Science.gov

Sample records for adiabatic ionization potentials

  1. Double-resonance spectroscopy of the high Rydberg states of HCO. I. A precise determination of the adiabatic ionization potential

    NASA Astrophysics Data System (ADS)

    Mayer, Eric; Grant, Edward R.

    1995-12-01

    We report the first spectroscopic observation of the high Rydberg states of HCO. Individual lines in a system of vibrationally autoionizing Rydberg series converging to the (010) state of HCO+ are rotationally labeled in a double-resonance excitation scheme that uses resolved levels in the (010) A' vibronic component of the 3pπ 2Π Rydberg state as intermediates. Observed high-Rydberg structure extends from the adiabatic ionization threshold—which falls just below the principal quantum number of 12 in the vibrationally excited series—to the (010) vertical threshold. Elements of a single series extending from n=12 to 50, for which the total angular momentumless spin can be assigned as N=1, are extrapolated to obtain a vertical convergence limit with respect to the 3pπ 2Π(010)A' N'=0 intermediate state of 20 296.9±0.3 cm-1. Referring this transition energy to the ground state, and subtracting the precisely known fundamental bending frequency of the cation, establishes the adiabatic ionization potential corresponding to the transition from HCO 2A'(000) J″=0, K″=0 to HCO+ J+=0 1Σ+(000). The result is 65 735.9±0.5 cm-1 or 8.150 22±0.000 06 eV.

  2. Band gaps, ionization potentials, and electron affinities of periodic electron systems via the adiabatic-connection fluctuation-dissipation theorem

    NASA Astrophysics Data System (ADS)

    Trushin, Egor; Betzinger, Markus; Blügel, Stefan; Görling, Andreas

    2016-08-01

    An approach to calculate fundamental band gaps, ionization energies, and electron affinities of periodic electron systems is explored. Starting from total energies obtained with the help of the adiabatic-connection fluctuation-dissipation (ACFD) theorem, these physical observables are calculated according to their basic definition by differences of the total energies of the N -, (N -1 ) -, and (N +1 ) -electron system. The response functions entering the ACFD theorem are approximated here by the direct random phase approximation (dRPA). For a set of prototypical semiconductors and insulators it is shown that even with this quite drastic approximation the resulting band gaps are very close to experiment and of a similar quality to those from the computationally more involved G W approximation. By going beyond the dRPA in the future the accuracy of the calculated band gaps may be significantly improved further.

  3. Density functional theory calculations on rhodamine B and pinacyanol chloride. Optimized ground state, dipole moment, vertical ionization potential, adiabatic electron affinity and lowest excited triplet state.

    PubMed

    Delgado, Juan C; Selsby, Ronald G

    2013-01-01

    The ground state configuration of the gas phase cationic dyes pinacyanol chloride and rhodamine B are optimized with HF/6-311 + G(2d,2p) method and basis set. B3PW91/6-311 + G(2df,2p) functional and basis set is used to calculate the Mulliken atom charge distribution, total molecular energy, the dipole moment, the vertical ionization potential, the adiabatic electron affinity and the lowest excited triplet state, the last three as an energy difference between separately calculated open shell and ground states. The triplet and extra electron states are optimized to find the relaxation energy. In the ground state optimization of both dyes the chloride anion migrates to a position near the center of the chromophore. For rhodamine B the benzoidal group turns perpendicular to the chromophore plane. For both dyes, the LUMO is mostly of π character associated with the aromatic part of the molecule containing the chromophore. The highest occupied MOs consist of three almost degenerate eigenvectors involving the chloride anion coordinated with σ electrons in the molecular framework. The fourth highest MO is of π character. For both molecules in the gas phase ionization process the chloride anion loses the significant fraction of electric charge. In electron capture, the excess charge goes mainly on the dye cation.

  4. Ionization potentials of seaborgium

    SciTech Connect

    Johnson, E.; Pershina, V.; Fricke, B.

    1999-10-21

    Multiconfiguration relativistic Dirac-Fock values were calculated for the first six ionization potentials of seaborgium and of the other group 6 elements. No experimental ionization potentials are available for seaborgium. Accurate experimental values are not available for all of the other ionization potentials. Ionic radii for the 4+ through 6+ ions of seaborgium are also presented. The ionization potentials and ionic radii obtained will be used to predict some physiochemical properties of seaborgium and its compounds.

  5. Adiabatic Hyperspherical Analysis of Realistic Nuclear Potentials

    NASA Astrophysics Data System (ADS)

    Daily, K. M.; Kievsky, Alejandro; Greene, Chris H.

    2015-12-01

    Using the hyperspherical adiabatic method with the realistic nuclear potentials Argonne V14, Argonne V18, and Argonne V18 with the Urbana IX three-body potential, we calculate the adiabatic potentials and the triton bound state energies. We find that a discrete variable representation with the slow variable discretization method along the hyperradial degree of freedom results in energies consistent with the literature. However, using a Laguerre basis results in missing energy, even when extrapolated to an infinite number of basis functions and channels. We do not include the isospin T = 3/2 contribution in our analysis.

  6. The lowest ionization potentials of Al2

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Barnes, Leslie A.; Taylor, Peter R.

    1988-01-01

    Potential curves for the lowest two electronic states (X 2 sigma g + and A 2 pi u) of Al2(+) were computed using complete active space SCF/multireference CI wave functions and large Gaussian basis sets. The lowest observable vertical ionization potential (to Al2(+) X 2 sigma g +) of the Al2 X 3 pi u ground state is calculated to occur around 6.1 eV, in excellent agreement with the experimental range of 6.0 to 6.42 eV obtained in recent cluster ionization studies by Cox and co-workers. The second vertical ionization potential (to Al2(+) A 2 pi u) occurs near 6.4 eV, also within the experimental range. The adiabatic IP of 5.90 eV is in good agreement with the value of 5.8 to 6.1 eV deduced by Hanley and co-workers from the difference in thresholds between collision induced dissociation processes of Al3(+). The computed IP values are somewhat larger than those deduced from branching ratios in cluster fragmentation experiments by Jarrold and co-workers. The observation of an ionization threshold below 6.42 eV is shown to be incompatible with an Al2 ground electronic state assignment of 3 sigma g -, but the separation between the two lowest states of Al2 is so small that it is likely that both are populated in the experiments, so that this does not provide unambiguous support for the recent theoretical assignment of the ground state as 3 pi u.

  7. Ionization Potentials for Isoelectronic Series.

    ERIC Educational Resources Information Center

    Agmon, Noam

    1988-01-01

    Presents a quantitative treatment of ionization potentials of isoelectronic atoms. By looking at the single-electron view of calculating the total energy of an atom, trends in the screening and effective quantum number parameters are examined. Approaches the question of determining electron affinities. (CW)

  8. Recent developments in trapping and manipulation of atoms with adiabatic potentials

    NASA Astrophysics Data System (ADS)

    Garraway, Barry M.; Perrin, Hélène

    2016-09-01

    A combination of static and oscillating magnetic fields can be used to ‘dress’ atoms with radio-frequency (RF), or microwave, radiation. The spatial variation of these fields can be used to create an enormous variety of traps for ultra-cold atoms and quantum gases. This article reviews the type and character of these adiabatic traps and the applications which include atom interferometry and the study of low-dimensional quantum systems. We introduce the main concepts of magnetic traps leading to adiabatic dressed traps. The concept of adiabaticity is discussed in the context of the Landau-Zener model. The first bubble trap experiment is reviewed together with the method used for loading it. Experiments based on atom chips show the production of double wells and ring traps. Dressed atom traps can be evaporatively cooled with an additional RF field, and a weak RF field can be used to probe the spectroscopy of the adiabatic potentials. Several approaches to ring traps formed from adiabatic potentials are discussed, including those based on atom chips, time-averaged adiabatic potentials and induction methods. Several proposals for adiabatic lattices with dressed atoms are also reviewed.

  9. Geometric phase of an atom inside an adiabatic radio-frequency potential

    SciTech Connect

    Zhang, P.; You, L.

    2007-09-15

    We investigate the geometric phase of an atom inside an adiabatic radio-frequency (rf) potential created from a static magnetic field (B field) and a time-dependent rf field. The spatial motion of the atomic center of mass is shown to give rise to a geometric phase, or Berry's phase, in the adiabatically evolving atomic hyperfine spin along the local B field. This phase is found to depend on both the static B field along the semiclassical trajectory of the atomic center of mass and an effective magnetic field consisting of the total B field, including the oscillating rf field. Specific calculations are provided for several recent atom interferometry experiments and proposals utilizing adiabatic rf potentials.

  10. Temperature-Driven and Electrochemical-Potential-Driven Adiabatic Pumping via a Quantum Dot

    NASA Astrophysics Data System (ADS)

    Hasegawa, Masahiro; Kato, Takeo

    2017-02-01

    We investigate adiabatic pumping via a single level quantum dot induced by periodic modulation of thermodynamic variables of reservoirs, i.e., temperatures and electrochemical potentials. We consider the impurity Anderson model and derive analytical formulas for coherent adiabatic charge pumping applicable to the strong dot-reservoir coupling within the first-order perturbation with respect to Coulomb interaction. We show that charge pumping is induced by rectification effect due to delayed response of the quantum dot to time-dependent reservoir parameters. The presence of interaction is necessary because this delayed response rectifies charge current via Coulomb interaction. For temperature-driven charge pumping, one-way pumping is realized regardless of reservoir temperatures when an energy level of the quantum dot locates near the Fermi level. We clarify that this new feature of adiabatic pumping is caused by level broadening effect of the quantum dot due to strong dot-reservoir coupling.

  11. Dressed adiabatic and diabatic potentials to study conical intersections for F + H2

    NASA Astrophysics Data System (ADS)

    Das, Anita; Sahoo, Tapas; Mukhopadhyay, Debasis; Adhikari, Satrajit; Baer, Michael

    2012-02-01

    We follow a suggestion by Lipoff and Herschbach [Mol. Phys. 108, 1133 (2010), 10.1080/00268971003662912] and compare dressed and bare adiabatic potentials to get insight regarding the low-energy dynamics (e.g., cold reaction) taking place in molecular systems. In this particular case, we are interested to study the effect of conical intersections (ci) on the interacting atoms. For this purpose, we consider vibrational dressed adiabatic and vibrational dressed diabatic potentials in the entrance channel of reactive systems. According to our study, the most one should expect, in case of F + H2, is a mild effect of the (1, 2) ci on its reactive/exchange process-an outcome also supported by experiment. This happens although the corresponding dressed and bare potential barriers (and the corresponding van der Waals potential wells) differ significantly from each other.

  12. Theoretical study of ionization and one-electron oxidation potentials of N-heterocyclic compounds.

    PubMed

    Sviatenko, Liudmyla K; Gorb, Leonid; Hill, Frances C; Leszczynski, Jerzy

    2013-05-15

    A number of density functionals was utilized to predict gas-phase adiabatic ionization potentials (IPs) for nitrogen-rich heterocyclic compounds. Various solvation models were applied to the calculation of difference in free energies of solvation of oxidized and reduced forms of heterocyclic compounds in acetonitrile (AN) for correct reproduction of their standard oxidation potentials. We developed generally applicable protocols that could successfully predict the gas-phase adiabatic ionization potentials of nitrogen-rich heterocyclic compounds and their standard oxidation potentials in AN. This approach is supported by a MPW1K/6-31+G(d) level of theory which uses SMD(UA0) approximation for estimation of solvation energy of neutral molecules and PCM(UA0) model for ionized ones. The mean absolute derivation (MAD) and root mean square error (RMSE) of the current theoretical models for IP are equal to 0.22 V and 0.26, respectively, and for oxidation potentials MAD = 0.13 V and RMSE = 0.17.

  13. A classical determination of vibrationally adiabatic barriers and wells of a collinear potential energy surface

    NASA Astrophysics Data System (ADS)

    Pollak, Eli

    1981-05-01

    A necessary and sufficient condition for the existence of a classical vibrationally adiabatic barrier or well in collinear systems is the existence of periodic orbit dividing surfaces. Knowledge of all pods immediately provides all adiabatic barriers and wells. Furthermore, the classical equation connecting the barriers and wells to the masses and potential energy surface of the system is shown, under mild conditions, to be identical in form to the corresponding quantal equation. The only difference is in the determination of the vibrational state which is obtained by WKB quantization classically. The classical barriers and wells can therefore be used to analyze quantal computations. Such analysis is provided for the hydrogen exchange reaction and the F+HH system. A novel result is the existence of vibrationally adiabatic barriers even where no saddle point exists on the static potential energy surface. These barriers are an outcome of competition between the increase of potential energy and decrease of vibrational force constant along the reaction coordinate. Their existence is therefore of general nature — not limited to the specific structure of a given potential energy surface. The experimental significance of these barriers is discussed. The implications on the use of forward or reverse quasiclassical computations is analyzed. A definite conclusion is that one should not average over initial vibrational action in such calculations.

  14. Ionization Potential Depression in Strongly Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Wark, Justin; Ciricosta, Orlando; Vinko, Sam; Crowley, Basil

    2013-10-01

    The focusing of the output of 4th generation femtosecond X-ray sources to ultra-high intensities has enabled the creation of hot (close to 200-eV) aluminum plasmas at exactly solid density. Tuning of the X-ray FEL energy that produces the plasma, and observation of the subsequent K- α fluorescence from the highly charged ions allows direct measurements of the K-edges, and hence ionization potential depression (IPD). The results of these experiments show far higher depressions than those predicted by the frequently-used Stewart-Pyatt model, but appear to be in contradiction with laser-plasma experimental data at similar densities, but with hotter, less strongly-coupled plasmas. We present here new calculations of the IPD, both ab initio and analytic, and discuss the relevance of the coupling parameter to the IPD. We further explore what constitutes our understanding of the physics of IPD, and how it should be modelled.

  15. Practical approximation of the non-adiabatic coupling terms for same-symmetry interstate crossings by using adiabatic potential energies only

    NASA Astrophysics Data System (ADS)

    Baeck, Kyoung Koo; An, Heesun

    2017-02-01

    A very simple equation, Fij A p p=[(∂2(Via-Vja ) /∂Q2 ) /(Via-Vja ) ] 1 /2/2 , giving a reliable magnitude of non-adiabatic coupling terms (NACTs, Fij's) based on adiabatic potential energies only (Via and Vja) was discovered, and its reliability was tested for several prototypes of same-symmetry interstate crossings in LiF, C2, NH3Cl, and C6H5SH molecules. Our theoretical derivation starts from the analysis of the relationship between the Lorentzian dependence of NACTs along a diabatization coordinate and the well-established linear vibronic coupling scheme. This analysis results in a very simple equation, α =2 κ /Δc , enabling the evaluation of the Lorentz function α parameter in terms of the coupling constant κ and the energy gap Δc (Δc=|Via-Vja| Q c ) between adiabatic states at the crossing point QC. Subsequently, it was shown that QC corresponds to the point where Fij A p p exhibit maximum values if we set the coupling parameter as κ =[(Via-Vja ) ṡ(∂2(Via-Vja ) /∂Q2 ) ] Qc1 /2 /2 . Finally, we conjectured that this relation could give reasonable values of NACTs not only at the crossing point but also at other geometries near QC. In this final approximation, the pre-defined crossing point QC is not required. The results of our test demonstrate that the approximation works much better than initially expected. The present new method does not depend on the selection of an ab initio method for adiabatic electronic states but is currently limited to local non-adiabatic regions where only two electronic states are dominantly involved within a nuclear degree of freedom.

  16. Generation of a pair of photons through the three-body dissociation of a multiply excited water molecule around the double ionization potential

    NASA Astrophysics Data System (ADS)

    Odagiri, Takeshi; Nakano, Motoyoshi; Tanabe, Takehiko; Kumagai, Yoshiaki; Suzuki, Isao H.; Kouchi, Noriyuki

    2009-11-01

    The cross sections for the generation of a photon-pair from excited fragments in photoexcitation of H2O have been measured as a function of incident photon energy. The multiply excited states of H2O have been observed even above the adiabatic double ionization potential.

  17. Theory of ionization potentials of nonmetallic solids

    NASA Astrophysics Data System (ADS)

    Kumagai, Yu; Butler, Keith T.; Walsh, Aron; Oba, Fumiyasu

    2017-03-01

    Since the ionization potential (IP) is one of the fundamental quantities in a solid, ruling the physical and chemical properties and electronic device performances, many researchers have quantified the IPs using first-principles calculations of slab models recently. However, the breakdown into bulk and surface contributions has remained a contentious issue. In this study, we discuss how to decompose the IP into the bulk and surface contributions by using the macroscopic average technique. Although this procedure quantifies well-defined macroscopic dipoles and corroborates with the continuous model, it is not consistent with the physical intuition. This is because the strong charge fluctuation inside solids significantly contributes to the macroscopic dipole potential. We also discuss the possibility of an alternative splitting procedure that can be consistent with the physical intuition, and conclude that it is possible only when both bulk and surface charge density is well decomposed into a superposition of spherical charges. In the latter part, we evaluate the IPs of typical semiconductors and insulators such as Si, diamond, GaAs, GaN, ZnO, and MgO, using atomic-charge and molecular-charge approximations, in which the charge density of a solid is described as a superposition of charge density of the constituent atoms and molecules, respectively. We find that the atomic-charge approximation also known as the model-solid theory can successfully reproduce the IPs of covalent materials, but works poorly for ionic materials. On the other hand, the molecular-charge approximation, which partly takes into account the charge transfer from cations to anions, shows better predictive performance overall.

  18. Theoretical study of the CsNa molecule: adiabatic and diabatic potential energy and dipole moment.

    PubMed

    Mabrouk, N; Berriche, H

    2014-09-25

    The adiabatic and diabatic potential energy curves of the low-lying electronic states of the NaCs molecule dissociating into Na (3s, 3p) + Cs (6s, 6p, 5d, 7s, 7p, 6d, 8s, 4f) have been investigated. The molecular calculations are performed using an ab initio approach based on nonempirical pseudopotential, parametrized l-dependent polarization potentials and full configuration interaction calculations through the CIPCI quantum chemistry package. The derived spectroscopic constants (Re, De, Te, ωe, ωexe, and Be) of the ground state and lower excited states are compared with the available theoretical and experimental works. Moreover, accurate permanent and transition dipole moment have been determined as a function of the internuclear distance. The adiabatic permanent dipole moment for the first nine (1)Σ(+) electronic states have shown both ionic characters associated with electron transfer related to Cs(+)Na(-) and Cs(-)Na(+) arrangements. By a simple rotation, the diabatic permanent dipole moment is determined and has revealed a linear behavior, particularly at intermediate and large distances. Many peaks around the avoided crossing locations have been observed for the transition dipole moment between neighbor electronic states.

  19. Development of a general time-dependent absorbing potential for the constrained adiabatic trajectory method.

    PubMed

    Leclerc, Arnaud; Jolicard, Georges; Killingbeck, John P

    2011-05-21

    The constrained adiabatic trajectory method (CATM) allows us to compute solutions of the time-dependent Schrödinger equation using the Floquet formalism and Fourier decomposition, using matrix manipulation within a non-orthogonal basis set, provided that suitable constraints can be applied to the initial conditions for the Floquet eigenstate. A general form is derived for the inherent absorbing potential, which can reproduce any dispersed boundary conditions. This new artificial potential acting over an additional time interval transforms any wavefunction into a desired state, with an error involving exponentially decreasing factors. Thus, a CATM propagation can be separated into several steps to limit the size of the required Fourier basis. This approach is illustrated by some calculations for the H(2)(+) molecular ion illuminated by a laser pulse.

  20. Resonant ionization spectroscopy of autoionizing Rydberg states in cobalt and redetermination of its ionization potential

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Gottwald, T.; Mattolat, C.; Wendt, K.

    2017-04-01

    Multi-step resonance ionization spectroscopy of cobalt has been performed using a hot-cavity laser ion source and three Ti:Sapphire lasers. The photoionization spectra revealed members of five new autoionizing Rydberg series that originate from three different lower levels of 3d 74s5s h 4F9/2, 3d 74s4d f 4G11/2, and 3d 74s4d f 4H13/2 and converge to the first four excited states of singly ionized Co. The analyses of the Rydberg series yield 63 564.689 ± 0.036 cm‑1 as the first ionization potential of Co, which is an order of magnitude more accurate than the previous estimation. Using a three-step resonance ionization scheme that employs an autoinizing Rydberg state in the last transition, we obtained an overall ionization efficiency of about 18% for Co. ).

  1. Measurement of the first ionization potential of astatine by laser ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Rothe, S.; Andreyev, A. N.; Antalic, S.; Borschevsky, A.; Capponi, L.; Cocolios, T. E.; de Witte, H.; Eliav, E.; Fedorov, D. V.; Fedosseev, V. N.; Fink, D. A.; Fritzsche, S.; Ghys, L.; Huyse, M.; Imai, N.; Kaldor, U.; Kudryavtsev, Yuri; Köster, U.; Lane, J. F. W.; Lassen, J.; Liberati, V.; Lynch, K. M.; Marsh, B. A.; Nishio, K.; Pauwels, D.; Pershina, V.; Popescu, L.; Procter, T. J.; Radulov, D.; Raeder, S.; Rajabali, M. M.; Rapisarda, E.; Rossel, R. E.; Sandhu, K.; Seliverstov, M. D.; Sjödin, A. M.; van den Bergh, P.; van Duppen, P.; Venhart, M.; Wakabayashi, Y.; Wendt, K. D. A.

    2013-05-01

    The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of superheavy element 117, the heaviest homologue of astatine.

  2. Measurement of the first ionization potential of astatine by laser ionization spectroscopy

    PubMed Central

    Rothe, S.; Andreyev, A. N.; Antalic, S.; Borschevsky, A.; Capponi, L.; Cocolios, T. E.; De Witte, H.; Eliav, E.; Fedorov, D. V.; Fedosseev, V. N.; Fink, D. A.; Fritzsche, S.; Ghys, L.; Huyse, M.; Imai, N.; Kaldor, U.; Kudryavtsev, Yuri; Köster, U.; Lane, J. F. W.; Lassen, J.; Liberati, V.; Lynch, K. M.; Marsh, B. A.; Nishio, K.; Pauwels, D.; Pershina, V.; Popescu, L.; Procter, T. J.; Radulov, D.; Raeder, S.; Rajabali, M. M.; Rapisarda, E.; Rossel, R. E.; Sandhu, K.; Seliverstov, M. D.; Sjödin, A. M.; Van den Bergh, P.; Van Duppen, P.; Venhart, M.; Wakabayashi, Y.; Wendt, K. D. A.

    2013-01-01

    The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of superheavy element 117, the heaviest homologue of astatine. PMID:23673620

  3. Measurement of the first ionization potential of astatine by laser ionization spectroscopy.

    PubMed

    Rothe, S; Andreyev, A N; Antalic, S; Borschevsky, A; Capponi, L; Cocolios, T E; De Witte, H; Eliav, E; Fedorov, D V; Fedosseev, V N; Fink, D A; Fritzsche, S; Ghys, L; Huyse, M; Imai, N; Kaldor, U; Kudryavtsev, Yuri; Köster, U; Lane, J F W; Lassen, J; Liberati, V; Lynch, K M; Marsh, B A; Nishio, K; Pauwels, D; Pershina, V; Popescu, L; Procter, T J; Radulov, D; Raeder, S; Rajabali, M M; Rapisarda, E; Rossel, R E; Sandhu, K; Seliverstov, M D; Sjödin, A M; Van den Bergh, P; Van Duppen, P; Venhart, M; Wakabayashi, Y; Wendt, K D A

    2013-01-01

    The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of superheavy element 117, the heaviest homologue of astatine.

  4. Diffusion of a massive particle in a periodic potential: Application to adiabatic ratchets

    NASA Astrophysics Data System (ADS)

    Rozenbaum, Viktor M.; Makhnovskii, Yurii A.; Shapochkina, Irina V.; Sheu, Sheh-Yi; Yang, Dah-Yen; Lin, Sheng Hsien

    2015-12-01

    We generalize a theory of diffusion of a massive particle by the way in which transport characteristics are described by analytical expressions that formally coincide with those for the overdamped massless case but contain a factor comprising the particle mass which can be calculated in terms of Risken's matrix continued fraction method (MCFM). Using this generalization, we aim to elucidate how large gradients of a periodic potential affect the current in a tilted periodic potential and the average current of adiabatically driven on-off flashing ratchets. For this reason, we perform calculations for a sawtooth potential of the period L with an arbitrary sawtooth length (l potentials typically considered in MCFM-solvable problems. We find nonanalytic behavior of the transport characteristics calculated for the sharp extremely asymmetric sawtooth potential at l →0 which appears due to the inertial effect. Analysis of the temperature dependences of the quantities under study reveals the dominant role of inertia in the high-temperature region. In particular, we show, by the analytical strong-inertia approach developed for this region, that the temperature-dependent contribution to the mobility at zero force and to the related effective diffusion coefficient are proportional to T-3 /2 and T-1 /2, respectively, and have a logarithmic singularity at l →0 .

  5. Determination of the first ionization potential of actinium

    NASA Astrophysics Data System (ADS)

    Roßnagel, J.; Raeder, S.; Hakimi, A.; Ferrer, R.; Trautmann, N.; Wendt, K.

    2012-01-01

    Using resonance ionization spectroscopy the first-ionization potential of actinium has been determined by analyzing different Rydberg series in two-color resonant laser excitation. Three individual Rydberg series were investigated, converging toward the ionic ground state and toward the first- and second-excited state of the actinium ion, respectively. A combined analysis of the convergence limits leads to a consistent value for the first-ionization potential of Ac of 43394.45(19)cm-1, equivalent to 5.380226(24) eV.

  6. Ionizing potential waves and high-voltage breakdown streamers.

    NASA Technical Reports Server (NTRS)

    Albright, N. W.; Tidman, D. A.

    1972-01-01

    The structure of ionizing potential waves driven by a strong electric field in a dense gas is discussed. Negative breakdown waves are found to propagate with a velocity proportional to the electric field normal to the wavefront. This causes a curved ionizing potential wavefront to focus down into a filamentary structure, and may provide the reason why breakdown in dense gases propagates in the form of a narrow leader streamer instead of a broad wavefront.

  7. Determination of the first ionization potential of berkelium and californium by resonance ionization mass spectroscopy

    SciTech Connect

    Nunnemann, M.; Eberhardt, K.; Erdmann, N.; Herrmann, G.; Huber, G.; Koehler, S.; Kratz, J. V.; Naehler, A.; Passler, G.; Trautmann, N.

    1997-01-15

    Resonance ionization mass spectroscopy (RIMS) is used for the precise determination of the first ionization potential (IP) of transuranium elements. Small amounts of material ({approx_equal}0.4 ng) are sufficient for these measurements due to the high sensitivity of RIMS enabling the investigation of the actinides beyond plutonium, which are accessible only in limited amounts and difficult to handle due to their high radioactivity. The method presented takes advantage of the dependence of the ionization threshold on an external static electric field. With samples of 10{sup 12} atoms of {sup 249}Bk and {sup 249}Cf experimental values for the first ionization potentials of IP{sub Bk}=49989(2) cm{sup -1} and IP{sub Cf}=50665(2) cm{sup -1} were obtained.

  8. Determination of the first ionization potential of berkelium and californium by resonance ionization mass spectroscopy

    SciTech Connect

    Nunnemann, M.; Eberhardt, K.; Erdmann, N.; Herrmann, G.; Huber, G.; Koehler, S.; Kratz, J.V.; Naehler, A.; Passler, G.; Trautmann, N.

    1997-01-01

    Resonance ionization mass spectroscopy (RIMS) is used for the precise determination of the first ionization potential ({ital IP}) of transuranium elements. Small amounts of material ({approx}0.4ng) are sufficient for these measurements due to the high sensitivity of RIMS enabling the investigation of the actinides beyond plutonium, which are accessible only in limited amounts and difficult to handle due to their high radioactivity. The method presented takes advantage of the dependence of the ionization threshold on an external static electric field. With samples of 10{sup 12} atoms of {sup 249}Bk and {sup 249}Cf experimental values for the first ionization potentials of IP{sub Bk}=49989(2)cm{sup {minus}1} and IP{sub Cf}=50665(2)cm{sup {minus}1} were obtained. {copyright} {ital 1997 American Institute of Physics.}

  9. Atomistic potentials based energy flux integral criterion for dynamic adiabatic shear banding

    NASA Astrophysics Data System (ADS)

    Xu, Yun; Chen, Jun

    2015-02-01

    The energy flux integral criterion based on atomistic potentials within the framework of hyperelasticity-plasticity is proposed for dynamic adiabatic shear banding (ASB). System Helmholtz energy decomposition reveals that the dynamic influence on the integral path dependence is originated from the volumetric strain energy and partial deviatoric strain energy, and the plastic influence only from the rest part of deviatoric strain energy. The concept of critical shear banding energy is suggested for describing the initiation of ASB, which consists of the dynamic recrystallization (DRX) threshold energy and the thermal softening energy. The criterion directly relates energy flux to the basic physical processes that induce shear instability such as dislocation nucleations and multiplications, without introducing ad-hoc parameters in empirical constitutive models. It reduces to the classical path independent J-integral for quasi-static loading and elastic solids. The atomistic-to-continuum multiscale coupling method is used to simulate the initiation of ASB. Atomic configurations indicate that DRX induced microstructural softening may be essential to the dynamic shear localization and hence the initiation of ASB.

  10. Molecular wave function and effective adiabatic potentials calculated by extended multi-configuration time-dependent Hartree-Fock method

    SciTech Connect

    Kato, Tsuyoshi; Ide, Yoshihiro; Yamanouchi, Kaoru

    2015-12-31

    We first calculate the ground-state molecular wave function of 1D model H{sub 2} molecule by solving the coupled equations of motion formulated in the extended multi-configuration time-dependent Hartree-Fock (MCTDHF) method by the imaginary time propagation. From the comparisons with the results obtained by the Born-Huang (BH) expansion method as well as with the exact wave function, we observe that the memory size required in the extended MCTDHF method is about two orders of magnitude smaller than in the BH expansion method to achieve the same accuracy for the total energy. Second, in order to provide a theoretical means to understand dynamical behavior of the wave function, we propose to define effective adiabatic potential functions and compare them with the conventional adiabatic electronic potentials, although the notion of the adiabatic potentials is not used in the extended MCTDHF approach. From the comparison, we conclude that by calculating the effective potentials we may be able to predict the energy differences among electronic states even for a time-dependent system, e.g., time-dependent excitation energies, which would be difficult to be estimated within the BH expansion approach.

  11. Idealized numerical simulation study of the potential vorticity banners over a mesoscale mountain: Dry adiabatic process

    NASA Astrophysics Data System (ADS)

    Wang, Qiwei; Tan, Zhemin

    2009-09-01

    Topography-induced potential vorticity (PV) banners over a mesoscale topography (Dabie Mountain, hereafter DM) in eastern China, under an idealized dry adiabatic flow, are studied with a mesoscale numerical model, ARPS. PV banners generate over the leeside of the DM with a maximal intensity of ˜1.5 PVU, and extend more than 100 km downstream, while the width varies from several to tens of kilometers, which contrasts with the half-width of the peaks along the ridge of the DM. Wave breaking occurs near the leeside surface of the DM, and leads to a strong PV generation. Combining with the PV generation, due to the friction and the flow splitting upstream, the PV is advected downstream, and then forms the PV banners over the DM. The PV banners are sensitive to the model resolution, Coriolis force, friction, subgrid turbulent mixing, stratification, the upstream wind speed and wind direction. The negative PV banners have a more compact connection with the low level turbulent kinetic energy. The PV banners are built up by the baroclinic and barotropic components. The barotropic-associated PV can identify the distribution of the PV banners, while the baroclinic one only has important contributions on the flanks and on the leeside near the topography. PV fluxes are diagnosed to investigate the influence of friction on the PV banners. Similar patterns are found between the total PV flux and the advective PV flux, except near the surface and inside the dipole of the PV banners, where the nonadvective PV flux associated with the friction has a net negative contribution.

  12. Excited-state nuclear forces on adiabatic potential-energy surfaces by time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Haruyama, Jun; Suzuki, Takahiro; Hu, Chunping; Watanabe, Kazuyuki

    2012-01-01

    We present a simple and computationally efficient method to calculate excited-state nuclear forces on adiabatic potential-energy surfaces (APES) from linear-response time-dependent density-functional theory within a real-space framework. The Casida ansatz, which has been validated for computing first-order nonadiabatic couplings in previous studies, was applied to the calculation of the excited-state forces. Our method is validated by the consistency of results in the lower excited states, which reproduce well those obtained by the numerical derivative of each APES. We emphasize the usefulness of this technique by demonstrating the excited-state molecular-dynamics simulation.

  13. First ionization potential of the heaviest actinide lawrencium, element 103

    NASA Astrophysics Data System (ADS)

    Sato, Tetsuya K.; Asai, Masato; Borschevsky, Anastasia; Stora, Thierry; Sato, Nozomi; Kaneya, Yusuke; Tsukada, Kazuaki; Düllmann, Christoph E.; Eberhardt, Klaus; Eliav, Ephraim; Ichikawa, Shinichi; Kaldor, Uzi; Kratz, Jens V.; Miyashita, Sunao; Nagame, Yuichiro; Ooe, Kazuhiro; Osa, Akihiko; Renisch, Dennis; Runke, Jörg; Schädel, Matthias; Thörle-Pospiech, Petra; Toyoshima, Atsushi; Trautmann, Norbert

    2016-12-01

    The first ionization potential (IP1) of element 103, lawrencium (Lr), has been successfully determined for the first time by using a newly developed method based on a surface ionization process. The measured IP1 value is 4.963 eV. This value is the smallest among those of actinide elements and is in excellent agreement with the value of 4.963(15) eV predicted by state-of-the-art relativistic calculations also performed in this work. Our results strongly support that the Lr atom has an electronic configuration of [Rn]7s25f147p, which is influenced by strong relativistic effects. The present work provides a reliable benchmark for theoretical calculations and also opens the way for studies on atomic properties of heavy elements with atomic number Z > 100. Moreover, the present achievement has triggered a controversy on the position of lutetium (Lu) and Lr in the Periodic Table of Elements.

  14. Ionization potential depression for non equilibrated aluminum plasmas

    NASA Astrophysics Data System (ADS)

    Calisti, A.; Ferri, S.; Talin, B.

    2015-11-01

    A classical molecular dynamics simulation model, designed to simulate neutral plasmas with various charge states of a given atom together with electrons, is used to investigate the ionization potential depression (IPD) in dense plasmas. The IPD is discussed for aluminum plasma at and out of equilibrium. The simulation results are compared with those of earlier theoretical models and with experimental data obtained in the framework of x-ray free-electron laser experiments. The model proposed in this work appears as an important tool to provide data for further discussion on IPD models.

  15. Ionization potential for excited S states of the lithium atom

    SciTech Connect

    Puchalski, M.; KePdziera, D.; Pachucki, K.

    2010-12-15

    Nonrelativistic, relativistic, quantum electrodynamic, and finite nuclear mass corrections to the energy levels are obtained for the nS{sub 1/2},n=3,...,9 states of the lithium atom. Computational approach is based on the explicitly correlated Hylleraas functions with the analytic integration and recursion relations. Theoretical predictions for the ionization potential of nS{sub 1/2} states and transition energies nS{sub 1/2{yields}}2S{sub 1/2} are compared to known experimental values for {sup 6,7}Li isotopes.

  16. Electron Impact Ionization of He atom using screening potential

    NASA Astrophysics Data System (ADS)

    Saha, Hari P.

    2012-06-01

    We will report the results of our investigation on electron impact ionization of helium atom using our extended MCHF method [1] for electron impact ionization of atoms. The initial state wave function will be calculated with both HF and MCHF approximations and the electron correlation between the two final state continuum electrons will be obtained using the screening potential [2-4]. Calculations will be made for triple differential cross sections for 4 eV excess energy sharing equally by the two final state continuum electrons. The results will be presented for all scattering angles and all kinematics. Comparison will be made with available experimental and theoretical data. [4pt] [1] Hari P. Saha, Phys. Rev. A82, 042703 (2010); J.Phys. B44, 065202 (2011).[0pt] [2] M.R.H. Rudge and M.J. Seaton, Proc. Roy. Soc. A293. 262 (1965).[0pt] [3] M.R.H. Rudge, Rev. Mod. Phys. 40, 564 (1968).[0pt] [4] C.Pan and A.F Starace, Phys. Rev. Lett. 67, 185 (1991); Phys. Rev. A45, 4588 (1992).

  17. The Nanoflare Origins of the First Ionization Potential Effect

    NASA Astrophysics Data System (ADS)

    Laming, J. M.; Dahlburg, R. B.; Taylor, B. D.

    2015-12-01

    The First Ionization Potential (FIP) Effect is the by now well known abundance anomaly in the solar coronaand slow speed solar wind. Elements which are predominantly ionized in the chromosphere, i.e. those with FIP less than about 10 eV, are enhanced in abundance in the corona by a factor of about 3-4, while elements that are predominantly neutral are essentially unchanged (although He and Ne can be further depleted). A compelling explanation for this phenomenon invokes the ponderomotive force associated with Alfven or fast mode waves propagating through or reflecting from the chromosphere. The usual solar FIP effect, and most of its variations, are best modeled by waves resonant with the coronal loop on which they propagate, and therefore most plausibly have a coronal origin.We report on 3D compressible MHD simulations of coronal loop heating with the HYPERION code. A ponderomotive force of the correct sign and magnitude is produced naturally as a by-product of coronal heating processes that also produce a 1-3 MK corona loop, reinforcing our conjecture above. We argue that coronal element abundance anomalies, and the waves that produce them, offer a novel but hitherto largely untried approach to the problem of coronal heating.

  18. Ab - initio non-adiabatic couplings among three lowest singlet states of H3 +: Construction of multisheeted diabatic potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Mukherjee, Bijit; Mukherjee, Saikat; Adhikari, Satrajit

    2016-10-01

    We calculate the adiabatic potential energy surfaces and non-adiabatic interactions among the three lowest singlet states (11 A', 21 A' and 31 A') of H3 + in hyperspherical coordinates for a fixed hyperradius, ρ = 9 bohr as functions of hyperangles, θ (0 < θ < 90°) and ϕ (0 < ϕ < 360°). All ab initio calculations are performed using MRCI level of methodology implemented in quantum chemistry package, MOLPRO. The ground (11 A') and the first excited (21 A') states exhibit several conical intersections as functions of ϕ for θ > 70°. Subsequently, we carry out adiabatic to diabatic transformation (ADT) to obtain ADT angles for constructing single-valued, continuous, smooth and symmetric 3 × 3 diabatic potential energy matrix to perform accurate scattering calculations.

  19. A plea for a reexamination of ionization potential depression measurements

    NASA Astrophysics Data System (ADS)

    Iglesias, Carlos A.

    2014-09-01

    Experiments at the Linac Coherent Light Source determined the ionization potential depression (IPD) in dense plasmas by measuring the Kα fluorescence associated with K-shell holes created by the X-ray free-electron laser. The analysis of the experimental spectrum found a significantly larger IPD than predicted by the widely used Stewart-Pyatt model. It is shown, however, that a more accurate treatment of atomic levels than used in the analysis has additional channels reducing the threshold laser energy for creating Kα photons without invoking an increase in the IPD. Thus, it is argued that a simulation of the Kα fluorescence using improved atomic data could impact the interpretation of the experimental results.

  20. Monte Carlo simulations of ionization potential depression in dense plasmas

    SciTech Connect

    Stransky, M.

    2016-01-15

    A particle-particle grand canonical Monte Carlo model with Coulomb pair potential interaction was used to simulate modification of ionization potentials by electrostatic microfields. The Barnes-Hut tree algorithm [J. Barnes and P. Hut, Nature 324, 446 (1986)] was used to speed up calculations of electric potential. Atomic levels were approximated to be independent of the microfields as was assumed in the original paper by Ecker and Kröll [Phys. Fluids 6, 62 (1963)]; however, the available levels were limited by the corresponding mean inter-particle distance. The code was tested on hydrogen and dense aluminum plasmas. The amount of depression was up to 50% higher in the Debye-Hückel regime for hydrogen plasmas, in the high density limit, reasonable agreement was found with the Ecker-Kröll model for hydrogen plasmas and with the Stewart-Pyatt model [J. Stewart and K. Pyatt, Jr., Astrophys. J. 144, 1203 (1966)] for aluminum plasmas. Our 3D code is an improvement over the spherically symmetric simplifications of the Ecker-Kröll and Stewart-Pyatt models and is also not limited to high atomic numbers as is the underlying Thomas-Fermi model used in the Stewart-Pyatt model.

  1. Monte Carlo simulations of ionization potential depression in dense plasmas

    NASA Astrophysics Data System (ADS)

    Stransky, M.

    2016-01-01

    A particle-particle grand canonical Monte Carlo model with Coulomb pair potential interaction was used to simulate modification of ionization potentials by electrostatic microfields. The Barnes-Hut tree algorithm [J. Barnes and P. Hut, Nature 324, 446 (1986)] was used to speed up calculations of electric potential. Atomic levels were approximated to be independent of the microfields as was assumed in the original paper by Ecker and Kröll [Phys. Fluids 6, 62 (1963)]; however, the available levels were limited by the corresponding mean inter-particle distance. The code was tested on hydrogen and dense aluminum plasmas. The amount of depression was up to 50% higher in the Debye-Hückel regime for hydrogen plasmas, in the high density limit, reasonable agreement was found with the Ecker-Kröll model for hydrogen plasmas and with the Stewart-Pyatt model [J. Stewart and K. Pyatt, Jr., Astrophys. J. 144, 1203 (1966)] for aluminum plasmas. Our 3D code is an improvement over the spherically symmetric simplifications of the Ecker-Kröll and Stewart-Pyatt models and is also not limited to high atomic numbers as is the underlying Thomas-Fermi model used in the Stewart-Pyatt model.

  2. Strong field ionization rates simulated with time-dependent configuration interaction and an absorbing potential

    SciTech Connect

    Krause, Pascal; Sonk, Jason A.; Schlegel, H. Bernhard

    2014-05-07

    Ionization rates of molecules have been modeled with time-dependent configuration interaction simulations using atom centered basis sets and a complex absorbing potential. The simulations agree with accurate grid-based calculations for the ionization of hydrogen atom as a function of field strength and for charge resonance enhanced ionization of H{sub 2}{sup +} as the bond is elongated. Unlike grid-based methods, the present approach can be applied to simulate electron dynamics and ionization in multi-electron polyatomic molecules. Calculations on HCl{sup +} and HCO{sup +} demonstrate that these systems also show charge resonance enhanced ionization as the bonds are stretched.

  3. The /A 1 Sigma +/ - /X 1 Sigma +/ system of the isotopic lithium hydrides - The molecular constants, potential energy curves, and their adiabatic corrections

    NASA Technical Reports Server (NTRS)

    Vidal, C. R.; Stwalley, W. C.

    1982-01-01

    The molecular constants and their adiabatic corrections have been determined for the (A 1 Sigma +) - (X 1 Sigma +) system of the isotopic lithium hydrides: (Li-6)H, (Li-7)H, (Li-6)D, and (Li-7)D. Using a fully quantum mechanical variational method, the potential energy curves (IPA potentials) are determined. Extending the variational method, we have obtained for the first time adiabatic corrections of potential energy curves from isotopic spectroscopic data. A significant difference between the potential energy curves of the lithium hydrides and the lithium deuterides has been observed. When Li-6 was replaced by Li-7, a significant difference was only observed for the (A 1 Sigma +) state, but not for the (X 1 Sigma +) state.

  4. Topology of the Adiabatic Potential Energy Surfaces for theResonance States of the Water Anion

    SciTech Connect

    Haxton, Daniel J.; Rescigno, Thomas N.; McCurdy, C. William

    2005-04-15

    The potential energy surfaces corresponding to the long-lived fixed-nuclei electron scattering resonances of H{sub 2}O relevant to the dissociative electron attachment process are examined using a combination of ab initio scattering and bound-state calculations. These surfaces have a rich topology, characterized by three main features: a conical intersection between the {sup 2}A{sub 1} and {sup 2}B{sub 2} Feshbach resonance states; charge-transfer behavior in the OH ({sup 2}{Pi}) + H{sup -} asymptote of the {sup 2}B{sub 1} and {sup 2}A{sub 1} resonances; and an inherent double-valuedness of the surface for the {sup 2}B{sub 2} state the C{sub 2v} geometry, arising from a branch-point degeneracy with a {sup 2}B{sub 2} shape resonance. In total, eight individual seams of degeneracy among these resonances are located.

  5. Measurement of the first ionization potential of lawrencium, element 103.

    PubMed

    Sato, T K; Asai, M; Borschevsky, A; Stora, T; Sato, N; Kaneya, Y; Tsukada, K; Düllmann, Ch E; Eberhardt, K; Eliav, E; Ichikawa, S; Kaldor, U; Kratz, J V; Miyashita, S; Nagame, Y; Ooe, K; Osa, A; Renisch, D; Runke, J; Schädel, M; Thörle-Pospiech, P; Toyoshima, A; Trautmann, N

    2015-04-09

    The chemical properties of an element are primarily governed by the configuration of electrons in the valence shell. Relativistic effects influence the electronic structure of heavy elements in the sixth row of the periodic table, and these effects increase dramatically in the seventh row--including the actinides--even affecting ground-state configurations. Atomic s and p1/2 orbitals are stabilized by relativistic effects, whereas p3/2, d and f orbitals are destabilized, so that ground-state configurations of heavy elements may differ from those of lighter elements in the same group. The first ionization potential (IP1) is a measure of the energy required to remove one valence electron from a neutral atom, and is an atomic property that reflects the outermost electronic configuration. Precise and accurate experimental determination of IP1 gives information on the binding energy of valence electrons, and also, therefore, on the degree of relativistic stabilization. However, such measurements are hampered by the difficulty in obtaining the heaviest elements on scales of more than one atom at a time. Here we report that the experimentally obtained IP1 of the heaviest actinide, lawrencium (Lr, atomic number 103), is 4.96(+0.08)(-0.07) electronvolts. The IP1 of Lr was measured with (256)Lr (half-life 27 seconds) using an efficient surface ion-source and a radioisotope detection system coupled to a mass separator. The measured IP1 is in excellent agreement with the value of 4.963(15) electronvolts predicted here by state-of-the-art relativistic calculations. The present work provides a reliable benchmark for theoretical calculations and also opens the way for IP1 measurements of superheavy elements (that is, transactinides) on an atom-at-a-time scale.

  6. Measurement of the first ionization potential of lawrencium, element 103

    NASA Astrophysics Data System (ADS)

    Sato, T. K.; Asai, M.; Borschevsky, A.; Stora, T.; Sato, N.; Kaneya, Y.; Tsukada, K.; Düllmann, Ch. E.; Eberhardt, K.; Eliav, E.; Ichikawa, S.; Kaldor, U.; Kratz, J. V.; Miyashita, S.; Nagame, Y.; Ooe, K.; Osa, A.; Renisch, D.; Runke, J.; Schädel, M.; Thörle-Pospiech, P.; Toyoshima, A.; Trautmann, N.

    2015-04-01

    The chemical properties of an element are primarily governed by the configuration of electrons in the valence shell. Relativistic effects influence the electronic structure of heavy elements in the sixth row of the periodic table, and these effects increase dramatically in the seventh row--including the actinides--even affecting ground-state configurations. Atomic s and p1/2 orbitals are stabilized by relativistic effects, whereas p3/2, d and f orbitals are destabilized, so that ground-state configurations of heavy elements may differ from those of lighter elements in the same group. The first ionization potential (IP1) is a measure of the energy required to remove one valence electron from a neutral atom, and is an atomic property that reflects the outermost electronic configuration. Precise and accurate experimental determination of IP1 gives information on the binding energy of valence electrons, and also, therefore, on the degree of relativistic stabilization. However, such measurements are hampered by the difficulty in obtaining the heaviest elements on scales of more than one atom at a time. Here we report that the experimentally obtained IP1 of the heaviest actinide, lawrencium (Lr, atomic number 103), is electronvolts. The IP1 of Lr was measured with 256Lr (half-life 27 seconds) using an efficient surface ion-source and a radioisotope detection system coupled to a mass separator. The measured IP1 is in excellent agreement with the value of 4.963(15) electronvolts predicted here by state-of-the-art relativistic calculations. The present work provides a reliable benchmark for theoretical calculations and also opens the way for IP1 measurements of superheavy elements (that is, transactinides) on an atom-at-a-time scale.

  7. Digital waveguide adiabatic passage part 1: theory

    NASA Astrophysics Data System (ADS)

    Vaitkus, Jesse A.; Steel, M. J.; Greentree, Andrew D.

    2017-03-01

    Spatial adiabatic passage represents a new way to design integrated photonic devices. In conventional adiabatic passage designs require smoothly varying waveguide separations. Here we show modelling of adiabatic passage devices where the waveguide separation is varied digitally. Despite digitisation, our designs show robustness against variations in the input wavelength and refractive index contrast of the waveguides relative to the cladding. This approach to spatial adiabatic passage opens new design strategies and hence the potential for new photonics devices.

  8. Effects of adiabatic, relativistic, and quantum electrodynamics interactions on the pair potential and thermophysical properties of helium.

    PubMed

    Cencek, Wojciech; Przybytek, Michał; Komasa, Jacek; Mehl, James B; Jeziorski, Bogumił; Szalewicz, Krzysztof

    2012-06-14

    The adiabatic, relativistic, and quantum electrodynamics (QED) contributions to the pair potential of helium were computed, fitted separately, and applied, together with the nonrelativistic Born-Oppenheimer (BO) potential, in calculations of thermophysical properties of helium and of the properties of the helium dimer. An analysis of the convergence patterns of the calculations with increasing basis set sizes allowed us to estimate the uncertainties of the total interaction energy to be below 50 ppm for interatomic separations R smaller than 4 bohrs and for the distance R = 5.6 bohrs. For other separations, the relative uncertainties are up to an order of magnitude larger (and obviously still larger near R = 4.8 bohrs where the potential crosses zero) and are dominated by the uncertainties of the nonrelativistic BO component. These estimates also include the contributions from the neglected relativistic and QED terms proportional to the fourth and higher powers of the fine-structure constant α. To obtain such high accuracy, it was necessary to employ explicitly correlated Gaussian expansions containing up to 2400 terms for smaller R (all R in the case of a QED component) and optimized orbital bases up to the cardinal number X = 7 for larger R. Near-exact asymptotic constants were used to describe the large-R behavior of all components. The fitted potential, exhibiting the minimum of -10.996 ± 0.004 K at R = 5.608 0 ± 0.000 1 bohr, was used to determine properties of the very weakly bound (4)He(2) dimer and thermophysical properties of gaseous helium. It is shown that the Casimir-Polder retardation effect, increasing the dimer size by about 2 Å relative to the nonrelativistic BO value, is almost completely accounted for by the inclusion of the Breit-interaction and the Araki-Sucher contributions to the potential, of the order α(2) and α(3), respectively. The remaining retardation effect, of the order of α(4) and higher, is practically negligible for the bound

  9. Accurate determination of the first ionization potential of actinides by laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Trautmann, N.

    1994-10-01

    A new method is described for the precise determination of the first ionization potential of elements which are available only in small amounts such as the heavier actinides. It is based on resonance ionization mass spectroscopy (RIMS) in the presence of an external electric field. Extrapolation of the ionization thresholds obtained with different electric field strengths to field strength zero leads directly to the first ionization potential. With samples of 10(exp 12) atoms of Np-237 and Am-243 experimental values for the first ionization potential of neptunium of IP(sub Np) = 6.2655(2) eV and of americium of IP(sub Am) = 5.9738(2) eV were obtained. This technique was also applied to thorium yielding a value of IP(sub Th) = 6.3067(2) eV. In addition the precision of the method was confirmed by the convergences of Rydberg series of americium measured by means of RIMS.

  10. Coupled wave-packets for non-adiabatic molecular dynamics: a generalization of Gaussian wave-packet dynamics to multiple potential energy surfaces

    SciTech Connect

    White, Alexander James; Tretiak, Sergei; Mozyrsky, Dima V.

    2016-04-25

    Accurate simulation of the non-adiabatic dynamics of molecules in excited electronic states is key to understanding molecular photo-physical processes. Here we present a novel method, based on a semiclassical approximation, that is as efficient as the commonly used mean field Ehrenfest or ad hoc surface hopping methods and properly accounts for interference and decoherence effects. This novel method is an extension of Heller's thawed Gaussian wave-packet dynamics that includes coupling between potential energy surfaces. By studying several standard test problems we demonstrate that the accuracy of the method can be systematically improved while maintaining high efficiency. The method is suitable for investigating the role of quantum coherence in the non-adiabatic dynamics of many-atom molecules.

  11. Coupled wave-packets for non-adiabatic molecular dynamics: a generalization of Gaussian wave-packet dynamics to multiple potential energy surfaces

    DOE PAGES

    White, Alexander James; Tretiak, Sergei; Mozyrsky, Dima V.

    2016-04-25

    Accurate simulation of the non-adiabatic dynamics of molecules in excited electronic states is key to understanding molecular photo-physical processes. Here we present a novel method, based on a semiclassical approximation, that is as efficient as the commonly used mean field Ehrenfest or ad hoc surface hopping methods and properly accounts for interference and decoherence effects. This novel method is an extension of Heller's thawed Gaussian wave-packet dynamics that includes coupling between potential energy surfaces. By studying several standard test problems we demonstrate that the accuracy of the method can be systematically improved while maintaining high efficiency. The method is suitablemore » for investigating the role of quantum coherence in the non-adiabatic dynamics of many-atom molecules.« less

  12. Accurate potential energy functions, non-adiabatic and spin-orbit couplings in the ZnH(+) system.

    PubMed

    Liang, Guiying; Liu, Xiaoting; Zhang, Xiaomei; Xu, Haifeng; Yan, Bing

    2016-03-05

    A high-level ab initio calculation on the ZnH(+) cation has been carried out with the multi-reference configuration interaction method plus Davison correction (MRCI+Q). The scalar relativistic effect is included by using the Douglas-Kroll-Hess (DKH) method. The calculated potential energy curves (PECs) of the 7 Λ-S states are associated with the dissociation limits of Zn(+)((2)Sg)+H((2)Sg), Zn((1)Sg)+H(+)((1)Sg), and Zn(+)((2)Pu)+H((2)Sg), respectively (The Λ-S state is labeled as (2S+1)Λ, in which Λ is the quantum number for the projection along the internuclear axis of the total electronic orbital angular momentum and S is the total electron spin). The spectroscopic constants of the bound states are determined and in good agreement with the available theoretical and experimental results. The permanent dipole moments (PDMs) of Λ-S states and the spin-orbit (SO) matrix elements between Λ-S states are also computed. The results show that the abrupt changes of the PDMs and SO matrix elements come into being for the reason of the avoided crossing between the states with the same symmetry. In addition, the non-adiabatic couplings matrix elements between Λ-S states are also evaluated. Finally, the spin-orbit couplings (SOCs) for the low-lying states are considered with Breit-Pauli operator. The SOC effect makes the 7 Λ-S states of the ZnH(+) cation split into 12 Ω states (Ω=Λ+Sz, in which Sz is projection of the total electron spin S along the internuclear Z-axis). For the (3)0(+) state, the two energy minima exhibit in the potential, which could be attributed to the formation of the new avoided crossing point. The transition dipole moments (TDMs), Franck-Condon factors, and the radiative lifetimes of the selected transitions (2)0(+)-X0(+), (3)0(+)-X0(+), (2)1-X0(+) and (3)1-X0(+) have been reported.

  13. Accurate potential energy functions, non-adiabatic and spin-orbit couplings in the ZnH+ system

    NASA Astrophysics Data System (ADS)

    Liang, Guiying; Liu, Xiaoting; Zhang, Xiaomei; Xu, Haifeng; Yan, Bing

    2016-03-01

    A high-level ab initio calculation on the ZnH+ cation has been carried out with the multi-reference configuration interaction method plus Davison correction (MRCI + Q). The scalar relativistic effect is included by using the Douglas-Kroll-Hess (DKH) method. The calculated potential energy curves (PECs) of the 7 Λ-S states are associated with the dissociation limits of Zn+(2Sg) + H(2Sg), Zn(1Sg) + H+(1Sg), and Zn+(2Pu) + H(2Sg), respectively (The Λ-S state is labeled as 2S + 1Λ, in which Λ is the quantum number for the projection along the internuclear axis of the total electronic orbital angular momentum and S is the total electron spin). The spectroscopic constants of the bound states are determined and in good agreement with the available theoretical and experimental results. The permanent dipole moments (PDMs) of Λ-S states and the spin-orbit (SO) matrix elements between Λ-S states are also computed. The results show that the abrupt changes of the PDMs and SO matrix elements come into being for the reason of the avoided crossing between the states with the same symmetry. In addition, the non-adiabatic couplings matrix elements between Λ-S states are also evaluated. Finally, the spin-orbit couplings (SOCs) for the low-lying states are considered with Breit-Pauli operator. The SOC effect makes the 7 Λ-S states of the ZnH+ cation split into 12 Ω states (Ω = Λ + Sz, in which Sz is projection of the total electron spin S along the internuclear Z-axis). For the (3)0+ state, the two energy minima exhibit in the potential, which could be attributed to the formation of the new avoided crossing point. The transition dipole moments (TDMs), Franck-Condon factors, and the radiative lifetimes of the selected transitions (2)0+-X0+, (3)0+-X0+, (2)1-X0+ and (3)1-X0+ have been reported.

  14. Effect of an improved molecular potential on strong-field tunneling ionization of molecules

    SciTech Connect

    Zhao Songfeng; Jin Cheng; Le, Anh-Thu; Lin, C. D.

    2010-09-15

    We study the effect of one-electron model potentials on the tunneling ionization rates of molecules in strong fields. By including electron correlation using the modified Leeuwen-Baerends (LB {alpha}) model, the binding energies of outer shells of molecules are significantly improved. However, we show that the tunneling ionization rates from the LB {alpha} do not differ much from the earlier calculations [Phys. Rev. A 81, 033423 (2010)], in which the local correlation potential was neglected.

  15. Ionization potentials of superheavy elements No, Lr, and Rf and their ions

    PubMed Central

    Dzuba, V. A.; Safronova, M. S.; Safronova, U. I.; Kramida, A.

    2016-01-01

    We predict ionization potentials of superheavy elements No, Lr, and Rf and their ions using a relativistic hybrid method that combines configuration interaction (CI) with the linearized coupled-cluster approach. Extensive study of the completeness of the four-electron CI calculations for Hf and Rf was carried out. As a test of theoretical accuracy, we also calculated ionization potential of Yb, Lu, Hf, and their ions, which are homologues of the superheavy elements of this study. PMID:28058290

  16. Ionization potentials of superheavy elements No, Lr, and Rf and their ions

    NASA Astrophysics Data System (ADS)

    Dzuba, V. A.; Safronova, M. S.; Safronova, U. I.; Kramida, A.

    2016-10-01

    We predict ionization potentials of superheavy elements No, Lr, and Rf and their ions using a relativistic hybrid method that combines configuration interaction (CI) with the linearized coupled-cluster approach. Extensive study of the completeness of the four-electron CI calculations for Hf and Rf was carried out. As a test of theoretical accuracy, we also calculated ionization potential of Yb, Lu, Hf, and their ions, which are homologues of the superheavy elements of this study.

  17. Plasma potential of a moving ionization zone in DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Panjan, Matjaž; Anders, André

    2017-02-01

    Using movable emissive and floating probes, we determined the plasma and floating potentials of an ionization zone (spoke) in a direct current magnetron sputtering discharge. Measurements were recorded in a space and time resolved manner, which allowed us to make a three-dimensional representation of the plasma potential. From this information we could derive the related electric field, space charge, and the related spatial distribution of electron heating. The data reveal the existence of strong electric fields parallel and perpendicular to the target surface. The largest E-fields result from a double layer structure at the leading edge of the ionization zone. We suggest that the double layer plays a crucial role in the energization of electrons since electrons can gain several 10 eV of energy when crossing the double layer. We find sustained coupling between the potential structure, electron heating, and excitation and ionization processes as electrons drift over the magnetron target. The brightest region of an ionization zone is present right after the potential jump, where drifting electrons arrive and where most local electron heating occurs. The ionization zone intensity decays as electrons continue to drift in the Ez × B direction, losing energy by inelastic collisions; electrons become energized again as they cross the potential jump. This results in the elongated, arrowhead-like shape of the ionization zone. The ionization zone moves in the -Ez × B direction from which the to-be-heated electrons arrive and into which the heating region expands; the zone motion is dictated by the force of the local electric field on the ions at the leading edge of the ionization zone. We hypothesize that electron heating caused by the potential jump and physical processes associated with the double layer also apply to magnetrons at higher discharge power, including high power impulse magnetron sputtering.

  18. On Adiabatic Pair Creation

    NASA Astrophysics Data System (ADS)

    Pickl, Peter; Dürr, Detlef

    2008-08-01

    We give here a rigorous proof of the well known prediction of pair creation as it arises from the Dirac equation with an external time dependent potential. Pair creation happens with probability one if the potential changes adiabatically in time and becomes overcritical, which means that an eigenvalue curve (as a function of time) bridges the gap between the negative and positive spectral continuum. The potential can be thought of as being zero at large negative and large positive times. The rigorous treatment of this effect has been lacking since the pioneering work of Beck, Steinwedel and Süßmann [1] in 1963 and Gershtein and Zeldovich [8] in 1970.

  19. Polycyclic aromatic hydrocarbon reaction rates with peroxy-acid treatment: prediction of reactivity using local ionization potential.

    PubMed

    Shoulder, J M; Alderman, N S; Breneman, C M; Nyman, M C

    2013-08-01

    Property-Encoded Surface Translator (PEST) descriptors were found to be correlated with the degradation rates of polycyclic aromatic hydrocarbons (PAHs) by the peroxy-acid process. Reaction rate constants (k) in hr(-1) for nine PAHs (acenaphthene, anthracene, benzo[a]pyrene, benzo[k]fluoranthene, fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene) were determined by a peroxy-acid treatment method that utilized acetic acid, hydrogen peroxide, and a sulphuric acid catalyst to degrade the polyaromatic structures. Molecular properties of the selected nine PAHs were derived from structures optimized at B3LYP/6-31G(d) and HF/6-31G(d) levels of theory. Properties of adiabatic and vertical ionization potential (IP), highest occupied molecular orbitals (HOMO), HOMO/lowest unoccupied molecular orbital (LUMO) gap energies and HOMO/singly occupied molecular orbital (SOMO) gap energies were not correlated with rates of peroxy-acid reaction. PEST descriptors were calculated from B3LYP/6-31G(d) optimized structures and found to have significant levels of correlation with k. PIP Min described the minimum local IP on the surface of the molecule and was found to be related to k. PEST technology appears to be an accurate method in predicting reactivity and could prove to be a valuable asset in building treatment models and in remediation design for PAHs and other organic contaminants in the environment.

  20. Ionization potentials of cobalt and nickel ions in the local-spin-density approximation

    SciTech Connect

    Dhar, S. ); Kestner, N.R. )

    1990-06-15

    In this article we report on the ionization potentials of all configurations of the Co{sup {ital n}+} and Ni{sup {ital n}+} ions obtained via transition-state calculations using local-spin-density (LSD) potentials. The calculations were performed numerically with and without modifications of the local exchange potential for fractional occupation numbers. When the exchange potential is corrected for noninteger occupation numbers, a more consistent picture of the ionization process is obtained than that given by the LSD Kohn-Sham exchange. The agreement with experimental results is also significantly improved.

  1. Ionization Potential Depression in Hot Dense Plasmas Through a Pure Classical Model

    NASA Astrophysics Data System (ADS)

    Calisti, A.; Ferri, S.; Talin, B.

    2015-05-01

    The ionization potential of an ion embedded in a plasma, lowered due to the whole of the charged particles (ions and electrons) interacting with this ion, is the so-called plasma effect. A numerical plasma model based on classical molecular dynamics has been developed recently. It is capable to describe a neutral plasma at equilibrium involving ions of various charge states of the same atom together with electrons. This code is used here to investigate the ionization potential depression (IPD). The study of the IPD is illustrated and discussed for aluminum plasmas at mid and solid density and electron temperatures varying from 50eV to 190eV. The method relies on a sampling of the total potential energy of the electron located at an ion being ionized. The potential energy of such electron results from all of the interacting charged particles interacting with it.

  2. Laser-induced resonance states as dynamic suppressors of ionization in high-frequency short pulses

    SciTech Connect

    Barash, Danny; Orel, Ann E.; Baer, Roi

    2000-01-01

    An adiabatic-Floquet formalism is used to study the suppression of ionization in short laser pulses. In the high-frequency limit the adiabatic equations involve only the pulse envelope where transitions are purely ramp effects. For a short-ranged potential having a single-bound state we show that ionization suppression is caused by the appearance of a laser-induced resonance state, which is coupled by the pulse ramp to the ground state and acts to trap ionizing flux. (c) 1999 The American Physical Society.

  3. Ab initio calculation of anion proton affinity and ionization potential for energetic ionic liquids.

    PubMed

    Carlin, Caleb; Gordon, Mark S

    2015-04-05

    Developing a better understanding of the bulk properties of ionic liquids requires accurate measurements of the underlying molecular properties that help to determine the bulk behavior. Two computational methods are used in this work: second-order perturbation theory (MP2) and completely renormalized coupled cluster theory [CR-CC(2,3)], to calculate the proton affinity and ionization potential of a set of anions that are of interest for use in protic, energetic ionic liquids. Compared with experimental values, both methods predict similarly accurate proton affinities, but CR-CC(2,3) predicts significantly more accurate ionization potentials. It is concluded that more time intensive methods like CR-CC(2,3) are required in calculations involving open shell states like the ionization potential.

  4. Variation in Surface Ionization Potentials of Pristine and Hydrated BiVO4

    PubMed Central

    2015-01-01

    Bismuth vanadate (BiVO4) is a promising material for photoelectrochemical water splitting and photocatalytic degradation of organic moieties. We evaluate the ionization potentials of the (010) surface termination of BiVO4 using first-principles simulations. The electron removal energy of the pristine termination (7.2 eV) validates recent experimental reports. The effect of water absorption on the ionization potentials is considered using static models as well as structures obtained from molecular dynamics simulations. Owing to the large molecular dipole of H2O, adsorption stabilizes the valence band edge (downward band bending), thereby increasing the ionization potentials. These results provide new understanding to the role of polar layers on complex oxide semiconductors, with importance for the design of efficient photoelectrodes for water splitting. PMID:26191376

  5. Variation in Surface Ionization Potentials of Pristine and Hydrated BiVO4.

    PubMed

    Crespo-Otero, Rachel; Walsh, Aron

    2015-06-18

    Bismuth vanadate (BiVO4) is a promising material for photoelectrochemical water splitting and photocatalytic degradation of organic moieties. We evaluate the ionization potentials of the (010) surface termination of BiVO4 using first-principles simulations. The electron removal energy of the pristine termination (7.2 eV) validates recent experimental reports. The effect of water absorption on the ionization potentials is considered using static models as well as structures obtained from molecular dynamics simulations. Owing to the large molecular dipole of H2O, adsorption stabilizes the valence band edge (downward band bending), thereby increasing the ionization potentials. These results provide new understanding to the role of polar layers on complex oxide semiconductors, with importance for the design of efficient photoelectrodes for water splitting.

  6. Exact Potential Driving the Electron Dynamics in Enhanced Ionization of H(2)(+).

    PubMed

    Khosravi, Elham; Abedi, Ali; Maitra, Neepa T

    2015-12-31

    It was recently shown that the exact factorization of the electron-nuclear wave function allows the construction of a Schrödinger equation for the electronic system, in which the potential contains exactly the effect of coupling to the nuclear degrees of freedom and any external fields. Here we study the exact potential acting on the electron in charge-resonance enhanced ionization in a model one-dimensional H(2)(+) molecule. We show there can be significant differences between the exact potential and that used in the traditional quasistatic analyses, arising from nonadiabatic coupling to the nuclear system, and that these are crucial to include for accurate simulations of time-resolved ionization dynamics and predictions of the ionization yield.

  7. Drifting potential humps in ionization zones: The ``propeller blades'' of high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Anders, André; Panjan, Matjaž; Franz, Robert; Andersson, Joakim; Ni, Pavel

    2013-09-01

    Ion energy distribution functions measured for high power impulse magnetron sputtering show features, such as a broad peak at several 10 eV with an extended tail, as well as asymmetry with respect to E ×B, where E and B are the local electric and magnetic field vectors, respectively. Here it is proposed that those features are due to the formation of a potential hump of several 10 V in each of the traveling ionization zones. Potential hump formation is associated with a negative-positive-negative space charge that naturally forms in ionization zones driven by energetic drifting electrons.

  8. The Diagnostic Potential of Transition Region Lines Undergoing Transient Ionization in Dynamic Events

    NASA Astrophysics Data System (ADS)

    Doyle, J. G.; Giunta, A.; Singh, A.; Madjarska, M. S.; Summers, H.; Kellett, B. J.; O'Mullane, M.

    2012-09-01

    We discuss the diagnostic potential of high cadence UV spectral data when transient ionization is considered. For this we use high cadence UV spectra taken during the impulsive phase of a solar flare (observed with instruments on-board the Solar Maximum Mission) which showed excellent correspondence with hard X-ray pulses. The ionization fraction of the transition region ion O v and, in particular, the contribution function for the O v 1371 Å line are computed within the Atomic Data and Analysis Structure, which is a collection of fundamental and derived atomic data and codes to manipulate them. Due to transient ionization, the O v 1371 Å line is enhanced in the first fraction of a second with the peak in the line contribution function occurring initially at a higher electron temperature than in ionization equilibrium. The rise time and enhancement factor depend mostly on the electron density. The fractional increase in the O v 1371 Å emissivity due to transient ionization can reach a factor of two-four and can explain the fast response in the line flux of transition regions ions during the impulsive phase of flares solely as a result of transient ionization. This technique can be used to diagnose the electron temperature and density of solar flares observed with the forthcoming Interface Region Imaging Spectrograph.

  9. Ionization potential and electron affinity for six common explosive compounds by DFT, MP2, and CBS-QB3

    SciTech Connect

    Cooper, Jason K.; Grant, Christian D.; Zhang, Jin Z.

    2012-07-20

    The vertical and adiabatic ionization potential (IPV and IPA) and vertical electron affinity (EAV) for six explosives (RDX, HMX, TNT, PETN, HMTD, and TATP) have been studied by ab initio computational methods. The IPV was calculated using MP2 and CBS-QB3 while the IPA was calculated with B3LYP, CAM-B3LYP, ω B97XD, B2PLYP, and MP2. RDX and TNT IPA’s were also reported using CBS -QB3. Excluding results by CBS-QB3, B3LYP and B2PLYPD provided superior and more consistent results for calculating the IP. The EAV were calculated using the same methods however B3LYP performed the worst in this case with MP2 and B2PLYPD predicting values closest to those made by CBS-QB3, which was used a reference due to lacking experimental data. Basis set effects were evaluated using 6- 31+G(d,p), 6-311+G(d,p), and 6-311+(3df,2p) for both IP and EA. 6-31+G(d,p) gave satisfactory results for calculating both IP however 6-311+G(3df,2p) had improved results in calculating the EA. The four nitro containing compounds had exothermic reduction potentials while the peroxides were unfavorable. Additionally, it was seen that RDX, HMX, TATP and HMTD were unstable in their reduced forms. Results are aimed to assist detection and screening methods.

  10. Ionization potential and electron affinity for six common explosive compounds by DFT, MP2, and CBS-QB3

    DOE PAGES

    Cooper, Jason K.; Grant, Christian D.; Zhang, Jin Z.

    2012-07-20

    The vertical and adiabatic ionization potential (IPV and IPA) and vertical electron affinity (EAV) for six explosives (RDX, HMX, TNT, PETN, HMTD, and TATP) have been studied by ab initio computational methods. The IPV was calculated using MP2 and CBS-QB3 while the IPA was calculated with B3LYP, CAM-B3LYP, ω B97XD, B2PLYP, and MP2. RDX and TNT IPA’s were also reported using CBS -QB3. Excluding results by CBS-QB3, B3LYP and B2PLYPD provided superior and more consistent results for calculating the IP. The EAV were calculated using the same methods however B3LYP performed the worst in this case with MP2 and B2PLYPDmore » predicting values closest to those made by CBS-QB3, which was used a reference due to lacking experimental data. Basis set effects were evaluated using 6- 31+G(d,p), 6-311+G(d,p), and 6-311+(3df,2p) for both IP and EA. 6-31+G(d,p) gave satisfactory results for calculating both IP however 6-311+G(3df,2p) had improved results in calculating the EA. The four nitro containing compounds had exothermic reduction potentials while the peroxides were unfavorable. Additionally, it was seen that RDX, HMX, TATP and HMTD were unstable in their reduced forms. Results are aimed to assist detection and screening methods.« less

  11. Rydberg levels and ionization potential of francium measured by laser-resonance ionization in a hot cavity

    SciTech Connect

    Andreev, S.V.; Mishin, V.I.; Letokhov, V.S.

    1988-10-01

    A highly sensitive method of detecting atoms in samples has been used for spectral investigations of the rare radioactive element Fr. The method is based on laser-resonance photoionization of Fr atoms in a hot quasi-enclosed cavity. The investigations have been carried out with samples in which short-lived radioactive /sup 221/Fr atoms formed at a rate of approximately 10/sup 3/ atoms/sec. The data obtained, to our knowledge for the first time, on the energies of the high-lying Rydberg levels of the /sup 2/S/sub 1/2/ and /sup 2/D series have made it possible to determine the electron binding energy of the 7p /sup 2/P/sub 3/2/ state and to establish the ionization potential of Fr accurately.

  12. Size-dependent error of the density functional theory ionization potential in vacuum and solution

    SciTech Connect

    Sosa Vazquez, Xochitl A.; Isborn, Christine M.

    2015-12-28

    Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potential for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.

  13. Size-dependent error of the density functional theory ionization potential in vacuum and solution

    SciTech Connect

    Sosa Vazquez, Xochitl A.; Isborn, Christine M.

    2015-12-22

    Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potential for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. As a result, in vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.

  14. Ionization Properties of Phospholipids Determined by Zeta Potential Measurements

    PubMed Central

    Sathappa, Murugappan; Alder, Nathan N.

    2016-01-01

    Biological membranes are vital for diverse cellular functions such as maintaining cell and organelle structure, selective permeability, active transport, and signaling. The surface charge of the membrane bilayer plays a critical role in these myriad processes. For most biomembranes, the surface charge of anionic phospholipids contributes to the negative surface charge density within the interfacial region of the bilayer. To quantify surface charge, it is essential to understand the proton dissociation behavior of the titratable headgroups within such lipids. We describe a protocol that uses model membranes for electrokinetic zeta potential measurements coupled with data analysis using Gouy-Chapman-Stern formalism to determine the pKa value of the component lipids. A detailed example is provided for homogeneous bilayers composed of the monoanionic lipid phosphatidylglycerol. This approach can be adapted for the measurement of bilayers with a heterogeneous lipid combination, as well as for lipids with multiple titratable sites in the headgroup (e.g., cardiolipin). PMID:27928550

  15. Optimizing Adiabaticity in NMR

    NASA Astrophysics Data System (ADS)

    Vandermause, Jonathan; Ramanathan, Chandrasekhar

    We demonstrate the utility of Berry's superadiabatic formalism for numerically finding control sequences that implement quasi-adiabatic unitary transformations. Using an iterative interaction picture, we design a shortcut to adiabaticity that reduces the time required to perform an adiabatic inversion pulse in liquid state NMR. We also show that it is possible to extend our scheme to two or more qubits to find adiabatic quantum transformations that are allowed by the control algebra, and demonstrate a two-qubit entangling operation in liquid state NMR. We examine the pulse lengths at which the fidelity of these adiabatic transitions break down and compare with the quantum speed limit.

  16. Use of Relativistic Effective Core Potentials in the Calculation of Electron-Impact Ionization Cross Sections

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Kim, Yong-Ki

    1999-01-01

    Based on the Binary-Encounter-Bethe (BEB) model, the advantage of using relativistic effective core potentials (RECP) in the calculation of total ionization cross sections of heavy atoms or molecules containing heavy atoms is discussed. Numerical examples for Ar, Kr, Xe, and WF6 are presented.

  17. Size-dependent error of the density functional theory ionization potential in vacuum and solution

    DOE PAGES

    Sosa Vazquez, Xochitl A.; Isborn, Christine M.

    2015-12-22

    Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potentialmore » for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. As a result, in vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.« less

  18. HF echoes from ionization potentially produced by high-altitude discharges

    SciTech Connect

    Roussel-Dupre, R.; Fitzgerald, T.J.; Symbalisty, E.

    1997-04-01

    In this paper the authors report on recent radar measurements taken during the month of October 1994 with the LDG HF radar in the Ivory Coast, Africa as part of the International Equatorial Electrojet Year. The purpose of this experimental effort in part was to study the effects of thunderstorms on the ionosphere. At the same time, the authors decided to carry out a set of experiments of an exploratory nature to look for echoes that could potentially arise from ionization produced in the mesosphere. The two leading candidates for producing transient ionization in the mesosphere are meteors and high-altitude discharges. Each is discussed in the context of these measurements.

  19. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography

    SciTech Connect

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C. D.; Chen, Jing

    2016-06-22

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. Here, we showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.

  20. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography

    DOE PAGES

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; ...

    2016-06-22

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. Inmore » addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. Here, we showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.« less

  1. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography

    PubMed Central

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C. D.; Chen, Jing

    2016-01-01

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules. PMID:27329071

  2. Interference in tunneling ionization involving an electron bound by two short-range potentials

    NASA Astrophysics Data System (ADS)

    Golovinski, P. A.; Drobyshev, A. A.

    2017-02-01

    The phenomenon of tunneling ionization involving electron bound by two delta-potentials under the action of a constant electric field has been studied. Distributions of the electron-current density for two different initial states are found. Dependence of the emission current on the orientation of potentials relative to the field direction and the distance between their centers is established. Conditions of manifestation of the interference effects are determined.

  3. Spectroscopic evidence for the coexistence of tetragonal and trigonal minima within the exited state adiabatic potential energy surfaces of hexachlorotellurate and -selenate complexes

    NASA Astrophysics Data System (ADS)

    Cremers, C.; Degen, J.

    1998-11-01

    Coexistence of Jahn-Teller minima resulting from the coupling to different accepting modes within the adiabatic potential energy surface (APES) is not possible within the framework of linear vibronic coupling theory. For the lowest exited triplet state 3T1u of inorganic complexes with s2 electronic ground-state configuration, such a coexistence, due to quadratic coupling effects, is discussed. As a direct experimental evidence two vibronic progressions with different accepting modes in the emission spectra resulting from a single electronic state are observed in the emission spectra of the title compounds. The observation of vibronic finestructure in the emission spectra of [TeCl6]2- is reported for the first time.

  4. EFFECT OF COULOMB COLLISIONS ON THE GRAVITATIONAL SETTLING OF LOW AND HIGH FIRST IONIZATION POTENTIAL ELEMENTS

    SciTech Connect

    Bo, Iselin M. Th.; Esser, Ruth; Lie-Svendsen, Oystein E-mail: ruth.esser@uit.no

    2013-05-20

    We model the effect of gravitational settling in the upper chromosphere on O, Fe, Si, and Ne, studying whether Coulomb collisions between ionized low First Ionization Potential (FIP) elements and protons is sufficient to cause abundance enhancements relative to oxygen. We find that low-FIP abundance enhancements comparable to observed values can be obtained provided the hydrogen ionization degree lies in the approximate range 10%-30%, which agrees with chromospheric models. Lower or higher hydrogen ionization causes the FIP-effect to become smaller or absent (depletion of all heavy elements). Iron must be almost fully ionized in order to become enriched relative to high-FIP elements, and this requires a high iron photoionization rate. The time scale necessary to produce the enrichment increases rapidly with increasing H ionization. For iron in a background from a semiempirical chromospheric model, with an H ion fraction of the order of 30%-40% in the upper chromosphere, 1-2 hr of settling is required to produce enhancements comparable to observations. The absolute abundance (relative to H), which monotonically decreases with time during settling, has by that time decreased by less than 50% in the same altitude region. With the same background conditions, the silicon abundance is more strongly enhanced by the settling than the iron abundance. The high-FIP element neon is depleted, relative to O and low-FIP elements, in the same background and altitude region where iron is enhanced, typically by 50% or more relative to O after 1-2 hr of settling.

  5. The adiabatic energy change of plasma electrons and the frame dependence of the cross-shock potential at collisionless magnetosonic shock waves

    NASA Technical Reports Server (NTRS)

    Goodrich, C. C.; Scudder, J. D.

    1984-01-01

    The adiabatic energy gain of electrons in the stationary electric and magnetic field structure of collisionless shock waves was examined analytically in reference to conditions of the earth's bow shock. The study was performed to characterize the behavior of electrons interacting with the cross-shock potential. A normal incidence frame (NIF) was adopted in order to calculate the reversible energy change across a time stationary shock, and comparisons were made with predictions made by the de Hoffman-Teller (HT) model (1950). The electron energy gain, about 20-50 eV, is demonstrated to be consistent with a 200-500 eV potential jump in the bow shock quasi-perpendicular geometry. The electrons lose energy working against the solar wind motional electric field. The reversible energy process is close to that modeled by HT, which predicts that the motional electric field vanishes and the electron energy gain from the electric potential is equated to the ion energy loss to the potential.

  6. Accurate ab initio determination of the adiabatic potential energy function and the Born-Oppenheimer breakdown corrections for the electronic ground state of LiH isotopologues

    NASA Astrophysics Data System (ADS)

    Holka, Filip; Szalay, Péter G.; Fremont, Julien; Rey, Michael; Peterson, Kirk A.; Tyuterev, Vladimir G.

    2011-03-01

    High level ab initio potential energy functions have been constructed for LiH in order to predict vibrational levels up to dissociation. After careful tests of the parameters of the calculation, the final adiabatic potential energy function has been composed from: (a) an ab initio nonrelativistic potential obtained at the multireference configuration interaction with singles and doubles level including a size-extensivity correction and quintuple-sextuple ζ extrapolations of the basis, (b) a mass-velocity-Darwin relativistic correction, and (c) a diagonal Born-Oppenheimer (BO) correction. Finally, nonadiabatic effects have also been considered by including a nonadiabatic correction to the kinetic energy operator of the nuclei. This correction is calculated from nonadiabatic matrix elements between the ground and excited electronic states. The calculated vibrational levels have been compared with those obtained from the experimental data [J. A. Coxon and C. S. Dickinson, J. Chem. Phys. 134, 9378 (2004)]. It was found that the calculated BO potential results in vibrational levels which have root mean square (rms) deviations of about 6-7 cm-1 for LiH and ˜3 cm-1 for LiD. With all the above mentioned corrections accounted for, the rms deviation falls down to ˜1 cm-1. These results represent a drastic improvement over previous theoretical predictions of vibrational levels for all isotopologues of LiH.

  7. Accurate ab initio determination of the adiabatic potential energy function and the Born-Oppenheimer breakdown corrections for the electronic ground state of LiH isotopologues.

    PubMed

    Holka, Filip; Szalay, Péter G; Fremont, Julien; Rey, Michael; Peterson, Kirk A; Tyuterev, Vladimir G

    2011-03-07

    High level ab initio potential energy functions have been constructed for LiH in order to predict vibrational levels up to dissociation. After careful tests of the parameters of the calculation, the final adiabatic potential energy function has been composed from: (a) an ab initio nonrelativistic potential obtained at the multireference configuration interaction with singles and doubles level including a size-extensivity correction and quintuple-sextuple ζ extrapolations of the basis, (b) a mass-velocity-Darwin relativistic correction, and (c) a diagonal Born-Oppenheimer (BO) correction. Finally, nonadiabatic effects have also been considered by including a nonadiabatic correction to the kinetic energy operator of the nuclei. This correction is calculated from nonadiabatic matrix elements between the ground and excited electronic states. The calculated vibrational levels have been compared with those obtained from the experimental data [J. A. Coxon and C. S. Dickinson, J. Chem. Phys. 134, 9378 (2004)]. It was found that the calculated BO potential results in vibrational levels which have root mean square (rms) deviations of about 6-7 cm(-1) for LiH and ∼3 cm(-1) for LiD. With all the above mentioned corrections accounted for, the rms deviation falls down to ∼1 cm(-1). These results represent a drastic improvement over previous theoretical predictions of vibrational levels for all isotopologues of LiH.

  8. Sudden transition from a stable to an unstable harmonic trap as the adiabatic potential parameter is varied in a time-periodic harmonic trap

    NASA Astrophysics Data System (ADS)

    Moiseyev, Nimrod

    2013-09-01

    It has been shown already that when the harmonic trap is opened (or closed) as a function of time while keeping the adiabatic parameter μ=[dω(t)/dt]/ω2(t) fixed, a sharp transition from an oscillatory to a monotonic exponential dynamics occurs at μ=2 [Uzdin, Dalla Torre, Kosloff, and Moiseyev, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.88.022505 88, 022505 (2013)]. Here we show that by using time-dependent linear coordinate transformation the time-dependent Schrödinger equation with Hermitian time-dependent Hamiltonian is transformed into a time-dependent Schrödinger equation with a time-independent harmonic oscillator with the dimensionless frequency of 1-(μ/2)2. At μ=2 a transition to a non-Hermitian Hamiltonian is obtained as the potential well is transformed to a parabolic potential barrier. While in a harmonic trap noninteracting particles have classical periodic motions, they are pushed apart exponentially in time as the potential well is suddenly transformed into a parabolic potential barrier in the new variable representation.

  9. The ionization potential of aqueous hydroxide computed using many-body perturbation theory

    SciTech Connect

    Opalka, Daniel Sprik, Michiel; Pham, Tuan Anh; Galli, Giulia

    2014-07-21

    The ionization potentials of electrolyte solutions provide important information about the electronic structure of liquids and solute-solvent interactions. We analyzed the positions of solute and solvent bands of aqueous hydroxide and the influence of the solvent environment on the ionization potential of hydroxide ions. We used the concept of a computational hydrogen electrode to define absolute band positions with respect to vacuum. We found that many-body perturbation theory in the G{sub 0} W{sub 0} approximation substantially improves the relative and absolute positions of the band edges of solute and solvent with respect to those obtained within Density Functional Theory, using semi-local functionals, yielding results in satisfactory agreement with recent experiments.

  10. Equation of motion coupled cluster methods for electron attachment and ionization potential in polyacenes

    SciTech Connect

    Bhaskaran-Nair, Kiran; Kowalski, Karol; Jarrell, Mark; Moreno, Juana; Shelton, William A.

    2015-11-05

    Polyacenes have attracted considerable attention due to their use in organic based optoelectronic materials. Polyacenes are polycyclic aromatic hydrocarbons composed of fused benzene rings. Key to understanding and design of new functional materials is an understanding of their excited state properties starting with their electron affinity (EA) and ionization potential (IP). We have developed a highly accurate and com- putationally e*fficient EA/IP equation of motion coupled cluster singles and doubles (EA/IP-EOMCCSD) method that is capable of treating large systems and large basis set. In this study we employ the EA/IP-EOMCCSD method to calculate the electron affinity and ionization potential of naphthalene, anthracene, tetracene, pentacene, hex- acene and heptacene. We have compared our results with other previous theoretical studies and experimental data. Our EA/IP results are in very good agreement with experiment and when compared with the other theoretical investigations our results represent the most accurate calculations as compared to experiment.

  11. Multireference configuration interaction calculations of the first six ionization potentials of the uranium atom

    SciTech Connect

    Bross, David H.; Parmar, Payal; Peterson, Kirk A.

    2015-11-14

    The first 6 ionization potentials (IPs) of the uranium atom have been calculated using multireference configuration interaction (MRCI+Q) with extrapolations to the complete basis set limit using new all-electron correlation consistent basis sets. The latter was carried out with the third-order Douglas-Kroll-Hess Hamiltonian. Correlation down through the 5s5p5d electrons has been taken into account, as well as contributions to the IPs due to the Lamb shift. Spin-orbit coupling contributions calculated at the 4-component Kramers restricted configuration interaction level, as well as the Gaunt term computed at the Dirac-Hartree-Fock level, were added to the best scalar relativistic results. The final ionization potentials are expected to be accurate to at least 5 kcal/mol (0.2 eV) and thus more reliable than the current experimental values of IP{sub 3} through IP{sub 6}.

  12. Multireference configuration interaction calculations of the first six ionization potentials of the uranium atom

    NASA Astrophysics Data System (ADS)

    Bross, David H.; Parmar, Payal; Peterson, Kirk A.

    2015-11-01

    The first 6 ionization potentials (IPs) of the uranium atom have been calculated using multireference configuration interaction (MRCI+Q) with extrapolations to the complete basis set limit using new all-electron correlation consistent basis sets. The latter was carried out with the third-order Douglas-Kroll-Hess Hamiltonian. Correlation down through the 5s5p5d electrons has been taken into account, as well as contributions to the IPs due to the Lamb shift. Spin-orbit coupling contributions calculated at the 4-component Kramers restricted configuration interaction level, as well as the Gaunt term computed at the Dirac-Hartree-Fock level, were added to the best scalar relativistic results. The final ionization potentials are expected to be accurate to at least 5 kcal/mol (0.2 eV) and thus more reliable than the current experimental values of IP3 through IP6.

  13. Angle-Dependent Ionization of Small Molecules by Time-Dependent Configuration Interaction and an Absorbing Potential.

    PubMed

    Krause, Pascal; Schlegel, H Bernhard

    2015-06-04

    The angle-dependence of strong field ionization of O2, N2, CO2, and CH2O has been studied theoretically using a time-dependent configuration interaction approach with a complex absorbing potential (TDCIS-CAP). Calculation of the ionization yields as a function of the direction of polarization of the laser pulse produces three-dimensional surfaces of the angle-dependent ionization probability. These three-dimensional shapes and their variation with laser intensity can be interpreted in terms of ionization from the highest occupied molecular orbital (HOMO) and lower lying orbitals, and the Dyson orbitals for the ground and excited states of the cations.

  14. The excitation energies, ionization potentials, and oscillator strengths of neutral and ionized species of Uuq (Z=114) and the homolog elements Ge, Sn, and Pb.

    PubMed

    Yu, Y J; Dong, C Z; Li, J G; Fricke, B

    2008-03-28

    Multiconfiguration Dirac-Fock method is employed to calculate the excitation energies, ionization potentials, oscillator strengths, and radii for all neutral and up to four times ionized species of element Uuq, as well as the homolog elements Ge, Sn, and Pb. Using an extrapolative scheme, improved ionization potentials of Uuq were obtained with an uncertainty of less than 2000 cm(-1). Two relatively stronger resonance transitions are predicted for the element Uuq. In particular, the strongest line in Uuq, corresponding to the [6d(10)7s(2)7p(3/2)8s(1/2)](1)-->[6d(10)7s(2)7p(3/2)(2)](2) transition at 22 343 cm(-1), just lies in the prime energy region of experimental measurement.

  15. Communication: Physical origins of ionization potential shifts in mixed carboxylic acids and water complexes

    NASA Astrophysics Data System (ADS)

    Gu, Quanli; Tang, Zhen; Su, Peifeng; Wu, Wei; Yang, Zhijun; Trindle, Carl O.; Knee, Joseph L.

    2016-08-01

    The ionization potential (IP) of the aromatic alpha hydroxy carboxylic acid, 9-hydroxy-9-fluorene carboxylic acid (9HFCA), is shifted by complexation with hydrogen bonding ligands such as water and formic acid. Generalized Kohn-Sham energy decomposition analysis decomposes the intermolecular binding energies into a frozen energy term, polarization, correlation, and/or dispersion energy terms, as well as terms of geometric relaxation and zero point energy. We observe that in each dimer the attractive polarization always increases upon ionization, enhancing binding in the cation and shifting the IP toward the red. For 9HFCA—H2O, a substantial decrease of the repulsive frozen energy in cation further shifts the IP toward red. For 9HFCA—HCOOH, the increase of the frozen energy actually occurs in the cation and shifts the IP toward blue. Consistent with the experimental measurements, our analysis provides new, non-intuitive perspectives on multiple hydrogen bonds interactions in carboxylic acids and water complexes.

  16. Potential Energy Curves and Collisions Integrals of Air Components. 2; Interactions Involving Ionized Atoms

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Collision integrals are fundamental quantities required to determine the transport properties of the environment surrounding aerospace vehicles in the upper atmosphere. These collision integrals can be determined as a function of temperature from the potential energy curves describing the atomic and molecular collisions. Ab initio calculations provide a practical method of computing the required interaction potentials. In this work we will discuss recent advances in scattering calculations with an emphasis on the accuracy that is obtainable. Results for interactions of the atoms and ionized atoms of nitrogen and oxygen will be reviewed and their application to the determination of transport properties, such as diffusion and viscosity coefficients, will be examined.

  17. Increasing the applicability of density functional theory. IV. Consequences of ionization-potential improved exchange-correlation potentials

    SciTech Connect

    Verma, Prakash; Bartlett, Rodney J.

    2014-05-14

    This paper's objective is to create a “consistent” mean-field based Kohn-Sham (KS) density functional theory (DFT) meaning the functional should not only provide good total energy properties, but also the corresponding KS eigenvalues should be accurate approximations to the vertical ionization potentials (VIPs) of the molecule, as the latter condition attests to the viability of the exchange-correlation potential (V{sub XC}). None of the prominently used DFT approaches show these properties: the optimized effective potential V{sub XC} based ab initio dft does. A local, range-separated hybrid potential cam-QTP-00 is introduced as the basis for a “consistent” KS DFT approach. The computed VIPs as the negative of KS eigenvalue have a mean absolute error of 0.8 eV for an extensive set of molecule's electron ionizations, including the core. Barrier heights, equilibrium geometries, and magnetic properties obtained from the potential are in good agreement with experiment. A similar accuracy with less computational efforts can be achieved by using a non-variational global hybrid variant of the QTP-00 approach.

  18. Boiling point determination using adiabatic Gibbs ensemble Monte Carlo simulations: application to metals described by embedded-atom potentials.

    PubMed

    Gelb, Lev D; Chakraborty, Somendra Nath

    2011-12-14

    The normal boiling points are obtained for a series of metals as described by the "quantum-corrected Sutton Chen" (qSC) potentials [S.-N. Luo, T. J. Ahrens, T. Çağın, A. Strachan, W. A. Goddard III, and D. C. Swift, Phys. Rev. B 68, 134206 (2003)]. Instead of conventional Monte Carlo simulations in an isothermal or expanded ensemble, simulations were done in the constant-NPH adabatic variant of the Gibbs ensemble technique as proposed by Kristóf and Liszi [Chem. Phys. Lett. 261, 620 (1996)]. This simulation technique is shown to be a precise tool for direct calculation of boiling temperatures in high-boiling fluids, with results that are almost completely insensitive to system size or other arbitrary parameters as long as the potential truncation is handled correctly. Results obtained were validated using conventional NVT-Gibbs ensemble Monte Carlo simulations. The qSC predictions for boiling temperatures are found to be reasonably accurate, but substantially underestimate the enthalpies of vaporization in all cases. This appears to be largely due to the systematic overestimation of dimer binding energies by this family of potentials, which leads to an unsatisfactory description of the vapor phase.

  19. The calculated ionization potential and electron affinity of cationic cyanine dyes.

    PubMed

    Delgado, Juan C; Ishikawa, Yasuyuki; Selsby, Ronald G

    2009-01-01

    The ionization potential (IP) and electron affinity (EA) of the isolated single dye molecule and a hypothetical isolated J-aggregated dimer are calculated as an energy difference between separately minimized ground and ionized states. Three quantum methods are employed: density functional theory (DFT) Gaussian03 B3LYP/6-311G** (++G**); DFT using Dmol(3); and a modification of CNDO/S, called CNDO/S-Deltazeta, which is developed for rapid calculation of the IP and EA. Results indicate that for the monomer, 1,1'-dimethyl-2,2'carbocyanine chloride, the vertical IP and EA are 6.2 +/- 0.1 and 1.90 +/- 0.05 eV, respectively. This is consistent with the threshold IP and EA predicted by the Yianoulis and Nelson "Statistical Model" of spectral sensitization. For the isolated J-aggregated dimer, whose configuration is consistent with being adsorbed on a dielectric substrate, the calculations predict a value of 5.2 +/- 0.2 and 2.35 +/- 0.05 eV for the IP and EA, respectively. Significant charge density is removed from the halide anion in the ionization process. The HOMO of the dye molecule is an MO associated with the halide anion. Calculation of the isolated entities is a necessary preliminary step in the study of the IP and EA of the adsorbed dye monomer and aggregate.

  20. Probing mechanistic photochemistry of glyoxal in the gas phase by ab initio calculations of potential-energy surfaces and adiabatic and nonadiabatic rates.

    PubMed

    Li, Quan-Song; Zhang, Feng; Fang, Wei-Hai; Yu, Jian-Guo

    2006-02-07

    In the present work, the wavelength-dependent mechanistic photochemistry of glyoxal in the gas phase has been explored by ab initio calculations of potential-energy surfaces, surface crossing points, and adiabatic and nonadiabatic rates. The CHOCHO molecules in S1 by photoexcitation at 393-440 nm mainly decay to the ground state via internal conversion, which is followed by molecular eliminations to form CO, H2CO,H2, and HCOH. Upon photodissociation of CHOCHO at 350-390 nm, intersystem crossing to T1 followed by the C-C bond cleavage is the dominant process in this wavelength range, which is responsible for the formation of the CHO radicals. The C-C and C-H bond cleavages along the S1 pathway are energetically accessible upon photodissociation of CHOCHO at 290-310 nm, which can compete with the S1-->T1 intersystem crossing process. The present study predicts that the C-H bond cleavage on the S1 surface is probably a new photolysis pathway at high excitation energy, which has not been observed experimentally. In addition, the trans-cis isomerization is predicted to occur more easily in the ground state than in the excited states.

  1. Photoelectron angular distributions of H ionization in low energy regime: Comparison between different potentials

    NASA Astrophysics Data System (ADS)

    Song, Shu-Na; Liang, Hao; Peng, Liang-You; Jiang, Hong-Bing

    2016-09-01

    We theoretically investigate the low energy part of the photoelectron spectra in the tunneling ionization regime by numerically solving the time-dependent Schrdinger equation for different atomic potentials at various wavelengths. We find that the shift of the first above-threshold ionization (ATI) peak is closely related to the interferences between electron wave packets, which are controlled by the laser field and largely independent of the potential. By gradually changing the short-range potential to the long-range Coulomb potential, we show that the long-range potential’s effect is mainly to focus the electrons along the laser’s polarization and to generate the spider structure by enhancing the rescattering process with the parent ion. In addition, we find that the intermediate transitions and the Rydberg states have important influences on the number and the shape of the lobes near the threshold. Project supported by the National Natural Science Foundation of China (Grant Nos. 11322437 and 11574010) and the National Basic Research Program of China (Grant No. 2013CB922402).

  2. Wireless adiabatic power transfer

    SciTech Connect

    Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.

    2011-03-15

    Research Highlights: > Efficient and robust mid-range wireless energy transfer between two coils. > The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. > Wireless energy transfer is insensitive to any resonant constraints. > Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  3. Adiabatic states derived from a spin-coupled diabatic transformation: semiclassical trajectory study of photodissociation of HBr and the construction of potential curves for LiBr+.

    PubMed

    Valero, Rosendo; Truhlar, Donald G; Jasper, Ahren W

    2008-06-26

    The development of spin-coupled diabatic representations for theoretical semiclassical treatments of photodissociation dynamics is an important practical goal, and some of the assumptions required to carry this out may be validated by applications to simple systems. With this objective, we report here a study of the photodissociation dynamics of the prototypical HBr system using semiclassical trajectory methods. The valence (spin-free) potential energy curves and the permanent and transition dipole moments were computed using high-level ab initio methods and were transformed to a spin-coupled diabatic representation. The spin-orbit coupling used in the transformation was taken as that of atomic bromine at all internuclear distances. Adiabatic potential energy curves, nonadiabatic couplings and transition dipole moments were then obtained from the diabatic ones and were used in all the dynamics calculations. Nonadiabatic photodissociation probabilities were computed using three semiclassical trajectory methods, namely, coherent switching with decay of mixing (CSDM), fewest switches with time uncertainty (FSTU), and its recently developed variant with stochastic decoherence (FTSU/SD), each combined with semiclassical sampling of the initial vibrational state. The calculated branching fraction to the higher fine-structure level of the bromine atom is in good agreement with experiment and with more complete theoretical treatments. The present study, by comparing our new calculations to wave packet calculations with distance-dependent ab initio spin-orbit coupling, validates the semiclassical trajectory methods, the semiclassical initial state sample scheme, and the use of a distance-independent spin-orbit coupling for future applications to polyatomic photodissociation. Finally, using LiBr(+) as a model system, it is shown that accurate spin-coupled potential curves can also be constructed for odd-electron systems using the same strategy as for HBr.

  4. New relationships connecting the dipole polarizability, radius, and second ionization potential for atoms.

    PubMed

    Hohm, Uwe; Thakkar, Ajit J

    2012-01-12

    The atomic dipole polarizability α of the 101 elements from He to No is related to the second ionization potential I₂ and the Waber-Cromer radius r(WC). Our recommended model is the function α = P₁·I₂⁻⁴ + P₂·r(WC)(3) I₂(y). With the parameters P₁ = 2.26, P₂ = 3.912, and y = 0.439, it reproduces the polarizabilities of all 101 elements with a mean absolute deviation of 7.5 au.

  5. Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies.

    PubMed

    Bulat, Felipe A; Toro-Labbé, Alejandro; Brinck, Tore; Murray, Jane S; Politzer, Peter

    2010-11-01

    We describe a procedure for performing quantitative analyses of fields f(r) on molecular surfaces, including statistical quantities and locating and evaluating their local extrema. Our approach avoids the need for explicit mathematical representation of the surface and can be implemented easily in existing graphical software, as it is based on the very popular representation of a surface as collection of polygons. We discuss applications involving the volumes, surface areas and molecular surface electrostatic potentials, and local ionization energies of a group of 11 molecules.

  6. Multireference configuration interaction calculations of the first six ionization potentials of the uranium atom

    DOE PAGES

    Bross, David H.; Parmar, Payal; Peterson, Kirk A.

    2015-11-12

    The first 6 ionization potentials (IPs) of the uranium atom have been calculated using multireference configuration interaction (MRCI+Q) with extrapolations to the complete basis set (CBS) limit using new all-electron correlation consistent basis sets. The latter were carried out with the third-order Douglas-Kroll-Hess Hamiltonian. Correlation down through the 5s5p5d electrons have been taken into account, as well as contributions to the IPs due to the Lamb shift. Spin-orbit coupling contributions calculated at the 4-component Kramers restricted configuration interaction level, as well as the Gaunt term computed at the Dirac-Hartree-Fock level, were added to the best scalar relativistic results. As amore » result, the final ionization potentials are expected to be accurate to at least 5 kcal/mol (0.2 eV), and thus more reliable than the current experimental values of IP3 through IP6.« less

  7. Multireference configuration interaction calculations of the first six ionization potentials of the uranium atom

    SciTech Connect

    Bross, David H.; Parmar, Payal; Peterson, Kirk A.

    2015-11-12

    The first 6 ionization potentials (IPs) of the uranium atom have been calculated using multireference configuration interaction (MRCI+Q) with extrapolations to the complete basis set (CBS) limit using new all-electron correlation consistent basis sets. The latter were carried out with the third-order Douglas-Kroll-Hess Hamiltonian. Correlation down through the 5s5p5d electrons have been taken into account, as well as contributions to the IPs due to the Lamb shift. Spin-orbit coupling contributions calculated at the 4-component Kramers restricted configuration interaction level, as well as the Gaunt term computed at the Dirac-Hartree-Fock level, were added to the best scalar relativistic results. As a result, the final ionization potentials are expected to be accurate to at least 5 kcal/mol (0.2 eV), and thus more reliable than the current experimental values of IP3 through IP6.

  8. Preventive or potential therapeutic value of nutraceuticals against ionizing radiation-induced oxidative stress in exposed subjects and frequent fliers.

    PubMed

    Giardi, Maria Teresa; Touloupakis, Eleftherios; Bertolotto, Delfina; Mascetti, Gabriele

    2013-08-20

    Humans are constantly exposed to ionizing radiation deriving from outer space sources or activities related to medical care. Absorption of ionizing radiation doses over a prolonged period of time can result in oxidative damage and cellular dysfunction inducing several diseases, especially in ageing subjects. In this report, we analyze the effects of ionizing radiation, particularly at low doses, in relation to a variety of human pathologies, including cancer, and cardiovascular and retinal diseases. We discuss scientific data in support of protection strategies by safe antioxidant formulations that can provide preventive or potential therapeutic value in response to long-term diseases that may develop following exposure.

  9. Preventive or Potential Therapeutic Value of Nutraceuticals against Ionizing Radiation-Induced Oxidative Stress in Exposed Subjects and Frequent Fliers

    PubMed Central

    Giardi, Maria Teresa; Touloupakis, Eleftherios; Bertolotto, Delfina; Mascetti, Gabriele

    2013-01-01

    Humans are constantly exposed to ionizing radiation deriving from outer space sources or activities related to medical care. Absorption of ionizing radiation doses over a prolonged period of time can result in oxidative damage and cellular dysfunction inducing several diseases, especially in ageing subjects. In this report, we analyze the effects of ionizing radiation, particularly at low doses, in relation to a variety of human pathologies, including cancer, and cardiovascular and retinal diseases. We discuss scientific data in support of protection strategies by safe antioxidant formulations that can provide preventive or potential therapeutic value in response to long-term diseases that may develop following exposure. PMID:23965979

  10. Parallelizable adiabatic gate teleportation

    NASA Astrophysics Data System (ADS)

    Nakago, Kosuke; Hajdušek, Michal; Nakayama, Shojun; Murao, Mio

    2015-12-01

    To investigate how a temporally ordered gate sequence can be parallelized in adiabatic implementations of quantum computation, we modify adiabatic gate teleportation, a model of quantum computation proposed by Bacon and Flammia [Phys. Rev. Lett. 103, 120504 (2009), 10.1103/PhysRevLett.103.120504], to a form deterministically simulating parallelized gate teleportation, which is achievable only by postselection. We introduce a twisted Heisenberg-type interaction Hamiltonian, a Heisenberg-type spin interaction where the coordinates of the second qubit are twisted according to a unitary gate. We develop parallelizable adiabatic gate teleportation (PAGT) where a sequence of unitary gates is performed in a single step of the adiabatic process. In PAGT, numeric calculations suggest the necessary time for the adiabatic evolution implementing a sequence of L unitary gates increases at most as O (L5) . However, we show that it has the interesting property that it can map the temporal order of gates to the spatial order of interactions specified by the final Hamiltonian. Using this property, we present a controlled-PAGT scheme to manipulate the order of gates by a control qubit. In the controlled-PAGT scheme, two differently ordered sequential unitary gates F G and G F are coherently performed depending on the state of a control qubit by simultaneously applying the twisted Heisenberg-type interaction Hamiltonians implementing unitary gates F and G . We investigate why the twisted Heisenberg-type interaction Hamiltonian allows PAGT. We show that the twisted Heisenberg-type interaction Hamiltonian has an ability to perform a transposed unitary gate by just modifying the space ordering of the final Hamiltonian implementing a unitary gate in adiabatic gate teleportation. The dynamics generated by the time-reversed Hamiltonian represented by the transposed unitary gate enables deterministic simulation of a postselected event of parallelized gate teleportation in adiabatic

  11. The effect of conformation on the ionization energetics of n-butylbenzene. I. A threshold ionization study

    NASA Astrophysics Data System (ADS)

    Tong, Xin; Ford, Mark S.; Dessent, Caroline E. H.; Müller-Dethlefs, Klaus

    2003-12-01

    Conformational isomers of the aromatic hydrocarbon n-butylbenzene have been studied using two-color REMPI (resonance enhanced multiphoton ionization) and MATI (mass analyzed threshold ionization) spectroscopy to explore the effect of conformation on ionization dynamics. Gauche- and anti-cationic conformers were selectively produced by two-color excitation via the respective S1 origins. Adiabatic ionization potentials of the gauche- and anti-conformations were determined to be 70 148 and 69 955±5 cm-1, respectively. Analysis of the REMPI and MATI spectra allowed the determination of the S0 (38 cm-1), S1 (100 cm-1), and D0 (-155 cm-1) gauche- and anti-conformer energy differences. Spectral features and vibrational modes are interpreted with the aid of MP2/cc-pVDZ ab initio calculations, and ionization-induced changes in the molecular conformations discussed.

  12. POTHMF: A program for computing potential curves and matrix elements of the coupled adiabatic radial equations for a hydrogen-like atom in a homogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Chuluunbaatar, O.; Gusev, A. A.; Gerdt, V. P.; Rostovtsev, V. A.; Vinitsky, S. I.; Abrashkevich, A. G.; Kaschiev, M. S.; Serov, V. V.

    2008-02-01

    A FORTRAN 77 program is presented which calculates with the relative machine precision potential curves and matrix elements of the coupled adiabatic radial equations for a hydrogen-like atom in a homogeneous magnetic field. The potential curves are eigenvalues corresponding to the angular oblate spheroidal functions that compose adiabatic basis which depends on the radial variable as a parameter. The matrix elements of radial coupling are integrals in angular variables of the following two types: product of angular functions and the first derivative of angular functions in parameter, and product of the first derivatives of angular functions in parameter, respectively. The program calculates also the angular part of the dipole transition matrix elements (in the length form) expressed as integrals in angular variables involving product of a dipole operator and angular functions. Moreover, the program calculates asymptotic regular and irregular matrix solutions of the coupled adiabatic radial equations at the end of interval in radial variable needed for solving a multi-channel scattering problem by the generalized R-matrix method. Potential curves and radial matrix elements computed by the POTHMF program can be used for solving the bound state and multi-channel scattering problems. As a test desk, the program is applied to the calculation of the energy values, a short-range reaction matrix and corresponding wave functions with the help of the KANTBP program. Benchmark calculations for the known photoionization cross-sections are presented. Program summaryProgram title:POTHMF Catalogue identifier:AEAA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAA_v1_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:8123 No. of bytes in distributed program, including test data

  13. NON-WKB MODELS OF THE FIRST IONIZATION POTENTIAL EFFECT: THE ROLE OF SLOW MODE WAVES

    SciTech Connect

    Laming, J. Martin

    2012-01-10

    A model for element abundance fractionation between the solar chromosphere and corona is further developed. The ponderomotive force due to Alfven waves propagating through or reflecting from the chromosphere in solar conditions generally accelerates chromospheric ions, but not neutrals, into the corona. This gives rise to what has become known as the first ionization potential effect. We incorporate new physical processes into the model. The chromospheric ionization balance is improved and the effect of different approximations is discussed. We also treat the parametric generation of slow mode waves by the parallel propagating Alfven waves. This is also an effect of the ponderomotive force, arising from the periodic variation of the magnetic pressure driving an acoustic mode, which adds to the background longitudinal pressure. This can have subtle effects on the fractionation, rendering it quasi-mass independent in the lower regions of the chromosphere. We also briefly discuss the change in the fractionation with Alfven wave frequency, relative to the frequency of the overlying coronal loop resonance.

  14. High-field plasma acceleration in a high-ionization-potential gas

    SciTech Connect

    Corde, S.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Clausse, B.; Clayton, C. E.; Delahaye, J. P.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Walz, D.; Yakimenko, V.

    2016-06-17

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. In our research, we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by up to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ~150 GV m-1, over ~20 cm. Lastly, the results open new possibilities for the design of particle beam drivers and plasma sources.

  15. High-field plasma acceleration in a high-ionization-potential gas

    DOE PAGES

    Corde, S.; Adli, E.; Allen, J. M.; ...

    2016-06-17

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. In our research, we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by upmore » to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ~150 GV m-1, over ~20 cm. Lastly, the results open new possibilities for the design of particle beam drivers and plasma sources.« less

  16. High-field plasma acceleration in a high-ionization-potential gas

    PubMed Central

    Corde, S.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Clausse, B.; Clayton, C. E.; Delahaye, J. P.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Walz, D.; Yakimenko, V.

    2016-01-01

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. Here we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by up to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ∼150 GV m−1, over ∼20 cm. The results open new possibilities for the design of particle beam drivers and plasma sources. PMID:27312720

  17. The computation of ionization potentials for second-row elements by ab initio and density functional theory methods

    SciTech Connect

    Jursic, B.S.

    1996-12-31

    Up to four ionization potentials of elements from the second-row of the periodic table were computed using the ab initio (HF, MP2, MP3, MP4, QCISD, GI, G2, and G2MP2) and DFT (B3LY, B3P86, B3PW91, XALPHA, HFS, HFB, BLYP, BP86, BPW91, BVWN, XAPLY, XAP86, XAPW91, XAVWN, SLYR SP86, SPW91 and SVWN) methods. In all of the calculations, the large 6-311++G(3df,3pd) gaussian type of basis set was used. The computed values were compared with the experimental results and suitability of the ab initio and DFF methods were discussed, in regard to reproducing the experimental data. From the computed ionization potentials of the second-row elements, it can be concluded that the HF ab initio computation is not capable of reproducing the experimental results. The computed ionization potentials are too low. However, by using the ab initio methods that include electron correlation, the computed IPs are becoming much closer to the experimental values. In all cases, with the exception of the first ionization potential for oxygen, the G2 computation result produces ionization potentials that are indistinguishable from the experimental results.

  18. Quantum adiabatic machine learning

    NASA Astrophysics Data System (ADS)

    Pudenz, Kristen L.; Lidar, Daniel A.

    2013-05-01

    We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. This approach consists of two quantum phases, with some amount of classical preprocessing to set up the quantum problems. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. All quantum processing is strictly limited to two-qubit interactions so as to ensure physical feasibility. We apply and illustrate this approach in detail to the problem of software verification and validation, with a specific example of the learning phase applied to a problem of interest in flight control systems. Beyond this example, the algorithm can be used to attack a broad class of anomaly detection problems.

  19. Adiabatic capture and debunching

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2012-03-01

    In the study of beam preparation for the g-2 experiment, adiabatic debunching and adiabatic capture are revisited. The voltage programs for these adiabbatic processes are derived and their properties discussed. Comparison is made with some other form of adiabatic capture program. The muon g-2 experiment at Fermilab calls for intense proton bunches for the creation of muons. A booster batch of 84 bunches is injected into the Recycler Ring, where it is debunched and captured into 4 intense bunches with the 2.5-MHz rf. The experiment requires short bunches with total width less than 100 ns. The transport line from the Recycler to the muon-production target has a low momentum aperture of {approx} {+-}22 MeV. Thus each of the 4 intense proton bunches required to have an emittance less than {approx} 3.46 eVs. The incoming booster bunches have total emittance {approx} 8.4 eVs, or each one with an emittance {approx} 0.1 eVs. However, there is always emittance increase when the 84 booster bunches are debunched. There will be even larger emittance increase during adiabatic capture into the buckets of the 2.5-MHz rf. In addition, the incoming booster bunches may have emittances larger than 0.1 eVs. In this article, we will concentrate on the analysis of the adiabatic capture process with the intention of preserving the beam emittance as much as possible. At this moment, beam preparation experiment is being performed at the Main Injector. Since the Main Injector and the Recycler Ring have roughly the same lattice properties, we are referring to adiabatic capture in the Main Injector instead in our discussions.

  20. Strong-field ionization rates of linear polyenes simulated with time-dependent configuration interaction with an absorbing potential.

    PubMed

    Krause, Pascal; Schlegel, H Bernhard

    2014-11-07

    The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 10(14) W/cm(2) to 3.5 × 10(14) W/cm(2). Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length.

  1. Strong-field ionization rates of linear polyenes simulated with time-dependent configuration interaction with an absorbing potential

    NASA Astrophysics Data System (ADS)

    Krause, Pascal; Schlegel, H. Bernhard

    2014-11-01

    The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 1014 W/cm2 to 3.5 × 1014 W/cm2. Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length.

  2. Three-body neutral dissociations of a multiply excited water molecule around the double ionization potential

    NASA Astrophysics Data System (ADS)

    Odagiri, Takeshi; Nakano, Motoyoshi; Tanabe, Takehiko; Kumagai, Yoshiaki; Suzuki, Isao H.; Kitajima, Masashi; Kouchi, Noriyuki

    2012-11-01

    The cross sections for emission of two fluorescence photons from a pair of excited fragments in photoexcitation of H2O have been measured as a function of the incident photon energy using the photon-photon coincidence technique. The cross section increased in the range 30-45 eV, i.e. in the vicinity of the double ionization potential of H2O. The increase of the cross section was attributed to three-body neutral dissociations of a water molecule via multiply excited states: H2O** → H(2p) + OH** → H(2p) + H(2p) + O(3P). Some multiply excited states of H2O were also found in the cross section curve around 65 eV.

  3. Role of the ionization potential in nonequilibrium metals driven to absorption saturation.

    PubMed

    Mincigrucci, R; Bencivenga, F; Capotondi, F; Principi, E; Giangrisostomi, E; Battistoni, A; Caputo, M; Casolari, F; Gessini, A; Manfredda, M; Pedersoli, E; Masciovecchio, C

    2015-07-01

    A composite metallic foil (Al/Mg/Al) has been exposed to intense sub-100 fs free electron laser (FEL) pulses and driven to ultrafast massive photoionization. The resulting nonequilibrium state of matter has been monitored through absorption spectroscopy across the L(2,3) edge of Mg as a function of the FEL fluence. The raw spectroscopic data indicate that at about 100J/cm(2) the main absorption channels of the sample, i.e., Mg (2p→free) and oxidized Al (valence→free), are almost saturated. The spectral behavior of the induced transparency has been interpreted with an analytical approach based on an effective ionization potential of the generated solid-density plasma.

  4. Adiabatic gate teleportation.

    PubMed

    Bacon, Dave; Flammia, Steven T

    2009-09-18

    The difficulty in producing precisely timed and controlled quantum gates is a significant source of error in many physical implementations of quantum computers. Here we introduce a simple universal primitive, adiabatic gate teleportation, which is robust to timing errors and many control errors and maintains a constant energy gap throughout the computation above a degenerate ground state space. This construction allows for geometric robustness based upon the control of two independent qubit interactions. Further, our piecewise adiabatic evolution easily relates to the quantum circuit model, enabling the use of standard methods from fault-tolerance theory for establishing thresholds.

  5. Generating shortcuts to adiabaticity in quantum and classical dynamics

    NASA Astrophysics Data System (ADS)

    Jarzynski, Christopher

    2013-10-01

    Transitionless quantum driving achieves adiabatic evolution in a hurry, using a counterdiabatic Hamiltonian to stifle nonadiabatic transitions. Here this shortcut to adiabaticity is cast in terms of a generator of adiabatic transport. This yields a classical analog of transitionless driving, and provides a strategy for constructing quantal counterdiabatic Hamiltonians. As an application of this framework, exact classical and quantal counterdiabatic terms are obtained for a particle in a box and for even-power-law potentials in one degree of freedom.

  6. Numerical adiabatic potentials of orthorhombic Jahn-Teller effects retrieved from ultrasound attenuation experiments. Application to the SrF2:Cr crystal

    NASA Astrophysics Data System (ADS)

    Zhevstovskikh, I. V.; Bersuker, I. B.; Gudkov, V. V.; Averkiev, N. S.; Sarychev, M. N.; Zherlitsyn, S.; Yasin, S.; Shakurov, G. S.; Ulanov, V. A.; Surikov, V. T.

    2016-06-01

    A methodology is worked out to retrieve the numerical values of all the main parameters of the six-dimensional adiabatic potential energy surface (APES) of a polyatomic system with a quadratic T-term Jahn-Teller effect (JTE) from the ultrasound experiments. The method is based on a verified assumption that ultrasound attenuation and speed encounter anomalies when the direction of propagation and polarization of its wave of strain coincides with the characteristic directions of symmetry breaking in the JTE. For the SrF2:Cr crystal, employed as a basic example, we observed anomaly peaks in the temperature dependence of attenuation of ultrasound at frequencies of 50-160 MHz in the temperature interval of 40-60 K for the wave propagating along the [110] direction, for both the longitudinal and the shear modes, the latter with two polarizations along the [001] and [1 1 ¯ 0 ] axes, respectively. We show that these anomalies are due to the ultrasound relaxation by the system of non-interacting Cr2+ JT centers with orthorhombic local distortions. The interpretation of the experimental findings is based on the T2 g⊗(eg+t2 g) JTE problem including the linear and the quadratic terms of vibronic interactions in the Hamiltonian and the same-symmetry modes reduced to one interaction mode. Combining the experimental results with a theoretical analysis, we show that on the complicated six-dimensional APES of this system with three tetragonal, four trigonal, and six orthorhombic extrema points, the latter are global minima, while the former are saddle points, and we estimate numerically all the main parameters of this surface, including the linear and quadratic vibronic coupling constants, the primary force constants, the coordinates of all the extrema points and their energies, the energy barrier between the orthorhombic minima, and the tunneling splitting of the ground vibrational states. To our knowledge, such a based-on-experimental-data numerical reconstruction of the APES

  7. Adiabatically implementing quantum gates

    SciTech Connect

    Sun, Jie; Lu, Songfeng Liu, Fang

    2014-06-14

    We show that, through the approach of quantum adiabatic evolution, all of the usual quantum gates can be implemented efficiently, yielding running time of order O(1). This may be considered as a useful alternative to the standard quantum computing approach, which involves quantum gates transforming quantum states during the computing process.

  8. Assessing the bioaccumulation potential of ionizable organic compounds: Current knowledge and research priorities.

    PubMed

    Armitage, James M; Erickson, Russell J; Luckenbach, Till; Ng, Carla A; Prosser, Ryan S; Arnot, Jon A; Schirmer, Kristin; Nichols, John W

    2016-11-07

    The objective of the present study was to review the current knowledge regarding the bioaccumulation potential of ionizable organic compounds (IOCs), with a focus on the availability of empirical data for fish. Aspects of the bioaccumulation potential of IOCs in fish that can be characterized relatively well include the pH dependence of gill uptake and elimination, uptake in the gut, and sorption to phospholipids (membrane-water partitioning). Key challenges include the lack of empirical data for biotransformation and binding in plasma. Fish possess a diverse array of proteins that may transport IOCs across cell membranes. Except in a few cases, however, the significance of this transport for uptake and accumulation of environmental contaminants is unknown. Two case studies are presented. The first describes modeled effects of pH and biotransformation on the bioconcentration of organic acids and bases, while the second employs an updated model to investigate factors responsible for accumulation of perfluorinated alkyl acids. The perfluorinated alkyl acid case study is notable insofar as it illustrates the likely importance of membrane transporters in the kidney and highlights the potential value of read-across approaches. Recognizing the current need to perform bioaccumulation hazard assessments and ecological and exposure risk assessment for IOCs, the authors provide a tiered strategy that progresses (as needed) from conservative assumptions (models and associated data) to more sophisticated models requiring chemical-specific information. Environ Toxicol Chem 2016;9999:1-16. © 2016 SETAC.

  9. Angular Dependence of Ionization by Circularly Polarized Light Calculated with Time-Dependent Configuration Interaction with an Absorbing Potential.

    PubMed

    Hoerner, Paul; Schlegel, H Bernhard

    2017-02-16

    The angular dependence of ionization by linear and circularly polarized light has been examined for N2, NH3, H2O, CO2, CH2O, pyrazine, methyloxirane, and vinyloxirane. Time-dependent configuration interaction with single excitations and a complex absorbing potential was used to simulate ionization by a seven cycle 800 nm cosine squared pulse with intensities ranging from 0.56 × 10(14) to 5.05 × 10(14) W cm(-2). The shapes of the ionization yield for linearly polarized light can be understood primarily in terms of the nodal structure of the highest occupied orbitals. Depending on the orbital energies, ionization from lower-lying orbitals may also make significant contributions to the shapes. The shapes of the ionization yield for circularly polarized light can be readily explained in terms of the shapes for linearly polarized light. Averaging the results for linear polarization over orientations perpendicular to the direction of propagation yields shapes that are in very good agreement with direct calculations of the ionization yield by circularly polarized light.

  10. Does the ionization potential condition employed in QTP functionals mitigate the self-interaction error?

    NASA Astrophysics Data System (ADS)

    Ranasinghe, Duminda S.; Margraf, Johannes T.; Jin, Yifan; Bartlett, Rodney J.

    2017-01-01

    Though contrary to conventional wisdom, the interpretation of all occupied Kohn-Sham eigenvalues as vertical ionization potentials is justified by several formal and numerical arguments. Similarly, the performance of density functional approximations (DFAs) for fractionally charged systems has been extensively studied as a measure of one- and many-electron self-interaction errors (MSIEs). These complementary perspectives (initially recognized in ab initio dft) are shown to lead to the unifying concept that satisfying Bartlett's IP theorem in DFA's mitigates self-interaction errors. In this contribution, we show that the IP-optimized QTP functionals (reparameterization of CAM-B3LYP where all eigenvalues are approximately equal to vertical IPs) display reduced self-interaction errors in a variety of tests including the He2+ potential curve. Conversely, the MSIE-optimized rCAM-B3LYP functional also displays accurate orbital eigenvalues. It is shown that the CAM-QTP and rCAM-B3LYP functionals show improved dissociation limits, fundamental gaps and thermochemical accuracy compared to their parent functional CAM-B3LYP.

  11. Mass analyzed threshold ionization spectroscopy of p-fluorostyrene

    NASA Astrophysics Data System (ADS)

    Georgiev, S.; Neusser, H. J.; Chakraborty, Tapas

    2004-05-01

    Adiabatic ionization energy (AIE) and two-color threshold ion vibrational spectra of p-fluorostyrene have been measured by mass analyzed threshold ionization (MATI) method via three different intermediate levels in the first excited state, vibrationless S1 origin, 421411, and 231 vibronic levels. Features of the ion vibrational spectra indicates that the geometry of the molecular ion including the conformation of the vinyl chain in the ionic ground state (D0) is almost identical to that of its neutral ground state (S0), and ionization has very little effect on the vibrational potentials of the aromatic ring modes. Comparison of the AIE with the reported value of styrene shows that fluorination at the para position of the aromatic ring has little effect on energy of the electron ejected in ionization process from the styrene chromophore.

  12. Methemoglobinemia hemotoxicity of some antimalarial 8-aminoquinoline analogues and their hydroxylated derivatives: density functional theory computation of ionization potentials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The administration of primaquine (PQ), an essential drug for treatment and radical cure of malaria, can lead to methemoglobin formation and life-threatening hemolysis for glucose-6-phosphate dehydrogenase deficient patients. The ionization potential (IP, a quantitative measure of the ability to lose...

  13. An interacting adiabatic quantum motor

    NASA Astrophysics Data System (ADS)

    Viola Kusminskiy, Silvia; Bruch, Anton; von Oppen, Felix

    We consider the effect of electron-electron interactions on the performance of an adiabatic quantum motor based on a Thouless pump operating in reverse. We model such a device by electrons in a 1d wire coupled to a slowly moving periodic potential associated with the classical mechanical degree of freedom of the motor. This periodic degree of freedom is set into motion by a bias voltage applied to the 1d electron channel. We investigate the Thouless motor with interacting leads modeled as Luttinger liquids. We show that interactions enhance the energy gap opened by the periodic potential and thus the robustness of the Thouless motor against variations in the chemical potential. We show that the motor degree of freedom can be described as a mobile impurity in a Luttinger liquid obeying Langevin dynamics with renormalized coefficients due to interactions, for which we give explicit expressions.

  14. Semiconductor adiabatic qubits

    DOEpatents

    Carroll, Malcolm S.; Witzel, Wayne; Jacobson, Noah Tobias; Ganti, Anand; Landahl, Andrew J.; Lilly, Michael; Nguyen, Khoi Thi; Bishop, Nathaniel; Carr, Stephen M.; Bussmann, Ezra; Nielsen, Erik; Levy, James Ewers; Blume-Kohout, Robin J.; Rahman, Rajib

    2016-12-27

    A quantum computing device that includes a plurality of semiconductor adiabatic qubits is described herein. The qubits are programmed with local biases and coupling terms between qubits that represent a problem of interest. The qubits are initialized by way of a tuneable parameter, a local tunnel coupling within each qubit, such that the qubits remain in a ground energy state, and that initial state is represented by the qubits being in a superposition of |0> and |1> states. The parameter is altered over time adiabatically or such that relaxation mechanisms maintain a large fraction of ground state occupation through decreasing the tunnel coupling barrier within each qubit with the appropriate schedule. The final state when tunnel coupling is effectively zero represents the solution state to the problem represented in the |0> and |1> basis, which can be accurately read at each qubit location.

  15. Diffraction at a time grating in above-threshold ionization: The influence of the Coulomb potential

    SciTech Connect

    Arbo, Diego G.; Ishikawa, Kenichi L.; Schiessl, Klaus; Persson, Emil; Burgdoerfer, Joachim

    2010-10-15

    We analyze the photoelectron emission spectrum in atomic above-threshold ionization by a linearly polarized short-laser pulse. Direct electrons can be characterized by both intracycle and intercycle interferences. The former results from the coherent superposition of two different electron trajectories released in the same optical cycle, whereas the latter is the consequence of the superposition of multiple trajectories released in different cycles. In the present article, a semiclassical analytical expression for the complete (both intracycle and intercycle) interference pattern is derived. We show that the recently proposed semiclassical description in terms of a diffraction process at a time grating remains qualitatively unchanged in the presence of the long-range Coulomb potential. The latter causes only a phase shift of the intracycle interference pattern. We verify the predictions of the semiclassical model by comparison with full three-dimensional (3D) time-dependent Schroedinger equation (TDSE) solutions. One key finding is that the subcycle interference structures originating from trajectories launched within a time interval of less than 1 femtosecond should be experimentally observable also in low-resolution spectra for longer multicycle pulses.

  16. Length dependence of ionization potentials of transacetylenes: Internally consistent DFT/G W approach

    NASA Astrophysics Data System (ADS)

    Pinheiro, Max; Caldas, Marilia J.; Rinke, Patrick; Blum, Volker; Scheffler, Matthias

    2015-11-01

    We follow the evolution of the ionization potential (IP) for the paradigmatic quasi-one-dimensional transacetylene family of conjugated molecules, from short to long oligomers and to the infinite polymer transpolyacetylene (TPA). Our results for short oligomers are very close to experimental available data. We find that the IP varies with oligomer length and converges to the given value for TPA with a smooth, coupled inverse-length-exponential behavior. Our prediction is based on an "internally consistent" scheme to adjust the exchange mixing parameter α of the PBEh hybrid density functional, so as to obtain a description of the electronic structure consistent with the quasiparticle approximation for the IP. This is achieved by demanding that the corresponding quasiparticle correction, in the G W @PBEh approximation, vanishes for the IP when evaluated at PBEh (αic ). We find that αic is also system-dependent and converges with increasing oligomer length, enabling the dependence of the IP and other electronic properties to be identified.

  17. Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules: A Benchmark of GW Methods

    NASA Astrophysics Data System (ADS)

    Marom, Noa; Knight, Joseph; Wang, Xiaopeng; Gallandi, Lukas; Dolgounitcheva, Olga; Ren, Xinguo; Ortiz, Vincent; Rinke, Patrick; Korzdorfer, Thomas

    The performance of different GW methods is assessed for a set of 24 organic acceptors. Errors are evaluated with respect to coupled cluster singles, doubles, perturbative triples [CCSD(T)] reference data for the vertical ionization potentials (IPs) and electron affinities (EAs), extrapolated to the complete basis set limit. Additional comparisons are made to experimental data, where available. We consider fully self-consistent GW (scGW), partial self-consistency in the Green's function (scGW0) , non-self-consistent G0W0 based on several mean-field starting points, and a ``beyond GW'' second order screened exchange (SOSEX) correction to G0W0. The best performers overall are G0W0 + SOSEX and G0W0 based on an IP-tuned long range corrected hybrid functional with the former being more accurate for EAs and the latter for IPs. Both provide a balanced treatment of localized vs. delocalized states and valence spectra in good agreement with photoemission spectroscopy (PES) experiments.

  18. Quantum-Mechanical Calculation of Ionization-Potential Lowering in Dense Plasmas

    NASA Astrophysics Data System (ADS)

    Son, Sang-Kil; Thiele, Robert; Jurek, Zoltan; Ziaja, Beata; Santra, Robin

    2014-07-01

    The charged environment within a dense plasma leads to the phenomenon of ionization-potential depression (IPD) for ions embedded in the plasma. Accurate predictions of the IPD effect are of crucial importance for modeling atomic processes occurring within dense plasmas. Several theoretical models have been developed to describe the IPD effect, with frequently discrepant predictions. Only recently, first experiments on IPD in Al plasma have been performed with an x-ray free-electron laser, where their results were found to be in disagreement with the widely used IPD model by Stewart and Pyatt. Another experiment on Al, at the Orion laser, showed disagreement with the model by Ecker and Kröll. This controversy shows a strong need for a rigorous and consistent theoretical approach to calculate the IPD effect. Here, we propose such an approach: a two-step Hartree-Fock-Slater model. With this parameter-free model, we can accurately and efficiently describe the experimental Al data and validate the accuracy of standard IPD models. Our model can be a useful tool for calculating atomic properties within dense plasmas with wide-ranging applications to studies on warm dense matter, shock experiments, planetary science, inertial confinement fusion, and nonequilibrium plasmas created with x-ray free-electron lasers.

  19. Coupled Cluster Studies of Ionization Potentials and Electron Affinities of Single-Walled Carbon Nanotubes.

    PubMed

    Peng, Bo; Govind, Niranjan; Aprà, Edoardo; Klemm, Michael; Hammond, Jeff R; Kowalski, Karol

    2017-02-16

    In this paper, we apply equation-of-motion coupled cluster (EOM-CC) methods in the studies of the vertical ionization potentials (IPs) and electron affinities (EAs) for a series of single-walled carbon nanotubes (SWCNT). The EOM-CC formulations for IPs and EAs employing excitation manifolds spanned by single and double excitations (IP/EA-EOM-CCSD) are used to study the IPs and EAs of the SWCNTs as a function of the nanotube length. Several armchair nanotubes corresponding to C20nH20 models with n = 2-6 have been used in benchmark calculations. In agreement with previous studies, we demonstrate that the electronegativity of C20nH20 systems remains, to a large extent, independent of the nanotube length. We also compare IP/EA-EOM-CCSD results with those obtained with coupled cluster models with single and double excitations corrected by perturbative triples, CCSD(T), and density functional theory (DFT) using global and range-separated hybrid exchange-correlation functionals.

  20. The effects of ionization potential depression on the spectra emitted by hot dense aluminium plasmas

    NASA Astrophysics Data System (ADS)

    Preston, Thomas R.; Vinko, Sam M.; Ciricosta, Orlando; Chung, Hyun-Kyung; Lee, Richard W.; Wark, Justin S.

    2013-06-01

    Recent experiments at the Linac Coherent Light Source (LCLS) X-ray Free-Electron-Laser (FEL) have demonstrated that the standard model used for simulating ionization potential depression (IPD) in a plasma (the Stewart-Pyatt (SP) model, J.C. Stewart and K.D. Pyatt Jr., Astrophysical Journal 144 (1966) 1203) considerably underestimates the degree of IPD in a solid density aluminium plasma at temperatures up to 200 eV. In contrast, good agreement with the experimental data was found by use of a modified Ecker-Kröll (mEK) model (G. Ecker and W. Kröll, Physics of Fluids 6 (1963) 62-69). We present here detailed simulations, using the FLYCHK code, of the predicted spectra from hot dense, hydrogenic and helium-like aluminium plasmas ranging in densities from 0.1 to 4 times solid density, and at temperatures up to 1000 eV. Importantly, we find that the greater IPDs predicted by the mEK model result in the loss of the n = 3 states for the hydrogenic ions for all densities above ≈0.8 times solid density, and for the helium-like ions above ≈0.65 solid density. Therefore, we posit that if the mEK model holds at these higher temperatures, the temperature of solid density highly-charged aluminium plasmas cannot be determined by using spectral features associated with the n = 3 principal quantum number, and propose a re-evaluation of previous experimental data where high densities have been inferred from the spectra, and the SP model has been used.

  1. Influence of magnetic field strength on potential well in the ionization stage of a double stage Hall thruster

    SciTech Connect

    Yu Daren; Song Maojiang; Liu Hui; Zhang Xu; Li Hong

    2012-07-15

    Similar to a single stage Hall thruster, the magnetic field, which controls electron trajectory and electric field distribution, is the most important factor determining the performance of a double stage Hall thruster. Especially, a potential well, which is helpful to reduce the ion loss on the thruster walls, is shaped in the ionization stage due to the existence of an annular magnetic field topology there. In this paper, the influence of magnetic field strength in the ionization stage on the potential well is researched with both experiments and particle-in-cell simulations. It is found that the depth of potential well increases with the magnetic field strength as a result of enhanced magnetic confinement and lowered electron conductivity. Consequently, the plasma density as well as the ion current entering the acceleration stage increases. However, an excessive magnetic field strength leads to an excess of ion loss on the walls of the acceleration stage. Therefore, there is an appropriate magnetic field strength in the ionization stage that results in a proper potential well and consequently an optimal performance of a double stage Hall thruster.

  2. An integrated programming and development environment for adiabatic quantum optimization

    NASA Astrophysics Data System (ADS)

    Humble, T. S.; McCaskey, A. J.; Bennink, R. S.; Billings, J. J.; DʼAzevedo, E. F.; Sullivan, B. D.; Klymko, C. F.; Seddiqi, H.

    2014-01-01

    Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware has raised challenging questions about how to evaluate adiabatic quantum optimization (AQO) programs. Processor behavior depends on multiple steps to synthesize an adiabatic quantum program, which are each highly tunable. We present an integrated programming and development environment for AQO called Jade Adiabatic Development Environment (JADE) that provides control over all the steps taken during program synthesis. JADE captures the workflow needed to rigorously specify the AQO algorithm while allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its potential use for benchmarking AQO programs by the quantum computer science community.

  3. Strong-field ionization rates of linear polyenes simulated with time-dependent configuration interaction with an absorbing potential

    SciTech Connect

    Krause, Pascal; Schlegel, H. Bernhard

    2014-11-07

    The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 10{sup 14} W/cm{sup 2} to 3.5 × 10{sup 14} W/cm{sup 2}. Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length.

  4. The extended Koopmans' theorem for orbital-optimized methods: accurate computation of ionization potentials.

    PubMed

    Bozkaya, Uğur

    2013-10-21

    The extended Koopmans' theorem (EKT) provides a straightforward way to compute ionization potentials (IPs) from any level of theory, in principle. However, for non-variational methods, such as Møller-Plesset perturbation and coupled-cluster theories, the EKT computations can only be performed as by-products of analytic gradients as the relaxed generalized Fock matrix (GFM) and one- and two-particle density matrices (OPDM and TPDM, respectively) are required [J. Cioslowski, P. Piskorz, and G. Liu, J. Chem. Phys. 107, 6804 (1997)]. However, for the orbital-optimized methods both the GFM and OPDM are readily available and symmetric, as opposed to the standard post Hartree-Fock (HF) methods. Further, the orbital optimized methods solve the N-representability problem, which may arise when the relaxed particle density matrices are employed for the standard methods, by disregarding the orbital Z-vector contributions for the OPDM. Moreover, for challenging chemical systems, where spin or spatial symmetry-breaking problems are observed, the abnormal orbital response contributions arising from the numerical instabilities in the HF molecular orbital Hessian can be avoided by the orbital-optimization. Hence, it appears that the orbital-optimized methods are the most natural choice for the study of the EKT. In this research, the EKT for the orbital-optimized methods, such as orbital-optimized second- and third-order Møller-Plesset perturbation [U. Bozkaya, J. Chem. Phys. 135, 224103 (2011)] and coupled-electron pair theories [OCEPA(0)] [U. Bozkaya and C. D. Sherrill, J. Chem. Phys. 139, 054104 (2013)], are presented. The presented methods are applied to IPs of the second- and third-row atoms, and closed- and open-shell molecules. Performances of the orbital-optimized methods are compared with those of the counterpart standard methods. Especially, results of the OCEPA(0) method (with the aug-cc-pVTZ basis set) for the lowest IPs of the considered atoms and closed

  5. Geometry of the Adiabatic Theorem

    ERIC Educational Resources Information Center

    Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas

    2012-01-01

    We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…

  6. Effect of rescattering potential on the high-energy above-threshold ionization of a model-H atom

    NASA Astrophysics Data System (ADS)

    Chen, J.-H.; Wang, G.-L.; Zhang, Z.-R.; Zhao, S.-F.

    2017-01-01

    The high-energy above-threshold ionization of a model-H atom (with 1s state and the same binding energy as H atom) in a few-cycle laser pulse is investigated by using the improved strong-field approximation (ISFA), where the spherical shell potential is used as the rescattering potential. The results obtained from numerically solving time-dependent Schrödinger equation(TDSE) are regarded as the benchmark results. Our results show that the energy distributions in high-energy region obtained from ISFA calculations using the spherical shell potential may either match or be better than those from ISFA using Yukawa potential and zero-range potential in the laser with wavelengths of 800 and 1200 nm. In addition, the influence of the rescattering potential on the density of probability at different ejection angles is also discussed in this paper.

  7. Electronic states, ionization potentials, and bond energies of TlHn, InHn, TlH + n, and InH + n (n=1-3)

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.; Tao, J. X.

    1991-02-01

    Potential energy surfaces of 6 electronic states of TlH2 and InH2 and 8 electronic states of TlH+2 and InH+2 are computed. In addition the ground states of TlH3, InH3, TlH+3, InH+3, TlH, and TlH+ are investigated. A complete active space multiconfiguration self-consistent field (CAS-MCSCF) followed by second-order configuration interaction (SOCI) and relativistic configuration interaction (RCI) including spin-orbit coupling calculations are carried out. The step-wise bond energies, De(Hn-1M-H) and adiabatic ionization potentials are computed. The ground states of TlH2 and InH2 are found to be bent (2A1; θe˜121.5 °, 120 °) while the ground states of TlH+2 and InH+2 are linear (1Σ+g). The ground states of TlH3 and InH3 are found to be 1A1 (D3h ) states while the ground states of TlH+3 and InH+3 are Jahn-Teller distorted 2B2(C2v ) states. The unique bond length of TlH+3 and InH+3 is shorter than the two equal bond lengths. The bond angles (H-M-H) for TlH+3 and InH+3 deviate considerably from the neutral θe=120 ° to near 69 °. The TlH+ ion is found to be only 0.04 eV stable. Periodic trends in the geometries, bond energies and IPs are studied. Spin-orbit effects were found to be significant for TlHn species. The IPs of InHn and TlHn exhibit odd-even alternation. The bond energies also show an interesting trend as a function of n.

  8. Ionization potentials and electron affinities of the superheavy elements 115-117 and their sixth-row homologues Bi, Po, and At

    NASA Astrophysics Data System (ADS)

    Borschevsky, A.; Pašteka, L. F.; Pershina, V.; Eliav, E.; Kaldor, U.

    2015-02-01

    Calculations of the first and second ionization potentials and electron affinities of superheavy elements 115-117 are presented. The calculations are performed in the framework of the Dirac-Coulomb Hamiltonian, and the results are corrected for the Breit and QED contributions. Correlation is treated by the relativistic coupled cluster approach with single, double, and perturbative triple excitations [CCSD(T)]. The same approach is used to calculate the ionization potentials and electron affinities of the lighter homologues, Bi, Po, and At. Comparison of the available experimental values for these atoms, namely, the first ionization potentials (IPs) of Bi, Po, and At and the second IP and EA of Bi, with our results shows excellent agreement, within a few hundredths of an eV, lending credence to our predictions for their superheavy homologues. High-accuracy predictions are also made for the second ionization potentials and electron affinities of Po and At, where no experiment is available.

  9. Silicone crosslinked by ionizing radiation as potential polymeric matrix for drug delivery

    NASA Astrophysics Data System (ADS)

    Rogero, Sizue O.; Sousa, José S.; Alário, Dante; Lopérgolo, Lilian; Lugão, Ademar B.

    2005-07-01

    This work describes the use of a catalysis-free system for crosslinking of silicone. Biomedical Grade silicone was crosslinked by ionizing radiation and the physico-chemical and biocompatibility properties of the resulting material were evaluated. High gel content (>90%) was obtained at the irradiation dose of 25 kGy, as indicated by gel fraction measurements. Swelling measurements showed a trend towards stabilization of crosslinking at 75 kGy. DMTA measurements showed that crystallization was impaired by the crosslinking reaction. The in vitro cytotoxicity data showed that radiation-induced crosslinking and degradation did not promote any toxicity in irradiated silicone.

  10. Calculations of the ionization potentials of the halogens by the relativistic Hartree-Rock-Dirac method taking account of superposition of configurations

    SciTech Connect

    Tupitsyn, I.I.

    1988-03-01

    The ionization potentials of the halogen group have been calculated. The calculations were carried out using the relativistic Hartree-Fock method taking into account correlation effects. Comparison of theoretical results with experimental data for the elements F, Cl, Br, and I allows an estimation of the accuracy and reliability of the method. The theoretical values of the ionization potential of astatine obtained here may be of definite interest for the chemistry of astatine.

  11. Theory of warm ionized gases: equation of state and kinetic Schottky anomaly.

    PubMed

    Capolupo, A; Giampaolo, S M; Illuminati, F

    2013-10-01

    Based on accurate Lennard-Jones-type interaction potentials, we derive a closed set of state equations for the description of warm atomic gases in the presence of ionization processes. The specific heat is predicted to exhibit peaks in correspondence to single and multiple ionizations. Such kinetic analog in atomic gases of the Schottky anomaly in solids is enhanced at intermediate and low atomic densities. The case of adiabatic compression of noble gases is analyzed in detail and the implications on sonoluminescence are discussed. In particular, the predicted plasma electron density in a sonoluminescent bubble turns out to be in good agreement with the value measured in recent experiments.

  12. Ionization potentials, electron affinities, resonance excitation energies, oscillator strengths, and ionic radii of element Uus (Z = 117) and astatine.

    PubMed

    Chang, Zhiwei; Li, Jiguang; Dong, Chenzhong

    2010-12-30

    Multiconfiguration Dirac-Fock (MCDF) method was employed to calculate the first five ionization potentials, electron affinities, resonance excitation energies, oscillator strengths, and radii for the element Uus and its homologue At. Main valence correlation effects were taken into account. The Breit interaction and QED effects were also estimated. The uncertainties of calculated IPs, EAs, and IR for Uus and At were reduced through an extrapolation procedure. The good consistency with available experimental and other theoretical values demonstrates the validity of the present results. These theoretical data therefore can be used to predict some unknown physicochemical properties of element Uus, Astatine, and their compounds.

  13. The Study of Complex (Ti, Zr, Cs) Nanopowder Influencing the Effective Ionization Potential of Arc Discharge When Mma Welding

    NASA Astrophysics Data System (ADS)

    Sapozhkov, S. B.; Burakova, E. M.

    2016-08-01

    Strength is one of the most important characteristics of a weld joint. Mechanical properties of a weld metal can be improved in a variety of ways. One of the possibilities is to add a nanopowder to the weld metal. Authors of the paper suggest changing the production process of MMA welding electrodes via adding nanopowder Ti, Zr, Cs to electrode components through liquid glass. Theoretical research into the nanopowder influence on the effective ionization potential (Ueff) of welding arc discharge is also necessitated. These measures support arcing stability, improve strength of a weld joint, as the consequence, ensure quality enhancing of a weld joint and the structure on the whole.

  14. Adiabatic theory for anisotropic cold molecule collisions

    SciTech Connect

    Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod

    2015-08-21

    We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment {sup 4}He(1s2s {sup 3}S) + HD(1s{sup 2}) → {sup 4}He(1s{sup 2}) + HD{sup +}(1s) + e{sup −} [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.

  15. Using the charge-stabilization technique in the double ionization potential equation-of-motion calculations with dianion references.

    PubMed

    Kuś, Tomasz; Krylov, Anna I

    2011-08-28

    The charge-stabilization method is applied to double ionization potential equation-of-motion (EOM-DIP) calculations to stabilize unstable dianion reference functions. The auto-ionizing character of the dianionic reference states spoils the numeric performance of EOM-DIP limiting applications of this method. We demonstrate that reliable excitation energies can be computed by EOM-DIP using a stabilized resonance wave function instead of the lowest energy solution corresponding to the neutral + free electron(s) state of the system. The details of charge-stabilization procedure are discussed and illustrated by examples. The choice of optimal stabilizing Coulomb potential, which is strong enough to stabilize the dianion reference, yet, minimally perturbs the target states of the neutral, is the crux of the approach. Two algorithms of choosing optimal parameters of the stabilization potential are presented. One is based on the orbital energies, and another--on the basis set dependence of the total Hartree-Fock energy of the reference. Our benchmark calculations of the singlet-triplet energy gaps in several diradicals show a remarkable improvement of the EOM-DIP accuracy in problematic cases. Overall, the excitation energies in diradicals computed using the stabilized EOM-DIP are within 0.2 eV from the reference EOM spin-flip values.

  16. Fast forward to the classical adiabatic invariant

    NASA Astrophysics Data System (ADS)

    Jarzynski, Christopher; Deffner, Sebastian; Patra, Ayoti; Subaşı, Yiǧit

    2017-03-01

    We show how the classical action, an adiabatic invariant, can be preserved under nonadiabatic conditions. Specifically, for a time-dependent Hamiltonian H =p2/2 m +U (q ,t ) in one degree of freedom, and for an arbitrary choice of action I0, we construct a so-called fast-forward potential energy function VFF(q ,t ) that, when added to H , guides all trajectories with initial action I0 to end with the same value of action. We use this result to construct a local dynamical invariant J (q ,p ,t ) whose value remains constant along these trajectories. We illustrate our results with numerical simulations. Finally, we sketch how our classical results may be used to design approximate quantum shortcuts to adiabaticity.

  17. Adiabatic invariance with first integrals of motion.

    PubMed

    Adib, Artur B

    2002-10-01

    The construction of a microthermodynamic formalism for isolated systems based on the concept of adiabatic invariance is an old but seldom appreciated effort in the literature, dating back at least to P. Hertz [Ann. Phys. (Leipzig) 33, 225 (1910)]. An apparently independent extension of such formalism for systems bearing additional first integrals of motion was recently proposed by Hans H. Rugh [Phys. Rev. E 64, 055101 (2001)], establishing the concept of adiabatic invariance even in such singular cases. After some remarks in connection with the formalism pioneered by Hertz, it will be suggested that such an extension can incidentally explain the success of a dynamical method for computing the entropy of classical interacting fluids, at least in some potential applications where the presence of additional first integrals cannot be ignored.

  18. Revisiting The Brightest RV Tauri Star: First Ionization Potential (FIP) Effect in R Sct

    NASA Astrophysics Data System (ADS)

    Yolalan, Gizay; Sahin, Timur

    2016-07-01

    We have derived elemental abundances of the brightest RV Tauri star, R Sct. The abundance analysis of the star is based on high resolution and high quality (S/N>300) echelle spectra, mainly obtained for radial velocity study of a large sample of IRAS like RV Tau sample stars, from the McDonald Observatory (R~48,000). Our analysis is based on optical spectra obtained at only one phase of the variation. The standard 1D LTE analysis provided a fresh determination of the atmospheric parameters: Teff=5000 K, logg=1.05 cgs, and a microturbulence velocity ξ=3.4 km/s and [Fe/H] = -0.33. We report on chemical abundances of 10 neutral and ionized species identified over 4800 - 5600 A wavelength region. In an effort to explain observed deficiency in abundances, possible scenarios including FIP is investigated.

  19. Acceleration of adiabatic quantum dynamics in electromagnetic fields

    SciTech Connect

    Masuda, Shumpei; Nakamura, Katsuhiro

    2011-10-15

    We show a method to accelerate quantum adiabatic dynamics of wave functions under electromagnetic field (EMF) by developing the preceding theory [Masuda and Nakamura, Proc. R. Soc. London Ser. A 466, 1135 (2010)]. Treating the orbital dynamics of a charged particle in EMF, we derive the driving field which accelerates quantum adiabatic dynamics in order to obtain the final adiabatic states in any desired short time. The scheme is consolidated by describing a way to overcome possible singularities in both the additional phase and driving potential due to nodes proper to wave functions under EMF. As explicit examples, we exhibit the fast forward of adiabatic squeezing and transport of excited Landau states with nonzero angular momentum, obtaining the result consistent with the transitionless quantum driving applied to the orbital dynamics in EMF.

  20. Adiabatic and isocurvature perturbation projections in multi-field inflation

    SciTech Connect

    Gordon, Chris; Saffin, Paul M. E-mail: Paul.Saffin@nottingham.ac.uk

    2013-08-01

    Current data are in good agreement with the predictions of single field inflation. However, the hemispherical asymmetry, seen in the cosmic microwave background data, may hint at a potential problem. Generalizing to multi-field models may provide one possible explanation. A useful way of modeling perturbations in multi-field inflation is to investigate the projection of the perturbation along and perpendicular to the background fields' trajectory. These correspond to the adiabatic and isocurvature perturbations. However, it is important to note that in general there are no corresponding adiabatic and isocurvature fields. The purpose of this article is to highlight the distinction between a field redefinition and a perturbation projection. We provide a detailed derivation of the evolution of the isocurvature perturbation to show that no assumption of an adiabatic or isocurvature field is needed. We also show how this evolution equation is consistent with the field covariant evolution equations for the adiabatic perturbation in the flat field space limit.

  1. Electronic structure and spectroscopy of nucleic acid bases: Ionization energies, ionization-induced structural changes, and photoelectron spectra

    SciTech Connect

    Bravaya, Ksenia B.; Kostko, Oleg; Dolgikh, Stanislav; Landau, Arie; Ahmed, Musahid; Krylov, Anna I.

    2010-08-02

    We report high-level ab initio calculations and single-photon ionization mass spectrometry study of ionization of adenine (A), thymine (T), cytosine (C) and guanine (G). For thymine and adenine, only the lowest-energy tautomers were considered, whereas for cytosine and guanine we characterized five lowest-energy tautomeric forms. The first adiabatic and several vertical ionization energies were computed using equation-of-motion coupled-cluster method for ionization potentials with single and double substitutions. Equilibrium structures of the cationic ground states were characterized by DFT with the {omega}B97X-D functional. The ionization-induced geometry changes of the bases are consistent with the shapes of the corresponding molecular orbitals. For the lowest-energy tautomers, the magnitude of the structural relaxation decreases in the following series G > C > A > T, the respective relaxation energies being 0.41, 0.32, 0.25 and 0.20 eV. The computed adiabatic ionization energies (8.13, 8.89, 8.51-8.67 and 7.75-7.87 eV for A,T,C and G, respectively) agree well with the onsets of the photoionization efficiency (PIE) curves (8.20 {+-} 0.05, 8.95 {+-} 0.05, 8.60 {+-} 0.05 and 7.75 {+-} 0.05 eV). Vibrational progressions for the S{sub 0}-D{sub 0} vibronic bands computed within double-harmonic approximation with Duschinsky rotations are compared with previously reported experimental photoelectron spectra.

  2. A quantum equation of motion for chemical reaction systems on an adiabatic double-well potential surface in solution based on the framework of mixed quantum-classical molecular dynamics.

    PubMed

    Yamada, Atsushi; Okazaki, Susumu

    2008-01-28

    We present a quantum equation of motion for chemical reaction systems on an adiabatic double-well potential surface in solution in the framework of mixed quantum-classical molecular dynamics, where the reactant and product states are explicitly defined by dividing the double-well potential into the reactant and product wells. The equation can describe quantum reaction processes such as tunneling and thermal excitation and relaxation assisted by the solvent. Fluctuations of the zero-point energy level, the height of the barrier, and the curvature of the well are all included in the equation. Here, the equation was combined with the surface hopping technique in order to describe the motion of the classical solvent. Applying the present method to model systems, we show two numerical examples in order to demonstrate the potential power of the present method. The first example is a proton transfer by tunneling where the high-energy product state was stabilized very rapidly by solvation. The second example shows a thermal activation mechanism, i.e., the initial vibrational excitation in the reactant well followed by the reacting transition above the barrier and the final vibrational relaxation in the product well.

  3. Numerical study of electric potential formation in a weakly ionized plasma flowing supersonically through open magnetic field lines

    NASA Astrophysics Data System (ADS)

    Laosunthara, Ampan; Takeda, Jun; Akatsuka, Hiroshi

    2017-01-01

    We investigate the mechanism of space potential formation due to a diverging magnetic field on a rarefied weakly ionized plasma flowing supersonically by performing a hybrid simulation. Ions and neutrals are treated by the particle-based direct simulation Monte Carlo method, while electrons are treated as a fluid to save time and memory. We apply an electron continuity equation in order to treat the electron velocity independently of the ion velocity. We find the number density of ions (and electrons) distributed along the magnetic field. We also find electron rotation along the flowing direction. Since we remove the current-free condition assumed in our previous study, we find that the longitudinal variation in the space potential agrees reasonably well with our previous experimental results.

  4. Calculations of the ionization potentials and electron affinities of bacteriochlorophyll and bacteriopheophytin via ab initio quantum chemistry

    SciTech Connect

    Crystal, J.; Friesner, R.A.

    2000-03-23

    Ionization potentials (IP) and electron affinities (EA) are calculated for bacteriopheophytin (BPh) and bacteriochlorophyll (BChl) in the photosynthetic reaction center utilizing density functional methods implemented in a parallel version of the JAGUAR electronic structure code. These quantities are studied as a function of basis set size and molecular geometry. The results indicate the necessity of using large basis sets with diffuse functions in order to obtain reliable IP and EA in the gas phase. The relative reduction potentials of BChl and BPh in dimethylformamide solution are also calculated and compared with experimental results. Excellent agreement between theory and experiment is obtained when ligand binding of solvent molecules to the central Mg atom of BNhl is incorporated in the calculations.

  5. Potential Treatment of Inflammatory and Proliferative Diseases by Ultra-Low Doses of Ionizing Radiations

    PubMed Central

    Sanders, Charles L.

    2012-01-01

    Ultra-low doses and dose- rates of ionizing radiation are effective in preventing disease which suggests that they also may be effective in treating disease. Limited experimental and anecdotal evidence indicates that low radiation doses from radon in mines and spas, thorium-bearing monazite sands and enhanced radioactive uranium ore obtained from a natural geological reactor may be useful in treating many inflammatory conditions and proliferative disorders, including cancer. Optimal therapeutic applications were identified via a literature survey as dose-rates ranging from 7 to 11μGy/hr or 28 to 44 times world average background rates. Rocks from an abandoned uranium mine in Utah were considered for therapeutic application and were examined by γ-ray and laser-induced breakdown fluorescence spectroscopy. The rocks showed the presence of transuranics and fission products with a γ-ray energy profile similar to aged spent uranium nuclear fuel (93% dose due to β particles and 7% due to γ rays). Mud packs of pulverized uranium ore rock dust in sealed plastic bags delivering bag surface β,γ dose-rates of 10–450 μGy/h were used with apparent success to treat several inflammatory and proliferative conditions in humans. PMID:23304108

  6. Potential treatment of inflammatory and proliferative diseases by ultra-low doses of ionizing radiations.

    PubMed

    Sanders, Charles L

    2012-12-01

    Ultra-low doses and dose- rates of ionizing radiation are effective in preventing disease which suggests that they also may be effective in treating disease. Limited experimental and anecdotal evidence indicates that low radiation doses from radon in mines and spas, thorium-bearing monazite sands and enhanced radioactive uranium ore obtained from a natural geological reactor may be useful in treating many inflammatory conditions and proliferative disorders, including cancer. Optimal therapeutic applications were identified via a literature survey as dose-rates ranging from 7 to 11μGy/hr or 28 to 44 times world average background rates. Rocks from an abandoned uranium mine in Utah were considered for therapeutic application and were examined by γ-ray and laser-induced breakdown fluorescence spectroscopy. The rocks showed the presence of transuranics and fission products with a γ-ray energy profile similar to aged spent uranium nuclear fuel (93% dose due to β particles and 7% due to γ rays). Mud packs of pulverized uranium ore rock dust in sealed plastic bags delivering bag surface β,γ dose-rates of 10-450 μGy/h were used with apparent success to treat several inflammatory and proliferative conditions in humans.

  7. The Floquet Adiabatic Theorem revisited

    NASA Astrophysics Data System (ADS)

    Weinberg, Phillip; Bukov, Marin; D'Alessio, Luca; Kolodrubetz, Michael; Davidson, Shainen; Polkovnikov, Anatoli

    2015-03-01

    The existance of the adiabatic theorem for Floquet systems has been the subject of an active debate with different articles reaching opposite conclusions over the years. In this talk we clarify the situation by deriving a systematic expansion in the time-derivatives of a slow parameter for the occupation probabilities of the Floque states. Our analysis shows that the in a certain limit the transition between Floquet eigenstates are suppressed and it is possible to define an adiabatic theorem for Floquet systems. Crucially we observe however that the conditions for adiabaticity in ordinary and Floquet systems are different and that this difference can become important when the amplitude of the periodic driving is large. We illustrate our results with specific examples of a periodically driven harmonic oscillator and cold atoms in optical lattices which are relevant in current experiments.

  8. Adiabatic losses in Stirling refrigerators

    SciTech Connect

    Bauwens, L.

    1996-06-01

    The Stirling cycle has been used very effectively in cryocoolers; but efficiencies relative to the Carnot limit are typically observed to peak for absolute temperature ratios of about two, which makes it less suitable for low-life refrigeration. The adiabatic loss appears to be responsible for poor performance at small temperature differences. In this paper, adiabatic losses are evaluated, for a temperature ratio of 2/3, taking into account the effect of phase angle between pistons, of volume ratio, of the distribution of the dead volume necessary to reduce the volume ratio, and of the distribution of displacement between expansion and compression spaces. The study is carried out numerically, using an adiabatic Stirling engine model in which cylinder flow is assumed to be stratified. Results show that the best location for the cylinder dead volume is on the compression side. Otherwise, all strategies used to trade off refrigeration for coefficient of performance are found to be roughly equivalent.

  9. Adiabatic evolution of plasma equilibrium

    PubMed Central

    Grad, H.; Hu, P. N.; Stevens, D. C.

    1975-01-01

    A new theory of plasma equilibrium is introduced in which adiabatic constraints are specified. This leads to a mathematically nonstandard structure, as compared to the usual equilibrium theory, in which prescription of pressure and current profiles leads to an elliptic partial differential equation. Topologically complex configurations require further generalization of the concept of adiabaticity to allow irreversible mixing of plasma and magnetic flux among islands. Matching conditions across a boundary layer at the separatrix are obtained from appropriate conservation laws. Applications are made to configurations with planned islands (as in Doublet) and accidental islands (as in Tokamaks). Two-dimensional, axially symmetric, helically symmetric, and closed line equilibria are included. PMID:16578729

  10. Non-targeted effects induced by ionizing radiation: mechanisms and potential impact on radiation induced health effects.

    PubMed

    Morgan, William F; Sowa, Marianne B

    2015-01-01

    Not-targeted effects represent a paradigm shift from the "DNA centric" view that ionizing radiation only elicits biological effects and subsequent health consequences as a result of an energy deposition event in the cell nucleus. While this is likely true at higher radiation doses (>1 Gy), at low doses (<100 mGy) non-targeted effects associated with radiation exposure might play a significant role. Here definitions of non-targeted effects are presented, the potential mechanisms for the communication of signals and signaling networks from irradiated cells/tissues are proposed, and the various effects of this intra- and intercellular signaling are described. We conclude with speculation on how these observations might lead to and impact long-term human health outcomes.

  11. Non-Targeted Effects Induced by Ionizing Radiation: Mechanisms and Potential Impact on Radiation Induced Health Effects

    SciTech Connect

    Morgan, William F.; Sowa, Marianne B.

    2015-01-01

    Not-targeted effects represent a paradigm shift from the "DNA centric" view that ionizing radiation only elicits biological effects and subsequent health consequences as a result of an energy deposition event in the cell nucleus. While this is likely true at higher radiation doses (> 1Gy), at low doses (< 100mGy) non-targeted effects associated with radiation exposure might play a significant role. Here definitions of non-targeted effects are presented, the potential mechanisms for the communication of signals and signaling networks from irradiated cells/tissues are proposed, and the various effects of this intra- and intercellular signaling are described. We conclude with speculation on how these observations might lead to and impact long-term human health outcomes.

  12. Direct Delta-MBPT(2) method for ionization potentials, electron affinities, and excitation energies using fractional occupation numbers

    SciTech Connect

    Beste, Ariana; Vazquez-Mayagoitia, Alvaro; Ortiz, J. Vincent

    2013-01-01

    A direct method (D-Delta-MBPT(2)) to calculate second-order ionization potentials (IPs), electron affinities (EAs), and excitation energies is developed. The Delta-MBPT(2) method is defined as the correlated extension of the Delta-HF method. Energy differences are obtained by integrating the energy derivative with respect to occupation numbers over the appropriate parameter range. This is made possible by writing the second-order energy as a function of the occupation numbers. Relaxation effects are fully included at the SCF level. This is in contrast to linear response theory, which makes the D-Delta-MBPT(2) applicable not only to single excited but also higher excited states. We show the relationship of the D-Delta-MBPT(2) method for IPs and EAs to a second-order approximation of the effective Fock-space coupled-cluster Hamiltonian and a second-order electron propagator method. We also discuss the connection between the D-Delta-MBPT(2) method for excitation energies and the CIS-MP2 method. Finally, as a proof of principle, we apply our method to calculate ionization potentials and excitation energies of some small molecules. For IPs, the Delta-MBPT(2) results compare well to the second-order solution of the Dyson equation. For excitation energies, the deviation from EOM-CCSD increases when correlation becomes more important. When using the numerical integration technique, we encounter difficulties that prevented us from reaching the Delta-MBPT(2) values. Most importantly, relaxation beyond the Hartree Fock level is significant and needs to be included in future research.

  13. Shortcuts to adiabaticity in a time-dependent box

    PubMed Central

    Campo, A. del; Boshier, M. G.

    2012-01-01

    A method is proposed to drive an ultrafast non-adiabatic dynamics of an ultracold gas trapped in a time-dependent box potential. The resulting state is free from spurious excitations associated with the breakdown of adiabaticity, and preserves the quantum correlations of the initial state up to a scaling factor. The process relies on the existence of an adiabatic invariant and the inversion of the dynamical self-similar scaling law dictated by it. Its physical implementation generally requires the use of an auxiliary expulsive potential. The method is extended to a broad family of interacting many-body systems. As illustrative examples we consider the ultrafast expansion of a Tonks-Girardeau gas and of Bose-Einstein condensates in different dimensions, where the method exhibits an excellent robustness against different regimes of interactions and the features of an experimentally realizable box potential. PMID:22970340

  14. Ionization potentials of transparent conductive indium tin oxide films covered with a single layer of fluorine-doped tin oxide nanoparticles grown by spray pyrolysis deposition

    SciTech Connect

    Fukano, Tatsuo; Motohiro, Tomoyoshi; Ida, Takashi; Hashizume, Hiroo

    2005-04-15

    Indium tin oxide (ITO) films deposited with single layers of monodispersive fluorine-doped tin oxide (FTO) nanoparticles of several nanometers in size were grown on glass substrates by intermittent spray pyrolysis deposition using conventional atomizers. These films have significantly higher ionization potentials than the bare ITO and FTO films grown using the same technique. The ITO films covered with FTO particles of 7 nm in average size show an ionization potential of 5.01 eV, as compared with {approx}4.76 and {approx}4.64 eV in ITO and FTO films, respectively, which decreases as the FTO particle size increases. The ionization potentials are practically invariant against oxidation and reduction treatments, promising a wide application of the films to transparent conducting oxide electrodes in organic electroluminescent devices and light-emitting devices of high efficiencies.

  15. Pressure Oscillations in Adiabatic Compression

    ERIC Educational Resources Information Center

    Stout, Roland

    2011-01-01

    After finding Moloney and McGarvey's modified adiabatic compression apparatus, I decided to insert this experiment into my physical chemistry laboratory at the last minute, replacing a problematic experiment. With insufficient time to build the apparatus, we placed a bottle between two thick textbooks and compressed it with a third textbook forced…

  16. Transitionless driving on adiabatic search algorithm

    SciTech Connect

    Oh, Sangchul; Kais, Sabre

    2014-12-14

    We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.

  17. Transitionless driving on adiabatic search algorithm

    NASA Astrophysics Data System (ADS)

    Oh, Sangchul; Kais, Sabre

    2014-12-01

    We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.

  18. Transitionless driving on adiabatic search algorithm.

    PubMed

    Oh, Sangchul; Kais, Sabre

    2014-12-14

    We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.

  19. Mass analyzed threshold ionization (MATI) spectroscopy of p-cresol

    NASA Astrophysics Data System (ADS)

    Shirhatti, P. R.; Wategaonkar, S.

    2012-03-01

    Experimental setup was developed for carrying out the mass analyzed threshold ionization (MATI) spectroscopy. Primary objective has been to carry out the vibronic spectroscopy of the novel hydrogen bonded complexes in the cationic state. To this end MATI spectroscopy is best suited for the purpose. This work presents the successful implementation of the same using p-cresol as a test case. This happens to be the prime substrate in most of our studies on weakly hydrogen bonded complexes that are dominated by the dispersion interaction contrary to the electrostatic nature of the conventional hydrogen bonds. The adiabatic ionization potential of p-cresol was determined as 65,904 ± 10 cm-1 which is in good agreement with the previously reported value. The MATI spectrum also shows a few vibronic bands of p-cresol cation.

  20. Bond selective chemistry beyond the adiabatic approximation

    SciTech Connect

    Butler, L.J.

    1993-12-01

    One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.

  1. Adiabatic theory of Wannier threshold laws and ionization cross sections

    SciTech Connect

    Macek, J.H.; Ovchinnikov, S.Yu.

    1994-12-31

    The Wannier threshold law for three-particle fragmentation is reviewed. By integrating the Schroedinger equation along a path where the reaction coordinate R is complex, anharmonic corrections to the simple power law are obtained. These corrections are found to be non-analytic in the energy E, in contrast to the expected analytic dependence upon E.

  2. Ionization potentials of (112) and (112¯) facet surfaces of CuInSe2 and CuGaSe2

    NASA Astrophysics Data System (ADS)

    Hinuma, Yoyo; Oba, Fumiyasu; Kumagai, Yu; Tanaka, Isao

    2012-12-01

    The ionization potentials of the faceted and nonfaceted (110) surfaces of CuInSe2 (CIS) and CuGaSe2 (CGS), which are key components of CuIn1-xGaxSe2 (CIGS) thin-film solar cells, are investigated using first-principles calculations based on a hybrid Hartree-Fock density functional theory approach. Slab models of the chalcopyrite (110) surface with both (112) and (112¯) facets on each surface of the slab are employed. Surface energy evaluations point out that two types of faceted surfaces with point defects, namely a combination of CuIn (CuGa) and InCu (GaCu) antisites and a combination of Cu vacancies and InCu (GaCu) antisites, are the most stable depending on the chemical potentials. The ionization potentials are evaluated with two definitions: One highly sensitive to and the other less sensitive to localized surface states. The latter varies by 0.4 eV in CIS and 0.5 eV in CGS with the surface structure. The ionization potentials are reduced by 0.2 eV for faceted surfaces with CuIn (CuGa) and InCu (GaCu) antisites when the effects of the localized surface states are considered. The values of both ionization potentials are similar between CIS and CGS with a difference of about 0.1 eV for the most stable surface structures.

  3. Spatially Resolved Plant Metabolomics: Some Potentials and Limitations of Laser-Ablation Electrospray Ionization Mass Spectrometry Metabolite Imaging.

    PubMed

    Etalo, Desalegn W; De Vos, Ric C H; Joosten, Matthieu H A J; Hall, Robert D

    2015-11-01

    Laser-ablation electrospray ionization (LAESI)-mass spectrometry imaging has been applied to contrasting plant organs to assess its potential as a procedure for performing in vivo metabolomics in plants. In a proof-of-concept experiment, purple/white segmented Phalaenopsis spp. petals were first analyzed using standard liquid chromatography-mass spectrometry analyses of separate extracts made specifically from the purple and white regions. Discriminatory compounds were defined and putatively annotated. LAESI analyses were then performed on living tissues, and these metabolites were then relocalized within the LAESI-generated data sets of similar tissues. Maps were made to illustrate their locations across the petals. Results revealed that, as expected, anthocyanins always mapped to the purple regions. Certain other (nonvisible) polyphenols were observed to colocalize with the anthocyanins, whereas others were found specifically within the white tissues. In a contrasting example, control and Cladosporium fulvum-infected tomato (Solanum lycopersicum) leaves were subjected to the same procedures, and it could be observed that the alkaloid tomatine has clear heterogeneous distribution across the tomato leaf lamina. Furthermore, LAESI analyses revealed perturbations in alkaloid content following pathogen infection. These results show the clear potential of LAESI-based imaging approaches as a convenient and rapid way to perform metabolomics analyses on living tissues. However, a range of limitations and factors have also been identified that must be taken into consideration when interpreting LAESI-derived data. Such aspects deserve further evaluation before this approach can be applied in a routine manner.

  4. Spatially Resolved Plant Metabolomics: Some Potentials and Limitations of Laser-Ablation Electrospray Ionization Mass Spectrometry Metabolite Imaging1[OPEN

    PubMed Central

    Etalo, Desalegn W.; De Vos, Ric C.H.; Joosten, Matthieu H.A.J.; Hall, Robert D.

    2015-01-01

    Laser-ablation electrospray ionization (LAESI)-mass spectrometry imaging has been applied to contrasting plant organs to assess its potential as a procedure for performing in vivo metabolomics in plants. In a proof-of-concept experiment, purple/white segmented Phalaenopsis spp. petals were first analyzed using standard liquid chromatography-mass spectrometry analyses of separate extracts made specifically from the purple and white regions. Discriminatory compounds were defined and putatively annotated. LAESI analyses were then performed on living tissues, and these metabolites were then relocalized within the LAESI-generated data sets of similar tissues. Maps were made to illustrate their locations across the petals. Results revealed that, as expected, anthocyanins always mapped to the purple regions. Certain other (nonvisible) polyphenols were observed to colocalize with the anthocyanins, whereas others were found specifically within the white tissues. In a contrasting example, control and Cladosporium fulvum-infected tomato (Solanum lycopersicum) leaves were subjected to the same procedures, and it could be observed that the alkaloid tomatine has clear heterogeneous distribution across the tomato leaf lamina. Furthermore, LAESI analyses revealed perturbations in alkaloid content following pathogen infection. These results show the clear potential of LAESI-based imaging approaches as a convenient and rapid way to perform metabolomics analyses on living tissues. However, a range of limitations and factors have also been identified that must be taken into consideration when interpreting LAESI-derived data. Such aspects deserve further evaluation before this approach can be applied in a routine manner. PMID:26392264

  5. Ionization Thresholds of Small Carbon Clusters: Tunable VUVExperiments and Theory

    SciTech Connect

    Belau, Leonid; Wheeler, Steven E.; Ticknor, Brian W.; Ahmed,Musahid; Leone, Stephen R.; Allen, Wesley D.; Schaefer III, Henry F.; Duncan, Michael A.

    2007-07-31

    Small carbon clusters (Cn, n = 2-15) are produced in amolecular beam by pulsed laser vaporization and studied with vacuumultraviolet (VUV) photoionization mass spectrometry. The required VUVradiation in the 8-12 eV range is provided by the Advanced Light Source(ALS) at the Lawrence Berkeley National Laboratory. Mass spectra atvarious ionization energies reveal the qualitative relative abundances ofthe neutral carbon clusters produced. By far the most abundant species isC3. Using the tunability of the ALS, ionization threshold spectra arerecorded for the clusters up to 15 atoms in size. The ionizationthresholds are compared to those measured previously with charge-transferbracketing methods. To interpret the ionization thresholds for differentcluster sizes, new ab initio calculations are carried out on the clustersfor n = 4-10. Geometric structures are optimized at the CCSD(T) levelwith cc-pVTZ (or cc-pVDZ) basis sets, and focal point extrapolations areapplied to both neutral and cation species to determine adiabatic andvertical ionization potentials. The comparison of computed and measuredionization potentials makes it possible to investigate the isomericstructures of the neutral clusters produced in this experiment. Themeasurements are inconclusive for the n = 4-6 species because ofunquenched excited electronic states. However, the data provide evidencefor the prominence of linear structures for the n = 7, 9, 11, 13 speciesand the presence of cyclic C10.

  6. The singlet-triplet splittings in AsH + 2, SbH + 2, and BiH + 2 and bond energies and ionization potentials of AsH2

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.

    1989-08-01

    The three low-lying electronic states (1A1, 3B1, 1B1) and their five spin-orbit states of AsH+2, SbH+2, and BiH+2 are investigated using complete active space MCSCF/second-order configuration interaction/relativistic CI schemes (CASSCF/SOCI/RCI). In addition the X 2B1 ground state and the excited 2A1 state of AsH2 and the X 3Σ- state of AsH are studied at the same levels of theory. The CASSCF/SOCI calculations yield De (HAs-H)=69.1 kcal/mol and De (AsH)=62.4 kcal/mol in excellent agreement with experimental values of D0(HAs-H)=66.5 kcal/mol and D0(As-H)=64.6 kcal/mol obtained by Berkowitz recently. The adiabatic CASSCF/SOCI ionization potential of the X 2B1 state of AsH2 to form the X 1A1 state of AsH+2 is 9.25 eV in comparison to an experimental value of 9.44 eV obtained by Berkowitz and Cho. The X 1A1-3B1 separations of AsH+2, SbH+2, and BiH+2 are calculated as 22, 31, and 35 kcal/mol, respectively. All the three ions were found to have bent equilibrium structures. The spin-orbit effects are found to be very significant for both BiH+2 and SbH+2, which changed the bond angle of 3B1(A1) to a considerable extent by contamination with 1A1. The relativistic density matrices and dipole moments are also obtained for all the species from the RCI wave functions.

  7. Spatial adiabatic passage: a review of recent progress

    NASA Astrophysics Data System (ADS)

    Menchon-Enrich, R.; Benseny, A.; Ahufinger, V.; Greentree, A. D.; Busch, Th; Mompart, J.

    2016-07-01

    Adiabatic techniques are known to allow for engineering quantum states with high fidelity. This requirement is currently of large interest, as applications in quantum information require the preparation and manipulation of quantum states with minimal errors. Here we review recent progress on developing techniques for the preparation of spatial states through adiabatic passage, particularly focusing on three state systems. These techniques can be applied to matter waves in external potentials, such as cold atoms or electrons, and to classical waves in waveguides, such as light or sound.

  8. Quantum dynamics by the constrained adiabatic trajectory method

    SciTech Connect

    Leclerc, A.; Jolicard, G.; Guerin, S.; Killingbeck, J. P.

    2011-03-15

    We develop the constrained adiabatic trajectory method (CATM), which allows one to solve the time-dependent Schroedinger equation constraining the dynamics to a single Floquet eigenstate, as if it were adiabatic. This constrained Floquet state (CFS) is determined from the Hamiltonian modified by an artificial time-dependent absorbing potential whose forms are derived according to the initial conditions. The main advantage of this technique for practical implementation is that the CFS is easy to determine even for large systems since its corresponding eigenvalue is well isolated from the others through its imaginary part. The properties and limitations of the CATM are explored through simple examples.

  9. Applications of chirped Raman adiabatic rapid passage to atom interferometry

    NASA Astrophysics Data System (ADS)

    Kotru, Krish; Butts, David L.; Kinast, Joseph M.; Johnson, David M. S.; Radojevic, Antonije M.; Timmons, Brian P.; Stoner, Richard E.

    2012-02-01

    We present robust atom optics, based on chirped Raman adiabatic rapid passage (ARP), in the context of atom interferometry. Such ARP light pulses drive coherent population transfer between two hyperfine ground states by sweeping the frequency difference of two fixed-intensity optical fields with large single photon detunings. Since adiabatic transfer is less sensitive to atom temperature and non-uniform Raman beam intensity than standard Raman pulses, this approach should improve the stability of atom interferometers operating in dynamic environments. In such applications, chirped Raman ARP may also provide advantages over the previously demonstrated stimulated Raman adiabatic passage (STIRAP) technique, which requires precise modulation of beam intensity and zeroing of the single photon detuning. We demonstrate a clock interferometer with chirped Raman ARP pulses, and compare its stability to that of a conventional Raman pulse interferometer. We also discuss potential improvements to inertially sensitive atom interferometers. Copyright 2011 by The Charles Stark Draper Laboratory, Inc. All rights reserved.

  10. Sequence and conformation effects on ionization potential and charge distribution of homo-nucleobase stacks using M06-2X hybrid density functional theory calculations

    PubMed Central

    Rooman, Marianne; Wintjens, René

    2013-01-01

    DNA is subject to oxidative damage due to radiation or by-products of cellular metabolism, thereby creating electron holes that migrate along the DNA stacks. A systematic computational analysis of the dependence of the electronic properties of nucleobase stacks on sequence and conformation was performed here, on the basis of single- and double-stranded homo-nucleobase stacks of 1–10 bases or 1–8 base pairs in standard A-, B-, and Z-conformation. First, several levels of theory were tested for calculating the vertical ionization potentials of individual nucleobases; the M06-2X/6-31G* hybrid density functional theory method was selected by comparison with experimental data. Next, the vertical ionization potential, and the Mulliken charge and spin density distributions were calculated and considered on all nucleobase stacks. We found that (1) the ionization potential decreases with the number of bases, the lowest being reached by Gua≡Cyt tracts; (2) the association of two single strands into a double-stranded tract lowers the ionization potential significantly (3) differences in ionization potential due to sequence variation are roughly three times larger than those due to conformational modifications. The charge and spin density distributions were found (1) to be located toward the 5′-end for single-stranded Gua-stacks and toward the 3′-end for Cyt-stacks and basically delocalized over all bases for Ade- and Thy-stacks; (2) the association into double-stranded tracts empties the Cyt- and Thy-strands of most of the charge and all the spin density and concentrates them on the Gua- and Ade-strands. The possible biological implications of these results for transcription are discussed. PMID:23582046

  11. The potential of electrospray ionization mass spectrometry for the diagnosis of hemoglobin variants found in newborn screening.

    PubMed

    Wild, B J; Green, B N; Stephens, A D

    2004-01-01

    Analytical procedures have been developed for the detection and diagnosis of sickle cell disease in newborn babies by analyzing the hemoglobin extracted from dried blood spots on Guthrie cards using electrospray ionization mass spectrometry (ESI-MS). An essential requirement is the ability to reliably differentiate two globin chains whose molecular weights differ by only 1 Da such as adult hemoglobin (Hb A) and Hb C. This has been achieved by improving the accuracy and precision of the molecular weight determination to a fraction of a dalton. We report the potential of mass spectrometry for screening neonates for these debilitating diseases by presenting results from 147 blood spots that had been characterized by phenotypic methods and which include samples from 20 sickle cell disease, 1 beta-thalassemia major, 57 sickle cell trait, and 39 normal babies. In all cases, the mass spectrometric results agreed with the results obtained using conventional analytical practice with high-performance liquid chromatography (HPLC) and isoelectric focusing (IEF). We show that mass spectrometry is a viable technique for the diagnosis of newborns with sickle cell disease or homozygous beta0-thalassemia.

  12. PCR-electrospray ionization mass spectrometry: the potential to change infectious disease diagnostics in clinical and public health laboratories.

    PubMed

    Wolk, Donna M; Kaleta, Erin J; Wysocki, Vicki H

    2012-07-01

    During the past 20 years, microbial detection methods that are genetically based, such as real-time PCR and peptide nucleic acid fluorescent hybridization, coexisted with traditional microbiological methods and were typically based on the identification of individual genetic targets. For these methods to be successful, a potential cause of infection must be suspected. More recently, multiplex PCR and multiplex RT-PCR were used to enable more broad-range testing based on panels of suspected pathogens. PCR-electrospray ionization mass spectrometry (PCR-ESI/MS) has emerged as a technology that is capable of identifying nearly all known human pathogens either from microbial isolates or directly from clinical specimens. Assay primers are strategically designed to target one or more of the broad pathogen categories: bacterial, mycobacterial, fungal, or viral. With broad-range amplification followed by detection of mixed amplicons, the method can identify genetic evidence of known and unknown pathogens. This unique approach supports a higher form of inquiry, asking the following question: What is the genetic evidence of known or unknown pathogens in the patient sample? This approach has advantages over traditional assays that commonly target the presence or absence of one or more pathogens with known genetic composition. This review considers the breadth of the published literature and explores the possibilities, advantages, and limitations for implementation of PCR-ESI/MS in diagnostic laboratories.

  13. Spin-orbit coupling with approximate equation-of-motion coupled-cluster method for ionization potential and electron attachment

    NASA Astrophysics Data System (ADS)

    Cao, Zhanli; Wang, Fan; Yang, Mingli

    2016-10-01

    Various approximate approaches to calculate cluster amplitudes in equation-of-motion coupled-cluster (EOM-CC) approaches for ionization potentials (IP) and electron affinities (EA) with spin-orbit coupling (SOC) included in post self-consistent field (SCF) calculations are proposed to reduce computational effort. Our results indicate that EOM-CC based on cluster amplitudes from the approximate method CCSD-1, where the singles equation is the same as that in CCSD and the doubles amplitudes are approximated with MP2, is able to provide reasonable IPs and EAs when SOC is not present compared with CCSD results. It is an economical approach for calculating IPs and EAs and is not as sensitive to strong correlation as CC2. When SOC is included, the approximate method CCSD-3, where the same singles equation as that in SOC-CCSD is used and the doubles equation of scalar-relativistic CCSD is employed, gives rise to IPs and EAs that are in closest agreement with those of CCSD. However, SO splitting with EOM-CC from CC2 generally agrees best with that with CCSD, while that of CCSD-1 and CCSD-3 is less accurate. This indicates that a balanced treatment of SOC effects on both single and double excitation amplitudes is required to achieve reliable SO splitting.

  14. Theory of multiphoton ionization of atoms

    SciTech Connect

    Szoeke, A.

    1986-03-01

    A non-perturbative approach to the theory of multiphoton ionization is reviewed. Adiabatic Floquet theory is its first approximation. It explains qualitatively the energy and angular distribution of photoelectrons. In many-electron atoms it predicts collective and inner shell excitation. 14 refs.

  15. Invalidity of the quantitative adiabatic condition and general conditions for adiabatic approximations

    NASA Astrophysics Data System (ADS)

    Li, Dafa

    2016-05-01

    The adiabatic theorem was proposed about 90 years ago and has played an important role in quantum physics. The quantitative adiabatic condition constructed from eigenstates and eigenvalues of a Hamiltonian is a traditional tool to estimate adiabaticity and has proven to be the necessary and sufficient condition for adiabaticity. However, recently the condition has become a controversial subject. In this paper, we list some expressions to estimate the validity of the adiabatic approximation. We show that the quantitative adiabatic condition is invalid for the adiabatic approximation via the Euclidean distance between the adiabatic state and the evolution state. Furthermore, we deduce general necessary and sufficient conditions for the validity of the adiabatic approximation by different definitions.

  16. Ionization photophysics and spectroscopy of cyanoacetylene

    SciTech Connect

    Leach, Sydney; Champion, Norbert; Garcia, Gustavo A.; Fray, Nicolas; Gaie-Levrel, François; Mahjoub, Ahmed; Bénilan, Yves; Gazeau, Marie-Claire; Schwell, Martin

    2014-05-07

    Photoionization of cyanoacetylene was studied using synchrotron radiation over the non-dissociative ionization excitation range 11–15.6 eV, with photoelectron-photoion coincidence techniques. The absolute ionization cross-section and spectroscopic aspects of the parent ion were recorded. The adiabatic ionization energy of cyanoacetylene was measured as 11.573 ± 0.010 eV. A detailed analysis of photoelectron spectra of HC{sub 3}N involves new aspects and new assignments of the vibrational components to excitation of the A{sup 2}Σ{sup +} and B{sup 2}Π states of the cation. Some of the structured autoionization features observed in the 11.94 to 15.5 eV region of the total ion yield (TIY) spectrum were assigned to two Rydberg series converging to the B{sup 2}Π state of HC{sub 3}N{sup +}. A number of the measured TIY features are suggested to be vibrational components of Rydberg series converging to the C{sup 2}Σ{sup +} state of HC{sub 3}N{sup +} at ≈17.6 eV and others to valence shell transitions of cyanoacetylene in the 11.6–15 eV region. The results of quantum chemical calculations of the cation electronic state geometries, vibrational frequencies and energies, as well as of the C–H dissociation potential energy profiles of the ground and electronic excited states of the ion, are compared with experimental observations. Ionization quantum yields are evaluated and discussed and the problem of adequate calibration of photoionization cross-sections is raised.

  17. Ionization thresholds of small carbon clusters: tunable VUV experiments and theory.

    PubMed

    Belau, Leonid; Wheeler, Steven E; Ticknor, Brian W; Ahmed, Musahid; Leone, Stephen R; Allen, Wesley D; Schaefer, Henry F; Duncan, Michael A

    2007-08-22

    Small carbon clusters (Cn, n = 2-15) are produced in a molecular beam by pulsed laser vaporization and studied with vacuum ultraviolet (VUV) photoionization mass spectrometry. The required VUV radiation in the 8-12 eV range is provided by the Advanced Light Source (ALS) at the Lawrence Berkeley National Laboratory. Mass spectra at various ionization energies reveal the qualitative relative abundances of the neutral carbon clusters produced. By far the most abundant species is C3. Using the tunability of the ALS, ionization threshold spectra are recorded for the clusters up to 15 atoms in size. The ionization thresholds are compared to those measured previously with charge-transfer bracketing methods. To interpret the ionization thresholds for different cluster sizes, new ab initio calculations are carried out on the clusters for n = 4-10. Geometric structures are optimized at the CCSD(T) level with cc-pVTZ (or cc-pVDZ) basis sets, and focal point extrapolations are applied to both neutral and cation species to determine adiabatic and vertical ionization potentials. The comparison of computed and measured ionization potentials makes it possible to investigate the isomeric structures of the neutral clusters produced in this experiment. The measurements are inconclusive for the n = 4-6 species because of unquenched excited electronic states. However, the data provide evidence for the prominence of linear structures for the n = 7, 9, 11, 13 species and the presence of cyclic C10.

  18. Investigations of the potential functions of weakly bound diatomic molecules and laser-assisted excitive Penning ionization

    SciTech Connect

    Goble, J.H. Jr.

    1982-05-01

    Three variations on the Dunham series expansion function of the potential of a diatomic molecule are compared. The differences among these expansions lie in the choice of the expansion variable, lambda. The functional form of these variables are lambda/sub s/ = l-r/sub e//r for the Simon-Parr-Finlan version, lambda/sub T/ - 1-(r/sub e//r)/sup p/ for that of Thakkar, and lambda/sub H/ = 1-exp(-rho(r/r/sub e/-1) for that of Huffaker. A wide selection of molecular systems are examined. It is found that, for potentials in excess of thirty kcal/mole, the Huffaker expansion provides the best description of the three, extrapolating at large internuclear separation to a value within 10% of the true dissociation energy. For potentials that result from the interaction of excited states, all series expansions show poor behavior away from the equilibrium internuclear separation of the molecule. The series representation of the potentials of weakly bound molecules are examined in more detail. The ground states of BeAr/sup +/, HeNe/sup +/, NaAr, and Ar/sub 2/ and the excited states of HeNe+, NaNe, and NaAr are best described by the Thakkar expansion. Finally, the observation of laser-assisted excitive Penning ionization in a flowing afterglow is reported. The reaction Ar(/sup 3/P/sub 2/) + Ca + h nu ..-->.. Ar + Ca/sup +/(5p /sup 2/P/sub J/) + e/sup -/ occurs when the photon energy, h nu, is approximately equal to the energy difference between the metastable argon and one of the fine structure levels of the ion's doublet. By monitoring the cascade fluorescence of the above reaction and comparing it to the flourescence from the field-free process Ar(/sup 3/P/sub 2/) + Ca ..-->.. Ar + Ca/sup +/(4p /sup 2/P/sub J/) + e/sup -/ a surprisingly large cross section of 6.7 x 10/sup 3/ A/sup 2/ is estimated.

  19. Modulated voltage metastable ionization detector

    NASA Technical Reports Server (NTRS)

    Carle, G. C.; Kojiro, D. R.; Humphrey, D. E. (Inventor)

    1985-01-01

    The output current from a metastable ionization detector (MID) is applied to a modulation voltage circuit. An adjustment is made to balance out the background current, and an output current, above background, is applied to an input of a strip chart recorder. For low level concentrations, i.e., low detected output current, the ionization potential will be at a maximum and the metastable ionization detector will operate at its most sensitive level. When the detected current from the metastable ionization detector increases above a predetermined threshold level, a voltage control circuit is activated which turns on a high voltage transistor which acts to reduce the ionization potential. The ionization potential applied to the metastable ionization detector is then varied so as to maintain the detected signal level constant. The variation in ionization potential is now related to the concentration of the constituent and a representative amplitude is applied to another input of said strip chart recorder.

  20. Adiabatic Pseudospectral Technique: Applications to Four Atom Molecules

    NASA Astrophysics Data System (ADS)

    Antikainen, Jyrki Tapio

    1995-01-01

    After the introduction, in chapter 2 we review some of the well established techniques used to solve the Schrodinger equation. The following methods are discussed: the Finite Basis Representation, the Discrete Variable Representation, the Basic Light basis set truncation, and the Lanczos tridiagonalization. After reviewing the previous techniques we present the main features of our Adiabatic Pseudospectral (APS) technique. The Adiabatic Pseudospectral technique is a synthesis of several powerful computational methods such as the sequential adiabatic basis set reduction, the iterative Lanczos diagonalization, the collocation techniques, and a careful implementation of the matrix -vector product for the Hamiltonian in the reduced adiabatic representation. In chapter 3 we use our adiabatic pseudospectral method (APS) to calculate energy levels of the H _2O_2 molecule up to 5000 cm ^{-1}. Reasonably high accuracy (a few wavenumbers) is achieved for a fully six dimensional calculation in a few hours of CPU time on an IBM 580 workstation. These results are a great improvement over previous calculations on the same system which required 50-100 times more computational effort for a similar level of accuracy. The method presented here is both general and robust. It will allow for routine studies of six dimensional potential surfaces and the associated spectroscopy, while making calculations on still larger systems feasible. In chapter 4 the adiabatic pseudospectral method is used to study the high energy vibrational levels of the H_2C_2 molecule. We calculate stimulated emission pumping spectra initialized by the excited electronic state vibrational trans-bent state ~ A_sp{u}{1 }3_{nu}_3 . The calculations show that with the APS-method we can easily investigate energy regions in the excess of 15,000 cm^{-1}; these high energy regions have been previously unattainable by computational techniques.

  1. Metronomic Small Molecule Inhibitor of Bcl-2 (TW-37) Is Antiangiogenic and Potentiates the Antitumor Effect of Ionizing Radiation

    SciTech Connect

    Zeitlin, Benjamin D.; Spalding, Aaron C.; Campos, Marcia S.; Ashimori, Naoki; Dong Zhihong; Wang Shaomeng; Lawrence, Theodore S.; Noer, Jacques E.

    2010-11-01

    Purpose: To investigate the effect of a metronomic (low-dose, high-frequency) small-molecule inhibitor of Bcl-2 (TW-37) in combination with radiotherapy on microvascular endothelial cells in vitro and in tumor angiogenesis in vivo. Methods and Materials: Primary human dermal microvascular endothelial cells were exposed to ionizing radiation and/or TW-37 and colony formation, as well as capillary sprouting in three-dimensional collagen matrices, was evaluated. Xenografts vascularized with human blood vessels were engineered by cotransplantation of human squamous cell carcinoma cells (OSCC3) and human dermal microvascular endothelial cells seeded in highly porous biodegradable scaffolds into the subcutaneous space of immunodeficient mice. Mice were treated with metronomic TW-37 and/or radiation, and tumor growth was evaluated. Results: Low-dose TW-37 sensitized primary endothelial cells to radiation-induced inhibition of colony formation. Low-dose TW-37 or radiation partially inhibited endothelial cell sprout formation, and in combination, these therapies abrogated new sprouting. Combination of metronomic TW-37 and low-dose radiation inhibited tumor growth and resulted in significant increase in time to failure compared with controls, whereas single agents did not. Notably, histopathologic analysis revealed that tumors treated with TW-37 (with or without radiation) are more differentiated and showed more cohesive invasive fronts, which is consistent with less aggressive phenotype. Conclusions: These results demonstrate that metronomic TW-37 potentiates the antitumor effects of radiotherapy and suggest that patients with head and neck cancer might benefit from the combination of small molecule inhibitor of Bcl-2 and radiation therapy.

  2. Theory of Adiabatic Fountain Resonance

    NASA Astrophysics Data System (ADS)

    Williams, Gary A.

    2017-01-01

    The theory of "Adiabatic Fountain Resonance" with superfluid ^4{He} is clarified. In this geometry a film region between two silicon wafers bonded at their outer edge opens up to a central region with a free surface. We find that the resonance in this system is not a Helmholtz resonance as claimed by Gasparini et al., but in fact is a fourth sound resonance. We postulate that it occurs at relatively low frequency because the thin silicon wafers flex appreciably from the pressure oscillations of the sound wave.

  3. Adiabatic Wankel type rotary engine

    NASA Technical Reports Server (NTRS)

    Kamo, R.; Badgley, P.; Doup, D.

    1988-01-01

    This SBIR Phase program accomplished the objective of advancing the technology of the Wankel type rotary engine for aircraft applications through the use of adiabatic engine technology. Based on the results of this program, technology is in place to provide a rotor and side and intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Injection Stratified Charge (DISC) rotary engine was performed which concluded that applying thermal barrier coatings to the rotor should be successful and that it was unlikely that the rotor housing could be successfully run with thermal barrier coatings as the thermal stresses were extensive.

  4. Failure of geometric electromagnetism in the adiabatic vector Kepler problem

    SciTech Connect

    Anglin, J.R.; Schmiedmayer, J.

    2004-02-01

    The magnetic moment of a particle orbiting a straight current-carrying wire may precess rapidly enough in the wire's magnetic field to justify an adiabatic approximation, eliminating the rapid time dependence of the magnetic moment and leaving only the particle position as a slow degree of freedom. To zeroth order in the adiabatic expansion, the orbits of the particle in the plane perpendicular to the wire are Keplerian ellipses. Higher-order postadiabatic corrections make the orbits precess, but recent analysis of this 'vector Kepler problem' has shown that the effective Hamiltonian incorporating a postadiabatic scalar potential ('geometric electromagnetism') fails to predict the precession correctly, while a heuristic alternative succeeds. In this paper we resolve the apparent failure of the postadiabatic approximation, by pointing out that the correct second-order analysis produces a third Hamiltonian, in which geometric electromagnetism is supplemented by a tensor potential. The heuristic Hamiltonian of Schmiedmayer and Scrinzi is then shown to be a canonical transformation of the correct adiabatic Hamiltonian, to second order. The transformation has the important advantage of removing a 1/r{sup 3} singularity which is an artifact of the adiabatic approximation.

  5. Benchmark theoretical study of the ionization threshold of benzene and oligoacenes

    NASA Astrophysics Data System (ADS)

    Deleuze, M. S.; Claes, L.; Kryachko, E. S.; François, J.-P.

    2003-08-01

    In straightforward continuation of Green's function studies of the ultraviolet photoelectron spectra of polycyclic aromatic compounds [Deleuze et al., J. Chem. Phys. 115, 5859 (2001); M. S. Deleuze, ibid. 116, 7012 (2002)], we present a benchmark theoretical determination of the ionization thresholds of benzene, naphthalene, anthracene, naphthacene (tetracene), pentacene, and hexacene, within chemical accuracy [0.02-0.07 eV]. The vertical ionization potentials of these compounds have been obtained from series of single-point calculations at the Hartree-Fock, second-, third-, and partial fourth-order Møller-Plesset (MP2, MP3, MP4SDQ) levels, and from coupled cluster calculations including single and double excitations (CCSD) as well as a perturbative estimate of connected triple excitations [CCSD(T)], using basis sets of improving quality, introducing up to 510, 790, 1070, 1350, 1630, and 1910 basis functions in the computations, respectively. A focal point analysis of the convergence of the calculated ionization potentials has been performed in order to extrapolate the CCSD(T) results to an asymptotically (cc-pV∞Z) complete basis set. The present results confirm the adequacy of the outer-valence Green's function scheme for strongly correlated systems. Adiabatic ionization energies have been further determined by incorporating Beck-three-parameter Lee-Yang-Parr functional corrections for zero-point vibrational energies and for geometrical relaxations. Extension of the analysis to the CCSD(T)/cc-pV∞Z level shows that the energy minimum form of the benzene radical cation is an obtuse structure related to the 2B2g state. Isotopic shifts of the adiabatic ionization potentials, due to deuterium substitution of hydrogens, have also been discussed.

  6. Sliding seal materials for adiabatic engines

    NASA Technical Reports Server (NTRS)

    Lankford, J.

    1985-01-01

    The sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, loading conditions that are representative of the adiabatic engine environment. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Microhardness tests were performed on the candidate materials at elevated temperatures, and in atmospheres relevant to the piston seal application, and optical and electron microscopy were used to elucidate the micromechanisms of wear following wear testing. X-ray spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Electrical effects in the friction and wear processes were explored in order to evaluate the potential usefulness of such effects in modifying the friction and wear rates in service. However, this factor was found to be of negligible significance in controlling friction and wear.

  7. Adiabatic tracking for photo- and magneto-association of Bose-Einstein condensates with Kerr nonlinearities

    NASA Astrophysics Data System (ADS)

    Gevorgyan, Mariam; Guérin, Stéphane; Leroy, Claude; Ishkhanyan, Artur; Jauslin, Hans-Rudolf

    2016-11-01

    We develop the method of adiabatic tracking for photo- and magneto-association of Bose-Einstein atomic condensates with models that include Kerr type nonlinearities. We show that the inclusion of these terms can produce qualitatively important modifications in the adiabatic dynamics, like the appearance of bifurcations, in which the trajectory that is being tracked loses its stability. As a consequence the adiabatic theorem does not apply and the adiabatic transfer can be strongly degraded. This degradation can be compensated by using fields that are strong enough compared with the values of the Kerr terms. The main result is that, despite these potentially detrimental features, there is always a choice of the detuning that leads to an efficient adiabatic tracking, even for relatively weak fields.

  8. Ultrafast adiabatic second harmonic generation

    NASA Astrophysics Data System (ADS)

    Dahan, Asaf; Levanon, Assaf; Katz, Mordechai; Suchowski, Haim

    2017-03-01

    We introduce a generalization of the adiabatic frequency conversion method for an efficient conversion of ultrashort pulses in the full nonlinear regime. Our analysis takes into account dispersion as well as two-photon processes and Kerr effect, allowing complete analysis of any three waves with arbitrary phase mismatched design and any nonlinear optical process. We use this analysis to design an efficient and robust second harmonic generation, the most widely used nonlinear process for both fundamental and applied research. We experimentally show that such design not only allows for very efficient conversion of various of ultrashort pulses, but is also very robust to variations in the parameters of both the nonlinear crystal and the incoming light. These include variation of more than 100 °C in the crystal temperature, a wide bandwidth of up to 75 nm and a chirp variation of 300 fs to 3.5 ps of the incoming pulse. Also, we show the dependency of the adiabatic second harmonic generation design on the pump intensity and the crystal length. Our study shows that two photon absorption plays a critical role in such high influence nonlinear dynamics, and that it must be considered in order to achieve agreement with experimental results.

  9. Ultrafast adiabatic second harmonic generation.

    PubMed

    Dahan, Asaf; Levanon, Assaf; Katz, Mordechai; Suchowski, Haim

    2017-03-01

    We introduce a generalization of the adiabatic frequency conversion method for an efficient conversion of ultrashort pulses in the full nonlinear regime. Our analysis takes into account dispersion as well as two-photon processes and Kerr effect, allowing complete analysis of any three waves with arbitrary phase mismatched design and any nonlinear optical process. We use this analysis to design an efficient and robust second harmonic generation, the most widely used nonlinear process for both fundamental and applied research. We experimentally show that such design not only allows for very efficient conversion of various of ultrashort pulses, but is also very robust to variations in the parameters of both the nonlinear crystal and the incoming light. These include variation of more than 100 °C in the crystal temperature, a wide bandwidth of up to 75 nm and a chirp variation of 300 fs to 3.5 ps of the incoming pulse. Also, we show the dependency of the adiabatic second harmonic generation design on the pump intensity and the crystal length. Our study shows that two photon absorption plays a critical role in such high influence nonlinear dynamics, and that it must be considered in order to achieve agreement with experimental results.

  10. Equation of motion coupled cluster methods for electron attachment and ionization potential in fullerenes C{sub 60} and C{sub 70}

    SciTech Connect

    Bhaskaran-Nair, Kiran; Kowalski, Karol; Moreno, Juana; Jarrell, Mark; Shelton, William A.

    2014-08-21

    In both molecular and periodic solid-state systems there is a need for the accurate determination of the ionization potential and the electron affinity for systems ranging from light harvesting polymers and photocatalytic compounds to semiconductors. The development of a Green's function approach based on the coupled cluster (CC) formalism would be a valuable tool for addressing many properties involving many-body interactions along with their associated correlation functions. As a first step in this direction, we have developed an accurate and parallel efficient approach based on the equation of motion-CC technique. To demonstrate the high degree of accuracy and numerical efficiency of our approach we calculate the ionization potential and electron affinity for C{sub 60} and C{sub 70}. Accurate predictions for these molecules are well beyond traditional molecular scale studies. We compare our results with experiments and both quantum Monte Carlo and GW calculations.

  11. Relativistic Coupled Cluster Calculations with Variational Quantum Electrodynamics Resolve the Discrepancy between Experiment and Theory Concerning the Electron Affinity and Ionization Potential of Gold

    NASA Astrophysics Data System (ADS)

    Pašteka, L. F.; Eliav, E.; Borschevsky, A.; Kaldor, U.; Schwerdtfeger, P.

    2017-01-01

    The first ionization potential (IP) and electron affinity (EA) of the gold atom have been determined to an unprecedented accuracy using relativistic coupled cluster calculations up to the pentuple excitation level including the Breit and QED contributions. We reach meV accuracy (with respect to the experimental values) by carefully accounting for all individual contributions beyond the standard relativistic coupled cluster approach. Thus, we are able to resolve the long-standing discrepancy between experimental and theoretical IP and EA of gold.

  12. Relativistic Coupled Cluster Calculations with Variational Quantum Electrodynamics Resolve the Discrepancy between Experiment and Theory Concerning the Electron Affinity and Ionization Potential of Gold.

    PubMed

    Pašteka, L F; Eliav, E; Borschevsky, A; Kaldor, U; Schwerdtfeger, P

    2017-01-13

    The first ionization potential (IP) and electron affinity (EA) of the gold atom have been determined to an unprecedented accuracy using relativistic coupled cluster calculations up to the pentuple excitation level including the Breit and QED contributions. We reach meV accuracy (with respect to the experimental values) by carefully accounting for all individual contributions beyond the standard relativistic coupled cluster approach. Thus, we are able to resolve the long-standing discrepancy between experimental and theoretical IP and EA of gold.

  13. Attosecond control of dissociative ionization of O{sub 2} molecules

    SciTech Connect

    Siu, W.; Kelkensberg, F.; Gademann, G.; Rouzee, A.; Vrakking, M. J. J.; Johnsson, P.; Dowek, D.; Lucchini, M.; Calegari, F.; De Giovannini, U.; Rubio, A.; Lucchese, R. R.; Kono, H.; Lepine, F.

    2011-12-15

    We demonstrate that dissociative ionization of O{sub 2} can be controlled by the relative delay between an attosecond pulse train (APT) and a copropagating infrared (IR) field. Our experiments reveal a dependence of both the branching ratios between a range of electronic states and the fragment angular distributions on the extreme ultraviolet (XUV) to IR time delay. The observations go beyond adiabatic propagation of dissociative wave packets on IR-induced quasistatic potential energy curves and are understood in terms of an IR-induced coupling between electronic states in the molecular ion.

  14. Communication: On the first ionization threshold of the C2H radical.

    PubMed

    Gans, B; Garcia, G A; Holzmeier, F; Krüger, J; Röder, A; Lopes, A; Fittschen, C; Loison, J-C; Alcaraz, C

    2017-01-07

    The slow photoelectron spectrum of the ethynyl radical has been recorded for the first time by using the DESIRS beamline of the SOLEIL synchrotron facility. Ethynyl was generated using a microwave discharge flow tube. The observation of the X(+)Π3←XΣ+2 transition allowed the first direct measurement of the adiabatic ionization threshold of this radical (EI = 11.641(5) eV). The experimental results are supported by ab initio calculations. Our preliminary investigation of the cationic ground state potential energy surfaces predicts a non-negligible Renner-Teller effect which has not been discussed previously.

  15. Analytical instruments, ionization sources, and ionization methods

    DOEpatents

    Atkinson, David A.; Mottishaw, Paul

    2006-04-11

    Methods and apparatus for simultaneous vaporization and ionization of a sample in a spectrometer prior to introducing the sample into the drift tube of the analyzer are disclosed. The apparatus includes a vaporization/ionization source having an electrically conductive conduit configured to receive sample particulate which is conveyed to a discharge end of the conduit. Positioned proximate to the discharge end of the conduit is an electrically conductive reference device. The conduit and the reference device act as electrodes and have an electrical potential maintained between them sufficient to cause a corona effect, which will cause at least partial simultaneous ionization and vaporization of the sample particulate. The electrical potential can be maintained to establish a continuous corona, or can be held slightly below the breakdown potential such that arrival of particulate at the point of proximity of the electrodes disrupts the potential, causing arcing and the corona effect. The electrical potential can also be varied to cause periodic arcing between the electrodes such that particulate passing through the arc is simultaneously vaporized and ionized. The invention further includes a spectrometer containing the source. The invention is particularly useful for ion mobility spectrometers and atmospheric pressure ionization mass spectrometers.

  16. Energy decomposition analysis in an adiabatic picture.

    PubMed

    Mao, Yuezhi; Horn, Paul R; Head-Gordon, Martin

    2017-02-22

    Energy decomposition analysis (EDA) of electronic structure calculations has facilitated quantitative understanding of diverse intermolecular interactions. Nevertheless, such analyses are usually performed at a single geometry and thus decompose a "single-point" interaction energy. As a result, the influence of the physically meaningful EDA components on the molecular structure and other properties are not directly obtained. To address this gap, the absolutely localized molecular orbital (ALMO)-EDA is reformulated in an adiabatic picture, where the frozen, polarization, and charge transfer energy contributions are defined as energy differences between the stationary points on different potential energy surfaces (PESs), which are accessed by geometry optimizations at the frozen, polarized and fully relaxed levels of density functional theory (DFT). Other molecular properties such as vibrational frequencies can thus be obtained at the stationary points on each PES. We apply the adiabatic ALMO-EDA to different configurations of the water dimer, the water-Cl(-) and water-Mg(2+)/Ca(2+) complexes, metallocenes (Fe(2+), Ni(2+), Cu(2+), Zn(2+)), and the ammonia-borane complex. This method appears to be very useful for unraveling how physical effects such as polarization and charge transfer modulate changes in molecular properties induced by intermolecular interactions. As an example of the insight obtained, we find that a linear hydrogen bond geometry for the water dimer is preferred even without the presence of polarization and charge transfer, while the red shift in the OH stretch frequency is primarily a charge transfer effect; by contrast, a near-linear geometry for the water-chloride hydrogen bond is achieved only when charge transfer is allowed.

  17. Quantum and classical dynamics in adiabatic computation

    NASA Astrophysics Data System (ADS)

    Crowley, P. J. D.; Äńurić, T.; Vinci, W.; Warburton, P. A.; Green, A. G.

    2014-10-01

    Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialized state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose ground state encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations that an open system can support and degrade the power of such adiabatic computation. We quantify this effect by allowing the system to evolve over a restricted set of quantum states, providing a link between physically inspired classical optimization algorithms and quantum adiabatic optimization. This perspective allows us to develop benchmarks to bound the quantum correlations harnessed by an adiabatic computation. We apply these to the D-Wave Vesuvius machine with revealing—though inconclusive—results.

  18. Ionized cluster beam deposition

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.

    1983-01-01

    Ionized Cluster Beam (ICB) deposition, a new technique originated by Takagi of Kyoto University in Japan, offers a number of unique capabilities for thin film metallization as well as for deposition of active semiconductor materials. ICB allows average energy per deposited atom to be controlled and involves impact kinetics which result in high diffusion energies of atoms on the growth surface. To a greater degree than in other techniques, ICB involves quantitative process parameters which can be utilized to strongly control the characteristics of films being deposited. In the ICB deposition process, material to be deposited is vaporized into a vacuum chamber from a confinement crucible at high temperature. Crucible nozzle configuration and operating temperature are such that emerging vapor undergoes supercondensation following adiabatic expansion through the nozzle.

  19. One-color two-photon mass-analyzed threshold ionization spectroscopy of ethyl bromide through a dissociative intermediate state

    NASA Astrophysics Data System (ADS)

    Tang, Bifeng; Zhang, Song; Wang, Yanmei; Tang, Ying; Zhang, Bing

    2005-10-01

    Mass-analyzed threshold ionization (MATI) spectra of ethyl bromide were obtained using one-color two-photon ionization through a dissociative intermediate state. Accurate values for the adiabatic ionization energy have been obtained, 83099±5 and 85454±5cm-1 for the X˜1E2 and X˜2E2 states of the ethyl bromide cation, respectively, giving a splitting of 2355±10cm-1. Compared with conventional photoelectron data, the two-photon MATI spectrum exhibited a more extensive vibrational structure with a higher resolution, mainly containing the modes involving the dissociation coordinate. The observed modes were analyzed and discussed in terms of wave packet evolving on the potential-energy surface of the dissociative state.

  20. Photoelectron circular dichroism in the multiphoton ionization by short laser pulses. I. Propagation of single-active-electron wave packets in chiral pseudo-potentials

    SciTech Connect

    Artemyev, Anton N.; Müller, Anne D.; Demekhin, Philipp V.; Hochstuhl, David

    2015-06-28

    A theoretical method to study the angle-resolved multiphoton ionization of polyatomic molecules is developed. It is based on the time-dependent formulation of the Single Center (TDSC) method and consists in the propagation of single-active-electron wave packets in the effective molecular potentials in the presence of intense laser pulses. For this purpose, the time-dependent Schrödinger equation for one electron, moving in a molecular field and interacting with an arbitrary laser pulse, is solved in spherical coordinates by an efficient numerical approach. As a test, the method is applied to the one- and two-photon ionizations of a model methane-like chiral system by circularly polarized short intense high-frequency laser pulses. Thereby, we analyze the photoelectron circular dichroism (PECD) in the momentum distribution. The considered model application illustrates the capability of the TDSC method to study multiphoton PECD in fixed-in-space and randomly oriented chiral molecules.

  1. Photoelectron circular dichroism in the multiphoton ionization by short laser pulses. I. Propagation of single-active-electron wave packets in chiral pseudo-potentials

    NASA Astrophysics Data System (ADS)

    Artemyev, Anton N.; Müller, Anne D.; Hochstuhl, David; Demekhin, Philipp V.

    2015-06-01

    A theoretical method to study the angle-resolved multiphoton ionization of polyatomic molecules is developed. It is based on the time-dependent formulation of the Single Center (TDSC) method and consists in the propagation of single-active-electron wave packets in the effective molecular potentials in the presence of intense laser pulses. For this purpose, the time-dependent Schrödinger equation for one electron, moving in a molecular field and interacting with an arbitrary laser pulse, is solved in spherical coordinates by an efficient numerical approach. As a test, the method is applied to the one- and two-photon ionizations of a model methane-like chiral system by circularly polarized short intense high-frequency laser pulses. Thereby, we analyze the photoelectron circular dichroism (PECD) in the momentum distribution. The considered model application illustrates the capability of the TDSC method to study multiphoton PECD in fixed-in-space and randomly oriented chiral molecules.

  2. Impact of electron ionization on the generation of high-order harmonics from molecules

    SciTech Connect

    Brener, S.; Moiseyev, N.; Ivanov, M. V.

    2003-08-01

    When the laser frequency is tuned to be equal to the molecular electronic excitation, high-order harmonics are generated due to the electronic dipole transitions between the corresponding two potential-energy surfaces (PES). A natural, often taken, choice is the PES of the field-free molecular system. In this special choice the ionization phenomenon is not considered. Only the effect of the dissociation is considered. The method we developed enables one to remain within the framework of the 2-PES approximation and yet to include also the ionization effect in the calculations of molecular high-order harmonic generation spectra. In this approach the coupling between the electronic and nuclear motions is taken into consideration by using coupled complex adiabatic PES. As an illustrative numerical example, we calculated the high harmonic generation (HHG) spectra of H{sub 2}{sup +} in a 730-nm laser with the intensity of 8.77x10{sup 13} W/cm{sup 2}. The inclusion of the ionization in our approach not only enables the electrons to tunnel through the effective static potential barrier, but also apply an asymmetric force which accelerates the electron before ionization takes place. Therefore, indirectly the inclusion of the ionization by the laser field may lead eventually to an enhanced HHG spectra in comparison with the calculated one when the ''natural'' choice of the field-free 2PES is taken.

  3. Potential of gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry for screening and quantification of hexabromocyclododecane.

    PubMed

    Sales, Carlos; Portolés, Tania; Sancho, Juan Vicente; Abad, Esteban; Ábalos, Manuela; Sauló, Jordi; Fiedler, Heidelore; Gómara, Belén; Beltrán, Joaquim

    2016-01-01

    A fast method for the screening and quantification of hexabromocyclododecane (sum of all isomers) by gas chromatography using a triple quadrupole mass spectrometer with atmospheric pressure chemical ionization (GC-APCI-QqQ) is proposed. This novel procedure makes use of the soft atmospheric pressure chemical ionization source, which results in less fragmentation of the analyte than by conventional electron impact (EI) and chemical ionization (CI) sources, favoring the formation of the [M - Br](+) ion and, thus, enhancing sensitivity and selectivity. Detection was based on the consecutive loses of HBr from the [M - Br](+) ion to form the specific [M - H5Br6](+) and [M - H4Br5](+) ions, which were selected as quantitation (Q) and qualification (q) transitions, respectively. Parameters affecting ionization and MS/MS detection were studied. Method performance was also evaluated; calibration curves were found linear from 1 pg/μL to 100 pg/μL for the total HBCD concentration; instrumental detection limit was estimated to be 0.10 pg/μL; repeatability and reproducibility, expressed as relative standard deviation, were better than 7% in both cases. The application to different real samples [polyurethane foam disks (PUFs), food, and marine samples] pointed out a rapid way to identify and allow quantification of this compound together with a number of polybrominated diphenyl ethers (BDE congeners 28, 47, 66, 85, 99, 100, 153, 154, 183, 184, 191, 196, 197, and 209) and two other novel brominated flame retardants [i.e., decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE)] because of their presence in the same fraction when performing the usual sample treatment.

  4. Ionization photophysics and spectroscopy of dicyanoacetylene

    SciTech Connect

    Leach, Sydney E-mail: Martin.Schwell@lisa.u-pec.fr; Champion, Norbert; Schwell, Martin E-mail: Martin.Schwell@lisa.u-pec.fr; Bénilan, Yves; Fray, Nicolas; Gazeau, Marie-Claire; Garcia, Gustavo A.; Gaie-Levrel, François; Guillemin, Jean-Claude

    2013-11-14

    Photoionization of dicyanoacetylene was studied using synchrotron radiation over the excitation range 8–25 eV, with photoelectron-photoion coincidence techniques. The absolute ionization cross-section and detailed spectroscopic aspects of the parent ion were recorded. The adiabatic ionization energy of dicyanoacetylene was measured as 11.80 ± 0.01 eV. A detailed analysis of the cation spectroscopy involves new aspects and new assignments of the vibrational components to excitation of the quasi-degenerate A{sup 2}Π{sub g}, B{sup 2}Σ{sub g}{sup +} states as well as the C{sup 2}Σ{sub u}{sup +} and D{sup 2}Π{sub u} states of the cation. Some of the structured autoionization features observed in the 12.4–15 eV region of the total ion yield spectrum were assigned to vibrational components of valence shell transitions and to two previously unknown Rydberg series converging to the D{sup 2}Π{sub u} state of C{sub 4}N{sub 2}{sup +}. The appearance energies of the fragment ions C{sub 4}N{sup +}, C{sub 3}N{sup +}, C{sub 4}{sup +}, C{sub 2}N{sup +}, and C{sub 2}{sup +} were measured and their heats of formation were determined and compared with existing literature values. Thermochemical calculations of the appearance potentials of these and other weaker ions were used to infer aspects of dissociative ionization pathways.

  5. A comparative study on carbon, boron-nitride, boron-phosphide and silicon-carbide nanotubes based on surface electrostatic potentials and average local ionization energies.

    PubMed

    Esrafili, Mehdi D; Behzadi, Hadi

    2013-06-01

    A density functional theory study was carried out to predict the electrostatic potentials as well as average local ionization energies on both the outer and the inner surfaces of carbon, boron-nitride (BN), boron-phosphide (BP) and silicon-carbide (SiC) single-walled nanotubes. For each nanotube, the effect of tube radius on the surface potentials and calculated average local ionization energies was investigated. It is found that SiC and BN nanotubes have much stronger and more variable surface potentials than do carbon and BP nanotubes. For the SiC, BN and BP nanotubes, there are characteristic patterns of positive and negative sites on the outer lateral surfaces. On the other hand, a general feature of all of the systems studied is that stronger potentials are associated with regions of higher curvature. According to the evaluated surface electrostatic potentials, it is concluded that, for the narrowest tubes, the water solubility of BN tubes is slightly greater than that of SiC followed by carbon and BP nanotubes.

  6. Arbitrary Amplitude DIA and DA Solitary Waves in Adiabatic Dusty Plasmas

    SciTech Connect

    Mamun, A. A.; Jahan, N.; Shukla, P. K.

    2008-10-15

    The dust-ion-acoustic (DIA) as well as the dust-acoustic (DA) solitary waves (SWs) in an adiabatic dusty plasma are investigated by the pseudo-potential approach which is valid for arbitrary amplitude SWs. The role of the adiabaticity of electrons and ions in modifying the basic features (polarity, speed, amplitude and width) of arbitrary amplitude DIA and DA SWs are explicitly examined. It is found that the effects of the adiabaticity of electrons and ions significantly modify the basic features (polarity, speed, amplitude and width) of the DIA and DA SWs. The implications of our results in space and laboratory dusty plasmas are briefly discussed.

  7. Non-adiabatic dynamics of molecules in optical cavities

    NASA Astrophysics Data System (ADS)

    Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul

    2016-02-01

    Strong coupling of molecules to the vacuum field of micro cavities can modify the potential energy surfaces thereby opening new photophysical and photochemical reaction pathways. While the influence of laser fields is usually described in terms of classical field, coupling to the vacuum state of a cavity has to be described in terms of dressed photon-matter states (polaritons) which require quantized fields. We present a derivation of the non-adiabatic couplings for single molecules in the strong coupling regime suitable for the calculation of the dressed state dynamics. The formalism allows to use quantities readily accessible from quantum chemistry codes like the adiabatic potential energy surfaces and dipole moments to carry out wave packet simulations in the dressed basis. The implications for photochemistry are demonstrated for a set of model systems representing typical situations found in molecules.

  8. Non-adiabatic dynamics of molecules in optical cavities

    SciTech Connect

    Kowalewski, Markus Bennett, Kochise; Mukamel, Shaul

    2016-02-07

    Strong coupling of molecules to the vacuum field of micro cavities can modify the potential energy surfaces thereby opening new photophysical and photochemical reaction pathways. While the influence of laser fields is usually described in terms of classical field, coupling to the vacuum state of a cavity has to be described in terms of dressed photon-matter states (polaritons) which require quantized fields. We present a derivation of the non-adiabatic couplings for single molecules in the strong coupling regime suitable for the calculation of the dressed state dynamics. The formalism allows to use quantities readily accessible from quantum chemistry codes like the adiabatic potential energy surfaces and dipole moments to carry out wave packet simulations in the dressed basis. The implications for photochemistry are demonstrated for a set of model systems representing typical situations found in molecules.

  9. Semiclassical quantization of bound and quasistationary states beyond the adiabatic approximation

    SciTech Connect

    Benderskii, V.A.; Vetoshkin, E.V.; Kats, E.I.

    2004-06-01

    We examine one important (and previously overlooked) aspect of well-known crossing diabatic potentials or Landau-Zener (LZ) problem. We derive the semiclassical quantization rules for the crossing diabatic potentials with localized initial and localized or delocalized final states, in the intermediate energy region, when all four adiabatic states are coupled and should be taken into account. We found all needed connection matrices and present the following analytical results: (i) in the tunneling region, the splittings of vibrational levels are represented as a product of the splitting in the lower adiabatic potential and the nontrivial function depending on the Massey parameter; (ii) in the overbarrier region, we find specific resonances between the levels in the lower and in the upper adiabatic potentials and, in that condition, independent quantizations rules are not correct; (iii) for the delocalized final states (decay lower adiabatic potential), we describe quasistationary states and calculate the decay rate as a function of the adiabatic coupling; and (iv) for the intermediate energy regions, we calculate the energy level quantization, which can be brought into a compact form by using either adiabatic or diabatic basis set (in contrast to the previous results found in the Landau diabatic basis). Applications of the results may concern the various systems; e.g., molecules undergoing conversion of electronic states, radiationless transitions, or isomerization reactions.

  10. Adiabatic heating in impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Maetzler, C.; Bai, T.; Crannell, C. J.; Frost, K. J.

    1977-01-01

    The dynamic X-ray spectra of two simple, impulsive solar flares are examined together with H alpha, microwave and meter wave radio observations. X-ray spectra of both events were characteristic of thermal bremsstrahlung from single temperature plasmas. The symmetry between rise and fall was found to hold for the temperature and emission measure. The relationship between temperature and emission measure was that of an adiabatic compression followed by adiabatic expansion; the adiabatic index of 5/3 indicated that the electron distribution remained isotropic. Observations in H alpha provided further evidence for compressive energy transfer.

  11. Arbitrary amplitude electro-acoustic solitary waves in an adiabatic dusty plasma

    NASA Astrophysics Data System (ADS)

    Tanjia, Fatema; Mamun, A. A.

    2008-12-01

    The properties of different types of electro-acoustic (namely ion-acoustic (IA), dust ion-acoustic (DIA), and dust-acoustic (DA)) solitary waves (SWs) in an adiabatic dusty plasma (containing negatively charged cold dust, adiabatic hot ions and inertia-less adiabatic hot electrons) are investigated by the pseudo-potential approach. The combined effects of the adiabatic electrons and ions, and negatively charged dust on the basic properties (critical Mach number, amplitude and width) of the arbitrary amplitude electro-acoustic SWs are systematically and explicitly examined. It is found that the combined effects of the adiabatic electrons and ions, and negatively charged dust significantly modify the basic properties (critical Mach number, amplitude and width) of the SWs. It is also found that due to the effect of the adiabaticity of electrons, the negative DIA SWs (which are found to exist in a dusty plasma containing isothermal electrons, cold ions and negatively charged static dust) disappear, i.e. due to the effect of adiabatic electrons, one cannot have negative DIA SWs for any possible set of dusty plasma parameters.

  12. AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT

    SciTech Connect

    French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Redmer, Ronald; Wicht, Johannes

    2012-09-15

    We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grueneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.

  13. Adiabatic-nuclei calculations of positron scattering from molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Zammit, Mark C.; Fursa, Dmitry V.; Savage, Jeremy S.; Bray, Igor; Chiari, Luca; Zecca, Antonio; Brunger, Michael J.

    2017-02-01

    The single-center adiabatic-nuclei convergent close-coupling method is used to investigate positron collisions with molecular hydrogen (H2) in the ground and first vibrationally excited states. Cross sections are presented over the energy range from 1 to 1000 eV for elastic scattering, vibrational excitation, total ionization, and the grand total cross section. The present adiabatic-nuclei positron-H2 scattering length is calculated as A =-2.70 a0 for the ground state and A =-3.16 a0 for the first vibrationally excited state. The present elastic differential cross sections are also used to "correct" the low-energy grand total cross-section measurements of the Trento group [A. Zecca et al., Phys. Rev. A 80, 032702 (2009), 10.1103/PhysRevA.80.032702] for the forward-angle-scattering effect. In general, the comparison with experiment is good. By performing convergence studies, we estimate that our Rm=1.448 a0 fixed-nuclei results are converged to within ±5 % for the major scattering integrated cross sections.

  14. Broadband electrically detected magnetic resonance using adiabatic pulses

    NASA Astrophysics Data System (ADS)

    Hrubesch, F. M.; Braunbeck, G.; Voss, A.; Stutzmann, M.; Brandt, M. S.

    2015-05-01

    We present a broadband microwave setup for electrically detected magnetic resonance (EDMR) based on microwave antennae with the ability to apply arbitrarily shaped pulses for the excitation of electron spin resonance (ESR) and nuclear magnetic resonance (NMR) of spin ensembles. This setup uses non-resonant stripline structures for on-chip microwave delivery and is demonstrated to work in the frequency range from 4 MHz to 18 GHz. π pulse times of 50 ns and 70 μs for ESR and NMR transitions, respectively, are achieved with as little as 100 mW of microwave or radiofrequency power. The use of adiabatic pulses fully compensates for the microwave magnetic field inhomogeneity of the stripline antennae, as demonstrated with the help of BIR4 unitary rotation pulses driving the ESR transition of neutral phosphorus donors in silicon and the NMR transitions of ionized phosphorus donors as detected by electron nuclear double resonance (ENDOR).

  15. Broadband electrically detected magnetic resonance using adiabatic pulses.

    PubMed

    Hrubesch, F M; Braunbeck, G; Voss, A; Stutzmann, M; Brandt, M S

    2015-05-01

    We present a broadband microwave setup for electrically detected magnetic resonance (EDMR) based on microwave antennae with the ability to apply arbitrarily shaped pulses for the excitation of electron spin resonance (ESR) and nuclear magnetic resonance (NMR) of spin ensembles. This setup uses non-resonant stripline structures for on-chip microwave delivery and is demonstrated to work in the frequency range from 4 MHz to 18 GHz. π pulse times of 50 ns and 70 μs for ESR and NMR transitions, respectively, are achieved with as little as 100 mW of microwave or radiofrequency power. The use of adiabatic pulses fully compensates for the microwave magnetic field inhomogeneity of the stripline antennae, as demonstrated with the help of BIR4 unitary rotation pulses driving the ESR transition of neutral phosphorus donors in silicon and the NMR transitions of ionized phosphorus donors as detected by electron nuclear double resonance (ENDOR).

  16. Identification of four rotamers of m-methoxystyrene by resonant two-photon ionization and mass analyzed threshold ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Yanqi; Tzeng, Sheng Yuan; Shivatare, Vidya; Takahashi, Kaito; Zhang, Bing; Tzeng, Wen Bih

    2015-03-01

    We report the vibronic and cation spectra of four rotamers of m-methoxystyrene, recorded by using the two-color resonant two-photon ionization and mass-analyzed threshold ionization techniques. The excitation energies of the S1← S0 electronic transition are found to be 32 767, 32 907, 33 222, and 33 281 cm-1, and the corresponding adiabatic ionization energies are 65 391, 64 977, 65 114, and 64 525 cm-1 for these isomeric species. Most of the observed active vibrations in the electronically excited S1 and cationic ground D0 states involve in-plane ring deformation and substituent-sensitive bending motions. It is found that the relative orientation of the methoxyl with respect to the vinyl group does not influence the vibrational frequencies of the ring-substituent bending modes. The two dimensional potential energy surface calculations support our experimental finding that the isomerization is restricted in the S1 and D0 states.

  17. Identification of four rotamers of m-methoxystyrene by resonant two-photon ionization and mass analyzed threshold ionization spectroscopy

    SciTech Connect

    Xu, Yanqi; Tzeng, Sheng Yuan; Takahashi, Kaito; Shivatare, Vidya; Zhang, Bing; Tzeng, Wen Bih

    2015-03-28

    We report the vibronic and cation spectra of four rotamers of m-methoxystyrene, recorded by using the two-color resonant two-photon ionization and mass-analyzed threshold ionization techniques. The excitation energies of the S{sub 1}← S{sub 0} electronic transition are found to be 32 767, 32 907, 33 222, and 33 281 cm{sup −1}, and the corresponding adiabatic ionization energies are 65 391, 64 977, 65 114, and 64 525 cm{sup −1} for these isomeric species. Most of the observed active vibrations in the electronically excited S{sub 1} and cationic ground D{sub 0} states involve in-plane ring deformation and substituent-sensitive bending motions. It is found that the relative orientation of the methoxyl with respect to the vinyl group does not influence the vibrational frequencies of the ring-substituent bending modes. The two dimensional potential energy surface calculations support our experimental finding that the isomerization is restricted in the S{sub 1} and D{sub 0} states.

  18. Liver Metabolomics Reveals Increased Oxidative Stress and Fibrogenic Potential in Gfrp Transgenic Mice in Response to Ionizing Radiation

    PubMed Central

    2015-01-01

    Although radiation-induced tissue-specific injury is well documented, the underlying molecular changes resulting in organ dysfunction and the consequences thereof on overall metabolism and physiology have not been elucidated. We previously reported the generation and characterization of a transgenic mouse strain that ubiquitously overexpresses Gfrp (GTPH-1 feedback regulatory protein) and exhibits higher oxidative stress, which is a possible result of decreased tetrahydrobiopterin (BH4) bioavailability. In this study, we report genotype-dependent changes in the metabolic profiles of liver tissue after exposure to nonlethal doses of ionizing radiation. Using a combination of untargeted and targeted quantitative mass spectrometry, we report significant accumulation of metabolites associated with oxidative stress, as well as the dysregulation of lipid metabolism in transgenic mice after radiation exposure. The radiation stress seems to exacerbate lipid peroxidation and also results in higher expression of genes that facilitate liver fibrosis, in a manner that is dependent on the genetic background and post-irradiation time interval. These findings suggest the significance of Gfrp in regulating redox homeostasis in response to stress induced by ionizing radiation affecting overall physiology. PMID:24824572

  19. Liver metabolomics reveals increased oxidative stress and fibrogenic potential in gfrp transgenic mice in response to ionizing radiation.

    PubMed

    Cheema, Amrita K; Pathak, Rupak; Zandkarimi, Fereshteh; Kaur, Prabhjit; Alkhalil, Lynn; Singh, Rajbir; Zhong, Xiaogang; Ghosh, Sanchita; Aykin-Burns, Nukhet; Hauer-Jensen, Martin

    2014-06-06

    Although radiation-induced tissue-specific injury is well documented, the underlying molecular changes resulting in organ dysfunction and the consequences thereof on overall metabolism and physiology have not been elucidated. We previously reported the generation and characterization of a transgenic mouse strain that ubiquitously overexpresses Gfrp (GTPH-1 feedback regulatory protein) and exhibits higher oxidative stress, which is a possible result of decreased tetrahydrobiopterin (BH4) bioavailability. In this study, we report genotype-dependent changes in the metabolic profiles of liver tissue after exposure to nonlethal doses of ionizing radiation. Using a combination of untargeted and targeted quantitative mass spectrometry, we report significant accumulation of metabolites associated with oxidative stress, as well as the dysregulation of lipid metabolism in transgenic mice after radiation exposure. The radiation stress seems to exacerbate lipid peroxidation and also results in higher expression of genes that facilitate liver fibrosis, in a manner that is dependent on the genetic background and post-irradiation time interval. These findings suggest the significance of Gfrp in regulating redox homeostasis in response to stress induced by ionizing radiation affecting overall physiology.

  20. Evaluation of Potential Ionizing Irradiation Protectors and Mitigators Using Clonogenic Survival of Human Umbilical Cord Blood Hematopoietic Progenitor Cells

    PubMed Central

    Goff, Julie P.; Shields, Donna S.; Wang, Hong; Skoda, Erin M.; Sprachman, Melissa M.; Wipf, Peter; Garapati, Venkata Krishna; Atkinson, Jeffrey; London, Barry; Lazo, John S.; Kagan, Valerian; Epperly, Michael W.; Greenberger, Joel S.

    2013-01-01

    We evaluated the use of colony formation (CFU-GM, BFU-E, and CFU-GEMM) by human umbilical cord blood (CB) hematopoietic progenitor cells for testing novel small molecule ionizing irradiation protectors and mitigators. Each of 11 compounds was added before (protection) or after (mitigation) ionizing irradiation including: GS-nitroxides (JP4-039 and XJB-5-131), the bifunctional sulfoxide MMS-350, the phosphoinositol-3-kinase inhibitor (LY294002), TPP-imidazole fatty acid, (TPP-IOA), the nitric oxide synthase inhibitor (MCF-201-89), the p53/mdm2/mdm4 inhibitor (BEB55), methoxamine, isoproterenol, propanolol, and the ATP sensitive potassium channel blocker (glyburide). The drugs XJB-5-131, JP4-039, and MMS-350 were radiation protectors for CFU-GM. JP4-039 was also a radiation protector for CFU-GEMM. The drugs, XJB-5-131, JP4-039, and MMS-350 were radiation mitigators for BFU-E, MMS-350 and JP4-039 were mitigators for CFU-GM, and MMS350 was a mitigator for CFU-GEMM. In contrast, other drugs that were effective in murine assays: TTP-IOA, LY294002, MCF201-89, BEB55, propranolol, isoproterenol, methoxamine, and glyburide showed no significant protection or mitigation in human CB assays. These data support testing of new candidate clinical radiation protectors and mitigators using human CB clonogenic assays early in the drug discovery process, reducing the need for animal experiments. PMID:23933481

  1. Ionizing radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter gives a comprehensive review on ionizing irradiation of fresh fruits and vegetables. Topics include principles of ionizing radiation, its effects on pathogenic and spoilage microorganisms, shelf-life, sensory quality, nutritional and phytochemical composition, as well as physiologic and...

  2. Experimental demonstration of composite adiabatic passage

    NASA Astrophysics Data System (ADS)

    Schraft, Daniel; Halfmann, Thomas; Genov, Genko T.; Vitanov, Nikolay V.

    2013-12-01

    We report an experimental demonstration of composite adiabatic passage (CAP) for robust and efficient manipulation of two-level systems. The technique represents a altered version of rapid adiabatic passage (RAP), driven by composite sequences of radiation pulses with appropriately chosen phases. We implement CAP with radio-frequency pulses to invert (i.e., to rephase) optically prepared spin coherences in a Pr3+:Y2SiO5 crystal. We perform systematic investigations of the efficiency of CAP and compare the results with conventional π pulses and RAP. The data clearly demonstrate the superior features of CAP with regard to robustness and efficiency, even under conditions of weakly fulfilled adiabaticity. The experimental demonstration of composite sequences to support adiabatic passage is of significant relevance whenever a high efficiency or robustness of coherent excitation processes need to be maintained, e.g., as required in quantum information technology.

  3. Adiabatic Quantum Search in Open Systems.

    PubMed

    Wild, Dominik S; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y; Lukin, Mikhail D

    2016-10-07

    Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.

  4. Adiabatic Quantum Search in Open Systems

    NASA Astrophysics Data System (ADS)

    Wild, Dominik S.; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y.; Lukin, Mikhail D.

    2016-10-01

    Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.

  5. General conditions for quantum adiabatic evolution

    SciTech Connect

    Comparat, Daniel

    2009-07-15

    Adiabaticity occurs when, during its evolution, a physical system remains in the instantaneous eigenstate of the Hamiltonian. Unfortunately, existing results, such as the quantum adiabatic theorem based on a slow down evolution [H({epsilon}t),{epsilon}{yields}0], are insufficient to describe an evolution driven by the Hamiltonian H(t) itself. Here we derive general criteria and exact bounds, for the state and its phase, ensuring an adiabatic evolution for any Hamiltonian H(t). As a corollary, we demonstrate that the commonly used condition of a slow Hamiltonian variation rate, compared to the spectral gap, is indeed sufficient to ensure adiabaticity but only when the Hamiltonian is real and nonoscillating (for instance, containing exponential or polynomial but no sinusoidal functions)

  6. Adiabatic limits on Riemannian Heisenberg manifolds

    SciTech Connect

    Yakovlev, A A

    2008-02-28

    An asymptotic formula is obtained for the distribution function of the spectrum of the Laplace operator, in the adiabatic limit for the foliation defined by the orbits of an invariant flow on a compact Riemannian Heisenberg manifold. Bibliography: 21 titles.

  7. Simulation of periodically focused, adiabatic thermal beams

    SciTech Connect

    Chen, C.; Akylas, T. R.; Barton, T. J.; Field, D. M.; Lang, K. M.; Mok, R. V.

    2012-12-21

    Self-consistent particle-in-cell simulations are performed to verify earlier theoretical predictions of adiabatic thermal beams in a periodic solenoidal magnetic focusing field [K.R. Samokhvalova, J. Zhou and C. Chen, Phys. Plasma 14, 103102 (2007); J. Zhou, K.R. Samokhvalova and C. Chen, Phys. Plasma 15, 023102 (2008)]. In particular, results are obtained for adiabatic thermal beams that do not rotate in the Larmor frame. For such beams, the theoretical predictions of the rms beam envelope, the conservations of the rms thermal emittances, the adiabatic equation of state, and the Debye length are verified in the simulations. Furthermore, the adiabatic thermal beam is found be stable in the parameter regime where the simulations are performed.

  8. Adiabatic molecular-dynamics-simulation-method studies of kinetic friction

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Sokoloff, J. B.

    2005-06-01

    An adiabatic molecular-dynamics method is developed and used to study the Muser-Robbins model for dry friction (i.e., nonzero kinetic friction in the slow sliding speed limit). In this model, dry friction between two crystalline surfaces rotated with respect to each other is due to mobile molecules (i.e., dirt particles) adsorbed at the interface. Our adiabatic method allows us to quickly locate interface potential-well minima, which become unstable during sliding of the surfaces. Since dissipation due to friction in the slow sliding speed limit results from mobile molecules dropping out of such unstable wells, our method provides a way to calculate dry friction, which agrees extremely well with results found by conventional molecular dynamics for the same system, but our method is more than a factor of 10 faster.

  9. Symmetry of the Adiabatic Condition in the Piston Problem

    ERIC Educational Resources Information Center

    Anacleto, Joaquim; Ferreira, J. M.

    2011-01-01

    This study addresses a controversial issue in the adiabatic piston problem, namely that of the piston being adiabatic when it is fixed but no longer so when it can move freely. It is shown that this apparent contradiction arises from the usual definition of adiabatic condition. The issue is addressed here by requiring the adiabatic condition to be…

  10. “Black Bone” MRI: a potential non-ionizing method for three-dimensional cephalometric analysis—a preliminary feasibility study

    PubMed Central

    Watt-Smith, S R; Golding, S J

    2013-01-01

    Objectives: CT offers a three-dimensional solution to the inaccuracies associated with lateral cephalogram-based cephalometric analysis. However, it is associated with significant concerns regarding ionizing radiation exposure. MRI offers a non-ionizing alternative, but this has been less well investigated. We present a novel gradient echo MRI sequence (“Black Bone”) and highlight the potential of this sequence in cephalometric analysis. Methods: After regional ethics approval, “Black Bone” imaging was obtained in eight patients in whom lateral cephalograms were available. “Black Bone”, T1 and T2 weighted spin echo imaging were obtained in the mid-sagittal plane, and measurements were compared with those obtained on the lateral cephalogram using both the Advantage Windows Workstation (GE Medical Systems, Buckinghamshire, UK) and the Dolphin® cephalometric software (v. 11.5.04.23, Premium; Dolphin Imaging, Chatsworth, CA) by one assessor. Further assessment was made by scoring the ease of landmark identification on a ten-point scale. Results: “Black Bone” imaging surpassed T1 and T2 weighted imaging in terms of cephalometric landmark identification. A number of mid-sagittal cephalometric landmarks could not be clearly identified on T2 weighted imaging, making analysis impossible. Measurements on “Black Bone” demonstrated the smallest discrepancy when compared with those obtained on the lateral cephalogram. The discrepancy seen between measurements completed on mid-sagittal MRI and the lateral cephalogram was compounded by inherent inaccuracies of the lateral cephalogram. The overall mean discrepancy between distance measurements on “Black Bone” imaging and those on the lateral cephalogram was 1–2 mm. Conclusions: Overall, “Black Bone” MRI offered an improved method of cephalometric landmark identification over routine MRI sequences, and provides a potential non-ionizing alternative to CT for three-dimensional cephalometrics. PMID

  11. Improvements in Ionized Cluster-Beam Deposition

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D. J.; Compton, L. E.; Pawlik, E. V.

    1986-01-01

    Lower temperatures result in higher purity and fewer equipment problems. In cluster-beam deposition, clusters of atoms formed by adiabatic expansion nozzle and with proper nozzle design, expanding vapor cools sufficiently to become supersaturated and form clusters of material deposited. Clusters are ionized and accelerated in electric field and then impacted on substrate where films form. Improved cluster-beam technique useful for deposition of refractory metals.

  12. Neutral resonant ionization in a H{sup −} plasma source: Potential of doubly excited **H{sup −}

    SciTech Connect

    Vogel, J. S.

    2016-02-15

    Hydrogen plasmas are optically dense to Lyman-α radiation, maintaining *H(n = 2) neutral atoms that may undergo neutral resonant ionization to **H{sup −}. One state, **H{sup −}(2p{sup 2} {sup 3}P{sup e}), is thought bound at 9.7 meV with a several nanosecond lifetime while all others are unbound resonances. Collision dynamics of two *H(2s) shows that an ionic pair of (p, **H{sup −}) resolves at least three long-standing collision experiments. The doubly excited anion also has a path to the unexcited ion pair whose only physical distinction is that both (p, H{sup −}) have energy of 3.7 eV.

  13. Boosting the Detection Potential of Liquid Chromatography-Electron Ionization Mass Spectrometry Using a Ceramic Coated Ion Source

    NASA Astrophysics Data System (ADS)

    Magrini, Laura; Famiglini, Giorgio; Palma, Pierangela; Termopoli, Veronica; Cappiello, Achille

    2016-01-01

    Detection of target and non-target substances and their characterization in complex samples is a challenging task. Here we demonstrate that coating the electron ionization (EI) ion source of an LC-MS system with a sol-gel ceramic film can drastically improve the detection of high-molecular weight and high-boiling analytes. A new ion source coated with a ceramic material was developed and tested with a mixture of polycyclic aromatic hydrocarbons (PAH) with an increasing number of rings. Comparison of the results obtained with those for an uncoated stainless steel (SS) ion source shows a dramatic improvement in the MS signals, with a nearly 40-fold increase of the signal-to-noise ratio. We also demonstrate the ability of the new system to produce excellent chromatographic profiles for hard-to-detect hormones.

  14. Shortcuts to adiabaticity: suppression of pair production in driven Dirac dynamics

    NASA Astrophysics Data System (ADS)

    Deffner, Sebastian

    2016-01-01

    Achieving effectively adiabatic dynamics in finite time is a ubiquitous goal in virtually all areas of modern physics. So-called shortcuts to adiabaticity refer to a set of methods and techniques that allow us to produce in a short time the same final state that would result from an adiabatic, infinitely slow process. In this paper we generalize one of these methods—the fast-forward technique—to driven Dirac dynamics. As our main result we find that shortcuts to adiabaticity for the (1+1)-dimensional Dirac equation are facilitated by a combination of both scalar and pseudoscalar potentials. Our findings are illustrated for two analytically solvable examples, namely charged particles driven in spatially homogeneous and linear vector fields.

  15. Ionization Time and Exit Momentum in Strong-Field Tunnel Ionization.

    PubMed

    Teeny, Nicolas; Yakaboylu, Enderalp; Bauke, Heiko; Keitel, Christoph H

    2016-02-12

    Tunnel ionization belongs to the fundamental processes of atomic physics. The so-called two-step model, which describes the ionization as instantaneous tunneling at the electric field maximum and classical motion afterwards with zero exit momentum, is commonly employed to describe tunnel ionization in adiabatic regimes. In this contribution, we show by solving numerically the time-dependent Schrödinger equation in one dimension and employing a virtual detector at the tunnel exit that there is a nonvanishing positive time delay between the electric field maximum and the instant of ionization. Moreover, we find a nonzero exit momentum in the direction of the electric field. To extract proper tunneling times from asymptotic momentum distributions of ionized electrons, it is essential to incorporate the electron's initial momentum in the direction of the external electric field.

  16. Electron ionization of acetylene.

    PubMed

    King, Simon J; Price, Stephen D

    2007-11-07

    Relative partial ionization cross sections and precursor specific relative partial ionization cross sections for fragment ions formed by electron ionization of C2H2 have been measured using time-of-flight mass spectrometry coupled with a 2D ion-ion coincidence technique. We report data for the formation of H+, H+2, C2+, C+/C2+ 2, CH+/C2H+2, CH+2, C+2, and C2H+ relative to the formation of C2H+2, as a function of ionizing electron energy from 30-200 eV. While excellent agreement is found between our data and one set of previously published absolute partial ionization cross sections, some discrepancies exist between the results presented here and two other recent determinations of these absolute partial ionization cross sections. We attribute these differences to the loss of some translationally energetic fragment ions in these earlier studies. Our relative precursor-specific partial ionization cross sections enable us, for the first time, to quantify the contribution to the yield of each fragment ion from single, double, and triple ionization. Analysis shows that at 50 eV double ionization contributes 2% to the total ion yield, increasing to over 10% at an ionizing energy of 100 eV. From our ion-ion coincidence data, we have derived branching ratios for charge separating dissociations of the acetylene dication. Comparison of our data to recent ab initio/RRKM calculations suggest that close to the double ionization potential C2H2+2 dissociates predominantly on the ground triplet potential energy surface (3Sigma*g) with a much smaller contribution from dissociation via the lowest singlet potential energy surface (1Delta g). Measurements of the kinetic energy released in the fragmentation reactions of C2H2+2 have been used to obtain precursor state energies for the formation of product ion pairs, and are shown to be in good agreement with available experimental data and with theory.

  17. Assessment of total efficiency in adiabatic engines

    NASA Astrophysics Data System (ADS)

    Mitianiec, W.

    2016-09-01

    The paper presents influence of ceramic coating in all surfaces of the combustion chamber of SI four-stroke engine on working parameters mainly on heat balance and total efficiency. Three cases of engine were considered: standard without ceramic coating, fully adiabatic combustion chamber and engine with different thickness of ceramic coating. Consideration of adiabatic or semi-adiabatic engine was connected with mathematical modelling of heat transfer from the cylinder gas to the cooling medium. This model takes into account changeable convection coefficient based on the experimental formulas of Woschni, heat conductivity of multi-layer walls and also small effect of radiation in SI engines. The simulation model was elaborated with full heat transfer to the cooling medium and unsteady gas flow in the engine intake and exhaust systems. The computer program taking into account 0D model of engine processes in the cylinder and 1D model of gas flow was elaborated for determination of many basic engine thermodynamic parameters for Suzuki DR-Z400S 400 cc SI engine. The paper presents calculation results of influence of the ceramic coating thickness on indicated pressure, specific fuel consumption, cooling and exhaust heat losses. Next it were presented comparisons of effective power, heat losses in the cooling and exhaust systems, total efficiency in function of engine rotational speed and also comparison of temperature inside the cylinder for standard, semi-adiabatic and full adiabatic engine. On the basis of the achieved results it was found higher total efficiency of adiabatic engines at 2500 rpm from 27% for standard engine to 37% for full adiabatic engine.

  18. The performance of the quantum adiabatic algorithm on spike Hamiltonians

    NASA Astrophysics Data System (ADS)

    Kong, Linghang; Crosson, Elizabeth

    Spike Hamiltonians arise from optimization instances for which the adiabatic algorithm provably out performs classical simulated annealing. In this work, we study the efficiency of the adiabatic algorithm for solving the “the Hamming weight with a spike” problem by analyzing the scaling of the spectral gap at the critical point for various sizes of the barrier. Our main result is a rigorous lower bound on the minimum spectral gap for the adiabatic evolution when the bit-symmetric cost function has a thin but polynomially high barrier, which is based on a comparison argument and an improved variational ansatz for the ground state. We also adapt the discrete WKB method for the case of abruptly changing potentials and compare it with the predictions of the spin coherent instanton method which was previously used by Farhi, Goldstone and Gutmann. Finally, our improved ansatz for the ground state leads to a method for predicting the location of avoided crossings in the excited energy states of the thin spike Hamiltonian, and we use a recursion relation to understand the ordering of some of these avoided crossings as a step towards analyzing the previously observed diabatic cascade phenomenon.

  19. Adiabatic dynamics with classical noise in optical lattice

    NASA Astrophysics Data System (ADS)

    Xu, Guanglei; Daley, Andrew

    2016-05-01

    The technique of adiabatic state preparation is an interesting potential tool for the realisation of sensitive many-body states with ultra-cold atoms at low temperatures. However, questions remain regarding the influence of classical noise in these adiabatic dynamics. We investigate such dynamics in a situation where a level dressing scheme can make amplitude noise in an optical lattice proportional to the Hamiltonian, leading to a quantum Zeno effect for non-adiabatic transitions. We compute the dynamics using stochastic many-body Schrödinger equation and master equation approaches. Taking the examples of 1D Bose-Hubbard model from Mott insulator phase to superfluid phase and comparing with analytical calculations for a two-level system, we demonstrate that when the total time for the process is limited, properly transformed noise can lead to an increased final fidelity in the state preparation. We consider the dynamics also in the presence of imperfections, studying the resulting heating and dephasing for the many-body states, and identifying optimal regimes for future experiments.

  20. Resonance Ionization of Heavy Noble Gases: The Potential of KR and Xe Measurements from Single Pre-Solar Grains

    NASA Astrophysics Data System (ADS)

    Thonnard, N.

    1995-09-01

    measure noble gases from fourteen individual "X" SiC grains, previously identified by ion microprobe analysis, was unsuccessful with the 2,000 132Xe atom detection limit of the mass spectrometer [12,13]. From the Kr concentration measurements of SiC particles KJF by Lewis et al. [6], a 2 micrometer diameter particle will on average contain 134 Kr atoms. If only 4% of the SiC grains contain the majority of the noble gas atoms, then a single gas rich grain will contain 3,350 Kr atoms, or 12, 75, 385, 398, 1910, and 580 atoms for 78Kr through 86Kr, respectively. The Xe single-grain abundances would be similar. Resonance ionization, an emerging laser-based element analysis technique, is being harnessed to a wide variety of problems in which minute quantities of a particular element need to be measured efficiently in the presence of an overwhelmingly larger background of other materials [14]. By utilizing lasers tuned to specific atomic energy levels of the analyte element, ions are produced selectively in a mass spectrometer with much higher efficiency than possible using conventional methods, such as electron bombardment, thermal ionization, or ion sputtering. In a static resonance ionization system for noble gases, the combination of high ionization efficiency and sample concentrator results in an extremely fast (~3 min. detection half-life vs. ~60 min. for conventional systems) analyzer with a detection limit of ~100 85Kr atoms [15]. In addition to the almost complete absence of interferences, the short analysis time significantly reduces the background contribution of outgassing in the mass spectrometer. Although using a less efficient laser scheme resulting in slightly slower analyses, a similar system has recently been completed and dedicated to extraterrestrial Xe measurements [16]. At the newly formed Institute for Rare Isotope Measurements [17], the noble gas equipment that had previously been at Atom Sciences [14,15] is being re-installed and upgraded to provide

  1. Adiabatic fission barriers in superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Jachimowicz, P.; Kowal, M.; Skalski, J.

    2017-01-01

    Using the microscopic-macroscopic model based on the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy, we calculated static fission barriers Bf for 1305 heavy and superheavy nuclei 98 ≤Z ≤126 , including even-even, odd-even, even-odd and odd-odd systems. For odd and odd-odd nuclei, adiabatic potential-energy surfaces were calculated by a minimization over configurations with one blocked neutron or/and proton on a level from the 10th below to the 10th above the Fermi level. The parameters of the model that have been fixed previously by a fit to masses of even-even heavy nuclei were kept unchanged. A search for saddle points has been performed by the "imaginary water flow" method on a basic five-dimensional deformation grid, including triaxiality. Two auxiliary grids were used for checking the effects of the mass asymmetry and hexadecapole nonaxiality. The ground states (g.s.) were found by energy minimization over configurations and deformations. We find that the nonaxiality significantly changes first and second fission saddle in many nuclei. The effect of the mass asymmetry, known to lower the second, very deformed saddles in actinides, in the heaviest nuclei appears at the less deformed saddles in more than 100 nuclei. It happens for those saddles in which the triaxiality does not play any role, which suggests a decoupling between effects of the mass asymmetry and triaxiality. We studied also the influence of the pairing interaction strength on the staggering of Bf for odd- and even-particle numbers. Finally, we provide a comparison of our results with other theoretical fission barrier evaluations and with available experimental estimates.

  2. Multiphoton ionization of atoms and ions by high-intensity X-ray lasers

    SciTech Connect

    Popruzhenko, S. B. Mur, V. D.; Popov, V. S.; Bauer, D.

    2009-06-15

    Coulomb corrections to the action function and rate of multiphoton ionization of atoms and ions in a strong linearly polarized electromagnetic field are calculated for high values of the Keldysh adiabaticity parameter. The Coulomb corrections significantly increase the ionization rate for atoms (by several orders of magnitude). An interpolation formula proposed for ionization rate is valid for arbitrary values of the adiabaticity parameter. The high accuracy of the formula is confirmed by comparison with the results of numerical calculations. The general case of elliptic polarization of laser radiation is also considered.

  3. Description of molecular dynamics in intense laser fields by the time-dependent adiabatic state approach: application to simultaneous two-bond dissociation of CO2 and its control.

    PubMed

    Sato, Yukio; Kono, Hirohiko; Koseki, Shiro; Fujimura, Yuichi

    2003-07-02

    We theoretically investigated the dynamics of structural deformations of CO(2) and its cations in near-infrared intense laser fields (approximately 10(15) W cm(-2)) by using the time-dependent adiabatic state approach. To obtain "field-following" adiabatic potentials for nuclear dynamics, the electronic Hamiltonian including the interaction with the instantaneous laser electric field is diagonalized by the multiconfiguration self-consistent-field molecular orbital method. In the CO(2) and CO(2+) stages, ionization occurs before the field intensity becomes high enough to deform the molecule. In the CO(2)(2+) stage, simultaneous symmetric two-bond stretching occurs as well as one-bond stretching. Two-bond stretching is induced by an intense field in the lowest time-dependent adiabatic state |1> of CO(2)(2+), and this two-bond stretching is followed by the occurrence of a large-amplitude bending motion mainly in the second-lowest adiabatic state |2> nonadiabatically created at large internuclear distances by the field from |1>. It is concluded that the experimentally observed stretched and bent structure of CO(2)(3+) just before Coulomb explosions originates from the structural deformation of CO(2)(2+). We also show in this report that the concept of "optical-cycle-averaged potential" is useful for designing schemes to control molecular (reaction) dynamics, such as dissociation dynamics of CO(2), in intense fields. The present approach is simple but has wide applicability for analysis and prediction of electronic and nuclear dynamics of polyatomic molecules in intense laser fields.

  4. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  5. Adiabatic optimization versus diffusion Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Jarret, Michael; Jordan, Stephen P.; Lackey, Brad

    2016-10-01

    Most experimental and theoretical studies of adiabatic optimization use stoquastic Hamiltonians, whose ground states are expressible using only real nonnegative amplitudes. This raises a question as to whether classical Monte Carlo methods can simulate stoquastic adiabatic algorithms with polynomial overhead. Here we analyze diffusion Monte Carlo algorithms. We argue that, based on differences between L1 and L2 normalized states, these algorithms suffer from certain obstructions preventing them from efficiently simulating stoquastic adiabatic evolution in generality. In practice however, we obtain good performance by introducing a method that we call Substochastic Monte Carlo. In fact, our simulations are good classical optimization algorithms in their own right, competitive with the best previously known heuristic solvers for MAX-k -SAT at k =2 ,3 ,4 .

  6. Nonadiabatic exchange dynamics during adiabatic frequency sweeps.

    PubMed

    Barbara, Thomas M

    2016-04-01

    A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging.

  7. Complexity of the Quantum Adiabatic Algorithm

    NASA Technical Reports Server (NTRS)

    Hen, Itay

    2013-01-01

    The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorithms.

  8. On black hole spectroscopy via adiabatic invariance

    NASA Astrophysics Data System (ADS)

    Jiang, Qing-Quan; Han, Yan

    2012-12-01

    In this Letter, we obtain the black hole spectroscopy by combining the black hole property of adiabaticity and the oscillating velocity of the black hole horizon. This velocity is obtained in the tunneling framework. In particular, we declare, if requiring canonical invariance, the adiabatic invariant quantity should be of the covariant form Iadia = ∮pi dqi. Using it, the horizon area of a Schwarzschild black hole is quantized independently of the choice of coordinates, with an equally spaced spectroscopy always given by ΔA = 8 π lp2 in the Schwarzschild and Painlevé coordinates.

  9. On adiabatic invariant in generalized Galileon theories

    SciTech Connect

    Ema, Yohei; Jinno, Ryusuke; Nakayama, Kazunori; Mukaida, Kyohei E-mail: jinno@hep-th.phys.s.u-tokyo.ac.jp E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp

    2015-10-01

    We consider background dynamics of generalized Galileon theories in the context of inflation, where gravity and inflaton are non-minimally coupled to each other. In the inflaton oscillation regime, the Hubble parameter and energy density oscillate violently in many cases, in contrast to the Einstein gravity with minimally coupled inflaton. However, we find that there is an adiabatic invariant in the inflaton oscillation regime in any generalized Galileon theory. This adiabatic invariant is useful in estimating the expansion law of the universe and also the particle production rate due to the oscillation of the Hubble parameter.

  10. Spontaneous emission in stimulated Raman adiabatic passage

    SciTech Connect

    Ivanov, P. A.; Vitanov, N. V.; Bergmann, K.

    2005-11-15

    This work explores the effect of spontaneous emission on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The approach uses adiabatic elimination of weakly coupled density matrix elements in the Liouville equation, from which a very accurate analytic approximation is derived. The loss of population transfer efficiency is found to decrease exponentially with the factor {omega}{sub 0}{sup 2}/{gamma}, where {gamma} is the spontaneous emission rate and {omega}{sub 0} is the peak Rabi frequency. The transfer efficiency increases with the pulse delay and reaches a steady value. For large pulse delay and large spontaneous emission rate STIRAP degenerates into optical pumping.

  11. Adiabatic cluster-state quantum computing

    SciTech Connect

    Bacon, Dave; Flammia, Steven T.

    2010-09-15

    Models of quantum computation (QC) are important because they change the physical requirements for achieving universal QC. For example, one-way QC requires the preparation of an entangled ''cluster'' state, followed by adaptive measurement on this state, a set of requirements which is different from the standard quantum-circuit model. Here we introduce a model based on one-way QC but without measurements (except for the final readout), instead using adiabatic deformation of a Hamiltonian whose initial ground state is the cluster state. Our results could help increase the feasibility of adiabatic schemes by using tools from one-way QC.

  12. Markovian quantum master equation beyond adiabatic regime.

    PubMed

    Yamaguchi, Makoto; Yuge, Tatsuro; Ogawa, Tetsuo

    2017-01-01

    By introducing a temporal change time scale τ_{A}(t) for the time-dependent system Hamiltonian, a general formulation of the Markovian quantum master equation is given to go well beyond the adiabatic regime. In appropriate situations, the framework is well justified even if τ_{A}(t) is faster than the decay time scale of the bath correlation function. An application to the dissipative Landau-Zener model demonstrates this general result. The findings are applicable to a wide range of fields, providing a basis for quantum control beyond the adiabatic regime.

  13. Markovian quantum master equation beyond adiabatic regime

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Makoto; Yuge, Tatsuro; Ogawa, Tetsuo

    2017-01-01

    By introducing a temporal change time scale τA(t ) for the time-dependent system Hamiltonian, a general formulation of the Markovian quantum master equation is given to go well beyond the adiabatic regime. In appropriate situations, the framework is well justified even if τA(t ) is faster than the decay time scale of the bath correlation function. An application to the dissipative Landau-Zener model demonstrates this general result. The findings are applicable to a wide range of fields, providing a basis for quantum control beyond the adiabatic regime.

  14. Calculation of the electric potential and the Lorentz force in a transverse flow past a circular cylinder in a nonuniform magnetic field for various configurations of a locally ionized region at the cylinder surface

    NASA Astrophysics Data System (ADS)

    Sheikin, E. G.; Cheng, Wei Yang

    2013-12-01

    We obtain a solution to the equation for the electric potential in a locally ionized transverse magnetohydrodynamic flow past a circular cylinder in a nonuniform magnetic field produced by a linear conductor for various configurations of the ionization region. Analytical formulas are derived for the volume density of the Lorentz force acting on the flow in a locally ionized region. The effect of the Hall parameter and of the configuration of the region of the magnetohydrodynamic interaction on the Lorentz force is analyzed. It is shown that an increase in the Hall parameter leads to a decrease in the Lorentz force acting on the flow, and a change in the configuration of the locally ionized region makes it possible to suppress the effect of the Hall parameter on the Lorentz force.

  15. Acanthocephalan fish parasites (Rhadinorhynchidae Lühe, 1912) as potential biomarkers: Molecular-chemical screening by pyrolysis-field ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kleinertz, S.; Eckhardt, K.-U.; Theisen, S.; Palm, H. W.; Leinweber, P.

    2016-07-01

    The present study represents the first molecular-chemical screening by pyrolysis-field ionization mass spectrometry applied on fish parasites. A total of 71 fishes from Balinese fish markets, 36 Auxis rochei (Risso, 1810) and 35 A. thazard (Lacepède, 1800), were studied for their acanthocephalan parasites. This is the first record of Rhadinorhynchus zhukovi in Balinese waters, Indonesia, and we describe for the first time A. rochei and A. thazard as R. zhukovi hosts. Using this method, small scale variations within the chemical compounds of acanthocephalans could be detected. Using this methodology it will be possible to generate additional, pollutant specific information from aquatic habitats in future with the potential of a new bioindicator application for parasite/host origin and/or environmental pollution.

  16. Ionization chamber

    DOEpatents

    Walenta, Albert H.

    1981-01-01

    An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

  17. Search of truncation of (N-1) electron basis containing full connected triple excitations in computing main and satellite ionization potentials via Fock-space coupled cluster approach.

    PubMed

    Adhikari, Kalipada; Chattopadhyay, Sudip; De, Barin Kumar; Sharma, Amitava; Nath, Ranendu Kumar; Sinha, Dhiman

    2013-06-05

    A valence-universal multireference coupled cluster (VUMRCC) theory, realized via the eigenvalue independent partitioning (EIP) route, has been implemented with full inclusion of triples excitations for computing and analyzing the entire main and several satellite peaks in the ionization potential spectra of several molecules. The EIP-VUMRCC method, unlike the traditional VUMRCC theory, allows divergence-free homing-in to satellite roots which would otherwise have been plagued by intruders, and is thus numerically more robust to obtain more efficient and dependable computational schemes allowing more extensive use of the approach. The computed ionization potentials (IPs) as a result of truncation of the (N-1) electron basis manifold involving virtual functions such as 2h-p and 3h-2p by different energy thresholds varying from 5 to 15 a.u. with 1 a.u. intervals as well as thresholds such as 20, 25, and 30 a.u. have been carefully looked into. Cutoff at around 25 a.u. turns out to be an optimal threshold. Molecules such as C2H4 and C2H2 (X = D,T), and N2 and CO (X = D,T,Q) with Dunning's cc-pVXZ bases have been investigated to determine all main and 2h-p shake-up and 3h-2p double shake-up satellite IPs. We believe that the present work will pave the way to a wider application of the method by providing main and satellite IPs for some problematic N-electron closed shell systems.

  18. IONIZATION CHAMBER

    DOEpatents

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  19. Low-frequency ionization-driven instability of a discrete auroral arc model

    NASA Technical Reports Server (NTRS)

    Cornwall, John M.

    1990-01-01

    The low-frequency (time scales of tens of seconds) dynamics of the auroral ionosphere differs from that of the nonauroral ionosphere by the presence of strong, unstable space- and time-dependent ionospheric ionization produced by precipitating auroral electrons. If recombination is relatively unimportant (as at high ionospheric heights), it is shown that, in general, transport processes cannot remove this ionization as fast as it is created, and no equilibrium is possible. These nonequilibrium phenomena are investigated in the context of a nonlinear adiabatic auroral model, which has previously been studied in static situations. A linearized local perturbation analysis is given of what amounts to a current-driven E x B gradient-drift instability with an ionization source, as well as some exact nonlinear solutions valid in a finite but limited spatial region. These solutions show continuing motion of auroral potential and plasma density, as the aurora tries to shift its ionization problems from one place to another. The analysis gives clues to the possibility of generation of chaos and of fine-scale spatial structure.

  20. From Classical Nonlinear Integrable Systems to Quantum Shortcuts to Adiabaticity

    NASA Astrophysics Data System (ADS)

    Okuyama, Manaka; Takahashi, Kazutaka

    2016-08-01

    Using shortcuts to adiabaticity, we solve the time-dependent Schrödinger equation that is reduced to a classical nonlinear integrable equation. For a given time-dependent Hamiltonian, the counterdiabatic term is introduced to prevent nonadiabatic transitions. Using the fact that the equation for the dynamical invariant is equivalent to the Lax equation in nonlinear integrable systems, we obtain the counterdiabatic term exactly. The counterdiabatic term is available when the corresponding Lax pair exists and the solvable systems are classified in a unified and systematic way. Multisoliton potentials obtained from the Korteweg-de Vries equation and isotropic X Y spin chains from the Toda equations are studied in detail.

  1. Adiabatic Compression in a Fire Syringe.

    ERIC Educational Resources Information Center

    Hayn, Carl H.; Baird, Scott C.

    1985-01-01

    Suggests using better materials in fire syringes to obtain more effective results during demonstrations which show the elevation in temperature upon a very rapid (adiabatic) compression of air. Also describes an experiment (using ignition temperatures) which introduces students to the use of thermocouples for high temperature measurements. (DH)

  2. Apparatus to Measure Adiabatic and Isothermal Processes.

    ERIC Educational Resources Information Center

    Lamb, D. W.; White, G. M.

    1996-01-01

    Describes a simple manual apparatus designed to serve as an effective demonstration of the differences between isothermal and adiabatic processes for the general or elementary physics student. Enables students to verify Boyle's law for slow processes and identify the departure from this law for rapid processes and can also be used to give a clear…

  3. First-principle interaction potentials for metastable He(3S) and Ne(3P) with closed-shell molecules: application to Penning-ionizing systems.

    PubMed

    Hapka, Michał; Chałasiński, Grzegorz; Kłos, Jacek; Zuchowski, Piotr S

    2013-07-07

    We present new interaction potential curves, calculated from first-principles, for the He((3)S, 1s(1)2s(1))···H2 and He((3)S)···Ar systems, relevant in recent Penning ionization experiments of Henson et al. [Science 338, 234 (2012)]. Two different approaches were applied: supermolecular using coupled cluster (CC) theory and perturbational within symmetry-adapted perturbation theory (SAPT). Both methods gave consistent results, and the potentials were used to study the elastic scattering and determine the positions of shape resonances for low kinetic energy (up to 1 meV). We found a good agreement with the experiment. In addition, we investigated two other dimers composed of metastable Ne ((3)P, 2p(5)3s(1)) and ground state He and Ar atoms. For the Ne((3)P)···He system, a good agreement between CC and SAPT approaches was obtained. The Ne((3)P)···Ar dimer was described only with SAPT, as CC gave divergent results. Ne* systems exhibit extremely small electronic orbital angular momentum anisotropy of the potentials. We attribute this effect to screening of an open 2p shell by a singly occupied 3s shell.

  4. Adiabatic and Non-adiabatic quenches in a Spin-1 Bose Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Boguslawski, Matthew; Hebbe Madhusudhana, Bharath; Anquez, Martin; Robbins, Bryce; Barrios, Maryrose; Hoang, Thai; Chapman, Michael

    2016-05-01

    A quantum phase transition (QPT) is observed in a wide range of phenomena. We have studied the dynamics of a spin-1 ferromagnetic Bose-Einstein condensate for both adiabatic and non-adiabatic quenches through a QPT. At the quantum critical point (QCP), finite size effects lead to a non-zero gap, which makes an adiabatic quench possible through the QPT. We experimentally demonstrate such a quench, which is forbidden at the mean field level. For faster quenches through the QCP, the vanishing energy gap causes the reaction timescale of the system to diverge, preventing the system from adiabatically following the ground state. We measure the temporal evolution of the spin populations for different quench speeds and determine the exponents characterizing the scaling of the onset of excitations, which are in good agreement with the predictions of Kibble-Zurek mechanism.

  5. Fixed-point adiabatic quantum search

    NASA Astrophysics Data System (ADS)

    Dalzell, Alexander M.; Yoder, Theodore J.; Chuang, Isaac L.

    2017-01-01

    Fixed-point quantum search algorithms succeed at finding one of M target items among N total items even when the run time of the algorithm is longer than necessary. While the famous Grover's algorithm can search quadratically faster than a classical computer, it lacks the fixed-point property—the fraction of target items must be known precisely to know when to terminate the algorithm. Recently, Yoder, Low, and Chuang [Phys. Rev. Lett. 113, 210501 (2014), 10.1103/PhysRevLett.113.210501] gave an optimal gate-model search algorithm with the fixed-point property. Previously, it had been discovered by Roland and Cerf [Phys. Rev. A 65, 042308 (2002), 10.1103/PhysRevA.65.042308] that an adiabatic quantum algorithm, operating by continuously varying a Hamiltonian, can reproduce the quadratic speedup of gate-model Grover search. We ask, can an adiabatic algorithm also reproduce the fixed-point property? We show that the answer depends on what interpolation schedule is used, so as in the gate model, there are both fixed-point and non-fixed-point versions of adiabatic search, only some of which attain the quadratic quantum speedup. Guided by geometric intuition on the Bloch sphere, we rigorously justify our claims with an explicit upper bound on the error in the adiabatic approximation. We also show that the fixed-point adiabatic search algorithm can be simulated in the gate model with neither loss of the quadratic Grover speedup nor of the fixed-point property. Finally, we discuss natural uses of fixed-point algorithms such as preparation of a relatively prime state and oblivious amplitude amplification.

  6. Adiabatic burst evaporation from bicontinuous nanoporous membranes.

    PubMed

    Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk; Steinhart, Martin; Xue, Longjian

    2015-05-28

    Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol-gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 10(7) μm(3) are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media.

  7. Adiabatic circuits: converter for static CMOS signals

    NASA Astrophysics Data System (ADS)

    Fischer, J.; Amirante, E.; Bargagli-Stoffi, A.; Schmitt-Landsiedel, D.

    2003-05-01

    Ultra low power applications can take great advantages from adiabatic circuitry. In this technique a multiphase system is used which consists ideally of trapezoidal voltage signals. The input signals to be processed will often come from a function block realized in static CMOS. The static rectangular signals must be converted for the oscillating multiphase system of the adiabatic circuitry. This work shows how to convert the input signals to the proposed pulse form which is synchronized to the appropriate supply voltage. By means of adder structures designed for a 0.13µm technology in a 4-phase system there will be demonstrated, which additional circuits are necessary for the conversion. It must be taken into account whether the data arrive in parallel or serial form. Parallel data are all in one phase and therefore it is advantageous to use an adder structure with a proper input stage, e.g. a Carry Lookahead Adder (CLA). With a serial input stage it is possible to read and to process four signals during one cycle due to the adiabatic 4-phase system. Therefore input signals with a frequency four times higher than the adiabatic clock frequency can be used. This reduces the disadvantage of the slow clock period typical for adiabatic circuits. By means of an 8 bit Ripple Carry Adder (8 bit RCA) the serial reading will be introduced. If the word width is larger than 4 bits the word can be divided in 4 bit words which are processed in parallel. This is the most efficient way to minimize the number of input lines and pads. At the same time a high throughput is achieved.

  8. The dynamic instability of adiabatic blast waves

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Vishniac, Ethan T.

    1991-01-01

    Adiabatic blastwaves, which have a total energy injected from the center E varies as t(sup q) and propagate through a preshock medium with a density rho(sub E) varies as r(sup -omega) are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.

  9. Effect of Magnetic Field Gradient on Plasma Detachment Induced by Breaking of Adiabatic Plasma Expansion

    NASA Astrophysics Data System (ADS)

    Chung, K. S.; Kim, June Young; Chung, Kyoung-Jae; Hwang, Y. S.

    2016-10-01

    A magnetic field gradient that is a variation in the magnetic field around the ion flow has been investigated as a primary parameter for ion detachment in the magnetic nozzle geometries. Some scale lengths of magnetic field are controlled by two solenoid coils outside the diffusion chamber of a ECR-driven linear plasma device. The axial and radial profiles of the plasma potential and electron temperature are measured by a Langmuir probe array for the various magnetic field configurations in the downstream. The local adiabaticity, strong constant magnetic moment, is satisfied with a linear relationship between the change in effective electron temperature and the change in plasma potential in the low magnetic field gradient. Whereas, with an increasing non-homogeneity of the magnetic field in the direction of the flow, the breaking of adiabatic plasma expansion is identified to measure the nonlinear process which is the variation for an adiabatic exponent. Such the loss of adiabaticity is also explained in terms of non-adiabaticity parameter i.e. degree of demagnetization. This research was supported by National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (Nos. 2014M1A7A1A02030165 and 2014M1A7A1A03045367).

  10. Transport of ultracold atoms between concentric traps via spatial adiabatic passage

    NASA Astrophysics Data System (ADS)

    Polo, J.; Benseny, A.; Busch, Th; Ahufinger, V.; Mompart, J.

    2016-01-01

    Spatial adiabatic passage processes for ultracold atoms trapped in tunnel-coupled cylindrically symmetric concentric potentials are investigated. Specifically, we discuss the matter-wave analog of the rapid adiabatic passage (RAP) technique for a high fidelity and robust loading of a single atom into a harmonic ring potential from a harmonic trap, and for its transport between two concentric rings. We also consider a system of three concentric rings and investigate the transport of a single atom between the innermost and the outermost rings making use of the matter-wave analog of the stimulated Raman adiabatic passage (STIRAP) technique. We describe the RAP-like and STIRAP-like dynamics by means of a two- and a three-state model, respectively, obtaining good agreement with the numerical simulations of the corresponding two-dimensional Schrödinger equation.

  11. Atmospheric Ionization Measurements

    NASA Astrophysics Data System (ADS)

    Slack, Thomas; Mayes, Riley

    2015-04-01

    The measurement of atmospheric ionization is a largely unexplored science that potentially holds the key to better understanding many different geophysical phenomena through this new and valuable source of data. Through the LaACES program, which is funded by NASA through the Louisiana Space Consortium, students at Loyola University New Orleans have pursued the goal of measuring high altitude ionization for nearly three years, and were the first to successfully collect ionization data at altitudes over 30,000 feet using a scientific weather balloon flown from the NASA Columbia Scientific Ballooning Facility in Palestine, TX. In order to measure atmospheric ionization, the science team uses a lightweight and highly customized sensor known as a Gerdien condenser. Among other branches of science the data is already being used for, such as the study of aerosol pollution levels in the atmosphere, the data may also be useful in meteorology and seismology. Ionization data might provide another variable with which to predict weather or seismic activity more accurately and further in advance. Thomas Slack and Riley Mayes have served as project managers for the experiment, and have extensive knowledge of the experiment from the ground up. LaSPACE Louisiana Space Consortium.

  12. Diabatic Versus Adiabatic Calculation of Torsion-Vibration Interactions

    NASA Astrophysics Data System (ADS)

    Hougen, Jon T.

    2013-06-01

    The introductory part of this talk will deal briefly with two historical topics: (i) use of the words adiabatic, nonadiabatic, and diabatic in thermodynamics and quantum mechanics, and (ii) application of diabatic and adiabatic ideas to vibrational energy level calculations for a pair of diatomic-molecule potential energy curves exhibiting an avoided crossing. The main part of the talk will be devoted to recent work with Li-Hong Xu and Ron Lees on how ab initio projected frequency calculations for small-amplitude vibrations along the large-amplitude internal rotation path in methanol can best be used to help guide experimental assignments and fits in the IR vibrational spectrum. The three CH stretching vibrations for CH_{3}OH can conveniently be represented as coefficients multiplying three different types of basis vibrations, i.e., as coefficients of: (i) the local mode C-H_i bond displacements δr_{i} for hydrogens H_{1}, H_{2} and H_{3} of the methyl top, (ii) symmetrized linear combinations of the three δr_{i} of species A_{1} oplus E in the permutation-inversion group G_{6} = C_{3v} appropriate for methanol, or (iii) symmetrized linear combinations of the three δr_{i} of species 2A_{1} oplus A_{2} in the permutation-inversion group G_{6}. In this talk, we will focus on diabatic and adiabatic computations for the A_{1} oplus E basis vibrations of case (ii) above. We will briefly explain how Jahn-Teller-like and Renner-Teller-like torsion-vibration interaction terms occurring in the potential energy expression in the diabatic calculation become torsion-vibration Coriolis interaction terms occurring in the kinetic energy expression of the adiabatic calculations, and also show how, for algebraically solvable parameter choices, the same energy levels are obtained from either calculation. A final conclusion as to which approach is computationally superior for the numerical data given in a quantum chemistry output file has not yet been arrived at.

  13. Collisional and Radiative Processes in Adiabatic Deceleration, Deflection, and Off-Axis Trapping of a Rydberg Atom Beam

    SciTech Connect

    Seiler, Ch.; Hogan, S. D.; Schmutz, H.; Agner, J. A.; Merkt, F.

    2011-02-18

    A supersonic beam of Rydberg hydrogen atoms has been adiabatically deflected by 90 deg., decelerated to zero velocity in less than 25 {mu}s, and loaded into an electric trap. The deflection has allowed the suppression of collisions with atoms in the trailing part of the gas pulse. The processes leading to trap losses, i.e., fluorescence to the ground state, and transitions and ionization induced by blackbody radiation have been monitored over several milliseconds and quantitatively analyzed.

  14. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment.

    PubMed

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J Timothy; Champion, Paul M

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical "gating" distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near

  15. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: Comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment

    SciTech Connect

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy; Champion, Paul M.

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical “gating” distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working

  16. Quantum-Classical Correspondence of Shortcuts to Adiabaticity

    NASA Astrophysics Data System (ADS)

    Okuyama, Manaka; Takahashi, Kazutaka

    2017-04-01

    We formulate the theory of shortcuts to adiabaticity in classical mechanics. For a reference Hamiltonian, the counterdiabatic term is constructed from the dispersionless Korteweg-de Vries (KdV) hierarchy. Then the adiabatic theorem holds exactly for an arbitrary choice of time-dependent parameters. We use the Hamilton-Jacobi theory to define the generalized action. The action is independent of the history of the parameters and is directly related to the adiabatic invariant. The dispersionless KdV hierarchy is obtained from the classical limit of the KdV hierarchy for the quantum shortcuts to adiabaticity. This correspondence suggests some relation between the quantum and classical adiabatic theorems.

  17. Adiabatic Quantum Simulation of Quantum Chemistry

    NASA Astrophysics Data System (ADS)

    Babbush, Ryan; Love, Peter J.; Aspuru-Guzik, Alán

    2014-10-01

    We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.

  18. Ramsey numbers and adiabatic quantum computing.

    PubMed

    Gaitan, Frank; Clark, Lane

    2012-01-06

    The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n) with m, n≥3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n). We show how the computation of R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5≤s≤7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.

  19. Comment on ``Adiabatic theory for the bipolaron''

    NASA Astrophysics Data System (ADS)

    Smondyrev, M. A.; Devreese, J. T.

    1996-05-01

    Comments are given on the application of the Bogoliubov-Tyablikov approach to the bipolaron problem in a recent paper by Lakhno [Phys. Rev. B 51, 3512 (1995)]. This author believes that his model (1) is the translation-invariant adiabatic theory of bipolarons and (2) gives asymptotically exact solutions in the adiabatic limit while the other approaches are considered as either phenomenological or variational in nature. Numerical results by Lakhno are in contradiction with all other papers published on the subject because his model leads to much lower energies. Thus, the author concludes that bipolarons ``are more stable than was considered before.'' We prove that both the analytical and the numerical results presented by Lakhno are wrong.

  20. Shortcuts to adiabaticity from linear response theory

    SciTech Connect

    Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian

    2015-10-23

    A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times.

  1. Shortcuts to adiabaticity from linear response theory

    DOE PAGES

    Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian

    2015-10-23

    A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts tomore » adiabaticity for specific and very short driving times.« less

  2. Adiabatic state preparation study of methylene

    SciTech Connect

    Veis, Libor Pittner, Jiří

    2014-06-07

    Quantum computers attract much attention as they promise to outperform their classical counterparts in solving certain type of problems. One of them with practical applications in quantum chemistry is simulation of complex quantum systems. An essential ingredient of efficient quantum simulation algorithms are initial guesses of the exact wave functions with high enough fidelity. As was proposed in Aspuru-Guzik et al. [Science 309, 1704 (2005)], the exact ground states can in principle be prepared by the adiabatic state preparation method. Here, we apply this approach to preparation of the lowest lying multireference singlet electronic state of methylene and numerically investigate preparation of this state at different molecular geometries. We then propose modifications that lead to speeding up the preparation process. Finally, we decompose the minimal adiabatic state preparation employing the direct mapping in terms of two-qubit interactions.

  3. Trapped Ion Quantum Computation by Adiabatic Passage

    SciTech Connect

    Feng Xuni; Wu Chunfeng; Lai, C. H.; Oh, C. H.

    2008-11-07

    We propose a new universal quantum computation scheme for trapped ions in thermal motion via the technique of adiabatic passage, which incorporates the advantages of both the adiabatic passage and the model of trapped ions in thermal motion. Our scheme is immune from the decoherence due to spontaneous emission from excited states as the system in our scheme evolves along a dark state. In our scheme the vibrational degrees of freedom are not required to be cooled to their ground states because they are only virtually excited. It is shown that the fidelity of the resultant gate operation is still high even when the magnitude of the effective Rabi frequency moderately deviates from the desired value.

  4. Adiabatic quantum simulation of quantum chemistry.

    PubMed

    Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán

    2014-10-13

    We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.

  5. Multiphoton adiabatic passage for atom optics applications

    SciTech Connect

    Demeter, Gabor; Djotyan, Gagik P.

    2009-04-15

    We study the force exerted on two-level atoms by short, counterpropagating laser pulses. When the counterpropagating pulses overlap each other partially, multiphoton adiabatic processes are possible in several configurations, which amplify the force exerted on the atoms. We investigate the practical usefulness of such multiphoton adiabatic transitions for the manipulation of the atoms' mechanical state. In particular, we compare the efficiency of a pair of constant frequency, oppositely detuned laser pulses and that of a pair of frequency-chirped pulses. We also consider the case of prolonged exposure to a sequence of laser pulses for a duration that is comparable to or much larger than the spontaneous lifetime of the atoms. We use numerical methods to calculate the reduction of the force and the heating of the atomic ensemble when spontaneous emission cannot be neglected during the interaction. In addition, we derive simple approximate formulas for the force and the heating, and compare them to the numerical results.

  6. Adiabatic quantum optimization for associative memory recall

    DOE PAGES

    Seddiqi, Hadayat; Humble, Travis S.

    2014-12-22

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are storedmore » in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.« less

  7. Adiabatic quantum optimization for associative memory recall

    SciTech Connect

    Seddiqi, Hadayat; Humble, Travis S.

    2014-12-22

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.

  8. Adiabatic Quantum Simulation of Quantum Chemistry

    PubMed Central

    Babbush, Ryan; Love, Peter J.; Aspuru-Guzik, Alán

    2014-01-01

    We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions. PMID:25308187

  9. Computer Code For Turbocompounded Adiabatic Diesel Engine

    NASA Technical Reports Server (NTRS)

    Assanis, D. N.; Heywood, J. B.

    1988-01-01

    Computer simulation developed to study advantages of increased exhaust enthalpy in adiabatic turbocompounded diesel engine. Subsytems of conceptual engine include compressor, reciprocator, turbocharger turbine, compounded turbine, ducting, and heat exchangers. Focus of simulation of total system is to define transfers of mass and energy, including release and transfer of heat and transfer of work in each subsystem, and relationship among subsystems. Written in FORTRAN IV.

  10. Adiabatic charging of nickel-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Lurie, Chuck; Foroozan, S.; Brewer, Jeff; Jackson, Lorna

    1995-01-01

    Battery management during prelaunch activities has always required special attention and careful planning. The transition from nickel-cadium to nickel-hydrogen batteries, with their high self discharge rate and lower charge efficiency, as well as longer prelaunch scenarios, has made this aspect of spacecraft battery management even more challenging. The AXAF-I Program requires high battery state of charge at launch. The use of active cooling, to ensure efficient charging, was considered and proved to be difficult and expensive. Alternative approaches were evaluated. Optimized charging, in the absence of cooling, appeared promising and was investigated. Initial testing was conducted to demonstrate the feasibility of the 'Adiabatic Charging' approach. Feasibility was demonstrated and additional testing performed to provide a quantitative, parametric data base. The assumption that the battery is in an adiabatic environment during prelaunch charging is a conservative approximation because the battery will transfer some heat to its surroundings by convective air cooling. The amount is small compared to the heat dissipated during battery overcharge. Because the battery has a large thermal mass, substantial overcharge can occur before the cells get too hot to charge efficiently. The testing presented here simulates a true adiabatic environment. Accordingly the data base may be slightly conservative. The adiabatic charge methodology used in this investigation begins with stabilizing the cell at a given starting temperature. The cell is then fully insulated on all sides. Battery temperature is carefully monitored and the charge terminated when the cell temperature reaches 85 F. Charging has been evaluated with starting temperatures from 55 to 75 F.

  11. Stimulation of high affinity gamma-aminobutyric acidB receptors potentiates the depolarization-induced increase of intraneuronal ionized calcium content in cerebellar granule neurons.

    PubMed

    De Erausquin, G; Brooker, G; Costa, E; Wojcik, W J

    1992-09-01

    In the treatment of spasticity, the therapeutic cerebrospinal fluid levels of (+/-)-baclofen, a gamma-aminobutyric acid (GABA)B receptor agonist, are below 1 microM. However, the mechanism of the therapeutic action of (+/-)-baclofen remains unknown, because, for the most part, the action of (+/-)-baclofen on GABAB receptors requires micromolar concentrations. Using fura-2 fluorescence microscopy, intracellular ionized calcium was measured in cerebellar granule neurons. Stimulation of a high affinity GABAB receptor potentiated by 2-3-fold the rise in intracellular calcium observed after depolarization of the cell with a Krebs Ringer's buffered solution containing 40 mM K+. Both GABA (100 nM) and (+/-)-baclofen (10-100 nM) stimulated this high affinity receptor. The potentiation of the depolarization-induced rise in intracellular calcium by (+/-)-baclofen (100 nM) was completely blocked by the GABAB receptor antagonist CGP 35348 (200 microM). Also, the intracellular calcium response induced by the activation of high affinity GABAB receptors was prevented by dantrolene (10 microM). The cerebellar granule neurons contained calcium-induced calcium release (CICR) stores. Caffeine (3 mM) and ryanodine (100 microM) potentiated the depolarization-induced rise in intracellular calcium, and this response to both drugs was blocked by dantrolene (10 microM). Because dantrolene does not prevent the rise in intracellular calcium after cell depolarization (this calcium originated from the influx of extracellular calcium), (+/-)-baclofen acting via the high affinity GABAB receptor indirectly activates the CICR stores, allowing the influx of extracellular calcium to trigger the release of calcium from these dantrolene-sensitive CICR stores. Thus, this high affinity GABAB receptor might become activated during persistent depolarization caused by pathological states and could be a mechanism to be studied for the therapeutic action of (+/-)-baclofen in spasticity.

  12. Aspects of adiabatic population transfer and control

    NASA Astrophysics Data System (ADS)

    Demirplak, Mustafa

    This thesis explores two different questions. The first question we answer is how to restore a given population transfer scenario given that it works efficiently in the adiabatic limit but fails because of lack of intensity and/or short duration. We derive a very simple algorithm to do this and apply it to both toy and realistic models. Two results emerge from this study. While the mathematical existence of the programme is certain it might not always be physically desirable. The restoration of adiabaticity is phase sensitive. The second question that is answered in this thesis is not how to invent new control paradigms, but rather what would happen to them in the presence of stochastic perturbers. We first use a phenomenological model to study the effect of stochastic dephasing on population transfer by stimulated Raman adiabatic passage. The results of this Monte Carlo calculation are qualitatively explained with a perturbation theoretical result in the dressed state basis. The reliability of our phenomenological model is questioned through a more rigorous hybrid quantal-classical simulation of controlled population transfer in HCl in Ar.

  13. Adiabatic graph-state quantum computation

    NASA Astrophysics Data System (ADS)

    Antonio, B.; Markham, D.; Anders, J.

    2014-11-01

    Measurement-based quantum computation (MBQC) and holonomic quantum computation (HQC) are two very different computational methods. The computation in MBQC is driven by adaptive measurements executed in a particular order on a large entangled state. In contrast in HQC the system starts in the ground subspace of a Hamiltonian which is slowly changed such that a transformation occurs within the subspace. Following the approach of Bacon and Flammia, we show that any MBQC on a graph state with generalized flow (gflow) can be converted into an adiabatically driven holonomic computation, which we call adiabatic graph-state quantum computation (AGQC). We then investigate how properties of AGQC relate to the properties of MBQC, such as computational depth. We identify a trade-off that can be made between the number of adiabatic steps in AGQC and the norm of \\dot{H} as well as the degree of H, in analogy to the trade-off between the number of measurements and classical post-processing seen in MBQC. Finally the effects of performing AGQC with orderings that differ from standard MBQC are investigated.

  14. Random matrix model of adiabatic quantum computing

    SciTech Connect

    Mitchell, David R.; Adami, Christoph; Lue, Waynn; Williams, Colin P.

    2005-05-15

    We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SAT (an NP-complete problem) in terms of random matrix theory (RMT). We determine the global regularity of the spectral fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest. At each interpolation point, we quantify the degree of regularity of the average spectral distribution via its Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor spacings. We find that for hard problem instances - i.e., those having a critical ratio of clauses to variables - the spectral fluctuations typically become irregular across a contiguous region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region, RMT may be applied to obtain a mathematical model of the probability of avoided level crossings and concomitant failure rate of the adiabatic algorithm due to nonadiabatic Landau-Zener-type transitions. Our model predicts that if the interpolation is performed at a uniform rate, the average failure rate of the quantum adiabatic algorithm, when averaged over hard problem instances, scales exponentially with increasing problem size.

  15. Adiabatic response and quantum thermoelectrics for ac-driven quantum systems

    NASA Astrophysics Data System (ADS)

    Ludovico, María Florencia; Battista, Francesca; von Oppen, Felix; Arrachea, Liliana

    2016-02-01

    We generalize the theory of thermoelectrics to include coherent electron systems under adiabatic ac driving, accounting for quantum pumping of charge and heat, as well as for the work exchanged between the electron system and driving potentials. We derive the relevant response coefficients in the adiabatic regime and show that they obey generalized Onsager reciprocity relations. We analyze the consequences of our generalized thermoelectric framework for quantum motors, generators, heat engines, and heat pumps, characterizing them in terms of efficiencies and figures of merit. We illustrate these concepts in a model for a quantum pump.

  16. Creation and Transfer of Coherence via Technique of Stimulated Raman Adiabatic Passage in Triple Quantum Dots.

    PubMed

    Tian, Si-Cong; Wan, Ren-Gang; Wang, Chun-Liang; Shu, Shi-Li; Wang, Li-Jie; Tong, Chun-Zhu

    2016-12-01

    We propose a scheme for creation and transfer of coherence among ground state and indirect exciton states of triple quantum dots via the technique of stimulated Raman adiabatic passage. Compared with the traditional stimulated Raman adiabatic passage, the Stokes laser pulse is replaced by the tunneling pulse, which can be controlled by the externally applied voltages. By varying the amplitudes and sequences of the pump and tunneling pulses, a complete coherence transfer or an equal coherence distribution among multiple states can be obtained. The investigations can provide further insight for the experimental development of controllable coherence transfer in semiconductor structure and may have potential applications in quantum information processing.

  17. Piecewise Adiabatic Population Transfer in a Molecule via a Wave Packet

    SciTech Connect

    Shapiro, Evgeny A.; Peer, Avi; Ye Jun; Shapiro, Moshe

    2008-07-11

    We propose a class of schemes for robust population transfer between quantum states that utilize trains of coherent pulses, thus forming a generalized adiabatic passage via a wave packet. We study piecewise stimulated Raman adiabatic passage with pulse-to-pulse amplitude variation, and piecewise chirped Raman passage with pulse-to-pulse phase variation, implemented with an optical frequency comb. In the context of production of ultracold ground-state molecules, we show that with almost no knowledge of the excited potential, robust high-efficiency transfer is possible.

  18. Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas

    PubMed Central

    Rohringer, W.; Fischer, D.; Steiner, F.; Mazets, I. E.; Schmiedmayer, J.; Trupke, M.

    2015-01-01

    We present experimental evidence for scale invariant behaviour of the excitation spectrum in phase-fluctuating quasi-1d Bose gases after a rapid change of the external trapping potential. Probing density correlations in free expansion, we find that the temperature of an initial thermal state scales with the spatial extension of the cloud as predicted by a model based on adiabatic rescaling of initial eigenmodes with conserved quasiparticle occupation numbers. Based on this result, we demonstrate that shortcuts to adiabaticity for the rapid expansion or compression of the gas do not induce additional heating. PMID:25867640

  19. Protecting and accelerating adiabatic passage with time-delayed pulse sequences.

    PubMed

    Sampedro, Pablo; Chang, Bo Y; Sola, Ignacio R

    2016-05-21

    Using numerical simulations of two-photon electronic absorption with femtosecond pulses in Na2 we show that: (i) it is possible to avoid the characteristic saturation or dumped Rabi oscillations in the yield of absorption by time-delaying the laser pulses; (ii) it is possible to accelerate the onset of adiabatic passage by using the vibrational coherence starting in a wave packet; and (iii) it is possible to prepare the initial wave packet in order to achieve full state-selective transitions with broadband pulses. The findings can be used, for instance, to achieve ultrafast adiabatic passage by light-induced potentials and understand its intrinsic robustness.

  20. Electronic non-adiabatic states: towards a density functional theory beyond the Born–Oppenheimer approximation

    PubMed Central

    Gidopoulos, Nikitas I.; Gross, E. K. U.

    2014-01-01

    A novel treatment of non-adiabatic couplings is proposed. The derivation is based on a theorem by Hunter stating that the wave function of the complete system of electrons and nuclei can be written, without approximation, as a Born–Oppenheimer (BO)-type product of a nuclear wave function, X(R), and an electronic one, ΦR(r), which depends parametrically on the nuclear configuration R. From the variational principle, we deduce formally exact equations for ΦR(r) and X(R). The algebraic structure of the exact nuclear equation coincides with the corresponding one in the adiabatic approximation. The electronic equation, however, contains terms not appearing in the adiabatic case, which couple the electronic and the nuclear wave functions and account for the electron–nuclear correlation beyond the BO level. It is proposed that these terms can be incorporated using an optimized local effective potential. PMID:24516183

  1. Dynamics of an optomechanical system with quadratic coupling: Effect of first order correction to adiabatic elimination

    PubMed Central

    Jiang, Cheng; Cui, Yuanshun; Chen, Guibin

    2016-01-01

    We explore theoretically the dynamics of an optomechanical system in which a resonantly driven cavity mode is quadratically coupled to the displacement of a mechanical resonator. Considering the first order correction to adiabatic elimination, we obtain the analytical expression of optomechanical damping rate which is negative and depends on the position of the mechanical resonator. After comparing the numerical results between the full simulation of Langevin equations, adiabatic elimination, and first order correction to adiabatic elimination, we explain the dynamics of the system in terms of overall mechanical potential and optomechanical damping rate. The antidamping induced by radiation pressure can result in self-sustained oscillation of the mechanical resonator. Finally, we discuss the time evolution of the intracavity photon number, which also shows that the effect of first order correction cannot be neglected when the ratio of the cavity decay rate to the mechanical resonance frequency becomes smaller than a critical value. PMID:27752125

  2. Performance of the widely used Minnesota density functionals for the prediction of heat of formations, ionization potentials of some benchmarked first row transition metal complexes.

    PubMed

    Shil, Suranjan; Bhattacharya, Debojit; Sarkar, Sonali; Misra, Anirban

    2013-06-13

    We have computed and investigated the performance of Minnesota density functionals especially the M05, M06, and M08 suite of complementary density functionals for the prediction of the heat of formations (HOFs) and the ionization potentials (IPs) of various benchmark complexes containing nine different first row transition metals. The eight functionals of M0X family, namely, the M05, M05-2X, M06-L, M06, M06-2X, M06-HF, M08-SO, and M08-HX are taken for the computation of the above-mentioned physical properties of such metal complexes along with popular Los Alamos National Laboratory 2 double-ζ (LANL2DZ) basis set. Total 54 benchmark systems are taken for HOF calculation, whereas the 47 systems among these benchmark complexes are chosen for the calculation of IPs because of lack of experimental results on rest of the seven systems. The computed values of HOFs and IPs are compared with the experimental results obtained from the literature. The deviation of these computed values from the actual experimental results is calculated for each eight different M0X functionals to judge their performances in evaluating these properties. Finally, a clear relationship between the exchange correlation energy of eight M0X functionals and their efficiency are made to predict the different physical properties.

  3. Determination of caloric values of agricultural crops and crop waste by Adiabatic Bomb Calorimetry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calorific values of agricultural crops and their waste were measured by adiabatic bomb calorimetry. Sustainable farming techniques require that all potential sources of revenue be utilized. A wide variety of biomass is beginning to be used as alternative fuels all over the world. The energy potentia...

  4. Non-adiabatic effects in near-adiabatic mixed-field orientation and alignment

    NASA Astrophysics Data System (ADS)

    Maan, Anjali; Ahlawat, Dharamvir Singh; Prasad, Vinod

    2016-11-01

    We present a theoretical study of the impact of a pair of moderate electric fields tilted an angle with respect to one another on a molecule. As a prototype, we consider a molecule with large rotational constant (with corresponding small rotational period) and moderate dipole moment. Within rigid-rotor approximation, the time-dependent Schrodinger equation is solved using fourth-order Runge-Kutta method. We have analysed that lower rotational states are significantly influenced by variation in pulse durations, the tilt angle between the fields and also on the electric field strengths. We also suggest a control scheme of how the rotational dynamics, orientation and alignment of a molecule can be enhanced by a combination of near-adiabatic pulses in comparision to non-adiabatic or adiabatic pulses.

  5. Ionization energies of argon clusters: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Echt, O.; Fiegele, T.; Rümmele, M.; Probst, M.; Matt-Leubner, S.; Urban, J.; Mach, P.; Leszczynski, J.; Scheier, P.; Märk, T. D.

    2005-08-01

    We have measured appearance energies of Arn+,n⩽30, by electron impact of gas phase clusters. Quantum-chemical calculations have been performed to determine the adiabatic and vertical ionization energies of argon clusters up to n =4 and 6, respectively. The experimental appearance energy of the dimer ion approaches, under suitable cluster source conditions, the adiabatic ionization energy. The agreement with values obtained by photoionization and threshold photoelectron-photoion coincidence (TPEPICO) spectra demonstrates that autoionizing Rydberg states are accessible by electron impact. Appearance energies of larger clusters, though, exceed the TPEPICO values by about 0.5 eV.

  6. Ionizing radiation and life.

    PubMed

    Dartnell, Lewis R

    2011-01-01

    Ionizing radiation is a ubiquitous feature of the Cosmos, from exogenous cosmic rays (CR) to the intrinsic mineral radioactivity of a habitable world, and its influences on the emergence and persistence of life are wide-ranging and profound. Much attention has already been focused on the deleterious effects of ionizing radiation on organisms and the complex molecules of life, but ionizing radiation also performs many crucial functions in the generation of habitable planetary environments and the origins of life. This review surveys the role of CR and mineral radioactivity in star formation, generation of biogenic elements, and the synthesis of organic molecules and driving of prebiotic chemistry. Another major theme is the multiple layers of shielding of planetary surfaces from the flux of cosmic radiation and the various effects on a biosphere of violent but rare astrophysical events such as supernovae and gamma-ray bursts. The influences of CR can also be duplicitous, such as limiting the survival of surface life on Mars while potentially supporting a subsurface biosphere in the ocean of Europa. This review highlights the common thread that ionizing radiation forms between the disparate component disciplines of astrobiology.

  7. Accurate ab initio-based adiabatic global potential energy surface for the 2{sup 2}A″ state of NH{sub 2} by extrapolation to the complete basis set limit

    SciTech Connect

    Li, Y. Q.; Ma, F. C.; Sun, M. T.

    2013-10-21

    A full three-dimensional global potential energy surface is reported first time for the title system, which is important for the photodissociation processes. It is obtained using double many-body expansion theory and an extensive set of accurate ab initio energies extrapolated to the complete basis set limit. Such a work can be recommended for dynamics studies of the N({sup 2}D) + H{sub 2} reaction, a reliable theoretical treatment of the photodissociation dynamics and as building blocks for constructing the double many-body expansion potential energy surface of larger nitrogen/hydrogen containing systems. In turn, a preliminary theoretical study of the reaction N({sup 2}D)+H{sub 2}(X{sup 1}Σ{sub g}{sup +})(ν=0,j=0)→NH(a{sup 1}Δ)+H({sup 2}S) has been carried out with the method of quasi-classical trajectory on the new potential energy surface. Integral cross sections and thermal rate constants have been calculated, providing perhaps the most reliable estimate of the integral cross sections and the rate constants known thus far for such a reaction.

  8. Dissociation and multiple ionization energies for five polycyclic aromatic hydrocarbon molecules

    NASA Astrophysics Data System (ADS)

    Holm, A. I. S.; Johansson, H. A. B.; Cederquist, H.; Zettergren, H.

    2011-01-01

    We have performed density functional theory calculations for a range of neutral, singly, and multiply charged polycyclic aromatic hydrocarbons (PAHs), and their fragmentation products for H-, H^+-, C_2H_2-, and C_2H_2^+-emissions. The adiabatic and vertical ionization energies follow linear dependencies as functions of charge state for all five intact PAHs (naphthalene, biphenylene, anthracene, pyrene, and coronene). First estimates of the total ionization and fragmentation cross sections in ion-PAH collisions display markedly different size dependencies for pericondensed and catacondensed PAH species, reflecting differences in their first ionization energies. The dissociation energies show that the PAH^{q+}-molecules are thermodynamically stable for q ⩽ 2 (naphthalene, biphenylene, and anthracene), q ⩽ 3 (pyrene), and q ⩽ 4 (coronene). PAHs in charge states above these limits may also survive experimental time scales due to the presence of reaction barriers as deduced from explorations of the potential energy surface regions for H^+-emissions from all five PAHs and for C_2H_2+-emission from naphthalene - the smallest PAH.

  9. The best of both Reps—Diabatized Gaussians on adiabatic surfaces

    NASA Astrophysics Data System (ADS)

    Meek, Garrett A.; Levine, Benjamin G.

    2016-11-01

    When simulating nonadiabatic molecular dynamics, choosing an electronic representation requires consideration of well-known trade-offs. The uniqueness and spatially local couplings of the adiabatic representation come at the expense of an electronic wave function that changes discontinuously with nuclear motion and associated singularities in the nonadiabatic coupling matrix elements. The quasi-diabatic representation offers a smoothly varying wave function and finite couplings, but identification of a globally well-behaved quasi-diabatic representation is a system-specific challenge. In this work, we introduce the diabatized Gaussians on adiabatic surfaces (DGAS) approximation, a variant of the ab initio multiple spawning (AIMS) method that preserves the advantages of both electronic representations while avoiding their respective pitfalls. The DGAS wave function is expanded in a basis of vibronic functions that are continuous in both electronic and nuclear coordinates, but potentially discontinuous in time. Because the time-dependent Schrödinger equation contains only first-order derivatives with respect to time, singularities in the second-derivative nonadiabatic coupling terms (i.e., diagonal Born-Oppenheimer correction; DBOC) at conical intersections are rigorously absent, though singular time-derivative couplings remain. Interpolation of the electronic wave function allows the accurate prediction of population transfer probabilities even in the presence of the remaining singularities. We compare DGAS calculations of the dynamics of photoexcited ethene to AIMS calculations performed in the adiabatic representation, including the DBOC. The 28 fs excited state lifetime observed in DGAS simulations is considerably shorter than the 50 fs lifetime observed in the adiabatic simulations. The slower decay in the adiabatic representation is attributable to the large, repulsive DBOC in the neighborhood of conical intersections. These repulsive DBOC terms are artifacts

  10. Quantized adiabatic transport in momentum space.

    PubMed

    Ho, Derek Y H; Gong, Jiangbin

    2012-07-06

    Though topological aspects of energy bands are known to play a key role in quantum transport in solid-state systems, the implications of Floquet band topology for transport in momentum space (i.e., acceleration) have not been explored so far. Using a ratchet accelerator model inspired by existing cold-atom experiments, here we characterize a class of extended Floquet bands of one-dimensional driven quantum systems by Chern numbers, reveal topological phase transitions therein, and theoretically predict the quantization of adiabatic transport in momentum space. Numerical results confirm our theory and indicate the feasibility of experimental studies.

  11. Adiabatic demagnetization refrigerator for space use

    NASA Technical Reports Server (NTRS)

    Serlemitsos, A. T.; Warner, B. A.; Castles, S.; Breon, S. R.; San Sebastian, M.; Hait, T.

    1990-01-01

    An Adiabatic Demagnetization Refrigerator (ADR) for space use is under development at NASA's Goddard Space Flight Center (GSFC). The breadboard ADR operated at 100 mK for 400 minutes. Some significant changes to that ADR, designed to eliminate shortcomings revealed during tests, are reported. To increase thermal contact, the ferric ammonium sulfate crystals were grown directly on gold-plated copper wires which serve as the thermal bus. The thermal link to the X-ray sensors was also markedly improved. To speed up the testing required to determine the best design parameters for the gas gap heat switch, the new heat switch has a modular design and is easy to disassemble.

  12. Shortcuts to adiabaticity for quantum annealing

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazutaka

    2017-01-01

    We study the Ising Hamiltonian with a transverse field term to simulate the quantum annealing. Using shortcuts to adiabaticity, we design the time dependence of the Hamiltonian. The dynamical invariant is obtained by the mean-field ansatz, and the Hamiltonian is designed by the inverse engineering. We show that the time dependence of physical quantities such as the magnetization is independent of the speed of the Hamiltonian variation in the infinite-range model. We also show that rotating transverse magnetic fields are useful to achieve the ideal time evolution.

  13. Phase avalanches in near-adiabatic evolutions

    SciTech Connect

    Vertesi, T.; Englman, R.

    2006-02-15

    In the course of slow, nearly adiabatic motion of a system, relative changes in the slowness can cause abrupt and high magnitude phase changes, ''phase avalanches,'' superimposed on the ordinary geometric phases. The generality of this effect is examined for arbitrary Hamiltonians and multicomponent (>2) wave packets and is found to be connected (through the Blaschke term in the theory of analytic signals) to amplitude zeros in the lower half of the complex time plane. Motion on a nonmaximal circle on the Poincare-sphere suppresses the effect. A spectroscopic transition experiment can independently verify the phase-avalanche magnitudes.

  14. Decoherence in a scalable adiabatic quantum computer

    SciTech Connect

    Ashhab, S.; Johansson, J. R.; Nori, Franco

    2006-11-15

    We consider the effects of decoherence on Landau-Zener crossings encountered in a large-scale adiabatic-quantum-computing setup. We analyze the dependence of the success probability--i.e., the probability for the system to end up in its new ground state--on the noise amplitude and correlation time. We determine the optimal sweep rate that is required to maximize the success probability. We then discuss the scaling of decoherence effects with increasing system size. We find that those effects can be important for large systems, even if they are small for each of the small building blocks.

  15. Cavity-state preparation using adiabatic transfer

    NASA Astrophysics Data System (ADS)

    Larson, Jonas; Andersson, Erika

    2005-05-01

    We show how to prepare a variety of cavity field states for multiple cavities. The state preparation technique used is related to the method of stimulated adiabatic Raman passage. The cavity modes are coupled by atoms, making it possible to transfer an arbitrary cavity field state from one cavity to another and also to prepare nontrivial cavity field states. In particular, we show how to prepare entangled states of two or more cavities, such as an Einstein-Podolsky-Rosen state and a W state, as well as various entangled superpositions of coherent states in different cavities, including Schrödinger cat states. The theoretical considerations are supported by numerical simulations.

  16. Generalized Ramsey numbers through adiabatic quantum optimization

    NASA Astrophysics Data System (ADS)

    Ranjbar, Mani; Macready, William G.; Clark, Lane; Gaitan, Frank

    2016-09-01

    Ramsey theory is an active research area in combinatorics whose central theme is the emergence of order in large disordered structures, with Ramsey numbers marking the threshold at which this order first appears. For generalized Ramsey numbers r( G, H), the emergent order is characterized by graphs G and H. In this paper we: (i) present a quantum algorithm for computing generalized Ramsey numbers by reformulating the computation as a combinatorial optimization problem which is solved using adiabatic quantum optimization; and (ii) determine the Ramsey numbers r({{T}}m,{{T}}n) for trees of order m,n = 6,7,8, most of which were previously unknown.

  17. Ionizing Irradiation Not Only Inactivates Clonogenic Potential in Primary Normal Human Diploid Lens Epithelial Cells but Also Stimulates Cell Proliferation in a Subset of This Population

    PubMed Central

    Fujimichi, Yuki; Hamada, Nobuyuki

    2014-01-01

    Over the past century, ionizing radiation has been known to induce cataracts in the crystalline lens of the eye, but its mechanistic underpinnings remain incompletely understood. This study is the first to report the clonogenic survival of irradiated primary normal human lens epithelial cells and stimulation of its proliferation. Here we used two primary normal human cell strains: HLEC1 lens epithelial cells and WI-38 lung fibroblasts. Both strains were diploid, and a replicative lifespan was shorter in HLEC1 cells. The colony formation assay demonstrated that the clonogenic survival of both strains decreases similarly with increasing doses of X-rays. A difference in the survival between two strains was actually insignificant, although HLEC1 cells had the lower plating efficiency. This indicates that the same dose inactivates the same fraction of clonogenic cells in both strains. Intriguingly, irradiation enlarged the size of clonogenic colonies arising from HLEC1 cells in marked contrast to those from WI-38 cells. Such enhanced proliferation of clonogenic HLEC1 cells was significant at ≥2 Gy, and manifested as increments of ≤2.6 population doublings besides sham-irradiated controls. These results suggest that irradiation of HLEC1 cells not only inactivates clonogenic potential but also stimulates proliferation of surviving uniactivated clonogenic cells. Given that the lens is a closed system, the stimulated proliferation of lens epithelial cells may not be a homeostatic mechanism to compensate for their cell loss, but rather should be regarded as abnormal. This is because these findings are consistent with the early in vivo evidence documenting that irradiation induces excessive proliferation of rabbit lens epithelial cells and that suppression of lens epithelial cell divisions inhibits radiation cataractogenesis in frogs and rats. Thus, our in vitro model will be useful to evaluate the excessive proliferation of primary normal human lens epithelial cells that

  18. Immune potentiation after fractionated exposure to very low doses of ionizing radiation and/or caloric restriction in autoimmune-prone and normal C57Bl/6 mice

    SciTech Connect

    James, S.J.; Enger, S.M.; Peterson, W.J.; Makinodan, T. )

    1990-06-01

    Very low doses of ionizing radiation can enhance immune responsiveness and extend life span in normal mice. Total lymphoid irradiation at relatively high doses of radiation can retard autoimmune disease in genetically susceptible mice, but may impair immune function. In order to determine whether fractionated low dose exposure would enhance immune response and retard lymphadenopathy in autoimmune-prone mice, groups of C57B1/6 lpr/lpr mice were sham irradiated, exposed 5 days/week for 4 weeks to 0.04 Gy/day, or to 0.1 Gy/day. After the radiation protocol, the mice were evaluated for splenic T cell proliferative capacity, T cell subset distribution, and total spleen cell numbers. The independent and additive effect of caloric restriction was additionally assessed since this intervention has been shown to increase immune responsiveness and retard disease progression in autoimmune-prone mice. The congenic C57B1/6 +/+ immunologically normal strain was evaluated in parallel as congenic control. The results indicated that mitogen-stimulated proliferation was up-regulated in both strains of mice after exposure to 0.04 Gy/day. The proliferative capacity was additively enhanced when radiation at this dose level was combined with caloric restriction. Exposure to 0.1 Gy/day resulted in further augmentation of proliferative response in the lpr/lpr mice, but was depressive in the +/+ mice. Although the proportions of the various T cell subpopulations were altered in both strains after exposure to LDR, the specific subset alterations were different within each strain. Additional experiments were subsequently performed to assess whether the thymus is required for LDR-induced immune potentiation. Thymectomy completely abrogated the LDR effect in the +/+ mice, suggesting that thymic processing and/or trafficking is adaptively altered with LDR in this strain.

  19. Vacuum ultraviolet mass-analyzed threshold ionization spectroscopy of methylcyclohexane in the supersonic jet

    NASA Astrophysics Data System (ADS)

    Han, Songhee; Yoo, Hyun Sik; Ahn, Doo-Sik; Choi, Young S.; Kim, Sang Kyu

    2011-12-01

    Vacuum ultraviolet (VUV) mass-analyzed threshold ionization (MATI) spectrum of supersonically cooled methylcyclohexane has been obtained to give the precise adiabatic ionization energy of 9.6958 ± 0.0025 eV for the chair equatorial conformer. Vibrationally resolved MATI spectrum has been analyzed with the aid of density functional theory and Franck-Condon calculations. The MATI spectrum reflects the structural change upon ionization and its origin is discussed by inspecting the shapes of the valence orbitals involved in the ionization process. The spectroscopic implication of the structural interconversion above the certain energy level is discussed with theoretical calculations of molecular structures and energetics.

  20. Numerical simulations of solar spicules: Adiabatic and non-adiabatic studies

    NASA Astrophysics Data System (ADS)

    Kuźma, B.; Murawski, K.; Zaqarashvili, T. V.; Konkol, P.; Mignone, A.

    2017-01-01

    Aims: We aim to study the formation and evolution of solar spicules using numerical simulations of a vertical velocity pulse that is launched from the upper chromosphere. Methods: With the use of the PLUTO code, we numerically solved adiabatic and non-adiabatic magnetohydrodynamic (MHD) equations in 2D cylindrical geometry. We followed the evolution of spicules triggered by pulses that are launched in a vertical velocity component from the upper chromosphere. Then we compared the results obtained with and without non-adiabatic terms in the MHD equations. Results: Our numerical results reveal that the velocity pulse is steepened into a shock that propagates upward into the corona. The chromospheric cold and dense plasma follows the shock and rises into the corona with the mean speed of 20-25 km s-1. The nonlinear wake behind the pulse in the stratified atmosphere leads to quasi-periodic rebound shocks, which lead to quasi-periodic rising of chromospheric plasma into the corona with a period close to the acoustic cut-off period of the chromosphere. We found that the effect of non-adiabatic terms on spicule evolution is minor; the general properties of spicules such as their heights and rising-time remain slightly affected by these terms. Conclusions: In the framework of the axisymmetric model we devised, we show that the solar spicules can be triggered by the vertical velocity pulses, and thermal conduction and radiative cooling terms do not exert any significant influence on the dynamics of these spicules.

  1. On the Role of Prior Probability in Adiabatic Quantum Algorithms

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Lu, Songfeng; Yang, Liping

    2016-03-01

    In this paper, we study the role of prior probability on the efficiency of quantum local adiabatic search algorithm. The following aspects for prior probability are found here: firstly, only the probabilities of marked states affect the running time of the adiabatic evolution; secondly, the prior probability can be used for improving the efficiency of the adiabatic algorithm; thirdly, like the usual quantum adiabatic evolution, the running time for the case of multiple solution states where the number of marked elements are smaller enough than the size of the set assigned that contains them can be significantly bigger than that of the case where the assigned set only contains all the marked states.

  2. Adiabatic following for a three-state quantum system

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Shore, Bruce W.; Rangelov, Andon; Kyoseva, Elica

    2017-01-01

    Adiabatic time-evolution - found in various forms of adiabatic following and adiabatic passage - is often advantageous for controlled manipulation of quantum systems due to its insensitivity to deviations in the pulse shapes and timings. In this paper we discuss controlled adiabatic evolution of a three-state quantum system, a natural advance to the widespread use of two-state systems in numerous contemporary applications. We discuss, and illustrate, not only possibilities for population transfer but also for creating, with prescribed relative phase, 50:50 superpositions of two Zeeman sublevels in a letter-vee coupling linkage.

  3. Adiabatic approximation via hodograph translation and zero-curvature equations

    NASA Astrophysics Data System (ADS)

    Karasev, M. V.

    2014-04-01

    For quantum as well classical slow-fast systems, we develop a general method which allows one to compute the adiabatic invariant (approximate integral of motion), its symmetries, the adiabatic guiding center coordinates and the effective scalar Hamiltonian in all orders of a small parameter. The scheme does not exploit eigenvectors or diagonalization, but is based on the ideas of isospectral deformation and zero-curvature equations, where the role of "time" is played by the adiabatic (quantization) parameter. The algorithm includes the construction of the zero-curvature adiabatic connection and its splitting generated by averaging up to an arbitrary order in the small parameter.

  4. Adiabatic approximation for the Rabi model with broken inversion symmetry

    NASA Astrophysics Data System (ADS)

    Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi

    2017-01-01

    We study the properties and behavior of the Rabi model with broken inversion symmetry. Using an adiabatic approximation approach, we explore the high-frequency qubit and oscillator regimes, and obtain analytical solutions for the qubit-oscillator system. We demonstrate that, due to broken inversion symmetry, the positions of two potentials and zero-point energies in the oscillators become asymmetric and have a quadratic dependence on the mean dipole moments within the high-frequency oscillator regime. Furthermore, we find that there is a critical point above which the qubit-oscillator system becomes unstable, and the position of this critical point has a quadratic dependence on the mean dipole moments within the high-frequency qubit regime. Finally, we verify this critical point based on the method of semiclassical approximation.

  5. Adiabatic rotation of effective spin. II. Spin-rotational relaxation

    NASA Astrophysics Data System (ADS)

    Serebrennikov, Yu. A.; Steiner, U. E.

    1994-05-01

    The theory of electron spin-rotational (SR) relaxation in systems with an effective spin Seff=1/2 is formulated in terms of the adiabatic rotation of effective spin (ARES) approach. It is shown that SR relaxation results from the orientational random walk of the axes of the intramolecular electric field potential (ligand field) to which a spin-bearing atomic center is exposed. The validity of the stochastic treatment presented here is not limited by the Redfield conditions. The general expression obtained for the time constant of electron spin relaxation in liquid phase reproduces the well-known result of Hubbard-Atkins-Kivelson theory if it is specialized to the case of systems with weak spin-orbit coupling.

  6. Diabatic-At-Construction Method for Diabatic and Adiabatic Ground and Excited States Based on Multistate Density Functional Theory.

    PubMed

    Grofe, Adam; Qu, Zexing; Truhlar, Donald G; Li, Hui; Gao, Jiali

    2017-03-14

    We describe a diabatic-at-construction (DAC) strategy for defining diabatic states to determine the adiabatic ground and excited electronic states and their potential energy surfaces using the multistate density functional theory (MSDFT). The DAC approach differs in two fundamental ways from the adiabatic-to-diabatic (ATD) procedures that transform a set of preselected adiabatic electronic states to a new representation. (1) The DAC states are defined in the first computation step to form an active space, whose configuration interaction produces the adiabatic ground and excited states in the second step of MSDFT. Thus, they do not result from a similarity transformation of the adiabatic states as in the ATD procedure; they are the basis for producing the adiabatic states. The appropriateness and completeness of the DAC active space can be validated by comparison with experimental observables of the ground and excited states. (2) The DAC diabatic states are defined using the valence bond characters of the asymptotic dissociation limits of the adiabatic states of interest, and they are strictly maintained at all molecular geometries. Consequently, DAC diabatic states have specific and well-defined physical and chemical meanings that can be used for understanding the nature of the adiabatic states and their energetic components. Here we present results for the four lowest singlet states of LiH and compare them to a well-tested ATD diabatization method, namely the 3-fold way; the comparison reveals both similarities and differences between the ATD diabatic states and the orthogonalized DAC diabatic states. Furthermore, MSDFT can provide a quantitative description of the ground and excited states for LiH with multiple strongly and weakly avoided curve crossings spanning over 10 Å of interatomic separation.

  7. Stabilization of Thin-Shell Implosions Using a High-Foot Adiabat-Shaped Drive on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Lafon, Marion; Gauthier, Pascal; Masse, Laurent

    2016-10-01

    The High Foot (HF) campaign on the National Ignition Facility (NIF) has improved the neutron yield by an order of magnitude as compared to the implosions reported during the National Ignition Campaign (NIC) while dramatically lowering the ablation-front instability growth. However, this yield increase came at the expense of reduced fuel compression due to higher fuel adiabat. Thinner shell adiabat-shaped HF implosions have been designed to combine the ablation front stability benefits of the current HF pulses with the demonstrated high fuel compressibility of the NIC implosions and increased implosion velocity. This is accomplished by using a hybrid adiabat-shaping technique which both lowers the laser power between the first and second pulses to enhance the ablative stabilization at early times and precisely tailors the rise-to-peak drive to prevent undesired shocks from propagating in the fuel and depositing additional entropy. Ablation front growth factor spectra are generated from two-dimensional simulations with the FCI2 radiation hydrodynamics code. Linear analysis of the instability growth demonstrates that adiabat-shaped pulses provide a path to control and reduce ablation front instability growth while placing the fuel on a lower adiabat to achieve the alpha-heating-dominated regime. Adiabat-shaped pulses without picket are also investigated as a potential way to enhance the stability of the holhraum walls at early times.

  8. Quantum Adiabatic Algorithms and Large Spin Tunnelling

    NASA Technical Reports Server (NTRS)

    Boulatov, A.; Smelyanskiy, V. N.

    2003-01-01

    We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in this paper. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H (r) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H (r) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.

  9. The genesis of adiabatic shear bands

    PubMed Central

    Landau, P.; Osovski, S.; Venkert, A.; Gärtnerová, V.; Rittel, D.

    2016-01-01

    Adiabatic shear banding (ASB) is a unique dynamic failure mechanism that results in an unpredicted catastrophic failure due to a concentrated shear deformation mode. It is universally considered as a material or structural instability and as such, ASB is hardly controllable or predictable to some extent. ASB is modeled on the premise of stability analyses. The leading paradigm is that a competition between strain (rate) hardening and thermal softening determines the onset of the failure. It was recently shown that microstructural softening transformations, such as dynamic recrystallization, are responsible for adiabatic shear failure. These are dictated by the stored energy of cold work, so that energy considerations can be used to macroscopically model the failure mechanism. The initial mechanisms that lead to final failure are still unknown, as well as the ASB formation mechanism(s). Most of all - is ASB an abrupt instability or rather a gradual transition as would be dictated by microstructural evolutions? This paper reports thorough microstructural characterizations that clearly show the gradual character of the phenomenon, best described as a nucleation and growth failure mechanism, and not as an abrupt instability as previously thought. These observations are coupled to a simple numerical model that illustrates them. PMID:27849023

  10. Accurate Variational Description of Adiabatic Quantum Optimization

    NASA Astrophysics Data System (ADS)

    Carleo, Giuseppe; Bauer, Bela; Troyer, Matthias

    Adiabatic quantum optimization (AQO) is a quantum computing protocol where a system is driven by a time-dependent Hamiltonian. The initial Hamiltonian has an easily prepared ground-state and the final Hamiltonian encodes some desired optimization problem. An adiabatic time evolution then yields a solution to the optimization problem. Several challenges emerge in the theoretical description of this protocol: on one hand, the exact simulation of quantum dynamics is exponentially complex in the size of the optimization problem. On the other hand, approximate approaches such as tensor network states (TNS) are limited to small instances by the amount of entanglement that can be encoded. I will present here an extension of the time-dependent Variational Monte Carlo approach to problems in AQO. This approach is based on a general class of (Jastrow-Feenberg) entangled states, whose parameters are evolved in time according to a stochastic variational principle. We demonstrate this approach for optimization problems of the Ising spin-glass type. A very good accuracy is achieved when compared to exact time-dependent TNS on small instances. We then apply this approach to larger problems, and discuss the efficiency of the quantum annealing scheme in comparison with its classical counterpart.

  11. Nonadiabatic Transitions in Adiabatic Rapid Passage

    NASA Astrophysics Data System (ADS)

    Lu, T.; Miao, X.; Metcalf, H.

    2006-05-01

    Optical forces much larger than the ordinary radiative force can be achieved on a two-level atom by multiple repetitions of adiabatic rapid passage sweeps with counterpropagating light beams. Chirped light pulses drive the atom-laser system up a ladder of dressed state energy sheets on sequential trajectories, thereby decreasing the atomic kinetic energy. Nonadiabatic transitions between the energy sheets must be avoided for this process to be effective. We have calculated the nonadiabatic transition probability for various chirped light pulses numerically. These results were compared to the first Demkov-Kunike model and the well-known Landau-Zener model. In addition, an analytical form of the nonadiabatic transition probability has been found for linearly chirped pulses and an approximate form for generic symmetric finite-time pulses has been found for the entire parameter space using the technique of unitary integration. From this, the asymptotic transition probability in the adiabatic limit was derived. T. Lu, X. Miao, and H. Metcalf, Phys., Rev. A 71 061405(R) (2005). Yu. Demkov and M. Kunike, Vestn. Leningr. Univ. Fis. Khim., 16, 39 (1969); K.-A. Suominen and B. Garraway, Phys. Rev. A45, 374 (1992)

  12. The formation of multiple adiabatic shear bands

    NASA Astrophysics Data System (ADS)

    Zhou, F.; Wright, T. W.; Ramesh, K. T.

    2006-07-01

    In a previous paper, Zhou et al. [2006. A numerical methodology for investigating adiabatic shear band formation. J. Mech. Phys. Solids, 54, 904-926] developed a numerical method for analyzing one-dimensional deformation of thermoviscoplastic materials. The method uses a second order algorithm for integration along characteristic lines, and computes the plastic flow after complete localization with high resolution and efficiency. We apply this numerical scheme to analyze localization in a thermoviscoplastic material where multiple shear bands are allowed to form at random locations in a large specimen. As a shear band develops, it unloads neighboring regions and interacts with other bands. Beginning with a random distribution of imperfections, which might be imagined as arising qualitatively from the microstructure, we obtain the average spacing of shear bands through calculations and compare our results with previously existing theoretical estimates. It is found that the spacing between nucleating shear bands follows the perturbation theory due to Wright and Ockendon [1996. A scaling law for the effect of inertia on the formation of adiabatic shear bands. Int. J. Plasticity 12, 927-934], whereas the spacing between mature shear bands is closer to that predicted by the momentum diffusion theory of Grady and Kipp [1987. The growth of unstable thermoplastic shear with application to steady-wave shock compression in solids. J. Mech. Phys. Solids 35, 95-119]. Scaling laws for the dependence of band spacing on material parameters differ in many respects from either theory.

  13. Adiabatic cooling of solar wind electrons

    NASA Technical Reports Server (NTRS)

    Sandbaek, Ornulf; Leer, Egil

    1992-01-01

    In thermally driven winds emanating from regions in the solar corona with base electron densities of n0 not less than 10 exp 8/cu cm, a substantial fraction of the heat conductive flux from the base is transfered into flow energy by the pressure gradient force. The adiabatic cooling of the electrons causes the electron temperature profile to fall off more rapidly than in heat conduction dominated flows. Alfven waves of solar origin, accelerating the basically thermally driven solar wind, lead to an increased mass flux and enhanced adiabatic cooling. The reduction in electron temperature may be significant also in the subsonic region of the flow and lead to a moderate increase of solar wind mass flux with increasing Alfven wave amplitude. In the solar wind model presented here the Alfven wave energy flux per unit mass is larger than that in models where the temperature in the subsonic flow is not reduced by the wave, and consequently the asymptotic flow speed is higher.

  14. Non-adiabatic Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Canfield, Jesse; Denissen, Nicholas; Reisner, Jon

    2016-11-01

    Onset of Rayleigh-Taylor instability (RTI) in a non-adiabatic environment is investigated with the multi-physics numerical model, FLAG. This work was inspired by laboratory experiments of non-adiabatic RTI, where a glass vessel with a layer of tetrahyrdofuran (THF) below a layer of toluene was placed inside a microwave. THF, a polar solvent, readily absorbs electromagnetic energy from microwaves. Toluene, a non-polar solvent, is nearly transparent to microwave heating. The presence of a heat source in the THF layer produced convection and a time-dependent Atwood number (At). The system, initially in stable hydrostatic equilibrium At < 0 , was set into motion by microwave induced, volumetric heating of the THF. The point when At > 0 , indicates that the system is RTI unstable. The observed dominant mode at the onset of RTI was the horizontal length scale of the vessel. This scale is contrary to classical RTI, where the modes start small and increases in scale with time. It is shown that the dominant RTI mode observed in the experiments was determined by the THF length scale prior to RTI. The dominant length scale transitions from the THF to the toluene via the updrafts and downdrafts in the convective cells. This happens when At passes from negative to positive. This work was funded by the Advanced Simulation and Computing Program.

  15. Mass analyzed threshold ionization spectroscopy of indazole cation

    NASA Astrophysics Data System (ADS)

    Su, Huawei; Pradhan, Manik; Tzeng, Wen Bih

    2005-08-01

    We have recorded the two-color resonant two-photon mass analyzed threshold ionization (MATI) spectra of indazole via four intermediate states. The adiabatic ionization energy of this molecule is determined to be 67 534 ± 5 cm -1. The observed MATI bands include in-plane ring bending as well as out-of-plane ring twisting and bending vibrations of the indazole cation. Comparing the present data with those of indole and 7-azaindole leads to a better understanding about the influence of the nitrogen atom in the aza-aromatic bicyclic system.

  16. Adiabatic effects of electrons and ions on electro-acoustic solitary waves in an adiabatic dusty plasma

    NASA Astrophysics Data System (ADS)

    Tanjia, Fatema; Mamun, A. A.

    2009-02-01

    A dusty plasma consisting of negatively charged cold dust, adiabatic hot ions, and inertia-less adiabatic hot electrons has been considered. The adiabatic effects of electrons and ions on the basic properties of electro-acoustic solitary waves associated with different types of electro-acoustic (viz. ion-acoustic (IA), dust ion-acoustic (DIA), and dust acoustic (DA)) waves are thoroughly investigated by the reductive perturbation method. It is found that the basic properties of the IA, DIA, and DA waves are significantly modified by the adiabatic effects of ions and inertia-less electrons. The implications of our results in space and laboratory dusty plasmas are briefly discussed.

  17. Vibrational dynamics of the bifluoride ion. II. Adiabatic separation and proton dynamics

    NASA Astrophysics Data System (ADS)

    Epa, V. C.; Thorson, W. R.

    1990-01-01

    Vibrational dynamics of the bifluoride ion FHF-, which exhibits strongly anharmonic and nonseparable vibrations, is studied using the extended ab initio model potential surface described in the first paper of this series. Adiabatic separation of the proton motion from the F-F (ν1) motion forms a zero-order basis for description, although strong coupling of adiabatic states by the ν1 motion is important in higher vibrational levels and must be considered to understand the spectrum. The adiabatic protonic eigenstates at F-F separations R from 3.75 to 6.40 a.u. have been determined using the self-consistent field approximation in prolate spheroidal coordinates to provide a basis set for configuration interaction expansion of the exact eigenstates. 78 SCF eigenstates (21 σg, 21 σu, 21 πu, and 15 πg) were computed by ``exact'' numerical solution of the SCF equations. The adiabatic CI eigenstates are shown to be converged in energy to better than 1.0 cm-1 for the ground state of each symmetry type and usually better than 10 cm-1 for the lowest three to five states, and pass critical tests of accuracy such as the Hellmann-Feynman theorem. The resulting CI potential energy curves closely resemble corresponding SCF energy curves and justify the concept of mode separation even in this very anharmonic system. The adiabatic CI potential energy curves explain most aspects of the dynamics relevant to the IR and Raman spectra of FHF- (e.g., in KHF2), and calculations of ν1 dynamics within the adiabatic approximation suffice to assign most of the observed IR spectrum of KHF2(s) (to about 6000 cm-1). States corresponding qualitatively to modal overtone and combination levels such as 3ν2 and (ν2+2ν3) however exhibit avoided crossings in the neighborhood of the equilibrium configuration and ``Fermi resonance'' involving interactions of two or more such adiabatic states via the ν1 motion must be treated by close-coupling to predict both frequencies and intensities in the

  18. Rydberg atom spectroscopy enabled by blackbody radiation ionization

    SciTech Connect

    Lu Xiaoxu; Sun Yuan; Metcalf, Harold

    2011-09-15

    We have excited helium atoms from their metastable 2 {sup 3} S state to Rydberg states in the range 13adiabatic passage. The interaction region is between two plates that can be used for Stark tuning in a few V/cm field or for field ionization. At fields much too low for field ionization, we observe signals attributed to ionization by blackbody radiation. Multiple tests confirm this attribution as the cause of ionization. For example, by heating the plates we observe the expected signal increases. Our experiments reinforce previous work where the interaction between Rydberg atoms and room temperature blackbody radiation is important for experiments.

  19. A harmonic adiabatic approximation to calculate highly excited vibrational levels of ``floppy molecules''

    NASA Astrophysics Data System (ADS)

    Lauvergnat, David; Nauts, André; Justum, Yves; Chapuisat, Xavier

    2001-04-01

    The harmonic adiabatic approximation (HADA), an efficient and accurate quantum method to calculate highly excited vibrational levels of molecular systems, is presented. It is well-suited to applications to "floppy molecules" with a rather large number of atoms (N>3). A clever choice of internal coordinates naturally suggests their separation into active, slow, or large amplitude coordinates q', and inactive, fast, or small amplitude coordinates q″, which leads to an adiabatic (or Born-Oppenheimer-type) approximation (ADA), i.e., the total wave function is expressed as a product of active and inactive total wave functions. However, within the framework of the ADA, potential energy data concerning the inactive coordinates q″ are required. To reduce this need, a minimum energy domain (MED) is defined by minimizing the potential energy surface (PES) for each value of the active variables q', and a quadratic or harmonic expansion of the PES, based on the MED, is used (MED harmonic potential). In other words, the overall picture is that of a harmonic valley about the MED. In the case of only one active variable, we have a minimum energy path (MEP) and a MEP harmonic potential. The combination of the MED harmonic potential and the adiabatic approximation (harmonic adiabatic approximation: HADA) greatly reduces the size of the numerical computations, so that rather large molecules can be studied. In the present article however, the HADA is applied to our benchmark molecule HCN/CNH, to test the validity of the method. Thus, the HADA vibrational energy levels are compared and are in excellent agreement with the ADA calculations (adiabatic approximation with the full PES) of Light and Bačić [J. Chem. Phys. 87, 4008 (1987)]. Furthermore, the exact harmonic results (exact calculations without the adiabatic approximation but with the MEP harmonic potential) are compared to the exact calculations (without any sort of approximation). In addition, we compare the densities of

  20. A Modified Adiabatic Quantum Algorithm for Evaluation of Boolean Functions

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Lu, Songfeng; Liu, Fang

    2015-09-01

    In this paper, we propose a modified construction of the quantum adiabatic algorithm for Boolean functions studied by M. Andrecut et al. [13, 14]. Our algorithm has the time complexity O(1) for the evaluation of Boolean functions, without additional computational cost of implementing the driving Hamiltonian, which is required by the adiabatic evolution described in [13, 14].

  1. Adiabat-shaping in indirect drive inertial confinement fusion

    SciTech Connect

    Baker, K. L.; Robey, H. F.; Milovich, J. L.; Jones, O. S.; Smalyuk, V. A.; Casey, D. T.; MacPhee, A. G.; Pak, A.; Celliers, P. M.; Clark, D. S.; Landen, O. L.; Peterson, J. L.; Berzak-Hopkins, L. F.; Weber, C. R.; Haan, S. W.; Döppner, T. D.; Dixit, S.; Hamza, A. V.; Jancaitis, K. S.; Kroll, J. J.; and others

    2015-05-15

    Adiabat-shaping techniques were investigated in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform for both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. This approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures.

  2. The Adiabatic Invariance of the Action Variable in Classical Dynamics

    ERIC Educational Resources Information Center

    Wells, Clive G.; Siklos, Stephen T. C.

    2007-01-01

    We consider one-dimensional classical time-dependent Hamiltonian systems with quasi-periodic orbits. It is well known that such systems possess an adiabatic invariant which coincides with the action variable of the Hamiltonian formalism. We present a new proof of the adiabatic invariance of this quantity and illustrate our arguments by means of…

  3. Kinetic Theory Derivation of the Adiabatic Law for Ideal Gases.

    ERIC Educational Resources Information Center

    Sobel, Michael I.

    1980-01-01

    Discusses how the adiabatic law for ideal gases can be derived from the assumption of a Maxwell-Boltzmann (or any other) distribution of velocities--in contrast to the usual derivations from thermodynamics alone, and the higher-order effect that leads to one-body viscosity. An elementary derivation of the adiabatic law is given. (Author/DS)

  4. The Adiabatic Contraction of Dark Matter Halos in Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Jesseit, R.; Burkert, A.; Naab, T.

    The flatness of rotation curves in the outer parts of galaxies led to the postulation of a dark component to compensate for the missing mass. The origin of this component is still unknown. Bahcall & Soneira first pointed out in 1985 that a unique ratio for disk to halo mass is needed to produce the flat and featureless rotation curves in agreement with observations. They called this the disk-halo conspiracy. To explain this conspiracy Blumenthal et al. proposed that an adiabtically forming baryonic disk can influence the density structure of its surrounding dark halo. They assumed that the time scale of the baryonic infall is very slow such and the change of mass inside the orbit of a dark matter particle is neglegible. They further assumed that the dark matter particles revolve on circular orbits and are dissipationless. In this case their radial action integral is an adiabatic invariant during the contraction. Blumenthal et al. could find the final density profile of the dark matter, if the final distribution of the baryonic matter is known, through an iterative algorithm. We tested the above assumptions using collisionless N-body simulations. We set up a dark matter halo with a Hernquist density profile and analytically added the potential of an exponential disk. Initially the disk had a very large scale length compared to the halo scale length. During the simulation we reduced the sclae length of the disk and followed the evolution of the dark component. We examined different contraction speeds as well as different combinations of disk mass and scale lenght. We find that the theoretical prediction for the adiabatic contraction is

  5. Adiabatic principles in atom-diatom collisional energy transfer

    SciTech Connect

    Hovingh, W.J.

    1993-01-01

    This work describes the application of numerical methods to the solution of the time dependent Schroedinger equation for non-reactive atom-diatom collisions in which only one of the degrees of freedom has been removed. The basic method involves expanding the wave function in a basis set in two of the diatomic coordinates in a body-fixed frame (with respect to the triatomic complex) and defining the coefficients in that expansion as functions on a grid in the collision coordinate. The wave function is then propagated in time using a split operator method. The bulk of this work is devoted to the application of this formalism to the study of internal rotational predissociation in NeHF, in which quasibound states of the triatom predissociate through the transfer of energy from rotation of the diatom into translational energy in the atom-diatom separation coordinate. The author analyzes the computed time dependent wave functions to calculate the lifetimes for several quasibound states; these are in agreement with time independent quantum calculations using the same potential. Moreover, the time dependent behavior of the wave functions themselves sheds light on the dynamics of the predissociation processes. Finally, the partial cross sections of the products in those processes is determined with multiple exit channels. These show strong selectivity in the orbital angular momentum of the outgoing fragments, which the author explains with an adiabatic channel interpretation of the wave function's dynamics. The author also suggests that the same formalism might profitably be used to investigate the quantum dynamics of [open quotes]quasiresonant vibration-rotation transfer[close quotes], in which remarkably strong propensity rules in certain inelastic atom-diatom collision arise from classical adiabatic invariance theory.

  6. Quantum Adiabatic Optimization and Combinatorial Landscapes

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, V. N.; Knysh, S.; Morris, R. D.

    2003-01-01

    In this paper we analyze the performance of the Quantum Adiabatic Evolution (QAE) algorithm on a variant of Satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables, gamma = M / N. We introduce a set of macroscopic parameters (landscapes) and put forward an ansatz of universality for random bit flips. We then formulate the problem of finding the smallest eigenvalue and the excitation gap as a statistical mechanics problem. We use the so-called annealing approximation with a refinement that a finite set of macroscopic variables (verses only energy) is used, and are able to show the existence of a dynamic threshold gamma = gammad, beyond which QAE should take an exponentially long time to find a solution. We compare the results for extended and simplified sets of landscapes and provide numerical evidence in support of our universality ansatz.

  7. Number Partitioning via Quantum Adiabatic Computation

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, Vadim N.; Toussaint, Udo; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We study both analytically and numerically the complexity of the adiabatic quantum evolution algorithm applied to random instances of combinatorial optimization problems. We use as an example the NP-complete set partition problem and obtain an asymptotic expression for the minimal gap separating the ground and exited states of a system during the execution of the algorithm. We show that for computationally hard problem instances the size of the minimal gap scales exponentially with the problem size. This result is in qualitative agreement with the direct numerical simulation of the algorithm for small instances of the set partition problem. We describe the statistical properties of the optimization problem that are responsible for the exponential behavior of the algorithm.

  8. The HAWC and SAFIRE Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Tuttle, Jim; Shirron, Peter; DiPirro, Michael; Jackson, Michael; Behr, Jason; Kunes, Evan; Hait, Tom; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    The High-Resolution Airborne Wide-band Camera (HAWC) and Submillimeter and Far Infrared Experiment (SAFIRE) are far-infrared experiments which will fly on the Stratospheric Observatory for Infrared Astronomy (SOFIA) aircraft. HAWC's detectors will operate at 0.2 Kelvin, while those of SAFIRE will be at 0.1 Kelvin. Each instrument will include an adiabatic demagnetization refrigerator (ADR) to cool its detector stage from the liquid helium bath temperature (HAWC's at 4.2 Kelvin and SAFIRE's pumped to about 1.3 Kelvin) to its operating temperature. Except for the magnets used to achieve the cooling and a slight difference in the heat switch design, the two ADRs are nearly identical. We describe the ADR design and present the results of performance testing.

  9. An adiabatic demagnetization refrigerator for SIRTF

    NASA Astrophysics Data System (ADS)

    Timbie, P. T.; Bernstein, G. M.; Richards, P. L.

    1989-02-01

    An adiabatic demagnetization refrigerator (ADR) has been proposed to cool bolometric infrared detectors on the multiband imaging photometer of the Space Infrared Telescope Facility (SIRTF). One such refrigerator has been built which uses a ferric ammonium alum salt pill suspended by nylon threads in a 3-T solenoid. The resonant modes of this suspension are above 100 Hz. The heat leak to the salt pill is less than 0.5 microW. The system has a hold time at 0.1K of more than 12 h. The cold stage temperature is regulated with a feedback loop that controls the magnetic field. A second, similar refrigerator is being built at a SIRTF prototype to fly on a ballon-borne telescope. It will use a ferromagnetic shield. The possibility of using a high-Tc solenoid-actuated heat switch is also discussed.

  10. Design of a spaceworthy adiabatic demagnetization refrigerator

    NASA Astrophysics Data System (ADS)

    Serlemitsos, A. T.; Kunes, E.; Sansebastian, M.

    A spaceworthy adiabatic demagnetization refrigerator (ADR) under development at NASA-Goddard is presented. A baseline model heat switch was tested extensively with an on/off ratio of about 10,000 and a parasitic heat leak of 10 micro-W. Data obtained from the breadboard models were used to design an ADR with improved structural integrity. The core of the ADR is the salt pill which consists of the paramagnetic salt crystal and the thermal bus. When a magnetic field is applied to the salt it forces the alignment of the magnetic moments, thereby decreasing the entropy of the salt. Preliminary tests results showed a net crystal mass of 680 g instead of the expected 740 g, which indicate that there are gaps in the salt pill. A partial fix was accomplished by sealing helium gas in the salt pill at a pressure of 2 bar, which improved the thermal contact during salt magnetization, at about 2 K.

  11. On stress collapse in adiabatic shear bands

    NASA Astrophysics Data System (ADS)

    Wright, T. W.; Walter, J. W.

    T HE DYNAMICS of adiabatic shear band formation is considered making use of a simplified thermo/visco/plastic flow law. A new numerical solution is used to follow the growth of a perturbation from initiation, through early growth and severe localization, to a slowly varying terminal configuration. Asymptotic analyses predict the early and late stage patterns, but the timing and structure of the abrupt transition to severe localization can only be studied numerically, to date. A characteristic feature of the process is that temperature and plastic strain rate begin to localize immediately, but only slowly, whereas the stress first evolves almost as if there were no perturbation, but then collapses rapidly when severe localization occurs.

  12. Index Theory and Adiabatic Limit in QFT

    NASA Astrophysics Data System (ADS)

    Wawrzycki, Jarosław

    2013-08-01

    The paper has the form of a proposal concerned with the relationship between the three mathematically rigorous approaches to quantum field theory: (1) local algebraic formulation of Haag, (2) Wightman formulation and (3) the perturbative formulation based on the microlocal renormalization method. In this project we investigate the relationship between (1) and (3) and utilize the known relationships between (1) and (2). The main goal of the proposal lies in obtaining obstructions for the existence of the adiabatic limit ( confinement problem in the phenomenological standard model approach). We extend the method of deformation of Dütsch and Fredenhagen (in the Bordeman-Waldmann sense) and apply Fedosov construction of the formal index—an analog of the index for deformed symplectic manifolds, generalizing the Atiyah-Singer index. We present some first steps in realization of the proposal.

  13. An adiabatic demagnetization refrigerator for SIRTF

    NASA Technical Reports Server (NTRS)

    Timbie, P. T.; Bernstein, G. M.; Richards, P. L.

    1989-01-01

    An adiabatic demagnetization refrigerator (ADR) has been proposed to cool bolometric infrared detectors on the multiband imaging photometer of the Space Infrared Telescope Facility (SIRTF). One such refrigerator has been built which uses a ferric ammonium alum salt pill suspended by nylon threads in a 3-T solenoid. The resonant modes of this suspension are above 100 Hz. The heat leak to the salt pill is less than 0.5 microW. The system has a hold time at 0.1K of more than 12 h. The cold stage temperature is regulated with a feedback loop that controls the magnetic field. A second, similar refrigerator is being built at a SIRTF prototype to fly on a ballon-borne telescope. It will use a ferromagnetic shield. The possibility of using a high-Tc solenoid-actuated heat switch is also discussed.

  14. Design of a spaceworthy adiabatic demagnetization refrigerator

    NASA Technical Reports Server (NTRS)

    Serlemitsos, A. T.; Kunes, E.; Sansebastian, M.

    1992-01-01

    A spaceworthy adiabatic demagnetization refrigerator (ADR) under development at NASA-Goddard is presented. A baseline model heat switch was tested extensively with an on/off ratio of about 10,000 and a parasitic heat leak of 10 micro-W. Data obtained from the breadboard models were used to design an ADR with improved structural integrity. The core of the ADR is the salt pill which consists of the paramagnetic salt crystal and the thermal bus. When a magnetic field is applied to the salt it forces the alignment of the magnetic moments, thereby decreasing the entropy of the salt. Preliminary tests results showed a net crystal mass of 680 g instead of the expected 740 g, which indicate that there are gaps in the salt pill. A partial fix was accomplished by sealing helium gas in the salt pill at a pressure of 2 bar, which improved the thermal contact during salt magnetization, at about 2 K.

  15. Adiabatic connection at negative coupling strengths

    SciTech Connect

    Seidl, Michael; Gori-Giorgi, Paola

    2010-01-15

    The adiabatic connection of density functional theory (DFT) for electronic systems is generalized here to negative values of the coupling strength alpha (with attractive electrons). In the extreme limit alpha->-infinity a simple physical solution is presented and its implications for DFT (as well as its limitations) are discussed. For two-electron systems (a case in which the present solution can be calculated exactly), we find that an interpolation between the limit alpha->-infinity and the opposite limit of infinitely strong repulsion (alpha->+infinity) yields a rather accurate estimate of the second-order correlation energy E{sub c}{sup GL2}[rho] for several different densities rho, without using virtual orbitals. The same procedure is also applied to the Be isoelectronic series, analyzing the effects of near degeneracy.

  16. An Integrated Development Environment for Adiabatic Quantum Programming

    SciTech Connect

    Humble, Travis S; McCaskey, Alex; Bennink, Ryan S; Billings, Jay Jay; D'Azevedo, Eduardo; Sullivan, Blair D; Klymko, Christine F; Seddiqi, Hadayat

    2014-01-01

    Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware raises the question of how well quantum programs perform. Benchmarking behavior is challenging since the multiple steps to synthesize an adiabatic quantum program are highly tunable. We present an adiabatic quantum programming environment called JADE that provides control over all the steps taken during program development. JADE captures the workflow needed to rigorously benchmark performance while also allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its use for benchmarking adiabatic quantum programs.

  17. Adiabatic theory, Liapunov exponents, and rotation number for quadratic Hamiltonians

    NASA Astrophysics Data System (ADS)

    Delyon, François; Foulon, Patrick

    1987-11-01

    We consider the adiabatic problem for general time-dependent quadratic Hamiltonians and develop a method quite different from WKB. In particular, we apply our results to the Schrödinger equation in a strip. We show that there exists a first regular step (avoiding resonance problems) providing one adiabatic invariant, bounds on the Liapunov exponents, and estimates on the rotation number at any order of the perturbation theory. The further step is shown to be equivalent to a quantum adiabatic problem, which, by the usual adiabatic techniques, provides the other possible adiabatic invariants. In the special case of the Schrödinger equation our method is simpler and more powerful than the WKB techniques.

  18. Adiabatic vs. non-adiabatic determination of specific absorption rate of ferrofluids

    NASA Astrophysics Data System (ADS)

    Natividad, Eva; Castro, Miguel; Mediano, Arturo

    2009-05-01

    The measurement of temperature variations in adiabatic conditions allows the determination of the specific absorption rate of magnetic nanoparticles and ferrofluids from the correct incremental expression, SAR=(1/ m MNP) C(Δ T/Δ t). However, when measurements take place in non-adiabatic conditions, one must approximate this expression by SAR≈ Cβ/ m MNP, where β is the initial slope of the temperature vs. time curve during alternating field application. The errors arising from the use of this approximation were estimated through several experiments with different isolating conditions, temperature sensors and sample-sensor contacts. It is concluded that small to appreciable errors can appear, which are difficult to infer or control.

  19. Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation

    SciTech Connect

    Zamstein, Noa; Tannor, David J.

    2012-12-14

    We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schroedinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)]. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.

  20. Frozen natural orbitals for ionized states within equation-of-motion coupled-cluster formalism.

    PubMed

    Landau, Arie; Khistyaev, Kirill; Dolgikh, Stanislav; Krylov, Anna I

    2010-01-07

    The frozen natural orbital (FNO) approach, which has been successfully used in ground-state coupled-cluster calculations, is extended to open-shell ionized electronic states within equation-of-motion coupled-cluster (EOM-IP-CC) formalism. FNOs enable truncation of the virtual orbital space significantly reducing the computational cost with a negligible decline in accuracy. Implementation of the MP2-based FNO truncation scheme within EOM-IP-CC is presented and benchmarked using ionized states of beryllium, dihydrogen dimer, water, water dimer, nitrogen, and uracil dimer. The results show that the natural occupation threshold, i.e., percentage of the total natural occupation recovered in the truncated virtual orbital space, provides a more robust truncation criterion as compared to the fixed percentage of virtual orbitals retained. Employing 99%-99.5% natural occupation threshold, which results in the virtual space reduction by 70%-30%, yields errors below 1 kcal/mol. Moreover, the total energies exhibit linear dependence as a function of the percentage of the natural occupation retained allowing for extrapolation to the full virtual space values. The capabilities of the new method are demonstrated by the calculation of the 12 lowest vertical ionization energies (IEs) and the lowest adiabatic IE of guanine. In addition to IE calculations, we present the scans of potential energy surfaces (PESs) for ionized (H(2)O)(2) and (H(2))(2). The scans demonstrate that the FNO truncation does not introduce significant nonparallelity errors and accurately describes the PESs shapes and the corresponding energy differences, e.g., dissociation energies.

  1. On the effect of temperature and the width of the turbulent combustion zone on the ionization detector readings

    NASA Astrophysics Data System (ADS)

    Shaikin, A. P.; Galiev, I. R.

    2016-08-01

    We have considered the functional dependence of the ionization detector readings (ion current) on the composition of the fuel-air mixture, adiabatic temperature, and the turbulent combustion zone width. Experiments on the engine show that, for an air excess factor of 0.75-1.15, the coincidence of the calculated and experimental data exceeds 90%. Our results can be used to predict and monitor the adiabatic temperature of the flame and the width of the turbulent combustion zone in the combustion changer of the internal combustion engine using the ionization detector.

  2. Temperature gradients due to adiabatic plasma expansion in a magnetic nozzle

    NASA Astrophysics Data System (ADS)

    Sheehan, J. P.; Longmier, B. W.; Bering, E. A.; Olsen, C. S.; Squire, J. P.; Ballenger, M. G.; Carter, M. D.; Cassady, L. D.; Díaz, F. R. Chang; Glover, T. W.; Ilin, A. V.

    2014-08-01

    A mechanism for ambipolar ion acceleration in a magnetic nozzle is proposed. The plasma is adiabatic (i.e., does not exchange energy with its surroundings) in the diverging section of a magnetic nozzle so any energy lost by the electrons must be transferred to the ions via the electric field. Fluid theory indicates that the change in plasma potential is proportional to the change in average electron energy. These predictions were compared to measurements in the VX-200 experiment which has conditions conducive to ambipolar ion acceleration. A planar Langmuir probe was used to measure the plasma potential, electron density, and electron temperature for a range of mass flow rates and power levels. Axial profiles of those parameters were also measured, showing consistency with the adiabatic ambipolar fluid theory.

  3. On the General Class of Models of Adiabatic Evolution

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Lu, Songfeng; Liu, Fang

    2016-10-01

    The general class of models of adiabatic evolution was proposed to speed up the usual adiabatic computation in the case of quantum search problem. It was shown [8] that, by temporarily increasing the ground state energy of a time-dependent Hamiltonian to a suitable quantity, the quantum computation can perform the calculation in time complexity O(1). But it is also known that if the overlap between the initial and final states of the system is zero, then the computation based on the generalized models of adiabatic evolution can break down completely. In this paper, we find another severe limitation for this class of adiabatic evolution-based algorithms, which should be taken into account in applications. That is, it is still possible that this kind of evolution designed to deal with the quantum search problem fails completely if the interpolating paths in the system Hamiltonian are chosen inappropriately, while the usual adiabatic evolutions can do the same job relatively effectively. This implies that it is not always recommendable to use nonlinear paths in adiabatic computation. On the contrary, the usual simple adiabatic evolution may be sufficient for effective use.

  4. Effects of EOS adiabat on hot spot dynamics

    NASA Astrophysics Data System (ADS)

    Cheng, Baolian; Kwan, Thomas; Wang, Yi-Ming; Batha, Steven

    2013-10-01

    Equation of state (EOS) and adiabat of the pusher play significant roles in the dynamics and formation of the hot spot of an ignition capsule. For given imploding energy, they uniquely determine the partition of internal energy, mass, and volume between the pusher and the hot spot. In this work, we apply the new scaling laws recently derived by Cheng et al. to the National Ignition Campaign (NIC) ignition capsules and study the impacts of EOS and adiabat of the pusher on the hot spot dynamics by using the EOS adiabat index as an adjustable model parameter. We compare our analysis with the NIC data, specifically, for shots N120321 and N120205, and with the numerical simulations of these shots. The predictions from our theoretical model are in good agreements with the NIC data when a hot adiabat was used for the pusher, and with code simulations when a cold adiabat was used for the pusher. Our analysis indicates that the actual adiabat of the pusher in NIC experiments may well be higher than the adiabat assumed in the simulations. This analysis provides a physical and systematic explanation to the ongoing disagreements between the NIC experimental results and the multi-dimensional numerical simulations. This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under contract number W-7405-ENG-36.

  5. Non-adiabatic perturbations in Ricci dark energy model

    SciTech Connect

    Karwan, Khamphee; Thitapura, Thiti E-mail: nanodsci2523@hotmail.com

    2012-01-01

    We show that the non-adiabatic perturbations between Ricci dark energy and matter can grow both on superhorizon and subhorizon scales, and these non-adiabatic perturbations on subhorizon scales can lead to instability in this dark energy model. The rapidly growing non-adiabatic modes on subhorizon scales always occur when the equation of state parameter of dark energy starts to drop towards -1 near the end of matter era, except that the parameter α of Ricci dark energy equals to 1/2. In the case where α = 1/2, the rapidly growing non-adiabatic modes disappear when the perturbations in dark energy and matter are adiabatic initially. However, an adiabaticity between dark energy and matter perturbations at early time implies a non-adiabaticity between matter and radiation, this can influence the ordinary Sachs-Wolfe (OSW) effect. Since the amount of Ricci dark energy is not small during matter domination, the integrated Sachs-Wolfe (ISW) effect is greatly modified by density perturbations of dark energy, leading to a wrong shape of CMB power spectrum. The instability in Ricci dark energy is difficult to be alleviated if the effects of coupling between baryon and photon on dark energy perturbations are included.

  6. Adiabatic quantum state transfer in tight-binding chains using periodic driving fields

    NASA Astrophysics Data System (ADS)

    Longhi, S.

    2014-09-01

    A method for high-fidelity coherent adiabatic transport in a zig-zag tight-binding chain, based on application of two external periodic driving fields, is theoretically proposed. The method turns out to be robust against imperfections and disorder of the static lattice Hamiltonian, is tolerant to next-nearest neighborhood interactions, and enables coherent transport in long chains without the need for a local control and timing of the trapping potential.

  7. Ionization probes of molecular structure and chemistry

    SciTech Connect

    Johnson, P.M.

    1993-12-01

    Various photoionization processes provide very sensitive probes for the detection and understanding of the spectra of molecules relevant to combustion processes. The detection of ionization can be selective by using resonant multiphoton ionization or by exploiting the fact that different molecules have different sets of ionization potentials. Therefore, the structure and dynamics of individual molecules can be studied even in a mixed sample. The authors are continuing to develop methods for the selective spectroscopic detection of molecules by ionization, and to use these methods for the study of some molecules of combustion interest.

  8. Slow-electron velocity-map imaging study of aniline via resonance-enhanced two-photon ionization method

    NASA Astrophysics Data System (ADS)

    Qu, Zehua; Qin, Zhengbo; Zheng, Xianfeng; Wang, Hui; Yao, Guanxin; Zhang, Xianyi; Cui, Zhifeng

    2017-02-01

    Slow electron velocity-map imaging (SEVI) of aniline has been investigated via two-color resonant-enhanced two-photo (1 + 1‧) ionization (2C-R2PI) method. A number of vibrational frequencies in the first excited state of neutral (S1) and 2B1 ground electronic state of cation (D0) have been accurately determined. In addition, photoelectron angular distributions (PADs) in the two-step transitions are presented and reveal a near threshold shape resonance in the ionization of aniline. The SEVI spectra taken via various S1 intermediate states provide the detailed vibrational structures of D0 state and directly deduce the accurate adiabatic ionization potential (IP) of 62,271 ± 6 cm- 1. Ab initio calculations excellently reproduce the experimental IP value (Theo. 62,242 cm- 1). For most vibrational modes, good agreement between theoretical and experimental frequencies in the S0 and D0 states of aniline is obtained to aid us to clearly assign vibrational modes. Especially, the vibrational frequencies calculated at the CASSCF level are much better consistent with experimental data than that obtained using the TDDFT and CIS methods.

  9. Slow-electron velocity-map imaging study of aniline via resonance-enhanced two-photon ionization method.

    PubMed

    Qu, Zehua; Qin, Zhengbo; Zheng, Xianfeng; Wang, Hui; Yao, Guanxin; Zhang, Xianyi; Cui, Zhifeng

    2017-02-15

    Slow electron velocity-map imaging (SEVI) of aniline has been investigated via two-color resonant-enhanced two-photo (1+1') ionization (2C-R2PI) method. A number of vibrational frequencies in the first excited state of neutral (S1) and (2)B1 ground electronic state of cation (D0) have been accurately determined. In addition, photoelectron angular distributions (PADs) in the two-step transitions are presented and reveal a near threshold shape resonance in the ionization of aniline. The SEVI spectra taken via various S1 intermediate states provide the detailed vibrational structures of D0 state and directly deduce the accurate adiabatic ionization potential (IP) of 62,271±6cm(-1). Ab initio calculations excellently reproduce the experimental IP value (Theo. 62,242cm(-1)). For most vibrational modes, good agreement between theoretical and experimental frequencies in the S0 and D0 states of aniline is obtained to aid us to clearly assign vibrational modes. Especially, the vibrational frequencies calculated at the CASSCF level are much better consistent with experimental data than that obtained using the TDDFT and CIS methods.

  10. Dynamics of Charged Particles in an Adiabatic Thermal Beam Equilibrium

    NASA Astrophysics Data System (ADS)

    Chen, Chiping; Wei, Haofei

    2010-11-01

    Charged-particle motion is studied in the self-electric and self-magnetic fields of a well-matched, intense charged-particle beam and an applied periodic solenoidal magnetic focusing field. The beam is assumed to be in a state of adiabatic thermal equilibrium. The phase space is analyzed and compared with that of the well-known Kapchinskij-Vladimirskij (KV)-type beam equilibrium. It is found that the widths of nonlinear resonances in the adiabatic thermal beam equilibrium are narrower than those in the KV-type beam equilibrium. Numerical evidence is presented, indicating almost complete elimination of chaotic particle motion in the adiabatic thermal beam equilibrium.

  11. Mechanism of enhanced ionization of linear H+3 in intense laser fields

    NASA Astrophysics Data System (ADS)

    Kawata, I.; Kono, H.; Bandrauk, A. D.

    2001-10-01

    We investigate the mechanism of enhanced ionization that occurs at a critical internuclear distance Rc in the two-electron symmetric linear triatomic molecule H+3 subjected to an ultrashort, intense laser pulse by solving exactly the time-dependent Schrödinger equation for a one-dimensional model of H+3. Results of the simulations are analyzed by using three essential adiabatic field states \\|1>, \\|2>, and \\|3> that are adiabatically connected with the lowest three electronic states X1Σ+g, B1Σ+u, and E1Σ+g of the field free ion. We give also a simple MO (molecular orbital) picture in terms of these three states to illustrate the important electronic configurations in an intense field. The states \\|1>, \\|2>, and \\|3> are shown to be composed mainly of the configurations HHH+, HH+H, and H+HH, respectively in the presence of the field. We conclude that the overall level dynamics is governed mainly by transitions at the zero-field energy quasicrossings of these three states. The response of H+3 to a laser field can be classified into two regimes. In the adiabatic regime (RRc), internuclear electron transfer is suppressed due to electron repulsion and laser induced localization. In the intermediate (R~=Rc) region, where enhanced ionization occurs, the state \\|3> is most efficiently created by the field-induced nonadiabatic transitions between the states at quasicrossing points. The ``quasistatic'' laser-induced potential barriers are low enough for the electron to tunnel from the ascending (upper) well, thus confirming the quasistatic model at high intensities. Analytic expressions for the critical distance Rc are obtained from this model and collective electron motion is inferred from the detailed time-dependent two-electron distributions.

  12. Potential of atmospheric pressure chemical ionization source in gas chromatography tandem mass spectrometry for the screening of urinary exogenous androgenic anabolic steroids.

    PubMed

    Raro, M; Portolés, T; Pitarch, E; Sancho, J V; Hernández, F; Garrostas, L; Marcos, J; Ventura, R; Segura, J; Pozo, O J

    2016-02-04

    The atmospheric pressure chemical ionization (APCI) source for gas chromatography-mass spectrometry analysis has been evaluated for the screening of 16 exogenous androgenic anabolic steroids (AAS) in urine. The sample treatment is based on the strategy currently applied in doping control laboratories i.e. enzymatic hydrolysis, liquid-liquid extraction (LLE) and derivatization to form the trimethylsilyl ether-trimethylsilyl enol ether (TMS) derivatives. These TMS derivatives are then analyzed by gas chromatography tandem mass spectrometry using a triple quadrupole instrument (GC-QqQ MS/MS) under selected reaction monitoring (SRM) mode. The APCI promotes soft ionization with very little fragmentation resulting, in most cases, in abundant [M + H](+) or [M + H-2TMSOH](+) ions, which can be chosen as precursor ions for the SRM transitions, improving in this way the selectivity and sensitivity of the method. Specificity of the transitions is also of great relevance, as the presence of endogenous compounds can affect the measurements when using the most abundant ions. The method has been qualitatively validated by spiking six different urine samples at two concentration levels each. Precision was generally satisfactory with RSD values below 25 and 15% at the low and high concentration level, respectively. Most the limits of detection (LOD) were below 0.5 ng mL(-1). Validation results were compared with the commonly used method based on the electron ionization (EI) source. EI analysis was found to be slightly more repeatable whereas lower LODs were found for APCI. In addition, the applicability of the developed method has been tested in samples collected after the administration of 4-chloromethandienone. The highest sensitivity of the APCI method for this compound, allowed to increase the period in which its administration can be detected.

  13. Systematic Review and Meta-analysis of Circulatory Disease from Exposure to Low-Level Ionizing Radiation and Estimates of Potential Population Mortality Risks

    PubMed Central

    Azizova, Tamara V.; Bazyka, Dimitry; Bouffler, Simon D.; Cardis, Elisabeth; Chekin, Sergey; Chumak, Vadim V.; Cucinotta, Francis A.; de Vathaire, Florent; Hall, Per; Harrison, John D.; Hildebrandt, Guido; Ivanov, Victor; Kashcheev, Valeriy V.; Klymenko, Sergiy V.; Kreuzer, Michaela; Laurent, Olivier; Ozasa, Kotaro; Schneider, Thierry; Tapio, Soile; Taylor, Andrew M.; Tzoulaki, Ioanna; Vandoolaeghe, Wendy L.; Wakeford, Richard; Zablotska, Lydia B.; Zhang, Wei; Lipshultz, Steven E.

    2012-01-01

    Background: Although high doses of ionizing radiation have long been linked to circulatory disease, evidence for an association at lower exposures remains controversial. However, recent analyses suggest excess relative risks at occupational exposure levels. Objectives: We performed a systematic review and meta-analysis to summarize information on circulatory disease risks associated with moderate- and low-level whole-body ionizing radiation exposures. Methods: We conducted PubMed/ISI Thomson searches of peer-reviewed papers published since 1990 using the terms “radiation” AND “heart” AND “disease,” OR “radiation” AND “stroke,” OR “radiation” AND “circulatory” AND “disease.” Radiation exposures had to be whole-body, with a cumulative mean dose of < 0.5 Sv, or at a low dose rate (< 10 mSv/day). We estimated population risks of circulatory disease from low-level radiation exposure using excess relative risk estimates from this meta-analysis and current mortality rates for nine major developed countries. Results: Estimated excess population risks for all circulatory diseases combined ranged from 2.5%/Sv [95% confidence interval (CI): 0.8, 4.2] for France to 8.5%/Sv (95% CI: 4.0, 13.0) for Russia. Conclusions: Our review supports an association between circulatory disease mortality and low and moderate doses of ionizing radiation. Our analysis was limited by heterogeneity among studies (particularly for noncardiac end points), the possibility of uncontrolled confounding in some occupational groups by lifestyle factors, and higher dose groups (> 0.5 Sv) generally driving the observed trends. If confirmed, our findings suggest that overall radiation-related mortality is about twice that currently estimated based on estimates for cancer end points alone (which range from 4.2% to 5.6%/Sv for these populations). PMID:22728254

  14. Quantum adiabatic optimization and combinatorial landscapes

    NASA Astrophysics Data System (ADS)

    Smelyanskiy, V. N.; Knysh, S.; Morris, R. D.

    2004-09-01

    In this paper we analyze the performance of the Quantum Adiabatic Evolution algorithm on a variant of the satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables, γ=M/N . We introduce a set of macroscopic parameters (landscapes) and put forward an ansatz of universality for random bit flips. We then formulate the problem of finding the smallest eigenvalue and the excitation gap as a statistical mechanics problem. We use the so-called annealing approximation with a refinement that a finite set of macroscopic variables (instead of only energy) is used, and are able to show the existence of a dynamic threshold γ=γd starting with some value of K —the number of variables in each clause. Beyond the dynamic threshold, the algorithm should take an exponentially long time to find a solution. We compare the results for extended and simplified sets of landscapes and provide numerical evidence in support of our universality ansatz. We have been able to map the ensemble of random graphs onto another ensemble with fluctuations significantly reduced. This enabled us to obtain tight upper bounds on the satisfiability transition and to recompute the dynamical transition using the extended set of landscapes.

  15. Design of the PIXIE adiabatic demagnetization refrigerators

    NASA Astrophysics Data System (ADS)

    Shirron, Peter J.; Kimball, Mark O.; Fixsen, Dale J.; Kogut, Alan J.; Li, Xiaoyi; DiPirro, Michael J.

    2012-04-01

    The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a telescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: (1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and (2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 mW, while maintaining a peak heat reject rate of less than 12 mW. The detector heat load at 0.1 K is comparatively small at 1-2 μW. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope.

  16. Adiabatic quantum algorithm for search engine ranking.

    PubMed

    Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A

    2012-06-08

    We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in "q-sampling" protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.

  17. Adiabatic Quantum Algorithm for Search Engine Ranking

    NASA Astrophysics Data System (ADS)

    Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A.

    2012-06-01

    We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log⁡(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in “q-sampling” protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.

  18. On the persistence of adiabatic shear bands

    NASA Astrophysics Data System (ADS)

    Boakye-Yiadom, S.; Bassim, M. N.; Al-Ameeri, S.

    2012-08-01

    It is generally agreed that the initiation and development of adiabatic shear bands (ASBs) are manifestations of damage in metallic materials subjected to high strain rates and large strains as those due to impact in a Hopkinson Bar system. Models for evolution of these bands have been described in the literature. One question that has not received attention is how persistent these bands are and whether their presence and effect can be reversed or eliminated by using a process of thermal (heat treatment) or thermo-mechanical treatment that would relieve the material from the high strain associated with ASBs and their role as precursors to crack initiation and subsequent failure. Since ASBs are more prevalent and more defined in BCC metals including steels, a study was conducted to investigate the best conditions of generating ASBs in a heat treatable steel, followed by determining the best conditions for heat treatment of specimens already damaged by the presence of ASBs in order to relieve the strains due to ASBs and restore the material to an apparent microstructure without the "scars" due to the previous presence of ASBs. It was found that heat treatment achieves the curing from ASBs. This presentation documents the process undertaken to achieve this objective.

  19. Adiabatic Spin Pumping with Quantum Dots

    NASA Astrophysics Data System (ADS)

    Mucciolo, Eduardo R.

    Electronic transport in mesoscopic systems has been intensively studied for more the last three decades. While there is a substantial understanding of the stationary regime, much less is know about phase-coherent nonequilibrium transport when pulses or ac perturbations are used to drive electrons at low temperatures and at small length scales. However, about 20 years ago Thouless proposed to drive nondissipative currents in quantum systems by applying simultaneously two phase-locked external perturbations. The so-called adiabatic pumping mechanism has been revived in the last few years, both theoretically and experimentally, in part because of the development of lateral semiconductor quantum dots. Here we will explain how open dots can be used to create spin-polarized currents with little or no net charge transfer. The pure spin pump we propose is the analog of a charge battery in conventional electronics and may provide a needed circuit element for spin-based electronics. We will also discuss other relevant issues such as rectification and decoherence and point out possible extensions of the mechanism to closed dots.

  20. General background conditions for K-bounce and adiabaticity

    NASA Astrophysics Data System (ADS)

    Romano, Antonio Enea

    2017-03-01

    We study the background conditions for a bounce uniquely driven by a single scalar field model with a generalized kinetic term K( X), without any additional matter field. At the background level we impose the existence of two turning points where the derivative of the Hubble parameter H changes sign and of a bounce point where the Hubble parameter vanishes. We find the conditions for K( X) and the potential which ensure the above requirements. We then give the examples of two models constructed according to these conditions. One is based on a quadratic K( X), and the other on a K( X) which is avoiding divergences of the second time derivative of the scalar field, which may otherwise occur. An appropriate choice of the initial conditions can lead to a sequence of consecutive bounces, or oscillations of H. In the region where these models have a constant potential they are adiabatic on any scale and because of this they may not conserve curvature perturbations on super-horizon scales. While at the perturbation level one class of models is free from ghosts and singularities of the classical equations of motion, in general gradient instabilities are present around the bounce time, because the sign of the squared speed of sound is opposite to the sign of the time derivative of H. We discuss how this kind of instabilities could be avoided by modifying the Lagrangian by introducing Galilean terms in order to prevent a negative squared speed of sound around the bounce.

  1. Mass analyzed threshold ionization spectroscopy of p-cyanophenol cation and the CN substitution effect

    NASA Astrophysics Data System (ADS)

    Li, Changyong; Pradhan, Manik; Tzeng, Wen Bih

    2005-08-01

    The adiabatic ionization energy of p-cyanophenol has been determined to be 72 698 ± 5 cm -1 (9.0134 ± 0.0006 eV) on the basis of mass analyzed threshold ionization (MATI) spectrscopy. Analysis of the newly obtained MATI spectra gives the respective frequencies of 399, 517 and 820 cm -1 for the ring deformation 6a, C-CN bending, and breathing vibrations of the p-cyanophenol cation. Comparing these experimental data with those of phenol leads to a better understanding about the influence of the CN substituent on the ionization energy and molecular vibration.

  2. Ionization processes in small quasimolecules: He{sub 2}{sup 2+} (He{sup 2+}+ He)

    SciTech Connect

    Ogurtsov, G. N.; Mikoushkin, V. M.; Ovchinnikov, S. Yu.; Macek, J. H.

    2011-09-15

    The energy spectra of electrons ejected in He{sup 2+}-He collisions were measured in the ion energy range 6-30 keV. Theoretical analysis of the ionization mechanisms has been performed on the basis of the advanced adiabatic approximation for one-electron processes and perturbation theory for two-electron processes. The ionization channel 2p{sigma}{sup 2}{yields} 1s{sigma}nd{sigma}{yields} 1s{sigma}{epsilon}d{sigma} has been revealed, which makes a considerable contribution to the ionization cross section in the keV ion energy range.

  3. Frozen-plasma boundary-layer flows over adiabatic flat plates

    SciTech Connect

    Ben-Dor, G.; Igra, O.

    1984-07-01

    The boundary-layer equations for a partially ionized frozen flow over a flat plate has been solved using a new approach in which the problem is reduced from a two-point boundary value problem to a Cauchy problem, thus offering a simple, stable, and relatively inexpensive solution technique. The method is applied to a strong shock-induced argon flow over an adiabatic flat plate. The dependence of the flow inside the boundary layer on the Prandtl number Pr, and Lewis number Le, and on the exponential dependence n of the density viscosity product on the temperature are explored, and it is found that while Pr and n strongly affect the obtained flow field, the influence of Le is negligibly small.

  4. Extended adiabatic blast waves and a model of the soft X-ray background. [interstellar matter

    NASA Technical Reports Server (NTRS)

    Cox, D. P.; Anderson, P. R.

    1981-01-01

    An analytical approximation is generated which follows the development of an adiabatic spherical blast wave in a homogeneous ambient medium of finite pressure. An analytical approximation is also presented for the electron temperature distribution resulting from coulomb collisional heating. The dynamical, thermal, ionization, and spectral structures are calculated for blast waves of energy E sub 0 = 5 x 10 to the 50th power ergs in a hot low-density interstellar environment. A formula is presented for estimating the luminosity evolution of such explosions. The B and C bands of the soft X-ray background, it is shown, are reproduced by such a model explosion if the ambient density is about .000004 cm, the blast radius is roughly 100 pc, and the solar system is located inside the shocked region. Evolution in a pre-existing cavity with a strong density gradient may, it is suggested, remove both the M band and OVI discrepancies.

  5. Adiabatic shear bands localization in materials undergoing deformations

    NASA Astrophysics Data System (ADS)

    Ryabov, P. N.; Kudryashov, N. A.; Muratov, R. V.

    2017-01-01

    We consider the adiabatic shear banding phenomenon in composite materials undergoing the high speed shear deformations. The mathematical model of adiabatic shear banding in thermo-visco-plastic material is given. New two step numerical algorithm which is based on the Courant-Isaacson-Rees scheme that allows one to simulate fully localized plastic flow from initial stage of localization is proposed. To test this numerical algorithm we use three benchmark problems. The testing results show the accuracy and efficiency of proposed algorithm. The features of adiabatic shear bands formation in composites are studied. The existence of characteristic depth of localization in composites is shown. Influence of initial temperature distribution on the processes of adiabatic shear bands formation in composites is considered.

  6. Adiabaticity and spectral splits in collective neutrino transformations

    SciTech Connect

    Raffelt, Georg G.; Smirnov, Alexei Yu.

    2007-12-15

    Neutrinos streaming off a supernova core transform collectively by neutrino-neutrino interactions, leading to 'spectral splits' where an energy E{sub split} divides the transformed spectrum sharply into parts of almost pure but different flavors. We present a detailed description of the spectral-split phenomenon which is conceptually and quantitatively understood in an adiabatic treatment of neutrino-neutrino effects. Central to this theory is a self-consistency condition in the form of two sum rules (integrals over the neutrino spectra that must equal certain conserved quantities). We provide explicit analytic and numerical solutions for various neutrino spectra. We introduce the concept of the adiabatic reference frame and elaborate on the relative adiabatic evolution. Violating adiabaticity leads to the spectral split being 'washed out'. The sharpness of the split appears to be represented by a surprisingly universal function.

  7. Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses

    SciTech Connect

    Dridi, G.; Guerin, S.; Hakobyan, V.; Jauslin, H. R.; Eleuch, H.

    2009-10-15

    We present a general and versatile technique of population transfer based on parallel adiabatic passage by femtosecond shaped pulses. Their amplitude and phase are specifically designed to optimize the adiabatic passage corresponding to parallel eigenvalues at all times. We show that this technique allows the robust adiabatic population transfer in a Raman system with the total pulse area as low as 3{pi}, corresponding to a fluence of one order of magnitude below the conventional stimulated Raman adiabatic passage process. This process of short duration, typically picosecond and subpicosecond, is easily implementable with the modern pulse shaper technology and opens the possibility of ultrafast robust population transfer with interesting applications in quantum information processing.

  8. Adiabatic effects on nonlinear dust-acoustic solitary and shock waves in a strongly coupled dusty plasma

    SciTech Connect

    Rahman, M. S.; Mamun, A. A.

    2011-12-15

    A theoretical investigation has been performed on a strongly coupled dusty plasma containing strongly correlated negatively charged dust grains and weakly correlated adiabatic electrons and ions. The adiabatic effects on the dust-acoustic (DA) solitary and shock waves propagating in such a strongly coupled dusty plasma are taken into account. The DA solitary and shock waves are found to exist with negative potential only. It has been shown that the strong correlation among the charged dust grains is a source of dissipation and is responsible for the formation of the DA shock waves. It has also been found that the effects of adiabaticity significantly modify the basic features (e.g., amplitude, width, speed, etc.) of the DA solitary and shock waves. It has been suggested that a laboratory experiment be performed to test the theory presented in this work.

  9. Mass analyzed threshold ionization spectroscopy of 7-azaindole cation

    NASA Astrophysics Data System (ADS)

    Lee Lin, Jung; Tzeng, Wen Bih

    2003-10-01

    The vibrationally resolved mass analyzed threshold ionization (MATI) spectra of jet-cooled 7-azaindole have been recorded by ionizing via four different intermediate levels. The adiabatic ionization energy of this molecule is determined to be 65 462±5 cm -1, which is greater than that of indole by 2871 cm -1. The vibrational spectra of 7-azaindole in the S 1 and D 0 states have been successfully assigned by comparing the measured frequencies with those of indole as well as the predicted values from the ab initio calculations. Detailed analysis on the MATI spectra shows that the structure of the cation is somewhat different from that of this species in the neutral S 1 state.

  10. Mass-Analyzed Threshold Ionization of LaO2

    NASA Astrophysics Data System (ADS)

    Wu, Lu; Zhang, Changhua; Krasnokutski, Sergiy; Yang, Dong-Sheng

    2010-06-01

    Lanthanum oxide, LaO2, is produced in a pulsed laser-vaporization metal-cluster source and studied by mass-analyzed threshold ionization (MATI) spectroscopy. From the MATI spectrum, the adiabatic ionization energy of LaO2 is determined to be 40134 (5) Cm-1 or 4.976 (6) eV, and La+-O stretching and O-La+-O bending frequencies are measured as 656 and 120 Cm-1. The measured ionization energy is about 3.0 eV lower than the value predicted by recent high-level ab initio calculations. In this talk, we will discuss the discrepancy between the experiment and theory and the electronic transition observed in our experiment. T. K. Todorova, I. Infante, L. Gagliardi, and J. M. Dyke, J. Phys. Chem. A 112, 7825 (2008).

  11. Ionization energy and active cation vibrations of trans-2-fluorostyrene

    NASA Astrophysics Data System (ADS)

    Wu, Pei Ying; Tzeng, Sheng Yuan; Hsu, Ya Chu; Tzeng, Wen Bih

    2017-02-01

    We applied the two-color resonant two-photon mass-analyzed threshold ionization (MATI) technique to record the cation spectra of trans-2-fluorostyrene by ionizing via six intermediate vibronic levels. The adiabatic ionization energy was determined to be 69 304 ± 5 cm-1. The distinct MATI bands at 67, 124, 242, 355, 737, 806, 833, and 993 cm-1 were assigned to the active cation vibrations related to out-of-plane substituent-sensitive bending vibrations and in-plane ring deformation and bending motions. Many combination vibrations were also observed. Our experimental results suggest that the molecular geometry and vibrational coordinates of the trans-2-fluorostyrene cation in the D0 state resemble those of the neutral species in the S1 state.

  12. Shortcuts to adiabaticity for non-Hermitian systems

    SciTech Connect

    Ibanez, S.; Martinez-Garaot, S.; Torrontegui, E.; Muga, J. G.; Chen Xi

    2011-08-15

    Adiabatic processes driven by non-Hermitian, time-dependent Hamiltonians may be sped up by generalizing inverse engineering techniques based on counter-diabatic (transitionless driving) algorithms or on dynamical invariants. We work out the basic theory and examples described by two-level Hamiltonians: the acceleration of rapid adiabatic passage with a decaying excited level and of the dynamics of a classical particle on an expanding harmonic oscillator.

  13. Nonadiabatic transitions in finite-time adiabatic rapid passage

    NASA Astrophysics Data System (ADS)

    Lu, T.; Miao, X.; Metcalf, H.

    2007-06-01

    To apply the adiabatic rapid passage process repetitively [T. Lu, X. Miao, and H. Metcalf, Phys. Rev. A 71, 061405(R) (2005)], the nonadiabatic transition probability of a two-level atom subject to chirped light pulses over a finite period of time needs to be calculated. Using a unitary first-order perturbation method in the rotating adiabatic frame, an approximate formula has been derived for such transition probabilities in the entire parameter space of the pulses.

  14. ENTROPY-VORTEX WAVES IN NON-ADIABATIC FLOWS

    SciTech Connect

    Ibáñez S, Miguel H.

    2016-02-20

    The Ertel theorem on the vorticity along the flow of adiabatic fluids is generalized for non-adiabatic flows. Several limiting cases are analyzed and the results are applied to flows behind different hydrodynamics fronts, particularly to thermal fronts (heat and cooling fronts). An important conclusion of the present analysis is that vorticity is inherent in the condensation’s (or hot spots) formation by thermal instabilities in plasma flows. Implications for several astrophysical plasmas are outlined.

  15. Vacuum vessel eddy current modeling for TFTR adiabatic compression experiments

    SciTech Connect

    DeLucia, J.; Bell, M.; Wong, K.L.

    1985-07-01

    A relatively simple current filament model of the TFTR vacuum vessel is described. It is used to estimate the three-dimensional structure of magnetic field perturbations in the vicinity of the plasma that arise from vacuum vessel eddy currents induced during adiabatic compression. Eddy currents are calculated self-consistently with the plasma motion. The Shafranov formula and adiabatic scaling laws are used to model the plasma. Although the specific application is to TFTR, the present model is of generation applicability.

  16. Slow-roll suppression of adiabatic instabilities in coupled scalar field-dark matter models

    SciTech Connect

    Corasaniti, Pier Stefano

    2008-10-15

    We study the evolution of linear density perturbations in the context of interacting scalar field-dark matter cosmologies, where the presence of the coupling acts as a stabilization mechanism for the runaway behavior of the scalar self-interaction potential as in the case of the chameleon model. We show that, in the 'adiabatic' background regime of the system, the rise of unstable growing modes of the perturbations is suppressed by the slow-roll dynamics of the field. Furthermore, the coupled system behaves as an inhomogeneous adiabatic fluid. In contrast, instabilities may develop for large values of the coupling constant, or along nonadiabatic solutions, characterized by a period of high-frequency dumped oscillations of the scalar field. In the latter case, the dynamical instabilities of the field fluctuations, which are typical of oscillatory scalar field regimes, are amplified and transmitted by the coupling to dark matter perturbations.

  17. Ultra-high mode mix in low-adiabat National Ignition Facility National Ignition Campaign implosions

    NASA Astrophysics Data System (ADS)

    Scott, Robert; Central Laser Facility Team

    2016-10-01

    This work re-examines a sub-set of the `slow-rise', low adiabat implosions from the National Ignition Campaign using the Hyades radiation-hydrodynamics code in an effort to better understand potential phenomenological sources of `excess' mix observed experimentally. An extensive effort has been made to match both shock-timing and backlit radiography (Con-A) implosion data in an effort to reproduce the experimental conditions as accurately as possible. A 30% reduction in ablation pressure at peak drive is required to match the experimental data. This reduced ablation pressure allows the ablator to decompress, in turn causing the DT ice-ablator interface to go Rayleigh-Taylor unstable early in the implosion acceleration phase. Post-processing the runs with various mix models indicates high-mode mix from the DT ice-ablator interface may penetrate deep into the hotspot. This work offers a potential explanation of why these low adiabat implosions exhibited significantly higher levels of mix than expected from high-fidelity multi-dimensional simulations. Through this new understanding a possible route forward for low-adiabat implosions on NIF is suggested.

  18. A connection between mix and adiabat in ICF capsules

    NASA Astrophysics Data System (ADS)

    Cheng, Baolian; Kwan, Thomas; Wang, Yi-Ming; Yi, Sunghuan (Austin); Batha, Steven

    2016-10-01

    We study the relationship between instability induced mix, preheat and the adiabat of the deuterium-tritium (DT) fuel in fusion capsule experiments. Our studies show that hydrodynamic instability not only directly affects the implosion, hot spot shape and mix, but also affects the thermodynamics of the capsule, such as, the adiabat of the DT fuel, and, in turn, affects the energy partition between the pusher shell (cold DT) and the hot spot. It was found that the adiabat of the DT fuel is sensitive to the amount of mix caused by Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities at the material interfaces due to its exponential dependence on the fuel entropy. An upper limit of mix allowed maintaining a low adiabat of DT fuel is derived. Additionally we demonstrated that the use of a high adiabat for the DT fuel in theoretical analysis and with the aid of 1D code simulations could explain some aspects of the 3D effects and mix in the capsule experiments. Furthermore, from the observed neutron images and our physics model, we could infer the adiabat of the DT fuel in the capsule and determine the possible amount of mix in the hot spot (LA-UR-16-24880). This work was conducted under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.

  19. Ionization Energies of Lanthanides

    ERIC Educational Resources Information Center

    Lang, Peter F.; Smith, Barry C.

    2010-01-01

    This article describes how data are used to analyze the pattern of ionization energies of the lanthanide elements. Different observed pathways of ionization between different ground states are discussed, and the effects of pairing, exchange, and orbital interactions on ionization energies of the lanthanides are evaluated. When all the above…

  20. Adiabatic and non-adiabatic charge pumping in a single-level molecular motor

    NASA Astrophysics Data System (ADS)

    Napitu, B. D.; Thijssen, J. M.

    2015-07-01

    We propose a design for realizing quantum charge pump based on a recent proposal for a molecular motor (Seldenthuis J S et al 2010 ACS Nano 4 6681). Our design is based on the presence of a moiety with a permanent dipole moment which can rotate, thereby modulating the couplings to metallic contacts at both ends of the molecule. Using the non-equilibrium Keldysh Green’s function formalism (NEGF), we show that our design indeed generates a pump current. In the non-interacting pump, the variation of frequency from adiabatic to non-adiabatic regime, can be used to control the direction as well as the amplitude of the average current. The effect of Coulomb interaction is considered within the first- and the second- order perturbation. The numerical implementation of the scheme is quite demanding, and we develop an analytical approximation to obtain a speed-up giving results within a reasonable time. We find that the amplitude of the average pumped current can be controlled by both the driving frequency and the Coulomb interaction. The direction of of pumped current is shown to be determined by the phase difference between left and right anchoring groups.

  1. Adiabatic and non-adiabatic charge pumping in a single-level molecular motor.

    PubMed

    Napitu, B D; Thijssen, J M

    2015-07-15

    We propose a design for realizing quantum charge pump based on a recent proposal for a molecular motor (Seldenthuis J S et al 2010 ACS Nano 4 6681). Our design is based on the presence of a moiety with a permanent dipole moment which can rotate, thereby modulating the couplings to metallic contacts at both ends of the molecule. Using the non-equilibrium Keldysh Green's function formalism (NEGF), we show that our design indeed generates a pump current. In the non-interacting pump, the variation of frequency from adiabatic to non-adiabatic regime, can be used to control the direction as well as the amplitude of the average current. The effect of Coulomb interaction is considered within the first- and the second- order perturbation. The numerical implementation of the scheme is quite demanding, and we develop an analytical approximation to obtain a speed-up giving results within a reasonable time. We find that the amplitude of the average pumped current can be controlled by both the driving frequency and the Coulomb interaction. The direction of of pumped current is shown to be determined by the phase difference between left and right anchoring groups.

  2. Nonadiabatic dynamics of floppy hydrogen bonded complexes: the case of the ionized ammonia dimer.

    PubMed

    Chalabala, Jan; Slavíček, Petr

    2016-07-27

    In the case of the ammonia dimer, we address the following questions: how ultrafast ionization dynamics is controlled by hydrogen bonding and whether we can control the products via selective ionization of a specific electron. We use quantum chemical calculations and ab initio non-adiabatic molecular dynamics simulations to model the femtosecond dynamics of the ammonia dimer upon ionization. The role of nuclear quantum effects and thermal fluctuations in predicting the structure of the dimer is emphasized; it is shown that the minimum energy and vibrationally averaged structures are rather different. The ground state structure subsequently controls the ionization dynamics. We describe reaction pathways, electronic population transfers and reaction yields with respect to ionization from different molecular orbitals. The simulations showed that the ionized ammonia dimer is highly unstable and its decay rate is primarily driven by the position of the electron hole. In the case of ground state ionization (i.e. the HOMO electron is ionized), the decay is likely to be preceded by a proton transfer (PT) channel yielding NH4(+) and NH2˙ fragments. The PT is less intense and slower compared with the ionized water dimer. After ionizing deeper lying electrons, mainly NH3(+)˙ and NH3 fragments are formed. Overall, our results show that the ionization dynamics of the ammonia and water dimers differ due to the nature of the hydrogen bond in these systems.

  3. Dynamics of the reactions of muonium and deuterium atoms with vibrationally excited hydrogen molecules: tunneling and vibrational adiabaticity.

    PubMed

    Jambrina, P G; García, E; Herrero, V J; Sáez-Rábanos, V; Aoiz, F J

    2012-11-14

    Quantum mechanical (QM) and quasiclassical trajectory (QCT) calculations have been carried out for the exchange reactions of D and Mu (Mu = muonium) with hydrogen molecules in their ground and first vibrational states. In all the cases considered, the QM rate coefficients, k(T), are in very good agreement with the available experimental results. In particular, QM calculations on the most accurate potential energy surfaces (PESs) predict a rate coefficient for the Mu + H(2) (ν = 1) reaction which is very close to the preliminary estimate of its experimental value at 300 K. In contrast to the D + H(2) (ν = 0,1) and the Mu + H(2) (ν = 0) reactions, the QCT calculations for Mu + H(2) (ν = 1) predict a much smaller k(T) than that obtained with the accurate QM method. This behaviour is indicative of tunneling. The QM reaction probabilities and total reactive cross sections show that the total energy thresholds for the reactions of Mu with H(2) in ν = 0 and ν = 1 are very similar, whereas for the corresponding reaction with D the ν = 0 total energy threshold is about 0.3 eV lower than that for ν = 1. The results just mentioned can be explained by considering the vibrational adiabatic potentials along the minimum energy path. The threshold for the reaction of Mu with H(2) in both ν = 0 and ν = 1 states is the same and is given by the height of the ground vibrational adiabatic collinear potential, whereas for the D + H(2) reaction the adiabaticity is preserved and the threshold for the reaction in ν = 1 is very close to the height of the ν = 1 adiabatic collinear barrier. For Mu + H(2) (ν = 1) the reaction takes place by crossing from the ν = 1 to the ν = 0 adiabat, since the exit channel leading to MuH (ν = 1) is not energetically accessible. At the lowest possible energies, the non-adiabatic vibrational crossing implies a strong tunneling effect through the ν = 1 adiabatic barrier. Absence of tunneling in the classical calculations results in a threshold

  4. The inhibitory effect of ionizing radiation on Fc and C3 receptors on mouse and human leukocytes, and the protective potential of human albumin

    SciTech Connect

    Herrera, M.A.; Diaz-Perches, R.; Gutierrez, M.; Gamminio, E.; Liera, C.; Nieto, P.; Weiss-Steider, B. )

    1990-08-01

    The effect that ionizing radiation has in vitro on Fc and C3 receptors was evaluated at various doses and measured by means of erythrocytes coated with antibody (EA) and erythrocytes coated with antibody and complement (EAC) rosettes on human peripheral blood leukocytes (PBL) and on mouse bone marrow cells (BMC) and PBL. We found that the number of cells with either EA and EAC rosettes decreased as the radiation doses increased, and that they were almost absent when the highest doses were employed. We obtained evidence that albumin is a natural source of radio-protection for Fc and C3 receptors, and we showed that by increasing the amount of this molecule we could completely protect receptors for EA and EAC in vitro. Finally, the possible therapeutic value of the administration of human albumin to patients undergoing radiotherapy is discussed.

  5. Adiabatic calorimetric decomposition studies of 50 wt.% hydroxylamine/water.

    PubMed

    Cisneros, L O; Rogers, W J; Mannan, M S

    2001-03-19

    Calorimetric data can provide a basis for determining potential hazards in reactions, storage, and transportation of process chemicals. This work provides calorimetric data for the thermal decomposition behavior in air of 50wt.% hydroxylamine/water (HA), both with and without added stabilizers, which was measured in closed cells with an automatic pressure tracking adiabatic calorimeter (APTAC). Among the data provided are onset temperatures, reaction order, activation energies, pressures of noncondensable products, thermal stability at 100 degrees C, and the effect of HA storage time. Discussed also are the catalytic effects of carbon steel, stainless steel, stainless steel with silica coating, inconel, titanium, and titanium with silica coating on the reaction self-heat rates and onset temperatures. In borosilicate glass cells, HA was relatively stable at temperatures up to 133 degrees C, where the HA decomposition self-heat rate reached 0.05 degrees C/min. The added stabilizers appeared to reduce HA decomposition rates in glass cells and at ambient temperatures. The tested metals and metal surfaces coated with silica acted as catalysts to lower the onset temperatures and increase the self-heat rates.

  6. Shortcuts to Adiabaticity in Transport of a Single Trapped Ion

    NASA Astrophysics Data System (ADS)

    An, Shuoming; Lv, Dingshun; Campo, Adolfo Del; Kim, Kihwan

    2015-05-01

    We report an experimental study on shortcuts to adiabaticity in the transport of a single 171Yb+ ion trapped in a harmonic potential. In these driving schemes, the application of a force induces a nonadiabatic dynamics in which excitations are tailored so as to preserve the ion motional state in the ground state upon completion of the process. We experimentally apply the laser induced force and realize three different protocols: (1) a transitionless driving with a counterdiabatic term out of phase with the displacement force, (2) a classical protocol assisted by counterdiabatic fields in phase with the main force, (3) and an engineered transport protocol based on the Fourier transform of the trap acceleration. We experimentally compare and discuss the robustness of these protocols under given experimental limitations such as trap frequency drifts. This work was supported by the National Basic Research Program of China under Grants No. 2011CBA00300 (No. 2011CBA00301), the National Natural Science Foundation of China 11374178, and the University of Massachusetts Boston (No. P20150000029279).

  7. Non-locality, adiabaticity, thermodynamics and electron energy probability functions

    NASA Astrophysics Data System (ADS)

    Boswell, Roderick; Zhang, Yunchao; Charles, Christine; Takahashi, Kazunori

    2016-09-01

    Thermodynamic properties are revisited for electrons that are governed by nonlocal electron energy probability functions in a plasma of low collisionality. Measurements in a laboratory helicon double layer experiment have shown that the effective electron temperature and density show a polytropic correlation with an index of γe = 1 . 17 +/- 0 . 02 along the divergent magnetic field, implying a nearly isothermal plasma (γe = 1) with heat being brought into the system. However, the evolution of electrons along the divergent magnetic field is essentially an adiabatic process, which should have a γe = 5 / 3 . The reason for this apparent contradiction is that the nearly collisionless plasma is very far from local thermodynamic equilibrium and the electrons behave nonlocally. The corresponding effective electron enthalpy has a conservation relation with the potential energy, which verifies that there is no heat transferred into the system during the electron evolution. The electrons are shown in nonlocal momentum equilibrium under the electric field and the gradient of the effective electron pressure. The convective momentum of ions, which can be assumed as a cold species, is determined by the effective electron pressure and the effective electron enthalpy is shown to be the source for ion acceleration. For these nearly collisionless plasmas, the use of traditional thermodynamic concepts can lead to very erroneous conclusions regarding the thermal conductivity.

  8. Statistical mechanics of Roskilde liquids: Configurational adiabats, specific heat contours, and density dependence of the scaling exponent

    SciTech Connect

    Bailey, Nicholas P.; Bøhling, Lasse; Veldhorst, Arno A.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2013-11-14

    We derive exact results for the rate of change of thermodynamic quantities, in particular, the configurational specific heat at constant volume, C{sub V}, along configurational adiabats (curves of constant excess entropy S{sub ex}). Such curves are designated isomorphs for so-called Roskilde liquids, in view of the invariance of various structural and dynamical quantities along them. The slope of the isomorphs in a double logarithmic representation of the density-temperature phase diagram, γ, can be interpreted as one third of an effective inverse power-law potential exponent. We show that in liquids where γ increases (decreases) with density, the contours of C{sub V} have smaller (larger) slope than configurational adiabats. We clarify also the connection between γ and the pair potential. A fluctuation formula for the slope of the C{sub V}-contours is derived. The theoretical results are supported with data from computer simulations of two systems, the Lennard-Jones fluid, and the Girifalco fluid. The sign of dγ/dρ is thus a third key parameter in characterizing Roskilde liquids, after γ and the virial-potential energy correlation coefficient R. To go beyond isomorph theory we compare invariance of a dynamical quantity, the self-diffusion coefficient, along adiabats and C{sub V}-contours, finding it more invariant along adiabats.

  9. Comment on ``Adiabatic quantum computation with a one-dimensional projector Hamiltonian''

    NASA Astrophysics Data System (ADS)

    Kay, Alastair

    2013-10-01

    The partial adiabatic search algorithm was introduced in Tulsi's paper [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.052328 80, 052328 (2009)] as a modification of the usual adiabatic algorithm for a quantum search with the idea that most of the interesting computation only happens over a very short range of the adiabatic path. By focusing on that restricted range, one can potentially gain an advantage by reducing the control requirements on the system, enabling a uniform rate of evolution. In this Comment, we point out an oversight in Tulsi's paper [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.052328 80, 052328 (2009)] that invalidates its proof. However, the argument can be corrected, and the calculations in Tulsi's paper [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.052328 80, 052328 (2009)] are then sufficient to show that the scheme still works. Nevertheless, subsequent works [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.034304 82, 034304 (2010), Chin. Phys. BCPBHAJ1674-105610.1088/1674-1056/20/4/040309 20, 040309 (2011), Chin. Phys. BCPBHAJ1674-105610.1088/1674-1056/21/1/010306 21, 010306 (2012), AASRI Procedia 1, 5862 (2012), and Quantum Inf. Process.10.1007/s11128-013-0557-1 12, 2689 (2013)] cannot all be recovered in the same way.

  10. Waste heat recovery from adiabatic diesel engines by exhaust-driven Brayton cycles

    NASA Technical Reports Server (NTRS)

    Khalifa, H. E.

    1983-01-01

    An evaluation of Bryton Bottoming Systems (BBS) as waste heat recovery devices for future adiabatic diesel engines in heavy duty trucks is presented. Parametric studies were performed to evaluate the influence of external and internal design parameters on BBS performance. Conceptual design and trade-off studies were undertaken to estimate the optimum configuration, size, and cost of major hardware components. The potential annual fuel savings of long-haul trucks equipped with BBS were estimated. The addition of a BBS to a turbocharged, nonaftercooled adiabatic engine would improve fuel economy by as much as 12%. In comparison with an aftercooled, turbocompound engine, the BBS-equipped turbocharged engine would offer a 4.4% fuel economy advantage. If installed in tandem with an aftercooled turbocompound engine, the BBS could effect a 7.2% fuel economy improvement. The cost of a mass-produced 38 Bhp BBS is estimated at about $6460 or 170/Bhp. Technical and economic barriers that hinder the commercial introduction of bottoming systems were identified. Related studies in the area of waste heat recovery from adiabatic diesel engines and NASA-CR-168255 (Steam Rankine) and CR-168256 (Organic Rankine).

  11. Electronic structures of TiO2-TCNE, -TCNQ, and -2,6-TCNAQ surface complexes studied by ionization potential measurements and DFT calculations: Mechanism of the shift of interfacial charge-transfer bands

    NASA Astrophysics Data System (ADS)

    Fujisawa, Jun-ichi; Hanaya, Minoru

    2016-06-01

    Interfacial charge-transfer (ICT) transitions between inorganic semiconductors and π-conjugated molecules allow direct charge separation without loss of energy. This feature is potentially useful for efficient photovoltaic conversions. Charge-transferred complexes of TiO2 nanoparticles with 7,7,8,8-tetracyanoquinodimethane (TCNQ) and its analogues (TCNX) show strong ICT absorption in the visible region. The ICT band was reported to be significantly red-shifted with extension of the π-conjugated system of TCNX. In order to clarify the mechanism of the red-shift, in this work, we systematically study electronic structures of the TiO2-TCNX surface complexes (TCNX; TCNE, TCNQ, 2,6-TCNAQ) by ionization potential measurements and density functional theory (DFT) calculations.

  12. Pure spin current induced by adiabatic quantum pumping in zigzag-edged graphene nanoribbons

    SciTech Connect

    Souma, Satofumi Ogawa, Matsuto

    2014-05-05

    We show theoretically that pure spin current can be generated in zigzag edged graphene nanoribbons through the adiabatic pumping by edge selective pumping potentials. The origin of such pure spin current is the spin splitting of the edge localized states, which are oppositely spin polarized at opposite edges. In the proposed device, each edge of the ribbon is covered by two independent time-periodic local gate potentials with a definite phase difference, inducing the edge spin polarized current. When the pumping phase difference is opposite in sign between two edges, the total charge currents is zero and the pure edge spin current is generated.

  13. Management of ionizing radiation injuries and illnesses, Part 3: Radiobiology and health effects of ionizing radiation.

    PubMed

    Christensen, Doran M; Livingston, Gordon K; Sugarman, Stephen L; Parillo, Steven J; Glassman, Erik S

    2014-07-01

    Ionizing radiation exposure can induce profound changes in intracellular components, potentially leading to diverse health effects in exposed individuals. Any cellular component can be damaged by radiation, but some components affect cellular viability more profoundly than others. The ionization caused by radiation lasts longer than the initial inciting incident, continuing as 1 ionization incident causes another. In some cases, damage to DNA can lead to cellular death at mitosis. In other cases, activation of the genetic machinery can lead to a genetic cascade potentially leading to mutations or cell death by apoptosis. In the third of 5 articles on the management of injuries and illnesses caused by ionizing radiation, the authors provide a clinically relevant overview of the pathophysiologic process associated with potential exposure to ionizing radiation.

  14. LETTERS AND COMMENTS: Adiabatic process reversibility: microscopic and macroscopic views

    NASA Astrophysics Data System (ADS)

    Anacleto, Joaquim; Pereira, Mário G.

    2009-05-01

    The reversibility of adiabatic processes was recently addressed by two publications. In the first (Miranda 2008 Eur. J. Phys. 29 937-43), an equation was derived relating the initial and final volumes and temperatures for adiabatic expansions of an ideal gas, using a microscopic approach. In that relation the parameter r accounts for the process reversibility, ranging between 0 and 1, which corresponds to the free and reversible expansion, respectively. In the second (Anacleto and Pereira 2009 Eur. J. Phys. 30 177-83), the authors have shown that thermodynamics can effectively and efficiently be used to obtain the general law for adiabatic processes carried out by an ideal gas, including compressions, for which r \\ge 1. The present work integrates and extends the aforementioned studies, providing thus further insights into the analysis of the adiabatic process. It is shown that Miranda's work is wholly valid for compressions. In addition, it is demonstrated that the adiabatic reversibility coefficient given in terms of the piston velocity and the root mean square velocity of the gas particles is equivalent to the macroscopic description, given just by the quotient between surroundings and system pressure values.

  15. Differentiation of Lactobacillus brevis strains using Matrix-Assisted-Laser-Desorption-Ionization-Time-of-Flight Mass Spectrometry with respect to their beer spoilage potential.

    PubMed

    Kern, Carola C; Vogel, Rudi F; Behr, Jürgen

    2014-06-01

    Lactobacillus (L.) brevis is one of the most frequently encountered bacteria in beer-spoilage incidents. As the species Lactobacillus brevis comprises strains showing varying ability to grow in beer, ranging from growth in low hopped wheat to highly hopped pilsner beer, differentiation and classification of L. brevis with regard to their beer-spoiling ability is of vital interest for the brewing industry. Matrix-Assisted-Laser-Desorption-Ionization-Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) has been shown as a powerful tool for species and sub-species differentiation of bacterial isolates and is increasingly used for strain-level differentiation. Seventeen L. brevis strains, representative of different spoilage types, were characterized according to their tolerance to iso-alpha-acids and their growth in wheat-, lager- and pilsner beer. MALDI-TOF MS spectra were acquired to perform strain-level identification, cluster analysis and biomarker detection. Strain-level identification was achieved in 90% out of 204 spectra. Misidentification occurred nearly exclusively among strains belonging to the same spoilage type. Though spectra of strongly beer-spoiling strains showed remarkable similarity, no decisive single markers were detected to be present in all strains of one group. However, MALDI-TOF MS spectra can be reliably assigned to the corresponding strain and thus allow to track single strains and connect them to their physiological properties.

  16. Plasma pharmacochemistry combined with pharmacokinetics and pattern recognition analysis to screen potentially bioactive components from Daming capsule using ultra high performance liquid chromatography with electrospray ionization quadrupole time-of-flight mass spectrometry.

    PubMed

    An, Ran; Li, Yamei; Li, Mu; Bai, Yan; Lu, Yanjie; Du, Zhimin

    2015-05-01

    Daming capsule is a traditional Chinese medicine for hyperlipidemia treatment. However, the vague understanding of the bioactive components of Daming capsule hampers its modernization and internationalization. This work first developed a high-throughput, high-resolution, and high-sensitivity ultra high performance liquid chromatography with electrospray ionization quadrupole time-of-flight tandem mass spectrometry method for identifying the absorbed compounds and monitoring the pharmacokinetics of Daming capsule. A high-throughput strategy integrating plasma pharmacochemistry, pharmacokinetics, and pattern recognition analysis was also established for screening the bioactive components of Daming capsule in vivo. The established strategy based on ultra high performance liquid chromatography with electrospray ionization quadrupole time-of-flight tandem mass spectrometry was successfully applied to screen the bioactive components of Daming capsule. Up to 53 absorbed compounds were identified. Six anthraquinones with fast and high absorption, namely, emodin-O-glucoside, aurantio-obtusin, aloe-emodin, rhein, emodin, and chrysophanol, were screened as potentially bioactive components of Daming capsule. The plasma pharmacochemistry and pharmacokinetics of Daming capsule were reported for the first time. Notably, the high-throughput and reliable strategy facilitated the screening and identification of bioactive components of traditional Chinese medicine, thereby providing novel insights into the research and development of new drugs.

  17. Hole dynamics and spin currents after ionization in strong circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Barth, Ingo; Smirnova, Olga

    2014-10-01

    We apply the time-dependent analytical R-matrix theory to develop a movie of hole motion in a Kr atom upon ionization by strong circularly polarized field. We find rich hole dynamics, ranging from rotation to swinging motion. The motion of the hole depends on the final energy and the spin of the photoelectron and can be controlled by the laser frequency and intensity. Crucially, hole rotation is a purely non-adiabatic effect, completely missing in the framework of quasistatic (adiabatic) tunneling theories. We explore the possibility to use hole rotation as a clock for measuring ionization time. Analyzing the relationship between the relative phases in different ionization channels we show that in the case of short-range electron-core interaction the hole is always initially aligned along the instantaneous direction of the laser field, signifying zero delays in ionization. Finally, we show that strong-field ionization in circular fields creates spin currents (i.e. different flow of spin-up and spin-down density in space) in the ions. This phenomenon is intimately related to the production of spin-polarized electrons in strong laser fields Barth and Smirnova (2013 Phys. Rev. A 88 013401). We demonstrate that rich spin dynamics of electrons and holes produced during strong field ionization can occur in typical experimental conditions and does not require relativistic intensities or strong magnetic fields.

  18. Adiabatic circular polarizer based on chiral fiber grating.

    PubMed

    Yang, Li; Xue, Lin-Lin; Li, Cheng; Su, Jue; Qian, Jing-Ren

    2011-01-31

    Based on the adiabatic coupling principle, a new scheme of a broadband circular polarizer formed by twisting a high-birefringence (Hi-Bi) fiber with a slowly varying twist rate is proposed. The conditions of adiabatic coupling for the adiabatic polarizer are first identified through analytical derivations. These conditions are easily realized by choosing a reasonable variation of the twist rate. Moreover, the bandwidth of the polarizer is able to be directly determined by the twist rates at the two ends. Finally, the broadband characteristics of the polarizer are demonstrated by simulations. It is also shown that the performance of the polarizer can be remarkably improved by accomplishing a multi-mode phase-matching along the grating or by using of the couplings of the core mode to lossy modes.

  19. Effect of dephasing on stimulated Raman adiabatic passage

    SciTech Connect

    Ivanov, P.A.; Vitanov, N.V.; Bergmann, K.

    2004-12-01

    This work explores the effect of phase relaxation on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The study is based on the Liouville equation, which is solved analytically in the adiabatic limit. The transfer efficiency of STIRAP is found to decrease exponentially with the dephasing rate; this effect is stronger for shorter pulse delays and weaker for larger delays, since the transition time is found to be inversely proportional to the pulse delay. Moreover, it is found that the transfer efficiency of STIRAP in the presence of dephasing does not depend on the peak Rabi frequencies at all, as long as they are sufficiently large to enforce adiabatic evolution; hence increasing the field intensity cannot reduce the dephasing losses. It is shown also that for any dephasing rate, the final populations of the initial state and the intermediate state are equal. For strong dephasing all three populations tend to (1/3)

  20. Pyrolysis-field ionization mass spectrometry of rhizodeposits - a new approach to identify potential effects of genetically modified plants on soil organisms.

    PubMed

    Melnitchouck, Alexei; Leinweber, Peter; Broer, Inge; Eckhardt, Kai-Uwe

    2006-01-01

    The objectives of the present study were (1) to investigate the qualitative composition of rhizodeposits leached from soils cropped with non-transgenic and genetically modified (GM) potatoes, and disclose if there were GM-specific modifications in potato rhizodeposition, and (2) to compare these results with conventional bulk parameters of microbial activity in soil. We have raised potatoes from a non-transgenic line (Solanum tuberosum L. cv. Désirée) and three GM lines, which expressed a gene for the resistance to kanamycin (DLH 9000) and a gene for T4 lysozyme (DL10 and DL12). A sandy soil placed in 340 cm3-"CombiSart" containers was used, from which the rhizodeposit was leached after a six-week growth period. The freeze-dried leachates were analyzed by pyrolysis-field ionization mass spectrometry (Py-FIMS). The Py-FI mass spectra gave detailed molecular-chemical information about the composition of leachates, indicating that the potato growth generally altered the composition of the soil solution. Moreover, a principal component analysis of the mass spectra showed differences between the leachates from the non-transgenic parent line and the GM potatoes as well as among the latter group. However, these differences in molecular composition could not be assigned to the release of T4-lysozyme into soil. Dehydrogenase activity and substrate-induced soil respiration as more common bulk parameters of soil microbial activity failed to disclose any significant effects of the various potatoes grown. The limitations of the described rhizodeposit leaching and analysis for risk assessment of GM potato cropping under field conditions are discussed critically. However, it could be concluded that the Py-FI mass spectrometric "fingerprint" can be developed as a fast, comprehensive, highly sensitive and reproducible analytical approach to discern any effects GM-crops may exert on soil ecological parameters.

  1. Chemistry of α-pinene and naphthalene oxidation products generated in a Potential Aerosol Mass (PAM) chamber as measured by acetate chemical ionization mass spectrometry

    DOE PAGES

    Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; ...

    2014-07-01

    Recent developments in high resolution, time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made possible the direct detection of atmospheric organic compounds in real-time with high sensitivity and with little or no fragmentation, including low volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, for the first time, we examine gas-phase O3 and OH oxidation products of α-pinene and naphthalene formed in the PAM flow reactor with an HR-ToF-CIMS using acetate reagent ion chemistry. Integrated OH exposures ranged from 1.2 × 1011 to 9.7 × 1011 molec cm−3 s, corresponding to approximately 1.0 to 7.5 daysmore » of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. We present a method that estimates vapor pressures of organic molecules using the measured O/C ratio, H/C ratio, and carbon number for each compound detected by the CIMS. The predicted condensed-phase SOA average acid yields and O/C and H/C ratios agree within uncertainties with previous AMS measurements and ambient CIMS results. While acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.« less

  2. Adiabatic regularisation of power spectra in k-inflation

    SciTech Connect

    Alinea, Allan L.; Kubota, Takahiro; Nakanishi, Yukari; Naylor, Wade E-mail: kubota@celas.osaka-u.ac.jp E-mail: naylor@phys.sci.osaka-u.ac.jp

    2015-06-01

    We look at the question posed by Parker et al. about the effect of UV regularisation on the power spectrum for inflation. Focusing on the slow-roll k-inflation, we show that up to second order in the Hubble and sound flow parameters, the adiabatic regularisation of such model leads to no difference in the power spectrum apart from certain cases that violate near scale-invariant power spectra. Furthermore, extending to non-minimal k-inflation, we establish the equivalence of the subtraction terms in the adiabatic regularisation of the power spectrum in Jordan and Einstein frames.

  3. Dynamics with the effective adiabatic theory: The Bloch equations

    NASA Astrophysics Data System (ADS)

    Carmeli, Benny; Chandler, David

    1988-07-01

    This paper extends our earlier work on the effective adiabatic theory [J. Chem. Phys. 82, 3400 (1985)] to study relaxation of a two-level system coupled to a Gaussian dissipative bath—the spin-boson problem. Bloch equations are derived which, under the limited circumstances described herein, treat the role of bath fluctuations omitted in the equilibrium effective adiabatic reference system. Applications to the Lorentzian dissipative bath show that the theory agrees closely with numerical simulation results. Application to an Ohmic bath shows that the theory is in agreement with currently accepted results concerned with the problem of macroscopic quantum coherence.

  4. Adiabatic State Conversion and Pulse Transmission in Optomechanical Systems

    NASA Astrophysics Data System (ADS)

    Tian, Lin

    2012-04-01

    Optomechanical systems with strong coupling can be a powerful medium for quantum state engineering of the cavity modes. Here, we show that quantum state conversion between cavity modes of distinctively different wavelengths can be realized with high fidelity by adiabatically varying the effective optomechanical couplings. The conversion fidelity for Gaussian states is derived by solving the Langevin equation in the adiabatic limit. Meanwhile, we also show that traveling photon pulses can be transmitted between different input and output channels with high fidelity and the output pulse can be engineered via the optomechanical couplings.

  5. Gravitational Chern-Simons and the adiabatic limit

    SciTech Connect

    McLellan, Brendan

    2010-12-15

    We compute the gravitational Chern-Simons term explicitly for an adiabatic family of metrics using standard methods in general relativity. We use the fact that our base three-manifold is a quasiregular K-contact manifold heavily in this computation. Our key observation is that this geometric assumption corresponds exactly to a Kaluza-Klein Ansatz for the metric tensor on our three-manifold, which allows us to translate our problem into the language of general relativity. Similar computations have been performed by Guralnik et al.[Ann. Phys. 308, 222 (2008)], although not in the adiabatic context.

  6. One-photon mass-analyzed threshold ionization spectroscopy of CH2BrI: Extensive bending progression, reduced steric effect, and spin-orbit effect in the cation

    NASA Astrophysics Data System (ADS)

    Lee, Mina; Kim, Hyoseok; Lee, Yoon Sup; Kim, Myung Soo

    2005-07-01

    One-photon mass-analyzed threshold ionization (MATI) spectrum of CH2BrI was obtained using coherent vacuum-ultraviolet radiation generated by four-wave difference-frequency mixing in Kr. Unlike CH2ClI investigated previously, a very extensive bending (Br-C-I) progression was observed. Vibrational frequencies of CH2BrI+ were measured from the spectra and the vibrational assignments were made by utilizing frequencies calculated by the density-functional-theory (DFT) method using relativistic effective core potentials with and without the spin-orbit terms. A noticeable spin-orbit effect on the vibrational frequencies was observed from the DFT calculations, even though its influence was not so dramatic as in CH2ClI+. A simple explanation based on the bonding characteristics of the molecular orbitals involved in the ionization is presented to account for the above differences between the MATI spectra of CH2BrI and CH2ClI. The 0-0 band of the CH2BrI spectrum could be identified through the use of combined data from calculations and experiments. The adiabatic ionization energy determined from the position of this band was 9.5944±0.0006eV, which was significantly smaller than the vertical ionization energy reported previously.

  7. Tandem time-of-flight mass spectrometer for photodissociation of biopolymer ions generated by matrix-assisted laser desorption ionization (MALDI-TOF-PD-TOF) using a linear-plus-quadratic potential reflectron.

    PubMed

    Oh, Joo Yeon; Moon, Jeong Hee; Kim, Myung Soo

    2004-08-01

    A tandem time-of-flight mass spectrometer for the study of photodissociation of biopolymer ions generated by matrix-assisted laser desorption ionization was designed and constructed. A reflectron with linear and quadratic (LPQ) potential components was used. Characteristics of the LPQ reflectron and its utility as the second stage analyzer of the tandem mass spectrometer were investigated. Performance of the instrument was tested by observing photodissociation of [M + H](+) from angiotensin II, a prototype polypeptide. Quality of the photodissociation tandem mass spectrum was almost comparable to that of the post-source decay spectrum. Monoisotopic selection of the parent ion was possible, which was achieved through the ion beam-laser beam synchronization. General theoretical considerations needed for a successful photodissociation of large biopolymer ions are also presented.

  8. Classical molecular dynamics simulation of electronically non-adiabatic processes.

    PubMed

    Miller, William H; Cotton, Stephen J

    2016-12-22

    Both classical and quantum mechanics (as well as hybrids thereof, i.e., semiclassical approaches) find widespread use in simulating dynamical processes in molecular systems. For large chemical systems, however, which involve potential energy surfaces (PES) of general/arbitrary form, it is usually the case that only classical molecular dynamics (MD) approaches are feasible, and their use is thus ubiquitous nowadays, at least for chemical processes involving dynamics on a single PES (i.e., within a single Born-Oppenheimer electronic state). This paper reviews recent developments in an approach which extends standard classical MD methods to the treatment of electronically non-adiabatic processes, i.e., those that involve transitions between different electronic states. The approach treats nuclear and electronic degrees of freedom (DOF) equivalently (i.e., by classical mechanics, thereby retaining the simplicity of standard MD), and provides "quantization" of the electronic states through a symmetrical quasi-classical (SQC) windowing model. The approach is seen to be capable of treating extreme regimes of strong and weak coupling between the electronic states, as well as accurately describing coherence effects in the electronic DOF (including the de-coherence of such effects caused by coupling to the nuclear DOF). A survey of recent applications is presented to illustrate the performance of the approach. Also described is a newly developed variation on the original SQC model (found universally superior to the original) and a general extension of the SQC model to obtain the full electronic density matrix (at no additional cost/complexity).

  9. Ionization of highly excited helium atoms in an electric field

    SciTech Connect

    van de Water, W.; Mariani, D.R.; Koch, P.M.

    1984-11-01

    We present detailed measurements of ionization of highly excited triplet helium atoms in a static electric field. The atoms were prepared in states with energy E close to the saddle-point threshold E = -2(F(a.u.))/sup 1/2/. The electric field F was sufficiently strong for the states to be characterized by total spin S and absolute value of the magnetic quantum number M/sub L/. For M/sub L/ = 0 states the experiments measured ionization properties of adiabatic states. In another case, Vertical BarM/sub L/Vertical Bar = 2, they predominantly measured those of diabatic states. In both cases the ionization rate was found to be a highly nonmonotonic function of the field strength. The observations are analyzed in terms of a theory of the helium density of states in an electric field. A companion paper (D. A. Harmin, Phys. Rev. A 30, 2413 (1984)) develops in detail the general theory, which uses quantum defects to parametrize the effect of the core interaction. The agreement between measured and calculated ionization curves is good, indicating that the field ionization of a nonhydrogenic atom can now be understood in a detailed, quantitative, and predictive sense.

  10. The calculation of adiabatic-connection curves from full configuration-interaction densities: two-electron systems.

    PubMed

    Teale, A M; Coriani, S; Helgaker, T

    2009-03-14

    The Lieb formulation of density-functional theory is briefly reviewed and its straightforward generalization to arbitrary electron-electron interaction strengths discussed, leading to the introduction of density-fixed and potential-fixed adiabatic connections. An iterative scheme for the calculation of the Lieb functionals under the appropriate constraints is outlined following the direct optimization approach of Wu and Yang [J. Chem. Phys. 118, 2498 (2003)]. First- and second-order optimization schemes for the calculation of accurate adiabatic-connection integrands are investigated and compared; the latter is preferred both in terms of computational efficiency and accuracy. The scheme is applicable to systems of any number of electrons. However, to determine the accuracy that may be achieved, the present work focuses on two-electron systems for which a number of simplifications may be exploited. The procedure is applied to the helium isoelectronic series and the H(2) molecule. The resulting adiabatic-connection curves yield the full configuration-interaction exchange-correlation energies extrapolated to the basis-set limit. The relationship between the Kohn-Sham and natural orbitals as functions of the electron-electron interaction strength is explored in detail for H(2). The accuracy with which the exchange-correlation contributions to the modified local potential can be determined is discussed. The new accurate adiabatic-connection curves are then compared with some recently investigated approximate forms calculated using accurate full configuration-interaction input data. This study demonstrates that the adiabatic-connection integrand may be determined accurately and efficiently, providing important insights into the link between the Kohn-Sham and traditional quantum-chemical treatments of the exchange-correlation problem in electronic-structure theory.

  11. Zero-point energy, tunneling, and vibrational adiabaticity in the Mu + H2 reaction

    SciTech Connect

    Mielke, Steven L.; Garrett, Bruce C.; Fleming, Donald G.; Truhlar, Donald G.

    2015-01-09

    Abstract: Isotopic substitution of muonium for hydrogen provides an unparalleled opportunity to deepen our understanding of quantum mass effects on chemical reactions. A recent topical review [Aldegunde et al., Mol. Phys. 111, 3169 (2013)] of the thermal and vibrationally-stateselected reaction of Mu with H2 raises a number of issues that are addressed here. We show that some earlier quantum mechanical calculations of the Mu + H2 reaction, which are highlighted in this review and which have been used to benchmark approximate methods, are in error by as much as 19% in the low-temperature limit. We demonstrate that an approximate treatment of the Born–Oppenheimer diagonal correction that was used in some recent studies is not valid for treating the vibrationally-state-selected reaction. We also discuss why vibrationally adiabatic potentials that neglect bend zero-point energy are not a useful analytical tool for understanding reaction rates and why vibrationally nonadiabatic transitions cannot be understood by considering tunneling through vibrationally adiabatic potentials. Finally, we present calculations on a hierarchical family of potential energy surfaces to assess the sensitivity of rate constants to the quality of the potential surface.

  12. Adiabatic channel capture theory applied to cold atom-molecule reactions: Li + CaH \\to LiH + Ca at 1K

    NASA Astrophysics Data System (ADS)

    Tscherbul, Timur V.; Buchachenko, Alexei A.

    2015-03-01

    We use quantum and classical adiabatic capture theories to study the chemical reaction Li + CaH \\to LiH + Ca. Using a recently developed ab initio potential energy surface, which provides an accurate representation of long-range interactions in the entrance reaction channel, we calculate the adiabatic channel potentials by diagonalizing the Li-CaH Hamiltonian as a function of the atom-molecule separation. The resulting adiabatic channel potentials are used to calculate both the classical and quantum capture probabilities as a function of collision energy, as well as the temperature dependencies of the partial and total reaction rates. The calculated reaction rate agrees well with the measured value at 1 K (V Singh et al 2012 Phys. Rev. Lett. 108 203201), suggesting that the title reaction proceeds without an activation barrier. The calculated classical adiabatic capture rate agrees well with the quantum result in the multiple-partial-wave regime of relevance to the experiment. Significant differences are found only in the ultracold limit (T\\lt 1 mK), demonstrating that adiabatic capture theories can predict the reaction rates with nearly quantitative accuracy in the multiple-partial-wave regime.

  13. Path integral density matrix dynamics: A method for calculating time-dependent properties in thermal adiabatic and non-adiabatic systems

    NASA Astrophysics Data System (ADS)

    Habershon, Scott

    2013-09-01

    We introduce a new approach for calculating quantum time-correlation functions and time-dependent expectation values in many-body thermal systems; both electronically adiabatic and non-adiabatic cases can be treated. Our approach uses a path integral simulation to sample an initial thermal density matrix; subsequent evolution of this density matrix is equivalent to solution of the time-dependent Schrödinger equation, which we perform using a linear expansion of Gaussian wavepacket basis functions which evolve according to simple classical-like trajectories. Overall, this methodology represents a formally exact approach for calculating time-dependent quantum properties; by introducing approximations into both the imaginary-time and real-time propagations, this approach can be adapted for complex many-particle systems interacting through arbitrary potentials. We demonstrate this method for the spin Boson model, where we find good agreement with numerically exact calculations. We also discuss future directions of improvement for our approach with a view to improving accuracy and efficiency.

  14. A fast solver for the gyrokinetic field equation with adiabatic electrons

    SciTech Connect

    Borchardt, M.; Kleiber, R.; Hackbusch, W.

    2012-07-15

    Describing turbulence and microinstabilities in fusion devices is often modelled with the gyrokinetic equation. During the time evolution of the distribution function a field equation for the electrostatic potential needs to be solved. In the case of adiabatic electrons it contains a flux-surface-average term resulting in an integro-differential equation. Its numerical solution is time and memory intensive for three-dimensional configurations. Here a new algorithm is presented which only requires the numerical inversion of a simpler differential operator and a subsequent addition of a correction term. This new procedure is as fast as solving the equation without the surface average.

  15. On the work distribution for the adiabatic compression of a diluteclassical gas

    SciTech Connect

    Crooks, Gavin E.; Jarzynski, Christopher

    2006-02-23

    We consider the adiabatic and quasi-static compression of adilute classical gas, confined in a piston and initially equilibratedwith a heat bath. We find that the work performed during this process isdescribed statistically by a gamma distribution. We use this result toshow that the model satisfies the non-equilibrium work and fluctuationtheorems, but not the fluctation-dissipation relation. We discuss therare but dominant realizations that contribute most to the exponentialaverage of the work, and relate our results to potentially universal workdistributions.

  16. The adiabatic phase mixing and heating of electrons in Buneman turbulence

    SciTech Connect

    Che, H.; Goldstein, M. L.; Drake, J. F.; Swisdak, M.

    2013-06-15

    The nonlinear development of the strong Buneman instability and the associated fast electron heating in thin current layers with Ω{sub e}/ω{sub pe}<1 is explored. Phase mixing of the electrons in wave potential troughs and a rapid increase in temperature are observed during the saturation of the instability. We show that the motion of trapped electrons can be described using a Hamiltonian formalism in the adiabatic approximation. The process of separatrix crossing as electrons are trapped and de-trapped is irreversible and guarantees that the resulting electron energy gain is a true heating process.

  17. Investigation of hydrogen bonding in 3-methylindole · H 2O cluster by mass analyzed threshold ionization

    NASA Astrophysics Data System (ADS)

    Georgiev, S.; Neusser, H. J.

    2004-05-01

    The adiabatic ionization energies and the threshold ion vibrational spectra of 3-methylindole and the 3-methylindole · H 2O cluster and the hydrogen bonding energy of the latter have been measured with mass analyzed threshold ionization (MATI) technique. Dissociation of the cluster has been detected as a breakdown of the threshold ion signal at the parent mass channel and the simultaneous increase of the signal at the fragment mass channel. Comparison with our previous work on indole · H 2O shows that there is only a small influence of the methyl group on the ionization energy and the hydrogen bonding strength.

  18. Adiabatic frequency conversion with a sign flip in the coupling

    NASA Astrophysics Data System (ADS)

    Hristova, H. S.; Rangelov, A. A.; Montemezzani, G.; Vitanov, N. V.

    2016-09-01

    Adiabatic frequency conversion is a method recently developed in nonlinear optics [H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, Phys. Rev. A 78, 063821 (2008), 10.1103/PhysRevA.78.063821], using ideas from the technique of rapid adiabatic passage (RAP) via a level crossing in quantum physics. In this method, the coupling coefficients are constant and the phase mismatch is chirped adiabatically. In this work, we propose another method for adiabatic frequency conversion, in which the phase mismatch is constant and the coupling is a pulse-shaped function with a sign flip (i.e., a phase step of π ) at its maximum. Compared to the RAP method, our technique has comparable efficiency but it is simpler to implement for it only needs two bulk crystals with opposite χ(2 ) nonlinearity. Moreover, because our technique requires constant nonzero frequency mismatch and has zero conversion efficiency on exact frequency matching, it can be used as a frequency filter.

  19. Fast Quasi-Adiabatic Gas Cooling: An Experiment Revisited

    ERIC Educational Resources Information Center

    Oss, S.; Gratton, L. M.; Calza, G.; Lopez-Arias, T.

    2012-01-01

    The well-known experiment of the rapid expansion and cooling of the air contained in a bottle is performed with a rapidly responsive, yet very cheap thermometer. The adiabatic, low temperature limit is approached quite closely and measured with our apparatus. A straightforward theoretical model for this process is also presented and discussed.…

  20. Adiabatic compression and radiative compression of magnetic fields

    SciTech Connect

    Woods, C.H.

    1980-02-12

    Flux is conserved during mechanical compression of magnetic fields for both nonrelativistic and relativistic compressors. However, the relativistic compressor generates radiation, which can carry up to twice the energy content of the magnetic field compressed adiabatically. The radiation may be either confined or allowed to escape.

  1. Digitized adiabatic quantum computing with a superconducting circuit.

    PubMed

    Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M

    2016-06-09

    Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.

  2. Cosmological solutions in spatially curved universes with adiabatic particle production

    NASA Astrophysics Data System (ADS)

    Aresté Saló, Llibert; de Haro, Jaume

    2017-03-01

    We perform a qualitative and thermodynamic study of two models when one takes into account adiabatic particle production. In the first one, there is a constant particle production rate, which leads to solutions depicting the current cosmic acceleration but without inflation. The other one has solutions that unify the early and late time acceleration. These solutions converge asymptotically to the thermal equilibrium.

  3. A Kinetic Study of the Adiabatic Polymerization of Acrylamide.

    ERIC Educational Resources Information Center

    Thomson, R. A. M.

    1986-01-01

    Discusses theory, procedures, and results for an experiment which demonstrates the application of basic physics to chemical problems. The experiment involves the adiabatic process, in which polymerization carried out in a vacuum flask is compared to the theoretical prediction of the model with the temperature-time curve obtained in practice. (JN)

  4. Reversibility and energy dissipation in adiabatic superconductor logic.

    PubMed

    Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2017-12-01

    Reversible computing is considered to be a key technology to achieve an extremely high energy efficiency in future computers. In this study, we investigated the relationship between reversibility and energy dissipation in adiabatic superconductor logic. We analyzed the evolution of phase differences of Josephson junctions in the reversible quantum-flux-parametron (RQFP) gate and confirmed that the phase differences can change time reversibly, which indicates that the RQFP gate is physically, as well as logically, reversible. We calculated energy dissipation required for the RQFP gate to perform a logic operation and numerically demonstrated that the energy dissipation can fall below the thermal limit, or the Landauer bound, by lowering operation frequencies. We also investigated the 1-bit-erasure gate as a logically irreversible gate and the quasi-RQFP gate as a physically irreversible gate. We calculated the energy dissipation of these irreversible gates and showed that the energy dissipation of these gate is dominated by non-adiabatic state changes, which are induced by unwanted interactions between gates due to logical or physical irreversibility. Our results show that, in reversible computing using adiabatic superconductor logic, logical and physical reversibility are required to achieve energy dissipation smaller than the Landauer bound without non-adiabatic processes caused by gate interactions.

  5. Adiabatic State Conversion and Photon Transmission in Optomechanical Systems

    NASA Astrophysics Data System (ADS)

    Tian, Lin

    2012-02-01

    Light-matter interaction in optomechanical systems in the strong coupling regime can be explored as a tool to transfer cavity states and to transmit photon pulses. Here, we show that quantum state conversion between cavity modes with different wavelengths can be realized with high fidelity by adiabatically varying the effective optomechanical couplings. During this adiabatic process, the quantum state is preserved in the dark mode of the cavities, similar to the adiabatic transfer schemes in EIT systems. The fidelity for gaussian states is derived by solving the Langevin equation in the adiabatic limit and shows negligible dependence on the mechanical noise. We also show that an input pulse can be transmitted to an output channel with a different wavelength via the effective optomechanical couplings. The condition for optimal transmission is derived in the frequency domain. Input pulses with a narrow spectral width can be transmitted with high fidelity. For input pulses with a large spectral width, the shape of the output pulses can be manipulated by applying time-dependent effective couplings. (1) L. Tian, arXiv:1111.2119. (2) L. Tian and H. L. Wang, Phys. Rev. A 82, 053806 (2010).

  6. When an Adiabatic Irreversible Expansion or Compression Becomes Reversible

    ERIC Educational Resources Information Center

    Anacleto, Joaquim; Ferreira, J. M.; Soares, A. A.

    2009-01-01

    This paper aims to contribute to a better understanding of the concepts of a "reversible process" and "entropy". For this purpose, an adiabatic irreversible expansion or compression is analysed, by considering that an ideal gas is expanded (compressed), from an initial pressure P[subscript i] to a final pressure P[subscript f], by being placed in…

  7. Dark energy and dark matter from an additional adiabatic fluid

    NASA Astrophysics Data System (ADS)

    Dunsby, Peter K. S.; Luongo, Orlando; Reverberi, Lorenzo

    2016-10-01

    The dark sector is described by an additional barotropic fluid which evolves adiabatically during the Universe's history and whose adiabatic exponent γ is derived from the standard definitions of specific heats. Although in general γ is a function of the redshift, the Hubble parameter and its derivatives, we find that our assumptions lead necessarily to solutions with γ =constant in a Friedmann-Lemaître-Robertson-Walker universe. The adiabatic fluid acts effectively as the sum of two distinct components, one evolving like nonrelativistic matter and the other depending on the value of the adiabatic index. This makes the model particularly interesting as a way of simultaneously explaining the nature of both dark energy and dark matter, at least at the level of the background cosmology. The Λ CDM model is included in this family of theories when γ =0 . We fit our model to supernovae Ia, H (z ) and baryonic acoustic oscillation data, discussing the model selection criteria. The implications for the early Universe and the growth of small perturbations in this model are also discussed.

  8. Non-adiabatic transition probability dependence on conical intersection topography

    NASA Astrophysics Data System (ADS)

    Malhado, João Pedro; Hynes, James T.

    2016-11-01

    We derive a closed form analytical expression for the non-adiabatic transition probability for a distribution of trajectories passing through a generic conical intersection (CI), based on the Landau-Zener equation for the non-adiabatic transition probability for a single straight-line trajectory in the CI's vicinity. We investigate the non-adiabatic transition probability's variation with topographical features and find, for the same crossing velocity, no intrinsic difference in efficiency at promoting non-adiabatic decay between peaked and sloped CIs, a result in contrast to the commonly held view. Any increased efficiency of peaked over sloped CIs is thus due to dynamical effects rather than to any increased transition probability of topographical origin. It is also shown that the transition probability depends in general on the direction of approach to the CI, and that the coordinates' reduced mass can affect the transition probability via its influence on the CI topography in mass-scaled coordinates. The resulting predictions compare well with surface hopping simulation results.

  9. Non-adiabatic transition probability dependence on conical intersection topography.

    PubMed

    Malhado, João Pedro; Hynes, James T

    2016-11-21

    We derive a closed form analytical expression for the non-adiabatic transition probability for a distribution of trajectories passing through a generic conical intersection (CI), based on the Landau-Zener equation for the non-adiabatic transition probability for a single straight-line trajectory in the CI's vicinity. We investigate the non-adiabatic transition probability's variation with topographical features and find, for the same crossing velocity, no intrinsic difference in efficiency at promoting non-adiabatic decay between peaked and sloped CIs, a result in contrast to the commonly held view. Any increased efficiency of peaked over sloped CIs is thus due to dynamical effects rather than to any increased transition probability of topographical origin. It is also shown that the transition probability depends in general on the direction of approach to the CI, and that the coordinates' reduced mass can affect the transition probability via its influence on the CI topography in mass-scaled coordinates. The resulting predictions compare well with surface hopping simulation results.

  10. Digitized adiabatic quantum computing with a superconducting circuit

    NASA Astrophysics Data System (ADS)

    Barends, R.; Shabani, A.; Lamata, L.; Kelly, J.; Mezzacapo, A.; Heras, U. Las; Babbush, R.; Fowler, A. G.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Solano, E.; Neven, H.; Martinis, John M.

    2016-06-01

    Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.

  11. Laser resonance ionization spectroscopy of antimony

    NASA Astrophysics Data System (ADS)

    Li, R.; Lassen, J.; Ruczkowski, J.; Teigelhöfer, A.; Bricault, P.

    2017-02-01

    The resonant ionization laser ion source is an element selective, efficient and versatile ion source to generate radioactive ion beams at on-line mass separator facilities. For some elements with complex atomic structures and incomplete spectroscopic data, laser spectroscopic investigations are required for ionization scheme development. Laser resonance ionization spectroscopy using Ti:Sa lasers has been performed on antimony (Sb) at TRIUMF's off-line laser ion source test stand. Laser light of 230.217 nm (vacuum wavelength) as the first excitation step and light from a frequency-doubled Nd:YVO4 laser (532 nm) as the nonresonant ionization step allowed to search for suitable second excitation steps by continuous wavelength scans from 720 nm to 920 nm across the wavelength tuning range of a grating-tuned Ti:Sa laser. Upon the identification of efficient SES, the third excitation steps for resonance ionization were investigated by laser scans across Rydberg states, the ionization potential and autoionizing states. One Rydberg state and six AI states were found to be well suitable for efficient resonance ionization.

  12. Time-dependent density functional theory for strong-field ionization by circularly polarized pulses

    NASA Astrophysics Data System (ADS)

    Chirilă, Ciprian C.; Lein, Manfred

    2017-03-01

    By applying time-dependent density functional theory to a two-dimensional multielectron atom subject to strong circularly polarized light pulses, we confirm that the ionization of p orbitals with defined angular momentum depends on the sense of rotation of the applied field. A simple ad-hoc modification of the adiabatic local-density exchange-correlation functional is proposed to remedy its unphysical behavior under orbital depletion.

  13. Biological Effects of Ionizing Radiation

    DOE R&D Accomplishments Database

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  14. Sub-adiabatic perpendicular electron heating across high-Mach number collisionless shocks

    NASA Astrophysics Data System (ADS)

    Sundkvist, D. J.; Mozer, F.

    2012-12-01

    Spacecraft observations of a high Mach number quasi-perpendicular bow shock with high plasma beta have revealed electrons that were sub-adiabatic through the shock ramp because they were less heated than expected from conservation of the first adiabatic invariant. This stands out in contrast to existing theories of electron heating at collisionless shocks in which the electrons are adiabatically heated through compression or more-than-adiabatically heated due to additional effects such as anomalous resistivity induced by microinstabilites.

  15. Active vibrations of 1-cyanonaphthalene cation studied by mass-analyzed threshold ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Shivatare, Vidya; Tzeng, Sheng Yuan; Tzeng, Wen Bih

    2013-02-01

    We apply the two-color resonant two-photon mass-analyzed threshold ionization (MATI) spectroscopic technique to record the cation spectra of 1-cyanonaphthalene via four intermediate vibronic levels. The adiabatic ionization energy is determined to be 69 466 ± 5 cm-1. The distinct bands at 416, 472, 516, 669, and 852 cm-1 result from in-plane ring deformation vibrations of the cation. Analysis of these MATI spectra suggests that the molecular geometry and vibrational coordinates of the observed vibrations of the cation in the ground D0 state resemble those of the neutral in the electronically excited S1 state.

  16. Ionization of hydrogen atoms by multiply charged ions at low energies: The scaling law

    SciTech Connect

    Janev, R.K.; Ivanovski, G.; Solov'ev, E.A. Faculty of Natural Sciences and Mathematics, St. Cyril and Methodius University, P.O. Box 162, 91000 Skopje, Macedonia )

    1994-02-01

    Using the adiabatic superpromotion model of low-energy atomic collisions, a simple scaling relationship is derived for the ionization cross section of hydrogen atoms colliding with multiply charged ions. Detailed ionization-cross-section calculations for the systems H(1[ital s])+He[sup 2+], C[sup 6+], and O[sup 8+] have been performed and used to determine three numerical constants in the cross-section-scaling relationship. The scaled cross section represents well the available data for fully stripped ions with charge [ital Z][ge]2 in the energy region below the cross-section maximum.

  17. The exact forces on classical nuclei in non-adiabatic charge transfer

    SciTech Connect

    Agostini, Federica; Abedi, Ali; Suzuki, Yasumitsu; Min, Seung Kyu; Gross, E. K. U.; Maitra, Neepa T.

    2015-02-28

    The decomposition of electronic and nuclear motion presented in Abedi et al. [Phys. Rev. Lett. 105, 123002 (2010)] yields a time-dependent potential that drives the nuclear motion and fully accounts for the coupling to the electronic subsystem. Here, we show that propagation of an ensemble of independent classical nuclear trajectories on this exact potential yields dynamics that are essentially indistinguishable from the exact quantum dynamics for a model non-adiabatic charge transfer problem. We point out the importance of step and bump features in the exact potential that are critical in obtaining the correct splitting of the quasiclassical nuclear wave packet in space after it passes through an avoided crossing between two Born-Oppenheimer surfaces and analyze their structure. Finally, an analysis of the exact potentials in the context of trajectory surface hopping is presented, including preliminary investigations of velocity-adjustment and the force-induced decoherence effect.

  18. Astrophysical fluid simulations of thermally ideal gases with non-constant adiabatic index: numerical implementation

    NASA Astrophysics Data System (ADS)

    Vaidya, B.; Mignone, A.; Bodo, G.; Massaglia, S.

    2015-08-01

    Context. An equation of state (EoS) is a relation between thermodynamic state variables and it is essential for closing the set of equations describing a fluid system. Although an ideal EoS with a constant adiabatic index Γ is the preferred choice owing to its simplistic implementation, many astrophysical fluid simulations may benefit from a more sophisticated treatment that can account for diverse chemical processes. Aims: In the present work we first review the basic thermodynamic principles of a gas mixture in terms of its thermal and caloric EoS by including effects like ionization, dissociation, and temperature dependent degrees of freedom such as molecular vibrations and rotations. The formulation is revisited in the context of plasmas that are either in equilibrium conditions (local thermodynamic- or collisional excitation-equilibria) or described by non-equilibrium chemistry coupled to optically thin radiative cooling. We then present a numerical implementation of thermally ideal gases obeying a more general caloric EoS with non-constant adiabatic index in Godunov-type numerical schemes. Methods: We discuss the necessary modifications to the Riemann solver and to the conversion between total energy and pressure (or vice versa) routinely invoked in Godunov-type schemes. We then present two different approaches for computing the EoS. The first employs root-finder methods and it is best suited for EoS in analytical form. The second is based on lookup tables and interpolation and results in a more computationally efficient approach, although care must be taken to ensure thermodynamic consistency. Results: A number of selected benchmarks demonstrate that the employment of a non-ideal EoS can lead to important differences in the solution when the temperature range is 500-104 K where dissociation and ionization occur. The implementation of selected EoS introduces additional computational costs although the employment of lookup table methods (when possible) can

  19. Electron-Impact Ionization and Dissociative Ionization of Biomolecules

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Chaban, Galina M.; Dateo, Christopher E.

    2006-01-01

    It is well recognized that secondary electrons play an important role in radiation damage to humans. Particularly important is the damage of DNA by electrons, potentially leading to mutagenesis. Molecular-level study of electron interaction with DNA provides information on the damage pathways and dominant mechanisms. Our study of electron-impact ionization of DNA fragments uses the improved binary-encounter dipole model and covers DNA bases, sugar phosphate backbone, and nucleotides. An additivity principle is observed. For example, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3(sup prime)- and C5 (sup prime)-deoxyribose-phospate cross sections, differing by less than 5%. Investigation of tandem double lesion initiated by electron-impact dissociative ionization of guanine, followed by proton reaction with the cytosine in the Watson-Crick pair, is currently being studied to see if tandem double lesion can be initiated by electron impact. Up to now only OH-induced tandem double lesion has been studied.

  20. Pulsed spheromak reactor with adiabatic compression

    SciTech Connect

    Fowler, T K

    1999-03-29

    Extrapolating from the Pulsed Spheromak reactor and the LINUS concept, we consider ignition achieved by injecting a conducting liquid into the flux conserver to compress a low temperature spheromak created by gun injection and ohmic heating. The required energy to achieve ignition and high gain by compression is comparable to that required for ohmic ignition and the timescale is similar so that the mechanical power to ignite by compression is comparable to the electrical power to ignite ohmically. Potential advantages and problems are discussed. Like the High Beta scenario achieved by rapid fueling of an ohmically ignited plasma, compression must occur on timescales faster than Taylor relaxation.

  1. Spectral-gap analysis for efficient tunneling in quantum adiabatic optimization

    NASA Astrophysics Data System (ADS)

    Brady, Lucas T.; van Dam, Wim

    2016-09-01

    We investigate the efficiency of quantum adiabatic optimization when overcoming potential barriers to get from a local to a global minimum. Specifically we look at n qubit systems with symmetric cost functions f :{0,1 } n→R , where the ground state must tunnel through a potential barrier of width nα and height nβ. By the quantum adiabatic theorem the time delay sufficient to ensure tunneling grows quadratically with the inverse spectral gap during this tunneling process. We analyze barrier sizes with 1 /2 ≤α +β and α <1 /2 and show that the minimum gap scales polynomially as n1 /2 -α -β when 2 α +β ≤1 and exponentially as n-β /2exp(-C n(2 α +β -1 )/2) when 1 <2 α +β . Our proof uses elementary techniques and confirms and extends an unpublished folklore result by Goldstone from 2002, which used large spin and instanton methods. Parts of our result also refine recent results by Kong and Crosson [arXiv:1511.06991] and Jiang et al. [arXiv:1603.01293] about the exponential gap scaling.

  2. Three-Body Coulomb Functions in the Hyperspherical Adiabatic Expansion Method

    NASA Astrophysics Data System (ADS)

    Garrido, E.; Kievsky, A.; Viviani, M.

    2016-12-01

    In this work we describe a numerical method devised to compute continuum three-body wave functions. The method is implemented using the hyperspherical adiabatic expansion for the three-body wave function imposing a box boundary condition. The continuum energy spectrum results discretized and, for specific quantum number values, all the possible incoming and outgoing channels are simultaneously computed. For a given energy, the hyperradial continuum functions form a matrix whose ij-term refers to specific incoming and outgoing channels. When applied to three-body systems interacting only through the Coulomb potential, this method provides the adiabatic representation of the regular three-body Coulomb wave function. The computation of the irregular Coulomb wave function representation is also discussed. These regular and irregular Coulomb functions can be used to extract the S-matrix for those reactions where, together with some short-range potential, the Coulomb interaction is also present. The method is illustrated in the case of the 3→ 3 process of three alpha particles.

  3. Controlling vibrational cooling with zero-width resonances: An adiabatic Floquet approach

    NASA Astrophysics Data System (ADS)

    Leclerc, Arnaud; Viennot, David; Jolicard, Georges; Lefebvre, Roland; Atabek, Osman

    2016-10-01

    In molecular photodissociation, some specific combinations of laser parameters (wavelength and intensity) lead to unexpected zero-width resonances (ZWRs) with, in principle, infinite lifetimes. Their potential to induce basic quenching mechanisms has recently been devised in the laser control of vibrational cooling through filtration strategies [O. Atabek et al., Phys. Rev. A 87, 031403(R) (2013), 10.1103/PhysRevA.87.031403]. A full quantum adiabatic control theory based on the adiabatic Floquet Hamiltonian is developed to show how a laser pulse could be envelope-shaped and frequency-chirped so as to protect a given initial vibrational state against dissociation, taking advantage of its continuous transport on the corresponding ZWR all along the pulse duration. As compared with previous control scenarios that actually suffered from nonadiabatic contamination, drastically different and much more efficient filtration goals are achieved. A semiclassical analysis helps us to find and interpret a complete map of ZWRs in the laser parameter plane. In addition, the choice of a given ZWR path, among the complete series identified by the semiclassical approach, turns out to be crucial for the cooling scheme, targeting a single vibrational state population left at the end of the pulse, while all others have almost completely decayed. The illustrative example, which has the potential to be transposed to other diatomics, is Na2 prepared by photoassociation in vibrationally hot but translationally and rotationally cold states.

  4. Adiabatic sweep cross-polarization magic-angle-spinning NMR of half-integer quadrupolar spins

    NASA Astrophysics Data System (ADS)

    Wi, Sungsool; Kim, Chul; Schurko, Robert; Frydman, Lucio

    2017-04-01

    The use of frequency-swept radiofrequency (rf) pulses for enhancing signals in the magic-angle spinning (MAS) spectra of half-integer quadrupolar nuclides was explored. The broadband adiabatic inversion cross-polarization magic-angle spinning (BRAIN-CPMAS) method, involving an adiabatic inversion pulse on the S-channel and a simultaneous rectangular spin-lock pulse on the I-channel (1H), was applied to I(1/2) → S(3/2) systems. Optimal BRAIN-CPMAS matching conditions were found to involve low rf pulse strengths for both the I- and S-spin channels. At these low and easily attainable rf field strengths, level-crossing events among the energy levels | 3 / 2 >, | 1 / 2 >, | - 1 / 2 >, | - 3 / 2 > that are known to complicate the CPMAS of quadrupolar nuclei, are mostly avoided. Zero- and double-quantum polarization transfer modes, akin to those we have observed for I(1/2) → S(1/2) polarization transfers, were evidenced by these analyses even in the presence of the quadrupolar interaction. 1H-23Na and 1H-11B BRAIN-CPMAS conditions were experimentally explored on model compounds by optimizing the width of the adiabatic sweep, as well as the rf pulse powers of the 1H and 23Na/11B channels, for different MAS rates. The experimental data obtained on model compounds containing spin-3/2 nuclides, matched well predictions from numerical simulations and from an average Hamiltonian theory model. Extensions to half-integer spin nuclides with higher spins and potential applications of this BRAIN-CPMAS approach are discussed.

  5. 1H-2H cross-polarization NMR in fast spinning solids by adiabatic sweeps

    NASA Astrophysics Data System (ADS)

    Wi, Sungsool; Schurko, Robert; Frydman, Lucio

    2017-03-01

    Cross-polarization (CP) experiments employing frequency-swept radiofrequency (rf) pulses have been successfully used in static spin systems for obtaining broadband signal enhancements. These experiments have been recently extended to heteronuclear I, S = spin-1/2 nuclides under magic-angle spinning (MAS), by applying adiabatic inversion pulses along the S (low-γ) channel while simultaneously applying a conventional spin-locking pulse on the I-channel (1H). This study explores an extension of this adiabatic frequency sweep concept to quadrupolar nuclei, focusing on CP from 1H (I = 1/2) to 2H spins (S = 1) undergoing fast MAS (νr = 60 kHz). A number of new features emerge, including zero- and double-quantum polarization transfer phenomena that depend on the frequency offsets of the swept pulses, the rf pulse powers, and the MAS spinning rate. An additional mechanism found operational in the 1H-2H CP case that was absent in the spin-1/2 counterpart, concerns the onset of a pseudo-static zero-quantum CP mode, driven by a quadrupole-modulated rf/dipolar recoupling term arising under the action of MAS. The best CP conditions found at these fast spinning rates correspond to double-quantum transfers, involving weak 2H rf field strengths. At these easily attainable (ca. 10 kHz) rf field conditions, adiabatic level-crossings among the {|1 ⟩ ,|0 ⟩ ,|-1 ⟩ } mS energy levels, which are known to complicate the CP MAS of quadrupolar nuclei, are avoided. Moreover, the CP line shapes generated in this manner are very close to the ideal 2H MAS spectral line shapes, facilitating the extraction of quadrupolar coupling parameters. All these features were corroborated with experiments on model compounds and justified using numerical simulations and average Hamiltonian theory models. Potential applications of these new phenomena, as well as extensions to higher spins S, are briefly discussed.

  6. "Magic" Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  7. "Magic" Ionization Mass Spectrometry.

    PubMed

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  8. Sideband excitation of trapped ions by rapid adiabatic passage for manipulation of motional states

    SciTech Connect

    Watanabe, T.; Nomura, S.; Toyoda, K.; Urabe, S.

    2011-09-15

    We describe an analysis and experimental results of the manipulation of motional states of a single trapped {sup 40}Ca{sup +} ion based on sideband excitation by rapid adiabatic passage. When the sideband transition is excited by rapid adiabatic passage, adiabaticity may be affected by ac Stark shifts. We investigate the influence of ac Stark shifts and compensate for these shifts with an additional laser field. This makes the population transfer by rapid adiabatic passage more robust with respect to experimental parameters. Finally, we manipulate the motional states and generate motional Fock states of a single {sup 40}Ca{sup +} ion by rapid adiabatic passage with ac Stark compensation.

  9. Adiabatic theory of solitons fed by dispersive waves

    NASA Astrophysics Data System (ADS)

    Pickartz, Sabrina; Bandelow, Uwe; Amiranashvili, Shalva

    2016-09-01

    We consider scattering of low-amplitude dispersive waves at an intense optical soliton which constitutes a nonlinear perturbation of the refractive index. Specifically, we consider a single-mode optical fiber and a group velocity matched pair: an optical soliton and a nearly perfectly reflected dispersive wave, a fiber-optical analog of the event horizon. By combining (i) an adiabatic approach that is used in soliton perturbation theory and (ii) scattering theory from quantum mechanics, we give a quantitative account of the evolution of all soliton parameters. In particular, we quantify the increase in the soliton peak power that may result in the spontaneous appearance of an extremely large, so-called champion soliton. The presented adiabatic theory agrees well with the numerical solutions of the pulse propagation equation. Moreover, we predict the full frequency band of the scattered dispersive waves and explain an emerging caustic structure in the space-time domain.

  10. Adiabatic far-field sub-diffraction imaging.

    PubMed

    Cang, Hu; Salandrino, Alessandro; Wang, Yuan; Zhang, Xiang

    2015-08-10

    The limited resolution of a conventional optical imaging system stems from the fact that the fine feature information of an object is carried by evanescent waves, which exponentially decays in space and thus cannot reach the imaging plane. We introduce here an adiabatic lens, which utilizes a geometrically conformal surface to mediate the interference of slowly decompressed electromagnetic waves at far field to form images. The decompression is satisfying an adiabatic condition, and by bridging the gap between far field and near field, it allows far-field optical systems to project an image of the near-field features directly. Using these designs, we demonstrated the magnification can be up to 20 times and it is possible to achieve sub-50 nm imaging resolution in visible. Our approach provides a means to extend the domain of geometrical optics to a deep sub-wavelength scale.

  11. Engineering adiabaticity at an avoided crossing with optimal control

    NASA Astrophysics Data System (ADS)

    Chasseur, T.; Theis, L. S.; Sanders, Y. R.; Egger, D. J.; Wilhelm, F. K.

    2015-04-01

    We investigate ways to optimize adiabaticity and diabaticity in the Landau-Zener model with nonuniform sweeps. We show how diabaticity can be engineered with a pulse consisting of a linear sweep augmented by an oscillating term. We show that the oscillation leads to jumps in populations whose value can be accurately modeled using a model of multiple, photon-assisted Landau-Zener transitions, which generalizes work by Wubs et al. [New J. Phys. 7, 218 (2005)], 10.1088/1367-2630/7/1/218. We extend the study on diabaticity using methods derived from optimal control. We also show how to preserve adiabaticity with optimal pulses at limited time, finding a nonuniform quantum speed limit.

  12. Steam bottoming cycle for an adiabatic diesel engine

    NASA Technical Reports Server (NTRS)

    Poulin, E.; Demier, R.; Krepchin, I.; Walker, D.

    1984-01-01

    Steam bottoming cycles using adiabatic diesel engine exhaust heat which projected substantial performance and economic benefits for long haul trucks were studied. Steam cycle and system component variables, system cost, size and performance were analyzed. An 811 K/6.90 MPa state of the art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. The costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with aftercooling with the same total output were compared, the annual fuel savings less the added maintenance cost was determined to cover the increase initial cost of the TC/B system in a payback period of 2.3 years. Steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability are considered and the cost and performance of advanced systes are evaluated.

  13. Adiabatic approximation and fluctuations in exciton-polariton condensates

    NASA Astrophysics Data System (ADS)

    Bobrovska, Nataliya; Matuszewski, Michał

    2015-07-01

    We study the relation between the models commonly used to describe the dynamics of nonresonantly pumped exciton-polariton condensates, namely the ones described by the complex Ginzburg-Landau equation, and by the open-dissipative Gross-Pitaevskii equation including a separate equation for the reservoir density. In particular, we focus on the validity of the adiabatic approximation and small density fluctuations approximation that allow one to reduce the coupled condensate-reservoir dynamics to a single partial differential equation. We find that the adiabatic approximation consists of three independent analytical conditions that have to be fulfilled simultaneously. By investigating stochastic versions of the two corresponding models, we verify that the breakdown of these approximations can lead to discrepancies in correlation lengths and distributions of fluctuations. Additionally, we consider the phase diffusion and number fluctuations of a condensate in a box, and show that self-consistent description requires treatment beyond the typical Bogoliubov approximation.

  14. Confinement loss in adiabatic photonic crystal fiber tapers

    NASA Astrophysics Data System (ADS)

    Kuhlmey, Boris T.; Nguyen, Hong C.; Steel, M. J.; Eggleton, Benjamin J.

    2006-09-01

    We numerically study confinement loss in photonic crystal fiber (PCF) tapers and compare our results with previously published experimental data. Agreement between theory and experiment requires taking into account hole shrinkage during the tapering process, which we measure by using a noninvasive technique. We show that losses are fully explained within the adiabatic approximation and that they are closely linked to the existence of a fundamental core-mode cutoff. This cutoff is equivalent to the core-mode cutoff in depressed-cladding fibers, so that losses in PCF tapers can be obtained semiquantitatively from an equivalent depressed-cladding fiber model. Finally, we discuss the definition of adiabaticity in this open boundary problem.

  15. Adiabatic far-field sub-diffraction imaging

    PubMed Central

    Cang, Hu; Salandrino, Alessandro; Wang, Yuan; Zhang, Xiang

    2015-01-01

    The limited resolution of a conventional optical imaging system stems from the fact that the fine feature information of an object is carried by evanescent waves, which exponentially decays in space and thus cannot reach the imaging plane. We introduce here an adiabatic lens, which utilizes a geometrically conformal surface to mediate the interference of slowly decompressed electromagnetic waves at far field to form images. The decompression is satisfying an adiabatic condition, and by bridging the gap between far field and near field, it allows far-field optical systems to project an image of the near-field features directly. Using these designs, we demonstrated the magnification can be up to 20 times and it is possible to achieve sub-50 nm imaging resolution in visible. Our approach provides a means to extend the domain of geometrical optics to a deep sub-wavelength scale. PMID:26258769

  16. Multidimensional Study of High-Adiabat OMEGA Cryogenic Experiments

    NASA Astrophysics Data System (ADS)

    Collins, T. J. B.; Betti, R.; Bose, A.; Christopherson, A. R.; Knauer, J. P.; Marozas, J. A.; Maximov, A. V.; Mora, A.; Radha, P. B.; Shang, W.; Shvydky, A.; Stoeckl, C.; Woo, K. M.; Varchas, G.

    2016-10-01

    Despite recent advances in modeling laser direct-drive inertial confinement fusion (ICF) experiments, there remains a predictability gap. This is particularly shown by the shortfall in hot-spot pressures inferred from OMEGA cryogenic implosions. To address this, a series of high-adiabat, cryogenic implosions were performed on OMEGA. These shots were performed with and without single-beam smoothing by spectral dispersion, at low and high drive intensities. These shots represent a regime where good agreement with simulation is expected because of the high adiabat. Multidimensional simulations of these shots will be presented with an emphasis on comparison with experimental indicators of departure from spherical symmetry (``1-D-ness''). The roles of short- and long-wavelength perturbations are considered. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  17. Breaking of dynamical adiabaticity in direct laser acceleration of electrons

    NASA Astrophysics Data System (ADS)

    Robinson, A. P. L.; Arefiev, A. V.

    2017-02-01

    The interaction of an electron oscillating in an ion channel and irradiated by a plane electromagnetic wave is considered. It is shown that the interaction qualitatively changes with the increase of electron energy, as the oscillations across the channel become relativistic. The "square-wave-like" profile of the transverse velocity in the relativistic case enables breaking of the adiabaticity that precludes electron energy retention in the non-relativistic case. For an electron with a relativistic factor γ0, the adiabaticity breaks if ωL/ωp0≪√{γ0 } . Under these conditions, the kinetic energy acquired by the electron is retained once the interaction with the laser field ceases. This mechanism notably enables electron heating in regimes that do not require a resonant interaction between the initially oscillating electron and the laser electric field.

  18. Fluctuations of work in nearly adiabatically driven open quantum systems.

    PubMed

    Suomela, S; Salmilehto, J; Savenko, I G; Ala-Nissila, T; Möttönen, M

    2015-02-01

    We extend the quantum jump method to nearly adiabatically driven open quantum systems in a way that allows for an accurate account of the external driving in the system-environment interaction. Using this framework, we construct the corresponding trajectory-dependent work performed on the system and derive the integral fluctuation theorem and the Jarzynski equality for nearly adiabatic driving. We show that such identities hold as long as the stochastic dynamics and work variable are consistently defined. We numerically study the emerging work statistics for a two-level quantum system and find that the conventional diabatic approximation is unable to capture some prominent features arising from driving, such as the continuity of the probability density of work. Our results reveal the necessity of using accurate expressions for the drive-dressed heat exchange in future experiments probing jump time distributions.

  19. Reverse engineering of a nonlossy adiabatic Hamiltonian for non-Hermitian systems

    NASA Astrophysics Data System (ADS)

    Wu, Qi-Cheng; Chen, Ye-Hong; Huang, Bi-Hua; Xia, Yan; Song, Jie

    2016-11-01

    We generalize the quantum adiabatic theorem to the non-Hermitian system and build a strict adiabaticity condition to make the adiabatic evolution nonlossy when taking into account the effect of the adiabatic phase. According to the strict adiabaticity condition, the nonadiabatic couplings and the effect of the imaginary part of adiabatic phase should be eliminated as much as possible. Also, the non-Hermitian Hamiltonian reverse-engineering method is proposed for adiabatically driving an artificial quantum state. A concrete two-level system is adopted to show the usefulness of the reverse-engineering method. We obtain the desired target state by adjusting extra rotating magnetic fields at a predefined time. Furthermore, the numerical simulation shows that certain noise and dissipation in the systems are no longer undesirable but play a positive role in the scheme. Therefore, the scheme is quite useful for quantum information processing in some dissipative systems.

  20. Experimental Adiabatic Quantum Factorization under Ambient Conditions Based on a Solid-State Single Spin System.

    PubMed

    Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng

    2017-03-31

    The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian S_{z}I_{z} on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.