry-Protected Quantum Adiabatic Transistors
NASA Astrophysics Data System (ADS)
Williamson, Dominic J.; Bartlett, Stephen D.
2014-03-01
An essential development in the history of computing was the invention of the transistor as it allowed logic circuits to be implemented in a robust and modular way. The physical characteristics of semiconductor materials were the key to building these devices. We aim to present an analogous development for quantum computing by showing that quantum adiabatic transistors (as defined by Flammia et al.) are built upon the essential qualities of symmetry-protected (SP) quantum ordered phases in one dimension. Flammia et al. and Renes et al. have demonstrated schemes for universal adiabatic quantum computation using quantum adiabatic transistors described by interacting spin chain models with specifically chosen Hamiltonian terms. We show that these models can be understood as specific examples of the generic situation in which all SP phases lead to quantum computation on encoded edge degrees of freedom by adiabatically traversing a symmetric phase transition into a trivial symmetric phase. This point of view is advantageous as it allows us to readily see that the computational properties of a quantum adiabatic transistor arise from a phase of matter rather than due to carefully tuned interactions.
NASA Astrophysics Data System (ADS)
Valeev, Edward F.; Allen, Wesley D.; Hernandez, Rigoberto; Sherrill, C. David; Schaefer, Henry F.
2003-05-01
For selected first- and second-row atoms, correlation-optimized Gaussian k functions have been determined and used in the construction of septuple-ζ basis sets for the correlation-consistent cc-pVXZ and aug-cc-pVXZ series. Restricted Hartree-Fock (RHF) and second-order Møller-Plesset (MP2) total and pair energies were computed for H, N, O, F, S, H2, N2, HF, H2O, and (H2O)2 to demonstrate the consistency of the new septuple-ζ basis sets as extensions of the established (aug)-cc-pVXZ series. The pV7Z and aug-pV7Z sets were then employed in numerous extrapolation schemes on the test species to probe the accuracy limits of the conventional MP2 method vis-à-vis explicitly correlated (MP2-R12/A) benchmarks. For (singlet, triplet) pairs, (X+1/2)-n functional forms with n=(3, 5) proved best for extrapolations. The (mean abs. relative error, std. dev.) among the 73 singlet pair energies in the dataset is (1.96%, 0.54%) and (1.72%, 0.51%) for explicit computations with the pV7Z and aug-pV7Z basis sets, respectively, but only (0.07%, 0.09%) after two-point, 6Z/7Z extrapolations with the (X+1/2)-3 form. The effects of k functions on molecular relative energies were examined by application of the septuple-ζ basis sets to the barrier to linearity and the dimerization energy of water. In the former case, an inherent uncertainty in basis set extrapolations persists which is comparable in size to the error (≈20 cm-1) in explicit aug-pV7Z computations, revealing fundamental limits of orbital expansion methods in the domain of subchemical accuracy (0.1 kcal mol-1).
NASA Astrophysics Data System (ADS)
Tasbozan, Orkun; Çenesiz, Yücel; Kurt, Ali
2016-07-01
In this paper, the Jacobi elliptic function expansion method is proposed for the first time to construct the exact solutions of the time conformable fractional two-dimensional Boussinesq equation and the combined KdV-mKdV equation. New exact solutions are found. This method is based on Jacobi elliptic functions. The results obtained confirm that the proposed method is an efficient technique for analytic treatment of a wide variety of nonlinear conformable time-fractional partial differential equations.
Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning
NASA Technical Reports Server (NTRS)
Smelyanskiy, V. N.; Toussaint, U. V.; Timucin, D. A.
2002-01-01
We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum excitation gap. g min, = O(n 2(exp -n/2), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to 'the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.
Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning
NASA Technical Reports Server (NTRS)
Smelyanskiy, Vadius; vonToussaint, Udo V.; Timucin, Dogan A.; Clancy, Daniel (Technical Monitor)
2002-01-01
We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum exitation gap, gmin = O(n2(sup -n/2)), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.
Expansion: A Plan for Success.
ERIC Educational Resources Information Center
Callahan, A.P.
This report provides selling brokers' guidelines for the successful expansion of their operations outlining a basic method of preparing an expansion plan. Topic headings are: The Pitfalls of Expansion (The Language of Business, Timely Financial Reporting, Regulatory Agencies of Government, Preoccupation with the Facade of Business, A Business Is a…
Nonadiabatic exchange dynamics during adiabatic frequency sweeps
NASA Astrophysics Data System (ADS)
Barbara, Thomas M.
2016-04-01
A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging.
Adiabatic approximation for the density matrix
NASA Astrophysics Data System (ADS)
Band, Yehuda B.
1992-05-01
An adiabatic approximation for the Liouville density-matrix equation which includes decay terms is developed. The adiabatic approximation employs the eigenvectors of the non-normal Liouville operator. The approximation is valid when there exists a complete set of eigenvectors of the non-normal Liouville operator (i.e., the eigenvectors span the density-matrix space), the time rate of change of the Liouville operator is small, and an auxiliary matrix is nonsingular. Numerical examples are presented involving efficient population transfer in a molecule by stimulated Raman scattering, with the intermediate level of the molecule decaying on a time scale that is fast compared with the pulse durations of the pump and Stokes fields. The adiabatic density-matrix approximation can be simply used to determine the density matrix for atomic or molecular systems interacting with cw electromagnetic fields when spontaneous emission or other decay mechanisms prevail.
Anderson localization makes adiabatic quantum optimization fail
Altshuler, Boris; Krovi, Hari; Roland, Jérémie
2010-01-01
Understanding NP-complete problems is a central topic in computer science (NP stands for nondeterministic polynomial time). This is why adiabatic quantum optimization has attracted so much attention, as it provided a new approach to tackle NP-complete problems using a quantum computer. The efficiency of this approach is limited by small spectral gaps between the ground and excited states of the quantum computer’s Hamiltonian. We show that the statistics of the gaps can be analyzed in a novel way, borrowed from the study of quantum disordered systems in statistical mechanics. It turns out that due to a phenomenon similar to Anderson localization, exponentially small gaps appear close to the end of the adiabatic algorithm for large random instances of NP-complete problems. This implies that unfortunately, adiabatic quantum optimization fails: The system gets trapped in one of the numerous local minima. PMID:20616043
Novel developments and applications of the classical adiabatic dynamics technique
NASA Astrophysics Data System (ADS)
Rosso, Lula
The present work aims to apply and develop modern molecular dynamics techniques based on a novel analysis of the classical adiabatic dynamics approach. In the first part of this thesis, Car-Parrinello ab-initio molecular dynamics, a successful technique based on adiabatic dynamics, is used to study the charge transport mechanism in solid ammonium perchlorate (AP) crystal exposed to an ammonia-rich environment. AP is a solid-state proton conductor composed of NH+4 and ClO-4 units that can undergo a decomposition process at high temperature, leading to its use such as rocket fuel. After computing IR spectra and carefully analysing the dynamics at different temperatures, we found that the charge transport mechanism in the pure crystal is dominated by diffusion of the ammonium ions and that the translational diffusion is strongly coupled to rotational diffusion of the two types of ions present. When the pure ammonium-perchlorate crystal is doped with neutral ammonia, another mechanism comes into play, namely, the Grotthuss proton hopping mechanism via short-lived N2H+7 complexes. In the second part of this thesis, adiabatic dynamics will be used to develop an alternative approach to the calculation of free energy profiles along reaction paths. The new method (AFED) is based on the creation of an adiabatic separation between the reaction coordinate subspace and the remaining degrees of freedom within a molecular dynamics run. This is achieved by associating with the reaction coordinate(s) a high temperature and large mass. These conditions allow the activated process to occur while permitting the remaining degrees of freedom to respond adiabatically. In this limit, by applying a formal multiple time scale Liouville operator factorization, it can be rigorously shown that the free energy profile is obtained directly from the probability distribution of the reaction coordinate subspace and, therefore, no postprocessing of the output data is required. The new method is
Spontaneous emission in stimulated Raman adiabatic passage
Ivanov, P. A.; Vitanov, N. V.; Bergmann, K.
2005-11-15
This work explores the effect of spontaneous emission on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The approach uses adiabatic elimination of weakly coupled density matrix elements in the Liouville equation, from which a very accurate analytic approximation is derived. The loss of population transfer efficiency is found to decrease exponentially with the factor {omega}{sub 0}{sup 2}/{gamma}, where {gamma} is the spontaneous emission rate and {omega}{sub 0} is the peak Rabi frequency. The transfer efficiency increases with the pulse delay and reaches a steady value. For large pulse delay and large spontaneous emission rate STIRAP degenerates into optical pumping.
On black hole spectroscopy via adiabatic invariance
NASA Astrophysics Data System (ADS)
Jiang, Qing-Quan; Han, Yan
2012-12-01
In this Letter, we obtain the black hole spectroscopy by combining the black hole property of adiabaticity and the oscillating velocity of the black hole horizon. This velocity is obtained in the tunneling framework. In particular, we declare, if requiring canonical invariance, the adiabatic invariant quantity should be of the covariant form Iadia = ∮pi dqi. Using it, the horizon area of a Schwarzschild black hole is quantized independently of the choice of coordinates, with an equally spaced spectroscopy always given by ΔA = 8 π lp2 in the Schwarzschild and Painlevé coordinates.
Feller, David
2016-01-01
Benchmark quality adiabatic electron affinities for a collection of atoms and small molecules were obtained with the Feller-Peterson-Dixon composite coupled cluster theory method. Prior applications of this method demonstrated its ability to accurately predict atomization energies/heats of formation for more than 170 molecules. In the current work, the 1-particle expansion involved very large correlation consistent basis sets, ranging up to aug-cc-pV9Z (aug-cc-pV10Z for H and H2), with the goal of minimizing the residual basis set truncation error that must otherwise be approximated with extrapolation formulas. The n-particle expansion begins with coupled cluster calculations through iterative single and double excitations plus a quasiperturbative treatment of "connected" triple excitations (CCSD(T)) pushed to the complete basis set limit followed by CCSDT, CCSDTQ, or CCSDTQ5 corrections. Due to the small size of the systems examined here, it was possible in many cases to extend the n-particle expansion to the full configuration interaction wave function limit. Additional, smaller corrections associated with core/valence correlation, scalar relativity, anharmonic zero point vibrational energies, and non-adiabatic effects were also included. The overall root mean square (RMS) deviation was 0.005 eV (0.12 kcal/mol). This level of agreement was comparable to what was found with molecular heats of formation. A 95% confidence level corresponds to roughly twice the RMS value or 0.01 eV. While the atomic electron affinities are known experimentally to high accuracy, the molecular values are less certain. This contributes to the difficulty of gauging the accuracy of the theoretical results. A limited number of electron affinities were determined with the explicitly correlated CCSD(T)-F12b method. After extending the VnZ-F12 orbital basis sets with additional diffuse functions, the F12b method was found to accurately reproduce the best F/F(-) value obtained with standard
NASA Astrophysics Data System (ADS)
Feller, David
2016-01-01
Benchmark quality adiabatic electron affinities for a collection of atoms and small molecules were obtained with the Feller-Peterson-Dixon composite coupled cluster theory method. Prior applications of this method demonstrated its ability to accurately predict atomization energies/heats of formation for more than 170 molecules. In the current work, the 1-particle expansion involved very large correlation consistent basis sets, ranging up to aug-cc-pV9Z (aug-cc-pV10Z for H and H2), with the goal of minimizing the residual basis set truncation error that must otherwise be approximated with extrapolation formulas. The n-particle expansion begins with coupled cluster calculations through iterative single and double excitations plus a quasiperturbative treatment of "connected" triple excitations (CCSD(T)) pushed to the complete basis set limit followed by CCSDT, CCSDTQ, or CCSDTQ5 corrections. Due to the small size of the systems examined here, it was possible in many cases to extend the n-particle expansion to the full configuration interaction wave function limit. Additional, smaller corrections associated with core/valence correlation, scalar relativity, anharmonic zero point vibrational energies, and non-adiabatic effects were also included. The overall root mean square (RMS) deviation was 0.005 eV (0.12 kcal/mol). This level of agreement was comparable to what was found with molecular heats of formation. A 95% confidence level corresponds to roughly twice the RMS value or 0.01 eV. While the atomic electron affinities are known experimentally to high accuracy, the molecular values are less certain. This contributes to the difficulty of gauging the accuracy of the theoretical results. A limited number of electron affinities were determined with the explicitly correlated CCSD(T)-F12b method. After extending the VnZ-F12 orbital basis sets with additional diffuse functions, the F12b method was found to accurately reproduce the best F/F- value obtained with standard
NASA Astrophysics Data System (ADS)
Wu, Jiyu; Morrell, Roger
2012-02-01
The anticipation of recently published European product standards for industrial thermal insulation has driven improvements in high-temperature thermal conductivity measurements in an attempt to obtain overall measurement uncertainties better than 5 % ( k = 2). The two measurement issues that are focused on in this article are the effect of thermal expansion on in situ thickness measurement and on determining the metering area at high temperatures. When implementing in situ thickness measurements, it is vital to correct the thermal expansion of components in a high-temperature guarded hot plate (HTGHP). For example, in the NPL HTGHP this could cause 3.2 % measurement error for a 50 mm thick specimen at 800 °C. The thermal expansion data for nickel 201 measured by NPL are presented, and the effect of this on the metering area of NPL's heater plate (nickel 201) is discussed.
Sullivan, P.; Eurek, K.; Margolis, R.
2014-07-01
Because solar power is a rapidly growing component of the electricity system, robust representations of solar technologies should be included in capacity-expansion models. This is a challenge because modeling the electricity system--and, in particular, modeling solar integration within that system--is a complex endeavor. This report highlights the major challenges of incorporating solar technologies into capacity-expansion models and shows examples of how specific models address those challenges. These challenges include modeling non-dispatchable technologies, determining which solar technologies to model, choosing a spatial resolution, incorporating a solar resource assessment, and accounting for solar generation variability and uncertainty.
2014-01-01
Background Laminoplasty is an effective procedure for treating cervical spondylotic myelopathy (CSM). Little information is available regarding the surgical outcomes of expansive open-door laminoplasty (EOLP) when securing with titanium miniplates without bone grafting. This study is aimed to elucidate the efficacy of and problems associated with EOLP secured with titanium miniplates without bone grafting, thereby enhancing future surgical outcomes. Methods This is a retrospective study. The study participants comprised 104 patients who underwent cervical EOLP secured with titanium miniplates without bone graft for CSM treatment between August 2005 and March 2011. The clinical results were evaluated based on the Japanese Orthopedic Association (JOA) and Nurick scores. The radiographic outcomes were determined based on plain film and magnetic resonance imaging findings, which were assessed and compared. Results Lateral cervical spine X-rays exhibited improvement in the Pavlov ratio of the spinal canal at 1 day postoperation, and this ratio did not change at 1 year postoperation. The mean cervical curvature from C2 to C7 decreased 0.21° ± 10.09° and the mean cervical range of motion was deteriorated by 35% at 12 months (P < 0.05). The Nurick score improved from 3.19 ± 1.06 to 0.92 ± 1.32 (P < 0.05). The mean JOA recovery rate was 75% ± 21.1% at 1 year. The mean level of postoperative neck pain at 3 months was 3.09 ± 2.31, as determined using the visual analogue scale (VAS). Increased age, concomitant thoracolumbar stenosis, depression disorder, and preexisting myelomalacia negatively affected the JOA recovery rate (P < 0.05). A decreased preoperative Nurick score and superior sensory function in the upper extremities were powerful predictors of an enhanced JOA recovery rate. The postoperative complications involved hematoma formation 0.9%, reversible C5 nerve palsy 2.8%, and moderate to severe neck pain (VAS ≥ 4) 42%. No
Adiabatic Compression in a Fire Syringe.
ERIC Educational Resources Information Center
Hayn, Carl H.; Baird, Scott C.
1985-01-01
Suggests using better materials in fire syringes to obtain more effective results during demonstrations which show the elevation in temperature upon a very rapid (adiabatic) compression of air. Also describes an experiment (using ignition temperatures) which introduces students to the use of thermocouples for high temperature measurements. (DH)
Apparatus to Measure Adiabatic and Isothermal Processes.
ERIC Educational Resources Information Center
Lamb, D. W.; White, G. M.
1996-01-01
Describes a simple manual apparatus designed to serve as an effective demonstration of the differences between isothermal and adiabatic processes for the general or elementary physics student. Enables students to verify Boyle's law for slow processes and identify the departure from this law for rapid processes and can also be used to give a clear…
Anderson, Robert C.; Jones, Jack M.; Kollie, Thomas G.
1982-01-01
The present invention is directed to the fabrication of an article of uranium-2.4 wt. % niobium alloy in which the linear thermal expansion in the direction transverse to the extrusion direction is less than about 0.98% between 22.degree. C. and 600.degree. C. which corresponds to a value greater than the 1.04% provided by previous extrusion operations over the same temperature range. The article with the improved thermal expansion possesses a yield strength at 0.2% offset of at least 400 MPa, an ultimate tensile strength of 1050 MPa, a compressive yield strength of at least 0.2% offset of at least 675 MPa, and an elongation of at least 25% over 25.4 mm/sec. To provide this article with the improved thermal expansion, the uranium alloy billet is heated to 630.degree. C. and extruded in the alpha phase through a die with a reduction ratio of at least 8.4:1 at a ram speed no greater than 6.8 mm/sec. These critical extrusion parameters provide the article with the desired decrease in the linear thermal expansion while maintaining the selected mechanical properties without encountering crystal disruption in the article.
A simple method for one-loop renormalization in curved space-time
Markkanen, Tommi; Tranberg, Anders E-mail: anders.tranberg@uis.no
2013-08-01
We present a simple method for deriving the renormalization counterterms from the components of the energy-momentum tensor in curved space-time. This method allows control over the finite parts of the counterterms and provides explicit expressions for each term separately. As an example, the method is used for the self-interacting scalar field in a Friedmann-Robertson-Walker metric in the adiabatic approximation, where we calculate the renormalized equation of motion for the field and the renormalized components of the energy-momentum tensor to fourth adiabatic order while including interactions to one-loop order. Within this formalism the trace anomaly, including contributions from interactions, is shown to have a simple derivation. We compare our results to those obtained by two standard methods, finding agreement with the Schwinger-DeWitt expansion but disagreement with adiabatic subtractions for interacting theories.
Inaba, Yasushi; Miyashita, Satoshi; Somfai, Tamás; Geshi, Masaya; Matoba, Satoko; Dochi, Osamu; Nagai, Takashi
2016-04-01
This study investigated re-expansion dynamics during culture of bovine blastocysts cryopreserved either by slow-freezing or vitrification. Also, the extent and localization of membrane damage and DNA fragmentation in re-expanded embryos were studied. Frozen-thawed embryos showed a significantly lower re-expansion rate during 24 h of post-thawing culture compared to vitrified embryos. Vitrified embryos reached the maximum level of re-expansion rate by 12 h of culture whereas frozen embryos showed a gradual increase in re-expansion rate by 24 h of culture. When assayed by Hoechst/propidium iodide staining there was no difference in the numbers and ratio of membrane damaged cells between re-expanded frozen and vitrified embryos; however, the extent of membrane damage in blastomeres was significantly higher in both groups compared with non-cryopreserved embryos (control). TUNEL assay combined with differential ICM and TE staining revealed a significantly higher number and ratio of TE cells showing DNA-fragmentation in frozen-thawed re-expanded blastocysts compared to vitrified ones; however, vitrification also resulted in an increased extent of DNA fragmentation in TE cells compared with control blastocysts. In frozen-thawed blastocysts increased extent of DNA fragmentation was associated with reduced numbers and proportion of TE cells compared with vitrified and control embryos. The number and ratio of ICM cells and the extent of DNA fragmentation in ICM did not differ among control, frozen and vitrified groups. In conclusion, compared with vitrified embryos, blastocysts preserved by slow-freezing showed a delayed timing of re-expansion which was associated with an increased frequency of DNA fragmentation in TE cells. PMID:26996887
Communication: Adiabatic and non-adiabatic electron-nuclear motion: Quantum and classical dynamics
NASA Astrophysics Data System (ADS)
Albert, Julian; Kaiser, Dustin; Engel, Volker
2016-05-01
Using a model for coupled electronic-nuclear motion we investigate the range from negligible to strong non-adiabatic coupling. In the adiabatic case, the quantum dynamics proceeds in a single electronic state, whereas for strong coupling a complete transition between two adiabatic electronic states takes place. It is shown that in all coupling regimes the short-time wave-packet dynamics can be described using ensembles of classical trajectories in the phase space spanned by electronic and nuclear degrees of freedom. We thus provide an example which documents that the quantum concept of non-adiabatic transitions is not necessarily needed if electronic and nuclear motion is treated on the same footing.
Shortcuts to adiabaticity in classical and quantum processes for scale-invariant driving
NASA Astrophysics Data System (ADS)
Deffner, Sebastian; Jarzynski, Christopher; Del Campo, Adolfo
2014-03-01
All real physical processes in classical as well as in quantum devices operate in finite-time. For most applications, however, adiabatic, i.e. infinitely-slow processes, are more favorable, as these do not cause unwanted, parasitic excitations. A shortcut to adiabaticity is a driving protocol which reproduces in a short time the same final state that would result from an adiabatic process. A particular powerful technique to engineer such shortcuts is transitionless quantum driving by means of counterdiabatic fields. However, determining closed form expressions for the counterdiabatic field has generally proven to be a daunting task. In this paper, we introduce a novel approach, with which we find the explicit form of the counterdiabatic driving field in arbitrary scale-invariant dynamical processes, encompassing expansions and transport. Our approach originates in the formalism of generating functions, and unifies previous approaches independently developed for classical and quantum systems. We show how this new approach allows to design shortcuts to adiabaticity for a large class of classical and quantum, single-particle, non-linear, and many-body systems. SD and CJ acknowledge support from the National Science Foundation (USA) under grant DMR-1206971. This research is further supported by the U.S Department of Energy through the LANL/LDRD Program and a LANL J. Robert Oppenheimer fellowship (AdC).
The dynamic instability of adiabatic blast waves
NASA Technical Reports Server (NTRS)
Ryu, Dongsu; Vishniac, Ethan T.
1991-01-01
Adiabatic blastwaves, which have a total energy injected from the center E varies as t(sup q) and propagate through a preshock medium with a density rho(sub E) varies as r(sup -omega) are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.
Adiabatic circuits: converter for static CMOS signals
NASA Astrophysics Data System (ADS)
Fischer, J.; Amirante, E.; Bargagli-Stoffi, A.; Schmitt-Landsiedel, D.
2003-05-01
Ultra low power applications can take great advantages from adiabatic circuitry. In this technique a multiphase system is used which consists ideally of trapezoidal voltage signals. The input signals to be processed will often come from a function block realized in static CMOS. The static rectangular signals must be converted for the oscillating multiphase system of the adiabatic circuitry. This work shows how to convert the input signals to the proposed pulse form which is synchronized to the appropriate supply voltage. By means of adder structures designed for a 0.13µm technology in a 4-phase system there will be demonstrated, which additional circuits are necessary for the conversion. It must be taken into account whether the data arrive in parallel or serial form. Parallel data are all in one phase and therefore it is advantageous to use an adder structure with a proper input stage, e.g. a Carry Lookahead Adder (CLA). With a serial input stage it is possible to read and to process four signals during one cycle due to the adiabatic 4-phase system. Therefore input signals with a frequency four times higher than the adiabatic clock frequency can be used. This reduces the disadvantage of the slow clock period typical for adiabatic circuits. By means of an 8 bit Ripple Carry Adder (8 bit RCA) the serial reading will be introduced. If the word width is larger than 4 bits the word can be divided in 4 bit words which are processed in parallel. This is the most efficient way to minimize the number of input lines and pads. At the same time a high throughput is achieved.
The dynamic instability of adiabatic blast waves
NASA Astrophysics Data System (ADS)
Ryu, Dongsu; Vishniac, Ethan T.
1991-02-01
Adiabatic blastwaves, which have a total energy injected from the center E varies as tq and propagate through a preshock medium with a density rhoE varies as r-omega are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.
The dynamic instability of adiabatic blastwaves
NASA Astrophysics Data System (ADS)
Ryu, Dongsu; Vishniac, Ethan T.
1990-05-01
Adiabatic blastwaves, which have a total energy injected from the center E varies as t(sup q) and propagate through a preshock medium with a density rho(sub E) varies as r(sup -omega) are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.
Adiabatic burst evaporation from bicontinuous nanoporous membranes
Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk
2015-01-01
Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406
Adiabatic evolution of an irreversible two level system
Kvitsinsky, A.; Putterman, S. )
1991-05-01
The adiabatic dynamics of a two level atom with spontaneous decay is studied. The existence of a complex adiabatic phase shift is established: The real part being the usual Berry's phase. A closed-form expression for this phase and the adiabatic transition amplitudes is obtained. Incorporation of a finite preparation time for the initial state yields a new asymptotic form for the adiabatic transition amplitudes which is significantly different from the standard Landau--Zener--Dykhne formula.
NASA Astrophysics Data System (ADS)
Hollenberg, Sebastian; Päs, Heinrich
2012-01-01
The standard wave function approach for the treatment of neutrino oscillations fails in situations where quantum ensembles at a finite temperature with or without an interacting background plasma are encountered. As a first step to treat such phenomena in a novel way, we propose a unified approach to both adiabatic and nonadiabatic two-flavor oscillations in neutrino ensembles with finite temperature and generic (e.g., matter) potentials. Neglecting effects of ensemble decoherence for now, we study the evolution of a neutrino ensemble governed by the associated quantum kinetic equations, which apply to systems with finite temperature. The quantum kinetic equations are solved formally using the Magnus expansion and it is shown that a convenient choice of the quantum mechanical picture (e.g., the interaction picture) reveals suitable parameters to characterize the physics of the underlying system (e.g., an effective oscillation length). It is understood that this method also provides a promising starting point for the treatment of the more general case in which decoherence is taken into account.
Many-body effects on adiabatic passage through Feshbach resonances
Tikhonenkov, I.; Pazy, E.; Band, Y. B.; Vardi, A.; Fleischhauer, M.
2006-04-15
We theoretically study the dynamics of an adiabatic sweep through a Feshbach resonance, thereby converting a degenerate quantum gas of fermionic atoms into a degenerate quantum gas of bosonic dimers. Our analysis relies on a zero temperature mean-field theory which accurately accounts for initial molecular quantum fluctuations, triggering the association process. The structure of the resulting semiclassical phase space is investigated, highlighting the dynamical instability of the system towards association, for sufficiently small detuning from resonance. It is shown that this instability significantly modifies the finite-rate efficiency of the sweep, transforming the single-pair exponential Landau-Zener behavior of the remnant fraction of atoms {gamma} on sweep rate {alpha}, into a power-law dependence as the number of atoms increases. The obtained nonadiabaticity is determined from the interplay of characteristic time scales for the motion of adiabatic eigenstates and for fast periodic motion around them. Critical slowing-down of these precessions near the instability leads to the power-law dependence. A linear power law {gamma}{proportional_to}{alpha} is obtained when the initial molecular fraction is smaller than the 1/N quantum fluctuations, and a cubic-root power law {gamma}{proportional_to}{alpha}{sup 1/3} is attained when it is larger. Our mean-field analysis is confirmed by exact calculations, using Fock-space expansions. Finally, we fit experimental low temperature Feshbach sweep data with a power-law dependence. While the agreement with the experimental data is well within experimental error bars, similar accuracy can be obtained with an exponential fit, making additional data highly desirable.
Magnetic shielding for a spaceborne adiabatic demagnetization refrigerator (ADR)
NASA Technical Reports Server (NTRS)
Warner, Brent A.; Shirron, Peter J.; Castles, Stephen H.; Serlemitsos, Aristides T.
1991-01-01
The Goddard Space Flight Center has studied magnetic shielding for an adiabatic demagnetization refrigerator. Four types of shielding were studied: active coils, passive ferromagnetic shells, passive superconducting coils, and passive superconducting shells. The passive superconducting shells failed by allowing flux penetration. The other three methods were successful, singly or together. Experimental studies of passive ferromagnetic shielding are compared with calculations made using the Poisson Group of programs, distributed by the Los Alamos Accelerator Code Group of the Los Alamos National Laboratory. Agreement between calculation and experiment is good. The ferromagnetic material is a silicon iron alloy.
Ultrasonic velocity and adiabatic compressibility in dioxane-water mixtures
NASA Technical Reports Server (NTRS)
Ciupe, A.; Auslaender, D.
1974-01-01
Using a method of diffraction of light on an ultrasonic beam, the velocity of ultrasounds and the adiabatic compressibility in dioxane-water mixtures were determined. The dependence of these quantities on the temperature (in the 15-50 C range) and on the concentration (0-100%) were studied. For each temperature there was found a velocity maximum and a compressibility minimum for a given value of the dioxane concentration. The different behavior of these mixtures is due to intense interactions between the molecules of the two liquids composing the mixture.
Salt materials testing for a spacecraft adiabatic demagnetization refrigerator
NASA Technical Reports Server (NTRS)
Savage, M. L.; Kittel, P.; Roellig, T.
1990-01-01
As part of a technology development effort to qualify adiabatic demagnetization refrigerators for use in a NASA spacecraft, such as the Space Infrared Telescope Facility, a study of low temperature characteristics, heat capacity and resistance to dehydration was conducted for different salt materials. This report includes results of testing with cerrous metaphosphate, several synthetic rubies, and chromic potassium alum (CPA). Preliminary results show that CPA may be suitable for long-term spacecraft use, provided that the salt is property encapsulated. Methods of salt pill construction and testing for all materials are discussed, as well as reliability tests. Also, the temperature regulation scheme and the test cryostat design are briefly discussed.
Stimulated Raman adiabatic passage through permanent dipole moment transitions
Niu Yingyu; Wang Rong; Qiu Minghui
2010-04-15
The rovibrational dynamics of stimulated Raman adiabatic passage (STIRAP) through permanent dipole moment transitions are investigated theoretically using a time-dependent quantum wave packet method for the ground electronic state of an HF molecule. The two basic STIRAP processes, {Lambda} and ladder systems, are simulated. The calculated results show that nearly 100% of the population can be transferred to the target state. Besides the interested transitions, the pulses can induce other transitions which affect the dynamics of STIRAP. The final populations of the initial and target states depend on delay time.
Immediate versus chronic tissue expansion.
Machida, B K; Liu-Shindo, M; Sasaki, G H; Rice, D H; Chandrasoma, P
1991-03-01
A quantitative comparison of the effects on tissues is performed between chronic tissue expansion, intraoperative expansion, and load cycling in a guinea pig model. Intra-operative expansion, which was developed by Sasaki as a method of immediate tissue expansion for small- to medium-sized defects, and load cycling, which was described by Gibson as a method using intraoperative pull, are compared with chronic tissue expansion on the basis of the following four parameters: amount of skin produced, flap viability, intraoperative tissue pressures, and histological changes. The chronically expanded group, which included booster and nonbooster expansions, produced a 137% increase in surface area, or a 52% increase in flap arc length, whereas intraoperative expansion resulted in a 31% increase in surface area, or a 15% increase in flap arc length. The load-cycled group, however, resulted in an almost negligible amount of skin increase. All three techniques exhibit immediate postexpansion stretchback. Flap viability is not impaired by any of the three techniques, in spite of the elevated pressures observed during expansion. Therefore, intraoperative expansion is effective primarily for limited expansion of small defects, whereas chronic tissue expansion still provides the greatest amount of skin increase when compared with other techniques. PMID:2029132
NASA Astrophysics Data System (ADS)
Wang, Hua; Alatancang; Huang, Jun-Jie
2009-12-01
The free vibration problem of rectangular thin plates is rewritten as a new upper triangular matrix differential system. For the associated operator matrix, we find that the two diagonal block operators are Hamiltonian. Moreover, the existence and completeness of normed symplectic orthogonal eigenfunction systems of these two block operators are demonstrated. Based on the completeness, the general solution of the free vibration of rectangular thin plates is given by double symplectic eigenfunction expansion method.
Roshid, Harun-Or-; Akbar, M Ali; Alam, Md Nur; Hoque, Md Fazlul; Rahman, Nizhum
2014-01-01
In this article, a new extended (G'/G) -expansion method has been proposed for constructing more general exact traveling wave solutions of nonlinear evolution equations with the aid of symbolic computation. In order to illustrate the validity and effectiveness of the method, we pick the (3 + 1)-dimensional potential-YTSF equation. As a result, abundant new and more general exact solutions have been achieved of this equation. It has been shown that the proposed method provides a powerful mathematical tool for solving nonlinear wave equations in applied mathematics, engineering and mathematical physics. PMID:25674431
Non-adiabatic perturbations in multi-component perfect fluids
Koshelev, N.A.
2011-04-01
The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.
NASA Astrophysics Data System (ADS)
Sakaguchi, Toshimasa; Fujigaki, Motoharu; Murata, Yorinobu
2015-03-01
Accurate and wide-range shape measurement method is required in industrial field. The same technique is possible to be used for a shape measurement of a human body for the garment industry. Compact 3D shape measurement equipment is also required for embedding in the inspection system. A shape measurement by a phase shifting method can measure the shape with high spatial resolution because the coordinates can be obtained pixel by pixel. A key-device to develop compact equipment is a grating projector. Authors developed a linear LED projector and proposed a light source stepping method (LSSM) using the linear LED projector. The shape measurement euipment can be produced with low-cost and compact without any phase-shifting mechanical systems by using this method. Also it enables us to measure 3D shape in very short time by switching the light sources quickly. A phase unwrapping method is necessary to widen the measurement range with constant accuracy for phase shifting method. A general phase unwrapping method with difference grating pitches is often used. It is one of a simple phase unwrapping method. It is, however, difficult to apply the conventional phase unwrapping algorithm to the LSSM. Authors, therefore, developed an expansion unwrapping algorithm for the LSSM. In this paper, an expansion algorithm of measurement range suited for 3D shape measurement using two pitches of projected grating with the LSSM was evaluated.
Adiabatic Far Field Sub-Diffraction Imaging
Cang, Hu; Salandrino, Alessandro; Wang, Yuan; Zhang, Xiang
2015-01-01
The limited resolution of a conventional optical imaging system stems from the fact that the fine feature information of an object is carried by evanescent waves, which exponentially decay in space thus cannot reach the imaging plane. We introduce here a new concept of adiabatic lens, which utilizes a geometrically conformal surface to mediate the interference of slowly decompressed electromagnetic waves at far field to form images. The decompression is satisfying an adiabatic condition, and by bridging the gap between far field and near field, it allows far field optical systems to project an image of the near field features directly. Using these designs, we demonstrated the magnification can be up to 20 times and it is possible to achieve sub-50nm imaging resolution in visible. Our approach provides a means to extend the domain of geometrical optics to a deep sub-wavelength scale. PMID:26258769
Shortcuts to adiabaticity from linear response theory.
Acconcia, Thiago V; Bonança, Marcus V S; Deffner, Sebastian
2015-10-01
A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. With the help of phenomenological response functions, a simple expression for the excess work is found-quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. Finally, we propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times. PMID:26565209
Arbitrary qudit gates by adiabatic passage
NASA Astrophysics Data System (ADS)
Rousseaux, B.; Guérin, S.; Vitanov, N. V.
2013-03-01
We derive an adiabatic technique that implements the most general SU(d) transformation in a quantum system of d degenerate states, featuring a qudit. This technique is based on the factorization of the SU(d) transformation into d generalized quantum Householder reflections, each of which is implemented by a two-shot stimulated Raman adiabatic passage with appropriate static phases. The energy of the lasers needed to synthesize a single Householder reflection is shown to be remarkably constant as a function of d. This technique is directly applicable to a linear trapped ion system with d+1 ions. We implement the quantum Fourier transform numerically in a qudit with d=4 (defined as a quartit) as an example.
Trapped Ion Quantum Computation by Adiabatic Passage
Feng Xuni; Wu Chunfeng; Lai, C. H.; Oh, C. H.
2008-11-07
We propose a new universal quantum computation scheme for trapped ions in thermal motion via the technique of adiabatic passage, which incorporates the advantages of both the adiabatic passage and the model of trapped ions in thermal motion. Our scheme is immune from the decoherence due to spontaneous emission from excited states as the system in our scheme evolves along a dark state. In our scheme the vibrational degrees of freedom are not required to be cooled to their ground states because they are only virtually excited. It is shown that the fidelity of the resultant gate operation is still high even when the magnitude of the effective Rabi frequency moderately deviates from the desired value.
Shortcuts to adiabaticity from linear response theory
NASA Astrophysics Data System (ADS)
Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian
2015-10-01
A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. With the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. Finally, we propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times.
Shortcuts to adiabaticity from linear response theory
Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian
2015-10-23
A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times.
Shortcuts to adiabaticity from linear response theory
Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian
2015-10-23
A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts tomore » adiabaticity for specific and very short driving times.« less
Adiabatic Quantization of Andreev Quantum Billiard Levels
NASA Astrophysics Data System (ADS)
Silvestrov, P. G.; Goorden, M. C.; Beenakker, C. W.
2003-03-01
We identify the time T between Andreev reflections as a classical adiabatic invariant in a ballistic chaotic cavity (Lyapunov exponent λ), coupled to a superconductor by an N-mode constriction. Quantization of the adiabatically invariant torus in phase space gives a discrete set of periods Tn, which in turn generate a ladder of excited states ɛnm=(m+1/2)πℏ/Tn. The largest quantized period is the Ehrenfest time T0=λ-1ln(N. Projection of the invariant torus onto the coordinate plane shows that the wave functions inside the cavity are squeezed to a transverse dimension W/(N), much below the width W of the constriction.
Adiabatic Quantum Simulation of Quantum Chemistry
Babbush, Ryan; Love, Peter J.; Aspuru-Guzik, Alán
2014-01-01
We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions. PMID:25308187
Pulse sequences in photoassociation via adiabatic passage
NASA Astrophysics Data System (ADS)
Li, Xuan; Dupre, William; Parker, Gregory A.
2012-07-01
We perform a detailed study of pulse sequences in a photoassociation via adiabatic passage (PAP) process to transfer population from an ensemble of ultracold atomic clouds to a vibrationally cold molecular state. We show that an appreciable final population of ultracold NaCs molecules can be achieved with optimized pulses in either the ‘counter-intuitive’ (tP > tS) or ‘intuitive’ (tP < tS) PAP pulse sequences, with tP and tS denoting the temporal centers of the pump and Stokes pulses, respectively. By investigating the dependence of the reactive yield on pulse sequences, in a wide range of tP-tS, we show that there is not a fundamental preference to either pulse sequence in a PAP process. We explain this no-sequence-preference phenomenon by analyzing a multi-bound model so that an analogy can be drawn to the conventional stimulated Raman adiabatic passage.
Adiabatic charging of nickel-hydrogen batteries
NASA Technical Reports Server (NTRS)
Lurie, Chuck; Foroozan, S.; Brewer, Jeff; Jackson, Lorna
1995-01-01
Battery management during prelaunch activities has always required special attention and careful planning. The transition from nickel-cadium to nickel-hydrogen batteries, with their high self discharge rate and lower charge efficiency, as well as longer prelaunch scenarios, has made this aspect of spacecraft battery management even more challenging. The AXAF-I Program requires high battery state of charge at launch. The use of active cooling, to ensure efficient charging, was considered and proved to be difficult and expensive. Alternative approaches were evaluated. Optimized charging, in the absence of cooling, appeared promising and was investigated. Initial testing was conducted to demonstrate the feasibility of the 'Adiabatic Charging' approach. Feasibility was demonstrated and additional testing performed to provide a quantitative, parametric data base. The assumption that the battery is in an adiabatic environment during prelaunch charging is a conservative approximation because the battery will transfer some heat to its surroundings by convective air cooling. The amount is small compared to the heat dissipated during battery overcharge. Because the battery has a large thermal mass, substantial overcharge can occur before the cells get too hot to charge efficiently. The testing presented here simulates a true adiabatic environment. Accordingly the data base may be slightly conservative. The adiabatic charge methodology used in this investigation begins with stabilizing the cell at a given starting temperature. The cell is then fully insulated on all sides. Battery temperature is carefully monitored and the charge terminated when the cell temperature reaches 85 F. Charging has been evaluated with starting temperatures from 55 to 75 F.
Advanced Adiabatic Demagnetization Refrigerators for Continuous Cooling
NASA Technical Reports Server (NTRS)
Chu, Paul C. W.
2004-01-01
The research at Houston was focused on optimizing the design of superconducting magnets for advanced adiabatic demagnetization refrigerators (ADRs), assessing the feasibility of using high temperature superconducting (HTS) magnets in ADRs in the future, and developing techniques to deposit HTS thin and thick films on high strength, low thermal conductivity substrates for HTS magnet leads. Several approaches have been tested for the suggested superconducting magnets.
Computer Code For Turbocompounded Adiabatic Diesel Engine
NASA Technical Reports Server (NTRS)
Assanis, D. N.; Heywood, J. B.
1988-01-01
Computer simulation developed to study advantages of increased exhaust enthalpy in adiabatic turbocompounded diesel engine. Subsytems of conceptual engine include compressor, reciprocator, turbocharger turbine, compounded turbine, ducting, and heat exchangers. Focus of simulation of total system is to define transfers of mass and energy, including release and transfer of heat and transfer of work in each subsystem, and relationship among subsystems. Written in FORTRAN IV.
Siphon flows in isolated magnetic flux tubes. II - Adiabatic flows
NASA Technical Reports Server (NTRS)
Montesinos, Benjamin; Thomas, John H.
1989-01-01
This paper extends the study of steady siphon flows in isolated magnetic flux tubes surrounded by field-free gas to the case of adiabatic flows. The basic equations governing steady adiabatic siphon flows in a thin, isolated magnetic flux tube are summarized, and qualitative features of adiabatic flows in elevated, arched flux tubes are discussed. The equations are then cast in nondimensional form and the results of numerical computations of adiabatic siphon flows in arched flux tubes are presented along with comparisons between isothermal and adiabatic flows. The effects of making the interior of the flux tube hotter or colder than the surrounding atmosphere at the upstream footpoint of the arch is considered. In this case, is it found that the adiabatic flows are qualitatively similar to the isothermal flows, with adiabatic cooling producing quantitative differences. Critical flows can produce a bulge point in the rising part of the arch and a concentration of magnetic flux above the bulge point.
Random matrix model of adiabatic quantum computing
Mitchell, David R.; Adami, Christoph; Lue, Waynn; Williams, Colin P.
2005-05-15
We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SAT (an NP-complete problem) in terms of random matrix theory (RMT). We determine the global regularity of the spectral fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest. At each interpolation point, we quantify the degree of regularity of the average spectral distribution via its Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor spacings. We find that for hard problem instances - i.e., those having a critical ratio of clauses to variables - the spectral fluctuations typically become irregular across a contiguous region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region, RMT may be applied to obtain a mathematical model of the probability of avoided level crossings and concomitant failure rate of the adiabatic algorithm due to nonadiabatic Landau-Zener-type transitions. Our model predicts that if the interpolation is performed at a uniform rate, the average failure rate of the quantum adiabatic algorithm, when averaged over hard problem instances, scales exponentially with increasing problem size.
Aspects of adiabatic population transfer and control
NASA Astrophysics Data System (ADS)
Demirplak, Mustafa
This thesis explores two different questions. The first question we answer is how to restore a given population transfer scenario given that it works efficiently in the adiabatic limit but fails because of lack of intensity and/or short duration. We derive a very simple algorithm to do this and apply it to both toy and realistic models. Two results emerge from this study. While the mathematical existence of the programme is certain it might not always be physically desirable. The restoration of adiabaticity is phase sensitive. The second question that is answered in this thesis is not how to invent new control paradigms, but rather what would happen to them in the presence of stochastic perturbers. We first use a phenomenological model to study the effect of stochastic dephasing on population transfer by stimulated Raman adiabatic passage. The results of this Monte Carlo calculation are qualitatively explained with a perturbation theoretical result in the dressed state basis. The reliability of our phenomenological model is questioned through a more rigorous hybrid quantal-classical simulation of controlled population transfer in HCl in Ar.
Non-adiabatic effect on quantum pumping
NASA Astrophysics Data System (ADS)
Uchiyama, Chikako
2014-03-01
We study quantum pumping for an anharmonic junction model which interacts with two kinds of bosonic environments. We provide an expression for the quantum pumping under a piecewise modulation of environmental temperatures with including non-adiabatic effect under Markovian approximation. The obtained formula is an extension of the one expressed with the geometrical phase(Phys. Rev. Lett. 104,170601 (2010)). This extension shows that the quantum pumping depends on the initial condition of the anharmonic junction just before the modulation, as well as the characteristic environmental parameters such as interaction strength and cut-off frequencies of spectral density other than the conditions of modulation. We clarify that the pumping current including non-adiabatic effect can be larger than that under the adiabatic condition. This means that we can find the optimal condition of the current by adjusting these parameters. (The article has been submitted as http://arxiv.org/submit/848201 and will be appeared soon.) This work is supported by a Grant-in-Aid for Scientific Research (B) (KAKENHI 25287098).
Duan, C.-K.; Ruan Gang; Reid, Michael F.
2004-11-01
Perturbative contributions to single-beam two-photon transition rates may be divided into two types. The first, involving low-energy intermediate states, require a high-order perturbation treatment, or an exact diagonalization. The other, involving high-energy intermediate states, only require a low-order perturbation treatment. We show how to partition the effective transition operator into two terms, corresponding to these two types, in such a way that a many-body perturbation expansion may be generated that obeys the linked cluster theorem and has a simple diagrammatic representation.
Influence of viscosity and the adiabatic index on planetary migration
NASA Astrophysics Data System (ADS)
Bitsch, B.; Boley, A.; Kley, W.
2013-02-01
Context. The strength and direction of migration of low mass embedded planets depends on the disk's thermodynamic state. It has been shown that in active disks, where the internal dissipation is balanced by radiative transport, migration can be directed outwards, a process which extends the lifetime of growing embryos. Very important parameters determining the structure of disks, and hence the direction of migration, are the viscosity and the adiabatic index. Aims: In this paper we investigate the influence of different viscosity prescriptions (α-type and constant) and adiabatic indices on disk structures. We then determine how this affects the migration rate of planets embedded in such disks. Methods: We perform three-dimensional numerical simulations of accretion disks with embedded planets. We use the explicit/implicit hydrodynamical code NIRVANA that includes full tensor viscosity and radiation transport in the flux-limited diffusion approximation, as well as a proper equation of state for molecular hydrogen. The migration of embedded 20 MEarth planets is studied. Results: Low-viscosity disks have cooler temperatures and the migration rates of embedded planets tend toward the isothermal limit. Hence, in these disks, planets migrate inwards even in the fully radiative case. The effect of outward migration can only be sustained if the viscosity in the disk is large. Overall, the differences between the treatments for the equation of state seem to play a more important role in disks with higher viscosity. A change in the adiabatic index and in the viscosity changes the zero-torque radius that separates inward from outward migration. Conclusions: For larger viscosities, temperatures in the disk become higher and the zero-torque radius moves to larger radii, allowing outward migration of a 20-MEarth planet to persist over an extended radial range. In combination with large disk masses, this may allow for an extended period of the outward migration of growing
Kovalchuk, V. I.; Kozlovsky, I. V.; Tartakovsky, V. K.
2011-05-15
A method for solving Faddeev equations in configuration space for a bound state and a continuous spectrum of the system of three nucleons was developed on the basis of expansions in K harmonics. Coulomb interaction and particle spins were not taken into account in this study. The method in question was used to describe the triton bound state and differential cross sections for neutron-deuteron scattering at subthreshold incident-neutron energies. The Volkov, Malfliet-Tjon, and Eikemeier-Hackenbroich local nucleon-nucleon potentials were employed in the present calculations.
NASA Technical Reports Server (NTRS)
Bates, Kevin R.; Daniels, Andrew D.; Scuseria, Gustavo E.
1998-01-01
We report a comparison of two linear-scaling methods which avoid the diagonalization bottleneck of traditional electronic structure algorithms. The Chebyshev expansion method (CEM) is implemented for carbon tight-binding calculations of large systems and its memory and timing requirements compared to those of our previously implemented conjugate gradient density matrix search (CG-DMS). Benchmark calculations are carried out on icosahedral fullerenes from C60 to C8640 and the linear scaling memory and CPU requirements of the CEM demonstrated. We show that the CPU requisites of the CEM and CG-DMS are similar for calculations with comparable accuracy.
NASA Astrophysics Data System (ADS)
Zayed, Elsayed M. E.; Abdelaziz, Mahmoud A. M.
2010-12-01
In this article, a generalized (Ǵ/G)-expansion method is used to find exact travelling wave solutions of the Burgers equation and the Korteweg-de Vries (KdV) equation with variable coefficients. As a result, hyperbolic, trigonometric, and rational function solutions with parameters are obtained. When these parameters are taking special values, the solitary wave solutions are derived from the hyperbolic function solution. It is shown that the proposed method is direct, effective, and can be applied to many other nonlinear evolution equations in mathematical physics.
Chen, Fei; Tillberg, Paul W.; Boyden, Edward S.
2014-01-01
In optical microscopy, fine structural details are resolved by using refraction to magnify images of a specimen. Here we report the discovery that, by synthesizing a swellable polymer network within a specimen, it can be physically expanded, resulting in physical magnification. By covalently anchoring specific labels located within the specimen directly to the polymer network, labels spaced closer than the optical diffraction limit can be isotropically separated and optically resolved, a process we call expansion microscopy (ExM). Thus, this process can be used to perform scalable super-resolution microscopy with diffraction-limited microscopes. We demonstrate ExM with effective ~70 nm lateral resolution in both cultured cells and brain tissue, performing three-color super-resolution imaging of ~107 μm3 of the mouse hippocampus with a conventional confocal microscope. PMID:25592419
2013-01-01
Background We present a novel method for quantitative analysis of dicot leaf expansion at high temporal resolution. Image sequences of growing leaves were assessed using a marker tracking algorithm. An important feature of the method is the attachment of dark beads that serve as artificial landmarks to the leaf margin. The beads are mechanically constricted to the focal plane of a camera. Leaf expansion is approximated by the increase in area of the polygon defined by the centers of mass of the beads surrounding the leaf. Fluctuating illumination conditions often pose serious problems for tracking natural structures of a leaf; this problem is circumvented here by the use of the beads. Results The new method has been used to assess leaf growth in environmental situations with different illumination conditions that are typical in agricultural and biological experiments: Constant illumination via fluorescent light tubes in a climate chamber, a mix of natural and artificial illumination in a greenhouse and natural illumination of the situation on typical summer days in the field. Typical features of diel (24h) soybean leaf growth patterns were revealed in all three conditions, thereby demonstrating the general applicability of the method. Algorithms are provided to the entire community interested in using such approaches. Conclusions The implementation Martrack Leaf presented here is a robust method to investigate diel leaf growth rhythms both under natural and artificial illumination conditions. It will be beneficial for the further elucidation of genotype x environment x management interactions affecting leaf growth processes. PMID:23883317
NASA Astrophysics Data System (ADS)
Sakumichi, Naoyuki; Kawakami, Norio; Ueda, Masahito
2012-04-01
The quantum-statistical cluster expansion method of Lee and Yang is extended to investigate off-diagonal long-range order (ODLRO) in one-component and multicomponent mixtures of bosons or fermions. Our formulation is applicable to both a uniform system and a trapped system without local-density approximation and allows systematic expansions of one-particle and multiparticle reduced density matrices in terms of cluster functions, which are defined for the same system with Boltzmann statistics. Each term in this expansion can be associated with a Lee-Yang graph. We elucidate a physical meaning of each Lee-Yang graph; in particular, for a mixture of ultracold atoms and bound dimers, an infinite sum of the ladder-type Lee-Yang 0-graphs is shown to lead to Bose-Einstein condensation of dimers below the critical temperature. In the case of Bose statistics, an infinite series of Lee-Yang 1-graphs is shown to converge and gives the criteria of ODLRO at the one-particle level. Applications to a dilute Bose system of hard spheres are also made. In the case of Fermi statistics, an infinite series of Lee-Yang 2-graphs is shown to converge and gives the criteria of ODLRO at the two-particle level. Applications to a two-component Fermi gas in the tightly bound limit are also made.
NASA Astrophysics Data System (ADS)
Merk, D.; Deneke, H.; Pospichal, B.; Seifert, P.
2016-01-01
Cloud properties from both ground-based as well as from geostationary passive satellite observations have been used previously for diagnosing aerosol-cloud interactions. In this investigation, a 2-year data set together with four selected case studies are analyzed with the aim of evaluating the consistency and limitations of current ground-based and satellite-retrieved cloud property data sets. The typically applied adiabatic cloud profile is modified using a sub-adiabatic factor to account for entrainment within the cloud. Based on the adiabatic factor obtained from the combination of ground-based cloud radar, ceilometer and microwave radiometer, we demonstrate that neither the assumption of a completely adiabatic cloud nor the assumption of a constant sub-adiabatic factor is fulfilled (mean adiabatic factor 0.63 ± 0.22). As cloud adiabaticity is required to estimate the cloud droplet number concentration but is not available from passive satellite observations, an independent method to estimate the adiabatic factor, and thus the influence of mixing, would be highly desirable for global-scale analyses. Considering the radiative effect of a cloud described by the sub-adiabatic model, we focus on cloud optical depth and its sensitivities. Ground-based estimates are here compared vs. cloud optical depth retrieved from the Meteosat SEVIRI satellite instrument resulting in a bias of -4 and a root mean square difference of 16. While a synergistic approach based on the combination of ceilometer, cloud radar and microwave radiometer enables an estimate of the cloud droplet concentration, it is highly sensitive to radar calibration and to assumptions about the moments of the droplet size distribution. Similarly, satellite-based estimates of cloud droplet concentration are uncertain. We conclude that neither the ground-based nor satellite-based cloud retrievals applied here allow a robust estimate of cloud droplet concentration, which complicates its use for the study of
Accelerating the loop expansion
Ingermanson, R.
1986-07-29
This thesis introduces a new non-perturbative technique into quantum field theory. To illustrate the method, I analyze the much-studied phi/sup 4/ theory in two dimensions. As a prelude, I first show that the Hartree approximation is easy to obtain from the calculation of the one-loop effective potential by a simple modification of the propagator that does not affect the perturbative renormalization procedure. A further modification then susggests itself, which has the same nice property, and which automatically yields a convex effective potential. I then show that both of these modifications extend naturally to higher orders in the derivative expansion of the effective action and to higher orders in the loop-expansion. The net effect is to re-sum the perturbation series for the effective action as a systematic ''accelerated'' non-perturbative expansion. Each term in the accelerated expansion corresponds to an infinite number of terms in the original series. Each term can be computed explicitly, albeit numerically. Many numerical graphs of the various approximations to the first two terms in the derivative expansion are given. I discuss the reliability of the results and the problem of spontaneous symmetry-breaking, as well as some potential applications to more interesting field theories. 40 refs.
Novel Foraminal Expansion Technique
Senturk, Salim; Ciplak, Mert; Oktenoglu, Tunc; Sasani, Mehdi; Egemen, Emrah; Yaman, Onur; Suzer, Tuncer
2016-01-01
The technique we describe was developed for cervical foraminal stenosis for cases in which a keyhole foraminotomy would not be effective. Many cervical stenosis cases are so severe that keyhole foraminotomy is not successful. However, the technique outlined in this study provides adequate enlargement of an entire cervical foraminal diameter. This study reports on a novel foraminal expansion technique. Linear drilling was performed in the middle of the facet joint. A small bone graft was placed between the divided lateral masses after distraction. A lateral mass stabilization was performed with screws and rods following the expansion procedure. A cervical foramen was linearly drilled medially to laterally, then expanded with small bone grafts, and a lateral mass instrumentation was added with surgery. The patient was well after the surgery. The novel foraminal expansion is an effective surgical method for severe foraminal stenosis. PMID:27559460
Novel Foraminal Expansion Technique.
Ozer, Ali Fahir; Senturk, Salim; Ciplak, Mert; Oktenoglu, Tunc; Sasani, Mehdi; Egemen, Emrah; Yaman, Onur; Suzer, Tuncer
2016-08-01
The technique we describe was developed for cervical foraminal stenosis for cases in which a keyhole foraminotomy would not be effective. Many cervical stenosis cases are so severe that keyhole foraminotomy is not successful. However, the technique outlined in this study provides adequate enlargement of an entire cervical foraminal diameter. This study reports on a novel foraminal expansion technique. Linear drilling was performed in the middle of the facet joint. A small bone graft was placed between the divided lateral masses after distraction. A lateral mass stabilization was performed with screws and rods following the expansion procedure. A cervical foramen was linearly drilled medially to laterally, then expanded with small bone grafts, and a lateral mass instrumentation was added with surgery. The patient was well after the surgery. The novel foraminal expansion is an effective surgical method for severe foraminal stenosis. PMID:27559460
Determination of the spin torque non-adiabaticity in perpendicularly magnetized nanowires.
Heinen, J; Hinzke, D; Boulle, O; Malinowski, G; Swagten, H J M; Koopmans, B; Ulysse, C; Faini, G; Ocker, B; Wrona, J; Kläui, M
2012-01-18
Novel nanofabrication methods and the discovery of an efficient manipulation of local magnetization based on spin polarized currents has generated a tremendous interest in the field of spintronics. The search for materials allowing for fast domain wall dynamics requires fundamental research into the effects involved (Oersted fields, adiabatic and non-adiabatic spin torque, Joule heating) and possibilities for a quantitative comparison. Theoretical descriptions reveal a material and geometry dependence of the non-adiabaticity factor β, which governs the domain wall velocity. Here, we present two independent approaches for determining β: (i) measuring the dependence of the dwell times for which a domain wall stays in a metastable pinning state on the injected current and (ii) the current-field equivalence approach. The comparison of the deduced β values highlights the problems of using one-dimensional models to describe two-dimensional dynamics and allows us to ascertain the reliability, robustness and limits of the approaches used. PMID:22172802
NASA Astrophysics Data System (ADS)
Hofmann, C.; Zimmermann, T.; Zielinski, A.; Landsman, A. S.
2016-04-01
The validity of the adiabatic approximation in strong field ionization under typical experimental conditions has recently become a topic of great interest. Experimental results have been inconclusive, in part, due to the uncertainty in experimental calibration of intensity. Here we turn to the time-dependent Schrödinger equation, where all the laser parameters are known exactly. We find that the centre of the electron momentum distribution (typically used for calibration of elliptically and circularly polarized light) is sensitive to non-adiabatic effects, leading to intensity shifts in experimental data that can significantly affect the interpretation of results. On the other hand, the transverse momentum spread in the plane of polarization is relatively insensitive to such effects, even in the Keldysh parameter regime approaching γ ≈ 3. This suggests the transverse momentum spread in the plane of polarization as a good alternative to the usual calibration method, particularly for experimental investigation of non-adiabatic effects using circularly polarized light.
NASA Technical Reports Server (NTRS)
Xu, Y. J.; Khandelwal, G. S.; Wilson, John W.
1989-01-01
A simple formula for the transition probability for electron exchange between unlike ions and atoms is established within the adiabatic approximation by employing the Linear Combination of Atomic Orbitals (LCAO) method. The formula also involves an adiabatic parameter, introduced by Massey, and thus the difficulties arising from the internal energy defect and the adiabatic approximation are avoided. Specific reactions Li(+++) + H to Li(++) + H(+) and Be(4+) + H to Be(3+) + H(+) are considered as examples. The calculated capture cross section results of the present work are compared with the experimental data and with the calculation of other authors over the velocity range of 10(7) cm/sec to 10(8) cm/sec.
Dust-acoustic solitary waves in a four-component adiabatic magnetized dusty plasma
Akhter, T. Mannan, A.; Mamun, A. A.
2013-07-15
Theoretical investigation has been made on obliquely propagating dust-acoustic (DA) solitary waves (SWs) in a magnetized dusty plasma which consists of non-inertial adiabatic electron and ion fluids, and inertial negatively as well as positively charged adiabatic dust fluids. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation which admits a solitary wave solution for small but finite amplitude limit. It has been shown that the basic features (speed, height, thickness, etc.) of such DA solitary structures are significantly modified by adiabaticity of plasma fluids, opposite polarity dust components, and the obliqueness of external magnetic field. The SWs have been changed from compressive to rarefactive depending on the value of {mu} (a parameter determining the number of positive dust present in this plasma model). The present investigation can be of relevance to the electrostatic solitary structures observed in various dusty plasma environments (viz. cometary tails, upper mesosphere, Jupiter's magnetosphere, etc.)
NASA Astrophysics Data System (ADS)
Fishman, S.; Soffer, A.
2016-07-01
We employ the recently developed multi-time scale averaging method to study the large time behavior of slowly changing (in time) Hamiltonians. We treat some known cases in a new way, such as the Zener problem, and we give another proof of the adiabatic theorem in the gapless case. We prove a new uniform ergodic theorem for slowly changing unitary operators. This theorem is then used to derive the adiabatic theorem, do the scattering theory for such Hamiltonians, and prove some classical propagation estimates and asymptotic completeness.
Shortcut to adiabaticity in full-wave optics for ultra-compact waveguide junctions
NASA Astrophysics Data System (ADS)
Della Valle, Giuseppe; Perozziello, Gerardo; Longhi, Stefano
2016-09-01
We extend the concept of shortcuts to adiabaticity to full-wave optics and provide an application to the design of an ultra-compact waveguide junction. In particular, we introduce a procedure allowing one to synthesize a purely dielectric optical potential that precisely compensates for non-adiabatic losses of the transverse electric fundamental mode in any (sufficiently regular) two-dimensional waveguide junction. Our results are corroborated by finite-element method numerical simulations in a Pöschl–Teller waveguide mode expander.
Cosmological consequences of an adiabatic matter creation process
NASA Astrophysics Data System (ADS)
Nunes, Rafael C.; Pan, Supriya
2016-06-01
In this paper, we investigate the cosmological consequences of a continuous matter creation associated with the production of particles by the gravitational field acting on the quantum vacuum. To illustrate this, three phenomenological models are considered. An equivalent scalar field description is presented for each models. The effects on the cosmic microwave background power spectrum are analysed for the first time in the context of adiabatic matter creation cosmology. Further, we introduce a model independent treatment, Om, which depends only on the Hubble expansion rate and the cosmological redshift to distinguish any cosmological model from Λ cold dark matter by providing a null test for the cosmological constant, meaning that, for any two redshifts z1, z2, Om(z) is same, i.e. Om(z1) - Om(z2) = 0. Also, this diagnostic can differentiate between several cosmological models by indicating their quintessential/phantom behaviour without knowing the accurate value of the matter density, and the present value of the Hubble parameter. For our models, we find that particle production rate is inversely proportional to Om. Finally, the validity of the generalized second law of thermodynamics bounded by the apparent horizon has been examined.
Bond selective chemistry beyond the adiabatic approximation
Butler, L.J.
1993-12-01
One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.
Shelley, Brandon C.; Gowing, Geneviève; Svendsen, Clive N.
2014-01-01
A cell expansion technique to amass large numbers of cells from a single specimen for research experiments and clinical trials would greatly benefit the stem cell community. Many current expansion methods are laborious and costly, and those involving complete dissociation may cause several stem and progenitor cell types to undergo differentiation or early senescence. To overcome these problems, we have developed an automated mechanical passaging method referred to as “chopping” that is simple and inexpensive. This technique avoids chemical or enzymatic dissociation into single cells and instead allows for the large-scale expansion of suspended, spheroid cultures that maintain constant cell/cell contact. The chopping method has primarily been used for fetal brain-derived neural progenitor cells or neurospheres, and has recently been published for use with neural stem cells derived from embryonic and induced pluripotent stem cells. The procedure involves seeding neurospheres onto a tissue culture Petri dish and subsequently passing a sharp, sterile blade through the cells effectively automating the tedious process of manually mechanically dissociating each sphere. Suspending cells in culture provides a favorable surface area-to-volume ratio; as over 500,000 cells can be grown within a single neurosphere of less than 0.5 mm in diameter. In one T175 flask, over 50 million cells can grow in suspension cultures compared to only 15 million in adherent cultures. Importantly, the chopping procedure has been used under current good manufacturing practice (cGMP), permitting mass quantity production of clinical-grade cell products. PMID:24962813
Shelley, Brandon C; Gowing, Geneviève; Svendsen, Clive N
2014-01-01
A cell expansion technique to amass large numbers of cells from a single specimen for research experiments and clinical trials would greatly benefit the stem cell community. Many current expansion methods are laborious and costly, and those involving complete dissociation may cause several stem and progenitor cell types to undergo differentiation or early senescence. To overcome these problems, we have developed an automated mechanical passaging method referred to as "chopping" that is simple and inexpensive. This technique avoids chemical or enzymatic dissociation into single cells and instead allows for the large-scale expansion of suspended, spheroid cultures that maintain constant cell/cell contact. The chopping method has primarily been used for fetal brain-derived neural progenitor cells or neurospheres, and has recently been published for use with neural stem cells derived from embryonic and induced pluripotent stem cells. The procedure involves seeding neurospheres onto a tissue culture Petri dish and subsequently passing a sharp, sterile blade through the cells effectively automating the tedious process of manually mechanically dissociating each sphere. Suspending cells in culture provides a favorable surface area-to-volume ratio; as over 500,000 cells can be grown within a single neurosphere of less than 0.5 mm in diameter. In one T175 flask, over 50 million cells can grow in suspension cultures compared to only 15 million in adherent cultures. Importantly, the chopping procedure has been used under current good manufacturing practice (cGMP), permitting mass quantity production of clinical-grade cell products. PMID:24962813
Mode-expanded semiconductor laser with tapered-rib adiabatic-following fiber coupler
Vawter, G.A.; Smith, R.E.; Hou, H.; Wendt, J.R.
1996-12-01
Expanded-mode semiconductor lasers are of great interest due to the benefits of reduced far-field divergence and improved coupling efficiency to optical fiber. The authors present a new diode laser using a Tapered-Rib Adiabatic-Following Fiber Coupler (TRAFFiC) to achieve 2D mode expansion without epitaxial regrowth or sharply-defined tips on tapered waveguides. The expanded mode size would allow 0.25 to 1 dB coupling loss to standard telecommunications fiber making smaller-core specialty fibers unnecessary, increasing misalignment tolerance, and eliminating the need for coupling optics.
Phase avalanches in near-adiabatic evolutions
Vertesi, T.; Englman, R.
2006-02-15
In the course of slow, nearly adiabatic motion of a system, relative changes in the slowness can cause abrupt and high magnitude phase changes, ''phase avalanches,'' superimposed on the ordinary geometric phases. The generality of this effect is examined for arbitrary Hamiltonians and multicomponent (>2) wave packets and is found to be connected (through the Blaschke term in the theory of analytic signals) to amplitude zeros in the lower half of the complex time plane. Motion on a nonmaximal circle on the Poincare-sphere suppresses the effect. A spectroscopic transition experiment can independently verify the phase-avalanche magnitudes.
Adiabatic chaos in the spin orbit problem
NASA Astrophysics Data System (ADS)
Benettin, Giancarlo; Guzzo, Massimiliano; Marini, Valerio
2008-05-01
We provide evidences that the angular momentum of a symmetric rigid body in a spin orbit resonance can perform large scale chaotic motions on time scales which increase polynomially with the inverse of the oblateness of the body. This kind of irregular precession appears as soon as the orbit of the center of mass is non-circular and the angular momentum of the body is far from the principal directions with minimum (maximum) moment of inertia. We also provide a quantitative explanation of these facts by using the theory of adiabatic invariants, and we provide numerical applications to the cases of the 1:1 and 1:2 spin orbit resonances.
Experimental breaking of an adiabatic invariant
NASA Astrophysics Data System (ADS)
Notte, J.; Fajans, J.; Chu, R.; Wurtele, J. S.
1993-06-01
When a cylindrical pure electron plasma is displaced from the center of the trap, it performs a bulk circular orbital motion known as the l=1 diocotron mode. The slow application of a perturbing potential to a patch on the trap wall distorts the orbit into a noncircular closed path. Experiments and a simple theoretical model indicate that the area by the loop is an adiabatic invariant. Detailed studies are made of the breaking of the invariant when perturbations are rapidly applied. When the perturbation is applied with discontinuous time derivatives, the invariant breaking greatly exceeds the predictions of the standard theory for smooth perturbations.
[Bond selective chemistry beyond the adiabatic approximation
Butler, L.J.
1993-02-28
The adiabatic Born-Oppenheimer potential energy surface approximation is not valid for reaction of a wide variety of energetic materials and organic fuels; coupling between electronic states of reacting species plays a key role in determining the selectivity of the chemical reactions induced. This research program initially studies this coupling in (1) selective C-Br bond fission in 1,3- bromoiodopropane, (2) C-S:S-H bond fission branching in CH[sub 3]SH, and (3) competition between bond fission channels and H[sub 2] elimination in CH[sub 3]NH[sub 2].
Adiabatic passage in the presence of noise
NASA Astrophysics Data System (ADS)
Noel, T.; Dietrich, M. R.; Kurz, N.; Shu, G.; Wright, J.; Blinov, B. B.
2012-02-01
We report on an experimental investigation of rapid adiabatic passage (RAP) in a trapped barium ion system. RAP is implemented on the transition from the 6S1/2 ground state to the metastable 5D5/2 level by applying a laser at 1.76 μm. We focus on the interplay of laser frequency noise and laser power in shaping the effectiveness of RAP, which is commonly assumed to be a robust tool for high-efficiency population transfer. However, we note that reaching high state transfer fidelity requires a combination of small laser linewidth and large Rabi frequency.
Adiabatic demagnetization refrigerator for space use
NASA Technical Reports Server (NTRS)
Serlemitsos, A. T.; Warner, B. A.; Castles, S.; Breon, S. R.; San Sebastian, M.; Hait, T.
1990-01-01
An Adiabatic Demagnetization Refrigerator (ADR) for space use is under development at NASA's Goddard Space Flight Center (GSFC). The breadboard ADR operated at 100 mK for 400 minutes. Some significant changes to that ADR, designed to eliminate shortcomings revealed during tests, are reported. To increase thermal contact, the ferric ammonium sulfate crystals were grown directly on gold-plated copper wires which serve as the thermal bus. The thermal link to the X-ray sensors was also markedly improved. To speed up the testing required to determine the best design parameters for the gas gap heat switch, the new heat switch has a modular design and is easy to disassemble.
Generalized Ramsey numbers through adiabatic quantum optimization
NASA Astrophysics Data System (ADS)
Ranjbar, Mani; Macready, William G.; Clark, Lane; Gaitan, Frank
2016-06-01
Ramsey theory is an active research area in combinatorics whose central theme is the emergence of order in large disordered structures, with Ramsey numbers marking the threshold at which this order first appears. For generalized Ramsey numbers r(G, H), the emergent order is characterized by graphs G and H. In this paper we: (i) present a quantum algorithm for computing generalized Ramsey numbers by reformulating the computation as a combinatorial optimization problem which is solved using adiabatic quantum optimization; and (ii) determine the Ramsey numbers r({{T}}m,{{T}}n) for trees of order m,n = 6,7,8 , most of which were previously unknown.
Decoherence in a scalable adiabatic quantum computer
Ashhab, S.; Johansson, J. R.; Nori, Franco
2006-11-15
We consider the effects of decoherence on Landau-Zener crossings encountered in a large-scale adiabatic-quantum-computing setup. We analyze the dependence of the success probability--i.e., the probability for the system to end up in its new ground state--on the noise amplitude and correlation time. We determine the optimal sweep rate that is required to maximize the success probability. We then discuss the scaling of decoherence effects with increasing system size. We find that those effects can be important for large systems, even if they are small for each of the small building blocks.
Local entanglement generation in the adiabatic regime
Cliche, M.; Veitia, Andrzej
2010-09-15
We study entanglement generation in a pair of qubits interacting with an initially correlated system. Using time-independent perturbation theory and the adiabatic theorem, we show conditions under which the qubits become entangled as the joint system evolves into the ground state of the interacting theory. We then apply these results to the case of qubits interacting with a scalar quantum field. We study three different variations of this setup; a quantum field subject to Dirichlet boundary conditions, a quantum field interacting with a classical potential, and a quantum field that starts in a thermal state.
Gubler, Philipp; Yamamoto, Naoki; Hatsuda, Tetsuo; Nishida, Yusuke
2015-05-15
Making use of the operator product expansion, we derive a general class of sum rules for the imaginary part of the single-particle self-energy of the unitary Fermi gas. The sum rules are analyzed numerically with the help of the maximum entropy method, which allows us to extract the single-particle spectral density as a function of both energy and momentum. These spectral densities contain basic information on the properties of the unitary Fermi gas, such as the dispersion relation and the superfluid pairing gap, for which we obtain reasonable agreement with the available results based on quantum Monte-Carlo simulations.
NASA Astrophysics Data System (ADS)
Ivanov, V. A.
2010-12-01
The possibility of ensuring equivalence in operation and efficiency of real cycles with intermediate cooling (heating) and isothermal-adiabatic compressions (expansion) in ideal simple cycles formed on the T- S diagrams in the second stage of real cycles. The possibility of using the equivalence of cycles for determining the maximum efficiency of operation of real cycles is demonstrated.
NASA Astrophysics Data System (ADS)
Ventura, Guglielmo; Perfetti, Mauro
All solid materials, when cooled to low temperatures experience a change in physical dimensions which called "thermal contraction" and is typically lower than 1 % in volume in the 4-300 K temperature range. Although the effect is small, it can have a heavy impact on the design of cryogenic devices. The thermal contraction of different materials may vary by as much as an order of magnitude: since cryogenic devices are constructed at room temperature with a lot of different materials, one of the major concerns is the effect of the different thermal contraction and the resulting thermal stress that may occur when two dissimilar materials are bonded together. In this chapter, theory of thermal contraction is reported in Sect.
Chirped Pulse Adiabatic Passage in CARS for Imaging of Biological Structure and Dynamics
Malinovskaya, Svetlana A.
2007-12-26
We propose the adiabatic passage control scheme implementing chirped femtosecond laser pulses to maximize coherence in a predetermined molecular vibrational mode using two-photon Raman transitions. We investigate vibrational energy relaxation and collisional dephasing as factors of coherence loss, and demonstrate the possibility for preventing decoherence by the chirped pulse train. The proposed method may be used to advance noninvasive biological imaging techniques.
Geometry of an adiabatic passage at a level crossing
Cholascinski, Mateusz
2005-06-15
We discuss adiabatic quantum phenomena at a level crossing. Given a path in the parameter space which passes through a degeneracy point, we find a criterion which determines whether the adiabaticity condition can be satisfied. For paths that can be traversed adiabatically we also derive a differential equation which specifies the time dependence of the system parameters, for which transitions between distinct energy levels can be neglected. We also generalize the well-known geometric connections to the case of adiabatic paths containing arbitrarily many level-crossing points and degenerate levels.
Geometrical representation of sum frequency generation and adiabatic frequency conversion
NASA Astrophysics Data System (ADS)
Suchowski, Haim; Oron, Dan; Arie, Ady; Silberberg, Yaron
2008-12-01
We present a geometrical representation of the process of sum frequency generation in the undepleted pump approximation, in analogy with the known optical Bloch equations. We use this analogy to propose a technique for achieving both high efficiency and large bandwidth in sum frequency conversion using the adiabatic inversion scheme. The process is analogous with rapid adiabatic passage in NMR, and adiabatic constraints are derived in this context. This adiabatic frequency conversion scheme is realized experimentally using an aperiodically poled potassium titanyl phosphate (KTP) device, where we achieved high efficiency signal-to-idler conversion over a bandwidth of 140nm .
On the Role of Prior Probability in Adiabatic Quantum Algorithms
NASA Astrophysics Data System (ADS)
Sun, Jie; Lu, Songfeng; Yang, Liping
2016-03-01
In this paper, we study the role of prior probability on the efficiency of quantum local adiabatic search algorithm. The following aspects for prior probability are found here: firstly, only the probabilities of marked states affect the running time of the adiabatic evolution; secondly, the prior probability can be used for improving the efficiency of the adiabatic algorithm; thirdly, like the usual quantum adiabatic evolution, the running time for the case of multiple solution states where the number of marked elements are smaller enough than the size of the set assigned that contains them can be significantly bigger than that of the case where the assigned set only contains all the marked states.
Nonadiabatic Transitions in Adiabatic Rapid Passage
NASA Astrophysics Data System (ADS)
Lu, T.; Miao, X.; Metcalf, H.
2006-05-01
Optical forces much larger than the ordinary radiative force can be achieved on a two-level atom by multiple repetitions of adiabatic rapid passage sweeps with counterpropagating light beams. Chirped light pulses drive the atom-laser system up a ladder of dressed state energy sheets on sequential trajectories, thereby decreasing the atomic kinetic energy. Nonadiabatic transitions between the energy sheets must be avoided for this process to be effective. We have calculated the nonadiabatic transition probability for various chirped light pulses numerically. These results were compared to the first Demkov-Kunike model and the well-known Landau-Zener model. In addition, an analytical form of the nonadiabatic transition probability has been found for linearly chirped pulses and an approximate form for generic symmetric finite-time pulses has been found for the entire parameter space using the technique of unitary integration. From this, the asymptotic transition probability in the adiabatic limit was derived. T. Lu, X. Miao, and H. Metcalf, Phys., Rev. A 71 061405(R) (2005). Yu. Demkov and M. Kunike, Vestn. Leningr. Univ. Fis. Khim., 16, 39 (1969); K.-A. Suominen and B. Garraway, Phys. Rev. A45, 374 (1992)
Adiabatic cooling of solar wind electrons
NASA Technical Reports Server (NTRS)
Sandbaek, Ornulf; Leer, Egil
1992-01-01
In thermally driven winds emanating from regions in the solar corona with base electron densities of n0 not less than 10 exp 8/cu cm, a substantial fraction of the heat conductive flux from the base is transfered into flow energy by the pressure gradient force. The adiabatic cooling of the electrons causes the electron temperature profile to fall off more rapidly than in heat conduction dominated flows. Alfven waves of solar origin, accelerating the basically thermally driven solar wind, lead to an increased mass flux and enhanced adiabatic cooling. The reduction in electron temperature may be significant also in the subsonic region of the flow and lead to a moderate increase of solar wind mass flux with increasing Alfven wave amplitude. In the solar wind model presented here the Alfven wave energy flux per unit mass is larger than that in models where the temperature in the subsonic flow is not reduced by the wave, and consequently the asymptotic flow speed is higher.
Kropf, Pascal; Shmuel, Amir
2016-07-01
Estimation of current source density (CSD) from the low-frequency part of extracellular electric potential recordings is an unstable linear inverse problem. To make the estimation possible in an experimental setting where recordings are contaminated with noise, it is necessary to stabilize the inversion. Here we present a unified framework for zero- and higher-order singular-value-decomposition (SVD)-based spectral regularization of 1D (linear) CSD estimation from local field potentials. The framework is based on two general approaches commonly employed for solving inverse problems: quadrature and basis function expansion. We first show that both inverse CSD (iCSD) and kernel CSD (kCSD) fall into the category of basis function expansion methods. We then use these general categories to introduce two new estimation methods, quadrature CSD (qCSD), based on discretizing the CSD integral equation with a chosen quadrature rule, and representer CSD (rCSD), an even-determined basis function expansion method that uses the problem's data kernels (representers) as basis functions. To determine the best candidate methods to use in the analysis of experimental data, we compared the different methods on simulations under three regularization schemes (Tikhonov, tSVD, and dSVD), three regularization parameter selection methods (NCP, L-curve, and GCV), and seven different a priori spatial smoothness constraints on the CSD distribution. This resulted in a comparison of 531 estimation schemes. We evaluated the estimation schemes according to their source reconstruction accuracy by testing them using different simulated noise levels, lateral source diameters, and CSD depth profiles. We found that ranking schemes according to the average error over all tested conditions results in a reproducible ranking, where the top schemes are found to perform well in the majority of tested conditions. However, there is no single best estimation scheme that outperforms all others under all tested
NASA Astrophysics Data System (ADS)
Mandrà, Salvatore; Guerreschi, Gian Giacomo; Aspuru-Guzik, Alán
2015-12-01
Adiabatic quantum optimization is a procedure to solve a vast class of optimization problems by slowly changing the Hamiltonian of a quantum system. The evolution time necessary for the algorithm to be successful scales inversely with the minimum energy gap encountered during the dynamics. Unfortunately, the direct calculation of the gap is strongly limited by the exponential growth in the dimensionality of the Hilbert space associated to the quantum system. Although many special-purpose methods have been devised to reduce the effective dimensionality, they are strongly limited to particular classes of problems with evident symmetries. Moreover, little is known about the computational power of adiabatic quantum optimizers in real-world conditions. Here we propose and implement a general purposes reduction method that does not rely on any explicit symmetry and which requires, under certain general conditions, only a polynomial amount of classical resources. Thanks to this method, we are able to analyze the performance of "nonideal" quantum adiabatic optimizers to solve the well-known Grover problem, namely the search of target entries in an unsorted database, in the presence of discrete local defects. In this case, we show that adiabatic quantum optimization, even if affected by random noise, is still potentially faster than any classical algorithm.
Wigner phase space distribution via classical adiabatic switching.
Bose, Amartya; Makri, Nancy
2015-09-21
Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations. PMID:26395694
Wigner phase space distribution via classical adiabatic switching
Bose, Amartya; Makri, Nancy
2015-09-21
Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations.
Wigner phase space distribution via classical adiabatic switching
NASA Astrophysics Data System (ADS)
Bose, Amartya; Makri, Nancy
2015-09-01
Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations.
NASA Technical Reports Server (NTRS)
Yos, William T. (Inventor); Cantrell, John H., Jr. (Inventor)
2004-01-01
A method and apparatus for measuring changes in intracranial pressure (ICP) utilizing the variation of the surface wave propagation parameters of the patient's skull to determine the change in ICP. In one embodiment, the method comprises the steps of transmitting an ultrasonic bulk compressional wave onto the surface of the skull at a predetermined angle with respect to the skull so as to produce a surface wave, receiving the surface wave at an angle with respect tn the skull which is substantially the same as the predetermined angle and at a location that is a predetermined distance from where the ultrasonic bulk compressional wave was transmitted upon the skull, determining the retardation or advancement in phase of the received surface wave with respect to a reference phase, and processing the determined retardation or advancement in phase to determine circumferential expansion or contraction of the skull and utilizing the determined circumferential change to determine the change in intracranial pressure.
NASA Astrophysics Data System (ADS)
Samin, Adib; Lahti, Erik; Zhang, Jinsuo
2015-08-01
Cyclic voltammetry is a powerful tool that is used for characterizing electrochemical processes. Models of cyclic voltammetry take into account the mass transport of species and the kinetics at the electrode surface. Analytical solutions of these models are not well-known due to the complexity of the boundary conditions. In this study we present closed form analytical solutions of the planar voltammetry model for two soluble species with fast electron transfer and equal diffusivities using the eigenfunction expansion method. Our solution methodology does not incorporate Laplace transforms and yields good agreement with the numerical solution. This solution method can be extended to cases that are more general and may be useful for benchmarking purposes.
Samin, Adib; Lahti, Erik; Zhang, Jinsuo
2015-08-15
Cyclic voltammetry is a powerful tool that is used for characterizing electrochemical processes. Models of cyclic voltammetry take into account the mass transport of species and the kinetics at the electrode surface. Analytical solutions of these models are not well-known due to the complexity of the boundary conditions. In this study we present closed form analytical solutions of the planar voltammetry model for two soluble species with fast electron transfer and equal diffusivities using the eigenfunction expansion method. Our solution methodology does not incorporate Laplace transforms and yields good agreement with the numerical solution. This solution method can be extended to cases that are more general and may be useful for benchmarking purposes.
Robust Ramsey sequences with Raman adiabatic rapid passage
NASA Astrophysics Data System (ADS)
Kotru, Krish; Brown, Justin M.; Butts, David L.; Kinast, Joseph M.; Stoner, Richard E.
2014-11-01
We present a method for robust timekeeping in which alkali-metal atoms are interrogated in a Ramsey sequence based on stimulated Raman transitions with optical photons. To suppress systematic effects introduced by differential ac Stark shifts and optical intensity gradients, we employ atom optics derived from Raman adiabatic rapid passage (ARP). Raman ARP drives coherent transfer between the alkali-metal hyperfine ground states via a sweep of the Raman detuning through the two-photon resonance. Our experimental implementation of Raman ARP reduced the phase sensitivity of Ramsey sequences to Stark shifts in 133Cs atoms by about two orders of magnitude, relative to fixed-frequency Raman transitions. This technique also preserved Ramsey fringe contrast for cloud displacements reaching the 1 /e2 intensity radius of the laser beam. In a magnetically unshielded apparatus, second-order Zeeman shifts limited the fractional frequency uncertainty to ˜3.5 ×10-12 after about 2500 s of averaging.
Coherently controlled adiabatic passage to multiple continuum channels
Thanopulos, Ioannis; Shapiro, Moshe
2006-09-15
We present a solution to the multichannel quantum control problem, where selective and complete population transfer from an initial bound state to M energetically degenerate continuum channels is achieved under loss-free conditions. The control is affected by adiabatic passage proceeding via N bound intermediate states, where even in the presence of real loss from these states, the control efficiency remains significant, about 40-50%. We illustrate the viability of the method by computationally controlling the CH{sub 3}(v)+I*({sup 2}P{sub 1/2})<-CH{sub 3}I{yields}CH{sub 3}(v)+I({sup 2}P{sub 3/2}) multichannel photodissociation process.
Laser-nucleus interactions: The quasi-adiabatic regime
NASA Astrophysics Data System (ADS)
Pálffy, Adriana; Buss, Oliver; Hoefer, Axel; Weidenmüller, Hans A.
2015-10-01
The interaction between nuclei and a strong zeptosecond laser pulse with coherent MeV photons is investigated theoretically. We provide a first semiquantitative study of the quasi-adiabatic regime where the photon absorption rate is comparable to the nuclear equilibration rate. In that regime, multiple photon absorption leads to the formation of a compound nucleus in the so-far unexplored regime of excitation energies several hundred MeV above the yrast line. The temporal dynamics of the process is investigated by means of a set of master equations that account for dipole absorption, stimulated dipole emission, neutron decay, and induced fission in a chain of nuclei. That set is solved numerically by means of state-of-the-art matrix exponential methods also used in nuclear fuel burn-up and radioactivity transport calculations. Our quantitative estimates predict the excitation path and range of nuclei reached by neutron decay and provide relevant information for the layout of future experiments.
Adiabatic invariants in stellar dynamics. 1: Basic concepts
NASA Technical Reports Server (NTRS)
Weinberg, Martin D.
1994-01-01
The adiabatic criterion, widely used in astronomical dynamics, is based on the harmonic oscillator. It asserts that the change in action under a slowly varying perturbation is exponentially small. Recent mathematical results that precisely define the conditions for invariance show that this model does not apply in general. In particular, a slowly varying perturbation may cause significant evolution stellar dynamical systems even if its time scale is longer than any internal orbital time scale. This additional 'heating' may have serious implications for the evolution of star clusters and dwarf galaxies which are subject to long-term environmental forces. The mathematical developments leading to these results are reviewed, and the conditions for applicability to and further implications for stellar systems are discussed. Companion papers present a computational method for a general time-dependent disturbance and detailed example.
Adiabatic entanglement in two-atom cavity QED
Lazarou, C.; Garraway, B. M.
2008-02-15
We analyze the problem of a single mode field interacting with a pair of two level atoms. The atoms enter and exit the cavity at different times. Instead of using constant coupling, we use time-dependent couplings which represent the spatial dependence of the mode. Although the system evolution is adiabatic for most of the time, a previously unstudied energy crossing plays a key role in the system dynamics when the atoms have a time delay. We show that conditional atom-cavity entanglement can be generated, while for large photon numbers the entangled system has a behavior which can be mapped onto the single atom Jaynes-Cummings model. Exploring the main features of this system we propose simple and fairly robust methods for entangling atoms independently of the cavity, for quantum state mapping, and for implementing SWAP and controlled-NOT (CNOT) gates with atomic qubits.
Adiabat-shaping in indirect drive inertial confinement fusion
NASA Astrophysics Data System (ADS)
Baker, K. L.; Robey, H. F.; Milovich, J. L.; Jones, O. S.; Smalyuk, V. A.; Casey, D. T.; MacPhee, A. G.; Pak, A.; Celliers, P. M.; Clark, D. S.; Landen, O. L.; Peterson, J. L.; Berzak-Hopkins, L. F.; Weber, C. R.; Haan, S. W.; Döppner, T. D.; Dixit, S.; Giraldez, E.; Hamza, A. V.; Jancaitis, K. S.; Kroll, J. J.; Lafortune, K. N.; MacGowan, B. J.; Moody, J. D.; Nikroo, A.; Widmayer, C. C.
2015-05-01
Adiabat-shaping techniques were investigated in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform for both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. This approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures.
Quantum adiabatic algorithm for factorization and its experimental implementation.
Peng, Xinhua; Liao, Zeyang; Xu, Nanyang; Qin, Gan; Zhou, Xianyi; Suter, Dieter; Du, Jiangfeng
2008-11-28
We propose an adiabatic quantum algorithm capable of factorizing numbers, using fewer qubits than Shor's algorithm. We implement the algorithm in a NMR quantum information processor and experimentally factorize the number 21. In the range that our classical computer could simulate, the quantum adiabatic algorithm works well, providing evidence that the running time of this algorithm scales polynomially with the problem size. PMID:19113467
Adiabat-shaping in indirect drive inertial confinement fusion
Baker, K. L.; Robey, H. F.; Milovich, J. L.; Jones, O. S.; Smalyuk, V. A.; Casey, D. T.; MacPhee, A. G.; Pak, A.; Celliers, P. M.; Clark, D. S.; Landen, O. L.; Peterson, J. L.; Berzak-Hopkins, L. F.; Weber, C. R.; Haan, S. W.; Döppner, T. D.; Dixit, S.; Hamza, A. V.; Jancaitis, K. S.; Kroll, J. J.; and others
2015-05-15
Adiabat-shaping techniques were investigated in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform for both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. This approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures.
Kinetic Theory Derivation of the Adiabatic Law for Ideal Gases.
ERIC Educational Resources Information Center
Sobel, Michael I.
1980-01-01
Discusses how the adiabatic law for ideal gases can be derived from the assumption of a Maxwell-Boltzmann (or any other) distribution of velocities--in contrast to the usual derivations from thermodynamics alone, and the higher-order effect that leads to one-body viscosity. An elementary derivation of the adiabatic law is given. (Author/DS)
The Adiabatic Invariance of the Action Variable in Classical Dynamics
ERIC Educational Resources Information Center
Wells, Clive G.; Siklos, Stephen T. C.
2007-01-01
We consider one-dimensional classical time-dependent Hamiltonian systems with quasi-periodic orbits. It is well known that such systems possess an adiabatic invariant which coincides with the action variable of the Hamiltonian formalism. We present a new proof of the adiabatic invariance of this quantity and illustrate our arguments by means of…
Hu, Anzi; Williams, C. J.; Freericks, J. K.; Maska, M. M.
2011-04-15
We discuss the application of a strong-coupling expansion (perturbation theory in the hopping) for studying light-Fermi-heavy-Bose (like {sup 40}K-{sup 87}Rb) mixtures in optical lattices. We use the strong-coupling method to evaluate the efficiency for preforming molecules, the entropy per particle, and the thermal fluctuations. We show that within the strong interaction regime (and at high temperature), the strong-coupling expansion is an economical way to study this problem. In some cases, it remains valid even down to low temperatures. Because the computational effort is minimal, the strong-coupling approach allows us to work with much larger system sizes, where boundary effects can be eliminated, which is particularly important at higher temperatures. Since the strong-coupling approach is so efficient and accurate, it allows one to rapidly scan through parameter space in order to optimize the preforming of molecules on a lattice (by choosing the lattice depth and interspecies attraction). Based on the strong-coupling calculations, we test the thermometry scheme based on the fluctuation-dissipation theorem and find the scheme gives accurate temperature estimation even at very low temperature. We believe this approach and the calculation results will be useful in the design of the next generation of experiments and will hopefully lead to the ability to form dipolar matter in the quantum degenerate regime.
Adiabatic theory for anisotropic cold molecule collisions
Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod
2015-08-21
We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment {sup 4}He(1s2s {sup 3}S) + HD(1s{sup 2}) → {sup 4}He(1s{sup 2}) + HD{sup +}(1s) + e{sup −} [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.
Quantum Adiabatic Optimization and Combinatorial Landscapes
NASA Technical Reports Server (NTRS)
Smelyanskiy, V. N.; Knysh, S.; Morris, R. D.
2003-01-01
In this paper we analyze the performance of the Quantum Adiabatic Evolution (QAE) algorithm on a variant of Satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables, gamma = M / N. We introduce a set of macroscopic parameters (landscapes) and put forward an ansatz of universality for random bit flips. We then formulate the problem of finding the smallest eigenvalue and the excitation gap as a statistical mechanics problem. We use the so-called annealing approximation with a refinement that a finite set of macroscopic variables (verses only energy) is used, and are able to show the existence of a dynamic threshold gamma = gammad, beyond which QAE should take an exponentially long time to find a solution. We compare the results for extended and simplified sets of landscapes and provide numerical evidence in support of our universality ansatz.
An adiabatic demagnetization refrigerator for SIRTF
NASA Technical Reports Server (NTRS)
Timbie, P. T.; Bernstein, G. M.; Richards, P. L.
1989-01-01
An adiabatic demagnetization refrigerator (ADR) has been proposed to cool bolometric infrared detectors on the multiband imaging photometer of the Space Infrared Telescope Facility (SIRTF). One such refrigerator has been built which uses a ferric ammonium alum salt pill suspended by nylon threads in a 3-T solenoid. The resonant modes of this suspension are above 100 Hz. The heat leak to the salt pill is less than 0.5 microW. The system has a hold time at 0.1K of more than 12 h. The cold stage temperature is regulated with a feedback loop that controls the magnetic field. A second, similar refrigerator is being built at a SIRTF prototype to fly on a ballon-borne telescope. It will use a ferromagnetic shield. The possibility of using a high-Tc solenoid-actuated heat switch is also discussed.
Design of a spaceworthy adiabatic demagnetization refrigerator
NASA Technical Reports Server (NTRS)
Serlemitsos, A. T.; Kunes, E.; Sansebastian, M.
1992-01-01
A spaceworthy adiabatic demagnetization refrigerator (ADR) under development at NASA-Goddard is presented. A baseline model heat switch was tested extensively with an on/off ratio of about 10,000 and a parasitic heat leak of 10 micro-W. Data obtained from the breadboard models were used to design an ADR with improved structural integrity. The core of the ADR is the salt pill which consists of the paramagnetic salt crystal and the thermal bus. When a magnetic field is applied to the salt it forces the alignment of the magnetic moments, thereby decreasing the entropy of the salt. Preliminary tests results showed a net crystal mass of 680 g instead of the expected 740 g, which indicate that there are gaps in the salt pill. A partial fix was accomplished by sealing helium gas in the salt pill at a pressure of 2 bar, which improved the thermal contact during salt magnetization, at about 2 K.
Differential topology of adiabatically controlled quantum processes
NASA Astrophysics Data System (ADS)
Jonckheere, Edmond A.; Rezakhani, Ali T.; Ahmad, Farooq
2013-03-01
It is shown that in a controlled adiabatic homotopy between two Hamiltonians, H 0 and H 1, the gap or "anti-crossing" phenomenon can be viewed as the development of cusps and swallow tails in the region of the complex plane where two critical value curves of the quadratic map associated with the numerical range of H 0 + i H 1 come close. The "near crossing" in the energy level plots happens to be a generic situation, in the sense that a crossing is a manifestation of the quadratic numerical range map being unstable in the sense of differential topology. The stable singularities that can develop are identified and it is shown that they could occur near the gap, making those singularities of paramount importance. Various applications, including the quantum random walk, are provided to illustrate this theory.
Reversible logic gate using adiabatic superconducting devices
Takeuchi, N.; Yamanashi, Y.; Yoshikawa, N.
2014-01-01
Reversible computing has been studied since Rolf Landauer advanced the argument that has come to be known as Landauer's principle. This principle states that there is no minimum energy dissipation for logic operations in reversible computing, because it is not accompanied by reductions in information entropy. However, until now, no practical reversible logic gates have been demonstrated. One of the problems is that reversible logic gates must be built by using extremely energy-efficient logic devices. Another difficulty is that reversible logic gates must be both logically and physically reversible. Here we propose the first practical reversible logic gate using adiabatic superconducting devices and experimentally demonstrate the logical and physical reversibility of the gate. Additionally, we estimate the energy dissipation of the gate, and discuss the minimum energy dissipation required for reversible logic operations. It is expected that the results of this study will enable reversible computing to move from the theoretical stage into practical usage. PMID:25220698
Entropy in Adiabatic Regions of Convection Simulations
NASA Astrophysics Data System (ADS)
Tanner, Joel D.; Basu, Sarbani; Demarque, Pierre
2016-05-01
One of the largest sources of uncertainty in stellar models is caused by the treatment of convection in stellar envelopes. One-dimensional stellar models often make use of the mixing length or equivalent approximations to describe convection, all of which depend on various free parameters. There have been attempts to rectify this by using 3D radiative-hydrodynamic simulations of stellar convection, and in trying to extract an equivalent mixing length from the simulations. In this Letter, we show that the entropy of the deeper, adiabatic layers in these simulations can be expressed as a simple function of {log}g and {log}{T}{{eff}}, which holds potential for calibrating stellar models in a simple and more general manner.
Symmetry-protected adiabatic quantum transistors
NASA Astrophysics Data System (ADS)
Williamson, Dominic J.; Bartlett, Stephen D.
2015-05-01
Adiabatic quantum transistors (AQT) allow quantum logic gates to be performed by applying a large field to a quantum many-body system prepared in its ground state, without the need for local control. The basic operation of such a device can be viewed as driving a spin chain from a symmetry-protected (SP) phase to a trivial phase. This perspective offers an avenue to generalize the AQT and to design several improvements. The performance of quantum logic gates is shown to depend only on universal symmetry properties of a SP phase rather than any fine tuning of the Hamiltonian, and it is possible to implement a universal set of logic gates in this way by combining several different types of SP matter. Such SP AQTs are argued to be robust to a range of relevant noise processes.
Number Partitioning via Quantum Adiabatic Computation
NASA Technical Reports Server (NTRS)
Smelyanskiy, Vadim N.; Toussaint, Udo; Clancy, Daniel (Technical Monitor)
2002-01-01
We study both analytically and numerically the complexity of the adiabatic quantum evolution algorithm applied to random instances of combinatorial optimization problems. We use as an example the NP-complete set partition problem and obtain an asymptotic expression for the minimal gap separating the ground and exited states of a system during the execution of the algorithm. We show that for computationally hard problem instances the size of the minimal gap scales exponentially with the problem size. This result is in qualitative agreement with the direct numerical simulation of the algorithm for small instances of the set partition problem. We describe the statistical properties of the optimization problem that are responsible for the exponential behavior of the algorithm.
Adiabatic connection at negative coupling strengths
Seidl, Michael; Gori-Giorgi, Paola
2010-01-15
The adiabatic connection of density functional theory (DFT) for electronic systems is generalized here to negative values of the coupling strength alpha (with attractive electrons). In the extreme limit alpha->-infinity a simple physical solution is presented and its implications for DFT (as well as its limitations) are discussed. For two-electron systems (a case in which the present solution can be calculated exactly), we find that an interpolation between the limit alpha->-infinity and the opposite limit of infinitely strong repulsion (alpha->+infinity) yields a rather accurate estimate of the second-order correlation energy E{sub c}{sup GL2}[rho] for several different densities rho, without using virtual orbitals. The same procedure is also applied to the Be isoelectronic series, analyzing the effects of near degeneracy.
Adiabatic theory for anisotropic cold molecule collisions.
Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod
2015-08-21
We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment (4)He(1s2s (3)S) + HD(1s(2)) → (4)He(1s(2)) + HD(+)(1s) + e(-) [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings. PMID:26298122
Sliding seal materials for adiabatic engines
NASA Technical Reports Server (NTRS)
Lankford, J.
1985-01-01
The sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, loading conditions that are representative of the adiabatic engine environment. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Microhardness tests were performed on the candidate materials at elevated temperatures, and in atmospheres relevant to the piston seal application, and optical and electron microscopy were used to elucidate the micromechanisms of wear following wear testing. X-ray spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Electrical effects in the friction and wear processes were explored in order to evaluate the potential usefulness of such effects in modifying the friction and wear rates in service. However, this factor was found to be of negligible significance in controlling friction and wear.
Adiabatically-tapered fiber mode multiplexers.
Yerolatsitis, S; Gris-Sánchez, I; Birks, T A
2014-01-13
Simple all-fiber three-mode multiplexers were made by adiabatically merging three dissimilar single-mode cores into one multimode core. This was achieved by collapsing air holes in a photonic crystal fiber and (in a separate device) by fusing and tapering separate telecom fibers in a fluorine-doped silica capillary. In each case the LP01 mode and both LP11 modes were individually excited from three separate input cores, with losses below 0.3 and 0.7 dB respectively and mode purities exceeding 10 dB. Scaling to more modes is challenging, but would be assisted by using single-mode fibers with a smaller ratio of cladding to core diameter. PMID:24515021
The HAWC and SAFIRE Adiabatic Demagnetization Refrigerators
NASA Technical Reports Server (NTRS)
Tuttle, Jim; Shirron, Peter; DiPirro, Michael; Jackson, Michael; Behr, Jason; Kunes, Evan; Hait, Tom; Krebs, Carolyn (Technical Monitor)
2001-01-01
The High-Resolution Airborne Wide-band Camera (HAWC) and Submillimeter and Far Infrared Experiment (SAFIRE) are far-infrared experiments which will fly on the Stratospheric Observatory for Infrared Astronomy (SOFIA) aircraft. HAWC's detectors will operate at 0.2 Kelvin, while those of SAFIRE will be at 0.1 Kelvin. Each instrument will include an adiabatic demagnetization refrigerator (ADR) to cool its detector stage from the liquid helium bath temperature (HAWC's at 4.2 Kelvin and SAFIRE's pumped to about 1.3 Kelvin) to its operating temperature. Except for the magnets used to achieve the cooling and a slight difference in the heat switch design, the two ADRs are nearly identical. We describe the ADR design and present the results of performance testing.
An integrated programming and development environment for adiabatic quantum optimization
NASA Astrophysics Data System (ADS)
Humble, T. S.; McCaskey, A. J.; Bennink, R. S.; Billings, J. J.; DʼAzevedo, E. F.; Sullivan, B. D.; Klymko, C. F.; Seddiqi, H.
2014-01-01
Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware has raised challenging questions about how to evaluate adiabatic quantum optimization (AQO) programs. Processor behavior depends on multiple steps to synthesize an adiabatic quantum program, which are each highly tunable. We present an integrated programming and development environment for AQO called Jade Adiabatic Development Environment (JADE) that provides control over all the steps taken during program synthesis. JADE captures the workflow needed to rigorously specify the AQO algorithm while allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its potential use for benchmarking AQO programs by the quantum computer science community.
An Integrated Development Environment for Adiabatic Quantum Programming
Humble, Travis S; McCaskey, Alex; Bennink, Ryan S; Billings, Jay Jay; D'Azevedo, Eduardo; Sullivan, Blair D; Klymko, Christine F; Seddiqi, Hadayat
2014-01-01
Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware raises the question of how well quantum programs perform. Benchmarking behavior is challenging since the multiple steps to synthesize an adiabatic quantum program are highly tunable. We present an adiabatic quantum programming environment called JADE that provides control over all the steps taken during program development. JADE captures the workflow needed to rigorously benchmark performance while also allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its use for benchmarking adiabatic quantum programs.
Isotropic Negative Thermal Expansion Metamaterials.
Wu, Lingling; Li, Bo; Zhou, Ji
2016-07-13
Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale. PMID:27333052
Solving the time-dependent few-body Schrödinger equation within a basis expansion method
NASA Astrophysics Data System (ADS)
Sekine, Rie; Horiuchi, Wataru
2016-07-01
Nuclear responses are a source of information on nuclear structure and reaction dynamics. We develop a method to study the nuclear response by solving timedependent equation. We expand the wave function by many correlated Gaussian functions. In this paper, the photoabsorption of 3He is presented as a simple example. Measured photoabsorption cross sections are reproduced up to 20 MeV.
Phase relations and adiabats in boiling seafloor geothermal systems
NASA Astrophysics Data System (ADS)
Bischoff, James L.; Pitzer, Kenneth S.
1985-11-01
Observations of large salinity variations and vent temperatures in the range of 380-400°C suggest that boiling or two-phase separation may be occurring in some seafloor geothermal systems. Consideration of flow rates and the relatively small differences in density between vapors and liquids at the supercritical pressures at depth in these systems suggests that boiling is occurring under closed-system conditions. Salinity and temperature of boiling vents can be used to estimate the pressure-temperature point in the subsurface at which liquid seawater first reached the two-phase boundary. Data are reviewed to construct phase diagrams of coexisting brines and vapors in the two-phase region at pressures corresponding to those of the seafloor geothermal systems. A method is developed for calculating the enthalpy and entropy of the coexisting mixtures, and results are used to construct adiabats from the seafloor to the P-T two-phase boundary. Results for seafloor vents discharging at 2300 m below sea level indicate that a 385°C vent is composed of a brine (7% NaCl equivalent) in equilibrium with a vapor (0.1% NaCl). Brine constitutes 45% by weight of the mixture, and the fluid first boiled at approximately 1 km below the seafloor at 415°C, 330 bar. A 400°C vent is primarily vapor (88 wt.%, 0.044% NaCl) with a small amount of brine (26% NaCl) and first boiled at 2.9 km below the seafloor at 500°C, 520 bar. These results show that adiabatic decompression in the two-phase region results in dramatic cooling of the fluid mixture when there is a large fraction of vapor.
Slow evolution of elliptical galaxies induced by dynamical friction. II. Non-adiabatic effects
NASA Astrophysics Data System (ADS)
Arena, S. E.; Bertin, G.; Liseikina, T.; Pegoraro, F.
2006-07-01
Context: .Many astrophysical problems, ranging from structure formation in cosmology to dynamics of elliptical galaxies, refer to slow processes of evolution of essentially collisionless self-gravitating systems. In order to determine the relevant quasi-equilibrium configuration at time t from given initial conditions, it is often argued that such slow evolution may be approximated in terms of adiabatic evolution, for the calculation of which efficient semi-analytical techniques are available. Aims: .Here we focus on the slow process of evolution, induced by dynamical friction of a host stellar system on a minority component of "satellites", that we have investigated in a previous paper, to determine to what extent an adiabatic description might be applied. Methods: .The study is realized by comparing directly N-body simulations of the stellar system evolution (in two significantly different models) from initial to final conditions in a controlled numerical environment. Results: .We demonstrate that for the examined process the adiabatic description is going to provide incorrect answers, not only quantitatively, but also qualitatively. The two classes of models considered exhibit generally similar trends in evolution, with one exception noted in relation to the evolution of the total density profile. Conclusions: .This simple conclusion should be taken as a warning against the indiscriminate use of adiabatic growth prescriptions in studies of structure of galaxies.
Stark-shift-chirped rapid-adiabatic-passage technique among three states
Rangelov, A. A.; Vitanov, N. V.; Yatsenko, L. P.; Shore, B. W.; Halfmann, T.; Bergmann, K.
2005-11-15
We show that the technique of Stark-chirped rapid adiabatic passage (SCRAP), hitherto used for complete population transfer between two quantum states, offers a simple and robust method for complete population transfer amongst three states in atoms and molecules. In this case SCRAP uses three laser pulses: a strong far-off-resonant pulse modifies the transition frequencies by inducing dynamic Stark shifts and thereby creating time-dependent level crossings amongst the three diabatic states, while near-resonant and moderately strong pump and Stokes pulses, appropriately offset in time, drive the population between the initial and final states via adiabatic passage. The population transfer efficiency is robust to variations in the intensities of the lasers, as long as these intensities are sufficiently large to enforce adiabatic evolution. With suitable pulse timings the population in the (possibly decaying) intermediate state can be minimized, as with stimulated Raman adiabatic passage (STIRAP). This technique applies to one-photon as well as multiphoton transitions and it is also applicable to media exhibiting inhomogeneous broadening; these features represent clear advantages over STIRAP by overcoming the inevitable dynamical Stark shifts that accompany multiphoton transitions as well as unwanted detunings, e.g., induced by Doppler shifts.
Conserved Quantities and Adiabatic Invariants for El-Nabulsi's Fractional Birkhoff System
NASA Astrophysics Data System (ADS)
Song, Chuan-Jing; Zhang, Yi
2015-08-01
Based on El-Nabulsi-Birkhoff fractional equations, Lie symmetry and the Hojman conserved quantity, the Noether conserved quantity deduced indirectly by the Lie symmetry and adiabatic invariants of Lie symmetrical perturbation are studied under the framework of El-Nabulsi's fractional model. Firstly, Lie symmetry and the Hojman conserved quantity are obtained, including the equations of motion of EI-Nabulsi's fractional Birkhoff system, the determining equations of Lie symmetry for the system and the generalization of the Hojman theorem. Secondly, the Noether conserved quantity deduced indirectly by the Lie symmetry is obtained. Thirdly, the adiabatic invariants of Lie symmetrical perturbation for disturbed EI-Nabulsi's fractional Birkhoff system is achieved, including the disturbed El-Nabulsi-Birkhoff fractional equations, the determining equations of Lie symmetrical perturbation and adiabatic invariants for disturbed El-Nabulsi's fractional Birkhoff system. Fourthly, adiabatic invariants and exact invariants under the special ifinitesimal transformations are presented. Finally, the Hojman-Urrutia problem is discussed to illustrate the application of these methods and results.
NASA Astrophysics Data System (ADS)
Human, Hendrik G. C.
1997-01-01
Selective dissociation of UF6 using three wavelength IR irradiation did not yield the desired results initially. Various spectroscopic methods such as UV and IR absorption of UF6, fluorescence of UF6 and Time-of-Flight Mass Spectrometry of the products of irradiation, were implemented to investigate the nature of the interaction. These techniques identified the source of the problem as the presence of condensates in the flow-cooled gas, and were used to select conditions to minimise this effect.
Dalir, Nemat
2014-01-01
An exact analytical solution is obtained for the problem of three-dimensional transient heat conduction in the multilayered sphere. The sphere has multiple layers in the radial direction and, in each layer, time-dependent and spatially nonuniform volumetric internal heat sources are considered. To obtain the temperature distribution, the eigenfunction expansion method is used. An arbitrary combination of homogenous boundary condition of the first or second kind can be applied in the angular and azimuthal directions. Nevertheless, solution is valid for nonhomogeneous boundary conditions of the third kind (convection) in the radial direction. A case study problem for the three-layer quarter-spherical region is solved and the results are discussed.
Adiabatic and diabatic invariants in ion-molecule reactions.
Lorquet, J C
2009-12-28
A point charge interacting with a dipole (either induced or permanent) constitutes a completely integrable dynamical subsystem characterized by three first integrals of the motion (E, p(phi), and either l(2) or a Hamilton-Jacobi separation constant beta). An ion-molecule reaction (capture or fragmentation) can be seen as an interaction between such a subsystem and a bath of oscillators. This interaction is a perturbation that destroys some of the first integrals. However, the perturbation depends on the separation between the fragments and the destruction is gradual. The mathematical simplicity of the long-range electrostatic interaction potential leads to useful simplifications. A first-order perturbation treatment based on the structured and regular nature of the multipole expansion is presented. The separating integrals valid in the asymptotic limit are found to subsist at intermediate distances, although in a weaker form. As the reaction coordinate decreases, i.e., as the fragments approach, the asymptotic range is followed by an outer region where (i) the azimuthal momentum p(phi) remains a constant of the motion; (ii) the square angular momentum l(2) or the separation constant beta transform into a diabatic invariant in regions of phase space characterized by a high value of the translational momentum p(r); (iii) for low values of p(r), it is advantageous to use the action integral contour integral(p(theta)d theta), which is an adiabatic invariant. The conditions under which an effective potential obtained by adding centrifugal repulsion to an electrostatic attractive term can be validly constructed are specified. In short, the dynamics of ion-molecule interactions is still regular in parts of phase space corresponding to a range of the reaction coordinate where the interaction potential deviates from its asymptotic shape. PMID:20059072
Non-adiabatic molecular dynamics with complex quantum trajectories. I. The diabatic representation
NASA Astrophysics Data System (ADS)
Zamstein, Noa; Tannor, David J.
2012-12-01
We extend a recently developed quantum trajectory method [Y. Goldfarb, I. Degani, and D. J. Tannor, J. Chem. Phys. 125, 231103 (2006)], 10.1063/1.2400851 to treat non-adiabatic transitions. Each trajectory evolves on a single surface according to Newton's laws with complex positions and momenta. The transfer of amplitude between surfaces stems naturally from the equations of motion, without the need for surface hopping. In this paper we derive the equations of motion and show results in the diabatic representation, which is rarely used in trajectory methods for calculating non-adiabatic dynamics. We apply our method to the first two benchmark models introduced by Tully [J. Chem. Phys. 93, 1061 (1990)], 10.1063/1.459170. Besides giving the probability branching ratios between the surfaces, the method also allows the reconstruction of the time-dependent wavepacket. Our results are in quantitative agreement with converged quantum mechanical calculations.
Non-adiabatic molecular dynamics with complex quantum trajectories. I. The diabatic representation.
Zamstein, Noa; Tannor, David J
2012-12-14
We extend a recently developed quantum trajectory method [Y. Goldfarb, I. Degani, and D. J. Tannor, J. Chem. Phys. 125, 231103 (2006)] to treat non-adiabatic transitions. Each trajectory evolves on a single surface according to Newton's laws with complex positions and momenta. The transfer of amplitude between surfaces stems naturally from the equations of motion, without the need for surface hopping. In this paper we derive the equations of motion and show results in the diabatic representation, which is rarely used in trajectory methods for calculating non-adiabatic dynamics. We apply our method to the first two benchmark models introduced by Tully [J. Chem. Phys. 93, 1061 (1990)]. Besides giving the probability branching ratios between the surfaces, the method also allows the reconstruction of the time-dependent wavepacket. Our results are in quantitative agreement with converged quantum mechanical calculations. PMID:23249054
Expansion techniques for collisionless stellar dynamical simulations
NASA Astrophysics Data System (ADS)
Meiron, Yohai
2016-02-01
We present ETICS, a collisionless N-body code based on two kinds of series expansions of the Poisson equation, implemented for graphics processing units (GPUs). The code is publicly available and can be used as a standalone program or as a library (an AMUSE plugin is included). One of the two expansion methods available is the self-consistent field (SCF) method, which is a Fourier-like expansion of the density field in some basis set; the other is the multipole expansion (MEX) method, which is a Taylor-like expansion of the Green's function. MEX, which has been advocated in the past, has not gained as much popularity as SCF. Both are particle-field methods and optimized for collisionless galactic dynamics, but while SCF is a ``pure'' expansion, MEX is an expansion in just the angular part; thus, MEX is capable of capturing radial structure easily, while SCF needs a large number of radial terms.
NASA Astrophysics Data System (ADS)
Brumby, Paul E.; Haslam, Andrew J.; de Miguel, Enrique; Jackson, George
2011-01-01
An efficient and versatile method to calculate the components of the pressure tensor for hard-body fluids of generic shape from the perspective of molecular simulation is presented. After due consideration of all the possible repulsive contributions exerted by molecules upon their surroundings during an anisotropic system expansion, it is observed that such a volume change can, for non-spherical molecules, give rise to configurations where overlaps occur. This feature of anisotropic molecules has to be taken into account rigorously as it can lead to discrepancies in the calculation of tensorial contributions to the pressure. Using the condition of detailed balance as a basis, a perturbation method developed for spherical molecules has been extended so that it is applicable to non-spherical and non-convex molecules. From a series of 'ghost' anisotropic volume perturbations the residual contribution to the components of the pressure tensor may be accurately calculated. Comparisons are made with prior methods and, where relevant, results are evaluated against existing data. For inhomogeneous systems this method provides a particularly convenient route to the calculation of the interfacial tension (surface free energy) from molecular simulations.
Tight coupling expansion and fully inhomogeneous magnetic fields
Giovannini, Massimo
2006-09-15
The tight coupling expansion, appropriately generalized to include large-scale magnetic fields, allows the estimate of the brightness perturbations of CMB anisotropies for typical wavelengths that are larger than the Hubble radius after matter-radiation equality. After discussing the basic features of the predecoupling initial conditions in the presence of fully inhomogeneous magnetic fields, the tight coupling expansion is studied both analytically and numerically. From the requirement that the amplitudes and phases of Sakharov oscillations are (predominantly) adiabatic and from the inferred value of the plateau in the temperature autocorrelation, the effects of the magnetized contribution can be systematically investigated and constrained.
Non-adiabatic perturbations in Ricci dark energy model
Karwan, Khamphee; Thitapura, Thiti E-mail: nanodsci2523@hotmail.com
2012-01-01
We show that the non-adiabatic perturbations between Ricci dark energy and matter can grow both on superhorizon and subhorizon scales, and these non-adiabatic perturbations on subhorizon scales can lead to instability in this dark energy model. The rapidly growing non-adiabatic modes on subhorizon scales always occur when the equation of state parameter of dark energy starts to drop towards -1 near the end of matter era, except that the parameter α of Ricci dark energy equals to 1/2. In the case where α = 1/2, the rapidly growing non-adiabatic modes disappear when the perturbations in dark energy and matter are adiabatic initially. However, an adiabaticity between dark energy and matter perturbations at early time implies a non-adiabaticity between matter and radiation, this can influence the ordinary Sachs-Wolfe (OSW) effect. Since the amount of Ricci dark energy is not small during matter domination, the integrated Sachs-Wolfe (ISW) effect is greatly modified by density perturbations of dark energy, leading to a wrong shape of CMB power spectrum. The instability in Ricci dark energy is difficult to be alleviated if the effects of coupling between baryon and photon on dark energy perturbations are included.
Dynamics of Charged Particles in an Adiabatic Thermal Beam Equilibrium
NASA Astrophysics Data System (ADS)
Chen, Chiping; Wei, Haofei
2010-11-01
Charged-particle motion is studied in the self-electric and self-magnetic fields of a well-matched, intense charged-particle beam and an applied periodic solenoidal magnetic focusing field. The beam is assumed to be in a state of adiabatic thermal equilibrium. The phase space is analyzed and compared with that of the well-known Kapchinskij-Vladimirskij (KV)-type beam equilibrium. It is found that the widths of nonlinear resonances in the adiabatic thermal beam equilibrium are narrower than those in the KV-type beam equilibrium. Numerical evidence is presented, indicating almost complete elimination of chaotic particle motion in the adiabatic thermal beam equilibrium.
Complete population inversion of Bose particles by an adiabatic cycle
NASA Astrophysics Data System (ADS)
Tanaka, Atushi; Cheon, Taksu
2016-04-01
We show that an adiabatic cycle excites Bose particles confined in a one-dimensional box. During the adiabatic cycle, a wall described by a δ-shaped potential is applied and its strength and position are slowly varied. When the system is initially prepared in the ground state, namely, in the zero-temperature equilibrium state, the adiabatic cycle brings all Bosons into the first excited one-particle state, leaving the system in a nonequilibrium state. The absorbed energy during the cycle is proportional to the number of Bosons.
Dephasing effects on stimulated Raman adiabatic passage in tripod configurations
Lazarou, C.; Vitanov, N. V.
2010-09-15
We present an analytic description of the effects of dephasing processes on stimulated Raman adiabatic passage in a tripod quantum system. To this end, we develop an effective two-level model. Our analysis makes use of the adiabatic approximation in the weak dephasing regime. An effective master equation for a two-level system formed by two dark states is derived, where analytic solutions are obtained by utilizing the Demkov-Kunike model. From these, it is found that the fidelity for the final coherent superposition state decreases exponentially for increasing dephasing rates. Depending on the pulse ordering and for adiabatic evolution, the pulse delay can have an inverse effect.
Kittell, Aaron W.; Hyde, James S.
2015-01-01
Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell, A.W., Camenisch, T.G., Ratke, J.J. Sidabras, J.W., Hyde, J.S., 2011 as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions, and enhance spectral resolution in copper (II) spectra. In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10−3 to 10−7 s in a manner that is analogous to saturation transfer spectroscopy. PMID:25917132
NASA Astrophysics Data System (ADS)
Kittell, Aaron W.; Hyde, James S.
2015-06-01
Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell et al. (2011) as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions (Kittell et al., 2012), and enhance spectral resolution in copper (II) spectra (Hyde et al., 2013). In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10-3 to 10-7 s in a manner that is analogous to saturation transfer spectroscopy.
Kittell, Aaron W; Hyde, James S
2015-06-01
Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell et al. (2011) as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions (Kittell et al., 2012), and enhance spectral resolution in copper (II) spectra (Hyde et al., 2013). In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10(-3) to 10(-7) s in a manner that is analogous to saturation transfer spectroscopy. PMID:25917132
Design of the PIXIE Adiabatic Demagnetization Refrigerators
NASA Technical Reports Server (NTRS)
Shirron, Peter J.; Kimball, Mark Oliver; Fixsen, Dale J.; Kogut, Alan J.; Li, Xiaoyi; DiPirro, Michael
2012-01-01
The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a teslescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: 1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and 2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 millwatts, while maintaining a peak heat reject rate of less than 12 milliwatts. The detector heat load at 0.1 K is comparatively small at 1-2 microwatts. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope.
Design of the PIXIE adiabatic demagnetization refrigerators
NASA Astrophysics Data System (ADS)
Shirron, Peter J.; Kimball, Mark O.; Fixsen, Dale J.; Kogut, Alan J.; Li, Xiaoyi; DiPirro, Michael J.
2012-04-01
The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a telescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: (1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and (2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 mW, while maintaining a peak heat reject rate of less than 12 mW. The detector heat load at 0.1 K is comparatively small at 1-2 μW. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope.
Graph isomorphism and adiabatic quantum computing
NASA Astrophysics Data System (ADS)
Gaitan, Frank; Clark, Lane
2014-03-01
In the Graph Isomorphism (GI) problem two N-vertex graphs G and G' are given and the task is to determine whether there exists a permutation of the vertices of G that preserves adjacency and maps G --> G'. If yes (no), then G and G' are said to be isomorphic (non-isomorphic). The GI problem is an important problem in computer science and is thought to be of comparable difficulty to integer factorization. We present a quantum algorithm that solves arbitrary instances of GI, and which provides a novel approach to determining all automorphisms of a graph. The algorithm converts a GI instance to a combinatorial optimization problem that can be solved using adiabatic quantum evolution. Numerical simulation of the algorithm's quantum dynamics shows that it correctly distinguishes non-isomorphic graphs; recognizes isomorphic graphs; and finds the automorphism group of a graph. We also discuss the algorithm's experimental implementation and show how it can be leveraged to solve arbitrary instances of the NP-Complete Sub-Graph Isomorphism problem.
Adiabatic Quantum Computation with Neutral Atoms
NASA Astrophysics Data System (ADS)
Biedermann, Grant
2013-03-01
We are implementing a new platform for adiabatic quantum computation (AQC)[2] based on trapped neutral atoms whose coupling is mediated by the dipole-dipole interactions of Rydberg states. Ground state cesium atoms are dressed by laser fields in a manner conditional on the Rydberg blockade mechanism,[3,4] thereby providing the requisite entangling interactions. As a benchmark we study a Quadratic Unconstrained Binary Optimization (QUBO) problem whose solution is found in the ground state spin configuration of an Ising-like model. In collaboration with Lambert Parazzoli, Sandia National Laboratories; Aaron Hankin, Center for Quantum Information and Control (CQuIC), University of New Mexico; James Chin-Wen Chou, Yuan-Yu Jau, Peter Schwindt, Cort Johnson, and George Burns, Sandia National Laboratories; Tyler Keating, Krittika Goyal, and Ivan Deutsch, Center for Quantum Information and Control (CQuIC), University of New Mexico; and Andrew Landahl, Sandia National Laboratories. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories
Adiabatic Quantum Algorithm for Search Engine Ranking
NASA Astrophysics Data System (ADS)
Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A.
2012-06-01
We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in “q-sampling” protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.
NASA Astrophysics Data System (ADS)
Andreev, M. N.; Bespalov, I. S.; Rebrov, A. K.; Safonov, A. I.; Timoshenko, N. I.
2012-11-01
The dependence of fragment composition after hexafluoropropylene oxide (C3F6O) thermolysis in the reactor was studied by mass-spectrometric measurements in a free jet behind the sonic nozzle. Possible ways of polymerization after C3F6O decomposition were recognized.
NASA Astrophysics Data System (ADS)
Safonov, A. I.
2011-05-01
The effect of the pyrolysis conditions of hexafluoropropylene oxide on the composition of the fragments produced in a free jet was studied. The low-density gas-dynamic facility is equipped with a mass-spectrometry system. Possible reactions are determined that result in polymerization during gas jet deposition of a fluoropolymer film from a supersonic jet of pyrolysis products of hexafluoropropylene oxide.
Smalyuk, V.A.; Goncharov, V.N.; Anderson, K.S.; Betti, R.; Craxton, R.S.; Delettrez, J.A.; Meyerhofer, D.D.; Regan, S.P.; Sangster, T.C.
2007-04-09
Effects of the intensity pickets on laser imprinting were investigated using laser-driven, planar plastic and foam targets on the OMEGA Laser System. Intensity pickets are used in adiabat-shaping techniques, designed to improve stability of inertial confinement fusion targets. The measurements were performed in planar foam targets using the decaying shock (DS) method of adiabat shaping and in planar plastic targets using the relaxation (RX) method.
Adiabaticity and spectral splits in collective neutrino transformations
Raffelt, Georg G.; Smirnov, Alexei Yu.
2007-12-15
Neutrinos streaming off a supernova core transform collectively by neutrino-neutrino interactions, leading to 'spectral splits' where an energy E{sub split} divides the transformed spectrum sharply into parts of almost pure but different flavors. We present a detailed description of the spectral-split phenomenon which is conceptually and quantitatively understood in an adiabatic treatment of neutrino-neutrino effects. Central to this theory is a self-consistency condition in the form of two sum rules (integrals over the neutrino spectra that must equal certain conserved quantities). We provide explicit analytic and numerical solutions for various neutrino spectra. We introduce the concept of the adiabatic reference frame and elaborate on the relative adiabatic evolution. Violating adiabaticity leads to the spectral split being 'washed out'. The sharpness of the split appears to be represented by a surprisingly universal function.
Adiabatic and isocurvature perturbation projections in multi-field inflation
NASA Astrophysics Data System (ADS)
Gordon, Chris; Saffin, Paul M.
2013-08-01
Current data are in good agreement with the predictions of single field inflation. However, the hemispherical asymmetry, seen in the cosmic microwave background data, may hint at a potential problem. Generalizing to multi-field models may provide one possible explanation. A useful way of modeling perturbations in multi-field inflation is to investigate the projection of the perturbation along and perpendicular to the background fields' trajectory. These correspond to the adiabatic and isocurvature perturbations. However, it is important to note that in general there are no corresponding adiabatic and isocurvature fields. The purpose of this article is to highlight the distinction between a field redefinition and a perturbation projection. We provide a detailed derivation of the evolution of the isocurvature perturbation to show that no assumption of an adiabatic or isocurvature field is needed. We also show how this evolution equation is consistent with the field covariant evolution equations for the adiabatic perturbation in the flat field space limit.
Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses
Dridi, G.; Guerin, S.; Hakobyan, V.; Jauslin, H. R.; Eleuch, H.
2009-10-15
We present a general and versatile technique of population transfer based on parallel adiabatic passage by femtosecond shaped pulses. Their amplitude and phase are specifically designed to optimize the adiabatic passage corresponding to parallel eigenvalues at all times. We show that this technique allows the robust adiabatic population transfer in a Raman system with the total pulse area as low as 3{pi}, corresponding to a fluence of one order of magnitude below the conventional stimulated Raman adiabatic passage process. This process of short duration, typically picosecond and subpicosecond, is easily implementable with the modern pulse shaper technology and opens the possibility of ultrafast robust population transfer with interesting applications in quantum information processing.
NASA Astrophysics Data System (ADS)
Third, J. R.; Chen, Y.; Müller, C. R.
2016-07-01
Lattice-Boltzmann method (LBM) simulations of a gas-fluidised bed have been performed. In contrast to the current state-of-the-art coupled computational fluid dynamics-discrete element method (CFD-DEM) simulations, the LBM does not require a closure relationship for the particle-fluid interaction force. Instead, the particle-fluid interaction can be calculated directly from the detailed flow profile around the particles. Here a comparison is performed between CFD-DEM and LBM simulations of a small fluidised bed. Simulations are performed for two different values of the superficial gas velocity and it is found that the LBM predicts a larger bed expansion for both flowrates. Furthermore the particle-fluid interaction force obtained for LBM simulations is compared to the force which would be predicted by a CFD-DEM model under the same conditions. On average the force predicted by the CFD-DEM closure relationship is found to be significantly smaller than the force obtained from the LBM.
Realization of adiabatic Aharonov-Bohm scattering with neutrons
NASA Astrophysics Data System (ADS)
Sjöqvist, Erik; Almquist, Martin; Mattsson, Ken; Gürkan, Zeynep Nilhan; Hessmo, Björn
2015-11-01
The adiabatic Aharonov-Bohm (AB) effect is a manifestation of the Berry phase acquired when some slow variables take a planar spin around a loop. While the effect has been observed in molecular spectroscopy, direct measurement of the topological phase shift in a scattering experiment has been elusive in the past. Here, we demonstrate an adiabatic AB effect by explicit simulation of the dynamics of unpolarized very slow neutrons that scatter on a long straight current-carrying wire.
Shortcuts to adiabaticity for non-Hermitian systems
Ibanez, S.; Martinez-Garaot, S.; Torrontegui, E.; Muga, J. G.; Chen Xi
2011-08-15
Adiabatic processes driven by non-Hermitian, time-dependent Hamiltonians may be sped up by generalizing inverse engineering techniques based on counter-diabatic (transitionless driving) algorithms or on dynamical invariants. We work out the basic theory and examples described by two-level Hamiltonians: the acceleration of rapid adiabatic passage with a decaying excited level and of the dynamics of a classical particle on an expanding harmonic oscillator.
Ultrafast hydrogen migration in acetylene cation driven by non-adiabatic effects.
Madjet, Mohamed El-Amine; Li, Zheng; Vendrell, Oriol
2013-03-01
Non-adiabatic dynamics of the acetylene cation is investigated using mixed quantum-classical dynamics based on trajectory surface hopping. To describe the non-adiabatic effects, two surface hopping methods are used, namely, Tully's fewest switches and Landau-Zener surface hopping. Similarities and differences between the results based on those two methods are discussed. We find that the photoionization of acetylene into the first excited state A(2)Σg(+) drives the molecule from the linear structure to a trans-bent structure. Through a conical intersection the acetylene cation can relax back to either the ground state of acetylene or vinylidene. We conclude that hydrogen migration always takes place after non-radiative electronic relaxation to the ground state of the monocation. Based on the analysis of correlation functions we identify coherent oscillations between acetylene and vinylidene with a period of about 70 fs after the electronic relaxation. PMID:23485298
NASA Astrophysics Data System (ADS)
Singh, V. P.; Sharma, M. K.
1996-01-01
Presents a method for computing the eigenfrequencies of small adiabatic oscillations of stellar models distorted by differential rotation and tidal forces. The method is based on the approach adopted by Mohan and Singh (1982) in conjunction with the averaging concept introduced by Kippenhahn and Thomas (1970). The angular velocity of rotation is assumed to be the function of the square of the distance of fluid element from the axis of rotation. Tidal distortions are assumed to be caused by a nearby point mass. Such studies have practical importance in astrophysics in determining the periods of small adiabatic oscillations of differentially rotating stars in binary systems. Comparison of results with observational data is also presented.
Thermal Expansion of Polyurethane Foam
NASA Technical Reports Server (NTRS)
Lerch, Bradley A.; Sullivan, Roy M.
2006-01-01
expansion tests and the response of the microstructure. A novel optical method is described which is appropriate for measuring thermal expansion at high temperatures without influencing the thermal expansion measurement. Detailed microstructural investigations will also be described which show cell expansion as a function of temperature. Finally, a phenomenological model on thermal expansion will be described.
Semiclassical Monte Carlo: A first principles approach to non-adiabatic molecular dynamics
White, Alexander J.; Gorshkov, Vyacheslav N.; Wang, Ruixi; Tretiak, Sergei; Mozyrsky, Dmitry
2014-11-14
Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantum mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement.
Semiclassical Monte Carlo: A first principles approach to non-adiabatic molecular dynamics
NASA Astrophysics Data System (ADS)
White, Alexander J.; Gorshkov, Vyacheslav N.; Wang, Ruixi; Tretiak, Sergei; Mozyrsky, Dmitry
2014-11-01
Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantum mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement.
Nebogatov, V. A.; Pastukhov, V. P.
2013-06-15
A closed set of reduced equations describing low-frequency nonlinear flute magnetohydrodynamic (MHD) convection and the resulting nondiffusive processes of particle and energy transport in a weakly collisional cylindrical plasma with an anisotropic pressure is derived. The Chew-Goldberger-Low anisotropic magnetohydrodynamics is used as the basic dynamic model, because this model is applicable to describing flute convection in a cylindrical plasma column even in the low-frequency limit. The reduced set of equations was derived using the method of adiabatic separation of fast and slow motions. It is shown that the structure of the adiabatic transformation and the corresponding velocity field are identical to those obtained earlier in the isotropic MHD model. However, the derived heat transfer equations differ drastically from the isotropic pressure model. In particular, they indicate a tendency toward maintaining different radial profiles of the longitudinal and transverse pressures.
Shortcuts to adiabatic passage for generation of W states of distant atoms
NASA Astrophysics Data System (ADS)
Song, Kun-Huang; Chen, Ming-Feng
2016-08-01
With the help of quantum Zeno dynamics, we propose fast and noise-resistant schemes for preparing the W states in the indirectly coupled cavity systems via the inverse engineering-based Lewis-Riesenfeld invariant (IBLR). Comparing with the original adiabatic passage method, the results show that the time needed to prepare the desired state is reduced and the effects of the atomic spontaneous emission and the cavity decay on the fidelity are suppressed. Moreover, this scheme can also be generalized to generation of N-atom W states. Not only the total operation time, but also the robustness against decoherence is insensitive to the number of atoms. It proves that our scheme is useful in scalable distributed quantum information processing and contributes to the understanding of more complex systems via shortcuts to adiabatic passage based on Lewis-Riesenfeld invariants.
Kinetically constrained ring-polymer molecular dynamics for non-adiabatic chemical reactions.
Menzeleev, Artur R; Bell, Franziska; Miller, Thomas F
2014-02-14
We extend ring-polymer molecular dynamics (RPMD) to allow for the direct simulation of general, electronically non-adiabatic chemical processes. The kinetically constrained (KC) RPMD method uses the imaginary-time path-integral representation in the set of nuclear coordinates and electronic states to provide continuous equations of motion that describe the quantized, electronically non-adiabatic dynamics of the system. KC-RPMD preserves the favorable properties of the usual RPMD formulation in the position representation, including rigorous detailed balance, time-reversal symmetry, and invariance of reaction rate calculations to the choice of dividing surface. However, the new method overcomes significant shortcomings of position-representation RPMD by enabling the description of non-adiabatic transitions between states associated with general, many-electron wavefunctions and by accurately describing deep-tunneling processes across asymmetric barriers. We demonstrate that KC-RPMD yields excellent numerical results for a range of model systems, including a simple avoided-crossing reaction and condensed-phase electron-transfer reactions across multiple regimes for the electronic coupling and thermodynamic driving force. PMID:24527896
Kinetically constrained ring-polymer molecular dynamics for non-adiabatic chemical reactions
Menzeleev, Artur R.; Bell, Franziska; Miller, Thomas F.
2014-02-14
We extend ring-polymer molecular dynamics (RPMD) to allow for the direct simulation of general, electronically non-adiabatic chemical processes. The kinetically constrained (KC) RPMD method uses the imaginary-time path-integral representation in the set of nuclear coordinates and electronic states to provide continuous equations of motion that describe the quantized, electronically non-adiabatic dynamics of the system. KC-RPMD preserves the favorable properties of the usual RPMD formulation in the position representation, including rigorous detailed balance, time-reversal symmetry, and invariance of reaction rate calculations to the choice of dividing surface. However, the new method overcomes significant shortcomings of position-representation RPMD by enabling the description of non-adiabatic transitions between states associated with general, many-electron wavefunctions and by accurately describing deep-tunneling processes across asymmetric barriers. We demonstrate that KC-RPMD yields excellent numerical results for a range of model systems, including a simple avoided-crossing reaction and condensed-phase electron-transfer reactions across multiple regimes for the electronic coupling and thermodynamic driving force.
NASA Technical Reports Server (NTRS)
Stephens, S. A.; Mauger, B. G.
1985-01-01
On the basis of well established cosmic ray propagation models, the expected flux of antiprotons in cosmic rays within the few-hundred MeV region is small by comparison with the observed flux. Observational data are presently approached through the examination of the possibility of antiproton production by supernova (SN) envelopes during the expansion phase and while undergoing the consequent adiabatic deceleration. In the case of the SN explosions in dense clouds treated, the SN remnant is decelerated within a few thousand years, generating may antiprotons whose spectrum can be calculated by taking all energy loss processes into account and examining the remnant's spectral evolution. Attention is also given to the possibility of obtaining the antiproton spectrum with enhanced flux at low energies.
Experimental Progress Toward Multiple Adiabatic Rapid Passage Sequences
NASA Astrophysics Data System (ADS)
Miao, X.; Wertz, E.; Cohen, M. G.; Metcalf, H.
2006-05-01
Multiple repetitions of adiabatic rapid passage (ARP) sweeps with counterpropagating light beams can enable huge optical forces on atoms. The repetition rate of the ARP sweeps φsγ results in a force k φs/πk γ/2 ≡Frad where 1/γ≡τ is the excited state lifetime and Frad is the ordinary radiative force. This is because each pair of ARP-induced inversions can coherently transfer momentum ±2 k between the light beams, and thus 2 k to the atoms. In developing instruments for such experiments on the 2^3S1-> 2^3P2 transition at λ = 1083 nm in He, we exploit recent developments in the optical communications industry. We use commercial phase and intensity modulators of the LiNbO3 waveguide type having Vπ as low as 6 V and thus requiring relatively low rf power for the modulation. Synchronized driving of the two modulators can produce the necessary multiple ARP sequences of 10 ns chirped pulses that span several GHz, as needed for the experiment^3. We are also developing optical methods for characterizing these pulses. T. Lu, X. Miao, and H. Metcalf, Phys., Rev. A 71 061405(R) (2005).
Adiabatic quantum pump in a zigzag graphene nanoribbon junction
NASA Astrophysics Data System (ADS)
Zhang, Lin
2015-11-01
The adiabatic electron transport is theoretically studied in a zigzag graphene nanoribbon (ZGNR) junction with two time-dependent pumping electric fields. By modeling a ZGNR p-n junction and applying the Keldysh Green’s function method, we find that a pumped charge current is flowing in the device at a zero external bias, which mainly comes from the photon-assisted tunneling process and the valley selection rule in an even-chain ZGNR junction. The pumped charge current and its ON and OFF states can be efficiently modulated by changing the system parameters such as the pumping frequency, the pumping phase difference, and the Fermi level. A ferromagnetic ZGNR device is also studied to generate a pure spin current and a fully polarized spin current due to the combined spin pump effect and the valley valve effect. Our finding might pave the way to manipulate the degree of freedom of electrons in a graphene-based electronic device. Project supported by the National Natural Science Foundation of China (Grant No. 110704033), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010416), and the Natural Science Foundation for Colleges and Universities in Jiangsu Province, China (Grant No. 13KJB140005).
Evolution of f{sub NL} to the adiabatic limit
Elliston, Joseph; Mulryne, David J.; Tavakol, Reza; Seery, David E-mail: D.Mulryne@qmul.ac.uk E-mail: R.Tavakol@qmul.ac.uk
2011-11-01
We study inflationary perturbations in multiple-field models, for which ζ typically evolves until all isocurvature modes decay — the {sup a}diabatic limit{sup .} We use numerical methods to explore the sensitivity of the local-shape bispectrum to the process by which this limit is achieved, finding an appreciable dependence on model-specific data such as the time at which slow-roll breaks down or the timescale of reheating. In models with a sum-separable potential where the isocurvature modes decay before the end of the slow-roll phase we give an analytic criterion for the asymptotic value of f{sub NL} to be large. Other examples can be constructed using a waterfall field to terminate inflation while f{sub NL} is transiently large, caused by descent from a ridge or convergence into a valley. We show that these two types of evolution are distinguished by the sign of the bispectrum, and give approximate expressions for the peak f{sub NL}.
Covariant Perturbation Expansion of Off-Diagonal Heat Kernel
NASA Astrophysics Data System (ADS)
Gou, Yu-Zi; Li, Wen-Du; Zhang, Ping; Dai, Wu-Sheng
2016-07-01
Covariant perturbation expansion is an important method in quantum field theory. In this paper an expansion up to arbitrary order for off-diagonal heat kernels in flat space based on the covariant perturbation expansion is given. In literature, only diagonal heat kernels are calculated based on the covariant perturbation expansion.
Adiabatic condition and the quantum hitting time of Markov chains
Krovi, Hari; Ozols, Maris; Roland, Jeremie
2010-08-15
We present an adiabatic quantum algorithm for the abstract problem of searching marked vertices in a graph, or spatial search. Given a random walk (or Markov chain) P on a graph with a set of unknown marked vertices, one can define a related absorbing walk P{sup '} where outgoing transitions from marked vertices are replaced by self-loops. We build a Hamiltonian H(s) from the interpolated Markov chain P(s)=(1-s)P+sP{sup '} and use it in an adiabatic quantum algorithm to drive an initial superposition over all vertices to a superposition over marked vertices. The adiabatic condition implies that, for any reversible Markov chain and any set of marked vertices, the running time of the adiabatic algorithm is given by the square root of the classical hitting time. This algorithm therefore demonstrates a novel connection between the adiabatic condition and the classical notion of hitting time of a random walk. It also significantly extends the scope of previous quantum algorithms for this problem, which could only obtain a full quadratic speedup for state-transitive reversible Markov chains with a unique marked vertex.
Conflation: a new type of accelerated expansion
NASA Astrophysics Data System (ADS)
Fertig, Angelika; Lehners, Jean-Luc; Mallwitz, Enno
2016-08-01
In the framework of scalar-tensor theories of gravity, we construct a new kind of cosmological model that conflates inflation and ekpyrosis. During a phase of conflation, the universe undergoes accelerated expansion, but with crucial differences compared to ordinary inflation. In particular, the potential energy is negative, which is of interest for supergravity and string theory where both negative potentials and the required scalar-tensor couplings are rather natural. A distinguishing feature of the model is that, for a large parameter range, it does not significantly amplify adiabatic scalar and tensor fluctuations, and in particular does not lead to eternal inflation and the associated infinities. We also show how density fluctuations in accord with current observations may be generated by adding a second scalar field to the model. Conflation may be viewed as complementary to the recently proposed anamorphic universe of Ijjas and Steinhardt.
Self-similar expansion of a warm dense plasma
Djebli, Mourad; Moslem, Waleed M.
2013-07-15
The properties of an expanding plasma composed of degenerate electron fluid and non-degenerate ions are studied. For our purposes, we use fluid equations for ions together with the electron momentum equation that include quantum forces (e.g., the quantum statistical pressure, forces due to the electron-exchange and electron correlations effects) and the quasi-neutrality condition. The governing equation is written in a tractable form by using a self-similar transformation. Numerical results for typical beryllium plasma parameters revealed that, during the expansion, the ion acoustic speed decreases for both isothermal and adiabatic ion pressure. When compared with classical hydrodynamic plasma expansion model, the electrons and ions are found to initially escape faster in vacuum creating thus an intense electric field that accelerates most of the particles into the vacuum ahead of the plasma expansion. The relevancy of the present model to beryllium plasma produced by a femto-second laser is highlighted.
Expansion techniques for collisionless stellar dynamical simulations
Meiron, Yohai; Li, Baile; Holley-Bockelmann, Kelly; Spurzem, Rainer
2014-09-10
We present graphics processing unit (GPU) implementations of two fast force calculation methods based on series expansions of the Poisson equation. One method is the self-consistent field (SCF) method, which is a Fourier-like expansion of the density field in some basis set; the other method is the multipole expansion (MEX) method, which is a Taylor-like expansion of the Green's function. MEX, which has been advocated in the past, has not gained as much popularity as SCF. Both are particle-field methods and optimized for collisionless galactic dynamics, but while SCF is a 'pure' expansion, MEX is an expansion in just the angular part; thus, MEX is capable of capturing radial structure easily, while SCF needs a large number of radial terms. We show that despite the expansion bias, these methods are more accurate than direct techniques for the same number of particles. The performance of our GPU code, which we call ETICS, is profiled and compared to a CPU implementation. On the tested GPU hardware, a full force calculation for one million particles took ∼0.1 s (depending on expansion cutoff), making simulations with as many as 10{sup 8} particles fast for a comparatively small number of nodes.
Thibaudeau, Christophe; Remaud, Gérald; Silvestre, Virginie; Akoka, Serge
2010-07-01
(2)H/(1)H and (13)C/(12)C site-specific isotope ratios determined by NMR spectroscopy may be used to discriminate pharmaceutically active ingredients based on the synthetic process used in production. Extending the Site-specific Natural Isotope Fractionation NMR (SNIF-NMR) method to (13)C is highly beneficial for complex organic molecules when measurements of (2)H/(1)H ratios lead to poorly defined molecular fingerprints. The current NMR methodology to determine (13)C/(12)C site-specific isotope ratios suffers from poor sensitivity and long experimental times. In this work, several NMR pulse sequences based on polarization transfer were evaluated and optimized to measure precise quantitative (13)C NMR spectra within a short time. Adiabatic 180 degrees (1)H and (13)C pulses were incorporated into distortionless enhancement by polarization transfer (DEPT) and refocused insensitive nuclei enhanced by polarization transfer (INEPT) to minimize the influence of 180 degrees pulse imperfections and of off-resonance effects on the precision of the measured (13)C peak areas. The adiabatic DEPT sequence was applied to draw up a precise site-specific (13)C isotope profile of ibuprofen. A modified heteronuclear cross-polarization (HCP) experiment featuring (1)H and (13)C spin-locks with adiabatic 180 degrees pulses is also introduced. This sequence enables efficient magnetization transfer across a wide (13)C frequency range although not enough for an application in quantitative (13)C isotopic analysis. PMID:20527737
Viscous heating, adiabatic heating and energetic consistency in compressible mantle convection
NASA Astrophysics Data System (ADS)
Leng, Wei; Zhong, Shijie
2008-05-01
Although it has been suggested that the total viscous heating, Qv, should be exactly balanced by the total adiabatic heating, Qa, for compressible mantle convection, previous numerical studies show a significant imbalance of up to several percent between Qv and Qa for simple isoviscous compressible convection. The cause of this imbalance and its potential effects on more complicated convective systems remain largely unknown. In this study, we present an analysis to show that total viscous heating and adiabatic heating for compressible mantle convection with anelastic liquid approximation (ALA) and the Adams-Williamson equation of state are balanced out at any instant in time, and that the previously reported imbalance between Qv and Qa for numerical models with a truncated anelastic liquid approximation (TALA) is caused by neglecting the effect of the pressure on the buoyancy force. Although we only consider the Adams-Williamson equation of state in our analysis, our method can be used to check the energetic consistency for other forms of equation of state. We formulate numerical models of compressible mantle convection under both TALA and ALA formulations by modifying the Uzawa algorithm in Citcom code. Our numerical results confirm our analysis on the balance between total viscous heating and total adiabatic heating.
Integrated polarization rotator/converter by stimulated Raman adiabatic passage.
Xiong, Xiao; Zou, Chang-Ling; Ren, Xi-Feng; Guo, Guang-Can
2013-07-15
We proposed a polarization rotator inspired by stimulated Raman adiabatic passage model from quantum optics, which is composed of a signal waveguide and an ancillary waveguide. The two orthogonal modes in signal waveguide and the oblique mode in ancillary waveguide form a Λ-type three-level system. By controlling the width of signal waveguide and the gap between two waveguides, adiabatic conversion between two orthogonal modes can be realized in the signal waveguide. With such adiabatic passage, polarization conversion is completed within 150 μm length, with the efficiencies over 99% for both conversions between horizontal polarization and vertical polarization. In addition, such a polarization rotator is quite robust against fabrication error, allowing a wide range of tolerances for the rotator geometric parameters. Our work is not only significative to photonic simulations of coherent quantum phenomena with engineered photonic waveguides, but also enlightens the practical applications of these phenomena in optical device designs. PMID:23938558
Adiabatic compressibility of myoglobin. Effect of axial ligand and denaturation.
Leung, W P; Cho, K C; Lo, Y M; Choy, C L
1986-03-01
An ultrasonic technique has been employed to study the adiabatic compressibility of three metmyoglobin derivatives (aquomet-, fluoromet- and azidometmyoglobin) at neutral pH, and aquometmyoglobin as a function of pH in the frequency range of 1-10 MHz at 20 degrees C. No difference was observed in the adiabatic compressibility of the various derivatives. This indicates that the binding of different axial ligands to myoglobin does not affect significantly the conformational fluctuations of the protein. The finding is consistent with the results of the hydrogen exchange rate experiment, indicating that both types of measurements are useful for the study of protein dynamics. Upon acid-induced denaturation, the adiabatic compressibility of myoglobin drops from 5.3 X 10(-12) cm2/dyn to 0.5 X 10(-12) cm2/dyn. Plausible reasons for such a decrease are discussed. PMID:3947645
Effect of dephasing on stimulated Raman adiabatic passage
Ivanov, P.A.; Vitanov, N.V.; Bergmann, K.
2004-12-01
This work explores the effect of phase relaxation on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The study is based on the Liouville equation, which is solved analytically in the adiabatic limit. The transfer efficiency of STIRAP is found to decrease exponentially with the dephasing rate; this effect is stronger for shorter pulse delays and weaker for larger delays, since the transition time is found to be inversely proportional to the pulse delay. Moreover, it is found that the transfer efficiency of STIRAP in the presence of dephasing does not depend on the peak Rabi frequencies at all, as long as they are sufficiently large to enforce adiabatic evolution; hence increasing the field intensity cannot reduce the dephasing losses. It is shown also that for any dephasing rate, the final populations of the initial state and the intermediate state are equal. For strong dephasing all three populations tend to (1/3)
Interaction-induced adiabatic cooling for antiferromagnetism in optical lattices
Dare, A.-M.; Raymond, L.; Albinet, G.; Tremblay, A.-M. S.
2007-08-01
In the experimental context of cold-fermion optical lattices, we discuss the possibilities to approach the pseudogap or ordered phases by manipulating the scattering length or the strength of the laser-induced lattice potential. Using the two-particle self-consistent approach, as well as quantum Monte Carlo simulations, we provide isentropic curves for the two- and three-dimensional Hubbard models at half-filling. These quantitative results are important for practical attempts to reach the ordered antiferromagnetic phase in experiments on optical lattices of two-component fermions. We find that adiabatically turning on the interaction in two dimensions to cool the system is not very effective. In three dimensions, adiabatic cooling to the antiferromagnetic phase can be achieved in such a manner, although the cooling efficiency is not as high as initially suggested by dynamical mean-field theory. Adiabatic cooling by turning off the repulsion beginning at strong coupling is possible in certain cases.
Pressure sensitivity of adiabatic shear banding in metals
NASA Astrophysics Data System (ADS)
Hanina, E.; Rittel, D.; Rosenberg, Z.
2007-01-01
Adiabatic shear banding (ASB) is a dynamic failure mode characterized by large plastic strains in a narrow localized band. ASB occurs at high strain rates (ɛ˙⩾103s-1), under adiabatic conditions leading to a significant temperature rise inside the band [H. Tresca, Annales du Conservatoire des Arts et Métiers 4, (1879); Y. L. Bai and B. Dodd, Adiabatic Shear Localization-Occurrence, Theories, and Applications (Pergamon, Oxford, 1992); M. A. Meyers, Dynamic Behavior of Materials (Wiley, New York, 1994).; and J. J. Lewandowski and L. M. Greer, Nat. Mater. 5, 15 (2006)]. Large hydrostatic pressures are experienced in many dynamic applications involving ASB formation (e.g., ballistic penetration, impact, and machining). The relationship between hydrostatic pressure and ASB development remains an open question, although its importance has been often noted. This letter reports original experimental results indicating a linear relationship between the (normalized) dynamic deformation energy and the (normalized) hydrostatic pressure.
Non Adiabatic Evolution of Elliptical Galaxies by Dynamical Friction
NASA Astrophysics Data System (ADS)
Arena, S. E.; Bertin, G.; Liseikina, T.; Pegoraro, F.
2007-05-01
Many astrophysical problems, ranging from structure formation in cosmology to dynamics of elliptical galaxies, refer to slow processes of evolution of essentially collisionless self-gravitating systems. In order to determine the relevant quasi-equilibrium configuration at time t from given initial conditions, it is often argued that such slow evolution may be approximated in terms of adiabatic evolution, for the calculation of which efficient semi--analytical techniques are available. Here we focus on the slow process of evolution, induced by dynamical friction of a host stellar system on a minority component of "satellites", to determine to what extent an adiabatic description might be applied. The study is realized by means of N--body simulations of the evolution of the total system (the stellar system plus the minority component), in a controlled numerical environment. In particular, we compare the evolution from initial to final configurations of the system subject to dynamical friction with that of the same system evolved adiabatically (in the absence of dynamical friction). We consider two classes of galaxy models characterized by significantly different density and pressure anisotropy profiles. We demonstrate that, for the examined process, the evolution driven by dynamical friction is significantly different from the adiabatic case, not only quantitatively, but also qualitatively. The two classes of galaxy models considered in this investigation exhibit generally similar trends in evolution, with one exception: concentrated models reach a final total density profile, in the internal region, shallower than the initial one, while galaxy models with a broad core show the opposite behaviour. The evolution of elliptical galaxies induced by dynamical friction is a slow process but it is not adiabatic. The results of our investigation should be taken as a warning against the indiscriminate use of adiabatic growth prescriptions in studies of the structure of
NASA Astrophysics Data System (ADS)
Shen, Jun; Piecuch, Piotr
2012-06-01
After reviewing recent progress in the area of the development of coupled-cluster (CC) methods for quasi-degenerate electronic states that are characterized by stronger non-dynamical correlation effects, including new generations of single- and multi-reference approaches that can handle bond breaking and excited states dominated by many-electron transitions, and after discussing the key elements of the left-eigenstate completely renormalized (CR) CC and equation-of-motion (EOM) CC methods, and the underlying biorthogonal method of moments of CC (MMCC) equations [P. Piecuch, M. Włoch, J. Chem. Phys. 123 (2005) 224105; P. Piecuch, M. Włoch, J.R. Gour, A. Kinal, Chem. Phys. Lett. 418 (2006) 467; M. Włoch, M.D. Lodriguito, P. Piecuch, J.R. Gour, Mol. Phys. 104 (2006) 2149], it is argued that it is beneficial to merge the CR-CC/EOMCC and active-space CC/EOMCC [P. Piecuch, Mol. Phys. 108 (2010) 2987, and references therein] theories into a single formalism. In order to accomplish this goal, the biorthogonal MMCC theory, which provides compact many-body expansions for the differences between the full configuration interaction and CC or, in the case of excited states, EOMCC energies, obtained using conventional truncation schemes in the cluster operator T and excitation operator Rμ, is generalized, so that one can correct the CC/EOMCC energies obtained with arbitrary truncations in T and Rμ for the selected many-electron correlation effects of interest. The resulting moment expansions, defining the new, Flexible MMCC (Flex-MMCC) formalism, and the ensuing CC(P; Q) hierarchy, proposed in the present work, enable one to correct energies obtained in the active-space CC and EOMCC calculations, in which one selects higher many-body components of T and Rμ via active orbitals and which recover much of the relevant non-dynamical and some dynamical electron correlation effects in applications involving potential energy surfaces (PESs) along bond breaking coordinates, for the
Adiabatic Rosen-Zener interferometry with ultracold atoms
Fu Libin; Ye Defa; Lee Chaohong; Zhang Weiping; Liu Jie
2009-07-15
We propose a time-domain 'interferometer' based on double-well ultracold atoms through a so-called adiabatic Rosen-Zener process, that is, the barrier between two wells is ramped down slowly, held for a while, and then ramped back. After the adiabatic Rosen-Zener process, we count the particle population in each well. We find that the final occupation probability shows nice interference fringes. The fringe pattern is sensitive to the initial state as well as the intrinsic parameters of the system such as interatomic interaction or energy bias between two wells. The underlying mechanism is revealed and possible applications are discussed.
Speeding up Adiabatic Quantum State Transfer by Using Dressed States
NASA Astrophysics Data System (ADS)
Baksic, Alexandre; Ribeiro, Hugo; Clerk, Aashish A.
2016-06-01
We develop new pulse schemes to significantly speed up adiabatic state transfer protocols. Our general strategy involves adding corrections to an initial control Hamiltonian that harness nonadiabatic transitions. These corrections define a set of dressed states that the system follows exactly during the state transfer. We apply this approach to stimulated Raman adiabatic passage protocols and show that a suitable choice of dressed states allows one to design fast protocols that do not require additional couplings, while simultaneously minimizing the occupancy of the "intermediate" level.
Spatial adiabatic passage: a review of recent progress
NASA Astrophysics Data System (ADS)
Menchon-Enrich, R.; Benseny, A.; Ahufinger, V.; Greentree, A. D.; Busch, Th; Mompart, J.
2016-07-01
Adiabatic techniques are known to allow for engineering quantum states with high fidelity. This requirement is currently of large interest, as applications in quantum information require the preparation and manipulation of quantum states with minimal errors. Here we review recent progress on developing techniques for the preparation of spatial states through adiabatic passage, particularly focusing on three state systems. These techniques can be applied to matter waves in external potentials, such as cold atoms or electrons, and to classical waves in waveguides, such as light or sound.
Spatial adiabatic passage: a review of recent progress.
Menchon-Enrich, R; Benseny, A; Ahufinger, V; Greentree, A D; Busch, Th; Mompart, J
2016-07-01
Adiabatic techniques are known to allow for engineering quantum states with high fidelity. This requirement is currently of large interest, as applications in quantum information require the preparation and manipulation of quantum states with minimal errors. Here we review recent progress on developing techniques for the preparation of spatial states through adiabatic passage, particularly focusing on three state systems. These techniques can be applied to matter waves in external potentials, such as cold atoms or electrons, and to classical waves in waveguides, such as light or sound. PMID:27245462
Adiabatic fluctuations from cosmic strings in a contracting universe
Brandenberger, Robert H.; Takahashi, Tomo; Yamaguchi, Masahide E-mail: tomot@cc.saga-u.ac.jp
2009-07-01
We show that adiabatic, super-Hubble, and almost scale invariant density fluctuations are produced by cosmic strings in a contracting universe. An essential point is that isocurvature perturbations produced by topological defects such as cosmic strings on super-Hubble scales lead to a source term which seeds the growth of curvature fluctuations on these scales. Once the symmetry has been restored at high temperatures, the isocurvature seeds disappear, and the fluctuations evolve as adiabatic ones in the expanding phase. Thus, cosmic strings may be resurrected as a mechanism for generating the primordial density fluctuations observed today.
Quantum Adiabatic Pumping by Modulating Tunnel Phase in Quantum Dots
NASA Astrophysics Data System (ADS)
Taguchi, Masahiko; Nakajima, Satoshi; Kubo, Toshihiro; Tokura, Yasuhiro
2016-08-01
In a mesoscopic system, under zero bias voltage, a finite charge is transferred by quantum adiabatic pumping by adiabatically and periodically changing two or more control parameters. We obtained expressions for the pumped charge for a ring of three quantum dots (QDs) by choosing the magnetic flux penetrating the ring as one of the control parameters. We found that the pumped charge shows a steplike behavior with respect to the variance of the flux. The value of the step heights is not universal but depends on the trajectory of the control parameters. We discuss the physical origin of this behavior on the basis of the Fano resonant condition of the ring.
Non-adiabatic and adiabatic transitions at level crossing with decay: two- and three-level systems
NASA Astrophysics Data System (ADS)
Kenmoe, M. B.; Mkam Tchouobiap, S. E.; Kenfack Sadem, C.; Tchapda, A. B.; Fai, L. C.
2015-03-01
We investigate the Landau-Zener (LZ) like dynamics of decaying two- and three-level systems with decay rates {{Γ }1} and {{Γ }2} for levels with minimum and maximum spin projection. Non-adiabatic and adiabatic transition probabilities are calculated from diabatic and adiabatic bases for two- and three-level systems. We extend the familiar two-level model of atoms with decay from the excited state out of the system into the hierarchy of three-level models which can be solved analytically or computationally in a non-perturbative manner. Exact analytical solutions are obtained within the framework of an extended form of the proposed procedure which enables to take into account all possible initial moments rather than large negative time {{t}0}=-∞ as in standard LZ problems. We elucidate the applications of our results from a unified theoretical basis that numerically analyzes the dynamics of a system as probed by experiments.
Adapted polynomial chaos expansion for failure detection
Paffrath, M. Wever, U.
2007-09-10
In this paper, we consider two methods of computation of failure probabilities by adapted polynomial chaos expansions. The performance of the two methods is demonstrated by a predator-prey model and a chemical reaction problem.
Anderson, R.C.; Jones, J.M.; Kollie, T.G.
1982-05-24
The present invention is directed to the fabrication of an article of uranium-2.4 wt % niobium alloy in which the linear thermal expansion in the direction transverse to the extrusion direction is less than about 0.98% between 22 and 600/sup 0/C which corresponds to a value greater than the 1.04% provided by previous extrusion operations over the same temperature range. The article with the improved thermal expansion possesses a yield strength at 0.2% offset of at least 400 MPa, an ultimate tensile strength of 1050 MPa, a compressive yield strength of at least 0.2% offset of at least 675 MPa, and an elongation of at least 25% over 25.4 mm/s. To provide this article with the improved thermal expansion, the uranium alloy billet is heated to 630/sup 0/C and extruded in the alpha phase through a die with a reduction ratio of at least 8.4:1 at a ram speed no greater than 6.8 mm/s. These critical extrusion parameters provide the article with a desired decrease in the linear thermal expansion while maintaining the selected mechanical properties without encountering crystal disruption in the article.
NASA Astrophysics Data System (ADS)
Traaseth, Nathaniel J.; Chao, Fa-An; Masterson, Larry R.; Mangia, Silvia; Garwood, Michael; Michaeli, Shalom; Seelig, Burckhard; Veglia, Gianluigi
2012-06-01
NMR relaxation methods probe biomolecular motions over a wide range of timescales. In particular, the rotating frame spin-lock R1ρ and Carr-Purcell-Meiboom-Gill (CPMG) R2 experiments are commonly used to characterize μs to ms dynamics, which play a critical role in enzyme folding and catalysis. In an effort to complement these approaches, we introduced the Heteronuclear Adiabatic Relaxation Dispersion (HARD) method, where dispersion in rotating frame relaxation rate constants (longitudinal R1ρ and transverse R2ρ) is created by modulating the shape and duration of adiabatic full passage (AFP) pulses. Previously, we showed the ability of the HARD method to detect chemical exchange dynamics in the fast exchange regime (kex ˜ 104-105 s-1). In this article, we show the sensitivity of the HARD method to slower exchange processes by measuring R1ρ and R2ρ relaxation rates for two soluble proteins (ubiquitin and 10C RNA ligase). One advantage of the HARD method is its nominal dependence on the applied radio frequency field, which can be leveraged to modulate the dispersion in the relaxation rate constants. In addition, we also include product operator simulations to define the dynamic range of adiabatic R1ρ and R2ρ that is valid under all exchange regimes. We conclude from both experimental observations and simulations that this method is complementary to CPMG-based and rotating frame spin-lock R1ρ experiments to probe conformational exchange dynamics for biomolecules. Finally, this approach is germane to several NMR-active nuclei, where relaxation rates are frequency-offset independent.
NASA Astrophysics Data System (ADS)
Kimura, Jun-Ichi; Kawabata, Hiroshi
2014-06-01
numerical mass balance calculation model for the adiabatic melting of a dry to hydrous peridotite has been programmed in order to simulate the trace element compositions of basalts from mid-ocean ridges, back-arc basins, ocean islands, and large igneous provinces. The Excel spreadsheet-based calculator, Hydrous Adiabatic Mantle Melting Simulator version 1 (HAMMS1) uses (1) a thermodynamic model of fractional adiabatic melting of mantle peridotite, with (2) the parameterized experimental melting relationships of primitive to depleted mantle sources in terms of pressure, temperature, water content, and degree of partial melting. The trace element composition of the model basalt is calculated from the accumulated incremental melts within the adiabatic melting regime, with consideration for source depletion. The mineralogic mode in the primitive to depleted source mantle in adiabat is calculated using parameterized experimental results. Partition coefficients of the trace elements of mantle minerals are parameterized to melt temperature mostly from a lattice strain model and are tested using the latest compilations of experimental results. The parameters that control the composition of trace elements in the model are as follows: (1) mantle potential temperature, (2) water content in the source mantle, (3) depth of termination of adiabatic melting, and (4) source mantle depletion. HAMMS1 enables us to obtain the above controlling parameters using Monte Carlo fitting calculations and by comparing the calculated basalt compositions to primary basalt compositions. Additionally, HAMMS1 compares melting parameters with a major element model, which uses petrogenetic grids formulated from experimental results, thus providing better constraints on the source conditions.
Pressurized electrolysis stack with thermal expansion capability
Bourgeois, Richard Scott
2015-07-14
The present techniques provide systems and methods for mounting an electrolyzer stack in an outer shell so as to allow for differential thermal expansion of the electrolyzer stack and shell. Generally, an electrolyzer stack may be formed from a material with a high coefficient of thermal expansion, while the shell may be formed from a material having a lower coefficient of thermal expansion. The differences between the coefficients of thermal expansion may lead to damage to the electrolyzer stack as the shell may restrain the thermal expansion of the electrolyzer stack. To allow for the differences in thermal expansion, the electrolyzer stack may be mounted within the shell leaving a space between the electrolyzer stack and shell. The space between the electrolyzer stack and the shell may be filled with a non-conductive fluid to further equalize pressure inside and outside of the electrolyzer stack.
Thin film NMR T1 measurement by MRFM using cyclic adiabatic inversion
NASA Astrophysics Data System (ADS)
Kwon, Sungmin; Saun, Seung-Bo; Lee, Soonchil; Won, Soonho
2014-03-01
We obtained the NMR spectrum and the spin lattice relaxation time (T1) for thin film samples using Magnetic Resonance Force Microscopy (MRFM). The samples were Alq3, which is widely used as an organic light emitting diode (OLED), thin films of 150 nm thick and a bulk crystal. T1 was measured by using the cyclic adiabatic inversion method at a fixed frequency of 297 MHz and at 12 K. To confirm the reliability of our measurement technique we compared the result with that obtained by conventional NMR method. T1 of thin film samples was measured and compared with that of the bulk sample. thin film, MRFM.
NASA Astrophysics Data System (ADS)
Dattani, Nike; Tanburn, Richard; Lunt, Oliver
We introduce two methods for speeding up adiabatic quantum computations by increasing the energy between the ground and first excited states. Our methods are even more general. They can be used to shift a Hamiltonian's density of states away from the ground state, so that fewer states occupy the low-lying energies near the minimum, hence allowing for faster adiabatic passages to find the ground state with less risk of getting caught in an undesired low-lying excited state during the passage. Even more generally, our methods can be used to transform a discrete optimization problem into a new one whose unique minimum still encodes the desired answer, but with the objective function's values forming a different landscape. Aspects of the landscape such as the objective function's range, or the values of certain coefficients, or how many different inputs lead to a given output value, can be decreased *or* increased. One of the many examples for which these methods are useful is in finding the ground state of a Hamiltonian using NMR. We apply our methods to an AQC algorithm for integer factorization, and the first method reduces the maximum runtime in our example by up to 754%, and the second method reduces the maximum runtime of another example by up to 250%.
Does temperature increase or decrease in adiabatic decompression of magma?
NASA Astrophysics Data System (ADS)
Kilinc, A. I.; Ghiorso, M. S.; Khan, T.
2011-12-01
We have modeled adiabatic decompression of an andesitic and a basaltic magma as an isentropic process using the Melts algorithm. Our modeling shows that during adiabatic decompression temperature of andesitic magma increases but temperature of basaltic magma decreases. In an isentropic process entropy is constant so change of temperature with pressure can be written as dT/dP=T (dV/dT)/Cp where T (dV/dT)/Cp is generally positive. If delta P is negative so is delta T. In general, in the absence of phase change, we expect the temperature to decrease with adiabatic decompression. The effect of crystallization is to turn a more entropic phase (liquid) into a less entropic phase (solid), which must be compensated by raising the temperature. If during adiabatic decompression there is small amount or no crystallization, T (dV/dT)/Cp effect which lowers the temperature overwhelms the small amount of crystallization, which raises the temperature, and overall system temperature decreases.
A Kinetic Study of the Adiabatic Polymerization of Acrylamide.
ERIC Educational Resources Information Center
Thomson, R. A. M.
1986-01-01
Discusses theory, procedures, and results for an experiment which demonstrates the application of basic physics to chemical problems. The experiment involves the adiabatic process, in which polymerization carried out in a vacuum flask is compared to the theoretical prediction of the model with the temperature-time curve obtained in practice. (JN)
The flat Grothendieck-Riemann-Roch theorem without adiabatic techniques
NASA Astrophysics Data System (ADS)
Ho, Man-Ho
2016-09-01
In this paper we give a simplified proof of the flat Grothendieck-Riemann-Roch theorem. The proof makes use of the local family index theorem and basic computations of the Chern-Simons form. In particular, it does not involve any adiabatic limit computation of the reduced eta-invariant.
Digitized adiabatic quantum computing with a superconducting circuit.
Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M
2016-06-01
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable. PMID:27279216
Digitized adiabatic quantum computing with a superconducting circuit
NASA Astrophysics Data System (ADS)
Barends, R.; Shabani, A.; Lamata, L.; Kelly, J.; Mezzacapo, A.; Heras, U. Las; Babbush, R.; Fowler, A. G.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; O’Malley, P. J. J.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Solano, E.; Neven, H.; Martinis, John M.
2016-06-01
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.
Nonadiabatic quantum Liouville and master equations in the adiabatic basis
Jang, Seogjoo
2012-12-14
A compact form of nonadiabatic molecular Hamiltonian in the basis of adiabatic electronic states and nuclear position states is presented. The Hamiltonian, which includes both the first and the second derivative couplings, is Hermitian and thus leads to a standard expression for the quantum Liouville equation for the density operator. With the application of a projection operator technique, a quantum master equation for the diagonal components of the density operator is derived. Under the assumption that nuclear states are much more short ranged compared to electronic states and assuming no singularity, a semi-adiabatic approximation is invoked, which results in expressions for the nonadiabatic molecular Hamiltonian and the quantum Liouville equation that are much more amenable to advanced quantum dynamics calculation. The semi-adiabatic approximation is also applied to a resonance energy transfer system consisting of a donor and an acceptor interacting via Coulomb terms, and explicit detailed expressions for exciton-bath Hamiltonian including all the non-adiabatic terms are derived.
The density temperature and the dry and wet virtual adiabats
NASA Technical Reports Server (NTRS)
Bartlo, J.; Betts, Alan K.
1991-01-01
A density temperature is introduced to represent virtual temperature and potential temperature on thermodynamic diagrams. This study reviews how the dry and wet virtual adiabats can be used to represent stability and air parcel density for unsaturated and cloudy air, and present formula and tabulations.
Adiabatic single scan two-dimensional NMR spectrocopy.
Pelupessy, Philippe
2003-10-01
New excitation schemes, based on the use adiabatic pulses, for single scan two-dimensional NMR experiments (Frydman et al., Proc. Nat. Acad. Sci. 2002, 99, 15 858-15 862) are introduced. The advantages are discussed. Applications in homo- and heteronuclear experiments are presented. PMID:14519020
SIMULATION OF CONTINUOUS-CONTACT SEPARATION PROCESSES: MULTICOMPONENT, ADIABATIC ABSORPTION
A new algorithm has been developed for the steady-state simulation of multicomponent, adiabatic absorption in packed columns. The system of differential model equations that describe the physical absorption process is reduced to algebraic equations by using a finite difference me...
Equations for Adiabatic but Rotational Steady Gas Flows without Friction
NASA Technical Reports Server (NTRS)
Schaefer, Manfred
1947-01-01
This paper makes the following assumptions: 1) The flowing gases are assumed to have uniform energy distribution. ("Isoenergetic gas flows," that is valid with the same constants for the the energy equation entire flow.) This is correct, for example, for gas flows issuing from a region of constant pressure, density, temperature, end velocity. This property is not destroyed by compression shocks because of the universal validity of the energy law. 2) The gas behaves adiabatically, not during the compression shock itself but both before and after the shock. However, the adiabatic equation (p/rho(sup kappa) = C) is not valid for the entire gas flow with the same constant C but rather with an appropriate individual constant for each portion of the gas. For steady flows, this means that the constant C of the adiabatic equation is a function of the stream function. Consequently, a gas that has been flowing "isentropically",that is, with the same constant C of the adiabatic equation throughout (for example, in origination from a region of constant density, temperature, and velocity) no longer remains isentropic after a compression shock if the compression shock is not extremely simple (wedge shaped in a two-dimensional flow or cone shaped in a rotationally symmetrical flow). The solution of nonisentropic flows is therefore an urgent necessity.
Expansion-based passive ranging
NASA Technical Reports Server (NTRS)
Barniv, Yair
1993-01-01
A new technique of passive ranging which is based on utilizing the image-plane expansion experienced by every object as its distance from the sensor decreases is described. This technique belongs in the feature/object-based family. The motion and shape of a small window, assumed to be fully contained inside the boundaries of some object, is approximated by an affine transformation. The parameters of the transformation matrix are derived by initially comparing successive images, and progressively increasing the image time separation so as to achieve much larger triangulation baseline than currently possible. Depth is directly derived from the expansion part of the transformation. To a first approximation, image-plane expansion is independent of image-plane location with respect to the focus of expansion (FOE) and of platform maneuvers. Thus, an expansion-based method has the potential of providing a reliable range in the difficult image area around the FOE. In areas far from the FOE the shift parameters of the affine transformation can provide more accurate depth information than the expansion alone, and can thus be used similarly to the way they were used in conjunction with the Inertial Navigation Unit (INU) and Kalman filtering. However, the performance of a shift-based algorithm, when the shifts are derived from the affine transformation, would be much improved compared to current algorithms because the shifts - as well as the other parameters - can be obtained between widely separated images. Thus, the main advantage of this new approach is that, allowing the tracked window to expand and rotate, in addition to moving laterally, enables one to correlate images over a very long time span which, in turn, translates into a large spatial baseline - resulting in a proportionately higher depth accuracy.
Expansion-based passive ranging
NASA Technical Reports Server (NTRS)
Barniv, Yair
1993-01-01
This paper describes a new technique of passive ranging which is based on utilizing the image-plane expansion experienced by every object as its distance from the sensor decreases. This technique belongs in the feature/object-based family. The motion and shape of a small window, assumed to be fully contained inside the boundaries of some object, is approximated by an affine transformation. The parameters of the transformation matrix are derived by initially comparing successive images, and progressively increasing the image time separation so as to achieve much larger triangulation baseline than currently possible. Depth is directly derived from the expansion part of the transformation. To a first approximation, image-plane expansion is independent of image-plane location with respect to the focus of expansion (FOE) and of platform maneuvers. Thus, an expansion-based method has the potential of providing a reliable range in the difficult image area around the FOE. In areas far from the FOE the shift parameters of the affine transformation can provide more accurate depth information than the expansion alone, and can thus be used similarly to the way they have been used in conjunction with the Inertial Navigation Unit (INU) and Kalman filtering. However, the performance of a shift-based algorithm, when the shifts are derived from the affine transformation, would be much improved compared to current algorithms because the shifts--as well as the other parameters--can be obtained between widely separated images. Thus, the main advantage of this new approach is that, allowing the tracked window to expand and rotate, in addition to moving laterally, enables one to correlate images over a very long time span which, in turn, translates into a large spatial baseline resulting in a proportionately higher depth accuracy.
Non-adiabatic response of relativistic radiation belt electrons to GEM magnetic storms
NASA Astrophysics Data System (ADS)
McAdams, K. L.; Reeves, G. D.
The importance of fully adiabatic effects in the relativistic radiation belt electron response to magnetic storms is poorly characterized due to many difficulties in calculating adiabatic flux response. Using the adiabatic flux model of Kim and Chan [1997a] and Los Alamos National Laboratory geosynchronous satellite data, we examine the relative timing of the adiabatic and non-adiabatic flux responses. In the three storms identified by the GEM community for in depth study, the non-adiabatic energization occurs hours earlier than the adiabatic re-energization. The adiabatic energization can account for only 10-20% of the flux increases in the first recovery stages, and only 1% of the flux increase if there is continuing activity.