Science.gov

Sample records for adiabatic flame temperatures

  1. On the off-stoichiometric peaking of adiabatic flame temperature

    SciTech Connect

    Law, C.K.; Lu, T.F.; Makino, A.

    2006-06-15

    The characteristic rich shifting of the maximum adiabatic flame temperature from the stoichiometric value for mixtures of hydrocarbon and air is demonstrated to be caused by product dissociation and hence reduced amount of heat release. Since the extent of dissociation is greater on the lean side as a result of the stoichiometry of dissociated products, the peaking occurs on the rich side. The specific heat per unit mass of the mixture is shown to increase monotonically with increasing fuel concentration, and as such tends to shift the peak toward the lean side. It is further shown that this is the cause for the lean shifting of the adiabatic flame temperature of oxidizer-enriched mixtures of N{sub m}H{sub n} and F{sub 2} and of NH{sub 3} and O{sub 2}, with various amounts of inert dilution, even though their maximum heat release still peaks on the rich side. (author)

  2. Model-based estimation of adiabatic flame temperature during coal gasification

    NASA Astrophysics Data System (ADS)

    Sarigul, Ihsan Mert

    Coal gasification temperature distribution in the gasifier is one of the important issues. High temperature may increase the risk of corrosion of the gasifier wall or it may cause an increase in the amount of volatile compounds. At the same time, gasification temperature is a dominant factor for high conversion of products and completing the reactions during coal gasification in a short time. In the light of this information it can be said that temperature is one of key parameters of coal gasification to enhance the production of high heating value syngas and maximize refractory longevity. This study aims to predict the adiabatic flame temperatures of Australian bituminous coal and Indonesian roto coal in an entrained flow gasifier using different operating conditions with the ChemCAD simulation and design program. To achieve these objectives, two types of gasification parameters were carried out using simulation of a vertical entrained flow reactor: oxygen-to-coal feed ratio by kg/kg and pressure and steam-to-coal feed ratio by kg/kg and pressure. In the first part of study the adiabatic flame temperatures, coal gasification products and other coal characteristics of two types of coals were determined using ChemCAD software. During all simulations, coal feed rate, coal particle size, initial temperature of coal, water and oxygen were kept constant. The relationships between flame temperature, coal gasification products and operating parameters were fundamentally investigated. The second part of this study addresses the modeling of the flame temperature relation to methane production and other input parameters used previous chapter. The scope of this work was to establish a reasonable model in order to estimate flame temperature without any theoretical calculation. Finally, sensitivity analysis was performed after getting some basic correlations between temperature and input variables. According to the results, oxygen-to-coal feed ratio has the most influential

  3. Evaluation of lower flammability limits of fuel-air-diluent mixtures using calculated adiabatic flame temperatures.

    PubMed

    Vidal, M; Wong, W; Rogers, W J; Mannan, M S

    2006-03-17

    The lower flammability limit (LFL) of a fuel is the minimum composition in air over which a flame can propagate. Calculated adiabatic flame temperatures (CAFT) are a powerful tool to estimate the LFL of gas mixtures. Different CAFT values are used for the estimation of LFL. SuperChems is used by industry to perform flammability calculations under different initial conditions which depends on the selection of a threshold temperature. In this work, the CAFT at the LFL is suggested for mixtures of fuel-air and fuel-air-diluents. These CAFT can be used as the threshold values in SuperChems to calculate the LFL. This paper discusses an approach to evaluate the LFL in the presence of diluents such as N2 and CO2 by an algebraic method and by the application of SuperChems using CAFT as the basis of the calculations. The CAFT for different paraffinic and unsaturated hydrocarbons are presented as well as an average value per family of chemicals. PMID:16309829

  4. Adiabatic Compression of Oxygen: Real Fluid Temperatures

    NASA Technical Reports Server (NTRS)

    Barragan, Michelle; Wilson, D. Bruce; Stoltzfus, Joel M.

    2000-01-01

    The adiabatic compression of oxygen has been identified as an ignition source for systems operating in enriched oxygen atmospheres. Current practice is to evaluate the temperature rise on compression by treating oxygen as an ideal gas with constant heat capacity. This paper establishes the appropriate thermodynamic analysis for the common occurrence of adiabatic compression of oxygen and in the process defines a satisfactory equation of state (EOS) for oxygen. It uses that EOS to model adiabatic compression as isentropic compression and calculates final temperatures for this system using current approaches for comparison.

  5. Effects of Lewis Number on Temperatures of Spherical Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Santa, K. J.; Sun, Z.; Chao, B. H.; Sunderland, P. B.; Axelbaum, R. I.; Urban, D. L.; Stocker, D. P.

    2007-01-01

    Spherical diffusion flames supported on a porous sphere were studied numerically and experimentally. Experiments were performed in 2.2 s and 5.2 s microgravity facilities. Numerical results were obtained from a Chemkin-based program. The program simulates flow from a porous sphere into a quiescent environment, yields both steady-state and transient results, and accounts for optically thick gas-phase radiation. The low flow velocities and long residence times in these diffusion flames lead to enhanced radiative and diffusive effects. Despite similar adiabatic flame temperatures, the measured and predicted temperatures varied by as much as 700 K. The temperature reduction correlates with flame size but characteristic flow times and, importantly, Lewis number also influence temperature. The numerical results show that the ambient gas Lewis number would have a strong effect on flame temperature if the flames were steady and nonradiating. For example, a 10% decrease in Lewis number would increase the steady-state flame temperature by 200 K. However, for these transient, radiating flames the effect of Lewis number is small. Transient predictions of flame sizes are larger than those observed in microgravity experiments. Close agreement could not be obtained without either increasing the model s thermal and mass diffusion properties by 30% or reducing mass flow rate by 25%.

  6. Measurement of propagation speeds in adiabatic cellular premixed flames of CH{sub 4}+O{sub 2}+CO{sub 2}

    SciTech Connect

    Konnov, Alexander A.; Dyakov, Igor V.

    2005-09-01

    Experimental measurements of the propagation speed of adiabatic flames of methane+oxygen+carbon dioxide are presented. The oxygen content O{sub 2}/(O{sub 2}+CO{sub 2}) in the artificial air was 31.55% and 35%. Non-stretched flames were stabilized on a perforated plate burner at atmospheric pressure. A heat flux method was used to determine propagation speeds under conditions when the net heat loss of the flame is zero. Under specific experimental conditions the flames become cellular; this leads to significant modification of the flame propagation speed. The onset of cellularity was observed throughout the stoichiometric range of the mixtures studied. Measurements in cellular flames are presented and compared with those for laminar flat flames. Cellularity disappeared when the flames became only slightly sub-adiabatic. Visual and photographic observations of the flames were performed to quantify their cellular structure. Increasing the oxygen content in the artificial air and increasing the temperature of the burner plate led to increase of the number of cells observed.

  7. Effects of C/O Ratio and Temperature on Sooting Limits of Spherical Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lecoustre, V. R.; Sunderland, P. B.; Chao, B. H.; Urban, D. L.; Stocker, D. P.; Axelbaum, R. L.

    2008-01-01

    Limiting conditions for soot particle inception in spherical diffusion flames were investigated numerically. The flames were modeled using a one-dimensional, time accurate diffusion flame code with detailed chemistry and transport and an optically thick radiation model. Seventeen normal and inverse flames were considered, covering a wide range of stoichiometric mixture fraction, adiabatic flame temperature, residence time and scalar dissipation rate. These flames were previously observed to reach their sooting limits after 2 s of microgravity. Sooting-limit diffusion flames with scalar dissipation rate lower than 2/s were found to have temperatures near 1400 K where C/O = 0.51, whereas flames with greater scalar dissipation rate required increased temperatures. This finding was valid across a broad range of fuel and oxidizer compositions and convection directions.

  8. Laminar Flame Speed of Primary Reference Fuels and Gasoline Surrogates at Elevated Temperatures Measured with the Flat Flame Method

    NASA Astrophysics Data System (ADS)

    Liao, Ying-Hao; Roberts, William

    2013-11-01

    The laminar flame speed is a key target data for validating relevant kinetic mechanisms of the combustion of future fuel formulations since this fundamental parameter contains information for the reactivity, diffusivity, and exothermicity of the fuel mixture. The current work presents the flat flame method, which produces a one-dimensional flat flame free of stretch, to measure laminar flame speeds of the Primary Reference Fuels (PRFs), PRF blends, and gasoline surrogates at elevated temperatures. The flat flame is produced by a McKenna porous plug burner. The laminar flame speed was measured experimentally at atmospheric pressure over a range of equivalence ratios and a range of unburned gas temperatures up to 470 K. To determine the laminar flame speed, a technique with heat extraction through the cooling water, similar to that described by Botha and Spalding (1954), was employed and the adiabatic laminar flame speed was obtained by extrapolation. In addition, the experimental data is compared to simulations using kinetic mechanisms available in the literature. Preliminary results of laminar flame speeds for methane/air and n-heptane/air mixtures at room temperature show good agreement with both of experimental and numerical data available in the literature. Clean Combustion Research Center.

  9. Atomic absorption spectroscopy with high temperature flames.

    PubMed

    Willis, J B

    1968-07-01

    An account is given of the history of the development of high temperature flames for the atomic absorption measurement of metals forming refractory oxides. The principles governing the design of premix burners for such flames, and the relative merits of different types of nebulizer burner systems are described. After a brief account of the structure and emission characteristics of the premixed oxygen-acetylene and nitrous oxide-acetylene flames, the scope and limitations of the latter flame in chemical analysis are discussed. PMID:20068790

  10. The density temperature and the dry and wet virtual adiabats

    NASA Technical Reports Server (NTRS)

    Bartlo, J.; Betts, Alan K.

    1991-01-01

    A density temperature is introduced to represent virtual temperature and potential temperature on thermodynamic diagrams. This study reviews how the dry and wet virtual adiabats can be used to represent stability and air parcel density for unsaturated and cloudy air, and present formula and tabulations.

  11. Does temperature increase or decrease in adiabatic decompression of magma?

    NASA Astrophysics Data System (ADS)

    Kilinc, A. I.; Ghiorso, M. S.; Khan, T.

    2011-12-01

    We have modeled adiabatic decompression of an andesitic and a basaltic magma as an isentropic process using the Melts algorithm. Our modeling shows that during adiabatic decompression temperature of andesitic magma increases but temperature of basaltic magma decreases. In an isentropic process entropy is constant so change of temperature with pressure can be written as dT/dP=T (dV/dT)/Cp where T (dV/dT)/Cp is generally positive. If delta P is negative so is delta T. In general, in the absence of phase change, we expect the temperature to decrease with adiabatic decompression. The effect of crystallization is to turn a more entropic phase (liquid) into a less entropic phase (solid), which must be compensated by raising the temperature. If during adiabatic decompression there is small amount or no crystallization, T (dV/dT)/Cp effect which lowers the temperature overwhelms the small amount of crystallization, which raises the temperature, and overall system temperature decreases.

  12. Flame attenuation effects on surface temperature measurements using IR thermography

    NASA Astrophysics Data System (ADS)

    de Vries, Jaap; Tabinowski, Robert

    2016-05-01

    Long-wave infrared (LWIR) cameras provide the unique ability to see through smoke and condensed water vapor. However, soot generated inside the flame does attenuate the LWIR signal. This work focuses on gas flame attenuation effects of LWIR signals originating from a blackbody. The experimental setup consists of time averaged, laboratory-scale turbulent diffusion flames with heat release rates set at 5 kW, 10 kW, and 15 kW. Propylene and ethylene were used as fuel, providing two different soot yields. A 30 cm by 30 cm blackbody was used with maximum surface temperatures set to 600°C. Both instantaneous and time-averaged blackbody temperature profiles through the flame were measured using a LWIR microbolometer camera (7.5-14 μm). Flame intermittency was quantified by color segmenting visible images. The experiments showed that low blackbody temperatures were significantly affected by the presence of the flame. At 600°C, the effect of flame absorption matches the emitted radiation from the flame itself. Using data obtained at various blackbody temperatures, the flame transmittance was obtained using a Generalized Reduced Gradient optimization method. The transmittance was lower for propylene flames compared to ethylene flames. Ethylene flames were shown to have higher temperatures. Using the values for flame radiance and transmissivity, the total averaged radiance of the flame plus the blackbody could be reproduced with 1% accuracy.

  13. Temperature measurements in flames using thermally assisted laser-induced fluorescence of Ga.

    PubMed

    Joklik, R G; Horvath, J J; Semerjian, H G

    1991-04-20

    The use of thermally assisted fluorescence (THAF) for temperature measurements has been investigated in a laminar, premixed C(2)H(2)/O(2)/Ar flame seeded with Ga atoms. Average temperature measurements were made with an uncertainty of less than +/-100 K in flames >2150 K and were found to be in agreement with sodium line reversal temperature measurements and equilibrium calculations. In both fuel rich and lean flames spanning equivalence ratios from 0.75 to 2.0, it was found that composition influenced the measured temperatures, resulting in an accuracy of +/-100 K over this range of flame conditions. Dilution of the flame with N(2) rather than Ar resulted in measured temperatures that were substantially higher than the calculated adiabatic flame temperature, indicating that, in this case, a partial Boltzmann equilibrium is not established among the collisionally populated levels of Ga used for the measurement. These results indicate that THAF with gallium as the thermometric species is limited to cases in which an inefficient quencher, such as a rare gas, is the primary diluent. PMID:20700311

  14. Flame temperature and location measurements of sooting premixed Bunsen flames by rainbow schlieren deflectometry.

    PubMed

    Ibarreta, Alfonso F; Sung, Chih-Jen

    2005-06-10

    Rainbow schlieren deflectometry (RSD) provides a simple and nonintrusive way of determining the temperature field of axisymmetric flames. This technique is specially suited for the detection of large temperature gradients, such as those near the flame location. We explore the feasibility and accuracy of using RSD to obtain the flame location and thermal structure of premixed Bunsen flames for varying fuel types, equivalence ratios, and soot loadings. Uncertainty analysis is also carried out to provide various ways to reduce RSD experimental error. The RSD technique is demonstrated to give useful data even for moderately and heavily sooting flames. PMID:16007857

  15. Microwave plasma burner and temperature measurements in its flames

    SciTech Connect

    Hong, Yong Cheol; Cho, Soon Cheon; Bang, Chan Uk; Shin, Dong Hun; Kim, Jong Hun; Uhm, Han Sup; Yi, Won Ju

    2006-05-15

    An apparatus for generating flames and more particularly the microwave plasma burner for generating high-temperature large-volume plasma flame was presented. The plasma burner is operated by injecting liquid hydrocarbon fuels into a microwave plasma torch in air discharge and by mixing the resultant gaseous hydrogen and carbon compounds with air or oxygen gas. The microwave plasma torch can instantaneously vaporize and decompose the hydrogen and carbon containing fuels. It was observed that the flame volume of the burner was more than 50 times that of the torch plasma. While the temperature of the torch plasma flame was only 550 K at a measurement point, that of the plasma-burner flame with the addition of 0.025 lpm (liters per minute) kerosene and 20 lpm oxygen drastically increased to about 1850 K. A preliminary experiment was carried out, measuring the temperature profiles of flames along the radial and axial directions.

  16. Calculated flame temperature (CFT) modeling of fuel mixture lower flammability limits.

    PubMed

    Zhao, Fuman; Rogers, William J; Mannan, M Sam

    2010-02-15

    Heat loss can affect experimental flammability limits, and it becomes indispensable to quantify flammability limits when apparatus quenching effect becomes significant. In this research, the lower flammability limits of binary hydrocarbon mixtures are predicted using calculated flame temperature (CFT) modeling, which is based on the principle of energy conservation. Specifically, the hydrocarbon mixture lower flammability limit is quantitatively correlated to its final flame temperature at non-adiabatic conditions. The modeling predictions are compared with experimental observations to verify the validity of CFT modeling, and the minor deviations between them indicated that CFT modeling can represent experimental measurements very well. Moreover, the CFT modeling results and Le Chatelier's Law predictions are also compared, and the agreement between them indicates that CFT modeling provides a theoretical justification for the Le Chatelier's Law. PMID:19819067

  17. Buoyancy effects on the temperature field in downward spreading flames

    NASA Technical Reports Server (NTRS)

    Altenkirch, R. A.; Winchester, D. C.; Eichhorn, R.

    1982-01-01

    It is shown that flames which spread vertically down thermally thin fuels at the same Damkoehler number, and therefore have the same dimensionless spread rate, also have the same dimensionless temperature fields irrespective of differences in physical size. The Frey and Tien (1976) effects of pressure on flame size are due to the effects of pressure on the character of the induced buoyant flow.

  18. Studies of Temperature Elevation Due to the Pre-flame Reaction in a Spark-ignition Engine with CARS Temperature Measurements Using Fuels of Various Octane Numbers

    NASA Astrophysics Data System (ADS)

    Choi, Inyong; Chun, Kwang Min; Hahn, Jae Won; Park, Chul-Woung

    The unburned end-gas temperatures in a combustion chamber of a conventional 4-cylinder DOHC spark-ignition engine were measured using the broadband CARS temperature measurement technique. The test engine was fueled with primary reference fuel 80 and gasoline with research octane numbers of 70.9, 83.4, 91.5 and 100.4. The measured CARS temperatures were compared with the adiabatic core temperatures calculated from the measured pressures. Significant heating by pre-flame reaction in the end gas zone was observed in the late part of compression stroke under both knocking and non-knocking conditions. The measured CARS temperatures when the cylinder pressures were above 1400kPa were higher than the calculated adiabatic core temperatures. These results indicate that some exothermic reactions exist in relatively low pressure and temperature regions. The CARS temperatures began to be higher than the adiabatic core temperature when the end-gas temperatures reached 700K. The temperature elevation due to the pre-flame reaction correlated well with the unburned gas CARS temperature for different research octane number fuels tested.

  19. Hybrid fs/ps rotational CARS temperature and oxygen measurements in the product gases of canonical flat flames

    DOE PAGESBeta

    Kearney, Sean Patrick

    2014-12-31

    A hybrid fs/ps pure-rotational coherent anti-Stokes Raman scattering (CARS) scheme is systematically evaluated over a wide range of flame conditions in the product gases of two canonical flat-flame burners. Near-transform-limited, broadband femtosecond pump and Stokes pulses impulsively prepare a rotational Raman coherence, which is later probed using a high-energy, frequency-narrow picosecond beam generated by the second-harmonic bandwidth compression scheme that has recently been demonstrated for rotational CARS generation in H2/air flat flames. The measured spectra are free of collision effects and nonresonant background and can be obtained on a single-shot basis at 1 kHz. The technique is evaluated for temperature/oxygenmore » measurements in near-adiabatic H2/air flames stabilized on the Hencken burner for equivalence ratios of φ = 0.20–1.20. Thermometry is demonstrated in hydrocarbon/air products for φ = 0.75–3.14 in premixed C2H4/air flat flames on the McKenna burner. Reliable spectral fitting is demonstrated for both shot-averaged and single-laser-shot data using a simple phenomenological model. Measurement accuracy is benchmarked by comparison to adiabatic-equilibrium calculations for the H2/air flames, and by comparison with nanosecond CARS measurements for the C2H4/air flames. Quantitative accuracy comparable to nanosecond rotational CARS measurements is observed, while the observed precision in both the temperature and oxygen data is extraordinarily high, exceeding nanosecond CARS, and on par with the best published thermometric precision by femtosecond vibrational CARS in flames, and rotational femtosecond CARS at low temperature. Threshold levels of signal-to-noise ratio to achieve 1–2% precision in temperature and O2/N2 ratio are identified. Our results show that pure-rotational fs/ps CARS is a robust and quantitative tool when applied across a wide range of flame conditions spanning lean H2/air combustion to fuel-rich sooting hydrocarbon

  20. Hybrid fs/ps rotational CARS temperature and oxygen measurements in the product gases of canonical flat flames

    SciTech Connect

    Kearney, Sean Patrick

    2014-12-31

    A hybrid fs/ps pure-rotational coherent anti-Stokes Raman scattering (CARS) scheme is systematically evaluated over a wide range of flame conditions in the product gases of two canonical flat-flame burners. Near-transform-limited, broadband femtosecond pump and Stokes pulses impulsively prepare a rotational Raman coherence, which is later probed using a high-energy, frequency-narrow picosecond beam generated by the second-harmonic bandwidth compression scheme that has recently been demonstrated for rotational CARS generation in H2/air flat flames. The measured spectra are free of collision effects and nonresonant background and can be obtained on a single-shot basis at 1 kHz. The technique is evaluated for temperature/oxygen measurements in near-adiabatic H2/air flames stabilized on the Hencken burner for equivalence ratios of φ = 0.20–1.20. Thermometry is demonstrated in hydrocarbon/air products for φ = 0.75–3.14 in premixed C2H4/air flat flames on the McKenna burner. Reliable spectral fitting is demonstrated for both shot-averaged and single-laser-shot data using a simple phenomenological model. Measurement accuracy is benchmarked by comparison to adiabatic-equilibrium calculations for the H2/air flames, and by comparison with nanosecond CARS measurements for the C2H4/air flames. Quantitative accuracy comparable to nanosecond rotational CARS measurements is observed, while the observed precision in both the temperature and oxygen data is extraordinarily high, exceeding nanosecond CARS, and on par with the best published thermometric precision by femtosecond vibrational CARS in flames, and rotational femtosecond CARS at low temperature. Threshold levels of signal-to-noise ratio to achieve 1–2% precision in temperature and O2/N2 ratio are identified. Our results show that pure-rotational fs/ps CARS is a robust and quantitative tool when applied across a wide

  1. Thin-Filament Pyrometry Developed for Measuring Temperatures in Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, Peter B.

    2004-01-01

    Many valuable advances in combustion science have come from observations of microgravity flames. This research is contributing to the improved efficiency and reduced emissions of practical combustors and is benefiting terrestrial and spacecraft fire safety. Unfortunately, difficulties associated with microgravity have prevented many types of measurements in microgravity flames. In particular, temperature measurements in flames are extremely important but have been limited in microgravity. A novel method of measuring temperatures in microgravity flames is being developed in-house at the National Center for Microgravity Research and the NASA Glenn Research Center and is described here. Called thin-filament pyrometry, it involves using a camera to determine the local gas temperature from the intensity of inserted fibers glowing in a flame. It is demonstrated here to provide accurate measurements of gas temperatures in a flame simultaneously at many locations. The experiment is shown. The flame is a laminar gas jet diffusion flame fueled by methane (CH4) flowing from a 14-mm round burner at a pressure of 1 atm. A coflowing stream of air is used to prevent flame flicker. Nine glowing fibers are visible. These fibers are made of silicon carbide (SiC) and have a diameter of 15 m (for comparison, the average human hair is 75 m in diameter). Because the fibers are so thin, they do little to disturb the flame and their temperature remains close to that of the local gas. The flame and glowing filaments were imaged with a digital black-and-white video camera. This camera has an imaging area of 1000 by 1000 pixels and a wide dynamic range of 12 bits. The resolution of the camera and optics was 0.1 mm. Optical filters were placed in front of the camera to limit incoming light to 750, 850, 950, and 1050 nm. Temperatures were measured in the same flame in the absence of fibers using 50-m Btype thermocouples. These thermocouples provide very accurate temperatures, but they

  2. Digital holographic interferometry for measurement of temperature in axisymmetric flames.

    PubMed

    Sharma, Shobhna; Sheoran, Gyanendra; Shakher, Chandra

    2012-06-01

    In this paper, experimental investigations and analysis is presented to measure the temperature and temperature profile of gaseous flames using lensless Fourier transform digital holographic interferometry. The evaluations of the experimental results give the accuracy, sensitivity, spatial resolution, and range of measurements to be well within the experimental limits. Details of the experimental results and analysis are presented. PMID:22695554

  3. Problems encountered in fluctuating flame temperature measurements by thermocouple.

    SciTech Connect

    Donaldson, A. Burl; Lucero, Ralph E.; Gill, Walter; Yilmaz, Nadir

    2008-11-01

    Some thermocouple experiments were carried out in order to obtain sensitivity of thermocouple readings to fluctuations in flames and to determine if the average thermocouple reading was representative of the local volume temperature for fluctuating flames. The thermocouples considered were an exposed junction thermocouple and a fully sheathed thermocouple with comparable time constants. Either the voltage signal or indicated temperature for each test was recorded at sampling rates between 300-4,096 Hz. The trace was then plotted with respect to time or sample number so that time variation in voltage or temperature could be visualized and the average indicated temperature could be determined. For experiments where high sampling rates were used, the signal was analyzed using Fast Fourier Transforms (FFT) to determine the frequencies present in the thermocouple signal. This provided a basic observable as to whether or not the probe was able to follow flame oscillations. To enhance oscillations, for some experiments, the flame was forced. An analysis based on thermocouple time constant, coupled with the transfer function for a sinusoidal input was tested against the experimental results.

  4. Problems Encountered in Fluctuating Flame Temperature Measurements by Thermocouple

    PubMed Central

    Yilmaz, Nadir; Gill, Walt; Donaldson, A. Burl; Lucero, Ralph E.

    2008-01-01

    Some thermocouple experiments were carried out in order to obtain sensitivity of thermocouple readings to fluctuations in flames and to determine if the average thermocouple reading was representative of the local volume temperature for fluctuating flames. The thermocouples considered were an exposed junction thermocouple and a fully sheathed thermocouple with comparable time constants. Either the voltage signal or indicated temperature for each test was recorded at sampling rates between 300-4,096 Hz. The trace was then plotted with respect to time or sample number so that time variation in voltage or temperature could be visualized and the average indicated temperature could be determined. For experiments where high sampling rates were used, the signal was analyzed using Fast Fourier Transforms (FFT) to determine the frequencies present in the thermocouple signal. This provided a basic observable as to whether or not the probe was able to follow flame oscillations. To enhance oscillations, for some experiments, the flame was forced. An analysis based on thermocouple time constant, coupled with the transfer function for a sinusoidal input was tested against the experimental results.

  5. Simultaneous NO and temperature imaging measurements in turbulent nonpremixed flames

    SciTech Connect

    Namazian, M.; Kelly, J.; Schefer, R.

    1994-12-31

    A quantitative laser-induced fluorescence imaging technique was developed with sufficient sensitivity to detect low NO concentration levels present in turbulent flames. For this linear fluorescence technique, quenching and population corrections are necessary for quantitative NO imaging. A correction procedure was developed that utilizes temperature measurements and flamelet or distributed reaction model results. The model results showed that the quenching correction can be related to temperature. Simultaneously with NO imaging, Rayleigh scattering imaging was used to determine the temperature. The measured temperature was combined with model results to estimate the quenching and population corrections for the NO signal. Analysis showed that this data reduction methodology has less than 10% error and the total error is within 25%. The imaging setup uses a multipass cell, to create a thin sheet of laser light, and a 0.8/f collection optics for the NO signal. The in-flame detectability of the imaging system is 1 ppm. To validate the technique, NO was measured and compared at two different rotational levels. Imaging results were also compared with NO{sub x} probe and thermocouple temperature measurements. The results of different measurement methods compared well, thus confirming the validity of the technique. The technique was applied to the flame initiation zone of lifted turbulent non-premixed-methane flames. NO was found to correspond closely to the temperature field. As the turbulence altered the structure of the temperature field, NO was similarly altered. Distributed reaction model results were favorably compared to the imaging data. This further supports the validity of both experimental and model results.

  6. Temperature response of turbulent premixed flames to inlet velocity oscillations

    NASA Astrophysics Data System (ADS)

    Ayoola, B.; Hartung, G.; Armitage, C. A.; Hult, J.; Cant, R. S.; Kaminski, C. F.

    2009-01-01

    Flame-turbulence interactions are at the heart of modern combustion research as they have a major influence on efficiency, stability of operation and pollutant emissions. The problem remains a formidable challenge, and predictive modelling and the implementation of active control measures both rely on further fundamental measurements. Model burners with simple geometry offer an opportunity for the isolation and detailed study of phenomena that take place in real-world combustors, in an environment conducive to the application of advanced laser diagnostic tools. Lean premixed combustion conditions are currently of greatest interest since these are able to provide low NO x and improved increased fuel economy, which in turn leads to lower CO2 emissions. This paper presents an experimental investigation of the response of a bluff-body-stabilised flame to periodic inlet fluctuations under lean premixed turbulent conditions. Inlet velocity fluctuations were imposed acoustically using loudspeakers. Spatially resolved heat release rate imaging measurements, using simultaneous planar laser-induced fluorescence (PLIF) of OH and CH2O, have been performed to explore the periodic heat release rate response to various acoustic forcing amplitudes and frequencies. For the first time we use this method to evaluate flame transfer functions and we compare these results with chemiluminescence measurements. Qualitative thermometry based on two-line OH PLIF was also used to compare the periodic temperature distribution around the flame with the periodic fluctuation of local heat release rate during acoustic forcing cycles.

  7. FLame

    1995-03-03

    FLAME is data processing software explicitly written to support the ACAP software of DSP Technologies, Inc., of Fremont, CA. ACAP acquires and processes in-cylinder pressure data for reciprocating engines. However, it also has the capability to acquire data for two Sandia-developed technologies, ionization-probe instrumented head gaskets and fiber-optic instrumented spark plugs. FLAME post processes measurements of flame arrival from data files aquired with ACAP. Flame arrival time is determined from analog ionization-probe or visible-emission signals.more » The resulting data files are integrated with the standard ACAP files, providing a common data base for engine development.« less

  8. A Computational Investigation of Sooting Limits of Spherical Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lecoustre, V. R.; Chao, B. H.; Sunderland, P. B.; Urban, D. L.; Stocker, D. P.; Axelbaum, R. L.

    2007-01-01

    Limiting conditions for soot particle inception in spherical diffusion flames were investigated numerically. The flames were modeled using a one-dimensional, time accurate diffusion flame code with detailed chemistry and transport and an optically thick radiation model. Seventeen normal and inverse flames were considered, covering a wide range of stoichiometric mixture fraction, adiabatic flame temperature, and residence time. These flames were previously observed to reach their sooting limits after 2 s of microgravity. Sooting-limit diffusion flames with residence times longer than 200 ms were found to have temperatures near 1190 K where C/O = 0.6, whereas flames with shorter residence times required increased temperatures. Acetylene was found to be a reasonable surrogate for soot precursor species in these flames, having peak mole fractions of about 0.01.

  9. 3-D flame temperature field reconstruction with multiobjective neural network

    NASA Astrophysics Data System (ADS)

    Wan, Xiong; Gao, Yiqing; Wang, Yuanmei

    2003-02-01

    A novel 3-D temperature field reconstruction method is proposed in this paper, which is based on multiwavelength thermometry and Hopfield neural network computed tomography. A mathematical model of multi-wavelength thermometry is founded, and a neural network algorithm based on multiobjective optimization is developed. Through computer simulation and comparison with the algebraic reconstruction technique (ART) and the filter back-projection algorithm (FBP), the reconstruction result of the new method is discussed in detail. The study shows that the new method always gives the best reconstruction results. At last, temperature distribution of a section of four peaks candle flame is reconstructed with this novel method.

  10. Beneficial Role of the Industrial Wastes to Combat Adiabatic Temperature Rise in Massive Concrete

    NASA Astrophysics Data System (ADS)

    Ashraf, M.; Goyal, A.; Anwar, A. M.; Hattori, K.; Ogata, H.; Guo, S.

    An evaluation was made on the mutual beneficial role of fly ash and ground granulated blast furnace slag in combating adiabatic temperature rise. The experimental program was designed in two stages; the main experiment consisted of two massive concrete specimens with dimensions (50x50x50) cm. In first stage of experiment, an adiabatic rise in temperature of specimens was measured. In second stage, the mechanical properties of massive concrete specimens were measured at the ages of 8, 14, 28, 56 and 91 days. At the age of 91 days, surface core and central cores were extracted from the surface and the central part of massive concrete specimens to determine compressive strength and dynamic modulus of elasticity. In the massive concrete specimen without any additive, the peak temperature noted was 64.5°C at 7th h after casting. While in mineral substituted concrete the maximum adiabatic temperature was 49.6°C at 19th h after casting. Lower rate of temperature rise in mineral substituted concrete has resulted in higher value of ultrasonic pulse velocity and ultimate compressive strength of concrete.

  11. Important temperatures associated with flames, their prediction and significance. (1) The ``instantaneous, spontaneous, ignition temperature''

    SciTech Connect

    Kretschmer, D.; Odgers, J.

    1998-07-01

    Two methods of calculating the instantaneous, spontaneous ignition temperature are suggested. Method 1 is based upon the prediction of the weak limits of any gaseous mixture and then calculating the corresponding temperature. Method 2 is a new equation related directly to experimental values of Ti. To obtain these techniques 409 data points have been examined representing the following--hydrogen, carbon monoxide, a range of alkanes, several other hydrocarbon fuels, a number of CHO fuels and a number of commercial fuel gases. Dilution effects due to added nitrogen, water, carbon dioxide, helium and argon have been included as well as changes of inlet temperatures from 298 to 600 K. These notes indicate that a satisfactory prediction of Ti offers the possibility of relating a number of flame parameters. These include the prediction of laminar flame temperature distribution and flame velocity, the prediction of spontaneous ignition delays, and the extension of knowledge of, as well as the prediction of, Well Stirred Reactor performance.

  12. Characteristics of Gaseous Diffusion Flames with High Temperature Combustion Air in Microgravity

    NASA Technical Reports Server (NTRS)

    Ghaderi, M.; Gupta, A. K.

    2003-01-01

    The characteristics of gaseous diffusion flames have been obtained using high temperature combustion air under microgravity conditions. The time resolved flame images under free fall microgravity conditions were obtained from the video images obtained. The tests results reported here were conducted using propane as the fuel and about 1000 C combustion air. The burner included a 0.686 mm diameter central fuel jet injected into the surrounding high temperature combustion air. The fuel jet exit Reynolds number was 63. Several measurements were taken at different air preheats and fuel jet exit Reynolds number. The resulting hybrid color flame was found to be blue at the base of the flame followed by a yellow color flame. The length and width of flame during the entire free fall conditions has been examined. Also the relative flame length and width for blue and yellow portion of the flame has been examined under microgravity conditions. The results show that the flame length decreases and width increases with high air preheats in microgravity condition. In microgravity conditions the flame length is larger with normal temperature combustion air than high temperature air.

  13. Large-Strain Time-Temperature Equivalence and Adiabatic Heating of Polyethylene

    SciTech Connect

    Furmanski, Jevan; Brown, Eric; Cady, Carl M.

    2012-06-06

    Time-temperature equivalence is a well-known phenomenon in time-dependent material response, where rapid events at a moderate temperature are indistinguishable from some occurring at modest rates but elevated temperatures. However, there is as-yet little elucidation of how well this equivalence holds for substantial plastic strains. In this work, we demonstrate time-temperature equivalence over a large range in a previously studied high-density polyethylene formulation (HDPE). At strain-rates exceeding 0.1/s, adiabatic heating confounds the comparison of nominally isothermal material response, apparently violating time-temperature equivalence. Strain-rate jumps can be employed to access the instantaneous true strain rate without heating. Adiabatic heating effects were isolated by comparing a locus of isothermal instantaneous flow stress measurements from strain-rate jumps up to 1/s with the predicted equivalent states at 0.01/s and 0.001/s in compression. Excellent agreement between the isothermal jump condition locus and the quasi-static tests was observed up to 50% strain, yielding one effective isothermal plastic response for each material for a given time-temperature equivalent state. These results imply that time-temperature equivalence can be effectively used to predict the deformation response of polymers during extreme mechanical events (large strain and high strain-rate) from measurements taken at reduced temperatures and nominal strain-rates in the laboratory.

  14. Effects of TiO₂ and curing temperatures on flame retardant finishing of cotton.

    PubMed

    Poon, Chin-Kuen; Kan, Chi-Wai

    2015-05-01

    The performance of flame retardancy of cotton cellulose can be influenced by curing conditions. In this study, cotton cellulose was imparted durable flame retardant properties by a reaction between a flame retardant agent (Pyrovatex CP New) and a cross linking agent (Knittex CHN), in the presence of catalysts phosphoric acid and titanium dioxide (TiO2). After treating cotton fabrics at different curing temperatures for different curing time, its flame retardant performance was evaluated by 45° fabric flammability standard test method. For cotton fabrics cured at 150 and 170°C, good flame retardant characteristics were retained even after three home laundering cycles. The use of TiO2 as a co-catalyst in the treatment improved the flame retardant properties and reduced the loss of tearing strength of cotton fabrics. No significant negative effect in the whiteness index was observed, as compared with conventional flame retardant treatment. PMID:25659721

  15. [Study on flame temperature measurement of pyrotechnics using multi-spectral thermometer].

    PubMed

    Li, Zhan-ying; Xi, Lan-xia; Chen, Jun; Guo, Chong-xing; Liu, Chun-jian; Liu, Huan-yang

    2010-08-01

    The radiation spectrum of pyrotechnics' burning flame was analyzed using transient spectrum radiometer. The working principle of multi-spectral thermometry was described. Combined with the radiation spectrum of pyrotechnics' burning flame, the multi-spectral thermometer system was designed which had twelve working channels. The tester can choose the right working channels to calculate according to the radiation spectrum of the flame to be tested. The system is composed by optics part, electronic part, data acquisition part and data processing part. In this paper, the emissive power of black powder's flame has been tested using the multi-spectral thermometer system. The burning flame temperature-time curve was showed after iteration calculation Experiments indicate that the multi-spectral thermometer system can be well used to measure the flame temperature of pyrotechnics based on analyzing the emissive power when choosing the right working channels. This method lays a foundation for the research of combustion output characteristics of pyrotechnics. PMID:20939307

  16. Temperature and velocity measurements in premixed turbulent flames

    NASA Technical Reports Server (NTRS)

    Dandekar, K. V.; Gouldin, F. C.

    1981-01-01

    Turbulent flame speed data for premixed flames of methane-air, propane-air and ethylene-air mixtures stabilized in grid turbulence are reported and discussed. It is shown that turbulence effects on flame speed cannot be fully correlated by the turbulence length scale and r.m.s. velocity in the cold flow. Rather there appear to be significant flame-flow-turbulence interactions affecting both turbulence level in the reaction zone and measured flame speeds. Results of detailed velocity measurements, including autocorrelations, by laser velocimetry are used to elucidate the nature of these interactions. It is concluded that flame speed experiments must be designed and conducted to provide sufficient information (e.g., boundary conditions) to allow for reconstruction of the flow field and these interactions by modelers if the data are to be of value in turbulent combustion model development and evaluation.

  17. Melting temperature, adiabats, and Grueneisen parameter of lithium, sodium, and potassium versus pressure

    SciTech Connect

    Boehler, R.

    1983-05-01

    The pressure dependence of the melting temperatures of Li, Na, and K were measured to 32 kbar with accuracies in pressure and temperature of +- 0.4 percent and +- 0.25/sup 0/C, respectively. The measurements were made in a piston cylinder apparatus with a fluid pressure medium. The adiabatic pressure derivatives of temperature, (par. delta T/par. delta P)/sub s/, were measured to 32 kbar and 400/sup 0/C by a pressure pulse method. The logarithm of (par. delta T/par. delta P)/sub s/ decreases linearly with volume. The changes of (par. delta T/par. delta P)/sub s/ at the liquid-solid transitions fall within the data scatter. The Grueneisen parameter was calculated from ..gamma.. = B/sub s//T (par. delta T/par. delta P)/sub s/, where B/sub s/ is the adiabatic bulk modulus. For all three alkali metals, ..gamma.. decreases with compression in both the solid and the liquid states, and at constant volume, ..gamma.. decreases with temperature.

  18. The effect of temperature on soot properties in premixed methane flames

    SciTech Connect

    Alfe, M.; Apicella, B.; Tregrossi, A.; Ciajolo, A.; Rouzaud, J.-N.

    2010-10-15

    The effect of flame temperature on soot properties was studied in premixed methane/oxygen flames burning at a constant mixture composition (C/O = 0.60, {phi} = 2.4) and different cold-gas flow velocities (4 and 5 cm s{sup -1}). Temperature and concentration profiles of stable gases and condensed phases combustion products were measured along the flame axis. It was found that the high flame temperature conditions cause a larger decomposition of methane into hydrogen and C{sub 2}-C{sub 4} hydrocarbons, thereby reducing the formation of benzene and condensed phases including condensed species and soot. Soot properties were studied by UV-Visible absorption spectroscopy, thermogravimetry and H/C elemental analysis. A description of soot nanostructural organization was also performed by means of high-resolution transmission electron microscopy. Different properties and nanostructures were found to develop in the soot, depending on the temperature and on soot aging associated. Soot dehydrogenation occurred to a larger extent in the high flame temperature conditions. As soot dehydrogenates the mass absorption coefficients of soot exhibited an increasing trend along the flame axis. However, mature soot retained a relatively high H/C ratio and low absorption coefficients with respect to other less hydrogenated fuels even in high temperature conditions. This indicates that the aromatization/dehydrogenation of soot in premixed flames is more dependent on the fuel characteristics rather than on the flame temperature. Generally, it was assessed that mature soot produced from diverse hydrocarbon fuels with similar flame temperatures and flame types possess a different chemical composition and structure. To this regard the H/C atomic ratio and mass absorption coefficients appeared to be signatures of soot properties and structural evolution. (author)

  19. Measurement of temperature distributions in a methane-air flame by moire deflectometry

    SciTech Connect

    Bar-Ziv, E.; Sgulim, S.; Kafri, O.; Keren, E.

    1982-01-01

    The temperature mapping of an axially symmetric premixed methane-air flame was determined by moire deflectometry. From the analysis of the moire data detailed information on the temperature distribution is obtained. The radial profile of the temperature shows a minimum at the center of the flame which gradually disappears when proceeding downstream, as expected. The main advantage of moire deflectometry over other techniques is that the temperature distribution of the entire flame is obtained with no need for a three dimensional scanning. We have shown that the technique provides valuable and detailed information which could lead to a better understanding of combustion mechanisms. The limitations of the method are discussed.

  20. Large adiabatic temperature and magnetic entropy changes in EuTi O3

    NASA Astrophysics Data System (ADS)

    Midya, A.; Mandal, P.; Rubi, Km.; Chen, Ruofan; Wang, Jiang-Sheng; Mahendiran, R.; Lorusso, G.; Evangelisti, M.

    2016-03-01

    We have investigated the magnetocaloric effect in single and polycrystalline samples of quantum paraelectric EuTi O3 by magnetization and heat capacity measurements. Single crystalline EuTi O3 shows antiferromagnetic ordering due to E u2 + magnetic moments below TN=5.6 K . This compound shows a giant magnetocaloric effect around its Néel temperature. The isothermal magnetic entropy change is 49 J kg-1K-1 , the adiabatic temperature change is 21 K, and the refrigeration capacity is 500 J kg-1 for a field change of 7 T at TN. The single crystal and polycrystalline samples show similar values of the magnetic entropy and adiabatic temperature changes. The large magnetocaloric effect is due to suppression of the spin entropy associated with the localized 4 f moment of E u2 + ions. The giant magnetocaloric effect, together with negligible hysteresis, suggest that EuTi O3 could be a potential material for magnetic refrigeration below 40 K.

  1. Temperature and species-concentration measurements in turbulent flames by the CARS technique

    SciTech Connect

    Goss, L.P.; Schreiber, P.W.; Switzer, G.L.; Trump, D.D.

    1983-09-01

    Simultaneous temperature and N/sub 2/-concentration data have been obtained employing a 10-Hz coherent anti-stokes Raman spectroscopy system on two propane-air turbulent-jet diffusion flames with Reynolds numbers of 2000 and 6000. Average values, probability density functions, and correlation plots show reasonable trends for both centerline and radial profiles of the turbulent flames.

  2. Effect of the flame temperature on the characteristics of zirconium oxide fine particle synthesized by flame assisted spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Widiyastuti, W.; Machmudah, Siti; Nurtono, Tantular; Winardi, Sugeng

    2013-09-01

    Zirconium oxide fine particles were synthesized by flame assisted spray pyrolysis using zirconium chloride solution as precursor. Propane gas and air were used as a fuel and an oxidizer, respectively. The ratio of flow rate of oxidizer and fuel was maintained constant at 10:1 to ensure a complete combustion. Increasing fuel flow rate led to the increase of temperature distribution in the flame reactor. The intensity of XRD patterns increased with temperature and precursor concentration. Phase composition of zirconium oxide produced by this process consisted of monoclinic and tetragonal phases. The volume fraction of monoclinic phase of zirconium oxide increased with temperature and precursor concentration. The morphology particles observed by SEM resulted in spherical particles with size in the submicron range depending on the precursor concentration.

  3. Instantaneous temperature imaging of diffusion flames using two-line atomic fluorescence.

    PubMed

    Medwell, Paul R; Chan, Qing N; Kalt, Peter A M; Alwahabi, Zeyad T; Dally, Bassam B; Nathan, Graham J

    2010-02-01

    This work investigates the first demonstration of nonlinear regime two-line atomic fluorescence (NTLAF) thermometry in laminar non-premixed flames. The results show the expediency of the technique in the study of the reaction zone and reveals interesting findings about the indium atomization process. Indium fluorescence is observed to be strongest at the flame-front, where the temperature exceeds 1000 K. The uncertainty in the deduced temperature measurement is approximately 6%. The temperature profile across the reaction zone shows good agreement with laminar flame calculations. The advantages and inherent limitations of the technique are discussed. PMID:20149278

  4. Reconstruction of soot temperature and volume fraction profiles of an asymmetric flame using stereoscopic tomography

    SciTech Connect

    Huang, Qun-xing; Wang, Fei; Liu, Dong; Ma, Zeng-yi; Yan, Jian-hua; Chi, Yong; Cen, Ke-fa

    2009-03-15

    The present study attempts to reconstruct soot temperature and volume fraction distributions for the asymmetric diffusive flame using a tomography technique. A high-resolution camera equipped with a stereo adapter was employed to capture stereoscopic flame images, which were used to obtain monochromatic line-of-sight flame emission projections within the visible range. A matrix-decomposition-based least squares algorithm was introduced to reconstruct the emission intensity distributions in the flame sections. The retrieved intensities were used to infer local soot temperature and volume fraction. Numerical assessments show that for soot volume fraction measurement, the system signal-to-noise ratio should be larger than 62.5 dB. The proposed tomography system was found to be capable of symmetric and asymmetric flame measurements. (author)

  5. Dynamics of premixed flames in a narrow channel with a step-wise wall temperature

    SciTech Connect

    Kurdyumov, Vadim N.; Pizza, Gianmarco; Frouzakis, Christos E.; Mantzaras, John

    2009-11-15

    The effect of channel height, inflow velocity and wall temperature on the dynamics and stability of unity Lewis number premixed flames in channels with specified wall temperature is investigated with steady and transient numerical simulations using a two-dimensional thermo-diffusive model. The simplified model is capable of capturing many of the transitions and the combustion modes observed experimentally and in direct numerical simulations in micro- and meso-scale channels, and indicates that the thermal flame/wall interaction is the mechanism leading to the observed flame instabilities. Finally, an ad-hoc one-dimensional model based on the flame-sheet approximation is tested in its capacity to reproduce some of the flame dynamics of the two-dimensional thermo-diffusive model. (author)

  6. Temperature calibration of cryoscopic solutions used in the milk industry by adiabatic calorimetry

    NASA Astrophysics Data System (ADS)

    Méndez-Lango, E.; Lira-Cortes, L.; Quiñones-Ibarra, R.

    2013-09-01

    One method to detect extraneous water in milk is through cryoscopy. This method is used to measure the freezing point of milk. For calibration of a cryoscope there are is a set of standardized solution with known freezing points values. These values are related with the solute concentration, based in almost a century old data; it was no found recent results. It was found that reference solution are not certified in temperature: they do not have traceability to the temperature unit or standards. We prepared four solutions and measured them on a cryoscope and on an adiabatic calorimeter. It was found that results obtained with one technique dose not coincide with the other one.

  7. Effect of air preheat temperature and oxygen concentration on flame structure and emission

    SciTech Connect

    Bolz, S.; Gupta, A.K.

    1998-07-01

    The structure of turbulent diffusion flames with highly preheated combustion air (air preheat temperature in excess of 1,150 C) has been obtained using a specially designed regenerative combustion furnace. Propane gas was used as the fuel. Data have been obtained on the global flame features, spectral emission characteristics, spatial distribution of OH, CH and C{sub 2} species, and pollutants emission from the flames. The results have been obtained for various degrees of air preheat temperatures and O{sub 2} concentration in the air. The color of the flame was found to change from yellow to blue to bluish-green to green over the range of conditions examined. In some cases a hybrid color flame was also observed. The recorded images of the flame photographs were analyzed using color-analyzing software. The results show that thermal and chemical flame behavior strongly depends on the air preheat temperature and oxygen content in the air. The flame color was found to be bluish-green or green at very high air preheat temperatures and low-oxygen concentration. However, at high oxygen concentration the flame color was yellow. The flame volume was found to increase with increase in air-preheat temperature and decrease in oxygen concentration. The flame length showed a similar behavior. The concentrations of OH, CH and C{sub 2} increased with an increase in air preheat temperatures. These species exhibited a two-stage combustion behavior at low oxygen concentration and single stage combustion behavior at high oxygen concentration in the air. Stable flames were obtained for remarkably low equivalence ratios, which would not be possible with normal combustion air. Pollutants emission, including CO{sub 2} and NO{sub x} , was much lower with highly preheated combustion air at low O{sub 2} concentration than the normal air. The results also suggest uniform flow and flame thermal characteristics with conditioned highly preheated air. Highly preheated air combustion provides much

  8. The Effects of Flame Structure on Extinction of CH4-O2-N2 Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Du, J.; Axelbaum, R. L.; Gokoglu, S. (Technical Monitor)

    1996-01-01

    The effects of flame structure on the extinction limits of CH4-O2-N2 counterflow diffusion flames were investigated experimentally and numerically by varying the stoichiometric mixture fraction Z(sub st), Z(sub st) was varied by varying free-stream concentrations, while the adiabatic flame temperature T(sub ad) was held fixed by maintaining a fixed amount of nitrogen at the flame. Z(sub st) was varied between 0.055 (methane-air flame) and 0.78 (diluted- methane-oxygen flame). The experimental results yielded an extinction strain rate K(sub ext) of 375/s for the methane-air flame, increasing monotonically to 1042/s for the diluted-methane-oxygen flame. Numerical results with a 58-step Cl mechanism yielded 494/s and 1488/s, respectively. The increase in K(sub ext) with Z(sub st) for a fixed T(sub ad) is explained by the shift in the O2 profile toward the region of maximum temperature and the subsequent increase in rates for chain-branching reactions. The flame temperature at extinction reached a minimum at Z(sub st) = 0.65, where it was 200 C lower than that of the methane-air flame. This significant increase in resistance to extinction is seen to correspond to the condition in which the OH and O production zones are centered on the location of maximum temperature.

  9. Detection of temperature and equivalence ratio in turbulent premixed flames using chemiluminescence

    SciTech Connect

    Roby, R.J.; Reaney, J.E.; Johnsson, E.L.

    1998-07-01

    A non-intrusive, fast-response method for the determination of temperature and equivalence ratio has been developed for laminar and turbulent premixed methane/air flames. This method utilizes chemiluminescent flame emissions to make correlations with flame temperature and equivalence ratio. Emissions from two radical groups were used for the correlations: an OH system at 309 nm and a CH system at 431 nm. the experimental apparatus consisted of a laminar or turbulent premixed burner, an optical system (lenses, monochromator, and photomultiplier tube), and a data collection system (digital oscilloscope and computer). An optical system using fiber optics and band pass interference filters was also investigated. The spectra of laminar and turbulent, premixed methane flames of known stoichiometry were recorded and a high temperature Pt-Pt10%Rh thermocouple was used to establish flame temperature. The ratio of signal width to signal height of the OH spectra was used to correlate flame temperature. The ratio of OH to CH signal heights was used to correlate equivalence ratio. Similar correlations were found for both temperature and equivalence ratio when the turbulent and laminar correlations were compared. The effect of increasing turbulence was investigated and found to have little or not effect on the correlations over the Reynolds number range of 3,000 to 7,000.

  10. Soot surface temperature measurements in pure and diluted flames at atmospheric and elevated pressures

    SciTech Connect

    Berry Yelverton, T.L.; Roberts, W.L.

    2008-10-15

    Soot surface temperature was measured in laminar jet diffusion flames at atmospheric and elevated pressures. The soot surface temperature was measured in flames at one, two, four, and eight atmospheres with both pure and diluted (using helium, argon, nitrogen, or carbon dioxide individually) ethylene fuels with a calibrated two-color soot pyrometry technique. These two dimensional temperature profiles of the soot aid in the analysis and understanding of soot production, leading to possible methods for reducing soot emission. Each flame investigated was at its smoke point, i.e., at the fuel flow rate where the overall soot production and oxidation rates are equal. The smoke point was chosen because it was desirable to have similar soot loadings for each flame. A second set of measurements were also taken where the fuel flow rate was held constant to compare with earlier work. These measurements show that overall flame temperature decreases with increasing pressure, with increasing pressure the position of peak temperature shifts to the tip of the flame, and the temperatures measured were approximately 10% lower than those calculated assuming equilibrium and neglecting radiation. (author)

  11. Application of Shear Plate Interferometry to Jet Diffusion Flame Temperature Measurements

    NASA Technical Reports Server (NTRS)

    VanDerWege, Brad A.; OBrien, Chris J.; Hochgreb, Simone

    1997-01-01

    diagnostics of flames are, however, necessarily limited to detection of radiative emission in the visible range, and offer only qualitative information about the nature of the processes in the flame. In particular, the study sought to understand the structure of the inhibitor-perturbed flames with regard to temperature and species concentration in the outer region of the flame. Whereas thermocouple measurements can be used in ground based studies, their implementation in drop-tower rigs is limited. A possible approach to determine the temperature field around the flame is to use interferometric techniques. The implementation and testing of a shear-plate interferometry technique is described below.

  12. Experimental investigation of the effect of magnetic field on temperature and temperature profile of diffusion flame using circular grating Talbot interferometer

    NASA Astrophysics Data System (ADS)

    Agarwal, Shilpi; Kumar, Manoj; Shakher, Chandra

    2015-05-01

    The effect of magnetic field on temperature and temperature profile of diffusion flame is investigated by using circular grating Talbot interferometer. Talbot interferometric fringes are recorded for diffusion flame generated by butane torch burner, in the absence of magnetic field, in the presence of uniform magnetic field, upward-decreasing and upward-increasing magnetic field. Analysis of recorded interferogram reveals that the temperature of the flame is increased under the influence of the upward-decreasing magnetic field and flame temperature is decreased under the influence of upward-increasing magnetic field. Uniform magnetic field has a negligible effect on temperature of the flame.

  13. Regime diagrams and characteristics of flame patterns in radial microchannels with temperature gradients

    SciTech Connect

    Fan, Aiwu; Minaev, Sergey; Kumar, Sudarshan; Liu, Wei; Maruta, Kaoru

    2008-05-15

    Comprehensive regime diagrams of flame pattern formation in radial microchannels with temperature gradients were drawn based on experimental findings. A premixed methane-air mixture was introduced at the center of microchannels formed by two parallel circular quartz plates that were heated with an external porous burner to create a positive temperature gradient condition in the direction of flow. Combustion behavior in those microchannels at channel widths of 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 mm were experimentally investigated. Regime diagrams of various stable and unstable flame patterns were obtained, confirming that the flame pattern is a strong function of mixture equivalence ratio, inlet mixture velocity, and channel width. Furthermore, some combustion characteristics, such as the rotating frequency of the single pelton-like flame and the triple flame, the radius of the stable circular flame front, and comparison between the major combustion products of the single and double pelton-like flames, were also investigated. (author)

  14. Temperature measurement of axisymmetric flames under the influence of magnetic field using Talbot interferometry

    SciTech Connect

    Agarwal, Shilpi E-mail: manojklakra@gmail.com Kumar, Manoj E-mail: manojklakra@gmail.com Shakher, Chandra E-mail: manojklakra@gmail.com

    2014-10-15

    Combustion process control is related with ecological improvement and the problem of energy efficiency; hence it has a wide interest at both economical and scientific levels. Application of a magnetic field is one of the most promising methods of combustion control. The presence of magnetic field induces the changes in flame behavior. The effect of uniform magnetic field developed by permanent magnet is studied by Talbot interferometry using circular gratings. Experimental results show a small decrease in flame temperature and increase in flame dimensions.

  15. Measurement of temperature and temperature distribution in gaseous flames by digital speckle pattern shearing interferometry using holographic optical element

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Shakher, Chandra

    2015-10-01

    Digital speckle pattern lateral shear interferometry (DSPSI) based on volume phase holographic grating for the measurement of temperature and temperature distribution in candle flames is presented. The DSPSI setup uses the volume phase holographic grating combined with ground glass to shear the wavefronts. The shear of the two wavefronts is controlled by the distance between volume phase holographic grating and the ground glass. The sheared wavefronts on the ground glass are imaged onto the CMOS detector by an imaging lens. Two specklegrams are recorded corresponding to the absence of the flame and the presence of the flame. The fringe pattern is observed by subtracting these two specklegrams. A single fringe pattern was used to extract phase by the application of Riesz transform and the monogenic signal. The measured values of the temperature of the candle flame by DSPSI is compared with that of R-type Platinum-Platinum Rhodium thermocouple and the results are well within experimental limits.

  16. Measurement of temperature distributions in large pool fires with the use of directional flame thermometers

    SciTech Connect

    KOSKI,JORMAN A.

    2000-05-09

    Temperatures inside the flame zone of large regulatory pool fires measured during tests of radioactive materials packages vary widely with both time and position. Measurements made with several Directional Flame Thermometers, in which a thermocouple is attached to a thin metal sheet that quickly approaches flame temperatures, have been used to construct fire temperature distributions and cumulative probability distributions. As an aid to computer simulations of these large fires, these distributions are presented. The distributions are constructed by sorting fire temperature data into bins 10 C wide. A typical fire temperature distribution curve has a gradual increase starting at about 600 C, with the number of observations increasing to a peak near 1000 C, followed by an abrupt decrease in frequency, with no temperatures observed above 1200 C.

  17. Temperature measurements in an axisymmetric methane-air flame using Talbot images

    NASA Astrophysics Data System (ADS)

    Khramtsov, P. P.; Penyazkov, O. G.; Shatan, I. N.

    2015-02-01

    The paper discusses the principles of optical testing of transparent objects using the Talbot images method and its applicability to diagnostic of flames. The experimental study was performed for premixed methane -air flame formed by an axisymmetric nozzle. The local deflection angles of the probe radiation were determined from measurements of the relative displacements of intensity maxima of the Talbot image which is caused by passing of light through the flame. The Abel integral equation was solved to reconstruct the refractive index distribution in the flame. Calculation of the temperature field from the refractive index data was based on neglecting the spatial variation of the component composition. Inaccuracy of the calculations was evaluated by comparing the results with the thermocouple measurements. The results demonstrate that the Talbot images method can be used to measure the temperature distribution in axisymmetric reacting gas flows with high spatial resolution.

  18. Temperature Field During Flame Spread over Alcohol Pools: Measurements and Modelling

    NASA Technical Reports Server (NTRS)

    Miller, Fletcher J.; Ross, Howard D.; Schiller, David N.

    1994-01-01

    A principal difference between flame spread over solid fuels and over liquid fuels is, in the latter case, the presence of liquid-phase convection ahead of the leading edge of the flame. The details of the fluid dynamics and heat transfer mechanisms in both the pulsating and uniform flame spread regimes were heavily debated, without resolution, in the 1960s and 1970s; recently, research on flame spread over pools was reinvigorated by the advent of enhanced diagnostic techniques and computational power. Temperature fields in the liquid, which enable determination of the extent of preheating ahead of the flame, were determined previously by the use of thermocouples and repetitive tests, and suggested that the surface temperature does not decrease monotonically ahead of the pulsating flame front, but that there exists a surface temperature valley. Recent predictions support this suggestion. However, others' thermocouple measurements and the recent field measurements using Holographic Interferometry (HI) did not find a similar valley. In this work we examine the temperature field using Rainbow Schlieren Deflectometry (RSD), with a measurement threshold exceeding that of conventional interferometry by a factor of 20:1, for uniform and pulsating flame spread using propanol and butanol as fuels. This technique was not applied before to flame spread over liquid pools, except in some preliminary measurements reported earlier. Noting that HI is sensitive to the refractive index while RSD responds to refractive index gradients, and that these two techniques might therefore be difficult to compare, we utilized a numerical simulation, described below, to predict and compare both types of field for the uniform and pulsating spread regimes. The experimental data also allows a validation of the model at a level of detail greater than has been attempted before.

  19. Temperature measurements in steady axisymmetric partially premixed flames by use of rainbow schlieren deflectometry.

    PubMed

    Xiao, Xudong; Puri, Ishwar K; Agrawal, Ajay K

    2002-04-01

    We focus on the utility of rainbow schlieren as a tool for measuring the temperature of axisymmetric partially premixed flames (PPFs). Methane-air PPFs are established on a coannular burner. The flames involve two spatially distinct reaction zones, one in an inner premixed region that has a curved tip and a spatially planar wing portion and another that involves an outer nonpremixed zone in which intermediate species burn in air. Schlieren images are found to visualize clearly these PPF characteristics through light deflection by steep refractive-index gradients in the two reaction zone fronts. The temperature distributions of two flames established at fuel-rich mixture equivalence ratios of phi(r) = 1.5 and 2.0, with bulk-averaged velocities, Vreac = 60 cm s(-1) and Vair = 50 cm s(-1), are inferred from color schlieren images, and a measurement error analysis is performed. Errors arise from two sources. One lies in the process of inferring the temperature from the refractive-index measurement by making assumptions regarding the local composition of the flame. We have shown through simulations that the average temperature deviations due to these assumptions are 1.7% for the phi(r) = 1.5 flame and 2.3% for the phi(r) = 2.0 flame. Another source involves the local uncertainty in the measurement of the transverse ray displacement at the filter plane that is used to determine the refractive index and thereafter the flame temperature. We have ascertained that a maximum error of 4.3% in the temperature determination can be attributed to this local measurement uncertainty. This investigation demonstrates the capability of the schlieren technique for providing not only qualitative displays of the PPFs but also full-field-of-view temperature measurements that are accurate, spatially resolved, and nonintrusive. PMID:11936791

  20. Influence of Temperature and Pressure Change on Adiabatic and Isothermal Methanation Processes

    NASA Astrophysics Data System (ADS)

    Porubova, Jekaterina; Klemm, Marco; Kiendl, Isabel; Valters, Karlis; Markova, Darja; Repele, Mara; Bazbauers, Gatis

    2012-09-01

    Energy plans of many countries anticipate an increased use of biomethane for energy supply, i.e., in power and heat production as well as in the transport sector. Existing infrastructure of natural gas storage, supply and application provides a good platform to facilitate transfer to biomethane utilization on a larger scale. One key element of the biomethane system is the upgrade of the biomass-derived synthesis gas originating from different sources, to a quality of natural gas (SNG - Synthesis Natural Gas) via the methanation process for further injection into the natural gas grid.. The maximisation of efficiency of the methanation process is of critical importance in order to make biomethane technology viable for wider application. The aim of the study was to improve efficiency of the methanation process by finding the optimum temperatures and pressure. Theoretical modelling of adiabatic and isothermal methanation processes by using thermodynamic equilibrium calculations was introduced as a method for the study. The results show the impact of temperature and pressure changes on the overall efficiency of methane production. It can be concluded from the study that knowledge about the relation between temperature, pressure and the efficiency of the methanation process makes it possible to optimize the process under various biomass synthesized gas input conditions.

  1. A Compact, Continuous Adiabatic Demagnetization Refrigerator with High Heat Sink Temperature

    NASA Technical Reports Server (NTRS)

    Shirron, P. J.; Canavan, E. R.; DiPirro, M. J.; Jackson, M.; Tuttle, J. G.

    2003-01-01

    In the continuous adiabatic demagnetization refrigerator (ADR), the existence of a constant temperature stage attached to the load breaks the link between the requirements of the load (usually a detector array) and the operation of the ADR. This allows the ADR to be cycled much faster, which yields more than an order of magnitude improvement in cooling power density over single-shot ADRs. Recent effort has focused on developing compact, efficient higher temperature stages. An important part of this work has been the development of passive gas-gap heat switches that transition (from conductive to insulating) at temperatures around 1 K and 4 K without the use of an actively heated getter. We have found that by carefully adjusting available surface area and the number of He-3 monolayers, gas-gap switches can be made to operate passively. Passive operation greatly reduces switching time and eliminates an important parasitic heat load. The current four stage ADR provides 6 micro W of cooling at 50 mK (21 micro W at 100 mK) and weighs less than 8 kg. It operates from a 4.2 K heat sink, which can be provided by an unpumped He bath or many commercially available mechanical cryocoolers. Reduction in critical current with temperature in our fourth stage NbTi magnet presently limits the maximum temperature of our system to approx. 5 K. We are developing compact, low-current Nb3Sn magnets that will raise the maximum heat sink temperature to over 10 K.

  2. Noncatalytic thermocouple coatings produced with chemical vapor deposition for flame temperature measurements.

    PubMed

    Bahlawane, N; Struckmeier, U; Kasper, T S; Osswald, P

    2007-01-01

    Chemical vapor deposition (CVD) and metal-organic chemical vapor deposition (MOCVD) have been employed to develop alumina thin films in order to protect thermocouples from catalytic overheating in flames and to minimize the intrusion presented to the combustion process. Alumina films obtained with a CVD process using AlCl(3) as the precursor are dense, not contaminated, and crystallize in the corundum structure, while MOCVD using Al(acetyl acetone)(3) allows the growth of corundum alumina with improved growth rates. These films, however, present a porous columnar structure and show some carbon contamination. Therefore, coated thermocouples using AlCl(3)-CVD were judged more suitable for flame temperature measurements and were tested in different fuels over a typical range of stoichiometries. Coated thermocouples exhibit satisfactory measurement reproducibility, no temporal drifts, and do not suffer from catalytic effects. Furthermore, their increased radiative heat loss (observed by infrared spectroscopy) allows temperature measurements over a wider range when compared to uncoated thermocouples. A flame with a well-known temperature profile established with laser-based techniques was used to determine the radiative heat loss correction to account for the difference between the apparent temperature measured by the coated thermocouple and the true flame temperature. The validity of the correction term was confirmed with temperature profile measurements for several flames previously studied in different laboratories with laser-based techniques. PMID:17503931

  3. Noncatalytic thermocouple coatings produced with chemical vapor deposition for flame temperature measurements

    NASA Astrophysics Data System (ADS)

    Bahlawane, N.; Struckmeier, U.; Kasper, T. S.; Oßwald, P.

    2007-01-01

    Chemical vapor deposition (CVD) and metal-organic chemical vapor deposition (MOCVD) have been employed to develop alumina thin films in order to protect thermocouples from catalytic overheating in flames and to minimize the intrusion presented to the combustion process. Alumina films obtained with a CVD process using AlCl3 as the precursor are dense, not contaminated, and crystallize in the corundum structure, while MOCVD using Al(acetylwidth="0.3em"/>acetone)3 allows the growth of corundum alumina with improved growth rates. These films, however, present a porous columnar structure and show some carbon contamination. Therefore, coated thermocouples using AlCl3-CVD were judged more suitable for flame temperature measurements and were tested in different fuels over a typical range of stoichiometries. Coated thermocouples exhibit satisfactory measurement reproducibility, no temporal drifts, and do not suffer from catalytic effects. Furthermore, their increased radiative heat loss (observed by infrared spectroscopy) allows temperature measurements over a wider range when compared to uncoated thermocouples. A flame with a well-known temperature profile established with laser-based techniques was used to determine the radiative heat loss correction to account for the difference between the apparent temperature measured by the coated thermocouple and the true flame temperature. The validity of the correction term was confirmed with temperature profile measurements for several flames previously studied in different laboratories with laser-based techniques.

  4. Temperature and Radiative Heat Flux Measurements in Microgravity Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.; Greenberg, Paul S.

    1997-01-01

    The objective of this project is to provide detailed measurements and modeling analyses of local soot concentration, temperature and radiation heat flux distributions in laminar and turbulent jet diffusion flames under normal (1-g) and reduced gravity (0-g) conditions. Results published to date by these co-PI's and their co-workers include: 1. thermophoretic sampling and size and morphological analyses of soot aggregates in laminar flames under normal and reduced gravity conditions; 2. full-field absorption imaging for soot volume fraction maps in laminar and turbulent flames under normal and reduced gravity conditions; 3. an accurate solver module for detailed radiation heat transfer in nongray nonhomogeneous media; 4. a complete model to include flame structure, soot formation and an energy equation to couple with radiation solver.

  5. Determination of combustion gas temperatures by infrared radiometry in sooting and nonsooting flames

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Gracia-Salcedo, Carmen M.

    1989-01-01

    Flame temperatures in nonsooting and sooting environments were successfully measured by radiometry for pre-mixed propane-oxygen laminar flames stabilized on a water-cooled, porous sintered-bronze burner. The measured temperatures in the nonsooting flames were compared with fine-wire thermocouple measurements. The results show excellent agreement below 1700 K, and when the thermocouple measurements were corrected for radiation effects, the agreement was good for even higher temperatures. The benefits of radiometry are: (1) the flow is not disturbed by an intruding probe, (2) calibration is easily done using a blackbody source, and (3) measurements can be made even with soot present. The theory involved in the radiometry measurements and the energy balance calculations used to correct the thermocouple temperature measurements are discussed.

  6. Measurement of gas-phase temperatures in flames with a point-diffraction interferometer.

    PubMed

    Goldmeer, J S; Urban, D L; Yuan, Z G

    2001-09-20

    Experiments were performed to evaluate the performance of a point-diffraction interferometry (PDI) system to measure gas-phase temperatures in flames. PDI is an interferometric technique that creates the reference beam after the laser beam passes through the test section and directly provides the index of refraction in two dimensions. PDI-based temperature measurements were compared with thermocouple measurements of two-dimensional and axisymmetric thermal boundary layers, as well as two-dimensional and axisymmetric diffusion flames. The PDI system provided excellent agreement in the measurement of thermal profiles in the boundary layers and was within the uncertainties that are due to the radiation corrections for the thermocouple-based flame temperature measurements. PMID:18360522

  7. Quantitative Rainbow Schlieren Deflectometry as a Temperature Diagnostic for Spherical Flames

    NASA Technical Reports Server (NTRS)

    Feikema, Douglas A.

    2004-01-01

    Numerical analysis and experimental results are presented to define a method for quantitatively measuring the temperature distribution of a spherical diffusion flame using Rainbow Schlieren Deflectometry in microgravity. First, a numerical analysis is completed to show the method can suitably determine temperature in the presence of spatially varying species composition. Also, a numerical forward-backward inversion calculation is presented to illustrate the types of calculations and deflections to be encountered. Lastly, a normal gravity demonstration of temperature measurement in an axisymmetric laminar, diffusion flame using Rainbow Schlieren deflectometry is presented. The method employed in this paper illustrates the necessary steps for the preliminary design of a Schlieren system. The largest deflections for the normal gravity flame considered in this paper are 7.4 x 10(-4) radians which can be accurately measured with 2 meter focal length collimating and decollimating optics. The experimental uncertainty of deflection is less than 5 x 10(-5) radians.

  8. Effect of Initial Mixture Temperature on Flame Speed of Methane-Air, Propane-Air, and Ethylene-Air Mixtures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L

    1952-01-01

    Flame speeds based on the outer edge of the shadow cast by the laminar Bunsen cone were determined as functions of composition for methane-air mixtures at initial mixture temperatures ranging from -132 degrees to 342 degrees c and for propane-air and ethylene-air mixtures at initial mixture temperatures ranging from -73 degrees to 344 degrees c. The data showed that maximum flame speed increased with temperature at an increasing rate. The percentage change in flame speed with change in initial temperature for the three fuels followed the decreasing order, methane, propane, and ethylene. Empirical equations were determined for maximum flame speed as a function of initial temperature over the temperature range covered for each fuel. The observed effect of temperature on flame speed for each of the fuels was reasonably well predicted by either the thermal theory as presented by Semenov or the square-root law of Tanford and Pease.

  9. Air-coupled ultrasonic tomographic imaging of high-temperature flames.

    PubMed

    Gan, Tat Hean; Hutchins, David A

    2003-09-01

    This paper illustrates the use of air-coupled ultrasonic tomography for the measurement of a high-temperature flame from a natural gas burner, using capacitive ultrasonic transducers in through transmission. This uses a transducer pair, which is scanned in two-dimensional sections at several angles to the jet axis. Travel-time data then is recorded along various paths in counter-propagating directions. By processing the data obtained from propagation times, images have been formed of variations in temperature within the flame, using the tomographic reconstruction approach. PMID:14561039

  10. Adiabatic temperature changes of magma-gas mixtures during ascent and eruption

    USGS Publications Warehouse

    Mastin, L.G.; Ghiorso, M.S.

    2001-01-01

    Most quantitative studies of flow dynamics in eruptive conduits during volcanic eruptions use a simplified energy equation that ignores either temperature changes, or the thermal effects of gas exsolution. In this paper we assess the effects of those simplifications by analyzing the influence of equilibrium gas exsolution and expansion on final temperatures, velocities, and liquid viscosities of magma-gas mixtures during adiabatic decompression. For a given initial pressure (p1), temperature (T1) and melt composition, the final temperature (Tf) and velocity (Umax) will vary depending on the degree to which friction and other irreversible processes reduce mechanical energy within the conduit. The final conditions range between two thermodynamic end members: (1) Constant enthalpy (dh=0), in which Tf is maximal and no energy goes into lifting or acceleration; and (2) constant entropy (ds=0), in which Tf is minimal and maximum energy goes into lifting and acceleration. For ds=0, T1=900 ??C and p1=200 MPa, a water-saturated albitic melt cools by ???200 ??C during decompression, but only about 250 ??C of this temperature decrease can be attributed to the energy of gas exsolution per se: The remainder results from expansion of gas that has already exsolved. For the same T1 and p1, and dh=0, Tf is 10-15 ??C hotter than T1 but is about 10-25 ??C cooler than Tf in similar calculations that ignore the energy of gas exsolution. For ds=0, p1=200 MPa and T1= 9,000 ??C, assuming that all the enthalpy change of decompression goes into kinetic energy, a water-saturated albitic mixture can theoretically accelerate to ???800 m/s. Similar calculations that ignore gas exsolution (but take into account gas expansion) give velocities about 10-15% higher. For the same T1, p1 = 200 MPa, and ds = 0, the cooling associated with gas expansion and exsolution increases final melt viscosity more than 2.5 orders of magnitude. For dh = 0, isenthalpic heating decreases final melt viscosity by about

  11. Soot formation and temperature field structure in laminar propane-air diffusion flames at elevated pressures

    SciTech Connect

    Bento, Decio S.; Guelder, OEmer L.; Thomson, Kevin A.

    2006-06-15

    The effect of pressure on soot formation and the structure of the temperature field was studied in coflow propane-air laminar diffusion flames over the pressure range of 0.1 to 0.73 MPa in a high-pressure combustion chamber. The fuel flow rate was selected so that the soot was completely oxidized within the visible flame and the flame was stable at all pressures. Spectral soot emission was used to measure radially resolved soot volume fraction and soot temperature as a function of pressure. Additional soot volume fraction measurements were made at selected heights using line-of-sight light attenuation. Soot concentration values from these two techniques agreed to within 30% and both methods exhibited similar trends in the spatial distribution of soot concentration. Maximum line-of-sight soot concentration along the flame centerline scaled with pressure; the pressure exponent was about 1.4 for pressures between 0.2 and 0.73 MPa. Peak carbon conversion to soot, defined as the percentage of fuel carbon content converted to soot, also followed a power-law dependence on pressure, where the pressure exponent was near to unity for pressures between 0.2 and 0.73 MPa. Soot temperature measurements indicated that the overall temperatures decreased with increasing pressure; however, the temperature gradients increased with increasing pressure. (author)

  12. Measurement of absolute minority species concentration and temperature in a flame by the photothermal deflection spectroscopy technique.

    PubMed

    Li, Yunjing; Gupta, Rajendra

    2003-04-20

    It is experimentally demonstrated that absolute concentrations of minority species in flames can be measured by the photothermal deflection spectroscopy (PTDS) technique. In addition, the PTDS signal simultaneously yields the flame temperature the measurement point. Absolute concentration profiles of OH have been measured in a flat-flame burner with methane as fuel. The PTDS measurements agree well with those obtained independently by the absorption technique. The flame temperature measurements by PTDS are also in good agreement with those obtained by the Boltzmann distribution among the rotational levels of OH. PMID:12716166

  13. Automated infrared imaging temperature measurement with application to upward flame spread studies. Part I

    SciTech Connect

    Arakawa, A.; Saito, K.; Gruver, W.A. . Dept. of Physics)

    1993-02-01

    This article describes a new experimental technique with wide application that has been proven for wall fires. To measure the spread rate of the pyrolysis front along vertically oriented flat and corner walls, it may be necessary to measure transient temperature profiles on the walls. Conventional thermocouple and visual observation methods, however, have limitations due to complexity of implementation and the inherent ambiguity of visual observations due to interference from flames. To overcome these limitations, an automated infrared imaging system was applied to obtain two-dimensional wall surface temperature data in a relatively large area. In addition, upward flame spread experiments were conducted over vertically oriented PMMA flat and color board corner walls; and surface thermocouple and infrared imaging temperature data were compared in the PMMA wall fires. All the results indicate that the infrared system with a (10.60.5[mu]m) bandpass filter successfully avoids interferences from the flame allowing measurements of temperature distribution on the fire-heated wall, from which the spread rate in any direction can be deduced. However, this technique will fail for flames whose emissivity is greater than 0.1.

  14. Simultaneous temperature and multispecies measurement in a lifted hydrogen diffusion flame

    NASA Technical Reports Server (NTRS)

    Cheng, T. S.; Wehrmeyer, J. A.; Pitz, R. W.

    1992-01-01

    UV spontaneous vibrational Raman scattering and laser-induced predissociative fluorescence (LIPF) techniques are combined and applied to a lifted hydrogen jet diffusion flame. Simultaneous, temporally and spatially resolved point measurements of temperature, major species concentrations (H2, O2, N2, H2O), and absolute hydroxyl radical concentration (OH) are obtained with a 'single' excimer laser for the first time. For OH measurements, the use of LIPF makes quenching corrections unnecessary. Results demonstrate that fuel and oxidizer are in a rich, premixed, and unignited condition in the center core of the lifted flame base. In the lifted zone, combustion occurs in an intermittent annular turbulent flame brush and strong finite-rate chemistry effects result in nonequilibrium values of temperature, major species, and OH radicals. Downstream in the slow three-body recombination zone, the major species concentrations are in partial equilibrium, the OH concentrations are in superequilibrium, and the temperatures are in subequilibrium. Far downstream in the flame, equilibrium values of temperature, OH radical, and major species are found.

  15. Optically Based Flame Detection in the NASA Langley 8-ft High- Temperature Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Borg, Stephen E.

    2005-01-01

    Two optically based flame-detection systems have been developed for use in NASA Langley's 8-Foot High-Temperature Tunnel (8-ft HTT). These systems are used to detect the presence and stability of the main-burner and pilot-level flames during facility operation. System design considerations will be discussed, and a detailed description of the system components and circuit diagrams will be provided in the Appendices of this report. A more detailed description of the manufacturing process used in the fabrication of the fiber-optic probes is covered in NASA TM-2001-211233.

  16. Quantitative rainbow schlieren deflectometry as a temperature diagnostic for nonsooting spherical flames.

    PubMed

    Feikema, Douglas A

    2006-07-10

    Numerical analysis and experimental results are presented to define a method for quantitatively measuring the temperature distribution of a spherical diffusion flame using rainbow schlieren deflectometry in microgravity. The method employed illustrates the necessary steps for the preliminary design of a rainbow schlieren system. The largest deflection for the normal gravity flame considered in this paper is 7.4 x 10(-4) rad, which can be accurately measured with 2 m focal-length collimating and decollimating optics. The experimental uncertainty of deflection is less than 5 x 10-(5) rad. PMID:16807588

  17. Temperature measurement of wood flame based on the double line method of atomic emission spectra

    NASA Astrophysics Data System (ADS)

    Hao, Xiaojian; Liu, Zhenhua; Sang, Tao

    2016-01-01

    Aimed at the testing requirement of the transient high temperature in explosion field and the bore of barrel weapon, the temperature measurement system of double line of atomic emission spectrum was designed, the method of flame spectrum testing system were used for experimental analysis. The experimental study of wood burning spectra was done with flame spectrum testing system. The measured spectra contained atomic emission spectra of the elements K, Na, and the excitation ease of two kinds atomic emission spectra was analyzed. The temperature was calculated with two spectral lines of K I 766.5nm and 769.9nm. The results show that, compared with Na, the excitation temperature of K atomic emission spectra is lower. By double line method, the temperature of wood burning is 1040K, and error is 3.7%.

  18. Flame temperature measurements by radar resonance-enhanced multiphoton ionization of molecular oxygen.

    PubMed

    Wu, Yue; Sawyer, Jordan; Zhang, Zhili; Adams, Steven F

    2012-10-01

    Here we report nonintrusive local rotational temperature measurements of molecular oxygen, based on coherent microwave scattering (radar) from resonance-enhanced multiphoton ionization (REMPI) in room air and hydrogen/air flames. Analyses of the rotational line strengths of the two-photon molecular oxygen C(3)Π(v=2)←X(3)Σ(v'=0) transition have been used to determine the hyperfine rotational state distribution of the ground X(3)Σ(v'=0) state. Rotationally resolved 2+1 REMPI spectra of the molecular oxygen C(3)Π(v=2)←X(3)Σ(v'=0) transition at different temperatures were obtained experimentally by radar REMPI. Rotational temperatures have been determined from the resulting Boltzmann plots. The measurements in general had an accuracy of ~±60 K in the hydrogen/air flames at various equivalence ratios. Discussions about the decreased accuracy for the temperature measurement at elevated temperatures have been presented. PMID:23033104

  19. Non-adiabatic ab initio molecular dynamics of supersonic beam epitaxy of silicon carbide at room temperature

    SciTech Connect

    Taioli, Simone; Garberoglio, Giovanni; Simonucci, Stefano; Beccara, Silvio a; Aversa, Lucrezia; Nardi, Marco; Verucchi, Roberto; Iannotta, Salvatore; Dapor, Maurizio; and others

    2013-01-28

    In this work, we investigate the processes leading to the room-temperature growth of silicon carbide thin films by supersonic molecular beam epitaxy technique. We present experimental data showing that the collision of fullerene on a silicon surface induces strong chemical-physical perturbations and, for sufficient velocity, disruption of molecular bonds, and cage breaking with formation of nanostructures with different stoichiometric character. We show that in these out-of-equilibrium conditions, it is necessary to go beyond the standard implementations of density functional theory, as ab initio methods based on the Born-Oppenheimer approximation fail to capture the excited-state dynamics. In particular, we analyse the Si-C{sub 60} collision within the non-adiabatic nuclear dynamics framework, where stochastic hops occur between adiabatic surfaces calculated with time-dependent density functional theory. This theoretical description of the C{sub 60} impact on the Si surface is in good agreement with our experimental findings.

  20. Task technical and QA plan: Thermal effects study: To evaluate saltstone properties associated with performance criteria as a function of extended exposure to temperatures typical of adiabatic curing

    SciTech Connect

    Orebaugh, E.G.

    1990-06-15

    The task to evaluate saltstone properties associated with performance criteria as a function of extended exposure to temperatures typical of adiabatic curing is described in this document and involves extension of previous qualification studies for DWPF Saltstone formulations.

  1. Measurement of temperature profiles in flames by emission-absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Simmons, F. S.; Arnold, C. B.; Lindquist, G. H.

    1972-01-01

    An investigation was conducted to explore the use of infrared and ultraviolet emission-absorption spectroscopy for determination of temperature profiles in flames. Spectral radiances and absorptances were measured in the 2.7-micron H2O band and the 3064-A OH band in H2/O2 flames for several temperature profiles which were directly measured by a sodium line-reversal technique. The temperature profiles, determined by inversion of the infrared and ultraviolet spectra, showed an average disagreement with line-reversal measurements of 50 K for the infrared and 200 K for the ultraviolet at a temperature of 2600 K. The reasons for these discrepancies are discussed in some detail.

  2. Retrieval of Temperature and Species Distributions from Multispectral Image Data of Surface Flame Spread in Microgravity

    NASA Technical Reports Server (NTRS)

    Annen, K. D.; Conant, John A.; Weiland, Karen J.

    2001-01-01

    Weight, size, and power constraints severely limit the ability of researchers to fully characterize temperature and species distributions in microgravity combustion experiments. A powerful diagnostic technique, infrared imaging spectrometry, has the potential to address the need for temperature and species distribution measurements in microgravity experiments. An infrared spectrum imaged along a line-of-sight contains information on the temperature and species distribution in the imaged path. With multiple lines-of-sight and approximate knowledge of the geometry of the combustion flowfield, a three-dimensional distribution of temperature and species can be obtained from one hyperspectral image of a flame. While infrared imaging spectrometers exist for collecting hyperspectral imagery, the remaining challenge is retrieving the temperature and species information from this data. An initial version of an infrared analysis software package, called CAMEO (Combustion Analysis Model et Optimizer), has been developed for retrieving temperature and species distributions from hyperspectral imaging data of combustion flowfields. CAMEO has been applied to the analysis of multispectral imaging data of flame spread over a PMMA surface in microgravity that was acquired in the DARTFire program. In the next section of this paper, a description of CAMEO and its operation is presented, followed by the results of the analysis of microgravity flame spread data.

  3. Microstructural characteristics of adiabatic shear localization in a metastable beta titanium alloy deformed at high strain rate and elevated temperatures

    SciTech Connect

    Zhan, Hongyi; Zeng, Weidong; Wang, Gui; Kent, Damon; Dargusch, Matthew

    2015-04-15

    The microstructural evolution and grain refinement within adiabatic shear bands in the Ti6554 alloy deformed at high strain rates and elevated temperatures have been characterized using transmission electron microscopy. No stress drops were observed in the corresponding stress–strain curve, indicating that the initiation of adiabatic shear bands does not lead to the loss of load capacity for the Ti6554 alloy. The outer region of the shear bands mainly consists of cell structures bounded by dislocation clusters. Equiaxed subgrains in the core area of the shear band can be evolved from the subdivision of cell structures or reconstruction and transverse segmentation of dislocation clusters. It is proposed that dislocation activity dominates the grain refinement process. The rotational recrystallization mechanism may operate as the kinetic requirements for it are fulfilled. The coexistence of different substructures across the shear bands implies that the microstructural evolution inside the shear bands is not homogeneous and different grain refinement mechanisms may operate simultaneously to refine the structure. - Graphical abstract: Display Omitted - Highlights: • The microstructure within the adiabatic shear band was characterized by TEM. • No stress drops were observed in the corresponding stress–strain curve. • Dislocation activity dominated the grain refinement process. • The kinetic requirements for rotational recrystallization mechanism were fulfilled. • Different grain refinement mechanisms operated simultaneously to refine the structure.

  4. Aluminum flame temperature measurements in solid propellant combustion.

    PubMed

    Parigger, Christian G; Woods, Alexander C; Surmick, David M; Donaldson, A B; Height, Jonathan L

    2014-01-01

    The temperature in an aluminized propellant is determined as a function of height and plume depth from diatomic AlO and thermal emission spectra. Higher in the plume, 305 and 508 mm from the burning surface, measured AlO emission spectra show an average temperature with 1σ errors of 2980 ± 80 K. Lower in the plume, 152 mm from the burning surface, an average AlO emission temperature of 2450 ± 100 K is inferred. The thermal emission analysis yields higher temperatures when using constant emissivity. Particle size effects along the plume are investigated using wavelength-dependent emissivity models. PMID:24666953

  5. Quantitative temperature measurements in high-pressure flames with multiline NO-LIF thermometry.

    PubMed

    Lee, Tonghun; Bessler, Wolfgang G; Kronemayer, Helmut; Schulz, Christof; Jeffries, Jay B

    2005-11-01

    An accurate temperature measurement technique for steady, high-pressure flames is investigated using excitation wavelength-scanned laser-induced fluorescence (LIF) within the nitric oxide (NO) A-X(0, 0) band, and demonstration experiments are performed in premixed methane/air flames at pressures between 1 and 60 bars with a fuel/air ratio of 0.9. Excitation spectra are simulated with a computational spectral simulation program (LIFSim) and fit to the experimental data to extract gas temperature. The LIF scan range was chosen to provide sensitivity over a wide temperature range and to minimize LIF interference from oxygen. The fitting method is robust against elastic scattering and broadband LIF interference from other species, and yields absolute, calibration-free temperature measurements. Because of loss of structure in the excitation spectra at high pressures, background signal intensities were determined using a NO addition method that simultaneously yields nascent NO concentrations in the postflame gases. In addition, fluorescence emission spectra were also analyzed to quantify the contribution of background signal and to investigate interference in the detection band-width. The NO-LIF temperatures are in good agreement with intrusive single-color pyrometry. The proposed thermometry method could provide a useful tool for studing high-pressure flame chemistry as well as provide a standard to evaluate and validate fast-imaging thermometry techniques for practical diagnostics of high-pressure combustion systems. PMID:16270561

  6. Three-dimensional reconstruction method on the PDE exhaust plume flow flame temperature field

    NASA Astrophysics Data System (ADS)

    Zhang, Zhimin; Wan, Xiong; Luo, Ningning; Li, Shujing

    2010-10-01

    Pulse detonation engine (referred to as PDE) has many advantage about simple structure, high efficiency thermal [1] cycling etc. In the future, it can be widely used in unmanned aircraft, target drone, luring the plane, the imaginary target, target missiles, long-range missiles and other military targets. However, because the exhaust flame of PDE is complicated [2], non-uniform temperature distribution and mutation in real time, its 3-D temperature distribution is difficult to be measured by normal way. As a result, PDE is used in the military project need to face many difficulties and challenges. In order to analyze and improve the working performance of PDE, deep research on the detonation combustion process is necessary. However, its performance characteristic which is in non-steady-state, as well as high temperature, high pressure, transient combustion characteristics put forward high demands about the flow field parameters measurement. In this paper, the PDE exhaust flames temperature field is reconstructed based on the theory of radiation thermometry [3] and Emission Spectral Tomography (referred to as EST) [4~6] which is one branch of Optical CT. It can monitor the detonation wave temperature distribution out of the exhaust flames at different moments, it also provides authentication for the numerical simulation which directs towards PDE work performance, and then it provides the basis for improving the structure of PDE.

  7. The relation of cool flames and auto-ignition phenomena to process safety at elevated pressure and temperature.

    PubMed

    Pekalski, A A; Zevenbergen, J F; Pasman, H J; Lemkowitz, S M; Dahoe, A E; Scarlett, B

    2002-07-01

    The cool-flame phenomenon can occur in fuel-oxygen (air) mixtures within the flammable range and outside the flammable range, at fuel-rich compositions, at temperatures below the auto-ignition temperature (AIT). It is caused by chemical reactions occurring spontaneously at relatively low temperatures and is favoured by elevated pressure. The hazards that cool flames generate are described. These vary from spoiling a product specification through contamination and explosive decomposition of condensed peroxides to the appearance of unexpected normal (hot) flame (two-stage ignition). PMID:12062956

  8. Negative pressure dependence of mass burning rates of H{sub 2}/CO/O{sub 2}/diluent flames at low flame temperatures

    SciTech Connect

    Burke, Michael P.; Chaos, Marcos; Dryer, Frederick L.; Ju, Yiguang

    2010-04-15

    Experimental measurements of burning rates, analysis of the key reactions and kinetic pathways, and modeling studies were performed for H{sub 2}/CO/O{sub 2}/diluent flames spanning a wide range of conditions: equivalence ratios from 0.85 to 2.5, flame temperatures from 1500 to 1800 K, pressures from 1 to 25 atm, CO fuel fractions from 0 to 0.9, and dilution concentrations of He up to 0.8, Ar up to 0.6, and CO{sub 2} up to 0.4. The experimental data show negative pressure dependence of burning rate at high pressure, low flame temperature conditions for all equivalence ratios and CO fractions as high as 0.5. Dilution with CO{sub 2} was observed to strengthen the pressure and temperature dependence compared to Ar-diluted flames of the same flame temperature. Simulations were performed to extend the experimentally studied conditions to conditions typical of gas turbine combustion in Integrated Gasification Combined Cycle processes, including preheated mixtures and other diluents such as N{sub 2} and H{sub 2}O. Substantial differences are observed between literature model predictions and the experimental data as well as among model predictions themselves - up to a factor of three at high pressures. The present findings suggest the need for several rate constant modifications of reactions in the current hydrogen models and raise questions about the sufficiency of the set of hydrogen reactions in most recent hydrogen models to predict high pressure flame conditions relevant to controlling NO{sub x} emissions in gas turbine combustion. For example, the reaction O + OH + M = HO{sub 2} + M is not included in most hydrogen models but is demonstrated here to significantly impact predictions of lean high pressure flames using rates within its uncertainty limits. Further studies are required to reduce uncertainties in third body collision efficiencies for and fall-off behavior of H + O{sub 2}(+M) = HO{sub 2}(+M) in both pure and mixed bath gases, in rate constants for HO{sub 2

  9. Negative pressure dependence of mass burning rates of H{sub 2}/CO/O{sub 2}/diluent flames at low flame temperatures

    SciTech Connect

    Burke, M. P.; Chaos, M.; Dryer, F. L.; Ju, Yiguang

    2010-01-01

    Experimental measurements of burning rates, analysis of the key reactions and kinetic pathways, and modeling studies were performed for H{sub 2}/CO/O{sub 2}/diluent flames spanning a wide range of conditions: equivalence ratios from 0.85 to 2.5, flame temperatures from 1500 to 1800 K, pressures from 1 to 25 atm, CO fuel fractions from 0 to 0.9, and dilution concentrations of He up to 0.8, Ar up to 0.6, and CO{sub 2} up to 0.4. The experimental data show negative pressure dependence of burning rate at high pressure, low flame temperature conditions for all equivalence ratios and CO fractions as high as 0.5. Dilution with CO{sub 2} was observed to strengthen the pressure and temperature dependence compared to Ar-diluted flames of the same flame temperature. Simulations were performed to extend the experimentally studied conditions to conditions typical of gas turbine combustion in Integrated Gasification Combined Cycle processes, including preheated mixtures and other diluents such as N{sub 2} and H{sub 2}O. Substantial differences are observed between literature model predictions and the experimental data as well as among model predictions themselves – up to a factor of three at high pressures. The present findings suggest the need for several rate constant modifications of reactions in the current hydrogen models and raise questions about the sufficiency of the set of hydrogen reactions in most recent hydrogen models to predict high pressure flame conditions relevant to controlling NO{sub x} emissions in gas turbine combustion. For example, the reaction O + OH + M = HO{sub 2} + M is not included in most hydrogen models but is demonstrated here to significantly impact predictions of lean high pressure flames using rates within its uncertainty limits. Further studies are required to reduce uncertainties in third body collision efficiencies for and fall-off behavior of H + O{sub 2}(+M) = HO{sub 2}(+M) in both pure and mixed bath gases, in rate constants for HO{sub 2

  10. The influence of initial temperature on flame acceleration and deflagration-to-detonation transition

    SciTech Connect

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.

    1996-07-01

    The influence of initial mixture temperature on deflagration-to-detonation transition (DDT) has been investigated experimentally. The experiments were carried out in a 27-cm-inner diameter, 21.3-meter-long heated detonation tube, which was equipped with periodic orifice plates to promote flame acceleration. Hydrogen-air-steam mixtures were tested at a range of temperatures up to 650K and at an initial pressure of 0.1 MPa. In most cases, the limiting hydrogen mole fraction which resulted in transition to detonation corresponded to the mixture whose detonation cell size, {lambda}, was approximately equal to the inner diameter of the orifice plate, d (e.g., d/{lambda}{approximately}1). The only exception was in dry hydrogen-air mixtures at 650K where the DDT limit was observed to be 11 percent hydrogen, corresponding to a value of d/{lambda} equal to 5.5. For a 10.5 percent hydrogen mixture at 650K, the flame accelerated to a maximum velocity of about 120 m/s and then decelerated to below 2 m/s. This observation indicates that the d/{lambda} = 1 DDT limit criterion provides a necessary condition but not a sufficient one for the onset of DDT in obstacle-laden ducts. In this particular case, the mixture initial condition (i.e., temperature) resulted in the inability of the mixture to sustain flame acceleration to the point where DDT could occur. It was also observed that the distance required for the flame to accelerate to the onset of detonation was a function of both the hydrogen mole fraction and the mixture initial temperature. For example, decreasing the hydrogen mole fraction or increasing the initial mixture temperature resulted in longer transition distances.

  11. Temperature imaging in nonpremixed flames by joint filtered Rayleigh and Raman scattering.

    PubMed

    Kearney, Sean P; Schefer, Robert W; Beresh, Steven J; Grasser, Thomas W

    2005-03-20

    Joint fuel Raman and filtered Rayleigh-scattering (FRS) imaging is demonstrated in a laminar methane-air diffusion flame. These experiments are, to our knowledge, the first reported extension of the FRS technique to nonpremixed combustion. This joint imaging approach allows for correction of the FRS images for the large variations in Rayleigh cross section that occur in diffusion flames and for a secondary measurement of fuel mole fraction. The temperature-dependent filtered Rayleigh cross sections are computed with a six-moment kinetic model for calculation of major-species Rayleigh-Brillouin line shapes and a flamelet-based model for physically judicious estimates of gas-phase chemical composition. Shot-averaged temperatures, fuel mole fractions, and fuel number densities from steady and vortex-strained diffusion flames stabilized on a Wolfhard-Parker slot burner are presented, and a detailed uncertainty analysis reveals that the FRS-measured temperatures are accurate to within +/- 4.5 to 6% of the local absolute temperature. PMID:15813256

  12. Temperature of aircraft cargo flame exposure during accidents involving fuel spills

    SciTech Connect

    Mansfield, J.A.

    1993-01-01

    This report describes an evaluation of flame exposure temperatures of weapons contained in alert (parked) bombers due to accidents that involve aircraft fuel fires. The evaluation includes two types of accident, collisions into an alert aircraft by an aircraft that is on landing or take-off, and engine start accidents. Both the B-1B and B-52 alert aircraft are included in the evaluation.

  13. Low and High Temperature Combustion Chemistry of Butanol Isomers in Premixed Flames and Autoignition Systems

    SciTech Connect

    Sarathy, S M; Pitz, W J; Westbrook, C K; Mehl, M; Yasunaga, K; Curran, H J; Tsujimura, T; Osswald, P; Kohse-Hoinghaus, K

    2010-12-12

    Butanol is a fuel that has been proposed as a bio-derived alternative to conventional petroleum derived fuels. The structural isomer in traditional 'bio-butanol' fuel is n-butanol, but newer conversion technologies produce iso-butanol as a fuel. In order to better understand the combustion chemistry of bio-butanol, this study presents a comprehensive chemical kinetic model for all the four isomers of butanol (e.g., 1-, 2-, iso- and tert-butanol). The proposed model includes detailed high temperature and low temperature reaction pathways. In this study, the primary experimental validation target for the model is premixed flat low-pressure flame species profiles obtained using molecular beam mass spectrometry (MBMS). The model is also validated against previously published data for premixed flame velocity and n-butanol rapid compression machine and shock tube ignition delay. The agreement with these data sets is reasonably good. The dominant reaction pathways at the various pressures and temperatures studied are elucidated. At low temperature conditions, we found that the reaction of alphahydroxybutyl with O{sub 2} was important in controlling the reactivity of the system, and for correctly predicting C{sub 4} aldehyde profiles in low pressure premixed flames. Enol-keto isomerization reactions assisted by HO{sub 2} were also found to be important in converting enols to aldehydes and ketones in the low pressure premixed flames. In the paper, we describe how the structural features of the four different butanol isomers lead to differences in the combustion properties of each isomer.

  14. Measurement of temperature profiles in hot gases and flames

    NASA Technical Reports Server (NTRS)

    Simmons, R. S.; Yamada, H. Y.; Lindquist, G. H.; Arnold, C. B.

    1974-01-01

    Computer program was written for calculation of molecular radiative transfer from hot gases. Shape of temperature profile was approximated in terms of simple geometric forms so profile could be characterized in terms of few parameters. Parameters were adjusted in calculations using appropriate radiative-transfer expression until best fit was obtained with observed spectra.

  15. Fluid-Plasma Coupling in Hydrogen Flames

    NASA Astrophysics Data System (ADS)

    Massa, Luca; Retter, Jonathan; Glumac, Nick; Elliot, Gregg; Freund, Jonathan

    2015-11-01

    Recent experiments show that hydrogen diffusion flames at low Reynolds number can be markedly affected by a dielectric barrier discharge (DBD) plasma. The flame surface deforms and flattens, and light emissions increase. We develop a simulation model to analyze the mechanisms that causes these changes, and apply it to numerical calculations of axisymmetric flames with co-annular DBD, matching the corresponding experiments. Body forces due to charge sheaths are found to be the main mechanism, with radicals produced by plasma excitation playing a secondary role for the present conditions. The non-actuated flame flickers at approximately 10 Hz, in good agreement with the experiments. As the DBD voltage is increased, the flame flattens and oscillations decrease, eventually ceasing above a threshold value. The fully flattened case has a stoichiometric surface lying flat across the fuel orifice, with flame temperature exceeding significantly the adiabatic flame value. A force based on a linearized plasma sheath model, calibrated against air experiments, reproduces the main features of the experiments and provides a good estimate for the threshold flattening potential. In faster flowing regimes, radical production by the plasma becomes more important.

  16. Theoretical fast non-intrusive 3-D temperature distribution measurement within scattering medium from flame emission image analysis

    NASA Astrophysics Data System (ADS)

    Huang, Qun-xing; Yan, Fei Wang Jian-hua; Chi, Yong

    2013-04-01

    A new approach to inverse radiation analysis is presented for non-intrusive 3-D flame temperature reconstruction using flame emission images from four CCD camera detectors installed on the furnace wall. The scattering from participating medium in the flame was considered by combining the discrete radiative transfer method with the discrete ordinate method. A modified minimum residual algorithm was employed to calculate the least squares solution of the ill-conditioned inverse problem. A numerical test problem simulating real temperature measurements in an industrial furnace was used to assess the performance of the proposed method. These assessments indicate that this method is capable of reconstructing 3-D temperature distributions fast and accurately, even with noisy flame emission data. Such a capability has potential in real-time temperature measurement for combustion optimization and pollution emission control.

  17. Three-dimensional reconstruction of flame temperature and emissivity distribution using optical tomographic and two-colour pyrometric techniques

    NASA Astrophysics Data System (ADS)

    Moinul Hossain, Md; Lu, Gang; Sun, Duo; Yan, Yong

    2013-07-01

    This paper presents an experimental investigation, visualization and validation in the three-dimensional (3D) reconstruction of flame temperature and emissivity distributions by using optical tomographic and two-colour pyrometric techniques. A multi-camera digital imaging system comprising eight optical imaging fibres and two RGB charged-couple device (CCD) cameras are used to acquire two-dimensional (2D) images of the flame simultaneously from eight equiangular directions. A combined logical filtered back-projection (LFBP) and simultaneous iterative reconstruction and algebraic reconstruction technique (SART) algorithm is utilized to reconstruct the grey-level intensity of the flame for the two primary colour (red and green) images. The temperature distribution of the flame is then determined from the ratio of the reconstructed grey-level intensities and the emissivity is estimated from the ratio of the grey level of a primary colour image to that of a blackbody source at the same temperature. The temperature measurement of the system was calibrated using a blackbody furnace as a standard temperature source. Experimental work was undertaken to validate the flame temperature obtained by the imaging system against that obtained using high-precision thermocouples. The difference between the two measurements is found no greater than ±9%. Experimental results obtained on a laboratory-scale propane fired combustion test rig demonstrate that the imaging system and applied technical approach perform well in the reconstruction of the 3D temperature and emissivity distributions of the sooty flame.

  18. Soot formation and temperature structure in small methane-oxygen diffusion flames at subcritical and supercritical pressures

    SciTech Connect

    Joo, Hyun I.; Guelder, Oemer L.

    2010-06-15

    An experimental study was conducted to examine the characteristics of laminar methane-oxygen diffusion flames up to 100 atmospheres. The influence of pressure on soot formation and on the structure of the temperature field was investigated over the pressure range of 10-90 atmospheres in a high-pressure combustion chamber using a non-intrusive, line-of-sight spectral soot emission diagnostic technique. Two distinct zones characterized the appearance of a methane and pure oxygen diffusion flame: an inner luminous zone similar to the methane-air diffusion flames, and an outer diffusion flame zone which is mostly blue. The flame height, marked by the visible soot radiation emission, was reduced by over 50% over the pressure range of 10-100 atmospheres. Between 10 and 40 atmospheres, the soot levels increased with increasing pressure; however, above 40 atmospheres the soot concentrations decreased with increasing pressure. (author)

  19. The effect of initial temperature on flame acceleration and deflagration-to-detonation transition phenomenon

    SciTech Connect

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.; Gerlach, L.; Tagawa, H.; Malliakos, A.

    1998-05-01

    The High-Temperature Combustion Facility at BNL was used to conduct deflagration-to-detonation transition (DDT) experiments. Periodic orifice plates were installed inside the entire length of the detonation tube in order to promote flame acceleration. The orifice plates are 27.3-cm-outer diameter, which is equivalent to the inner diameter of the tube, and 20.6-cm-inner diameter. The detonation tube length is 21.3-meters long, and the spacing of the orifice plates is one tube diameter. A standard automobile diesel engine glow plug was used to ignite the test mixture at one end of the tube. Hydrogen-air-steam mixtures were tested at a range of temperatures up to 650K and at an initial pressure of 0.1 MPa. In most cases, the limiting hydrogen mole fraction which resulted in DDT corresponded to the mixture whose detonation cell size, {lambda}, was equal to the inner diameter of the orifice plate, d (e.g., d/{lambda}=1). The only exception was in the dry hydrogen-air mixtures at 650K where the DDT limit was observed to be 11 percent hydrogen, corresponding to a value of d/{lambda} equal to 5.5. For a 10.5 percent hydrogen mixture at 650K, the flame accelerated to a maximum velocity of about 120 mIs and then decelerated to below 2 mIs. By maintaining the first 6.1 meters of the vessel at the ignition end at 400K, and the rest of the vessel at 650K, the DDT limit was reduced to 9.5 percent hydrogen (d/{lambda}=4.2). This observation indicates that the d/{lambda}=1 DDT limit criteria provides a necessary condition but not a sufficient one for the onset of DDT in obstacle laden ducts. In this particular case, the mixture initial condition (i.e., temperature) resulted in the inability of the mixture to sustain flame acceleration to the point where DDT could occur. It was also observed that the distance required for the flame to accelerate to the point of detonation initiation, referred to as the run-up distance, was found to be a function of both the hydrogen mole fraction

  20. Do All Candle-Flame-Shaped Flares Have the Same Temperature Distribution?

    NASA Astrophysics Data System (ADS)

    Gou, Tingyu; Liu, Rui; Wang, Yuming

    2015-08-01

    We performed a differential emission measure (DEM) analysis of candle-flame-shaped flares observed with the Atmospheric Imaging Assembly onboard the Solar Dynamic Observatory. The DEM profile of flaring plasmas generally exhibits a double peak distribution in temperature, with a cold component around log T≈6.2 and a hot component around log T≈7.0. Attributing the cold component mainly to the coronal background, we propose a mean temperature weighted by the hot DEM component as a better representation of flaring plasma than the conventionally defined mean temperature, which is weighted by the whole DEM profile. Based on this corrected mean temperature, the majority of the flares studied, including a confined flare with a double candle-flame shape sharing the same cusp-shaped structure, resemble the famous Tsuneta flare in temperature distribution, i.e., the cusp-shaped structure has systematically higher temperatures than the rounded flare arcade underneath. However, the M7.7 flare on 19 July 2012 poses a very intriguing violation of this paradigm: the temperature decreases with altitude from the tip of the cusp toward the top of the arcade; the hottest region is slightly above the X-ray loop-top source that is co-spatial with the emission-measure-enhanced region at the top of the arcade. This signifies that a different heating mechanism from the slow-mode shocks attached to the reconnection site operates in the cusp region during the flare decay phase.

  1. Direct Coherent Raman Temperature Imaging and Wideband Chemical Detection in a Hydrocarbon Flat Flame.

    PubMed

    Bohlin, Alexis; Kliewer, Christopher J

    2015-02-19

    A single-shot coherent Raman imaging technique has been developed for spatially correlated one-dimensional high-fidelity gas-phase thermometry and multiplex chemical detection in flames. The technique utilizes two-beam phase matching, operating a single ultrashort pump/Stokes excitation pulse (7 fs) and a narrowband picosecond probe pulse (70 ps), interrogating a Raman active window of ∼4200 cm(-1) with ∼0.3 cm(-1) spectral resolution. The measurement geometry is formed intersecting the two beams shaped as laser-sheets and the one-coordinate spatial information is retrieved with a linespread function of <40 μm. The advance provides the possibility for the multiplexed measurement of all combustion relevant major species simultaneously with gaseous temperature monitored over a several millimeter field of view. The current technique is optimized in a premixed hydrocarbon flat-flame. At the flame-front, it is shown that direct imaging renders the temperature profile within ∼1% inaccuracy, whereas typical point-wise raster scanning may have relative systematic deviations up to 15% due to spatial averaging effects. PMID:26262480

  2. Simultaneous temperature and multi-species measurements in opposed jet flames of nitrogen-diluted hydrogen and air

    NASA Technical Reports Server (NTRS)

    Wehrmeyer, J. A.; Cheng, T. S.; Pitz, R. W.; Nandula, S.; Wilson, L. G.; Pellett, G. L.

    1991-01-01

    A narrowband UV Raman scattering system is used to obtain measurement profiles of major and minor species concentrations, temperature, and mixture fraction in opposed jet diffusion flames. The measurement profiles can be compared to previously obtained temperature and concentration profiles (Pellett et al., 1989), obtained using CARS, and they can also be qualitatively compared to the predicted concentration and temperature profiles in pure hydrogen/air flames (Gutheil and Williams, 1990) and in diluted hydrogen/air flames (Dixon-Lewis and Missaghi, 1988; Ho and Isaac, 1991). The applied stress-rates for the two flame conditions studied are 240/s and 340/s, with respective hydrogen concentrations in the fuel jet of 0.67 and 0.83, on a mole fraction basis (0.13 and 0.26 hydrogen mass fractions, respectively).

  3. Talbot interferometer with circular gratings for the measurement of temperature in axisymmetric gaseous flames.

    PubMed

    Shakher, C; Daniel, A J

    1994-09-01

    A detailed study for measuring the temperature distribution in axisymmetric flames by using a Talbot interferometer with circular gratings is presented. We increased the sensitivity of the interferometer by optimizing the pitch of the grating and the Talbot plane. We compare the experimental results with the values that were measured with a thermocouple to an accuracy of ±0.2% of full scale ±4 digits. Good agreement is seen between the temperatures measured by use of a thermocouple and those measured by use of Talbot interferometry. PMID:20936022

  4. Fluoromethane chemistry and its role in flame suppression

    SciTech Connect

    Westmoreland, P.R.; Burgess, D.R.F. Jr.; Zachariah, M.R.; Tsang, W.

    1994-12-31

    A detailed reaction set is composed for fluoromethanes in flames, and the competing roles of suppression chemistry, oxidation chemistry, and heat capacity are analyzed. The set is constructed using (1) thermo-chemistry from the literature, from group additivity, and from BAC-MP4 ab initio-based calculations and (2) kinetics from the literature, from simple analogies, from thermochemical kinetics, from BAC-MP4 transition-state calculations, and from Quantum-RRK and RRKM/Master Equation calculations. Structures of freely propagating laminar flames are then predicted and analyzed. A 6.4% CH{sub 4}/air flame is the base case with dopant CF{sub 4}, CHF{sub 3}, CH{sub 2}F{sub 2}, or CH{sub 4} to make up 1 ppm to 2 mol% of the feed. CF{sub 4}, which proves to be inert, slows the adiabatic flame speed and reduces the adiabatic flame temperature by dilution and its heat capacity. CHF{sub 3} causes chemical suppression effects, slowing adiabatic flame speed below that with CF{sub 4}, despite increasing adiabatic flame temperature. Adding CH{sub 2}F{sub 2}, CH{sub 3}F, or CH{sub 4} increases both flame speed and temperature. The chemical cause is competition between chain termination, primarily by chemically activated HF elimination, and chain propagation by normal oxidation pathways. Like methane, fluoromethane flame chemistry is dominated by abstraction and by chemically activated reactions. However, abstraction of H is greatly favored over abstraction of F. Thus, OH + CH{sub 3} = CH{sub 3}OH{degree} slowly forms CH{sub 3}OH by third-body stabilization, but OH + CF{sub 3} = CF{sub 3}OH{degree} goes rapidly to CF{sub 2}O + HF. Slow destruction of CF{sub 2}O formed by this reaction and by CF{sub 3} + O helps suppress the CHF{sub 3}-doped flame, but CH{sub 2}F{sub 2} and CH{sub 3}F are accelerants because they are oxidized easily.

  5. Thermocouple error correction for measuring the flame temperature with determination of emissivity and heat transfer coefficient.

    PubMed

    Hindasageri, V; Vedula, R P; Prabhu, S V

    2013-02-01

    Temperature measurement by thermocouples is prone to errors due to conduction and radiation losses and therefore has to be corrected for precise measurement. The temperature dependent emissivity of the thermocouple wires is measured by the use of thermal infrared camera. The measured emissivities are found to be 20%-40% lower than the theoretical values predicted from theory of electromagnetism. A transient technique is employed for finding the heat transfer coefficients for the lead wire and the bead of the thermocouple. This method does not require the data of thermal properties and velocity of the burnt gases. The heat transfer coefficients obtained from the present method have an average deviation of 20% from the available heat transfer correlations in literature for non-reacting convective flow over cylinders and spheres. The parametric study of thermocouple error using the numerical code confirmed the existence of a minimum wire length beyond which the conduction loss is a constant minimal. Temperature of premixed methane-air flames stabilised on 16 mm diameter tube burner is measured by three B-type thermocouples of wire diameters: 0.15 mm, 0.30 mm, and 0.60 mm. The measurements are made at three distances from the burner tip (thermocouple tip to burner tip/burner diameter = 2, 4, and 6) at an equivalence ratio of 1 for the tube Reynolds number varying from 1000 to 2200. These measured flame temperatures are corrected by the present numerical procedure, the multi-element method, and the extrapolation method. The flame temperatures estimated by the two-element method and extrapolation method deviate from numerical results within 2.5% and 4%, respectively. PMID:23464237

  6. Thermocouple error correction for measuring the flame temperature with determination of emissivity and heat transfer coefficient

    NASA Astrophysics Data System (ADS)

    Hindasageri, V.; Vedula, R. P.; Prabhu, S. V.

    2013-02-01

    Temperature measurement by thermocouples is prone to errors due to conduction and radiation losses and therefore has to be corrected for precise measurement. The temperature dependent emissivity of the thermocouple wires is measured by the use of thermal infrared camera. The measured emissivities are found to be 20%-40% lower than the theoretical values predicted from theory of electromagnetism. A transient technique is employed for finding the heat transfer coefficients for the lead wire and the bead of the thermocouple. This method does not require the data of thermal properties and velocity of the burnt gases. The heat transfer coefficients obtained from the present method have an average deviation of 20% from the available heat transfer correlations in literature for non-reacting convective flow over cylinders and spheres. The parametric study of thermocouple error using the numerical code confirmed the existence of a minimum wire length beyond which the conduction loss is a constant minimal. Temperature of premixed methane-air flames stabilised on 16 mm diameter tube burner is measured by three B-type thermocouples of wire diameters: 0.15 mm, 0.30 mm, and 0.60 mm. The measurements are made at three distances from the burner tip (thermocouple tip to burner tip/burner diameter = 2, 4, and 6) at an equivalence ratio of 1 for the tube Reynolds number varying from 1000 to 2200. These measured flame temperatures are corrected by the present numerical procedure, the multi-element method, and the extrapolation method. The flame temperatures estimated by the two-element method and extrapolation method deviate from numerical results within 2.5% and 4%, respectively.

  7. Tunable diode-laser measurement of carbon monoxide concentration and temperature in a laminar methane-air diffusion flame.

    PubMed

    Houston Miller, J; Elreedy, S; Ahvazi, B; Woldu, F; Hassanzadeh, P

    1993-10-20

    The application of tunable diode lasers for in situ diagnostics in laminar hydrocarbon diffusion flames is demonstrated. By the use of both direct-absorption and wavelength-modulation (second-derivative) techniques, carbon monoxide concentrations and the local flame temperature are determined for a laminar methane-air diffusion flame supported on a Wolfhard-Parker slot burner. In both cases the results are found to be in excellent agreement with prior measurements of these quantities using bothrobe and optical techniques. PMID:20856436

  8. A method of computing the transient temperature of thick walls from arbitrary variation of adiabatic-wall temperature and heat-transfer coefficient

    NASA Technical Reports Server (NTRS)

    Hill, P R

    1958-01-01

    A method of calculating the temperature of thick walls has been developed in which the time series and the response to a unit triangle variation of surface temperature concepts are used, together with essentially standard formulas for transient temperature and heat flow into thick walls. The method can be used without knowledge of the mathematical tools of its development. The method is particularly suitable for determining the wall temperature in one-dimensional thermal problems in aeronautics where there is a continuous variation of the heat-transfer coefficient and adiabatic-wall temperature. The method also offers a convenient means for solving the inverse problem of determining the heat-flow history when temperature history is known.

  9. Simultaneous high-speed measurement of temperature and lifetime-corrected OH laser-induced fluorescence in unsteady flames.

    PubMed

    Meyer, Terrence R; King, Galen B; Gluesenkamp, Matthew; Gord, James R

    2007-08-01

    A means of performing simultaneous, high-speed measurements of temperature and OH lifetime-corrected laser-induced fluorescence (LIF) for tracking unsteady flames has been developed and demonstrated. The system uses the frequency-doubled and frequency-tripled output beams of an 80 MHz mode-locked Ti:sapphire laser to achieve ultrashort laser pulses (order 2 ps) for Rayleigh-scattering thermometry at 460 nm and lifetime-corrected OH LIF at 306.5 nm, respectively. Simultaneous, high-speed measurements of temperature and OH number density enable studies of flame chemistry, heat release, and flame extinction in unsteady, strained flames where the local fluorescence-quenching environment is unknown. PMID:17671590

  10. Large Eddy Simulation of Radiation Effects on Pollutant Emissions in Diluted Turbulent Premixed Flames

    NASA Astrophysics Data System (ADS)

    Nunno, A. Cody; Mueller, Michael E.

    2015-11-01

    Radiation effects are examined in turbulent premixed flames using a detailed Large Eddy Simulation (LES) approach. The approach combines a tabulated premixed flamelet model (Flamelet Generated Manifolds) with an optically thin radiation model. Radiation heat loss is tracked using an enthalpy deficit coordinate. Heat loss in the flamelets is calculated by varying a coefficient on the radiation source term, ranging from zero (adiabatic) to unity (full optically thin heat loss). NOx emissions are modeled with an additional transport equation that is able to capture unsteady effects resulting from slow kinetics. The model is compared against experimental measurements of methane-air piloted turbulent premixed planar jet flames with increasing levels of water dilution that maintain a constant adiabatic flame temperature. The effects of water dilution on global flame structure and NO emissions resulting directly and indirectly from radiation are examined in detail.

  11. Optical measurements of soot and temperature profiles in premixed propane-oxygen flames

    NASA Technical Reports Server (NTRS)

    Lyons, V. J.; Pagni, P. J.

    1988-01-01

    Two laser diagnostic techniques were used to measure soot volume fractions, number densities and soot particle radii in premixed propane/oxygen flat flames. The two techniques used were two wavelength extinction, using 514.5 nm to 632.8 nm and 457.9 nm to 632.8 nm wavelength combinations, and extinction/scattering using 514.5 nm light. The flames were fuel-rich (equivalence ratios from 2.1 to 2.8) and had cold gas velocities varying from 3.4 to 5.5 cm/s. Measurements were made at various heights above the sintered-bronze, water-cooled flat flame burner with the equivalence ratio and cold gas velocity fixed. Also, measurements were made at a fixed height above the burner and fixed cold gas velocity while varying the equivalence ratio. Both laser techniques are based on the same underlying assumptions of particle size distribution and soot optical properties. Full Mie theory was used to determine the extinction coefficients K sub ext, and the scattering efficiencies, Q sub vv. Temperature measurements in the flames were made using infrared radiometry. Good agreement between the two techniques in terms of soot particle radii, number density and volume fraction was found for intensity ratios (I/I sub o) between 0.1 and 0.8. For intensity ratios higher or lower than this range, the differences in extinction coefficients at the wavelengths chosen for the two-wavelength method are too small to give accurate results for comparing particle radii and number densities. However, when comparing only soot volume fractions, the agreement between the two techniques continued to be good for intensity ratios up to 0.95.

  12. Optical measurements of soot and temperature profiles in premixed propane-oxygen flames

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Pagni, Patrick J.

    1988-01-01

    Two laser diagnostic techniques were used to measure soot volume fractions, number densities and soot particle radii in premixed propane/oxygen flat flames. The two techniques used were two wavelength extinction, using 514.5 nm to 632.8 nm and 457.9 nm to 632.8 nm wavelength combinations, and extinction/scattering using 514.5 nm light. The flames wre fuel-rich (equivalence ratios from 2.1 to 2.8) and had cold gas velocities varying from 3.4 to 5.5 cm/s. Measurements were made at various heights above the sintered-bronze, water-cooled flat flame burner with the equivalence ratio and cold gas velocity fixed. Also, measurements were made at a fixed height above the burner and fixed cold gas velocity while varying the equivalence ratio. Both laser techniques are based on the same underlying assumptions of particle size distribution and soot optical properties. Full Mie theory was used to determine the extinction coefficients K sub ext, and the scattering efficiencies, Q sub vv. Temperature measurements in the flames were made using infrared radiometry. Good agreement between the two techniques in terms of soot particle radii, number density and volume fraction was found for intensity ratios (I/I sub o) between 0.1 and 0.8. For intensity ratios higher or lower than this range, the differences in extinction coefficients at the wavelengths chosen for the two-wavelength method are too small to give accurate results for comparing particle radii and number densities. However, when comparing only soot volume fractions, the agreement between the two techniques continued to be good for intensity ratios up to 0.95.

  13. Temperature field measurement of an array of laminar premixed slot flame Jets using Mach-Zehnder interferometry

    NASA Astrophysics Data System (ADS)

    Najafian Ashrafi, Z.; Ashjaee, M.

    2015-05-01

    An experimental study was performed to investigate the influence of Reynolds number (Re) and non-dimensional jet-to-jet spacing (S/Dh) on flame shape, structure and temperature field of an array of laminar premixed slot flame jets. Mach-Zehnder interferometry technique is used to obtain an insight to the overall temperature field between single, twin and triple slot flame jets. The slot jets with large aspect ratio (L/W), length of L=60 mm and width of W=6 mm were used to eliminate the three-dimensional effect of temperature field. The effect of jet-to-jet spacing was investigated on flame characteristics under the test conditions of 200≤Re≤400 and equivalence ratio (φ) of unity. The present measurement reveals that the variation of maximum flame temperature with increment of Reynolds number is mainly due to heat transfer effects and is negligible while the flame height is increased. For the cases of twin and triple flame jets by increasing Reynolds number and decreasing non-dimensional jet-to-jet spacing (S/Dh), the interferences between the jets are increased and the jets attracted each other. Strong interference was observed at S/Dh=1.15. For the case of triple jets at this S/Dh, the central jet was suppressed while the side jets deflected towards the inner jet. The interference between jets was found to reduce the heat flux in the jet-to-jet interacting zone due to incomplete combustion. Also the optimum jet-to-jet spacing of triple flame jets is obtained at each Reynolds number to enhance the heat transfer performance of the jets.

  14. Flame Speeds of Methane-Air, Propane-Air, and Ethylene-Air Mixtures at Low Initial Temperatures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L; Heimel, Sheldon

    1952-01-01

    Flame speeds were determined for methane-air, propane-air, and ethylene-air mixtures at -73 C and for methane-air mixtures at -132 C. The data extend the curves of maximum flame speed against initial mixture temperature previously established for the range from room temperature to 344 C. Empirical equations for maximum flame speed u(cm/ sec) as a function of initial mixture temperature T(sub O) were determined to be as follows: for methane, for T(sub O) from 141 to 615 K, u = 8 + 0.000160 T(sub O)(exp 2.11); for propane, for T(sub O) from 200 to 616 K, u = 10 + 0.000342 T(sub O)(exp 2.00); for ethylene, for T(sub O) from 200 to 617 K, u = 10 + 0.00259 T(sub O)(exp 1.74). Relative flame speeds at low initial temperatures were predicted within approximately 20 percent by either the thermal theory as presented by Semenov or by the diffusion theory of Tanford and Pease. The same order was found previously for high initial temperatures. The low-temperature data were also found to extend the linear correlations between maximum flame speed and calculated equilibrium active-radical concentrations, which were established by the previously reported high-temperature data.

  15. Temperature measurement of axi- symmetric butane diffusion flame under the influence of upward decreasing gradient magnetic field using digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Kumar, Varun; Kumar, Manoj; Shakher, Chandra

    2015-08-01

    In this paper, digital holographic interferometry (DHI) is implemented to investigate the effect of upward decreasing gradient magnetic field on the temperature and temperature profile of diffusion flame created by butane torch burner. In the experiment double exposure digital holographic interferometry is used to calculate the temperature distribution inside the flame. First a digital hologram is recorded in the absence of flame and second hologram is recorded in the presence of flame. Phases in two different states of air (i.e. in absence of flame and presence of flame) are reconstructed individually by numerical method. The phase difference map is obtained by subtracting the reconstructed phase of air in presence and absence of flame. Refractive index inside the flame is obtained from the axi-symmetric phase difference data using the Abel inversion integral. Temperature distribution inside the flame is calculated from the refractive index data using Lorentz - Lorentz equation. Experiment is conducted on a diffusion flame created by butane torch burner in the absence of magnetic field and in presence of upward decreasing gradient magnetic field. Experimental investigations reveal that the maximum temperature inside the flame increases under the influence of upward decreasing magnetic field.

  16. Low-Temperature Oxidation Reactions and Cool Flames at Earth and Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard

    1999-01-01

    Non-isothermal studies of cool flames and low temperature oxidation reactions in unstirred closed vessels are complicated by the perturbing effects of natural convection at earth gravity. Buoyant convection due to self-heating during the course of slow reaction produces spatio-temporal variations in the thermal and thus specie concentration fields due to the Arrhenius temperature dependence of the reaction rates. Such complexities have never been quantitatively modeled and were the primary impetus for the development of CSTR's (continuously stirred tank reactors) 30 years ago. While CSTR's have been widely adopted since they offer the advantage of spatial uniformity in temperature and concentration, all gradients are necessarily destroyed along with any structure that may otherwise develop. Microgravity offers a unique environment where buoyant convection can be effectively minimized and the need for stirring eliminated. Moreover, eliminating buoyancy and the need for stirring eliminates complications associated with the induced hydrodynamic field whose influence on heat transport and hot spot formation, hence explosion limits, is not fully realized. The objective of this research is to quantitatively determine and understand the fundamental mechanisms that control the onset and evolution of low temperature reactions and cool flames in both static and flow reactors. Microgravity experiments will be conducted to obtain benchmark data on the structure (spatio-temporal temperature, concentration, flow fields), the dynamics of the chemical fronts, and the ignition diagrams (pressure vs. temperature). Ground-based experiments will be conducted to ascertain the role of buoyancy. Numerical simulations including detailed kinetics will be conducted and compared to experiment.

  17. Cool Flames in Propane-Oxygen Premixtures at Low and Intermediate Temperatures at Reduced-Gravity

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard; Foster, Michael; Karabacak, Devrez

    2003-01-01

    The Cool Flame Experiment aims to address the role of diffusive transport on the structure and the stability of gas-phase, non-isothermal, hydrocarbon oxidation reactions, cool flames and auto-ignition fronts in an unstirred, static reactor. These reactions cannot be studied on Earth where natural convection due to self-heating during the course of slow reaction dominates diffusive transport and produces spatio-temporal variations in the thermal and thus species concentration profiles. On Earth, reactions with associated Rayleigh numbers (Ra) less than the critical Ra for onset of convection (Ra(sub cr) approx. 600) cannot be achieved in laboratory-scale vessels for conditions representative of nearly all low-temperature reactions. In fact, the Ra at 1g ranges from 10(exp 4) - 10(exp 5) (or larger), while at reduced-gravity, these values can be reduced two to six orders of magnitude (below Ra(sub cr)), depending on the reduced-gravity test facility. Currently, laboratory (1g) and NASA s KC-135 reduced-gravity (g) aircraft studies are being conducted in parallel with the development of a detailed chemical kinetic model that includes thermal and species diffusion. Select experiments have also been conducted at partial gravity (Martian, 0.3gearth) aboard the KC-135 aircraft. This paper discusses these preliminary results for propane-oxygen premixtures in the low to intermediate temperature range (310- 350 C) at reduced-gravity.

  18. Adiabatic cooling of antiprotons.

    PubMed

    Gabrielse, G; Kolthammer, W S; McConnell, R; Richerme, P; Kalra, R; Novitski, E; Grzonka, D; Oelert, W; Sefzick, T; Zielinski, M; Fitzakerley, D; George, M C; Hessels, E A; Storry, C H; Weel, M; Müllers, A; Walz, J

    2011-02-18

    Adiabatic cooling is shown to be a simple and effective method to cool many charged particles in a trap to very low temperatures. Up to 3×10(6) p are cooled to 3.5 K-10(3) times more cold p and a 3 times lower p temperature than previously reported. A second cooling method cools p plasmas via the synchrotron radiation of embedded e(-) (with many fewer e(-) than p in preparation for adiabatic cooling. No p are lost during either process-a significant advantage for rare particles. PMID:21405511

  19. Adiabatic Cooling of Antiprotons

    SciTech Connect

    Gabrielse, G.; Kolthammer, W. S.; McConnell, R.; Richerme, P.; Kalra, R.; Novitski, E.; Oelert, W.; Grzonka, D.; Sefzick, T.; Zielinski, M.; Fitzakerley, D.; George, M. C.; Hessels, E. A.; Storry, C. H.; Weel, M.; Muellers, A.; Walz, J.

    2011-02-18

    Adiabatic cooling is shown to be a simple and effective method to cool many charged particles in a trap to very low temperatures. Up to 3x10{sup 6} p are cooled to 3.5 K--10{sup 3} times more cold p and a 3 times lower p temperature than previously reported. A second cooling method cools p plasmas via the synchrotron radiation of embedded e{sup -} (with many fewer e{sup -} than p) in preparation for adiabatic cooling. No p are lost during either process--a significant advantage for rare particles.

  20. High-temperature aerosol formation in wood pellets flames: Spatially resolved measurements

    SciTech Connect

    Wiinikka, Henrik; Gebart, Rikard; Boman, Christoffer; Bostroem, Dan; Nordin, Anders; OEhman, Marcus

    2006-12-15

    The formation and evolution of high-temperature aerosols during fixed bed combustion of wood pellets in a realistic combustion environment were investigated through spatially resolved experiments. The purpose of this work was to investigate the various stages of aerosol formation from the hot flame zone to the flue gas channel. The investigation is important both for elucidation of the formation mechanisms and as a basis for development and validation of particle formation models that can be used for design optimization. Experiments were conducted in an 8-kW-updraft fired-wood-pellets combustor. Particle samples were withdrawn from the centerline of the combustor through 10 sampling ports by a rapid dilution sampling probe. The corresponding temperatures at the sampling positions were in the range 200-1450{sup o}C. The particle sample was size-segregated in a low-pressure impactor, allowing physical and chemical resolution of the fine particles. The chemical composition of the particles was investigated by SEM/EDS and XRD analysis. Furthermore, the experimental results were compared to theoretical models for aerosol formation processes. The experimental data show that the particle size distribution has two peaks, both of which are below an aerodynamic diameter of 2.5 {mu}m (PM{sub 2.5}). The mode diameters of the fine and coarse modes in the PM{sub 2.5} region were {approx}0.1 and {approx}0.8 {mu}m, respectively. The shape of the particle size distribution function continuously changes with position in the reactor due to several mechanisms. Early, in the flame zone, both the fine mode and the coarse mode in the PM{sub 2.5} region were dominated by particles from incomplete combustion, indicated by a significant amount of carbon in the particles. The particle concentrations of both the fine and the coarse mode decrease rapidly in the hot oxygen-rich flame due to oxidation of the carbon-rich particles. After the hot flame, the fine mode concentration and particle

  1. TEMPERATURE AND ELECTRON DENSITY DIAGNOSTICS OF A CANDLE-FLAME-SHAPED FLARE

    SciTech Connect

    Guidoni, S. E.; Plowman, J. E.

    2015-02-10

    Candle-flame-shaped flares are archetypical structures that provide indirect evidence of magnetic reconnection. A flare resembling Tsuneta's famous 1992 candle-flame flare occurred on 2011 January 28; we present its temperature and electron density diagnostics. This flare was observed with Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA), Hinode/X-Ray Telescope (XRT), and Solar Terrestrial Relations Observatory Ahead (STEREO-A)/Extreme Ultraviolet Imager, resulting in high-resolution, broad temperature coverage, and stereoscopic views of this iconic structure. The high-temperature images reveal a brightening that grows in size to form a tower-like structure at the top of the posteruption flare arcade, a feature that has been observed in other long-duration events. Despite the extensive work on the standard reconnection scenario, there is no complete agreement among models regarding the nature of this high-intensity elongated structure. Electron density maps reveal that reconnected loops that are successively connected at their tops to the tower develop a density asymmetry of about a factor of two between the two legs, giving the appearance of ''half-loops''. We calculate average temperatures with a new fast differential emission measure (DEM) method that uses SDO/AIA data and analyze the heating and cooling of salient features of the flare. Using STEREO observations, we show that the tower and the half-loop brightenings are not a line-of-sight projection effect of the type studied by Forbes and Acton. This conclusion opens the door for physics-based explanations of these puzzling, recurrent solar flare features, previously attributed to projection effects. We corroborate the results of our DEM analysis by comparing them with temperature analyses from Hinode/XRT.

  2. Temperature and Electron Density Diagnostics of a Candle-flame-shaped Flare

    NASA Astrophysics Data System (ADS)

    Guidoni, S. E.; McKenzie, D. E.; Longcope, D. W.; Plowman, J. E.; Yoshimura, K.

    2015-02-01

    Candle-flame-shaped flares are archetypical structures that provide indirect evidence of magnetic reconnection. A flare resembling Tsuneta's famous 1992 candle-flame flare occurred on 2011 January 28; we present its temperature and electron density diagnostics. This flare was observed with Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA), Hinode/X-Ray Telescope (XRT), and Solar Terrestrial Relations Observatory Ahead (STEREO-A)/Extreme Ultraviolet Imager, resulting in high-resolution, broad temperature coverage, and stereoscopic views of this iconic structure. The high-temperature images reveal a brightening that grows in size to form a tower-like structure at the top of the posteruption flare arcade, a feature that has been observed in other long-duration events. Despite the extensive work on the standard reconnection scenario, there is no complete agreement among models regarding the nature of this high-intensity elongated structure. Electron density maps reveal that reconnected loops that are successively connected at their tops to the tower develop a density asymmetry of about a factor of two between the two legs, giving the appearance of "half-loops." We calculate average temperatures with a new fast differential emission measure (DEM) method that uses SDO/AIA data and analyze the heating and cooling of salient features of the flare. Using STEREO observations, we show that the tower and the half-loop brightenings are not a line-of-sight projection effect of the type studied by Forbes & Acton. This conclusion opens the door for physics-based explanations of these puzzling, recurrent solar flare features, previously attributed to projection effects. We corroborate the results of our DEM analysis by comparing them with temperature analyses from Hinode/XRT.

  3. Laser-induced fluorescence determination of temperatures in low pressure flames.

    PubMed

    Rensberger, K J; Jeffries, J B; Copeland, R A; Kohse-Höinghaus, K; Wise, M L; Crosley, D R

    1989-09-01

    Spatially resolved temperatures in a variety of low pressure flames of hydrogen and hydrocarbons burning with oxygen and nitrous oxide are determined from OH, NH, CH, and CN laser-induced fluorescence rotational excitation spectra. Systematic errors arising from spectral bias, time delay, and temporal sampling gate of the fluorescence detector are considered. In addition, we evaluate the errors arising from the influences of the optical depth and the rotational level dependence of the fluorescence quantum yield for each radical. These systematic errors cannot be determined through goodness-of-fit criteria and they are much larger than the statistical precision of the measurement. The severity of these problems is different for each radical; careful attention to the experimental design details for each species is necessary to obtain accurate LIF temperature measurements. PMID:20555739

  4. The flame anchoring mechanism and associated flow structure in bluff-body stabilized lean premixed flames

    NASA Astrophysics Data System (ADS)

    Michaels, Dan; Shanbhogue, Santosh; Ghoniem, Ahmed

    2015-11-01

    We present numerical analysis of a lean premixed flame anchoring on a heat conducting bluff-body. Different mixtures of CH4/H2/air are analyzed in order to systematically vary the burning velocity, adiabatic flame temperature and extinction strain rate. The study was motivated by our experimental measurements in a step combustor which showed that both the recirculation zone length and stability map under acoustically coupled conditions for different fuels and thermodynamic conditions collapse using the extinction strain rate. The model fully resolves unsteady two-dimensional flow with detailed chemistry and species transport, and without artificial flame anchoring boundary conditions. The model includes a low Mach number operator-split projection algorithm, coupled with a block-structured adaptive mesh refinement and an immersed boundary method for the solid body. Calculations reveal that the recirculation zone length correlates with the flame extinction strain rate, consistent with the experimental evidence. It is found that in the vicinity of the bluff body the flame is highly stretched and its leading edge location is controlled by the reactants combustion characteristics under high strain. Moreover, the flame surface location relative to the shear layer influences the vorticity thus impacting the velocity field and the recirculation zone. The study sheds light on the experimentally observed collapse of the combustor dynamics using the reactants extinction strain rate.

  5. Calculation of reaction energies and adiabatic temperatures for waste tank reactions

    SciTech Connect

    Burger, L.L.

    1993-03-01

    Continual concern has been expressed over potentially hazardous exothermic reactions that might occur in underground Hanford waste tanks. These tanks contain many different oxidizable compounds covering a wide range of concentrations. Several may be in concentrations and quantities great enough to be considered a hazard in that they could undergo rapid and energetic chemical reactions with nitrate and nitrite salts that are present. The tanks also contain many inorganic compounds inert to oxidation. In this report the computed energy that may be released when various organic and inorganic compounds react is computed as a function of the reaction mix composition and the temperature. The enthalpy, or integrated heat capacity, of these compounds and various reaction products is presented as a function of temperature, and the enthalpy of a given mixture can then be equated to the energy release from various reactions to predict the maximum temperature that may be reached. This is estimated for several different compositions. Alternatively, the amounts of various diluents required to prevent the temperature from reaching a critical value can be estimated.

  6. Effects of Structure and Hydrodynamics on the Sooting Behavior of Spherical Microgravity Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Axelbaum, Richard L.; Urban, D. L.

    2000-01-01

    We have examined the sooting behavior of spherical microgravity diffusion flames burning ethylene at atmospheric pressure in the NASA Glenn 2.2-second drop tower. In a novel application of microgravity, spherical flames allowed convection across the flame to be either from fuel to oxidizer or from oxidizer to fuel. Thus, microgravity flames are uniquely capable of allowing independent variation of convection direction across the flame and stoichiometric mixture fraction, Z(sub st). This allowed us to determine the dominant mechanism responsible for the phenomenon of permanently-blue diffusion flames -- flames that remain blue as strain rate approaches zero. Stoichiometric mixture fraction was varied by changing inert concentrations such that adiabatic flame temperature did not change. At low and high Z(sub st) nitrogen was supplied with the oxidizer and the fuel, respectively. For the present flames, structure (Z(sub st)) was found to have a profound effect on soot production. Soot-free conditions were observed at high Z(sub st) (Z(sub st) = 0.78) and sooting conditions were observed at low Z(sub st) (Z(sub st) = 0.064) regardless of the direction of convection. Convection direction was found to have a lesser impact on soot inception, with formation being suppressed when convection at the flame sheet was directed towards the oxidizer.

  7. Calculation of reaction energies and adiabatic temperatures for waste tank reactions

    SciTech Connect

    Burger, L.L.

    1995-10-01

    Continual concern has been expressed over potentially hazardous exothermic reactions that might occur in Hanford Site underground waste storage tanks. These tanks contain many different oxidizable compounds covering a wide range of concentrations. The chemical hazards are a function of several interrelated factors, including the amount of energy (heat) produced, how fast it is produced, and the thermal absorption and heat transfer properties of the system. The reaction path(s) will determine the amount of energy produced and kinetics will determine the rate that it is produced. The tanks also contain many inorganic compounds inert to oxidation. These compounds act as diluents and can inhibit exothermic reactions because of their heat capacity and thus, in contrast to the oxidizable compounds, provide mitigation of hazardous reactions. In this report the energy that may be released when various organic and inorganic compounds react is computed as a function of the reaction-mix composition and the temperature. The enthalpy, or integrated heat capacity, of these compounds and various reaction products is presented as a function of temperature; the enthalpy of a given mixture can then be equated to the energy release from various reactions to predict the maximum temperature which may be reached. This is estimated for several different compositions. Alternatively, the amounts of various diluents required to prevent the temperature from reaching a critical value can be estimated. Reactions taking different paths, forming different products such as N{sub 2}O in place of N{sub 2} are also considered, as are reactions where an excess of caustic is present. Oxidants other than nitrate and nitrite are considered briefly.

  8. Characterization of temperature non-uniformity over a premixed CH4-air flame based on line-of-sight TDLAS

    NASA Astrophysics Data System (ADS)

    Zhang, Guangle; Liu, Jianguo; Xu, Zhenyu; He, Yabai; Kan, Ruifeng

    2016-01-01

    A novel technique for characterizing temperature non-uniformity has been investigated based on measurements of line-of-sight tunable diode laser absorption spectroscopy. It utilized two fiber-coupled distributed feedback diode lasers at wavelengths around 1339 and 1392 nm as light sources to probe the field at multiple absorptions lines of water vapor and applied a temperature binning strategy combined with Gauss-Seidel iteration method to explore the temperature non-uniformity of the field in one dimension. The technique has been applied to a McKenna burner, which produced a flat premixed laminar CH4-air flame. The flame and its adjacent area formed an atmospheric field with significant non-uniformity of temperature and water vapor concentration. The effect of the number of temperature bins on column-density and temperature results has also been explored.

  9. Comparisons of Gas-phase Temperature Measurements in a Flame Using Thin-Filament Pyrometry and Thermocouples

    NASA Technical Reports Server (NTRS)

    Struk, Peter; Dietrich, Daniel; Valentine, Russell; Feier, Ioan

    2003-01-01

    Less-intrusive, fast-responding, and full-field temperature measurements have long been a desired tool for the research community. Recently, the emission of a silicon-carbide (SiC) fiber placed in a flowing hot (or reacting) gas has been used to measure the temperature profile along the length of the fiber. The relationship between the gas and fiber temperature comes from an energy balance on the fiber. In the present work, we compared single point flame temperature measurements using thin-filament pyrometry (TFP) and thermocouples. The data was from vertically traversing a thermocouple and a SiC fiber through a methanol/air diffusion flame of a porous-metal wick burner. The results showed that the gas temperature using the TFP technique agreed with the thermocouple measurements (25.4 m diameter wire) within 3.5% for temperatures above 1200 K. Additionally, we imaged the entire SiC fiber (with a spatial resolution of 0.14 mm) while it was in the flame using a high resolution CCD camera. The intensity level along the fiber length is a function of the temperature. This results in a one-dimensional temperature profiles at various heights above the burner wick. This temperature measurement technique, while having a precision of less than 1 K, showed data scatter as high as 38 K. Finally, we discuss the major sources of uncertainty in gas temperature measurement using TFP.

  10. Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering at flame temperatures using a second-harmonic bandwidth-compressed probe.

    PubMed

    Kearney, Sean P; Scoglietti, Daniel J

    2013-03-15

    We demonstrate an approach for picosecond probe-beam generation that enables hybrid femtosecond/picosecond pure-rotational coherent anti-Stokes Raman scattering (CARS) measurements in flames. Sum-frequency generation of bandwidth-compressed picosecond radiation from femtosecond pumps with phase-conjugate chirps provides probe pulses with energies in excess of 1 mJ that are temporally locked to the femtosecond pump/Stokes preparation. This method overcomes previous limitations on hybrid femtosecond/picosecond rotational CARS techniques, which have relied upon less efficient bandwidth-reduction processes that have generally resulted in prohibitively low probe energy for flame measurements. We provide the details of the second-harmonic approach and demonstrate the technique in near-adiabatic hydrogen/air flames. PMID:23503231

  11. Pre-mixed flame simulations for non-unity Lewis numbers

    NASA Technical Reports Server (NTRS)

    Rutland, C. J.; Trouve, A.

    1990-01-01

    A principal effect of turbulence on premixed flames in the flamelet region is to wrinkle the flame fronts. For non-unity Lewis numbers (Le), the local flame structure is altered in curved regions. This effect is examined using direct numerical simulations of the three dimensional, constant density, decaying isotropic turbulence with a single step, finite rate chemical reaction. Simulations of Lewis numbers 0.8, 1.0, and 1.2 are compared. The turbulent flame speed, S(sub T), increases as Le decreases. The correlation between S(sub T) and u prime found in previous Le = 1 simulations has a strong Lewis number dependency. The variance of the pdf of the flame curvature increases as Le decreases, indicating that the flames become more wrinkled. A strong correlation between local flame speed and curvature was found. For Le greater than 1, the flame speed increases in regions concave towards the products and decreases in convex regions. The opposite correlation was found for Le less than 1. The mean temperature of the products was also found to vary with Lewis number. For Le = 0.8, it is less than the adiabatic flame temperature and for Le = 1.2 it is greater.

  12. Overall reaction concept in premixed, laminar, steady-state flames. II. Initial temperatures and pressures. Final technical report

    SciTech Connect

    Coffee, T.P.; Kotlar, A.J.; Miller, M.S.

    1984-11-01

    In a previous report, the adequacy of the overall reaction model for premixed, laminar, one-dimensional, steady-state flames was examined. The single-reaction model gave quite accurate results for burning velocity. The temperature and heat-release profiles were also generally accurate. The accuracy of the major-species profiles varied from fair to good. However, the optimal overall kinetic parameters varied with the equivalence ratio. In this report, the adequacy of an overall reaction model for premixed, laminar, one-dimensional, steady-state flames is examined for variations in initial temperature and pressure. The single reaction model gives quite accurate results for burning velocity; temperature and heat-release profiles are also generally accurate; major-species profiles are reproduced with fair to good accuracy. The optimal overall parameters change with initial temperature and pressure. However, a single set of parameters are found to be accurate over a limited range of initial temperatures and pressures.

  13. Direct numerical simulation of nonpremixed flame-wall interactions

    SciTech Connect

    Wang, Yi; Trouve, Arnaud

    2006-02-01

    The objective of the present study is to use detailed numerical modeling to obtain basic information on the interaction of nonpremixed flames with cold wall surfaces. The questions of turbulent fuel-air-temperature mixing, flame extinction, and wall-surface heat transfer are studied using direct numerical simulation (DNS). The DNS configuration corresponds to an ethylene-air diffusion flame stabilized in the near-wall region of a chemically inert solid surface. Simulations are performed with adiabatic or isothermal wall boundary conditions and with different turbulence intensities. The simulations feature flame extinction events resulting from excessive wall cooling and convective heat transfer rates up to 90 kW/m{sup 2}. The structure of the simulated wall flames is studied in terms of a classical mass-mixing variable, the fuel-air based mixture fraction, and a less familiar heat loss variable, the excess enthalpy variable, introduced to provide a measure of nonadiabatic behavior due to wall cooling. In addition to the flame structure, extinction events are also studied in detail and a modified flame extinction criterion that combines the concepts of mixture fraction and excess enthalpy is proposed and then tested against the DNS data. (author)

  14. Quantum cascade laser-based MIR spectrometer for the determination of CO and concentrations and temperature in flames

    NASA Astrophysics Data System (ADS)

    Nau, Patrick; Koppmann, Julia; Lackner, Alexander; Kohse-Höinghaus, Katharina; Brockhinke, Andreas

    2015-03-01

    An experimental setup for the simultaneous detection of CO and and the temperature in low-pressure flames using a pulsed quantum cascade laser at 4.48 μm is presented. This comparatively new type of laser offers good output energies and beam quality in the mid-infrared, where the strong fundamental transitions of many molecules of interest can be accessed. A single-pass absorption setup was sufficient to obtain good accuracy for the stable species investigated here. Due to the high repetition rate of the laser and the speed of the data acquisition, measurement of two-dimensional absorption spectra and subsequent tomographic reconstruction was feasible. As demonstration of this technique, two-dimensional CO and concentrations have been measured in two fuel-rich methane flames with different coflow gases (nitrogen and air). The influence of the coflow gas on the flame center concentration profiles was investigated and compared with one-dimensional model simulations.

  15. Determination of Maintaining Time of Temperature Traces of Aerosol Droplet Water Flows During Motion in a Flame

    NASA Astrophysics Data System (ADS)

    Antonov, D. V.; Voitkov, I. S.; Strizhak, P. A.

    2016-02-01

    To develop fire fighting technologies, the temperatures of combustible products were measured after passing an aerosol droplet flow of water through the flames (with monitored temperatures). It was applied the aerosol flows with droplets of sizes less than 100 μm, 100-200 μm, and 200-300 μm. Investigations were conducted at a temperature of combustible products from 500 K to 900 K. Temperatures of gases in droplet flow traces and maintaining times of relatively low temperatures in these areas (it can be considered as temperature trace) were defined. It was obtained the satisfactory agreement of experimental results and numerical simulation data.

  16. Instabilities and soot formation in high-pressure, rich, iso-octane-air explosion flames. 1. Dynamical structure

    SciTech Connect

    Lockett, R.D.; Woolley, R.

    2007-12-15

    Simultaneous OH planar laser-induced fluorescence (PLIF) and Rayleigh scattering measurements have been performed on 2-bar rich iso-octane-air explosion flames obtained in the optically accessible Leeds combustion bomb. Separate shadowgraph high-speed video images have been obtained from explosion flames under similar mixture conditions. Shadowgraph images, quantitative Rayleigh images, and normalized OH concentration images have been presented for a selection of these explosion flames. Normalized experimental equilibrium OH concentrations behind the flame fronts have been compared with normalized computed equilibrium OH concentrations as a function of equivalence ratio. The ratio of superequilibrium OH concentration in the flame front to equilibrium OH concentration behind the flame front reveals the response of the flame to the thermal-diffusive instability and the resistance of the flame front to rich quenching. Burned gas temperatures have been determined from the Rayleigh scattering images in the range 1.4{<=}{phi}{<=}1.9 and are found to be in good agreement with the corresponding predicted adiabatic flame temperatures. Soot formation was observed to occur behind deep cusps associated with large-wavelength cracks occurring in the flame front for equivalence ratio {phi}{>=}1.8 (C/O{>=}0.576). The reaction time-scale for iso-octane pyrolysis to soot formation has been estimated to be approximately 7.5-10 ms. (author)

  17. Patients presenting with miliaria while wearing flame resistant clothing in high ambient temperatures: a case series

    PubMed Central

    2011-01-01

    Introduction Clothing can be a cause of occupational dermatitis. Frequent causes of clothing-related dermatological problems can be the fabric itself and/or chemical additives used in the laundering process, friction from certain fabrics excessively rubbing the skin, or heat retention from perspiration-soaked clothing in hot working environments. To the best of our knowledge, these are the first reported cases of miliaria rubra associated with prolonged use of flame resistant clothing in the medical literature. Case presentation We report 18 cases (14 men and 4 women, with an age range of 19 to 37 years) of moderate to severe skin irritation associated with wearing flame resistant clothing in hot arid environments (temperature range: 39 to 50°C, 5% to 25% relative humidity). We describe the medical history in detail of a 23-year-old Caucasian woman and a 31-year-old African-American man. A summary of the other 16 patients is also provided. Conclusions These cases illustrate the potential serious nature of miliaria with superimposed Staphylococcus infections. All 18 patients fully recovered with topical skin treatment and modifications to their dress ensemble. Clothing, in particular blend fabrics, must be thoroughly laundered to adequately remove detergent residue. While in hot environments, individuals with sensitive skin should take the necessary precautions such as regular changing of clothing and good personal hygiene to ensure that their skin remains as dry and clean as possible. It is also important that they report to their health care provider as soon as skin irritation or rash appears to initiate any necessary medical procedures. Miliaria rubra can take a week or longer to clear, so removal of exposure to certain fabric types may be necessary. PMID:21939537

  18. Experimental Investigation and 3D Finite Element Prediction of Temperature Distribution during Travelling Heat Sourced from Oxyacetylene Flame

    NASA Astrophysics Data System (ADS)

    Umar Alkali, Adam; Lenggo Ginta, Turnad; Majdi Abdul-Rani, Ahmad

    2015-04-01

    This paper presents a 3D transient finite element modelling of the workpiece temperature field produced during the travelling heat sourced from oxyacetylene flame. The proposed model was given in terms of preheat-only test applicable during thermally enhanced machining using the oxyacetylene flame as a heat source. The FEA model as well as the experimental test investigated the surface temperature distribution on 316L stainless steel at scanning speed of 100mm/min, 125mm/min 160mm/min, 200mm/min and 250mm/min. The parametric properties of the heat source maintained constant are; lead distance Ld =10mm, focus height Fh=7.5mm, oxygen gas pressure Poxy=15psi and acetylene gas pressure Pacty=25psi. An experimental validation of the temperature field induced on type 316L stainless steel reveal that temperature distribution increases when the travelling speed decreases.

  19. Weather Types, temperature and relief relationship in the Iberian Peninsula: A regional adiabatic processes under directional weather types

    NASA Astrophysics Data System (ADS)

    Peña Angulo, Dhais; Trigo, Ricardo; Cortesi, Nicola; Gonzalez-Hidalgo, Jose Carlos

    2016-04-01

    We have analyzed at monthly scale the spatial distribution of Pearson correlation between monthly mean of maximum (Tmax) and minimum (Tmin) temperatures with weather types (WTs) in the Iberian Peninsula (IP), represent them in a high spatial resolution grid (10km x 10km) from MOTEDAS dataset (Gonzalez-Hidalgo et al., 2015a). The WT classification was that developed by Jenkinson and Collison, adapted to the Iberian Peninsula by Trigo and DaCamara, using Sea Level Pressure data from NCAR/NCEP Reanalysis dataset (period 1951-2010). The spatial distribution of Pearson correlations shows a clear zonal gradient in Tmax under the zonal advection produced in westerly (W) and easterly (E) flows, with negative correlation in the coastland where the air mass come from but positive correlation to the inland areas. The same is true under North-West (NW), North-East (NE), South-West (SW) and South-East (SE) WTs. These spatial gradients are coherent with the spatial distribution of the main mountain chain and offer an example of regional adiabatic phenomena that affect the entire IP (Peña-Angulo et al., 2015b). These spatial gradients have not been observed in Tmin. We suggest that Tmin values are less sensitive to changes in Sea Level Pressure and more related to local factors. These directional WT present a monthly frequency over 10 days and could be a valuable tool for downscaling processes. González-Hidalgo J.C., Peña-Angulo D., Brunetti M., Cortesi, C. (2015a): MOTEDAS: a new monthly temperature database for mainland Spain and the trend in temperature (1951-2010). International Journal of Climatology 31, 715-731. DOI: 10.1002/joc.4298 Peña-Angulo, D., Trigo, R., Cortesi, C., González-Hidalgo, J.C. (2015b): The influence of weather types on the monthly average maximum and minimum temperatures in the Iberian Peninsula. Submitted to Hydrology and Earth System Sciences.

  20. Image analysis of degradation processes of carbon/carbon composites in a high temperature chemical flame

    SciTech Connect

    Kubota, Masao; Kitagawa, Kuniyuki; Arai; Norio; Ushigome, Nobutaka; Kato, Yoshinari

    1998-07-01

    The purpose of this study is to develop a measurement technique for in-situ monitoring of the degradation processes of thermal-resistance materials, such as C/C (carbon fiber reinforced carbon) composites, in high temperature fields. Spatially, spectrally and temporally resolved images of emission from diatomic molecules in an acetylene-air were observed flame by a spectrovideo camera, assembled by combining a conochromator and a high speed UV video camera. Two dimensional atomic adsorption spectrometry (AAS) using the spectrovideo camera was applied to investigate the degradation process. The test samples employed in this study were Mg-doped three different C/C composites with oxidation-resistive double layer coatings of SiC and glass materials. The results indicated that the time changes in the spatial distribution of Mg adsorption observed by the spectrovideo camera proved to be a powerful tool to in-situ monitor the degradation/oxidation processes of the oxidation-resistive C/C composites in high temperature fields.

  1. Low-Temperature Polymorphic Phase Transition in a Crystalline Tripeptide l-Ala-l-Pro-Gly·H2O Revealed by Adiabatic Calorimetry

    PubMed Central

    Markin, Alexey V.; Markhasin, Evgeny; Sologubov, Semen S.; Ni, Qing Zhe; Smirnova, Natalia N.; Griffin, Robert G.

    2015-01-01

    We demonstrate application of precise adiabatic vacuun calorimetry to observation of phase transition in the tripeptide l-alanyl-l-prolyl-glycine monohydrate (APG) from 6 to 320 K and report the standard thermodynamic properties of the tripeptide in the entire range. Thus, the heat capacity of APG was measured by adiabatic vacuun calorimetry in the above temperature range. The tripeptide exhibits a reversible first-order solid-to-solid phase transition characterized by strong thermal hysteresis. We report the standard thermodynamic characteristics of this transition and show that differential scanning calorimetry can reliably characterize the observed phase transition with <5 mg of the sample. Additionally, the standard entropy of formation from the elemental substances and the standard entropy of hypothetical reaction of synthesis from the amino acids at 298.15 K were calculated for the studied tripeptide. PMID:25588051

  2. Temperature, Oxygen, and Soot-Volume-Fraction Measurements in a Turbulent C2H4-Fueled Jet Flame

    SciTech Connect

    Kearney, Sean P.; Guildenbecher, Daniel Robert; Winters, Caroline; Farias, Paul Abraham; Grasser, Thomas W.; Hewson, John C.

    2015-09-01

    We present a detailed set of measurements from a piloted, sooting, turbulent C 2 H 4 - fueled diffusion flame. Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (CARS) is used to monitor temperature and oxygen, while laser-induced incandescence (LII) is applied for imaging of the soot volume fraction in the challenging jet-flame environment at Reynolds number, Re = 20,000. Single-laser shot results are used to map the mean and rms statistics, as well as probability densities. LII data from the soot-growth region of the flame are used to benchmark the soot source term for one-dimensional turbulence (ODT) modeling of this turbulent flame. The ODT code is then used to predict temperature and oxygen fluctuations higher in the soot oxidation region higher in the flame.

  3. Comparative study of soot formation on the centerline of axisymmetric laminar diffusion flames: Fuel and temperature effects

    SciTech Connect

    Gomez, A.; Littman, M.G.; Glassman, I.

    1987-11-01

    The appearance of soot on the centerline aof axisymmetric laminar diffusion flames has been studied by monitoring (i) the gas temperature by thermocouples; (ii) the soot particle field by laser scattering/extinction; (iii) the presence of polycyclic aromatic hydrocarbons (PCAH) by laser induced fluorescence. Four fuels were used: butene, acetylene, butadiene, and benzene. All but one flame were at the smoke height condition and were characterized by different levels of N/sub 2/ dilution aimed at controlling the temperature field. It was observed that (i) soot nucleation occurs at the centerline; (ii) the soot onset on the centerline occurs when a characteristic temperature of 1350K is measured, regardless of fuel type or level of dilution; (iii) butene and benzene have similar fluorescence patterns, in contrast with premixed flame environments. These last two observations are consistent with the proposal that, though the extent of conversion of fuel into soot may significantly change from fuel to fuel, there is a common mechanism of soot formation for all fuels. Results are discussed.

  4. Simultaneous estimation of the 3-D soot temperature and volume fraction distributions in asymmetric flames using high-speed stereoscopic images.

    PubMed

    Huang, Qunxing; Wang, Fei; Yan, Jianhua; Chi, Yong

    2012-05-20

    An inverse radiation analysis using soot emission measured by a high-speed stereoscopic imaging system is described for simultaneous estimation of the 3-D soot temperature and volume fraction distributions in unsteady sooty flames. A new iterative reconstruction method taking self attenuation into account is developed based on the least squares minimum-residual algorithm. Numerical assessment and experimental measurement results of an ethylene/air diffusive flame show that the proposed method is efficient and capable of reconstructing the soot temperature and volume fraction distributions in unsteady flames. The accuracy is improved when self attenuation is considered. PMID:22614600

  5. Sooting Limits Of Microgravity Spherical Diffusion Flames. [conducted in the NASA Glenn 2.2-second drop tower

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Urban, D. L.; Stocker, D. P.; Chao, B.-H.; Axelbaum, Richard L.; Salzman, Jack (Technical Monitor)

    2001-01-01

    Limiting conditions for soot-particle inception were studied in microgravity spherical diffusion flames burning ethylene at atmospheric pressure. Nitrogen was supplied in the fuel and/or oxidizer to obtain the broadest range of stoichiometric mixture fraction. Both normal flames (oxygen in ambience) and inverted flames (fuel in ambience) were considered. Microgravity was obtained in the NASA Glenn 2.2-second drop tower. The flames were observed with a color video camera and sooting conditions were defined as conditions for which yellow emission was present throughout the duration of the drop. Sooting limit results were successfully correlated in terms of adiabatic flame temperature and stoichiometric mixture fraction. Soot free conditions were favored by increased stoichiometric mixture fractions. No statistically significant effect of convection direction on sooting limits was observed. The relationship between adiabatic flame temperature and stoichiometric mixture fraction at the sooting limits was found to be in qualitative agreement with a simple theory based on the assumption that soot inception can occur only where temperature and local C/O ratio exceed threshold values (circa 1250 K and 1, respectively).

  6. Temperature measurement of axisymmetric partially premixed methane/air flame in a co-annular burner using Mach-Zehnder interferometry

    NASA Astrophysics Data System (ADS)

    Irandoost, M. S.; Ashjaee, M.; Askari, M. H.; Ahmadi, S.

    2015-11-01

    In this paper partially premixed laminar methane/air co-flow flame is studied experimentally. Methane-air flame is established on an axisymmetric co-annular burner. The fuel-air jet flows from the central tube while the secondary air flows from the region between the inner and the outer tube. The aim is to investigate the flame characteristics for methane/air axisymmetric partially premixed flame using Mach-Zehnder interferometry. Different equivalence ratios (φ=1.4-2.2) and Reynolds numbers (Re=100-1200) are considered in the study. Flame generic visible appearance and the corresponding fringe map structures are also investigated. It is seen that the fringe maps are poorly influenced by equivalence ratio variations at constant Reynolds number but are significantly affected by Reynolds number variations in constant equivalence ratio. Temperatures obtained from optical techniques are compared with those obtained from thermocouples and good agreement is observed. It is concluded that the effect of Reynolds number increment on maximum flame temperature is negligible while equivalence ratio reduction increases maximum flame temperature substantially.

  7. Species profiles in solid propellant flames using absorption and emission spectroscopy

    SciTech Connect

    Vanderhoff, J.A. )

    1991-03-01

    A windowed strand burner with a propellant feed mechanism has been used to characterize the steady-state burning of two composite propellants, M-30 and HMXI, at moderate pressure. Both emission and absorption spectroscopy have yielded profile data on three important combustion species: OH, NH, and CN. Relative appearances of these three species are inferred from emission intensity profiles, and absolute concentration profiles are calculated from the absorption data. This is the first absolute determination of these combustion intermediates in a propellant flame. The concentration measurements for OH indicate that the propellant flame temperatures are about 200 and 100 K below adiabatic for M-30 and HMXI, respectively. A maximum value of 43 ppm NH is found for the M-30 propellant flame. Fluctuations in the flame front of HMXI compromised the determination of maximum concentrations for NH and CN.

  8. Global NOx Measurements in Turbulent Nitrogen-Diluted Hydrogen Jet Flames

    SciTech Connect

    Weiland, N.T.; Strakey, P.A.

    2007-03-01

    Turbulent hydrogen diffusion flames diluted with nitrogen are currently being studied to assess their ability to achieve the DOE Turbine Program’s aggressive emissions goal of 2 ppm NOx in a hydrogen-fueled IGCC gas turbine combustor. Since the unstrained adiabatic flame temperatures of these diluted flames are not low enough to eliminate thermal NOx formation the focus of the current work is to study how the effects of flame residence time and global flame strain can be used to help achieve the stated NOx emissions goal. Dry NOx measurements are presented as a function of jet diameter nitrogen dilution and jet velocity for a turbulent hydrogen/nitrogen jet issuing from a thin-lipped tube in an atmospheric pressure combustor. The NOx emission indices from these experiments are normalized by the flame residence time to ascertain the effects of global flame strain and fuel Lewis Number on the NOx emissions. In addition dilute hydrogen diffusion flame experiments were performed in a high-pressure combustor at 2 4 and 8 atm. The NOx emission data from these experiments are discussed as well as the results from a Computational Fluid Dynamics modeling effort currently underway to help explain the experimental data.

  9. Temperature profile of a stoichiometric ch4/N2O flame from laser excited fluorescence measurements on OH

    SciTech Connect

    Anderson, W.R.; Decker, L.J.; Kotlar, A.J.

    1982-07-01

    The temperature profile of a stoichiometric CH/sub 4//N/sub 2/O flame over a porous plug, atmospheric-pressure burner has been measured using laser excited fluorescence of the OH radical. The technique of rotationally resolved fluorescence excitation scans was extended to the (1,1) vibrational band of the A doublet sigma plus - X doublet pi system to avoid problems of laser beam depletion and self-absorption encountered by this group and previous workers using the (O,O) band. Absorption spectra were obtained in addition to fluorescence spectra. A least squares curve-fitting technique which accounts for the various types of line broadening was developed and applied to two absorption lines in the (O,O) band. The resulting temperature profile is compared to that from fluorescence data reduced using Boltzmann plots. The more complicated curve-fitting approach was later applied to five lines in the spectrum using several combinations of fluorescence and absorption data. Results of all the aforementioned methods were compared to those from OH band reversal and N2 vibrational Raman measurements at the same point in the post flame gases. Excellent agreement was achieved. The results are discussed with emphasis on both the fluorescence diagnostics and the characteristics of the CH/sub 4//N/sub 2/O flame on the porous-plug burner.

  10. Flame Shapes of Nonbuoyant Laminar Jet Diffusion Flames. Appendix K

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    The shapes (flame-sheet and luminous-flame boundaries) of steady nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue C02 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 4-50 kPa, jet exit Reynolds number of 3-54, initial air/fuel velocity ratios of 0-9 and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at micro-gravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smoke-point conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smoke-point conditions. Flame-shape predictions were based on simplified analyses using the boundary layer approximations along with empirical parameters to distinguish flame-sheet and luminous-flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions due to the presence of luminous soot particles in the fuel-lean region of the flames.

  11. Flame Shapes of Nonbuoyant Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Xu, F.; Dai, Z.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z. G. (Technical Monitor)

    2001-01-01

    The shapes (flame-sheet and luminous-flame boundaries) of steady nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue CO2 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 4-50 kPa, jet exit Reynolds number of 3-54, initial air/fuel velocity ratios of 0-9 and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at micro-gravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smokepoint conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smokepoint conditions. Flame-shape predictions were based on simplified analyses using the boundary layer approximations along with empirical parameters to distinguish flame-sheet and luminous flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions due to the presence of luminous soot particles in the fuel-lean region of the flames.

  12. Soot Formation in Purely-Curved Premixed Flames and Laminar Flame Speeds of Soot-Forming Flames

    NASA Technical Reports Server (NTRS)

    Buchanan, Thomas; Wang, Hai

    2005-01-01

    The research addressed here is a collaborative project between University of Delaware and Case Western Reserve University. There are two basic and related scientific objectives. First, we wish to demonstrate the suitability of spherical/cylindrical, laminar, premixed flames in the fundamental study of the chemical and physical processes of soot formation. Our reasoning is that the flame standoff distance in spherical/cylindrical flames under microgravity can be substantially larger than that in a flat burner-stabilized flame. Therefore the spherical/cylindrical flame is expected to give better spatial resolution to probe the soot inception and growth chemistry than flat flames. Second, we wish to examine the feasibility of determining the laminar flame speed of soot forming flames. Our basic assumption is that under the adiabatic condition (in the absence of conductive heat loss), the amount and dynamics of soot formed in the flame is unique for a given fuel/air mixture. The laminar flame speed can be rigorously defined as long as the radiative heat loss can be determined. This laminar flame speed characterizes the flame soot formation and dynamics in addition to the heat release rate. The research involves two integral parts: experiments of spherical and cylindrical sooting flames in microgravity (CWRU), and the computational counterpart (UD) that aims to simulate sooting laminar flames, and the sooting limits of near adiabatic flames. The computations work is described in this report, followed by a summary of the accomplishments achieved to date. Details of the microgra+ experiments will be discussed in a separate, final report prepared by the co-PI, Professor C-J. Sung of CWRU. Here only a brief discussion of these experiments will be given.

  13. Candle flames in microgravity

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Ross, H. D.; Tien, J. S.

    1995-01-01

    The candle flame in both normal and microgravity is non-propagating. In microgravity, however, the candle flame is also non-convective where (excepting Stefan flow) pure diffusion is the only transport mode. It also shares many characteristics with another classical problem, that of isolated droplet combustion. Given their qualitatively similar flame shapes and the required heat feedback to condensed-phase fuels, the gas-phase flow and temperature fields should be relatively similar for a droplet and a candle in reduced gravity. Unless the droplet diameter is maintained somehow through non-intrusive replenishment of fuel, the quasi-steady burning characteristics of a droplet can be maintained for only a few seconds. In contrast, the candle flame in microgravity may achieve a nearly steady state over a much longer time and is therefore ideal for examining a number of combustion-related phenomena. In this paper, we examine candle flame behavior in both short-duration and long-duration, quiescent, microgravity environments. Interest in this type of flame, especially 'candle flames in weightlessness', is demonstrated by very frequent public inquiries. The question is usually posed as 'will a candle flame burn in zero gravity', or, 'will a candle burn indefinitely (or steadily) in zero gravity in a large volume of quiescent air'. Intuitive speculation suggests to some that, in the absence of buoyancy, the accumulation of products in the vicinity of the flame will cause flame extinction. The classical theory for droplet combustion with its spherically-shaped diffusion flame, however, shows that steady combustion is possible in the absence of buoyancy if the chemical kinetics are fast enough. Previous experimental studies of candle flames in reduced and microgravity environments showed the flame could survive for at least 5 seconds, but did not reach a steady state in the available test time.

  14. Large adiabatic temperature change in magnetoelastic transition in Ni50Mn35Cr2Sn13 Heusler alloy of granular nanostructure

    NASA Astrophysics Data System (ADS)

    Prakash, H. R.; Sharma, S. K.; Ram, S.; Chatterjee, S.

    2016-05-01

    The Ni-Mn-Sn alloys are a pioneering series of magnetocaloric materials of a huge heat-energy exchanger in the martensite transition. A small additive of nearly 2 at% Cr effectively tunes the valence electron density of 8.090 electrons per atom and a large change in the entropy ΔSM←A = 4.428 J/kg-K (ΔSM→A = 3.695 J/kg-K in the recycle) at the martensite ← austenite phase transition as it is useful for the magnetic refrigeration and other cooling devices. The Cr additive tempers the tetragonality with the aspect ratio c/a = 0.903 of the martensite phase and exhibits an adiabatic temperature change of 10 K. At room temperature, a hysteresis loop exhibits 48.91 emu/g saturation magnetization and 82.1Oe coercivity.

  15. On burner-stabilized cylindrical premixed flames in microgravity

    SciTech Connect

    Eng, J.A.; Law, C.K.; Zhu, D.L.

    1994-12-31

    The structure and response of the curved but unstretched cylindrically symmetric one-dimensional premixed flame generated by a cylindrical porous burner has been studied using (1) activation energy asymptotics with one-step reaction and constant properties, (2) numerical computation with detailed chemistry and transport, and (3) drop-tower microgravity experimentation. The study emphasizes the relative importance of heat loss (to the burner surface) vs flow divergence as the dominant mechanism for flame stabilization, the possibility of establishing a one-dimensional, adiabatic, unstretched, premixed flame in microgravity, the influence of curvature on the upstream and downstream burning rates of the flame, and the relation of these burning rates to those of the inherently nonadiabatic flat-burner flame as well as the freely propagating adiabatic planar flame. Results show that, with increasing flow discharge rate, the dominant flame stabilization mechanism changes from heat loss to flow divergence, hence demonstrating the feasibility of establishing a freely standing, adiabatic, one-dimensional, unstretched flame. It is further shown that, in this adiabatic, divergence-stabilized regime in which the burner discharge flux exceeds that of the adiabatic planar flame, the downstream burning flux is equal to the (constant) burning flux of the adiabatic planar flame while the upstream burning flux exceeds it, and the upstream burning velocity exhibits a maximum with increasing discharge rate. Based on the property of the downstream burning flux, it is also proposed that the laminar burning velocity of a combustible can be readily determined from the experimental values of the burner discharge rate and flame radius. Microgravity results on the flame radius compare favorably with the computed values, while the corresponding laminar burning velocity also agrees well with that obtained from independent numerical computation.

  16. Temperature imaging in low-pressure flames using diode laser two-line atomic fluorescence employing a novel indium seeding technique

    NASA Astrophysics Data System (ADS)

    Borggren, Jesper; Burns, Iain S.; Sahlberg, Anna-Lena; Aldén, Marcus; Li, Zhongshan

    2016-03-01

    The use of diode lasers for spatially resolved temperature imaging is demonstrated in low-pressure premixed methane-air flames using two-line atomic fluorescence of seeded indium atoms. This work features the advantages of using compact diode lasers as the excitation sources with the benefits of two-dimensional planar imaging, which is normally only performed with high-power pulsed lasers. A versatile and reliable seeding technique with minimal impact on flame properties is used to introduce indium atoms into the combustion environment for a wide range of flame equivalence ratios. A spatial resolution of around 210 µm for this calibration-free thermometry technique is achieved for three equivalence ratios at a pressure of 50 mbar in a laminar flat flame.

  17. Prediction of flame velocities of hydrocarbon flames

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L; Simon, Dorothy M

    1954-01-01

    The laminar-flame-velocity data previously reported by the Lewis Laboratory are surveyed with respect to the correspondence between experimental flame velocities and values predicted by semitheoretical and empirical methods. The combustible mixture variables covered are hydrocarbon structure (56 hydrocarbons), equivalence ratio of fuel-air mixture, mole fraction of oxygen in the primary oxygen-nitrogen mixture (0.17 to 0.50), and initial mixture temperature (200 degrees to 615 degrees k). The semitheoretical method of prediction considered are based on three approximate theoretical equations for flame velocity: the Semenov equation, the Tanford-Pease equation, and the Manson equation.

  18. Measurements of Flat-Flame Velocities of Diethyl Ether in Air

    PubMed Central

    Gillespie, Fiona; Metcalfe, Wayne K.; Dirrenberger, Patricia; Herbinet, Olivier; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique; Curran, Henry J.

    2013-01-01

    This study presents new adiabatic laminar burning velocities of diethyl ether in air, measured on a flat-flame burner using the heat flux method. The experimental pressure was 1 atm and temperatures of the fresh gas mixture ranged from 298 to 398 K. Flame velocities were recorded at equivalence ratios from 0.55 to 1.60, for which stabilization of the flame was possible. The maximum laminar burning velocity was found at an equivalence ratio of 1.10 or 1.15 at different temperatures. These results are compared with experimental and computational data reported in the literature. The data reported in this study deviate significantly from previous experimental results and are well-predicted by a previously reported chemical kinetic mechanism. PMID:23710107

  19. Cool Flame Quenching

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard; Chapek, Richard

    2001-01-01

    Cool flame quenching distances are generally presumed to be larger than those associated with hot flames, because the quenching distance scales with the inverse of the flame propagation speed, and cool flame propagation speeds are often times slower than those associated with hot flames. To date, this presumption has never been put to a rigorous test, because unstirred, non-isothermal cool flame studies on Earth are complicated by natural convection. Moreover, the critical Peclet number (Pe) for quenching of cool flames has never been established and may not be the same as that associated with wall quenching due to conduction heat loss in hot flames, Pe approx. = 40-60. The objectives of this ground-based study are to: (1) better understand the role of conduction heat loss and species diffusion on cool flame quenching (i.e., Lewis number effects), (2) determine cool flame quenching distances (i.e, critical Peclet number, Pe) for different experimental parameters and vessel surface pretreatments, and (3) understand the mechanisms that govern the quenching distances in premixtures that support cool flames as well as hot flames induced by spark-ignition. Objective (3) poses a unique fire safety hazard if conditions exist where cool flame quenching distances are smaller than those associated with hot flames. For example, a significant, yet unexplored risk, can occur if a multi-stage ignition (a cool flame that transitions to a hot flame) occurs in a vessel size that is smaller than that associated with the hot quenching distance. To accomplish the above objectives, a variety of hydrocarbon-air mixtures will be tested in a static reactor at elevated temperature in the laboratory (1g). In addition, reactions with chemical induction times that are sufficiently short will be tested aboard NASA's KC-135 microgravity (mu-g) aircraft. The mu-g results will be compared to a numerical model that includes species diffusion, heat conduction, and a skeletal kinetic mechanism

  20. Candle Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Ross, H. D.; Chang, P.; T'ien, J. S.

    2001-01-01

    The goal of this work is to study both experimentally and numerically the behavior of a candle flame burning in a microgravity environment. Two space experiments (Shuttle and Mir) have shown the candle flame in microgravity to be small (approximately 1.5 cm diameter), dim blue, and hemispherical. Near steady flames with very long flame lifetimes (up to 45 minutes in some tests) existed for many of the tests. Most of the flames spontaneously oscillated with a period of approximately 1 Hz just prior to extinction). In a previous model of candle flame in microgravity, a porous sphere wetted with liquid fuel simulated the evaporating wick. The sphere, with a temperature equal to the boiling temperature of the fuel, was at the end of an inert cone that had a prescribed temperature. This inert cone produces the quenching effect of the candle wax in the real configuration. Although the computed flame shape resembled that observed in the microgravity experiment, the model was not able to differentiate the effect of wick geometry, e.g., a long vs. a short wick. This paper presents recent developments in the numerical model of the candle flame. The primary focus has been to more realistically account for the actual shape of the candle.

  1. Simultaneous measurement of 2-dimensional H2O concentration and temperature distribution in premixed methane/air flame using TDLAS-based tomography technology

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Wu, Qi; Huang, Qunxing; Zhang, Haidan; Yan, Jianhua; Cen, Kefa

    2015-07-01

    An innovative tomographic method using tunable diode laser absorption spectroscopy (TDLAS) and algebraic reconstruction technique (ART) is presented in this paper for detecting two-dimensional distribution of H2O concentration and temperature in a premixed flame. The collimated laser beam emitted from a low cost diode laser module was delicately split into 24 sub-beams passing through the flame from different angles and the acquired laser absorption signals were used to retrieve flame temperature and H2O concentration simultaneously. The efficiency of the proposed reconstruction system and the effect of measurement noise were numerically evaluated. The temperature and H2O concentration in flat methane/air premixed flames under three different equivalence ratios were experimentally measured and reconstruction results were compared with model calculations. Numerical assessments indicate that the TDLAS tomographic system is capable for temperature and H2O concentration profiles detecting even the noise strength reaches 3% of absorption signal. Experimental results under different combustion conditions are well demonstrated along the vertical direction and the distribution profiles are in good agreement with model calculation. The proposed method exhibits great potential for 2-D or 3-D combustion diagnostics including non-uniform flames.

  2. Triple flames and flame stabilization

    NASA Technical Reports Server (NTRS)

    Broadwell, James E.

    1994-01-01

    It is now well established that when turbulent jet flames are lifted, combustion begins, i.e., the flame is stabilized, at an axial station where the fuel and air are partially premixed. One might expect, therefore, that the beginning of the combustion zone would be a triple flame. Such flames have been described; however, other experiments provide data that are difficult to reconcile with the presence of triple flames. In particular, laser images of CH and OH, marking combustion zones, do not exhibit shapes typical of triple flames, and, more significantly, the lifted flame appears to have a propagation speed that is an order of magnitude higher than the laminar flame speed. The speed of triple flames studied thus far exceeds the laminar value by a factor less than two. The objective of the present task is the resolution of the apparent conflict between the experiments and the triple flame characteristics, and the clarification of the mechanisms controlling flame stability. Being investigated are the resolution achieved in the experiments, the flow field in the neighborhood of the stabilization point, propagation speeds of triple flames, laboratory flame unsteadiness, and the importance of flame ignition limits in the calculation of triple flames that resemble lifted flames.

  3. Quantitative Infrared Image Analysis Of Thermally-Thin Cellulose Surface Temperatures During Upstream and Downstream Microgravity Flame Spread from A Central Ignition Line

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Lee, J. R.; Fujita, O.; Kikuchi, M.; Kashiwagi, T.

    2012-01-01

    Surface view calibrated infrared images of ignition and flame spread over a thin cellulose fuel were obtained at 30 Hz during microgravity flame spread tests in the 10 second Japan Microgravity Center (JAMIC). The tests also used a color video of the surface view and color images of the edge view using 35 millimeter 1600 Kodak Ektapress film at 2 Hz. The cellulose fuel samples (50% long fibers from lumi pine and 50% short fibers from birch) were made with an area density of 60 grams per square meters. The samples were mounted in the center of a 12 centimeter wide by 16 centimeter tall flow duct that uses a downstream fan to draw the air through the flow duct. Samples were ignited after the experiment package was released using a straight hot wire across the center of the 7.5 centimeter wide by 14 centimeter long samples. One case, at 1 atmosphere 35%O2 in N2, at a forced flow of 10 centimeters per second, is presented here. In this case, as the test progresses, the single flame begins to separate into simultaneous upstream and downstream flames. Surface temperature profiles are evaluated as a function of time, and temperature gradients for upstream and downstream flame spread are measured. Flame spread rates from IR image data are compared to visible image spread rate data. IR blackbody temperatures are compared to surface thermocouple readings to evaluate the effective emissivity of the pyrolyzing surface. Preheat lengths are evaluated both upstream and downstream of the central ignition point. A surface energy balance estimates the net heat flux from the flame to the fuel surface along the length of the fuel.

  4. Measurement of distributions of temperature and wavelength-dependent emissivity of a laminar diffusion flame using hyper-spectral imaging technique

    NASA Astrophysics Data System (ADS)

    Liu, Huawei; Zheng, Shu; Zhou, Huaichun; Qi, Chaobo

    2016-02-01

    A generalized method to estimate a two-dimensional (2D) distribution of temperature and wavelength-dependent emissivity in a sooty flame with spectroscopic radiation intensities is proposed in this paper. The method adopts a Newton-type iterative method to solve the unknown coefficients in the polynomial relationship between the emissivity and the wavelength, as well as the unknown temperature. Polynomial functions with increasing order are examined, and final results are determined as the result converges. Numerical simulation on a fictitious flame with wavelength-dependent absorption coefficients shows a good performance with relative errors less than 0.5% in the average temperature. What’s more, a hyper-spectral imaging device is introduced to measure an ethylene/air laminar diffusion flame with the proposed method. The proper order for the polynomial function is selected to be 2, because every one order increase in the polynomial function will only bring in a temperature variation smaller than 20 K. For the ethylene laminar diffusion flame with 194 ml min-1 C2H4 and 284 L min-1 air studied in this paper, the 2D distribution of average temperature estimated along the line of sight is similar to, but smoother than that of the local temperature given in references, and the 2D distribution of emissivity shows a cumulative effect of the absorption coefficient along the line of sight. It also shows that emissivity of the flame decreases as the wavelength increases. The emissivity under wavelength 400 nm is about 2.5 times as much as that under wavelength 1000 nm for a typical line-of-sight in the flame, with the same trend for the absorption coefficient of soot varied with the wavelength.

  5. Studies of Flame Structure in Microgravity

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Sung, C. J.; Zhu, D. L.

    1997-01-01

    The present research endeavor is concerned with gaining fundamental understanding of the configuration, structure, and dynamics of laminar premixed and diffusion flames under conditions of negligible effects of gravity. Of particular interest is the potential to establish and hence study the properties of spherically- and cylindrically-symmetric flames and their response to external forces not related to gravity. For example, in an earlier experimental study of the burner-stabilized cylindrical premixed flames, the possibility of flame stabilization through flow divergence was established, while the resulting one-dimensional, adiabatic, stretchless flame also allowed an accurate means of determining the laminar flame speeds of combustible mixtures. We have recently extended our studies of the flame structure in microgravity along the following directions: (1) Analysis of the dynamics of spherical premixed flames; (2) Analysis of the spreading of cylindrical diffusion flames; (3) Experimental observation of an interesting dual luminous zone structure of a steady-state, microbuoyancy, spherical diffusion flame of air burning in a hydrogen/methane mixture environment, and its subsequent quantification through computational simulation with detailed chemistry and transport; (4) Experimental quantification of the unsteady growth of a spherical diffusion flame; and (5) Computational simulation of stretched, diffusionally-imbalanced premixed flames near and beyond the conventional limits of flammability, and the substantiation of the concept of extended limits of flammability. Motivation and results of these investigations are individually discussed.

  6. Heating and cooling in adiabatic mixing process

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Cai, Zi; Zou, Xu-Bo; Guo, Guang-Can

    2010-12-01

    We study the effect of interaction on the temperature change in the process of adiabatic mixing of two components of Fermi gases using the real-space Bogoliubov-de Gennes method. We find that in the process of adiabatic mixing, the competition between the adiabatic expansion and the attractive interaction makes it possible to cool or heat the system depending on the strength of the interaction and the initial temperature of the system. The changes of the temperature in a bulk system and in a trapped system are investigated.

  7. Comparative examination of the microstructure and high temperature oxidation performance of NiCrBSi flame sprayed and pack cementation coatings

    NASA Astrophysics Data System (ADS)

    Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Skolianos, S.; Chrissafis, K.; Stergioudis, G.

    2009-01-01

    Coatings formed from NiCrBSi powder were deposited by thermal spray and pack cementation processes on low carbon steel. The microstructure and morphology of the coatings were studied by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). Flame sprayed coatings exhibited high porosity and were mechanically bonded to the substrate while pack cementation coatings were more compact and chemically bonded to the substrate. The microhardness and the high temperature oxidation resistance of the coated samples were evaluated by a Vickers microhardness tester and by thermogravimetric measurements (TG), respectively. Pack cementation coatings showed higher hardness and were more protective to high temperature environments than the flame sprayed coatings.

  8. Nitric oxide formation in a lean, premixed-prevaporized jet A/air flame tube: An experimental and analytical study

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Bianco, Jean; Deur, John M.; Ghorashi, Bahman

    1992-01-01

    An experimental and analytical study was performed on a lean, premixed-prevaporized Jet A/air flame tube. The NO(x) emissions were measured in a flame tube apparatus at inlet temperatures ranging from 755 to 866 K (900 to 1100 F), pressures from 10 to 15 atm, and equivalence ratios from 0.37 to 0.62. The data were then used in regressing an equation to predict the NO(x) production levels in combustors of similar design. Through an evaluation of parameters it was found that NO(x) is dependent on adiabatic flame temperature and combustion residence time, yet independent of pressure and inlet air temperature for the range of conditions studied. This equation was then applied to experimental data that were obtained from the literature, and a good correlation was achieved.

  9. A fiber-optic interferometer based on non-adiabatic fiber taper and long-period fiber grating for simultaneous measurement of magnetic field and temperature

    NASA Astrophysics Data System (ADS)

    Kang, Shouxin; Zhang, Hao; Liu, Bo; Lin, Wei; Zhang, Ning; Miao, Yinping

    2016-01-01

    A dual-parameter sensor based on a fiber-optic interferometer consisting of a non-adiabatic fiber taper and a long-period fiber grating (LPFG) integrated with magnetic nanoparticle fluids has been proposed and experimentally demonstrated. Due to the Mach-Zehnder interference induced by the concatenation of the fiber taper and long-period grating, an interferometric spectrum could be acquired within the transmission resonance spectral envelope of the LPFG. Thanks to different magnetic field and temperature sensitivities of difference interference dips, simultaneous measurement of the magnetic field intensity and environmental temperature could be achieved. Moreover, due to the variation in coupling coefficients of the fiber taper and the LPFG in response to the change of the applied magnetic field intensity, some of the interference dips would exhibit opposite magnetic-field-intensity-dependent transmission loss variation behavior. Magnetic field intensity and temperature sensitivities of 0.017 31 dB Oe-1 and 0.0315 dB K-1, and -0.024 55 dB Oe-1 and -0.056 28 dB K-1 were experimentally acquired for the experimentally monitored interference dips.

  10. Triaxial Burke-Schumann Flames with Applications to Flame Synthesis

    NASA Technical Reports Server (NTRS)

    Chao, B. H.; Axelbaum, R. L.; Gokoglu, Suleyman (Technical Monitor)

    2000-01-01

    The problem of a flame generated by three coaxial flows is solved by extending the Burke-Schumann methodology to include a third stream. The solution is particularly relevant to flame synthesis wherein multiple tubes are often employed either to introduce inert as a diffusion barrier or to introduce more than two reactants. The general problem is solved where the inner and outer tubes contain reactants and the middle tube contains either an inert or a third reactant. Relevant examples are considered and the results show that the triaxial Burke-Schumann flame can be substantially more complicated than the traditional Burke-Schumann flame. When the middle flow is inert the flame temperature is no longer constant but increases axially, reaching a maximum at the flame centerline. At the exit the flame does not sit on the tube exit but instead resides between the inner and outer tubes, resulting in an effective barrier for particle build-up on the burner rim. For the case of a third reactant in the middle flow, synthesis chemistry where the inner reaction is endothermic and the outer reaction is exothermic is considered. In addition to showing the flame temperature and flame shape, the results identify conditions wherein reaction is not possible due to insufficient heat transfer from the outer flame to support the inner flame reaction.

  11. Dual-pump CARS temperature and major species concentration measurements in counter-flow methane flames using narrowband pump and broadband Stokes lasers

    SciTech Connect

    Thariyan, Mathew P.; Ananthanarayanan, Vijaykumar; Bhuiyan, Aizaz H.; Naik, Sameer V.; Gore, Jay P.; Lucht, Robert P.

    2010-07-15

    Dual-pump coherent anti-Stokes Raman scattering (CARS) is used to measure temperature and species profiles in representative non-premixed and partially-premixed CH{sub 4}/O{sub 2}/N{sub 2} flames. A new laser system has been developed to generate a tunable single-frequency beam for the second pump beam in the dual-pump N{sub 2}-CO{sub 2} CARS process. The second harmonic output ({proportional_to}532 nm) from an injection-seeded Nd:YAG laser is used as one of the narrowband pump beams. The second single-longitudinal-mode pump beam centered near 561 nm is generated using an injection-seeded optical parametric oscillator, consisting of two non-linear {beta}-BBO crystals, pumped using the third harmonic output ({proportional_to}355 nm) of the same Nd:YAG laser. A broadband dye laser (BBDL), pumped using the second harmonic output of an unseeded Nd:YAG laser, is employed to produce the Stokes beam centered near 607 nm with full-width-at-half-maximum of {proportional_to}250 cm{sup -1}. The three beams are focused between two opposing nozzles of a counter-flow burner facility to measure temperature and major species concentrations in a variety of CH{sub 4}/O{sub 2}/N{sub 2} non-premixed and partially-premixed flames stabilized at a global strain rate of 20 s{sup -1} at atmospheric-pressure. For the non-premixed flames, excellent agreement is observed between the measured profiles of temperature and CO{sub 2}/N{sub 2} concentration ratios with those calculated using an opposed-flow flame code with detailed chemistry and molecular transport submodels. For partially-premixed flames, with the rich side premixing level beyond the stable premixed flame limit, the calculations overestimate the distance between the premixed and the non-premixed flamefronts. Consequently, the calculated temperatures near the rich, premixed flame are higher than those measured. Accurate prediction of the distance between the premixed and the non-premixed flames provides an interesting challenge for

  12. Hydration water and peptide dynamics--two sides of a coin. A neutron scattering and adiabatic calorimetry study at low hydration and cryogenic temperatures.

    PubMed

    Bastos, Margarida; Alves, Nuno; Maia, Sílvia; Gomes, Paula; Inaba, Akira; Miyazaki, Yuji; Zanotti, Jean-Marc

    2013-10-21

    In the present work we bridge neutron scattering and calorimetry in the study of a low-hydration sample of a 15-residue hybrid peptide from cecropin and mellitin CA(1-7)M(2-9) of proven antimicrobial activity. Quasielastic and low-frequency inelastic neutron spectra were measured at defined hydration levels - a nominally 'dry' sample (specific residual hydration h = 0.060 g/g), a H2O-hydrated (h = 0.49) and a D2O-hydrated one (h = 0.51). Averaged mean square proton mobilities were derived over a large temperature range (50-300 K) and the vibrational density of states (VDOS) were evaluated for the hydrated samples. The heat capacity of the H2O-hydrated CA(1-7)M(2-9) peptide was measured by adiabatic calorimetry in the temperature range 5-300 K, for different hydration levels. The glass transition and water crystallization temperatures were derived in each case. The existence of different types of water was inferred and their amounts calculated. The heat capacities as obtained from direct calorimetric measurements were compared to the values derived from the neutron spectroscopy by way of integrating appropriately normalized VDOS functions. While there is remarkable agreement with respect to both temperature dependence and glass transition temperatures, the results also show that the VDOS derived part represents only a fraction of the total heat capacity obtained from calorimetry. Finally our results indicate that both hydration water and the peptide are involved in the experimentally observed transitions. PMID:23986181

  13. Robust adiabatic sum frequency conversion.

    PubMed

    Suchowski, Haim; Prabhudesai, Vaibhav; Oron, Dan; Arie, Ady; Silberberg, Yaron

    2009-07-20

    We discuss theoretically and demonstrate experimentally the robustness of the adiabatic sum frequency conversion method. This technique, borrowed from an analogous scheme of robust population transfer in atomic physics and nuclear magnetic resonance, enables the achievement of nearly full frequency conversion in a sum frequency generation process for a bandwidth up to two orders of magnitude wider than in conventional conversion schemes. We show that this scheme is robust to variations in the parameters of both the nonlinear crystal and of the incoming light. These include the crystal temperature, the frequency of the incoming field, the pump intensity, the crystal length and the angle of incidence. Also, we show that this extremely broad bandwidth can be tuned to higher or lower central wavelengths by changing either the pump frequency or the crystal temperature. The detailed study of the properties of this converter is done using the Landau-Zener theory dealing with the adiabatic transitions in two level systems. PMID:19654679

  14. Gas phase temperature measurements in the liquid and particle regime of a flame spray pyrolysis process using O2-based pure rotational coherent anti-Stokes Raman scattering.

    PubMed

    Engel, Sascha R; Koegler, Andreas F; Gao, Yi; Kilian, Daniel; Voigt, Michael; Seeger, Thomas; Peukert, Wolfgang; Leipertz, Alfred

    2012-09-01

    For the production of oxide nanoparticles at a commercial scale, flame spray processes are frequently used where mostly oxygen is fed to the flame if high combustion temperatures and thus small primary particle sizes are desired. To improve the understanding of these complex processes in situ, noninvasive optical measurement techniques were applied to characterize the extremely turbulent and unsteady combustion field at those positions where the particles are formed from precursor containing organic solvent droplets. This particle-forming regime was identified by laser-induced breakdown detection. The gas phase temperatures in the surrounding of droplets and particles were measured with O(2)-based pure rotational coherent anti-Stokes Raman scattering (CARS). Pure rotational CARS measurements benefit from a polarization filtering technique that is essential in particle and droplet environments for acquiring CARS spectra suitable for temperature fitting. Due to different signal disturbing processes only the minority of the collected signals could be used for temperature evaluation. The selection of these suitable signals is one of the major problems to be solved for a reliable evaluation process. Applying these filtering and signal selection steps temperature measurements have successfully been conducted. Time-resolved, single-pulse measurements exhibit temperatures between near-room and combustion temperatures due to the strongly fluctuating and flickering behavior of the particle-generating flame. The mean flame temperatures determined from the single-pulse data are decreasing with increasing particle concentrations. They indicate the dissipation of large amounts of energy from the surrounding gas phase in the presence of particles. PMID:22945152

  15. A joint computational and experimental study to evaluate Inconel-sheathed thermocouple performance in flames.

    SciTech Connect

    Brundage, Aaron L.; Nicolette, Vernon F.; Donaldson, A. Burl; Kearney, Sean Patrick; Gill, Walter

    2005-09-01

    A joint experimental and computational study was performed to evaluate the capability of the Sandia Fire Code VULCAN to predict thermocouple response temperature. Thermocouple temperatures recorded by an Inconel-sheathed thermocouple inserted into a near-adiabatic flat flame were predicted by companion VULCAN simulations. The predicted thermocouple temperatures were within 6% of the measured values, with the error primarily attributable to uncertainty in Inconel 600 emissivity and axial conduction losses along the length of the thermocouple assembly. Hence, it is recommended that future thermocouple models (for Inconel-sheathed designs) include a correction for axial conduction. Given the remarkable agreement between experiment and simulation, it is recommended that the analysis be repeated for thermocouples in flames with pollutants such as soot.

  16. Atomic long-range order effects on Curie temperature and adiabatic spin-wave dynamics in strained Fe-Co alloy films

    NASA Astrophysics Data System (ADS)

    Schönecker, Stephan; Li, Xiaoqing; Johansson, Börje; Vitos, Levente

    2016-08-01

    The strained Fe-Co alloy in body-centered tetragonal (bct) structure has raised considerable interest due to its giant uniaxial magnetocrystalline anisotropy energy. On the basis of the classical Heisenberg Hamiltonian with ab initio interatomic exchange interactions, we perform a theoretical study of fundamental finite temperature magnetic properties of Fe1 -xCox alloy films as a function of three variables: chemical composition 0.3 ≤x ≤0.8 , bct geometry [a ,c (a )] arising from in-plane strain and associated out-of-plane relaxation, and atomic long-range order (ALRO). The Curie temperatures TC(x ,a ) obtained from Monte Carlo simulations display a competition between a pronounced dependence on tetragonality, strong ferromagnetism in the Co-rich alloy, and the beginning instability of ferromagnetic order in the Fe-rich alloy when c /a →√{2 } . Atomic ordering enhances TC and arises mainly due to different distributions of atoms in neighboring coordination shells rather than altering exchange interactions significantly. We investigate the ordering effect on the shape of the adiabatic spin-wave spectrum for selected pairs (x ,a ) . Our results indicate that long-wavelength acoustic spin-wave excitations show dependencies on x , a , and ALRO similar to those of TC. The directional anisotropy of the spin-wave stiffness d (x ,a ) peaks in narrow ranges of composition and tetragonality. ALRO exhibits a strong effect on d for near equiconcentration Fe-Co. We also discuss our findings in the context of employing Fe-Co as perpendicular magnetic recording medium.

  17. A parametric study of NO{sub 2} emission from turbulent H{sub 2} and CH{sub 4} jet diffusion flames

    SciTech Connect

    Chen, R.H.

    1998-01-01

    Nitrogen dioxide (NO{sub 2}) emission levels of fuel jets were experimentally studied for H{sub 2}, H{sub 2}/He mixtures, a H{sub 2}/He/CH{sub 4} mixture, and CH{sub 4}. The study was undertaken to understand the dependence of NO{sub 2} emission in turbulent diffusion flames on parameters other than the widely known effects of rapid mixing. These parameters are fuel types (CH{sub 4} vs H{sub 2}), the initial NO level, and the flame temperature. The fuel mixtures were chosen such that these factors could be investigated independently. In all the flames studied, NO{sub 2}/NO{sub x} increases with decreasing NO concentration in the flame and with decreasing adiabatic flame temperature. The CH{sub 4} fuel demonstrates a qualitatively different influence on the NO{sub 2}/NO{sub x} ratio than H{sub 2}. Its effects are most pronounced when the flame blowout limit is approached. Adding a small amount of CH{sub 4} to the H{sub 2} flames also qualitatively affected the NO{sub 2}/NO{sub x} ratio.

  18. Turbulent flame propagation in partially premixed flames

    NASA Technical Reports Server (NTRS)

    Poinsot, T.; Veynante, D.; Trouve, A.; Ruetsch, G.

    1996-01-01

    Turbulent premixed flame propagation is essential in many practical devices. In the past, fundamental and modeling studies of propagating flames have generally focused on turbulent flame propagation in mixtures of homogeneous composition, i.e. a mixture where the fuel-oxidizer mass ratio, or equivalence ratio, is uniform. This situation corresponds to the ideal case of perfect premixing between fuel and oxidizer. In practical situations, however, deviations from this ideal case occur frequently. In stratified reciprocating engines, fuel injection and large-scale flow motions are fine-tuned to create a mean gradient of equivalence ratio in the combustion chamber which provides additional control on combustion performance. In aircraft engines, combustion occurs with fuel and secondary air injected at various locations resulting in a nonuniform equivalence ratio. In both examples, mean values of the equivalence ratio can exhibit strong spatial and temporal variations. These variations in mixture composition are particularly significant in engines that use direct fuel injection into the combustion chamber. In this case, the liquid fuel does not always completely vaporize and mix before combustion occurs, resulting in persistent rich and lean pockets into which the turbulent flame propagates. From a practical point of view, there are several basic and important issues regarding partially premixed combustion that need to be resolved. Two such issues are how reactant composition inhomogeneities affect the laminar and turbulent flame speeds, and how the burnt gas temperature varies as a function of these inhomogeneities. Knowledge of the flame speed is critical in optimizing combustion performance, and the minimization of pollutant emissions relies heavily on the temperature in the burnt gases. Another application of partially premixed combustion is found in the field of active control of turbulent combustion. One possible technique of active control consists of pulsating

  19. Swirl effects on combustion characteristics of premixed flames

    SciTech Connect

    Daurer, M.; Gupta, A.K.; Lewis, M.J.

    1998-07-01

    The effects of swirl direction on the structure of two different premixed flames are investigated in a double concentric premixed swirl burner. The flames were stabilized with two annular jets and a central pipe. Mean and fluctuating temperatures, thermal integral and micro time scales and direct flame photographs were taken to receive information about global flame structures, flame stability and the distribution of the thermal field in these flames. Direct flame photographs, compensated temperature data as well as thermal micro-time scales of temperature data are presented to give a complete insight in the thermal distribution in these flames. It was found that the swirl direction of the stabilizing annular jets seems to take great influence on flame symmetry. The flame with the counter-swirling jets showed a very unsymmetrical behavior which was confirmed in flame photographs, temperature maps and time scales.

  20. Wireless adiabatic power transfer

    SciTech Connect

    Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.

    2011-03-15

    Research Highlights: > Efficient and robust mid-range wireless energy transfer between two coils. > The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. > Wireless energy transfer is insensitive to any resonant constraints. > Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  1. Adiabatic Compression in a Fire Syringe.

    ERIC Educational Resources Information Center

    Hayn, Carl H.; Baird, Scott C.

    1985-01-01

    Suggests using better materials in fire syringes to obtain more effective results during demonstrations which show the elevation in temperature upon a very rapid (adiabatic) compression of air. Also describes an experiment (using ignition temperatures) which introduces students to the use of thermocouples for high temperature measurements. (DH)

  2. RADIATIVE PROPERTY MEASUREMENTS OF OXY-FUEL FLAMES

    SciTech Connect

    Clinton R. Bedick; Stephen K. Beer; Kent H. Casleton; Benjamin T. Chorpening; David W. Shaw; M. Joseph Yip

    2011-03-01

    As part of the DOE Existing Plants, Emissions and Capture (EPEC) program, oxy-combustion is being investigated as a method to simplify carbon capture and reduce the parasitic energy penalties associated with separating CO2 from a dilute flue gas. Gas-phase radiation heat transfer in boilers becomes significant when shifting from air-firing to oxycombustion, and must be accurately represented in models. Currently, radiative property data are not widely available in the literature for conditions appropriate to this environment. In order to facilitate the development and validation of accurate oxy-combustion models, NETL conducted a series of studies to measure radiation properties of oxy-fuel flames at adiabatic flame temperatures of 1750 - 1950K, and product molar concentrations ranging from 95% CO2 to 100% steam, determined by equilibrium calculations. Transmission coefficients were measured as a function of wavelength using a mid-IR imaging spectrometer and a blackbody radiation source. Additionally, flame temperatures were calculated using data collected within CO2 and H2O absorption bands. Experimental results were compared to two statistical narrowband models and experimental data from literature sources. These comparisons showed good overall agreement, although differences between the models and experimental results were noted, particularly for the R branch of the 2.7 μm H2O band.

  3. Flame Spectra.

    ERIC Educational Resources Information Center

    Cromer, Alan

    1983-01-01

    When salt (NaCl) is introduced into a colorless flame, a bright yellow light (characteristic of sodium) is produced. Why doesn't the chlorine produce a characteristic color of light? The answer to this question is provided, indicating that the flame does not excite the appropriate energy levels in chlorine. (JN)

  4. Adiabatically driven Brownian pumps.

    PubMed

    Rozenbaum, Viktor M; Makhnovskii, Yurii A; Shapochkina, Irina V; Sheu, Sheh-Yi; Yang, Dah-Yen; Lin, Sheng Hsien

    2013-07-01

    We investigate a Brownian pump which, being powered by a flashing ratchet mechanism, produces net particle transport through a membrane. The extension of the Parrondo's approach developed for reversible Brownian motors [Parrondo, Phys. Rev. E 57, 7297 (1998)] to adiabatically driven pumps is given. We demonstrate that the pumping mechanism becomes especially efficient when the time variation of the potential occurs adiabatically fast or adiabatically slow, in perfect analogy with adiabatically driven Brownian motors which exhibit high efficiency [Rozenbaum et al., Phys. Rev. E 85, 041116 (2012)]. At the same time, the efficiency of the pumping mechanism is shown to be less than that of Brownian motors due to fluctuations of the number of particles in the membrane. PMID:23944411

  5. New high-temperature flame-resistant resin matrix for RP/C

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.

    1981-01-01

    The processing parameters of graphite composites utilizing graphite fabric and epoxy or other advanced thermoset and thermoplastic resins as matrices are discussed. The evaluated properties include anaerobic char yield, limiting oxygen index, smoke evolution, moisture absorption, and high-temperature mechanical properties. It is shown that graphite composites having the highest char yield exhibit optimum fire-resistant properties.

  6. Acid Rain Demonstration: The Formation of Nitrogen Oxides as a By-Product of High-Temperature Flames in Connection with Internal Combustion Engines

    NASA Astrophysics Data System (ADS)

    Driscoll, Jerry A.

    1997-12-01

    This demonstration illustrates the formation of nitrogen oxides resulting from a high temperature flame. The procedure is to burn hydrogen from a delivery tube in a 6 liter erlenmeyer flask filled with oxygen. (see original paper for safety precautions.) As the burning proceeds the water from the combustion condenses on the wall of the flask and eventually drips from the mouth of the flask. Air displaces the oxygen consumed. The nitrogen from the air reacts with the oxygen in the presence of the high temperature flame in the flask forming colorless nitric oxide which reacts further to form visible brown nitrogen dioxide in the flask. After the burn water can be introduced into the flask , capped, and shaken. An acid mist forms which slowly dissolves. An acid-base indicator will show that the solution is acid at about a pH 1-2 from nitrous and nitric acid. Nitrogen oxides do not form until the temperature is at least 1300 °C. The hydrogen flame in this demonstration is in the neighborhood of 3000 °C. Editor's Note: Please read Charles Braun's letter regarding the safety issues of the demonstration (JCE 1999, 76, 757).

  7. Parallelizable adiabatic gate teleportation

    NASA Astrophysics Data System (ADS)

    Nakago, Kosuke; Hajdušek, Michal; Nakayama, Shojun; Murao, Mio

    2015-12-01

    To investigate how a temporally ordered gate sequence can be parallelized in adiabatic implementations of quantum computation, we modify adiabatic gate teleportation, a model of quantum computation proposed by Bacon and Flammia [Phys. Rev. Lett. 103, 120504 (2009), 10.1103/PhysRevLett.103.120504], to a form deterministically simulating parallelized gate teleportation, which is achievable only by postselection. We introduce a twisted Heisenberg-type interaction Hamiltonian, a Heisenberg-type spin interaction where the coordinates of the second qubit are twisted according to a unitary gate. We develop parallelizable adiabatic gate teleportation (PAGT) where a sequence of unitary gates is performed in a single step of the adiabatic process. In PAGT, numeric calculations suggest the necessary time for the adiabatic evolution implementing a sequence of L unitary gates increases at most as O (L5) . However, we show that it has the interesting property that it can map the temporal order of gates to the spatial order of interactions specified by the final Hamiltonian. Using this property, we present a controlled-PAGT scheme to manipulate the order of gates by a control qubit. In the controlled-PAGT scheme, two differently ordered sequential unitary gates F G and G F are coherently performed depending on the state of a control qubit by simultaneously applying the twisted Heisenberg-type interaction Hamiltonians implementing unitary gates F and G . We investigate why the twisted Heisenberg-type interaction Hamiltonian allows PAGT. We show that the twisted Heisenberg-type interaction Hamiltonian has an ability to perform a transposed unitary gate by just modifying the space ordering of the final Hamiltonian implementing a unitary gate in adiabatic gate teleportation. The dynamics generated by the time-reversed Hamiltonian represented by the transposed unitary gate enables deterministic simulation of a postselected event of parallelized gate teleportation in adiabatic

  8. Surface Temperature Measurements from a Stator Vane Doublet in a Turbine Engine Afterburner Flame Using a YAG:Tm Thermographic Phosphor

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Walker, D. G.; Gollub, S. L.; Jenkins, T. P.; Allison, S. W.

    2015-01-01

    Luminescence-based surface temperature measurements were obtained from a YAG:Tm-coated stator vane doublet exposed to the afterburner flame of a J85 test engine at University of Tennessee Space Institute (UTSI). The objective of the testing was to demonstrate that reliable surface temperatures based on luminescence decay of a thermographic phosphor producing short-wavelength emission could be obtained from the surface of an actual engine component in a high gas velocity, highly radiative afterburner flame environment. YAG:Tm was selected as the thermographic phosphor for its blue emission at 456 nm (1D23F4 transition) and UV emission at 365 nm (1D23H6 transition) because background thermal radiation is lower at these wavelengths, which are shorter than those of many previously used thermographic phosphors. Luminescence decay measurements were acquired using a probe designed to operate in the afterburner flame environment. The probe was mounted on the sidewall of a high-pressure turbine vane doublet from a Honeywell TECH7000 turbine engine coated with a standard electron-beam physical vapor deposited (EB-PVD) 200-m-thick TBC composed of yttria-stabilized zirconia (YSZ) onto which a 25-m-thick YAG:Tm thermographic phosphor layer was deposited by solution precursor plasma spray (SPPS). Spot temperature measurements were obtained by measuring luminescence decay times at different afterburner power settings and then converting decay time to temperature via calibration curves. Temperature measurements using the decays of the 456 and 365 nm emissions are compared. While successful afterburner environment measurements were obtained to about 1300C with the 456 nm emission, successful temperature measurements using the 365 nm emission were limited to about 1100C due to interference by autofluorescence of probe optics at short decay times.

  9. Flame and Soot Boundaries of Laminar Jet Diffusion Flames. Appendix A

    NASA Technical Reports Server (NTRS)

    Xu, F.; Dai, Z.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2002-01-01

    The shapes (flame-sheet and luminous-flame boundaries) or steady weakly buoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue CO2 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K. ambient pressures of 4-50 kPa, jet-exit Reynolds numbers of 3-54, initial air/fuel velocity ratios of 0-9, and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at microgravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smoke-point conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smoke-point conditions. Flame-shape predictions were based on simplified analyses using the boundary-layer approximations along with empirical parameters to distinguish flame-sheet and luminous-flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 of the lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions because of the presence of luminous soot particles in the fuel-lean region of the flames.

  10. Flame Detector

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Scientific Instruments, Inc. has now developed a second generation, commercially available instrument to detect flames in hazardous environments, typically refineries, chemical plants and offshore drilling platforms. The Model 74000 detector incorporates a sensing circuit that detects UV radiation in a 100 degree conical field of view extending as far as 250 feet from the instrument. It operates in a bandwidth that makes it virtually 'blind' to solar radiation while affording extremely high sensitivity to ultraviolet flame detection. A 'windowing' technique accurately discriminates between background UV radiation and ultraviolet emitted from an actual flame, hence the user is assured of no false alarms. Model 7410CP is a combination controller and annunciator panel designed to monitor and control as many as 24 flame detectors. *Model 74000 is no longer being manufactured.

  11. Effect of the composition of the hot product stream in the quasi-steady extinction of strained premixed flames

    SciTech Connect

    Coriton, Bruno; Smooke, Mitchell D.; Gomez, Alessandro

    2010-11-15

    The extinction of premixed CH{sub 4}/O{sub 2}/N{sub 2} flames counterflowing against a jet of combustion products in chemical equilibrium was investigated numerically using detailed chemistry and transport mechanisms. Such a problem is of relevance to combustion systems with non-homogeneous air/fuel mixtures or recirculation of the burnt gases. Contrary to similar studies that were focused on heat loss/gain, depending on the degree of non-adiabaticity of the system, the emphasis here was on the yet unexplored role of the composition of counterflowing burnt gases in the extinction of lean-to-stoichiometric premixed flames. For a given temperature of the counterflowing products of combustion, it was found that the decrease of heat release with increase in strain rate could be either monotonic or non-monotonic, depending on the equivalence ratio {phi}{sub b} of the flame feeding the hot combustion product stream. Two distinct extinction modes were observed: an abrupt one, when the hot counterflowing stream consists of either inert gas or equilibrium products of a stoichiometric premixed flame, and a smooth extinction, when there is an excess of oxidizing species in the combustion product stream. In the latter case four burning regimes can be distinguished as the strain rate is progressively increased while the heat release decreases smoothly: an adiabatic propagating flame regime, a non-adiabatic propagating flame regime, the so-called partially-extinguished flame regime, in which the location of the peak of heat release crosses the stagnation plane, and a frozen flow regime. The flame structure was analyzed in detail in the different burning regimes. Abrupt extinction was attributed to the quenching of the oxidation layer with the entire H-OH-O radical pool being comparably reduced. Under conditions of smooth extinction, the behavior is different and the concentration of the H radical decreases the most with increasing strain rate, whereas OH and O remain

  12. Concentration, temperature, and density in a hydrogen-air flame by excimer-induced Raman scattering

    NASA Technical Reports Server (NTRS)

    Wehrmeyer, Joseph A.; Bowling, John M.; Pitz, Robert W.

    1988-01-01

    Single-pulse, vibrational Raman scattering (VRS) is an attractive laser diagnostic for the study of supersonic hydrogen-air combustion. The VRS technique gives a complete thermodynamic description of the gas mixture at a point in the reacting flow. Single-pulse, vibrational Raman scattering can simultaneously provide independent measurements of density, temperature, and concentration of each major species (H2, H2O, O2 and N2) in a hydrogen/air turbulent combustor. Also the pressure can be calculated using the ideal gas law. However, single-pulse VRS systems in current use for measurement of turbulent combustion have a number of shortcomings when applied to supersonic flows: (1) slow repetition rate (1 to 5 Hz), (2) poor spatial resolution (0.5x0.3x0.3 cu mm), and (3) marginal time resolution. Most of these shortcomings are due to the use of visible wavelength flash-lamp pumped dye lasers. The advent of UV excimer laser allows the possibility of dramatic improvements in the single-pulse, vibrational Raman scattering. The excimer based VRS probe will greatly improve repetition rate (100 to 500 Hz), spatial resolution (0.1x0.1x0.1 cu mm) and time resolution (30ns). These improvements result from the lower divergence of the UV excimer, higher repetition rate, and the increased Raman cross-sections (15 to 20 times higher) at ultra-violet (UV) wavelengths. With this increased capability, single-pulse vibrational Raman scattering promises to be an ideal non-intrusive probe for the study of hypersonic propulsion flows.

  13. Flame Hair

    PubMed Central

    Miteva, Mariya; Tosti, Antonella

    2015-01-01

    Background ‘Flame hairs’ is a trichoscopic feature described as hair residue from pulling anagen hairs in trichotillomania. Objective: To detect whether flame hairs are present in other hair loss disorders. Methods We retrospectively, independently and blindly reviewed the trichoscopic images of 454 consecutive patients with alopecia areata (99 cases), trichotillomania (n = 20), acute chemotherapy-induced alopecia (n = 6), acute radiotherapy-induced alopecia (n = 2), tinea capitis (n = 13), lichen planopilaris (n = 33), frontal fibrosing alopecia (n = 60), discoid lupus erythematosus (n = 30), dissecting cellulitis (n = 11), central centrifugal cicatricial alopecia (n = 94) and traction alopecia (n = 86) for the presence of flame hairs. We prospectively obtained trichoscopy-guided scalp biopsies from flame hairs in trichotillomania, alopecia areata, traction alopecia and central centrifugal cicatricial alopecia (1 case each). Results Flame hairs were detected in 100% of the acute chemotherapy- and radiotherapy-induced alopecias, where they were the predominant hair abnormality. They were also found in trichotillomania (55%), alopecia areata (21%), traction alopecia (4%) and central centrifugal cicatricial alopecia (3%). On pathology, they corresponded to distorted hair shafts. Conclusion The flame hair is a type of broken hair which can be seen in various hair loss disorders. It results from traumatic pulling of anagen hairs or from anagen arrest due to inflammation or drugs. © 2015 S. Karger AG, Basel PMID:27171360

  14. Effects of Flame Structure and Hydrodynamics on Soot Particle Inception and Flame Extinction in Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Axelbaum, R. L.; Chen, R.; Sunderland, P. B.; Urban, D. L.; Liu, S.; Chao, B. H.

    2001-01-01

    This paper summarizes recent studies of the effects of stoichiometric mixture fraction (structure) and hydrodynamics on soot particle inception and flame extinction in diffusion flames. Microgravity experiments are uniquely suited for these studies because, unlike normal gravity experiments, they allow structural and hydrodynamic effects to be independently studied. As part of this recent flight definition program, microgravity studies have been performed in the 2.2 second drop tower. Normal gravity counterflow studies also have been employed and analytical and numerical models have been developed. A goal of this program is to develop sufficient understanding of the effects of flame structure that flames can be "designed" to specifications - consequently, the program name Flame Design. In other words, if a soot-free, strong, low temperature flame is required, can one produce such a flame by designing its structure? Certainly, as in any design, there will be constraints imposed by the properties of the available "materials." For hydrocarbon combustion, the base materials are fuel and air. Additives could be considered, but for this work only fuel, oxygen and nitrogen are considered. Also, the structure of these flames is "designed" by varying the stoichiometric mixture fraction. Following this line of reasoning, the studies described are aimed at developing the understanding of flame structure that is needed to allow for optimum design.

  15. Laminar burning velocities and flame instabilities of butanol isomers-air mixtures

    SciTech Connect

    Gu, Xiaolei; Huang, Zuohua; Wu, Si; Li, Qianqian

    2010-12-15

    Laminar burning velocities and flame instabilities of the butanol-air premixed flames and its isomers are investigated using the spherically expanding flame with central ignition at initial temperature of 428 K and initial pressures of 0.10 MPa, 0.25 MPa, 0.50 MPa and 0.75 MPa. Laminar burning velocities and sensitivity factor of n-butanol-air mixtures are computed using a newly developed kinetic mechanism. Unstretched laminar burning velocity, adiabatic temperature, Lewis number, Markstein length, critical flame radius and Peclet number are obtained over a wide range of equivalence ratios. Effect of molecular structure on laminar burning velocity of the isomers of butanol is analyzed from the aspect of C-H bond dissociation energy. Study indicates that although adiabatic flame temperatures of the isomers of butanol are the same, laminar burning velocities give an obvious difference among the isomers of butanol. This indicates that molecular structure has a large influence on laminar burning velocities of the isomers of butanol. Branching (-CH3) will decrease laminar burning velocity. Hydroxyl functional group (-OH) attaching to the terminal carbon atoms gives higher laminar burning velocity compared to that attaching to the inner carbon atoms. Calculated dissociation bond energies show that terminal C-H bonds have larger bond energies than that of inner C-H bonds. n-Butanol, no branching and with hydroxyl functional group (-OH) attaching to the terminal carbon atom, gives the largest laminar burning velocity. tert-Butanol, with highly branching and hydroxyl functional group (-OH) attaching to the inner carbon atom, gives the lowest laminar burning velocity. Laminar burning velocities of iso-butanol and sec-butanol are between those of n-butanol and tert-butanol. The instant of transition to cellularity is experimentally determined for the isomers of butanol and subsequently interpreted on the basis of hydrodynamic and diffusion-thermal instabilities. Little effect

  16. Structure of laminar sooting inverse diffusion flames

    SciTech Connect

    Mikofski, Mark A.; Fernandez-Pello, A. Carlos; Williams, Timothy C.; Shaddix, Christopher R.; Blevins, Linda G.

    2007-06-15

    The flame structure of laminar inverse diffusion flames (IDFs) was studied to gain insight into soot formation and growth in underventilated combustion. Both ethylene-air and methane-air IDFs were examined, fuel flow rates were kept constant for all flames of each fuel type, and airflow rates were varied to observe the effect on flame structure and soot formation. Planar laser-induced fluorescence of hydroxyl radicals (OH PLIF) and polycyclic aromatic hydrocarbons (PAH PLIF), planar laser-induced incandescence of soot (soot PLII), and thermocouple-determined gas temperatures were used to draw conclusions about flame structure and soot formation. Flickering, caused by buoyancy-induced vortices, was evident above and outside the flames. The distances between the OH, PAH, and soot zones were similar in IDFs and normal diffusion flames (NDFs), but the locations of those zones were inverted in IDFs relative to NDFs. Peak OH PLIF coincided with peak temperature and marked the flame front. Soot appeared outside the flame front, corresponding to temperatures around the minimum soot formation temperature of 1300 K. PAHs appeared outside the soot layer, with characteristic temperature depending on the wavelength detection band. PAHs and soot began to appear at a constant axial position for each fuel, independent of the rate of air flow. PAH formation either preceded or coincided with soot formation, indicating that PAHs are important components in soot formation. Soot growth continued for some time downstream of the flame, at temperatures below the inception temperature, probably through reaction with PAHs. (author)

  17. Stability of the porous plug burner flame

    SciTech Connect

    Buckmaster, J.

    1983-12-01

    The linear stability of a premixed flame attached to a porous plug burner, using activaton energy asymptotics, is examined. Limit function-expansions are not an appropriate mathematical framework for this problem, and are avoided. A dispersion relation is obtained which defines the stability boundaries in the wave-, Lewis-number plane, and the movement of these boundaries is followed as the mass flux is reduced below the adiabatic value and the flame moves towards the burner from infinity. Cellular instability is suppressed by the burner, but the pulsating instability usually associated with Lewis numbers greater than 1 is, at first, enhanced. For some parameter values the flame is never stable for all wavenumbers the Lewis number stability band that exists for the unbounded flame disappears. For sufficiently small values of the stand-off distance the pulsating instability is suppressed. 9 references.

  18. Fiber Laser Intracavity Spectroscopy of hot water for temperature and concentration measurements

    NASA Astrophysics Data System (ADS)

    Fomin, Alexey; Zavlev, Tatiana; Rahinov, Igor; Alekseev, Vladimir A.; Konnov, Alexander A.; Baev, Valery M.; Cheskis, Sergey

    2015-12-01

    The feasibility of temperature and concentration measurements using near-IR (˜1.5 μm) water spectra obtained by fiber laser intracavity spectroscopy was evaluated. The spectra were registered with water vapor heated in a tubular oven at temperatures between 1000 and 1300 K and in adiabatic flames where temperatures were above 1800 K. Adiabatic flames of methane were stabilized on the heat flux burner. For temperature and concentration evaluation, the observed spectra were fitted by simulated spectra calculated utilizing the HITEMP database. Several discrepancies between HITEMP data and the experiments leading to significant errors in evaluation were found. After small corrections to the database better, accuracy of the temperature (±70 K) and concentration (±20 %) measurements is obtained. A more precise spectroscopic assignment is needed to improve the accuracy of the results.

  19. Propagation of a Free Flame in a Turbulent Gas Stream

    NASA Technical Reports Server (NTRS)

    Mickelsen, William R; Ernstein, Norman E

    1956-01-01

    Effective flame speeds of free turbulent flames were measured by photographic, ionization-gap, and photomultiplier-tube methods, and were found to have a statistical distribution attributed to the nature of the turbulent field. The effective turbulent flame speeds for the free flame were less than those previously measured for flames stabilized on nozzle burners, Bunsen burners, and bluff bodies. The statistical spread of the effective turbulent flame speeds was markedly wider in the lean and rich fuel-air-ratio regions, which might be attributed to the greater sensitivity of laminar flame speed to flame temperature in those regions. Values calculated from the turbulent free-flame-speed analysis proposed by Tucker apparently form upper limits for the statistical spread of free-flame-speed data. Hot-wire anemometer measurements of the longitudinal velocity fluctuation intensity and longitudinal correlation coefficient were made and were employed in the comparison of data and in the theoretical calculation of turbulent flame speed.

  20. Radiant Extinction Of Gaseous Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Berhan, S.; Chernovsky, M.; Atreya, A.; Baum, Howard R.; Sacksteder, Kurt R.

    2003-01-01

    The absence of buoyancy-induced flows in microgravity (mu:g) and the resulting increase in the reactant residence time significantly alters the fundamentals of many combustion processes. Substantial differences between normal gravity (ng) and :g flames have been reported in experiments on candle flames [1, 2], flame spread over solids [3, 4], droplet combustion [5,6], and others. These differences are more basic than just in the visible flame shape. Longer residence times and higher concentration of combustion products in the flame zone create a thermochemical environment that changes the flame chemistry and the heat and mass transfer processes. Processes such as flame radiation, that are often ignored in ng, become very important and sometimes even controlling. Furthermore, microgravity conditions considerably enhance flame radiation by: (i) the build-up of combustion products in the high-temperature reaction zone which increases the gas radiation, and (ii) longer residence times make conditions appropriate for substantial amounts of soot to form which is also responsible for radiative heat loss. Thus, it is anticipated that radiative heat loss may eventually extinguish the Aweak@ (low burning rate per unit flame area) :g diffusion flame. Yet, space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in :g will burn indefinitely [1]. This may be because of the coupling between the fuel production rate and the flame via the heat-feedback mechanism for candle flames, flames over solids and fuel droplet flames. Thus, to focus only on the gas-phase phenomena leading to radiative extinction, aerodynamically stabilized gaseous diffusion flames are examined. This enables independent control of the fuel flow rate to help identify conditions under which radiative extinction occurs. Also, spherical geometry is chosen for the :g experiments and modeling because: (i) It reduces the complexity by making the problem

  1. Adiabatically implementing quantum gates

    SciTech Connect

    Sun, Jie; Lu, Songfeng Liu, Fang

    2014-06-14

    We show that, through the approach of quantum adiabatic evolution, all of the usual quantum gates can be implemented efficiently, yielding running time of order O(1). This may be considered as a useful alternative to the standard quantum computing approach, which involves quantum gates transforming quantum states during the computing process.

  2. Entanglement and adiabatic quantum computation

    NASA Astrophysics Data System (ADS)

    Ahrensmeier, D.

    2006-06-01

    Adiabatic quantum computation provides an alternative approach to quantum computation using a time-dependent Hamiltonian. The time evolution of entanglement during the adiabatic quantum search algorithm is studied, and its relevance as a resource is discussed.

  3. Nanoparticle synthesis in low pressure flames

    NASA Astrophysics Data System (ADS)

    Colibaba-Evulet, Andrei

    The results of an experimental and computational study of nanoparticle synthesis in low pressure flames are presented. In a stagnation point flow configuration, hydrogen/oxygen low pressure flat flames were supplied with metalorganic vapor precursors and the flame conditions were identified for nanoparticle formation and growth, followed by deposition on a cooled substrate. The effects of pressure, burner to substrate distance, stoichiometry and flowrate on the particle size, morphology and phase were examined. Titania, alumina and zirconia non-agglomerated nanopowders were synthesized and analyzed using X-ray diffraction, BET gas absorption and TEM. A flame model with complex chemistry is used for the prediction of the temperature and flow fields. Thermophoretic effects upon the particle dynamics are estimated and the time/temperature profiles for several flames are predicted. A collision/coalescence mechanism growth model based on the predicted time/temperature is employed for computation of the deposited particle size. Laser induced fluorescence is used for determination of temperature and monoxide concentration profiles in the flame. Temperature measurements using two line fluorescence thermometry in an nitric oxide seeded flame indicate that the flame model predicts temperatures to within 200 K for simple flames. The temperatures of the precursor fed flames exceed the simple flame temperatures by as much as 600 K, showing that precursor decomposition/pyrolysls highly affects the thermochemistry of the flame. Radical concentration measurements in flames synthesizing titania, alumina and zirconia indicate that try monitoring the respective metal monoxides, the location of precursor decomposition and monomer formation in the flame can be inferred. A parametric study of the zirconia synthesis flame showed a certain degree of control on the particle size, agglomeration and crystallinity. Flames hotter than 1700 K and with high quenching rates produced a mixture of

  4. Forced Flow Flame-Spreading Test (FFFT)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Forced Flow Flame-Spreading Test was designed to study flame spreading over solid fuels when air is flowing at a low speed in the same direction as the flame spread. Previous research has shown that in low-speed concurrent airflows, some materials are more flammable in microgravity than earth. This image shows a 10-cm flame in microgravity that burns almost entirely blue on both sides of a thin sheet of paper. The glowing thermocouple in the lower half of the flame provides temperature measurements.

  5. A computational study of radiation and gravity effect on temperature and soot formation in a methane air co-flow diffusion flame

    NASA Astrophysics Data System (ADS)

    Bhowal, Arup Jyoti; Mandal, Bijan Kumar

    2016-07-01

    An effort has been made for a quantitative assessment of the soot formed under steady state in a methane air co flow diffusion flame by a numerical simulation at normal gravity and at lower gravity levels of 0.5 G, 0.1 G and 0.0001 G (microgravity). The peak temperature at microgravity is reduced by about 50 K than that at normal gravity level. There is an augmentation of soot formation at lower gravity levels. Peak value at microgravity multiplies by a factor of ˜7 of that at normal gravity. However, if radiation is not considered, soot formation is found to be much more.

  6. Flame retardants

    NASA Technical Reports Server (NTRS)

    Troitzsch, J.

    1988-01-01

    The use of flame retardants in plastics has grown only slightly in recent years and will probably grow slowly in the future. The reasons for this are slow economic growth and the absence of fundamentally new requirements for future fire prevention. The trends are toward the increasing use of easily handled, dust-free and well-dispersed flame retardant compounds and master batches; there are no spectacular new developments. In the future, questions of smoke evolution, toxicity and corrosiveness of combustion gases will become increasingly important, especially due to new regulations and rising requirements for environmental protection.

  7. Accurate temperature measurements in flames with high spatial resolution using Stokes Raman scattering from nitrogen in a multiple-pass cell.

    PubMed

    Utsav, K C; Varghese, Philip L

    2013-07-10

    A multiple-pass cell is aligned to focus light at two regions at the center of the cell. The two "points" are separated by 2.0 mm. Each probe region is 200 μm×300 μm. The cell is used to amplify spontaneous Raman scattering from a CH4-air laminar flame. The signal gain is 20, and the improvement in signal-to-noise ratio varies according to the number of laser pulses used for signal acquisition. The temperature is inferred by curve fitting high-resolution spectra of the Stokes signal from N2. The model accounts for details, such as the angular dependence of Raman scattering, the presence of a rare isotope of N2 in air, anharmonic oscillator terms in the vibrational polarizability matrix elements, and the dependence of Herman-Wallis factors on the vibrational level. The apparatus function is modeled using a new line shape function that is the convolution of a trapezoid function and a Lorentzian. The uncertainty in the value of temperature arising from noise, the uncertainty in the model input parameters, and various approximations in the theory have been characterized. We estimate that the uncertainty in our measurement of flame temperature in the least noisy data is ±9 K. PMID:23852217

  8. Adiabatic topological quantum computing

    NASA Astrophysics Data System (ADS)

    Cesare, Chris; Landahl, Andrew J.; Bacon, Dave; Flammia, Steven T.; Neels, Alice

    2015-07-01

    Topological quantum computing promises error-resistant quantum computation without active error correction. However, there is a worry that during the process of executing quantum gates by braiding anyons around each other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here, we explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological codes, notably Kitaev's surface codes and the more recently discovered color codes. We develop protocols that enable universal quantum computing by adiabatic evolution in a way that keeps the energy gap of the system constant with respect to the computation size and introduces only simple local Hamiltonian interactions. This allows one to perform holonomic quantum computing with these topological quantum computing systems. The tools we develop allow one to go beyond numerical simulations and understand these processes analytically.

  9. Flames in vortices & tulip-flame inversion

    NASA Astrophysics Data System (ADS)

    Dold, J. W.

    This article summarises two areas of research regarding the propagation of flames in flows which involve significant fluid-dynamical motion [1]-[3]. The major difference between the two is that in the first study the fluid motion is present before the arrival of any flame and remains unaffected by the flame [1, 2] while, in the second study it is the flame that is responsible for all of the fluid dynamical effects [3]. It is currently very difficult to study flame-motion in which the medium is both highly disturbed before the arrival of a flame and is further influenced by the passage of the flame.

  10. Turbulent Flame Processes Via Diffusion Flame-Vortex Ring Interactions

    NASA Technical Reports Server (NTRS)

    Dahm, Werner J. A.; Chen, Shin-Juh; Silver, Joel A.; Piltch, Nancy D.; VanderWal, Randall L.

    2001-01-01

    Flame-vortex interactions are canonical configurations that can be used to study the underlying processes occurring in turbulent reacting flows. This configuration contains many of the fundamental aspects of the coupling between fluid dynamics and combustion that could be investigated with more controllable conditions than are possible under direct investigations of turbulent flames. Diffusion flame-vortex ring interaction contains many of the fundamental elements of flow, transport, combustion, and soot processes found in turbulent diffusion flames. Some of these elements include concentrated vorticity, entrainment and mixing, strain and nonequilibrium phenomena, diffusion and differential diffusion, partial premixing and diluent effects, soot formation and oxidation, and heat release effects. Such simplified flowfield allows the complex processes to be examined more closely and yet preserving the physical processes present in turbulent reacting flows. Furthermore, experimental results from the study of flame-vortex interactions are useful for the validation of numerical simulations and more importantly to deepen our understanding of the fundamental processes present in reacting flows. Experimental and numerical results obtained under microgravity conditions of the diffusion flame-vortex ring interaction are summarized in this paper. Results are obtained using techniques that include Flame Luminosity Imaging (FLI), Laser Soot-Mie Scattering (LSMS), Computational Fluid Dynamics and Combustion (CFDC), and Diode Laser Spectroscopy/Iterative Temperature with Assumed Chemistry (DLS/ITAC).

  11. Triple flame structure and diffusion flame stabilization

    NASA Technical Reports Server (NTRS)

    Veynante, D.; Vervisch, L.; Poinsot, T.; Linan, A.; Ruetsch, G.

    1994-01-01

    The stabilization of diffusion flames is studied using asymptotic techniques and numerical tools. The configuration studied corresponds to parallel streams of cold oxidizer and fuel initially separated by a splitter plate. It is shown that stabilization of a diffusion flame may only occur in this situation by two processes. First, the flame may be stabilized behind the flame holder in the wake of the splitter plate. For this case, numerical simulations confirm scalings previously predicted by asymptotic analysis. Second, the flame may be lifted. In this case a triple flame is found at longer distances downstream of the flame holder. The structure and propagation speed of this flame are studied by using an actively controlled numerical technique in which the triple flame is tracked in its own reference frame. It is then possible to investigate the triple flame structure and velocity. It is shown, as suggested from asymptotic analysis, that heat release may induce displacement speeds of the triple flame larger than the laminar flame speed corresponding to the stoichiometric conditions prevailing in the mixture approaching the triple flame. In addition to studying the characteristics of triple flames in a uniform flow, their resistance to turbulence is investigated by subjecting triple flames to different vortical configurations.

  12. Confined superadiabatic premixed flame-flow interaction

    SciTech Connect

    Najm, H.N.

    1995-12-31

    Laminar premixed unity-Lewis number flames are studied numerically, to examine flow-flame interaction in a two-dimensional closed domain. Two opposed planar flame fronts are perturbed sinusoidally and allowed to develop by consuming premixed reactants. Combustion heat release leads to global pressure and temperature rise in the domain, due to confinement. A superadiabatic condition, with products temperature rising with distance behind the flame front, is observed due to stagnation pressure rise. Variations in tangential strain rate behind the perturbed flame fronts, due to flame curvature and heat release, result in a modified local superadiabatic temperature gradient in the products. These variations in temperature gradients are shown to determine the net local confinement-heating rate in the products, leading to corresponding deviations in products temperature, and the local reaction rate along the flame front. These observations, which are not consistent with one-dimensional superadiabatic stagnation flame behavior, are a direct result of the unrestrained unsteady nature of two-dimensional flame-flow interaction.

  13. PIV, 2D-LIF and 1D-Raman measurements of flow field, composition and temperature in premixed gas turbine flames

    SciTech Connect

    Stopper, U.; Aigner, M.; Ax, H.; Meier, W.; Sadanandan, R.; Stoehr, M.; Bonaldo, A.

    2010-04-15

    Several laser diagnostic measurement techniques have been applied to study the lean premixed natural gas/air flames of an industrial swirl burner. This was made possible by equipping the burner with an optical combustion chamber that was installed in the high-pressure test rig facility at the DLR Institute of Combustion Technology in Stuttgart. The burner was operated with preheated air at various operating conditions with pressures up to p = 6 bar and a maximum thermal power of P = 1 MW. The instantaneous planar flow field inside the combustor was studied with particle image velocimetry (PIV). Planar laser induced fluorescence (PLIF) of OH radicals on a single-shot basis was used to determine the shape and the location of the flame front as well as the spatial distribution of reaction products. 1D laser Raman spectroscopy was successfully applied for the measurement of the temperature and the concentration of major species under realistic gas turbine conditions. Results of the flow field analysis show the shape and the size of the main flow regimes: the inflow region, the inner and the outer recirculation zone. The highly turbulent flow field of the inner shear layer is found to be dominated by small and medium sized vortices. High RMS fluctuations of the flow velocity in the exhaust gas indicate the existence of a rotating exhaust gas swirl. From the PLIF images it is seen that the primary reactions happened in the shear layers between inflow and the recirculation zones and that the appearance of the reaction zones changed with flame parameters. The results of the multiscalar Raman measurements show a strong variation of the local mixture fraction allowing conclusions to be drawn about the premix quality. Furthermore, mixing effects of unburnt fuel and air with fully reacted combustion products are studied giving insights into the processes of the turbulence-chemistry interaction. (author)

  14. Hysteresis and transition in swirling nonpremixed flames

    SciTech Connect

    Tummers, M.J.; Huebner, A.W.; van Veen, E.H.; Hanjalic, K.; van der Meer, T.H.

    2009-02-15

    Strongly swirling nonpremixed flames are known to exhibit a hysteresis when transiting from an attached long, sooty, yellow flame to a short lifted blue flame, and vice versa. The upward transition (by increasing the air and fuel flow rates) corresponds to a vortex breakdown, i.e. an abrupt change from an attached swirling flame (unidirectional or with a weak bluff-body recirculation), to a lifted flame with a strong toroidal vortex occupying the bulk of the flame. Despite dramatic differences in their structures, mixing intensities and combustion performance, both flame types can be realised at identical flow rates, equivalence ratio and swirl intensity. We report here on comprehensive investigations of the two flame regimes at the same conditions in a well-controlled experiment in which the swirl was generated by the rotating outer pipe of the annular burner air passage. Fluid velocity measured with PIV (particle image velocimetry), the qualitative detection of reaction zones from OH PLIF (planar laser-induced fluorescence) and the temperature measured by CARS (coherent anti-Stokes Raman spectroscopy) revealed major differences in vortical structures, turbulence, mixing and reaction intensities in the two flames. We discuss the transition mechanism and arguments for the improved mixing, compact size and a broader stability range of the blue flame in comparison to the long yellow flame. (author)

  15. Computational Studies of Flame Structures

    NASA Astrophysics Data System (ADS)

    Amin, Vaishali

    This thesis is concerned with computational studies of laminar flame structures using detailed and skeletal chemical kinetic mechanisms. Elementary reactions in these mechanisms control the observable combustion properties such as flame speed, autoignition temperature, ignition delay time, and extinction characteristics in nonpremixed and premixed flame phenomena. First part of thesis deals with computational investigations of influence of carbon monoxide and hydrogen addition on methane flames stabilized in counterflow configuration. Computations were performed employing detailed chemical kinetic mechanism---the San Diego mechanism. In case of nonpremixed flames, effect of carbon xvi monoxide addition on structure and critical condition of extinction were examined. Differences between addition on fuel and oxidizer sides were investigated and plausible explanation given for the differences. For premixed flames, effect of addition of hydrogen and carbon monoxide to reactant mixture was studied. Critical conditions of extinction were predicted using computations for various compositions. Rates of production and consumption of various species were calculated and flame structure was analyzed for nonpremixed and premixed flames. It was found that moderate amount of carbon monoxide addition to methane enhances flame reactivity. However, with large amount of carbon monoxide addition, additive chemistry dominates. Addition of increasing amounts of hydrogen in premixed reactant stream enhances methane flame reactivity. In second part of thesis, kinetic modeling was performed to elucidate the structure and mechanism of extinction and autoignition of nonpremixed toluene flames in counterflow configuration. Computations were performed using detailed chemistry to determine flame structure and to obtain values for critical conditions of extinction and autoignition. Sensitivity analysis of rate parameters, reaction pathway analysis, and spatial reaction rate profiles were used to

  16. Characterisation of an oxy-coal flame through digital imaging

    SciTech Connect

    Smart, John; Riley, Gerry; Lu, Gang; Yan, Yong

    2010-06-15

    This paper presents investigations into the impact of oxy-fuel combustion on flame characteristics through the application of digital imaging and image processing techniques. The characteristic parameters of the flame are derived from flame images that are captured using a vision-based flame monitoring system. Experiments were carried out on a 0.5 MW{sub th} coal combustion test facility. Different flue gas recycle ratios and furnace oxygen levels were created for two different coals. The characteristics of the flame and the correlation between the measured flame parameters and corresponding combustion conditions are described and discussed. The results show that the flame temperature decreases with the recycle ratio for both test coals, suggesting that the flame temperature is effectively controlled by the flue gas recycle ratio. The presence of high levels of CO{sub 2} at high flue gas recycle ratios may result in delayed combustion and thus has a detrimental effect on the flame stability. (author)

  17. Adiabatic Halo Formation

    SciTech Connect

    Bazzani, A.; Turchetti, G.; Benedetti, C.; Rambaldi, S.; Servizi, G.

    2005-06-08

    In a high intensity circular accelerator the synchrotron dynamics introduces a slow modulation in the betatronic tune due to the space-charge tune depression. When the transverse motion is non-linear due to the presence of multipolar effects, resonance islands move in the phase space and change their amplitude. This effect introduces the trapping and detrapping phenomenon and a slow diffusion in the phase space. We apply the neo-adiabatic theory to describe this diffusion mechanism that can contribute to halo formation.

  18. Experimental study of turbulent flame kernel propagation

    SciTech Connect

    Mansour, Mohy; Peters, Norbert; Schrader, Lars-Uve

    2008-07-15

    Flame kernels in spark ignited combustion systems dominate the flame propagation and combustion stability and performance. They are likely controlled by the spark energy, flow field and mixing field. The aim of the present work is to experimentally investigate the structure and propagation of the flame kernel in turbulent premixed methane flow using advanced laser-based techniques. The spark is generated using pulsed Nd:YAG laser with 20 mJ pulse energy in order to avoid the effect of the electrodes on the flame kernel structure and the variation of spark energy from shot-to-shot. Four flames have been investigated at equivalence ratios, {phi}{sub j}, of 0.8 and 1.0 and jet velocities, U{sub j}, of 6 and 12 m/s. A combined two-dimensional Rayleigh and LIPF-OH technique has been applied. The flame kernel structure has been collected at several time intervals from the laser ignition between 10 {mu}s and 2 ms. The data show that the flame kernel structure starts with spherical shape and changes gradually to peanut-like, then to mushroom-like and finally disturbed by the turbulence. The mushroom-like structure lasts longer in the stoichiometric and slower jet velocity. The growth rate of the average flame kernel radius is divided into two linear relations; the first one during the first 100 {mu}s is almost three times faster than that at the later stage between 100 and 2000 {mu}s. The flame propagation is slightly faster in leaner flames. The trends of the flame propagation, flame radius, flame cross-sectional area and mean flame temperature are related to the jet velocity and equivalence ratio. The relations obtained in the present work allow the prediction of any of these parameters at different conditions. (author)

  19. The discrete regime of flame propagation

    NASA Astrophysics Data System (ADS)

    Tang, Francois-David; Goroshin, Samuel; Higgins, Andrew

    The propagation of laminar dust flames in iron dust clouds was studied in a low-gravity envi-ronment on-board a parabolic flight aircraft. The elimination of buoyancy-induced convection and particle settling permitted measurements of fundamental combustion parameters such as the burning velocity and the flame quenching distance over a wide range of particle sizes and in different gaseous mixtures. The discrete regime of flame propagation was observed by substitut-ing nitrogen present in air with xenon, an inert gas with a significantly lower heat conductivity. Flame propagation in the discrete regime is controlled by the heat transfer between neighbor-ing particles, rather than by the particle burning rate used by traditional continuum models of heterogeneous flames. The propagation mechanism of discrete flames depends on the spa-tial distribution of particles, and thus such flames are strongly influenced by local fluctuations in the fuel concentration. Constant pressure laminar dust flames were observed inside 70 cm long, 5 cm diameter Pyrex tubes. Equally-spaced plate assemblies forming rectangular chan-nels were placed inside each tube to determine the quenching distance defined as the minimum channel width through which a flame can successfully propagate. High-speed video cameras were used to measure the flame speed and a fiber optic spectrometer was used to measure the flame temperature. Experimental results were compared with predictions obtained from a numerical model of a three-dimensional flame developed to capture both the discrete nature and the random distribution of particles in the flame. Though good qualitative agreement was obtained between model predictions and experimental observations, residual g-jitters and the short reduced-gravity periods prevented further investigations of propagation limits in the dis-crete regime. The full exploration of the discrete flame phenomenon would require high-quality, long duration reduced gravity environment

  20. Kinetics of Chemical Reactions in Flames

    NASA Technical Reports Server (NTRS)

    Zeldovich, Y.; Semenov, N.

    1946-01-01

    In part I of the paper the theory of flame propagation is developed along the lines followed by Frank-Kamenetsky and one of the writers. The development of chain processes in flames is considered. A basis is given for the application of the method of stationary concentrations to reactions in flames; reactions with branching chains are analyzed. The case of a diffusion coefficient different from the coefficient of temperature conductivity is considered.

  1. Flame spread across liquid pools

    NASA Technical Reports Server (NTRS)

    Ross, Howard; Miller, Fletcher; Schiller, David; Sirignano, William A.

    1993-01-01

    For flame spread over liquid fuel pools, the existing literature suggests three gravitational influences: (1) liquid phase buoyant convection, delaying ignition and assisting flame spread; (2) hydrostatic pressure variation, due to variation in the liquid pool height caused by thermocapillary-induced convection; and (3) gas-phase buoyant convection in the opposite direction to the liquid phase motion. No current model accounts for all three influences. In fact, prior to this work, there was no ability to determine whether ignition delay times and flame spread rates would be greater or lesser in low gravity. Flame spread over liquid fuel pools is most commonly characterized by the relationship of the initial pool temperature to the fuel's idealized flash point temperature, with four or five separate characteristic regimes having been identified. In the uniform spread regime, control has been attributed to: (1) gas-phase conduction and radiation; (2) gas-phase conduction only; (3) gas-phase convection and liquid conduction, and most recently (4) liquid convection ahead of the flame. Suggestions were made that the liquid convection was owed to both vuoyancy and thermocapillarity. Of special interest to this work is the determination of whether, and under what conditions, pulsating spread can and will occur in microgravity in the absence of buoyant flows in both phases. The approach we have taken to resolving the importance of buoyancy for these flames is: (1) normal gravity experiments and advanced diagnostics; (2) microgravity experiments; and (3) numerical modelling at arbitrary gravitational level.

  2. Surface Temperature Measurements from a Stator Vane Doublet in a Turbine Engine Afterburner Flame using Ultra-Bright Cr-Doped GdAlO3 Thermographic Phosphor

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Jenkins, Thomas P.; Allison, Stephen W.; Wolfe, Douglas E.; Howard, Robert P.

    2013-01-01

    Luminescence-based surface temperature measurements from an ultra-bright Cr-doped GdAlO3 perovskite (GAP:Cr) coating were successfully conducted on an air-film-cooled stator vane doublet exposed to the afterburner flame of a J85 test engine at University of Tennessee Space Institute (UTSI). The objective of the testing at UTSI was to demonstrate that reliable thermal barrier coating (TBC) surface temperatures based on luminescence decay of a thermographic phosphor could be obtained from the surface of an actual engine component in an aggressive afterburner flame environment and to address the challenges of a highly radiant background and high velocity gases. A high-pressure turbine vane doublet from a Honeywell TECH7000 turbine engine was coated with a standard electron-beam physical vapor deposited (EB-PVD) 200-m-thick TBC composed of yttria-stabilized zirconia (YSZ) onto which a 25-m-thick GAP:Cr thermographic phosphor layer was deposited by EB-PVD. The ultra-bright broadband luminescence from the GAP:Cr thermographic phosphor is shown to offer the advantage of over an order-of-magnitude greater emission intensity compared to rare-earth-doped phosphors in the engine test environment. This higher emission intensity was shown to be very desirable for overcoming the necessarily restricted probe light collection solid angle and for achieving high signal-to-background levels. Luminescence-decay-based surface temperature measurements varied from 500 to over 1000C depending on engine operating conditions and level of air film cooling.

  3. Combustor flame flashback

    NASA Technical Reports Server (NTRS)

    Proctor, M. P.; Tien, J. S.

    1985-01-01

    A stainless steel, two-dimensional (rectangular), center-dump, premixed-prevaporized combustor with quartz window sidewalls for visual access was designed, built, and used to study flashback. A parametric study revealed that the flashback equivalence ratio decreased slightly as the inlet air temperature increased. It also indicated that the average premixer velocity and premixer wall temperature were not governing parameters of flashback. The steady-state velocity balance concept as the flashback mechanism was not supported. From visual observation several stages of burning were identified. High speed photography verified upstream flame propagation with the leading edge of the flame front near the premixer wall. Combustion instabilities (spontaneous pressure oscillations) were discovered during combustion at the dump plane and during flashback. The pressure oscillation frequency ranged from 40 to 80 Hz. The peak-to-peak amplitude (up to 1.4 psi) increased as the fuel/air equivalence ratio was increased attaining a maximum value just before flashback. The amplitude suddenly decreased when the flame stabilized in the premixer. The pressure oscillations were large enough to cause a local flow reversal. A simple test using ceramic fiber tufts indicated flow reversals existed at the premixer exit during flickering. It is suspected that flashback occurs through the premixer wall boundary layer flow reversal caused by combustion instability. A theoretical analysis of periodic flow in the premixing channel has been made. The theory supports the flow reversal mechanism.

  4. Numerical investigations of gaseous spherical diffusion flames

    NASA Astrophysics Data System (ADS)

    Lecoustre, Vivien R.

    Spherical diffusion flames have several unique characteristics that make them attractive from experimental and theoretical perspectives. They can be modeled with one spatial dimension, which frees computational resources for detailed chemistry, transport, and radiative loss models. This dissertation is a numerical study of two classes of spherical diffusion flames: hydrogen micro-diffusion flames, emphasizing kinetic extinction, and ethylene diffusion flames, emphasizing sooting limits. The flames were modeled using a one-dimensional, time-accurate diffusion flame code with detailed chemistry and transport. Radiative losses from products were modeled using a detailed absorption/emission statistical narrow band model and the discrete ordinates method. During this work the code has been enhanced by the implementation of a soot formation/oxidation model using the method of moments. Hydrogen micro-diffusion flames were studied experimentally and numerically. The experiments involved gas jets of hydrogen. At their quenching limits, these flames had heat release rates of 0.46 and 0.25 W in air and in oxygen, respectively. These are the weakest flames ever observed. The modeling results confirmed the quenching limits and revealed high rates of reactant leakage near the limits. The effects of the burner size and mass flow rate were predicted to have a significant impact on the flame chemistry and species distribution profiles, favoring kinetic extinction. Spherical ethylene diffusion flames at their sooting limits were also examined. Seventeen normal and inverse spherical flames were considered. Initially sooty, these flames were experimentally observed to reach their sooting limits 2 s after ignition. Structure of the flames at 2 s was considered, with an emphasis on the relationships among local temperature, carbon to oxygen atom ratio (C/O), and scalar dissipation rate. A critical C/O ratio was identified, along with two different sooting limit regimes. Diffusion flames

  5. Adiabatic Quantum Computing

    NASA Astrophysics Data System (ADS)

    Landahl, Andrew

    2012-10-01

    Quantum computers promise to exploit counterintuitive quantum physics principles like superposition, entanglement, and uncertainty to solve problems using fundamentally fewer steps than any conventional computer ever could. The mere possibility of such a device has sharpened our understanding of quantum coherent information, just as lasers did for our understanding of coherent light. The chief obstacle to developing quantum computer technology is decoherence--one of the fastest phenomena in all of physics. In principle, decoherence can be overcome by using clever entangled redundancies in a process called fault-tolerant quantum error correction. However, the quality and scale of technology required to realize this solution appears distant. An exciting alternative is a proposal called ``adiabatic'' quantum computing (AQC), in which adiabatic quantum physics keeps the computer in its lowest-energy configuration throughout its operation, rendering it immune to many decoherence sources. The Adiabatic Quantum Architectures In Ultracold Systems (AQUARIUS) Grand Challenge Project at Sandia seeks to demonstrate this robustness in the laboratory and point a path forward for future hardware development. We are building devices in AQUARIUS that realize the AQC architecture on up to three quantum bits (``qubits'') in two platforms: Cs atoms laser-cooled to below 5 microkelvin and Si quantum dots cryo-cooled to below 100 millikelvin. We are also expanding theoretical frontiers by developing methods for scalable universal AQC in these platforms. We have successfully demonstrated operational qubits in both platforms and have even run modest one-qubit calculations using our Cs device. In the course of reaching our primary proof-of-principle demonstrations, we have developed multiple spinoff technologies including nanofabricated diffractive optical elements that define optical-tweezer trap arrays and atomic-scale Si lithography commensurate with placing individual donor atoms with

  6. Electrical Aspects of Impinging Flames

    NASA Astrophysics Data System (ADS)

    Chien, Yu-Chien

    from the flame to the plate can be controlled using the electric field are the two main goals of this research. Multiple diagnostic techniques are employed such as OH chemiluminescence to identify the reaction zone, OH PLIF to characterize the location of this radical species, CO released from the flame, IR imaging and OH PLIF thermometry to understand the surface and gas temperature distribution, respectively. The principal finding is that carbon monoxide release from an impinging diffusion flame results from the escape of carbon monoxide created on the fuel side of the flame along the boundary layer near the surface where it avoids oxidation by OH, which sits to the air side of the reaction sheet interface. In addition, the plate proximity to the flame has a stronger influence on the emission of toxic carbon monoxide than does the electric field strength. There is, however, a narrow region of burner to surface distance where the electric field is most effective. The results also show that heat transfer can be spatially concentrated effectively using an electric field driven ion wind, particularly at some burner to surface distances.

  7. Candle Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Ross, H. D.; T'ien, J. S.; Chang, P.; Shu, Y.

    1999-01-01

    This work is a study of a candle flame in a microgravity environment. The purpose of the work is to determine if a steady (or quasi-steady) flame can exist in a microgravity environment, study the characteristics of the steady flame, investigate the pre-extinction flame oscillations observed in a previous experiment in more detail, and finally, determine the nature of the interactions between two closely spaced candle flames. The candle flame in microgravity is used as a model of a non-propagating, steady-state, pure diffusion flame. The present work is a continuation of two small-scale, space-based experiments on candle flames, one on the Shuttle and the other on the Mir OS. The previous studies showed nearly steady dim blue flames with flame lifetimes as high as 45 minutes, and 1 Hz spontaneous flame oscillations prior to extinction. The present paper summarizes the results of the modeling efforts to date.

  8. Geometry of the Adiabatic Theorem

    ERIC Educational Resources Information Center

    Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas

    2012-01-01

    We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…

  9. The transient response of strained laminar-premixed flames

    SciTech Connect

    Petrov, C.A.; Ghoniem, A.F.

    1995-08-01

    Modeling and simulation of turbulent combustion in premixed gases, for relatively large-scale and low-intensity turbulence, have traditionally been based on the assumption that the flame response to strain is instantaneous. In this paper, the authors revisit the validity of this assumption by examining the time-dependent response of a premixed laminar flame when subjected to a sudden change in strain and a periodic strain. They find that at unity Lewis number and for a stepwise increase in strain, the settling time of the flame varies between the chemical time, the flame time and the flow time as the Karlovitz number changes from low to intermediate to high values, respectively, over the entire range of flame temperatures. At nonunity Lewis numbers, the settling time changes from the flame time to the flow time as the strain jump increases from intermediate to high Karlovitz numbers and over the entire range of flame temperatures. For given Lewis and Karlovitz numbers, the settling time decreases as these flame temperature increases. Thus, in a flamelet or thin flame modeling, and over the entire range of Lewis number, the response of a premixed flame can be considered instantaneous only for high flame temperatures. The same is found to be true for intermediate flame temperatures when the Lewis number is unity. Otherwise, for low and intermediate flame tempera tues, and nonunity Lewis number, corrections reflecting the lag between the flow an the flame should be considered. The response of the flame to oscillating strain whose maximum value is below unity Karlovitz number is also investigated for two values of the flame temperatures.

  10. Complete population inversion of Bose particles by an adiabatic cycle

    NASA Astrophysics Data System (ADS)

    Tanaka, Atushi; Cheon, Taksu

    2016-04-01

    We show that an adiabatic cycle excites Bose particles confined in a one-dimensional box. During the adiabatic cycle, a wall described by a δ-shaped potential is applied and its strength and position are slowly varied. When the system is initially prepared in the ground state, namely, in the zero-temperature equilibrium state, the adiabatic cycle brings all Bosons into the first excited one-particle state, leaving the system in a nonequilibrium state. The absorbed energy during the cycle is proportional to the number of Bosons.

  11. Adiabatic charging of nickel-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Lurie, Chuck; Foroozan, S.; Brewer, Jeff; Jackson, Lorna

    1995-01-01

    Battery management during prelaunch activities has always required special attention and careful planning. The transition from nickel-cadium to nickel-hydrogen batteries, with their high self discharge rate and lower charge efficiency, as well as longer prelaunch scenarios, has made this aspect of spacecraft battery management even more challenging. The AXAF-I Program requires high battery state of charge at launch. The use of active cooling, to ensure efficient charging, was considered and proved to be difficult and expensive. Alternative approaches were evaluated. Optimized charging, in the absence of cooling, appeared promising and was investigated. Initial testing was conducted to demonstrate the feasibility of the 'Adiabatic Charging' approach. Feasibility was demonstrated and additional testing performed to provide a quantitative, parametric data base. The assumption that the battery is in an adiabatic environment during prelaunch charging is a conservative approximation because the battery will transfer some heat to its surroundings by convective air cooling. The amount is small compared to the heat dissipated during battery overcharge. Because the battery has a large thermal mass, substantial overcharge can occur before the cells get too hot to charge efficiently. The testing presented here simulates a true adiabatic environment. Accordingly the data base may be slightly conservative. The adiabatic charge methodology used in this investigation begins with stabilizing the cell at a given starting temperature. The cell is then fully insulated on all sides. Battery temperature is carefully monitored and the charge terminated when the cell temperature reaches 85 F. Charging has been evaluated with starting temperatures from 55 to 75 F.

  12. Advanced Adiabatic Demagnetization Refrigerators for Continuous Cooling

    NASA Technical Reports Server (NTRS)

    Chu, Paul C. W.

    2004-01-01

    The research at Houston was focused on optimizing the design of superconducting magnets for advanced adiabatic demagnetization refrigerators (ADRs), assessing the feasibility of using high temperature superconducting (HTS) magnets in ADRs in the future, and developing techniques to deposit HTS thin and thick films on high strength, low thermal conductivity substrates for HTS magnet leads. Several approaches have been tested for the suggested superconducting magnets.

  13. Flame speed enhancement of solid nitrocellulose monopropellant coupled with graphite at microscales

    NASA Astrophysics Data System (ADS)

    Jain, S.; Yehia, O.; Qiao, L.

    2016-03-01

    The flame-speed-enhancement phenomenon of a solid monopropellant (nitrocellulose) using a highly conductive thermal base (graphite sheet) was demonstrated and studied both experimentally and theoretically. A propellant layer ranging from 20 μm to 170 μm was deposited on the top of a 20-μm thick graphite sheet. Self-propagating oscillatory combustion waves were observed, with average flame speed enhancements up to 14 times the bulk value. The ratio of the fuel-to-graphite layer thickness affects not only the average reaction front velocities but also the period and the amplitude of the combustion wave oscillations. To better understand the flame-speed enhancement and the oscillatory nature of the combustion waves, the coupled nitrocellulose-graphite system was modeled using one-dimensional energy conservation equations along with simple one-step chemistry. The period and the amplitude of the oscillatory combustion waves were predicted as a function of the ratio of the fuel-to-graphite thickness (R), the ratio of the graphite-to-fuel thermal diffusivity (α0), and the non-dimensional inverse adiabatic temperature rise (β). The predicted flame speeds and the characteristics of the oscillations agree well with the experimental data. The new concept of using a highly conductive thermal base such as carbon-based nano- and microstructures to enhance flame propagation speed or burning rate of propellants and fuels could lead to improved performance of solid and liquid rocket motors, as well as of the alternative energy conversion microelectromechanical devices.

  14. Laser-Induced Fluorescence Measurements and Modeling of Nitric Oxide in Counterflow Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Ravikrishna, Rayavarapu V.

    2000-01-01

    The feasibility of making quantitative nonintrusive NO concentration ([NO]) measurements in nonpremixed flames has been assessed by obtaining laser-induced fluorescence (LIF) measurements of [NO] in counterflow diffusion flames at atmospheric and higher pressures. Comparisons at atmospheric pressure between laser-saturated fluorescence (LSF) and linear LIF measurements in four diluted ethane-air counterflow diffusion flames with strain rates from 5 to 48/s yielded excellent agreement from fuel-lean to moderately fuel-rich conditions, thus indicating the utility of a model-based quenching correction technique, which was then extended to higher pressures. Quantitative LIF measurements of [NO] in three diluted methane-air counterflow diffusion flames with strain rates from 5 to 35/s were compared with OPPDIF model predictions using the GRI (version 2.11) chemical kinetic mechanism. The comparisons revealed that the GRI mechanism underpredicts prompt-NO by 30-50% at atmospheric pressure. Based on these measurements, a modified reaction rate coefficient for the prompt-NO initiation reaction was proposed which causes the predictions to match experimental data. Temperature measurements using thin filament pyrometry (TFP) in conjunction with a new calibration method utilizing a near-adiabatic H2-air Hencken burner gave very good comparisons with model predictions in these counterflow diffusion flames. Quantitative LIF measurements of [NO] were also obtained in four methane-air counterflow partially-premixed flames with fuel-side equivalence ratios (phi(sub B)) of 1.45, 1.6, 1.8 and 2.0. The measurements were in excellent agreement with model predictions when accounting for radiative heat loss. Spatial separation between regions dominated by the prompt and thermal NO mechanisms was observed in the phi(sub B) = 1.45 flame. The modified rate coefficient proposed earlier for the prompt-NO initiation reaction improved agreement between code predictions and measurements in the

  15. Laminar Diffusion Flame Studies (Ground- and Space-Based Studies)

    NASA Technical Reports Server (NTRS)

    Dai, Z.; El-Leathy, A. M.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    Laminar diffusion flames are of interest because they provide model flame systems that are far more tractable for analysis and experiments than more practical turbulent diffusion flames. Certainly, understanding flame processes within laminar diffusion flames must precede understanding these processes in more complex turbulent diffusion flames. In addition, many properties of laminar diffusion flames are directly relevant to turbulent diffusion flames using laminar flamelet concepts. Laminar jet diffusion flame shapes (luminous flame boundaries) have been of particular interest since the classical study of Burke and Schumann because they are a simple nonintrusive measurement that is convenient for evaluating flame structure predictions. Thus, consideration of laminar flame shapes is undertaken in the following, emphasizing conditions where effects of gravity are small, due to the importance of such conditions to practical applications. Another class of interesting properties of laminar diffusion flames are their laminar soot and smoke point properties (i.e., the flame length, fuel flow rate, characteristic residence time, etc., at the onset of soot appearance in the flame (the soot point) and the onset of soot emissions from the flame (the smoke point)). These are useful observable soot properties of nonpremixed flames because they provide a convenient means to rate several aspects of flame sooting properties: the relative propensity of various fuels to produce soot in flames; the relative effects of fuel structure, fuel dilution, flame temperature and ambient pressure on the soot appearance and emission properties of flames; the relative levels of continuum radiation from soot in flames; and effects of the intrusion of gravity (or buoyant motion) on emissions of soot from flames. An important motivation to define conditions for soot emissions is that observations of laminar jet diffusion flames in critical environments, e.g., space shuttle and space station

  16. Numerical investigation of steady laminar flame propagation in a circular tube

    SciTech Connect

    Lee, S.T.; Chien, C.H. . Dept. of Mechanical Engineering)

    1994-12-01

    The steady propagation of a premixed laminar flame in circular tubes with adiabatic wall and isothermal wall is numerically investigated in the present study. It is assumed that the flow is axisymmetric and the flame chemistry is modeled by an one-step overall reaction which simulates the reaction of a lean methane-air mixture. The numerical results show that the flame propagating steadily in a tube can take two distinct shapes: tulip shape and mushroom shape. It is found that, in a insulated tube, the tulip-shaped flame is a more robust manifestation than the mushroom-shaped flame, and is the primary mode of the solutions. The opposite is true in a tube with isothermal wall. The effect of the gravity along the tube axis is also studied. It is found that the gravity not only modifies the flame speed, it also affects the flame shape. For example, under zero-gravity, only tulip-shaped flame can be found in a small tube with adiabatic wall, but under the normal gravitational force, both mushroom-shaped flame and tulip-shaped flame exist.

  17. The conductive propagation of nuclear flames. 2: Convectively bounded flames in C + O and O + Ne + Mg cores

    NASA Technical Reports Server (NTRS)

    Timmes, F. X.; Woosley, S. E.; Taam, Ronald E.

    1994-01-01

    We determine the speeds, and many other physical properties, of flame fronts that propagate inward into degenerate and semidegenerate cores of carbon and oxygen (CO) and neon and oxygen (NeOMg) white dwarfs when such flames are bounded on their exterior by a convective region. Combustion in such fronts, per se, is incomplete, with only a small part of the initial mass function burned. A condition of balanced power is set up in the star where the rate of energy emitted as neutrinos from the convective region equals the power available from the unburned fuel that crosses the burning front. The propagation of the burning front itself is in turn limited by the temperature at the base of the convective shell, while cannot greatly exceed the adiabatic value. Solving for consistency between these two conditions gives a unique speed for the flame. Typical values for CO white dwarfs are a few hundredths of a centimeter per second. Flames in NeOMg mixtures are slower. Tables are presented in a form that can easily be implemented in stellar evolution codes and yield the rate at which the convective shell advances into the interior. Combining these velocities with the local equations for stellar structure, we find a minimum density for each gravitational potential below with the local equations for stellar structure, we find a minimum density for each gravitational potential below which the flame cannot propagate, and must die. Although detailed stellar models will have to be constructed to reslove some issues conclusively, our results that a CO white dwarf inginted at its edge will not burn carbon all the way to its center unless the mass of the white dwarf exceeds 0.8 solar mass. On the other hand, it is difficult to ignite carbon burning by compression alone anywhere in a white dwarf whose mass does not exceed 1.0 solar mass. Thus, compressionally ignited shell carbon burning in an accerting CO dwarf almost certainly propagates all the way to the center of the star

  18. The VLT-FLAMES Tarantula Survey. XVI. The optical and NIR extinction laws in 30 Doradus and the photometric determination of the effective temperatures of OB stars

    NASA Astrophysics Data System (ADS)

    Maíz Apellániz, J.; Evans, C. J.; Barbá, R. H.; Gräfener, G.; Bestenlehner, J. M.; Crowther, P. A.; García, M.; Herrero, A.; Sana, H.; Simón-Díaz, S.; Taylor, W. D.; van Loon, J. Th.; Vink, J. S.; Walborn, N. R.

    2014-04-01

    Context. The commonly used extinction laws of Cardelli et al. (1989, ApJ, 345, 245) have limitations that, among other issues, hamper the determination of the effective temperatures of O and early B stars from optical and near-infrared (NIR) photometry. Aims: We aim to develop a new family of extinction laws for 30 Doradus, check their general applicability within that region and elsewhere, and apply them to test the feasibility of using optical and NIR photometry to determine the effective temperature of OB stars. Methods: We use spectroscopy and NIR photometry from the VLT-FLAMES Tarantula Survey and optical photometry from HST/WFC3 of 30 Doradus and we analyze them with the software code CHORIZOS using different assumptions, such as the family of extinction laws. Results: We derive a new family of optical and NIR extinction laws for 30 Doradus and confirm its applicability to extinguished Galactic O-type systems. We conclude that by using the new extinction laws it is possible to measure the effective temperatures of OB stars with moderate uncertainties and only a small bias, at least up to E(4405-5495) ~ 1.5 mag. Appendices are available in electronic form at http://www.aanda.org

  19. Determination of three antidepressants in urine using simultaneous derivatization and temperature-assisted dispersive liquid-liquid microextraction followed by gas chromatography-flame ionization detection.

    PubMed

    Nabil, Ali Akbar Alizadeh; Nouri, Nina; Farajzadeh, Mir Ali

    2015-07-01

    This paper presents a fast and simple method for the extraction, preconcentration and determination of fluvoxamine, nortriptyline and maprotiline in urine using simultaneous derivatization and temperature-assisted dispersive liquid-liquid microextraction (TA-DLLME) followed by gas chromatography-flame ionization detection (GC-FID). An appropriate mixture of dimethylformamide (disperser solvent), 1,1,2,2-tetrachloroethane (extraction solvent) and acetic anhydride (derivatization agent) was rapidly injected into the heated sample. Then the solution was cooled to room temperature and cloudy solution formed was centrifuged. Finally a portion of the sedimented phase was injected into the GC-FID. The effect of several factors affecting the performance of the method, including the selection of suitable extraction and disperser solvents and their volumes, volume of derivatization agent, temperature, salt addition, pH and centrifugation time and speed were investigated and optimized. Figures of merit of the proposed method, such as linearity (r(2)  > 0.993), enrichment factors (820-1070), limits of detection (2-4 ng mL(-1)) and quantification (8-12 ng mL(-1)), and relative standard deviations (3-6%) for both intraday and interday precisions (concentration = 50 ng mL(-1)) were satisfactory for determination of the selected antidepressants. Finally the method was successfully applied to determine the target pharmaceuticals in urine. PMID:25516238

  20. Room temperature ionic liquids enhanced the speciation of Cr(VI) and Cr(III) by hollow fiber liquid phase microextraction combined with flame atomic absorption spectrometry.

    PubMed

    Zeng, Chujie; Lin, Yao; Zhou, Neng; Zheng, Jiaoting; Zhang, Wei

    2012-10-30

    A new method for the speciation of Cr(VI) and Cr(III) based on enhancement effect of room temperature ionic liquids (RTILs) for hollow fiber liquid phase microextraction (HF-LPME) combined with flame atomic absorption spectrometry (FAAS) was developed. Room temperature ionic liquids (RTILs) and diethyldithiocarbamate (DDTC) were used enhancement reagents and chelating reagent, respectively. The addition of room temperature ionic liquids led to 3.5 times improvement in the determination of Cr(VI). In this method, Cr(VI) reacts with DDTC yielding a hydrophobic complex, which is subsequently extracted into the lumen of hollow fiber, whereas Cr(III) is remained in aqueous solutions. The extraction organic phase was injected into FAAS for the determination of Cr(VI). Total Cr concentration was determined after oxidizing Cr(III) to Cr(VI) in the presence of KMnO(4) and using the extraction procedure mentioned above. Cr(III) was calculated by subtracting of Cr(VI) from the total Cr. Under optimized conditions, a detection limit of 0.7 ng mL(-1) and an enrichment factor of 175 were achieved. The relative standard deviation (RSD) was 4.9% for Cr(VI) (40 ng mL(-1), n=5). The proposed method was successfully applied to the speciation of chromium in natural water samples with satisfactory results. PMID:22981284

  1. Adiabatic heating in impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Maetzler, C.; Bai, T.; Crannell, C. J.; Frost, K. J.

    1978-01-01

    A study is made of adiabatic heating in two impulsive solar flares on the basis of dynamic X-ray spectra in the 28-254 keV range, H-alpha, microwave, and meter-wave radio observations. It is found that the X-ray spectra of the events are like those of thermal bremsstrahlung from single-temperature plasmas in the 10-60 keV range if photospheric albedo is taken into account. The temperature-emission correlation indicates adiabatic compression followed by adiabatic expansion and that the electron distribution remains isotropic. H-alpha data suggest compressive energy transfer. The projected areas and volumes of the flares are estimated assuming that X-ray and microwave emissions are produced in a single thermal plasma. Electron densities of about 10 to the 9th/cu cm are found for homogeneous, spherically symmetric sources. It is noted that the strong self-absorption of hot-plasma gyrosynchrotron radiation reveals low magnetic field strengths.

  2. Chemical quality and temperature of water in Flaming Gorge Reservoir, Wyoming and Utah, and the effect of the reservoir on the Green River

    USGS Publications Warehouse

    Bolke, E.L.; Waddell, Kidd M.

    1975-01-01

    The major tributaries to Flaming Gorge Reservoir contribute an average of about 97 percent of the total streamflow and 82 percent of the total load of dissolved solids. The Green River is the largest tributary, and for the 1957-72 water years it contributed 81 percent of the total streamflow and 70 percent of the total load of dissolved solids. The principal constituents in the tributary streamflow are calcium and sulfate during periods of lowest flow and calcium and bicarbonate during periods of highest flow. Flaming Gorge Dam was closed in November 1962, and the most significant load changes of chemical constituents due to the net effect of inflow, outflow, leaching, and chemical precipitation in the reservoir have been load changes of sulfate and bicarbonate. The average increase of dissolved load of sulfate in the reservoir for the 1969-72 water years was 110,000 tons (99,790 t) per year, which was 40,000 tons (36,287 t) per year less than for the 1963-66 water years. The average decrease of dissolved load of bicarbonate in the reservoir for 1969-72 was 40,000 tons (36,287 t) per year, which was the same as the decrease for 1963-66. Anaerobic conditions were observed in the deep, uncirculated part of the reservoir near the dam during the 1971 and 1972 water years, and anaerobic or near-anaerobic conditions were observed near the confluence of the Blacks Fork and Green River during the summers of 1971 and 1972. The water in Flaming Gorge Reservoir is in three distinct layers, and the upper two layers (the epilimnion and the metalimnion) mixed twice during each of the 1971-72 water years. The two circulation periods were in the spring and fall. The water in the deepest layer (the hypolimnion) did not mix with the waters of the upper zones because the density difference was too great and because the deep, narrow shape of the basin probably inhibits mixing. The depletion of flow in the Green River downstream from Flaming Gorge Dam between closure of the dam and the

  3. Flame Structure and Scalar Properties in Microgravity Laminar Fires

    NASA Technical Reports Server (NTRS)

    Feikema, D. A.; Lim, J.; Sivathanu, Y.

    2006-01-01

    Recent results from microgravity combustion experiments conducted in the Zero Gravity Facility (ZGF) 5.18 second drop tower are reported. Emission mid-infrared spectroscopy measurements have been completed to quantitatively determine the flame temperature, water and carbon dioxide vapor concentrations, radiative emissive power, and soot concentrations in a microgravity laminar ethylene/air flame. The ethylene/air laminar flame conditions are similar to previously reported experiments including the Flight Project, Laminar Soot Processes (LSP). Soot concentrations and gas temperatures are in reasonable agreement with similar results available in the literature. However, soot concentrations and flame structure dramatically change in long duration microgravity laminar diffusion flames as demonstrated in this paper.

  4. Flame Resistant Foam

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Solimide manufactured by Imi-Tech Corporation, is a lightweight fire resistant material produced under a manufacturing process that allows it to be uniformly foamed. Can be produced in a variety of densities and structural configurations and remains resilient under exposure to temperatures ranging from minus 300 to plus 500 degrees Fahrenheit. Is resistant to open flame and generates virtually no smoke or toxic by-products. Used in aircraft for its superior damping characteristics, lighter weight and fire barrier properties, it's also applicable to ships and surface transportation systems such as transit cars, trains, buses and automobiles.

  5. An adiabatic demagnetization refrigerator for infrared bolometers

    NASA Technical Reports Server (NTRS)

    Britt, R. D.; Richards, P. L.

    1981-01-01

    Adiabatic demagnetization refrigerators have been built and installed in small portable liquid helium cryostats to test the feasibility of this method of cooling infrared bolometric detectors to temperatures below 0.3 K. Performance has been achieved which suggests that bolometer temperatures of 0.2 K can be maintained for periods of approximately 60 hours. Applications to sensitive infrared detection from ground-based telescopes and space satellites are discussed. Design data are given which permit the evaluation of refrigerator performance for a variety of design parameters.

  6. Application of elevated temperature-dispersive liquid-liquid microextraction for determination of organophosphorus pesticides residues in aqueous samples followed by gas chromatography-flame ionization detection.

    PubMed

    Farajzadeh, Mir Ali; Afshar Mogaddam, Mohammad Reza; Rezaee Aghdam, Samaneh; Nouri, Nina; Bamorrowat, Mahdi

    2016-12-01

    In the present study, an elevated temperature, dispersive, liquid-liquid microextraction/gas chromatography-flame ionization detection was investigated for the determination, pre-concentration, and extraction of six organophosphorus pesticides (malathion, phosalone, dichlorvos, diazinon, profenofos, and chlorpyrifos) residues in fruit juice and aqueous samples. A mixture of 1,2-dibromoethane (extraction solvent) and dimethyl sulfoxide (disperser solvent) was injected rapidly into the sample solution heated at an elevated temperature. Analytical parameters, including enrichment factors (1600-2075), linearity (r>0.994), limits of detection (0.82-2.72ngmL(-1)) and quantification (2.60-7.36ngmL(-1)), relative standard deviations (<7%) and extraction recoveries (64-83%), showed the high efficiency of the method developed for analysis of the target analytes. The proposed procedure was used effectively to analyse selected analytes in river water and fruit juice, and diazinon was found at ngmL(-1) concentrations in apple juice. PMID:27374524

  7. Development of video processing based on coal flame detector system

    SciTech Connect

    He Wanqing; Yu Yuefeng; Xu Weiyong; Ma Liqun

    1999-07-01

    The principle and development of a set of pulverized coal combustion flame detection system, which is called intelligent image flame detector device based on digital video processing, is addressed in this paper. The system realizes multi-burner flame detection and processing using a distributive structure of engineering workstation and flame detectors via multi-serial-port communication. The software can deal with multi-tasks in a parallel way based on multi-thread mechanism. Streaming video capture and storage is provided to safe and playback the accidental Audio and Visual Interfaces (AVI) clips. The layer flame detectors can give the flame on/off signal through image processing. Pseudo-color visualization of flame temperature calculated from chromatic CCD signal is integrated into the system. The image flame detector system has been successfully used in thermal power generation units in China.

  8. The Cool Flames Experiment

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard; Chapek, Richard; Neville, Donna; Sheredy, William; Wu, Ming-Shin; Tornabene, Robert

    2001-01-01

    A space-based experiment is currently under development to study diffusion-controlled, gas-phase, low temperature oxidation reactions, cool flames and auto-ignition in an unstirred, static reactor. At Earth's gravity (1g), natural convection due to self-heating during the course of slow reaction dominates diffusive transport and produces spatio-temporal variations in the thermal and thus species concentration profiles via the Arrhenius temperature dependence of the reaction rates. Natural convection is important in all terrestrial cool flame and auto-ignition studies, except for select low pressure, highly dilute (small temperature excess) studies in small vessels (i.e., small Rayleigh number). On Earth, natural convection occurs when the Rayleigh number (Ra) exceeds a critical value of approximately 600. Typical values of the Ra, associated with cool flames and auto-ignitions, range from 104-105 (or larger), a regime where both natural convection and conduction heat transport are important. When natural convection occurs, it alters the temperature, hydrodynamic, and species concentration fields, thus generating a multi-dimensional field that is extremely difficult, if not impossible, to be modeled analytically. This point has been emphasized recently by Kagan and co-workers who have shown that explosion limits can shift depending on the characteristic length scale associated with the natural convection. Moreover, natural convection in unstirred reactors is never "sufficiently strong to generate a spatially uniform temperature distribution throughout the reacting gas." Thus, an unstirred, nonisothermal reaction on Earth does not reduce to that generated in a mechanically, well-stirred system. Interestingly, however, thermal ignition theories and thermokinetic models neglect natural convection and assume a heat transfer correlation of the form: q=h(S/V)(T(bar) - Tw) where q is the heat loss per unit volume, h is the heat transfer coefficient, S/V is the surface to

  9. Estimation of the turbulence scale in flame using the method of IR diagnostics

    NASA Astrophysics Data System (ADS)

    Loboda, E. L.; Matvienko, O. V.; Agafontsev, M. V.; Reyno, V. V.

    2015-11-01

    The paper presents the experimental measurements of temperature fields in a narrow mid-infrared spectral range during combustion of different fuels (plant fuels, alcohol, petroleum, kerosene, and diesel fuel). The spectra of temperature changes are obtained in flame. The scale of turbulence in flame is estimated on the basis of temperature nonuniformity measurements and the analysis of temperature spectra in flame.

  10. Laser-saturated fluorescence measurements in laminar sooting diffusion flames

    NASA Technical Reports Server (NTRS)

    Wey, Changlie

    1993-01-01

    The hydroxyl radical is known to be one of the most important intermediate species in the combustion processes. The hydroxyl radical has also been considered a dominant oxidizer of soot particles in flames. In this investigation the hydroxyl concentration profiles in sooting diffusion flames were measured by the laser-saturated fluorescence (LSF) method. The temperature distributions in the flames were measured by the two-line LSF technique and by thermocouple. In the sooting region the OH fluorescence was too weak to make accurate temperature measurements. The hydroxyl fluorescence profiles for all four flames presented herein show that the OH fluorescence intensities peaked near the flame front. The OH fluorescence intensity dropped sharply toward the dark region of the flame and continued declining to the sooting region. The OH fluorescence profiles also indicate that the OH fluorescence decreased with increasing height in the flames for all flames investigated. Varying the oxidizer composition resulted in a corresponding variation in the maximum OH concentration and the flame temperature. Furthermore, it appears that the maximum OH concentration for each flame increased with increasing flame temperature.

  11. Non-adiabatic effect on quantum pumping

    NASA Astrophysics Data System (ADS)

    Uchiyama, Chikako

    2014-03-01

    We study quantum pumping for an anharmonic junction model which interacts with two kinds of bosonic environments. We provide an expression for the quantum pumping under a piecewise modulation of environmental temperatures with including non-adiabatic effect under Markovian approximation. The obtained formula is an extension of the one expressed with the geometrical phase(Phys. Rev. Lett. 104,170601 (2010)). This extension shows that the quantum pumping depends on the initial condition of the anharmonic junction just before the modulation, as well as the characteristic environmental parameters such as interaction strength and cut-off frequencies of spectral density other than the conditions of modulation. We clarify that the pumping current including non-adiabatic effect can be larger than that under the adiabatic condition. This means that we can find the optimal condition of the current by adjusting these parameters. (The article has been submitted as http://arxiv.org/submit/848201 and will be appeared soon.) This work is supported by a Grant-in-Aid for Scientific Research (B) (KAKENHI 25287098).

  12. Inertial effects in adiabatically driven flashing ratchets

    NASA Astrophysics Data System (ADS)

    Rozenbaum, Viktor M.; Makhnovskii, Yurii A.; Shapochkina, Irina V.; Sheu, Sheh-Yi; Yang, Dah-Yen; Lin, Sheng Hsien

    2014-05-01

    We study analytically the effect of a small inertial correction on the properties of adiabatically driven flashing ratchets. Parrondo's lemma [J. M. R. Parrondo, Phys. Rev. E 57, 7297 (1998), 10.1103/PhysRevE.57.7297] is generalized to include the inertial term so as to establish the symmetry conditions allowing directed motion (other than in the overdamped massless case) and to obtain a high-temperature expansion of the motion velocity for arbitrary potential profiles. The inertial correction is thus shown to enhance the ratchet effect at all temperatures for sawtooth potentials and at high temperatures for simple potentials described by the first two harmonics. With the special choice of potentials represented by at least the first three harmonics, the correction gives rise to the motion reversal in the high-temperature region. In the low-temperature region, inertia weakens the ratchet effect, with the exception of the on-off model, where diffusion is important. The directed motion adiabatically driven by potential sign fluctuations, though forbidden in the overdamped limit, becomes possible due to purely inertial effects in neither symmetric nor antisymmetric potentials, i.e., not for commonly used sawtooth and two-sinusoid profiles.

  13. Triple flame structure and dynamics at the stabilization point of a lifted jet diffusion flame

    SciTech Connect

    Najm, H.N.; Milne, R.B.; Devine, K.D.; Kempka, S.N.

    1998-03-01

    A coupled Lagrangian-Eulerian low-Mach-number numerical scheme is developed, using the vortex method for the momentum equations, and a finite difference approach with adaptive mesh refinement for the scalar conservation equations. The scheme is used to study the structure and dynamics of a forced lifted buoyant planar jet flame. Outer buoyant structures, driven by baroclinic vorticity generation, are observed. The flame base is found to stabilize in a region where flow velocities are sufficiently small to allow its existence. A triple flame is observed at the flame base, a result of premixing of fuel and oxidizer upstream of the ignition point. The structure and dynamics of the triple flame, and its modulation by jet vortex structures, are studied. The spatial extent of the triple flame is small, such that it fits wholly within the rounded flame base temperature field. The dilatation rate field outlines the edge of the hot fluid at the flame base. Neither the temperature field nor the dilatation rate field seem appropriate for experimental measurement of the triple flame in this flow.

  14. Transient infrared temperature measurements of liquid-fuel surfaces: results of studies of flames spread over liquids.

    PubMed

    Konishi, T; Ito, A; Saito, K

    2000-08-20

    An infrared thermograph technique with an 8-12-microm spectral range was used to measure transient two-dimensional profiles of liquid (1-propanol) surface temperatures. An IR camera was placed over the liquid, allowing us to observe the fuel surface through propanol vapor. To use this technique, one must know the emissivity of the liquid surface and the IR absorption of both the liquid propanol and the propanol vapor. The emissivity of the liquid propanol was determined with a fine thermocouple temperature measurement, IR absorption with the propanol vapor was calibrated with a blackbody source, and IR absorption with a liquid propanol was theoretically estimated. The accuracy of our infrared thermograph technique proved to be better than 97% in detecting the liquid-surface temperature with a temperature sensitivity of 0.1 degrees C and a time response of 30 ms. PMID:18350009

  15. Understanding flame rods

    SciTech Connect

    McAuley, J.A. Jr.

    1995-11-01

    The flame rod is probably the least understood method of flame detection. Although it is not recommended for oilfired equipment, it is very common on atmospheric, or {open_quotes}in-shot,{close_quotes} gas burners. It is also possible, although not common, to have an application with a constant gas pilot, monitored by a flame rod, and maintaining an oil main flame. Regardless of the application, chances are that flame rods will be encountered during the course of servicing. The technician today must be versatile and able to work on many different types of equipment. One must understand the basic principles of flame rods, and how to correct potential problems. The purpose of a flame detection system is two-fold: (1) to prove there is no flame when there shouldn`t be one, and (2) to prove there is a flame when there should be one. Flame failure response time is very important. This is the amount of time it takes to realize there is a loss of flame, two to four seconds is typical today. Prior to flame rods, either bi-metal or thermocouple type flame detectors were common. The response time for these detectors was up to three minutes, seldom less than one minute.

  16. Unsteady planar diffusion flames: Ignition, travel, burnout

    NASA Technical Reports Server (NTRS)

    Fendell, F.; Wu, F.

    1995-01-01

    In microgravity, a thin planar diffusion flame is created and thenceforth travels so that the flame is situated at all times at an interface at which the hydrogen and oxygen meet in stoichiometric proportion. If the initial amount of hydrogen is deficient relative to the initial amount of oxygen, then the planar flame will travel further and further into the half volume initially containing hydrogen, until the hydrogen is (virtually) fully depleted. Of course, when the amount of residual hydrogen becomes small, the diffusion flame is neither vigorous nor thin; in practice, the flame is extinguished before the hydrogen is fully depleted, owing to the finite rate of the actual chemical-kinetic mechanism. The rate of travel of the hydrogen-air diffusion flame is much slower than the rate of laminar flame propagation through a hydrogen-air mixture. This slow travel facilitates diagnostic detection of the flame position as a function of time, but the slow travel also means that the time to burnout (extinction) probably far exceeds the testing time (typically, a few seconds) available in earth-sited facilities for microgravity-environment experiments. We undertake an analysis to predict (1) the position and temperature of the diffusion flame as a function of time, (2) the time at which extinction of the diffusion flame occurs, and (3) the thickness of quench layers formed on side walls (i.e., on lateral boundaries, with normal vectors parallel to the diffusion-flame plane), and whether, prior to extinction, water vapor formed by burning will condense on these cold walls.

  17. Explosion triggering by an accelerating flame.

    PubMed

    Bychkov, Vitaly; Akkerman, V'yacheslav

    2006-06-01

    The analytical theory of explosion triggering by an accelerating flame is developed. The theory describes the structure of a one-dimensional isentropic compression wave pushed by the flame front. The condition of explosion in the gas mixture ahead of the flame front is derived; the instant of the explosion is determined provided that a mechanism of chemical kinetics is known. As an example, it is demonstrated how the problem is solved in the case of a single reaction of Arrhenius type, controlling combustion both inside the flame front and ahead of the flame. The model of an Arrhenius reaction with a cutoff temperature is also considered. The limitations of the theory due to the shock formation in the compression wave are found. Comparison of the theoretical results to the previous numerical simulations shows good agreement. PMID:16906974

  18. The rate of temperature rise of a subbituminous coal during spontaneous combustion in an adiabatic device: The effect of moisture content and drying methods

    SciTech Connect

    Vance, W.E.; Chen, X.D.; Scott, S.C.

    1996-08-01

    This work investigates the effect of the moisture content of coal on its spontaneous ignition in oxygen (40 C--140 C). It has been found that the highest heating rate is achieved at a medium moisture content of {approximately}7 wt% for an initial inherent moisture content of the coal before drying (in dry nitrogen at 65 C) of {approximately}20 wt%. This is particularly noticeable at temperatures below 80 C and tends to support previous studies showing that a maximum oxidation rate occurs at such a moisture content in the same temperature range. Two drying methods have been adopted in the current work and the effects of their operating conditions on the heating rates are described.

  19. The Science of Flames.

    ERIC Educational Resources Information Center

    Cornia, Ray

    1991-01-01

    Describes an exercise using flames that allows students to explore the complexities of a seemingly simple phenomenon, the lighting of a candle. Contains a foldout that provides facts about natural gas flames and suggestions for classroom use. (ZWH)

  20. Flame behaviors of propane/air premixed flame propagation in a closed rectangular duct with a 90-deg bend

    NASA Astrophysics Data System (ADS)

    He, Xuechao; Sun, Jinhua; Yuen, K. K.; Ding, Yibin; Chen, Sining

    2008-11-01

    Experiments of flame propagation in a small, closed rectangular duct with a 90° bend were performed for a propane-air mixture. The high speed camera and Schlieren techniques were used to record images of flame propagation process in the combustion pipe. Meanwhile, the fine thermocouples and ion current probes were applied to measure the temperature distribution and reaction intensity of combustion. The characteristics of propane-air flame and its microstructure were analyzed in detail by the experimental results. In the test, the special tulip flame formation was observed. Around the bend, the flame tip proceeded more quickly at the lower side with the flame front elongated toward the axial direction. And transition to turbulent flame occurred. It was suggested that fluctuations of velocity, ion current and temperature were mainly due to the comprehensive effects of multi-wave and the intense of turbulent combustion.

  1. Large magnetic entropy change and adiabatic temperature rise of a Gd{sub 55}Al{sub 20}Co{sub 20}Ni{sub 5} bulk metallic glass

    SciTech Connect

    Xia, L.; Tang, M. B.; Chan, K. C.; Dong, Y. D.

    2014-06-14

    Gd{sub 55}Al{sub 20}Co{sub 20}Ni{sub 5} bulk metallic glass (BMG) was synthesized by minor Ni substitution for Co in the Gd{sub 55}Al{sub 20}Co{sub 25} BMG in which excellent glass forming ability (GFA) and magneto-caloric effect were reported previously. The Gd{sub 55}Al{sub 20}Ni{sub 20}Co{sub 5} amorphous rod has a similar GFA to the Gd{sub 55}Al{sub 20}Co{sub 25} BMG but exhibits better magnetic properties. The peak value of magnetic entropy change (−ΔS{sub m}{sup peak}) of the Gd{sub 55}Al{sub 20}Co{sub 20}Ni{sub 5} BMG is 9.8 Jkg{sup −1} K{sup −1}. The field dependence of −ΔS{sub m}{sup peak} follows a −ΔS{sub m}{sup peak}∝H{sup 0.85} relationship. The adiabatic temperature rise of the rod is 4.74 K under 5 T and is larger than of other BMGs previously reported. The improved magnetic properties were supposed to be induced by the enhanced interaction between 4f electron in the rare-earth and 3d electron in the transition metal elements by means of a minor Ni substitution for Co.

  2. Properties of plasma flames sustained by microwaves and burning hydrocarbon fuels

    SciTech Connect

    Hong, Yong Cheol; Uhm, Han Sup

    2006-11-15

    Plasma flames made of atmospheric microwave plasma and a fuel-burning flame were presented and their properties were investigated experimentally. The plasma flame generator consists of a fuel injector and a plasma flame exit connected in series to a microwave plasma torch. The plasma flames are sustained by injecting hydrocarbon fuels into a microwave plasma torch in air discharge. The microwave plasma torch in the plasma flame system can burn a hydrocarbon fuel by high-temperature plasma and high atomic oxygen density, decomposing the hydrogen and carbon containing fuel. We present the visual observations of the sustained plasma flames and measure the gas temperature using a thermocouple device in terms of the gas-fuel mixture and flow rate. The plasma flame volume of the hydrocarbon fuel burners was more than approximately 30-50 times that of the torch plasma. While the temperature of the torch plasma flame was only 868 K at a measurement point, that of the diesel microwave plasma flame with the addition of 0.019 lpm diesel and 30 lpm oxygen increased drastically to about 2280 K. Preliminary experiments for methane plasma flame were also carried out, measuring the temperature profiles of flames along the radial and axial directions. Finally, we investigated the influence of the microwave plasma on combustion flame by observing and comparing OH molecular spectra for the methane plasma flame and methane flame only.

  3. A comprehensive test method for inline flame arresters

    SciTech Connect

    Roussakis, N.; Lapp, K. )

    1991-04-01

    The certification test standards that presently exist for flame arresters are highly inadequate for inline applications. A proper flame arrester test method should ensure that a unit will work with any flame front conditions that it could be exposed to in actual use. When evaluating flame arrester performance, it is just as dangerous to neglect deflagration testing as detonation testing. The comprehensive inline flame arrester test method outlined here involves exposing a unit to the entire flame propagation pressure spectrum. This includes low, medium and high pressure deflagrations as well as overdriven and stable detonations. The test method also takes into account the following factors: flow restriction on the protected side of the flame arrester, flame propagation through a flowing gas, initial system pressure and temperature, and specified gas mixture. Flow restriction on the protected side of the flame arrester has a very significant effect on performance and has not previously been given consideration in flame arrester testing. Besides moving flame front tests, endurance burn testing and hydrostatic pressure testing are also discussed here. Major regulatory organizations have recently adopted these findings as the basis for new standards proposed to cover an inline flame arrester test method.

  4. Analysis of Aluminum Dust Cloud Combustion Using Flame Emission Spectroscopy.

    PubMed

    Lee, Sanghyup; Noh, Kwanyoung; Yoon, Woongsup

    2015-09-01

    In this study, aluminum flame analysis was researched in order to develop a measurement method for high-energy-density metal aluminum dust cloud combustion, and the flame temperature and UV-VIS-IR emission spectra were precisely measured using a spectrometer. Because the micron-sized aluminum flame temperature was higher than 2400 K, Flame temperature was measured by a non-contact optical technique, namely, a modified two-color method using 520 and 640 nm light, as well as by a polychromatic fitting method. These methods were applied experimentally after accurate calibration. The flame temperature was identified to be higher than 2400 K using both methods. By analyzing the emission spectra, we could identify AlO radicals, which occur dominantly in aluminum combustion. This study paves the way for realization of a measurement technique for aluminum dust cloud combustion flames, and it will be applied in the aluminum combustors that are in development for military purposes. PMID:26669143

  5. Flame front configuration of turbulent premixed flames

    SciTech Connect

    Furukawa, Junichi; Maruta, Kaoru; Hirano, Toshisuke

    1998-02-01

    The present study is performed to explore dependence of the wrinkle scale of propane-air turbulent premixed flames on the characteristics of turbulence in the nonreacting flow, burner size, and mixture ratio. The wrinkle scales are examined and expressed in the frequency distribution of the radii of flame front curvatures. The average wrinkle scale depends not only on the characteristics of turbulence in the nonreacting flow but also on burner diameter and mixture ratio. The average wrinkle scale of a lean propane-air flame is larger than those of the near stoichiometric and rich flames. The smallest wrinkle scale of turbulent premixed flame is in the range of 0.75--1.0 mm, which is much larger than the Kolmogorov scale of turbulence in the nonreacting flow.

  6. Candle Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Dietrich, Daniel L.; Ross, Howard D.; Frate, David T.; Tien, James S.; Shu, Yong

    1997-01-01

    This work is a study of a candle flame in a microgravity environment. The purpose of the work is to determine if a steady (or quasi-steady) flame can exist in a microgravity environment, study the characteristics of the steady flame, investigate the pre-extinction flame oscillations observed in a previous experiment in more detail, and finally, determine the nature of the interactions between two closely spaced candle flames. The candle flame is used as a model combustion system, in that in microgravity it is one of the only examples of a non-propagating, steady-state, pure diffusion flame. Others have used the candle to study a number of combustion phenomena including flame flicker, flame oscillations, electric field effects and enhanced and reduced gravitational effects in flames. The present work is a continuation of a small-scale Shuttle experiment on candle flames. That study showed that the candle flame lifetimes were on the order of 40 seconds, the flames were dim blue after a transient ignition period, and that just prior to extinction the flames oscillated spontaneously for about five seconds at a frequency of 1 Hz. The authors postulated that the gas phase in the immediate vicinity of the flame was quasi-steady. Further away from the flame, however, the assertion of a quasi-steady flame was less certain, thus the authors did not prove that a steady flame could exist. They also speculated that the short lifetime of the candle flame was due to the presence of the small, weakly perforated box that surrounded the candle. The Candle Flames in Microgravity (CFM) experiment, with revised hardware, was recently flown aboard the Mir orbiting station, and conducted inside the glovebox facility by Dr. Shannon Lucid. In addition to the purposes described above, the experiments were NASA's first ability to ascertain the merits of the Mir environment for combustion science studies. In this article, we present the results of that experiment. We are also in the process

  7. The effect of flame structure on soot formation and transport in turbulent nonpremixed flames using direct numerical simulation

    SciTech Connect

    Lignell, David O.; Chen, Jacqueline H.; Smith, Philip J.; Lu, Tianfeng; Law, Chung K.

    2007-10-15

    Direct numerical simulations of a two-dimensional, nonpremixed, sooting ethylene flame are performed to examine the effects of soot-flame interactions and transport in an unsteady configuration. A 15-step, 19-species (with 10 quasi-steady species) chemical mechanism was used for gas chemistry, with a two-moment, four-step, semiempirical soot model. Flame curvature is shown to result in flames that move, relative to the fluid, either toward or away from rich soot formation regions, resulting in soot being essentially convected into or away from the flame. This relative motion of flame and soot results in a wide spread of soot in the mixture fraction coordinate. In regions where the center of curvature of the flame is in the fuel stream, the flame motion is toward the fuel and soot is located near the flame at high temperature and hence has higher reaction rates and radiative heat fluxes. Soot-flame breakthrough is also observed in these regions. Fluid convection and flame displacement velocity relative to fluid convection are of similar magnitudes while thermophoretic diffusion is 5-10 times lower. These results emphasize the importance of both unsteady and multidimensional effects on soot formation and transport in turbulent flames. (author)

  8. Adiabatic evolution of plasma equilibrium

    PubMed Central

    Grad, H.; Hu, P. N.; Stevens, D. C.

    1975-01-01

    A new theory of plasma equilibrium is introduced in which adiabatic constraints are specified. This leads to a mathematically nonstandard structure, as compared to the usual equilibrium theory, in which prescription of pressure and current profiles leads to an elliptic partial differential equation. Topologically complex configurations require further generalization of the concept of adiabaticity to allow irreversible mixing of plasma and magnetic flux among islands. Matching conditions across a boundary layer at the separatrix are obtained from appropriate conservation laws. Applications are made to configurations with planned islands (as in Doublet) and accidental islands (as in Tokamaks). Two-dimensional, axially symmetric, helically symmetric, and closed line equilibria are included. PMID:16578729

  9. Adiabatic cooling of solar wind electrons

    NASA Technical Reports Server (NTRS)

    Sandbaek, Ornulf; Leer, Egil

    1992-01-01

    In thermally driven winds emanating from regions in the solar corona with base electron densities of n0 not less than 10 exp 8/cu cm, a substantial fraction of the heat conductive flux from the base is transfered into flow energy by the pressure gradient force. The adiabatic cooling of the electrons causes the electron temperature profile to fall off more rapidly than in heat conduction dominated flows. Alfven waves of solar origin, accelerating the basically thermally driven solar wind, lead to an increased mass flux and enhanced adiabatic cooling. The reduction in electron temperature may be significant also in the subsonic region of the flow and lead to a moderate increase of solar wind mass flux with increasing Alfven wave amplitude. In the solar wind model presented here the Alfven wave energy flux per unit mass is larger than that in models where the temperature in the subsonic flow is not reduced by the wave, and consequently the asymptotic flow speed is higher.

  10. Flame Imaging System

    NASA Technical Reports Server (NTRS)

    Barnes, Heidi L. (Inventor); Smith, Harvey S. (Inventor)

    1998-01-01

    A system for imaging a flame and the background scene is discussed. The flame imaging system consists of two charge-coupled-device (CCD) cameras. One camera uses a 800 nm long pass filter which during overcast conditions blocks sufficient background light so the hydrogen flame is brighter than the background light, and the second CCD camera uses a 1100 nm long pass filter, which blocks the solar background in full sunshine conditions such that the hydrogen flame is brighter than the solar background. Two electronic viewfinders convert the signal from the cameras into a visible image. The operator can select the appropriate filtered camera to use depending on the current light conditions. In addition, a narrow band pass filtered InGaAs sensor at 1360 nm triggers an audible alarm and a flashing LED if the sensor detects a flame, providing additional flame detection so the operator does not overlook a small flame.

  11. CARS at a "hard-to-realize conditions": lineshape spectroscopy at high temperatures in a real flame

    NASA Astrophysics Data System (ADS)

    Vereschagin, K. A.; Vereschagin, A. K.; Smirnov, V. V.; Stel'makh, O. M.; Fabelinsky, V. I.; Clauss, W.; Oschwald, M.

    2012-12-01

    On the example of the study of the collisional broadening and shift of the hydrogen Q-branch lines due to collisions with water molecules in wide temperatures range [2000 K -3000 K], we display the use of single-short CARS-spectroscopy for lineshape analisys at experimental conditions in which the object naturally does not exist, but can be created due to some physical and/or chemical processes for some time, small in comparison with the time necessary for stationary laboratory researches. Importance of light statistics as well as some specific features of CARS spectroscopy, which are the most actual from the point of view of use of CARS as a tool for lineshape spectroscopy, are discussed.

  12. A numerical study of thermal and chemical effects in interactions of n-heptane flames with a single surface

    SciTech Connect

    Owston, Rebecca; Magi, Vinicio; Abraham, John

    2007-02-15

    The thermal and chemical effects of a one-dimensional, premixed flame quenching against a single surface are studied numerically. Fuels considered include n-heptane and molar-based mixtures of 95/5 and 70/30 percent n-heptane and hydrogen, respectively. A reduced gas-phase kinetic mechanism for n-heptane is employed. Wall boundary conditions investigated include both an adiabatic and an isothermal wall with temperatures ranging from 298 to 1200 K. The effects of equivalence ratio variations between 0.7 and 3 are investigated. The computations with n-heptane and n-heptane/hydrogen mixtures show that for wall temperatures greater than 400 K heat release rates have a higher value for the wall-interacting flame than for the freely propagating flame. It is also seen that the peak wall heat flux increases with increasing wall temperatures up to 1000 K. Chemical pathway analysis reveals the importance of radical recombination reactions at the surface to the heat release profiles of this study. The effect of H, O, and OH radical recombination near the inert wall is observed to lower the heat release spike on a 750 K isothermal boundary. The concentrations of intermediate hydrocarbons in the near-wall region are studied and related to unburned hydrocarbon formation in an engine cylinder. It is shown that a simple one-step global reaction rate expression for n-heptane fuel conversion cannot reproduce the flame-wall trends observed with the reduced n-heptane mechanism. (author)

  13. Mixing and flame structures inferred from OH-PLIF for conventional and low-temperature diesel engine combustion

    SciTech Connect

    Singh, Satbir; Musculus, Mark P.B.; Reitz, Rolf D.

    2009-10-15

    The structure of first- and second-stage combustion is investigated in a heavy-duty, single-cylinder optical engine using chemiluminescence imaging, Mie-scatter imaging of liquid-fuel, and OH planar laser-induced fluorescence (OH-PLIF) along with calculations of fluorescence quenching. Three different diesel combustion modes are studied: conventional non-diluted high-temperature combustion (HTC) with either (1) short or (2) long ignition delay, and (3) highly diluted low-temperature combustion (LTC) with early fuel injection. For the short ignition delay HTC condition, the OH fluorescence images show that second-stage combustion occurs mainly on the fuel jet periphery in a thickness of about 1 mm. For the long ignition delay HTC condition, the second-stage combustion zone on the jet periphery is thicker (5-6 mm). For the early-injection LTC condition, the second-stage combustion is even thicker (20-25 mm) and occurs only in the down-stream regions of the jet. The relationship between OH concentration and OH-PLIF intensity over a range of equivalence ratios is estimated from quenching calculations using collider species concentrations predicted by chemical kinetics simulations of combustion. The calculations show that both OH concentration and OH-PLIF intensity peak near stoichiometric mixtures and fall by an order of magnitude or more for equivalence ratios less than 0.2-0.4 and greater than 1.4-1.6. Using the OH fluorescence quenching predictions together with OH-PLIF images, quantitative boundaries for mixing are established for the three engine combustion modes. (author)

  14. Pressure Oscillations in Adiabatic Compression

    ERIC Educational Resources Information Center

    Stout, Roland

    2011-01-01

    After finding Moloney and McGarvey's modified adiabatic compression apparatus, I decided to insert this experiment into my physical chemistry laboratory at the last minute, replacing a problematic experiment. With insufficient time to build the apparatus, we placed a bottle between two thick textbooks and compressed it with a third textbook forced…

  15. Adiabatic dynamics of magnetic vortices

    NASA Astrophysics Data System (ADS)

    Papanicolaou, N.

    1994-03-01

    We formulate a reasonably detailed adiabatic conjecture concerning the dynamics of skew deflection of magnetic vortices in a field gradient, which is expected to be valid at sufficiently large values of the winding number. The conjecture is consistent with the golden rule used to describe the dynamics of realistic magnetic bubbles and is verified here numerically within the 2-D isotropic Heisenberg model.

  16. Radiative Extinction of Gaseous Spherical Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Santa, K. J.; Chao, B. H.; Sunderland, P. B.; Urban, D. L.; Stocker, D. P.; Axelbaum, R. L.

    2007-01-01

    Radiative extinction of spherical diffusion flames was investigated experimentally and numerically. The experiments involved microgravity spherical diffusion flames burning ethylene and propane at 0.98 bar. Both normal (fuel flowing into oxidizer) and inverse (oxidizer flowing into fuel) flames were studied, with nitrogen supplied to either the fuel or the oxygen. Flame conditions were chosen to ensure that the flames extinguished within the 2.2 s of available test time; thus extinction occurred during unsteady flame conditions. Diagnostics included color video and thin-filament pyrometry. The computations, which simulated flow from a porous sphere into a quiescent environment, included detailed chemistry, transport and radiation, and yielded transient results. Radiative extinction was observed experimentally and simulated numerically. Extinction time, peak temperature, and radiative loss fraction were found to be independent of flow rate except at very low flow rates. Radiative heat loss was dominated by the combustion products downstream of the flame and was found to scale with flame surface area, not volume. For large transient flames the heat release rate also scaled with surface area and thus the radiative loss fraction was largely independent of flow rate. Peak temperatures at extinction onset were about 1100 K, which is significantly lower than for kinetic extinction. One observation of this work is that while radiative heat losses can drive transient extinction, this is not because radiative losses are increasing with time (flame size) but rather because the heat release rate is falling off as the temperature drops.

  17. Suppression and Structure of Low Strain Rate Nonpremixed Flames

    NASA Technical Reports Server (NTRS)

    Hamins, Anthony; Bundy, Matthew; Park, Woe Chul; Lee, Ki Yong; Logue, Jennifer

    2003-01-01

    The agent concentration required to achieve suppression of low strain rate nonpremixed flames is an important fire safety consideration. In a microgravity environment such as a space platform, unwanted fires will likely occur in near quiescent conditions where strain rates are very low. Diffusion flames typically become more robust as the strain rate is decreased. When designing a fire suppression system for worst-case conditions, low strain rates should be considered. The objective of this study is to investigate the impact of radiative emission, flame strain, agent addition, and buoyancy on the structure and extinction of low strain rate nonpremixed flames through measurements and comparison with flame simulations. The suppression effectiveness of a suppressant (N2) added to the fuel stream of low strain rate methane-air diffusion flames was measured. Flame temperature measurements were attained in the high temperature region of the flame (T greater than 1200 K) by measurement of thin filament emission intensity. The time varying temperature was measured and simulated as the flame made the transition from normal to microgravity conditions and as the flame extinguished.

  18. Transitionless driving on adiabatic search algorithm

    SciTech Connect

    Oh, Sangchul; Kais, Sabre

    2014-12-14

    We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.

  19. Transitionless driving on adiabatic search algorithm

    NASA Astrophysics Data System (ADS)

    Oh, Sangchul; Kais, Sabre

    2014-12-01

    We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.

  20. Transitionless driving on adiabatic search algorithm.

    PubMed

    Oh, Sangchul; Kais, Sabre

    2014-12-14

    We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics. PMID:25494733

  1. Flame acceleration and the development of detonation in fuel-oxygen mixtures at elevated temperatures and pressures.

    PubMed

    Thomas, G O

    2009-04-30

    Experimental measurements of the conditions required for the development of detonation in a 7 mm tube following ignition by a low energy spark are reported. There are then compared to previous experimental propagation limit criterion using theoretical predictions of detonation cell sizes based on a one-dimensional detonation length scale computed using a detailed chemical kinetic scheme. Technical difficulties precluded direct cell size measurements. Ethylene-oxygen and hydrogen-methane-oxygen mixtures were investigated as well as methane-ammonia-oxygen, at initial pressures and temperatures in the ranges 1-7 bar and 293-540 K, respectively. The likelihood of detonation in ethylene-air mixtures in 150 mm and 50mm pipes at ambient initial conditions is also discussed in relation to published cell width data.The results indicate that whilst detonation cell width predictions do not provide a quantitative measure of the conditions for which detonation may develop in a pipe of given diameter, for prescribed initial conditions, predicted detonation cell size data does provide useful qualitative guidance as to possible hazardous compositions, particularly if preliminary experimental safety testing is thought to be necessary. PMID:18782653

  2. Studies in Chaotic adiabatic dynamics

    SciTech Connect

    Jarzynski, C.

    1994-01-01

    Chaotic adiabatic dynamics refers to the study of systems exhibiting chaotic evolution under slowly time-dependent equations of motion. In this dissertation the author restricts his attention to Hamiltonian chaotic adiabatic systems. The results presented are organized around a central theme, namely, that the energies of such systems evolve diffusively. He begins with a general analysis, in which he motivates and derives a Fokker-Planck equation governing this process of energy diffusion. He applies this equation to study the {open_quotes}goodness{close_quotes} of an adiabatic invariant associated with chaotic motion. This formalism is then applied to two specific examples. The first is that of a gas of noninteracting point particles inside a hard container that deforms slowly with time. Both the two- and three-dimensional cases are considered. The results are discussed in the context of the Wall Formula for one-body dissipation in nuclear physics, and it is shown that such a gas approaches, asymptotically with time, an exponential velocity distribution. The second example involves the Fermi mechanism for the acceleration of cosmic rays. Explicit evolution equations are obtained for the distribution of cosmic ray energies within this model, and the steady-state energy distribution that arises when this equation is modified to account for the injection and removal of cosmic rays is discussed. Finally, the author re-examines the multiple-time-scale approach as applied to the study of phase space evolution under a chaotic adiabatic Hamiltonian. This leads to a more rigorous derivation of the above-mentioned Fokker-Planck equation, and also to a new term which has relevance to the problem of chaotic adiabatic reaction forces (the forces acting on slow, heavy degrees of freedom due to their coupling to light, fast chaotic degrees).

  3. Disc stabilized flame afterburner

    SciTech Connect

    Weber, R.; Huddleston, B.C.

    1984-08-21

    Industrial pollution is directed into an afterburner conduit. An air cooled conical bluff body positioned in the conduit near the entrance acts as a flow condensing element. A recirculation zone consists of a toroidal vortex adjacent the downstream edge of the bluff body. In the zone, flow is reversed and particles in the reversed flow are reintroduced into the afterburner flow. A ring of burners located near the midpoint of the bluff body heats the gas stream flowing past the bluff body to near auto-ignition temperature. A second ring of burners located downstream of the bluff body assists in the establishment of a stabilized flame downstream of the bluff body. Air is heated as it flows through tubes wrapped around the conduit. The heated air is introduced tangentially to the afterburner flow by air injectors positioned downstream of the bluff body and downstream of the second ring of burners.

  4. Premixed turbulent flame propagation in microgravity

    NASA Technical Reports Server (NTRS)

    Menon, S.; Jagoda, J.; Sujith, R.

    1995-01-01

    To reduce pollutant formation there is, at present, an increased interest in employing premixed fuel/air mixture in combustion devices. It is well known that greater control over local temperature can be achieved with premixed flames and with lean premixed mixtures, significant reduction of pollutants such as NO(x) can be achieved. However, an issue that is still unresolved is the predictability of the flame propagation speed in turbulent premixed mixtures, especially in lean mixtures. Although substantial progress has been made in recent years, there is still no direct verification that flame speeds in turbulent premixed flows are highly predictable in complex flow fields found in realistic combustors. One of the problems associated with experimental verification is the difficulty in obtaining access to all scales of motion in typical high Reynolds number flows, since, such flows contain scales of motion that range from the size of the device to the smallest Kolmogorov scale. The overall objective of this study is to characterize the behavior of turbulent premixed flames at reasonable high Reynolds number, Re(sub L). Of particular interest here is the thin flame limit where the laminar flame thickness is much smaller than the Kolmogorov scale. Thin flames occur in many practical combustion devices and will be numerically studied using a recently developed new formulation that is briefly described.

  5. High-Temperature Oxidation and Hot Corrosion Studies on NiCrAlY Coatings Deposited by Flame-Spray Technique

    NASA Astrophysics Data System (ADS)

    Rana, Nidhi; Mahapatra, Manas Mohan; Jayaganthan, R.; Prakash, Satya

    2015-06-01

    The NiCrAlY coatings deposited by flame-spray technique on the superalloy substrate were oxidized in the presence of air and Na2SO4 + V2O5 salt at 900 °C for 100 cycles. The kinetics of oxidation showed that the coatings deposited by flame-spray technique possess better oxidation resistance compared with coatings deposited by high-velocity oxy fuel (HVOF)-sprayed technique. The oxidized coatings were further characterized by XRD, FESEM/EDS, and x-ray mapping techniques. The mechanisms of the oxidation and hot corrosion were substantiated by analyzing the results obtained from the various characterization techniques.

  6. A Kinetic Study of the Adiabatic Polymerization of Acrylamide.

    ERIC Educational Resources Information Center

    Thomson, R. A. M.

    1986-01-01

    Discusses theory, procedures, and results for an experiment which demonstrates the application of basic physics to chemical problems. The experiment involves the adiabatic process, in which polymerization carried out in a vacuum flask is compared to the theoretical prediction of the model with the temperature-time curve obtained in practice. (JN)

  7. Fast Quasi-Adiabatic Gas Cooling: An Experiment Revisited

    ERIC Educational Resources Information Center

    Oss, S.; Gratton, L. M.; Calza, G.; Lopez-Arias, T.

    2012-01-01

    The well-known experiment of the rapid expansion and cooling of the air contained in a bottle is performed with a rapidly responsive, yet very cheap thermometer. The adiabatic, low temperature limit is approached quite closely and measured with our apparatus. A straightforward theoretical model for this process is also presented and discussed.…

  8. Flame front geometry in premixed turbulent flames

    SciTech Connect

    Shepherd, I.G.; Ashurst, W.T.

    1991-12-01

    Experimental and numerical determinations of flame front curvature and orientation in premixed turbulent flames are presented. The experimental data is obtained from planar, cross sectional images of stagnation point flames at high Damkoehler number. A direct numerical simulation of a constant energy flow is combined with a zero-thickness, constant density flame model to provide the numerical results. The computational domain is a 32{sup 3} cube with periodic boundary conditions. The two-dimensional curvature distributions of the experiments and numerical simulations compare well at similar q{prime}/S{sub L} values with means close to zero and marked negative skewness. At higher turbulence levels the simulations show that the distributions become symmetric about zero. These features are also found in the three dimensional distributions of curvature. The simulations support assumptions which make it possible to determine the mean direction cosines from the experimental data. This leads to a reduction of 12% in the estimated flame surface area density in the middle of the flame brush. 18 refs.

  9. Adiabatic fluctuations from cosmic strings in a contracting universe

    SciTech Connect

    Brandenberger, Robert H.; Takahashi, Tomo; Yamaguchi, Masahide E-mail: tomot@cc.saga-u.ac.jp

    2009-07-01

    We show that adiabatic, super-Hubble, and almost scale invariant density fluctuations are produced by cosmic strings in a contracting universe. An essential point is that isocurvature perturbations produced by topological defects such as cosmic strings on super-Hubble scales lead to a source term which seeds the growth of curvature fluctuations on these scales. Once the symmetry has been restored at high temperatures, the isocurvature seeds disappear, and the fluctuations evolve as adiabatic ones in the expanding phase. Thus, cosmic strings may be resurrected as a mechanism for generating the primordial density fluctuations observed today.

  10. On Soot Inception in Nonpremixed Flames and the Effects of Flame Structure

    NASA Technical Reports Server (NTRS)

    Chao, B. H.; Liu, S.; Axelbaum, R. L.; Gokoglu, Suleyman (Technical Monitor)

    1998-01-01

    A simplified three-step model of soot inception has been employed with high activation energy asymptotics to study soot inception in nonpremixed counterflow systems with emphasis on understanding the effects of hydrodynamics and transport. The resulting scheme yields three zones: (1) a fuel oxidation zone wherein the fuel and oxidizer react to form product as well as a radical R, (e.g., H), (2) a soot/precursor formation zone where the radical R reacts with fuel to form "soot/precursor" S, and (3) a soot/precursor consumption zone where S reacts with the oxidizer to form product. The kinetic scheme, although greatly simplified, allows the coupling between soot inception and flame structure to be assessed. The results yield flame temperature, flame location, and a soot/precursor index S(sub I) as functions of Damkohler number for S formation. The soot/precursor index indicates the amount of S at the boundary of the formation region. The flame temperature indirectly indicates the total amount of S integrated over the formation region because as S is formed less heat release is available. The results show that unlike oxidation reactions, an extinction turning-point behavior does not exist for soot. Instead, the total amount of S slowly decreases with decreasing Damkohler number (increasing strain rate), which is consistent with counterflow flame experiments. When the Lewis number of the radical is decreased from unity, the total S reduces due to reduced residence time for the radical in the soot formation region. Similarly, when the Lewis number of the soot/precursor is increased from unity the amount of S increases for all Damkohler numbers. In addition to studying fuel-air (low stoichiometric mixture fraction) flames, the air-side nitrogen was substituted into the fuel, yielding diluted fuel-oxygen (high stoichiometric mixture fraction) flames with the same flame temperature as the fuel - air flames. The relative flame locations were different however, and

  11. Trace element mass balance in hydrous adiabatic mantle melting: The Hydrous Adiabatic Mantle Melting Simulator version 1 (HAMMS1)

    NASA Astrophysics Data System (ADS)

    Kimura, Jun-Ichi; Kawabata, Hiroshi

    2014-06-01

    numerical mass balance calculation model for the adiabatic melting of a dry to hydrous peridotite has been programmed in order to simulate the trace element compositions of basalts from mid-ocean ridges, back-arc basins, ocean islands, and large igneous provinces. The Excel spreadsheet-based calculator, Hydrous Adiabatic Mantle Melting Simulator version 1 (HAMMS1) uses (1) a thermodynamic model of fractional adiabatic melting of mantle peridotite, with (2) the parameterized experimental melting relationships of primitive to depleted mantle sources in terms of pressure, temperature, water content, and degree of partial melting. The trace element composition of the model basalt is calculated from the accumulated incremental melts within the adiabatic melting regime, with consideration for source depletion. The mineralogic mode in the primitive to depleted source mantle in adiabat is calculated using parameterized experimental results. Partition coefficients of the trace elements of mantle minerals are parameterized to melt temperature mostly from a lattice strain model and are tested using the latest compilations of experimental results. The parameters that control the composition of trace elements in the model are as follows: (1) mantle potential temperature, (2) water content in the source mantle, (3) depth of termination of adiabatic melting, and (4) source mantle depletion. HAMMS1 enables us to obtain the above controlling parameters using Monte Carlo fitting calculations and by comparing the calculated basalt compositions to primary basalt compositions. Additionally, HAMMS1 compares melting parameters with a major element model, which uses petrogenetic grids formulated from experimental results, thus providing better constraints on the source conditions.

  12. A study of flat flames on porous plug burners: Structure, standoff distance, and oscillation

    SciTech Connect

    Yuuki, A.; Matsui, Y.

    1987-07-01

    The stable structure and the time-varying behavior of stoichiometric methane-air flames on a porous metal burner at atmospheric pressure were studied using a numerical model which includes detailed chemical reactions. It has been confirmed that the model gives quantitative agreement with experiment for stable flame structures such as flame temperature, radical concentrations, and standoff distance, and also flame oscillation. It was shown that the overall activation energy and the standoff distance increase rapidly in the region of flame temperature <1550K. Furthermore, it was also confirmed that the flame intrinsically oscillates due to the propagating time lag of the temperature disturbance from the burner surface to the reaction zone, and its instability is enhanced by a large standoff distance. On the basis of these results, it is asserted that the critical flame temperature for the stability of stoichiometric methane-air flames on porous plug burner is near 1550K.

  13. Flame Holder System

    NASA Technical Reports Server (NTRS)

    Haskin, Henry H. (Inventor); Vasquez, Peter (Inventor)

    2013-01-01

    A flame holder system includes a modified torch body and a ceramic flame holder. Catch pin(s) are coupled to and extend radially out from the torch body. The ceramic flame holder has groove(s) formed in its inner wall that correspond in number and positioning to the catch pin(s). Each groove starts at one end of the flame holder and can be shaped to define at least two 90.degree.turns. Each groove is sized to receive one catch pin therein when the flame holder is fitted over the end of the torch body. The flame holder is then manipulated until the catch pin(s) butt up against the end of the groove(s).

  14. Pressure sensitivity of adiabatic shear banding in metals

    NASA Astrophysics Data System (ADS)

    Hanina, E.; Rittel, D.; Rosenberg, Z.

    2007-01-01

    Adiabatic shear banding (ASB) is a dynamic failure mode characterized by large plastic strains in a narrow localized band. ASB occurs at high strain rates (ɛ˙⩾103s-1), under adiabatic conditions leading to a significant temperature rise inside the band [H. Tresca, Annales du Conservatoire des Arts et Métiers 4, (1879); Y. L. Bai and B. Dodd, Adiabatic Shear Localization-Occurrence, Theories, and Applications (Pergamon, Oxford, 1992); M. A. Meyers, Dynamic Behavior of Materials (Wiley, New York, 1994).; and J. J. Lewandowski and L. M. Greer, Nat. Mater. 5, 15 (2006)]. Large hydrostatic pressures are experienced in many dynamic applications involving ASB formation (e.g., ballistic penetration, impact, and machining). The relationship between hydrostatic pressure and ASB development remains an open question, although its importance has been often noted. This letter reports original experimental results indicating a linear relationship between the (normalized) dynamic deformation energy and the (normalized) hydrostatic pressure.

  15. Sliding seal materials for adiabatic engines

    NASA Technical Reports Server (NTRS)

    Lankford, J.

    1985-01-01

    The sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, loading conditions that are representative of the adiabatic engine environment. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Microhardness tests were performed on the candidate materials at elevated temperatures, and in atmospheres relevant to the piston seal application, and optical and electron microscopy were used to elucidate the micromechanisms of wear following wear testing. X-ray spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Electrical effects in the friction and wear processes were explored in order to evaluate the potential usefulness of such effects in modifying the friction and wear rates in service. However, this factor was found to be of negligible significance in controlling friction and wear.

  16. The HAWC and SAFIRE Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Tuttle, Jim; Shirron, Peter; DiPirro, Michael; Jackson, Michael; Behr, Jason; Kunes, Evan; Hait, Tom; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    The High-Resolution Airborne Wide-band Camera (HAWC) and Submillimeter and Far Infrared Experiment (SAFIRE) are far-infrared experiments which will fly on the Stratospheric Observatory for Infrared Astronomy (SOFIA) aircraft. HAWC's detectors will operate at 0.2 Kelvin, while those of SAFIRE will be at 0.1 Kelvin. Each instrument will include an adiabatic demagnetization refrigerator (ADR) to cool its detector stage from the liquid helium bath temperature (HAWC's at 4.2 Kelvin and SAFIRE's pumped to about 1.3 Kelvin) to its operating temperature. Except for the magnets used to achieve the cooling and a slight difference in the heat switch design, the two ADRs are nearly identical. We describe the ADR design and present the results of performance testing.

  17. Turbulent Flames in Supernovae

    NASA Astrophysics Data System (ADS)

    Khokhlov, A. M.

    1994-05-01

    First results of three-dimensional simulations of a thermonuclear flame in Type Ia supernovae are obtained using a new flame-capturing algorithm, and a PPM hydrodynamical code. In the absence of gravity, the flame is stabilized with respect to the Landau (1944) instability due to the difference in the behaviour of convex and concave portions of the perturbed flame front. The transition to turbulence in supernovae occurs on scales =~ 0.1 - 10 km in agreement with the non-linear estimate lambda =~ 2pi D(2_l/geff) based on the Zeldovich (1966) model for a perturbed flame when the gravity acceleration increases; D_l is the normal speed of the laminar flame, and geff is the effective acceleration. The turbulent flame is mainly spread by large scale motions driven by the Rayleigh-Taylor instability. Small scale turbulence facilitates rapid incineration of the fuel left behind the front. The turbulent flame speed D_t approaches D_t =~ U', where U' is the root mean square velocity of turbulent motions, when the turbulent flame forgets initial conditions and reaches a steady state. The results indicate that in a steady state the turbulent flame speed should be independent of the normal laminar flame speed D_l. The three-dimensional results are in sharp contrast with the results of previous two-dimensional simulations which underestimate flame speed due to the lack of turbulent cascade directed in three dimensions from big to small spatial scales. The work was supported by the NSF grants AST 92-18035 and AST 93-005P.

  18. Diffusion Flame Stabilization

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, V. R.

    2006-01-01

    Diffusion flames are commonly used for industrial burners in furnaces and flares. Oxygen/fuel burners are usually diffusion burners, primarily for safety reasons, to prevent flashback and explosion in a potentially dangerous system. Furthermore, in most fires, condensed materials pyrolyze, vaporize, and burn in air as diffusion flames. As a result of the interaction of a diffusion flame with burner or condensed-fuel surfaces, a quenched space is formed, thus leaving a diffusion flame edge, which plays an important role in flame holding in combustion systems and fire spread through condensed fuels. Despite a long history of jet diffusion flame studies, lifting/blowoff mechanisms have not yet been fully understood, compared to those of premixed flames. In this study, the structure and stability of diffusion flames of gaseous hydrocarbon fuels in coflowing air at normal earth gravity have been investigated experimentally and computationally. Measurements of the critical mean jet velocity (U(sub jc)) of methane, ethane, or propane at lifting or blowoff were made as a function of the coflowing air velocity (U(sub a)) using a tube burner (i.d.: 2.87 mm). By using a computational fluid dynamics code with 33 species and 112 elementary reaction steps, the internal chemical-kinetic structures of the stabilizing region of methane and propane flames were investigated. A peak reactivity spot, i.e., reaction kernel, is formed in the flame stabilizing region due to back-diffusion of heat and radical species against an oxygen-rich incoming flow, thus holding the trailing diffusion flame. The simulated flame base moved downstream under flow conditions close to the measured stability limit.

  19. Diffusion Flame Stabilization

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.

    2007-01-01

    Diffusion flames are commonly used for industrial burners in furnaces and flares. Oxygen/fuel burners are usually diffusion burners, primarily for safety reasons, to prevent flashback and explosion in a potentially dangerous system. Furthermore, in most fires, condensed materials pyrolyze, vaporize, and burn in air as diffusion flames. As a result of the interaction of a diffusion flame with burner or condensed-fuel surfaces, a quenched space is formed, thus leaving a diffusion flame edge, which plays an important role in flame holding in combustion systems and fire spread through condensed fuels. Despite a long history of jet diffusion flame studies, lifting/blowoff mechanisms have not yet been fully understood, compared to those of premixed flames. In this study, the structure and stability of diffusion flames of gaseous hydrocarbon fuels in coflowing air at normal earth gravity have been investigated experimentally and computationally. Measurements of the critical mean jet velocity (U(sub jc)) of methane, ethane, or propane at lifting or blowoff were made as a function of the coflowing air velocity (U(sub a)) using a tube burner (i.d.: 2.87 mm) (Fig. 1, left). By using a computational fluid dynamics code with 33 species and 112 elementary reaction steps, the internal chemical-kinetic structures of the stabilizing region of methane and propane flames were investigated (Fig. 1, right). A peak reactivity spot, i.e., reaction kernel, is formed in the flame stabilizing region due to back-diffusion of heat and radical species against an oxygen-rich incoming flow, thus holding the trailing diffusion flame. The simulated flame base moved downstream under flow conditions close to the measured stability limit.

  20. Flame Propagation of Butanol Isomers/Air Mixtures

    SciTech Connect

    Veloo, Peter S.; Egolfopoulos, Fokion N.

    2011-01-01

    An experimental and computational study was conducted on the propagation of flames of saturated butanol isomers. The experiments were performed in the counterflow configuration under atmospheric pressure, unburned mixture temperature of 343 K, and for a wide range of equivalence ratios. The experiments were simulated using a recent kinetic model for the four isomers of butanol. Results indicate that n-butanol/air flames propagate somewhat faster than both sec-butanol/air and iso-butanol/air flames, and that tert-butanol/air flames propagate notably slower compared to the other three isomers. Reaction path analysis of tert-butanol/air flames revealed that iso-butene is a major intermediate, which subsequently reacts to form the resonantly stable iso-butenyl radical retarding thus the overall reactivity of tert-butanol/air flames relatively to the other three isomers. Through sensitivity analysis, it was determined that the mass burning rates of sec-butanol/air and iso-butanol/air flames are sensitive largely to hydrogen, carbon monoxide, and C{sub 1}–C{sub 2} hydrocarbon kinetics and not to fuel-specific reactions similarly to n-butanol/air flames. However, for tert-butanol/air flames notable sensitivity to fuel-specific reactions exists. While the numerical results predicted closely the experimental data for n-butanol/air and sec-butanol/air flames, they overpredicted and underpredicted the laminar flame speeds for iso-butanol/air and tert-butanol/air flames respectively. It was demonstrated further that the underprediction of the laminar flame speeds of tert-butanol/air flames by the model was most likely due to deficiencies of the C{sub 4}-alkene kinetics.

  1. Effect of the Heat Pipe Adiabatic Region.

    PubMed

    Brahim, Taoufik; Jemni, Abdelmajid

    2014-04-01

    The main motivation of conducting this work is to present a rigorous analysis and investigation of the potential effect of the heat pipe adiabatic region on the flow and heat transfer performance of a heat pipe under varying evaporator and condenser conditions. A two-dimensional steady-state model for a cylindrical heat pipe coupling, for both regions, is presented, where the flow of the fluid in the porous structure is described by Darcy-Brinkman-Forchheimer model which accounts for the boundary and inertial effects. The model is solved numerically by using the finite volumes method, and a fortran code was developed to solve the system of equations obtained. The results show that a phase change can occur in the adiabatic region due to temperature gradient created in the porous structure as the heat input increases and the heat pipe boundary conditions change. A recirculation zone may be created at the condenser end section. The effect of the heat transfer rate on the vapor radial velocities and the performance of the heat pipe are discussed. PMID:24895467

  2. Quantitative Species Measurements In Microgravity Combustion Flames

    NASA Technical Reports Server (NTRS)

    Chen, Shin-Juh; Pilgrim, Jeffrey S.; Silver, Joel A.; Piltch, Nancy D.

    2003-01-01

    The capability of models and theories to accurately predict and describe the behavior of low gravity flames can only be verified by quantitative measurements. Although video imaging, simple temperature measurements, and velocimetry methods have provided useful information in many cases, there is still a need for quantitative species measurements. Over the past decade, we have been developing high sensitivity optical absorption techniques to permit in situ, non-intrusive, absolute concentration measurements for both major and minor flames species using diode lasers. This work has helped to establish wavelength modulation spectroscopy (WMS) as an important method for species detection within the restrictions of microgravity-based measurements. More recently, in collaboration with Prof. Dahm at the University of Michigan, a new methodology combining computed flame libraries with a single experimental measurement has allowed us to determine the concentration profiles for all species in a flame. This method, termed ITAC (Iterative Temperature with Assumed Chemistry) was demonstrated for a simple laminar nonpremixed methane-air flame at both 1-g and at 0-g in a vortex ring flame. In this paper, we report additional normal and microgravity experiments which further confirm the usefulness of this approach. We also present the development of a new type of laser. This is an external cavity diode laser (ECDL) which has the unique capability of high frequency modulation as well as a very wide tuning range. This will permit the detection of multiple species with one laser while using WMS detection.

  3. Quantitative Species Measurements in Microgravity Combustion Flames

    NASA Technical Reports Server (NTRS)

    Silver, Joel A.; Wood, William R.; Chen, Shin-Juh; Dahm, Werner J. A.; Piltch, Nancy D.

    2001-01-01

    Flame-vortex interactions are canonical configurations that can be used to study the underlying processes occurring in complicated turbulent reacting flows. The elegant simplicity of the flame-vortex interaction permits the study of these complex interactions under relatively controllable experimental configurations, in contrast to direct measurements in turbulent flames. The ability to measure and model the fundamental phenomena that occur in a turbulent flame, but with time and spatial scales which are amenable to our diagnostics, permits significant improvements in the understanding of turbulent combustion under both normal and reduced gravity conditions. In this paper, we report absolute mole fraction measurements of methane in a reacting vortex ring. These microgravity experiments are performed in the 2.2-sec drop tower at NASA Glenn Research Center. In collaboration with Drs. Chen and Dahm at the University of Michigan, measured methane absorbances are incorporated into a new model from which the temperature and concentrations of all major gases in the flame can be determined at all positions and times in the development of the vortex ring. This is the first demonstration of the ITAC (Iterative Temperature with Assumed Chemistry) approach, and the results of these computations and analyses are presented in a companion paper by Dahm and Chen at this Workshop. We believe that the ITAC approach will become a powerful tool in understanding a wide variety of combustion flames under both equilibrium and non-equilibrium conditions.

  4. Systematic approach based on holographic interferometry measurements to characterize the flame structure of partially premixed flames.

    PubMed

    Xiao, X; Puri, I K

    2001-02-20

    Partially premixed flames (PPF's) represent a class of hybrid flames that contain multiple reaction zones. A detailed understanding of the temperature distribution in PPF's is important from both practical and scientific considerations. Path-integrated or line-of-sight measurement techniques, such as holographic interferometry (HI), that are based on the change in the optical phase of a light beam can be used to reconstruct the refractive index n in flames and thereafter to infer the temperature distribution. Therefore to describe the flame structure in the context of these measurements requires that a systematic approach be developed that relates the density, the temperature, and the composition to the refractive index. We demonstrate that a conserved scalar xi that transforms the flame structure from a spatial to a generic distribution can be inferred from the refractive-index distribution. Thereafter measurements of the density, the temperature, and the composition in two-dimensional PPF's become feasible. We report the first application, to our knowledge, of this method to HI. Specifically, we used HI to measure the refractive-index distributions in methane-air PPF's. One PPF is a double flame that has two reaction zones, and the other is a triple flame that contains three reaction zones. We have applied the procedure to infer the distribution of the modified mixture fraction and thereafter the local temperature and the local mass fractions. We find the local temperature differences, DT(x, y) = |T[n(x, y)] - T?[xi(x, y)]|, to be relatively small. We conclude that it is possible to use HI to infer the mixture-fraction distribution and thereafter the flame structures by the application of state relations in the case of PPF's. PMID:18357052

  5. Adiabaticity in open quantum systems

    NASA Astrophysics Data System (ADS)

    Venuti, Lorenzo Campos; Albash, Tameem; Lidar, Daniel A.; Zanardi, Paolo

    2016-03-01

    We provide a rigorous generalization of the quantum adiabatic theorem for open systems described by a Markovian master equation with time-dependent Liouvillian L (t ) . We focus on the finite system case relevant for adiabatic quantum computing and quantum annealing. Adiabaticity is defined in terms of closeness to the instantaneous steady state. While the general result is conceptually similar to the closed-system case, there are important differences. Namely, a system initialized in the zero-eigenvalue eigenspace of L (t ) will remain in this eigenspace with a deviation that is inversely proportional to the total evolution time T . In the case of a finite number of level crossings, the scaling becomes T-η with an exponent η that we relate to the rate of the gap closing. For master equations that describe relaxation to thermal equilibrium, we show that the evolution time T should be long compared to the corresponding minimum inverse gap squared of L (t ) . Our results are illustrated with several examples.

  6. Breakdown of adiabaticity for electron Maxwellian distribution through a stationary/nonstationary perpendicular supercritical shock.

    NASA Astrophysics Data System (ADS)

    Savoini, P.; Lembege, B.

    2006-12-01

    Test particle simulations are performed in order to analyze in details the dynamics of transmitted electrons through a supercritical strictly perpendicular collisionless shock. Recent analysis has evidenced three different behavior for the electron population: (i) adiabatic, (ii) over-adiabatic characterized by an increase of the gyrating velocity higher than that expected from the conservation of the magnetic moment and (iii) under- adiabatic characterized by a decrease of this velocity and not predicted by any existing theory. Analysis of individual time particle trajectories is performed and completed by statistics based on different upstream distributions (spherical shell and Maxwellian). The use of a Maxwellian distribution function allows us to speak in term of an electronic temperature and we observe in agreement with experimental datas that as the temperature increases (enlarged Maxwellian distribution function) the number of non-adiabatic transmitted electrons drastically decreases. In addition, our study evidenced that both non-adiabatic populations are coming from the core of the electron distribution. All combined nonstationary and nonuniformity effects have a filtering impact on the relative percentages of adiabatic and over-adiabatic populations, in contrast with under- adiabatic population which is relatively poorly affected.

  7. Invalidity of the quantitative adiabatic condition and general conditions for adiabatic approximations

    NASA Astrophysics Data System (ADS)

    Li, Dafa

    2016-05-01

    The adiabatic theorem was proposed about 90 years ago and has played an important role in quantum physics. The quantitative adiabatic condition constructed from eigenstates and eigenvalues of a Hamiltonian is a traditional tool to estimate adiabaticity and has proven to be the necessary and sufficient condition for adiabaticity. However, recently the condition has become a controversial subject. In this paper, we list some expressions to estimate the validity of the adiabatic approximation. We show that the quantitative adiabatic condition is invalid for the adiabatic approximation via the Euclidean distance between the adiabatic state and the evolution state. Furthermore, we deduce general necessary and sufficient conditions for the validity of the adiabatic approximation by different definitions.

  8. Design of the PIXIE Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.; Kimball, Mark Oliver; Fixsen, Dale J.; Kogut, Alan J.; Li, Xiaoyi; DiPirro, Michael

    2012-01-01

    The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a teslescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: 1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and 2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 millwatts, while maintaining a peak heat reject rate of less than 12 milliwatts. The detector heat load at 0.1 K is comparatively small at 1-2 microwatts. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope.

  9. Design of the PIXIE adiabatic demagnetization refrigerators

    NASA Astrophysics Data System (ADS)

    Shirron, Peter J.; Kimball, Mark O.; Fixsen, Dale J.; Kogut, Alan J.; Li, Xiaoyi; DiPirro, Michael J.

    2012-04-01

    The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a telescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: (1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and (2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 mW, while maintaining a peak heat reject rate of less than 12 mW. The detector heat load at 0.1 K is comparatively small at 1-2 μW. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope.

  10. Upward Flame Spread Over Thin Solids in Partial Gravity

    NASA Technical Reports Server (NTRS)

    Feier, I. I.; Shih, H. Y.; Sacksteder, K. R.; Tien, J. S.

    2001-01-01

    The effects of partial-gravity, reduced pressure, and sample width on upward flame spread over a thin cellulose fuel were studied experimentally and the results were compared to a numerical flame spread simulation. Fuel samples 1-cm, 2-cm, and 4-cm wide were burned in air at reduced pressures of 0.2 to 0.4 atmospheres in simulated gravity environments of 0.1-G, 0.16-G (Lunar), and 0.38-G (Martian) onboard the NASA KC-135 aircraft and in normal-gravity tests. Observed steady flame propagation speeds and pyrolysis lengths were approximately proportional to the gravity level. Flames spread more quickly and were longer with the wider samples and the variations with gravity and pressure increased with sample width. A numerical simulation of upward flame spread was developed including three-dimensional Navier-Stokes equations, one-step Arrhenius kinetics for the gas phase flame and for the solid surface decomposition, and a fuel-surface radiative loss. The model provides detailed structure of flame temperatures, the flow field interactions with the flame, and the solid fuel mass disappearance. The simulation agrees with experimental flame spread rates and their dependence on gravity level but predicts a wider flammable region than found by experiment. Some unique three-dimensional flame features are demonstrated in the model results.

  11. Characteristics of Non-Premixed Turbulent Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Hegde, Uday; Yuan, Zeng-Guang; Stocker, Dennis; Bahadori, M. Yousef

    1997-01-01

    The overall objectives of this research are: (1) to obtain and analyze experimental data on flame images, and the spatial and temporal distributions of temperature, radiation, velocity and gas-phase species in microgravity turbulent gas-jet diffusion flames; and (2) to utilize these data to validate and refine the existing predictive capabilities. Work on this project commenced in June 1996. The first investigations on turbulent gas-jet diffusion flames in microgravity were initiated by Bahadori and co-workers in 1991. These studies have shown that significant differences exist in the transition processes in normal-gravity and microgravity flames, and that the turbulent flames in microgravity behave very differently as compared to their buoyancy-dominated normal-gravity counterparts. For example, in the transition regime while the visible flame height, for given fuel and nozzle size, in normal gravity decreases, the height of the microgravity flame increases. In the fully developed turbulent regime, the normal-gravity flame height is independent of injection velocity, whereas the microgravity flame height continues to increase, although at a lower rate than in the laminar and transitional regimes. Other differences between the normal-gravity and microgravity flames arise in the jet shear-layer instability characteristics, extent of the transitional regime and blow-off limit characteristics.

  12. Structure of Microgravity Transitional and Pulsed Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Yousef; Hegde, Uday; Stocker, Dennis P.

    1997-01-01

    This paper describes results obtained in a study of pulsed gas jet diffusion flames to better characterize the recently observed vortex/flame interactions in microgravity transitional and turbulent diffusion flames, and to improve the understanding of large-scale structures in corresponding normal-gravity flames. In preparation for a space experiment, tests were conducted in the 5.18-Second Zero-Gravity Facility of the NASA Lewis Research Center. Both unpulsed and pulsed laminar flames were studied and numerical modeling of these flames was carried out for data comparison and model validation. In addition, complementary tests for a series of unpulsed flames were conducted on-board the NASA KC-135 research aircraft. The microgravity transitional and turbulent gas-jet diffusion flames have been observed to be dominated by large-scale disturbances, or structures. These structures first appear intermittently in the flame at Reynolds numbers (based on the cold jet injection properties) of about 2100. With increase in injection Reynolds number, the rate of intermittent disturbances increases until the generation becomes continuous at Reynolds numbers of 3000 and higher. The behavior of these structures depends upon the velocity and temperature characteristics of the jet/flame shear layer. These characteristics are different in normal gravity and microgravity.

  13. On the structure, stabilization, and dual response of flat-burner flames

    SciTech Connect

    Eng, J.A.; Zhu, D.L.; Law, C.K.

    1995-03-01

    A comprehensive computational and experimental study has been conducted on the structure and stabilization dynamics of the classical planar flame over a flat, porous burner. The specific issue addressed is the apparent dual response nature of the flat-burner flames in that previous studies have shown the existence of two flame speeds for either a given heat loss rate or a given flame standoff distance. The present study demonstrates that the flame response is actually unique when the flame burning rate is considered to be the independent variable, that the turning point behavior of the flame response is a manifestation of system nonmonotonicity rather than extinction, and that the flat-burner flame does not appear to possess distinct extinction states. Results obtained from computation simulation of the flame structure with detailed transport and chemistry agree well with the experimental temperature and major species profiles determined through laser Raman spectroscopy.

  14. The Flame Tree

    ERIC Educational Resources Information Center

    Lewis, Richard

    2004-01-01

    Lewis's own experiences living in Indonesia are fertile ground for telling "a ripping good story," one found in "The Flame Tree." He hopes people will enjoy the tale and appreciate the differences of an unfamiliar culture. The excerpt from "The Flame Tree" will reel readers in quickly.

  15. Brominated Flame Retardants

    EPA Science Inventory

    Brominated flame retardants (BFRs) belong to a large class of compounds known as organohalogens. BFRs are currently the largest marketed flame retardant group due to their high performance efficiency and low cost. In the commercial market, more than 75 different BFRs are recogniz...

  16. High temperature durable catalyst development

    NASA Technical Reports Server (NTRS)

    Snow, G. C.; Tong, H.

    1981-01-01

    A program has been carried out to develop a catalytic reactor capable of operation in environments representative of those anticipated for advanced automotive gas turbine engines. A reactor consisting of a graded cell honeycomb support with a combination of noble metal and metal oxide catalyst coatings was built and successfully operated for 1000 hr. At an air preheat temperature of 740 K and a propane/air ratio of 0.028 by mass, the adiabatic flame temperature was held at about 1700 K. The graded cell monolithic reaction measured 5 cm in diameter by 10.2 cm in length and was operated at a reference velocity of 14.0 m/s at 1 atm. Measured NOx levels remained below 5 ppm, while unburned hydrocarbon concentrations registered near zero and carbon monoxide levels were nominally below 20 ppm.

  17. The role of compression waves in flame acceleration and transition to detonation inside confined volumes

    NASA Astrophysics Data System (ADS)

    Ivanov, M. F.; Kiverin, A. D.; Yakovenko, I. S.

    2015-11-01

    Features of the unsteady flames propagating in channels filled with gaseous combustible mixtures are studied numerically. The analysis is based on the model treating the flame as a moving energy source. It is shown that the crucial role in flame dynamics and its structure evolution belongs to the compression waves emitted by non-steady flame itself. The compression waves establish flow pattern, temperature and pressure fields near the flame front, which in turn determine the features of flame evolution on the different stages of its propagation.

  18. TG-FTIR characterization of flame retardant polyurethane foams materials

    NASA Astrophysics Data System (ADS)

    Liu, W.; Tang, Y.; Li, F.; Ge, X. G.; Zhang, Z. J.

    2016-07-01

    Dimethyl methylphosphonate (DMMP) and trichloroethyl phosphtate (TCEP) have been used to enhance the flame retardancy of polyurethane foams materials (PUF). Flame retardancy and thermal degradation of PUF samples have been investigated by the LOI tests and thermal analysis. The results indicate that the excellent flame retardancy can be achieved due to the presence of the flame retardant system containing DMMP and TCEP. TG-FTIR reveals that the addition of DMMP/TCEP can not only improve the thermal stability of PUF samples but can also affect the gaseous phase at high temperature.

  19. Flame Chemiluminescence Rate Constants for Quantitative Microgravity Combustion Diagnostics

    NASA Technical Reports Server (NTRS)

    Luque, Jorge; Smith, Gregory P.; Jeffries, Jay B.; Crosley, David R.; Weiland, Karen (Technical Monitor)

    2001-01-01

    Absolute excited state concentrations of OH(A), CH(A), and C2(d) were determined in three low pressure premixed methane-air flames. Two dimensional images of chemiluminescence from these states were recorded by a filtered CCD camera, processed by Abel inversion, and calibrated against Rayleigh scattering, Using a previously validated 1-D flame model with known chemistry and excited state quenching rate constants, rate constants are extracted for the reactions CH + O2 (goes to) OH(A) + CO and C2H + O (goes to) CH(A) + CO at flame temperatures. Variations of flame emission intensities with stoichiometry agree well with model predictions.

  20. Resolution-doubled one-dimensional wavelength modulation spectroscopy tomography for flame flatness validation of a flat-flame burner

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Xu, Lijun; Li, Fangyan; Cao, Zhang; Tsekenis, Stylianos A.; McCann, Hugh

    2015-09-01

    Flame flatness is one of the most critical factors in evaluating the performance of a flat-flame burner. In this paper, the flame flatness of a flat-flame burner is validated using a resolution-doubled one-dimensional wavelength modulation spectroscopy tomography (1D-WMST) technique that only uses one view of multiple parallel laser beams. When the interval of two neighboring parallel laser beams is Δ r, a designed novel geometry of the parallel laser beams realizes a doubled tomographic resolution of Δ r/2. Using the proposed technique, the distributions of temperature and H2O mole fraction in an axisymmetric premixed flame are simultaneously reconstructed and hence the flame flatness of a flat-flame burner can be validated. The flatness factor is quantitatively described by the similarity between the reconstructed and expected distributions of H2O mole fraction. For flat and non-flat flames, the experimental results agree well with the CFD simulation results, denoting that the resolution-doubled 1D-WMST technique provides a noninvasive, reliable and low cost way to validate the flame flatness of the flat-flame burner.

  1. Equations for Adiabatic but Rotational Steady Gas Flows without Friction

    NASA Technical Reports Server (NTRS)

    Schaefer, Manfred

    1947-01-01

    This paper makes the following assumptions: 1) The flowing gases are assumed to have uniform energy distribution. ("Isoenergetic gas flows," that is valid with the same constants for the the energy equation entire flow.) This is correct, for example, for gas flows issuing from a region of constant pressure, density, temperature, end velocity. This property is not destroyed by compression shocks because of the universal validity of the energy law. 2) The gas behaves adiabatically, not during the compression shock itself but both before and after the shock. However, the adiabatic equation (p/rho(sup kappa) = C) is not valid for the entire gas flow with the same constant C but rather with an appropriate individual constant for each portion of the gas. For steady flows, this means that the constant C of the adiabatic equation is a function of the stream function. Consequently, a gas that has been flowing "isentropically",that is, with the same constant C of the adiabatic equation throughout (for example, in origination from a region of constant density, temperature, and velocity) no longer remains isentropic after a compression shock if the compression shock is not extremely simple (wedge shaped in a two-dimensional flow or cone shaped in a rotationally symmetrical flow). The solution of nonisentropic flows is therefore an urgent necessity.

  2. An adiabatic demagnetization refrigerator for SIRTF

    NASA Technical Reports Server (NTRS)

    Timbie, P. T.; Bernstein, G. M.; Richards, P. L.

    1989-01-01

    An adiabatic demagnetization refrigerator (ADR) has been proposed to cool bolometric infrared detectors on the multiband imaging photometer of the Space Infrared Telescope Facility (SIRTF). One such refrigerator has been built which uses a ferric ammonium alum salt pill suspended by nylon threads in a 3-T solenoid. The resonant modes of this suspension are above 100 Hz. The heat leak to the salt pill is less than 0.5 microW. The system has a hold time at 0.1K of more than 12 h. The cold stage temperature is regulated with a feedback loop that controls the magnetic field. A second, similar refrigerator is being built at a SIRTF prototype to fly on a ballon-borne telescope. It will use a ferromagnetic shield. The possibility of using a high-Tc solenoid-actuated heat switch is also discussed.

  3. NO concentration imaging in turbulent nonpremixed flames

    SciTech Connect

    Schefer, R.W.

    1993-12-01

    The importance of NO as a pollutant species is well known. An understanding of the formation characteristics of NO in turbulent hydrocarbon flames is important to both the desired reduction of pollutant emissions and the validation of proposed models for turbulent reacting flows. Of particular interest is the relationship between NO formation and the local flame zone, in which the fuel is oxidized and primary heat release occurs. Planar imaging of NO provides the multipoint statistics needed to relate NO formation to the both the flame zone and the local turbulence characteristics. Planar imaging of NO has been demonstrated in turbulent flames where NO was seeded into the flow at high concentrations (2000 ppm) to determine the gas temperature distribution. The NO concentrations in these experiments were significantly higher than those expected in typical hydrocarbon-air flames, which require a much lower detectability limit for NO measurements. An imaging technique based on laser-induced fluorescence with sufficient sensitivity to study the NO formation mechanism in the stabilization region of turbulent lifted-jet methane flames.

  4. Shapes of Nonbuoyant Round Luminous Hydrocarbon/Air Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.

    1999-01-01

    The shapes (luminous flame boundaries) of round luminous nonbuoyant soot-containing hydrocarbon/air laminar jet diffusion flames at microgravity were found from color video images obtained on orbit in the Space Shuttle Columbia. Test conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, ambient pressures of 35-130 kPa, initial jet diameters of 1.6 and 2.7 mm, and jet exit Reynolds numbers of 45-170. Present test times were 100-200 s and yielded steady axisymmetric flames that were close to the laminar smoke point (including flames both emitting and not emitting soot) with luminous flame lengths of 15-63 mm. The present soot-containing flames had larger luminous flame lengths than earlier ground-based observations having similar burner configurations: 40% larger than the luminous flame lengths of soot-containing low gravity flames observed using an aircraft (KC-135) facility due to reduced effects of accelerative disturbances and unsteadiness; roughly twice as large as the luminous flame lengths of soot-containing normal gravity flames due to the absence of effects of buoyant mixing and roughly twice as large as the luminous flame lengths of soot-free low gravity flames observed using drop tower facilities due to the presence of soot luminosity and possible reduced effects of unsteadiness. Simplified expressions to estimate the luminous flame boundaries of round nonbuoyant laminar jet diffusion flames were obtained from the classical analysis of Spalding (1979); this approach provided Successful Correlations of flame shapes for both soot-free and soot-containing flames, except when the soot-containing flames were in the opened-tip configuration that is reached at fuel flow rates near and greater than the laminar smoke point fuel flow rate.

  5. Unsteady Effects in Methane Diffusion Flame-Vortex Ring Interactions

    NASA Astrophysics Data System (ADS)

    Safta, Cosmin; Madnia, Cyrus K.

    2002-11-01

    Direct Numerical Simulations of nonpremixed flame - vortex ring interactions are performed. The methane combustion is modeled by the GRI-Mech v2.11 kinetic mechanism. The vortex ring is generated by a finite duration axisymmetric jet that is pushed into a quiescent oxidizer. The much higher temperature of the oxidizer compared to the fuel leads to the auto-ignition of the vortex ring. The flame intensity is controlled by adjusting the initial fuel and oxidizer concentrations. The unsteady effects on the various flame regions surrounding the ring are assessed by comparisons with steady and unsteady counterflow diffusion flame simulations. In order to obtain equivalent flames, the fuel and oxidizer concentrations, as well as the mixture fraction dissipation at the flame surface are matched between the two configurations. Since HCO is found to be a good marker of the heat release rate, its characteristic time is used as a surrogate for the flame characteristic time. It is observed that there is a good correlation between the values of the HCO characteristic time and the departure of the front flame from the steady state. The unsteady effects of the vortex ring on the flame structure are further assessed by examining the balance between the terms in the species and temperature transport equations.

  6. Soot precursor measurements in benzene and hexane diffusion flames

    SciTech Connect

    Kobayashi, Y.; Furuhata, T.; Amagai, K.; Arai, M.

    2008-08-15

    To clarify the mechanism of soot formation in diffusion flames of liquid fuels, measurements of soot and its precursors were carried out. Sooting diffusion flames formed by a small pool combustion equipment system were used for this purpose. Benzene and hexane were used as typical aromatic and paraffin fuels. A laser-induced fluorescence (LIF) method was used to obtain spatial distributions of polycyclic aromatic hydrocarbons (PAHs), which are considered as soot particles. Spatial distributions of soot in test flames were measured by a laser-induced incandescence (LII) method. Soot diameter was estimated from the temporal change of LII intensity. A region of transition from PAHs to soot was defined from the results of LIF and LII. Flame temperatures, PAH species, and soot diameters in this transition region were investigated for both benzene and hexane flames. The results show that though the flame structures of benzene and hexane were different, the temperature in the PAHs-soot transition region of the benzene flame was similar to that of the hexane flame. Furthermore, the relationship between the PAH concentrations measured by gas chromatography in both flames and the PAH distributions obtained from LIF are discussed. It was found that PAHs with smaller molecular mass, such as benzene and toluene, remained in both the PAHs-soot transition and sooting regions, and it is thought that molecules heavier than pyrene are the leading candidates for soot precursor formation. (author)

  7. Structure of low-stretch methane nonpremixed flames

    SciTech Connect

    Han, Bai; Ibarreta, Alfonso F.; Sung, Chih-Jen; T'ien, James S.

    2007-04-15

    The present study experimentally and numerically investigates the structure associated with extremely low-stretch ({proportional_to}2 s{sup -1}) gaseous nonpremixed flames. The study of low-stretch flames aims to improve our fundamental understanding of the flame radiation effects on flame response and extinction limits. Low-stretch flames are also relevant to fire safety in reduced-gravity environments and to large buoyant fires, where localized areas of low stretch are attainable. In this work, ultra-low-stretch flames are established in normal gravity by bottom burning of a methane/nitrogen mixture discharged from a porous spherically symmetric burner of large radius of curvature. The large thickness of the resulting nonpremixed flame allows detailed mapping of the flame structure. Several advanced nonintrusive optical diagnostics are used to study the flame structure. Gas phase temperatures are measured by Raman scattering, while the burner surface temperatures are obtained by IR imaging. In addition, OH-PLIF and chemiluminescence imaging techniques are used to help characterize the extent of the flame reaction zone. These experimental results allow direct comparison with a quasi-one-dimensional numerical model including detailed chemistry, thermodynamic/transport properties, and radiation treatment. In addition, the radiative interactions between the flame and porous burner (modeled as a gray surface) are accounted for in the present model. The numerical modeling is demonstrated to be able to simulate the low-stretch flame structure. Using the current model, the extinction limits under different conditions are also examined. The computational results are consistent with experimental observations. (author)

  8. MODELING OF PARTICLE FORMATION AND DYNAMICS IN A FLAME INCINERATOR

    EPA Science Inventory

    A model has been developed to predict the formation and growth of metallic particles in a flame incinerator system. Flow fields and temperature profiles in a cylindrical laminar jet flame have been used to determine the position and physical conditions of the species along the fl...

  9. Adiabatic Wankel type rotary engine

    NASA Technical Reports Server (NTRS)

    Kamo, R.; Badgley, P.; Doup, D.

    1988-01-01

    This SBIR Phase program accomplished the objective of advancing the technology of the Wankel type rotary engine for aircraft applications through the use of adiabatic engine technology. Based on the results of this program, technology is in place to provide a rotor and side and intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Injection Stratified Charge (DISC) rotary engine was performed which concluded that applying thermal barrier coatings to the rotor should be successful and that it was unlikely that the rotor housing could be successfully run with thermal barrier coatings as the thermal stresses were extensive.

  10. Velocity profiles in laminar diffusion flames

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Margle, Janice M.

    1986-01-01

    Velocity profiles in vertical laminar diffusion flames were measured by using laser Doppler velocimetry (LDV). Four fuels were used: n-heptane, iso-octane, cyclohexane, and ethyl alcohol. The velocity profiles were similar for all the fuels, although there were some differences in the peak velocities. The data compared favorably with the theoretical velocity predictions. The differences could be attributed to errors in experimental positioning and in the prediction of temperature profiles. Error in the predicted temperature profiles are probably due to the difficulty in predicting the radiative heat losses from the flame.

  11. 46 CFR 36.20-1 - Flame screens-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Flame screens-TB/ALL. 36.20-1 Section 36.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES Vents and Ventilation § 36.20-1 Flame screens—TB/ALL. (a) Flame screens may be omitted in the vent lines on cargo...

  12. 46 CFR 36.20-1 - Flame screens-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Flame screens-TB/ALL. 36.20-1 Section 36.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES Vents and Ventilation § 36.20-1 Flame screens—TB/ALL. (a) Flame screens may be omitted in the vent lines on cargo...

  13. Temperature sensing on tapered single mode fiber using mechanically induced long period fiber gratings

    NASA Astrophysics Data System (ADS)

    Marrujo-García, Sigifredo; Velázquez-González, Jesús Salvador; Pulido-Navarro, María. Guadalupe; González-Ocaña, Ernesto; Mújica-Ascencio, Saúl; Martínez-Piñón, Fernando

    2015-09-01

    The modeling of a temperature optical fiber sensor is proposed and experimentally demonstrated in this work. The suggested structure to obtain the sensing temperature characteristics is by the use of a mechanically induced Long Period Fiber Grating (LPFG) on a tapered single mode optical fiber. A biconical fiber optic taper is made by applying heat using an oxygen-propane flame burner while stretching the single mode fiber (SMF) whose coating has been removed. The resulting geometry of the device is important to analyze the coupling between the core mode to the cladding modes, and this will determine whether the optical taper is adiabatic or non-adiabatic. On the other hand, the mechanical LPFG is made up of two plates, one grooved and other flat, the grooved plate was done on an acrylic slab with the help of a computerized numerical control machine (CNC). In addition to the experimental work, the supporting theory is also included.

  14. Kinetic Parameters for the Hydrogen and Ethylene Flames from Flashback Measurements

    NASA Technical Reports Server (NTRS)

    Fine, B.

    1960-01-01

    Values for the flame activation energy and an overall reaction order have been obtained for premixed hydrogen-oxygen and ethylene-oxygen flames with nitrogen and with argon as diluents; the values come from measurements of the change with pressure and flame temperature of the critical boundary velocity gradient for flashback. Measurements have been made for rich and stoichiometric hydrogen flames and for lean and stoichiometric ethylene flames. For hydrogen flames with nitrogen diluent an overall order of 2*3 is found; for ethylene flames with nitrogen diluent, the order obtained is 1*8. With argon diluent, values for the order are about 10 per cent lower for each flame. With nitrogen diluent the flame activation energy apparently increases with flame temperature; this increase is not found with argon diluent. For hydrocarbon flames the assumption that the initial equivalence ratio equals the effective equivalence ratio in the flame leads to an order of reaction with respect to oxygen that is considerably larger than unity. For hydrogen flames, that assumption is consistent with an oxygen order of unity.

  15. An experimental and numerical study on the stability and propagation of laminar premixed flames

    NASA Astrophysics Data System (ADS)

    Vagelopoulos, Christina Maria

    The laminar flame speed is a very important property of laminar premixed flames, especially for the validation of chemical kinetics and modeling of turbulent combustion. The counterflow technique is one of the best approaches for the experimental determination of this property because it allows for the establishment of planar, nearly adiabatic, steady, quasi-one dimensional flames that are subjected to well-defined aerodynamic strain rate. However non-linear effects as the strain rate goes to zero lead to overprediction of the laminar flame speed. In the present study these non-linear effects were investigated experimentally and numerically and significant overprediction was verified, particularly for weakly-burning hydrogen/air flames. Subsequently effort was made to establish and study flame properties at a very-low strain rate regime and qualitative and quantitative conclusions were drawn for the stability of the flame surface subjected to very low aerodynamic strain rate, coupled with the effect of gravity and preferential diffusion. A new experimental technique was developed, based on the observation that if a laminar premixed flame undergoes a transition from planar to Bunsen the strain rate changes from positive to negative values and a near-zero strain-rate regime is established. Flame speed measurements were conducted by using LDV for this regime; the flame speed measured is the true laminar flame speed and this is the first time that this property is directly and experimentally measured. Particle Streak velocimetry was developed to evaluate the strain-rates for near-zero strain-rate regime. The laminar flame speed was measured for atmospheric methane/air, ethane/air and propane/air mixtures for the whole range of equivalence ratios; the new data are lower when compared to previous ones and the overprediction is at the order of 15%.

  16. Extremely weak hydrogen flames

    SciTech Connect

    Lecoustre, V.R.; Sunderland, P.B.; Chao, B.H.; Axelbaum, R.L.

    2010-11-15

    Hydrogen jet diffusion flames were observed near their quenching limits. These involved downward laminar flow of hydrogen from a stainless steel hypodermic tube with an inside diameter of 0.15 mm. Near their quenching limits these flames had hydrogen flow rates of 3.9 and 2.1 {mu}g/s in air and oxygen, respectively. Assuming complete combustion, the associated heat release rates are 0.46 and 0.25 W. To the authors' knowledge, these are the weakest self-sustaining steady flames ever observed. (author)

  17. Jet Diffusion Flame Stabilization via Pulsed Plasma Forcing

    NASA Astrophysics Data System (ADS)

    Mungal, Godfrey

    2008-10-01

    In this work we investigate the use of high repetition rate pulsed plasma sources as a means to enhance the stability of jet diffusion flames for application to practical combustion devices. Such plasma sources have recently become popular owing to their low power requirements and their proven abilities to ignite leaner mixtures and hold stable flames. They are known to create a radical pool which can enhance combustion chemistry and thus provide increased flame stability. By first investigating a fully premixed methane/air environment we show that the resulting radical species quickly decay but leave behind a set of stable chemical species. Thus, the plasma source appears to act as a fuel reformer leading to the formation of a ``cool flame'' -- a trailing zone of weak oxidation consisting of a slightly elevated temperature stream of products containing small amounts of hydrogen and carbon monoxide. These two key species are then directly responsible for the enhanced flame behaviors. Flame stability enhancements are shown for methane jets in co-flow and cross-flow in room temperature air, and in elevated temperature vitiated air environments. Elevated ambient temperatures deplete the hydrogen and carbon monoxide due to enhanced oxidation, so while there is an enhancement to flame stability, the beneficial effects diminish with increasing temperatures in a non-linear fashion, and ultimately, provide very limited benefits at ˜1000K ambient temperature for the present studies. The conclusions here are supported by simple plasma and chemical kinetic modeling and spectroscopic and chemiluminescence measurements.

  18. Autoignition of adiabatically compressed combustible gas mixtures

    SciTech Connect

    Hu, H.; Keck, J.

    1987-01-01

    Measurements of explosion limits for fuel/air/diluent mixtures compressed by an expanding laminar flame have been made in a constant volume spherical bomb. The fuels studied to date range from butane to octane at fuel/air equivalence ratios from 0.8 to 1.3. The explosion pressures and temperatures range from 10 to 100 atm and 650 to 850 K. The pressure versus time curves show the behavior typical of the two-stage ignition process observed in rapid compression machines. A branched chain kinetic model has been developed to correlate the data. The model has been used to predict both the explosion limits measured in the current bomb experiments and ignition delays measured in prior rapid compression machine experiments. Good agreement between experiment and theory can be achieved with minor adjustment in published rate constants.

  19. Structure of confined laminar spray diffusion flames: Numerical investigation

    NASA Technical Reports Server (NTRS)

    Mawid, M. A.; Bulzan, D. L.; Aggarwal, S. K.

    1993-01-01

    The structure of confined laminar spray diffusion flames is investigated numerically by solving the gas-phase conservation equations for mass species, continuity, momentum, and energy and the liquid-phase equations for droplet position, velocity, size, and temperature. A one-step global reaction scheme along with six equilibrium reactions are employed to model the flame chemistry. Monodisperse as well as polydisperse sprays are considered. The numerical results demonstrate that liquid spray flames substantially differ from gaseous flames in their structure, i.e., temperature, concentration, and velocity fields, shape, and dimensions under the same conditions. Spray flames are predicted to be taller and narrower than their counterpart gaseous ones and their shapes are almost cylindrical. This is in agreement with experimental observations. The numerical computations also show that the use of the equilibrium reactions with the one-step reaction scheme decreases the flame temperature compared to the one-step reaction scheme without the equilibrium reactions and more importantly increases the surface area of the flame zone due to a phenomenon termed 'equilibrium broadening.' The spray flames also possess a finite thickness with minimal overlap of the fuel and oxygen species. A case for which a fuel-mixture consisting of 20 to 80 percent gas-liquid by mass is introduced into the combustor is also investigated and compared with predictions using only gaseous or liquid fuel.

  20. Flame dynamics in a micro-channeled combustor

    SciTech Connect

    Hussain, Taaha; Balachandran, Ramanarayanan; Markides, Christos N.

    2015-01-22

    The increasing use of Micro-Electro-Mechanical Systems (MEMS) has generated a significant interest in combustion-based power generation technologies, as a replacement of traditional electrochemical batteries which are plagued by low energy densities, short operational lives and low power-to-size and power-to-weight ratios. Moreover, the versatility of integrated combustion-based systems provides added scope for combined heat and power generation. This paper describes a study into the dynamics of premixed flames in a micro-channeled combustor. The details of the design and the geometry of the combustor are presented in the work by Kariuki and Balachandran [1]. This work showed that there were different modes of operation (periodic, a-periodic and stable), and that in the periodic mode the flame accelerated towards the injection manifold after entering the channels. The current study investigates these flames further. We will show that the flame enters the channel and propagates towards the injection manifold as a planar flame for a short distance, after which the flame shape and propagation is found to be chaotic in the middle section of the channel. Finally, the flame quenches when it reaches the injector slots. The glow plug position in the exhaust side ignites another flame, and the process repeats. It is found that an increase in air flow rate results in a considerable increase in the length (and associated time) over which the planar flame travels once it has entered a micro-channel, and a significant decrease in the time between its conversion into a chaotic flame and its extinction. It is well known from the literature that inside small channels the flame propagation is strongly influenced by the flow conditions and thermal management. An increase of the combustor block temperature at high flow rates has little effect on the flame lengths and times, whereas at low flow rates the time over which the planar flame front can be observed decreases and the time of

  1. Premixed silane-oxygen-nitrogen flames

    SciTech Connect

    Tokuhashi, K.; Horiguchi, S.; Uranco, Y.; Iwasaka, M.; Ohtani, H.; Kondo, S. )

    1990-10-01

    The burning velocities of lean premised silane-oxygen-nitrogen flames were measured in the silane and oxygen concentration ranges from 1.6% to 2.9% and from 4% to 24%, respectively. Combustion product analyses and flame temperature measurements were also carried out. The burning velocity of a silane-air flame is around 55 cm/ at a silane concentration of 2%. For lean mixtures, when the oxygen concentration is reduced, dependence of burning velocity upon silane concentration decreases but does not significantly affect the flame temperature. For extremely lean flames, the degree of hydrogen production increase with decreasing silane, although silane is consumed almost completely. On the other hand, if the silane concentration exceeds stoichiometric, the burning velocity increases gradually with increasing silane concentration. In that case, silane as well as oxygen are consumed completely and, at the same time, hydrogen rather than water production becomes dominant. The mechanism of silane combustion is discussed, based on numerical calculations, where the mechanism used in the calculation is assembled by analogy of silane to methane combustion.

  2. Particle-Image Velocimetry in Microgravity Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Greenberg, P. S.; Urban, D. L.; Wernet, M. P.; Yanis, W.

    1999-01-01

    This paper discusses planned velocity measurements in microgravity laminar jet diffusion flames. These measurements will be conducted using Particle-Image Velocimetry (PIV) in the NASA Glenn 2.2-second drop tower. The observations are of fundamental interest and may ultimately lead to improved efficiency and decreased emissions from practical combustors. The velocity measurements will support the evaluation of analytical and numerical combustion models. There is strong motivation for the proposed microgravity flame configuration. Laminar jet flames are fundamental to combustion and their study has contributed to myriad advances in combustion science, including the development of theoretical, computational and diagnostic combustion tools. Nonbuoyant laminar jet flames are pertinent to the turbulent flames of more practical interest via the laminar flamelet concept. The influence of gravity on these flames is deleterious: it complicates theoretical and numerical modeling, introduces hydrodynamic instabilities, decreases length scales and spatial resolution, and limits the variability of residence time. Whereas many normal-gravity laminar jet diffusion flames have been thoroughly examined (including measurements of velocities, temperatures, compositions, sooting behavior and emissive and absorptive properties), measurements in microgravity gas-jet flames have been less complete and, notably, have included only cursory velocity measurements. It is envisioned that our velocity measurements will fill an important gap in the understanding of nonbuoyant laminar jet flames.

  3. Effects of buoyancy on gas jet diffusion flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Yousef; Edelman, Raymond B.

    1993-01-01

    The objective of this effort was to gain a better understanding of the fundamental phenomena involved in laminar gas jet diffusion flames in the absence of buoyancy by studying the transient phenomena of ignition and flame development, (quasi-) steady-state flame characteristics, soot effects, radiation, and, if any, extinction phenomena. This involved measurements of flame size and development, as well as temperature and radiation. Additionally, flame behavior, color, and luminosity were observed and recorded. The tests quantified the effects of Reynolds number, nozzle size, fuel reactivity and type, oxygen concentration, and pressure on flame characteristics. Analytical and numerical modeling efforts were also performed. Methane and propane flames were studied in the 2.2 Second Drop Tower and the 5.18-Second Zero-Gravity Facility of NASA LeRC. In addition, a preliminary series of tests were conducted in the KC-135 research aircraft. Both micro-gravity and normal-gravity flames were studied in this program. The results have provided unique and new information on the behavior and characteristics of gas jet diffusion flames in micro-gravity environments.

  4. Isomer-specific combustion chemistry in allene and propyne flames

    SciTech Connect

    Hansen, Nils; Miller, James A.; Westmoreland, Phillip R.; Kasper, Tina; Kohse-Hoeinghaus, Katharina; Wang, Juan; Cool, Terrill A.

    2009-11-15

    A combined experimental and modeling study is performed to clarify the isomer-specific combustion chemistry in flames fueled by the C{sub 3}H{sub 4} isomers allene and propyne. To this end, mole fraction profiles of several flame species in stoichiometric allene (propyne)/O{sub 2}/Ar flames are analyzed by means of a chemical kinetic model. The premixed flames are stabilized on a flat-flame burner under a reduced pressure of 25 Torr (=33.3 mbar). Quantitative species profiles are determined by flame-sampling molecular-beam mass spectrometry, and the isomer-specific flame compositions are unraveled by employing photoionization with tunable vacuum-ultraviolet synchrotron radiation. The temperature profiles are measured by OH laser-induced fluorescence. Experimental and modeled mole fraction profiles of selected flame species are discussed with respect to the isomer-specific combustion chemistry in both flames. The emphasis is put on main reaction pathways of fuel consumption, of allene and propyne isomerization, and of isomer-specific formation of C{sub 6} aromatic species. The present model includes the latest theoretical rate coefficients for reactions on a C{sub 3}H{sub 5} potential [J.A. Miller, J.P. Senosiain, S.J. Klippenstein, Y. Georgievskii, J. Phys. Chem. A 112 (2008) 9429-9438] and for the propargyl recombination reactions [Y. Georgievskii, S.J. Klippenstein, J.A. Miller, Phys. Chem. Chem. Phys. 9 (2007) 4259-4268]. Larger peak mole fractions of propargyl, allyl, and benzene are observed in the allene flame than in the propyne flame. In these flames virtually all of the benzene is formed by the propargyl recombination reaction. (author)

  5. Quasi-adiabatic compression heating of selected foods

    NASA Astrophysics Data System (ADS)

    Landfeld, Ales; Strohalm, Jan; Halama, Radek; Houska, Milan

    2011-03-01

    The quasi-adiabatic temperature increase due to compression heating, during high-pressure (HP) processing (HPP), was studied using specially designed equipment. The temperature increase was evaluated as the difference in temperature, during compression, between atmospheric pressure and nominal pressure. The temperature was measured using a thermocouple in the center of a polyoxymethylene cup, which contained the sample. Fresh meat balls, pork meat pate, and tomato purée temperature increases were measured at three initial temperature levels between 40 and 80 °C. Nominal pressure was either 400 or 500 MPa. Results showed that the fat content had a positive effect on temperature increases. Empirical equations were developed to calculate the temperature increase during HPP at different initial temperatures for pressures of 400 and 500 MPa. This thermal effect data can be used for numerical modeling of temperature histories of foods during HP-assisted pasteurization or sterilization processes.

  6. Flame studies with the coherent anti-Stokes Raman spectroscopy technique

    SciTech Connect

    Goss, L.P.; Switzer, G.L.

    1980-01-01

    Results of various studies on propane- and acetylene-fueled flames utilizing the laboratory CARS system at the AFWAL Aero Propulsion Laboratory are reported. The burner built for these studies was especially adapted for flame seeding and stability. The studies conducted include: (1) a comparison of sodium-line-reversal utilizing CARS single-shot thermometry, (2) temperature profiling of the acetylene- and propane-fueled flames, (3) referencing-scheme studies for number density determinations, (4) an oxygen study of the flame with background suppression, and (5) simultaneous single-shot measurements of number density and temperature on the propane-fueled flame.

  7. Flame-resistant textiles

    NASA Technical Reports Server (NTRS)

    Fogg, L. C.; Stringham, R. S.; Toy, M. S.

    1980-01-01

    Flame resistance treatment for acid resistant polyamide fibers involving photoaddition of fluorocarbons to surface has been scaled up to treat 10 yards of commercial width (41 in.) fabric. Process may be applicable to other low cost polyamides, polyesters, and textiles.

  8. Flame spread across liquids

    NASA Technical Reports Server (NTRS)

    Ross, Howard D.; Miller, Fletcher; Schiller, David; Sirignano, William

    1995-01-01

    Recent reviews of our understanding of flame spread across liquids show that there are many unresolved issues regarding the phenomenology and causal mechanisms affecting ignition susceptibility, flame spread characteristics, and flame spread rates. One area of discrepancy is the effect of buoyancy in both the uniform and pulsating spread regimes. The approach we have taken to resolving the importance of buoyancy for these flames is: (1) normal gravity (1g) and microgravity (micro g) experiments; and (2) numerical modeling at different gravitational levels. Of special interest to this work, as discussed at the previous workshop, is the determination of whether, and under what conditions, pulsating spread occurs in micro g. Microgravity offers a unique ability to modify and control the gas-phase flow pattern by utilizing a forced air flow over the pool surface.

  9. "Magic Eraser" Flame Tests

    NASA Astrophysics Data System (ADS)

    Landis, Arthur M.; Davies, Malonne I.; Landis, Linda

    2009-05-01

    Cleaning erasers are used to support methanol-fueled flame tests. This safe demonstration technique requires only small quantities of materials, provides clean colors for up to 45 seconds, and can be used in the classroom or the auditorium.

  10. Local Velocity Field Measurements towards Understanding Flame Stabilization of Turbulent Non-premixed Jet Flames in Vitiated Coflow

    NASA Astrophysics Data System (ADS)

    Ramachandran, Aravind; Mothe, Anirudh Reddy; Narayanaswamy, Venkateswaran

    2015-11-01

    Turbulent combustion of a non-premixed methane jet issuing into a vitiated coflow is being studied in our lab. Flame luminosity studies demonstrated three dominant characteristic flame motions - a stable flame base (Mode A), complete blowout (Mode B), and partial blowout followed by re-anchoring of the flame by autoignition kernels (Mode C). The experiments presented in this work focused on Mode A, and were carried out over a range of oxidizer temperatures, oxygen molefractions, and fuel jet Reynolds numbers. Measurements of 2-D velocity fields near the base of the lifted jet flame were obtained using Particle Image Velocimetry (PIV) with the objective to delineate the dominant mechanisms involved in the flame stabilization. Statistical analysis of these instantaneous velocity fields will be presented, which shows non-trivial contributions from autoignition kernels as well as edge flame propagation towards flame stabilization. The effect of vortices and high local strain rates was observed to produce local extinctions and destabilize the flame, indicating their role as precursors to (unstable) Mode B and Mode C motions. NSF Grant CBET-1511216.

  11. Degenerate adiabatic perturbation theory: Foundations and applications

    NASA Astrophysics Data System (ADS)

    Rigolin, Gustavo; Ortiz, Gerardo

    2014-08-01

    We present details and expand on the framework leading to the recently introduced degenerate adiabatic perturbation theory [Phys. Rev. Lett. 104, 170406 (2010), 10.1103/PhysRevLett.104.170406], and on the formulation of the degenerate adiabatic theorem, along with its necessary and sufficient conditions [given in Phys. Rev. A 85, 062111 (2012), 10.1103/PhysRevA.85.062111]. We start with the adiabatic approximation for degenerate Hamiltonians that paves the way to a clear and rigorous statement of the associated degenerate adiabatic theorem, where the non-Abelian geometric phase (Wilczek-Zee phase) plays a central role to its quantitative formulation. We then describe the degenerate adiabatic perturbation theory, whose zeroth-order term is the degenerate adiabatic approximation, in its full generality. The parameter in the perturbative power-series expansion of the time-dependent wave function is directly associated to the inverse of the time it takes to drive the system from its initial to its final state. With the aid of the degenerate adiabatic perturbation theory we obtain rigorous necessary and sufficient conditions for the validity of the adiabatic theorem of quantum mechanics. Finally, to illustrate the power and wide scope of the methodology, we apply the framework to a degenerate Hamiltonian, whose closed-form time-dependent wave function is derived exactly, and also to other nonexactly solvable Hamiltonians whose solutions are numerically computed.

  12. Oscillating edge-flames

    NASA Astrophysics Data System (ADS)

    Buckmaster, J.; Zhang, Yi

    1999-09-01

    It has been known for some years that when a near-limit flame spreads over a liquid pool of fuel, the edge of the flame can oscillate. It is also known that when a near-asphyxiated candle-flame burns in zero gravity, the edge of the (hemispherical) flame can oscillate violently prior to extinction. We propose that these oscillations are nothing more than a manifestation of the large Lewis number instability well known in chemical reactor studies and in combustion studies, one that is exacerbated by heat losses. As evidence of this we examine an edge-flame confined within a fuel-supply boundary and an oxygen-supply boundary, anchored by a discontinuity in data at the fuel-supply boundary. We show that when the Lewis number of the fuel is 2, and the Lewis number of the oxidizer is 1, oscillations of the edge occur when the Damköhler number is reduced below a critical value. During a single oscillation period there is a short premixed propagation stage and a long diffusion stage, behaviour that has been observed in flame spread experiments. Oscillations do not occur when both Lewis numbers are equal to 1.

  13. Shortcut to adiabatic gate teleportation

    NASA Astrophysics Data System (ADS)

    Santos, Alan C.; Silva, Raphael D.; Sarandy, Marcelo S.

    2016-01-01

    We introduce a shortcut to the adiabatic gate teleportation model of quantum computation. More specifically, we determine fast local counterdiabatic Hamiltonians able to implement teleportation as a universal computational primitive. In this scenario, we provide the counterdiabatic driving for arbitrary n -qubit gates, which allows to achieve universality through a variety of gate sets. Remarkably, our approach maps the superadiabatic Hamiltonian HSA for an arbitrary n -qubit gate teleportation into the implementation of a rotated superadiabatic dynamics of an n -qubit state teleportation. This result is rather general, with the speed of the evolution only dictated by the quantum speed limit. In particular, we analyze the energetic cost for different Hamiltonian interpolations in the context of the energy-time complementarity.

  14. Quantum gates with controlled adiabatic evolutions

    NASA Astrophysics Data System (ADS)

    Hen, Itay

    2015-02-01

    We introduce a class of quantum adiabatic evolutions that we claim may be interpreted as the equivalents of the unitary gates of the quantum gate model. We argue that these gates form a universal set and may therefore be used as building blocks in the construction of arbitrary "adiabatic circuits," analogously to the manner in which gates are used in the circuit model. One implication of the above construction is that arbitrary classical boolean circuits as well as gate model circuits may be directly translated to adiabatic algorithms with no additional resources or complexities. We show that while these adiabatic algorithms fail to exhibit certain aspects of the inherent fault tolerance of traditional quantum adiabatic algorithms, they may have certain other experimental advantages acting as quantum gates.

  15. On a Nonlinear Model in Adiabatic Evolutions

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Lu, Song-Feng

    2016-08-01

    In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully solve the problem, while the linear model can not. Also in the same setting, when the overlap between the initial state and the final stare is sufficiently large, a simple linear adiabatic evolution can achieve O(1) time efficiency, but infinite time complexity for the nonlinear model of adiabatic evolution is needed. This tells us, it is not always a wise choice to use nonlinear interpolations in adiabatic algorithms. Sometimes, simple linear adiabatic evolutions may be sufficient for using. Supported by the National Natural Science Foundation of China under Grant Nos. 61402188 and 61173050. The first author also gratefully acknowledges the support from the China Postdoctoral Science Foundation under Grant No. 2014M552041

  16. Triple flames in microgravity flame spread

    NASA Technical Reports Server (NTRS)

    Wichman, Indrek S.

    1995-01-01

    The purpose of this project is to examine in detail the influence of the triple flame structure on the flame spread problem. It is with an eye to the practical implications that this fundamental research project must be carried out. The microgravity configuration is preferable because buoyancy-induced stratification and vorticity generation are suppressed. A more convincing case can be made for comparing our predictions, which are zero-g, and any projected experiments. Our research into the basic aspects will employ two models. In one, flows of fuel and oxidizer from the lower wall are not considered. In the other, a convective flow is allowed. The non-flow model allows us to develop combined analytical and numerical solution methods that may be used in the more complicated convective-flow model.

  17. Characteristics of methane diffusion flame in a reacting vortex ring

    NASA Astrophysics Data System (ADS)

    Safta, C.; Madnia, C. K.

    2004-09-01

    Direct numerical simulations of non-premixed methane flame vortex ring interactions are performed. The methane combustion was modelled using a detailed kinetic mechanism which consists of 36 species and 217 elementary reactions and involves C1, C2, and a small set of C3 kinetics. The vortex ring is generated by a brief discharge of cold fuel into a quiescent oxidizer ambient. The much higher oxidizer temperature leads to the auto-ignition of the vortex ring. The effects of fuel and oxidizer dilution and vortex ring strength on the dynamics of the interaction are studied. Three flame regions, front, top, and wake, are identified. Several combustion regimes are defined in the reacting vortex ring configuration. For the range of parameters accessible, unsteady, curvature and thickening effects on the flame structure are observed. Flame structure comparisons with steady counterflow diffusion flame (CFDF) results show that for a Damköhler number greater than 25, the unsteady effects on the flame become small. The contributions of time varying straining, fuel temperature and concentration to the unsteady effects on the front flame structure are separated through comparisons with unsteady CFDF simulations. For high initial Damköhler number simulations, none of these contributions are important since the flame becomes quasi-steady shortly after ignition. For intermediate initial Damköhler number simulations the unsteady effects are important at early times. At later times, a decrease in the straining and an increase in the fuel temperature reduce these effects. However, a decrease in the fuel concentration extends the duration for which the unsteady effects are important. If the initial Damköhler number is sufficiently low, the decrease in the fuel concentration overcomes the effects of straining and fuel temperature, and the flame remains unsteady for the entire simulation. Thickening and curvature effects on the flame structure are observed for the intermediate and

  18. Aspects of Cool-Flame Supported Droplet Combustion in Microgravity

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha; Dietrich, Daniel L.; Williams, Forman A.

    2015-01-01

    Droplet combustion experiments performed on board the International Space Station have shown that normal-alkane fuels with negative temperature coefficient (NTC) chemistry can support quasi-steady, low-temperature combustion without any visible flame. Here we review the results for n-decane, n-heptane, and n-octane droplets burning in carbon dioxidehelium diluted environments at different pressures and initial droplet sizes. Experimental results for cool-flame burning rates, flame standoff ratios, and extinction diameters are compared against simplified theoretical models of the phenomenon. A simplified quasi-steady model based on the partial-burning regime of Lin predicts the burning rate, and flame standoff ratio reasonably well for all three normal alkanes. The second-stage cool-flame burning and extinction following the first-stage hot-flame combustion, however, shows a small dependence on the initial droplet size, thus deviating from the quasi-steady results. An asymptotic model that estimates the oxygen depletion by the hot flame and its influence on cool-flame burning rates is shown to correct the quasi-steady results and provide a better comparison with the measured burning-rate results.This work was supported by the NASA Space Life and Physical Sciences Research and Applications Program and the International Space Station Program.

  19. Computatonal and experimental study of laminar flames

    SciTech Connect

    Smooke, M.D.; Long, M.B.

    1993-12-01

    This research has centered on an investigation of the effects of complex chemistry and detailed transport on the structure and extinction of hydrocarbon flames in counterflow, cylindrical and coflowing axisymmetric configurations. The authors have pursued both computational and experimental aspects of the research in parallel. The computational work has focused on the application of accurate and efficient numerical methods for the solution of the one and two-dimensional nonlinear boundary value problems describing the various reacting systems. Detailed experimental measurements were performed on axisymmetric coflow flames using two-dimensional imaging techniques. In particular, spontaneous Raman scattering and laser induced fluorescence were used to measure the temperature, major and minor species profiles.

  20. Flame hole dynamics simulation of Sandia Flame F

    NASA Astrophysics Data System (ADS)

    Knaus, Robert; Hewson, John; Domino, Stefan; Pantano, Carlos

    2014-11-01

    The Sandia Flame ``F'' is a piloted methane/air diffusion flame containing high levels of local extinction. These regions of local extinction reduce the efficiency of combustion and can increase the production of certain pollutants (e.g. carbon monoxide) as well as limit the overall stability of the flame. We present a flame hole dynamics model describing evolution of local extinction zones (flame holes) in a turbulent diffusion flame and apply it to perform a direct numerical simulation of the Sandia Flame F using Sandia's ``SIERRA low Mach Module, Nalu.'' The flame hole dynamics model is a phase-field model that describes the state of the flame (burning or extinguished) through a surface partial differential equation modeling extinction, reignition and advection of the flame state on the moving stoichiometric surface using edge flame properties. The solution of the surface equation is then extended away from the surface and used for state evaluations using a flamelet library with steady flamelets in the burning region and a transient solution in the quenched regions. The flame hole dynamics approach allows tracking extinction and reignition in turbulent diffusion flames without using the computationally costly detailed chemistry explicitly.

  1. The use of infrared thermography to study the optical characteristics of flames from burning vegetation

    NASA Astrophysics Data System (ADS)

    Loboda, E. L.; Reyno, V. V.; Vavilov, V. P.

    2014-11-01

    Some optical phenomena observed in the flames from the burning of flammable vegetation materials and ethyl alcohol are analyzed. Recommendations on the optimal spectral bands for temperature measurements of hot objects obscured by flames are given. Frequency spectra of temperature pulsations in flames are obtained, thus revealing a spatial structure in the flow of combustion products, as well as the degree of turbulence in a high temperature fluid medium.

  2. Pentan isomers compound flame front structure

    SciTech Connect

    Mansurov, Z.A.; Mironenko, A.W.; Bodikov, D.U.; Rachmetkaliev, K.N.

    1995-08-13

    The fuels (hexane, pentane, diethyl ether) and conditions investigated in this study are relevant to engine knock in spark- ignition engines. A review is provided of the field of low temperature hydrocarbon oxidation. Studies were made of radical and stable intermediate distribution in the front of cool flames: Maximum concentrations of H atoms and peroxy radicals were observed in the luminous zone of the cool flame front. Peroxy radicals appear before the luminous zone at 430 K due to diffusion. H atoms were found in cool flames of butane and hexane. H atoms diffuses from the luminous zone to the side of the fresh mixture, and they penetrate into the fresh mixture to a small depth. Extension of action sphear of peroxy radicals in the fresh mixture is much greater than that of H atoms due to their small activity and high concentrations.

  3. DEMONSTRATION BULLETIN: FLAME REACTOR - HORSEHEAD RESOURCE DEVELOPMENT COMPANY, INC.

    EPA Science Inventory

    The Horsehead Resource Development Company, Inc. (HRD) Flame Reactor is a patented and proven high temperature thermal process designed to safely treat industrial residues and wastes containing metals. During processing, the waste material is introduced into the hottest portio...

  4. System and method for optical monitoring of a combustion flame

    DOEpatents

    Brown, Dale M; Sandvik, Peter M; Fedison, Jeffrey B; Matocha, Kevin S; Johnson, Thomas E

    2006-09-26

    An optical spectrometer for combustion flame temperature determination includes at least two photodetectors positioned for receiving light from a combustion flame, each of the at least two photodetectors having a different, overlapping bandwidth for detecting a respective output signal in an ultraviolet emission band; and a computer for subtracting a respective output signal of a first one of the at least two photodetectors from a respective output signal of a second one of the at least two photodetectors to obtain a segment signal, and using the segment signal to determine the combustion flame temperature.

  5. DETAIL VIEW IN THE FLAME TRENCH LOOKING NORTH, FLAME DEFLECTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW IN THE FLAME TRENCH LOOKING NORTH, FLAME DEFLECTOR IN THE FOREGROUND, WATER PIPES AND VALVE ASSEMBLIES ON THE FOREGROUND. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  6. Stabilization and dynamics of edge flames in narrow channels

    NASA Astrophysics Data System (ADS)

    Bieri, Joanna A.

    The dynamics of edge flames in narrow channels is studied, first within the context of a reactive diffusive (or constant density) model and then in a variable density model which allows for the consideration of thermal expansion effects. Fuel and oxidizer, separated upstream by a thin plate of finite length, flow into a channel with a prescribed upstream velocity. At the end of the plate, the fuel and oxidizer mix and, when ignited, an edge flame is sustained at some distance from the tip of the plate. Typically, the flame, which is stabilized by heat conduction back to the cold plate, has a tribrachial structure. It consists of a leading edge, made up of lean and rich premixed segments, and an attached diffusion flame trailing behind. The flame can also have a hook-like shape, when one of the premixed branches is missing. This often happens for conditions away from stoichiometry and when the mass diffusivities of the fuel and oxidizer are unequal. Earlier work has determined the behavior of an edge flame in a mixing layer that develops downstream of a splitter plate with no boundaries in the lateral direction. This is relevant to the stabilization and liftoff of jet diffusion flames. The confined case has other possible applications, such as flames in mini-combustor systems, that have been recently tested experimentally. The objective in this work is to determine the effect that confinement has on the edge standoff distance, on the flame shape and on the flame stability. In particular, we examine the influence of channel width, wall temperature, and the effects of differential diffusion. We determine conditions under which the edge flame is stabilized near the tip of the splitter plate, is held near the tip but oscillates back and forth, or is blown-off. We consider a wide range of channel widths and boundary conditions at the walls.

  7. Extinction conditions of a premixed flame in a channel

    SciTech Connect

    Alliche, Mounir; Haldenwang, Pierre; Chikh, Salah

    2010-06-15

    A local refinement method is used to numerically predict the propagation and extinction conditions of a premixed flame in a channel considering a thermodiffusive model. A local refinement method is employed because of the numerous length scales that characterize this phenomenon. The time integration is self adaptive and the solution is based on a multigrid method using a zonal mesh refinement in the flame reaction zone. The objective is to determine the conditions of extinction which are characterized by the flame structure and its properties. We are interested in the following properties: the curvature of the flame, its maximum temperature, its speed of propagation and the distance separating the flame from the wall. We analyze the influence of heat losses at the wall through the thermal conductivity of the wall and the nature of the fuel characterized by the Lewis number of the mixture. This investigation allows us to identify three propagation regimes according to heat losses at the wall and to the channel radius. The results show that there is an intermediate value of the radius for which the flame can bend and propagate provided that its curvature does not exceed a certain limit value. Indeed, small values of the radius will choke the flame and extinguish it. The extinction occurs if the flame curvature becomes too small. Furthermore, this study allows us to predict the limiting values of the heat loss coefficient at extinction as well as the critical value of the channel radius above which the premixed flame may propagate without extinction. A dead zone of length 2-4 times the flame thickness appears between the flame and the wall for a Lewis number (Le) between 0.8 and 2. For small values of Le, local extinctions are observed. (author)

  8. Mathematical simulation of temperatures in deep impoundments: verification tests of the Water Resources Engineers, Inc. model - Horsetooth and Flaming Gorge Reservoirs

    USGS Publications Warehouse

    King, D.L.; Sartoris, Jim J.

    1973-01-01

    Successful use of predictive mathematical models requires verification of the accuracy of the models by applying them to existing situations where the prediction can be compared with reality. A Corps of Engineers' modification of a deep reservoir thermal stratification model developed by Water Resources Engineers, Inc., was applied to two existing Bureau of Reclamation reservoirs for verification. Diffusion coefficients used for the Corps' Detroit Reservoir were found to apply to Horsetooth Reservoir in Colorado, for which very food computer input data were available. The Detroit diffusion coefficients gave a reasonable simulation of Flaming Gorge Reservoir in Wyoming and Utah, which has very complex and variable physical characteristics and for which only average-quality computer input data were available.

  9. Premixing quality and flame stability: A theoretical and experimental study

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, K.; Heywood, J. B.; Tabaczynski, R. J.

    1979-01-01

    Models for predicting flame ignition and blowout in a combustor primary zone are presented. A correlation for the blowoff velocity of premixed turbulent flames is developed using the basic quantities of turbulent flow, and the laminar flame speed. A statistical model employing a Monte Carlo calculation procedure is developed to account for nonuniformities in a combustor primary zone. An overall kinetic rate equation is used to describe the fuel oxidation process. The model is used to predict the lean ignition and blow out limits of premixed turbulent flames; the effects of mixture nonuniformity on the lean ignition limit are explored using an assumed distribution of fuel-air ratios. Data on the effects of variations in inlet temperature, reference velocity and mixture uniformity on the lean ignition and blowout limits of gaseous propane-air flames are presented.

  10. Temperature and number density measurements using Raman scattering in turbulent-supersonic-combusting flows

    NASA Astrophysics Data System (ADS)

    Jeyashekar, Nigil Satish

    Scramjet engines propelled at hypersonic velocities have the potential to replace existing rocket launchers. Commercializing the vehicle is an arduous task, owing to issues relating to low combustion efficiency. The performance, thrust, and speed of the engine can be improved by optimizing: turbulence-chemistry interaction to provide mixing conditions favorable for the chemistry, pressure buildup, and re-circulation of hydrogen throughout the engine. The performance of the engine can be measured, flow and chemical dynamics can be evaluated when all three variables in the transport equations are known. The variables are instantaneous flow velocity, static temperature (refers to the macroscopic temperature and not the molecular species temperature), and total number density at a point in the flow. The motive is to build a non-intrusive tool to measure thermodynamic quantities (static temperature and total number density). This can be integrated with a velocity measurement tool, in the future, to obtain all three variables simultaneously and instantaneously. The dissertation describes in detail the motivation for the proposed work, with introduction to the formalism involved, with a concise literature review, followed by mathematical perspective to obtain the working equations for temperature and number density. The design of the adiabatic burner and the experimental setup used for calibration is discussed with the uncertainty involved in measurements. The measurements are made for a certain set of flow conditions in the laminar burner by Raman scattering and is validated by comparing it to the theoretical/adiabatic flame temperature and mole fraction plots, in lean and rich regime. This technique is applied to turbulent, supersonic, hydrogen-air flame of an afterburning rocket nozzle. The statistics of temperature and total number density versus the corresponding values at adiabatic conditions gives the departure from thermal and chemical equilibrium. The extent of

  11. Interaction of a vortex ring propelled non-premixed flame with an inert wall

    NASA Astrophysics Data System (ADS)

    Bharadwaj, Nidheesh; Madnia, Cyrus K.

    2004-11-01

    Direct numerical simulations of nonpremixed flame-wall interactions are performed. A laminar vortex ring is generated by a finite duration axisymmetric methane jet that is injected into a quiescent oxidizer. The elevated temperature of the ambient leads to an auto-ignition of the fuel-oxidizer interface surrounding the vortex ring. The methane combustion was modelled using a 12-step augmented reduced mechanism. The flame intensity is controlled by adjusting the initial fuel and oxidizer concentrations. The vortex ring propelled non-premixed flame is then made to interact with an inert wall. The interaction starts from the front flame and extends to the back flame. A constant temperature and a constant heat flux boundary condition is considered for the wall. The characteristics of the nonpremixed flame-wall interaction, e.g. flame structure near the wall, strain rates, maximum heat flux through the wall and quenching time are examined.

  12. Adiabatic shear mechanisms for the hard cutting process

    NASA Astrophysics Data System (ADS)

    Yue, Caixu; Wang, Bo; Liu, Xianli; Feng, Huize; Cai, Chunbin

    2015-05-01

    The most important consequence of adiabatic shear phenomenon is formation of sawtooth chip. Lots of scholars focused on the formation mechanism of sawtooth, and the research often depended on experimental approach. For the present, the mechanism of sawtooth chip formation still remains some ambiguous aspects. This study develops a combined numerical and experimental approach to get deeper understanding of sawtooth chip formation mechanism for Polycrystalline Cubic Boron Nitride (PCBN) tools orthogonal cutting hard steel GCr15. By adopting the Johnson-Cook material constitutive equations, the FEM simulation model established in this research effectively overcomes serious element distortions and cell singularity in high strain domain caused by large material deformation, and the adiabatic shear phenomenon is simulated successfully. Both the formation mechanism and process of sawtooth are simulated. Also, the change features regarding the cutting force as well as its effects on temperature are studied. More specifically, the contact of sawtooth formation frequency with cutting force fluctuation frequency is established. The cutting force and effect of cutting temperature on mechanism of adiabatic shear are investigated. Furthermore, the effects of the cutting condition on sawtooth chip formation are researched. The researching results show that cutting feed has the most important effect on sawtooth chip formation compared with cutting depth and speed. This research contributes a better understanding of mechanism, feature of chip formation in hard turning process, and supplies theoretical basis for the optimization of hard cutting process parameters.

  13. Buoyant Low Stretch Diffusion Flames Beneath Cylindrical PMMA Samples

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; Tien, J. S.

    1999-01-01

    A unique new way to study low gravity flames in normal gravity has been developed. To study flame structure and extinction characteristics in low stretch environments, a normal gravity low-stretch diffusion flame is generated using a cylindrical PMMA sample of varying large radii. Burning rates, visible flame thickness, visible flame standoff distance, temperature profiles in the solid and gas, and radiative loss from the system were measured. A transition from the blowoff side of the flammability map to the quenching side of the flammability map is observed at approximately 6-7/ sec, as determined by curvefits to the non-monotonic trends in peak temperatures, solid and gas-phase temperature gradients, and non-dimensional standoff distances. A surface energy balance reveals that the fraction of heat transfer from the flame that is lost to in-depth conduction and surface radiation increases with decreasing stretch until quenching extinction is observed. This is primarily due to decreased heat transfer from the flame, while the magnitude of the losses remains the same. A unique local extinction flamelet phenomena and associated pre-extinction oscillations are observed at very low stretch. An ultimate quenching extinction limit is found at low stretch with sufficiently high induced heat losses.

  14. A Dramatic Flame Test Demonstration.

    ERIC Educational Resources Information Center

    Johnson, Kristin A.; Schreiner, Rodney

    2001-01-01

    Flame tests are used for demonstration of atomic structure. Describes a demonstration that uses spray bottles filled with methanol and a variety of salts to produce a brilliantly colored flame. (Contains 11 references.) (ASK)

  15. Flame propagation through periodic vortices

    SciTech Connect

    Dold, J.W.; Kerr, O.S.; Nikolova, I.P.

    1995-02-01

    The discovery of a new class of Navier-Stokes solutions representing steady periodic stretched vortices offers a useful test-bed for examining interactions between flames and complex flow-fields. After briefly describing these vortex solutions and their wide-ranging parameterization in terms of wavelength and amplitude, this article examines their effect on flames of constant normal propagation speed as observed through numerical solutions of an eikonal equation. Over certain ranges of vortex amplitude and flame-speed, a corridor of enhanced flame passage is seen to be created as a leading flame-tip managers to leap-frog between successive vortices. However, for large enough amplitudes of vorticity or small enough flame-speeds, the flame fails to be able to benefit from the advection due to the vortices. It is shown that the leading tips of such flames are effectively trapped by the stretched vortices.

  16. Flame resistant elastic elastomeric fibers

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Massucco, A. A.

    1972-01-01

    Development of materials to improve flame resistance of elastic elastomeric fibers is discussed. Two approaches, synthesis of polyether based urethanes and modification of synthesized urethanes with flame ratardant additives, are described. Specific applications of both techniques are presented.

  17. The effects of complex chemistry on triple flames

    NASA Technical Reports Server (NTRS)

    Echekki, T.; Chen, J. H.

    1996-01-01

    The structure, ignition, and stabilization mechanisms for a methanol (CH3OH)-air triple flame are studied using Direct Numerical Simulations (DNS). The methanol (CH3OH)-air triple flame is found to burn with an asymmetric shape due to the different chemical and transport processes characterizing the mixture. The excess fuel, methanol (CH3OH), on the rich premixed flame branch is replaced by more stable fuels CO and H2, which burn at the diffusion flame. On the lean premixed flame side, a higher concentration of O2 leaks through to the diffusion flame. The general structure of the triple point features the contribution of both differential diffusion of radicals and heat. A mixture fraction-temperature phase plane description of the triple flame structure is proposed to highlight some interesting features in partially premixed combustion. The effects of differential diffusion at the triple point add to the contribution of hydrodynamic effects in the stabilization of the triple flame. Differential diffusion effects are measured using two methods: a direct computation using diffusion velocities and an indirect computation based on the difference between the normalized mixture fractions of C and H. The mixture fraction approach does not clearly identify the effects of differential diffusion, in particular at the curved triple point, because of ambiguities in the contribution of carbon and hydrogen atoms' carrying species.

  18. Simulation of a turbulent flame in a channel

    NASA Technical Reports Server (NTRS)

    Bruneaux, G.; Akselvoll, K.; Poinsot, T.; Ferziger, J. H.

    1994-01-01

    The interaction between turbulent premixed flames and channel walls is studied. Combustion is represented by a simple irreversible reaction with a large activation temperature. Feedback to the flowfield is suppressed by invoking a constant density assumption. The effect of wall distance on local and global flame structure is investigated. Quenching distances and maximum wall heat fluxes computed in laminar cases are compared to DNS results. It is found that quenching distances decrease and maximum heat fluxes increase relative to laminar flame values. It is shown that these effects are due to large coherent structures which push flame elements towards to wall. The effect of wall strain is studied in flame-wall interaction in a stagnation line flow; this is used to explain the DNS results. It is also shown that 'remarkable' flame events are produced by interaction with a horseshoe vortex: burnt gases are pushed towards the wall at high speed and induce quenching and high wall heat fluxes while fresh gases are expelled from the wall region and form finger-like structures. Effects of the wall on flame surface density are investigated, and a simple model for flame-wall interaction is proposed; its predictions compare well with the DNS results.

  19. Large eddy simulation of flame flashback in a turbulent channel

    NASA Astrophysics Data System (ADS)

    Hassanaly, Malik; Lietz, Christopher; Raman, Venkat; Kolla, Hemanth; Chen, Jacqueline; Gruber, Andrea; Computational Flow Physics Group Team

    2014-11-01

    In high-hydrogen content gas turbines, the propagation of a premixed flame along with boundary layers on the combustor walls is a source of failure, whereby the flame could enter the fuel-air premixing region that is not designed to hold high-temperature fluid. In order to develop models for predicting this phenomenon, a large eddy simulation (LES) based study is carried out here. The flow configuration is based on a direct numerical simulation (DNS) of a turbulent channel, where an initial planar flame is allowed to propagate upstream in a non-periodic channel. The LES approach uses a flamelet-based combustion model along with standard models for the unresolved subfilter flux terms. It is found that the LES are very accurate in predicting the structure of the turbulent flame front. However, there was a large discrepancy for the transient evolution of the flame, indicating that the flame-boundary layer interaction modulates flame propagation significantly, and the near-wall flame behavior may be non-flamelet like due to the anisotropic of the flow in this region.

  20. Flame structures in the pressurized methane-air combustor

    SciTech Connect

    Yamamoto, Tsuyoshi; Miyazaki, Tomonaga, Furuhata, Tomohiko; Arai, Norio

    1998-07-01

    This study has been carried out in order to investigate the applicability of a pressurized and fuel-rich burner at a first stage combustor for a newly proposed chemical gas turbine system. The flammability limits, exhaust gas composition and the NO{sub x} emission characteristics under the pressurized conditions of 1.1--4.1 MPa have been investigated in a model combustor. This paper focuses on the influence of pressure and F/A equivalence ratio on flame structures of pressurized combustion with methane and air to obtain detailed data for designing of fuel-rich combustor for gas turbine application. The flame under fuel-rich condition and pressure of 1 MPa showed underventilated structure like other atmospheric fuel-rich flames while the flame under pressure over 1.5 MPa had shapes as fuel-lean flame. The flame becomes longer as the pressure was increased under the fuel-lean conditions, which under fuel-rich condition the influence of pressure on flame length was smaller in comparison with the flame under fuel-lean conditions. These results give an opportunity for developing smaller combustor under fuel-rich and pressurized condition compared to fuel-lean one. Numerical simulation has been done for defining the temperature profile in the model combustor using the k-{var{underscore}epsilon} turbulence model and three-step reaction model. The comparison between theoretical results and experimental data showed fair agreements.

  1. Effect of inlet temperature and pressure on emissions from a premixing gas turbine primary zone combustor

    NASA Technical Reports Server (NTRS)

    Roffe, G.

    1976-01-01

    Experiments were conducted to determine the performance of a premixing prevaporizing gas turbine primary zone combustor design over a range of combustor inlet temperatures from 700 to 1000 K and a range of inlet pressures from 40 to 240 N/sq cm. The 1 meter long combustor could be operated at pressures up to and including 120 N/sq cm without autoignition in the premixing duct or flashback from the stabilized combustion zone. Autoignition occurred in the mixer tube at the 240 N/sq cm pressure level with an entrance temperature of 830 K and a mixer residence time of 4 msec. Measured NOx level, combustion inefficiency, and hydrocarbon emission index correlated well with adiabatic flame temperature. The NOx levels varied from approximately 0.2 to 2.0 g NO2/kg fuel at combustion inefficiencies from 4 to 0.04 percent, depending upon adiabatic flame temperature and pressure. Measured NOx levels were sensitive to pressure. Tests were made at equivalence ratios ranging from 0.35 to 0.65. The overall total pressure drop for the configuration varied slightly with reference velocity and equivalence ratio, but never exceeded 3 percent.

  2. The 0.1K bolometers cooled by adiabatic demagnetization

    NASA Technical Reports Server (NTRS)

    Roellig, T.; Lesyna, L.; Kittel, P.; Werner, M.

    1983-01-01

    The most straightforward way of reducing the noise equivalent power of bolometers is to lower their operating temperature. We have been exploring the possibility of using conventionally constructed bolometers at ultra-low temperatures to achieve NEP's suitable to the background environment of cooled space telescopes. We have chosen the technique of adiabatic demagnetization of a paramagnetic salt as a gravity independent, compact, and low power way to achieve temperatures below pumped He-3 (0.3 K). The demagnetization cryostat we used was capable of reaching temperatures below 0.08 K using Chromium Potassium Alum as a salt from a starting temperature of 1.5 K and a starting magnetic field of 30,000 gauss. Computer control of the magnetic field decay allowed a temperature of 0.2 K to be maintained to within 0.5 mK over a time period exceeding 14 hours. The refrigerator duty cycle was over 90 percent at this temperature. The success of these tests has motivated us to construct a more compact portable adiabatic demagnetization cryostat capable of bolometer optical tests and use at the 5m Hale telescope at 1mm wavelengths.

  3. A numerical study of laminar flames propagating in stratified mixtures

    NASA Astrophysics Data System (ADS)

    Zhang, Jiacheng

    Numerical simulations are carried out to study the structure and speed of laminar flames propagating in compositionally and thermally stratified fuel-air mixtures. The study is motivated by the need to understand the physics of flame propagation in stratified-charge engines and model it. The specific question of interest in this work is: how does the structure and speed of the flame in the stratified mixture differ from that of the flame in a corresponding homogeneous mixture at the same equivalence ratio, temperature, and pressure? The studies are carried out in hydrogen-air, methane-air, and n-heptane-air mixtures. A 30-species 184-step skeletal mechanism is employed for methane oxidation, a 9-species 21-step mechanism for hydrogen oxidation, and a 37-species 56-step skeletal mechanism for n-heptane oxidation. Flame speed and structure are compared with corresponding values for homogeneous mixtures. For compositionally stratified mixtures, as shown in prior experimental work, the numerical results suggest that when the flame propagates from a richer mixture to a leaner mixture, the flame speed is faster than the corresponding speed in the homogeneous mixture. This is caused by enhanced diffusion of heat and species from the richer mixture to the leaner mixture. In fact, the effects become more pronounced in leaner mixtures. Not surprisingly, the stratification gradient influences the results with shallower gradients showing less effect. The controlling role that diffusion plays is further assessed and confirmed by studying the effect of a unity Lewis number assumption in the hydrogen/air mixtures. Furthermore, the effect of stratification becomes less important when using methane or n-heptane as fuel. The laminar flame speed in a thermally stratified mixture is similar to the laminar flame speed in homogeneous mixture at corresponding unburned temperature. Theoretical analysis is performed and the ratio of extra thermal diffusion rate to flame heat release rate

  4. Structure and Early Soot Oxidation Properties of Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    El-Leathy, A. M.; Xu, F.; Faeth, G. M.

    2001-01-01

    Soot is an important unsolved problem of combustion science because it is present in most hydrocarbon-fueled flames and current understanding of the reactive and physical properties of soot in flame environments is limited. This lack of understanding affects progress toward developing reliable predictions of flame radiation properties, reliable predictions of flame pollutant emission properties and reliable methods of computational combustion, among others. Motivated by these observations, the present investigation extended past studies of soot formation in this laboratory, to consider soot oxidation in laminar diffusion flames using similar methods. Early work showed that O2 was responsible for soot oxidation in high temperature O2-rich environments. Subsequent work in high temperature flame environments having small O2 concentrations, however, showed that soot oxidation rates substantially exceeded estimates based on the classical O2 oxidation rates of Nagle and Strickland-Constable and suggests that radicals such as O and OH might be strong contributors to soot oxidation for such conditions. Neoh et al. subsequently made observations in premixed flames, supported by later work, that showed that OH was responsible for soot oxidation at these conditions with a very reasonable collision efficiency of 0.13. Subsequent studies in diffusion flames, however, were not in agreement with the premixed flame studies: they agreed that OH played a dominant role in soot oxidation in flames, but found collision efficiencies that varied with flame conditions and were not in good agreement with each other or with Neoh et al. One explanation for these discrepancies is that optical scattering and extinction properties were used to infer soot structure properties for the studies that have not been very successful for representing the optical properties of soot. Whatever the source of the problem, however, these differences among observations of soot oxidation in premixed and

  5. Launch Pad Flame Trench Refractory Materials

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Parlier, Christopher R.; Bucherl, Cori; Sampson, Jeffrey W.; Curran, Jerome P.; Kolody, Mark; Perusich, Steve; Whitten, Mary

    2010-01-01

    The launch complexes at NASA's John F. Kennedy Space Center (KSC) are critical support facilities for the successful launch of space-based vehicles. These facilities include a flame trench that bisects the pad at ground level. This trench includes a flame deflector system that consists of an inverted, V-shaped steel structure covered with a high temperature concrete material five inches thick that extends across the center of the flame trench. One side of the "V11 receives and deflects the flames from the orbiter main engines; the opposite side deflects the flames from the solid rocket boosters. There are also two movable deflectors at the top of the trench to provide additional protection to shuttle hardware from the solid rocket booster flames. These facilities are over 40 years old and are experiencing constant deterioration from launch heat/blast effects and environmental exposure. The refractory material currently used in launch pad flame deflectors has become susceptible to failure, resulting in large sections of the material breaking away from the steel base structure and creating high-speed projectiles during launch. These projectiles jeopardize the safety of the launch complex, crew, and vehicle. Post launch inspections have revealed that the number and frequency of repairs, as well as the area and size of the damage, is increasing with the number of launches. The Space Shuttle Program has accepted the extensive ground processing costs for post launch repair of damaged areas and investigations of future launch related failures for the remainder of the program. There currently are no long term solutions available for Constellation Program ground operations to address the poor performance and subsequent failures of the refractory materials. Over the last three years, significant liberation of refractory material in the flame trench and fire bricks along the adjacent trench walls following Space Shuttle launches have resulted in extensive investigations of

  6. Multisurface Adiabatic Reactive Molecular Dynamics.

    PubMed

    Nagy, Tibor; Yosa Reyes, Juvenal; Meuwly, Markus

    2014-04-01

    Adiabatic reactive molecular dynamics (ARMD) simulation method is a surface-crossing algorithm for modeling chemical reactions in classical molecular dynamics simulations using empirical force fields. As the ARMD Hamiltonian is time dependent during crossing, it allows only approximate energy conservation. In the current work, the range of applicability of conventional ARMD is explored, and a new multisurface ARMD (MS-ARMD) method is presented, implemented in CHARMM and applied to the vibrationally induced photodissociation of sulfuric acid (H2SO4) in the gas phase. For this, an accurate global potential energy surface (PES) involving 12 H2SO4 and 4 H2O + SO3 force fields fitted to MP2/6-311G++(2d,2p) reference energies is employed. The MS-ARMD simulations conserve total energy and feature both intramolecular H-transfer reactions and water elimination. An analytical treatment of the dynamics in the crossing region finds that conventional ARMD can approximately conserve total energy for limiting cases. In one of them, the reduced mass of the system is large, which often occurs for simulations of solvated biomolecular systems. On the other hand, MS-ARMD is a general approach for modeling chemical reactions including gas-phase, homogeneous, heterogeneous, and enzymatic catalytic reactions while conserving total energy in atomistic simulations. PMID:26580356

  7. Flame retardant spandex type polyurethanes

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Sheth, S.; Sidman, K. R.; Massucco, A. A. (Inventor)

    1978-01-01

    Flame retardant elastomeric compositions were developed, comprised of: (1) spandex type polyurethane having incorporated into the polymer chain, halogen containing polyols; (2) conventional spandex type polyurethanes in physical admixture flame retardant additives; and (3) fluoroelastomeric resins in physical admixture with flame retardant additives. Methods of preparing fibers of the flame retardant elastomeric materials are presented and articles of manufacture comprised of the elastomeric materials are mentioned.

  8. Flame Acceleration and Transition to Detonation in Channels

    NASA Astrophysics Data System (ADS)

    Goodwin, Gabriel; Houim, Ryan; Oran, Elaine

    2015-11-01

    Two-dimensional numerical simulations of a confined, homogeneous, chemically reactive gas were used to compute and catalog interactions leading to deflagration-to-detonation transition (DDT). The geometrical configuration was a long rectangular channel with regularly spaced obstacles and adiabatic boundary conditions on all of the surfaces. The channel contained a stoichiometric mixture of ethylene-oxygen at 300 K and one atm that was ignited with a circular flame. The reactive Navier-Stokes equations were solved on an adapting grid by a high-order Godunov algorithm. The channel height was fixed at 0.32 cm and obstacle heights created blockage ratios ranging from 0.8 to 0.05, where the blockage ratio is defined as the obstacle height divided by the channel height. The computations show the development of a turbulent flame, the creation of shocks, shock-flame interactions, and a host of fluid and chemical-fluid instabilities. The result is an accelerating flame and eventual DDT in unburned, but shock-heated, material. Several DDT mechanisms were observed; these will be shown and discussed, with an emphasis on several new observations related to shock interactions. This work is supported by the Office of Naval Research.

  9. Power generation properties of Direct Flame Fuel Cell (DFFC)

    NASA Astrophysics Data System (ADS)

    Endo, S.; Nakamura, Y.

    2014-11-01

    This paper investigated the effect of cell temperature and product species concentration induced by small-jet flame on the power generation performance of Direct Flame Fuel Cell (DFFC). The cell is placed above the small flame and heated product gas is impinged toward it and this system is the simplest and smallest unit of the power generation device to be developed. Equivalence ratio (phi) and the distance between the cell and the burner surface (d) are considered as main experimental parameters. It turns out that open circuit voltage (OCV) increases linearly with the increase of temperature in wide range of equivalence ratios. However, it increases drastically at which the equivalence ratio became small (phi <= 2.0) showing inner flame clearly. This result suggests that OCV depends on not only cell temperature but also the species concentration exposed to the cell. It is suggested that Nernst equation might work satisfactory to predict OCV of DFFC.

  10. The effect of fuel composition on flame dynamics

    SciTech Connect

    Hendricks, Adam G.; Vandsburger, Uri

    2007-10-15

    As fuel sources diversify, the gas turbine industry is under increasing pressure to develop fuel-flexible plants, able to use fuels with a variety of compositions from a large range of sources. However, the dynamic characteristics vary considerably with composition, in many cases altering the thermoacoustic stability of the combustor. We compare the flame dynamics, or the response in heat release rate of the flame to acoustic perturbations, of the three major constituents of natural gas: methane, ethane, and propane. The heat release rate is quantified using OH* chemiluminescence and product gas temperature. Gas temperature is measured by tracking the absorption of two high-temperature water lines, via Tunable Diode Laser Absorption Spectroscopy. The flame dynamics of the three fuels differ significantly. The changes in flame dynamics due to variations in fuel composition have the potential to have a large effect on the thermoacoustic stability of the combustor. (author)

  11. Flame resistant elastic elastomeric fiber

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Sheth, S.; Massucco, A. A.; Sidman, K. R.

    1974-01-01

    Compositions exhibit elastomeric properties and possess various degrees of flame resistance. First material polyurethane, incorporates halogen containing polyol and is flame resistant in air; second contains spandex elastomer with flame retardant additives; and third material is prepared from fluorelastomer composition of copolymer of vinylidene fluoride and hexafluoropropylene.

  12. NOX FORMATION IN CO FLAMES

    EPA Science Inventory

    The report gives results of an experimental study to determine if early NO and NO2 can be observed in CO flames, since prompt NO is not anticipated and since HO2 levels might be expected to be lower in CO flames. (Previous studies of NO and NO2 production in methane flames with a...

  13. The mechanisms of flame holding in the wake of a bluff body

    NASA Technical Reports Server (NTRS)

    Strehlow, R. A.; Malik, S.

    1985-01-01

    The flame holding mechanism for lean methane- and lean propane-air flames is examined under conditions where the recirculation zone is absent. The main objective of this work is to study the holding process in detail in an attempt to determine the mechanism of flame holding and also the conditions where this mechanism is viable and when it fails and blow-off occurs. Inverted flames held in the wake of a flat strip were studied. Experiments with different sizes of flame holders were performed. The velocity flow field was determined using a laser Doppler velocimetry technique. Equation of continuity was used to calculate the flame temperature from the change in area of flow streamlines before and after the flame. Observations of the inverted flame itself were obtained using schlieren and direct photography. Results show that there are different mechanisms operative at the time of blow-off for lean propane and methane flames. Blow-off or extinction occurs for lean propane-air flame in spite of the reaction going to completion and the disparity between the heat loss and the gain in mass diffusion in the reaction zone i.e., Le 1.0 causes the flame to blow-off. For methane-air flame the controlling factor or blow-off is incomplete reaction due to higher blowing rate leading to reduced residence time in the reaction zone.

  14. Adiabatic limits on Riemannian Heisenberg manifolds

    SciTech Connect

    Yakovlev, A A

    2008-02-28

    An asymptotic formula is obtained for the distribution function of the spectrum of the Laplace operator, in the adiabatic limit for the foliation defined by the orbits of an invariant flow on a compact Riemannian Heisenberg manifold. Bibliography: 21 titles.

  15. Experimental demonstration of composite adiabatic passage

    NASA Astrophysics Data System (ADS)

    Schraft, Daniel; Halfmann, Thomas; Genov, Genko T.; Vitanov, Nikolay V.

    2013-12-01

    We report an experimental demonstration of composite adiabatic passage (CAP) for robust and efficient manipulation of two-level systems. The technique represents a altered version of rapid adiabatic passage (RAP), driven by composite sequences of radiation pulses with appropriately chosen phases. We implement CAP with radio-frequency pulses to invert (i.e., to rephase) optically prepared spin coherences in a Pr3+:Y2SiO5 crystal. We perform systematic investigations of the efficiency of CAP and compare the results with conventional π pulses and RAP. The data clearly demonstrate the superior features of CAP with regard to robustness and efficiency, even under conditions of weakly fulfilled adiabaticity. The experimental demonstration of composite sequences to support adiabatic passage is of significant relevance whenever a high efficiency or robustness of coherent excitation processes need to be maintained, e.g., as required in quantum information technology.

  16. An Adiabatic Architecture for Linear Signal Processing

    NASA Astrophysics Data System (ADS)

    Vollmer, M.; Götze, J.

    2005-05-01

    Using adiabatic CMOS logic instead of the more traditional static CMOS logic can lower the power consumption of a hardware design. However, the characteristic differences between adiabatic and static logic, such as a four-phase clock, have a far reaching influence on the design itself. These influences are investigated in this paper by adapting a systolic array of CORDIC devices to be implemented adiabatically. We present a means to describe adiabatic logic in VHDL and use it to define the systolic array with precise timing and bit-true calculations. The large pipeline bubbles that occur in a naive version of this array are identified and removed to a large degree. As an example, we demonstrate a parameterization of the CORDIC array that carries out adaptive RLS filtering.

  17. General conditions for quantum adiabatic evolution

    SciTech Connect

    Comparat, Daniel

    2009-07-15

    Adiabaticity occurs when, during its evolution, a physical system remains in the instantaneous eigenstate of the Hamiltonian. Unfortunately, existing results, such as the quantum adiabatic theorem based on a slow down evolution [H({epsilon}t),{epsilon}{yields}0], are insufficient to describe an evolution driven by the Hamiltonian H(t) itself. Here we derive general criteria and exact bounds, for the state and its phase, ensuring an adiabatic evolution for any Hamiltonian H(t). As a corollary, we demonstrate that the commonly used condition of a slow Hamiltonian variation rate, compared to the spectral gap, is indeed sufficient to ensure adiabaticity but only when the Hamiltonian is real and nonoscillating (for instance, containing exponential or polynomial but no sinusoidal functions)

  18. Adiabatic invariance of oscillons/I -balls

    NASA Astrophysics Data System (ADS)

    Kawasaki, Masahiro; Takahashi, Fuminobu; Takeda, Naoyuki

    2015-11-01

    Real scalar fields are known to fragment into spatially localized and long-lived solitons called oscillons or I -balls. We prove the adiabatic invariance of the oscillons/I -balls for a potential that allows periodic motion even in the presence of non-negligible spatial gradient energy. We show that such a potential is uniquely determined to be the quadratic one with a logarithmic correction, for which the oscillons/I -balls are absolutely stable. For slightly different forms of the scalar potential dominated by the quadratic one, the oscillons/I -balls are only quasistable, because the adiabatic charge is only approximately conserved. We check the conservation of the adiabatic charge of the I -balls in numerical simulation by slowly varying the coefficient of logarithmic corrections. This unambiguously shows that the longevity of oscillons/I -balls is due to the adiabatic invariance.

  19. Smoke-Point Properties of Non-Buoyant Round Laminar Jet Diffusion Flames. Appendix J

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.

    2000-01-01

    The laminar smoke-point properties of non-buoyant round laminar jet diffusion flames were studied emphasizing results from long-duration (100-230 s) experiments at microgravity carried out in orbit aboard the space shuttle Columbia. Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, pressures of 35-130 kPa, jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-690 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. Contrary to the normal-gravity laminar smoke point, in microgravity, the onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with soot emissions along the flame axis and open-tip flames with soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip: nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and non-buoyant flames emitted soot more readily than non-buoyant flames in earlier tests using ground-based microgravity facilities and than buoyant flames at normal gravity, as a result of reduced effects of unsteadiness, flame disturbances, and buoyant motion. For example, present measurements of laminar smoke-point flame lengths at comparable conditions were up to 2.3 times shorter than ground-based microgravity measurements and up to 6.4 times shorter than buoyant flame measurements. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure to a degree that is a somewhat smaller than observed during

  20. Smoke-Point Properties of Nonbuoyant Round Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, R. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.

    2000-01-01

    The laminar smoke-point properties of nonbuoyant round laminar jet diffusion flames were studied emphasizing results from long duration (100-230 s) experiments at microgravity carried -out on- orbit in the Space Shuttle Columbia. Experimental conditions included ethylene-and propane-fueled flames burning in still air at an ambient temperature of 300 K, initial jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-1630 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. The onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with first soot emissions along the flame axis and open-tip flames with first soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip; nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well-correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and nonbuoyant flames emitted soot more readily than earlier tests of nonbuoyant flames at microgravity using ground-based facilities and of buoyant flames at normal gravity due to reduced effects of unsteadiness, flame disturbances and buoyant motion. For example, laminar smoke-point flame lengths from ground-based microgravity measurements were up to 2.3 times longer and from buoyant flame measurements were up to 6.4 times longer than the present measurements at comparable conditions. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure, which is a somewhat slower variation than observed during earlier tests both at microgravity using ground-based facilities and at normal

  1. Smoke-Point Properties of Nonbuoyant Round Laminar Jet Diffusion Flames. Appendix B

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.; Ross, H. D. (Technical Monitor)

    2000-01-01

    The laminar smoke-point properties of non-buoyant round laminar jet diffusion flames were studied emphasizing results from long-duration (100-230 s) experiments at microgravity carried out in orbit aboard the space shuttle Columbia. Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, pressures of 35-130 kPa, jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-690 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. Contrary to the normal-gravity laminar smoke point, in microgravity the onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with soot emissions along the flame axis and open-tip flames with soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip: nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and nonbuoyant flames emitted soot more readily than non-buoyant flames in earlier tests using ground-based microgravity facilities and than buoyant flames at normal gravity, as a result of reduced effects of unsteadiness, flame disturbances, and buoyant motion. For example, present measurements of laminar smokepoint flame lengths at comparable conditions were up to 2.3 times shorter than ground-based microgravity measurements and up to 6.4 times shorter than buoyant flame measurements. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure to a degree that is a somewhat smaller than observed during

  2. Ultrasonic velocity and adiabatic compressibility in dioxane-water mixtures

    NASA Technical Reports Server (NTRS)

    Ciupe, A.; Auslaender, D.

    1974-01-01

    Using a method of diffraction of light on an ultrasonic beam, the velocity of ultrasounds and the adiabatic compressibility in dioxane-water mixtures were determined. The dependence of these quantities on the temperature (in the 15-50 C range) and on the concentration (0-100%) were studied. For each temperature there was found a velocity maximum and a compressibility minimum for a given value of the dioxane concentration. The different behavior of these mixtures is due to intense interactions between the molecules of the two liquids composing the mixture.

  3. Salt materials testing for a spacecraft adiabatic demagnetization refrigerator

    NASA Technical Reports Server (NTRS)

    Savage, M. L.; Kittel, P.; Roellig, T.

    1990-01-01

    As part of a technology development effort to qualify adiabatic demagnetization refrigerators for use in a NASA spacecraft, such as the Space Infrared Telescope Facility, a study of low temperature characteristics, heat capacity and resistance to dehydration was conducted for different salt materials. This report includes results of testing with cerrous metaphosphate, several synthetic rubies, and chromic potassium alum (CPA). Preliminary results show that CPA may be suitable for long-term spacecraft use, provided that the salt is property encapsulated. Methods of salt pill construction and testing for all materials are discussed, as well as reliability tests. Also, the temperature regulation scheme and the test cryostat design are briefly discussed.

  4. DNS of a turbulent lifted DME jet flame

    DOE PAGESBeta

    Minamoto, Yuki; Chen, Jacqueline H.

    2016-05-07

    A three-dimensional direct numerical simulation (DNS) of a turbulent lifted dimethyl ether (DME) slot jet flame was performed at elevated pressure to study interactions between chemical reactions with low-temperature heat release (LTHR), negative temperature coefficient (NTC) reactions and shear generated turbulence in a jet in a heated coflow. By conditioning on mixture fraction, local reaction zones and local heat release rate, the turbulent flame is revealed to exhibit a “pentabrachial” structure that was observed for a laminar DME lifted flame [Krisman et al., (2015)]. The propagation characteristics of the stabilization and triple points are also investigated. Potential stabilization points, spatialmore » locations characterized by preferred temperature and mixture fraction conditions, exhibit autoignition characteristics with large reaction rate and negligible molecular diffusion. The actual stabilization point which coincides with the most upstream samples from the pool of potential stabilization points fovr each spanwise location shows passive flame structure with large diffusion. The propagation speed along the stoichiometric surface near the triple point is compared with the asymptotic value obtained from theory [Ruetsch et al., (1995)]. At stoichiometric conditions, the asymptotic and averaged DNS values of flame displacement speed deviate by a factor of 1.7. However, accounting for the effect of low-temperature species on the local flame speed increase, these two values become comparable. In conclusion, this suggests that the two-stage ignition influences the triple point propagation speed through enhancement of the laminar flame speed in a configuration where abundant low-temperature products from the first stage, low-temperature ignition are transported to the lifted flame by the high-velocity jet.« less

  5. NO formation in counterflow partially premixed flames

    SciTech Connect

    Mungekar, Hemant; Atreya, Arvind

    2007-02-15

    An experimental and computational study of NO formation in low-strain-rate partially premixed methane counterflow flames is reported. For progressive fuel-side partial premixing the peak NO concentration increased and the NO distribution along the stagnation streamline broadened. New temperature-dependent emissivity data for a SiO{sub 2}-coated Pt thermocouple was used to estimate the radiation correction for the thermocouple, thus improving the accuracy of the reported flame temperature. Flame structure computations with GRIMech 3.00 showed good agreement between measured and computed concentration distributions of NO and OH radical. With progressive partial premixing the contribution of the thermal NO pathway to NO formation increases. The emission index of NO (EINO) first increased and then decreased, reaching its peak value for the level of partial premixing that corresponds to location of the nonpremixed reaction zone at the stagnation plane. The observation of a maximum in EINO at a level of partial premixing corresponding to the nonpremixed reaction zone at the stagnation plane seems to be a consistent feature of low (<20 s{sup -1})-strain-rate counterflow flames. (author)

  6. Modeling extinction and reignition in turbulent flames

    SciTech Connect

    Kronenburg, A.; Kostka, M.

    2005-12-01

    The conditional moment closure method (CMC) has been extended to improve reactive species predictions in flames with significant local extinction and reignition. Simple first-order closure of the conditionally averaged reaction rate term does not give satisfactory results due to large fluctuations around the conditional mean and an alternative closure is suggested here. The new closure is based on a precomputed parameterized reference field that maps reactive species mass fractions as functions of mixture fraction and sensible enthalpy. During the computations, the reference field is continuously adjusted to ensure consistency with the CMC solution and doubly conditioned chemical source terms that are functions of time, space, mixture fraction, and sensible enthalpy can thus be obtained. Integration over sensible enthalpy space yields the improved singly conditioned chemical source term that can be used for the solution of the CMC equations. Full closure can be achieved by assuming a {beta}-PDF for the probability distribution in sensible enthalpy space and an additional conditional variance equation needs to be solved. The overall agreement between the measured and the computed variance is satisfactory and the extended CMC model is applied to Sandia Flames D, E, and F. Excellent predictions of temperature, major species, intermediates, and NO are obtained in Flames D and E while temperature predictions can be significantly improved in Sandia Flame F.

  7. Vortex/Flame Interactions in Microgravity Pulsed Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Y.; Hegde, U.; Stocker, D. P.

    2001-01-01

    Significant differences have been observed between the structure of laminar, transitional, and turbulent flames under downward, upward, and microgravity conditions. These include flame height, jet shear layer, flame instability, flicker, lift-off height, blow-off Reynolds number, and radiative properties. The primary objective of this investigation is to identify the mechanisms involved in the generation and interaction of large-scale structures in microgravity flames. This involves a study of vortex/flame interactions in a space-flight experiment utilizing a controlled, well-defined set of disturbances imposed on a laminar diffusion flame. The results provide a better understanding of the naturally occurring structures that are an inherent part of microgravity turbulent flames. The paper presents the current progress in this program.

  8. Buoyancy Effects in Strongly-Pulsed, Turbulent Diffusion Flames

    NASA Astrophysics Data System (ADS)

    Hermanson, James; Johari, Hamid; Stocker, Dennis; Hegde, Uday

    2004-11-01

    Buoyancy effects in pulsed, turbulent flames are studied in microgravity in a 2.2 s drop-tower. The fuel is pure ethylene or a 50/50 mixture with nitrogen; the oxidizer co-flow is either air or 30% oxygen in nitrogen. A fast solenoid valve fully modulates (shuts off) the fuel flow between pulses. The jet Reynolds number is 5000 with a nozzle i.d. of 2 mm. For short injection times and small duty cycle (jet-on fraction), compact, puff-like flames occur. The invariance in flame length of these puffs with buoyancy is due to offsetting changes in puff celerity and burnout time. Buoyancy does impact interacting flame puffs, with the flame length generally increasing with injection duty cycle. The mean centerline temperatures for all flames are generally higher in microgravity than in normal gravity. The transition in temperatures with increasing injection time is more gradual in micro-g than in 1-g. These observations can be explained in terms of the local duty cycle in the flame and differences in entrainment in normal- vs. microgravity.

  9. Symmetry of the Adiabatic Condition in the Piston Problem

    ERIC Educational Resources Information Center

    Anacleto, Joaquim; Ferreira, J. M.

    2011-01-01

    This study addresses a controversial issue in the adiabatic piston problem, namely that of the piston being adiabatic when it is fixed but no longer so when it can move freely. It is shown that this apparent contradiction arises from the usual definition of adiabatic condition. The issue is addressed here by requiring the adiabatic condition to be…

  10. Novel developments and applications of the classical adiabatic dynamics technique

    NASA Astrophysics Data System (ADS)

    Rosso, Lula

    The present work aims to apply and develop modern molecular dynamics techniques based on a novel analysis of the classical adiabatic dynamics approach. In the first part of this thesis, Car-Parrinello ab-initio molecular dynamics, a successful technique based on adiabatic dynamics, is used to study the charge transport mechanism in solid ammonium perchlorate (AP) crystal exposed to an ammonia-rich environment. AP is a solid-state proton conductor composed of NH+4 and ClO-4 units that can undergo a decomposition process at high temperature, leading to its use such as rocket fuel. After computing IR spectra and carefully analysing the dynamics at different temperatures, we found that the charge transport mechanism in the pure crystal is dominated by diffusion of the ammonium ions and that the translational diffusion is strongly coupled to rotational diffusion of the two types of ions present. When the pure ammonium-perchlorate crystal is doped with neutral ammonia, another mechanism comes into play, namely, the Grotthuss proton hopping mechanism via short-lived N2H+7 complexes. In the second part of this thesis, adiabatic dynamics will be used to develop an alternative approach to the calculation of free energy profiles along reaction paths. The new method (AFED) is based on the creation of an adiabatic separation between the reaction coordinate subspace and the remaining degrees of freedom within a molecular dynamics run. This is achieved by associating with the reaction coordinate(s) a high temperature and large mass. These conditions allow the activated process to occur while permitting the remaining degrees of freedom to respond adiabatically. In this limit, by applying a formal multiple time scale Liouville operator factorization, it can be rigorously shown that the free energy profile is obtained directly from the probability distribution of the reaction coordinate subspace and, therefore, no postprocessing of the output data is required. The new method is

  11. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: Comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment

    SciTech Connect

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy; Champion, Paul M.

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical “gating” distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working

  12. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment.

    PubMed

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J Timothy; Champion, Paul M

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical "gating" distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near

  13. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: Comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment

    NASA Astrophysics Data System (ADS)

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy; Champion, Paul M.

    2015-03-01

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical "gating" distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near

  14. Parametric study on a compound-drop spray flame

    NASA Astrophysics Data System (ADS)

    Hsuan, Chung-Yao; Lin, Ta-Hui

    2012-06-01

    The introduction of compound-drop spray in a combustion system is a new concept. These droplets bear two gasification stages to cause an integral positive or negative effect on a premixed flame to raise or lower the local temperature of the gasification region. In this paper, we adopt a compound drop which contains a water core encased by a layer of shell fuel. A one-dimensional homogeneous lean or rich premixed flame with the dilute compound-drop spray was investigated by using large activation energy asymptotic analysis. The compound-drop spray burning mode was defined and divided into completely pre-vaporised burning (CPB), shell pre-vaporised burning (SPB) and shell partially pre-vaporised (SPP) burning modes by way of the gasification zones of the shell fuel and the core water relative to the flame position. The influences of the initial droplet radius, the shell-fuel mass fraction and the liquid loading of the compound-drop spray on the lean and rich flames were analysed. By means of the normalisation parameter of flame propagation mass flux (?), enhancement, suppression or extinction of the compound-drop spray flame can be represented clearly. Furthermore, from the observation of extinction, the necessary conditions of extinction of a lean spray flame by the internal heat transfer are that the spray is a negative effect and causes a sufficient heat loss rate at flame sheet downstream side. For a rich spray flame, three extinction patterns were observed; they occur in SPP, SPB or at the critical SPB mode, but do not in CPB. The extinction maps of the compound-drop spray demarcate the patterns and also indicate the limitations and corresponding conditions of the flame extinction.

  15. Direct Flame Impingement

    SciTech Connect

    2005-09-01

    During the DFI process, high velocity flame jets impinge upon the material being heated, creating a high heat transfer rate. As a result, refractory walls and exhaust gases are cooler, which increases thermal efficiency and lowers NOx emissions. Because the jet nozzles are located a few inches from the load, furnace size can be reduced significantly.

  16. Flame Radiation Measurements

    NASA Technical Reports Server (NTRS)

    Claus, R. W.; Humenik, F. M.; Neely, G. M.

    1983-01-01

    Spectral and total flame radiation measurements exhibited: (1) that radiant heat flux increases with vision combustor inlet air pressure; (2) the effect of fuel atomization characteristics on radiant heat flux; and (3) that a reduction in fuel hydrogen content produces a significant increase in radiant heat flux primarily at low combustor pressures.

  17. Modeling turbulent flame propagation

    SciTech Connect

    Ashurst, W.T.

    1994-08-01

    Laser diagnostics and flow simulation techniques axe now providing information that if available fifty years ago, would have allowed Damkoehler to show how turbulence generates flame area. In the absence of this information, many turbulent flame speed models have been created, most based on Kolmogorov concepts which ignore the turbulence vortical structure, Over the last twenty years, the vorticity structure in mixing layers and jets has been shown to determine the entrainment and mixing behavior and these effects need to be duplicated by combustion models. Turbulence simulations reveal the intense vorticity structure as filaments and simulations of passive flamelet propagation show how this vorticity Creates flame area and defines the shape of the expected chemical reaction surface. Understanding how volume expansion interacts with flow structure should improve experimental methods for determining turbulent flame speed. Since the last decade has given us such powerful new tools to create and see turbulent combustion microscopic behavior, it seems that a solution of turbulent combustion within the next decade would not be surprising in the hindsight of 2004.

  18. "Magic Eraser" Flame Tests

    ERIC Educational Resources Information Center

    Landis, Arthur M.; Davies, Malonne I.; Landis, Linda

    2009-01-01

    Cleaning erasers are used to support methanol-fueled flame tests. This safe demonstration technique requires only small quantities of materials, provides clean colors for up to 45 seconds, and can be used in the classroom or the auditorium. (Contains 1 note.)

  19. Counterflow diffusion flame synthesis of ceramic oxide powders

    DOEpatents

    Katz, Joseph L.; Miquel, Philippe F.

    1997-01-01

    Ceramic oxide powders and methods for their preparation are revealed. Ceramic oxide powders are obtained using a flame process whereby one or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein the precursors are converted into ceramic oxide powders. The nature of the ceramic oxide powder produced is determined by process conditions. The morphology, particle size, and crystalline form of the ceramic oxide powders may be varied by the temperature of the flame, the precursor concentration ratio, the gas stream and the gas velocity.

  20. Counterflow diffusion flame synthesis of ceramic oxide powders

    DOEpatents

    Katz, J.L.; Miquel, P.F.

    1997-07-22

    Ceramic oxide powders and methods for their preparation are revealed. Ceramic oxide powders are obtained using a flame process whereby one or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein the precursors are converted into ceramic oxide powders. The nature of the ceramic oxide powder produced is determined by process conditions. The morphology, particle size, and crystalline form of the ceramic oxide powders may be varied by the temperature of the flame, the precursor concentration ratio, the gas stream and the gas velocity. 24 figs.

  1. Flame annealing of arsenic and boron implanted silicon

    SciTech Connect

    Narayan, J.; Young, R.T.

    1983-03-01

    We have investigated the characteristics of flame annealing of ion implantation damage in (100) and (111) silicon substrates using transmission electron microscopy and Van der Pauw measurements. The temperature of the hydrogen flame ranged from 1050 to 1200 /sup 0/C and the interaction time from 5 to 10 s. Transmission electron microscopy studies showed that a ''defect-free'' annealing could be achieved with concomitant full electrical activation of dopants. The Hall mobility of flame annealed specimens was found to be comparable to pulsed laser annealed specimens.

  2. Chaos of radiative heat-loss-induced flame front instability.

    PubMed

    Kinugawa, Hikaru; Ueda, Kazuhiro; Gotoda, Hiroshi

    2016-03-01

    We are intensively studying the chaos via the period-doubling bifurcation cascade in radiative heat-loss-induced flame front instability by analytical methods based on dynamical systems theory and complex networks. Significant changes in flame front dynamics in the chaotic region, which cannot be seen in the bifurcation diagrams, were successfully extracted from recurrence quantification analysis and nonlinear forecasting and from the network entropy. The temporal dynamics of the fuel concentration in the well-developed chaotic region is much more complicated than that of the flame front temperature. It exhibits self-affinity as a result of the scale-free structure in the constructed visibility graph. PMID:27036182

  3. Conditions for super-adiabatic droplet growth after entrainment mixing

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Shaw, Raymond; Xue, Huiwen

    2016-07-01

    Cloud droplet response to entrainment and mixing between a cloud and its environment is considered, accounting for subsequent droplet growth during adiabatic ascent following a mixing event. The vertical profile for liquid water mixing ratio after a mixing event is derived analytically, allowing the reduction to be predicted from the mixing fraction and from the temperature and humidity for both the cloud and environment. It is derived for the limit of homogeneous mixing. The expression leads to a critical height above the mixing level: at the critical height the cloud droplet radius is the same for both mixed and unmixed parcels, and the critical height is independent of the updraft velocity and mixing fraction. Cloud droplets in a mixed parcel are larger than in an unmixed parcel above the critical height, which we refer to as the "super-adiabatic" growth region. Analytical results are confirmed with a bin microphysics cloud model. Using the model, we explore the effects of updraft velocity, aerosol source in the environmental air, and polydisperse cloud droplets. Results show that the mixed parcel is more likely to reach the super-adiabatic growth region when the environmental air is humid and clean. It is also confirmed that the analytical predictions are matched by the volume-mean cloud droplet radius for polydisperse size distributions. The findings have implications for the origin of large cloud droplets that may contribute to onset of collision-coalescence in warm clouds.

  4. Dual-Pump Coherent Anti-Stokes Raman Scattering Temperature and CO2 Concentration Measurements

    NASA Technical Reports Server (NTRS)

    Lucht, Robert P.; Velur-Natarajan, Viswanathan; Carter, Campbell D.; Grinstead, Keith D., Jr.; Gord, James R.; Danehy, Paul M.; Fiechtner, G. J.; Farrow, Roger L.

    2003-01-01

    Measurements of temperature and CO2 concentration using dual-pump coherent anti-Stokes Raman scattering, (CARS) are described. The measurements were performed in laboratory flames,in a room-temperature gas cell, and on an engine test stand at the U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base. A modeless dye laser, a single-mode Nd:YAG laser, and an unintensified back-illuminated charge-coupled device digital camera were used for these measurements. The CARS measurements were performed on a single-laser-shot basis. The standard deviations of the temperatures and CO2 mole fractions determined from single-shot dual-pump CARS spectra in steady laminar propane/air flames were approximately 2 and 10% of the mean values of approximately 2000 K and 0.10, respectively. The precision and accuracy of single-shot temperature measurements obtained from the nitrogen part of the dual-pump CARS system were investigated in detail in near-adiabatic hydrogen/air/CO2 flames. The precision of the CARS temperature measurements was found to be comparable to the best results reported in the literature for conventional two-laser, single-pump CARS. The application of dual-pump CARS for single-shot measurements in a swirl-stabilized combustor fueled with JP-8 was also demonstrated.

  5. Graphene based multifunctional flame sensor.

    PubMed

    Ferry, Darim B; Pavan Kumar, R; Reddy, Siva K; Mukherjee, Anwesha; Misra, Abha

    2015-05-15

    Recently, graphene has attracted much attention due to its unique electrical and thermal properties along with its high surface area, and hence presents an ideal sensing material. We report a novel configuration of a graphene based flame sensor by exploiting the response of few layer graphene to a flame along two different directions, where flame detection results from a difference in heat transfer mechanisms. A complete sensor module was developed with a signal conditioning circuit that compensates for any drift in the baseline of the sensor, along with a flame detection algorithm implemented in a microcontroller to detect the flame. A pre-defined threshold for either of the sensors is tunable, which can be varied based on the nature of the flame, hence presenting a system that can be used for detection of any kind of flame. This finding also presents a scalable method that opens avenues to modify complicated sensing schemes. PMID:25900408

  6. Graphene based multifunctional flame sensor

    NASA Astrophysics Data System (ADS)

    Ferry, Darim B.; Pavan Kumar, R.; Reddy, Siva K.; Mukherjee, Anwesha; Misra, Abha

    2015-05-01

    Recently, graphene has attracted much attention due to its unique electrical and thermal properties along with its high surface area, and hence presents an ideal sensing material. We report a novel configuration of a graphene based flame sensor by exploiting the response of few layer graphene to a flame along two different directions, where flame detection results from a difference in heat transfer mechanisms. A complete sensor module was developed with a signal conditioning circuit that compensates for any drift in the baseline of the sensor, along with a flame detection algorithm implemented in a microcontroller to detect the flame. A pre-defined threshold for either of the sensors is tunable, which can be varied based on the nature of the flame, hence presenting a system that can be used for detection of any kind of flame. This finding also presents a scalable method that opens avenues to modify complicated sensing schemes.

  7. The mechanisms of flame holding in the wake of a bluff body

    NASA Technical Reports Server (NTRS)

    Strehlow, R. A.; Malik, S.

    1984-01-01

    The flame holding mechanism for lean methane and lean propane air flames is examined under conditions where the recirculation zone is absent. The holding process is studied in detail in an attempt to determine the mechanism of flame holding and also the conditions where this mechanism is viable and when it fails and blow off occurs. Inverted flames held in the wake of a flat strip are studied. The velocity flow field is determined using a Laser Doppler Velocimetry technique. Equation of continuity is used to calculate the flame temperature from the change in area of flow streamlines before and after the flame. For methane air flame the controlling factor for blow off is incomplete reaction due to higher blowing rate leading to reduced residence time in the reaction zone.

  8. Coherent Anti-stokes Raman Spectroscopy (CARS) of gun propellant flames

    NASA Technical Reports Server (NTRS)

    Mcilwain, M. E.; Harris, L. E.

    1980-01-01

    Temperature measurements were made in a slightly fuel rich, premixed propane/air reference flame and nitrate ester propellant flames burning in air at atmospheric pressure using coherent anti-stokes raman scattering (CARS). Both single and multiple pulse VARS spectra of nitrogen in the reference flame were in good agreement with calculated and reported values. Single pulse CARS nitrogen spectra obtained in the propellant flames were analyzed to give temperatures consistent with values calculated using the NASA-Lewis thermochemical calculation. Comparison of a 0.1 second separated sequence of single pulse CARS spectra indicate turbulent air mixing in these propellant flames. The CARS spectral results demonstrate that temporal and spatially resolved temperature measurements could be determined in transient, turbulent flames.

  9. Sound radiation mechanism in a turbulent gas flame

    SciTech Connect

    Kidin, N.I.; Librovich, V.B.

    1984-01-01

    To describe sound radiation in an ''explosion within a flame'', a model based on gas dynamics equations averaged over volume with a thermal source of chemical nature has been proposed, relating the power of the monopole sound source to the change in heat liberation rate in the combustion reactions within the volume. This mechanism apparently plays a significant role in flame turbulization and sound radiation by a turbulent flame. Equations for the temperature perturbations, a linear differential equation for temperature perturbations of the third order are obtained, after the solution of which the density, mass flow, and geometric factor perturbations are also obtained. Such a mechanism of transition from frontal combustion to reactions within the volume accompanied by intense sound radiation may play a significant role in describing the noise produced by turbulent flames.

  10. Synthesis of catalytic materials in flames: opportunities and challenges.

    PubMed

    Koirala, Rajesh; Pratsinis, Sotiris E; Baiker, Alfons

    2016-05-31

    The proven capacity of flame aerosol technology for rapid and scalable synthesis of functional nanoparticles makes it ideal for the manufacture of an array of heterogeneous catalysts. Capitalizing on the high temperature environment, rapid cooling and intimate component mixing at either atomic or nano scale, novel catalysts with unique physicochemical properties have been made using flame processes. This tutorial review covers the main features of flame synthesis and illustrates how the physical and chemical properties of as-synthesized solid catalytic materials can be controlled by proper choice of the process parameters. Gas phase particle formation mechanisms and the effect of synthesis conditions (reactor configuration, precursor and dispersion gas flow rates, temperature and concentration fields) on the structural, chemical and catalytic properties of as-prepared materials are discussed. Finally, opportunities and challenges offered by flame synthesis of catalytic materials are addressed. PMID:27108487

  11. Extinction of premixed H{sub 2}/air flames: Chemical kinetics and molecular diffusion effects

    SciTech Connect

    Dong, Yufei; Holley, Adam T.; Andac, Mustafa G.; Egolfopoulos, Fokion N.; Wang, Hai; Davis, Scott G.; Middha, Prankul

    2005-09-01

    Laminar flame speed has traditionally been used for the partial validation of flame kinetics. In most cases, however, its accurate determination requires extensive data processing and/or extrapolations, thus rendering the measurement of this fundamental flame property indirect. Additionally, the presence of flame front instabilities does not conform to the definition of laminar flame speed. This is the case for Le<1 flames, with the most notable example being ultralean H{sub 2}/air flames, which develop cellular structures at low strain rates so that determination of laminar flame speeds for such mixtures is not possible. Thus, this low-temperature regime of H{sub 2} oxidation has not been validated systematically in flames. In the present investigation, an alternative/supplemental approach is proposed that includes the experimental determination of extinction strain rates for these flames, and these rates are compared with the predictions of direct numerical simulations. This approach is meaningful for two reasons: (1) Extinction strain rates can be measured directly, as opposed to laminar flame speeds, and (2) while the unstretched lean H{sub 2}/air flames are cellular, the stretched ones are not, thus making comparisons between experiment and simulations meaningful. Such comparisons revealed serious discrepancies between experiments and simulations for ultralean H{sub 2}/air flames by using four kinetic mechanisms. Additional studies were conducted for lean and near-stoichiometric H{sub 2}/air flames diluted with various amounts of N{sub 2}. Similarly to the ultralean flames, significant discrepancies between experimental and predicted extinction strain rates were also found. To identify the possible sources of such discrepancies, the effect of uncertainties on the diffusion coefficients was assessed and an improved treatment of diffusion coefficients was advanced and implemented. Under the conditions considered in this study, the sensitivity of diffusion

  12. Graph isomorphism and adiabatic quantum computing

    NASA Astrophysics Data System (ADS)

    Gaitan, Frank; Clark, Lane

    2014-02-01

    In the graph isomorphism (GI) problem two N-vertex graphs G and G' are given and the task is to determine whether there exists a permutation of the vertices of G that preserves adjacency and transforms G →G'. If yes, then G and G' are said to be isomorphic; otherwise they are nonisomorphic. The GI problem is an important problem in computer science and is thought to be of comparable difficulty to integer factorization. In this paper we present a quantum algorithm that solves arbitrary instances of GI and which also provides an approach to determining all automorphisms of a given graph. We show how the GI problem can be converted to a combinatorial optimization problem that can be solved using adiabatic quantum evolution. We numerically simulate the algorithm's quantum dynamics and show that it correctly (i) distinguishes nonisomorphic graphs; (ii) recognizes isomorphic graphs and determines the permutation(s) that connect them; and (iii) finds the automorphism group of a given graph G. We then discuss the GI quantum algorithm's experimental implementation, and close by showing how it can be leveraged to give a quantum algorithm that solves arbitrary instances of the NP-complete subgraph isomorphism problem. The computational complexity of an adiabatic quantum algorithm is largely determined by the minimum energy gap Δ (N) separating the ground and first-excited states in the limit of large problem size N ≫1. Calculating Δ (N) in this limit is a fundamental open problem in adiabatic quantum computing, and so it is not possible to determine the computational complexity of adiabatic quantum algorithms in general, nor consequently, of the specific adiabatic quantum algorithms presented here. Adiabatic quantum computing has been shown to be equivalent to the circuit model of quantum computing, and so development of adiabatic quantum algorithms continues to be of great interest.

  13. Analysis of laser-induced-fluorescence carbon monoxide measurements in turbulent nonpremixed flames.

    PubMed

    Mokhov, A V; Levinsky, H B; van der Meij, C E; Jacobs, R A

    1995-10-20

    The influence of fluctuating concentrations and temperature on the laser-induced-fluorescence (LIF) measurement of CO in turbulent flames is described, under conditions in which the fluorescence and the temperature are measured independently. The analysis shows that correlations between CO concentration and temperature can bias the averaged mole fraction extracted from LIF measurements. The magnitude of the bias can exceed the order of the average CO mole fraction. Further, LIF measurements of CO concentrations in a turbulent, nonpremixed, natural gas flame are described. The averaged CO mole fractions are derived from the fluorescence measurements by the use of flame temperatures independently measured by coherent anti-Stokes Raman spectroscopy. Analysis of the fluctuations in measured temperature and fluorescence indicates that temperature and CO concentrations in flame regions with intensive mixing are indeed correlated. In the flame regions where burnout of CO has ceased, the LIF measurements of the CO mole fraction correspond to the probe measurements in exhaust. PMID:21060569

  14. Sodium sulfate - Vaporization thermodynamics and role in corrosive flames

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Stearns, C. A.; Fryburg, G. C.

    1975-01-01

    Mass spectrometer experiments were conducted to determine the thermodynamic properties of gaseous Na2SO4, and these data were used in a computer program to calculate equilibrium flame compositions and temperatures for representative turbine engine and burner rig flames. The work is important in that sodium sulfate is the major phase recovered from turbine surfaces after instances of corrosion, due to the presence of sulfur in fuels and sodium chloride in intake air.

  15. Turbulent structure and emissions of strongly-pulsed jet diffusion flames

    NASA Astrophysics Data System (ADS)

    Fregeau, Mathieu

    This current research project studied the turbulent flame structure, the fuel/air mixing, the combustion characteristics of a nonpremixed pulsed (unsteady) and unpulsed (steady) flame configuration for both normal- and microgravity conditions, as well as the flame emissions in normal gravity. The unsteady flames were fully-modulated, with the fuel flow completely shut off between injection pulses using an externally controlled valve, resulting in the generation of compact puff-like flame structures. Conducting experiments in normal and microgravity environments enabled separate control over the relevant Richardson and Reynolds numbers to clarify the influence of buoyancy on the flame behavior, mixing, and structure. Experiments were performed in normal gravity in the laboratory at the University of Washington and in microgravity using the NASA GRC 2.2-second Drop Tower facility. High-speed imaging, as well as temperature and emissions probes were used to determine the large-scale structure dynamics, the details of the flame structure and oxidizer entrainment, the combustion temperatures, and the exhaust emissions of the pulsed and steady flames. Of particular interest was the impact of changes in flame structure due to pulsing on the combustion characteristics of this system. The turbulent flame puff celerity (i.e., the bulk velocity of the puffs) was strongly impacted by the jet-off time, increasing markedly as the time between pulses was decreased, which caused the degree of puff interaction to increase and the strongly-pulsed flame to more closely resemble a steady flame. This increase occurred for all values of injection time as well as for constant fuelling rate and in both the presence and absence of buoyancy. The removal of positive buoyancy in microgravity resulted in a decrease in the flame puff celerity in all cases, amounting to as much as 40%, for both constant jet injection velocity and constant fuelling rate. The mean flame length of the strongly

  16. On the Transition from Smoldering to Flaming

    NASA Astrophysics Data System (ADS)

    Matkowsky, B.; Aldushin, A.; Bayliss, A.

    2006-11-01

    Though there have been numerous experimental studies of the transition from smoldering to flaming, it has been virtually untouched theoretically. We focus on determining the mechanism and conditions that trigger the transition. We consider a forward smolder wave in a porous sample, driven by a forced flow of gas containing oxidizer. The kinetics includes the fuel oxidation, pyrolysis, and char oxidation reactions. There have been various speculations about the trigger mechanism, including the gaseous reactions, destruction of the porous matrix, the char oxidation reaction, and others. However, no mechanism has as yet been theoretically demonstrated to be capable of acting as the trigger. We show that, due to its small reaction rate, the char oxidation reaction hardly affects the characteristics of the smolder wave as it propagates. However, under appropriate conditions, it can act as the trigger for the transition due to its ability to self-accelerate. Thus, we provide a theoretical underpinning for char oxidation as the trigger mechanism. We introduce the concept of, and determine, a quantity that we term the flaming distance LF, the distance that the smolder wave travels before the char oxidation reaction spontaneously self-accelerates, resulting in a temperature eruption in the smolder front, to a level high enough to ignite the gaseous flaming reactions. Smolder waves propagating in samples of length L do (do not) exhibit a transition to flaming if L > LF(L < LF).

  17. Ultrasensitive NO2 Sensor Based on Ohmic Metal-Semiconductor Interfaces of Electrolytically Exfoliated Graphene/Flame-Spray-Made SnO2 Nanoparticles Composite Operating at Low Temperatures.

    PubMed

    Tammanoon, Nantikan; Wisitsoraat, Anurat; Sriprachuabwong, Chakrit; Phokharatkul, Ditsayut; Tuantranont, Adisorn; Phanichphant, Sukon; Liewhiran, Chaikarn

    2015-11-01

    In this work, flame-spray-made undoped SnO2 nanoparticles were loaded with 0.1-5 wt % electrolytically exfoliated graphene and systematically studied for NO2 sensing at low working temperatures. Characterizations by X-ray diffraction, transmission/scanning electron microscopy, and Raman and X-ray photoelectron spectroscopy indicated that high-quality multilayer graphene sheets with low oxygen content were widely distributed within spheriodal nanoparticles having polycrystalline tetragonal SnO2 phase. The 10-20 μm thick sensing films fabricated by spin coating on Au/Al2O3 substrates were tested toward NO2 at operating temperatures ranging from 25 to 350 °C in dry air. Gas-sensing results showed that the optimal graphene loading level of 0.5 wt % provided an ultrahigh response of 26,342 toward 5 ppm of NO2 with a short response time of 13 s and good recovery stabilization at a low optimal operating temperature of 150 °C. In addition, the optimal sensor also displayed high sensor response and relatively short response time of 171 and 7 min toward 5 ppm of NO2 at room temperature (25 °C). Furthermore, the sensors displayed very high NO2 selectivity against H2S, NH3, C2H5OH, H2, and H2O. Detailed mechanisms for the drastic NO2 response enhancement by graphene were proposed on the basis of the formation of graphene-undoped SnO2 ohmic metal-semiconductor junctions and accessible interfaces of graphene-SnO2 nanoparticles. Therefore, the electrolytically exfoliated graphene-loaded FSP-made SnO2 sensor is a highly promising candidate for fast, sensitive, and selective detection of NO2 at low operating temperatures. PMID:26479951

  18. Adiabatic cooling of the artificial Porcupine plasma jet

    NASA Astrophysics Data System (ADS)

    Ruizhin, Iu. Ia.; Treumann, R. A.; Bauer, O. H.; Moskalenko, A. M.

    1987-01-01

    Measurements of the plasma density obtained during the interaction of the artificial plasma jet, fired into the ionosphere with the body of the Porcupine main payload, have been analyzed for times when there was a well-developed wake effect. Using wake theory, the maximum temperature of the quasi-neutral xenon ion beam has been determined for an intermediate distance from the ion beam source when the beam has left the diamagnetic region but is still much denser than the ionospheric background plasma. The beam temperature is found to be about 4 times less than the temperature at injection. This observation is very well explained by adiabatic cooling of the beam during its initial diamagnetic and current-buildup phases at distances r smaller than 10 m. Outside this region, the beam conserves the temperature achieved. The observation proves that the artificial plasma jet passes through an initial gas-like diamagnetic phase restricted to the vicinity of the beam source, where it expands adiabatically. Partial cooling also takes place outside the diamagnetic region where the beam current still builds up. The observations also support a recently developed current-closure model of the quasi-neutral ion beam.

  19. Candle Flames in Microgravity Video

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This video of a candle flame burning in space was taken by the Candle Flames in Microgravity (CFM) experiment on the Russian Mir space station. It is actually a composite of still photos from a 35mm camera since the video images were too dim. The images show a hemispherically shaped flame, primarily blue in color, with some yellow early int the flame lifetime. The actual flame is quite dim and difficult to see with the naked eye. Nearly 80 candles were burned in this experiment aboard Mir. NASA scientists have also studied how flames spread in space and how to detect fire in microgravity. Researchers hope that what they learn about fire and combustion from the flame ball experiments will help out here on Earth. Their research could help create things such as better engines for cars and airplanes. Since they use very weak flames, flame balls require little fuel. By studying how this works, engineers may be able to design engines that use far less fuel. In addition, microgravity flame research is an important step in creating new safety precautions for astronauts living in space. By understanding how fire works in space, the astronauts can be better prepared to fight it.

  20. Quick-Change Ceramic Flame Holder for High-Output Torches

    NASA Technical Reports Server (NTRS)

    Haskin, Henry

    2010-01-01

    Researchers at NASA's Langley Research Center have developed a new ceramic design flame holder with a service temperature of 4,000 F (2,204 C). The combination of high strength and high temperature capability, as well as a twist-lock mounting method to the steel burner, sets this flame holder apart from existing technology.

  1. PIV Measurements in Weakly Buoyant Gas Jet Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, Peter B.; Greenbberg, Paul S.; Urban, David L.; Wernet, Mark P.; Yanis, William

    2001-01-01

    Despite numerous experimental investigations, the characterization of microgravity laminar jet diffusion flames remains incomplete. Measurements to date have included shapes, temperatures, soot properties, radiative emissions and compositions, but full-field quantitative measurements of velocity are lacking. Since the differences between normal-gravity and microgravity diffusion flames are fundamentally influenced by changes in velocities, it is imperative that the associated velocity fields be measured in microgravity flames. Velocity measurements in nonbuoyant flames will be helpful both in validating numerical models and in interpreting past microgravity combustion experiments. Pointwise velocity techniques are inadequate for full-field velocity measurements in microgravity facilities. In contrast, Particle Image Velocimetry (PIV) can capture the entire flow field in less than 1% of the time required with Laser Doppler Velocimetry (LDV). Although PIV is a mature diagnostic for normal-gravity flames , restrictions on size, power and data storage complicate these measurements in microgravity. Results from the application of PIV to gas jet flames in normal gravity are presented here. Ethane flames burning at 13, 25 and 50 kPa are considered. These results are presented in more detail in Wernet et al. (2000). The PIV system developed for these measurements recently has been adapted for on-rig use in the NASA Glenn 2.2-second drop tower.

  2. Direct simulations of premixed turbulent flames with nonunity Lewis numbers

    SciTech Connect

    Rutland, C.J.; Trouve, A. . Dept. of Mechanical Engineering Stanford Univ., Stanford, CA . Center for Turbulence Research)

    1993-07-01

    A principal effect of turbulence on premixed flames in the flamelet regime is to wrinkle the flame fronts. For nonunity Lewis numbers, Le [ne] 1, the local flame structure is altered in curved regions. This effect is examined using direct numerical simulations of three-dimensional isotropic turbulence with constant density, single-step Arrhenius kinetics chemistry. Simulations of Lewis numbers 0.8, 1.0, and 1.2 are compared. At the local level, curvature effects dominated changes to the flame structure while strain effects were insignificant. A strong Lewis-number-dependent correlation was found between surface curvature and the local flame speed. The correlation was positive for Le < 1 and negative for Le > 1. At the global level, strain-related effects were more significant than curvature effects. The turbulent flame speed changed significantly with Lewis number, increasing as Le decreased. This was found to be due to strain effect that have a nonzero mean over the flame surface, rather than to curvature effects that have a nearly zero mean. The mean product temperature was also found to vary with Lewis number, being higher for Le > 1 and lower for Le < 1.

  3. Direct simulations of premixed turbulent flames with nonunity Lewis numbers

    NASA Technical Reports Server (NTRS)

    Rutland, C. J.; Trouve, A.

    1993-01-01

    A principal effect of turbulence on premixed flames in the flamelet regime is to wrinkle the flame fronts. For nonunity Lewis numbers, Le is not equal to 1, the local flame structure is altered in curved regions. This effect is examined using direct numerical simulations of 3D isotropic turbulence with constant density, single-step Arrhenius kinetics chemistry. Simulations of Lewis numbers 0.8, 1.0, and 1.2 are compared. At the local level, curvature effects dominated changes to the flame structure while strain effects were insignificant. A strong Lewis-number-dependent correlation was found between surface curvature and the local flame speed. The correlation was positive for Le less than 1 and negative for Le greater than 1. At the global level, strain-related effects were more significant than curvature effects. The turbulent flame speed changed significantly with Lewis number, increasing as Le decreased. This was found to be due to strain effects that have a nonzero mean over the flame surface, rather than to curvature effects that have a nearly zero mean. The mean product temperature was also found to vary with Lewis number, being higher for Le greater than 1 and lower for Le less than 1.

  4. Buoyancy Effects in Fully-Modulated, Turbulent Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Johari, H.; Ghaem-Maghami, E.; Stocker, D. P.; Hegde, U. G.; Page, K. L.

    2003-01-01

    Pulsed combustion appears to have the potential to provide for rapid fuel/air mixing, compact and economical combustors, and reduced exhaust emissions. The objective of this experiment (PuFF, for Pulsed-Fully Flames) is to increase the fundamental understanding of the fuel/air mixing and combustion behavior of pulsed, turbulent diffusion flames by conducting experiments in microgravity. In this research the fuel jet is fully-modulated (i.e., completely shut off between pulses) by an externally controlled valve system. This gives rise to drastic modification of the combustion and flow characteristics of flames, leading to enhanced fuel/air mixing compared to acoustically excited or partially-modulated jets. Normal-gravity experiments suggest that the fully-modulated technique also has the potential for producing turbulent jet flames significantly more compact than steady flames with no increase in exhaust emissions. The technique also simplifies the combustion process by avoiding the acoustic forcing generally present in pulsed combustors. Fundamental issues addressed in this experiment include the impact of buoyancy on the structure and flame length, temperatures, radiation, and emissions of fully-modulated flames.

  5. Accurate adiabatic correction in the hydrogen molecule

    SciTech Connect

    Pachucki, Krzysztof; Komasa, Jacek

    2014-12-14

    A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10{sup −12} at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H{sub 2}, HD, HT, D{sub 2}, DT, and T{sub 2} has been determined. For the ground state of H{sub 2} the estimated precision is 3 × 10{sup −7} cm{sup −1}, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.

  6. Accurate adiabatic correction in the hydrogen molecule

    NASA Astrophysics Data System (ADS)

    Pachucki, Krzysztof; Komasa, Jacek

    2014-12-01

    A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10-12 at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H2, HD, HT, D2, DT, and T2 has been determined. For the ground state of H2 the estimated precision is 3 × 10-7 cm-1, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.

  7. Symmetry-Protected Quantum Adiabatic Transistors

    NASA Astrophysics Data System (ADS)

    Williamson, Dominic J.; Bartlett, Stephen D.

    2014-03-01

    An essential development in the history of computing was the invention of the transistor as it allowed logic circuits to be implemented in a robust and modular way. The physical characteristics of semiconductor materials were the key to building these devices. We aim to present an analogous development for quantum computing by showing that quantum adiabatic transistors (as defined by Flammia et al.) are built upon the essential qualities of symmetry-protected (SP) quantum ordered phases in one dimension. Flammia et al. and Renes et al. have demonstrated schemes for universal adiabatic quantum computation using quantum adiabatic transistors described by interacting spin chain models with specifically chosen Hamiltonian terms. We show that these models can be understood as specific examples of the generic situation in which all SP phases lead to quantum computation on encoded edge degrees of freedom by adiabatically traversing a symmetric phase transition into a trivial symmetric phase. This point of view is advantageous as it allows us to readily see that the computational properties of a quantum adiabatic transistor arise from a phase of matter rather than due to carefully tuned interactions.

  8. A thermal equation for flame quenching

    NASA Technical Reports Server (NTRS)

    Potter, A E , Jr; Berlad, A I

    1956-01-01

    An approximate thermal equation was derived for quenching distance based on a previously proposed diffusional treatment. The quenching distance was expressed in terms of the thermal conductivity, the fuel mole fraction, the heat capacity, the rate of the rate-controlling chemical reaction, a constant that depends on the geometry of the quenching surface, and one empirical constant. The effect of pressure on quenching distance was shown to be inversely proportional to the pressure dependence of the flame reaction, with small correction necessitated by the effect of pressure on flame temperature. The equation was used with the Semenov equation for burning velocity to show that the quenching distance was inversely proportional to burning velocity and pressure at any given initial temperature and equivalence ratio.

  9. Inferring temperature uniformity from gas composition measurements in a hydrogen combustion-heated hypersonic flow stream

    SciTech Connect

    Olstad, S.J.

    1995-08-01

    The application of a method for determining the temperature of an oxygen-replenished air stream heated to 2600 K by a hydrogen burner is reviewed and discussed. The purpose of the measurements is to determine the spatial uniformity of the temperature in the core flow of a ramjet test facility. The technique involves sampling the product gases at the exit of the test section nozzle to infer the makeup of the reactant gases entering the burner. Knowing also the temperature of the inlet gases and assuming the flow is at chemical equilibrium, the adiabatic flame temperature is determined using an industry accepted chemical equilibrium computer code. Local temperature depressions are estimated from heat loss calculations. A description of the method, hardware and procedures is presented, along with local heat loss estimates and uncertainty assessments. The uncertainty of the method is estimated at {+-}31 K, and the spatial uniformity was measured within {+-}35 K.

  10. Flame Retardant Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Thompson, C. M.; Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Lyon, R. E.

    2004-01-01

    As part of a program to develop fire resistant exterior composite structures for future subsonic commercial aircraft, flame retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured epoxies were characterized by thermogravimetric analysis, propane torch test, elemental analysis and microscale combustion calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness of plaques of several cured formulations was determined on single-edge notched bend specimens. The chemistry and properties of these new epoxy formulations are discussed.

  11. Vortex/Flame Interactions in Microgravity Pulsed Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Y.; Hegde, U.; Stocker, D. P.

    1999-01-01

    The problem of vortex/flame interaction is of fundamental importance to turbulent combustion. These interactions have been studied in normal gravity. It was found that due to the interactions between the imposed disturbances and buoyancy induced instabilities, several overall length scales dominated the flame. The problem of multiple scales does not exist in microgravity for a pulsed laminar flame, since there are no buoyancy induced instabilities. The absence of buoyant convection therefore provides an environment to study the role of vortices interacting with flames in a controlled manner. There are strong similarities between imposed and naturally occurring perturbations, since both can be described by the same spatial instability theory. Hence, imposing a harmonic disturbance on a microgravity laminar flame creates effects similar to those occurring naturally in transitional/turbulent diffusion flames observed in microgravity. In this study, controlled, large-scale, axisymmetric vortices are imposed on a microgravity laminar diffusion flame. The experimental results and predictions from a numerical model of transient jet diffusion flames are presented and the characteristics of pulsed flame are described.

  12. Theoretical and Numerical Investigation of Radiative Extinction of Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Ray, Anjan

    1996-01-01

    The influence of soot radiation on diffusion flames was investigated using both analytical and numerical techniques. Soot generated in diffusion flames dominate the flame radiation over gaseous combustion products and can significantly lower the temperature of the flame. In low gravity situations there can be significant accumulation of soot and combustion products in the vicinity of the primary reaction zone owing to the absence of any convective buoyant flow. Such situations may result in substantial suppression of chemical activities in a flame, and the possibility of a radiative extinction may also be anticipated. The purpose of this work was to not only investigate the possibility of radiative extinction of a diffusion flame but also to qualitatively and quantitatively analyze the influence of soot radiation on a diffusion flame. In this study, first a hypothetical radiative loss profile of the form of a sech(sup 2) was assumed to influence a pure diffusion flame. It was observed that the reaction zone can, under certain circumstances, move through the radiative loss zone and locate itself on the fuel side of the loss zone contrary to our initial postulate. On increasing the intensity and/or width of the loss zone it was possible to extinguish the flame, and extinction plots were generated. In the presence of a convective flow, however, the movement of the temperature and reaction rate peaks indicated that the flame behavior is more complicated compared to a pure diffusional flame. A comprehensive model of soot formation, oxidation and radiation was used in a more involved analysis. The soot model of Syed, Stewart and Moss was used for soot nucleation and growth and the model of Nagle and Strickland-Constable was used for soot oxidation. The soot radiation was considered in the optically thin limit. An analysis of the flame structure revealed that the radiative loss term is countered both by the reaction term and the diffusion term. The essential balance for

  13. Properties of a two stage adiabatic demagnetization refrigerator

    NASA Astrophysics Data System (ADS)

    Fukuda, H.; Ueda, S.; Arai, R.; Li, J.; Saito, A. T.; Nakagome, H.; Numazawa, T.

    2015-12-01

    Currently, many space missions using cryogenic temperatures are being planned. In particular, high resolution sensors such as Transition Edge Sensors need very low temperatures, below 100 mK. It is well known that the adiabatic demagnetization refrigerator (ADR) is one of most useful tools for producing ultra-low temperatures in space because it is gravity independent. We studied a continuous ADR system consisting of 4 stages and demonstrated it could provide continuous temperatures around 100 mK. However, there was some heat leakage from the power leads which resulted in reduced cooling power. Our efforts to upgrade our ADR system are presented. We show the effect of using the HTS power leads and discuss a cascaded Carnot cycle consisting of 2 ADR units.

  14. Nonadiabatic exchange dynamics during adiabatic frequency sweeps

    NASA Astrophysics Data System (ADS)

    Barbara, Thomas M.

    2016-04-01

    A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging.

  15. Adiabatic approximation for the density matrix

    NASA Astrophysics Data System (ADS)

    Band, Yehuda B.

    1992-05-01

    An adiabatic approximation for the Liouville density-matrix equation which includes decay terms is developed. The adiabatic approximation employs the eigenvectors of the non-normal Liouville operator. The approximation is valid when there exists a complete set of eigenvectors of the non-normal Liouville operator (i.e., the eigenvectors span the density-matrix space), the time rate of change of the Liouville operator is small, and an auxiliary matrix is nonsingular. Numerical examples are presented involving efficient population transfer in a molecule by stimulated Raman scattering, with the intermediate level of the molecule decaying on a time scale that is fast compared with the pulse durations of the pump and Stokes fields. The adiabatic density-matrix approximation can be simply used to determine the density matrix for atomic or molecular systems interacting with cw electromagnetic fields when spontaneous emission or other decay mechanisms prevail.

  16. Extensive Adiabatic Invariants for Nonlinear Chains

    NASA Astrophysics Data System (ADS)

    Giorgilli, Antonio; Paleari, Simone; Penati, Tiziano

    2012-09-01

    We look for extensive adiabatic invariants in nonlinear chains in the thermodynamic limit. Considering the quadratic part of the Klein-Gordon Hamiltonian, by a linear change of variables we transform it into a sum of two parts in involution. At variance with the usual method of introducing normal modes, our constructive procedure allows us to exploit the complete resonance, while keeping the extensive nature of the system. Next we construct a nonlinear approximation of an extensive adiabatic invariant for a perturbation of the discrete nonlinear Schrödinger model. The fluctuations of this quantity are controlled via Gibbs measure estimates independent of the system size, for a large set of initial data at low specific energy. Finally, by numerical calculations we show that our adiabatic invariant is well conserved for times much longer than predicted by our first order theory, with fluctuation much smaller than expected according to standard statistical estimates.

  17. Anderson localization makes adiabatic quantum optimization fail

    PubMed Central

    Altshuler, Boris; Krovi, Hari; Roland, Jérémie

    2010-01-01

    Understanding NP-complete problems is a central topic in computer science (NP stands for nondeterministic polynomial time). This is why adiabatic quantum optimization has attracted so much attention, as it provided a new approach to tackle NP-complete problems using a quantum computer. The efficiency of this approach is limited by small spectral gaps between the ground and excited states of the quantum computer’s Hamiltonian. We show that the statistics of the gaps can be analyzed in a novel way, borrowed from the study of quantum disordered systems in statistical mechanics. It turns out that due to a phenomenon similar to Anderson localization, exponentially small gaps appear close to the end of the adiabatic algorithm for large random instances of NP-complete problems. This implies that unfortunately, adiabatic quantum optimization fails: The system gets trapped in one of the numerous local minima. PMID:20616043

  18. Ignition kernel formation and lift-off behaviour of jet-in-hot-coflow flames

    SciTech Connect

    Oldenhof, E.; Tummers, M.J.; van Veen, E.H.; Roekaerts, D.J.E.M.

    2010-06-15

    The stabilisation region of turbulent non-premixed flames of natural gas mixtures burning in a hot and diluted coflow is studied by recording the flame luminescence with an intensified high-speed camera. The flame base is found to behave fundamentally differently from that of a conventional lifted jet flame in a cold air coflow. Whereas the latter flame has a sharp interface that moves up and down, ignition kernels are continuously being formed in the jet-in-hot-coflow flames, growing in size while being convected downstream. To study the lift-off height effectively given these highly variable flame structures, a new definition of lift-off height is introduced. An important parameter determining lift-off height is the mean ignition frequency density in the flame stabilisation region. An increase in coflow temperature and the addition of small quantities of higher alkanes both increase ignition frequencies, and decrease the distance between the jet exit and the location where the first ignition kernels appear. Both mechanisms lower the lift-off height. An increase in jet Reynolds number initially leads to a significant decrease of the location where ignition first occurs. Higher jet Reynolds numbers (above 5000) do not strongly alter the location of first ignition but hamper the growth of flame pockets and reduce ignition frequencies in flames with lower coflow temperatures, leading to larger lift-off heights. (author)

  19. Thermal Characteristics and Structure of Fully-Modulated, Turbulent Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Johari, H.; Stocker, D. P.; Hegde, U. G.

    2003-01-01

    Turbulent jet diffusion flames are studied in microgravity and normal gravity under fully-modulated conditions for a range of injection times and a 50% duty cycle. Diluted ethylene was injected through a 2-mm nozzle at a Reynolds number of 5,000 into an open duct, with a slow oxidizer co-flow. Microgravity tests are conducted in NASA's 2.2 Second Drop Tower. Flames with short injection times and high duty cycle exhibit a marked increase in the ensemble-averaged flame length due to the removal of buoyancy. The cycle-averaged centerline temperature profile reveals higher temperatures in the microgravity flames, especially at the flame tip where the difference is about 200 K. In addition, the cycle-averaged measurements of flame radiation were about 30% to 60% greater in microgravity than in normal gravity.

  20. Japan's research on gaseous flames

    NASA Technical Reports Server (NTRS)

    Niioka, Takashi

    1995-01-01

    Although research studies on gaseous flames in microgravity in Japan have not been one-sided, they have been limited, for the most part, to comparatively fundamental studies. At present it is only possible to achieve a microgravity field by the use of drop towers, as far as gaseous flames are concerned. Compared with experiments on droplets, including droplet arrays, which have been vigorously performed in Japan, studies on gaseous flames have just begun. Experiments on ignition of gaseous fuel, flammability limits, flame stability, effect of magnetic field on flames, and carbon formation from gaseous flames are currently being carried out in microgravity. Seven subjects related to these topics are introduced and discussed herein.

  1. Flame Imaging for Safety Surveillance

    NASA Astrophysics Data System (ADS)

    Fukuchi, Tetsuo

    Flame detection is important for prevention of spreading of accidental fires. When combustible gas is ignited under daylight conditions, the flame is often difficult to detect by conventional imaging because of the high background radiation. The flame can be visualized by selectively detecting the emission of the OH radical, which is present in hydrocarbon or hydrogen flames. By detecting the OH radical emission in the solar blind region of wavelength below 290 nm, the background radiation can be effectively eliminated. In this study, an experimental device for visualization of flame at wavelength 285 nm was constructed. A combination of two narrowband interference filters was found to be sufficient to eliminate background radiation and selectively image the OH emission. The device could detect butane burner flame under daylight conditions.

  2. Planar SiC MEMS flame ionization sensor for in-engine monitoring

    NASA Astrophysics Data System (ADS)

    Rolfe, D. A.; Wodin-Schwartz, S.; Alonso, R.; Pisano, A. P.

    2013-12-01

    A novel planar silicon carbide (SiC) MEMS flame ionization sensor was developed, fabricated and tested to measure the presence of a flame from the surface of an engine or other cooled surface while withstanding the high temperature and soot of a combustion environment. Silicon carbide, a ceramic semiconductor, was chosen as the sensor material because it has low surface energy and excellent mechanical and electrical properties at high temperatures. The sensor measures the conductivity of scattered charge carriers in the flame's quenching layer. This allows for flame detection, even when the sensor is situated several millimetres from the flame region. The sensor has been shown to detect the ionization of premixed methane and butane flames in a wide temperature range starting from room temperature. The sensors can measure both the flame chemi-ionization and the deposition of water vapour on the sensor surface. The width and speed of a premixed methane laminar flame front were measured with a series of two sensors fabricated on a single die. This research points to the feasibility of using either single sensors or arrays in internal combustion engine cylinders to optimize engine performance, or for using sensors to monitor flame stability in gas turbine applications.

  3. Unsteady behavior of locally strained diffusion flames affected by curvature and preferential diffusion

    SciTech Connect

    Yoshida, Kenji; Takagi, Toshimi

    1999-07-01

    Experimental and numerical studies are made of transient H{sub 2}/N{sub 2}--air counterflow diffusion flames unsteadily strained by an impinging micro jet. Two-dimensional temperature measurements by laser Rayleigh scattering method and numerical computations taking into account detailed chemical kinetics are conducted paying attention to transient local extinction and reignition in relation to the unsteadiness, flame curvature and preferential diffusion effects. The results are as follows. (1) Transient local flame extinction is observed where the micro jet impinges. But, the transient flame can survive instantaneously in spite of quite high stretch rate where the steady flame cannot exist. (2) Reignition is observed after the local extinction due to the micro air jet impingement. The temperature after reignition becomes significantly higher than that of the original flame. This high temperature is induced by the concentration of H{sub 2} species due to the preferential diffusion in relation to the concave curvature. The predicted behaviors of the local transient extinction and reignition are well confirmed by the experiments. (3) The reignition is induced after the formation of combustible premixed gas mixture and the consequent flame propagation. (4) The reignition is hardly observed after the extinction by micro fuel jet impingement. This is due to the dilution of H{sub 2} species induced by the preferential diffusion in relation to the convex curvature. (5) The maximum flame temperature cannot be rationalized by the stretch rate but changes widely depending on the unsteadiness and the flame curvature in relation with preferential diffusion.

  4. Thermodynamics of flame impingement heat transfer

    NASA Astrophysics Data System (ADS)

    Som, S. K.; Agrawal, G. K.; Chakraborty, Suman

    2007-08-01

    A theoretical model for entropy generation and utilization of work potential (exergy) in flame impingement (both premixed and diffusion) heat transfer has been developed in this article, to offer physical insights on the optimal operational regimes, depicting high values of the surface heat flux with minimal exergy destruction, within the practical constraints. The irreversibility components due to different physical processes have been evaluated from a general entropy transport equation. The velocity, temperature, and species concentration fields required for the solution of entropy transport equation have been determined from the numerical computation of flow-field in the flame. Global two-step chemical kinetics has been considered with methane (CH4) and air as fuel and oxidizer, respectively. The results have been predicted in terms of average nondimensional heat flux, expressed as Nusselt number at the target plate, the irreversibility components, and second law efficiency, as functions of the pertinent input parameters such as the jet Reynolds number and the ratio of plate separation distance to nozzle diameter (H /d). The average Nusselt number has been found to increase with an increase in jet Reynolds number and a decrease in H /d ratio, up to a value of 8. The dominant source of thermodynamic irreversibility in a premixed flame has been attributed to the thermal energy exchange whereas, in a diffusion flame, the same has been attributed to an uncontrolled exchange of electrons accompanying the reactive kinetics. The second law efficiency has been found to increase with an increase in jet Reynolds number and an increase in the H /d ratio, up to a value of 20. Values of the jet Reynolds number greater than 10 000 and H /d ratio in the tune of 15 have been observed to pertain to the regime of optimum flame impingement heat transfer, consistent with the energy and exergy balance constraints.

  5. Two-dimensional temperature distribution measurement of flames by absorption CT employing CO{sub 2} (Experimental study on the wave number employed and the accuracy of measurement)

    SciTech Connect

    Wakai, Kazunori; Moroto, Masakazu; Takahashi, Shuhei; Bhattacharjee, S.

    1999-07-01

    The authors have developed the algorithm of infrared two-band absorption CT (computed tomography) not only for short optical path where Lambert-Beer law is applicable but also for long optical path where some band model should be applied. The authors have also shown employing CO{sub 2} as an absorption medium, statistical model as a band model and Curtis-Godson model to treat non-uniform temperature fields that when optical path is long and spectrum has steep change, there are suitable wavelengths and widths to keep good accuracy. However, it was done only by computer simulation, and in this report, those results are discussed experimentally. The flat burner was used to compare temperature measured by above method with the temperature measured by sodium D-line reversal method. The results showed good correspondence and it means that the predicted suitable wavelengths and widths are experimentally confirmed. The accuracy, namely, standard deviation of the temperature, at the best wavelength conditions was lower than 20K. Temperature distributions around non-uniform temperature distribution on the flat disk burner and domestic boiler were also measured as applications and the results show that this method is applicable for the measurement of rather complicated two-dimensional temperature distributions.

  6. Spontaneous emission in stimulated Raman adiabatic passage

    SciTech Connect

    Ivanov, P. A.; Vitanov, N. V.; Bergmann, K.

    2005-11-15

    This work explores the effect of spontaneous emission on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The approach uses adiabatic elimination of weakly coupled density matrix elements in the Liouville equation, from which a very accurate analytic approximation is derived. The loss of population transfer efficiency is found to decrease exponentially with the factor {omega}{sub 0}{sup 2}/{gamma}, where {gamma} is the spontaneous emission rate and {omega}{sub 0} is the peak Rabi frequency. The transfer efficiency increases with the pulse delay and reaches a steady value. For large pulse delay and large spontaneous emission rate STIRAP degenerates into optical pumping.

  7. Adiabatic Hyperspherical Analysis of Realistic Nuclear Potentials

    NASA Astrophysics Data System (ADS)

    Daily, K. M.; Kievsky, Alejandro; Greene, Chris H.

    2015-12-01

    Using the hyperspherical adiabatic method with the realistic nuclear potentials Argonne V14, Argonne V18, and Argonne V18 with the Urbana IX three-body potential, we calculate the adiabatic potentials and the triton bound state energies. We find that a discrete variable representation with the slow variable discretization method along the hyperradial degree of freedom results in energies consistent with the literature. However, using a Laguerre basis results in missing energy, even when extrapolated to an infinite number of basis functions and channels. We do not include the isospin T = 3/2 contribution in our analysis.

  8. On black hole spectroscopy via adiabatic invariance

    NASA Astrophysics Data System (ADS)

    Jiang, Qing-Quan; Han, Yan

    2012-12-01

    In this Letter, we obtain the black hole spectroscopy by combining the black hole property of adiabaticity and the oscillating velocity of the black hole horizon. This velocity is obtained in the tunneling framework. In particular, we declare, if requiring canonical invariance, the adiabatic invariant quantity should be of the covariant form Iadia = ∮pi dqi. Using it, the horizon area of a Schwarzschild black hole is quantized independently of the choice of coordinates, with an equally spaced spectroscopy always given by ΔA = 8 π lp2 in the Schwarzschild and Painlevé coordinates.

  9. Complexity of the Quantum Adiabatic Algorithm

    NASA Technical Reports Server (NTRS)

    Hen, Itay

    2013-01-01

    The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorithms.

  10. Adiabatic approximation for nucleus-nucleus scattering

    SciTech Connect

    Johnson, R.C.

    2005-10-14

    Adiabatic approximations to few-body models of nuclear scattering are described with emphasis on reactions with deuterons and halo nuclei (frozen halo approximation) as projectiles. The different ways the approximation should be implemented in a consistent theory of elastic scattering, stripping and break-up are explained and the conditions for the theory's validity are briefly discussed. A formalism which links few-body models and the underlying many-body system is outlined and the connection between the adiabatic and CDCC methods is reviewed.

  11. Sliding Seal Materials for Adiabatic Engines, Phase 2

    NASA Technical Reports Server (NTRS)

    Lankford, J.; Wei, W.

    1986-01-01

    An essential task in the development of the heavy-duty adiabatic diesel engine is identification and improvements of reliable, low-friction piston seal materials. In the present study, the sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, and loading conditions that are representative of the adiabatic engine environment. In addition, silicon nitride and partially stabilized zirconia disks were ion implanted with TiNi, Ni, Co, and Cr, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Electron microscopy was used to elucidate the micromechanisms of wear following wear testing, and Auger electron spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. The coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implanation of TiNi or Co. This beneficial effect was found to derive from lubricious Ti, Ni, and Co oxides.

  12. Candle Flames in Non-Buoyant Atmospheres

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Ross, H. D.; Shu, Y.; Tien, J. S.

    1999-01-01

    This paper addresses the behavior of a candle flame in a long-duration, quiescent microgravity environment both on the space Shuttle and the Mir Orbiting Station (OS). On the Shuttle, the flames became dim blue after an initial transient where there was significant yellow (presumably soot) in the flame. The flame lifetimes were typically less than 60 seconds. The safety-mandated candlebox that contained the candle flame inhibited oxygen transport to the flame and thus limited the flame lifetime. 'Me flames on the Mir OS were similar, except that the yellow luminosity persisted longer into the flame lifetime because of a higher initial oxygen concentration. The Mir flames burned for as long as 45 minutes. The difference in the flame lifetime between the Shuttle and Mir flames was primarily the redesigned candlebox that did not inhibit oxygen transport to the flame. In both environments, the flame intensity and the height-to-width ratio gradually decreased as the ambient oxygen content in the sealed chamber slowly decreased. Both sets of experiments showed spontaneous, axisymmetric flame oscillations just prior to extinction. The paper also presents a numerical model of candle flame. The model is detailed in the gas-phase, but uses a simplified liquid/wick phase. 'Me model predicts a steady flame with a shape and size quantitatively similar to the Shuttle and Mir flames. ne model also predicts pre-extinction flame oscillations if the decrease in ambient oxygen is small enough.

  13. NCN detection in atmospheric flames

    SciTech Connect

    Sun, Z.W.; Li, Z.S.; Alden, M.; Dam, N.J.

    2010-04-15

    The first extensive spectra of NCN in atmospheric pressure flames are reported, as well as qualitative planar LIF images of its spatial distribution. The spectra have been recorded by LIF in lifted, fuel-rich CH4/N2O/N2 and CH4/air flames, and are compared to simulations. In the CH4/air flames, the NCN LIF signal peaks around {phi} = 1.2. Planar LIF imaging illustrates the very confined NCN distribution in the CH4/N2O/N2 flame.

  14. Influence of viscosity and the adiabatic index on planetary migration

    NASA Astrophysics Data System (ADS)

    Bitsch, B.; Boley, A.; Kley, W.

    2013-02-01

    Context. The strength and direction of migration of low mass embedded planets depends on the disk's thermodynamic state. It has been shown that in active disks, where the internal dissipation is balanced by radiative transport, migration can be directed outwards, a process which extends the lifetime of growing embryos. Very important parameters determining the structure of disks, and hence the direction of migration, are the viscosity and the adiabatic index. Aims: In this paper we investigate the influence of different viscosity prescriptions (α-type and constant) and adiabatic indices on disk structures. We then determine how this affects the migration rate of planets embedded in such disks. Methods: We perform three-dimensional numerical simulations of accretion disks with embedded planets. We use the explicit/implicit hydrodynamical code NIRVANA that includes full tensor viscosity and radiation transport in the flux-limited diffusion approximation, as well as a proper equation of state for molecular hydrogen. The migration of embedded 20 MEarth planets is studied. Results: Low-viscosity disks have cooler temperatures and the migration rates of embedded planets tend toward the isothermal limit. Hence, in these disks, planets migrate inwards even in the fully radiative case. The effect of outward migration can only be sustained if the viscosity in the disk is large. Overall, the differences between the treatments for the equation of state seem to play a more important role in disks with higher viscosity. A change in the adiabatic index and in the viscosity changes the zero-torque radius that separates inward from outward migration. Conclusions: For larger viscosities, temperatures in the disk become higher and the zero-torque radius moves to larger radii, allowing outward migration of a 20-MEarth planet to persist over an extended radial range. In combination with large disk masses, this may allow for an extended period of the outward migration of growing

  15. Characteristics of liquid ethanol diffusion flames from mini tube nozzles

    SciTech Connect

    Chen, J.; Peng, X.F.; Yang, Z.L.; Cheng, J.

    2009-02-15

    A series of experiments was conducted to explore the combustion characteristics of a diffusion flames from mini tubes fueled by liquid ethanol with visual observations of the flame shape, the dynamic liquid-vapor interface during phase change inside the capillary tubes and the tube outer surface temperature using CCD and IR cameras. As the fuel supply rate increased, the interface location rose to the tube exit and the temperature gradient on the outer tube surface increased, consequently the evaporating became much stronger and the interface tended to be unstable. The combustion characteristics are closely related to the rapid phase change and violent evaporation and interfacial dynamics, with the violent evaporation, actually explosive boiling, inducing an explosive flame. The intensity of the explosive flame became stronger as the flowrate increased with the maximum flame height, interface location movement, and sound intensity all significantly increasing. The periodicity of the explosive flame was directly proportional to the interface moving distance and inversely proportional to the fuel flow rate. (author)

  16. Combustion Research Program: Flame studies, laser diagnostics, and chemical kinetics

    SciTech Connect

    Crosley, D.R.

    1992-09-01

    This project has comprised laser flame diagnostic experiments, chemical kinetics measurements, and low pressure flame studies. Collisional quenching has been investigated for several systems: the OH radical, by H{sub 2}0 in low pressure flames; the rotational level dependence for NH, including measurements to J=24; and of NH{sub 2} at room temperature. Transition probability measurements for bands involving v{prime} = 2 and 3 of the A-X system of OH were measured in a flame. Laser-induced fluorescence of vinyl radicals was unsuccessfully attempted. RRKM and transition state theory calculations were performed on the OH + C{sub 2}H{sub 4} reaction, on the t-butyl radical + HX; and transition state theory has been applied to a series of bond scission reactions. OH concentrations were measured quantitatively in low pressure H{sub 2}/N{sub 2}O and H{sub 2}/O{sub 2} flames, and the ability to determine spatially precise flame temperatures accurately using OH laser-induced fluorescence was studied.

  17. Flame Radiation, Structure, and Scalar Properties in Microgravity Laminar Fires

    NASA Technical Reports Server (NTRS)

    Feikema, Douglas; Lim, Jongmook; Sivathanu, Yudaya

    2007-01-01

    Results from microgravity combustion experiments conducted in the Zero Gravity Research Facility (ZGF) 5.18 second drop facility are reported. The results quantify flame radiation, structure, and scalar properties during the early phase of a microgravity fire. Emission mid-infrared spectroscopy measurements have been completed to quantitatively determine the flame temperature, water and carbon dioxide vapor concentrations, radiative emissive power, and soot concentrations in microgravity laminar methane/air, ethylene/nitrogen/air and ethylene/air jet flames. The measured peak mole fractions for water vapor and carbon dioxide are found to be in agreement with state relationship predictions for hydrocarbon/air combustion. The ethylene/air laminar flame conditions are similar to previously reported results including those from the flight project, Laminar Soot Processes (LSP). Soot concentrations and gas temperatures are in reasonable agreement with similar results available in the literature. However, soot concentrations and flame structure dramatically change in long-duration microgravity laminar diffusion flames as demonstrated in this report.

  18. Setup for microwave stimulation of a turbulent low-swirl flame

    NASA Astrophysics Data System (ADS)

    Ehn, Andreas; Hurtig, Tomas; Petersson, Per; Zhu, Jiajian; Larsson, Anders; Fureby, Christer; Larfeldt, Jenny; Li, Zhongshan; Aldén, Marcus

    2016-05-01

    An experimental setup for microwave stimulation of a turbulent flame is presented. A low-swirl flame is being exposed to continuous microwave irradiation inside an aluminum cavity. The cavity is designed with inlets for laser beams and a viewport for optical access. The aluminum cavity is operated as a resonator where the microwave mode pattern is matched to the position of the flame. Two metal meshes are working as endplates in the resonator, one at the bottom and the other at the top. The lower mesh is located right above the burner nozzle so that the low-swirl flame is able to freely propagate inside the cylinder cavity geometry whereas the upper metal mesh can be tuned to achieve good overlap between the microwave mode pattern and the flame volume. The flow is characterized for operating conditions without microwave irradiation using particle imaging velocimetry (PIV). Microwave absorption is simultaneously monitored with experimental investigations of the flame in terms of exhaust gas temperature, flame chemiluminescence (CL) analysis as well as simultaneous planar laser-induced fluorescence (PLIF) measurements of formaldehyde (CH2O) and hydroxyl radicals (OH). Results are presented for experiments conducted in two different regimes of microwave power. In the high-energy regime the microwave field is strong enough to cause a breakdown in the flame. The breakdown spark develops into a swirl-stabilized plasma due to the continuous microwave stimulation. In the low-energy regime, which is below plasma formation, the flame becomes larger and more stable and it moves upstream closer to the burner nozzle when microwaves are absorbed by the flame. As a result of a larger flame the exhaust gas temperature, flame CL and OH PLIF signals are increased as microwave energy is absorbed by the flame.

  19. Interaction of a vortex ring with a non-premixed methane flame

    NASA Astrophysics Data System (ADS)

    Safta, Cosmin

    Direct numerical simulation (DNS) is used to study the non-equilibrium characteristics of non-premixed methane flames in an unsteady strain rate field generated by a vortex ring. Two canonical flame-vortex ring configurations are used. In the first configuration the vortex ring interacts with an initially unstrained non-premixed flame. Two stages of interaction are identified. The first stage corresponds to the head-on collision between the flame and the vortex ring, and lasts until the flame is quenched near the centerline. The unsteady effects are dominant and result in local flame extinction. The second stage of the interaction corresponds to the passage of the ring through the flame and its interaction with the flame from the oxidizer side. During this stage, the vortex ring losses its strength and, in addition to the unsteady effects, curvature effects can also become important. In the second configuration, the ambient contains only oxidizer. The high oxidizer temperature leads to the auto-ignition of the flame surrounding the vortex ring. Three flame regions, front, top, and wake are identified. Detailed (GRI-Mech) and augmented reduced (11-step, 12-step) kinetic mechanisms are used to model the methane combustion. The methane flame ignition characteristics and combustion regimes are examined in this configuration. For the range of parameters accessible, unsteady, curvature and thickening effects on the flame structure are observed. The contributions of time varying straining, fuel temperature and concentration to the unsteady effects on the flame structure are separated through comparisons with unsteady counterflow diffusion flame simulations. The capability of the current augmented reduced kinetic models to capture the ignition and flame structure is assessed through comparisons with detailed kinetic model results. The quasi steady state assumption for O in the 12-step reduced kinetic model leads to shorter ignition delay times. The 11-step model predicts

  20. Continuous Diffusion Flames and Flame Streets in Micro-Channels

    NASA Astrophysics Data System (ADS)

    Mohan, Shikhar; Matalon, Moshe

    2015-11-01

    Experiments of non-premixed combustion in micro-channels have shown different modes of burning. Normally, a flame is established along, or near the axis of a channel that spreads the entire mixing layer and separates a region of fuel but no oxidizer from a region with only oxidizer. Often, however, a periodic sequence of extinction and reignition events, termed collectively as ``flame streets'', are observed. They constitute a series of diffusion flames, each with a tribrachial leading edge stabilized along the channel. This work focuses on understanding the underlying mechanism responsible for these distinct observations. Numerical simulations were conducted in the thermo-diffusive limit in order to study the effects of confinement and heat loss on non-premixed flames in three-dimensional micro-channels with low aspect ratios. The three dimensionality of the channel was captured qualitatively through a systematic asymptotic analysis that led to a two dimensional problem with an effective parameter representing heat losses in the vertical direction. There exist three key flame regimes: (1) a stable continuous diffusion flame, (2) an unsteady flame, and (3) a stable ``flame street'' the transition between regimes demarcated primarily by Reynolds and Nusselt numbers.

  1. Apparatus to Measure Adiabatic and Isothermal Processes.

    ERIC Educational Resources Information Center

    Lamb, D. W.; White, G. M.

    1996-01-01

    Describes a simple manual apparatus designed to serve as an effective demonstration of the differences between isothermal and adiabatic processes for the general or elementary physics student. Enables students to verify Boyle's law for slow processes and identify the departure from this law for rapid processes and can also be used to give a clear…

  2. Gas phase radiative effects in diffusion flames

    NASA Astrophysics Data System (ADS)

    Bedir, Hasan

    Several radiation models are evaluated for a stagnation point diffusion flame of a solid fuel in terms of accuracy and computational time. Narrowband, wideband, spectral line weighted sum of gray gases (SLWSGG), and gray gas models are included in the comparison. Radiative heat flux predictions by the nongray narrowband, wideband, and SLWSGG models are found to be in good agreement with each other, whereas the gray gas models are found to be inaccurate. The narrowband model, the most complex among the models evaluated, is then applied first to a solid fuel and second to a pure gaseous diffusion flame. A polymethylmethacrylate (PMMA) diffusion flame in a stagnation point geometry is solved with the narrowband model with COsb2, Hsb2O, and MMA vapor included in participating species. A detailed account of the emission and absorption from these species as well as the radiative heat fluxes are given as a function of the stretch rate. It is found that at low stretch rate the importance of radiation is increased due to an increase in the optical thickness, and a decrease in the conductive heat flux. Results show that COsb2 is the biggest emitter and absorber in the flame, MMA vapor is the second and Hsb2O is the least important. A pure gaseous flame in an opposed jet configuration is solved with the narrowband radiation model with CO as the fuel, and Osb2 as the oxidizer. Detailed. chemical kinetics and transport are incorporated into the combustion model with the use of the CHEMKIN and TRANSPORT software packages. The governing equations are solved with a modified version of the OPPDIF code. Dry and wet CO flames as well as COsb2 dilution are studied. Comparison of the results with and without the consideration of radiation reveals that the radiation is important for the whole flammable range of dry CO flames and for the low stretch rates of wet flames. Without the consideration of radiation the temperature and the species mole fractions (especially of minor species

  3. Large Eddy Simulation of flame stabilisation dynamics and vortex control in a lifted H2/N2 jet flame

    NASA Astrophysics Data System (ADS)

    Duwig, Christophe

    2011-06-01

    Flame stabilisation in (highly) preheated mixture is common in several industrial applications. When the reactants are injected separately in the device (usually at high-speed), the flame is lifted so that the fuel and oxidant first mix to give an ignitable mixture. If the temperature of the mixture is adequate, it auto-ignites stabilizing the flame. Here we focus on an academic lifted jet flame and Large Eddy Simulation (LES) is used to capture the flame and auto-ignition dynamics. Comparisons with experimental data show that LES simulates accurately high OH fluctuation levels at the stabilisation location. The vortex dynamics linked to these fluctuations is analyzed and it is found that small scale coherent structures play a vital role in the auto-ignition process. These structures are axial vorticity tubes (braids) and are located relatively far (in the radial direction) from the shear-layer. As a consequence, the lift-off height varies dramatically in time leading to OH fluctuations of the order of the mean OH concentration. This scenario is monitored in the compositional space highlighting the simultaneous evolution of OH, HO 2 and temperature. Further, different strategies for open-loop control of the flame lift-off height are tested. In order to anchor the flame at different positions downstream of the nozzle, the vortex dynamics in the shear-layer was modified. Promoting successively vortex ring and braids, the auto-ignition region was moved significantly. In particular, modified nozzle geometries impacted the formation of braids and ensured a good premixing very close to the nozzle. As a consequence, it was possible to reduce significantly the lift-off height and stabilise the flame few diameters downstream of the nozzle.

  4. Lean premixed flames for low NO{sub x} combustors

    SciTech Connect

    Sojka, P.; Tseng, L.; Bryyjak, J.

    1995-12-31

    The overall objectives of the research at Purdue are to: obtain a reduced mechanism description of high pressure NO formation chemistry using experiments and calculations for laminar lean premixed methane air flames, develop a statistical model of turbulence NO chemistry interactions using a Bunsen type jet flame, and utilize the high pressure chemistry and turbulence models in a commercial design code, then evaluate its predictions using data from an analog gas turbine combustor. Work to date has resulted in the following achievements: spatially resolved measurements of NO in high-pressure high-temperature flat flames, plus evaluation of the influence of flame radiation on the measured temperature profile; measurements of temperature and velocity PDFs for a turbulent methane/air flame were obtained for the first time, under operating conditions which allow their study in the distributed regimes, and the increase in EINO{sub x} with equivalence ratio predicted using a chemical kinetics model; and simulation of non-reacting combustor flow fields from ambient to elevated pressure and temperature conditions and comparison of those results with experimental velocity profiles.

  5. NOx Formation in a Premixed Syngas Flame

    SciTech Connect

    Yilmaz, S.L.; Givi, P.; Strakey, P.; Casleton, K.

    2006-11-01

    Reduction of NOx is a subject of significant current interest in stationary gas turbines. The objective of this study is to examine the effects of turbulence on non-thermal NOx formation in a syngas flame. This is archived by a detailed parametric study via PDF simulations of a partially stirred reactor and a dumped axisymmetric premixed flame. Several different detailed and reduced kinetics schemes are considered. The simulated results demonstrate the strong dependence of combustion process on turbulence. It is shown that the amount of NOx formation is significantly influenced by the inlet conditions. That is, the turbulence intensity can be tweaked to attain optimal ultra-low NOx emissions at a given temperature.

  6. Approaches to flame resistant polymeric materials

    NASA Technical Reports Server (NTRS)

    Liepins, R.

    1975-01-01

    Four research and development areas are considered for further exploration in the quest of more flame-resistant polymeric materials. It is suggested that improvements in phenolphthalein polycarbonate processability may be gained through linear free energy relationship correlations. Looped functionality in the backbone of a polymer leads to both improved thermal resistance and increased solubility. The guidelines used in the pyrolytic carbon production constitute a good starting point for the development of improved flame-resistant materials. Numerous organic reactions requiring high temperatures and the techniques of protected functionality and latent functionality constitute the third area for exploration. Finally, some well-known organic reactions are suggested for the formation of polymers that were not made before.

  7. Communication: Adiabatic and non-adiabatic electron-nuclear motion: Quantum and classical dynamics

    NASA Astrophysics Data System (ADS)

    Albert, Julian; Kaiser, Dustin; Engel, Volker

    2016-05-01

    Using a model for coupled electronic-nuclear motion we investigate the range from negligible to strong non-adiabatic coupling. In the adiabatic case, the quantum dynamics proceeds in a single electronic state, whereas for strong coupling a complete transition between two adiabatic electronic states takes place. It is shown that in all coupling regimes the short-time wave-packet dynamics can be described using ensembles of classical trajectories in the phase space spanned by electronic and nuclear degrees of freedom. We thus provide an example which documents that the quantum concept of non-adiabatic transitions is not necessarily needed if electronic and nuclear motion is treated on the same footing.

  8. The structure of partially premixed methane flames in high-intensity turbulent flows

    SciTech Connect

    Yaldizli, Murat; Mehravaran, Kian; Mohammad, Hyderuddin; Jaberi, Farhad A.

    2008-09-15

    Direct numerical simulations (DNS) are conducted to study the structure of partially premixed and non-premixed methane flames in high-intensity two-dimensional isotropic turbulent flows. The results obtained via ''flame normal analysis'' show local extinction and reignition for both non-premixed and partially premixed flames. Dynamical analysis of the flame with a Lagrangian method indicates that the time integrated strain rate characterizes the finite-rate chemistry effects and the flame extinction better than the strain rate. It is observed that the flame behavior is affected by the ''pressure-dilatation'' and ''viscous-dissipation'' in addition to strain rate. Consistent with previous studies, high vorticity values are detected close to the reaction zone, where the vorticity generation by the ''baroclinic torque'' was found to be significant. The influences of (initial) Reynolds and Damkoehler numbers, and various air-fuel premixing levels on flame and turbulence variables are also studied. It is observed that the flame extinction occurs similarly in flames with different fuel-air premixing. Our simulations also indicate that the CO emission increases as the partial premixing of the fuel with air increases. Higher values of the temperature, the OH mass fraction and the CO mass fraction are observed within the flame zone at higher Reynolds numbers. (author)

  9. An experimental study of the structure of laminar premixed flames of ethanol/methane/oxygen/argon

    PubMed Central

    Tran, L.S.; Glaude, P.A.; Battin-Leclerc, F.

    2013-01-01

    The structures of three laminar premixed stoichiometric flames at low pressure (6.7 kPa): a pure methane flame, a pure ethanol flame and a methane flame doped by 30% of ethanol, have been investigated and compared. The results consist of concentration profiles of methane, ethanol, O2, Ar, CO, CO2, H2O, H2, C2H6, C2H4, C2H2, C3H8, C3H6, p-C3H4, a-C3H4, CH2O, CH3HCO, measured as a function of the height above the burner by probe sampling followed by on-line gas chromatography analyses. Flame temperature profiles have been also obtained using a PtRh (6%)-PtRh (30%) type B thermocouple. The similarities and differences between the three flames were analyzed. The results show that, in these three flames, the concentration of the C2 intermediates is much larger than that of the C3 species. In general, mole fraction of all intermediate species in the pure ethanol flame is the largest, followed by the doped flame, and finally the pure methane flame. PMID:24092946

  10. The dynamic instability of adiabatic blast waves

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Vishniac, Ethan T.

    1991-01-01

    Adiabatic blastwaves, which have a total energy injected from the center E varies as t(sup q) and propagate through a preshock medium with a density rho(sub E) varies as r(sup -omega) are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.

  11. Adiabatic circuits: converter for static CMOS signals

    NASA Astrophysics Data System (ADS)

    Fischer, J.; Amirante, E.; Bargagli-Stoffi, A.; Schmitt-Landsiedel, D.

    2003-05-01

    Ultra low power applications can take great advantages from adiabatic circuitry. In this technique a multiphase system is used which consists ideally of trapezoidal voltage signals. The input signals to be processed will often come from a function block realized in static CMOS. The static rectangular signals must be converted for the oscillating multiphase system of the adiabatic circuitry. This work shows how to convert the input signals to the proposed pulse form which is synchronized to the appropriate supply voltage. By means of adder structures designed for a 0.13µm technology in a 4-phase system there will be demonstrated, which additional circuits are necessary for the conversion. It must be taken into account whether the data arrive in parallel or serial form. Parallel data are all in one phase and therefore it is advantageous to use an adder structure with a proper input stage, e.g. a Carry Lookahead Adder (CLA). With a serial input stage it is possible to read and to process four signals during one cycle due to the adiabatic 4-phase system. Therefore input signals with a frequency four times higher than the adiabatic clock frequency can be used. This reduces the disadvantage of the slow clock period typical for adiabatic circuits. By means of an 8 bit Ripple Carry Adder (8 bit RCA) the serial reading will be introduced. If the word width is larger than 4 bits the word can be divided in 4 bit words which are processed in parallel. This is the most efficient way to minimize the number of input lines and pads. At the same time a high throughput is achieved.

  12. The dynamic instability of adiabatic blast waves

    NASA Astrophysics Data System (ADS)

    Ryu, Dongsu; Vishniac, Ethan T.

    1991-02-01

    Adiabatic blastwaves, which have a total energy injected from the center E varies as tq and propagate through a preshock medium with a density rhoE varies as r-omega are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.

  13. The dynamic instability of adiabatic blastwaves

    NASA Astrophysics Data System (ADS)

    Ryu, Dongsu; Vishniac, Ethan T.

    1990-05-01

    Adiabatic blastwaves, which have a total energy injected from the center E varies as t(sup q) and propagate through a preshock medium with a density rho(sub E) varies as r(sup -omega) are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.

  14. Adiabatic burst evaporation from bicontinuous nanoporous membranes

    PubMed Central

    Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk

    2015-01-01

    Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406

  15. Adiabatic evolution of an irreversible two level system

    SciTech Connect

    Kvitsinsky, A.; Putterman, S. )

    1991-05-01

    The adiabatic dynamics of a two level atom with spontaneous decay is studied. The existence of a complex adiabatic phase shift is established: The real part being the usual Berry's phase. A closed-form expression for this phase and the adiabatic transition amplitudes is obtained. Incorporation of a finite preparation time for the initial state yields a new asymptotic form for the adiabatic transition amplitudes which is significantly different from the standard Landau--Zener--Dykhne formula.

  16. Flame retarded asphalt blend composition

    SciTech Connect

    Walters, R.B.

    1987-04-21

    This patent describes a flame retarded asphalt composition consisting essentially of a blend of: (a) thermoplastic elastomer modified bitumen; (b) 20-30 wt % inert filler; (c) 1-20 wt % of at least one halogenated flame retardant; and (d) 1-5 wt % of at least one inorganic phosphorus containing compound selected from the group consisting of ammonium phosphate compounds and red phosphorus.

  17. Statistics of premixed flame cells

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1991-01-01

    The statistics of random cellular patterns in premixed flames are analyzed. Agreement is found with a variety of topological relations previously found for other networks, namely, Lewis's law and Aboav's law. Despite the diverse underlying physics, flame cells are shown to share a broad class of geometric properties with other random networks-metal grains, soap foams, bioconvection, and Langmuir monolayers.

  18. Statistics of premixed flame cells

    SciTech Connect

    Noever, D.A. )

    1991-07-15

    The statistics of random cellular patterns in premixed flames are analyzed. Agreement is found with a variety of topological relations previously found for other networks, namely, Lewis's law and Aboav's law. Despite the diverse underlying physics, flame cells are shown to share a broad class of geometric properties with other random networks---metal grains, soap foams, bioconvection, and Langmuir monolayers.

  19. Computational and experimental study of laminar flames

    SciTech Connect

    Smooke, Mitchell

    2015-05-29

    During the past three years, our research has centered on an investigation of the effects of complex chemistry and detailed transport on the structure and extinction of hydrocarbon flames in coflowing axisymmetric configurations. We have pursued both computational and experimental aspects of the research in parallel on both steady-state and time-dependent systems. The computational work has focused on the application of accurate and efficient numerical methods for the solution of the steady-state and time-dependent boundary value problems describing the various reacting systems. Detailed experimental measurements were performed on axisymmetric coflow flames using two-dimensional imaging techniques. Previously, spontaneous Raman scattering, chemiluminescence, and laser-induced fluorescence were used to measure the temperature, major and minor species profiles. Particle image velocimetry (PIV) has been used to investigate velocity distributions and for calibration of time-varying flames. Laser-induced incandescence (LII) with an extinction calibration was used to determine soot volume fractions, while soot surface temperatures were measured with three-color optical pyrometry using a color digital camera. A blackbody calibration of the camera allows for determination of soot volume fraction as well, which can be compared with the LII measurements. More recently, we have concentrated on a detailed characterization of soot using a variety of techniques including time-resolved LII (TiRe-LII) for soot primary particles sizes, multi-angle light scattering (MALS) for soot radius of gyration, and spectrally-resolved line of sight attenuation (spec-LOSA). Combining the information from all of these soot measurements can be used to determine the soot optical properties, which are observed to vary significantly depending on spatial location and fuel dilution. Our goal has been to obtain a more fundamental understanding of the important fluid dynamic and chemical interactions in

  20. Soot Deposit Properties in Practical Flames

    SciTech Connect

    Preciado, Ignacio; Eddings, Eric G.; Sarofim, Adel F.; Dinwiddie, Ralph Barton; Porter, Wallace D; Lance, Michael J

    2009-01-01

    Soot deposition from hydrocarbon flames was investigated in order to evaluate the evolution of the deposits during the transient process of heating an object that starts with a cold metal surface that is exposed to a flame. The study focused on the fire/metal surface interface and the critical issues associated with the specification of the thermal boundaries at this interface, which include the deposition of soot on the metal surface, the chemical and physical properties of the soot deposits and their subsequent effect on heat transfer to the metal surface. A laboratory-scale device (metallic plates attached to a water-cooled sampling probe) was designed for studying soot deposition in a laminar ethylene-air premixed flame. The metallic plates facilitate the evaluation of the deposition rates and deposit characteristics such as deposit thickness, bulk density, PAH content, deposit morphology, and thermal properties, under both water-cooled and uncooled conditions. Additionally, a non-intrusive Laser Flash Technique (in which the morphology of the deposit is not modified) was used to estimate experimental thermal conductivity values for soot deposits as a function of deposition temperature (water-cooled and uncooled experiments), location within the flame and chemical characteristics of the deposits. Important differences between water-cooled and uncooled surfaces were observed. Thermophoresis dominated the soot deposition process and enhanced higher deposition rates for the water-cooled experiments. Cooler surface temperatures resulted in the inclusion of increased amounts of condensable hydrocarbons in the soot deposit. The greater presence of condensable material promoted decreased deposit thicknesses, larger deposit densities, different deposit morphologies, and higher thermal conductivities.